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Preface

This volume contains papers presented at AI 2010, the 23rd Australasian Joint
Conference on Artificial Intelligence held December 7–10, 2010 in Adelaide,
South Australia. The Australasian Joint Conference on Artificial Intelligence
has a long history and has established itself as the premier event for artificial
intelligence researchers in the Australasia region.

AI 2010 received 112 submissions with authors from 27 countries. The coun-
tries most represented included Australia, New Zealand, China, Malaysia, Japan,
Iran, Canada, and Spain. Each submission was reviewed by up to 6 reviewers,
and on average there were 3.2 reviewers per paper. Some papers were inten-
sively discussed among the reviewers, and extra reviews were sought during the
discussion period. After the intensive review process, the Program Committee
decided to accept 52 papers for presentation at the conference. These papers are
included in this volume. The research papers cover a range of topics in artificial
intelligence theory and application. A strong focus in this volume is on various
learning methods and their applications.

AI 2010 featured three keynote speeches by distinguished researchers: Gau-
tam Biswas (Vanderbilt University, USA), Kotagiri Ramamohanarao (The Uni-
versity of Melbourne, Australia), and Qiang Yang (The Hong Kong University of
Science and Technology). Their talks cover theoretical challenges and advanced
applications in current artificial intelligence research.

Two workshops, with their own proceedings, were held on December 7. Ex-
treme Learning Machines (ELM 2010) was organized by Guang-Bin Huang
(Nanyang Technological University, Singapore) and Dianhui Wang (La Trobe
University, Australia). The 6th Australasian Ontology Workshop was organized
by Thomas Meyer (Meraka Institute South Africa), Mehmet Orgun (Macquarie
University, Australia) and Kerry Taylor (CSIRO ICT Centre, Australia).

AI 2010 would not be successful without the support of authors, reviewers
and organizers. We thank the many authors for submitting their research papers
to AI 2010. We thank the successful authors whose papers are published in this
volume for their collaboration during the preparation of final submissions. We
appreciate all Program Committee members, including external reviewers, for
their timely reviews working to a tight schedule. We are grateful to the senior
Program Committee members for Organizing discussions and shortlisting papers.
We also thank members of the Organizing Committee for their year-long efforts
in the preparation, promotion and organization of the conference, especially Ivan
Lee for his outstanding service to the conference. We thank support provided by
the Australian Computer Society National Committee for Artificial Intelligence.

The conference was held at the City West Campus of the University of South
Australia (UniSA). We thank UniSA for sponsoring the venues and facilities.



VI Preface

We acknowledge the assistance provided by EasyChair for conference manage-
ment, which saved us a lot of time and effort. We appreciate the professional
service provided by the Springer LNCS editorial and publishing teams.

September 2010 Jiuyong Li
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Pushing the Envelope:

General Game Players Prove Theorems

Sebastian Haufe 1 and Michael Thielscher 2

1 Department of Computer Science

Dresden University of Technology

sebastian.haufe@mailbox.tu-dresden.de
2 School of Computer Science and Engineering

The University of New South Wales

mit@cse.unsw.edu.au

Abstract. A general game player is a system that can play previously

unknown games given nothing but their rules. A key to success in this en-

deavour is the ability to automatically gain knowledge about new games

that follows from the rules without being explicitly given. In this paper,

we show how a recently developed, theoretical method for automated

theorem proving in general game playing can be put into practice. To

this end, we extend the method so as to allow a general game player to

systematically search and verify multiple temporal game properties at

once. We formally prove this extension to be correct, and we report on

extensive experiments that show how this improvement helps to signif-

icantly enhance the ability of a successful general game player to infer

new properties about a previously unknown game.

1 Introduction

General game playing is concerned with the development of systems that under-
stand the rules of previously unknown games and learn to play these games well
without human intervention. Identified as a Grand Challenge for AI, this en-
deavour requires to combine methods from a variety of sub-disciplines, including
automated reasoning, search, game playing, and learning [9,5,3,11,2].

A key capability is to automatically gain knowledge about games that fol-
lows from the rules without being explicitly given. In [12,13] we have laid the
foundations for the use of Answer Set Programming [4] to automatically prove
properties of a game from its mere rules. While initial experiments had shown
that this provides a viable method for a general game player to establish the
truth of a specific property, the practice of general game playing requires a
player to systematically search large sets of potentially valid and useful prop-
erties in order to find those that actually hold [5,3,11]. Proving each candidate
formula individually constitutes a considerable computational burden [13].

In this paper, we extend the method in [13] so as to allow a general game player
to systematically search through and verify multiple temporal game properties
at once. The correctness of our extended approach is formally proved, and we

J. Li (Ed.): AI 2010, LNAI 6464, pp. 1–10, 2010.
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2 S. Haufe and M. Thielscher

report on extensive experiments that show how our improvement significantly
enhances the ability of a successful general game player to infer new properties
about a previously unknown game.

2 Background

2.1 Game Description Language

The Game Description Language (GDL) has been developed to formalise the
rules of any finite n ≥ 1-player game with complete information in such a way
that the description can be automatically processed by a general game player.
Due to lack of space, we can give just a very brief introduction to GDL and have
to refer to [7] for details.

GDL is based on the standard syntax of logic programs, including negation.
We assume familiarity with the basic notions of logic programming. We adopt the
Prolog convention according to which variables are denoted by uppercase letters
and predicate and function symbols start with a lowercase letter. As a tailor-
made specification language, GDL uses a few pre-defined predicate symbols:

role(R) R is a player
init(F) F holds in the initial position
true(F) F holds in the current position

legal(R,M) player R has legal move M
does(R,M) player R does move M
next(F) F holds in the next position
terminal the current position is terminal
goal(R,N) player R gets goal value N

A further standard predicate is distinct(X,Y), which means syntactic inequal-
ity of the two arguments. GDL imposes restrictions on the use of these keywords:

– role only appears in facts (i.e., clauses with empty body);
– init and next only appear as head of clauses, and init does not depend

on any of true, legal, does, next, terminal, or goal;
– true and does only appear in clause bodies with does not depending on

any of legal, terminal, or goal.

Additional general restrictions are placed on a set of rules with the intention
to ensure finiteness of the set of derivable predicate instances. Specifically, the
set of rules must be stratified [1] and allowed [6]. Stratified logic programs are
known to admit a unique standard model [1]. As an example, Figure 1 shows an
excerpt of a GDL description for a game called “Quarto.”

Based on the concept of the standard model, a GDL description can be un-
derstood as a state transition system as follows [7]. To begin with, any valid
game description G in GDL contains a finite set of function symbols, includ-
ing constants, which implicitly determines a set of ground terms Σ . This set
constitutes the symbol base Σ in the formal semantics for G.
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role(r1). role(r2). init(cell(1,1,b)). ... init(cell(4,4,b)).

init(sctrl(r1)). init(pool(p0000)). ... init(pool(p1111)).

legal(R,select(P)) :- true(sctrl(R)),true(pool(P)).

legal(R,place(P,M,N)) :- true(pctrl(R)),true(slctd(P)),true(cell(M,N,b)).

legal(R,noop) :- role(R),not true(sctrl(R)),not true(pctrl(R)).

next(pool(P)) :- true(pool(P)),not does(r1,select(P)),

not does(r2,select(P)).

next(slctd(P)) :- does(R,select(P)).

next(cell(M,N,P)) :- does(R,place(P,M,N)).

next(cell(M,N,P)) :- true(cell(M,N,P)),does(R,select(P)).

next(cell(M,N,P)) :- true(cell(M,N,P)),does(R,place(P,S,T)),!=(M,N,S,T).

next(sctrl(R)) :- true(pctrl(R)).

next(pctrl(r1)) :- true(sctrl(r2)).

next(pctrl(r2)) :- true(sctrl(r1)).

Fig. 1. A GDL description of “Quarto” (without definitions for termination, goal val-

ues, and !=/4). Two players take turns selecting one of 16 jointly used 4 -attributed

pieces p0000 , p0001 , . . . , p1111 which the other player must place on a 4 × 4 board.

The player wins who completes a line of 4 pieces with a common attribute.

The players R and the initial position of a game can be directly determined
from the clauses for role and init, respectively. In order to determine the legal
moves, update, termination, and outcome (i.e., goal values) for a given position,
this position has to be encoded first, using the keyword true. To this end, for
any finite subset S = {f1, . . . , fn} ⊆ Σ of a set of ground terms, the following
set of logic program facts encodes S as the current position:

Strue def= {true(f1)., . . . , true(fn).}

Furthermore, for any function A : ({r1, . . . , rk} �→ Σ) that assigns a move to
each player r1, . . . , rk ∈ R, the following set of facts encodes A as a joint move:

Adoes def= {does(r1, A(r1))., . . . , does(rk, A(rk)).}

Definition 1. Let G be a GDL specification whose signature determines ground
terms Σ . The semantics of G is the state transition system (R,Sinit, T, l, u, g)
where1

– R = {r : G � role(r)} (the players);
– Sinit = {f : G � init(f)} (the initial position);
– T = {S : G ∪ Strue � terminal} (the terminal positions);
– l = {(r, a, S) : G ∪ Strue � legal(r, a)} (the legality relation);

1 Below, entailment � is via the aforementioned standard model for stratified clause

sets.
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– u(A,S) = {f : G ∪ Strue ∪Adoes � next(f)} (the update function);
– g = {(r, v, S) : G ∪ Strue � goal(r, v)} (the goal relation).

We write S A→ S′ if A : (R �→ Σ) is such that (r, A(r), S) ∈ l for each r ∈ R

and S′ = u(A,S) (and S /∈ T ). We call S0
A0→ S1

A1→ . . . Am−1→ Sm (where
m ≥ 0) a sequence (of legal moves), sometimes abbreviated as (S0, S1, . . . , Sm).
A state S is called reachable iff there is a sequence which starts in the initial
state Sinit and ends in S .

This definition provides a formal semantics by which a GDL description is inter-
preted as an abstract k -player game: in every position S , starting with Sinit ,
each player r chooses a move a that is legal, i.e., satisfies l(r, a, S). As a con-
sequence the game state changes to u(A,S), where A is the joint move. The
game ends if a position in T is reached, and then g determines the outcome.
The restrictions in GDL ensure that entailment w.r.t. the standard model is
decidable and that only finitely many instances of each predicate are entailed.
This guarantees that the definition of the semantics is effective [7].

2.2 Formalising and Encoding Temporal Game Properties

Next, we briefly summarise syntax and semantics of a language for formulating
individual game properties. We also recapitulate from [13] the so-called temporal
GDL extension, which is needed for proving properties given in this language.

Definition 2. The set of formulas is (1) based on all ground atoms over the
signature of a GDL description which are different from init and next and
not dependent on does, and (2) closed under ¬,∧,∨,⊃,©. The degree of a
formula ϕ is the maximal “nesting” of the unary ©-operator in ϕ.

Modality ©ϕ states that ϕ holds in all positions that are a direct, legal suc-
cessor of the current game state. An example property in the Quarto game is the
periodic return of “select control” to player r1 every four moves, which can be
formulated via the formula true(sctrl(r1 )) ⊃ ©4true(sctrl(r1 )) with degree 4 .

A formula with degree n follows from a GDL description if it holds w.r.t. all
sequences of length n and all shorter sequences that end in a terminal state [13].

Definition 3. A sequence is called n-max iff it is of length n , or shorter and
ending in a terminal state. Let G be a GDL description and ϕ a formula
with degree n. We say that S0 satisfies ϕ (written S0 �t ϕ) if for all n-max
sequences (S0, . . . , Sm) (m ≤ n) we have that (S0, . . . , Sm) �t ϕ according to
the following definition:

(Si, . . . , Sm) �t p iff G ∪ Strue
i � p (p ground atom)

(Si, . . . , Sm) �t ¬ϕ iff (Si, . . . , Sm) �t ϕ (likewise for ∧,∨,⊃)
(Si, . . . , Sm) �t©ϕ iff i = m or (Si+1, . . . , Sm) �t ϕ

Automatically verifying properties over sequences of successive game states
against a given GDL specification G requires to build the temporal extension
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of G (with some horizon n), denoted Gn . It is obtained by joining timed vari-
ants of G (which enrich predicates with a time argument) for each time level
0 ≤ i ≤ n, omitting does -dependent rules for level n. We refer to [13] for a
formal definition and just give an example: Consider the fourth rule with head
next in the GDL description G of Figure 1. It depends on does , hence the
following timed variant is contained in Gn for every 0 ≤ i ≤ n−1:

true(cell(M, N, P),i+1) :- true(cell(M, N, P),i), does(R, select(P),i).

The definitions of Strue and Adoes (cf. Section 2.1) are similarly extended to
Strue(0) and Adoes(i), respectively. The encoding of a formula ϕ can now be
related to a temporally extended GDL description Gn in a way that corresponds
to formula entailment w.r.t. G.

Definition 4. Let η(ϕ) be a 0-ary atom which represents a unique name for
formula ϕ with degree n. An encoding of ϕ, denoted Enc(ϕ), is a stratified set
of rules whose heads include η(ϕ) and do not occur elsewhere, and such that for
all n-max sequences S0

A0→ S1 . . .
Am−1→ Sm of a GDL description G:

(S0, . . . , Sm) �t ϕ iff Strue
0 (0) ∪Gn ∪

m−1⋃
i=0

Adoes
i (i) ∪ Enc(ϕ) � η(ϕ)

In the following we assume Enc to be given, whose construction can be easily
automated. Recall, e.g., ϕ = true(sctrl(r1 )) ⊃ ©4true(sctrl(r1 )) from above
and let η(ϕ) = a, then the following set of rules encode ϕ :

a :- not true(sctrl(r1),0). a :- terminal(0). a :- terminal(1).
a :- true(sctrl(r1),4). a :- terminal(2). a :- terminal(3).

3 Proving Multiple Temporal Game Properties at Once

In [13] we have shown how the encoding of a game property (i.e., a temporal
formula), together with the temporal extension of a given set of game rules, can
be fed into a system for Answer Set Programming (ASP) in order to establish
whether the rules entail the property.2 Even though being the currently fastest
approach for calculating models of logic programs, requiring a general game
player to evoke an ASP system individually for each formula in a large set of
candidate properties is not feasible for the practice of general game playing with
a limited amount of time to analyse the rules of a hitherto unknown game.

In the following we therefore develop a crucial extension of our method that
enables a general game player to evoke an ASP system only once in order to
determine precisely which of a whole set Φ of formulas is valid w.r.t. a given
game description. For this purpose, we construct two answer set programs for
Φ , one to establish base case proofs and one for the induction steps. For any
ϕ ∈ Φ, then, if all answer sets for the base case program satisfy ϕ, then ϕ is
2 Answer sets are specific models of logic programs with negation; see e.g. [4].
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entailed in the initial state. If additionally all answer sets of the induction step
program satisfy ϕ ⊃ ©ϕ, we can conclude that ϕ is entailed in all reachable
states. The encoding of each player performing a legal move in each nonterminal
state is given by a set of ASP clauses P legal

n , consisting of a set of negation-free
clauses which defines the domains of actions (adom) and the following clauses for
each 0 ≤ i ≤ n:3

(c1) terminated(i) :- terminal(i).
(c2) terminated(i) :- terminated(i− 1).
(c3) 1{does(R,A,i):adom(R,A)}1 :- role(R), not terminated(i).
(c4) :- does(R,A,i), not legal(R,A,i).

For a GDL description G and a finite set of formulas Φ with maximal degree
n̂, the answer set program for the base case is defined as follows:

P bc
Φ (G) = Strue

init (0) ∪Gn̂ ∪ P legal
n̂−1 ∪

⋃
ϕ∈Φ

Enc(ϕ)

Put in words, P bc
Φ (G) consists of an encoding for the initial state, Strue

init (0); a
temporal GDL description up to time step n̂, Gn̂ ; the necessary requirements
concerning legal moves, P legal

n̂−1 ; and an encoding for each of the formulas in Φ,⋃
ϕ∈Φ Enc(ϕ). Encoding Enc(ϕ) ensures that if η(ϕ) occurs in each answer set

for P bc
Φ (G), then every state sequence starting at Sinit makes ϕ true—which

means that Sinit �t ϕ.
For the induction step answer set program, instead of the state encoding

Strue
init (0) we need a “state generator” program whose answer sets correspond

exactly to the reachable states of a GDL description. These, however, cannot be
calculated efficiently in most cases, motivating an easily obtainable approxima-
tion which comprises some non-reachable states as well. The simplest approxi-
mation is the program 0{true(F, 0) : fdom(F)}., which, together with stratified
clauses defining the domain of features (fdom), generates all states. Assuming a
(probably more informed) state generator Sgen, the induction step answer set
program is

P is
Φ (G) = Sgen ∪Gn̂+1 ∪ P legal

n̂ ∪
⋃

ϕ∈Φ

Enc(ϕ ⊃ ©ϕ)

Besides the state generator instead of the initial state, P is
Φ (G) deviates from

P bc
Φ (G) in that the maximal time step n̂ is increased by one. Moreover, encoding

Enc(ϕ ⊃ ©ϕ) ensures that if η(ϕ ⊃ ©ϕ) occurs in each answer set for P is
Φ (G),

then ϕ is entailed by each direct successor of a state that itself entails ϕ.

3 In the following we use two common additions to ASP [8]: a weight atom
m { p : d(x) } n means that for atom p an answer set has at least m and at most

n different instances that satisfy d(x). If n is omitted, there is no upper bound.

A constraint is a rule :- b1, . . . , bk , which excludes any answer set that satisfies

b1, . . . , bk .
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4 Expressiveness and Correctness of the Proof Method

We will now show that our generalisation is correct and that it is at least as
strong as the original Temporal Proof System [13]. We require two results, the
first of which concerns sequences that are longer than the degree of the formula
to be proved. The result refers to the standard restriction to playable GDL
games, meaning that every role has at least one legal move in every non-terminal
reachable state [7].

Lemma 1. Let ϕ be a formula with degree n and G be a GDL description,
then for all n̂ ≥ n:

(A) Every n̂-max sequence which does not satisfy ϕ can be reduced to an n-max
sequence which does not satisfy ϕ.

(B) Let G be playable and S reachable. Then every n-max sequence starting in
S which does not satisfy ϕ can be extended to an n̂-max sequence starting
in S which does not satisfy ϕ.

Note that item (B) is not true for non-reachable states S0 . Consider, e.g., formula
ϕ = true(f) in a single-player game where f is true initially, where the only
action a is legal if f holds, and where a makes f true in the direct successor
state. Assume the (non-reachable) empty state {} to be non-terminal. Then
sequence ({}) of length 0 does not satisfy ϕ but cannot be extended to any
1-max sequence, as the only action a is not legal in {}.

Our second lemma relates answer set programs to sequence-encoding stratified
programs (which in turn relate to formula entailment via Definition 4).

Lemma 2. For a GDL description G, let P = Strue
0 (0)∪Gn ∪P legal

n−1 . Then P

has an answer set An iff there is an n-max sequence (S0
A0→ . . . Am−1→ Sm)

such that replacement of all rules of the form (c3) and (c4) in P (occurring in
P legal

n−1 ) with
⋃m−1

i=0 Adoes
i (i) yields a program with unique standard model An.

Correctness can now be established as follows.

Theorem 1. Let ϕ ∈ Φ and G be a playable GDL description with initial state
Sinit . If every answer set for P bc

Φ (G) contains η(ϕ) and every answer set for
P is

Φ (G) contains η(ϕ ⊃ ©ϕ), then for all finite sequences Sinit
A0→ S1 . . .

Ak − 1→
Sk we have Sk �t ϕ.

Proof. (Sketch) Induction on k, using Lemma 1 (B) and Lemma 2. Base case
k = 0: Sinit �t ϕ implies the existence of an answer set for P bc

Φ (G) that does
not contain η(ϕ). Induction step: Sk �t ϕ, Sk

Ak→ Sk+1 , and Sk+1 �t ϕ imply
the existence of an answer set for P is

Φ (G) which does not contain η(ϕ ⊃ ©ϕ).

To show that our proof method is a generalisation of the original approach, we
need to restate the programs P bc

ϕ (G) and P is
ϕ (G) [13], where ϕ has degree n:

P bc
ϕ (G) = Strue

init (0) ∪Gn ∪ P legal
n−1 ∪ Enc(ϕ) ∪ {:- η(ϕ).}

P is
ϕ (G) = Sgen ∪Gn+1 ∪ P legal

n ∪ Enc(ϕ) ∪ Enc(©ϕ)∪
{:- not η(ϕ)., :- η(©ϕ).}
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The main difference is the reduced maximal time level n ≤ n̂. Moreover the
encoding for ϕ in P bc

ϕ (G) is constrained such as to only allow answer sets that
represent ϕ-violating sequences. Similarly, answer sets for P is

ϕ (G) represent
sequences (S0, . . . , Sm) where ϕ holds in S0 but not in S1 . Both P bc

ϕ (G) and
P is

ϕ (G) being inconsistent yields S �t ϕ for all reachable states.

Theorem 2. Let ϕ ∈ Φ and G be a GDL description.

– If P bc
ϕ (G) is inconsistent then η(ϕ) is in all answer sets of P bc

Φ (G) .
– If P is

ϕ (G) is inconsistent then η(ϕ ⊃ ©ϕ) is in all answer sets of P is
Φ (G) .

Proof. (Sketch) If there is an answer set for P bc
Φ (G) (P is

Φ (G)) that does not
contain η(ϕ) (η(ϕ ⊃ ©ϕ)) then program transformations using Lemma 1 (A)
and Lemma 2 imply that there is an answer set for P bc

ϕ (G) (P is
ϕ (G)).

It should be stressed that the converse of Theorem 2, however, does not hold:
An answer set for P is

ϕ (G) represents an established n-max sequence Seq (cf.
Lemma 2) which violates ϕ ⊃ ©ϕ. Seq however might not be extendable to an
n̂-max sequence (cf. the remark following Lemma 1 (B)) which could serve as
counter example for ϕ ⊃ ©ϕ in P is

Φ (G). Hence our generalisation strengthens
the result, depending on the maximal degree n̂ of the given formula set Φ.

5 Experimental Results

We have implemented our proof method using Fluxplayer [11] for the generation
of the ASP program, which is then processed by grounder Bingo and ASP solver
Clasp from a state-of-the-art answer set solving collection [10]. We use option
“cautious reasoning” for Clasp to compute the intersection of all answer sets.
In the following we sketch the formula sets we had the player try to prove. The
resulting proof times for a variety of games can be seen in Figure 2.

– Persistence ( Φp): Ground features f(t) which stay true [false] once they
become true [false] are proved using the set Φp of all formulas of the form
[¬]true(f(t)) ⊃ ©[¬]true(f(t)) . In the game Quarto, say, ¬true(pool (X)) ⊃
©¬true(pool (X)) can be proved for all instances X ∈ {p0000 , . . . , p1111 } ,
stating that once a piece is not available for selection anymore, it will not
be available throughout the remainder of the game.

– Existence (Φex): We prove [non]existence of ground instances for each fea-
ture fi/ki and its interaction with ground instance existence of different
features fj/kj (fixing i < j in an arbitrary total feature order). The set
Φex of existential formulas contains all formulas of the form [¬]ϕfi/ki

and
all formulas of the form ϕfi/ki

∨ [¬]ϕfj/kj
and ¬ϕfi/ki

∨ [¬]ϕfj/kj
, where

ϕf/k :=
∨

t∈(D1×...×Dk) true(f(t)) (the finite sets Di ⊆ Σ being calculated
automatically). For Quarto, the prover successfully shows ¬ϕslctd/1∨ϕpctrl/1 ,
hence a selected piece always implies a player to have place control. Formulas
ϕpctrl/1∨ϕsctrl/1 and ¬ϕpctrl/1∨¬ϕsctrl/1 prove mutual exclusion of the two
control features and, together with ¬ϕpctrl/1∨ϕcell/3 and ¬ϕsctrl/1∨ϕcell/3 ,
imply existence of a cell instance in each reachable state.
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Game Φp Φex Φctrl Φp ∪ Φex ∪ Φctrl

3pttc 0.78 (77/362) 0.45 (10/18) 0.39 (3/9) 1.55 (90/389)

bidding-tictactoe 0.18 (9/108) 0.31 (13/50) 0.23 (0/12) 0.51 (29/170)

breakthrough 1.02 (32/260) 0.78 (5/8) 1.17 (4/6) 1.69 (41/274)

capture the king 33.01 (7/1744) 9.65 (5/32) 29.98 (10/12) 85.05 (22/1788)

catcha mouse 1.34 (359/998) 1.05 (8/18) 0.20 (4/6) 2.50 (371/1022)

checkers 50.47 (41/1098) 10.16 (13/32) 56.79 (4/6) 98.26 (58/1136)

chomp 0.09 (58/120) 0.14 (6/18) 0.12 (10/12) 0.20 (75/150)

connect4 0.30 (294/508) 0.32 (5/8) 0.19 (4/6) 0.73 (303/522)

endgame 453.48 (2/546) 4.54 (12/18) 33.21 (4/6) 520.80 (18/570)

knightfight 3.91 (0/608) 1.07 (2/18) 3.18 (4/12) 12.35 (6/638)

othello 3.89 (8/260) 1.41 (5/8) 4.00 (4/6) 10.34 (17/274)

pawn whopping 0.45 (32/260) 0.20 (5/8) 0.22 (4/6) 0.74 (41/274)

quarto 38.74 (32/616) 34.48 (6/50) 33.19 (4/12) 147.02 (42/678)

tictactoe 0.09 (27/58) 0.10 (5/8) 0.13 (4/6) 0.14 (36/72)

tttcc4 15.66 (311/1244) 2.64 (7/18) 3.90 (3/9) 42.48 (321/1271)

Fig. 2. Property proof times, in seconds (average over 10 runs), for a variety of games

taken from www.general-game-playing.de. Each time indicates one proof attempt (one

ASP proof for the base case and one ASP proof for the induction step) of the re-

spective formula set. The numbers in parantheses mean: (number of proved proper-

ties/size of the formula set). Experiments were run on an Intel Core 2 Duo CPU with

3.16 GHz.

– Control ( Φctrl): The periodic return of control features is proved via the
set Φctrl of all formulas true(f(r)) ⊃ ©ntrue(f(r)), where r is a role
and 2 ≤ n ≤ 4. In Quarto we obtain successful proofs for n = 4 and
f(r) ∈ {pctrl(white), pctrl(black ), sctrl(white), sctrl(black )}, indicating the
return of the same game phase every 4 steps.

In general, our timings for Control and Persistence are of the same order as the
runtimes for games and property instances we obtained for the original method
[13], since attempting proofs for all instances in one run spares the solver to
repeat similar processes multiple times. This amounts to a significant speedup,
which e.g. for Persistence means to check several hundred instances. Properties
like Existence and Persistence together with initially true [false] features provide
valuable information about reachable states, due to the fast timings their proofs
qualify as basis for further state generator restriction, thus obtaining better
timings and more accurate results for increasingly sophisticated properties. Joint
proof attempts for multiple classes of properties (cf. column Φp ∪ Φex ∪ Φctrl

in Figure 2), however, sometimes decrease performance (e.g. for tttcc4) due to
less viable program rule optimisations, which suggests to divide properties in
classes of “similar” form. Note that sometimes more formulas are proved (e.g.
for bidding-tictactoe) with the joint approach thanks to the effect mentioned at
the end of Section 4.
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6 Summary

A key to success in general game playing is the ability to automatically infer prop-
erties of a new game that follow from the rules without being explicitly given.
By extending a recently developed, basic approach to automated theorem prov-
ing for this purpose, we have developed a method that enables a general game
player to systematically and simultaneously search large sets of candidate formu-
las in order to identify those whose validity can be established. We have formally
proved the correctness of this extended method, and we have conducted system-
atic experiments with a variety of games that have been used by the scientific
community in the past. As the experimental data show, our extended method
allows to search through large sets of formulas of a similar form in times compa-
rable to proving just a single one of these properties using the original method.

Acknowledgement. Michael Thielscher is the recipient of an Australian Research
Council Future Fellowship (project number FT 0991348).
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Abstract. Current belief change literature is largely confined to atemporal belief
change – the temporal element of beliefs is not explicitly recognized or repre-
sented. In this paper, we present a temporal belief change framework that is based
on applying Spohn’s theory of ranking functions to certain temporal semantic ob-
jects that we call ‘histories’. The resulting framework allows us to address a class
of problems for which Jeffery’s general conditionalization, and Spohn’s cardi-
nality of the ranks, as well as the dependencies between beliefs play a central
role. This allows us to lend further support to the argument that the application of
the AGM theory is not necessarily limited to a static world. We also present an
interpretation of belief update in the context of ranking-functions that has been
missing in the literature.

1 Introduction

Research in the area of belief change is primarily concerned with modeling of how a
rational agent should realign her beliefs in light of new information. The fountainhead
of one branch of studies continues to be the AGM theory [1]. Belief update is another
alternative theory where the new information is taken to indicate a change in the world
[2]. Subsequently, belief update is portrayed as a model of belief change regarding a
dynamic world and the AGM theory a model of belief change about a static world. Fol-
lowing this distinction, belief update motivated new inquiries into belief change about
a dynamic world. Most of the enquires follow the underlying intuition that the world
changes along the lines of transitions, where possible worlds that are considered plau-
sible, evolve independently, to a new set of possible worlds [3].

On the other hand, a number of researchers have begun questioning the drawn ‘static
vs. dynamic world’ distinction drawn between the AGM theory and the belief update,
and argued that it is the language in AGM theory that is static and not the underlying
assumption that the world is static [4,5]. It has, therefore, been proposed that “a better
understanding of belief change can be gained from examining appropriate semantic
models” [4]. The multiagent logic of knowledge and plausibility in time by Friedman
and Halpern is the most notable of such approaches [4,6]. This paper takes a similar
position, representing the temporal element of the beliefs explicitly. Our motivation is
to address a class of problems that require novel notions such as the dependency relation
among beliefs. These features are by and large captured in Spohn’s theory of ranking
functions (also called κ-functions) [7]. We motivate our work by the following example
that shows that neither the AGM theory nor the belief update theory is sufficient to
address a certain class of problems in belief change.
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Example 1. Doctors who diagnose patients based on the patients’ description of their
problems often make educated guesses about the correct symptoms. The symptoms are
therefore described not as a single proposition but as a number of propositions with
different strengths attached to each of them. Moreover, the identified symptoms may
need to be revised, pending further tests. To emphasize this point we assume that the
patient is a migrant who can communicate with the doctor only through an interpreter.

The patient ‘X’ pointing to her stomach tells the doctor that her stomach and ab-
dominal area hurts badly. The doctor describes the symptoms at time t1 by two distinct
symptoms s1, s2 such that s1 is surely present, s2 is apparent, and that both the s1 and
s2 are likely to be present. The symptoms being newly discovered are the new infor-
mation. The belief change approach that allows for such a specific representation of
the new information is by R. C. Jeffrey where the new information is expressed as a
probability distribution over a number of propositions [8] (Chapter 11). This represen-
tation also allows for the new information to be revisable. Although, Jeffery’s approach
to belief change is probabilistic, his method is adopted in Spohn’s theory of ranking
functions which is a deterministic/qualitative theory of belief change [7].

In general, the current belief and the new belief refer to the belief prior to and after
the belief change operation. Moreover, belief change operations are due to incorporating
the new information that can be an observation or an action. To account for the new
symptoms the doctor needs to change her current belief. The required belief change
can be attained by applying either the AGM revision operation, or the belief update
operation, or the conditionalization in the theory of κ-functions.

In making a diagnosis, the doctor should decide what illnesses (the new or the old
illnesses) best correspond to the symptoms as there may be a number of illnesses with
similar symptoms. However, neither the belief update theory nor the AGM theory can
provide this required reasoning. In belief update, there are no strengths attached to the
beliefs, hence, belief update can only identify the possible illnesses and not the most
relevant ones. There are extensions of belief update that employ ranking; we briefly
touch on two in the section 5 [9,10]. In the AGM theory, beliefs have strengths asso-
ciated with them, called epistemic entrenchment values. Although, the AGM revision
can provide a distinction about the strongest believed illnesses, it cannot identify the
most relevant illnesses in relation to the identified symptoms. The reason is that to es-
tablish the most relevant illness, we need to compare the differences of the strength of
the believed illnesses before and after the inclusion of the new symptoms. The larger a
shift in the strength of a belief is, the more relevant the belief is to the new information.
The entrenchment values are ordinal, and in the absence of a metric for comparing the
shifts, the entrenchment values cannot be used for such purpose [9,11].

However, in Spohn’s ranking theory the required reasoning is possible, because, the
relevance relation among beliefs is defined, and, the strengths of beliefs are of cardinal
nature. The same issue of the relevance arises when the doctor tries to determine the
most effective medication. It can be seen that in regard to the class of problems where
the ‘relevance’ and the ‘comparison of the shifts’ in strengths of beliefs are key issues
the theory of κ-functions is the most suitable belief change theory. However, in the
theory of κ-functions, the temporal element of belief is not explicitly represented.
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The doctor identifies the illness c1 and advises the medication m1 at time t2 and
expects the patient to recover by time t3. However, at the re-examination, time t3, the
doctor is surprised to find that the symptoms s1 and s2 are still present. Administering
the medication is a new information, hence, the doctor again needs to change her belief.
The current belief now holds that c1, s1 and s2 are believed. It is established in the
literature that the typical application of the AGM theory does not work in this situation
[2]. The application of the belief update is problematic as well. The doctor’s belief after
administering the medication at t2 should include the medication m1 and can either
include the symptoms s1, s2 or not, depending on how we model the update operation.
We need to remember that the model of belief change should reflect our expectation
that the medication comes into effect at t3, and not instantly at t2, and, the correct
belief change after the re-examination should indicate that either the symptoms or the
illnesses are identified incorrectly.

If we model the update operation such that the new belief includes s1, s2, then, at t3,
the doctor should not change her belief while the correct expectation requires a change
in her belief. On the other hand, if the new belief does not include s1, s2 then it cannot
correspond to t2. If the belief corresponds to t3 then upon learning a new information at
a time t where t2 < t < t3, the doctor has no means of changing her belief at t, because
her current belief at t is about the future at t3. We therefore conclude that neither the
typical application of the AGM theory nor the belief update theory is the right answer
for the problem here.

In addition, for this example, it is evident that to express how events unfold, we require
a representation of belief where the element of time is explicitly captured. In this pa-
per, we present a temporal model for beliefs called histories that are semantic objects
analogous to the models in PLTL (Propositional Linear Temporal Logic) [12]. We then
develop a temporal belief change framework which is an adaptation of the theory of κ-
functions to the histories. In this manner we adopt all the desired features of the ranking
functions for the required temporal reasoning. Like Spohn’s theory of κ-functions, the
approach in this paper is purely semantic.

This paper is structured as follows. In section 2, we provide the temporal belief
change framework followed by a solution to the example given above. In section 3, we
discuss the relation between the presented belief change method and the AGM revision
by following Spohn’s interpretation of the traditional AGM revision in the ranking the-
ory [7,11]. While the relationship between Spohn’s belief change theory and the AGM
theory is well investigated, a parallel analysis for the belief update is missing. In sec-
tion 4, we provide a reading of the KM belief update and the iterated update in the
presented framework and identify the class of temporal κ-functions that are suitable
for the iterated update. Finally, in section 5, we compare our work with the works in
[6,9,10,13,14], and discuss the future research directions.

2 Temporal Ranking Function: Temporal Belief Framework

In this section, we introduce the temporal belief change framework. The framework is
based on ranking of semantic objects analogue to the models in PLTL called histories
where ranks reflect implausibility of histories. The formal presentation of the temporal
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framework is as follows. Let AP be a finite set of propositional variables. In usual
way, possible worlds are defined as w : AP → {0, 1}, and, W as the complete set of
possible worlds. We assume the set of natural numbersN as the time domain. A history
h is a function that assigns to each time point t ∈ N a member of W , h : N → W .
The complete set of histories is denoted by H. Every history gives a complete picture
of a dynamic world that is analogue to the possible worlds that give a complete picture
of a static world. In fact, in relation to representing beliefs, we use possible histories
the same way we use possible worlds, e.g. the example given in caption of figure 1. In
addition, to represent beliefs at certain instants or intervals we define:

1. For A ⊆ W and t ∈ N : (A, t) � {h ∈ H | h(t) ∈ A}. That is (A, t) is the set of
histories that pass through any world w ∈ A at t. For singleton sets, we write

(w, t) instead of ({w}, t).
2. By a Sub-history 〈(w0, t), · · · (wm, t + m)〉, we mean (w0, t) ∩ · · · ∩ (wm, t + m)
where w0 · · ·wm ∈ W . A sub-history can be open from the right hand side.

0:00

Open

Close

history h1

history h2

3:00 4:00 5:002:001:00

Fig. 1. The two histories h1, h2 show the possible states of a door being Open or Closed at
different hours: a represents “The door is open”, AP = {a}. ‘Open’ and ‘Closed’ represent the
two possible worlds w1, w2: w1(a) = 1, w2(a) = 0. Assuming that only histories h1, h2 are
plausible then the agent believes: (Close, 1) as well as, the sequence 〈( Close , 1), ( Close , 2),
( Open , 3)〉.

Next, we apply Spohn’s κ-functions to histories. The theory of κ-functions is a
framework for expressing belief kinematics [7]. κ-functions are presented as the quali-
tative or deterministic counterpart of probability space representing degrees of disbelief.
In κ-functions, possible worlds (alt. propositions) are ranked according to their implau-
sibility or degree of surprise. The degree of surprise associated with a proposition A is
roughly equal to how least surprising A can possibly be. If κ(A) = 0 then A is con-
sidered plausible, otherwise, A is implausible. A proposition A is believed only if Ā
is implausible. κ-functions are adapted to histories as follows. We treat κ-functions as
abstract measures that rank semantic objects, and then substitute set of histories H for
propositions A. In this manner, instead of ranking propositions we rank set of histories
(or alternatively, instead of ranking possible worlds we rank histories):

Definition 1. (Spohn 2005) Let H ⊆ 2H be a complete field, and H,H1, H2 ∈ H, then
a ranking function κ for H is a function from H to R∗, where R∗ = R+ ∪ {∞}, that
satisfies the following:

1. κ(H) ≥ 0, κ(H) = 0 and κ(∅) = ∞
2. κ(H1 ∪H2) = min(κ(H1), κ(H2))
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3. The conditional rank of H2 given H1 is defined as: κ(H2|H1) = κ(H2 ∩ H1) -
κ(H1) if H1 ∩H2 �= ∅, otherwise κ(H2|H1) =∞.
4.The core-state E is: E = {h ∈ H | κ({h}) = 0}.

Defining expressions in terms of histories allows us to derive their κ in a seamless
manner. For instance, we say that we believe A at time t if and only if all histories that
pass through Ā at t are implausible, i.e. κ((Ā, t)) > 0. We may now briefly discuss the
choice of ranking histories against few alternative options.

One alternative method is to rank the objects (A, t) or (w, t). However, in this rep-
resentation, the link between past, present and future is not explicitly represented. An-
other alternative approach is to rank transitions. A transition can be defined as a tuple
(w,w′). The typical approach is to apply Markov assumption [3]. The general approach
is to consider a preference ordering over sequences of transitions where the ordering is
derived from the rankings of transitions. However, a sequence of transitions is a dif-
ferent representation of a history, a transition based history. Hence, we will again be
ranking histories. Yet, the choice of ranking histories is best justified by (1) the repre-
sentational efficacy of linear temporal models in traditional temporal logics [12], and
(2) the probability measures over runs in probabilistic reasoning that is analogue to the
ranking of histories.

The standard belief change method in theory of κ-functions is called conditionaliza-
tion. Conditionalization is modification of κ to account for the new information.

Definition 2. (Spohn2005) Let κ be a ranking function for 2H, H ∈ 2H and λ a rank-
ing function over H a complete subfield of 2H, then the conditionalization of κ by λ is
defined as: κλ(H) = min({λ(X)+κ(H |X) | X: atom of H, κ(X) �= ∞}).

The two features of κ-functions that Spohn discusses frequently are the relevance re-
lation among beliefs and the cardinal nature of the ranks [7]. The relevance relation
among beliefs represent the degrees which beliefs support or weaken each other [11,7].
The cardinality of ranks allows us to compare the degrees of relevance among beliefs,
as well as the strength of beliefs before and after conditionalization.

Definition 3. (Spohn 2005) Let κ be a ranking function for 2H, and H1, H2, H3 ⊆ H.
Then H1 is said to be a reason for H2, or positively relevant to H2, given H3 w.r.t. κ iff
κ(H2 | H1 ∩H3) < κ(H2 | H̄1 ∩H3). H1 is to be a reason against H2, or negatively
relevant to H2, given H3 w.r.t. κ iff κ(H2 |H1 ∩H3) > κ(H2 | H̄1 ∩H3). Finally, H1

is irrelevant to or independent of H2 given H3 w.r.t. κ iff H1 is a neither a reason for
nor against H2 given H3 w.r.t. κ.

The definition above allows us to make statements such as the event (A, tA) is a reason
for the event (B, tB), given a circumstance (C, tC) where tA ≤ tC < tB , or a number
of events ((A1, tA1)∩ (A2, tA2)∩ (A3, tA3)) are a reason for the event (B, tB) [7]. As
explained in the introduction, the features ‘relevance among beliefs’ and ‘the cardinality
of the ranks’ play an important role in addressing the problem in example 1. Next, we
provide a solution for the example 1 using the presented framework.

Example 1 continued. Let ti be a variable for time, and Si, Ci, Mi be accordingly the
propositions for ‘symptom si is present’, ‘illness ci is present‘, and ‘medication mi is
present’. We also assume that the doctor is the meta reasoner that makes judgments and
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decisions, and gives the input to and reads the output from the automated reasoner. The
the automated reasoner is presented temporal framework.

(1) Doctor states the described symptoms at time t1 by a ranking function λ over the
subfield 〈∅, (S1∩S2, t1), (S1∩S2, t1), (S1∩S2, t1), (S1∩S2, t1),H〉where (S1∩S2, t1)
is believed. The ranking function λ is the new information to the reasoner.
(2) Reasoner conditionalizes its ranking function based on λ and gives the output that
(C1, t1) is the most positively relevant illness to both the (S1, t1) and (S2, t1).
(3) Doctor decides that C1 is the illness and asks the reasoner for the best medication
at t2 > t1. The best medication (M1, t2) is the medicine M1 such that conditionally
on (M1, t2), (S1, t3) and (S2, t3) are the most negatively relevant to (C1, t1) where
t3 > t2. That is the medication (M1, t2) will relieve the symptoms (S1, t3) and (S2, t3).
(4) Doctor reexamines the patient at t3 and finds that S1 and S2 are still present.
(5) Reasoner conditionalizes by (S1 ∩ S2, t3) and outputs that (C1, t1) is now disbe-
lieved. Keeping in mind that (S1 ∩ S2, t3) was negatively related to (C1, t1).
(6) Doctor orders a new blood test that shows the correct symptom is (S3, t4).
(7) Reasoner conditionalizes based on (S3, t4). Consequently: (S1 ∩ S2, t1), the in-
formation at t1 in step (1), is no longer believed, (C1, t1) is now disbelieved, and
(C2, t1) ∩ (C2, t2) ∩ (C2, t3) ∩ (C2, t4) is believed where C2 is a new illness.
(8) Repeating the steps (2) and (3), the medication (M2, t5) is advised and administered
where the symptoms and the illness recede by time t6 > t5.

3 Temporal κ and AGM Revision

In regard to drawing a reading of the AGM belief change in our framework, we do not
state or discuss the AGM postulates by themselves, instead, we follow Spohn’s analysis.
Spohn in [7,11] shows that the usual special case conditionalization κA,r where κ is
for 2W , A ∈ 2W , r ∈ R+, satisfies all the AGM postulates semantically. Spohn first
defines an AGM style revision function ∗(A), and then shows that the induced revision
function from κA,r belongs to this class of AGM style revision functions.

As mentioned in the introduction, the AGM belief change is typically associated
with the belief change regarding a static world. The key to this distinction is whether
or not the new information indicates a change in the world. However, how an agent
should determine whether or not the new information indicates a change in the world,
has been neither discussed nor mentioned in the literature. In order to circumvent this
difficult issue, by a ‘static world’ we mean “ the belief state is synchronized with the
received information when the belief change is performed”. Under this reading the typ-
ical AGM revision yields the same result as the normal conditionalization approach
presented here, shown by the following observation that says the conditionalization
commutes over time t .

Definition 4. Given a ranking function κ for 2H, an induced ranking function κt for
2W at t ∈ N is defined as κt(A) � κ((A, t)), where A ∈ 2W . In addition, we define
Et, the core state at t as Et � {w ∈ W | κt(w) = 0}. Furthermore, we extend this
notation to the κ and the core state after the conditionalization: κt

H,r and Et
H,r.
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Observation 1. If κ is a ranking function for 2H, and (A, t) the new information, A ∈
2W , and r ∈ R+ then (κt)A,r = κt

(A,t),r .

In AGM theory, the language representing belief is typically propositional while the
AGM does not make such distinction. Hence, given the appropriate semantic represen-
tation of belief where the temporal element is explicitly stated, the AGM theory can
also be a belief change theory regarding a dynamic world [4]. We follow this argument
and propose that an AGM theory where the language is PLTL (with the consequence
relation �PLTL,) is a belief change about a dynamic world. We substantiate this claim
as follows. In section 2, we remarked that histories are analogous to the models in
PLTL. Let us apply the κ-functions to the models in PLTL similar to how we applied
κ-functions to the histories. Then, following the Spohn’s method by which he shows
his usual conditionalization function is analogue to the AGM revision operation, we
can show that the temporal conditionalization presented here is an AGM compatible
belief change operation [7,11]. We do not show this claim formally due to (1) the space
constraint and (2) that the traditional temporal logics are designed to express the gen-
eral properties of a system where the specific instants are not relevant. However, in our
theory of belief change, each piece of information corresponds to specific time points.
Next, we look at the KM belief update under the presented temporal settings.

4 Temporal κ and KM Belief Update

Spohn in a number of works analyzes the relation between his theory of ranking func-
tions and the AGM theory. However, little attention is paid to the belief update. In
this section, we provide a reading for the theory of belief update. In [2] Katsuno and
Mendelzon present ‘belief update’ as a theory of belief change when the new informa-
tion is indicative of a change in the world. The syntactic update operator is character-
ized by a set of postulates. The semantic equivalent of the update operator is given as:
g : 2W × 2W → 2W . The operator g selects those models of the new information that
are ‘most likely’ to follow the models of the current belief, individually [2,9]:

g( E,A ) =
⋃

w∈E{w′ ∈ A | ∀w′′ ∈ A,w′ ≤w w′′} .

The ‘most likely’ models are selected by a partial order ≤w that is ‘faithful’ to w. A
partial order ≤w overW is faithful to w if and only if: If w′ �= w then w <w w′ holds
(<w is derived in usual manner from ≤w).

Belief update can also be viewed as a theory that draws the new belief from the
current plausible worlds w, by means of the best possible transitions (w,w′) [3]. Hence,
the relationship ≤w describes the preferences over transitions (w,w′). In our setting,
the transitions (w,w′) can be represented by sub-histories 〈(w, t), · · · , (w′, t+m)〉 for
some m > 0. The induced order ≤w will then be the κ of sub-histories 〈(w, t), · · · ,
(w′, t + m)〉. The induced order can however be time variant. In order to account for
the faithfulness, we manually assign the transitions (w,w) the ranking zero. In order
that the possible worlds evolve independently, we conditionalize the ranks with respect
to the least surprising sub-histories that start from each plausible world and end with
a possible model of the new information. An update conditionalization is natural when
the faithfulness, i.e. the inertia, is not enforced manually.
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Definition 5. Let κ be a ranking function over 2H, (A, tA) the new information, A ∈
2W , tA ∈ N , and t∗ < tA and H1

w, H2
w, Hw are define as: H1

w = (w, t∗) ∩ (w, t∗ +
1) ∩ · · · ∩ (w, tA), H2

w = (w, t∗) ∩ (W , t∗ + 1) ∩ · · · ∩ (W , tA − 1) ∩ (A, tA), and
Hw = H1

w if w ∈ A, otherwise, Hw = H2
w. Then, the conditionalization κ(A,tA)(H) �

min({κ(H | Hw) | w ∈ Et∗}) w.r.t. time t∗ is called a natural update conditionaliza-
tion if Hw = H2

w, and, an inertia enforced update conditionalization if Hw = H1
w.

An implicit characteristic of belief update is that the belief update accepts the current
belief state [3]. To represent this feature, we define the ‘past preserving’ property, and
show that both the update conditionalization functions above satisfy this property.

Definition 6. Let κ be a ranking function for 2H, and (A, tA), A ∈ 2W , tA ∈ N , the
new information. Then the conditionalization κ(A,tA)(H) w.r.t. instant t∗ < tA is:
(1) past preserving iff Et∗ = Et∗

(A,tA).

(2) inertia preserving iff (Et∗ ∩A) ⊆ EtA

(A,tA).

Theorem 1. Both the natural and the inertia enforced update Conditionalizations are
past preserving but only inertia enforced update is inertia preserving.

The above theorem states that in order to attain an update operation, we need to en-
force inertia, i.e. faithfulness property, manually. However, it is more appropriate for
the belief attitude κ to have a structure that supports inertia automatically. Under such
class of κ-functions, the natural update conditionalization can be applied repeatedly. In
addition, in relation to successive updates, we extend the property ‘past preserving’ to
‘path preserving’ where a path is the plausible sub-history since the last update.

Definition 7. Let κ be a ranking function for 2H, and (A, tA), A ∈ 2W , tA ∈ N , the
new information, then the conditionalization κ(A,tA) is said to be path preserving w.r.t.
the time t∗ where t∗ ≤ t0 and t0 is the time stamp of the last conditionalization, iff:
if κ(H) = 0 (respectively > 0), then κ(A,tA)(H) = 0 (respectively > 0), for all H =
〈(w′, t′), · · · , (w′′, t′′)〉 where w′, w′′ ∈ W , and, t′, t′′ ∈ N and t∗ ≤ t′ ≤ t′′ ≤ tA.

To identify the class of appropriate κ-functions, we present two structural constraints
on the κ-function. The first constraint enforces the faithfulness condition over the κ
functions that every static sub-history, i.e. a non-changing sub-history, is less surprising
than any sub-history that intersect it. As a result, the rankings and the belief status
of all propositions remain static (theorem 2 below). The second constraint is a time-
variant Markovian property (a nonhomogeneous Markov property) that ensures the path
preserving property holds.

Definition 8. A ranking function κ for 2H is orderly distributed at (w, t), w ∈ W , t ∈
N , w.r.t. inertia after t∗ ∈ N iff for all Hwiwwj � 〈(wi, t−n), · · · , (w, t), (wj , t+1)〉
where wi, wj ∈ W , 0 < n ≤ t− t∗, we have:
(1) κ(Hwww) < κ(Hwiww), and
(2) κ(Hwwwj ) − κ(Hwww) = κ(Hwiwwj) − κ(Hwiww) > 0.

Theorem 2. Let a given κ over 2H be orderly distributed w.r.t. inertia after t∗ ∈ N for
all (w, t), w ∈ W , t ∈ N . Then for all t ≥ t∗, ∀j ≥ 0, κ(w, t) = κ(w, t+ j) = κ(Hw)
where Hw is sub-history 〈(w, t), (w, t + 1), · · · , (w, t + j)〉.
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The two constraints above are sufficient for a κ-function not only to be both inertia
and path preserving, but also to preserve its structure, after each natural update condi-
tionalization. Conversely, a κ-function that after each natural update conditoinalization
satisfies the properties above, will be orderly distributed regarding inertia. Hence, the
two structural constraints above provide a ‘necessary and sufficient condition’ that iden-
tifies the class of κ-function for which the natural update can be applied iteratedly.

Theorem 3. Let κ over 2H be orderly distributed w.r.t. inertia after t∗ for all (w, t),
w ∈ W , t > t∗. Let also t0 be the time stamp of last update, and (A, t1), A ∈ 2W , be the
new information where t1 > t0 > t∗. Then, the iterated condititionalization by natural
update is both path preserving and inertia preserving, and after each conditionaliztion,
the κ is still uniformly distributed w.r.t. inertia after t1, for all (w, t), t > t1.

Theorem 4. Let κ be a ranking function for 2H for which any iterated condititional-
ization by natural update after t∗ ∈ N is both path and inertia preserving. Then, κ is
orderly distributed w.r.t. inertia after t∗ for all (w, t), w ∈ W , t ∈ N , t > t∗.

5 Discussion and Conclusion

There are many works on belief change regarding a dynamic world where some apply
extensions of belief update method [5]. Next, we look at five works [6,9,10,13,14]. All
the five frameworks are designed to handle inductive, abductive and deductive reason-
ing in relation to a sequence of information. The first four works use semantic objects
similar to the histories that are the sequence of static models [6,10,13,14]. The be-
lief change methods in all the four frameworks include a filtering action that screens
out those semantic objects that do not adhere to the new information (alternatively se-
quence of information). The First framework is called extrapolation [13]. Extrapolation
draws the most ‘plausible’ sequence of sentences that agree with a sequence of informa-
tion, called scenario. The models for scenarios are called trajectories. The second work
presents an iterated belief change theory based on a sequence of consistent infallible
actions and observations in an action based transition system [14].

The third work is the comprehensive framework by Friedman and Halpern where
they present a general framework for agents to reason about knowledge and belief in
the context of time [6]. The semantics of belief and belief change is given based on
the ‘plausibility measures’ and the ‘conditional plausibility measure’ on runs [6] where
runs are sequences of states. The plausibility measure is an abstract measure for un-
certainty and is shown to generalize other measures for uncertainty including Spohn’s
κ-functions [6]. However, the plausibility measures are not of cardinal nature, due to
their generality. The other significant difference between the Friedman and Halpern’s
framework and ours is that the conditionalization of plausibility measures does not fol-
low Jeffrey’s general conditionalization.

The filtering action in these three frameworks effectively makes the new informa-
tion not-revisable. Spohn’s conditionalization is more general than this type of filtering
such that the effects of filtering can be emulated by making the new information infal-
lible i.e. assigning the ranking of∞ to the histories that do not satisfy the information.
Conditionalization by an infallible H preserves the order of κ of histories after revision.
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The fourth work is the BReLS system where the method of belief change selects the
best sequence of static models in relation to multiple pieces of information with dif-
ferent degrees of reliability [10]. The selection function employs a cost function that is
the sum of the cost of changes from one state to the next, and, a variation of Hamming
distance between models and the most reliable information. Our framework differs with
BReLs system on a number of accounts. Unlike the theory of κ-functions, in BReLS
system, the distances between models and sentences are invariant with respect to time
and the belief change operation. Moreover, the cost of changes depend only on the
present state, indicating that the BReLS system implicitly applies the Markovian as-
sumption. In addition, the belief change method in BReLS system is commutative with
respect to the new information while in the theory of κ-functions it is not necessarily
commutative.

In conclusion, neither of the four frameworks above have the specific features of the
theory of ranking functions that we require. Moreover, we like to highlight that Spohn,
in presenting his framework, has argued that the various features of his framework are
required to account for a theory of belief change; drawing a distinction between his
framework and a theory that merely employs rankings [7]. In this work, we aimed to
adopt his framework in its entirety.

The last framework of interest is the generalized update that integrates the belief
revision and update methods, in conjunction with possible events, to draw the best ex-
planation for the new information [9]. The generalized update employs three Spohnian
style, cardinal κ-functions for belief states, the possible events in relation to states, and,
the possible outcomes of events. However, to apply the iterated generalized update, we
require to employ the Markovian assumption that is akin to our future work [3]. In order
to address the computational problems of the ranking of the histories, our next task is
to apply the qualitative Markov assumption to the rankings of histories.

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet
contraction and revision functions. Journal of Symbolic Logic, 510–530 (1985)

2. Katsuno, H., Mendelzon, A.: On the difference between updating a knowledge base and
revising it. In: Principles of Knowledge Representation and Reasoning, pp. 387–394 (1991)

3. Friedman, N., Halpern, J.Y.: A qualitative markov assumption and its implications for belief
change. In: UAI, pp. 263–273 (1996)

4. Friedman, N., Halpern, J.Y.: Modeling belief in dynamic systems, part ii: Revisions and
update. CoRR cs.AI/0307071 (2003)

5. Lang, J.: Belief update revisited. In: IJCAI, pp. 2517–2522 (2007)
6. Friedman, N., Halpern, J.Y.: Modeling belief in dynamic systems, part i: Foundations. CoRR

cs.AI/0307070 (2003)
7. Spohn, W.: A survey of ranking theory. In: Huber, F., Schmidt-Petri, C. (eds.) Degrees of

Belief. An Anthology. Oxford University Press, Oxford (2005)
8. Jeffrey, R.: The Logic of Decision, 2nd edn. University of Chicago Press, Chicago

(1965/1983)
9. Boutilier, C.: Generalized update: Belief change in dynamic settings. In: IJCAI 1995, pp.

1550–1556 (1995)



Temporal Belief-Change: κ-functions Approach 21

10. Liberatore, P., Schaerf, M.: Brels: A system for the integration of knowledge bases. In: KR,
pp. 145–152 (2000)

11. Spohn, W.: Ranking functions, agm style. In: Hansson, B., Halld, S., Sahlin, N.-E., Rabinow-
icz, W. (eds.) Internet Festschrift for Peter Gärdenfors, Lund (1999)

12. Emerson, E.: Temporal and modal logic. In: Handbook of Theoretical Computer Science, ch.
16. MIT Press, Cambridge (1990)

13. de Saint-Cyr, F.D., Lang, J.: Belief extrapolation (or how to reason about observations and
unpredicted change). In: KR, pp. 497–508 (2002)

14. Hunter, A.A., Delgrande, J.P.: Iterated belief change: A transition system approach. In: In-
ternational Joint Conference on Artificial Intelligence, IJCAI (2005)



Resource-Sensitive Reasoning with Sequential

Information

Norihiro Kamide1 and Ken Kaneiwa2

1 Waseda Institute for Advanced Study, Waseda University, Japan

drnkamide08@kpd.biglobe.ne.jp
2 Department of Electrical Engineering and Computer Science,

Iwate University, Japan

kaneiwa@cis.iwate-u.ac.jp

Abstract. A logic called sequence-indexed linear logic (SLL) is pro-

posed to appropriately formalize resource-sensitive reasoning with se-

quential information. The completeness and cut-elimination theorems

for SLL are shown, and SLL and a fragment of SLL are shown to be

undecidable and decidable, respectively. As an application of SLL, some

specifications of secure password authentication systems are discussed.

1 Introduction

In this paper, a new logic, sequence-indexed linear logic (SLL), is obtained from
Girard’s linear logic [1] by adding a sequence modal operator, which represents
a sequence of symbols. By the sequence modal operator in SLL, we can appro-
priately express sequential information in resource-sensitive reasoning.

The notion of “resources,” encompassing concepts such as processor time,
memory, cost of components and energy requirements, is fundamental to com-
putational systems [6]. In the area of knowledge representation and reasoning,
this notion is very important for handling real scheduling problems to construct
complex plans of actions since many actions consume resources such as money,
gas, and raw materials [7] (see Section 12 in [7]).

It is known that Girard’s linear logic can elegantly represent the notion of
“resources” [1]. In linear logic, the concept of “resource consumption” can be
represented by using the linear implication connective → and the fusion connec-
tive ∗, and the concept of “reusable resource” can be represented by using the
linear exponential operator !. A typical example formula is as follows: coin∗coin
→ coffee ∗ (!water). This example means “if we spend two coins, then we can
have a cup of coffee and as much of water as we like” when the price of coffee
is two coins and water is free. It is to be noted that this example cannot be
expressed using classical logic, since the formula coin ∧ coin in classical logic is
logically equivalent to coin, i.e., classical logic is not resource-sensitive.

In order to discuss certain real and practical examples, the resource descrip-
tions should be more fine-grained and expressive and capable of conveying addi-
tional information. For example, the following expression may be necessary for
a practical situation: [teashop ; john](coin ∗ coin ∗ coin→ [1min ; 1min]coffee ∗

J. Li (Ed.): AI 2010, LNAI 6464, pp. 22–31, 2010.
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[1min]water). This example means “in a teashop, if John spends three coins,
then he can have a cup of coffee after two minutes and a cup of water after one
minute.” In this example, the expressions [teashop ; john] and [1min ; 1min],
which are regarded as additional information, can naturally be represented by
the sequence modal operator in SLL.

The reason underlying the use of the notion of “sequences” in the new modal
operator is explained below. The notion of “sequences” is fundamental to practi-
cal reasoning in computer science because it can appropriately represent “data se-
quences,” “program-execution sequences,” “action sequences,” “time sequences”
etc. The notion of sequences is thus useful to represent the notions of “informa-
tion,” “attributes,” “trees,” “orders,” “preferences,” “strings,” “vectors,” and “on-
tologies”. Additional (sequential) information can be represented by sequences;
this is especially suitable because a sequence structure gives a monoid 〈M, ;, ∅〉
with informational interpretation [8]:

1. M is a set of pieces of (ordered) information (i.e., a set of sequences),
2. ; is a binary operator (on M) that combines two pieces of information (i.e.,

a concatenation operator on sequences),
3. ∅ is the empty piece of information (i.e., the empty sequence).

The sequence modal operator [b] represents sequential information as labels. A
formula of the form [b1 ; b2 ; · · · ; bn]α intuitively means that “α is true based
on a sequence b1 ; b2 ; · · · ; bn of (ordered or prioritized) information pieces.”
Further, a formula of the form [∅]α, which coincides with α, intuitively means
that “α is true without any information (i.e., it is an eternal truth in the sense
of classical logic).”

In this paper, a sequence-indexed phase semantics for SLL is introduced by
generalizing Girard’s phase semantics [1], and the cut-elimination and complete-
ness theorems for SLL are shown by using a modification of Okada’s phase se-
mantic proof [5]. SLL and the !-free fragment of SLL are shown to be undecidable
and decidable, respectively, by using an embedding-based method. Specifications
of secure password authentication systems, which are proposed as an applica-
tion of SLL, are discussed. In this application, the following expression is used:
[server ; client](error ∗ error ∗ (!error)) → [server ; client]reject which means
“if a server returns the error messages more than twice to a client, then the
server returns the password reject message to the client.” Note that the error
messages are expressed as a “resource” by using the connectives ∗ and !, and
the “information” on servers, clients, and login-attempts is expressed by the
sequence modal operator.

Many studies have reported on the applications of linear logic to programming
languages (e.g., [4] and the references therein). By the embedding theorem (of
SLL into ILL) proposed in this paper, we can translate the set of formulas of SLL
into that of ILL; hence, the proposed framework, which is based on SLL, can also
be adopted to the previously established framework of linear logic programming.
Therefore, some SLL-based applications are executable in the established linear
logic programming frameworks. It should also be noted that the sequence modal
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operator can be adapted to a wide range of non-classical logics. In this respect,
Kamide and Kaneiwa [2] studied an extended full computation-tree logic with
the sequence modal operator. They showed that the sequence modal operator is
applicable to certain ontological descriptions.

2 Sequence-Indexed Linear Logic

Prior to the precise discussion, the language used in this paper is introduced
below. Formulas are constructed from propositional variables, 1 (multiplicative
truth constant), � (additive truth constant), ⊥ (additive falsity constant), →
(implication), ∧ (conjunction), ∗ (fusion), ∨ (disjunction), ! (exponential), and
[b] (sequence modal operator) where b is a sequence. Sequences are constructed
from atomic sequences, ∅ (empty sequence) and ; (composition). Lower-case let-
ters b, c, ... are used for sequences, lower-case letters p, q,... are used for proposi-
tional variables, Greek lower-case letters α, β, ... are used for formulas, and Greek
capital letters Γ ,Δ, ... are used for finite (possibly empty) multisets of formulas.
For any � ∈ {!, [b]}, an expression �Γ is used to denote the multiset {�γ | γ ∈ Γ}.
The symbol ≡ is used to denote the equality of sequences (or multisets) of sym-
bols. An expression [∅]α means α, and expressions [∅ ; b]α and [b ; ∅]α mean
[b]α. An expression Γ ∗ means Γ ∗ ≡ γ1 ∗ · · · ∗ γn if Γ ≡ {γ1, · · · , γn} (0 < n)
and Γ ∗ ≡ ∅ if Γ ≡ ∅. A sequent is an expression of the form Γ ⇒ γ where γ is
nonempty. It is assumed that the terminological conventions regarding sequents
(e.g., antecedent and succedent) are the usual ones. If a sequent S is provable in
a sequent calculus L, then such a fact is denoted as L � S or � S. The paren-
theses for ∗ is omitted since ∗ is associative, i.e., � α ∗ (β ∗ γ)⇒ (α ∗ β) ∗ γ and
� (α ∗ β) ∗ γ ⇒ α ∗ (β ∗ γ) for any formulas α, β and γ.

Definition 1. Formulas and sequences are defined by the following grammar,
assuming p and e represent propositional variables and atomic sequences, resp.:

α ::= p | 1 | � | ⊥ | α→α | α ∧ α | α ∗ α | α ∨ α | !α | [b]α
b ::= e | ∅ | b ; b

The set of sequences (including the empty sequence) is denoted as SE. An ex-
pression ˆ[d] is used to represent [d0][d1] · · · [di] with i ∈ ω and d0 ≡ ∅, i.e., ˆ[d] can
be the empty sequence. Also, an expression d̂ is used to represent d0 ; d1 ; · · · ; di

with i ∈ ω and d0 ≡ ∅.

Definition 2. The initial sequents of SLL are of the form: for any propositional
variable p,

ˆ[d]p ⇒ ˆ[d]p ⇒ ˆ[d]1 Γ ⇒ ˆ[d]� ˆ[d]⊥, Γ ⇒ γ.

The inference rules of SLL are of the form:

Γ ⇒ α α, Δ ⇒ γ

Γ , Δ ⇒ γ
(cut)

Γ ⇒ γ

ˆ[d]1, Γ ⇒ γ
(1we)
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Γ ⇒ ˆ[d]α ˆ[d]β, Δ ⇒ γ

ˆ[d](α→β), Γ , Δ ⇒ γ
(→left)

ˆ[d]α, Γ ⇒ ˆ[d]β

Γ ⇒ ˆ[d](α→β)
(→right)

ˆ[d]α, ˆ[d]β, Γ ⇒ γ

ˆ[d](α ∗ β), Γ ⇒ γ
(∗left) Γ ⇒ ˆ[d]α Δ ⇒ ˆ[d]β

Γ , Δ ⇒ ˆ[d](α ∗ β)
(∗right)

ˆ[d]α, Γ ⇒ γ

ˆ[d](α ∧ β), Γ ⇒ γ
(∧left1)

ˆ[d]β, Γ ⇒ γ

ˆ[d](α ∧ β), Γ ⇒ γ
(∧left2)

Γ ⇒ ˆ[d]α Γ ⇒ ˆ[d]β

Γ ⇒ ˆ[d](α ∧ β)
(∧right)

ˆ[d]α, Γ ⇒ γ ˆ[d]β, Γ ⇒ γ

ˆ[d](α ∨ β), Γ ⇒ γ
(∨left)

Γ ⇒ ˆ[d]α

Γ ⇒ ˆ[d](α ∨ β)
(∨right1)

Γ ⇒ ˆ[d]β

Γ ⇒ ˆ[d](α ∨ β)
(∨right2)

ˆ[d]α, Γ ⇒ γ

ˆ[d]!α, Γ ⇒ γ
(!left)

ˆ[d1]!γ1, ...,
ˆ[dk]!γk ⇒ ˆ[e]α

ˆ[d1]!γ1, ...,
ˆ[dk]!γk ⇒ ˆ[e]!α

(!right)
Γ ⇒ γ

ˆ[d]!α, Γ ⇒ γ
(!we)

ˆ[d]!α, ˆ[d]!α, Γ ⇒ γ

ˆ[d]!α, Γ ⇒ γ
(!co)

ˆ[d][b][c]α, Γ ⇒ γ

ˆ[d][b ; c]α, Γ ⇒ γ
(;left)

Γ ⇒ ˆ[d][b][c]α

Γ ⇒ ˆ[d][b ; c]α
(;right).

Note that Girard’s intuitionistic linear logic ILL is a subsystem of SLL. The
sequents of the form ˆ[d]α⇒ ˆ[d]α for any formula α are provable in cut-free SLL.

We now define a sequence-indexed phase semantics for SLL. The difference
between such a semantics and the original phase semantics for ILL by Girard [1]
is the definition of the valuations: whereas the original semantics has a valuation
v, our semantics has an infinite number of sequence-indexed valuations vd̂ (d̂ ∈
SE), where v∅ just works as v.

Definition 3. An intuitionistic phase space is a structure 〈M, cl, I〉 satisfying
the following conditions:

1. M := 〈M, ·, 1〉 is a commutative monoid with the identity 1,
2. cl is an operation on the powerset P (M) of M such that, for any X,Y ∈

P (M),
C1: X ⊆ cl(X),
C2: clcl(X) ⊆ cl(X),
C3: X ⊆ Y implies cl(X) ⊆ cl(Y ),
C4: cl(X) ◦ cl(Y ) ⊆ cl(X ◦ Y )
where the operation ◦ is defined as X ◦ Y := {x · y | x ∈ X and y ∈ Y } for
any X,Y ∈ P (M) (the operation cl is called here closure operation),

3. I is a submonoid of M such that cl{x} ⊆ cl{x · x} for any x ∈ I.

Definition 4. Constants and operations on P (M) are defined as follows: for
any X,Y ∈ P (M),

1. 1̇ := cl{1},
2. �̇ := M ,
3. ⊥̇ := cl(∅),
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4. X →̇ Y := {y | ∀x ∈ X (x · y ∈ Y )},
5. X ∧̇ Y := X ∩ Y ,
6. X ∨̇ Y := cl(X ∪ Y ),
7. X ∗̇ Y := cl(X ◦ Y ),
8. !̇X := cl(X ∩ I ∩ 1̇).

We define D := {X ∈ P (M) | X = cl(X)}. Then, D := 〈D, →̇, ∗̇, ∧̇, ∨̇, !̇, 1̇, �̇, ⊥̇〉
is called an intuitionistic phase structure.

Definition 5. Sequence-indexed valuations vd̂ for all d̂ ∈ SE on an intuition-
istic phase structure D := 〈D, →̇, ∗̇, ∧̇, ∨̇, !̇, 1̇, �̇, ⊥̇〉 are mappings from the set
of all propositional variables to D. Then, vd̂ for all d̂ ∈ SE are extended to
mappings from the set Φ of all formulas to D by:

1. vd̂(1) := 1̇,
2. vd̂(�) := �̇,
3. vd̂(⊥) := ⊥̇,
4. vd̂(α ∧ β) := vd̂(α) ∧̇ vd̂(β),
5. vd̂(α ∨ β) := vd̂(α) ∨̇ vd̂(β),
6. vd̂(α ∗ β) := vd̂(α) ∗̇ vd̂(β),
7. vd̂(α→β) := vd̂(α) →̇ vd̂(β),
8. vd̂(!α) := !̇vd̂(α),
9. vd̂([e]α) := vd̂ ; e(α) for any atomic sequence e,

10. vd̂([b ; c]α) := vd̂([b][c]α).

Remark that vd̂([c]α) := vd̂ ; c(α) holds for any c, d̂ ∈ SE.

Definition 6. An intuitionistic sequence-indexed phase model is a structure
〈D, {vd̂}d̂∈SE〉 such that D is an intuitionistic phase structure, and {vd̂}d̂∈SE
is a set of sequence-indexed valuations. A formula α is true in an intuitionistic
sequence-indexed phase model 〈D, {vd̂}d̂∈SE〉 if 1̇ ⊆ v∅(α) (or equivalently 1 ∈
v∅(α)) holds, and valid in an intuitionistic phase structure D if it is true for
any sequence-indexed valuations {vd̂}d̂∈SE on the intuitionistic phase structure.
A sequent α1, · · · , αn ⇒ β (or ⇒ β) is true in an intuitionistic sequence-indexed
phase model 〈D, {vd̂}d̂∈SE〉 if the formula α1 ∗ · · · ∗ αn→β (or β) is true in it,
and valid in an intuitionistic phase structure if so is α1 ∗ · · · ∗ αn→β (or β).

Theorem 7 (Soundness). If a sequent S is provable in SLL, then S is valid
for any intuitionistic phase structures.

3 Main Theorems

An expression [Γ ] represents the multiset consisting of all elements of a sequence
(or multiset) Γ of formulas.
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Definition 8. We define a commutative monoid 〈M, ·, 1〉 as follows:

1. M := {[Γ ] | [Γ ] is a finite multiset of formulas},
2. [Γ ] · [Δ] := [Γ,Δ] (the multiset union),
3. 1 := [ ] (the empty multiset).

We define the following: for any d̂ ∈ SE and any formula α,

‖α‖d̂ := {[Γ ] | �cf Γ ⇒ ˆ[d]α}

where �cf means “provable in cut-free SLL”.

Definition 9. We define D := {X | X =
⋂
i∈I

‖αi‖∅} for an arbitrary (non-

empty) indexing set I and an arbitrary formula αi. Then we define cl(X) :=⋂
{Y ∈ D | X ⊆ Y }. We define the following constants and operations on

P (M): for any X,Y ∈ P (M),

1. l̇ := cl{1},
2. �̇ := M ,
3. ⊥̇ := cl(∅),
4. X →̇ Y := {[Δ] | ∀ [Γ ] ∈ X ([Γ ,Δ] ∈ Y )},
5. X ∧̇ Y := X ∩ Y ,
6. X ∨̇ Y := cl(X ∪ Y ),
7. X ∗̇ Y := cl(X ◦ Y ) where X ◦ Y := {[Γ,Δ] | [Γ ] ∈ X and [Δ] ∈ Y },
8. !̇X := cl(X ∩ I ∩ 1) where I := {[ ˆ[d1]!γ1, ...,

ˆ[dk]!γk] | ˆ[d1]!γ1, ..., ˆ[dk]!γk:
formulas}.

Sequence-indexed valuations vd̂ for all d̂ ∈ SE are mappings from the set of all
propositional variables to D such that vd̂(p) := ‖p‖d̂.

Proposition 10. The structure D := 〈D, →̇, ∗̇, ∧̇, ∨̇, !̇, 1̇, �̇, ⊥̇〉 defined above
forms an intuitionistic phase structure.

Lemma 11. For any d̂ ∈ SE and any formula α, [ ˆ[d]α] ∈ vd̂(α) ⊆ ‖α‖d̂.

Theorem 12 (Strong completeness). If a sequent S is valid for any intu-
itionistic phase structures, then S is provable in cut-free SLL.

Proof. If a sequent S is true, then the corresponding formula α is also true
by Definition 6. If the formula α is true, then [ ] ∈ v∅(α) by Lemma 11. On
the other hand, also by Lemma 11, vd̂(α) ⊆ ‖α‖d̂ for any d̂ ∈ SE, and hence
[ ] ∈ ‖α‖∅, which means “⇒ α is provable in cut-free SLL”. This means that S
is provable in cut-free SLL. Q.E.D.

Theorem 13 (Cut-elimination). The rule (cut) is admissible in cut-free SLL.

Proof. If a sequent S is provable in SLL, then S is valid by Theorem 7 (Sound-
ness). By Theorem 12 (Strong completeness), S is provable in cut-free SLL.

Q.E.D.
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Theorem 14 (Undecidability). SLL is undecidable.

Proof. (Sketch): It is known that ILL is undecidable [3]. The proof of the
undecidability of ILL is carried out by encoding Minsky machine. By Theorem
13, SLL is a conservative extension of ILL, and hence SLL can encode Minsky
machine in the same way as in ILL. Therefore SLL is undecidable. Q.E.D.

Definition 15. SLL− is obtained from SLL by deleting {(!left), (!right), (!co),
(!we)}.

Definition 16. ILL− is obtained from SLL− by deleting {(;left), (;right)} and
all the expressions ˆ[d] appearing in the initial sequents and the logical inference
rules. The names of the logical inference rules of ILL− are denoted by labeling
“�” in superscript position, e.g., (→left�).

Definition 17. We fix a countable set Ψ of propositional variables, and define
the sets Ψ d̂ := {pd̂ | p ∈ Ψ} (d̂ ∈ SE) of propositional variables where p∅ := p,
i.e., Ψ∅ := Ψ . The language (or the set of formulas) Ls of SLL− is obtained from
Ψ , 1,�,⊥,→,∧, ∗,∨ and [b]. The language (or the set of formulas) L of ILL−

is obtained from
⋃

d̂∈SE Ψ d̂, 1,�,⊥,→,∧, ∗ and ∨.
A mapping f from Ls to L is defined by:

1. for any p ∈ Ψ , f( ˆ[d]p) := pd̂ ∈ Ψ d̂,
2. f( ˆ[d]�) := � where � ∈ {1,�,⊥},
3. f( ˆ[d](α � β)) := f( ˆ[d]α) � f( ˆ[d]β) where � ∈ {→,∧, ∗,∨},
4. f( ˆ[d][b ; c]α) := f( ˆ[d][b][c]α).

Let Γ be a set of formulas in Ls. Then, an expression f(Γ ) means the result of
replacing every occurrence of a formula α in Γ by an occurrence of f(α).

Theorem 18 (Embedding). Let Γ be a multiset of formulas in Ls, γ be a
formula in Ls, and f be the mapping defined in Definition 17. Then: SLL−

� Γ ⇒ γ iff ILL− � f(Γ ) ⇒ f(γ).

Theorem 19 (Decidability). SLL− is PSPACE-complete.

Proof. The provability of SLL− can be transformed into that of ILL− by
Theorem 18. Since ILL− is decidable, SLL− is also decidable. Moreover, f in
Definition 17 is a polynomial-time reduction. Since ILL− is PSPACE-complete
[3], SLL− is also PSPACE-complete. Q.E.D.

4 Applications

We now consider an example of specifying secure password authentications on
a network using SLL formulas. Consider a network that consists of three clients
and a server. In order to obtain access to the server system, each client must
try to login to the system in less than three attempts. As a password-protected
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system, if a client inputs an incorrect user ID or password more than twice, then
the server prevents the client from logging in. On the basis of a set of sequents
in SLL that express the specification of secure password authentications and the
behaviors of clients and servers, SLL can determine whether or not a client has
successfully logged in to the server system.

Let c be one of three clients c1, c2, and c3; s be a server; and t be a counter
from 0 to the maximal number k. By using the sequence modal operators, the
SLL formula [c; s; t]α indicates that client c has sent a message α to server s at
the t-th login attempt. In addition, the SLL formula [s; c]α indicates that server
s returns a message α to client c. Accordingly, the sequence modal operators
[c; s] and [s; c] represent the orders of message flows between client c and server
s, and the sequence modal operator [c; s; t] expresses the history of the client’s
messages on the basis of counter t.

The specifications of secure password authentications are described using SLL
fomulas as follows:

[c; s; t](userID ∗ password), [s; c](

i︷ ︸︸ ︷
error ∗ · · · ∗ error) ⇒ [s; c]accept for i < 3

[c; s; t](incorrectUserID ∗ password) ⇒ [s; c]error

[c; s; t](userID ∗ incorrectPassword ) ⇒ [s; c]error

[c; s; t](incorrectUserID ∗ incorrectPassword ) ⇒ [s; c]error

[s; c](error ∗ error ∗ (!error )) ⇒ [s; c]reject

where c ∈ {c1, c2, c3} and t ∈ {1, . . . , k}. The fusion ‘∗’ and the exponential ‘!’ in
SLL are used to represent resource-sensitive aspects of errors arising from server
s to client c. In the above sequents, the SLL formula error ∗ error ∗ (!error)
implies that errors arise more than twice.

We describe two cases of attempts made by clients to login to the server
system. Figure 1 shows examples of message flows between two clients c1 and c2
and server s. On the left hand side of the figure, two clients c1 and c2 send pairs
of user ID and password to the server system s. The message flows are described
as follows.

[c1; s; 1](incorrectUserID ∗ password)

[c2; s; 2](userID ∗ incorrectPassword )

[c1; s; 3](incorrectUserID ∗ incorrectPassword )

[c1; s; 4](userID ∗ password)

On the basis of the above mentioned specifications and assumptions, SLL
can prove the formula [s; c1]accept as shown in the following proof-figure. We
abbreviate userID , incorrectUserID , password , incorrectPassword , error , accept ,
and reject to u, iu, p, ip, e, a, and r, respectively.

⇒ [c1; s; 4](u ∗ p)

.

.

.

.
P1

⇒ [s; c1]e

.

.

.

.
P2

⇒ [s; c1]e

⇒ [s; c1](e ∗ e) S

[c1; s; 4](u ∗ p) ⇒ [s; c1]a

⇒ [s; c1]a
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client c1 server s client c2

incorrectUserID
password

error userID
incorrectPassword

errorincorrectUserID
incorrectPassword

error

userID
password

accept

client c1 server s

incorrectUserID
password

error

incorrectUserID
incorrectPassword

error

userID
password

reject

incorrectUserID
incorrectPassword

error

Fig. 1. Message flow during successful and failed logins

where S, P1 and P2 are respectively:

[c1; s; 4](u ∗ p), [s; c1](e ∗ e) ⇒ [s; c1]a,

⇒ [c1; s; 1](iu ∗ p) [c1; s; 1](iu ∗ p) ⇒ [s; c1]e

⇒ [s; c1]e

⇒ [c1; s; 3](iu ∗ ip) [c1; s; 3](iu ∗ p) ⇒ [s; c1]e

⇒ [s; c1]e
.

On the right hand side of the figure, client c1 inputs the user ID and password
to server s four times. Only the last pair of user ID and password is correct. In
this scenario, the message flows between client c1 and server s are described as
follows.

[c1; s; 1](incorrectUserID ∗ password)

[c1; s; 2](incorrectUserID ∗ incorrectPassword )

[c1; s; 3](incorrectUserID ∗ incorrectPassword )

[c1; s; 4](userID ∗ password)

On the basis of the above mentioned specifications and assumptions, SLL can
prove the formula [s; c1]reject as shown in the following proof-figure.

.

.

.

.
P1

⇒ [s; c1]e

.

.

.

.
P2

⇒ [s; c1]e

⇒ [s; c1](e ∗ e)

.

.

.

.
P3

⇒ [s; c1]e

⇒ [s; c1]!e

⇒ [s; c1](e ∗ e ∗ (!e)) [s; c1](e ∗ e ∗ (!e)) ⇒ [s; c1]r

⇒ [s; c1]r

where P1, P2 and P3 are respectively:

⇒ [c1; s; 1](iu ∗ p) [c1; s; 1](iu ∗ p) ⇒ [s; c1]e

⇒ [s; c1]e
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⇒ [c1; s; 2](iu ∗ ip) [c1; s; 2](iu ∗ ip) ⇒ [s; c1]e

⇒ [s; c1]e

⇒ [c1; s; 3](iu ∗ ip) [c1; s; 3](iu ∗ ip) ⇒ [s; c1]e

⇒ [s; c1]e
.

SLL can represent the above specification of secure password authentications,
but it is undecidable. In order to avoid the undecidability, we use the decidable
fragment SLL− to describe the modified specification that is obtained from the
specification based on SLL by replacing the sequent [s; c](error ∗error ∗(!error )) ⇒

[s; c]reject with [s; c](

j︷ ︸︸ ︷
error ∗ · · · ∗ error) ⇒ [s; c]reject for 3 ≤ j ≤ k. The expres-

sion error ∗ error ∗ (!error ) in SLL is replaced with
j︷ ︸︸ ︷

error ∗ · · · ∗ error in SLL−.
This is redundant when compared with the SLL formulas because k−2 formulas
are added instead of the fusion connective. On the basis of the above men-
tioned specifications and assumptions, SLL− can prove the formula [s; c1]reject
as shown in the following proof-figure.

.

.

.

.
P1

⇒ [s; c1]e

.

.

.

.
P2

⇒ [s; c1]e

.

.

.

.
P3

⇒ [s; c1]e

⇒ [s; c1](e ∗ e)

⇒ [s; c1](e ∗ e ∗ e) [s; c1](e ∗ e ∗ e) ⇒ [s; c1]r

⇒ [s; c1]r

In SLL−, [s; c1]reject cannot be proven if more than k errors arise because SLL−

does not have the expressive power of SLL.
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Abstract. This paper focuses on our recent work in frame-based dialogue 
management. Despite frames are frequently used in commercial speech 
applications, they lack enough automation for error recovery within a dialogue. 
In this paper we present and demonstrate our mechanism that fills this gap by 
automatically tracking and managing the dialogue flow causality. 

Keywords: Dialogue management; dialogue systems; frame-based dialogue 
management; frame structure extension, management automation. 

1   Introduction 

The dialogue management is one of artificial intelligence disciplines that concerns 
human-computer interaction (HCI). Its aim is to find machine's best response, given 
user's (spoken) input and interaction history. During the past decades, many 
approaches emerged. What they have in common is the aim to manage and elicit 
knowledge within a dialogue, however, their theoretical backgrounds differ. Ranging 
from simple finite state machines to intelligent agents, and Markov decision networks, 
there is a wide collection of methods on how to implement a dialogue manager. 

We follow the way of frames whose potential lies in commercial spoken dialogue 
applications [1, 2]. We find here a lack of automation for error recovery within a 
frame-driven dialogue: if a user corrects the system, then s/he in fact reopens a past 
dialogue topic (e.g., a departure city name topic is reopened with user's utterance “No, 
I said from the Hague“ after the system responded “The next train from Haarlem to 
Amsterdam leaves at 9 a.m.“). Certainly, one of applicable solutions might be to 
watch for updates of slot values and trigger proper reactions within OnFilled-like 
event handlers. However, this approach has two drawbacks: 1) (implementation-
related) once the logics gets more complicated, it will be hard to keep track of where 
to “jump“ next within a frame, and 2) (theoretical-related) this approach is well 
applicable for flat frames only. As a response, we have developed a journaling system 
as an extension to the common construction of frames, that enables us: 1) to detect no 
longer valid information after the user makes changes within a dialogue, and 2) to 
“rollback“ nested frames structure in accordance with the changes made, hence, 
putting the structure into a causally consistent state. 

In the rest of the paper, we explain our approach (Section 2), and provide an 
example (Section 3). Finally, we suggest future work and conclude (Sections 4 and 5). 
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2   Journaling System and Causality Tracking Mechanism 

Above, we introduced the error recovery problem in dialogue management. To define 
it formally, we consider an error to be a change of a piece of information that has 
already been used by the system (thus we do not perceive an unexploited information 
change to be an error). When attempting to recover from an error, the system must 
throw the replaced piece of information away (along with all depending pieces) and 
return with the interaction to a specific point in the dialogue (i.e., “jump” back), 
reopening one of the past topics. 

As a solution to the error recovery problem, we have developed the journaling 
system and the causality tracking mechanism, both of which are accommodated in our 
dialogue manager basic architecture [3] that operates above a nested frames structure. 
Before we proceed, let us make three assumptions about the frames environment. 

– We consider the notion of frames to be rather “concept-like”, i.e., we expect 
that each frame is allowed to carry a single domain information at a time (e.g. 
city name information). Having a number of simple concept-like frames means 
to be able to catch the soft notion of information about a domain and to enable 
sophisticated manipulation with it [4]. Presumably, dialogue management 
specific operations (disambiguation, validation, etc.) get simpler this way, as 
the concept-like nested structure better fits entities mentioned in the dialogue. 

– Additionally, we assume each frame is equipped with a means to provide 
instructions on “what to do next.” In our case, the means is a message queue 
whose content is filled by both the form interpretation mechanism (see [3]) 
and causality tracking mechanism (see below). The messages are like 
“interpret slot S” or “query the user for specific information for slot S.” 

– The form interpretation mechanism must be state-less, i.e., it must not make 
any presumption about the current state of the frames structure. However, this 
does not imply that it is supposed to be a blind routine.1 In fact with this 
demand, we want the mechanism to be open to further extensions. More 
specifically the causality tracking mechanism is intended to override the 
interpretation mechanism's behaviour in cases of recovering from an error. 

2.1   Journaling System 

With having basic nested frame structure,2 we extended each frame with a journal to 
track its activity during a dialogue. The activity involves frame slot interpretation, 
information reading, and information writing. Each of the activities occupies a single 
record in the journal. For the purpose of simplicity in the remainder of the paper, we 
will use the terms I-record, R-record, and W-record to respectively refer to these 
activities. Additionally, the journal disposes of a rollback function that gives it a 
possibility to temporarily forget recent activities in the reversed order they were made 

                                                           
1  In our case, it does an optimization regarding what piece of information to validate – if the 

confidence score is high, the interpretation mechanism does not instruct the frame to initiate a 
validation subdialogue to confirm the correctness. 

2 The frames do not need to have any extra features to support our approach. 
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(temporarily = particular records are moved to a REDO part of the journal, waiting to 
be recovered eventually – see the causality tracking mechanism below). 

Let us have a look at the records and their parameters. The I-records acquire a 
single parameter – the slot that has been interpreted. Denoting the slot as S, we shortly 
can express an I-record as I(S). Obviously, the sequence of I-records in a journal 
indicates the trace of the frame interpretation. The R-records acquire three parameters 
– the Reader parameter refers to a frame that being at slot S initiated the reading of 
slot T. Hence, the formal expression of the R-record takes the form R(Reader,S,T). 
Finally, the W-records acquire two parameters – the slot S and its corresponding value 
V, resulting in expression W(S,V). 

One of our aims with the error recovery has been to reveal where to “jump” next in 
an automated manner (i.e. potentially reopen a closed topic). Having a single frame in 
which a single error on slot E emerged means the consecutive records R(Reader,S,E) 
and W(E,V) are part of its journal. Apparently, the reading R(Reader,S,E) is no longer 
valid, thus the journal needs to be rolled back until the reading disappears from it. The 
last rolled-back I-record I(S) indicates the new reinterpretation state for this frame and 
the start of the potentially reopened topic (see below). 

Above, we concerned the single frame case. A structure of frames in which each 
contains a self-contained journal implies the journaling system. 

In the journaling system, the W-records play a crucial role. Not only they can 
trigger the rollback process, but they also indicate that a frame has been bound with a 
subframe (in cases where the subframe is the allowed value). The question that arises 
now is: How to deal with these subframes, once we need to roll back their 
corresponding W-records? Let us consider the dialogue context in Fig. 1 and suppose 
the W(Train,Arrival) record is rolled back from the Train journal. There are three 
solutions how to deal with the Arrival frame (generally applicable to any other frames 
combination): 1) keeping it, 2) recurrently rolling back the entire Arrival branch, or 3) 
rolling back just immediate relation between the frames (shadowed in Fig. 1). The 
second solution was used in our previous version of the journaling system [3], 
however, we dropped it due to being too restrictive for our future work (Section 4). 

Our implementation accounts for the third solution since it makes just minor 
interference with the context, instead of rapidly changing it. If a frame is being rolled 
back, only its immediate relations are moved to the REDO journal – all subframes 
stay in the context. Obviously, this is a trade-off: from the dialogue context point of  
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Fig. 1. Information readings (R{1,2,3,4}) realized within the given context instance. Left sided 
numbers in serve as slot identifiers. Shadowed is a rolled-back relation. 
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ICC

Recover

Rollback

Clear
 

Fig. 2. Elemental procedures interaction chart with edges denoting the “triggers” relationship 

view, the subframes seem like they were not bound, while from the user's point of 
view, they do not exhibit a need to be generalized.3 This apparent ambiguity exactly 
matches the uncertainty about the rolled back data: no sooner than after the REDO 
journal is cleared, the system is forced to pose a generalization question. 

The journaling system provides us with a means to manage an extra information 
about the context (journals with records), however, it is unable to make any decisions. 
The executive part of our approach is the causality tracking mechanism. 

2.2   Causality Tracking Mechanism 

The causality tracking mechanism consists of four algorithms that govern the 
journaling system functionality. These algorithms regard the journal initial content 
creation, rollback, recovery, and clean up. For the purpose of comfortably referring to 
each one of them, let us introduce the terms ICC, Rollback, Recover, and Clear, 
respectively. Fig. 2 and the top-level algorithm in Fig. 3 give an overview of the 
entire process and interaction. 

 

Procedure PerformInterpretationOfSlot (S) { 

 1. Let F denote a frame with a journal J. 

 2. While slot S ∈ F is interpreted { 

  2.1. Recover(S) – attempt to recover formerly rolled-back records from J
REDO

. 

  2.2. Interpret(S) – perform the common interpretation of slot S. 

  2.3. ICC(S) – based on the interpretation success, push new records into J. 

   } 

} 

 
 

Fig. 3. Interpretation algorithm of a journaled frame 

 
Before engaging in formal descriptions, let us note that for the algorithms to not 

introduce unnecessary variables, we will adhere to the Prolog-like underscore notation 
(“_“) to mark that a given variable is not significant within a particular portion of 
algorithm – e.g., R(Reader,_,T) denotes the R-record whose reader's interpretation 
state is insignificant. 

Let us naturally start with the ICC algorithm (Fig. 4). It defines how to deal with 
records produced during the frame interpretation cycle (step 2.2 in Fig. 3). 
                                                           
3  The term “generalization” refers to providing a frame with a super-frame, e.g. in a time-table 

domain, we can generalize the Time with either the Departure or Arrival frames (Fig. 8). 
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Additionally, it triggers the rollback process if an error is encountered within the 
given frame (step 2.3.1 in Fig. 4). 

The Rollback algorithm (Fig. 5) shows that rolling back the I-records and W-
records is a straight-forward manipulation – they are simply moved to the REDO 
journal without any further processing (steps 3.1.2 and 3.1.5 in Fig. 5). However with 
the R-records, only those for which a given frame was a reader are considered (step 
3.1.3), otherwise they are skipped (step 3.1.4). The reason is that all frames take 
responsibility over their own actions only (i.e., their own behaviour within the nested 
environment), and hence, leave traces of external interaction unattended. As a result 
after the rollback process, each reader's interpretation state equals the state just prior  
 

 

Procedure ICC (S) { 
 1. Let F denote a frame with a journal J. Let S and T denote slots. 
 2. While interpreting slot S ∈ F produces a record D { 
  2.1. D = I(S)   ⇒   add D into J 
  2.2. D = R(F,_,T)   ⇒   add D into J ∧ add D into journal of a frame that owns T 
  2.3. D = W(T,_)   ⇒    
   2.3.1. R(_,_,T) ∈ J   ⇒   Rollback(T) 
   2.3.2. combine W-record's value with T's current value 
   2.3.3. add D into J 
    } 
} 

 

Fig. 4. Journal initial content creation algorithm 

Procedure Rollback (E
0
) { 

 1. Let E
0
 denote the initial set of slots whose values have changed. 

     Let S, T and U be slots. Let N denote a dialogue context relation. 

 2. Find the set E under partial order of E
0
 (i.e., let E contain all slots 

     transitively dependent on E
0
, and it holds E ∩ E

0
 = E

0
). 

 3. For each slot T ∈ E, owned by a frame F equipped with journal J { 

  3.1. While ∃ R(F,_,T) ∈ J { 

   3.1.1. Let D be the most recent record in J 

   3.1.2. D = I(_)   ⇒   move D to J
REDO

 

   3.1.3. D = R(F,S,U)   ⇒    

    3.1.3.1. U ∈ E   ⇒   let S define F's new interpretation state 

         ∧ exclude D from J 

         ∧ exclude D from journal of frame which U is part of 

    3.1.3.2. else move D to J
REDO

 

    3.1.3.3. Go to 3.1 

   3.1.4. D = R(_,_,_)   ⇒   skip processing D, i.e., keep D in J 

   3.1.5. D = W(_,N)   ⇒   exclude N from the context ∧ move D to J
REDO

 

  } 

 } 

} 

 

Fig. 5. Journal rollback algorithm 
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to any reading occurred (step 3.1). Note that rolling a frame journal back means also 
to remove relations to subframes of that frame (step 3.1.5), as discussed above. 

To roll back a frame interpretation history gives that frame a possibility to recover 
it. The main point about the Recover algorithm (Fig. 6) is that it compares the oldest 
historical interpretation state (an I-record) with the current one (step 2.1.1 in Fig. 6). 
Their difference signs that the current interpretation has taken a distinct branch of the 
background logic, and the rest of the REDO journal can no longer be trusted, i.e. is to 
dispose (step 2.1.2). Note that relations which have been removed during the Rollback 
procedure are included back to the dialogue context (step 2.3). 

The Clear algorithm concerns the cleanup of a REDO journal (Fig. 7). Since 
frames take responsibility over their own actions only, we do not need to check the 
origin of R-records explicitly – we know that all these readings were initiated by the 
frame that the given REDO journal is a part of.  

Procedure Recover (S) { 

 1. Let F denote a frame with a journal J. 

     Let S and T denote slots, and N be dialogue context relation. 

 2. While any record D ∈ J
REDO

 relates to slot S ∈ F { 

  2.1. D = I(S)   ⇒    

   2.1.1. D is the oldest I-record in J
REDO

   ⇒    

    2.1.1.1. ∀ R(F,S,_) are valid   ⇒   recover D to J 

    2.1.1.2. else remove all R(F,S,_) ∧ reinterpret S 

   2.1.2. else Clear(J
REDO

) 

  2.2. D = R(F,S,_)   ⇒   recover D to J 

  2.3. D = W(S,N)   ⇒   recover D to J ∧ include N back into the context 

                  ∧ combine W-record's value with S's current value 

 } 

} 

 
Fig. 6. Journal recovery algorithm 

Procedure Clear (J
REDO

) { 

 1. Let T denote a slot, and N denote a dialogue context relation. 

 2. While J
REDO

 (owned by frame F) is not empty { 

  2.1. Exclude a record D from  J
REDO

 

  2.2. D = I(_)   ⇒   dispose D 

  2.3. D = R(_,_,T)   ⇒   exclude D from journal of frame which T is a part of 

       ∧ dispose D 

  2.4. D = W(_,N)   ⇒   let M be a set of interpretation states of 

         readers engaged with relation N 

         ∧ Rollback(M) 

         ∧ acquire generalization of frame X that N bounded with F 

         ∧ dispose D ∧ dispose N 

 } 

} 

 

Fig. 7. Journal cleanup algorithm 
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3   Example 

We have developed a simplified4 time-table domain application (Fig. 8) that provides 
departure and arrival times information. In the model, solid lines represent standard 
relations (to maintain relevant information connections), while the dotted ones refer to 
disambiguation relations (to express a detailed description of a frame – used when 
accessing a database). The numbers in the domain (“0…5”) refer to acceptable 
amount of database query results to present to the user (the number of five was chosen 
according to an empirical rule of speech interface design stating that users are unable 
to memorize more than approximately seven last options within a list [5]). 

Let us consider the dialogue snippet in Table 1, that results in the context fragment 
depicted in Fig. 1. At the end, the system utters a particular transportation means in 
Q/1 (DepartureQuestion frame, slot 1), and an additional back-end reading is 
performed in T/1 (Train). Each frame's journal content is depicted in Fig. 9, which 
also serves as a trace of the interpretation algorithm (I-records) as time is involved. In 
its final answer, the system makes three train suggestions, each internally converting 
into a semantics that in turn replaces the user's initial search pattern – thus the system 
substitutes generally specified times with particular departure and arrival times of 
particular transportation means. This is for the trains to appear in the dialogue history. 
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Fig. 8. Time-table domain model; solid edges represent standard relations, dotted ones refer to  
disambiguation relations 
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Fig. 9. Journals contents; shadowed parts are stored in the REDO part of journals. Numbers on 
the right of the frame names identify particular slots. 

                                                           
4 The model does not consider changes and different kinds of trains. 
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Furthermore, consider the user wants to make some additional changes regarding 
the train which s/he intends to find (i.e., introduces an error). Table 2 shows the 
corresponding dialogue snippet. With changing the City of departure, the 
DepartureQuestion and Train frames are rolled back (Fig. 10), however, the rolled-
back fragments still remain stored in the REDO parts of the journals. The original 
City of departure is no longer bound to the Departure frame, and consequently, 
neither R1 nor R2 (Fig. 1) are valid. With rolling back the W3-record, only the relation 
between Arrival and Train is moved to the Train's REDO journal, and the remainder 
of the Arrival branch stays unaffected (Fig. 1). To keep track of the context parts that 
were modified, notification messages with D/0, T/0 and Q/0 need to be sent to the 
Departure, Train, and DepartureQuestion, respectively. Upon this, all necessary steps 
to recover the context from the error have been made and the reinterpretation may 
begin. It starts with obtaining the messages, and thus, revisiting the City of departure. 
Next, it continues reevaluating T/1 and moves to T/2. Here, no subframe is found, 
however, the Train's REDO journal contains a relation to a subframe. Recovering it, 
the formerly cut off Arrival branch is recovered. Finally, the interpretation reaches 
Q/1 and a new prompt is generated – “The next train from the Hague to Amsterdam  
 

Table 1. Dialogue snippet between an user (U) and the system (S); italicized comments relate 
to system's background actions 

Agent W-record Agent's utterance 
U W1 I need to get information about train departures. 
S W2 [ The departure city is created and initialized to the current city 

(Haarlem) during the interpretation process. ] 
 W3 Train departure times. Where do you want to travel to? 

U  Amsterdam. 
S W4 Amsterdam. What time approximately would you like to depart? 
U W5 I must get there before 5 p.m. 

[ The user disambiguates the train other way. The system's attempt 
is removed from the journals. ] 

S W6 [ User's utterance is anchored, causing the number of database 
query results to pass the limit of 5 transportation means at most. 
The system presents them. Each one is transformed to a semantics 
and anchored within the context, replacing Departure.Time, and 
Arrival.Time concepts. Note that we currently do not make use of 
system utterance planning – employing ellipsis in the following 
utterance would be appropriate. ] 
The next train from Haarlem to Amsterdam leaves at 9 a.m. The 
next train from Haarlem to Amsterdam leaves at 11 a.m. The next 
train from Haarlem to Amsterdam leaves at 1 p.m. 

Table 2. Dialogue snippet between an user (U) and the system (S) 

Agent W-record Agent's utterance 
U W7 No, I want to leave from the Hague. 
S W8 The next train from the Hague to Amsterdam leaves at 10 a.m. The 

next train from the Hague to Amsterdam leaves at 12 a.m. 
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Fig. 10. Journals contents; shadowed parts are stored in the REDO part of journals. Numbers 
on the right of the frame names identify particular slots. 

leaves at 10 a.m.” Note that in neither cases the Departure frame is rolled back. The 
reason is that the conditions for triggering a rollback are not met – information in the 
frame is always only rewritten but never read. 

4   Future Work 

The journaling system has been applied in an simplified time-table domain to prove 
the feasibility of the idea and tune the approach. Apart of the time-table domain, we 
are going to apply the presented dialogue manager in a personal assistance domain, 
considering e-mails and appointments management. This domain shares a lot with the 
time-table (form-filling style of interaction and vastly passive data concepts). 
However, the distinction lies in the possibility of negotiation with the user (e.g., 
regarding two overlapping appointments), hence we expect minor changes to the 
dialogue manager, but no rapid changes to the error recovery approach. 

5   Conclusion 

The research goal we follow is to create a generic dialogue manager. Our approach 
utilizes frames technique for context knowledge representation. The mechanisms are 
based on known approaches we adjusted to fit our purposes. To summarize them, in 
[1] we found a motivation for nested frames technique, from [6] we adjusted the Form 
Interpretation Mechanism to work recursively using message passing – as a result, we 
treat frames as intentions, stacking them to keep track of focus in the dialogue, 
similarly as Grosz and Sidner do [7]. Finally, our disambiguation process is inspired 
by [8], however, we extended it to work in nested frames environment. 

In this paper, we presented and demonstrated our approach to automated error 
recovery in dialogue management. The example above regarded just simple revision 
of the departure city which in fact could be handled in a simpler way manually (at the 
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system design/implementation stage). However, we aimed to show how to accomplish 
the same task by passing the responsibility for it to the machine, thus at first sight, the 
process may look like a redundant machinery. Nevertheless, considering it constitutes 
an uninformed methodology to solve the error recovery problem, we needed to 
sacrifice some of frame-based approach habits, and do some minor cuts to the way 
frames are commonly dealt. 

To accommodate our solution in a dialogue manager, the following steps must be 
satisfied: 1) having common nested frames environment (common = frames do not 
need to be equipped with any special features, e.g. VoiceXML's [6] implementation of 
frames is sufficient, however, VoiceXML as such is insufficient, as it does not 
support nested frames), 3) extending the nested structure with the journaling system 
and a set of records (regarding the I-, R-, and W-records are mandatory), 
3) implementing the four procedures handling journals initial content creation, 
rollback, recovery, and cleanup, 4) choosing the communication means between the 
causality tracking mechanism and the interpretation mechanism (in our case, the 
message passing is employed), and 5) making the causality tracking mechanism 
dominant to the interpretation mechanism when handling an error (by having the 
interpretation mechanism state-less, we can simply skip this final step). 
 
Acknowledgement. The author would like to thank to the reviewers for their effort 
on improving the paper. This work was supported by grant no. 2C06009 Cot-Sewing. 
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Abstract. This paper introduces a framework for relevant belief revision. We
represent agent’s beliefs in prime implicants and express agent’s preference on
beliefs as a pre-order over terms. We define a belief revision operator via min-
imising the change of the prime implicants of the existing beliefs and the incom-
ing information with respect to agent’s preferences. We show that such a belief
revision operator satisfies Katsuno and Mendelzon’s postulates for belief revi-
sion as well as Parikh’s postulate for relevant revision. This paper demonstrates
a natural way to identify relevance of beliefs and an implementation of Parikh’s
relevant belief revision.

1 Introduction

Belief revision is the process of incorporating new pieces of information into a set of
existing beliefs. It is usually assumed that the operation follows the following two prin-
ciples: (i) the resulting belief set is consistent and (ii) the change on the original belief
set is minimal. Several formalisms of belief revision have been proposed in the literature
(see [8] for more details). The most influential work is the AGM paradigm which char-
acterises the belief revision operation by a set of plausible axioms, generally referred to
as the AGM postulates [1].

Despite of the popularity of the AGM paradigm, the AGM postulates are not suffi-
cient to capture the notion of minimal change. As stressed by Parikh in [19], the full
meet revision operator (removing all statements of the original beliefs and keeping only
the new piece of information) satisfies the AGM postulates, which is obviously not a
minimal change. In order to avoid counter-intuitive change of beliefs, Parikh proposed
an additional postulate to the AGM postulates, which characterises the notion of rele-
vant revision. A revision is said to be relevant if it enables to keep all the initial beliefs
of an initial belief set ψ that are not related to the new piece of information after the be-
lief revision operation. Formally speaking, if a statement of ψ does not use any propo-
sitional symbols that are used in the new piece of information μ, then this statement
should belong to the resulting belief set. In other words, Parikh’s postulate is grounded
in the symbols used in ψ and μ. However, Parikh did not provide an actual belief re-
vision operator that satisfies his postulate and the AGM postulates. The main difficulty

J. Li (Ed.): AI 2010, LNAI 6464, pp. 42–51, 2010.
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is that it is hard to find simple and intuitive criteria that separate relevant information
from irrelevant information. Makinson in [16] proposed a formal approach that is able
to split logical symbols that are used in a belief set. However, no construction of belief
revision operator was provided based on this language splitting approach. Peppas et al.
in [20] proposed a model based construction of belief revision operator (based on sys-
tems of spheres) that implements the AGM postulates and Parikh’s postulate. However,
relevance by its nature is a syntactical issue. A model based approach at most provides
a peripheral solution.

This paper aims to offer a syntactical construction of belief revision operator based
on prime implicants. In [3], Bittencourt et al. proposed a syntax-based belief revision
operator that is constructed by using prime implicants and prime implicates. Such a con-
struction provides a natural way to identify relevance of beliefs. However, the construc-
tion is based on Dalal’s distance, which cannot capture the notion of minimal change
based on general preference orderings. In this paper we redefine the belief revision oper-
ator based on minimal change on general preference orderings. We define a belief revi-
sion operator via minimising the change of the prime implicants of the existing beliefs
and the incoming information. We show that such a belief revision operator satisfies
Katsuno and Mendelzon’s postulates for belief revision as well as Parikh’s postulate for
relevant revision. Our approach provides a clear and simple way to address the belief
relevance issue and a natural implementation of Parikh’s relevant belief revision.

The paper is organised as follows. Section 2 reviews the notions of implicant and
prime implicant. Section 3 defines a class of revision operators based on the prime
implicant representation of beliefs. Section 4 shows that Parikh postulate holds for this
class of revision operators. Finally, we conclude the work and discuss the related work
with a perspectives of possible future work.

2 Preliminaries

Let P = {p0, . . . , pn} be a finite set of propositional symbols and LIT = {L0, . . . ,
L2n} be the set of the associated literals: Li = pj or ¬pj . Let L be the complementary
literal, s.t. L = p (respectively ¬p) iff L = ¬p (respectively p). Let L(P ) be the
propositional language associated to P and ψ ∈ L(P ) be an ordinary formula. Let
Lang be the function that assigns to each formula the set of propositional symbols that
are contained in the formula, i.e., Lang : L(P ) �→ 2P .

Let W(P ) be the whole set of propositional interpretations associated to P (for the
sake of conciseness, hereafter we skip parameter P ) and |= the satisfiability relation.
Let [[ψ]] be the set of propositional interpretations that satisfy ψ (the models of ψ).

Any formula can be represented in a disjunctive normal form (DNF). Given a formula
ψ, let DNFψ be a DNF of ψ. Assume that DNFψ = D0 ∨ · · · ∨Dw be the disjunction
of terms, where each term Di is a conjunction of literals: Di = L0 ∧ · · · ∧ Lk. Let D
be the mirror of term D s.t. D = L0 ∧ · · · ∧ LkD iff D = L0 ∧ · · · ∧ LkD .

A term D is an implicant of ψ if D |= ψ. A term D is said to be a prime impli-
cant [21] of ψ if D is an implicant of ψ and for any term D′ such that D′ ⊆ D, we
have D′ �|= ψ, i.e., a prime implicant of a formula ψ is an implicant of ψ without any
subsumed terms. In the following, terms can be seen as sets of literals. Hereafter, we
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frequently switch between the logical notation and the set notation. We write D −D′

to denote the subtraction operation over terms, that results from removing all literals
that occur in D′ from D, that is, D − D′ = {L ∈ D : L �∈ D′}. Although the def-
inition of prime implicant includes contradictory terms, because a contradiction is an
implicant of any formula, in the sequel we only consider terms that do not have any
pair of contradictory literals. We also do not consider implicants with redundant literals
(i.e. a literal can only appear at most once in an implicant). Let Dψ be the set of all
the non contradictory and non redundant implicants of ψ and D be the set of all non
contradictory and non redundant terms. Notice that since P is finite, D is also finite.

We define PIψ as a disjunction of all non contradictory prime implicants of ψ such
that ψ ≡ PIψ . Whenever it’s clear, in the sequel we omit “non contradictory” and “non
redundant” when we mention prime implicants.

2.1 Belief Revision Issue

Belief revision consists of inserting in a consistent way a new piece of information μ
into a belief set ψ [6]. Revision operator is usually denoted by ◦ and the resulting belief
set is denoted by ψ ◦ μ. The AGM postulates provide an axiomatic characterisation
of belief revision operators [1,7]. In the context of finite propositional beliefs, AGM
postulates can be rephrased as follows [12]:

(R1) ψ ◦ μ implies μ.
(R2) If ψ ∧ μ is satisfiable then ψ ◦ μ ≡ ψ ∧ μ.
(R3) If μ is satisfiable then ψ ◦ μ is also satisfiable.
(R4) If ψ1 ≡ ψ2 and μ1 ≡ μ2 then ψ1 ◦ μ1 ≡ ψ2 ◦ μ2.
(R5) (ψ ◦ μ) ∧ φ implies ψ ◦ (μ ∧ φ).
(R6) If (ψ ◦ μ) ∧ φ is satisfiable then ψ ◦ (μ ∧ φ) implies (ψ ◦ μ) ∧ φ.

As mentioned earlier, even if they have been widely accepted, these postulates are too
weak to characterise minimal change with respect to relevant revision. For almost all
belief revision operators, minimality is represented with the help of an extra logical
criteria of distance between the initial belief set and the incoming information [10].
That is, revising ψ by μ consists of choosing the closest models of μ with respect to
ψ [13,12]. Let �ψ be a total pre-order representing preferences and defined over setW
and representing the closeness criterion: w �ψ w′ states that w is at least as close as w′

w.r.t. ψ. Faithful assignment represents preferences which are “centered” on ψ, i.e. the
most preferred models are the models of ψ1.

Theorem 1. [13] Let F be a faithful assignment that maps each belief set ψ, to a total
pre-order�ψ overW such that the following three conditions hold:

(C1) if w,w′ ∈ [[ψ]] then w �≺ψ w′

(C2) if w ∈ [[ψ]] and w′ �∈ [[ψ]] then w ≺ψ w′

(C3) if ψ ≡ ϕ then �ψ=�ϕ

A revision operator ◦ satisfies (R1)–(R6) if and only if [[ψ ◦ μ]] = min([[μ]],�ψ)

1 ≺ψ is defined from �ψ as usual, i.e., w ≺ψ w′ iff w �ψ w′ but not w′ �ψ w.
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One of the simplest ways to set the preferences is to consider the propositional symbols
that may change. This has been proposed by Dalal in [5]. It consists of characterising
belief revision operator as a function which changes in each model of ψ the minimal
number of propositional symbol truth values so that incoming information can be added
without entailing inconsistency.

3 Prime Implicants Based Revision

Prime implicants enable us to define belief revision operators in a syntactic way while
avoiding the issue of syntax dependency. This characteristic is due to the fact that each
formula has only one set of prime implicants. The applicability of prime implicants and
implicates in belief change area has been investigated and presented in several works,
e.g [3,18,22,2,17], as well as the properties of prime implicants and prime implicates
in [4]. We root our work in [3,17] which mainly focused on the notion of distance
and the way to set preferences and extend these contributions to capture the notion of
relevance.

3.1 Incorporating Prime Implicants

Given a belief set ψ and a new piece of information μ, let PIψ and PIμ be the set of
prime implicants of ψ and μ. In order to incorporate new information μ into the existing
belief set ψ, we combine the prime implicants of ψ and μ in such a way that for every
Dψ ∈ PIψ and Dμ ∈ PIμ, a new term is obtained by adding to Dμ all the literals
of Dψ which are not conflicting with the literals to Dμ, as stressed by the following
incorporating function Γ:

Definition 1. Let Γ : L(P )× L(P ) �→ 2D be a function defined as follows:

Γ(ψ, μ) = {Dμ ∪ (Dψ −Dμ)|Dψ ∈ PIψ and Dμ ∈ PIμ}

where PIψ and PIμ are the sets of prime implicants of ψ and μ.

Intuitively, the set Γ(ψ, μ) contains all the terms that are obtained by extending each
prime implicant of μ with the maximal consistent part of each prime implicant of ψ.

Example 1. Consider the following sets of prime implicants: PIψ = (¬p2 ∧ ¬p3) ∨
(¬p2 ∧ p4)∨ (¬p1 ∧¬p3 ∧ p4) and PIμ = (p3 ∧¬p4)∨ (p1 ∧ p2). The following table
presents the set of terms in Γ(ψ, μ):

We extend the previous definition with the set Γ(ψ) ⊆ D s.t. Γ(ψ) =
⋃

D∈D Γ(ψ,D)
which denotes the set of all terms that can be defined according to ψ (i.e. all possible
consistent μ are considered).

3.2 Preference Ordering over Terms

To construct a belief revision operator using prime implicants, we need to set prefer-
ences over terms instead of worlds. Let �ψ be a preference relation defined over the set
of possible terms D: D �ψ D′ states that D is at least as close as D′ w.r.t. ψ. As for
preferences set over worlds, we define the notion of faithful assignment.
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Table 1. Incorporating prime implicants of two formulas

Dψ Dμ Di ∈ Γ(ψ, μ)

¬p2 ∧ ¬p3 p3 ∧ ¬p4 ¬p2 ∧ p3 ∧ ¬p4 (D1)

¬p2 ∧ ¬p3 p1 ∧ p2 p1 ∧ p2 ∧ ¬p3 (D2)

¬p2 ∧ p4 p3 ∧ ¬p4 ¬p2 ∧ p3 ∧ ¬p4 (D1)

¬p2 ∧ p4 p1 ∧ p2 p1 ∧ p2 ∧ p4 (D3)

¬p1 ∧ ¬p3 ∧ p4 p3 ∧ ¬p4 ¬p1 ∧ p3 ∧ ¬p4 (D4)

¬p1 ∧ ¬p3 ∧ p4 p1 ∧ p2 p1 ∧ p2 ∧ ¬p3 ∧ p4 (D5)

Definition 2. A faithful assignment F is a function which maps every formula ψ to a
pre-order over Γ(ψ) such that2:

(C1-T) if Du, Dv ∈ Dψ, then Du �<ψ Dv.
(C2-T) if Du ∈ Dψ and Dv �∈ Dψ, then Du <ψ Dv.
(C3-T) if ψ ≡ ϕ, then �ψ=�ϕ.
(CI-T) For all Du �∈ Dψ, Dv �∈ Dψ, if (Du ⊆ Dv) then Du ∼ψ Dv.

The first key difference between the two notions of faithful assignment is the domain
used for preferences: it is required that preferences have to be defined on a subset of
terms rather than on the whole set of possible worlds. That is, the pre-order is only
required to be set over the set of terms that can be built from ψ and function Γ. The
three constraints (C1-T)–(C3-T) are similar to the constraints (C1)–(C3). The second
key difference is the constraint (CI-T) which states that preferences should not favour
too specific terms.

Example 2. Suppose ψ = p1 ∧¬p2; suppose two terms ¬p1 ∧¬p2 and ¬p1 ∧¬p2 ∧ p3

which belong toDψ. Suppose that ¬p1∧¬p2∧p3 <ψ ¬p1∧¬p2. It then means that if ψ
is revised by ¬p1∧¬p2 then ¬p1∧¬p2∧p3 will be preferred to ¬p1∧¬p2 and thus the
resulting belief set might contained extra and irrelevant information (p3). Following the
intuition of Parikh, relevance entails to focus changes on p1 and p2 and thus it cannot
be the case that ¬p1 ∧ ¬p2 ∧ p3 <ψ ¬p1 ∧ ¬p2.

Hence, (CI-T) is a first step towards the enforcement of the notion of relevance.

Example 3. Let us pursue example 1. Suppose a faithful assignment such that �ψ is
a preference ordering over the set of terms Γ(ψ) based on Dalal’s distance [5]. All
terms D ∈ Γ(ψ) are defined as follows: D = Dμ ∪ (Dψ − Dμ) s.t. Dμ ∈ D and
Dψ ∈ PIψ . D �ψ D′ if and only if either (i) D ∈ Dψ or (ii) the number of literals
in the set Dψ ∩Dμ is less or equal to the number of literals that belongs to D′

ψ ∩D′
μ.

As we can see, this pre-order is total over Γ(ψ). It is straightforward to check that
constraint (C1-T) and (C2-T) hold. Next, since the definition of prime implicants entails
ψ ≡ ϕ iff PIψ = PIϕ, constraint (C3-T) also holds. Finally, because Dalal’s distance
focuses on contradicting symbols, constraint (CI-T) also holds. Let us focus on the
terms belonging to the set Γ(ψ, μ) shown in table 1. We get the following ordering over
the terms in Γ(ψ, μ): D1 ∼ψ D2 ∼ψ D3 ∼ψ D5 <ψ D4.

2 D ∼ψ D′ stands for D �ψ D′ and D′ �ψ D.
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3.3 Prime Implicant Based Revision

We are now able to define belief revision operators using prime implicants. A PI revision
of ψ by μ is denoted by ψ ◦PI μ. Let us now characterise the PI revision operator:

Theorem 2. Let F be a faithful assignment over D that maps each belief set ψ a total
pre-order �ψ. The PI revision operator ◦PI defined by F satisfies (R1)–(R6) if

ψ ◦PI μ =def

∨
min(Γ(ψ, μ),�ψ)

where min(Γ(ψ, μ),�ψ) = {D ∈ Γ(ψ, μ) | ∀D′ ∈ Γ(ψ, μ) and D �ψ D′}.
The proof is mainly based on [13], notice that constraint (CI-T) enable to enforce pos-
tulates (R5) and (R6)3.

Example 4. According to the preferences detailed in the previous example, we get that
terms D1, D2, D3 and D5 are minimal and compound the revised belief base:

ψ ◦PI μ = (¬p2 ∧ p3 ∧ ¬p4) ∨ (p1 ∧ p2 ∧ ¬p3)∨
(p1 ∧ p2 ∧ p4) ∨ (p1 ∧ p2 ∧ ¬p3 ∧ p4)

Notice that the PI revision is more restricted than the AGM revision since AGM revision
considers all possible worlds while PI revision only focuses on terms belonging to Γ(ψ).

Example 5. Let ψ = p1 ∧ p2 and μ = ¬p1. It is easy to see that PIψ = {p1 ∧ p2}
and PIμ = {¬p1}. Therefore ψ ◦PI μ = ¬p1 ∧ p2, no matter what the preference
over the set of terms is. However, there are more than one AGM revision outcomes. Let
W = {11, 10, 01, 00} be the set of interpretations of the language L = {p1, p2}. If the
faithful order of ψ over W is 11 ≺ψ 10 ∼ψ 01 ∼ψ 00, the outcome of the revision
will be [[ψ ◦ μ]] = {01, 00} = [[¬p1]]. If the faithful order is 11 ≺ψ 10 ∼ψ 01 ≺ψ 00,
then we have [[ψ ◦ μ]] = {01} = [[¬p1 ∧ p2]]. Notice that p2 cannot be changed by the
revision of ψ with ¬p1 in the prime implicant based revision; while p2 may change with
the AGM revision.

Let us now relate ◦ and ◦PI by showing that if the preferences over terms are linked
to the preferences overs worlds, then theorems 1 and 2 are similar. That is the revised
belief sets are equivalent whether we use worlds or terms. The following constraint
(KP) states that preferences over terms and worlds have to be closely connected; i.e.
if a term Du is preferred to a term Dv then we have the same preferences between the
worlds in which these two terms are satisfied. Let �ψ be a faithful pre-order overD and
�ψ be a faithful pre-order overW associated with ψ such that:

Du �ψ Dv ⇐⇒ ∀u ∈ [[Du]], ∃v ∈ [[Dv]] u �ψ v (KP)

Let us now relate operators ◦ and ◦PI by stating that if constraint (KP) is satisfied then
both operators give similar results.

3 Due to space restrictions all proofs have been omitted. A longer version of the paper which
includes all the proofs is downloadable at the URL
http://www.irit.fr/˜Laurent.Perrussel/ai10-long.pdf.

http://www.irit.fr/~Laurent.Perrussel/ai10-long.pdf
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Theorem 3. Let �ψ and �ψ be two faithful assignments over W and Γ(ψ). Revision
operators ◦ and ◦PI produce identical belief sets, that is [[ψ ◦PI μ]] = [[ψ ◦ μ]] if and
only if for all Du, Dv ∈ Γ(ψ) constraint (KP) is satisfied.

The previous theorem confirms that operator ◦PI describes a specific family of AGM
revision operators; that is, combined with additional constraints, postulates (R1)–(R6)
also characterise PI revision. In the next section, we show that this specific aspect (or
additional constraints) is in fact rooted in the notion of relevant revision.

4 Relevant Revision

The common shared opinion for setting the notion of relevant revision is to ground this
notion into the languages used for describing belief bases [19,9,20,16]. If a statement ϕ
in the belief base ψ does not share any propositional symbols with incoming informa-
tion μ, then ϕ should belong to the resulting belief base. Parikh proposes the following
postulate to capture the idea of relevant revision [19]:

(P) Let ψ = ϕ ∧ ϕ′ such that Lang(ϕ) ∩ Lang(ϕ′) = ∅. If Lang(μ) = Lang(ϕ), then
ψ ◦ μ ≡ (ϕ ◦′ μ) ∧ ϕ′, where ◦′ is the revision operator restricted to language
Lang(ϕ).

In general it is not easy to split the irrelevant statements from the belief base because
the syntactical representation of the belief base could “falsify” us [16]. However, if we
represent the belief set in prime implicants, this splitting becomes much more visible.
This motivates us to rephrase Parikh’s postulate in terms of the prime implicant repre-
sentation of formulas:

(P-T) Let ψ = ϕ∧ϕ′. If Lang(PIϕ)∩Lang(PIϕ′) = ∅ and Lang(PIμ) = Lang(PIϕ),
then ψ ◦PI μ ≡ (ϕ ◦′PI μ)∧ϕ′, where ◦′PI is the revision operator restricted to the
language Lang(PIϕ).

However, the construction of ◦PI is not sufficient for enforcing postulate (P-T). As
stressed in [20], the local revision operator mentioned in postulate (P) has to be context-
independent. Suppose that there are two belief sets ψ and ψ′ such that ψ ≡ ϕ ∧ ϕ′,
ψ′ ≡ ϕ∧ϕ′′, Lang(PIϕ)∩Lang(PIϕ′) = ∅ and Lang(PIϕ)∩Lang(PIϕ′′) = ∅. Then
there should exist only one single version of the local revision operator ◦′ such that
ψ◦μ ≡ (ϕ◦′μ)∧ϕ′ and ψ′◦μ ≡ (ϕ◦′μ)∧ϕ′′ for any μ s.t. Lang(PIμ) ⊆ Lang(PIϕ).
We also agree for this reading of postulate (P) qualified by [20] as the strong version of
postulate (P). Let us represent this notion in our framework. Assume that ψ ≡ ϕ ∧ ϕ′

s.t. Lang(PIϕ) ∩ Lang(PIϕ′) = ∅. Having one local revision operator means that
we have only one pre-order �ϕ associated to ϕ. Now, let us suppose two terms D
and D′ such that D �ϕ D′. Pre-order �ψ should also reflect these preferences; that is
extending terms D and D′ with any prime implicants belonging to PIϕ′ will not change
the preferences. The following constraint states this by saying how we can switch from
one pre-order to a second one.
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(PS-T) Let ψ ≡ ϕ ∧ ϕ′ such that Lang(PIϕ) ∩ Lang(PIϕ′) = ∅. For any D,D′ ∈
Γ(ϕ): D �ϕ D′ iff D ∪ Dϕ′ �ψ D′ ∪ D′

ϕ′ such that Dϕ′ , D′
ϕ′ ∈ PIϕ′ and

D ∪Dϕ′ , D′ ∪D′
ϕ′ ∈ Γ(ψ).

In other words, this constraint expresses the strong notion of relevance by considering
multiple faithful assignments. Now, we conclude that operator ◦PI characterizes rele-
vant belief revision by satisfying postulate (P). We first show that satisfying constraint
(PS-T) entails that operator ◦PI satisfies the relevance postulate.

Theorem 4. If faithful assignment �ψ satisfies (PS-T) then ◦PI postulate (P-T).

The theorem shows that the relevance is rooted in two key aspects: the definition of the
revision operator ◦PI and the commitment to the strong version of relevance postulate.

Now, let us look at the opposite way. The question is: is operator ◦PI too restrictive
or not? That is, if a revision operator ◦ satisfies postulate (P), then can we exhibit an
operator ◦PI which produces the same result? If the answer is positive then it means
that in fact operator ◦PI characterizes the family of belief revision operators that satisfy
postulate (P). The following theorem shows that it is in fact the case under the condition
that we focus on strong meaning of relevance.

Theorem 5. Suppose a revision operator ◦ such that (R1)–(R6) and (P) hold. There
always exists an operator ◦PI such that (PS-T) holds for ◦PI and ψ ◦ μ ≡ ψ ◦PI μ.

The theorem tells us that ◦PI can represent operators for relevant belief change. Indeed,
in [19,20] it has been shown that we can always define an operator ◦ which satisfies
postulates (R1)–(R6) and (P). In other words, theorems 2, 4 and 5 show that prime
implicant based revision operator exactly characterizes the notion of relevant belief
revision: (R1)–(R6) and (P) ⇐⇒ ◦PI .

Example 6. It can be easily shown that condition (PS-T) holds for Dalal-based prefer-
ences introduced in the previous examples. The consequence of the previous theorems
is that Dalal’s revision operator is relevant. A second consequence is that preferences
underlying a relevant revision can always be connected through constraint (KP).

5 Conclusion

In this paper we have proposed a general characterisation of relevant revision that states
the family of operators for relevant belief change. We rephrased the relevance postulate
in terms of prime implicants, which leads to the characterisation of relevant revision.The
use of prime implicant representation not only provides a natural way to identify rel-
evance in beliefs but also has advantages in computation [11]. Also our approach is
syntax based. It avoids the syntax dependency, therefore possess the advantages of syn-
tactical and semantical approaches.

Most of the work about the notion of relevant belief revision is based on language
splitting. A splitting of a language with respect a belief set ψ is a partition of the
language such that ψ can be resembled by a set of belief sets described in each sub-
language. Makinson in [14,15] shown that any AGM compliant contraction operator
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which performs contraction on the belief set in each sub-language satisfies Parikh’s
postulate. That is, only partitions concerned by incoming information should be con-
tracted. Makinson argues that there should exist a language-based dependence relation
between the impacted partition and incoming information. He also argues this depen-
dence relation should be rooted on the notion of canonical language. We actually follow
a similar idea: the prime implicant set Γ focuses on the dependence relation and the ◦PI

operation focuses on the splitting language. That is, prime implicants (and also prime
implicates) ensure that we focus on the smallest language for describing ψ.

Peppas et al. proposed an other approach to relevant revision [20]. Their contribution
is two fold. Firstly they proposed two conditions that are imposed on an AGM revision
operator and guarantee the satisfaction of Parikh’s postulate. Secondly, they proposes a
set of semantic conditions based on the system of spheres model so that a belief revision
operator that satisfies the semantic conditions is a relevant revision operator. As we have
seen, our approach is purely syntax-based. Moreover, our framework embeds a signifi-
cant part of the notion of relevance in the definition of the operator itself while existing
approaches [15,20] consider the relevance with the help of additional constraints.

As future work, we want to pursue this characterization of relevance. That is, at this
stage, relevance only describes what should not change. It does give a positive perspec-
tive by stating what should change. For instance, consider PIψ = p1 ∧ p2 ∧ p3 and
PIμ = ¬p1 ∧ p2. According to postulate (P), we conclude that p3 should remain un-
changed. At the same time, only p1 represents a disagreement point: at least p1 should
be changed. Prime implicants help us to to focus on the literals which represent dis-
agreements, that is the set ∪{Dψ∩Dμ|Dψ ∈ PIψ and Dμ ∈ PIμ}. This set represents
in fact a lower bound for revision: “at least, what should change?” while postulate (P)
describes the upper bound of relevant revision: “at most, what should change?”. Our
aim is to investigate the interactions between these bounds in order to characterize rel-
evance from a positive perspective.
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Abstract. In this work we develop and examine a generalized account

of David Lewis’s imaging in the same way as how Jeffrey’s Probability

Kinematics generalizes Bayesian conditionalization. We show that this

naturally leads to a rational account of probabilistic belief removal – a

rather long standing problem in the area. It turns out that our general-

ization of imaging indeed is an account of probabilistic belief erasure as

opposed to probabilistic belief contraction. In the process we also exam-

ine two other accounts of probabilistic belief removal which are rather

novel and difficult to classify under the standard belief change taxonomy.

1 Introduction

Any artificial agent needs to maintain its beliefs and perform necessary changes
in light of any received information. One well-known way of representing the
“belief state” of an agent is to use a subjective probability function. A subjective
probability function describes an individual’s personal judgement as to how likely
it is that a particular event will take place. Clearly, a mechanism is needed to
update such a probability function in light of received information. Imaging,
presented by David Lewis, is one such mechanism which changes the probability
function upon learning that a certain proposition is true [14]. However there are
cases in which a change is called for but there is no proposition in the language
whose truth is guaranteed by the observation. Imaging is not capable of handling
such observations. There is a need for a generalized account of imaging along
the line that Jeffrey’s account of probability kinematics [10] is a generalization
of Bayesian Conditionalization. We motivate the need for such a generalization
with the following example. This example is a variation of example given by
Jeffrey to support his argument [10].

Example 1. We concern ourselves with an agent working in a laboratory. The
laboratory also employs an experimental robot which is capable of dyeing any
piece of cloth violet or blue. The agent always keeps a green coloured cloth on
its desk. On returning from a break, the agent finds the robot leaving the room.
The agent rushes to observe the colour of the cloth on its desk, afraid that it
might have been dyed. Due to poor lighting in the room the agent is unable to
decide whether the colour of the cloth has been changed. The agent’s observation
makes it believe that the cloth could still be green. We further assume that at
any particular instant the cloth has only one colour among green, blue or violet.

J. Li (Ed.): AI 2010, LNAI 6464, pp. 52–61, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Let G represent the sentence that the cloth is green, V represent the cloth is
violet and B represent the cloth is blue. Now the initial probability function P
is such that P (G) = 1, P (V ) = 0 = P (B). After the robot leaves the room the
new probability function P ′ should be such that P ′(G) = 0.6 and P ′(¬G) = 0.4.

There are two aspects to the scenario portrayed in this example. (1) The prob-
ability function should be changed from P to P ′. This corresponds to a Jeffrey-
kind of generalization of imaging. (2) In the literature of belief change in a
probabilistic framework, for instance [9, 12], a sentence which has a subjective
probability of 1 is considered a belief of the agent. In the above example G is
initially a belief of the agent. The result of changing P to P ′ is such that G
no longer has a probability of 1. Belief removal in a probabilistic setting corre-
sponds to changing the probability associated with a sentence from 1 to less than
1. The above example, therefore, also motivates the study of belief removal in
a probabilistic setting. The literature on belief change in a probabilistic setting
has been confined to inclusion of new beliefs. The study of removal of beliefs in
this setting has not received much attention. We realize that these two problems
have the same solution. In this work we focus on presenting a generalization of
imaging and also give an account of belief removal in a probabilistic framework.

We begin by outlining the deficiency of conditionalization and Jeffrey con-
ditionalization that does not allow them to model the change in a probability
function described in the example (section 2), arguing that a generalization of
imaging is needed. We then present a variation of imaging that can be used
to model the scenario presented in the example (section 3). This variation of
imaging should be able to model the withdrawal of a belief in a probabilistic
framework. We show that this is in fact the case (section 4). Furthermore, we
present two more variations of imaging and briefly discuss their properties (sec-
tion 5). We conclude with a brief discussion on some finer points related to the
proposed variations of imaging (section 6).

2 Background

Let L be a finite propositional language of the agent and the set of all possible
worlds (interpretations) over L be Ω. The subjective probability function of an
agent is given by a probability distribution over the set of all possible worlds. The
probability distribution defined over Ω is such that,

∑
Ω P (ω) = 1. We represent

the set of worlds which have non-zero probability under the probability function
P by ‖P‖. For any world ω ∈ Ω and a sentence A ∈ L, let ω(A) = 1 when
ω |= A ( i.e. ω is a model of A) and ω(A) = 0 when ω |=/ A. The probability of
a sentence A is given by

P (A) =
∑

Ω{P (ω) : ω(A) = 1}.

A sentence A is said to be consistent with the probability function P if and only
if P (A) > 0 and similary a sentence A is said to be inconsistent with P if and
only if P (A) = 0.
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The processes such as conditionalization, Jeffrey conditionalization and imag-
ing change the probability distribution over the set of all possible worlds accord-
ing to the observation made by the agent. However, in case of conditionalization
and Jeffrey conditionalization the worlds with zero probability have zero prob-
ability even after the change. When a particular world is initially considered
not possible, i.e. has zero probability, no received information can change this
view. Therefore the probability of a sentence with the initial probability of 1
or 0 cannot be changed by these processes. In the example scenario G has ini-
tial probability of 1 and hence the change portrayed in the example cannot be
modelled using conditionalization or even Jeffrey conditionalization.

In the process of imaging the probability of a sentence with initial probability
of 1 or 0 can be changed. Imaging was developed by Lewis to provide semantics
for Stalnaker conditionals [14]. The agent can change its subjective probability
function to include new evidence E using imaging. Imaging makes use of a system
of comparative similarity relations over Ω with respect to every single world in
Ω. A comparative similarity system is one in which for every possible world ω
there exists a total pre-order relation ≤ω. In [13, 15] Lewis presents a detailed
discussion on the comparative similarity relation among the worlds. The relation
μ ≤ω υ means that the world μ is at least as similar to the world ω as the world
υ. The minimal world in ≤ω which is a model of E is the most similar E-
world to ω. We denote the most similar world of ω which is also a model of
E by ω#

E .1

Suppose the agent learns the truth of a sentence E. The agent shifts the
probability mass associated with each model of ¬E to some model of E. The
probability associated with ω ∈ [¬E] is shifted to the minimal model of E with
respect to the relation ≤ω.2 Imaging P by E, denoted as P#

E , is given by

P#
E (A) =

∑
Ω

{P (ω) : ω#
E (A) = 1}. (1)

Imaging has been proved useful in solving many well-known problems such as
the Monty Hall Problem [5] and the Sleeping Beauty Scenario [4, 7]. In [11, 6]
imaging is said to model belief update. Update is the process of inclusion of a
new belief in a dynamic environment. In Example 1, the agent suspects that
the robot has altered the state of the world. Therefore we need to use imag-
ing to model the given example scenario. However in Example 1 the observation
cannot be represented as learning the truth of any particular proposition. There-
fore it is not possible to use imaging as it is. We propose a variation of imag-
ing, namely partial imaging, which we show is capable of handling the example
scenario.

1 In [14] Lewis assumes that the similarity relation is such that there is only a single

most similar E-world to every ¬E-world. There has been arguments against this

assumption [9]. Withdrawing this assumption does not affect this work. But here we

carry on with this assumption.
2 [E] denotes the set of models of the sentence E.



Belief Erasure Using Partial Imaging 55

3 Partial Imaging

Consider a sentence E which is inconsistent with the probability function P , i.e.
P (E) = 0. Suppose the observation made by the agent requires the probability
of E to be enhanced. Just as in imaging, probability is moved around but neither
created nor destroyed. When the probability of a sentence E is to be enhanced,
there needs to be a shift of probability mass from some ¬E-worlds (where E
is false) to some E-worlds (where E is true). In order to have both E and
¬E consistent with the resulting probability function, i.e. both have positive
probability, we propose that only a portion of the probability mass on every ¬E-
world be shifted to respective most similar E-world. This share is assumed to
be uniform for all the ¬E-worlds with positive prior probability. Let the agent’s
observation result in assigning probability a to the sentence E. We represent the
result of the observation as a pair 〈E, a〉. Let P p

E denote the new probability
function after changing P to accommodate 〈E, a〉. We formulate this change to
P as follows.

Suppose P (¬E) = 1 and ω be a possible world in which ¬E is true, i.e.
ω |= ¬E. Let ω lose a-share of the probability mass associated with itself to
the closest E-world. Then ω#

E gains a-factor of the probability mass of ω. Hence
P p

E(ω#
E ) = a · P (ω) and P p

E(ω) = (1 − a) · P (ω). We propose that all the ¬E-
worlds lose a-share of their initial probability to their closest E-worlds. When
imaging P by sentence E all the probability associated with ¬E-worlds is shifted
to their closest E-worlds. But in partial imaging only a-factor of the probability
mass is shifted. The changed probability of ¬E is

P p
E(¬E) =

∑
Ω{(1− a) · P (ω) : ω(¬E) = 1} = (1− a) · P (¬E) = 1− a.

The changed probability of sentence E is

P p
E(E) =

∑
Ω{a · P

#
E (ω) : ω(E) = 1} = a · P#

E (E) = a.

The new probability of any sentence A is given by

P p
E(A) = a · P#

E (A) + (1− a) · P (A).

As this process involves a partial shift of the probability mass in comparison
with imaging, we call this partial imaging. Partial imaging of P with respect to
a sentence E on making an observation 〈E, a〉 results in P p

E , which is given by

P p
E = P#

E aP (2)

where P#
E is the image of P with respect to E.3 It must be noted that when

a = 1 we have P p
E = P#

E .
In Example 1, the agent decides to reduce the probability of G from 1 to 0.6

and enhance the probability of ¬G from 0 to 0.4 upon making its observation.
We suggest that the required new probability function is P p

E where a = 0.4 and

3 P = P1aP2 is read as P = a · P1 + (1 − a) · P2.
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E is ¬G. The models of ¬G are models of V or B. The probability mass lost
by G-worlds is shifted to the respective most similar worlds, which are mod-
els of B ∨ V . Thus, the sentence B ∨ V is assigned a probability of 0.4 under
the resultant probability function and G has a probability of 0.6. For differ-
ent comparative similarity relations different ¬G-worlds receive the transferred
probability. Therefore partial imaging is capable of handling the scenario given
in Example 1, while imaging and all forms of conditionalization fail.

Observation 1. Partial imaging is homomorphic.4

In [9], Gärdenfors showed that imaging is homomorphic.5 Pearl, in [16], identifies
homomorphism as the property which enables modelling actions using imaging.
Observation 1 plays an important role in our discussion on the relation between
partial imaging and belief erasure in Section 5. In the following section we model
a belief removal function by partial imaging.

4 Probabilistic Removal Functions

A belief state of an agent broadly includes its beliefs, the logical relationships
between the beliefs and information about the ordering or ranking of beliefs.
Many belief change operations have been studied in the literature. They can be
classified broadly into two types: inclusion of a new belief and removal of an
existing belief. In a probabilistic framework the belief state of the agent is often
represented by a subjective probability function. Most proposals for belief change
in a probabilistic framework have concentrated on inclusion of new information
to the belief state [2,12,3,8]. Removal of existing beliefs from the belief state in a
probabilistic framework has not been given much attention. In [9] the contraction
of belief A from the belief state P , represented by P−

A , is defined as follows:6

P−
A = PaP ∗

¬A (3)

where P ∗
¬A is the result of revision of the initial belief state by ¬A and 0 < a <

1. For different values of a (3) gives different contraction functions. Thus the
defined probabilistic contraction looks very similar to (2). Equation (2) states
that partial imaging is a combination of initial belief state P and the result of
including a new belief E by imaging. In equation (3), contraction by A is given
as a combination of the initial belief state and the result of revision by negation
of A. As equations (2) and (3) are similar, we consider the possibility of partial
imaging modelling a belief removal operation.

In [11, 6] imaging is used to model belief update. Update corresponds to in-
clusion of a new belief in a dynamic environment. The belief removal operation
4 The proofs for the results can be obtained by contacting the first author.
5 A probabilistic change function ∗ is said to be homomorphic if and only if, for all

probability functions P and sentence A, for every P1, P2 and a ∈[0,1] such that

P = P1aP2 it holds that P ∗
A = (P1)

∗
Aa(P2)

∗
A.

6 Belief Contraction is a belief change operation defined formally in [1].
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corresponding to update is called belief erasure [11]. When the agent considers
the world to have changed or suspects the world to have changed, the agent might
consider it not profitable to hold on to certain beliefs. The agent might consider
removing these beliefs from its belief state. Such a belief change is termed belief
erasure. Let A be a belief of the agent. We denote the erasure operator by  
and P�

A denotes the result of erasure of A from P . We translate the erasure
postulates to a probabilistic setting as follows.

E1 If P�
A (B) = 1 then P (B) = 1.

E2 If P (¬A) = 1 then P�
A = P .

E3 If � A, then P�
A (A) < 1.

E4 If � A↔ B then P�
A = P�

B .
E5 (P�

A )+A = P , where + denotes expansion of the belief state.
E6 (PaP ′)�A is equivalent to P�

A a(P ′)�A for any a such that 0 ≤ a ≤ 1.

E1 states that erasure does not add new beliefs to the belief state of the agent.
Postulate E2 presents the trivial case. Erasure by negation of a belief does
not change the belief state. According to E3, erasure is successful as long as the
sentence being erased is not a logical tautology. Postulate E4 states that erasure
preserves logical equivalence, i.e. when the content of two sentences being erased
is the same, the result of erasure is also the same. E5 is the recovery postulate.
When the agent erases a belief from its belief state and then expands by the
same sentence then it arrives at the initial belief state. It must be noted that
the expansion is modelled by conditionalization. A mix of probability functions
PaP ′, 0 ≤ a ≤ 1, represents a disjunction of belief states represented by P and
P ′ respectively. Postulate E6 states that erasure of a belief from a disjunction of
belief states results in the disjunction of erasure of belief from the disjuncts. Any
function that satisfies postulates E1 to E6 is an erasure function. The following
theorem shows that partial imaging is an erasure function.

Theorem 1. A partial imaging function is a belief erasure function.

We can define erasure in a probabilistic setting in terms of partial imaging as
follows. Let P be the belief state of the agent and ¬A be the belief being erased
from the belief state. Then,

P�
¬A = P p

A. (E*)

Here we have shown that partial imaging is capable of modelling belief erasure.
In the following section we present more variations of imaging. These variations
are also capable of modelling removal of a belief in a probabilistic framework.

5 Variants of Imaging

In imaging, the probability distribution is changed with respect to a sentence
E by shifting all the probability mass associated with each world in Ω to the
respective most similar E-world. In partial imaging, the probability distribution
is changed by shifting only a share of the probability mass associated with each
world. In this section we describe two more variations of imaging.
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5.1 Selective Imaging

Selective imaging needs a function that chooses some worlds with positive prob-
ability in the given belief state P . When the belief state needs to be changed,
instead of all worlds losing their initial probability only the selected worlds do.
To choose the worlds which lose their probability upon change we use a selec-
tion function. We denote the selection function by S. Let P be the set of all
probability distributions over Ω.

Definition 1. A function S from the set of all possible probability distributions
is said to be a selection function if and only if S : P −→ 2Ω and S(P ) ⊆ ‖P‖.
For a given probability distribution P , let s denote the conjunction of all the
sentences that hold true in all the selected worlds, i.e. s =

∧
{B ∈ L|∀ω ∈

S(P ), ω |= B}.7 Then P (s) is the sum of the probability of the selected worlds,
i.e. P (s) =

∑
ω∈S(P ) P (ω).

Suppose A is a sentence such that P (A) = 0. Let the initial probability
function P be changed by selective imaging with respect to a sentence A. We
denote the probability distribution resulting from selective imaging with respect
to A by P s

A. The worlds in S(P ) lose their probability to the corresponding most
similar A-worlds.8 When ω is a selected world, i.e. ω ∈ S(P ), then ω loses all
its probability - P s

A(ω) = 0.9 As there is a shift of probability mass among the
possible worlds, each sentence in L loses some probability mass through some
worlds and gains certain probability mass through other worlds. We denote the
probability lost by any sentence with the help of a function Plost. For every
sentence in the language Plost returns a value in [0,1], Plost : L −→ [0, 1].
Plost(B) denotes the probability lost by B when some B-worlds are selected by
S. The probability lost by B is the sum of probability lost by the B-worlds which
are selected. It is given by

Plost(B) =
∑
Ω

{P (ω) : ω ∈ S(P ) and ω(B) = 1} = P (s ∧B). (4)

The probability lost by ¬A when the probability function P is changed by se-
lective imaging with respect to A is the sum of the probability of the selected
worlds, i.e. Plost(¬A) = P (s ∧A) = P (s).

As the A-worlds closest to the selected worlds gain probability, some sentences
gain probability. The probability gained by the sentences in the language is given
by the function Pgain. The function Pgain is such that Pgain : L −→ [0, 1]. The
probability gain for a sentence B is denoted by Pgain(B) and is given by

Pgain(B) =
∑
Ω

{P (ω) : ω ∈ S(P ) and ω#
A (B) = 1}. (5)

7 [s] = S(P ).
8 We use S instead of S(P ) when the probability function being referred to is clear

from the context.
9 It should be noted that irrespective of the input received the same set of worlds are

chosen to lose their probability. We discuss this contentious feature in section 6.
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When changing P by selective imaging with respect to A, probability gained
by sentence A is Pgain(A) = P (s) = Plost(¬A). However ¬A does not gain any
probability, that is, Pgain(¬A) = 0. The probability of any sentence B in the
changed probability distribution, P s

A, is given by

P s
A(.) = P (.) + Pgain(.)− Plost(.). (6)

The resultant probability of ¬A is P s
A(¬A) = P (¬A) − P (s), as expected. As

selective imaging is capable of reducing the probability associated with a belief,
we look at the compatibility between an erasure function and selective imaging.

Theorem 2. Selective imaging is a belief removal function that obeys the pos-
tulates E2, E3 and E4.

Selective imaging by satisfying E2 is successful in modelling removal of a belief.
However it does not satisfy all postulates of erasure. We briefly discuss the
implications of this theorem in section 6. We model the situation in Example 1
using selective imaging. The observation made dictates the withdrawal of belief
in G and enhancing the probability of ¬G. The result of selective imaging by
¬G is such that P s

¬G(G) = P (G)− P (s). The observation made in the example
is < ¬G, 0.4 >. Even though selective imaging is capable of removal of belief in
G, it is not possible to satisfy the requirement P s

¬G(¬G) = 0.4 with the current
definition of the selection function. Therefore, selective imaging is not capable
of modelling situations as in Example 1.

5.2 Selective Partial Imaging

Another variation of imaging called Selective partial imaging(SPI), is a combi-
nation of both selective and partial imaging. In this method a few worlds in ‖P‖
are selected. These selected worlds lose a share of their probability. Suppose A is
a sentence such that P (A) = 0. We denote the result of changing P by selective
partial imaging(SPI) with respect to A by P sp

A .
Just as in selective imaging, this method uses a selection function as given in

Definition 1. The probability lost by the selected worlds is transferred to their
corresponding closest A-worlds. Let a (0 < a < 1) be the scale for probability
lost by the selected worlds which is gained by their respective closest A-worlds.
For each world ω ∈ S(P ), ω loses a-share of its initial probability, i.e. a · P (ω)
and retains the rest of its initial probability, i.e. (1− a) ·P (ω). Hence, the result
of SPI with respect to A is given by,

P sp
A (.) = P (.) + a · Pgain(.)− a · Plost(.) (7)

where Plost(.) is as defined in equation (5) and Pgain(.) is as defined in equation
(6). This gives P sp

A (¬A) = P (¬A) − a · P (s).
Similar to the case of selective imaging, we look for compatibility between

erasure postulates and SPI. Since this method is a combination of selective and
partial imaging, it carries over the inability of selective imaging in satisfying the
postulates of erasure. SPI is a weaker belief removal operation and this we note
in the following theorem.
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Theorem 3. SPI is a belief removal function that obeys the postulates E1, E2,
E3 and E4.

The implications of this theorem are discussed in the following section. We
look to model the situation in Example 1 with SPI. It is possible to model
the withdrawal of belief in G with SPI. However, similar to selective imaging
SPI is not capable of changing the probability function such that the require-
ment P sp

¬G(¬G) = 0.4 is met. Therefore, SPI is not exactly suited for modelling
belief change in Example 1.

It is clear that these three variations of imaging are different belief removal
functions. Having described three different variations of imaging, we compare
the three belief removal operations that these variations correspond to. The
following theorem presents the relation between these operations.

Theorem 4. Let ¬A be a belief in the belief state P . The belief set is denoted
by K.10 Suppose the agent removes the belief ¬A by partial or selective or se-
lective partial imaging, the resultant belief sets represented by Kp

A, Ks
A and Ksp

A

respectively, are such that Kp
A ⊆ K

sp
A ⊆ Ks

A.

Partial imaging is the strongest belief removal function compared to the other
two. When the agent withdraws belief in ¬A by partial imaging method then the
set of beliefs retained are also retained when the agent removes ¬A by selective
or SPI. We also find that beliefs retained in SPI are also retained when ¬A is
removed by selective imaging.

6 Discussion and Conclusion

In the previous section we described variations of probabilistic imaging. Here we
discuss some finer points about these variations.

The selection function depends only on the initial belief state. A keen reader
would observe that irrespective of the belief being withdrawn the selection func-
tion chooses the same set of worlds. The worlds which lose their initial probability
are always the same. This can be explained as follows. A sentence is said to be
a belief if it has a probability of 1. Hence, for any belief A we have ‖P‖ ⊆ [A].
Therefore, any world which is selected by the selection function is a model of the
belief being removed. Since the choice for the selection function always rises from
the set of models of the belief being withdrawn, different sets of worlds need not
be chosen for different beliefs. Therefore our definition of selection function is
independent of the belief being withdrawn. However, the worlds which gain the
probability differ depending on the belief being withdrawn.

Selective imaging and SPI do not satisfy all the postulates of erasure. While
SPI satisfies E1, selective imaging does not. This implies that belief withdrawal
by selective imaging adds new beliefs to the belief state of the agent. However,
only sentences that are consistent with the initial belief state can be added to
the set of beliefs after a belief removal operation by selective imaging. Also both
10 The belief set corresponding to the belief state P is defined as the following set,

K = {B ∈ L|P (B) = 1}.
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selective imaging and SPI together do not satisfy E5 which means that belief
removal by these two methods is not reversible by expansion. Both variations of
imaging do not satisfy E6 which is because they both are not homomorphic. We
reserve further investigations on these operations for future work.

To conclude, we motivate the need to be able to accommodate an observation
that need not be expressible as some true sentence in the language. Imaging is not
capable of handling this. We have proposed a variation of imaging, namely partial
imaging which can handle this scenario. We have shown that partial imaging is
indeed an erasure function. We also present selective imaging and SPI which are
capable of modelling removal of a belief but are not erasure functions.
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Abstract. Ever since Allen introduced his qualitative interval algebra

in 1983, the area of qualitative spatial and temporal reasoning (QSTR)

has been motivated by potential application areas that require human-

oriented, commonsense reasoning. Despite this, it is well recognised in

the community that there are relatively few commercial applications that

heavily employ QSTR calculi. In this paper we directly address this issue

by establishing a theoretical foundation for describing, developing and

analysing QSTR based applications. We present an analysis of QSTR

calculus qualification and investigate the impact that qualification has

on a QSTR application’s reasoning properties such as completeness and

soundness. Our definition of QSTR applications also provides software

developers with a basic template to begin creating their own applications.

Concrete examples of existing QSTR applications are used to demon-

strate and motivate this research.

1 Introduction

Qualitative spatial and temporal reasoning (QSTR) calculi represent and reason
about coarse, intuitive relations between objects. The most prominent QSTR cal-
culus is Allen’s Interval Algebra (IA) [1]; Allen defines thirteen jointly exhaustive,
pairwise disjoint relations that can hold between a pair of temporal intervals:
before, meets, overlaps, starts, during, finishes, after, met by, overlapped by,
started by, contains, finished by, and equals. Allen’s seminal contribution was to
frame the problem of determining a minimally consistent qualitative description
of object relations as a constraint satisfaction problem, and proposed a modified
path-consistency algorithm that performs composition using a reference look-
up table.1 Allen’s approach to qualitative temporal reasoning has motivated
the development of a large number of QSTR calculi [2]. For example, Region
Connection Calculus 8 (RCC8) defines eight topological relations that can hold
between pairs of arbitrary regular regions [3]: disconnected (DC), externally

1 Composition of two relations R1 and R2 produces the relation R3 such that for all

x, y, z if R1(x, y) and R2(y, z) then R3(x, z).

J. Li (Ed.): AI 2010, LNAI 6464, pp. 62–71, 2010.
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connected (EC), partially overlaps (PO), tangential proper part (TPP), non-
tangential proper part (NTPP), tangentially contains (TPPi), non-tangentially
contains (NTPPi), and equals (EQ). As with IA, a reference table is used to
implement the composition operator.

A qualitative representation of object relations is formulated as a constraint
satisfaction problem in the following way [1]. A constraint network consists of
a finite set of vertices (representing objects in the world) and directed edges
between vertices (representing relations between objects). Each edge is a variable
that contains a set of qualitative relations that can possibly hold between two
objects. A network is non-atomic if at least one edge contains more than one
possible relation, and a network is atomic if all edges contain exactly one relation.
Allen’s algorithm attempts to eliminate relations from each edge which are not
consistent based on the composition of relations [1].

Most QSTR calculi come with (sometimes implicit) domains of interpretation
[4], for example, a constraint network using IA relations is interpreted as a lin-
ear ordering W together with a subset U of the intervals (w1, w2), w1 < w2
on W . The process of mapping a configuration in the domain of interpreta-
tion to a qualitative constraint network is qualification, which we denote as
the relation map q. A network is consistent if, for each relation R(x, y) there
is some consistent instantiation of all objects in the domain of interpretation
that also satisfies R. A network is path-consistent if, for all triples of variables
x, y, z, any consistent instantiation of x, z can be extended to some consistent
instantiation of y. A well recognised concept in QSTR is weak composition
(or extensionality [5,6]). It was noticed that Allen’s algorithm applied to dif-
ferent calculi does not always give path-consistency but algebraic closure, i.e.
∀x, y, z ·R(x, y)∧S(y, z)→ T1(x, z)∨ . . .∨Tn(x, z). In particular, the consequent
is a necessary but not a sufficient condition as required by path-consistency.
Therefore algebraic closure is weaker than path-consistency and some impossi-
ble relations may not be eliminated from the constraint network.

The development of QSTR calculi is very often motivated by potential applica-
tion areas that require more coarse, intuitive reasoning. For example, Egenhofer
developed qualitative approaches to facilitate querying in GIS [13], and Wolter
et al. developed vessel navigation application using qualitative orientation [12].
However, it is well recognised in the community that there is an absence of
commerical applications, developed by application domain experts, that heav-
ily employ QSTR calculi [9,10]. Relatively little research in QSTR has focused
directly on the issues faced by software developers that are interested in apply-
ing QSTR calculi. This paper addresses the needs of application developers by
establishing a formal definition of QSTR applications and analysing the impact
of qualification on the properties of QSTR application reasoning. Section 2 pro-
vides a formal definition of QSTR applications. Section 3 presents an approach
to analysing QSTR calculi with respect to application requirements. Section 4
analyses completeness and soundness of QSTR applications based on the given
definition. Section 5 presents the conclusions of the paper.
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2 A General Definition of QSTR Applications

This section presents a general definition of QSTR applications that is simple and
yet sufficient for modelling all existing QSTR applications that the authors are
aware of, regardless of the application domain. The benefits of formally defining
QSTR applications are firstly that the general properties of applications can be
analysed in detail and secondly that it provides software developers with a basic
template to begin creating their own applications. To demonstrate this a number
of examples of existing QSTR applications are given using this formulation.

One approach that has been used to apply QSTR calculi is to treat network
inconsistency as a metaphor for some undesirable condition which is specific to
the application domain. For example, Nokel [11] (page 46, Figure 23) reasons
about three valves attached to a tank where exactly one valve must be open
at any time; an inconsistent network means invalid valve behaviour. There are
three main problems with the metaphor approach. Firstly, by mixing application-
specific criteria with general laws of spatial arrangements the meaning of consis-
tency becomes overloaded and heavily dependent on the application. Secondly
the metaphors can be awkward and difficult to implement without an advanced
understanding of compositional reasoning. Thirdly the metaphor approach is
restricted to constraining triples of binary relations which greatly reduces the
expressiveness of possible QSTR applications.

We will now present our alternative definition of QSTR applications. We de-
fine QSTR applications as having either (a) numerical runtime input which is
qualified, (b) qualitative runtime input, or (c) qualitative rules that determine
how the application should respond to input. Using this basic formulation we
characterise the general runtime behaviour as follows: (1) receive input (2) (op-
tional) do qualification (3) construct constraint network (4) (optional) do consis-
tency check (5) execute application rules (6) return output.2 Formally a QSTR
application is a function that maps input symbols to sets of output symbols (i.e.
inferred expressions). The input is a set of expressions that represent premises
(or facts) about the world description (or a sequence of n world descriptions);
e.g., the input expressions can use numerical relations (e.g. kitchen.x=550 and
kitchen.y=100 ) or qualitative relations (e.g. near(kitchen, livingRoom)). The
output is a set of expressions that is some relevant subset of all inferred facts
(as defined by the developer); e.g., output symbol α may correspond to the
expression ∃x ∈ U · bathroom(x) ∧ near(x, kitchen).

Definition 1. Let Ti be a set of expressions in some input language, let O be
a set of output symbols representing logical expressions, and let n be a natural
number. A QSTR application A is a function A(T1, . . . , Tn) ⊆ 2O.

The rules used to infer new facts based on the input premises are first-order
constraints. If a constraint is not satisfied then a new fact is inferred in order to

2 In this paper we focus on purely qualitative applications. Hybrid applications inte-

grate both qualitative and numerical rules.
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satisfy the constraint. QSTR calculi typically represent uncertainty by maintain-
ing disjunctions of relations that can possibly hold between two objects. Because
QSTR applications infer new facts using QSTR calculi relations that possibly
hold, then the application inferences produced must also be interpreted by the
user as possibly holding. This formulation will now be used to define a number
of existing QSTR applications.

SailAway [12]. Input is a configuration of vessels consistent with a qualitative
orientation calculus TOPRA. Rules TX are a formalisation of maritime right-of-
way rules that use simple custom qualitative relations such as collisionAtRear
and vessel types such as motorVessel. Output is a (set of) sequences of OPRA
constraint networks that are consistent with TX (i.e. simulates future vessel
states and eliminates states that cause collisions).

GIS QueryBySketch3 [13]. Input is a set of bitmap representations of ob-
jects parsed into vector representations. Qualification creates a constraint net-
work with 9-Intersection relations, custom detailed topological relations, and
cardinal directions (salient numerical information is also maintained). Output
(of the qualitative module) is simply the constraint network with optional re-
laxation information such as neighbouring relations which is used by a query
processor.

Tank-valves [11]. Input is a configuration consistent with T IA. Output sym-
bol γ indicates abnormal valve operation. Rules for generating γ are expres-
sions where x,y,z are the intervals when valves are open: (1) overlaps(x, y) ∨
starts(x, y) ∨ during(x, y) ∨ finishes(x, y) (2) before(x, z) ∧ ¬∃y ·meets(y, z).

Lighting Design [14]. Input is a set of numerical and qualitative expres-
sions about spatial objects consistent with a qualitative orientation calculus
TBA (block algebra). Rules formalise lighting principles (e.g. brightAmbientIllu-
mination) and higher level principles about subjective impressions (e.g. spacious-
ness). Output is the subset of inferences that specify the subjective impressions
of rooms.

3 Selecting QSTR Calculi

A critical role of the QSTR application developer is deciding which collection
of QSTR calculi, if any, should be used. Important factors include complex-
ity of reasoning and ontological requirements. However, even when a calculus
is ontologically appropriate, the relations may be too coarse on their own to
accurately model a particular application concept. We will now present an anal-
ysis of qualification to greatly assist in both the selection of QSTR calculi and
the development of QSTR application rules. Qualification is critically important
because when rules are defined using particular calculi the application is not
able to distinguish between certain geometric configurations.4 The power of this

3 This is a hybrid application; we only emphasise the qualitative components.
4 Qualification depends on the properties of QSTR calculi and is completely indepen-

dent of the QSTR application formulation in the previous section.
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analysis is that it integrates major areas of QSTR research [5,6,15,8] to give the
developer direct insights into calculi under different key input conditions.

Determining whether a given constraint network is consistent is in general an
intractable task [8]. Importantly, not all applications actually need to check the
consistency of the input constraint networks as in many domains the input is
guaranteed to be consistent (e.g. given by CAD tools). We will therefore firstly
consider the case where input constraint networks are known to be consistent
a-priori.

3.1 Qualification When Input Is a Consistent Atomic Network

We will firstly consider the case of atomic constraint networks that are known
to be consistent a-priori.5 Given two objects (for binary calculi) the pertinent
information about distinguishing between geometric configurations is given di-
rectly by the qualification operator. For example, in IA before(x,y) is defined as
x+ < y− (where t− and t+ are the start and end points of interval t respec-
tively), and in RCC8 EC(x,y) is defined as x ∩ y �= ∅ ∧ i(x) ∩ i(y) = ∅ (where
i(r) is the interior of region r). The developer simply needs to review the qual-
ification operator (in practice, a software tool would be used to conduct this
analysis). Determining qualification of three or more objects (for binary rela-
tions) is simply the conjunction of the qualifications of each individual pair of
objects. Thus the set of geometric instances that satisfy q(R1(x1, x2)) is a super-
set of q(R1(x1, x2)∧ ...∧Rn(x2n−1, x2n)). Importantly, if R1(x, y) in isolation is
too coarse then by combining relations from different calculi the developer can
design rules that more closely approximate the necessary distinctions [15].

If the developer knows two geometric configurations that need to be distin-
guished then they can easily determine whether some combination of relations
is adequate.6 A calculus can distinguish two geometric configurations that are
described as a set T c

i of numerical expressions if q(T c
1 ) �↔ q(T c

2 ). Furthermore,
the precise geometric configurations that are numerically distinct but qualita-
tively indistinguishable from a given geometric configuration T c are given by the
expression ¬q(T c) ∧ q−1(q(T c)) (where q−1 gives the numerical expression that
corresponds to the given qualitative expression, i.e. the inverse of qualification).

For example, a lighting designer wants to specify patches of light on walls
where two spotlights are directed. Their specific criteria are that the entire wall
is covered in light (with some light spillage) while no light patches overlap:
(1) Wall ⊂ L1 ∪ L2 (2) ∅ = i(L1) ∩ i(L2). This is qualified in RCC as: (1)
EC(L1, L2) (2) PO(Wall, L1) (3) PO(Wall, L2). The unwanted geometric con-
figurations are: ¬q(T c) ∧ q−1(q(T c)) = (Wall �⊂ L1 ∪ L2) ∧ i(Wall) ∩ i(L1) �=
∅∧ i(Wall)∩ i(L2) �= ∅∧ i(L1)∩ i(L2) = ∅. The developer responds by adding a
new relation covered(w) ≡ ∀r ·C(w, r) → ∃l · light(l)∧C(r, l). However, covered
5 The consistency check is not performed thus avoiding the difficulties that some QSTR

calculi have in determining the consistency of atomic networks.
6 Qualitative calculi are jointly exhaustive and so every operator used to describe a

geometric configuration corresponds to one, or the disjunction of more than one,

qualitative relation.
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cannot be calculated because it refers to arbitrary regions r connected to the
wall w that have not been stored in the constraint network. Thus, the developer
includes another custom relation (computed during qualification before the con-
straint network is constructed): covers(w, r) ≡ r =

⋃
{ri|C(w, ri)}. Even though

ontologically RCC is very useful this additional analysis makes it clear that RCC
in isolation is not sufficient and helps to guide the developer in creating custom
relations.

3.2 Qualification When Input Is a Consistent Non-atomic Network

We now consider the case of atomic constraint networks that are known to be
consistent a-priori for which some ambiguous information is added making the
network non-atomic (for example, the world is only partially observable). Due to
weak composition some QSTR calculi cannot always determine when a relation
is impossible to instantiate i.e. the constraint network is consistent but not path-
consistent [6]. Thus the application may erroneously make inferences based on
impossible relations; clearly this is critical information for the developer. The
explicit non-extensional composition triads given by the QSTR community (e.g.
[6]) can provide the developer with meaningful information about the practical
limitations of the calculus and the behaviour of applications built using those
calculi.

We will use the following example to demonstrate that, due to weak com-
position, a calculus cannot always detect impossible relations. An art director
of The Gallery of the Accademia di Belle Arti in Florence wants to temporar-
ily exhibit a notable sculpture. The permanent gallery centrepiece is Michelan-
gelo’s David and the director wants to create a natural flow from David onto
the temporary exhibit to offer a unique, exciting perspective. However, the new
exhibit should not be immediately adjacent in case it distracts from the ini-
tial impact of David. There is some ambiguity in the design as the director
has not yet decided where to place the temporary exhibit. The developer en-
codes the following rules: (1) adjacent(x, y) ≡ EC(x, y) (2) accessible(x, y) ≡
∃w ·walkpath(w)∧EC(w, x)∧EC(w, y) (3) interference(x) ≡ ∃y · exhibit(y)∧
adjacent(x, y) (4) surrounds(x, y) ≡ EC(x, y) ∧ convexHull(h, x) ∧ PP (y, h)
(PP is proper part). The floor plans are qualified as follows: (1) walkpath(W1)
(2) surrounds(W1, David). The new exhibit will be placed in the same space
as David to get the flow on effect: surrounds(W1, NewExhibit). The ques-
tion is whether this RCC representation is adequate. Notice that in this con-
text surrounds implies that one region fills the hole of another region; this
is a well known case of non-extensional reasoning in RCC. Thus, the appli-
cation alerts the director to the possibility that the subjective impression of
David is interfered with by the new exhibit although this is impossible as David
is surrounded by the walkpath W1. Without having a detailed understanding
of RCC this can be puzzling and frustrating to a user. The problem is that:
EC(David,WP1) ∧ EC(NewExhibit,WP1), so RCC8 erroneously infers that
EC(David,NewExhibit) is possible giving adjacent(David,NewExhibit) and
interference(David). Indeed, any non-extensional triads pose a possible trap



68 C. Schultz, R. Amor, and H.W. Guesgen

for the user and developer. After reviewing these triads (with the assistance of
QSTR application development tools) the developer can determine that other
relations in addition to RCC8 relations are required to formalise surrounds.

3.3 Qualification When Input Is an Inconsistent Network

In this section we analyse the case where the constraint network presented to
the application is inconsistent in a way that is undetectable to the QSTR calcu-
lus. This covers a large number of real world application situations where there
are conflicting sources of information about a world description. For example, a
robot’s sensory inputs may be in conflict, or eye-witness reports of the scene of
a crime may disagree. Determining whether a constraint network is inconsistent
is an intractable task, and thus there is the possibility that the application will
process an inconsistent network without being notified by the QSTR calculi that
the network is indeed inconsistent. It is highly important that the software devel-
oper knows how the application will behave if an inconsistent constraint network
is undetected by the QSTR calculi, particularly for safety-critical applications.

In the previous two sections it was shown that the developer can determine
exactly which world descriptions are indistinguishable, and thus they can predict
the exact erroneous inferences that will be made. However, when networks are
potentially inconsistent developers can no longer predict the exact erroneous
inferences.7

Proposition 1. Any QSTR application inference can be made when a network
is undetectably inconsistent.

Proof. Let N be an inconsistent network that is determined to be consistent by
some calculus Q. Let e be an expression (constraint) that causes application A to
produce output α. Let N ′ be some network that satisfies e and for which its vertex
set is disjoint with the vertex set of N (no objects in common), then N ′′ = N ′∪N
is undetectably inconsistent by Q and A will erroneously produce α. #$

This is a highly relevant property of QSTR calculi and developers need to know
about the types of networks in which reasoning is potentially erroneous. The
developer can then determine whether the risk of faulty reasoning under those
specific circumstances is acceptable or unacceptable.

Firstly we consider atomic networks. For some QSTR calculi (but not all)
algebraic closure is sufficient for determining consistency in atomic networks,
including IA and RCC8. However, Renz and Ligozat [5] have proven that cal-
culi that do not have a property called closure under constraints are not always
capable of detecting an inconsistent atomic network. This is precisely the infor-
mation that a developer needs to determine when an application may potentially
produce incorrect inferences. For example, an art director has over constrained

7 This means that the software developer cannot identify any vulnerable rule. It is

important to stress that this is a property of QSTR calculi and not the application

formulation in this paper.
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the qualitative location of a light source that they are trying to place in their
gallery. However, due to the limitations of their particular chosen QSTR calculi
the fact that the atomic network is inconsistent has remained undetected. Based
on the location of the light, a number of faulty inferences are produced including
a design warning that the light source is visible as people enter the room and
thus distracts from the impact of the other exhibits. This causes the director
to needlessly spend considerable effort and time moving the exhibits around the
room to fine-tune the design when in fact the design is physically unrealisable.

Determining whether a non-atomic network is consistent is an NP-hard prob-
lem for all QSTR calculi [8]. However, some of the most prominent advances
in QSTR research have been the identification of maximal tractable subsets of
a given calculus [8,7]. The non-atomic networks for which an application may
produce erroneous inferences is precisely the intractable subsets of the calculus,
and it is therefore the information about intractable subsets that is critical to a
developer. This concludes the analysis of QSTR calculi qualification and the pos-
sibility of an application producing erroneous inferences due to the qualification
and consistency-checking limitations of QSTR calculi.

4 Properties of QSTR Applications

We will now use the qualification and consistency-checking properties of QSTR
calculi presented in the previous sections to determine application complete-
ness and soundness. A QSTR application is complete if the set of application
inferences is always an improper superset of the set of correct inferences.

Proposition 2. QSTR applications are complete.

Proof. QSTR calculi are sound and therefore no correctly possible relations are
eliminated. Thus, the constraint network contains the set of actual relations.
QSTR applications make inferences based on all constraint network relations.
Thus applications make all inferences that use the set of actual relations. #$

Completeness is a very useful property of QSTR applications. It provides the
user with some certainty in the context of intractable reasoning problems; they
can be guaranteed that any inferences that the application did not make surely
do not hold. A QSTR application is sound if the set of application inferences is
always an improper subset of the set of correct inferences.

Proposition 3. QSTR applications are not sound.

Proof. Follows from the qualification analysis in Section 3. #$

QSTR applications are not sound as a result of the properties of the underlying
QSTR calculi. Thus, not all QSTR application inferences necessarily actually
hold.8 We will now show that in fact completeness only holds for inferences that
8 This mirrors the properties of Allen’s algebraic closure reasoning algorithm which is

sound but not complete, thus leaving a set of possible relations which is a superset

of the real set of possible relations.
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require the constraint network to be consistent. Some applications may need to
produce particular outputs (i.e. inferences) only when the network is found to
be inconsistent. For example, when a robot detects an inconsistent network then
it knows that something is wrong with its sensors and may need to execute a
calibration routine to try to correct the sensor problem.

Proposition 4. QSTR applications are neither complete nor sound for infer-
ences on inconsistent networks.

Proof. First, non-soundness by example. Let an application produce α if the
network is both inconsistent and satisfies EC(x, y) ∧ EC(y, z) ∧ EC(x, z). Let
N be a non-atomic network that has been correctly identified as inconsistent
by the application, which also contains EC(A,B) and EC(B,C) where region
B completely fills a hole in A. RCC8 composition will erroneously infer that
EC(A,C) is a possible relation (i.e. this is an additional inconsistency that was
not detected by the application) and the application will erroneously produce α.
Second, non-completeness. Let N be an inconsistent non-atomic RCC8 network
such that algebraic closure cannot detect the inconsistency. Then no inferences
that hold in N when N is inconsistent will be produced. #$

Importantly, soundness of QSTR application inferences on an inconsistent net-
work obeys exactly the same principles as soundness of consistent network infer-
ences. That is, if a network is found to be inconsistent then we can guarantee that
the network is actually inconsistent, and thus the cases where the application in-
ferences will be incorrect are exactly the same cases presented in Section 3. Com-
pleteness of inferences on inconsistent networks depends on the QSTR calculus
correctly detecting when a network is inconsistent as discussed in Section 3.3.

5 Conclusions

We have presented research that supports the development of applications that
incorporate QSTR calculi. We define QSTR applications as functions that ac-
cept spatial and temporal information, execute domain specific rules, and then
return relevant inferences as the application output. This definition is capable of
expressing all existing QSTR applications that the authors are aware of, and four
examples of existing QSTR applications were given. We analysed qualification by
considering four distinct cases based on whether the constraint network is atomic
or non-atomic, and whether the network is known to be consistent a-priori. This
analysis integrates major areas of research from the QSTR community such
as tractable subsets and weak-composition and identifies how developers can
use this research to assist in selecting appropriate calculi and developing do-
main specific rules. The qualification results were then used to determine some
basic properties of QSTR application reasoning. We showed that when QSTR
applications make inferences using consistent networks they are complete but
not sound, and when applications make inferences (intentionally) using inconsis-
tent networks they are neither complete nor sound. An important area of future
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research is the human-computer interaction issue of enabling developers to anal-
yse qualification from application rules in a natural way (e.g. using graphical
languages).
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Abstract. The epistemic entrenchment relation (EE-relation) over sen-

tences and the preference relation (P-relation) over sets of sentences are

used for constructing contraction operations in the AGM framework of

belief change. The constructed contractions are the epistemic entrench-
ment based contraction (EEC) and the transitively relational partial meet
contraction (TRPMC). Rott [1] establishes a close connection between

the two relations and thus the corresponding contractions. It is shown

that there is a one-to-one correspondence between TRPMC and EEC

thus the two contractions perform identically in the sense that they can

be characterised by an identical set of postulates. Recently, belief change

for the Horn fragment of classical logic (i.e., Horn logic) has drawn much

attention, resulting in several constructions for Horn contractions. In this

paper we explore the connections between the two relations under Horn

logic. We first define a Horn TRPMC by extending the partial meet

Horn contraction defined in [2]. Our investigation shows that, unlike the

result established by Rott [1], in Horn logic for each EE-relation there

is a corresponding P-relation, but there exist P-relations that have no

corresponding EE-relations. As a consequence the corresponding Horn

EEC and Horn TRPMC perform differently.

1 Introduction and Background

Belief change literature has often grappled with the issue of computational ef-
ficiency. One recent focus of attention is the use of languages with limited ex-
pressiveness, in particular propositional Horn clauses, and several approaches
to Horn contraction have resulted. Most of these approaches have adopted con-
structions based on maximal subsets of the reasoner’s belief state that do not
imply the sentence being removed (also known as remainder sets)[3,4,2,5]. An
alternative construction based on the AGM epistemic entrenchment has been
proposed [6]. The aim of this paper is to explore the connection between remain-
der set constructions and epistemic entrenchment constructions by adapting a
technique proposed by Rott [1].
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The AGM framework [7] dominates the approaches in the area of belief change.
It supposes an underlying language L associated with a consequence relation
� and the generated consequence operation Cn is assumed to be Tarskian,
compact, supraclassical and to satisfy the deduction theorem (for X ⊆ L and
φ, ψ ∈ L, ψ ∈ Cn(X ∪ {φ}) iff φ → ψ ∈ Cn(X)). Clearly, the logic generated
from L includes full propositional logic.

The operation of contraction in the AGM framework models the situation
when beliefs are given up from the belief corpus of a rational agent. The belief
corpus is modelled as a belief set which is a set of sentences closed under the
consequence operation, that is if K is a belief set then K = Cn(K).

If K is a set of sentences and φ a sentence, we write K ↓ φ for the set of
all maximal subsets X of K such that φ �∈ Cn(X). If K is a belief set then
elements of K ↓ φ are called remainder sets of K with respect to φ. As noted
in [7], K ↓ φ is non-empty iff φ �∈ Cn(∅). A selection function γ associated
with a set of sentences K is such that γ(K ↓ φ) returns a non-empty subset of
K ↓ φ when K ↓ φ is non-empty and returns K otherwise. Given a selection
function γ for K, the partial meet contraction (PMC) .− over K is defined as
K

.−φ =
⋂

γ(K ↓ φ). Morover .− is a PMC iff it satisfies rationality postulates
(K .−1)–(K .−6) [7], which are regarded as the basic postulates for contraction.

(K .−1) K .−ϕ = Cn(K .−ϕ). (Closure)
(K .−2) K .−ϕ ⊆ K. (Inclusion)
(K .−3) If ϕ �∈ K, then K .−ϕ = K. (Vacuity)
(K .−4) If �� ϕ, then ϕ �∈ K .−ϕ. (Success)
(K .−5) K ⊆ (K .−ϕ) + ϕ. (Recovery)
(K .−6) If ϕ ≡ ψ, then K .−ϕ = K .−ψ. (Extensionality)
(K .−7) K .−ϕ ∩K .−ψ ⊆ K .−ϕ ∧ ψ. (Conjunction overlap)
(K .−8) If ψ �∈ K .−ϕ ∧ ψ then K .−ϕ ∧ ψ ⊆ K .−ψ. (Conjunction inclusion)

(K .−7)–(K .−8) are regarded as supplementary postulates for contraction. A PMC
satisfies the supplementary postulates if it is “transitively relational” in the sense
that a transitive relation � over all the remainder sets is used for guiding the
selection function and thus the contraction. That is, only the most preferred re-
mainder sets are selected for intersection. Given a belief set K and its associated
relation �, the transitively relational partial meet contraction (TRPMC) .− over
K is defined as K

.−φ =
⋂
{M ∈ K ↓ φ |M ′ � M for all M

′ ∈ K ↓ φ} when
φ �∈ Cn(∅) and K

.−φ = K otherwise. It is shown in [7] that .− is a TRPMC iff it
satisfies (K .−1)–(K .−8). In [1], the relation � is extended to a preference relation
over arbitrary sets of sentences—that is a relation over 2L—and is referred to as
a P-relation.

An epistemic entrenchment relation (EE-relation) reflects the relative en-
trenchment of sentences in L with respect to a belief set; the more entrenched,
the more important a sentence. Intuitively, when forced to give up beliefs, a ratio-
nal agent will choose the less entrenched one to give up. The EE-relation is used
to guide us in performing an epistemic entrenchment based contraction (EEC).
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Given a belief set K and its associated EE-relation ≤, an EEC .− over K is given
by K

.−φ = K ∩ {ψ |φ < φ ∨ ψ} when φ �∈ Cn(∅) and K
.−φ = K otherwise [8].

EE-relations have to satisfy certain constraints for the EEC to be characterised
by (K .−1)–(K .−8), as for TRPMC [8]. These conditions are as follows:

(EE1) If ϕ ≤ ψ and ψ ≤ χ then ϕ ≤ χ (Transitivity)
(EE2) If ϕ � ψ then ϕ ≤ ψ (Dominance)
(EE3) ϕ ≤ ϕ ∧ ψ or ψ ≤ ϕ ∧ ψ (Conjunctiveness)
(EE4) If K ��⊥ then ϕ �∈ K iff ϕ ≤ ψ for every ψ (Minimality)
(EE5) If ϕ ≤ ψ for every ϕ then � ψ (Maximality)

Put simply, (EE1)–(EE5) requires EE-relations to be transitive, to satisfy con-
nectivity, to be such that tautologies are most entrenched and sentences not in
K least entrenched.

2 Contractions under Horn Logic

A Horn clause is a clause that has at most one positive atom, eg. ¬p ∨ ¬q ∨ r.
A Horn formula is a conjunction of Horn clauses. A Horn theory is a logically
closed set of Horn formulas. Horn logic is generated from a fixed language LH

which consists of all the Horn formulas in L, with standard model theoretic
semantics. Unlike propositional logic as assumed by the AGM framework, Horn
logic is not supraclassical and does not satisfy the deduction theorem. As a
consequence, there is no contraction operation defined under Horn logic that
satisfies the Recovery postulate (K .−5) [9]. As in Delgrande and Wassermann [2]
we identify an interpretation by the set of atoms true in that interpretation.
For every X ⊆ LH , let [X ] be the set of models of X . For φ ∈ L we write
[φ] instead of [{φ}]. A notable property of a Horn theory is that its models are
closed under intersection of positive atoms [10,11]. Thus if H is a Horn theory,
then for M1,M2 ∈ [H ] we have M1 ∩M2 ∈ [H ]. Given a set of models X , we
denote by Cl∩(X) the closure of X under intersection of positive atoms. For
any belief set K, by M(K) we mean the set of all remainder sets of K, i.e.,
M(K) =

⋃
{K ↓ φ |φ �∈ Cn(∅)}.

The notions of Horn subsets of a P-relation and an EE-relation are crucial
in the sequel which is obtained from standard EE-relation and P-relation by
subtracting the relations between non-Horn formulas and non-Horn sets.

Definition 1. Let � be a P-relation, its Horn subset �H is defined as:

M �H N iff M � N and M = Horn(M) and N = Horn(N)}

Definition 2. Let ≤ be an EE-relation, its Horn subset ≤H is defined as:

φ ≤H ψ iff φ ≤ ψ and φ ∈ LH and ψ ∈ LH
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As advocated in [6], ideally a Horn contraction should be as plausible as AGM
contractions. Since we are restricted to Horn logic, it is reasonable to conclude
that a Horn contraction is as plausible as an AGM contraction if the two con-
tractions perform identically in terms of Horn formulas. This idea is illustrated
in Figure 1, where .−H is the Horn contraction and .− is the standard AGM
contraction. Given a belief set K, Horn(K) is the set of all Horn formulas in K
and furthermore if K is associated with an EE-relation≤ or a P-relation �, then
the corresponding EE-relation and P-relation associated with Horn(K) is ≤H
and �H respectively. To be more precise, we want to guarantee that for a belief
set K and a Horn formula φ, the Horn contraction of φ from the Horn subset of
K (Horn(K)) yields a resulting belief set (Horn(K) .−Hφ)) that is exactly the
Horn subset of the resulting belief set (K .−φ) yielded by the AGM contraction
of φ from K. Formally, such a Horn contraction is regarded as Horn equivalent
to AGM contraction.

K K
.−φ

Horn(K) Horn(K
.−φ)

.−

.−H

Fig. 1. Horn equivalence

Definition 3. Let .− and .−H be an AGM contraction and a Horn contraction
respectively. .−H is Horn equivalent to .− iff Horn(K .−φ) = Horn(K) .−Hφ, for
all K and all φ ∈ LH .

As shown in [6], Horn contractions are not in general Horn equivalent to AGM
contraction unless the associated EE-relation satisfies certain constraints, for
instance the EE based Horn contraction in [6] imposes additional restrictions on
the standard EE-relation (see below).

The EE based Horn contraction (EEHC) defined in [6] is an analogue of EEC.
As noticed the original construction of EEC requires arbitrary disjunctions which
may not be Horn formulas. To overcome this problem, [6] replaces non-Horn
disjunction with its Horn strengthenings [12].

Definition 4. [12] Given a clause ϕ, its set of Horn strengthenings, denoted by
ϕH is such that ϕH ∈ ϕH iff ϕH is a Horn clause and there is no Horn clause
ϕ

′
such that ϕH ⊂ ϕ

′ ⊆ ϕ.

In Definition 4 clauses are considered as sets of atoms thus they can be compared
set-theoretically. Essentially, Horn strengthenings of a non-Horn clause are ob-
tained by removing all but one of its positive atoms. With the notion of Horn
strengthening the EEHC is defined as follows:
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Definition 5. [6] If ≤ is an EE-relation over LH (with respect to H) then the
EEHC .− also denoted as C(≤)1 is defined using the following condition.

H
.−φ =

{
H ∩ {ψ | ∃χ ∈ (φ ∨ ψ)H such that φ < χ} if �� φ,
H, if � φ.

[6] also provided a representation theorem for the EEHC.

Theorem 1. [6] .− is an EEHC iff it satisfies (H .−1)–(H .−10).

(H .−1) H .−ϕ = Cn(H .−ϕ).
(H .−2) H .−ϕ ⊆ H .
(H .−3) If ϕ �∈ H or � ϕ, then H .−ϕ = H .
(H .−4) If �� ϕ, then ϕ �∈ H .−ϕ.
(H .−5) If ψ ∈ H .−ϕ ∧ ψ then ψ ∈ H .−ϕ ∧ ψ ∧ δ
(H .−6) � ϕ ≡ ψ, then H .−ϕ = H .−ψ.
(H .−7) H .−ϕ ∩H .−ψ ⊆ H .−ϕ ∧ ψ.
(H .−8) If ψ �∈ H .−ϕ ∧ ψ then H .−ϕ ∧ ψ ⊆ H .−ψ.
(H .−9) If ψ ∈ H and ψ �∈ H .−φ then ∀χ ∈ (φ ∨ ψ)H, χ �∈ H .−φ
(H .−10) If ∀χ ∈ (φ ∨ ψ)H, χ �∈ H .−φ ∧ ψ then ψ �∈ H .−φ

(H .−1)–(H .−8) are analogues of well known contraction postulates whereas
(H .−9) is derivable from (K .−1)–(K .−8) but requires Recovery. (H .−10) is spe-
cific for Horn contractions. EEHC is not Horn equivalent to AGM contraction
unless the EE-relation satisfies (EE6).
(EE6) For each φ, there is a ψ ∈ φH such that φ ≤ ψ.
(EE6) requires any non-Horn formulas to be equally entrenched to its most
entrenched Horn strengthenings. [6] shows that if the EE-relation ≤ an EEC is
based on satisfies (EE6), then the EEHC based on the Horn subset of ≤ (i.e.,
≤H) is Horn equivalent to the EEC.

Theorem 2. [6] Let ≤ be an EE-relation and ≤H its Horn subset. If ≤ satisfies
(EE6) then the EEC C(≤) is Horn equivalent to the EEHC C(≤H).

3 Transitively Relational Partial Meet Horn Contraction

In this section we present a construction of Horn contraction that is analogous
to the TRPMC. TRPMC relies on the notion of remainder sets and there have
been several approaches to construct partial meet Horn contractions (PMHC)
[3,4,2]. TRPMC is an extension of PMC such that TRPMC is guided by a P-
relation over remainder sets. Similarly, the Transitively Relational Partial Meet
Horn Contraction (TRPMHC) to be defined is an extension of the partial meet
Horn contraction (for belief sets) in [2]. [2] proposed a notion of weak remainder
set. Under propositional logic the remainder set of K with respect to φ can
1 We sometimes use C(≤) instead of

.− to emphasise that this is an EEC or EEHC

that is based on the EE-relation ≤.
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be obtained semantically by adding a counter-model of φ to the models of K
(i.e., X ∈ K ↓ φ iff [X ] = [K] ∪ {m} for m ∈ [¬φ]). Essentially, the number of
remainder sets is identical to the number of counter-models of φ. Weak remainder
sets are defined similarly, but taking into account the closure property of Horn
theories (i.e., [H ] = Cl∩([H ])).

Definition 6. [2] let H be a Horn belief set, and φ be a Horn formula. H ↓w φ
is the set of weak remainder sets such that H

′ ∈ H ↓w φ iff there is a model
m �∈ [φ] such that [H

′
] = Cl∩([H ] ∪ {m}).

Full negation is not available in Horn logic, for instance if φ = ¬p ∧ ¬q then ¬φ
is not a Horn formula. The counter models of φ (i.e., [¬φ]) is defined to be any
interpretation that is not a model of φ. Using the notion of weak remainder sets
TRPMHC is defined as follows:

Definition 7. If � is a P-relation over LH (with respect to H) then the
TRPMHC .− also denoted by C(�)2 is defined using the following condition:

H
.−φ =

{⋂
{M ∈ H ↓w φ |M ′ � M for all M

′ ∈ H ↓w φ} if �� φ,
H, if � φ.

It turns out that TRPMHC is more comprehensive than EEHC thus it admits
more possible ways of removing Horn formulas. Theorem 3 which follows natu-
rally from results in Section 4 justifies such connection between TRPMHC and
EEHC.

Theorem 3. If .− satisfies (H .−1)–(H .−10) then .− is a TRPMHC.

As in EEHC, we present the conditions for Horn equivalence of TRPMHC to
AGM (TRPMC) contraction. Two technical lemmas are shown first.

Lemma 1. If K is a belief set then [Horn(K)] = Cl∩[K].

Proof. Horn(K) ⊂ K implies [K] ⊆ [Horn(K)]. Thus Cl∩[K] ⊆ Cl∩[Horn(K)]
which together with [Horn(K)] = Cl∩[Horn(K)] implies Cl∩[K] ⊆ [Horn(K)].
Let H be a Horn belief set s.t. [H ] = Cl∩[K], so that H ⊂ K. Suppose
[Horn(K)] �⊆ Cl∩[K]. So we have [H ] = Cl∩[K] ⊂ [Horn(K)] which implies
Horn(K) ⊂ H . Thus there is φ ∈ LH s.t. φ ∈ H ⊂ K and φ �∈ Horn(K),
contradicting the definition of Horn(·). Hence [Horn(K)] ⊆ Cl∩[K]. #$

Lemma 2. Let K be a belief set and φ ∈ LH . We have for all M ∈ K ↓ φ that
there exists Mh ∈ Horn(K) ↓w φ such that Mh = Horn(M).

Proof. By a property of remainder sets, for each M ∈ K ↓ φ we have [M ] =
[K] ∪ {m} for m ∈ [¬φ]. Let [M

′
] = Cl∩([Horn(K)] ∪ {m}). By definition of

weak remainder sets we have Mh ∈ Horn(K) ↓w φ. By Lemma 1, [Mh] =
Cl∩([Horn(K)] ∪ {m}) = Cl∩(Cl∩[K] ∪ {m}) = Cl∩([K] ∪ {m}) = Cl∩[M ].
Again through Lemma 1 we have Mh = Horn(M). #$
2 We sometimes use C(�) instead of

.− to emphasise that this is a TRPMC or

TRPMHC that is based on the P-relation �.
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It follows from Lemma 2 that there is a one-to-one correspondence between stan-
dard remainder sets and weak remainder sets. Theorem 4 shows that if the Horn
P-relation a TRPMHC is based on also has a one-to-one correspondence with
the standard P-relation a TRPMC is based on, we will have a Horn equivalence
between the TRPMHC and the TRPMC.

Theorem 4. Let � be a P-relation and �H be its Horn subset. If � satis-
fies M � N iff Horn(M) � Horn(N) for all logically closed M,N , then the
TRPMHC C(�H) is Horn equivalent to the TRPMC C(�).

Proof. We write .−H for C(�H) and .− for C(�). It suffices to show for any K and
φ ∈ LH , Horn(K .−φ) = Horn(K) .−Hφ. If � φ or φ �∈ K then Horn(K .−φ) =
Horn(K) = Horn(K) .−Hφ and we are done. So suppose �� φ and φ ∈ K. Let
X = {M ∈ K ↓ φ|M ′ � M for all M

′ ∈ K ↓ φ} and let Xh = {Mh ∈
Horn(K) ↓w φ|M ′

h � Mh for all M
′
h ∈ Horn(K) ↓w φ}. It follows from the

properties of � and Lemma 2 that for each M ∈ X there is a Mh ∈ Xh s.t.
Mh = Horn(M). Therefore we have Horn(K .−φ) = Horn(

⋂
{M ∈ K ↓ φ|M ′ �

M for all M
′ ∈ K ↓ φ}) = Horn(

⋂
X) =

⋂
Xh =

⋂
{Mh ∈ Horn(K) ↓w

φ|M ′
h � Mh for all M

′
h ∈ Horn(K) ↓w φ} = Horn(K) .−Hφ. #$

4 Connections between EEHC and TRPMHC

In the AGM framework TRPMC and EEC are characterised by an identical
set of postulates [7,8]. Rott [1] investigated the connections between EEHC and
TRPMHC by mapping the P-relation and EE-relation that determine the two
contractions. Methods for obtaining one relation from the other are proposed
and justified. The investigation shows that if a P-relation � over a belief set K
is obtained from an EE-relation ≤ over the belief set K then the EEC C(≤)
returns identical belief sets as the TRPMC C(�) for the contraction of any
formula from K. Similar results also hold for P-relations and the obtained EE-
relations. The results show essentially that there is a one-to-one correspondence
between EEC and TRPMC and from which it can be concluded that EEC and
TRPMC, although constructed differently, perform identically.

In this section we will explore connections between EEHC and TRPMHC
by using the methodology in [1]. Our investigation reveals that for each EEHC
there is a corresponding TRPMHC but not vice versa. It will become clear that
the reason is that the Horn EE-relation, as a logical structure for capturing
preference information, is not as expressive as the Horn P-relation.

Given an EE-relation, its corresponding P-relation is obtained by using
Definition 8.

Definition 8. [1] If ≤ is an EE-relation on L (with respect to a belief set K)
then the P-relation � on 2L (with respect to K), also denoted as P (≤), can be
defined using the following condition:

M � N iff for all φ �∈ N there is a ψ �∈M such that φ ≤ ψ.
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However, there exist Horn P-relations that are not obtainable from any Horn EE-
relation via Definition 8. The following example illustrates one such P-relation.

Example 1. Let Horn belief set H = CnH({¬p ∨ q,¬q ∨ r}). So we have H ↓
(¬p ∨ r) = {①,②}, H ↓ (¬p ∨ q) = {②,③}, H ↓ (¬q ∨ r) = {①,④}, and H ↓
(¬p∨¬q∨r) = {①} for ①={¬p∨q,¬p∨¬r∨q}, ②={¬q∨r,¬p∨¬r∨q,¬p∨¬q∨r},
③={¬q∨ r,¬p∨¬q ∨ r,¬p∨ r}, and ④={¬p∨ q,¬p∨¬r∨ q,¬p∨ r,¬p∨¬q ∨ r}.
Let P-relation � be associated with H and contain ②=③=④>①. Suppose for
contradiction that there is an EE-relation ≤ such that �= P (≤). It follows from
④>① and Definition 8 that ¬p ∨ ¬r ∨ q > ¬q ∨ r. But it follows from ②=④ and
Definition 8 that ¬p ∨ ¬r ∨ q ≤ ¬q ∨ r so we have a contradiction and we can
conclude � can not be obtained from any EE-relation via Definition 8.

Given a P-relation, its corresponding EE-relation is obtained by using Defini-
tion 9.

Definition 9. [1] If � is a P-relation on 2L (with respect to a belief set K) then
the associated EE-relation ≤ on L (with respect to K), also denoted as E(�), is
defined by the following condition:

φ ≤ ψ iff for all M ∈M(K) such that ψ �∈M, there is an M
′ ∈M(K)

such that φ �∈M
′
and M � M

′
.

Contrary to Horn P-relations, for any Horn EE-relation ≤ there is a Horn P-
relation � from which ≤ is obtainable via Definition 9. This follows directly from
Theorem 1 of [1] which also holds under Horn logic. The theorem states if ≤ is
an EE-relation then ≤= E(P (≤)). Since P-relation P (≤) (obtained from ≤ via
Definition 8) always exists, ≤ is always obtainable from P (≤) via Definition 9.

Example 2. Continuing with Example 1. Let �1 contains ②=③=④>① and �2

contains ②=③=④=①. Under propositional logic the EE-relation E(�1) and
E(�2) only differ in the entrenchment of non-Horn clause ¬p ∨ q ∨ r. Since
a Horn EE-relation contains only Horn formulas, under Horn logic we have
E(�1) = E(�2). The entrenchment information of ¬p ∨ q ∨ r is not repre-
sentable with Horn EE-relations but is still representable with Horn P-relations.
Clearly, there is no EE-relation that captures the preference information in the
P-relation �1.

Based on the above analysis on the connections between Horn EE-relations and
Horn P-relations, we claim that, under Horn logic EE-relations are not as ef-
fective as P-relations at representing preference information for performing con-
traction. P-relations provide more possible belief states than EE-relations.

In the remainder of this section, we will demonstrate how the connection be-
tween EE-relations and P-relations affect the EEHC and TRPMHC. As shown
in [1], the EEC based on ≤ is equivalent to the TRPMC based on P (≤) (The-
orem 4, [1]). It turns out that the equivalence also holds between EEHC and
TRPMHC. We first give an important lemma.
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Lemma 3. Given an EE-relation ≤ and its Horn subset ≤H. Let � be P (≤)
and �h be P (≤H). If ≤ satisfies (EE6) then M � N iff Horn(M) �h Horn(N)
for all logically closed sets M,N .

Proof. (⇒): Assume M � N , we need to show Horn(M) �h Horn(N). It
suffices to show for all φ ∈ LH and φ �∈ Horn(N), there is a ψ ∈ LH and
ψ �∈ Horn(M) s.t. φ ≤H ψ. By definition of Horn(·) it is easy to verify that for
each φ ∈ LH , φ �∈ M iff φ �∈ Horn(M). It follows from M � N that for each
φ ∈ LH and φ �∈ N there is a ψ �∈ M s.t. φ ≤ ψ. As ≤ satisfies (EE6) there
is ψh ∈ ψH s.t. ψh =≤ ψ. So it follows from (EE1) and φ ≤ ψ that φ ≤ ψh.
Furthermore ψh �∈ Horn(M) for otherwise ψ ∈M as M is closed, contradicting
ψ �∈M . Finally by Definition 2, we have φ ≤H ψh.
(⇐): Assume Horn(M) �h Horn(N), we need to show M � N . It suffices to
show for all φ �∈ N , there is a ψ �∈ M s.t. φ ≤ ψ. For all φ �∈ N , there are two
cases to consider:
Case 1: φ ∈ LH . It follows from Horn(M) �h Horn(N) that for each such φ
there is a ψ ∈ LH and ψ �∈ Horn(M) s.t. φ ≤H ψ. As ψ �∈ Horn(M) implies
ψ �∈M , we are done.
Case 2: φ �∈ LH . As N is closed and ≤ satisfies (EE6), there is a φh ∈ φH s.t.
φh �∈ Horn(N) and φh =≤ φ. It then follows from φh �∈ Horn(N) that there
is a ψh ∈ LH and ψh �∈ Horn(M) s.t. φh ≤H ψh. By Definition 2 we have
φh ≤ ψh and by (EE1), φ ≤ ψh. Furthermore as ψh �∈ Horn(M), ψh �∈ M . We
are done. #$

Corollary 1. Given an EE-relation ≤ and its Horn subset ≤H. Let � be P (≤)
and �h be P (≤H). If ≤ satisfies (EE6) then the TRPMHC C(�h) is Horn
equivalent to the TRPMC C(�).

Theorem 5 shows that if a P-relation � is obtained from an EE-relation ≤ via
Definition 8 then the EEHC based on ≤ is identical with the TRPMHC based
on �.

Theorem 5. Let ≤H be an EE-relation over LH (with respect to a belief set H).
Then the EEHC C(≤H) is identical with the TRPMHC C(P (≤H)).

Proof. Let ≤ be an EE-relation over L (with respect to the belief set Cn(H)) and
such that it satisfies (EE6) and ≤H is its Horn subset (such EE-relation always
exists). By Theorem 2, C(≤H) is Horn equivalent to C(≤). By Theorem 4 of [1],
C(≤) is identical with C(P (≤)). By Corollary 1, C(P (≤H)) is Horn equivalent
to C(P (≤)). Finally putting these all together we have C(≤H) is identical with
C(P (≤H)). #$
Clearly, Theorem 5 implies that for any EEHC there is a TRPMHC that performs
identically with the EEHC. That is if .−E is a EEHC then there is a TRPMHC
.−P such that H

.−Eφ = H
.−Pφ for all H and φ.

For the other direction, we start with a P-relation and the TRPMHC it
determines. Through Definition 9, an EE-relation is obtained that determines
a EEHC. Theorem 6 which follows from Example 1 reveals the connections
between the TRPMHC and EEHC.
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Theorem 6. There exists a P-relation � with respect to a Horn belief set H
such that there exist no EE-relations ≤ such that C(�) is identical with C(≤).

Theorem 6 suggests that if .−P is a TRPMHC then there may not exist a EEHC
.−E such that H

.−Pφ = H
.−Eφ for all H and φ.

5 Conclusion

In this paper we have explored the relationship between an account of Horn
contraction based on epistemic entrenchment (i.e., EEHC) and Horn contraction
based on remainder sets (i.e, TRPMHC). Our investigation shows that turning to
Horn logic P-relations as a logical structure for representing an agent’s preference
information is as effective as its counterpart in propositional logic. In contrast,
with Horn EE-relations some preference information is not representable due to
the restriction that only Horn formulas are allowed. As a consequence, for each
EEHC there is a TRPMHC that performs identically with it but not vice versa.
An immediate implication is that the characterising postulates for EEHC are too
specific for TRPMHC. In another aspect, our investigation gives a much clearer
understanding of the various proposals for Horn contraction allowing a much
better comparison between them. According to our results TRPMHC turns out
to be more comprehensive than EEHC.
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Abstract. Database normalization is a central part of database design

in which we re-organise the data stored so as to progressively ensure that

as few anomalies occur as possible upon insertions, deletions and/or mod-

ifications. Successive normalizations of a database to higher normal forms

continue to reduce the potential for such anomalies. We show here that

database normalization follows as a consequence (or special case, or by-

product) of the Minimum Message Length (MML) principle of machine

learning and inductive inference. In other words, someone (previously)

oblivious to database normalization but well-versed in MML could ex-

amine a database and - using MML considerations alone - normalise it,

and even discover the notion of attribute inheritance.

Keywords: Minimum Message Length, MML, Database Normalization,

Machine Learning, Data Mining, Intelligent Databases.

1 Introduction

The table is a basic building block of a Relational Database Management Sys-
tem (RDBMS) [1, 2]. Consequently, the structure of one or more tables in the
database is of great interest. Typically, the information is structured into ta-
bles during the Entity-Relationship (ER) diagram phase of conceptual database
design. Database normalization [3] is a process of evaluating and correcting ta-
ble structures to minimize data redundancies, thereby reducing the likelihood
of data anomalies upon insertion (adding a new row), deletion (deleting a row)
or modification (modifying a row). Normalization is typically the heart of any
database design activity.

Database normalization [2] works through a series of stages called normal
forms (NFs) (described in sec. 3). A primary reason is to minimize data re-
dundancies and get rid of update, delete and insertion anomalies. Also, design-
ers would like to apply the ‘minimal data rule’ to the structure, making sure
that all information has been captured and every piece of information captured
is meaningful. In short, after the initial design is complete in the form of an
Entity-Relationship (ER) diagram, designers generally analyze the relationships
that exist among attributes within entities through normalization and improve
the structure if need arises.
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As described, there can be many motivations behind a database normalization.
In this paper, we present a novel information-theoretic perspective of database
normalization. We consider the structure of the table(s) as a modelling problem
for Minimum Message Length (MML) (see sec. 2). MML seeks a model giving
the shortest two-part coding of model and data. If we consider table structure
as a model which encodes data, MML advocates that we should be particularly
interested in the variation of the encoding length of model and data as the
normalization process re-structures tables for efficient design. We will consider a
simple example and apply normalization to illustrate our point. As we will see in
sec. 4, normalization into higher forms minimizes code length (or message length)
by re-structuring the relational tables. Hence, if we apply the MML principle to
a relational database, then - provided we have sufficient data - we are likely to
get our database normalized.

The rest of the paper is organized as follows: we introduce the minimum mes-
sage length (MML) framework in sec. 2. In sec. 3, we explain a typical normal-
ization procedure with an example. We explain the MML view of normalization
in sec. 4. We conclude in sec. 5.

2 Minimum Message Length

Minimum message length (MML), introduced by Wallace and Boulton [4], is an
important stream of studying the complexity of a data set [4–10]. It is based
on Shannon’s theory of information and equivalently on the theory of Turing
machines and Kolmogorov complexity [6, 7, 10]. MML considers any given string
S as being a representation in some (unknown) code about the real world. It seeks
a ([concatenated] two-part) string I = H : A where the first part H specifies (or
encodes) a hypothesis about the data S and the second part A is an encoding
of the data using the encoded hypothesis. If the code or hypothesis is true, the
encoding is efficient (like Huffman or arithmetic codes). According to Shannon’s
theory, the length of the string coding an event E in an optimally efficient code
is given by −log2(Prob(E)), so the length of A is given by:

#A = −log2(f(S|H)) (1)

where f(S|H) is the conditional probability (or statistical likelihood) of data S
given the hypothesis H . Using an optimal code for specification, the length #H
of the first part of the MML message is given by −log2(h(H)), where h(·) is the
prior probability distribution over the set of possible hypotheses. Using equation
(1), the total two-part message length #I is:

#I = #H + #A = − log2(h(H)) − log2(f(S|H))
= −log2(h(H)× f(S|H)) (2)

The minimization of #I is equivalent to the maximization of h(H) × f(S|H) =
Prob(H,S), that is the joint probability of hypothesis and data. It is thus formally
equivalent to choosing the hypothesis H of highest Bayesian posterior probability
(not a density) given S [11, secs. 2 and 6.1][8, sec. 11.3.1][9, footnote 158].
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3 A Typical Normalization Procedure - An Example

As hinted in sec. 1, normalization works through a series of stages called normal
forms. The first three stages are called first normal form (1NF), second normal
form (2NF) and third normal form (3NF). From a structural point of view, 2NF
is better than 1NF, and 3NF is in turn better than 2NF. For at least many
purposes, 3NF is sufficient. A properly designed 3NF structure can also meet
the requirements of higher normal forms - such as, e.g., Boyce-Codd Normal
Form (BCNF), fourth normal form (4NF) or fifth normal form (5NF).

As an example, suppose we wish to create a database of university student
enrolments. Let us assume that a student can take more than one unit, perhaps
as many units as she likes. A student can also take the same unit more than once
but not in one semester. Each student has a supervisor (denoted as ‘lecturer’ in
the following discussion). A supervisor can have more than one student, but a
student can only have one supervisor. Based on this information, we can proceed
with the normalization procedure as follows, initially using this small example
of L = 11 rows in 1NF:

1NF: The term 1NF describes a tabular data format where the following prop-
erties hold. First, all of the key attributes are defined. Second, there are no
repeating groups in the table -i.e., in other words, each row/column intersection
(or cell) contains one and only one value, not a set of values. Third, all attributes
are dependent on the primary key (PK). Based on the information given to us,
we can structure data in the table Student-Rec and can use Stud-ID, Unit-No
and Yr-Sem attributes as parts of the PK. The table in 1NF is shown in table 1.

2NF: A table is in 2NF if the following conditions hold. First, it is in 1NF.
Second, it includes no partial dependencies, that is no attribute is dependent on

Table 1. Student-Rec in 1NF. PK = ( Stud-ID, Unit-No, Yr-Sem )

Stud-ID Stud-Name Stud-Address Stud-Course Unit-No Unit-Name Lect-No Lect-Name Yr-Sem Grade
212 Bob Smith Notting Hill MIT FIT2014 Database Design 47 Geoff Yu 2007 D
212 Bob Smith Notting Hill MIT FIT3014 Algorithm Theory 47 Geoff Yu 2007 HD
212 Bob Smith Notting Hill MIT EE1007 Circuit Design 47 Geoff Yu 2006 P
213 John News Caufield BSc FIT3014 Algorithm Theory 122 June Matt 2007 HD
213 John News Caufield BSc EE1007 Circuit Design 122 June Matt 2007 HD
214 Alice Neal Clayton S BSc FIT2014 Database Design 122 June Matt 2007 HD
214 Alice Neal Clayton S BSc FIT3014 Algorithm Theory 122 June Matt 2007 D
215 Jill Wong Caufield MIT FIT2014 Database Design 47 Geoff Yu 2007 D
215 Jill Wong Caufield MIT FIT2014 Database Design 47 Geoff Yu 2008 D
216 Ben Ng Notting Hill BA EE1007 Circuit Design 47 June Matt 2007 P
216 Ben Ng Notting Hill BA MT2110 Mathematics-II 47 June Matt 2007 D

Table 2. Student in 2NF. PK = Stud-ID

Stud-ID Stud-Name Stud-Address Stud-Course Lect-No Lect-Name
212 Bob Smith Notting Hill MIT 47 Geoff Yu
213 John News Caufield BSc 122 June Matt
214 Alice Neal Clayton S BSc 47 Geoff Yu
215 Jill Wong Caufield MIT 47 Geoff Yu
216 Ben Ng Notting Hill BA 122 June Matt
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Table 3. Unit in 2NF and 3NF, PK = Unit-No

Unit-No Unit-Name
FIT2014 Database Design
FIT3014 Algorithm Theory
EE1007 Circuit Design
MT2110 Mathematics-II

Table 4. Stu-Unit-Rec in 2NF and 3NF. PK = (Stud-ID, Unit-No, Yr-Sem)

Stud-ID Unit-No Yr-Sem Grade
212 FIT2014 2007 D
212 FIT3014 2007 HD
212 EE1007 2006 P
213 FIT3014 2007 HD
213 EE1007 2007 HD
214 FIT2014 2007 HD
214 FIT3014 2007 D
215 FIT2014 2007 D
215 FIT2014 2008 D
216 EE1007 2007 P
216 MT2110 2007 D

Table 5. Student in 3NF. PK = Stud-ID

Stud-ID Stud-Name Stud-Address Stud-Course Lect-No
212 Bob Smith Notting Hill MIT 47
213 John News Caufield BSc 122
214 Alice Neal Clayton S BSc 47
215 Jill Wong Caufield MIT 47
216 Ben Ng Notting Hill BA 122

only a portion of the primary key. The table Student-Rec in table 1 has partial
dependencies. It is clear that Unit-Name only depends on Unit-No and not on the
whole PK - that is, (Stud-ID, Unit-No,Yr-Sem). Also Name, Address, Course,
Lect-No and Lect-Name depend only on Stud-ID. To structure the tables in 2NF,
we need to eliminate these partial dependencies. A proposed design modification
is shown in tables 2, 3 and 4. Table 1 is split into three tables: Student, Unit
and Stu-Unit-Rec. Note that there are no partial dependencies in all of these
three tables. In each table, each non-key attribute depends on all attributes in
the PK. For our example, the 2NF tables are tables 2, 3 and 4.

3NF: A table is in 3NF if the following holds. First, it is in 2NF. Second, it
contains no transitive dependencies. A transitive dependency exists when there
are functional dependencies 1 such that X → Y, Y → Z and X is the primary
key attribute. Looking at our design in 2NF, there exists a transitive dependency
in the Student table (table 2), where Stud-ID → Lect-No → Lect-Name. This
transitive dependency can be eliminated by breaking the Student table into the
Student and Lecturer tables as shown in tables 5 and 6. Note the Unit and Stu-
Unit-Rec tables in tables 3 and 4 are already in 3NF. For our example, the 3NF
tables are tables 3, 4, 5 and 6.

1 The attribute B is fully functional dependent on the attribute A if each value of A
determines one and only value of B.
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Table 6. Lecturer in 3NF, PK = Lect-No

Lect-ID Lect-Name
47 Geoff Yu
122 June Matt

4 MML Interpretation of Normalization

Our simple example of the normalization process from the previous section has
(ultimately) resulted in four distinct tables - namely, Student (table 5), Lecturer
(table 6), Unit (table 3), and Stu-Unit-Rec (table 4). Normalization is nothing
but judicious re-structuring of information via tables.

We now flesh out ideas from [9, footnote 187], [12, pp454-455] and [10, sec.
7.6]. In an MML or information-theoretic version of normalization, we can think
of tables as a certain model (or hypothesis). Following equation (2), we can write
the first-part message length (encoding the model) as:

#H = | < T > |+ | < A > |+
T∑

t=1

AP t (3)

where T is the number of tables, A is the number of attributes, < T > is an
encoding of T , < A > is an encoding of A, | < T > | is the length of encoding T
and | < A > | is the length of encoding A. APt denotes the encoding length of
table t’s attributes and its primary key. It is defined in equation (4) as:

APt = log2(A) + log2

(
A

at

)
+ log2(at) + log2

(
at

pt

)
(4)

where at is the number of attributes in the tth table, pt denotes the number of
attributes in the primary key. (We know that 1 ≤ at ≤ A, so log2(A) is the cost
of encoding at, and log2

(
A
at

)
is the cost of saying which particular at attributes

are in the tth table. Similarly, since 1 ≤ pt ≤ at, log2 at is the cost of encoding
pt, and log2

(
at

pt

)
is the cost of saying which particular pt attributes are in the

primary key of the tth table.) Note that this is only one way of specifying the
model. We have taken only the number of tables, attributes in each table and
attributes constituting the PK in each table into account in specifying a model.
Other models could be used. Note that the foreign keys (FKs) are not specified in
this model - as the model encompasses information about the attributes in each
table along with primary keys (PKs), the FKs can be found out by tracking the
PK attribute of one table appearing in another table. For the sake of simplicity,
we will not consider the effect(s) of | < T > | and | < A > | in the following
discussion, as | < A > | appears in the encoding of each normalized form. We
could (and implicitly do) assume a uniform prior on | < T > |, but we could
equally well instead have used (e.g.) a unary code (Pr(T ) = 2−T , | < T > | = T )
or the very slowly growing Wallace tree code [7, fig. 2.13 and sec. 2.1.14]. Hence,
neglecting (near-)constant terms, we can (re-)write equation (3) as:
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#H =
T∑

t=1

AP t (5)

In the following discussion we will assume that there are m1, m2, m3, m4,
m5, m6, m7, m8, m9 and m10 unique instances of Stud-ID, Stud-Name, Stud-
Address, Stud-Course, Unit-No, Unit-Name, Lect-No, Lect-Name, Yr-Sem and
Grade respectively (refer to table 7).

Table 7. Number of unique instances for each attribute in table 1, 1NF of our initial

example

Stud-ID Stud-Name Stud-Address Stud-Course Unit-No Unit-Name Lect-No Lect-Name Yr-Sem Grade
m1 m2 m3 m4 m5 m6 m7 m8 m9 m10
5 5 5 5 4 4 2 2 3 3

The number of rows in the 1NF form of the table is an important variable. We
have denoted it by L in the preceding equations. L = 11 in table 1 and depends
on how many students are taking how many courses in each semester. We will
later show that there is not a huge need for normalization if each student is
taking only one unit, as 2NF will encode the same (amount of) information as
1NF. As more students take more courses, the need for normalization arises.

Let us consider data in the 1NF Student table in table 1. We can write the
1NF encoding length (I1NF ) as the sum of the length of model (H1NF ) and
length of data (A1NF ) encoded by this model as follows:

I1NF = #H1NF + #A1NF

= #H1NF + L× (log2m1 + log2m2 + log2m3 + ...... + log2m10) (6)

#H1NF in the preceding equation (equation (6)) can be computed from equa-
tions (4) and (5). As there is only one table, T = 1. There are 10 attributes
(A = 10) and 3 attributes in the primary key (p = 3).

Consider the three tables used here in 2NF - i.e., Student, Unit and Stu-Unit-
Rec (shown in tables 2, 3, 4). We can write the 2NF encoding length (I2NF ) as
the sum of the length of model (H2NF ) and length of data (A2NF ) encoded by
this model. Examining the 3 tables and their attributes, this gives:

I2NF = #H2NF + #A2NF

= #H2NF + m1 × (log2m1 + log2m2 + log2m3 + log2m4 + log2m7 + log2m8)

+m5 × (log2m5 + log2m6)

+L × (log2m1 + log2m5 + log2m9 + log2m10) (7)

Like #H1NF (from equation (6)), #H2NF in the preceding equation (equation
(7)) can also be computed from equations (4) and (5). There are 10 attributes
(A = 10) in total and T = 3 tables. The Student table has 6 attributes (a1 = 6)
and 1 PK attribute (p1 = 1). Similarly, the Unit table has 2 attributes (a2 = 2)
and 1 PK attribute (p2 = 1). The Stu-Unit-Rec table has 4 attributes (a3 = 4)
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and 3 PK attributes (p3 = 3). The #A2NF part in equation (7) is the sum of the
encoding lengths of the data in these 3 tables. Note the multiplication factors
m1, m5 and L in the encoding term, since there are m1 rows in the Student
table, m5 rows in the Unit table and L rows in the Stu-Unit-Rec table.

Moving from 2NF to 3NF , the Student table in 2NF is split into Student
(table 5) and Lecturer (table 6). We can write the 3NF encoding length (I3NF )
as the sum of the length of model (H3NF ) and length of data (A3NF ) encoded
by this model, noting that we replace the cost of the student table (table 2) in
2NF from equation (7) with the costs of the new (and more concise) student
table (table 5) and the lecturer table (table 6).

I3NF = #H3NF + #A3NF

= #H3NF + m1 × (log2m1 + log2m2 + log2m3 + log2m4 + log2m7)
+m7 × (log2m7 + log2m8)
+m5 × (log2m5 + log2m6)
+L× (log2m1 + log2m5 + log2m9 + log2m10) (8)

#H3NF can also be computed from equations (4) and (5). There are A = 10
attributes and T = 4 tables in 3NF . The Student table has 5 attributes (a1 = 5)
and 1 PK attribute (p1 = 1). Since the Unit and Stu-Unit-Rec tables are already
in 3NF , we have a2 = 2, p2 = 1, a3 = 4 and p3 = 3 from the previous discussion.
The Lecturer table has 2 attributes (a4 = 2) and 1 PK attribute (p4 = 1).

The encoding length of data along with the model for each NF for our initial
small example (of only L = 11 rows in 1NF) is shown in table 8. As we have
moved to higher NFs, we have made our model more complicated as depicted
by the encoding length (#H), but the data in the second part of the message
(#A) is encoded more efficiently and its length has vastly decreased. As can be
seen from equations (6), (7) and (8), all encodings depend on the parameter L.
We see an improvement of 2NF over 1NF even for L = 11 rows in this small
example.

Table 8. Code length (bits) of model and data for different NFs on small example

#H (first part’s length) #A (second part’s length) total message length

1NF 10.22 203.03 213.25

2NF 36.45 154.89 191.34

3NF 46.26 153.84 200.10

Due to space constraints we have not included a lot of data in table 1. In this
particular example with L = 11 rows in 1NF, the total message length appears
(slightly) higher for 3NF than 2NF. This should not be surprising considering
the amount of data we have. Let us note from equations (7) and (8) that

I3NF − I2NF = (#H3NF −#H2NF ) + m7 log2 m7 + (m7 −m1) log2 m8
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On the not unreasonable assumption that m7 = m8, then
I3NF − I2NF = (#H3NF −#H2NF ) + (2m7 −m1) log2 m7.

Provided that m1 > 2m7 then, as m1 or m7 increases, the term
(2m7−m1) log2 m7 will become increasingly negative, eventually becoming larger
in magnitude than (#H3NF −#H2NF ), whereupon I3NF will become less than
I2NF , at which point MML will then forever after prefer 3NF to 2NF. This
comparison between m1 and 2m7 is because in going from 2NF to 3NF we are
removing a column of m1 entries in the 2NF Student table (table 2) and replacing
it with a new 3NF table (table 6, Lecturer) of 2 columns and m7 rows.

So, now let us suppose that we have a more realistic (but still quite small)
example of m1 = 100 students, m5 = 30 units and each student is taking an
average of 3 courses (note L = 300), setting the number of lecturers equal to
m7 = 15. The encoding lengths are given in table 9, which is also a cross-section
of figure 1(b).

Table 9. Encoding length (in bits) of model and data for different NFs, Number of

Students (m1) = 100, Number of Units (m5) = 30, Number of Lecturers (m7) = 15,

L = 300

#H (first part’s length) #A (second part’s length) total message length

1NF 10.22 14210 14220

2NF 36.45 8150 8186

3NF 46.26 7876 7922

To illustrate this point graphically, in figure 1 we see the effect on encoding
length by varying and increasing L and the number of students (m1). If each
student is only taking one unit (m1 = m5), 2NF will not be beneficial even if
the number of students is increased from 10 to say 10000. This is depicted in
figure 1(a). Because L = m1 and there is insufficient data to infer the partial
dependencies required for 2NF, the original 1NF table is adequate for 2NF. In-
deed, enforcing the premature creation of (superfluous) tables (enforced 2NF)
can understandably be seen to increase the message length. Despite this, the
transitive dependencies of Stud-ID → Lect-No → Lect-Name (with m1 > 2m7)
result in message length improvements when we go to 3NF. Taking the unneces-
sarily enforced 2NF is improved by then converting it to 3NF. But best of all is
to take the original 1NF table as our 2NF (as there is insufficient data to suggest
otherwise) and then convert this to 3NF. Figure 1(a) bears out this analysis.

As can be seen from figure 1(b) (of which the total message length in table 9
is a special case with m1 = 100 and L = 3m1 = 300), normalization from 1NF
to 2NF is really beneficial as students enrol in more than one unit. The emphatic
message length benefits visible in figure 1(b) in going from 1NF to 2NF are most
probably to be expected, with the pronounced benefit of normalization being
self-evident when the number of students (enrolling in more than one unit) is
large. The transitive dependency that we observed in figure 1(a) applies again
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Fig. 1. Variation in total message length (I) by varying number of students (m1) and

L for different NFs. The number of Units (m5) is set to 30 and the number of Lecturers

(m7) is set to 15. 1(a): L = m1, 1(b): L = 3m1.

here (with m1 ≥ 50 > 2m7 = 30) as the number of students (m1) and their
enrolments increases, whereupon MML again prefers the 3NF model.

5 Conclusion and Future Work

We have presented database normalization as a consequence of MML inference.
With an example, we demonstrated a typical normalization procedure and ana-
lyzed the process using the MML framework. We found that with higher NFs,
the model is likely to become more complicated, but the data encoding length
is decreased. If there is a relationship or dependency in the data (according to
database normalisation principles), then - given sufficient data - MML will find
this. This suggests that normalization is - in some sense - simply following MML.

Though we have limited ourselves here to 1st, 2nd and 3rd normal forms (NFs),
applying MML can also be shown to lead to higher NFs such as Boyce-Codd Nor-
mal Form (BCNF), 4NF and 5NF. Indeed, recalling the notion of MML Bayesian
network (see, e.g., [7, sec. 7.4][8][9, sec. 0.2.5 and footnotes 53, 75 & 218][10]),
normalizing and breaking down tables into new tables can be thought of as a
(MML) Bayesian net analysis - using the fact that (in some sense) databases
could be said to have no noise. And, in similar manner, (the notion of) attribute
inheritance (where different types of employee - such as pilot and engineer - have
their own specific attributes as well as inheriting common employee attributes)
can also be inferred using MML. General statistical consistency results (see, e.g.,
[8, sec. 11.3][9, secs. 0.2.3 - 0.3.1][12, pp436-437][10, sec. 5.2]) appear to guaran-
tee that - given sufficiently large data-sets and sufficient search time - MML will
converge upon the data generation process, whatever it is, whatever the appro-
priate (possibly previously unseen) normalization (or regularities). Our initial
results here provide clear supporting evidence of this claim.
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Abstract. We study the problem of clustering uncertain objects whose

locations are uncertain and described by probability density functions.

We analyze existing pruning algorithms and experimentally show that

there exists a new bottleneck in the performance due to the overhead

while pruning candidate clusters for assignment of each uncertain object

in each iteration. We further show that by considering squared Euclidean

distance, UK-means (without pruning techniques) is reduced to K-means

and performs much faster than pruning algorithms, however, with some

discrepancies in the clustering results due to the different distance func-

tions used. Thus, we propose Approximate UK-means to heuristically

identify objects of boundary cases and re-assign them to better clusters.

Our experimental results show that on average the execution time of Ap-

proximate UK-means is only 25% more than K-means and our approach

reduces the discrepancies of K-means’ clustering results by more than

70% at most.

Keywords: clustering, uncertain objects, UK-means.

1 Introduction

In this paper, we consider the problem of clustering objects with multi-dimensional
uncertainty where an object is represented by an uncertain region over which a
discrete probability distribution function (PDF) or a probability density function
(pdf) is defined. Formally, we consider a set of n objects oi, 1 ≤ i ≤ n in an
m-dimensional space. An object oi is represented by a pdf fi: IRm → IR (IR
represents real number space) that specifies the probability density of each pos-
sible location of object oi. The goal of clustering is to group these objects into K
clusters so that the sum of expected Euclidean distances (EED) [2] between the un-
certain objects and their cluster centers is minimized. Thus, suppose C(oi) = cj

represents that object oi is assigned to cluster cj , and pC(oi) is the cluster’s rep-
resentative point, we want to find the K cluster representatives such that the
objective function

∑n
i=1 EED(oi, pC(oi)) =

∑n
i=1(

∫
fi(x)ED(x, pC(oi))dx) is

minimized where ED is the Euclidean distance function.
UK-means [2] is a generalization of the traditional K-means algorithm to

handle uncertain objects whose locations are represented by pdfs. For arbitrary
pdfs, the bottleneck of UK-means is the calculations of expected distance, which

J. Li (Ed.): AI 2010, LNAI 6464, pp. 92–101, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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are computationally expensive. Our contributions of this paper include (i) af-
ter applying the analytic solution in [12] to reduce UK-means to K-means, we
experimentally show that K-means performs much faster than existing pruning
algorithms proposed in [9,5] with some discrepancies in the clustering results
due to the different distance functions used; and (ii) we propose Approximate
UK-means to heuristically identify objects of boundary cases and re-assign them
to better clusters. Our experimental results show that on average the execution
time of Approximate UK-means is only 25% more than K-means (while prun-
ing algorithms are 300% more) and our approach reduces the discrepancies of
K-means’ clustering results up to 70% .

The rest of the paper is organized as follows. Section 2 briefly describes re-
lated work. In Section 3, we introduce expected squared Euclidean distance, and
propose a heuristic Approximate UK-means algorithm. Section 4 demonstrates
the efficiency and effectiveness of our method by extensive experiments. Finally,
Section 5 concludes the paper.

2 Related Work

Pruning techniques were proposed to improve the efficiency of UK-means by
reducing unnecessary expected distance calculations. In MinMax-BB [9], each
object oi has a minimum bounding rectangle (MBR)1 outside which the ob-
ject has zero (or negligible) probability of occurrence. The minimum distance
(MinDisti,j) and the maximum distance (MaxDisti,j) are calculated to prune
unnecessary expected distance calculations. The overhead of MinMax-BB in-
cludes the time of MinDisti,j and MaxDisti,j calculations. VDBi [5] is another
pruning method using Voronoi diagrams [3] to consider the spatial relationships
among cluster representatives and is more efficient than MinMax-BB by us-
ing Voronoi-cell pruning and bisector pruning. The overhead of VDBi includes
the time of Voronoi diagrams construction, Voronoi-cell pruning and bisector
pruning. The pruning methods can be more efficient with the use of cluster-shift
technique. The additional overhead of SHIFT technique includes the time of clus-
ter representative shift calculation between two consecutive iterations. Although
the pruning techniques have reduced most of expected distance calculations, it is
still expensive to use these pruning techniques for each object in each iteration.
Thus, the pruning process becomes a new bottleneck.

Recently, there have been studies on density-based clustering of uncertain
data. FDBSCAN [6] and FOPTICS [7] are based on DBSCAN [4] and OPTICS
[1] respectively to handle density-based clustering of uncertain objects. A related
area of research is fuzzy clustering [10]. While their work focuses on creating
fuzzy clusters, our work is developed for clustering based on the uncertain model
of objects, in which each object is uncertain about its location but each object
must belong to one certain cluster.
1 The pruning techniques in [9,5] require that for each object oi, the uncertain region

Ai of each object oi is finite, i.e. ∀x �∈ Ai, fi(x) = 0. Thus, each object can be

bounded by a finite bounding box.
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3 Clustering Uncertain Objects with Expected Squared
Euclidean Distance

The bottlenecks of uncertain object clustering are expected distance calculation
and pruning of candidate clusters. However, by considering squared Euclidean
distance (instead of Euclidean distance as in UK-means), UK-means can be
reduced to K-means (so, no pruning of clusters is necessary) [8], which is run-
ning much faster with some discrepancies in the clustering results as shown in
the experimental section. In Section 3.2, we will introduce our ”Approximate
UK-means” which heuristically identifies objects on the boundary cases and re-
assigns them to better clusters in order to reduce the discrepancies in clustering
results.

3.1 Reduce UK-means to K-means

An uncertain object can also be represented as a set of points, each of which
is a possible location of object oi [9,12,5]. As Figure 1(a) shows, the uncertain
domain is divided into a number of grid cells. Each grid cell represents a possible
location of the uncertain object oi. The expected Euclidean distance (EED)
from object oi (represented by a pdf fi) to the cluster representative pcj is
the weighted average of the distances between the samples in oi and pcj , i.e.
EED(oi, pcj ) =

∑T
t=1 Fi(si,t)ED(si,t, pcj ), where T is the number of samples in

oi, si,t is the location (vector) of the tth sample of oi, pcj is the location (vector)
of representative of cluster cj , Fi is a discrete probability distribution function
over T grid cells, and the metric ED is Euclidean distance used in [9,5,2].

By using expected squared Euclidean distance, [8] shows that UK-means al-
gorithm can be reduced to K-means. In the following, we are going to show
another derivation by applying the analytic solution in [12]. We will first define
the mean vector and the trace of covariance matrix of an uncertain object given
its samples as follows. Suppose si is a m × 1(m is the number of dimensions)
mean vector of an uncertain object oi, which is the weighted mean of all T sam-
ples (or possible locations) in the object. Formally, si =

∑T
t=1 si,t × Fi(si,t).

Suppose Σi is a m × m covariance matrix of samples of object oi. trace(Σi)
is the sum of all diagonal elements in Σi. On the other hand, trace(Σi) can
also be expressed as: trace(Σi) =

∑T
t=1 ||si,t − si||2 × Fi(si,t), where si,t rep-

resents the tth sample of object oi. In [12], the expected squared Euclidean
distance (ESED) between two uncertain objects oi and oj can be obtained by
ESED(oi, oj) = ||si − sj ||2 + trace(Σi) + trace(Σj). Consider ESED between
object oi and a cluster representative pcj . Since pcj is a certain point, so sj = pcj

and trace(Σj) = 0, and we can obtain ESED(oi, pcj ) = ||si−pcj ||2 + trace(Σi).
It is obvious that we can preprocess the uncertain objects and obtain their

si and trace(Σi) in the beginning so that ESED between any object oi and
any cluster representative pcj can be readily obtained. Given an uncertain ob-
ject oi, to find the closer one out of two cluster representatives pcj and pck

, we
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could calculate the difference between their ESED from oi: ESED(oi, pck
) −

ESED(oi, pcj) = (||si − pck
||2 + trace(Σi))− (||si − pcj ||2 + trace(Σi)) = ||si −

pck
||2 − ||si − pcj ||2. As a result, it is no longer necessary to calculate trace(Σi)

of uncertain objects. Instead of calculating ESED, we only need to calculate the
Means’ Squared Euclidean distance (MSED) between uncertain object oi and
cluster representative pcj as follows: MSED(oi, pcj ) = ||si − pcj ||2. Moreover,
in our algorithm, cluster representatives pcj are obtained by pcj = 1

|cj|
∑|cj|

i=1 si,
where |cj | is the number of objects assigned to cluster cj .

3.2 Approximate UK-means

K-means uses squared Euclidean distance while UK-means uses Euclidean dis-
tance. It is not surprising that the clustering results of K-means will deviate
from those of UK-means. Figure 1(b) gives an example of discrepancy between
different distance functions. Assume an uncertain object has two samples in two
grid cells and the probabilities of these two samples are equal. The uncertain
object is assigned to cluster c1 if the expected distance is used (1+5

2 < 3+4
2 ).

However, it is assigned to cluster c2 if the expected squared distance is used
instead (12+52

2 > 32+42

2 ). Otherwise, the orders of expected distances between
each object and clusters are the same as those of expected squared distances.
Figure 1(c) gives an example of the same clustering result. The assumption of
this case is the same as that of Figure 1(b). The uncertain object is assigned to
cluster c1 if the expected distance is used (1+2

2 < 3+4
2 ), and it is also assigned

to cluster c1 if the expected squared distance is used instead (12+22

2 < 32+42

2 ).

Definition of Boundary Case. pcm and pcq are two closest cluster repre-
sentatives of object oi. averageMSED (Means’ Squared Euclidean Distance) is
the average of MSED(oi, pcm) and MSED(oi, pcq). Assume MSED(oi, pcm) <
MSED(oi, pcq), if MSED(oi, pcq) ≤ β × averageMSED, it means that the two
MSED from the two closest cluster representatives are so close and oi is on the
boundary of cluster cm and cq. We notice that objects assigned to a cluster that
is different from another algorithm are likely on the boundary of clusters. There-
fore, we propose a heuristic called Approximate UK-means. The basic idea of
the heuristic is picking out boundary objects oi and re-assigning them in the
first iteration. Algorithm 1 shows the algorithm, where n is the number of ob-
jects, and K is the number of clusters. If object oi is boundary case, we calculate
the expected Euclidean distances from oi to pcm and pcq and assign oi to the
closest cluster. The above is only done in the first iteration because we
observed that the assignment of objects in the first iteration is the
most important, which will greatly affect the later iterations due to
the shift of cluster representatives. In the heuristic, we only consider the
uncertain objects that are on the boundaries of two clusters. Another factor β
affects the improvement in clustering result discrepancies by identifying bound-
ary cases. If the value of β can pick out boundary cases as many as possible, the
discrepancies can be reduced a lot. In experiments, we set β from 0.7 to 1. When
β is 1, the algorithm is reduced to K-means. In fact, experimental results in the
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...io jcp

(a)

Fig. 1. (a) Expected distance calculation from oi to pcj in [9,5,2] (b) An example of

the cause of discrepancy (c) An example of the same clustering result

Algorithm 1. Approximate UK-means
1: randomly initialize all cluster representatives (reps) pcj ;

2: for i=0; i < n; i++ do
3: precompute the mean vector si of object oi;

4: end for
5: repeat
6: for i=0; i < n; i++ do
7: for j=0; j < K; j++ do
8: compute Means’ Squared Euclidean Distance MSED(oi, pcj ) = ||si−pcj ||2;
9: end for

10: if this is the first iteration then
11: let pcm and pcq be the 1st and 2nd closest cluster reps by MSED;

12: averageMSED := (MSED(oi, pcm) + MSED(oi, pcq ))/2;
13: if MSED(oi, pcm) ≤ β × averageMSED then
14: assign object oi to cluster cm;

15: else
16: compute oi’s expected Euclidean distances from pcm and pcq , and assign

oi to cluster with smaller EED;

17: end if
18: else
19: assign object oi to cluster cm where pcm is the closest cluster rep by MSED;

20: end if
21: end for
22: update all cluster reps pcj by pcj = 1

|cj |
∑|cj |

i=1 si;

23: until all cluster reps converge

next section show that this heuristic can significantly reduce the discrepancies of
clustering results by 70% at most compared with K-means with only 25% more
execution time.

4 Experimental Evaluation

In this section, we evaluate Approximate UK-means experimentally by com-
paring it with K-means and pruning UK-means (MinMax-SHIFT and VDBi-
SHIFT). Section 4.1 compares their execution time and Section 4.2 compares
their clustering results. All algorithms were written in Java 1.5 and were run
on a Linux machine with an Intel 2.5GHz Pentium(R) Dual-Core processor and
8GB of main memory.
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Table 1. Parameters for experiments using random data sets

Parameter Description Baseline Value

n number of uncertain objects 20000

K number of clusters 50

T number of samples per object 196

S maximum size of MBR, S × S 5

mindis minimum distance between two clusters 2

D number of dimensions 2

σ standard deviation of Gaussian distribution 16

4.1 Execution Time

Random data sets and Gaussian data sets: For ease of comparison with
previous work like [5,9,11] which used synthetic data sets only, we generated 125
random data sets for the experiments. For each data set, a set of n uncertain
objects represented by MBRs with size 5×5 was randomly generated in 2D space
[0, 100] × [0, 100]. An MBR is divided into

√
T ×

√
T grid cells. Each grid cell

corresponds to a sample. Each sample is associated with a randomly generated
probability value. All probabilities in an MBR are normalized to have their sum
equal to 1. For each data set, a set of K cluster representatives was randomly
initialized and was repeatedly used in all experiments on the same data set. This
is to eliminate variations in the results due to the uses of different sets of initial
cluster representatives. To make the clustering results more reasonable, we also
generated 125 data sets with Gaussian distribution. The n uncertain objects in a
data set were equally grouped into K clusters. For each cluster, the centers of n

K
uncertain objects were generated from a Gaussian distribution, whose mean and
standard deviation equal to the cluster center and σ respectively. The cluster
center was randomly generated and was restricted to have a minimum distance
mindis with other cluster centers. The parameters used for the experiments are
summarized in Table 1. For each set of parameters, a set of five experiments
was run on five different randomly generated data sets. Each experiment was
repeated on the four algorithms. The average value of 5 runs on each algorithm
was taken and reported.

Varying Sample Number: We varied the sample number T per object from
100 to 900. The other parameters were kept at baseline values. Figure 2 shows
the execution time of the four algorithms on random data sets. Figure 2(a) shows
that the total execution time of all four algorithms increases as sample number T
increases on random data sets. However, Approximate UK-means runs almost
as fast as K-means and its execution time grows much slower than MinMax-
SHIFT and VDBi-SHIFT. The significant improvement in the performance of
Approximate UK-means is due to two reasons: (i) the distance calculations are
done much faster (Figure 2(b)), and (ii) the overhead is much reduced as no
pruning is necessary (Figure 2(c)). Figure 2(b) also shows that the (expected)
distance calculation time does not change a lot with sample number because
MSED calculation does not depend on sample number, and the expected distance
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Fig. 2. (a) Total clustering time with varying T on random data sets (RDS) (b) (Ex-

pected) distance calculation time with varying T on RDS (c) Overhead time with

varying T on RDS
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Fig. 3. (a) Total clustering time with varying K on RDS (b) (Expected) distance

calculation time with varying K on RDS (c) Overhead time with varying K on RDS

calculation in the first iteration is only a minor cost. The case of Gaussian data
sets with varying T is similar to Figure 2. The execution time with varying n
and S on random and Gaussian data sets is much similar to that of varying T
on both data sets, so we do not show it here because of page limitation.

Varying Cluster Number: We varied the cluster number K from 10 to 100.
The other parameters were kept at baseline values. Figure 3 shows the execution
time of the four algorithms on random data sets. Figure 3(a) shows that the
total execution time of all four algorithms grows as K increases. However, Ap-
proximate UK-means almost spends the same time as K-means and its execution
time grows much slower than MinMax-SHIFT and VDBi-SHIFT. The distance
calculation in Approximate UK-means is more efficient than that in pruning
techniques (Figure 3(b)). The overhead time of Approximate UK-means is not
related to K while the overhead time of pruning techniques grows linearly with
K (Figure 3(c)). The case of Gaussian data sets with varying K is similar to
Figure 3, so we do not show it here because of page limitation.

Varying Dimension Number: We varied the dimension number D from 2
to 6 on random data sets. The other parameters were kept at baseline values.
Figure 4 shows the execution time of the four algorithms on random data sets.
Figure 4(a) shows that the total execution time of all algorithms increases as
D increases. Approximate UK-means runs almost as fast as K-means and its
execution time grows much slower than MinMax-SHIFT and VDBi-SHIFT. The
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Fig. 4. (a) Total clustering time with varying D on RDS (b) (Expected) distance

calculation time with varying D on RDS (c) Overhead time with varying D on RDS
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Fig. 5. (a) Total clustering time with varying σ on Gaussian data sets (GDS) (b)

(Expected) distance calculation time with varying σ on GDS (c) Overhead time with

varying σ on GDS

significant improvement in the performance of Approximate UK-means is due to
two reasons: (i) the distance calculations are done much faster in low dimension
space (Figure 4(b)), and (ii) the overhead is much reduced as no pruning is
necessary (Figure 4(c)).

Varying σ: We varied the standard deviation σ per cluster from 8 to 40 on
Gaussian data sets. The other parameters were kept at baseline values. Figure 5
shows the execution time of the four algorithms on Gaussian data sets. Figure
5(a) shows that the total execution time of all algorithms does not increase as
σ increases, and the execution time in Approximate UK-means and K-means is
much fast than that of MinMax-SHIFT and VDBi-SHIFT, because Figure 5(b)
and (c) show that the time of distance calculation and overhead in Approximate
UK-means and K-means is much faster then that of pruning techniques. In
Figures(c), the overhead time used for pruning in MinMax-SHIFT
and VDBi-SHIFT occupies a large part of total execution time, which
is the new bottleneck of pruning UK-means, and the overhead time
in Approximate UK-means are all the same for different β values.

4.2 Clustering Results

Discrepancy is used to measure the difference of clustering results of clustering
algorithm A with respect to another clustering algorithm B based on purity.
Purity is the maximum probability that a cluster in algorithm A contains objects
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Fig. 6. (a) Discrepancy of Approximate UK-means and K-means (b) reduction in dis-

crepancy of clustering results of the Approximate UK-means on RDS as β varies
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Fig. 7. (a) Discrepancy of Approximate UK-means and K-means (b) reduction in dis-

crepancy of clustering results of the Approximate UK-means on GDS as β varies

of the same cluster from algorithm B. The purity of cluster ci is defined as
probi = max

j
probij = max

j

nij

ni
where probij is the probability that a member of

cluster ci in algorithm A belongs to cluster cj in algorithm B, ni is the number of
objects in cluster ci in algorithm A, and nij is the number of objects of cluster cj

(in algorithm B) within these ni objects. The overall purity of clustering result
of algorithm A is described as purity =

∑K
i=1

ni

n probi, where K is the number of
clusters, n is the number of uncertain objects, and the range of purity is [0, 1].
Finally we define discrepancy = 1 − purity. It is emphasized that there is
no “true” or “correct” clustering result because even the K-means
running on traditional certain objects may give different clustering
results by using different distance metrics. In fact, the discrepancy
between the results of UK-means and K-means is due to the different
distance metrics used. It does not mean that the clustering result by
K-means is wrong. Therefore, here we would like to only point out
the changes that K-means may bring to UK-means (given the same
seeds) and also how much Approximate UK-means may reduce these
changes. For each comparison, we ran Approximate UK-means with different
β values ranging from 0.7 to 1 to study the effect of β on the discrepancy.
Note that when β equals 1, Approximate UK-means is reduced to K-means.
We show effect of Approximate UK-means with varying different parameters on
some values in Figure 6 and Figure 7. Figure 6(a) and Figure 7(a) show the
discrepancy between the clustering results of Approximate UK-means and UK-
means with respect to pruning UK-means. Figure 6(b) and Figure 7(b) show the
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reduction in discrepancy of Approximate UK-means with respect to K-means.
The figures show that the reduction is stable as β decreases. We can see from
the Figures that the discrepancy can be reduced by Approximate UK-means,
and the reduction can be up to 70%.

5 Conclusion

In this paper, we studied the problem of clustering objects whose locations are
presented by probability density functions (pdf). Our experiments show that
K-means by using squared Euclidean distance is much faster than UK-means
which generates cluster results with discrepancies from the original clustering
results of UK-means, which can be reduced by Approximate UK-means.
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Abstract. In text categorization, different supervised term weighting

methods have been applied to improve classification performance by

weighting terms with respect to different categories, for example, Infor-

mation Gain, χ2 statistic, and Odds Ratio. From the literature there are

three term ranking methods to summarize term weights of different cate-

gories for multi-class text categorization. They are Summation, Average,

and Maximum methods. In this paper we present a new term ranking

method to summarize term weights, i.e. Maximum Gap. Using two dif-

ferent methods of information gain and χ2 statistic, we setup controlled

experiments for different term ranking methods. Reuter-21578 text cor-

pus is used as the dataset. Two popular classification algorithms SVM

and Boostexter are adopted to evaluate the performance of different term

ranking methods. Experimental results show that the new term ranking

method performs better.

1 Introduction

The task of text categorization is to assign unlabelled documents to predefined
categories (topics or themes) according to their contents. Due to the growth
in the volume of electronic documents, text categorization has been widely re-
searched and applied in organizing as well as in finding information on the huge
electronic resources.

Term weighting is an important issue for text categorization. In recent years,
we have witnessed an increasing number of term weighting methods published.
[1] classify the term weighting methods into two categories according to whether
the method makes use of known information on the membership of training
documents or not, namely, supervised term weighting methods and unsupervised
term weighting methods. For example, tf and tf-idf [2] weighting methods belong
to the unsupervised term weighting methods; information gain, χ2 statistic, and
odds ratio [3,4] are classified as supervised term weighting methods.

Although different approaches have been explored [4], not much attention
has been paid towards specific class-oriented and local, context-dependent filters
[5]. In particular, for multi-class text categorization, after being weighted by
certain weighting methods, for example, information gain, term weights need to
be summarized in to a single weight according to different categories.

J. Li (Ed.): AI 2010, LNAI 6464, pp. 102–111, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



A New Supervised Term Ranking Method for Text Categorization 103

The literature indicates that there are only three methods to summarize term
weights. The most common method is called the Summation method [3,6], which
sums up all terms’ weights with respect to all categories. We denote this method

by fsum(ti) =
c∑

k=1

f(ti, ck), where f(ti, ck) denotes term ti’s weight with respect

to category ck. [4] employ two other methods. One is the average weight of term

ti with respect to all categories, denoted by favg(ti) =
c∑

k=1

P (ck)f(ti, ck), where

P (ck) is the proportion of documents belong to category ck in the whole corpus.
The other is the Maximum method fmax(ti) =

c
max
k=1

{f(ti, ck)}, which ranks

terms according to their maximum weights across all categories. Among these
three methods, [6] prefer the salient terms which are unique from one category
to another, that is the Maximum approach. [3] also declare that the Maximum
method outperformed both the Summation method and the Average method,
but the experimental results are not given. Therefore, a question arises here, “
Can we perform extensive experimental comparison of these methods, moreover,
can we propose a better method than these existing ones?”

In our research, based on existing supervised term weighting methods, we
propose a new term ranking method, the Maximum Gap. We illustrate by con-
crete example that this method can better distinguish those terms which can
better differentiate one or more categories from the others than some existing
ones, namely, the Summation, Maximum, and Average methods (see [3,6,4]). We
conduct a series of comparative experiments on the Reuter-21578 text corpus.
SVM and Boostexter are adopted as the learning algorithms. Average precision
is used as the evaluation method. In our numerical experiments, Maximum Gap
outperforms the other three term ranking methods.

This paper is organized as follows: In Section 2 we survey the existing term-
category weighting methods and term ranking methods, then we propose a new
term ranking method. In Section 3 we describe the detailed experimental set-
tings. In Section 4 we report experimental results and discussion. We conclude
in Section 5.

2 A New Feature Ranking Method

In this section, we review existing term weighting methods (information gain
and χ2 statistic) as well as term ranking methods (Summation, Maximum, and
Average methods), introduce a new term ranking method for text categorization,
and provide an example to demonstrate the effectiveness of the new method on
Reuter-21578 text corpus.

2.1 Term-Category Weighting

Over the years, a number of methods have been developed to measure the dis-
criminating power of various terms with respect to different categories, such as
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information gain, odds ratio, and χ2 statistic. In this research, we discuss in-
formation gain and χ2 statistic, which have been shown to be effective for text
categorization [4].

For term ti and class ck, the general functions of information gain and χ2

statistic can be shown as:

IG(ti, ck) = P (ti, ck) log
P (ti, ck)

P (ti)P (ck)
+ P (ti, ck) log

P (ti, ck)
P (ti)P (ck)

(1)

χ2(ti, ck) =
n[P (ti, ck)P (ti, ck)− P (ti, ck)P (ti, ck)]2

P (ti)P (ti)P (ck)P (ck)
(2)

where P (ti, ck) denotes the probability a document is from category ck when
term ti occurs at least once in it, P (ti, ck) denotes the probability a document
is not from category ck when term ti occurs at least once in it, P (ti, ck) denotes
the probability a document is from category ck when term ti does not occur in
it, P (ti, ck) denotes the probability a document is not from category ck when
term ti does not occur in it, n denotes the number of documents.

Text categorization problems on multi-class datasets can be simplified into
multiple independent binary classification problems. In each experiment, a cho-
sen category ck can be tagged as 1, and the other categories in the same corpus
are combined together as 0. A contingency table (see Table 1) can be used to
record the number of documents which contain term ti and do not contain term
ti under category ck and ck, and the sum of these four elements, n, is the number
of documents of the dataset.

Table 1. The contingency table for category ck and term ti

ti ti

Positive Category: ck a b

Negative Category: ck c d

Notation:
a: Number of documents in class ck that contain term ti

b: Number of documents in class ck that do not contain term ti

c: Number of documents in class ck that contain term ti

d: Number of documents in class ck that does not contain term ti

[6] use these four elements in Table 1 to estimate the probabilities in formula
(1) and (2). The functions of information gain and χ2 are rewritten as:

IG(ti, ck) =
a

n
log

an

(a + b)(a + c)
+

c

n
log

cn

(c + b)(a + c)
(3)

χ2(ti, ck) =
n(ad− bc)

(a + c)(b + d)(a + b)(c + d)
(4)
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2.2 Maximum Gap

The formulas (3) and (4) define weights for each term ti according to different
categories ck, k = 1, · · · , c. We denote these weights by f(ti, ck). In this paper,
two cases will be considered: fig(ti, ck) = IG(ti, ck) and fχ2(ti, ck) = χ2(ti, ck).
To rank all the terms, we need to define a weight for each term ti with respect to
all categories. As mentioned before we will investigate three different methods –
Maximum, Summation, and Average methods defined by: (see [3,6,4])

fmax(ti) =
c

max
k=1

{f(ti, ck)} (5)

fsum(ti) =
c∑

k=1

f(ti, ck) (6)

favg(ti) =
c∑

k=1

P (ck)f(ti, ck) (7)

In this section, we propose a new term ranking method that will be called Maxi-
mum Gap (MG). Unlike the above approaches, this method aims to distinguish,
in terms of weights, those terms which can better differentiate one or more cat-
egories from the others.

First, we organize term i’s weights {f(ti, ck)}c
k=1 as follows:

f(ti, ck1) ≥ f(ti, ck2) ≥ · · · f(ti, ckc)

then the Maximum Gap of term ti is defined as

fmg(ti) =
c−1
max
j=1

{f(ti, ckj)− f(ti, ckj+1)} (8)

In the following example, we demonstrate why MG might be more efficient than
the other three methods.

Example: From Reuter-21578 corpus, we select the top 30 terms selected by
different term ranking methods. For both clarity and briefness, we only compare
Maximum Gap and Maximum methods, where terms are weighted by informa-
tion gain. The Maximum method is chosen because it is accepted that (see for
example, [3]) this method is better compared to Summation and Average meth-
ods. Note that our experimental results in Section 4 also support this opinion.

Among the top 30 selected terms ranked by Maximum Gap and Maximum
methods respectively, Table 2 lists 14 terms that are not selected by the opposite
term ranking method (those 23 terms selected by both methods are omitted).

It can be seen that the terms exclusively selected by the Maximum Gap
method are more closely related to the top 10 categories (see Table 2) than
those terms that selected by Maximum method. For example, us (this refers
to us or USA), the, central, and note selected by Maximum method are less
related to the top 10 categories, while all terms selected by Maximum Gap
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Table 2. Terms exclusively selected by Maximum Gap and Maximum term weighting

methods out of top 30 terms. The top10 categories of Reuter-21578 are acq, corn, crude,

earn, grain, interest, money-fx, ship, trade, and wheat.

Maximum Maximum Gap

1 us surplu

2 the petroleum

3 market acquisit

4 loss bui

5 export tariff

6 central yen

7 note energi

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02

3.50E-02

4.00E-02

4.50E-02

5.00E-02

earn trade grain corn wheat money-fx crude ship acq interest

category

w
ei

gh
t

Fig. 1. Term-Category weights (calculated by information gain, Equation 3) of term

“us” in Reuter-21578 top 10 categories (ordered by weights)

method are closely related to the top 10 categories. Here we should note that
the selected terms have been stemmed by Porter Stemmer [7], for example, the
original spelling of surplu, bui, and energi are surplus, buy, and energy.
This concrete example can give us a direct explanation why Maximum Gap
method might be better than Maximum method.

To provide insight into the performance of Maximum Gap, as an example we
investigate the weights fig(ti, ck) of term us and term yen1, with respect to
the top 10 categories. These two terms are selected respectively by Maximum
method and Maximum Gap method. Fig. 1 and 2 lists the sorted weights of
us and yen with respect to top 10 categories. Compared with term us, the

1 In the data set, term us appears 6216 times representing the United State (U.S.)
(5767 times), the US Dollar (171 times), and the word us (278 times) respectively.

Term yen appears 629 times, which stands for Japanese currency only. It is clear that

yen is a more predictable term, which is highly related to the category Money Foreign

Exchange (money-fx), while term us appears frequently almost in all categories (See

Figure 1, and Figure 2).
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Fig. 2. Term-Category weights (calculated by information gain, Equation 4) of term

“yen” in Reuter-21578 top 10 categories (ordered by weights)

Maximum Gap of term yen is bigger, but Maximum, Summation, and Average
values are smaller. This is why term us is selected by Maximum, while term yen
is selected by Maximum Gap.

3 Experiments

In this section, we describe the relevant details related to our experiments.

Dataset: In this controlled experiment, Reuter-21578 [8] is adopted as the
benchmark dataset. In particular, the documents of the top 10 topics are ex-
tracted, from which 9393 related documents out of 21578 documents are ex-
tracted. Taking into account a large number of documents (9393) in the data
set, we use 4-fold cross validation for the purpose of evaluation. Because docu-
ments are multilabel, we arrange these folds as follows. The first step, we consider
all the combinations of multi-labeled classes and partition them based on the
classes they belong to. The second, we fold each of the partitions, rather than
the entire dataset, so that we could always keep the pattern for a particular
classs combination from the testing set in the training set.

Learning Algorithms: In terms of learning algorithms, SVM and Boostexter
are selected. For SVM, we use Chih-Jen Lin’s LIBSVM (see [9]). Boostexter (see
[10]) is based on the Boosting concept in Machine Learning. It has been proved
as one of the most efficient classification algorithms and widely applied in many
areas. Both SVM and Boostexter have shown competitive performance on text
categorization [11,10].

Supervised Term Weighting Methods: In our experiment, we select two
methods to weight the terms across different categories, namely information
gain given by Equation (3) and the χ2 statistic given by Equation (4). These
methods have been shown effective and suitable for text categorization [4].
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Performance Evaluation: In general, recall, accuracy or confusion matrix are
used to evaluate the performance of the classification. These approaches are com-
monly used for binary or multiclass classification, where correct or not correct
results can be evaluated without difficulty. According to multilabel classification
problem, the ranking information of the predicted labels are also need to be con-
sidered. Average precision [12,10] is an evaluation method that are designed for
multilabel classification problems, where the degree of accuracy can be measured
by a single number that is more convinient for comparison purposes. Average
precision is a performance measure previously used for evaluation of informa-
tion retrieval (IR) systems [13]. In our experiments, we use a modified Average
Precision (see [14]).

Given classifier (h,H) , predicted labels are denoted by H(x) , actual labels
are denoted by Y(x) . Let Y (x) = {l ∈ {1, . . . , c} : Yl(x) = 1} be the set
of actual labels of document x and H(x) = {H1(x), · · · ,Hc(x)} be predicted
labels. We denote by T (x) the set of all ordered labels τ = {i1, . . . , ic}
satisfying the condition

Hi1(x) ≥ . . . ≥ Hic(x);

where ik ∈ {1, . . . , c} and ik �= im if k �= m.
In the case, when the numbers Hi(x), i = 1, · · · , c, are different, there is

just one order τ satisfying this condition. But if there are labels having the
same value then we can order the labels in different ways; that is, in this case
the set T (x) contains more than one order.

Given order τ = {τ1, . . . , τc} ∈ T (x), we define the rank for each label
l ∈ Y (x) as rankτ (x; l) = k, where the number k satisfies τk = l. Then
Precision is defined as:

Pτ (x) =
1

|Y (x)|
∑

l∈Y (x)

|{k ∈ Y (x) : rankτ (x; k) ≤ rankτ (x; l)}|
rankτ (x; l)

.

Here, we use the notation |S| for the cardinality of the set S. This measure has
the following meaning. For instance, if all observed labels Y (x) have occurred
on the top of ordering τ then Pτ (x) = 1. Clearly the number Pτ (x) depends on
order τ. We define

Pbest(x) = max
τ∈T (x)

Pτ (x) and Pworst(x) = min
τ∈T (x)

Pτ (x),

which are related to the “best” and “worst” ordering. Therefore, it is sensible to
define the Precision as the midpoint of these two versions:

P (x) =
Pbest(x) + Pworst(x)

2
.

Average Precision over all records X will be defined as:

Pav =
1
|X |

∑
x∈X

P (x).
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4 Experimental Results

In this Section, we present the experimental results and compare the performance
of the four term ranking methods discussed above.

To compare the performance of different term ranking methods, we use filter
methods to select terms and test by SVM and Boostexter. We use Sn to denote
the set of the top n terms ranked by certain term ranking methods. In our
experiments, if a very small term subset is adopted, many documents of the
corpus can not be included in training and test sets. Different term weighting
methods can have different training and test subsets included, and they can not
be compared appropriately. Actually, in our experiments, the selected terms can
cover almost all the documents of our corpus if we have more than 20 terms
selected. We only select 9 groups of sequential term subsets from Reuter-21578
corpus S20 ⊂ S30 ⊂ S40 ⊂ S50 ⊂ S60 ⊂ S70 ⊂ S80 ⊂ S90 ⊂ S100.

The performance of four term ranking methods is shown in Table 3. Informa-
tion gain and χ2 statistic are used to weight terms across all categories respec-
tively. Therefore, we have four different combinations of term weighting methods
and text categorization algorithms shown in four columns in Table 3. The value
in the table is the average performance among 9 groups of term subsets. The
highest value according to different ranking methods is indicated by bold font.

In Table 4, 5, and 6, we make pairwise comparisons of different term ranking
methods. The numbers in the second and the third columns of Table 4, 5, and 6
describe how many groups of term subsets show better evaluation performance.

Table 3. Terms are weighted by information gain and χ2 statistic respectively. SVM

and Boostexter are adopted as text categorization algorithms. Text categorization per-

formances are evaluated by average precision. The average performance of 9 groups of

term subsets are calculated according to four term ranking methods.

IG-SVM χ2-SVM IG-Boostexter χ2-Boostexter

mg 93.751 93.264 95.345 95.121

max 93.601 93.058 95.226 94.782

sum 93.128 92.395 94.923 94.493

avg 92.397 93.131 94.039 95.120

Table 4. Pairwise comparison of Maximum Gap and Maximum on 9 different term

sets. 2 different term weighting methods (IG and χ2 statistics) and 2 categorization

algorithms (SVM and Boostexter) applied. In total, Maximum Gap perform better in

25 cases out of 36.

Maximum Gap Maximum

IG-SVM 5 4

IG-Boostexter 7 2

χ2-SVM 6 3

χ2-Boostexter 7 2

total 25 11
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Table 5. Pairwise comparison of Maximum Gap and Summation on 9 different term

sets. 2 different term weighting methods (IG and χ2 statistics) and 2 categorization

algorithms (SVM and Boostexter) applied. In total, Maximum Gap perform better in

34 cases out of 36.

Maximum Gap Summation

IG-SVM 8 1

IG-Boostexter 9 0

χ2-SVM 8 1

χ2-Boostexter 9 0

total 34 2

Table 6. Pairwise comparison of Maximum Gap and Average on 9 different term

sets. 2 different term weighting methods (IG and χ2 statistics) and 2 categorization

algorithms (SVM and Boostexter) applied. In total, Maximum Gap perform better in

27 cases out of 36.

Maximum Gap Average

IG-SVM 9 0

IG-Boostexter 5 4

χ2-SVM 9 0

χ2-Boostexter 4 5

total 27 9

In all of our controlled experiments, Maximum Gap outperforms other term
ranking methods in terms of the average performance of the 9 selected feature
subsets. In the pairwise comparison with the existing methods, Maximum Gap
method also performs very well. The only exception is the comparison with
Average method by χ2-Boostexter (see Table 6), but the difference between
them is very close (4 to 5).

5 Conclusion

We present a new term ranking method for text categorization that is called
Maximum Gap. This method is compared with three other similar methods:
Maximum, Summation, and Average methods. Numerical experiments are car-
ried out on the Reuter-21578 dataset. Experimental results show that the Maxi-
mum Gap outperforms other term ranking methods in selecting better terms for
the text categorization task.
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Abstract. In many real-world clustering problems, there usually ex-

ist little information about the clusters underlying a certain dataset.

For example, the number of clusters hidden in many datasets is usually

not known a priori. This is an issue because many traditional cluster-

ing methods require such information as input. This paper examines

a practical stochastic clustering method (PSCM) that has the ability

to find clusters in datasets without requiring users to specify the cen-

troids or the number of clusters. By comparing with traditional methods

(k-means, self-organising map and hierarchical clustering methods), the

performance of PSCM is found to be robust against overlapping clus-

ters and clusters with uneven sizes. The proposed method also scales

well with datasets having varying number of clusters and dimensions.

Finally, our experimental results on real-world data confirm that the

proposed method performs competitively against the traditional cluster-

ing methods in terms of clustering accuracy and efficiency.

Keywords: Data Clustering, Stochastic Clustering.

1 Introduction

Cluster analysis involves grouping data objects into clusters, having similar
objects within a cluster that maximises inter-cluster differences [4]. Many ap-
proaches have been proposed over the years. Traditional clustering methods,
such as K-Means [8], Self-Organizing Map (SOM) [6], and Hierarchical clus-
tering methods [5], are well-known. One key problem with many traditional
clustering methods is that they require the user to input information about the
cluster structure before a dataset can be analysed. This requirement is not prac-
tical because such information may not be available prior to cluster analysis. For
example, K-Means requires users to specify the number of clusters as an input
to the algorithm; but the number of clusters is often not known a priori.

This paper examines a practical stochastic clustering method (PSCM), a prac-
tical implementation of a General Stochastic Clustering Framework that has al-
ready been shown to outperform several Swarm-based Clustering methods [12].
This paper reports a study on the relative performance of PSCM with respect
to three popular traditional clustering methods.

J. Li (Ed.): AI 2010, LNAI 6464, pp. 112–121, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Unlike K-Means, PSCM does not require users to specify the number of clus-
ters before the clustering process. This method differs from SOMs [6] because
it does not use a map (or grid) in its formalism. Hence PSCM does not require
users to define parameters associated with the gird (e.g., grid size and the neigh-
bourhood function). PSCM is different from Hierarchical clustering because it
does not perform a deterministic search of similar clusters using predefined link-
age metric. Instead, data items are moved from one cluster to another using
a stochastic heuristic. As such, PSCM does not concern itself with measuring
inter-cluster similarity using linkage metric; thus it does not need to choose the
correct linkage metric in different situations.

The structure of this paper is as follows. We first review the traditional meth-
ods, and then we describe the PSCM algorithm. In our experiments, we show
that PSCM performs better than three traditional clustering methods. Finally,
we provide some discussions and conclude this paper.

2 Traditional Clustering Methods

This section gives a quick review of three traditional clustering methods; more
details of these methods can be found in many texts (e.g., [11]).

K-Means Clustering. K-Means [8] is an iterative algorithm that divides a
dataset into a pre-specified number of clusters (K). In each iteration, K-Means
assigns each item to its nearest cluster centre (or centroid) so as to minimise
the distance between each item and its centroid. Once all the items have been
assigned, the new centroids are computed again and the next iteration repeats
the same process of assigning the items to their nearest centroids. K-Means stops
when the centroids stop changing.

K-Means is simple and has been used in various applications. For example,
in Bioinformatics, K-Means was used to identify transcriptional sub-networks in
yeast [13].

Hierarchical Clustering. The aim of hierarchical clustering is to organise a set
of data as a hierarchical tree; objects with similar characteristics are kept in the
same branch of the tree, while objects with different characteristics are placed
in different branches. There are two directions in which hierarchical clustering
can be performed: (i) bottom-up: where data items are gradually merged (or
agglomerated); and (ii) top-down: where data groups are gradually divided into
smaller sub-groups.

Agglomerative methods generally produce good results. The hierarchical tree
provides a natural view of the clusters and allows the user to explore the structure
of data at different levels of granularities. One example is exploring clusters in
vast biological datasets [9].

Self-Organizing Map Clustering. Through the use of self-organizing artifi-
cial neural networks [6], SOMs create a map of one or two dimensions, displaying
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clusters of high-dimensional data. Similar to K-Means, users must provide SOM
with the number of clusters in a dataset. Once this information is provided, the
initial clusters are filled with data randomly selected from the data space; and
then the homogeneity of each cluster is improved by grouping similar items close
to one another on the map. Hence, SOM is also a tool for visualizing complex
data in high dimensional space. A very good example application of SOM is gene
expression data analysis [10].

As mentioned, most traditional clustering methods require information per-
taining to cluster structure which is usually not known before the clustering
process. In the next section, we present PSCM, which is set out to address this
issue.

3 Practical Stochastic Clustering Method

Figure 1 illustrates the clustering process of the proposed Practical Stochastic
Clustering Method (PSCM). As an example, this figure shows a simple task of
clustering a dataset D with n items, where each item belongs to a known type.
PSCM begins by allocating each item to one bin. Then, the main loop of PSCM
is repeated for a fixed number of iterations. In each loop, two different items i
and j are randomly selected from D. If i and j are of the same type, then it
is necessary to move an item from one bin to another. Since each loop involves
searching for two similar items and grouping them together, groups of similar
items (i.e., clusters) emerge as the procedure is repeated many times. A more
formal description of this process is presented in Algorithm 1.

Initial stage

After some iterations

Few bigger clusters emerge

Two big clusters remain

Fig. 1. An illustration of the clustering process

The direction of movement from one bin to another, is based on a concept
called level of support. An item with a low level of support will move to the bin
of another item that has a higher level of support. Formally, the level of support
for an item x is defined as:

Definition 1: Level of Support
Let Sx be a set of all items similar to item x in D, excluding x. Let X be the set

of items within x’s bin. Then, the Level of Support is defined as c(x) = |Ax|/|Sx|,
where Ax = Sx ∩X .
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Algorithm 1. Practical Stochastic Clustering Method
Input: dataset of n items, D
Output: a set of clusters

Estimate the similarity thresholds for n items

Initialise n bins by allocating each item in D to a bin

for iteration = 1 to maxIteration do
i := randomSelect(D)

j := randomSelect(D), where i �= j
if acceptance(i, j) then

Store the comparison outcome in Vi and Vj

(ĉ(i) < ĉ(j)) ? move(i, j) : move(j, i)
end if

end for
Return all non-empty bins as a set of final clusters

Literally, |Ax| is the number of items similar to x within its current bin,
excluding x. Let Bx = Sx\Ax, then |Bx| is the number of items similar to x
outside of its current bin. If |Ax| ' |Bx|, then c(x) is close to one, indicating
that x has a high level of support in its current bin and x is likely to attract
similar items from other bins. On the other hand, if |Ax| ( |Bx|, then c(x) is
close to zero, indicating that x has a low level of support and x is likely to move
to other bins which contain similar items. When two bins have the same level of
support, we move an item from one bin to another stochastically.

Estimating the Level of Support. During the PSCM clustering process,
there is a series of comparisons. Each comparison involves two separate items
that are randomly selected. The idea is to store the outcomes of the last b recorded
comparisons made with each item, and estimate c(·) based on these outcomes.

The outcomes can be recorded using a first-in-first-out register, denoted as Vx,
which has a fixed size of b. Each element of Vx stores one bit: (i) when y is in the
same bin as x, a ‘1’ is recorded; or (ii) when y is not in the same bin as x, a ‘0’ is
recorded. Finally, c(x) at current time t is estimated as ĉt(x) = 1

b

∑b−1
k=0 Vx[t−k],

where Vx[t − k] is the comparison outcome recorded at k time-units before the
current time t. Hence, ĉt(x) is the proportion of ones in Vx at time t. The sample
size b is set at 30, which is sufficiently large for a simple random sample.

Clustering real-world Data. To handle numerical data, we use the acceptance
predicate proposed by some researchers (e.g., [7]), which is defined as follows:

acceptance(i, j) = sim(i, j) > max(Ti, Tj), (1)

where sim(i, j) = 1− d(i, j); and d(i, j) is a normalised 1-norm distance metric
between i and j, scaled to [0, 1]. Thus sim(i, j) = 0 if i and j are completely
dissimilar, and sim(i, j) = 1 if i and j are the same. In general, acceptance(i, j) is
true only if the similarity sim(i, j) is greater than the higher similarity threshold
max(Ti, Tj).
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The similarity threshold for item x (denoted as Tx) is commonly used in
Swarm-based Clustering (SBC) methods (e.g., [2]); but we generalise it as:

Tx = ω ·meanSim(x, ·) + (1 − ω) ·maxSim(x, ·), (2)

where ω is a weight in the range of [0, 1]. We set ω at 0.3 for all the 25 datasets
used in our experiments. meanSim(x, ·) is the mean similarity between item x
and all the other items in a dataset; and maxSim(x, ·) is the maximum similarity
between item x and all the other items in the dataset.

We can estimate the similarity threshold of each data item before the clus-
tering process [7]. Each estimation involves comparing an item with 150 other
items randomly selected from the dataset.

The maximum number of iterations is defined as k · n, where k is fixed at
2000 for all the experiments reported in this paper. After the maximum number
of iterations has been reached, each item in the smaller bins (with bin size less
than a threshold) is reassigned to the bin that consists of items with a centroid
that is most similar to it. In PSCM, the bin size threshold is min(50, n

20 ); the
threshold of n

20 is based on the criterion used by Fabien et al. [2]. When n is
large, we limit the bin size threshold to 50.

4 Experiments and Results

This section describes the experimental setup and then compares PSCM with
the three traditional clustering methods, K-Means, AvgLink and SOM.

Experimental setup. To test the robustness of the algorithms, we use four
test scenarios previously adopted by Handl [3]: (i) Squares series—datasets with
increasingly overlapping clusters; (ii) Sizes Series—datasets with increasingly
unevenly-sized clusters; (iii) datasets with different number of clusters, sizes,
shapes and dimensions; and (iv) seven real-world datasets taken from the UCI
Machine Learning Repository [1].

We use the results of K-Means, AvgLink and SOM that were previously gen-
erated by Handl [3]. In their experiments, K-Means and SOM were given a
‘privilege’ of knowing the actual number of clusters, while AvgLink was given
the appropriate stopping criterion so that it would stop the agglomeration pro-
cess when the correct number of clusters was reached. Furthermore, Handl et
al. conducted 1000 runs of K-Means on each dataset, and chose only the best
clustering result in every 20 runs; this produced 50 best results for each dataset.

To be consistent with the experimental settings used by Handl, we conducted
50 independent runs of PSCM on each dataset. The 50 results for each dataset
were obtained and finally evaluated using the average runtime taken (in seconds)
and the average F-measure [14]. The F-Measure quantifies how well a set of
generated clusters match the actual classes in the dataset. It is in the interval
[0, 1] and equals 1 for perfect clustering.
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Test Scenario 1: Increasingly Overlapping Clusters We use seven syn-
thetic datasets known as Square series, four of which are shown at the top of
Figure 2.

Fig. 2. Each dataset contains 1000 instances and four bivariate Gaussian clusters.

(Top) Square1, Square3, Square5 and Square7 contain increasingly overlapping clusters.

(Bottom) Sizes1, Sizes3, Sizes5 contains clusters with increasing uneven sizes.

Figure 3(a) shows that initially all algorithms have high F-Measures because
the clusters are well separated in the Square1 dataset. As the clusters become
more overlapped, the performance of the algorithms begin to degrade. AvgLink
gives the lowest F-Measure from Square1 to Square7. PSCM is among the top
two methods, with its performance similar to that of K-Means and SOM from
Square1 to Square5. SOM performs well due to its topology preserving property
[3]. K-Means is among the top few models because, as mentioned earlier, it
always selects the 50 best results from 1000 runs on each dataset.
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Fig. 3. Evaluating the algorithms using F-Measure. Square is abbreviated as ’Sq’ in

(a).

Test Scenario 2: Increasingly Uneven Cluster Sizes Here we use five
synthetic datasets known as the Sizes series; three of which are shown at the
bottom of Figure 2.
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Figure 3(b) shows that, initially all algorithms have relatively high F-Measures
when the dataset is Sizes1. However, as the cluster sizes become more uneven,
the performance of the algorithms, evaluated by F-Measure, degrades. SOM
consistently gives the lowest F-Measure. The next worst performing method is
K-Means because this method is known to be sensitive to clusters with different
sizes. When Sizes4 and Sizes5 are used, its F-Measure reduces because it some-
times fails to find the centroids in the smaller clusters. Finally, the performance
of AvgLink and PSCM are comparable in terms of F-Measure.

Test Scenario 3: Runtime Scalability Study. We use a series of datasets
denoted as xDyC. Here, x denotes the number of dimensions (D), which is in {2,
10, 100}; and y denotes the number of Gaussian clusters (C), which is either 4 or
10. This forms six possible combinations of dimensionality and cluster number in
the xDyC datasets. For each combination (e.g., 2D4C), 50 datasets of different
cluster shapes and sizes are generated randomly [3]. Hence the clustering algo-
rithms are expected to deal with 300 datasets with different number of clusters,
dimensionality, sizes and shapes. In general, datasets with ten clusters will have
a lot more data than those datasets with four clusters.

Figure 4 shows that the runtime of K-Means increases as the dimensionality
and the number of clusters increase. Its runtime increases drastically on the
100D10C datasets because it needs to recompute high dimensional centroids
during each iteration. As for AvgLink, its runtime on the larger datasets (with
10 clusters) is a lot higher than the smaller datasets (with only 4 clusters) due to
its quadratic runtime complexity. Notice that SOM also exhibits similar runtime
behaviour compared to agglomerative clustering, though to a lesser extent.
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Fig. 4. Average runtime performance of different clustering methods under the condi-

tions of different number of dimensions and clusters in the xDyC datasets

Figure 4 shows that PSCM1 is the fastest method in most cases. Unlike K-
Means, PSCM does not need to recompute the centroids of each cluster, and
its runtime is not sensitive to the number of clusters. Figure 4 also shows that
PSCM is faster than AvgLink and SOM on larger datasets with ten clusters.

1 The runtime of PSCM is adjusted based on Handl’s computing platform.
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Test Scenario 4: Performance on seven real-world datasets The datasets
are taken from the UCI Machine Learning repository [1], which include Wiscon-
sin, Dermatology, Zoo, Wine, Iris, Digits and Yeast. A summary of these datasets
is given in Table 1.

Table 1. Real-world data. N is the number of instances; Ni is the number of instances

for cluster i; D is the number of features; and C is actual number of clusters

Dataset N Ni D C

Wisconsin 699 458, 241 9 2

Dermatology 366 112, 61, 72, 49, 52, 20 34 6

Zoo 101 41, 20, 5, 13, 4, 8, 10 16 7

Wine 178 59, 71, 48 13 3

Iris 150 50, 50, 50 4 3

Digits 3498 363, 364, 364, 336, 364, 335, 336, 364, 336, 336 16 10

Yeast 1484 463, 429, 244, 163, 51, 44, 37, 30, 20, 5 8 10

  K-Means   AvgLink   SOM   PSCM order
ast 0.43 0.448 0.4067 0.46 7
gits 0.73 0.6 0.63 0.77 6

0.82 0.8099 0.86 0.91 5
ne 0.93 0.93 0.844 0.95 4
o 0.79 0.84 0.826 0.92 3
rmatolog 0.95 0.9 0.806 0.89 2
sconsin 0.97 0.97 0.97 0.96 1

taSet K-Means AvgLink SOM PSCM
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Fig. 5. Average F-Measure of four clustering methods on seven real-world datasets

Figure 5 presents the average F-Measure results of PSCM, K-Means, AvgLink
and SOM. Similar to the observation made from results on synthetic data, the
traditional methods are unable to perform consistently well throughout all the
datasets. For example, K-Means produces the highest and lowest F-Measure
on Dermatology and Zoo respectively. Similarly, SOM performs well on the Iris
dataset; but gives the worst result on the Dermatology dataset. AvgLink also
pales in comparison—its results are the lowest in three of the seven datasets.

Out of the seven real-world datasets, PSCM produces the highest F-Measure
on five of them; these datasets include Yeast, Digits, Iris, Wine and Zoo. As for
the two remaining datasets, PSCM scores marginally below its rivals.

Discussions. In terms of clustering accuracy, two of the top performers in the
first test scenario, SOM and K-Means, were ranked at the bottom in the sec-
ond test scenario. As for AvgLink, it was the worst performing method in the first
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test scenario, and then it rose to the top in the second test scenario. Note that
PSCM is the only method that has performed consistently well in both scenarios.

Unlike K-Means, PSCM does not compute cluster centroids. Instead, data
bins that contain data close to the centroid are likely to grow into full-fledged
clusters. This is because data points around the centroid of a Gaussian cluster
will have more similar data in its surroundings compared to data points near
the fringe of the cluster. This is so even when the clusters are highly overlapped
or when the cluster sizes are highly uneven. This is why PSCM has performed
well in both of the above scenarios.

In a separate experiment, we find that varying the values of different param-
eter settings (ω, k and b) does not affect PSCM’s performance drastically. For
example, when increasing the maximum iterations k · n, we vary k from 1000
to 10000 in steps of 1000; the average F-Measure of PSCM on all datasets only
change slightly, from 0.88 to 0.89. This suggests that the PSCM converges after
some point and its clustering output remains constant with further iterations.

PSCM can also be used to predict the cluster-membership of a new unseen
data point u. A simple way is to assign u to the cluster that has the centroid
most similar to u.

5 Concluding Remarks

We have examined a practical stochastic clustering method (PSCM), which has
the ability to automatically find the number of clusters in datasets.

In the experiments, three competing traditional clustering methods (K-Means,
AvgLink and SOM) were given a ‘privilege’ of knowing the cluster structure
before the cluster analysis process. PSCM was the only method that had to
derive the number of clusters by itself. Yet, when tested using 25 datasets, the
traditional clustering methods tend to produce mixed results—they can excel or
fail under different conditions. In contrast, the performance of PSCM, in terms of
clustering accuracy and runtime, is consistently good across most of the datasets.

While the method reported in this paper employs the normalised 1-norm
distance metric, our latest investigation suggests that we can remove distance
normalisation by reformulating Equations 1 and 2 using dissimilarity function.
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Abstract. Detecting outliers in mixed attribute datasets is one of

major challenges in real world applications. Existing outlier detection

methods lack effectiveness for mixed attribute datasets mainly due to

their inability of considering interactions among different types of, e.g.,

numerical and categorical attributes. To address this issue in mixed

attribute datasets, we propose a novel Pattern based Outlier Detection

approach (POD). Pattern in this paper is defined to describe majority of

data as well as capture interactions among different types of attributes.

In POD, the more does an object deviate from these patterns, the

higher is its outlier factor. We use logistic regression to learn patterns

and then formulate the outlier factor in mixed attribute datasets. A

series of experimental results illustrate that POD performs statistically

significantly better than several classic outlier detection methods.

Keywords: outlier detection; mixed attribute data; pattern based out-

lier detection.

1 Introduction

Of all the data mining techniques that are in vogue, outlier detection comes clos-
est to the metaphor of mining for nuggets of information in real world data. It is
concerned with discovering the exceptional behavior of certain objects. Outlier
detection techniques have widely been applied in medicine, finance, informa-
tion security and so on [1,2,3]. In the recent decades, various outlier detection
approaches have been proposed, which can be broadly classified into several cat-
egories: distribution-based [4], depth-based [5], distance-based (e.g., k-nearest
neighbour (KNN) [6] and [7]), clustering-based [8] and density-based (e.g., local
outlier factor (LOF) [1]) methods. Most of these methods are designed for homo-
geneous datasets, i.e., they only contain a single type of attributes like numerical
or categorical attributes.

Real world datasets are usually more complex. They often consist of differ-
ent types of attributes, e.g. categorical (nominal) and numerical (continuous)
� Corresponding author.

J. Li (Ed.): AI 2010, LNAI 6464, pp. 122–131, 2010.
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types, called mixed attribute data. For example, in personal income survey data
contain numerical attributes (e.g. working hours per week) and categorical at-
tributes (e.g. occupation). In order to handle mixed attribute data, usually,
researchers convert different types of attribute values into a single type. For
example, for algorithms working only on numerical attributes, the categorical
attribute values have to be recoded as, e.g., 0, 1, 2, · · · , and mixed them with
the numerical attribute values of the original dataset [9]. Meanwhile, for some
algorithms designed for categorical datasets, numerical values must be discre-
tised into several bins, and treat them as a set of categorical values. However,
the recoding and discretising methods for dealing with mixed attribute data
have their inherent drawbacks. Firstly, recoding or discretising could introduce
noise or lose information in the attribute conversion process [10]. Secondly, im-
proper recoding or discretising settings would significantly deteriorate detection
performance. Thirdly, single type attribute outlier detection methods were not
often designed for considering interactions between categorical and numerical
attributes. Because outlierness or anomaly in mixed attribute datasets is usu-
ally resulted from the interaction between categorical and numerical attributes,
existing outlier detection methods lack effectiveness on mixed attribute datasets.

In recent years, researchers have proposed several algorithms for dealing with
mixed attribute datasets. A typical method, LOADED [10], uses Association
Rules to explore infrequent items among categorical values and calculates co-
variance matrix to examine the anomaly in numerical values. Outliers in mixed
attribute datasets are determined by their anomaly scores, which are the sum of
anomaly scores in the categorical and the numerical values. Although LOADED
gives a specific method for exploring anomalies in either categorical or numeri-
cal values, it could not perform quite well due to lack of considering interactions
between different types of attributes. Its improved version RELOADED [11]
suffers the same problem, though it requires less main memory. More recently,
a graph-based outlier detection algorithm [12] has been proposed to separately
compute Euclidean distance for numerical values and Hamming distance for cate-
gorical values to calculate outlier indicators. A projection-based outlier detection
method [13] has been developed which uses the equi-width method to discretise
numerical attribute values in order to handle mixed attribute datasets. Although
the two recent works claim that they were designed for mixed attribute data,
they again consider outlier factors of different types of attributes separately and
then sum up them.

In this paper, we propose a Pattern based Outlier Detection approach (POD),
which is able to effectively consider interactions between different types of at-
tributes without attribute conversion processes (discretising or recoding). Pat-
tern in this paper is defined to describe majority of data as well as capture
interactions among different types of attributes. Then, based on the notation
of pattern, a new outlier factor for mixed attribute data is proposed. That is,
the more does an object deviate from these patterns, the higher is its outlier
factor. In POD, we use logistic regression to acquire patterns and then formu-
late the outlier factor in mixed attribute datasets. To validate our approach,
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Fig. 1. Indicative example of pattern, outliers, and COF in a simple dataset

we compare POD with three other typical methods, LOADED [10], KNN [14]
and LOF [15] over a series of synthetic and real-world mixed-attribute datasets.
Experimental results show statistically significant improvement of POD over the
three methods.

The rest of the paper is organised as follows. In Section 2, we introduce pat-
terns and outliers in mixed attribute data and define our outlier factors. In Sec-
tion 3, the top-n pattern based outlier detection algorithm is presented. Exper-
imental results are reported and compared in Section 4, followed by conclusions
in Section 5.

2 Patterns and Outliers in Mixed Attribute Data

Outlierness or anomaly in mixed attribute data are often resulted from inter-
actions between categorical and numerical values. For example, in an income
survey dataset, it is common to see that a man has an occupation of engineer
and held a Bachelor degree. However, the record becomes unusual if the man is
only 10 years old. That is to say, the outlierness or anomaly in mixed attribute
datasets has its own characteristics, and it is hard to follow the outlier definition
given by single type attribute outlier detection methods, e.g. KNN [6], LOF [15]
or existing ones for mixed attribute datasets such as LOADED [10] or a graph
based technique [12].

Before exploring a suitable outlier definition, we have to define the normal
behaviour or majority in mixed attribute datasets first. We call the normal be-
haviour or majority in mixed attribute dataset pattern. It slightly differs from
the ones widely used in pattern recognition community where patterns are re-
garded as an example, cluster, etc. We give an example to illustrate what a
pattern looks like in a mixed attribute dataset. Figure 1(a) illustrates a simple
mixed attribute dataset, with two numerical attributes and one categorical at-
tribute (binary value). “Dot” objects indicate the data objects with categorical
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value “Male”, while “cross” for “Female”. We can observe that most of “dot”
and “cross” objects are regularly located into two groups. We can regard such a
data object distribution as a pattern in the example, which indicates the normal
behaviour or majority in the simple dataset. Intuitively, if an object “looks” like
that it does not comply with the pattern, it is suspicious to be an outlier. As
shown in Figure 1(a), objects A and B are outliers as they deviate from the
pattern. In this work, we concentrate on a specific type of patterns, where only
one categorical attribute is involved in one pattern.

We denote D as a set of mixed attribute data objects. Oi ∈ D is the ith data
object. Each data object contains M numerical attributes and N categorical
attributes. Denote object i as Oi = [xi, ci], where xi = [x1

i , x
2
i , · · · , x

j
i , · · · , xM

i ]
and ci = [c1i , c

2
i , · · · , ck

i , · · · , cN
i ], with xj

i for the jth numerical attribute value
and ck

i for the kth categorical attribute value. To simplify the discussion below,
we define S′ a subspace of D which only contains a subset of attributes in D.
S ′k is a subspace of D which only contains the kth categorical attribute and all
the numerical attributes. O

′k
i is the projection of Oi on the subspace S ′k.

Given a mixed attribute subspace S ′k, most of O
′k exhibit some common

characteristics or behaviour. The pattern in mixed attribute subspace is defined
as follows:

Definition 1. We call the common characteristics or behaviour demonstrated
by projected objects O

′k as the mixed attribute subspace pattern P k.

Based on the pattern definition above, if a mixed attribute data contains N cat-
egorical attributes, there are N patterns, P = {P 1, P 2, · · · , PN}. Definition 1
gives us a description of what are the normal objects in mixed attribute space.
Furthermore, this definition simplifies the data space a bit. Our pattern defini-
tion only focuses on a subspace S′ at a time which only contains one categorical
attribute rather than considering the total N categorical attributes in the origi-
nal data space. Such a simplification provides us a simple mechanism to handle
datasets with a large number of categorical attributes. We will use this mecha-
nism to handle a number of categorical attributes in Section 4.

In order to take interactions between categorical and numerical attributes
into account, we propose to use logistic regression to acquire patterns in mixed
attribute datasets. To simplify our discussion further, we assume all the cate-
gorical attributes only have binary value, i.e. ck

i ∈ {0, 1}, in this section. We will
handle the general case in Section 3. Given a projected object O

′k
i = [xi, c

k
i ] on

subspace S ′k and a binary variable Y where Y = ck
i , a logistic regression might

take a simple form like:

PO
′k
i

=

{
P (Y = 1|xi) = 1

1+exp(wxT
i )

, if ck
i = 1,

P (Y = 0|xi) = exp(wxT
i )

1+exp(wxT
i )

otherwise,
(1)

where PO
′k
i

measures the degree of projected object O
′k
i complying with pattern

P k, Y k
i takes the value of ck

i and w = [w0, w1, · · · , wM ] is the parameter vector in
the logistic regression. w can be captured from data directly by, e.g., maximising
the likelihood [5].
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wk ←− arg max
wk

∏
i

P (ck
i |xk

i ,w
k), (2)

where wk is the logistic regression parameter in subspace S ′k. As the informa-
tion of both categorical and numerical attributes is considered in the learning
procedure, the pattern can capture some interaction between categorical and
numerical attributes.

Based on such a kind of patterns, we can define outliers. More formally, we
denote Y is binary variable, governed by a Bernoulli distribution, with parameter
π = P (Y = 1). xj

i is the jth element in vector xi.

Categorical outlier factor. Given a subspace in mixed attribute space, we
define categorical outlier factor (COF) β to indicate the degree of projected
object deviating from its pattern. βk

i denotes the degree of O
′k
i deviating from

the pattern P k. It takes the form:

βk
i =

⎧⎨
⎩

1

1+
P(Y =1|xi)

1+P (Y =0|xi)

if ck
i = 1,

1

1+
P(Y =0|xi)

1+P (Y =1|xi)

otherwise. =

{
1− P (Y =1|xi)

2 if ck
i = 1,

1
2 + P (Y =1|xi)

2 otherwise.
(3)

In Equation 3, the probability P (Y = 1|xi) is used to represent the degree of O
′k
i

deviating from its pattern. For example, if a projected object O
′k
i with ck

i = 1
is located within the group of other projected objects which have ck

j = 0 (j ∈
{1, · · · , N}, j �= i), P (Y = 1|xi) will be a small value (e.g., very close to 0) and
its COF βk

i will be assigned a large value (e.g., very close to 1). That means
this projected object is very likely to contribute to the outlierness of the whole
object.

Based on our logistic regression assumption, we can rewrite the expression of
βk

i as follows:

βk
i =

{
1− exp(wkxi

�)
2(1+exp(wkxi

�) if ck
i = 1,

1
2 + 1

2(exp(wkxi
�) otherwise.

(4)

The parameter wk takes interaction between numerical and categorical infor-
mation in the learning procedure (see Equation 2). The inner product wkxi




further projects the high dimensional data object O
′k
i onto one dimension space.

As shown in Figure 1(b), all mixed attribute data objects in the simple data
example are mapped onto the line (indicated by wx) pointing eastern. They are
then mapped onto an appropriate COF curve and assigned an outlierness value.
By Equation 4, the outlierness of the object which deviates from its pattern
will be substantially magnified and can be easily identified. In Figure 1(b), e.g.,
outliers A and B can be easily highlighted by their reasonably large COF βi as
other objects have relatively small COF.

Mixed attribute data outlier factor. The categorical outlier factor (COF)
represents some interaction between numerical attributes and one categorical
attribute, following a logistic regression setting. In order to consider the inter-
actions with all the categorical attributes, we further introduce mixed attribute
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data outlier factor (MADOF) which represents the outlierness of the mixed at-
tribute object Oi. We construct a vector ζi = [γi, β

1
i , β

2
i , · · · , βN

i ], consisting of
all the COF βk

i (k = 1, · · · , N) and γi = exp(1 + KDisti) where KDisti is the
kth-nearest neighbour distance [14] of the Oi. γi can represent its outlierness in
the pure numerical attribute space. Then, MADOF is defined as

MADOFi = ‖ζi‖2 =

√√√√N+1∑
j=1

(ζj
i )2, (5)

In the outlierness space A spanned by ζ, MADOFi can be regarded as the
distance from ζi for Object Oi to the origin of A. The further is ζi away from
the origin of the outlierness space, the more likely the object to be an outlier in
the mixed attribute space. Based on this proposed MADOF for mixed attribute
datasets, we will give a Pattern based Outlier Detection (POD) algorithm in the
following section.

3 Pattern Based Outlier Detection Algorithm

Map into binary attribute space. In the previous section, our discussion
is mainly based on binary categorical values to facilitate formulation. In order
to generalise our algorithm, we firstly introduce a mapping mechanism which
would convert multi-values categorical attribute into binary value space.

The mapping mechanism is intuitive. For example, cj is the jth categor-
ical attribute in D. We assume cj has K different categorical values, cj ∈
{aj,1

i , aj,2
i , · · · , aj,K

i }. Then each mapped categorical attribute value c̄j
i is formed

by a binary vector with the length of K. For example, cj ∈ {1, 2, 3}, aj,1
i = 1,

aj,2
i = 2, aj,3

i = 3, then their mapped attribute value should be āj,1
i = [1, 0, 0],

āj,2
i = [0, 1, 0], āj,3

i = [0, 0, 1], respectively. If cj
i = 1, then c̄j

i = [1, 0, 0]
The mapped categorical attribute value c̄j

i has K binary values with only
one element equal to 1. The mapping algorithm is very simple, and there is
no information loss. Therefore, any mixed attribute dataset with multi-value
categorical attributes can be readily handled by our proposed algorithm below.

POD algorithm. Because most outlier detection approaches require fine-tuning
of their parameters through trial-and-error approach, see e.g., KNN [7], which is
impractical, because real world data usually do not contain labels for anomalous
objects. Top-n style outlier detection methods alleviate the parameter setting
problem somewhat. They provide a ranked list of objects that represent the
degree of outlierness of each object. In POD, we employ top-n style outlier
detection, which outputs the n objects with the highest MADOF values [7].
Algorithm 1 outlines the top-n style POD.

4 Experimental Results and Comparison

We now compare the outlier detection performance of top-n POD with
LOADED [10] which is a typical mixed attribute outlier detection algorithm,
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Algorithm 1. Top-n algorithm for POD
Input: A given dataset D pre-processed by the mapping mechanism presented at the

beginning of Section 3, natural numbers n and knn.

1. For each subspace S ′k;

(a) learn parameter wk for pattern P k (k = 1, 2, · · · , N), based on Equation 2.

2. For each object Oi in D
(a) retrieve Oi’s k-nearest neighbours by the neighbourhood size knn;

(b) calculate γi;

(c) for each projected object O
′k
i

i. using the parameter wk learnt, calculate βk
i based on Equation 4;

(d) calculate MADOFi for each data object Oi based on Equation 5;

3. Sort the objects according to their MADOF values.

4. Output: the first n objects with the highest MADOF values.

and two typical top-n methods, top-n LOF [15] and top-n KNN [14] which are
used widely in real world applications. All the four algorithms were implemented
in C++1. Our experiments start with a synthetic mixed attribute dataset which
contains outliers that are meaningful but are difficult for the existing algorithms,
LOADED, LOF and KNN. In Experiments 2, 3 and 4, we identify outliers from
three real world mixed attribute datasets from the UCI machine learning data
repository to illustrate the effectiveness of our method in real world situations.
We recode categorical values and normalise all values so as to be used in KNN
and LOF. For consistency, we only use the parameter knn to represent the neigh-
bourhood size in the investigation of the methods used in our experiments. In
all of our experiments, we set neighbourhood size knn equal to 1% of the cardi-
nality of the observed dataset for POD, KNN and LOF, and set n equal to the
number of genius outliers containing in the datasets. We use detection precision2

to evaluate the performance of each method.

4.1 Synthetic Data

In Figure 2(a), there are 400 mixed attribute objects with two numerical at-
tributes and one binary categorical attribute. All “cross” objects are assigned
categorical value 0, while all “dot” objects have categorical value 1. There are
five genuine outliers in the dataset, A, B, C, D and E. Most of outlier detection
methods can identify D and E as outliers because they are typical under the
homogenous data outlier definition, called traditional outliers [15]. However, A,
B and C are special outliers in mixed attribute datasets. They are more likely to
be in a group opposite to the group indicated by their categorical values. There-
fore A, B and C are mixed attribute outliers, as they deviate from the pattern
1 Source code of all algorithms used in experiments are available on the website:

users.rsise.anu.edu.au/�kzhang
2 Precision= ngenius-outliers in top-n/n. We set n as the number of genius outliers, and

thus do not need to consider other outlier detection measures like recall.
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Fig. 2. POD on a dataset with one categorical and two continuous attributes. MADOF

values are proportional with the length of vertical line segments.

(normal behaviour) in the mixed attribute data. Figure 2(b) plots the MADOF
values, which are proportional to the length of vertical line segments connected
with these objects. Clearly, our method is able to detect both traditional outliers
and mixed attribute outliers by considering interactions between categorical and
numerical attributes. On the contrary, the other three methods are incapable of
detecting A, B and C as these three points are not far away enough from their
majorities. POD has 100% detection precision compared with 40% precision of
the other three methods.

4.2 Real World Data

Adult data. The Adult dataset contains 48,842 data records with 6 numerical
and 8 categorical attributes. The dataset was extracted from the US Census Bu-
reau’s Income dataset. Each record has features that characterise an individual’s
yearly income together with a class label indicating whether the person made
more or less than 50,000 dollars per year. The first experiment on this dataset
follows the same experiment setting described in [10]. Compared with results
generated by LOADED [10], the results of POD seem more interesting. We list
the top four outliers detected by POD:

– “A 90 years old male, working for local government for 40 hours per week
with the job of craft repair and making more than 50,000 dollars per year.”

– “A 73 years old self-employed female, working in clerical position for 99 hours
per week and making less than 50,000 dollars per year.”

– “A 61 years old self-employed female, working for 99 hours per week and
making less than 50,000 dollars per year.”

– “A 36 years old male, working in an executive position for 90 hours per week
and making less than 50,000 dollars per year.”
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Table 1. Experimental and comparison results of POD over the three datasets. The

detecting precision for each method based on 30 independent runs. The bold numbers

indicate that the detection precision is statistically significantly improved compared to

the other three methods (paired T-test at the 0.05 level).

Dataset #Outliers Precision (mean ± std.)

POD LOADED KNN LOF

Adult 50 0.682±0.087 0.117±0.061 0.000±0.0000 0.012±0.0022

Census income 50 0.731±0.053 0.217±0.045 0.000±0.0000 0.049±0.0027

Housing 10 0.439±0.067 0.07±0.005 0.371±0.0024 0.000±0.0000

In order to make our experimental results comparable, we define the outlier
label for the Adult data. We define that the data records with 80 or less work
hours per week are normal, while above 80 hours per work are outliers. We
independently run experiments 30 times for each of all the four algorithms, and
in each time randomly pick up 50 outliers and 10,000 normal data. The average
detection precisions and corresponding standard deviations of each method are
listed in the Table 1. From the second row, we can see that the average detection
precision for POD, LOADED, KNN and LOF is 68.2%, 11.7%, 0% and 1.2%,
respectively. The paired T-test (at the confidence level, 0.05) indicates that there
is statistically significant difference between POD and the other three methods.

Census income data. The census income (KDD) data contains weighted census
data extracted from the 1994 and 1995 Current Population Surveys conducted
by the U.S. Census Bureau. We use a part of the testing dataset which contains
99762 data records, with 7 numerical and 10 categorical attributes. We ignore
the data records which are duplicated or have missing value (the pre-processed
dataset is contained in our source code folder1). As the Census income dataset
is similar with Adult dataset, we employ the same outlier label setting as in
our Adult data experiment above. We also run experiments 30 times, and in
each time randomly pick up 50 outliers and 10,000 normal data. As shown the
third row in Table 1, we can see that the average detection precision for POD,
LOADED, KNN and LOF is 73.1%, 21.7%, 0% and 4.9%, respectively. The
paired T-test (at the confidence level, 0.05) indicates that there is statistically
significant difference between POD and the other three methods.

Housing data. Housing data contains 506 data objects, with 14 attributes (11
numerical and 3 categorical). We use the fourth attribute, Charles River dummy
variable (1 if tract bounds river, 0 otherwise) as the outlier label. We also run
experiments 30 times, and in each time randomly pick up 10 outliers and mixed
them with all the normal data. From the fourth row in Table 1, we can see that
the average detection precision for POD, LOADED, KNN and LOF is 43.9%, 7%,
37.1% and 0%, respectively. The paired T-test indicates that there is statistically
significant difference between POD and LOADED or LOF at the confidence level
of 0.05, and between POD and KNN at the confidence level of 0.10.



An Effective Pattern Based Outlier Detection Approach 131

5 Conclusions

In this paper, we have proposed a pattern based outlier detection approach, named
POD, for mixed attribute data. Pattern is defined to describe majority of data
as well as capture interactions among different types of attributes. In POD, the
more does an object deviate from these patterns, the higher is its outlier factor.
We have used logistic regression to learn patterns and formulate the outlier factor
in mixed attribute datasets. Furthermore, a top-n style POD algorithm has been
given and tested over both synthetic and real world datasets. Experimental re-
sults have demonstrated the effectiveness of top-n POD that can detect outliers in
mixed attribute data statistically significantly better than LOADED, top-n KNN
and top-n LOF. We are planning to investigate more complicated patterns.
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Centrelink Human Services Delivery Research Alliance.
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8. Fan, H., Zäıane, O.R., Foss, A., Wu, J.: A nonparametric outlier detection for

effectively discovering top-n outliers from engineering data. In: Ng, W.-K., Kit-

suregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp.

557–566. Springer, Heidelberg (2006)

9. Bay, S.D., Schwabacher, M.: Mining distance-based outliers in near linear time

with randomization and a simple pruning rule. In: KDD, pp. 29–38 (2003)

10. Ghoting, A., Otey, M.E., Parthasarathy, S.: LOADED: Link-based outlier and

anomaly detection in evolving data sets. In: ICDM, pp. 387–390 (2004)

11. Otey, M., Parthasarathy, S., Ghoting, A.: Fast lightweight outlier detection in

mixed-attribute data. In: Techincal Report, OSU–CISRC–6/05–TR43 (2005)

12. Yu, J.X., Qian, W., Lu, H., Zhou, A.: Finding centric local outliers in categori-

cal/numerical spaces. Knowl. Inf. Syst. 9(3), 309–338 (2006)

13. Ye, M., Li, X., Orlowska, M.E.: Projected outlier detection in high-dimensional

mixed-attributes data set. Expert Syst. Appl. 36(3), 7104–7113 (2009)

14. Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for mining outliers

from large data sets. In: SIGMOD, pp. 427–438 (2000)

15. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: Identifying density-based

local outliers. In: SIGMOD Conference, pp. 93–104 (2000)



J. Li (Ed.): AI 2010, LNAI 6464, pp. 132–141, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Incremental Projection Vector Machine: A One-Stage 
Learning Algorithm for High-Dimension Large-Sample 

Dataset 

Qinghua Zheng1, Xin Wang1,3,*, Wanyu Deng1,3,∗, Jun Liu1, and Xiyuan Wu1 

1 The MOE KLINNS Lab and SKLMS Lab, Department of Computer Science 
Xi'an Jiaotong University, 710049, China 

2 Xi’an Institute of Posts & Telecommunications, 710121, China 
3 {xinwang.xjtu,wanyu.deng}@gmail.com 

Abstract. Dimension reduction has been widely employed to deal with the curse 
of dimensionality before training supervised learning such as neural network�  
and this framework combining dimension reduction and supervised learning 
algorithms is called as two-stage approach. However during the process of this 
approach, the system has to store original data and pre-process data 
simultaneously which will increase the complexity and re-compute the SVD 
when the new data arrive. To address the above problems, this paper proposes a 
novel learning algorithm for high-dimension large-scale data, by combining a 
new incremental dimension reduction with feed-forward neural network training 
simultaneously, called Incremental Projection Vector Machine (IPVM). With 
new samples arriving, instead of re-computing the full rank SVD of the whole 
dataset, an incremental method is applied to update the original SVD. It is 
suitable for high-dimension large-sample data for the singular vectors are 
updated incrementally. Experimental results showed that the proposed one-stage 
algorithm IPVM was faster than two-stage learning approach such as SVD+BP 
and SVD+ELM, and performed better than conventional supervised algorithms. 

Keywords: Singular vector decomposition, Neural network, Extreme Learning 
Machine, Projection Vector Machine, Incremental Projection Vector Machine. 

1   Introduction 

High-dimension problems are often confronted in the process of data mining, which 
lower the efficacy of the conventional machine learning and data mining techniques 
greatly because of the so-called curse of dimensionality [8]. The general solution is to 
apply dimension reduction such as Singular Value Decomposition (SVD)[9], linear 
PCA[10], linear LDA[11], multidimensional scaling (MDS)[12], diffusion maps[14], 
multilayer autoencoders[13] and Laplacian Eigenmaps[15] as a pre-processing step, 
and then several data mining techniques can be used to learn the low dimensional 
data. And SVD is applied widely for its simplicity and high efficacy. However, at the 
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first step of the two-stage approach, the intermediate results computed with SVD have 
to be stored, which will increase the space complexity significantly. Additionally, it 
will become difficult for developing on-line learning and on-line updating algorithm, 
for we have to re-compute the SVD when the new data arriving. 

In order to avoid these disadvantages, Deng [1] proposed a novel one-stage 
learning algorithm called Projection Vector Machine (PVM) which combines SVD 
with single hidden layer feed-forward neural networks (SLFN) together. With SVD, 
the algorithm reduces the dimension and obtains the suitable size of feed-forward 
neural network and input weights simultaneously. Experimental results showed that 
the method performed better than conventional methods. According to Deng, the 
method currently is just suitable for high-dimension small-sample problem, when it 
comes to large-scale data, it is always lack of enough space to compute a full SVD 
which is fundamentally an O(PQ·min(P,Q))-time problem where P and Q are the 
numbers of rows and column of corresponding matrix.  Additionally, more and more 
applications where data must be incorporated into the SVD as they arrive, such as 
many computer vision algorithms calling for a “running” thin SVD of a video stream, 
financial transaction streams and network activity stream as well. In the end the 
practical need for updating an SVD instead of re-computing SVD to incorporate new 
data has become more and more acute. 

To address the above issues we propose a new learning method to improve the 
PVM method, that is, the whole training data are not applied to compute SVD in order 
to save enough space, instead, we divide the original training dataset into two parts: 
the initial dataset used to compute an initial SVD, and the updating dataset to update 
the initial SVD incrementally, then the final SVD is obtained to learn a SLFN in the 
way described in [1].With this thought we call our method Incremental Projection 
Vector Machine (IPVM). IPVM shares the same advantages as PVM; moreover, as 
the SVD can be computed incrementally, it is convenient to compute large-sample 
data without worrying about the shortage of memory space. 

The rest of the paper is arranged as follows. Section 2 introduces the related work. 
The algorithm is detailed in section 3. In section 4, comparative experiments are done 
and results are given to show the performance. In the end, the final conclusions are 
drawn and future work is given in section 5. 

2   Related Work 

2.1   The SVD in Data Mining 

The singular value decomposition decomposes a matrix X  into three orthogonal 
matricesU , V  and a diagonal matrix ( )=S diag s whose values on the diagonal are 

nonnegative and in descending order , such that =TUSV X .The SVD has the optimal 
truncation property: The r largest singular values together with their corresponding 
singular vector elements, the product of the resulting matrices ≈T

R RU SV X  is the 

best rank-R approximation of X  and captures the important “latent” structure of the 
dataset. 
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2.2   Single Hidden Layer Feed Forward Networks (SLFNs)  

SLFNs[2] have been extensively used in many fields due to their abilities:(1) to 
approximate complex nonlinear mappings directly from the input samples; and (2) to 
provide models for a large class of natural and artificial phenomena that are difficult 
to handle with classical parametric techniques. 

For N  arbitrary distinct samples 1{( , )} =
N

i i kx t , where 1 2[ , ... ]∈i i i iRx x x x  and   

1 2[ , ,..., ]=i i i ilt t t t , standard SLFNs with N  hidden neurons and activation function 

( )g x  are mathematically modeled as 
1

( ,[ , ]) , 1,...,β
=

= =∑
N

i i k i k
i

g w x b t k N where 

1 2 ( 1)[ , , ..., , ]−=i i i i R iRw w w w w  is the weight vector connecting the i-th hidden neuron 

and the input neurons, 1 2[ , ,..., ]β β β β=i i i il  is the weight vector connecting the i-th 

hidden neuron and the output neurons, and ib  is the threshold of the i-th hidden node. 

.i jw x  denotes the inner product of iw  and jx . These N equations can be written 

compactly as β =H T , where 

1 1 1 1

1 1
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2.3   Extreme Learning Machine 

To overcome the issues related with gradient-based algorithms such as the BP 
learning algorithm when training an Artificial Neuron Network (ANN), Huang et al. 
proposed a neural network training algorithm called the Extreme Learning Machine 
(ELM) [2]. The input weights of an SLFN can be randomly chosen (any continuous 
distribution), and the output weights of an SLFN can be analytically determined by 
Moore-Penrose generalized pseudo-inverse [4]. ELM algorithm can be summarized as 
follows: 
 

Given a training set X= {( , ) | , , 1, 2,..., }∈ ∈ =R l
i i i ix t x R t R i N , an activation 

function ( )g x , and the number of hidden neuronsN . 
1. Randomly assign the input weights according to some continuous probability density 

function; 
2. Calculate the hidden layer output matrixH ; 
3. Calculate the output weight β :  β +=H T . 

2.4   Projection Vector Machine 

The generalization of ELM depends on the proper selection of the fixed parameters, but 

it is difficult to find the best parameters (N ,wi) . In order to address the issue, Deng [1] 
proposed a novel algorithm called Projection Vector Machine (PVM), where the 
projection from input layer to hidden layer by input weights ×m NW can be regarded as 
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dimension reduction ×× ×=n n mN m N
Z P W ( ×nZ N is the intermediate matrix into hidden 

layer), and can be obtained from the projection matrix kV  by selecting the k singular 

vector elements corresponding to largest singular values directly. While the two-stage 
learning approach neglects kV , and learns once again through ELM or BP in the second 

stage.. Based on this idea, the PVM can be described as follows: 
 

Given a training set {( , ) | , , 1, 2,..., }= ∈ ∈ =R l
i i i iX x t x R t R i N , an activation 

function ( )g x . 
1. Let 1{[ ,1] | } == ∈ R N

k k kP x x R , 1{ | } == ∈ l N
k k kT t t R ; 

2. Calculate SVD of P: [ , , ] ( )=TU S V svd P ; 
3. Set the number of hidden neurons N ; 
4. Obtain (:,1: )=iw V N ; 
5. Calculate the hidden layer output matrix H; 
6. Calculate the output weight β : β +=H T . 

3   The Proposed Algorithm: Incremental Projection Vector 
Machine 

It is validated in [1] that when applied in most kinds of scenes, PVM has better 
accuracy compared with other algorithms. However, more and more applications 
require the real time performance especially with very large scale data. When we build 
a classification model with high-dimensional data, these high dimensions should be 
reduced in the preprocess step, and then the classification model is trained using these 
low-dimensional data. Once new data arrive, only the new data will be used to update 
the dimension-reduced data but not the original complete data, so that reduces the time 
complexity and saves a great amount of memory. With the above idea, we propose an 
algorithm called Incremental Projection Vector Machine (IPVM). 

The Incremental Singular Value Decomposition can be specified to solve the 
following issue: Given several new column vectorsC , what is the SVD of[  ]X C ? 

Here we develop the special situation below: 
 

Operation Known Desired A BT 

Update [  0] [  0]=TUS V X  [  ]=T
p P PU S V X C  C  [0...0,1...1]  

where X is the original matrix and C are the new coming samples. To add the new 
samples in the form of matrix, we firstly represent it as a new matrix which we denote 
as the product of A  and TB . Typically B  is a binary vector indicating which columns 
should be modified, andA is derived from containing update (C ). 

Now the updating scenario can be described as: Given column vectorsA , B  and a 
known SVD [ , , ] =TU S V X , what is the SVD of + TX AB ? Here we introduce a 

method called low-rank modifications of SVD proposed by M. Brand [3,5] and apply it 
in the scenario of the matrix’s column updates.  

Let [ , , ] =TU S V X with = =T TU U V V I  be a rank-r thin singular value 

decomposition of ×∈ M NX R . Let ×∈ M CA R  ,  ×∈ N CB R  are arbitrary matrices of rank 
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C, the SVD of + TX AB  ( TAB  represents the additional part of the original 
matrixX ) is shown in the next: 

              [  ] [  ]+ =T TX AB U P K V Q                                           (1) 

where P  is an orthogonal basis of the column space of ( )− TI UU A -the component 

ofA  orthogonal toU , and one can obtain it from the QR-decomposition. Similarly, let 
Q  be an orthogonal basis of − TB VV B . Therefore, K  can be expressed as: 

               
0

00 0

⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦

TT T

A B

SI U A I V B
K

IR R
                                    (2) 

The goal is to re-diagonalize K as ' ' '= TK U S V , which gives rotation 'U and 'V of the 
extended subspaces [  ]U P  and [  Q]V  such that  

             ([ , ] ') '([  ] ')+ =T TX AB U P U S V QV                                   (3) 

The detailed processes of IPVM can be described as follows: 
 

Given a training set: X={( , ) | , , 1, 2,..., }∈ ∈ =M l
k k k kx t x R t R k N  

1. Initialization Phase: Initialize the SVD using a small chunk of initial training 
data 1

1 1{ | } == ∈ NM
k k kX x x R  from the given training dataset 1{ | } == ∈ M N

k k kX x x R  
which is applied to generate an initial SVD 1, , ( )⎡ ⎤ =⎣ ⎦

TU S V SVD X ; 
2. Incremental Dimension Reducing Phase: UpdatingU , S  and V  using low-rank 

modifications of SVD when the rest data of X  come; 2
2 1{ | } == ∈ NM

k k kX x x R  which 
is used to update the SVD incrementally above for several times as the new coming 
data, 

i. = TM U A ; = −p A UM ; || ||=AR p ; 1−= ⋅AP R p , where P  is an orthogonal 
basis of the column-space of ( )− TI UU A , which is the component of "A " that 
is orthogonal to U ; 

ii.Diagonalizing K and maintaining rank r: K is directly derived from (2); 
iii.Decomposing K ,where [ ] ( ), ,′ ′ ′ =U S V SVD K ; 
iv.UpdatingU , S  and V to pU , pS and pV : [ ] ′= ⋅pU U P U ; '= ⋅p pV V V  

and ′=pS S . 
3. Model building: Set the number of hidden neurons N  

i. Obtain (:,1: )=i Pw V N ; 
ii. Calculate the hidden layer output matrix H; 

iii. Calculate the output weight β : β += H T . 
 

In the second part, instead of rotating the larger singular vector matrices U  andV , we 
leave the SVD decomposed into matrices with orthonormal U , V , ′U  and ′V . The 
large outer matrices only record the span of the left and right subspaces and are built by 
appending columns to U  and rows toV . The transforms of these subspace bases are 
maintained in much smaller ′U  and ′V ; this makes the update much faster. 
 

Remark1. For a high-dimensional low-rank matrix, the incremental SVD can be an 
effective linear-time algorithm and if the data is streamed through the CPU, the update 
requires less space to store the current SVD. That satisfies the demand of online 
updating. 
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Remark2. The IPVM can have better generalization performance than that of the 
gradient-based learning such as back-propagation when learning a SLFN model. For it 
can obtain the solutions straightforward without the trivial issues facing by the 
conventional gradient-based learning ones such as local minima, improper learning rate 
and over-fitting. On the other side, IPVM is more stable and accuracy than ELM. 

4   Performance Evaluation 

In this section, the performance including accuracy and time of the proposed IPVM are 
compared with ELM, ELM+SVD, BP, BP+SVD and PVM on different benchmark 
classification problems from UCI database[6], whose distributions are unknown and 
most of them are not noisy-free, in addition, all of them are high-dimensional. We 
utilize a fast BP algorithm called Levenberg-Marquardt algorithm in our simulations. 
The ELM’s source code can be downloaded from Huang’s homepage [7]. For each 
case, the training dataset and testing dataset are randomly generated from the whole 
dataset before each trial of simulation, and the specification of these benchmark 
problems are shown in Table 1.In our experiments, all the inputs(attributes) had been 
normalized into range [-1,1]. All the simulations were carried out in MATLAB 7 
environment running in an Inter core 2, 2.66 GHZ CPU. In the end, the average results 
over 50 trials were obtained for these methods. 

4.1   Selections of Parameters 

First we selected the optimal parameters of all the methods. For ELM, ELM+SVD, BP, 
BP+SVD and PVM we chose the optimal number of hidden neurons by increasing its 
number at an interval of 5 with cross-validation method. For IPVM, the parameters 
contained the size of initial matrix, the block size used for updating and the optimal 
number of hidden neurons in the same way. Then the average results of 50 trials of 
simulations for each fixed size of SLFN were obtained and finally the best performance 
including training accuracy, testing accuracy, training time and testing time were 
discussed in this paper. To compare the total time of dimension reduction phase and 
model building phase, we computed the training time by adding the dimension 
reduction time and the model building time together in ELM+SVD and BP+SVD, and 
the time of three phases in IPVM. The final results are recorded in the next section. 
 

Table 1. Specification of real-world classification cases 

#Observations Attributes 
Dataset 

Training Testing Continuous Nominal 

Madelon 2080 520 500 0 
semeion 1274 319 1600 0 
secom 1253 314 591 0 
Sonar 166 42 60 0 
face 160 240 1600 0 

arcene 140 60 10000 0 
Lung-cancer 25 7 56 0 
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4.2   Experimental Results and Analysis 

IPVM works well for both one-by-one and chunk-by-chunk learning models. In this 
section, we only discuss the situation of chunk-by-chunk. To obtain the optimal 
performance we first adjusted the size of chunk depending on each problem. And in the 
next section we will study the relationships of the initial size, the updating block size 
and the performance of IPVM. 

Experiments show that IPVM obtained higher generalization performance than 
ELM, BP, ELM+SVD, BP+SVD in general and was mostly faster than two-stage  
 

Table 2. Training and testing accuracy of IPVM, ELM+SVD and ELM 

IPVM ELM+SVD BP+SVD 
Dataset 

Training Testing Training Testing Training Testing 
semeion 0.8972±0.00468 0.8737±0.0170 0.9612±0.0225 0.8411±0.0184 - - 
Sonar 0.7980±0.0256 0.7648±0.0596 0.9004±0.0192 0.7395±0.0869 0.86280±0.0299 0.7576±0.069 

Madelon 0.6214±0.0045 0.6045±0.0026 0.6146±0.0081 0.5528±0.0144 - - 
Lung-cancer 0.8768±0.0414 0.7971±0.1504 0.8768±0.0646 0.7200±0.1731 0.8488±0.0692 0.6771±0.1844 

face 0.9772±0.0096 0.8579±0.0234 0.9463±0.0221 0.5398±0.0527 0.6062±0.1783 0.3352±0.0940 
arcene 0.9543±0.0138 0.8617±0.0465 0.7761±0.0269 0.6383±0.0590 0.8346±0.1030 0.7333±0.0858 
secom 0.9320±0.0039 0.9400±0.0142 0.9332±0.0025 0.9250±0.0098 0.9362±0.0146 0.9097±0.0358 

Table 3. Training and testing accuracy of PVM, BP, BP+SVD 

PVM BP ELM 
Dataset 

Training Testing Training Testing Training Testing 
semeion 0.8983±0.0051 0.8740±0.0139 - - 0.9841±0.0033 0.8451±0.0178 
Sonar 0.8229±0.0028 0.7681±0.0658 0.9004±0.0451 0.7395±0.0666 0.8978±0.0259 0.7324±0.0629 

Madelon 0.6332±0.0049 0.6077±0.0023 - - 0.6145±0.0097 0.5528±0.0225 
Lung-cancer 0.8808±0.0453 0.7600±0.1427 0.8440±0.0590 0.6486±0.1853 0.8384±0.0599 0.7457±0.1588 

face 0.9846±0.0102 0.8717±0.0296 - - 0.9697±0.0164 0.4712±0.0604 
arcene 0.9525±0.0134 0.8725±0.0462 - - 0.8746±0.0269 0.5792±0.0757 
secom 0.9346±0.0025 0.9303±0.0097 - - 0.9250±0.0027 0.9333±0.0109 

Table 4. Training and testing time (seconds) of IPVM, ELM+SVD and ELM 

IPVM ELM+SVD BP+SVD Dataset 
Training Testing Training Testing Training Testing 

semeion 2.0456 0.0031 1.1160 0.0226 - - 
Sonar 0.1359 0.0006 0.0172 0.0016 0.9634 0.0100 

Madelon 4.2681 0.0094 3.2481 0.0513 - - 
Lung-cancer 0.0321 0.0000 0.0022 0.0006 0.2588 0.0031 

face 0.4141 0.0070 0.2125 0.01719 133.0266 0.0140 
arcene 2.1438 0.0188 0.9797 0.0266 2.9195 0.0086 
secom 0.9008 0.0039 1.9914 0.0351 20.3359 0.0078 

Table 5. Training and testing time (seconds) of PVM, BP, BP+SVD 

PVM BP ELM 
Dataset 

Training Testing Training Testing Training Testing 
semeion 0.6219 0.0056 - - 1.1081 0.0184 
Sonar 0.0106 0.0028 5.7344 0.0128 0.0113 0.0013 

Madelon 3.1534 0.0088 - - 3.2481 0.0512 
Lung-cancer 0.0038 0.0000 2.0447 0.0075 0.0006 0.0000 

face 0.2039 0.0117 - - 0.0313 0.0109 
arcene 1.0063 0.0188 - - 0.3266 0.0227 
secom 2.0695 0.0109 - - 0.0250 0.0031 
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Table 6. The number of hidden neurons of all the algorithms 

Dataset IPVM ELM BP ELM+SVD BP+SVD PVM 
Sonar 10 50 10 50 10 15 

Madelon 8 300 - 100 - 100 
Lung-cancer 8 8 6 9 6 12 

face 30 65 - 65 40 32 
arcene 56 70 - 40 8 56 
secom 12 30 - 5 5 42 

 
learning algorithms. Table 2 and 3 present the testing accuracy of fix sized IPVM, 
PVM, ELM, BP, ELM+SVD and BP+SVD over 50 trials with different and same 
training set respectively. If the difference of the two testing accuracy obtained by two 
algorithms was larger than 0.005 for a case, we show the winner’s testing accuracy in 
boldface. We can find that IPVM was more stable than other algorithms as well as 
PVM. This is because the input weights of IPVM are obtained from singular vectors of 
dataset by SVD while input weights of ELM are randomly assigned. Although BP 
determines its input weights by the gradient-based algorithm, the performance of BP 
are sensitive to initial values of input weights. This makes IPVM easy to obtain the 
optimal settings. In Table 6, although IPVM needed more hidden neurons than BP and 
BP+SVD, it was more compact than ELM and ELM+SVD in most cases. This means 
IPVM could have better responding ability than ELM and ELM+SVD. Table 4 and 5 
display that the IPVM needed slightly longer training time than PVM and ELM did 
when datasets were small; while it was much shorter than that of BP.  

The comparisons between IPVM and PVM show that the performance of them are 
similar to each other except that IPVM sometimes required more training time than 
PVM did and sometimes less. In next part, we will explain the reasons cause the 
phenomena. 

 

 

Fig. 1. Training ,testing accuracy and time of IPVM over 50 trials with different size of initial set 
(dataset:Semeion; block size: 50; the number of hidden neurons: 20; the size of initial set:100 ) 
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As the above figures shown, the conclusions can be obtained as following: 

Remark A.  The sizes of initial set and updating block both have little influence on the 
testing accuracy, training accuracy and time consummation (see Fig. 1.(1),(2)).  

Remark B.  Accuracy and time consumptions are closely related to the number of 
hidden neurons (see Fig. 1.(3) and (4)). They all increase when the number increases, 
and when it comes to a certain threshold, accuracy stops increasing. There is another 
thing we should pay attention to when utilizing IPVM. The number of hidden neurons 
must not over take the size of rank, for PVM, the input weight matrix ×m Nw  is seen as 

projection vectors mapping the data into low dimension, so the size of N  must be 
under the limitation of the rank. That means if the rank of a dataset is small, the model 
training phase can be fast. So IPVM is suitable for those datasets which have high 
dimension but low rank, and we can apply it to learn extreme large-scale data that PVM 
cannot do.  

Remark C.  Computing a full SVD is fundamentally an O(PQ×min(P,Q))-time 
problem, while the low-rank thin SVD of a P×Q matrix whose rank is r can be 
computed in O(PQr) time[3]. To obtain better performance, the initial datasets should 
be large enough to obtain a relatively large rank. However, with the increase of the rank 
size, it takes more time to carry out the incremental SVD. In the end, the total training 
time including the time of initial SVD and incremental SVD of IPVM sometimes 
overtakes the training time of PVM (see Table 4 and 5).  

5   Conclusions and Future Work 

In this paper, we propose a novel learning approach addressing the problems which 
PVM encounters: PVM is not suitable for large-scale datasets due to lack of memory, 
and has to update the singular vectors by retraining the whole dataset when new data 
arrive. When computing the dimension reduction result of one training dataset, we 
apply the low-rank modifications of SVD to reduce the high-dimensional data 
incrementally to get an SVD of the whole training dataset. Then we apply PVM to learn 
the new low dimensional dataset. Experimental results on UCI datasets showed that, 
IPVM had better performance than ELM, ELM+SVD and BP+SVD did in most cases. 
Moreover, it did not need iterative tuning input weight like BP and just needed only 
one-time learning like ELM. Compared with other two-stage learning algorithms, its 
training speed was faster. The last but not least is IPVM can be applied to train the 
extreme large-sample dataset without worrying about the shortage of memory, and it 
also can be employed in the online situation such as real-time personalized 
recommendation or dynamical user interesting reorganizations.  

However, IPVM has some other problems particularly meriting our further study: It 
is only suitable for low-rank data, if the given dataset has a high rank, utilizing IPVM 
may not obtain a satisfying performance for the rank will be determined by the initial 
set whose size can significantly influent the final performance. Moreover, we have not 
updated the output matrix of hidden layer H  incrementally when new data come, that 
means we have to re-compute H  and β  after carrying out the incremental SVD, 

which will lead to extra time and memory consummation.  



 Incremental Projection Vector Machine: A One-Stage Learning Algorithm 141 

Acknowledgement 

The research was supported by the National High-Tech R&D Program of China under 
Grant No.2008AA01Z131, the National Science Foundation of China under Grant 
Nos.60825202, 60803079, 60921003, the National Key Technologies R&D Program of 
China under Grant Nos.2006BAK11B02, 2006BAJ07B06, the Program for New 
Century Excellent Talents in University of China under Grant No.NECT-08-0433 and 
the research on method of emotion interaction based on interatcive texts in e-learning 
under Grant No. 61070072. 

References 

1. Deng, W., Zheng, Q., Lian, S., Chen, L., Wang, X.: Projection Vector Machine: One-Stage 
Learning Algorithm from High-Dimension Small-Sample Data. In: Procceedings of the 
IEEE International Joint Conference on Neural Network, Barcelona, Spain, pp. 3375–3382 
(2010) 

2. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. 
Neurocomputing 70, 489–501 (2006) 

3. Brand, M.: Fast Low-Rank Modifications of the Thin Singular Value Decomposition. 
Linear Algebra and Its Applications 415(1), 20–30 (2006) 

4. Huang, G.-B.: Learning Capability and Storage Capacity of Two-Hidden-Layer 
Feedforward Networks. IEEE Transactions on Neural Networks 14(2), 274–281 (2003) 

5. Brand, M.: Fast Online SVD Revisions for Lightweight Recommender Systems. In: SIAM 
International Conference on Data Mining (2003) 

6. UCI database, http://archive.ics.uci.edu/ml/ 
7. ELM Source Codes, http://www.ntu.edu.sg/home/egbhuang/  
8. van der Maaten, L.J.P., Postma, E.O., van den Herik, H.J.: Dimensionality Reduction:  

A comparative Review,  
http://www.iai.uni-bonn.de/~jz/ 
dimensionality_reduction_a_comparative_review.pdf 

9. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins Univ. Press, Baltimore 
(1989) 

10. Hotelling, H.: Analysis of a complex of statistical variables into principal components. 
Journal of Educational Psychology 24, 417–441 (1933) 

11. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annals of 
Eugenics 7, 179–188 (1936) 

12. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear 
dimensionality reduction. Science 290(5500), 2319–2323 (2000) 

13. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural 
networks. Science 313(5786), 504–507 (2006) 

14. Lafon, S., Lee, A.B.: Diffusion maps and coarse-graining: A unified framework for 
dimensionality reduction, graph partitioning, and data set parameterization. IEEE 
Transactions on Pattern Analysis and Machine Intelligence 28(9), 1393–1403 (2006) 

15. Belkin, M., Niyogi, P.: Laplacian Eigenmaps and spectral techniques for embedding and 
clustering. In: Advances in Neural Information Processing Systems, vol. 14, pp. 585–591 
(2002) 

 



J. Li (Ed.): AI 2010, LNAI 6464, pp. 142–152, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Model-Based Viewpoint Invariant Human Activity 
Recognition from Uncalibrated Monocular Video 

Sequence 

Zaw Zaw Htike1, Simon Egerton1, and Ye Chow Kuang2 

1 School of Information Technology 
2 School of Engineering  

Monash University, 
Sunway Campus, Malaysia 

{zaw,simon.egerton}@infotech.monash.edu.my, 
kuang.ye.chow@eng.monash.edu.my 

Abstract. There is growing interest in human activity recognition systems, 
motivated by their numerous promising applications in many domains. Despite 
much progress, most researchers have narrowed the problem towards fixed 
camera viewpoint owing to inherent difficulty to train their systems across all 
possible viewpoints.  Fixed viewpoint systems are impractical in real scenarios. 
Therefore, we attempt to relax the fixed viewpoint assumption and present a 
novel and simple framework to recognize and classify human activities from 
uncalibrated monocular video source from any viewpoint. The proposed 
framework comprises two stages: 3D human pose estimation and human 
activity recognition. In the pose estimation stage, we estimate 3D human pose 
by a simple search-based and tracking-based technique. In the activity 
recognition stage, we use Nearest Neighbor, with Dynamic Time Warping as a 
distance measure, to classify multivariate time series which emanate from 
streams of pose vectors from multiple video frames. We have performed some 
experiments to evaluate the accuracy of the two stages separately. The 
encouraging experimental results demonstrate the effectiveness of our 
framework.  

Keywords: Viewpoint invariant, human activity recognition, 3D human pose 
estimation, Dynamic Time Warping. 

1   Introduction 

Human activity recognition is the recovery of human motion information from image 
sequences and labeling of the underlying activities of the human subjects. The 
problem of automatic human activity recognition has become very popular due to its 
countless promising applications in many domains such as video surveillance, video 
indexing, computer animation, automatic sports commentary systems, human 
computer interaction systems, context-aware pervasive systems, smart home systems 
and other human-centered intelligent systems. There are a number of reasons why 
human activity recognition is a very challenging problem. Firstly, a human body is 
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A model-based approach, which employs an explicit parametric anthropometric 
prior and attempts to recover structural information of the human body, is the more 
investigated approach. A human pose is represented by a kinematic tree model or a 
stick figure, consisting of joints linked by segments. Most of the existing works in the 
literature in the model-based branch concentrate on a lower-level field of research 
called ‘pose recovery’ rather than higher-level activity recognition because human 
pose recovery (which is a prerequisite to activity recognition) itself is an unsolved 
problem. A model-based approach estimates human pose either by direct inverse 
kinematics or by numerical optimization over the pose variables [9].  The two major 
problems that arise in a single-camera system are depth ambiguity and self-occlusion. 
Depth ambiguity arises because we are trying to reconstruct 3D skeleton out of 2D 
information. Recovering 3D information from a single uncalibrated camera is 
inherently ill-posed because we are trying to solve equations with more unknowns 
than the number of equations. Researchers try to disambiguate by bringing in more 
assumptions or constraints in one form or another. For example, Wei and Chai [10] 
use at least 5 key frames to resolve ambiguity and a numerical constrained 
optimization algorithm to construct 3D human poses. However, the system is still not 
so invariant to viewpoint because it does not work for top view. Shen and Foroosh 
[11] model a sequence of poses as a sequence of planes defined by triplets of body 
points. Despite good results, it cannot handle self-occlusion. 

A model-less approach makes no attempt to recover structural information of the 
human body. Most model-less approaches such as [9] are example-based, that is they 
utilize machine learning techniques to construct a mapping function between 2D 
image features and 3D poses. Some researchers such as [7]  find a common lower 
dimensional representation of the projected image of the same pose under different 
viewpoints. However, these kinds of approaches have not been demonstrated to be 
able to handle self-occlusion. The main disadvantage of model-less approaches is that 
the training examples should be very diverse and numerous so as to correctly map 
unknown poses. They are also generally more prone to overfitting. 

1.2   Contributions 

This paper has two major contributions: viewpoint invariant 3D human pose 
estimation and viewpoint invariant human activity recognition. We follow the model-
based route. However, we show that full body pose recovery is not necessary to 
recognize activities. Unlike previous work in the activity recognition literature, we 
present a robust technique that can recognize activities from partial joint information 
such as when half of the body is missing. To be invariant to viewpoint, the system 
needs to be able to function correctly even with ‘crippled’ input. We demonstrate how 
our activity recognition system achieves full invariance to viewpoint under 6 DOF of 
camera.   

The paper is organized as follows. First, in Section 2, we explain how we estimate 
3D human pose from a given video frame. In Section 3, we present how we extract 
pose vector from 3D human pose, merge pose vectors across successive frames to 
form a multivariate time series and then classify activities. We describe our 
experiments in Section 4 and conclude in Section 5. 
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2   Human Pose Estimation 

First we need to estimate 3D human pose from each video frame. We employ a 
kinematic tree model of human body, consisting of 17 nodes or joints linked by 16 
segments. Each joint has 3 DOF and predefined rotational ROM (range of motion). 
Estimating 3D pose from a 2D input image requires a list of approximate 2D 
coordinates of the joints as a prerequisite. The list can be obtained by body part 
detection algorithms. As body part detection itself is a diverse field of research, it will 
not be elaborated here due to space constraints. Further discussions can be found in 
[12]. We shall assume that body part detection has already been performed on the 
video frames, and that we are given an array of approximate 2D coordinates of 17 
joints extracted from each frame as shown in Fig 3a. The input to our system is a 
vector    (Note that some of its components might be undefined for occluded 
joints). The pose estimation step takes x and produces a vector    which 
contains 3D coordinates of 17 joints. Since x can map to multiple y, the previous 
output is used to disambiguate the mapping. The output of the estimation step for the 
ith time step is then defined as yi = f(yi-1, x), where yi-1 is the output of the previous 
time step. As there is no previous output for the first frame of a sequence, y0 is 
estimated through a lookup table which stores -to-  mappings of 50 primitive poses 
from 13 viewpoints. y0 is chosen from the lookup table as the value of  in the table 
corresponding to  that has the shortest Euclidean distance from the input x. 

Because of that fact that no two persons are identical in terms of body shape and 
volume and that skeleton size plays no role in activity recognition, we normalize the 
3D human skeleton in a bounding cube (1000 units in each axis) in a right-handed 
coordinate system as shown in Fig 2a. Each segment has fixed length constraints as 
given in Fig 2b. Length constraints minimize the influence of inter-person structural 
differences. 

 

 
 

Fig. 2. (a) Normalized skeleton in 10003 bounding cube (b) Joint constraints table 

 
A camera has 6 DOF with respect to an observed person:  translations along x, y, z 

and rotations about x (roll, φ), y (pitch, θ), z (yaw, ψ). Fig 3c shows rotations about 
the axes. Because of normalization, translations along the axes have no effect on the 
system. Hence, our camera parameters are just ψ, θ and φ, each of which ranges from 
0º to 360º. We standardize the direction of rotations as clockwise (following left-hand 
grip rule).  Fig 3d shows rotational coordinates of basic viewpoints. Since the order of 
rotation matters in 3D, we will always follow the yaw-pitch-roll order. 

 

 

Segment Distance  Segment Distance 
1-0 151  7-9 86 
1-2 75  10-1 165 
1-3 75  10-11 62 
2-4 119  10-12 62 
3-5 119  12-14 274 
4-6 97  11-13 274 
5-7 97  13-15 220 
6-8 86  14-16 220 

(a) (b) 
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Fig. 3. (a) Axes of the original data from preprocessing (b) Right-handed coordinate system of 
the 3D model (c) Yaw, pitch and roll (d) Rotational coordinates for various viewpoints 

 
Fig 3a depicts an example of an original list of 2D coordinates of the joints 

obtained from preprocessing, with a negatively oriented coordinate system. If we 
assume for the moment that ψ, θ and φ are known, then projection equations given in 
Table 1 can be used to map x to a plane in the bounding cube.  After that, we need to 
estimate ‘depth’. For each segment, the ratio between the length of the segment and 
the average length of all the segments is calculated. The intuition is that if the ratio of 
a particular segment is smaller than that of the standard model, the segment must have 
some depth component whose direction is defined by the unit vector of the camera’s 
line of sight (obtainable from ψ, θ and φ). Whether to project the depth component 
into the positive or negative direction of the unit vector depends upon the ‘legality’ of 
the new pose as defined by the joint rotational constraints. If both directions are 
allowed, multiple outputs will be produced. After all iterations of depth estimation, 
we normalize each segment’s length. We keep the slope of each bone constant and 
change its length to that of the standard model defined in Fig 2b.  

Table 1. Projection equations 

 X Y Z 
Roll (φ)  500 Sin(φ) x Y + Cos(φ) x X - Cos(φ) Y + Sin(φ) X 
Pitch (θ) Cos(θ) X – Sin(θ) Z Y Sin(θ) X + Cos(θ) Z 
Yaw (ψ) Cos(ψ) X + Sin(ψ) Y Sin(ψ) X + Cos(ψ) Y Z 

 

 
 

Fig. 4. 3D stick figures corresponding to various poses 
 

After centering the skeleton in the cube with feet in the x-y plane, we get a 3D 
skeleton as shown in Fig 4. So far, we have assumed that ψ, θ and φ are known. But in 
reality we do not know the orientation of the camera. However, since inter-frame 
changes in relative camera position can be very small, ψ, θ and φ will not be so much 
different from the values of the preceding frame.  We perform an exhaustive parallel 
search over ψ, θ and φ with initial values of the preceding frame bounded by ±45º 
envelope with 5º discrete step size. The search generates a list of legal 3D poses with 
±5º tolerance. The last step of the pose estimation step is to choose one pose y from 

 

    

Viewpoint ψ θ φ 
Front  0 0 0 
Back  180 0 0 
Right  270 0 0 
Left  90 0 0 
Top  0 90 0 

(a) (b) (c) (d) 
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the list that is most similar to previous output yi-1. Out of all legal poses in the list, we 
choose the one with shortest Euclidean distance from yi-1. 

3   Human Activity Recognition 

Activity recognition is the step after pose estimation. As the estimated pose is 3D, the 
resulting activity recognition system is inherently invariant to viewpoint. First, we 
extract a relevant pose vector from the 3D pose configuration.  Each joint has 3 DOF. 
Fig 5 illustrates the degrees of freedom of right elbow. Note that the third DOF ‘roll’ 
or ‘twist’ is redundant for most joints in the stick figure pose representation. We 
represent pose vector by the configuration of the 12 joints as shown in Fig 6a. Each 
joint is represented by 2 angles (yaw and pitch). Therefore, each pose is represented 
by a 24-dimensional vector p. An activity is a sequence of poses. An activity is, 
therefore, represented by a multivariate time series matrix comprising 24 columns. 
Fig 6b illustrates one particular column of the matrix for the activity ‘jumping’.  

 

 
 

Fig. 5. (a) Original orientation of the forearm (b) Changing pitch angle from 0° to 90° (c) 
Changing yaw angle to 90° from b  (d) Changing roll angle to 180° from b (twisting forearm)       

 

 
 

Fig. 6. (a) The 12 joints to present pose vector (b) a univariate time series comprising pitch 
angle of the right knee during the activity ‘jumping’ 

 
We classify activities using Nearest Neighbor Algorithm (NN) with Dynamic Time 

Warping (DTW) is a distance measure. Dynamic Time Warping (DTW) is a well-
known algorithm for time series comparison in the literature. DTW minimizes the 
effect of time shifting, distortion and scaling [13]. Uniform scaling is a desired 
property in activity recognition due to inherent spatial and temporal variability found 

(b) (a) (c) (d) 

(a) (b) 
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in human motion. For example, a person may walk slowly or swiftly. Due to space 
constraints, we will not describe DTW in detail. Interested readers can refer to  
[14-15]. The only significant drawback of standard DTW is its relatively high 
computational cost O(n2) for comparing sequences of length n. However with global 
constraints (such as Sakoe-Chiba Band[16] and Itakura Parallelogram[17]) and 
various lower-bounding techniques (such as LB_Keogh [14]), the complexity can be 
reduced to almost linear time. In [14] , LB_Keogh lower-bounding technique, 
however, works only for univariate time series. For activity recognition, we extend 
Keogh’s technique to perform lower-bounding of multivariate time series just like in 
[18]. The proof of the lower-bounding property of multivariate time series is also 
presented in [18]. DTW is essentially a global distance measure between two time 
series. DTW needs a local distance measure between two static points in the two time 
series. In the case of univariate time series, the local distance, d, between any two 
points in the time series, is simply the square-difference. For example, 3, 43 4  . For our multivariate case, the local distance, d, is the Euclidean distance 
between the two pose vectors. 

 
    ,  ∑                                          (1) 

 
where N is the dimension of the multivariate time series. Fig 7 depicts DTW of 
univariate time series and multivariate time series. The best thing about our algorithm 
is that N is adjustable based on the availability of joint information. For example, Fig 8  
 

 

 
 

Fig. 7. (a) DTW for univariate time series) (b) DTW for multivariate time series 

 

 
 

Fig. 8. (a) “Jumping jacks” seen from right (b) Pseudo-code of 1-NN DTW sequential search 
algorithm with lower-bounding  

(b) (a) 

(b) double LowerBound1NN(Sequence input, out int match_index) 
{ 
            double closest = double.PositiveInfinity; 
            int i = 0;             
            foreach (Sequence sequence in database) 
            { 
                LB_distance = LowerBoundDTW(input, sequence); 
                if (LB_distance < closest) 
                { 
                    double distance = DTW(input, sequence); 
                    if (distance < closest) 
                    { 
                        closest = distance; 
                        match_index = i; 
                    } 
 
                } 
                i++; 
            } 
           return i; 
} 

(a) 
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shows part of a right-view image sequence of a person doing “jumping jacks” where 
left arm and leg are fully occluded. Unlike other activity recognition systems in the 
literature, our algorithm can leave out all the missing joints and compute d and DTW 
only based on available information. This makes our system very robust.  

As a typical NN algorithm, there is no specific learning phase. Our system stores a 
list of multivariate time series of known activities and their corresponding labels in a 
database. When an unknown activity is presented to the system, the system takes the 
unknown time series, performs a sequential search with lower-bounding (as shown in 
Fig 8b) and outputs the label of the known activity which has the shortest global 
distance from the unknown time series. The system is scalable and suitable to be 
employed in domains such as video indexing. 

4   Experiments 

We carried out two separate experiments to evaluate pose estimation performance and 
activity recognition performance. For pose estimation, we used two of our own 
datasets. The first dataset comprised 200 static poses from 5 viewpoints (front, back, 
left, right and top) generated by POSER PRO [19]. The poses were taken from the 
library that came with the software package. So the first dataset contained 1000 static 
poses in total. Fig 9 depicts some of the poses from our dataset. The second dataset 
contained poses synthesized from 2 motion sequences (jumping and walking) with 
120 frames for each sequence taken from 5 viewpoints. So the second dataset 
contained a total of 1200 poses. The ground truths for all the poses were obtained by a 
Python script that translated POSER’s coordinate system to ours. For each pose, the 
ground truth was the 3D coordinates of all the joints. To evaluate activity recognition, 
we used CMU Motion-Capture database [20]. In fact, there were well-known datasets 
for viewpoint invariant human activity recognition such as IXMAS dataset [4]. 
However, since those standard datasets contained no annotated joint information, the 
CMU dataset (which provides 3D joint information) was our only choice. We selected 
10 activities (dribbling, walking, running, jumping, boxing, dancing, waving, sitting,  
 

 

 
 

Fig. 9. Our dataset to test pose estimation 

 

 
 

Fig. 10. CMU dataset to test activity recognition 
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climbing and kicking ball). Each activity was performed 4 times (mostly by the same 
actor). Fig 10 depicts some of the scenes from the CMU dataset. Their skeleton model 
was mapped to ours and joints coordinates are converted accordingly. 

For pose estimation test, we took the symmetric mean absolute percentage error 
(SMAPE) as an error measure [21].  
 

                ∑ | | | || | | |            (2) 

 
where n is the total number of poses, pi is the ith estimated pose vector and ti is the ith 
ground truth pose vector. Note that the default dimension of pi and ti is 24. But some 
components of pi might be undefined due to occlusion. In those cases, we reduced the 
dimensionality by neglecting undefined components in pi and the corresponding ones 
in ti.  In activity recognition tests, we performed leave-3-out cross-validation. For 
each activity, we trained the system on the data from 1 out of 4 clips and then tested 
the system using the data from the other 3 clips. Since there were 4 combinations of 
picking one clip for training, the whole process was repeated 4 times and the resulting 
values were averaged. To test the robustness of our activity recognition system, we 
tested on various values of N (number of joints in the pose vector). We respectively 
tested without wrists, without lower body and without arms and shoulders. Table 2 
and 3 list our experimental results. The results for Table 2 were calculated using (2) 
where n is 200 for static poses and 120 for motion sequences, for each viewpoint. 
Note that Table 2 reports error rates whereas Table 3 reports accuracy rates.  

 
Table 2. Pose estimation results 

 
 Table 3. Activity recognition results 

 static poses sequences   Accuracy  
Front view 14.7% 12.3%  N=12 97.5% 
Back view 15.0% 13.8%  N=10 (without wrists [joints 6 and 7]*) 97.5% 
Left view 16.5% 13.2%  N=8 (without lower body [9 to 12])  35.8% 
Right view 16.2% 13.9%  N=6 (without arms & shoulders [2 to 8]) 80.0% 
Top view 17.1% 14.1%    
Average 15.9% 13.5%      *Note: Excluded joints numbers, according to Fig 6 

 
The results of the post estimation tests demonstrate that the proposed system 

achieves decent performance in pose estimation. The error rates have shown to 
decrease when estimating poses from motion sequences.  Despite one-shot learning, 
the results of the activity recognition tests demonstrate that our system easily achieves 
results on-par with current state of the art fixed view methods. The fact that the 
second test (N=10) gave the same accuracy rate as the first test (N=12) implies that 
wrist movement is minimal in the dataset and that it is redundant to take wrist 
configuration. The third test (N=8) gave very low accuracy rate (which was expected) 
because almost all the activities (especially running and kicking) had the highest 
variance in lower body configuration. Finally, the last test (N=6) did not produce low 
accuracy rate because only a few activities had the highest variance in arm 
configuration. 
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5   Conclusion and Future Work 

We have presented a novel approach to viewpoint invariant human activity 
recognition system from uncalibrated monocular video source. Our system can learn 
from a small set of training examples. Our analysis and experiments show that we can 
indeed achieve viewpoint invariance in human activity recognition with high 
accuracy. This prototype limits classification of human activities to just 10 classes 
under a closed world assumption, but there are countless real-world activities. Since 
our system is scalable and the test results are promising, we could extend further to 
recognise a variety of common human activities.  

As future work, we would first like to select a suitable body part detection 
algorithm from the literature and plug into our system. We would then obtain a 
standalone activity recognition system and be able to test our system on a variety of 
datasets. 
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Abstract. This paper concerns the use of Prototype Reduction Schemes (PRS) to
optimize the computations involved in typical k-Nearest Neighbor (k-NN) rules.
These rules have been successfully used for decades in statistical Pattern Recog-
nition (PR) applications, and have numerous applications because of their known
error bounds. For a given data point of unknown identity, the k-NN possesses the
phenomenon that it combines the information about the samples from a priori tar-
get classes (values) of selected neighbors to, for example, predict the target class
of the tested sample. Recently, an implementation of the k-NN, named as the Lo-
cally Linear Reconstruction (LLR) [11], has been proposed. The salient feature
of the latter is that by invoking a quadratic optimization process, it is capable of
systematically setting model parameters, such as the number of neighbors (spec-
ified by the parameter, k) and the weights. However, the LLR takes more time
than other conventional methods when it has to be applied to classification tasks.
To overcome this problem, we propose a strategy of using a PRS to efficiently
compute the optimization problem. In this paper, we demonstrate, first of all, that
by completely discarding the points not included by the PRS, we can obtain a
reduced set of sample points, using which, in turn, the quadratic optimization
problem can be computed far more expediently. The values of the corresponding
indices are comparable to those obtained with the original training set (i.e., the
one which considers all the data points) even though the computations required to
obtain the prototypes and the corresponding classification accuracies are notice-
ably less. The proposed method has been tested on artificial and real-life data sets,
and the results obtained are very promising, and has potential in PR applications.

1 Introduction

It is well known that the optimal classifier is the one that invokes the Bayes decision
rule. If the a priori density functions were easily computable, and the class conditional

� The second author was partially supported by NSERC, the Natural Sciences and Engineering
Research Council of Canada. This work was generously supported by the National Research
Foundation of Korea funded by the Korean Government (NRF-2010-0015829).

J. Li (Ed.): AI 2010, LNAI 6464, pp. 153–163, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



154 S.-W. Kim and B.J. Oommen

densities were truly of a classical well-defined nature (for example, of the exponen-
tial family), the tasks of training and testing a pattern recognition/classification system
would be trivial. In practice, however, these distributions are far from ideal, and conse-
quently, the science and art of PR has had to develop various non-parametric methods
for training and testing. The most elementary of these, and yet the most well-developed,
constitute the Nearest Neighbor (NN) family of classifiers1.

The idea behind the NN rules is age-old and is essentially encapsulated in the axiom
that the information about a particular sample point can be gleaned from its nearest
neighbors. Traditionally, the consequent decision rule merely performs a majority de-
cision based on the decision of the closest k neighbors. The beauty of such a scheme
is that the decision rule asymptotically attains the accuracy of the Bayes rule as the
number of neighbors, k, is increased. More recently, to yield even more accurate results
(for any given value of k), researchers have proposed that the neighbors need not be
assigned equal weights. Rather, the question is that of modeling every feature point as
a convex combination of its k neighbors, and from this perspective, the crucial question
is that of determining the weights that are to be assigned to these neighbors.

The most important paper in this regard is probably the one due to Kang and Cho
[11], referred to as the Locally Linear Reconstruction (LLR) method. The fundamental
idea behind the LLR, though simple, is quite intriguing, and it involves a quadratic
optimization strategy explained presently. The salient feature of this scheme is that
by invoking this optimization, one can systematically determine the model parameters,
such as the number of neighbors (k) and the corresponding weights. However, the LLR,
as proposed in [11], is computationally intensive. This is where our research comes
into the picture: To tackle the computational burden, we propose a strategy of using a
Prototype Reduction Scheme (PRS) to quickly and efficiently approximately compute
the optimization problem. We formulate this in the paragraph below.

Rationale for the paper: We start with the premise that it is advantageous to compute
the above mentioned optimization. However, we seek a strategy by which the associ-
ated computational burden can be reduced. Thus, in this paper, we propose a technique2

for the fast computation of the reconstruction problem, and in particular, for the vari-
ous classification applications. We advocate that rather than compute the reconstruction
for the entire data set, the data be first reduced into a smaller representative subset us-
ing a PRS [2], [6], and that the reconstruction (classification) be achieved by invoking
the corresponding method on this reduced data set. Thus, by completely discarding the
points not included by the PRS, we can obtain a reduced set of sample points, using
which, in turn, one can solve the quadratic optimization problem. The reader will ob-
serve, at once, that this can reduce the computational burden drastically, because the
number of points chosen by the PRS is usually a small fraction of the total number
of points found in the original data set. Our hypothesis, i.e., that the PRS can be ef-
fectively used to noticeably reduce the computations and yet yield almost as accurate
results, has been verified by testing on benchmark real-life and artificial data tests, as we

1 Some strategies for speeding up the kNN have been reported in the literature, e.g., in [14].
2 As a prima facie case, to justify the hypothesis of [11], we only consider the two-class prob-

lem. The effective definition and computation of the measures for the multi-class problem are
open.
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shall presently explain. The geometric aspect of this strategy is the following: Although
the reconstructed samples are obtained by using the prototypes procured by invoking a
PRS, these reconstructed points do not individually “optimally” represent their original
counterparts. However, collectively, they are the best locations for the k-NNs of the
points in the training set, which can, in turn, collectively represent the points for testing
purposes too. This is truly an interesting feature!

2 An Overview : LLR and PRS

Locally Linear Reconstruction: In this section, we briefly explain the LLR [11] for
pattern classification and recognition (as considered for instance-based learning), and in
particular for the k-NN. The main idea behind LLR originates from the concept of the
locally linear embedding (LLE) [16], which is one of widely-used non-linear dimension
reduction schemes. Of course, as mentioned earlier, the premise behind NN learning is
that if the input vectors are similar, the targets are also similar with a very high likeli-
hood. In order to realize this premise, researchers have used monotonically decreasing
kernel functions, with regard to the distance, to assign weights to the neighbors. Along
the same vein, in the case of LLR, we attempt to enforce this general premise in the
topological space for the k-NN. Indeed, we argue that if it is possible to accurately
describe the input vector for a given query by its neighboring reference patterns, it is
also possible to predict (estimate) well the target class (value) of the query with a small
error. To initiate discussions in this regard, we first state the notation that we shall use
(in a d-dimensional feature space), after which we shall formally describe LLR.

– Xi is a “query” (i.e., the testing point) in the feature space, and is a d× 1 vector.
– X̂i is a re-constructed version of Xi, and is also a d× 1 vector.
– Xi

NN is a d× k matrix, and contains the d-dimensional k-NNs of Xi.
– W i,NN is a k×1 vector. It is the corresponding weight vector obtained from Xi

NN .
The matrix W , which is the collection of W i,NN ’s, is the set of vectors sought for,
and Wi,j is the set of weights for Xj with regard to the sample point Xi. Observe
that Wi,j will be zero if Xj is not a neighbor of X i.

– The matrix N is the neighborhood indicator matrix whose element Ni,j = 0 if Xj

is not a neighbor of X i, and is unity otherwise. For ease of notation, N(i) will
represent the NNs of Xi.

When a query is given, the method first selects the k-nearest neighbors of the query.
Once these NN patterns have been selected, the set of weights corresponding to the
neighbor are determined by minimizing the LLR error Err(W ), defined as the sum of

the errors Ei as follows:
∑

i

∥∥Xi −WT
i,NNXj

∥∥2
, where every Xj is a NN of X i .

The weights, W , which minimize the reconstruction error, can be obtained by solv-
ing the above minimization problem. Also, since the constraints on the optimization
problem differ depending on whether the learning task is a classification or regression
problem, the corresponding procedures for solving them are different as well. In par-
ticular, for classification tasks, we need to impose two additional constraints on W ,
namely that all the weights must be non-negative, and that the sum of the neighbors’
weights must be unity for every query. Thus,
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Err(W ) =
1
2

∑
i

∥∥∥Xi −WT
i,NNXi

NN

T
∥∥∥2
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=
1
2

∑
i

{
XT

i X i − 2XT
i Xi

NNW i,NN + WT
i,NNXi

NN

T
Xi

NNW i,NN

}
.

By examining Eq. (1), we see that we can obtain the weights for the k-NNs of Xi,
W i,NN , by solving the following optimization problem3:

Min Err(W i,NN ) =
1
2
WT

i,NNX i
NN

T
Xi

NNW i,NN −XiX
i
NNW i,NN , (2)

such that W i,NN ≥ 0,
∑

j

Wi,j = 1 ∀i.

After obtaining the weights assigned, we can reconstruct a sample point, X̂i, corre-
sponding to the query X i by a weighted sum of the samples of Xi’s NNs as follows:

X̂i =
∑

Xj∈N (i)

Wi,jXj . (3)

As the reader will observe, although this strategy is expedient, it involves the unavoid-
able non-trivial computationally intensive optimization. But our position is that it need
not be done for all the sample points, but merely for a smaller subset of points which
represent them - i.e., those obtained by a PRS.

Prototype Reduction Schemes: In non-parametric pattern classification which uses the
NN or the k−NN rule, each class is described using a set of sample prototypes, and the
class of an unknown vector is decided based on the identity of the closest neighbor(s)
which are found among all the prototypes. To reduce the number of training vectors,
various PRSs have been reported in the literature - two excellent surveys are found in
[2], [6]. Rather than embark on yet another survey of the field, we mention here a few
representative methods of the “zillions” that have been reported. One of the first of its
kind is the Condensed Nearest Neighbor (CNN) rule [10]. The reduced set produced by
the CNN, however, customarily includes “interior” samples, which can be completely
eliminated, without altering the performance of the resultant classifier. Accordingly,
other methods have been proposed successively, such as the Reduced Nearest Neigh-
bor (RNN) rule, the Prototypes for Nearest Neighbor (PNN) classifiers [5], the Selec-
tive Nearest Neighbor (SNN) rule [15], two modifications of the CNN [18], the Edited
Nearest Neighbor (ENN) rule [7], and the non-parametric data reduction method [9].
Besides these, the Vector Quantization (VQ) and the Bootstrap techniques have also
been reported as being extremely effective approaches to data reduction. Recently, Sup-
port Vector Machines (SVM) [4] have proven to possess the capability of extracting

3 The quadratic programming problem, min 1
2
UT HU + BT U , such that AU ≤ 0, AeqU =

beq , and lb ≤ U ≤ ub, (where H , A, and Aeq are matrices, and B, beq , lb, ub, and U are
vectors) defines a set of lower and upper bounds on the design variables, U , so that the solution
is in the range lb ≤ U ≤ ub.
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vectors that support the boundary between any two classes. Thus, they have been used
satisfactorily to represent the global distribution structure.

In selecting prototypes, vectors near the boundaries between the classes have to be
considered to be more significant, and the created prototypes need to be adjusted to-
wards the classification boundaries so as to yield a higher performance. Based on this
philosophy, Kim and Oommen [12], [13] proposed a new hybrid approach (HYB) that
involved two distinct phases, namely, those of selecting and adjusting [12]. To overcome
the computational burden for “large” datasets, they also proposed a recursive HYB in
[13]. In [13], the data set is sub-divided recursively into smaller subsets to filter out the
“useless” internal points. Subsequently, a conventional PRS (i.e., HYB) processes the
smaller subsets of data points that effectively sample the entire space to yield subsets of
prototypes – one set of prototypes for each subset. The prototypes, which result from
each subset, are then coalesced, and processed again by the PRS to yield more refined
prototypes. In this manner, prototypes which are in the interior of the Voronoi bound-
aries, and are thus ineffective in the classification, are eliminated at the subsequent
invocations of the PRS, noticeably reducing the PRS’s processing time.

This overview of the state-of-the-art of PRSs should be sufficient to help us proceed
in formulating our solution to the problem at hand.

3 Schema for the Proposed Solution

Our goal is to “quickly” find out the class of a query point in the input feature space after
reconstructing an approximated version of the corresponding sample using its NNs.
However, rather than reconstruct the approximated data sample using the entire training
set, we advocate that the data be first reduced into a smaller representative subset using
a PRS, and that the data point be estimated by invoking a reconstruction scheme on
this reduced data set. Thereafter, the classification accuracy of the k−NN classifier is
compared. Thus, the proposed scheme can be formalized as follows:

Algorithm 1. PRS LLR
Input: The original Training Set, T .
Output: Testing by utilizing a fast reconstruction of the approximated query point using a

reduced data set rather than the entire training set.
Assumption 1: The algorithm has access to a PRS such as the CNN, PNN or HYB.
Assumption 2: The algorithm has access to the LLR algorithm mentioned previously.
Method:

Step 1: Select the representative set, Y , from the training set T by resorting to a PRS.
Step 2: Find the closest neighbors, X i

NN , for a query Xi from Y , rather than from T .
Step 3: Compute corresponding weight vector, W i,NN , using LLR and a k1-NN rule.

Step 4: Reconstruct X̂i with LLR using X i
NN and W i,NN , and the k1-NN rule.

Step 5: Classify X̂i by comparing it with the elements of Y using the best k2-NN rule.
End Algorithm PRS LLR

We would like to emphasize that there are a few fundamental differences between
what we propose and the original LLR method proposed in [11]. First of all, we observe
that the computation of the LLR weights does not involve the entire training set T , but
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a representative set, Y , derived from it using a PRS. Secondly, we note that the weights
that are computed for the LLR involve a NN rule, using k1 neighbors, where the latter
is the pre-determined degree of the NN classifier used for the training phase. But once
the reconstructed point is obtained, we now have the freedom of testing it using the
most suitable NN classifier, which may not necessarily be a k1-NN classifier. Indeed,
as in any PR problem, given a training set, the practitioner has the freedom to choose
the best NN classifier that suits his application. In the same vein, in our case, we choose
the best “Testing” NN classifier (a k2-NN classifier) for the application domain, using
the modified “Training” set, Y , and the modified testing sample, X̂i. It turns out that
usually, k2 is quite distinct from k1!

We shall now demonstrate the power of Algorithm PRS LLR.

4 Experimental Set-Up, Results and Evaluation

Experimental Data: The proposed scheme has been tested and compared with the
conventional LLR method reported in the literature. This was done by performing ex-
periments on both “artificial” and “real-life” data sets 4. In each case, the sample vectors
of each data set was divided into two subsets of equal size T 1 and T 2 (typically, used
for training and validation, alternatively). The computation was done on each subset
and subsequently averaged.

In our experiments, the four artificial data sets “Non normal 2, 3” and “Non linear
2, 3”, were generated with different sizes for the testing and training sets, and had
cardinalities of 500 and 5, 000 respectively. The data sets “Ionosphere”, “Sonar”, and
“Arrhythmia”, which are real benchmark data sets, are cited from the UCI Machine
Learning Repository [3].

The data set named “Non normal” (in short, “Non n”), which has also been em-
ployed as a benchmark experimental data set for numerous experimental set-ups, was
generated from a mixture of four 8-dimensional Gaussian distributions as desribed in
detail in [8]). The data set named “Non linear” (in short, “Non l”) which has a strong
non-linearity at its boundary, was generated artificially from a mixture of four normal
variables as described in [13].

Experimental Parameters: Choosing the parameters of PRSs play an important role
in determining the quality of the solution. The parameters5 for the PRSs6 were: Since
the number of prototypes depends on the characteristics of the data set, the number of

4 More extensive results for other data sets are available, but omitted here in the interest of
space.

5 These parameters are included here for the sake of researchers who would like to duplicate the
results.

6 The reader should observe that, as mentioned previously, any PRS can be employed to obtain
the reduced set, Y . In the present paper, only three methods, namely CNN, PNN, and HYB
have been used in the testing. The main reason for choosing these is as follow: First of all,
the prototype vectors obtained with CNN and PNN are selected and created, respectively. On
the other hand, for HYB, the prototypes are initially selected, after which they are adjusted.
Finally, for all the methods, the final number of prototypes is not a quantity that is controlled
or determined automatically.
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iterations is predetermined by the size of T . Hence, CNN and PNN had no parameters.
In HYB, we invoked a hybridized version of the SVM and an LVQ3-type algorithm,
both of which are available in publicly distributed packages. The SVM was employed
to determine the initial code book vectors for the LVQ3. The parameters for the LVQ3
learning are specified in [12]. For instance, the parameters for the data set “Adult4”
were α = 0.05, ε = 0.06, w = 0.35, η = 5,600.

Selecting Prototype Vectors: In order to evaluate the proposed classification mech-
anisms, we first selected the prototype vectors from the experimental data sets using
the CNN, PNN, and HYB algorithms. In HYB, we selected initial prototypes using a
SVM algorithm. After this selection, we invoked a phase in which the optimal posi-
tions (i.e., with regard to classification) were learned with an LVQ3-type scheme. For
the SVM and LVQ3 programs, we utilized publicly-available software packages. For
example, we can see that the numbers of selected prototype vectors of the “Non n2”
dataset with CNN are (64, 66), (56, 380), and (63, 57), respectively. Each of them is
considerably smaller than the size of the original data set, (500, 500). Using the se-
lected vectors as a representative of the training data set, we can significantly reduce
the cardinality of the dataset (and the consequential computations) without noticeably
degrading the performance. The reduction of the classification processing time follows
as a natural consequence. As an observation, we also mention that the reduction rate
increased dramatically as the size of the data sets was increased.

Experimental Results: To illustrate the method, consider Figure 1 which shows the
plots of the 2-dimensional data set

{
(xi

2, x
i
4)T

}50

i=1
projected from the original four

dimensional “Iris2” data set. The figure on the left is the original data set, where the
points of two classes are represented by ‘×’ and ‘+’, respectively. The figure on the
right is the reconstructed data set from the prototypes, rather than the entire samples
using LLR. Here, the prototypes are extracted by CNN and represented by ‘⊗’ and
‘⊕’, respectively. The reader should observe the non-intuitive properties of the scheme
by studying Figure 1. Although the samples shown in the figure on the right (given
by ‘×’ and ‘+’ respectively), are reconstructed by using the prototypes ‘⊗’ and ‘⊕’,
respectively from the figure on the left, the reconstructed points do not individually
“optimally” represent their original counterparts. However, collectively, they are the
best locations for the k1-NNs which can, in turn, collectively represent the points.

Tables 1 and 2 show the run-time characteristics of the proposed scheme for the ar-
tificial data sets and the other benchmark data sets. With regard to notation, in these
tables, the abbreviations WHL, CNN, PNN, and HYB correspond to the experimental
methods employed for the WHoLe data set, and the prototypes extracted with the CNN,
PNN, and HYB methods, respectively. Analogously, in the case of WHL, the data com-
plexities (classification accuracies) and the corresponding processing CPU-times were
measured for the whole data set, and for CNN, PNN, and HYB, the measures were
computed for the corresponding extracted prototypes.

By examining the results, it is clear that the classification accuracies, for the bench-
mark databases can be measured quite efficiently and fairly accurately by first invoking
the corresponding PRS techniques. To clarify this, consider, for example, the accuracies
obtained for the samples reconstructed with NN = 5 for “Non n2”. The classification
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Fig. 1. Plots of the 2-dimensional vectors
{(xi

2
xi
4

)}50

i=1
generated from the original 4-dimensional

“Iris2” data set. The details of the picture are discussed in the text.

Table 1. A comparison of classification accuracies (%) for the samples locally reconstructed with
the experimental data sets and their prototypes extracted with CNN, PNN, and HYB, where each
evaluation sample was reconstructed with the k1 nearest neighbors of cardinalities 1, 3, 5, 7, 9,
11, 13. The number in parenthesis in each entry represents the “order” k2, of the corresponding
“Testing” classifier, using which the respective accuracy was obtained.

Datasets PRS NN: k1=1 NN: k1=3 NN: k1=5 NN: k1=7 NN: k1=9 NN: k1=11 NN: k1=13

WHL 94.50 (11) 94.52 (13) 94.54 (13) 94.54 (13) 94.54 (13) 94.50 (13) 94.52 (13)
Non n3 CNN 94.50 (11) 94.62 (11) 94.56 (13) 94.57 (13) 94.58 (13) 94.55 (13) 94.54 (13)

PNN 94.40 (7) 94.53 (13) 94.56 (13) 94.56 (13) 94.53 (13) 94.60 (13) 94.50 (13)
HYB 71.70 (9) 42.27 (1) 42.30 (1) 42.29 (1) 42.27 (1) 42.24 (1) 42.34 (1)
WHL 91.08 (11) 91.16 (13) 91.07 (13) 91.14 (13) 91.12 (13) 91.12 (13) 91.20 (11)

Non l3 CNN 90.46 (9) 90.06 (7) 89.96 (9) 89.83 (9) 89.74 (9) 89.71 (9) 89.70 (9)
PNN 87.83 (9) 88.67 (7) 88.86 (7) 89.06 (7) 89.10 (7) 89.09 (7) 89.12 (7)
HYB 88.04 (13) 88.36 (13) 88.18 (13) 88.18 (13) 88.12 (13) 88.20 (13) 88.24 (13)
WHL 78.69 (1) 77.55 (1) 76.98 (1) 76.13 (1) 76.42 (1) 75.85 (1) 75.85 (1)

Ionos CNN 81.81 (1) 80.39 (1) 77.84 (1) 77.27 (1) 75.85 (1) 74.43 (1) 74.14 (1)
PNN 82.67 (1) 83.52 (3) 82.95 (3) 83.23 (3) 82.38 (3) 82.38 (3) 81.81 (3)
HYB 83.23 (1) 80.96 (1) 77.27 (1) 78.12 (3) 78.97 (3) 78.40 (3) 78.69 (3)
WHL 82.21 (1) 83.65 (3) 84.61 (3) 84.13 (3) 84.13 (3) 83.65 (3) 83.65 (3)

Sonar CNN 79.80 (1) 79.80 (1) 78.36 (1) 79.32 (1) 78.36 (1) 79.32 (1) 79.80 (1)
PNN 82.69 (1) 82.21 (1) 81.25 (1) 81.73 (1) 81.25 (1) 79.80 (1) 79.80 (1)
HYB 80.76 (1) 79.80 (1) 79.80 (1) 79.32 (1) 79.32 (1) 78.36 (1) 78.84 (1)
WHL 97.56 (1) 97.56 (1) 97.56 (1) 97.78 (1) 97.78 (1) 97.34 (1) 97.34 (1)

Arrhy CNN 96.46 (1) 96.46 (1) 96.46 (1) 96.01 (1) 95.79 (1) 94.91 (1) 95.13 (1)
PNN 99.11 (1) 99.11 (1) 98.89 (1) 98.67 (1) − − −
HYB 99.11 (1) 98.89 (1) 98.67 (1) 98.45 (1) 98.45 (1) 98.89 (1) 99.11 (1)

accuracies of WHL, CNN, PNN, and HYB are 94.50, 94.50, 94.60, and 71.90 (%),
respectively, where the quantities mentioned in parenthesis in each row represent the
classification accuracies that are obtained with the 11-NN, 9-NN, 7-NN, and 5-NN clas-
sifiers, respectively. But with regard to computation, the processing CPU-times of these
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Table 2. A comparison of the processing CPU-times (seconds) required for the samples locally
reconstructed with the experimental data sets and their prototypes. Here, the prototypes were
extracted with CNN, PNN, and HYB, respectively. Thereafter, each evaluation sample was re-
constructed with the nearest neighbors of cardinalities 1, 3, 5, 7, 9, 11, 13.

Datasets PRS NN: k1=1 NN: k1=3 NN: k1=5 NN: k1=7 NN: k1=9 NN: k1=11 NN: k1=13

WHL 91.22 112.30 117.02 128.06 148.27 152.55 167.41
Non n3 CNN 80.38 76.70 75.30 83.92 94.55 99.50 111.22

PNN 114.22 139.23 135.19 152.86 183.89 174.75 192.83
HYB 81.32 92.41 100.21 111.61 120.64 125.44 138.72
WHL 121.36 130.36 141.44 151.47 185.13 208.06 227.08

Non l3 CNN 58.42 65.59 71.67 82.78 98.50 108.94 125.95
PNN 80.56 88.03 95.75 110.23 125.33 138.28 136.41
HYB 90.53 97.38 105.88 126.09 151.14 167.52 188.38
WHL 2.92 6.88 6.55 6.63 7.78 7.21 7.52

Ionos CNN 2.85 6.72 6.60 6.57 6.94 6.96 7.29
PNN 2.79 6.79 6.33 6.80 6.80 7.07 7.24
HYB 2.87 6.85 6.57 6.66 6.82 7.07 7.13
WHL 1.86 3.56 3.85 3.90 4.01 4.06 4.24

Sonar CNN 2.00 3.46 3.90 3.87 4.01 4.18 4.21
PNN 1.92 3.42 3.85 4.04 4.17 4.13 4.32
HYB 1.90 3.60 3.92 3.95 4.13 4.21 4.34
WHL 98.94 107.27 109.28 114.02 119.34 123.80 130.98

Arrhy CNN 67.86 74.30 77.22 79.20 83.77 87.66 95.20
PNN 64.36 70.67 73.05 76.17 − − −
HYB 71.88 85.20 83.27 90.88 92.61 96.69 101.89

methods are 22.28, 20.28, 20.73, and 19.56 seconds, respectively7 – which represents
an advantage of about 12%. The effect is more marked in the case of large data sets. For
example, in the case of the “Non l3” data set, the accuracy measures of WHL, CNN,
PNN, and HYB are 91.07, 89.96, 88.86, and 88.18 (%), respectively, while the pro-
cessing times involved by using the PRSs are much smaller – namely 71.67, 95.75, and
105.88 seconds respectively, instead of 141.44 seconds required for the entire data set.
Similar observations can also be made for the other benchmark data sets. But, in gen-
eral, as an overall conclusion we believe that we can assert that a PRS can be effectively
invoked to optimize the Locally Linear Reconstruction process for PR applications.

5 Conclusions

In this paper, we have considered how we can use the principles of Prototype Reduction
Schemes (PRSs) to optimize the computations involved in the well-known families of
k-Nearest Neighbor (k-NN) rules. Although k-NN rules have been extensively studied,
recently, an implementation of the k-NN, named as the Locally Linear Reconstruction

7 The times recorded are the times required for the MATLAB computation on a PC with a CPU
speed of 2.40GHz and RAM 2GB, and operating on a Windows platform.
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(LLR) [11], which invokes a quadratic optimization process has been proposed. The lat-
ter method is capable of systematically setting model parameters, such as the number
of neighbors (k) and the weights. Our aim, in this paper, was to optimize the compu-
tation time required for LLR by using a PRS. We have proposed a strategy of using a
PRS to efficiently compute the optimization problem. We have demonstrated that by
completely discarding the points not included by the PRS, we can obtain a reduced
set of sample points, using which, in turn, the quadratic optimization problem can be
computed. The accuracies of proposed method is comparable to those obtained with
the original training set (i.e., the one which considers all the data points) even though
the computations required are noticeably less (the proposed method sometimes requir-
ing only about 50% of the time). The proposed method has been tested on artificial
and real-life data sets, and the results obtained are quite promising, and could have po-
tential in PR applications. An avenue for further research involves developing alternate
stochastic learning methods by which the query sample can be estimated accurately and
quickly.
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Abstract. A common approach for solving multi-label classification

problems using problem-transformation methods and dichotomizing clas-

sifiers is the pair-wise decomposition strategy. One of the problems with

this approach is the need for querying a quadratic number of binary

classifiers for making a prediction that can be quite time consuming es-

pecially in classification problems with large number of labels. To tackle

this problem we propose a two stage voting architecture (TSVA) for

efficient pair-wise multiclass voting to the multi-label setting, which is

closely related to the calibrated label ranking method. Four different

real-world datasets (enron, yeast, scene and emotions) were used to eval-

uate the performance of the TSVA. The performance of this architecture

was compared with the calibrated label ranking method with majority

voting strategy and the quick weighted voting algorithm (QWeighted)

for pair-wise multi-label classification. The results from the experiments

suggest that the TSVA significantly outperforms the concurrent algo-

rithms in term of testing speed while keeping comparable or offering

better prediction performance.

Keywords: Multi-label, classification, calibration, ranking.

1 Introduction

Traditional single-label classification is concerned with learning from set of ex-
amples that are associated with a single label λi from a finite set of disjoint
labels L = {λ1, λ2, ..., λQ}, Q > 1. If Q = 2, then the learning problem is called
a binary classification problem, while if Q > 2, then it is called a multi-class
classification problem. On the other hand, multi-label classification is concerned
with learning from a set of examples S = {(x1, Y1), (x2, Y2), ..., (xp, Yp)} (xi ∈ X ,
X denote the domain of examples) where each of the examples is associated with
a set of labels Yi ⊆ L.

Many classifiers were originally developed for solving binary decision prob-
lems, and their extensions to multi-class and multi-label problems are not
straight-forward. Because of that, a common approach to address the multi-label
classification problem is utilizing class binarization methods, i.e. decomposition
of the problem into several binary subproblems that can then be solved using

J. Li (Ed.): AI 2010, LNAI 6464, pp. 164–173, 2010.
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a binary base learner. The simplest strategy in the multi-label setting is the
one-against-all strategy also referred to as the binary relevance method. It ad-
dresses the multi-label classification problem by learning one classifier (model)
Mk (1 ≤ k ≤ Q) for each class, using all the examples labeled with that class
as positive examples and all other (remaining) examples as negative examples.
At query time, each binary classifier predicts whether its class is relevant for the
query example or not, resulting in a set of relevant labels.

Another approach for solving the multi-label classification problem using bi-
nary classisifers is pair-wise classification or round robin classification [1][2]. Its
basic idea is to use Q ∗ (Q− 1) /2 classifiers covering all pairs of labels. Each
classifier is trained using the samples of the first label as positive examples and
the samples of the second label as negative examples. To combine these clas-
sifiers, the pair-wise classification method naturally adopts the majority voting
algorithm. Given a test instance, each classifier delivers a prediction for one of
the two labels. This prediction is decoded into a vote for one of the labels. After
the evaluation of all Q ∗ (Q− 1) /2 classifiers the labels are ordered according to
their sum of votes. To predict only the relevant classes for each instance a label
ranking algorithm is used. Label ranking studies the problem of learning a map-
ping from set of instances to rankings over a finite number of predefined labels.
It can be considered as a natural generalization of conventional classification,
where only a single label (the top-label) is requested instead of a ranking of all
labels.

Brinker et al. [3] propose a conceptually new technique for extending the com-
mon pair-wise learning approach to the multi-label scenario named calibrated
label ranking. The key idea of calibrated label ranking is to introduce an ar-
tificial (calibration) label λ0, which represents the split-point between relevant
and irrelevant labels. The calibration label λ0 is assumed to be preferred over
all irrelevant labels, but all relevant labels are preferred over it. At prediction
time (when majority voting strategy is usually used), one will get a ranking over
Q + 1 labels (the Q original labels plus the calibration label). The calibrated
label ranking is considered a combination of both multi-label classification and
ranking.

Besides the majority voting that is usually used strategy in the prediction
phase of the calibrated label ranking algorithm, Park et al. [4] propose an-
other more effective voting algorithm named Quick Weighted Voting algorithm
(QWeighted). QWeighted computes the class with the highest accumulated vot-
ing mass avoiding the evaluation of all possible pair-wise classifiers. It exploits
the fact that during a voting procedure some classes can be excluded from the
set of possible top rank classes early in the process when it becomes clear that
even if they reach the maximal voting mass in the remaining evaluations they
can no longer exceed the current maximum. Pair-wise classifiers are selected de-
pending on a voting loss value, which is the number of votes that a class has
not received. The voting loss starts with a value of zero and increases mono-
tonically with the number of performed preference evaluations. The class with
the current minimal loss is the top candidate for the top rank class. If all
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preferences involving this class have been evaluated (and it still has the low-
est loss), it can be concluded that no other class can achieve a better ranking.
Thus, the QWeighted algorithm always focuses on classes with low voting loss.
An adaptation of QWeighted to multi-label classification (QWeightedML) [5] is
to repeat the process while all relevant labels are not determined i.e. until the
returned class is the artificial label λ0, which means that all remaining classes
will be considered to be irrelevant.

In this paper we propose an efficient Two Stage Voting Architecture (TSVA)
that modifies the majority voting algorithm for calibrated label ranking tech-
nique [6]. We have evaluated the performance of this architecture on a selection
of multi-label datasets that vary in terms of problem domain and number of
labels. The results demonstrate that our modification outperforms the majority
voting algorithm for pair-wise multi-label classification and the QWeightedML
[5] algorithm in terms of testing speed, while keeping comparable prediction
results.

For the readers’ convenience, in Section 2 we will briefly introduce notations
and evaluation metrics used in multi-label learning. The Two Stage Voting Ar-
chitecture is explained in Section 3. The experimental results that compare the
performance of the proposed TSVA with concurrent methods are presented in
Section 4. Section 5 gives a conclusion.

2 Preliminaries

Let X denote the domain of instances and let L = {λ1, λ2, ..., λQ} be the fi-
nite set of labels. Given a training set S = {(x1, Y1), (x2, Y2), ..., (xp, Yp)} (xi ∈
X,Yi ⊆ L), the goal of the learning system is to output a multi-label clas-
sifier h : X → 2L which optimizes some specific evaluation metric. In most
cases however, instead of outputting a multi-label classifier, the learning system
will produce a real-valued function of the form f : X × L → R. It is sup-
posed that, given an instance xi and its associated label set Yi, a successful
learning system will tend to output larger values for labels in Yi than those
not in Yi, i.e. f(xi, y1) > f(xi, y2) for any y1 ∈ Yi and y2 /∈ Yi. The real-
valued function f(•, •) can be transformed to a ranking function rankf (•, •),
which maps the outputs of f(xi, y) for any y ∈ L to {λ1, λ2, ..., λQ} such that
if f(xi, y1) > f(xi, y2) then rankf (xi, y1) < rankf (xi, y2). Note that the cor-
responding multi-label classifier h(•) can also be derived from the function
f(•, •) : h(xi) = {y|f(xi, y) > t(xi); y ∈ L}, where t(•) is a threshold function
which is usually set to be the zero constant function. Performance evaluation of
multi-label learning system is different from that of classical single-label learning
system. The following multi-label evaluation metrics proposed in [7] are used in
this paper:

(1) Hamming loss: evaluates how many times an instance-label pair is misclas-
sified, i.e. a label not belonging to the instance is predicted or a label belonging
to the instance is not predicted. The performance is perfect when hlossS(h) = 0.
The smaller the value of hlossS(h), the better the performance. This metric is
given by
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hlossS(h) =
1
p

p∑
i=1

1
Q
|h(xi)ΔYi| (1)

where Δ stands for the symmetric difference between two sets and Q is the total
number of possible class labels. Note that when |Yi| = 1 for all instances, a
multi-label system reduces to multi-class single-label one and the hamming loss
becomes 2/Q times the usual classification error.

While hamming loss is based on the multi-label classifier h(•), the other four
metrics are defined based on the real-valued function f(•, •) that takes into
account the ranking quality of different labels for each instance:

(2) One-error: evaluates how many times the top-ranked label is not in the
set of proper labels of the instance. The performance is perfect when one −
errorS(f) = 0. The smaller the value of one− errorS(f), the better the perfor-
mance. This evaluation metric is given by:

one− errorS(f) =
1
p

p∑
i=1

[[[
arg max

y∈Y
f(xi, y)

]
/∈ Yi

]]
(2)

where for any predicate π, [[π]] equals 1 if π holds and 0 otherwise. Note that, for
single-label classification problems, the one-error is identical to ordinary classi-
fication error.

(3) Coverage: evaluates how far, on the average we need to go down the list of
ranked labels in order to cover all the proper labels of the instance. The smaller
the value of coverageS(f), the better the performance.

coverageS(f) =
1
p

p∑
i=1

max
y∈Yi

rankf (xi, y)− 1 (3)

(4) Ranking loss: evaluates the average fraction of label pairs that are reversely
ordered for the particular instance given by:

rlossS(f) =
1
p

p∑
i=1

|Di|
|Yi|

∣∣Ȳi

∣∣ (4)

where Di =
{
f(y1, y2)|f(xi, y1) ≤ f(xi, y2), (y1, y2) ∈ Yi × Ȳi

}
, while Ȳ denotes

the complementary set of Y in L. The smaller the value of rlossS(f), the better
the performance, so the performance is perfect when rlossS(f) = 0.

(5) average precision: evaluates the average fraction of labels ranked above
a particular label y ∈ Y that actually are in Y . The performance is perfect
when avgprecS(f) = 1; the bigger the value of avgprecS(f), the better the
performance. This metric is given by:

avgprecS(f) =
1
p

p∑
i=1

1
|Yi|

∑
y∈Yi

|Li|
rankf (xi, y)

(5)

where Li = {y′|rankf (xi, y
′) ≤ rankf (xi, y), y′ ∈ Yi} .
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Note that in the rest of this paper, the performances of the multi-label learning
algorithms are evaluated based on the five metrics explained above.

3 Two Stage Voting Architecture (TSVA)

Conventional pair-wise approach learns a model Mij for all combinations of
labels λi and λj with 1 ≤ i < j ≤ Q. This way Q ∗ (Q− 1) /2 different pair-
wise models are learned. Each pearwise model Mij is learned with the examples
labelled with label λi as positive examples and the examples labelled with λj

as negative examples. The main disadvantage of this approach is that in the
prediction phase a quadratic number of base classifiers (models) have to be
consulted for each test example.

Further, as a result of introducing the artificial calibration label λ0 in the
calibrated label ranking algorithm, the number of the base classifiers is increased
by Q i.e. additional set of Q binary preference models M0k (1 ≤ k ≤ Q) is
learned. The models M0k that are learned by a pair-wise approach to calibrated
ranking, and the models Mk that are learned by conventional binary relevance
are equivalent. At prediction time (when standard majority voting algorithm
is usually used) each test instance needs to consult all the models (classifiers)
in order to rank the labels by their order of preference. This results in slower
testing, especially when the number of the labels in the problem is big.

In this paper we propose an efficient two stage voting architecture which
modifies the majority voting algorithm for the calibrated label ranking technique.
It reduces the number of base classifiers that are needed to be consulted in order
to make a final prediction for a given test instance. The number of base classifiers
that are trained by the calibrated label ranking algorithm and the TSVA in the
learning process is equivalent.

The proposed (TSV) architecture is organized in two layers. In the first layer
of the architecture Q classifiers are located, while in the second layer of the
architecture the rest Q ∗ (Q − 1)/2 classifiers are located. All of the classifiers
in the first layer are the binary relevance models M0k, while in the second layer
of the architecture the pair-wise models Mij are located. Each model M0k from
the first layer is connected with Q− 1 models Mij from the second layer, where
k = i or k = j (1 ≤ i ≤ Q− 1, i + 1 ≤ j ≤ Q). An example of TSVA for solving
four-class multi-label classification problems is shown on Fig. 1.

At prediction time, each model M0k of the first layer of the architecture tries
to determine the relevant labels for the corresponding test example. Each model
M0k gives the probability (the output value of model M0k is convert to probabil-
ity) that the test example is associated with the label λk. If that probability is
appropriately small (under some threshold), we can conclude that the artificial
calibration label λ0 is preferred over the label λk i.e. the label λk belongs to the
set of irrelevant labels. In such case, one can conclude that for the test example,
the pair-wise models of the second layer Mij where i = k or j = k, need not
be consulted, because the binary relevance model M0k from the first layer has
already made a decision that the label λk belongs to the set of irrelevant labels.
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Fig. 1. TSV Architecture

For each test example for which it is known that the label λk belongs to the set
of irrelevant labels, the number of models that should be consulted decreases for
Q− 1.

In order to make a decision which labels belong to the set of irrelevant labels
i.e. which pair-wise models Mij from the second layer do not have to be consulted
a threshold t (0 ≤ t ≤ 1) is introduced.

According to the previously mentioned, in TSVA every test instance first
consults all binary relevance models M0k of the first layer of the architecture.
If the corresponding model M0k (1 ≤ k ≤ Q) response with a probability that
is above the threshold t, the test instance is then forwarded only to the models
Mij of the second layer of the architecture that are associated to the model
M0k. The pair-wise model Mij from the second layer is connected to the binary
relevance models M0i and M0j. This does not mean that the model Mij has to
be consulted twice, if the prediction probabilities of the models M0i and M0j are
both above the threshold t. Instead the model Mij is consulted only once and its
prediction is decoded into a vote for one of the labels λi or λj . If the prediction
of one of the models M0i and M0j results with probability under the threshold
t, the corresponding model Mij is not consulted and the vote from this model
goes to the label which binary relevance model prediction probability is above
the threshold t.

By increasing the value of the threshold, the number of consulted pair-wise
models decreases. If t = 1 the test instance is not forwarded to the second layer
of the architecture and the TSVA becomes binary relevance method. On the
other hand, if t = 0, all pair-wise models of the second layer are consulted and
the TSVA becomes calibrated label ranking method with majority voting.

4 Experimental Results

In this section, we present the results of our experiments with several multi-
label classification problems. The performance was measured on the problem of
recognition of text, music, image and gene function.

Here, the performance of the TSV architecture is compared with the calibrated
label ranking method with majority voting strategy for pair-wise multi-label
classification (CLR-S) and the QWeightedML algorithm [5].

The training and testing of the TSVA was performed using a custom developed
application that uses the MULAN library [8] for the machine learning framework
Weka [9]. The LIBSVM library [10] utilizing the SVMs with radial basis kernel
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Table 1. Datasets

scene yeast enron emotions

Domain image biology text music

Training Instances 1211 1500 1123 391

Test Instances 1159 917 579 202

Features 294 103 1001 72

Labels 6 14 53 6

Table 2. The evaluation of each method for every dataset

t Evaluation Metric CLR-S QWeightedML TSVA

Hamming Loss 0.0476 0.0481 0.0501

One-error 0.2297 0.2262 0.2193

Coverage 11.5198 20.3333 14.4317

enron 0.03 Ranking Loss 0.0756 0.1516 0.0969

Avg. Precision 0.7018 0.6543 0.6970

Testing time (s) 605.06 174.31 147.57

Hamming Loss 0.2566 0.2623 0.2590

One-error 0.3812 0.3762 0.3663

Coverage 2.4059 2.8465 2.3960

emotions 0.25 Ranking Loss 0.2646 0.3381 0.2612

Avg. Precision 0.7215 0.6795 0.7242

Testing time (s) 2.56 1.67 1.34

Hamming Loss 0.1903 0.1909 0.1906

One-error 0.2334 0.2301 0.2300

Coverage 6.2758 8.6215 6.7633

yeast 0.15 Ranking Loss 0.1632 0.2934 0.1805

Avg. Precision 0.7685 0.7003 0.7641

Testing time (s) 104.34 60.39 54.65

Hamming Loss 0.0963 0.0956 0.0946

One-error 0.2349 0.2349 0.2366

Coverage 0.4883 0.7073 0.4974

scene 0.02 Ranking Loss 0.0779 0.1190 0.0799

Avg. Precision 0.8600 0.8400 0.8598

Testing time (s) 66.15 40.32 35.73

were used for solving the partial binary classification problems. Usually, the most
important criterion when evaluating a classifier is its prediction performance,
but very often the testing time of the classifier can be equally important. In our
experiments, four different multi-label classification problems were addressed by
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each classifying methods. The recognition performance and the testing time were
recorded for every method. The problems considered in the experiments include
scene [11] (scene), gene function [12] (yeast), text [13](enron) and music [14]
(emotions) classification.

The complete description of the datasets (domain, number of training and
test instances, number of features, number of labels) is shown in Table 1.

In all classification problems the classifiers were trained using all available
training samples of the sets and were evaluated by recognizing all the test samples
from the corresponding set. Table 2 gives the performance of each method applied
on each of the datasets. The first column of the table describes the datasets. The
second column shows the values of the threshold t for each dataset separately,
for which the presented results of TSVA are obtained.

The value of the threshold t for each dataset was determined by 5-fold cross
validation using only the samples of the training set in order to achieve maximum
benefit in terms of prediction results on testing speed.

Table 2 clearly shows that among the three tested approaches TSVA offers
best performance in terms of testing speed. The results show that for the four
treated classification problems TSVA is 2 to 4 times faster than calibrated la-
bel ranking algorithm with majority voting and 10% to 15% faster than the
QWeightedML method. It can also be noticed that TSVA offers better per-
formance than QWeightedML method in all evaluation metrics, while showing
comparable performance to calibrated label ranking algorithm with majority
voting. The dependence of the predictive performances for different values of
the threshold t (0 ≤ t ≤ 1) are shown on Fig. 2. Fig. 3 shows the testing time

Fig. 2. Predictive performance of TSVA as a function of the threshold t (0 ≤ t ≤ 1)

for each dataset



172 G. Madjarov, D. Gjorgjevikj, and T. Delev

Fig. 3. Testing time of TSVA as a function of the threshold t (0 ≤ t ≤ 1) for each

dataset measured in seconds

for the four classification problems as a function of the selected threshold t. It
can be noticed that for small values of the threshold t (0.0 - 0.2) the predictive
performance of TSVA changes moderately, but the testing time decreases for
more than 40%. The reduction of the testing time of the TSVA over the CLR-S
becomes even more notable as the number of labes in the treated classifica-
tion problem increases. The experiments showed that for the enron dataset with
quite big number of labels (53) the testing time of TSVA is four times shorter
comparing to the calibrated label ranking algorithm.

5 Conclusion

A two stage voting architecture (TSVA) for efficient pair-wise multiclass voting
to the multi-label setting was presented. The performance of this architecture
was compared with the calibrated label ranking method with majority voting
strategy for pair-wise multi-label classification and the QWeightedML algorithm
on four different real-world datasets (enron, yeast, scene and emotions). The re-
sults show that the TSVA significantly outperforms the calibrated label ranking
method with majority voting and the QWeightedML algorithm in term of test-
ing speed while keeping comparable or offering better prediction performance.
TSVA was 2 to 4 times faster than calibrated label ranking algorithm with ma-
jority voting and 10% to 15% faster than the QWeightedML method. TSVA is
expected to show even bigger advantage when addressing classification problems
with large number of labels.
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Abstract. This paper presents Newton trees, a redefinition of proba-

bility estimation trees (PET) based on a stochastic understanding of

decision trees that follows the principle of attraction (relating mass and

distance through the Inverse Square Law). The structure, application

and the graphical representation of Newton trees provide a way to make

their stochastically driven predictions compatible with user’s intelligi-

bility, so preserving one of the most desirable features of decision trees,

comprehensibility. Unlike almost all existing decision tree learning meth-

ods, which use different kinds of partitions depending on the attribute

datatype, the construction of prototypes and the derivation of probabili-

ties from distances are identical for every datatype (nominal and numer-

ical, but also structured). We present a way of graphically representing

the original stochastic probability estimation trees using a user-friendly

gravitation simile.We include experiments showing that Newton trees

outperform other PETs in probability estimation and accuracy.

Keywords: Probability Estimation Trees, Decision Trees, Distance

Methods, Inverse Square Law, Stochastic Decision Trees.

1 Introduction

Decision tree learning [19] is one of the most popular (and powerful) techniques
in machine learning and, very especially, in data mining. Two of the most im-
portant features of decision trees are their divide-and-conquer covering of the
problem space and the use of decisions defined over univariate conditions (al-
though multivariate variants exist). Decision tree learning has evolved through
the introduction of datatype-specific condition schemes, dozens of splitting cri-
teria, and many class assignment, pruning and stopping rules.

Probability Estimation Trees (PETs) [17][6], whose output is a probabili-
ty rather than a crisp decision, are heirs of this technology, and are generally
preferable over classical decision trees, whenever the goal is good rankings or
good probability estimation. Initially, PETs were improved by using smoothing
in the leaves [17] or through a pruning-smoothing [6]. The decision tree was
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unaltered and the rules which were derived from it were consistent with its
predictions. However, many other recent extensions of PETs use the decision
tree as a skeleton upon which a complex decision making process takes place.
The way the decision tree looks and the way it must be used to obtain the
predictions are no longer easy to understand or even consistent.

In an effort of getting the most from decision tree learning for probability
estimation, in this paper we present a new Stochastic Probability Estimation
Tree learning technique. Splits are constructed by using attribute prototypes
which work as attractors, following an inverse square law using the distance
to the prototype and its mass, similar to other ‘gravitational’ approaches in
machine learning [9][16]. We will present the details of Newton trees and we will
show that they introduce a series of new features and important contributions,
namely:

– We use the notion of distance in a univariate way as a general way of treating
any kind of datatype (numerical, nominal, ordinal or structured).

– We construct the tree based on the principle of attraction and we derive the
probabilities, use and represent the tree using the same principle.

– We handle numerical, nominal and ordinal attributes in the same way. We
do not have to type attributes but just provide a distance for each datatype.

– We use medoids (prototypes from the set of attribute values) and not cen-
troids, so properly handling both continuous and discrete datatypes. For
continuous datatypes we only construct a cluster per attribute and class,
and not a cutpoint between each pair of values. So, we reduce the number
of partitions to evaluate (see Section 3.2).

– We provide a graphical representation of the trees to easily interpret them.
– We evaluate the trees using a qualitative measure of error (accuracy), a mea-

sure of ranking quality (AUC, Area Under the ROC Curve) and a measure
of calibration and refinement quality (MSE, Mean Squared Error).

The paper is organised as follows. Section 2 introduces notation and basic ter-
minology on decision tree learning and probability estimation trees, and also
reviews some related work. Section 3 introduces Newton Trees, by first descri-
bing the attraction function and then explaining how trees are learned and used
to obtain the probability estimations. It also introduces a user-friendly represen-
tation of Newton trees. Section 4 includes a set of experiments, which compare
Newton Trees with a common PET (C4.5 without pruning and Laplace estima-
tion). Finally, Section 5 presents the conclusions and the future work.

2 Notation and Previous Work

2.1 Notation

The set of all possible unlabelled examples E is composed of all the elements
e = 〈e1, e2, ..., em〉 with m being the number of attributes. The attribute names
are denoted by 〈x1, x2, ..., xm〉. A labelled dataset D is a set of pairs 〈e, i〉 where
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e ∈ E and i ∈ C, where C is the set of classes. The number of classes, |C|, is de-
noted by c. We define a probability estimator as a set of c functions pi∈C : E →R
such that ∀i ∈ C, e ∈ E : 0 ≤ pi(e) ≤ 1 and ∀e ∈ E :

∑
pi∈C(e) = 1. Deci-

sion trees are formed of nodes, splits and conditions. A condition is any Boolean
function g : E → {true, false}. A split or partition is a set of s conditions
gk : 1 ≤ k ≤ s. A decision tree can be defined recursively as follows: (i) a node
with no associated split is a decision tree, called a leaf; (ii) a node with an asso-
ciated split gk : 1 ≤ k ≤ s and a set of s children tk, such that each condition is
associated with one and only one child, and each child tk is a decision tree, is also
a decision tree. Given a node ν, Children(ν) denotes the set of its children and
Parent(ν) denotes its predecessor node. The special node where Parent(ν) = ∅
is called the root of the tree. After the training stage, the examples will have
been distributed among all the nodes in the tree, where the root node contains
all the examples and downward nodes contain the subset of examples that are
consistent with all its ancestors’ conditions. Therefore, every node has particular
absolute frequencies n1, n2, ..., nc for each class. The cardinality of the node is
given by

∑
ni. A decision tree classifier is defined as a decision tree with an

associated labelling of the leaves with classes. A PET is a decision tree which
outputs a probability for each class.

2.2 Related Work

Existing Probability Estimation Trees output a probability but are not necessa-
rily probabilistic in nature. A first issue is that they typically use a divide-and-
conquer philosophy for constructing the tree but the same philosophy is used to
make a prediction. Given an example, a sequence of decisions will lead to a leaf
of the tree where a value is returned (a class in classification trees, a number
in regression trees, a probability in PETs, etc.). The rest of the information of
the tree is wasted (although there are exceptions [4,6,14]). In decision theory,
though, this crisp view of decisions is awkward, since each decision can have an
associated probability, and the overall probability must be computed by consi-
dering the whole structure of the tree. This kind of tree are frequently (but not
always) called stochastic decision trees (e.g. [12]).

A second issue is that this use of all the paths in the tree can be made in
such a way that the probabilities of the tree are independent to the instance
which is being processed. In fact, this has been the approach in [14], by using
an ad-hoc parameter which is used to determine the probability of each child in
a partition. More recent approaches ([1], [2]) have made the probability depend
on the proximity to the cut-point for the attribute, by using Kernel Density
Estimates. In other words, a tree can be constructed by a classical algorithm
(such as C4.5 [18] or CART [3]) and its probabilistic or stochastic interpretation
can be inconsistent to the way the decision tree was constructed.

A third issue is how different datatypes are handled. Many of the previous
approaches only deal with numerical attributes ([1], [2]) or only with nominal
attributes. When handling both, the trees just preserve the very specific way
of handling numerical attributes with cutpoints and nominal attributes with
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equalities, as C4.5 [18] or CART [3]. Even in the case of fuzzy decision trees
(which often provide a more integrated view of nominal and numerical attributes)
it is unclear how decision trees can be applied to problems where some attributes
are from other (structured) datatypes such as intervals, sequences or sets.

Having all the previous approaches to PETs, in this work we propose a new
decision tree learning method which has been designed from scratch with the
goals of being stochastic in nature, general and flexible in the way it handles
data attributes, and intelligible.

3 Stochastic Distance-Based Probability Estimation
Trees

In this section we define our Stochastic Probability Estimation Tree learning
technique which leads to Newton trees.

3.1 Gravitational Partitions

When constructing splits, decision trees typically generate conditions which are
then evaluated to see how well they separate the classes. Instead of that, we pro-
pose to define a node/cluster per class and then try to find the characterisation
of each node in terms of one attribute at a time (univariate).

Following this idea, one first approach is to use Kernel Density Estimation
[21] in order to derive a probability density function (pdf), from the examples
belonging to each class. However, many of these techniques will construct a
parametrised or composite pdf that will make partitions unintelligible, apart
from having the risk of overfitting. Another approach is to derive a prototype
for each node, and then, to derive a probability from the prototypes. In order
to treat discrete datatypes appropriately, we use a medoid (the element in each
cluster such that its average distance to the rest is the lowest). If we generate
prototypes, one possibility to derive probabilities from them is to assume some
probability distribution. For instance, if we consider a normal distribution for
each node with centre at the prototype and with standard deviation equal to the
mean of distances of the elements of the node, we have a pdf. Figure 1 (left) shows
the pdf using a Gaussian with centres 3 and 8, with standard deviations 1 and 3.5
(respectively) and masses 20 and 100 (respectively). This can be converted into
conditional probabilities by mere normalisation, as shown in Figure 1 (right).

The problem of the previous approach is that when masses are too disparate,
one distribution can cover the other, giving a plain partition where all the ele-
ments go to one prototype. One criterion to avoid this is to give extra importance
to distance, so that at distance 0 the probability is always 1. A way to do this
is to employ an inverse-square law such as in gravitation. Hence, we define the
following attraction function between an element e of mass me (we will assume
me = 1) and a prototype π of mass mπ separated by a distance d(e, π) = d:

attraction(e, π) =
memπ

d(e, π)2
=

mπ

d2
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Fig. 1. (Left) Two normal distributions placed at centres 3 and 8, with standard de-

viations 1 and 3.5 (respectively) and masses 20 and 100 (respectively). (Right) The

conditional probabilities derived from the Gaussians.
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Fig. 2. (Left) Two gravitational centres at 3 and 8 with masses 20 and 100 (respec-

tively). (Right) The probabilities derived from the gravitational centres.

We are interested in deriving class probabilities by considering this attraction.
Figure 2 shows the attraction (left) and the probability (right) with the same
parameters as before (note that the standard deviation is no longer used).

An interesting property is that when the distance goes to infinity the probabi-
lities tend to converge to the mass proportion. For instance, if we have two centres
at 3 and 8, and 8 has much more mass (as in the previous example), it is easy
to see that the attraction to 8 will be higher than the attraction to 3 for a point
placed at −100.

Of course, the idea of using the gravitational law in machine learning is not
new at all, for instance in clustering [9] or classification [16]. The same Inverse
Square Law principle is presented in some variants of Kernel Density Estimation,
several classification techniques such as weighted kNN, where the weight is a
kernel which is simply defined as the inverse of the distance, or in some other
clustering algorithms. To our knowledge, its use for decision trees is new.

3.2 Tree Generation

Centre splitting [20] is a machine learning method which consists in dividing the
input space in different regions where each region is represented by a centre1. In
every iteration, a centre is calculated for every different class which is presented
in the area. Then, every example is associated to its nearest centre. This process
1 The centre may match to an existing example or not.
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is repeated until the area is pure. One of the special features of this method is
that examples are managed as a whole.This appreciation leads us to propose
a decision tree inference strategy where centroids are computed by considering
only the values of one attribute, which allows us to join centre splitting and
decision tree learning techniques in an elegant way.

The detailed definition of the algorithm can be found in [15]. Here, we give a
more sketchy description: for each attribute xr and for each class i, a prototype
πr,i is calculated as the attribute value with lowest mean distance to the elements
of the class. Once this process is finished, the splitting attribute is selected
according to one of the well-known splitting criteria (for instance, gain ratio [18]).
Then, the split proceeds by associating every instance to its closest attribute
prototype, which typically produces impure clusters2. Although the computation
of distances is quadratic on the number of instances, we can reduce it by using a
distance matrix per attribute (of size nr×nr, where nr is the number of different
attribute values) prior to the algorithm execution. But, more importantly, if we
have m attributes and nr values per attribute, we only construct (and evaluate)
O(m) partitions and not O(nr ×m), the typical order for classical decision tree
learning algorithms using midpoints for continuous attributes.

3.3 Stochastic Probability Calculation

Now, we illustrate how a Newton Tree is used to estimate probabilities in a
stochastic way. In what follows, −→p (ν, e) = 〈p1(ν, e), . . . , pc(ν, e)〉 denotes the
probability vector of example e at node ν, where pi(ν, e) denotes the probability
that e belongs to class i at node ν. With p̂(ν, e) we denote the probability that e
falls into node ν (coming from its parent), which is derived from the attraction
that ν exert over e, that is p̂(ν, e) = attraction(e,ν)∑

μ∈Children(P arent(ν)) attraction(e,μ) .

Given a new example e and a Newton tree T , the objective is to calculate the
probability vector at the root of T , −→p (root, e). Basically, the idea is to compute
downwards the probability of falling in each leaf, calculate the leaf probability vec-
tor and then to propagate upwards the leaf probability vector to the root to obtain
the total class probability vector −→p (root, e). The leaf probability vectors can be
obtained once the tree T has been built by applying Laplace correction as has been
shown in [17,6]. For each example, we calculate the probability of choosing each
child node μ if placed at the parent node ν using the attraction (i.e., p̂(μ, e)). This
probability is multiplied by the probability vector of the child (−→p (μ, e)):

Definition 1. Stochastic Probability Vector Estimation
Given an example e and a Newton tree T , the probability vector −→p (root, e) at
the root of T is estimated by applying

∀ν ∈ T : −→p (ν, e) =
{∑

μ∈Children(ν) p̂(μ, e) ·
−→p (μ, e) if ν is not a leaf

〈Laplace(1, ν), . . . , Laplace(c, ν)〉 if ν is a leaf

2 Note that, during the splitting process, we apply the attraction function assuming

that the mass is the unit. This is due to the fact that the total mass of a node is not

known until all the instances have been associated to its prototype.
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where Laplace(j, ν) is the Laplace correction of the frequency of elements of class
j in node ν.

The stochastic calculation of the probabilities seen above may seem too cryptic
for a general use of these trees if intelligibility is a requirement. In order to
address this issue, we show a graphical representation of Newton trees, which
may help users understand how the stochastic probability assignment is made,
and to get insight from the tree.

Figure 3 (left) shows this user-friendly representation of a Newton Tree for the
Hepatitis dataset from the UCI repository [8]. Note that all partitions are binary
because this is a two-class problem, namely DIE and LIV E. The two first splits
are made over the numerical attributes PROTIME and ALK PHOSPHATE,
respectively, and the other two splits are made over the nominal attributes SEX
and FATIGUE. The nodes are represented as balls of a size which is propor-
tional to the node mass (for instance, the node with a mass of 17 represents that
17 training examples fall into it). The ball also shows the proportion of examples of
each class in different colours. Additionally, the value for the attribute prototype
is shown in the middle of each ball. Finally, the smoothed probabilities per class at
the leaves are also provided (in the figure, as a small table below each leaf). In order
to ease the understanding on how probabilities are derived, Figure 3 (right) shows

Fig. 3. (Left) Newton Tree for the hepatitis dataset. (Right) The node probability vec-

tors, children probabilities and global probability vector for example (PROTIME=40,

ALK PH=120, SEX=FEMALE, FATIGUE= UNKNOWN).



Newton Trees 181

the internal probabilities (vectors and node probabilities) and the top vector prob-
ability for example (PROTIME = 40;ALK PHOSPHATE = 120;SEX =
FEMALE;FATIGUE = UNKNOWN), which is (0.7316, 0.2684), a relatively
clear DIE case. All these graphical elements in the Newton Trees representation
may help users understand the way in that probabilities are estimated, making
Newton trees less cryptic than other PET methods.

4 Experiments

The aim of this section is to compare Newton trees with a common implemen-
tation of Probability Estimation Trees, namely unpruned decision trees with
Laplace smoothing in the leaves as suggested by [17][6]. In particular, we chose
J48 (the variant of C45.) implemented in Weka [10]. We used Gain ratio as
splitting criterion for Newton trees and J48. The evaluation was performed over
30 datasets from the UCI repository [8], from which we removed instances with
missing values (see [15] for their characteristics). We set up a 20 × 5-fold cross
validation, making a total of 100 learning runs for each pair of dataset and
method (3,000 overall). As evaluation metrics we used ([7]): accuracy, as a qual-
itative measure of error, AUC (Area Under the Curve) as a measure of ranking

Table 1. Comparison between Newton trees and unpruned J48 with Laplace correction

Name Classes
Att Newton Trees Unpruned Laplace J48

Type Acc. AUC MSE Acc. AUC MSE

anneal 6 Mixed 97.5110 0.8943 0.0119 98.7800 0.8890 0.0073

autos 5c 5 Mixed. 79.5060 0.9043 0.0825 77.7130 0.8827 0.0840

balance-scale 3 Num. 79.5520 0.7962 0.1050 78.6880 0.8199 0.0998

breast-cancer 2 Nom. 73.0110 0.6436 0.1929 67.9360 0.6084 0.2233

chess-kr-vs-kp 2 Nom. 98.5050 0.9975 0.0135 99.3050 0.9988 0.0064

cmc 3 Mixed. 50.1720 0.6739 0.2025 49.1100 0.6658 0.2107

credit-a 2 Mixed. 84.9310 0.9107 0.1118 82.7960 0.8982 0.1256

credit-g 2 Mixed. 70.3300 0.7202 0.1897 68.2900 0.7016 0.2159

diabetes 2 Num. 71.8630 0.7801 0.1798 72.8070 0.7772 0.1877

glass 7 Num. 67.2940 0.7828 0.0901 67.0340 0.7895 0.0879

heart-statlog 2 Num. 78.0740 0.8626 0.1490 76.1850 0.8398 0.1753

hepatitis 2 Mixed. 83.4370 0.7570 0.1143 79.4370 0.6542 0.1498

ionosphere 2 Num. 88.9160 0.9235 0.0916 88.8460 0.9195 0.0917

iris 3 Num. 94.7660 0.9938 0.0315 94.0330 0.9710 0.0349

monks1W 2 Nom. 93.5230 0.9899 0.0606 92.7690 0.9761 0.0519

monks2W 2 Nom. 85.8750 0.9378 0.1124 61.3790 0.6456 0.2348

monks3W 2 Nom. 98.6730 0.9926 0.0166 98.6370 0.9909 0.0135

mushroom 2 Nom. 99.9910 0.9999 0.0193 100.0000 1.0000 0.0001

new-thyroid 3 Num. 92.6970 0.9854 0.0438 92.3480 0.9237 0.0454

pimaW 2 Num. 71.8630 0.7801 0.1798 72.7750 0.7772 0.1877

sonar 2 Num. 77.5990 0.8499 0.1538 73.3710 0.7888 0.2162

soybean 19 Nom. 89.2420 0.9771 0.0228 91.2270 0.9770 0.0183

spectf train 2 Num. 67.3120 0.7301 0.2097 71.7500 0.7365 0.2196

tae 3 Mixed. 58.7010 0.7398 0.1877 54.1660 0.7078 0.1996

tic-tacW 3 Nom. 78.1110 0.8526 0.1426 79.3990 0.8699 0.1393

vehicle3c 3 Num. 72.1210 0.8441 0.1355 73.0240 0.8807 0.1251

vote 2 Nom. 94.5020 0.9892 0.0383 95.1370 0.9827 0.0355

vowel 11 Mixed. 75.3580 0.9671 0.0578 79.5400 0.9157 0.0447

wine 3 Num. 94.3840 0.9905 0.0408 92.2070 0.9544 0.0471

zoo 7 Mixed. 94.9020 0.7243 0.0252 93.1610 0.7147 0.0234

Mean (All) 82,0907 0,8664 0,1004 80,7283 0,8419 0,1101

Mean (c = 2) 83,6503 0,8665 0,1146 81,3388 0,8310 0,1334

Mean (c > 2) 80,3084 0,8662 0,0843 80,0307 0,8544 0,0834

Mean (Nominal) 90,1592 0,9311 0,0688 87,3099 0,8944 0,0803

Mean (Numerical) 79,7034 0,8599 0,1175 79,4223 0,8482 0,1265

Mean (Mixed) 77,2053 0,8102 0,1093 75,8881 0,7811 0,1179
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Table 2. Aggregated results using the statistical tests

������������������Netwon Trees

Unpruned Laplace J48
Acc. AUC MSE

All 14/6/10 18/8/4 14/4/12

Nominal 2/3/4 5/2/2 2/0/7

Numerical 5/3/4 5/5/2 7/3/2

Mixed 7/0/2 9/0/0 5/1/3

quality, (using Hand & Till’s multiclass version [11]) and MSE (Mean Squared
Error) as a measure of calibration and refinement quality.

Table 1 shows the average accuracy, AUC and MSE obtained by the two algo-
rithms. At the bottom, we also show the mean values for all the datasets. These
means are just illustrative. To analyse whether the differences are significant, we
used the Wilcoxon signed-ranks test with a confidence level of α = 0.05 and N =
30 data sets, as suggested in [5]. Significant differences are shown in bold. Finally,
in Table 2 we focus on these differences, showing an entry w/t/l for each measure
and dataset subset, which indicates that Newton trees win in w, tie in t, and lose in
l datasets, compared to the J48 PETs. From the tables, we see that Newton trees
outperform J48 PETs in the three measures (Accuracy, AUC and MSE), and with
the means in Table 1, in any selection depending on the type of dataset (multi-
class/binary, nominal/numerical/mixed). The strongest differences are found in
AUC, which is the recommended measure when evaluating PETs ([13]). If we look
at the significance results in Table 2, we have a similar picture. The exception is
the result for nominal datasets. While AUC is still much better, the results in MSE
are worse (and as a result so is accuracy). This indicates a bad calibration of the
results for datasets with only nominal partitions, which might be caused by the
way discrete distances affect on the attraction measure, although more research
should be done to clarify this (since there are only 7 datasets in this subset).

5 Conclusions and Future Work

This paper has presented a novel probability estimation tree learning method
which is based on computing prototypes and applying an Inverse Square Law
that uses the distance to the prototype and its mass, in order to derive an
attraction force which is then converted into a probability. The trees can be
graphically represented in such a way that their meaning and patterns can be
understood. The use of prototypes (mediods) instead of centroids allows for the
use of our trees for any kind of datatype (continuous or discrete), as long as we
provide a distance function for each datatype. Consequently, we can apply our
trees to structured datatypes, such as sequences, sets, ordinal data, intervals or
even images and texts. More importantly, we can use the tree with a mixture
of all these datatypes. If distance matrices are preprocessed (only once for each
attribute before start), the computation of the prototypes is much more efficient
than the split population schemes in traditional decision trees, since we group by
classes and then compute the mediod of each cluster. Consequently, the number
of different splits to evaluate at each node is equal to the number of attributes
and does not depend on midpoints or the size of the dataset.
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There are many research lines to pursue. One is to use the mass also when
constructing the tree or using all the attribute values as possible clusters. How-
ever, these two modifications would entail extra computational cost and could
only be justified if there is a significant improvement in the results.
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Abstract. We propose new parse-free event-based features to be used

in conjunction with lexical, syntactic, and semantic features of texts and

hypotheses for Machine Learning-based Recognizing Textual Entailment.

Our new similarity features are extracted without using shallow semantic

parsers, but still lexical and compositional semantics are not left out.

Our experimental results demonstrate that these features can improve

the effectiveness of the identification of entailment and no-entailment

relationships.

1 Introduction

Recognizing Textual Entailment (RTE) has now become a direction of study
for the members of the natural language processing community and is formally
described as automatically recognizing the relationship between a hypothesis and
a text. The hypothesis (H) is a succinct piece of text and the text (T ) includes
a few sentences the meaning of which may or may not entail the truth/falsity of
H . If the truth of H can be inferred from the evidence in T , then the relationship
is denoted by T → H . For instance, given the following:

text. Children as young as six are being sexually abused by UN peacekeepers and
aid workers, says a leading UK charity.

hypothesis. UN peacekeepers abuse children.

the relation T → H holds. In this paper, we consider 2-way RTE where the two
classes are: i) Entailment: where T → H and ii)No-Entailment: where either
T → ¬H or there is not enough evidence available in the text to decide whether
T → H or T → ¬H .

A number of approaches to RTE have been developed during recent years. Sys-
tems that use morphological and lexical variations [25,23,1], classical or plausible
logic [13,20,24], syntactic dependency trees [12,22,21], paraphrase detection [26],
and semantic roles [25] can be named. Some RTE systems take Machine Learn-
ing (ML) procedures in order to learn classifiers that can distinguish between
different entailment classes [10,5,7,14,15,2].

Different types of lexical and semantic information have been recently used
for RTE. The event or status-based Frame Semantics [8,17] encapsulated in

J. Li (Ed.): AI 2010, LNAI 6464, pp. 184–193, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Learning Parse-Free Event-Based Features for RTE 185

FrameNet [9] has been used in a few previous attempts at RTE [3,4,27,28].
FrameNet is a lexical semantic resource being developed at UC Berkeley. It
encapsulates the concept of continuities between language and human experience
into semantic frames. A semantic frame represents an event or state that contains
a number of participant roles known as frame elements (FEs). The structure
of FrameNet allows for the meaning of a single word to be dependent on the
essential knowledge related to that word.

The major drawback of current RTE systems that use FrameNet informa-
tion is their reliance on shallow semantic parsers that add semantic information
to texts. The state-of-the-art shallow semantic parsers that can add frame se-
mantic information to texts do not have high levels of accuracy [19]. When in-
correct/insufficient semantic information is added to texts by shallow semantic
parsers, systems relying on such parsers are disadvantaged significantly (Ofoghi
et al. [6] demonstrate this effect on natural language Question Answering sys-
tems). To overcome this problem, we propose a semantic parsing-free approach
based on ML techniques the novelty of which is two-fold:

– Unlike the works in [3,4,27], our method does not rely on other challeng-
ing learning procedures for word sense disambiguation and semantic role
labeling.

– Unlike the work in [28], we utilize more sophisticated FrameNet-based fea-
tures along with a number of other well-known lexical semantic features
and ML techniques to measure the extent to which event-based similarity
features can improve RTE effectiveness.

2 Feature Space Engineering

To learn an automated classification system for identifying entailment relation-
ships, we extract a number of lexical, syntactic, semantic, and parse-free event-
based features from both texts and hypotheses. Prior to feature extraction, all
text and hypothesis terms are lemmatized using the TreeTagger lemmatizer [16].

2.1 Lexical and Syntactic Features

The lexical features (lex) that we use are the total number of exact terms that
match between the text and hypothesis and also the least common subsequence
(LCS) of text and hypothesis terms. These features are among similarity-based
features explained in [4].

The syntactic feature (syn) in our work is the LCS between dependency
trees of text and hypothesis sentences extracted using Link Grammar Parser
(LGP) [11]. This feature captures the similarity of texts and hypotheses in terms
of their syntactic structures and is still sensitive to structural paraphrasing.

2.2 Semantic Features

The semantic features (sem) that we utilize are extracted by using WordNet
lexical ontology. These features include:
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– Synonyms: The total number of synonym terms that match between the text
and hypothesis term sets. This feature can overcome lexical paraphrasing.
– Hypernyms/Hyponyms: The total number of hypernyms and hyponyms
that match between the text and hypothesis term sets. The analysis of hyper-
nym and hyponym matching takes a directional approach. The procedures is for-
mulated in Equation 1 where sh/t is the set of hypernyms or hyponyms for the
hypothesis/text and nh/t represents the total number of terms ti in the hypothe-
sis/text. Hypernyms and hyponyms are extracted up to three links in WordNet.
The idea behind using this directional approach is that WordNet hyponyms en-
tail WordNet hypernyms e.g. “female person” lexically entails “person” but not
vice versa.

This feature is designated to overcome the problem related to texts and hy-
potheses formulating concepts at different levels of conceptual abstraction. For
instance, using this feature, it is possible to recognize the entailment relationship
between “Jack was in a European country last year.” and “Jack was in France
last year.” since “France” is a “European country” according to WordNet.

hyper/hypo score(h, t) = |sh ∩ st|

sh =

nh⋃
i=1

hypernyms(ti), st =

nt⋃
i=1

hyponyms(ti)
(1)

– Antonyms: The antonym score is calculated using Equation 2 where sh/t is
the set of exact terms or antonyms for the hypothesis/text term ti. A similar
attribute has been used as a trigger-based feature in [4]. This feature can capture
indications of contradiction or no-entailment relationships.

ant score(h, t) = |sh ∩ st|, sh =

nh⋃
i=1

ti, st =

nt⋃
i=1

antonyms(ti) (2)

– Antonyms/Hyponyms: This feature is measured using Equation 3 where
sh/t is the set of hyponyms or antonyms for the hypothesis/text term ti. This
feature extends the last feature (antonyms) by looking for the occurrences of the
antonyms of more specific terms of hypotheses in texts.

ant/hypo score(h, t) = |sh ∩ st|, sh =

nh⋃
i=1

hyponyms(ti), st =

nt⋃
i=1

antonyms(ti) (3)

2.3 Event-Based Features

We make use of FrameNet to extract two types of event-based features, namely
ebf and inter ebf. The ebf feature is the total number of FrameNet frames that are
evoked both by text and hypothesis terms. To measure this, we use Equation 4
where the set of all frames that contain each hypothesis/text term is created
by a term look-up procedure in FrameNet XML database. The union set of
all framesets for all hypoesis/text terms is then created. The cardinality of the
intersection of the two union sets is the score assigned to ebf. This method
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does not rely on any shallow semantic parser and/or word sense disambiguation
procedure to evoke FrameNet frames; instead, is only based on fetching the
names of frames that contain certain terms.

Using ebf, our RTE system can relate a hypothesis and a text that share
semantics at the level of an event or state (see Table 1). This type of scenario-
based similarity may not be captured using other types of lexical resources.

ebf score(h, t) = |sh ∩ st|, sh/t =

nh/t⋃
i=1

frameset(ti), frameset(ti) =
⋃
j

framej

{∃t ∈ framej(termset) | ti = t ∧ framej ∈ FN frames}
(4)

Table 1. An example of calculating the ebf similarity feature between the hypothesis

“Jack, a famous teacher, is Stacy’s son” and the text “Stacy is Jack’s mother”

Term Frames Union of frames Intersection of framesets

ht=jack –

ht=stacy – hFrames = {fame,
ht=famous fame education teaching,
ht=teacher education teaching kinship}
ht=son kinship |hFrames ∩ tF rames| =
tt=stacy – |{kinship}|=1

tt=jack – tF rames = {kinship}
tt=mother kinship

FrameNet frames are inter-related using a number of frame-to-frame relations
explained in detail in [18]. We use the inheritance, subframe, using, inchoative-
of, causative-of, precedes, and perspective-on relations to extract one feature per
relation type that represents another level of event/state-based textual similar-
ity. We refer to this set of features as inter ebf. For each type of frame-to-frame
relation, we extract immediately inter-related FrameNet frames to those frames
evoked for each hypothesis/text term. A similar approach to the calculation of
ebf is used to measure the overlap between inter-related frames evoked. Using in-
ter ebf, the system is able to recognize wether a hypothesis formulates a scenario
that is, for instance, part of a big picture scenario or event (by measuring the
overlap between inter-related frames according to the inheritance relationship).

In general, although our features are evoked on a term-basis procedure, the
nature of the features and linguistic resources that we have used ensure that
compositional semantics are indirectly taken into consideration.

2.4 Other Features

We use the task (tsk) in which the pair is categorized by the Text Analysis Con-
ference (TAC). The tsk feature takes one of the seven distinct categories included
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in the TAC datasets1 and can be extracted in both development (training) and
test (un-annotated) datasets. Our results without using the tsk feature show the
same trend as those discussed later in this paper with using the tsk feature.

3 Empirical Analysis

3.1 Data

We use labeled hypothesis and text pairs provided by the TAC. This includes
the rte 1 to 5 test sets for testing and the rte 5 development set used for training.

3.2 Experiments

We carry out two experiments for analyzing i) the overall effectiveness of our
RTE system and ii) the contribution of event-based features, extracted without
using shallow semantic parsers, to effective textual entailment recognition.

The results presented in the following sections have been tested for their
statistical significance and the superscript symbols ∗, †, and ‡ show the statistical
significance with p < 0.25, p < 0.05, and p < 0.0001 respectively. The statistical
paired t-test has been used unless otherwise specified.

Overall system analysis. We ran a number of learning classification systems
on the whole set of features explained in section 2 as well as on different subsets
of the whole feature set. For simplicity, in this section we only report our sys-
tem’s results with the whole feature set (/all) and with the best subset of the
features (/bst) that have resulted in the highest performance using the Support
Vector Machines (SVMs) classifier. The bst features have been arrived at using a
manual trial and error wrapper procedure2 and includes ebf, lex, sem (excluding
hypernyms/hyponyms), and inter ebf (excluding the requires relation), and tsk.

Table 2 summarizes the results of our RTE system obtained for each dataset.
The overall accuracies of our system are far better than a hypothesized baseline
with a 50% overall accuracy at the expense of a 0 recall on one class. Compared
to other TAC-RTE 2009 systems, our RTE accuracy falls close to the median ac-
curacy3, where still significantly higher than that by the TAC-RTE 2009 system
that used FrameNet [28].

Our RTE system, trained with the rte5 development set, has a decreasing
performance trend over the older datasets. The reason for this is the shorter

1 See the TAC datasets available at http://www.nist.gov/tac
2 In the ML literature filter methods of feature selection disregard any application of

the features and find the best representative feature set for a dataset, whereas the

wrapper selection methods follow an objective procedure by optimizing the system

performance in terms of solving a particular problem, e.g. classification.
3 The overall statistics of the TAC-RTE 2009 (with the rte5 test set) for 55 runs sub-

mitted by 13 participant teams shows the high, median, and low 2-way classification

accuracies of 73.500, 61.170, and 50.000 respectively.



Learning Parse-Free Event-Based Features for RTE 189

Table 2. RTE system effectiveness on different data/feature sets – the statistical sig-

nificance tests carried out between the accuracies obtained by all and bst features

Data

all bst

Recall
Acc. (%) ROC

Recall
Acc. (%) ROC

ent. no ent. ent. no ent.

rte5-dev. 0.553 0.713 63.333 0.633 0.570 0.737 65.333 0.653

rte1-test 0.458 0.605 53.125† 0.531 0.478 0.580 52.875 0.529

rte2-test 0.375 0.698 53.625 0.536 0.400 0.685 54.250† 0.543

rte3-test 0.351 0.795 56.750 0.573 0.366 0.785 57.000† 0.575

rte4-test 0.364 0.762 56.300 0.563 0.376 0.750 56.300 0.563

rte5-test 0.540 0.670 60.500 0.605 0.533 0.673 60.333 0.603

ROC = Receiver Operating Characteristic curve

texts included in these datasets compared to the lengthier texts in the newer
datasets. With short texts, it is more difficult for our ML-based RTE system
to extract enough meaningful information from the hypothesis and text pairs;
therefore, the system has less chance in identifying correct entailment classes.

Event-based feature analysis. For this, we ran our RTE system in two sat-
ges: stage 1) removing the inter ebf feature set from the best subset of features
described in section 3.2, and stage 2) excluding the ebf features from stage 1.
The results of these experiments are summarized in Table 3.

The important observation here is the significantly lower classification per-
formances and recall values achieved in most cases after excluding inter ebf and
ebf features from the classification task. Given the variety of the features that
we have used along with the event-based features, these lower performances sug-
gest that our new parse-free event-based features, not similar to previously used
FrameNet-based features, capture useful information for RTE.

Table 3. RTE system effectiveness with the bst features excluding certain event-based

features – the statistical significance tests carried out in comparison with the accuracies

of the bst features and show significantly lower accuracies

Data

exc. inter ebf exc. inter ebf+ebf

Recall
Acc. (%) ROC

Recall
Acc. (%) ROC

ent. no ent. ent. no ent.

rte5-dev. 0.583 0.697 64.000† 0.640 0.443 0.703 57.333† 0.573

rte1-test 0.495 0.553 52.375† 0.524 0.433 0.608 52.000† 0.520

rte2-test 0.445 0.650 54.750‡ 0.548 0.345 0.690 51.750∗ 0.518

rte3-test 0.412 0.759 58.125‡ 0.586 0.320 0.795 55.125† 0.557

rte4-test 0.398 0.718 55.800† 0.558 0.322 0.790 55.600‡ 0.556

rte5-test 0.573 0.617 59.500‡ 0.595 0.460 0.720 59.000† 0.590
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4 Classification Model Reverse Engineering

We have looked at all individual features in the best subset of features intro-
duced in section 3.2 to see what roles they play in the classification task of the
entailment relationships. We have first used the scatter-plots shown in Figure 1
drawn from all of the datasets under experiment. None of the individual features
can actually be used solely for distinguishing between the relationship classes as
in all plots, points are scattered over similar areas for both classes. This empha-
sizes the difficulty of drawing a hyperplane to effectively separate the instances
(hypothesis and text pairs) of each class by considering individual features.

Fig. 1. Analysis of the relationships between individual features and class labels in all

datasets – x-axis: features, y-axis: classes

We have then used the Squared Correlation (r2) statistic ([0.0,1.0]) to find
the strength of the correlation between the values of the individual features and
the predicted class labels after running the classifier with the best subset of
features. Figure 2 shows the results of the r2 analysis. The linear r2 statistic
does not necessarily represent any cause-effect relationship between the features
and therefore, does not suggest any ranking of the features.

The result of the r2 analysis demonstrates that the values of none of the
features have a strong relationship (r2 close to 1.0) with the entailment and
no-entailment classes. Because of the linearity characteristics of the r2 analysis,
this is what one might expect after looking at the scatter-plots in Figure 1.

In general, the scatter-plot and r2 analysis of the individual features empha-
sizes the non-linearity of the relationships between the features and the classes
and suggests that a sophisticated classification system is required to overcome
the entailment recognition problem. This validates the ML approach we have
taken as well as the non-linear learning classifier system (SVMs with a Poly
Kernel) utilized in this work.

More importantly, the statistical analyses suggest that making use of combi-
nations of the features is required for achieving high levels of RTE performances.
The results shown in Table 4 suggest that even no individual group of features
is sufficient for RTE. This again demonstrates that our parse-free event-based
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ebf 0.002039698
lex (exact) 0.388587339

lex (syn) 0.216730426
inter-ebf (inheritance) 0.001812438

inter-ebf (subframe) 0.007748184
inter-ebf (using) 0.000784843

inter-ebf (inchoative) 0.002039605
inter-ebf (causative) 0.000248271
inter-ebf (precedes) 0.008389779

inter-ebf (perspective) 0.002337229
sem/ant (exact) 0.388258968
sem/ant (hypo) 0.383737145

lex (lcs) 0.309383391
tsk 0.001388571

Fig. 2. The r2 statistic between the values of the individual features and the class

labels in the rte5 development dataset

Table 4. Feature group analysis on all datasets – results obtained with 10-fold cross

validation – the statistical significance tests carried out using the standard t-test – the
‡s show significantly lower accuracies than the best accuracy achieved by all features

Feature set
Recall

Acc. (%) ROC
ent. no ent.

lex 0.384 0.707 54.456‡ 0.545

sem 0.394 0.698 54.565‡ 0.546

ebf+inter ebf 0.174 0.831 50.130‡ 0.503

all 0.471 0.648 55.913 0.560

features play an important role in improving the RTE effectiveness when used in
conjunction with other textual features. This becomes more significant
noticing that our new features remove the complexity involved in shallow se-
mantic parsers, the current overall state-of-the-art accuracies of which are not
very high.

5 Concluding Remarks

Shallow semantic parsing is a challenging task in the natural language processing
domain. We have developed a RTE system to analyze the impact of event-based
information encapsulated in FrameNet on the textual entailment recognition
performance where no semantic parsing is carried out. Instead, we employed a
shallow term lookup-based procedure for extracting event-based features. We
used a ML-based approach that utilizes a variety of textual features including
lexical, syntactic, and semantic features in conjunction with event-based features.

The results of our experiments demonstrate that: i) our proposed event-based
features, independent from shallow semantic parsing, play an important role in
significantly enhancing the effectiveness of RTE and ii) a combination of different
types of features, including the proposed parse-free event-based ones, is required
in ML-based RTE to reach high levels of effectiveness.
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Abstract. The Nearest Neighbor (NN) classification/regression tech-

niques, besides their simplicity, are amongst the most widely applied

and well studied techniques for pattern recognition in machine learn-

ing. A drawback, however, is the assumption of the availability of a

suitable metric to measure distances to the k nearest neighbors. It has

been shown that k-NN classifiers with a suitable distance metric can

perform better than other, more sophisticated, alternatives such as Sup-

port Vector Machines and Gaussian Process classifiers. For this reason,

much recent research in k-NN methods has focused on metric learn-

ing, i.e. finding an optimized metric. In this paper we propose a simple

gradient-based algorithm for metric learning. We discuss in detail the

motivations behind metric learning, i.e. error minimization and margin

maximization. Our formulation differs from the prevalent techniques in

metric learning, where the goal is to maximize the classifier’s margin.

Instead our proposed technique (MEGM) finds an optimal metric by di-

rectly minimizing the mean square error. Our technique not only results

in greatly improved k-NN performance, but also performs better than

competing metric learning techniques. Promising results are reported on

major UCIML databases.

1 Introduction

Nearest neighbor methods for pattern recognition have proven to be very useful
in machine learning. Despite their simplicity, their performance is comparable
to other sophisticated classification and regression techniques, such as Support
Vector Machines (SVM) and Guassian Processes (GP), and they have been ap-
plied to a wide variety of problems. For a given query point, a nearest neighbor
classifier works by assigning it the label of the majority class in its neighborhood.

It is evident that the k-NN classifier’s simplicity is one of its major advantages.
A k-NN classifier deals with multi-class classification scenario effortlessly. In
contrast, one needs one-versus-one and one-versus-all techniques to deal with
multi-class scenarios when using binary classifiers such as SVM. This makes
them computationally expensive. As k-NN classifiers need no training, they are
computational efficient. Nevertheless, the effectiveness of k-NN methods relies

J. Li (Ed.): AI 2010, LNAI 6464, pp. 194–203, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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on their asymptotic properties. The asymptotic results in [1,2,3] suggest that a
1-NN method based on a simple Euclidean distance will perform well provided
the number of training samples is not too small. Indeed 1-NN will approach
the performance of a Bayes optimal classifier as the number of training data
becomes very large. These asymptotic results are based on the fact that bias
in the prediction of function f(x) becomes vanishingly small if the number of
training data N is large compared to the number of features p i.e., N ' p.
Typical machine learning data, however, has large numbers of features, and the
amount of data required to achieve these asymptotic results is unfeasibly large.
This is known as the Curse-of-Dimensionality (COD). Another interpretation
of the COD is that, in high dimensions, most of the data points are very far
apart and k-NN neighborhoods are no longer ‘local’ [4, section 2.5]. Modifying
distances in high dimensions can help to alleviate the COD, reduce bias and make
neighborhoods local. This requires a tuned metric—and hence metric learning.

As discussed above, the performance of a nearest neighbor classifier depends
critically on two factors: the distance metric used, and size of the neighborhood
(specified by k, which denotes the number of nearest neighbors). The value of
k controls the Mean Square Error (MSE) which is defined as MSE = bias2 +
variance. Small k implies small bias but high variance, and vice-versa. Since k is
specified in terms of the number of nearest neighbors of a query point x, which
implicitly depends on a distance measure, MSE can be controlled by estimating
a distance metric (a metric is generally specified through a norm and a positive
semi-definite matrix). Typically we estimate the inverse square root of the metric.
That is, we learn a matrix parameterizing the linear transformation of the input
space such that in the transformed space k-NN performs well. If we denote such
a transformation by a matrix A, we are effectively learning a metric defined by
ATA such that d(x, y) = (x− y)TATA(x − y) = (Ax −Ay)T (Ax −Ay).

In the current research on nearest neighbor methods, a dichotomy exists be-
tween metric learning methods in terms of their goals. Most ‘Metric Learning’
algorithms aim to find a metric that results in small intra-class and large inter-
class distances [5,6,7,8,9,10]. This results in maximizing the margin.1

Figure 1 depicts a simple contrived example of data belonging to two classes
represented by red and blue dots. As can be seen, the classes are linearly separa-
ble. A hyperplane is indicated by a dark black line. In this scenario, the margin
can be maximized in two ways: either we modify the hyper-plane to better fit the
training data, or we transform the training data to maximize the margin with
respect to a certain hyperplane. The latter has been the goal of most metric
learning algorithms. SVMs, on the other hand, optimize the margin by find-
ing an optimal hyperplane. They are designed to minimize empirical risk with
a bound on generalization error. Metric learning can also be used to minimize
empirical risk i.e., maximize the margin by transforming the training data. Such
a strategy has been introduced in [11], where metric learning was introduced as
a bias reduction strategy and to reduce MSE to better fit the training data.

1 The margin of a point is defined as the distance between the point and the closest

point on the classification boundary.
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Fig. 1. Contrived example demonstrating the impact of metric on margin

In this paper we present a novel metric learning algorithm with the goals
of maximizing the margin by reducing MSE directly. We propose a simple MSE
gradient minimization (MEGM - Mean square Error Gradient Minimization) ap-
proach to improve the performance of the k-NN neighbor classifier. Our method
is based on gradient descent on the MSE objective function. We compare MEGM
performance with other metric learning approaches for margin maximization, e.g.
neighborhood component analysis (NCA). As shown in section 4, our method
not only results in significant improvement in the performance of the k-NN clas-
sifier, but also outperforms other metric learning algorithm on most data-sets.
As we discuss in section 5, unlike SVM, we minimize the empirical risk only. We
do not address generalization in our algorithm, but in our experiments we did
not experience any over-fitting. A regularization term can be easily introduced
into our framework. This is left as a future work.

The rest of the paper is organized as follows: we discuss related work in
section 2. Our proposed MEGM algorithm is described in detail in section 3.
A detailed description of our experimental setup and comparitive results on
UCIML data-sets are given in section 4. We conclude in section 5 with pointers
to future work.

2 Related Work

Our proposed algorithm MEGM is very close in nature to [12] where a gradient
based technique is used for selecting relevant features. That is, only diagonal
terms of the covariance matrix are estimated. In our method we learn a full co-
variance matrix rather than estimating only diagonal terms. Thats why MEGM
is superior to technique proposed in [12].

The other notable techniques for metric learning are LMNN [13], RCA [14]
and NCA [5]. Relevant Component Analysis (RCA) [14] constructs a Maha-
lanobis distance metric from a weighted sum of in-class covariance matrices.
It is similar to Principal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA) in its reliance on second order statistics. Large Margin Nearest
Neighbor (LMNN) algorithm in [13] is posed as a convex problem, and thus the
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reach of the global solution is guaranteed. However, a special optimization solver
is needed for efficient implementation.

Neighborhood Component Analysis (NCA) [5] maximizes margin by mini-
mizing the probability of error under stochastic neighborhood assignment. In
particular each point i selects another point j as its neighbor with some proba-
bility pij , and inherits its class labels from the point it selects. pij is defined as
a softmax over Euclidean distances in the transformed space, parameterized by
matrix A:

pij =
− exp(‖Axi −Axj‖2)∑
k �=i exp(−‖Axi −Axk‖2)

(1)

NCA maximizes the pij in above equation by finding an optimal A matrix. That
is the probability of the number of points correctly classified is maximized. The
comparison of our proposed algorithm (MEGM) with NCA has been a major
motivation of this work. Though NCA is sound in theory, our empirical results
in section 4 suggests that MEGM performs better than NCA on most data-sets.
We will mention in section 5 about an approach to combine both MEGM and
NCA to improve MEGM’s generalization capacity.

3 Approach

In a typical regression setting, an unknown function f : RD → R is predicted
from the training data {(x1, y1), (x2, y2), ...(xN , yN)}, where xi is a data point
and y is the corresponding target value. The predicted function f̂ is chosen to be
the one that minimizes some loss function such as ‘mean squared error’ (MSE)
etc. The MSE for a data set containing N of points is given in the following
equation:

MSE(f̂) =
N∑

i=1

(f(xi)− f̂(xi))2 (2)

For classification task having T classes we can replace above error function as:

MSE(ŷ) =
T∑

t=1

N∑
i=1

(yti − ŷti)2 (3)

where ŷi denotes the predicted probability of point xi and yi denotes the true
label (either 0 or 1) of point xi. For brevity we have denoted ŷ(xti) with ŷti

and y(xti) with yti. In the following discussion we will assume that there are
only two classes to make our derivations simple. For any query point xi, nearest
neighbor methods work by predicting the value ŷi by considering the labels of
its k nearest neighbors. In order to have a smooth boundary, each neighbor votes
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for the query label based on its distance from the query point (refer to [4] for
details). Equation 4 shows the Nadaraya-Watson kernel for regression:

ŷ(x) =

∑
j yjVj∑
j Vj

(4)

The vote Vj casted by each label around the query point x is usually chosen
to be a function that decays exponentially as the distance from the query point
increases, for example a Gaussian kernel:

Vj = exp
(
−d(x,xj)

2σ2

)
(5)

Determining votes using equation 5 assumes a well defined distance measure.
This assumption, as discussed in the previous section, is not always true, due
to the COD and irrelevant features, and can lead to bad results. d(x,xj) in
equation 5 can be replaced by a more general metric: that is dL(x,xj). If L =
ATA, then dL(x,xj) = (Ax−Axj)T (Ax−Axj). Since MSE is a function of ŷ
and ŷ depends on ||x − xj ||2L, MSE can be minimized by selecting an optimal
value of L. In other words, a change in the L induces a change in the distance,
which can alter the votes. This alteration in the votes Vj triggers a change in
ŷ affecting the MSE. It is more helpful to optimize A rather than L, because
optimization for L requires to fulfill semi-positive constraint which is expensive
to maintain. Obviously trying all possible values of A is not feasible. Some sort
of search mechanism is required to find an optimal value of A. Votes Vj in
equation 5 can be replaced by Wj as:

Wj = exp
(
−‖Ax−Axj‖22

2σ2

)
(6)

The proposed gradient based technique (MEGM) is based on a gradient descent
algorithm to minimize MSE (lets denote by EA). The gradient EA is evaluated to
find an optimal A matrix. Convergence to the global minimum is not guaranteed.
The risk of local minima can be reduced by running the algorithm several times
and choosing the output with minimum error EA. The gradient of EA with
respect to matrix A is:

∂E

∂A
= (yi − ŷi)

1∑
j Wj

∑
j

(yj − ŷj)
∂Wj

∂A
(7)

The size of the Gaussian kernel centered at the query point (σ in equation 6) is
set proportional to the distance of the k nearest neighbors. Generally the average
distance of half of the nearest neighbors is used, as this measure is more stable
under a varying distance metric and in the presence of outliers:
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σ2 =
1
2

1
P

P∑
p=1

‖x− xp‖2 where P = k/2 (8)

∂Wj

∂A in equation 7 can be derived as:

∂Wj

∂A
= 2WjA(x− xj)(x− xj)T (9)

Combining equations 7 and 9 we can write the gradient of EA with respect to
matrix A as:

∂E

∂A
= 2A(yi − ŷi)

1∑
j Wj

∑
j

(yj − ŷj)Wj(x− xj)(x− xj)T (10)

Equation 10 represents the gradient of the error function with respect to matrix
A which is minimized to get an optimal A. The Polack-Ribiere flavour of con-
jugate gradients is used to compute search directions, and a line search using
quadratic and cubic polynomial approximations and the Wolfe-Powell stopping
criteria is used together with the slope ratio method for guessing initial step
sizes.

4 Experimental Results

In this section we present results on various machine learning databases from
UCIML repository [15]. MEGM’s results are compared with other metric learn-
ing approaches like NCA, RCA and LMNN. The size of neighborhood (k) as
discussed in section 3 is consistently set equal to the log2(cardinality of data
set) for all databases.

To obtain the final classification results, one nearest neighbor (1-NN) classi-
fication is used. As mentioned in section 3, since both NCA and MEGM suffers
from local minima problems, some care has to be taken to make sure that it
does not effect results. For all databases, we run MEGM and NCA thrice with
different training data samples and selected the best results. In order to make
sure that our results are not biased to NCA and MEGM due to this procedure,
reported results for all other techniques for example k-NN, LMNN and RCA are
computed this way. That is each method is run thrice using different training
samples and best results are selected in each run. Percentage error rates are
reported for all data-sets.

To test the performance of MEGM with other metric learning methods, we
selected major UCIML databases. The error rate of each method for different
databases is shown in figure 2. The number of data, features and classes for each
database is reported in the title. Error rate of each method is obtained using
40 rounds of 2 fold cross-validation. The mean and standard deviation of the
results are reported in the performance graphs. Prior to training, all features
were normalized to have zero mean and a unit variance.
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Fig. 2. Error rate comparison of various techniques on UCIML databases

As can be seen MEGM not only improved k-NN classification performance
but in most cases resulted in better performance than other metric learning
techniques like NCA, RCA and LMNN. MEGM outperforms other methods on
Balance and Hayesroth databases. Also it performed marginally better than
other techniques on Credit-screeing, Dermatology, Sonar, Statlog-heart, vowel
and Monks2. On Monks1 and Monks3 both MEGM and NCA performs equally
well and error rate is close to zero for both these methods.

Though MEGM performed better than other approaches on most databases
as shown in figure 2, NCA performance is also noteworthy especially on balance,
monks1 and statlog-heart. It performed marginally better than other techniques
on Ionosphere, Housevote and Hepatitis as shown in figure 3.
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Fig. 3. Error rate comparison of various techniques on UCIML databases, NCA per-

forms best on these data-sets

KNN RCA LMNN MEGM NCA

1

1.5

2

2.5

3

3.5

4

4.5

5

Va
lu

es

Techniques

Fig. 4. Box plots depicting the comparison of robustness of different techniques on

various UCIML data-sets

To compare the robustness of our algorithm with other algorithms we used
the technique described in [11]. This test measures how well a particular method
m performs on average in situations that are most favorable to other procedures.
Robustness can be measured by computing the ratio bm of its error rate em and
the smallest error rate over all other methods that are compared in that example.
That is:

bm =
em

min1≤k≤5ek
(11)

The best method m∗ will have b∗m = 1 and all other methods will have values
larger than 1. The larger the value of bm the worse the performance is of the
mth method in relation to the best one for that data-set. Figure 4 shows the
distribution of bm for each method over all 15 UCIML data-sets considered. As
can be seen, MEGM turned out to be the most robust of all with NCA coming
second. LMNN also performs good except for the presence of outliers.
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5 Conclusion

The main pro of our proposed MEGM algorithm is its simplicity. As discussed,
MEGM minimizes MSE’s gradient using a simple gradient descent algorithm.
MEGM improves k-NN classification by learning a data dependent distance met-
ric and performs well on most if not all databases. Also, it deals with multi-class
problems effortlessly as opposed to binary classifiers like SVM where a one-
versus-one and one-versus-all strategy is used. On the other hand, once a met-
ric is learnt using MEGM, a simple nearest neighbor classification is required.
In data-sets where number of classes are very large, nearest neighbor methods
should be preferable for their computational efficiency. Therefore k-NN methods
equipped with a proper distance metric (for example, one trained with MEGM)
can be extremely useful.

A drawback of MEGM includes local minima problem. Standard approaches
to avoid local minima are to be used. Also one is tempted to think of over-fitting
if the objective function is only MSE. In this work, we did not encounter any over-
fitting. As a future work, we are investigating to modify our objective function to
include a generalization term, that is penalize large changes in A matrix to avoid
over-fitting. We are currently investigating to combine MEGM’s and NCA’s
objective function to improve our results. As in this study, MEGM which is
based on the minimization of MSE resulted in better performance than NCA and
other metric learning algorithms which maximizes margin explicitly, a natural
extension to the proposed method is to combine the two approaches. That is
learn a metric by simultaneously maximizing the margin and minimizing the
MSE. The objective functions of MEGM and NCA is combined in the following
equation:

EA =
N∑

i=1

(
yi − exp

(
−‖Ax−Axj‖22

2σ2

))
+

⎛
⎜⎜⎝ exp(‖Axi −Axj‖2)∑

k �=i

exp(−‖Axi −Axk‖2)

⎞
⎟⎟⎠(12)

We are investigating gradient based methods to optimize for A in equation 12.
Considering the MEGM results, the combination with NCA can lead to good
results.

There has been a lot of work done in adaptive distance metric [16,17]. In
adaptive metric learning a separate metric is learnt for each query point. We are
currently modifying MEGM to work in such local settings. Training a separate
metric for each query point can become computationally expensive. We are in-
vestigating clustering techniques to cluster data first and than train a separate
metric for each cluster.

In summary, we proposed a simple mean square error’s gradient based metric
learning algorithm (MEGM) in this paper and showed that MEGM not only
results in classification improvement of k-NN classifier but also performs bet-
ter than other metric learning algorithms. Results are shown on major UCIML
databases. Our results are encouraging and requires additional investigation to
further improve MEGM performance as described.
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Abstract. Dimensionality Reduction algorithms have wide precedent

for use in preprocessing for classification problems. This paper presents

a new algorithm, based on a modification to Stochastic Neighbour Em-

bedding and t-Distributed SNE to use the Laplacian distribution in-

stead of, respectively, the Gaussian Distribution and a mismatched pair

of the Gaussian Distribution and Student’s t-Distribution. Experimen-

tal results are presented to demonstrate that this modification yields

improvement.

1 Introduction

Recent years have seen a large increase in studies on dimensionality reduction
(DR) algorithms, the goal of which is to find a lower-dimensional representa-
tion of high-dimensional data [20]. A common motive for this is to overcome the
“curse of dimensionality” [20,6] that the complexity of many algorithms is bound
by the dimension of the data, and can become intractable in many real-world
datasets where the dimensionality is quite high. Application areas include mani-
fold learning[11], pattern recognition [13], data mining[15], data classification[2]
and data visualisation [19,8].

Originally, the focus was on algorithms such as Principal Component Analysis
(PCA) [10], and Linear Discriminant Analysis (LDA) [4] which assume linearity
- that is, that the low-dimensional vectors are a linear combination of the original
high-dimensional vectors. More recently, however, much improvement has been
gained by relaxing this constraint. Resulting Non-Linear Dimensionality Reduc-
tion (NLDR) algorithms include, for example, Local Linear Embedding (LLE)
[16], Lapacian Eigenmaps (LE) [1], Isometric mapping (Isomap) [17], Local Tan-
gent Space Alignment (LTSA) [21], and Gaussian Process Latent Variable Model
(GPLVM) [12].

The Stochastic Neighbour Embedding (SNE) algorithm is one of these non-
linear dimensionality reduction techniques [7], which considers the probability
that any two points will be neighbours. A major justification of this technique is
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that it can be readily extended to more complex relationships between the high-
and low-dimensional data than the strictly one-to-one mapping of many earlier
algorithms. This is presented as being useful in classification of documents based
on the words they contain, where a strict one-to-one relationship fails to account
for a single word having multiple meanings. However, SNE suffers the so-called
“crowding problem” [19], where distances between points in the high-dimensional
space are reflected less accurately in the low-dimensional space as they increase.
To counteract this, the authors of [19] propose that mismatched distributions for
the neighbouring probabilities be used, suggesting a heavier-tailed distribution
for the lower-dimensional vectors. They choose the Student-t distribution for
this, and their experiments demonstrate the new algorithm, tSNE, outperforms
most existing nonlinear dimensionality reduction algorithms.

Using the Student-t distribution, which is a heavy-tailed generalisation of the
Gaussian distribution used by SNE, increases the robustness of the model against
the crowding problem. The same goal can be achieved by instead using the cen-
tered Laplacian distribution (or L1 distribution or the least absolute deviance).
The L1 distribution is much less sensitive to outliers compared to the Gaussian
density and also has only one tunable parameter, while the Student-t distri-
bution is determined by two parameters (the degrees of freedom and the scale
parameter). The approach of using the L1 distribution originates from LASSO
[18], and has caught some interest in machine learning [14] and statistics. Be-
sides the robustness against outliers context, L1 distribution assumption is also
used as a penalty/regularization term on model parameters to enforce sparsity,
or parameter/feature selection, such as sparse PCA [9,22], and logistic regression
[14]. A recent paper [3] gives a detailed analysis on the generalized distribution
which includes L1 as a special case.

This paper presents a new dimensionality reduction algorithm for data vi-
sualisation to aid classification based on the generalized L1 distribution in the
classical SNE. This new algorithm, similarly to tSNE, differs in the optimisation
problem which is solved - that is, this paper presents the case that this tech-
nique provides a better match between the formal optmisation problem and the
abstract research goal, rather than presenting a better way of finding a solution
to the same optimisation problem.

The paper is organised as follows. Section 2 presents a revision of the exist-
ing background work, focusing on two algorithms for Dimensionality Reduction.
Section 3 presents the proposed new algorithm. Following this, experiments for
classification on several datasets are conducted in Section 4 and results are anal-
ysed and compared against the results of the existing algorithms. Finally, the
conclusions drawn from these experiments are presented.

For the remainder of the paper, X = {xi}N
i=1 is the set of D-dimensional

input vectors, and Y = {yi}N
i=1 is the set of d-dimensional reduced vectors. It

can be assumed from the direct goal of dimensionality reduction that
d( D.
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2 SNE and t-SNE

2.1 Formulation of SNE

The algorithm works by determining which pairs of points should be matched
in terms of their Euclidean distance in the high- and low-dimensional spaces,
respectively. The matching is based on the normalized discrete distribution de-
termined by their Gaussian kernels in the two spaces. For the high-dimensional
input space, the probability that any xi and xj are neighboured is:

pij =
exp

(
− 1
σ2

i

‖xi − xj‖2
)

∑
k �=i

exp
(
− 1
σ2

k

‖xi − xk‖2
) (2.1)

where ‖x‖ denotes the Euclidean norm of x. Pi = {pij∀j} is the Gaussian-
distributed set of all such probabilities for a particular xi. The low-dimensional
neighbouring probabilities are calculated the same way:

qij =
exp

(
−
∥∥yi − yj

∥∥2
)

∑
k �=i

exp
(
−‖yi − yk‖

2
) (2.2)

And likewise Qi = {qij ∀j}.
SNE aims to select yi so that each Qi matches its associated Pi as closely as

possible. This leads to a cost function of:

C =
∑

i

KL (Pi||Qi) =
∑

i

∑
j

pij log
pij

qij
(2.3)

Where KL (Pi||Qi) is the Kullback-Leibler divergence between the distributions.

2.2 t-Distributed SNE

The t-distributed SNE algorithm is originally presented by [19]. It is formulated
as a modification to SNE in which the Gaussian distribution (2.1) is retained
in the high-dimensional space, while the heavier-tailed Student-t distribution
is used for the low-dimensional space. This leaves the calculation for each pij

identical to the calculations in SNE. However, the calculations for qij change to:

qij =

(
1 +

∥∥yi − yj

∥∥2
)−1

∑
k �=i

(
1 + ‖yk − yi‖

2
)−1 (2.4)

In this formulation(2.4), as in [19], the degress of freedom parameter in the
Student-t distribution is assumed to be 1. The cost function, like SNE, is given
from Kullback-Leibler divergences (2.3).
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3 Laplacian-distrubted (L1) SNE

SNE’s Pi and Qi distributions measure the probability of points being neigh-
boured. The difference between them is not that they measure this on different
data, but rather that they measure it on different representations of the data.
Therefore, it makes sense that the particularly probability distributions should
be identical.

This is at odds with tSNE’s use of a different distribution for each Qi than for
its corresponding Pi, and suggests that the crowding problem it seeks to solve is
caused by an inappropriate choice of distribution in the first place. The choice
of a Gaussian distribution in SNE is never justified by [7], but simply taken as
a default. [5] notes that this is a common default choice, but suggests that it is
not necessarily justified by statistics theory.

It seems sensible, then, that the argument presented in [5] can apply here,
and that hence the Laplacian (L1) distribution may be a better choice than the
Gaussian for the neighbourhood probability model of SNE.

Therefore, we define:

pi|j = exp
(
−
‖xi − xj‖1

2σ2
i

)
(3.1)

where |x|1 = |x1|+|x2|+|x3|+....|xD| is the L1-norm of x, and σ2
i is the variance

of xi. In order to constrain symmetry in pij = pji and hence simplify the cost
function, we then define:

pij =
pi|j + pj|i

2n
(3.2)

with pii = 0.
And similarly in the low dimensional space:

qij =
exp

(
−
∥∥yi − yj

∥∥
1

)
∑
k �=l

exp (−‖yk − yl‖1)
(3.3)

with qii = 0.
Again, we seek to minimise the cost function (2.3) given by the Kullback-

Leibler divergences between Pi and Qi . Like the authors of [19], we do this by
iterative gradient descent. Since the only distances dij =

∥∥yi − yj

∥∥
1

affected by
a change in any particular yi are dij and dji for all j, we have:

∂C

∂yi
= 2

∑
j

∂C

∂dij
sgn

(
yi − yj

)

where sgn (y) =
(

y1
|y1| ,

y2
|y2| , . . . ,

yd

|yd|

)
is the sign vector of y.
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From 2.3, we can find:

∂C

∂dij
=
∑
k �=l

pkl
∂log qkl

∂dij

= pij − qij

∑
k �=l

pkl

= pij − qij

∴ ∂C

∂yi
= 2

∑
j

(pij − qij) sgn
(
yi − yj

)
(3.4)

This form has roughly equivalent computationally complexity to the gradient of
tSNE. Also, as mentioned in the introduction, it lacks the degrees of freedom
parameter which tSNE requires to be tuned to the particular dataset.

4 Experimental Results

Experiments were run to compare tSNE and L1SNE on three datasets with
class information, each of which is detailed in the following subsections. Both
algorithms are optimised using the iterative gradient descent method mentioned
previously. In all cases, the initial solution is given randomly, and the optimi-
sation is terminated after a fixed number of iterations. The implementation of
tSNE is from Laurens van der Maaten’s MATLAB Toolbox for Dimensionality
Reduction ( http://ict.ewi.tudelft.nl/~lvandermaaten/Matlab_Toolbox_
for_Dimensionality_Reduction.html)

For each experiment, graphs are presented to show the results. These are
colourised to show the true class information of each point, which is not made
available to the algorithms as they run. Quantitative errors are also provided for
each experiment, calculated as a modidfied KNN-error called the k-point local
clustering error (KLCE). This calculation alleviates KNN’s need for a backpro-
jection for new high-dimensional points to be mapped individually onto a pre-
calculated low-dimensional space. KLCE considers each low-dimensional point
in turn, and deduces what proportion of the k nearest points are of a different
true class to the point under consideration. The final error is the average of these
across the reduced dataset.

4.1 Handwritten Digits

Images of handwritten digits 0-9 were selected randomly from the MNIST dataset,
with 1,500 images taken per digit. The results are presented on a two-dimensional
scatterplot, colourised to reflect the digit each point represents. Results are pro-
vided for three different random subsets to demonstrate repeatability.

It can be seen in Figure 1 that both L1SNE and tSNE successfully group
the data into tight clusters in the lower dimensional space according to the
digit they represent. L1SNE does not spread the distinct clusters as clearly from

http://ict.ewi.tudelft.nl/~lvandermaaten/Matlab_Toolbox_for_Dimensionality_Reduction.html
http://ict.ewi.tudelft.nl/~lvandermaaten/Matlab_Toolbox_for_Dimensionality_Reduction.html
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Fig. 1. Handwritten Digits Experiments

Table 1. KLCE Errors for Handwritten Digits Experiments

Experiment 1 2 3

tSNE 0.0723 0.0731 0.0847

L1SNE 0.0899 0.0937 0.1043
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(f) L1SNE (2nd Poses labels)

Fig. 2. Photographs of Faces

one another as does tSNE, however it shows less tendency for small groups
of data to ’wander’ between clusters. In the cases where it does do this, the
offending group tends to appear far nearer to its proper cluster, as well as visibly
smaller in number, than in tSNE. L1SNE’s tendancy to place the clusters much
closer together in the space appears to be cause of its slightly higher error rate
(Table 1): points near to the edge of have many close points which belong to a
neighbouring cluster. If the clusters were spread further from each other, as in
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tSNE, then points deeper in the same cluster would be closer than points on the
nearest edge of a nearby cluster.

4.2 Photographs of Faces

This experiment is designed to show utility in reducing to higher than three
dimensions, as well as when multiple, independent, classification schemes are
available for the data. The data is taken from the Faces dataset, which contains
photgraphs of faces in varying poses and with changed lighting. Each data-
point is the pixel data from a 64-by-64 pixel image, giving 698 4096-dimensional
points. This data set comes with three sets of labels, two representing the pose
of the subject and one representing the lighting of the photograph. Three experi-
ments were performed to test the utility of reduction to different low-dimensional
spaces. Data are reduced by each algorithm to four dimensions. Since the la-
belling information for this dataset is continuous rather than discrete, KLCE
errors are unavailable for this experiment. Instead, the data is projected onto a
3-dimensional space using Principle Component Analysis[10] so that it can be
graphed for visual inspection.

The results in Figure 2 suggest that classification by L1SNE would be more
accurate on two of the three sets of labels. Once again, it can be seen that
L1SNE’s primary drawback is a failure to clearly demarkate the boundaries of
each class of points, but that it shows improvement on the existing algorithm
other than this.

5 Conclusions

In these experiments, L1SNE shows improvement over its predecessors. It shows
particular strength in the case where the reduced dimension is greater than
three, and where there are multiple, independent, ways to classify the data. The
primary identifiable issue which could interfere with automatic classification of
data is that it fails to separate the classes of points sufficiently far from each
other, so that points on the very edge of a class cluster may appear to belong
to the neighbouring cluster. This could be overcome, for example, by partially
human-assisted classification in ambiguous edge cases.

The gradient descent method used here for optimisation is rather trivial, as
are the random initial solution and the fixed-iterations termination condition.
Future research may look for improved techniques in all of these areas, and this
may do much to improve the results of all of the algorithms tested here.

However, since these issues were identical across both algorithms, both algo-
rithms could be reasonably expected to improve by equal margins. The exper-
iments conducted argue that the L1SNE cost function has a minimum which
is closer to the abstract “ideal” solution, regardless of the optimisation method
used to search for it. The evidence then suggests that, of these two, L1SNE
would continue to give the better results under such improvement, while main-
taining relatively low computational complexity compared to the original SNE
algorithm.
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Abstract. Logistic regression is one of the most widely applied machine

learning tools in binary classification problems. Traditionally, inference

of logistic models has focused on stepwise regression procedures which

determine the predictor variables to be included in the model. Techniques

that modify the log-likelihood by adding a continuous penalty function

of the parameters have recently been used when inferring logistic mod-

els with a large number of predictor variables. This paper compares and

contrasts three popular penalized logistic regression methods: ridge re-

gression, the Least Absolute Shrinkage and Selection Operator (LASSO)

and the elastic net. The methods are compared in terms of prediction

accuracy using simulated data as well as real data sets.

Keywords: Logistic regression; Variable Selection; LASSO; Elastic Net;

Ridge regression.

1 Introduction

Logistic regression is one of the most widely applied machine learning algorithms
in binary classification problems. The popularity of logistic regression is due to
the relatively low computational complexity of fitting the model parameters and
the high interpretability of the logistic model. Fitting a logistic regression model
is commonly done using the iteratively-reweighted least squares (IRLS) algo-
rithm which is efficient provided the number of predictor variables is not too
large. Most statistical software packages in use today implement some form of
IRLS; for example, STATA c© has the logit() function. Unlike black-box algo-
rithms, such as artificial neural networks, logistic regression models are highly
interpretable and thus can be used in scenarios where interpretation of the model
is as important as prediction accuracy.

Formally, one observes p predictor variables (or covariates) x ∈ Rp and a
binary target (or response) variable y ∈ {−1,+1} which states the class mem-
bership of the observed vector of predictors. The conditional probability that a
vector of covariates x is assigned to a class y in logistic regression is

p(y = ±1|x,β) =
1

1 + exp(−yx′β)
(1)

J. Li (Ed.): AI 2010, LNAI 6464, pp. 213–222, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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where β ∈ Rp are the regression coefficients. A positive regression coefficient for
a predictor implies that the predictor is associated with an increased probabil-
ity of the response (y = +1), while a negative coefficient reduces the response
probability. A predictor with a regression coefficient of zero has no effect on the
probability of the response and should ideally be excluded from the model.

In order to make accurate predictions, one must estimate the parameter co-
efficients and select which of the p predictors, if any, are useful in explaining the
response. In practice, one typically observes a set of independent observations
D = {(x1, y1), . . . , (xn, yn)} and proceeds by forming the log-likelihood

l(β) = −
n∑

i=1

log (1 + exp(−yix′
iβ)) (2)

which is a function of the regression parameters β. A commonly used estimator
of β is the the maximum likelihood estimator obtained by finding the parameters
β that maximise the log-likelihood function.

Traditionally, a stepwise regression procedure combined with the maximum
likelihood method for parameter inference is used to determine significant predic-
tors and their contribution to the probability of the target variable. The decision
to include a new regressor in the model at each stage in the selection process is
then based on the one set of data. This practice of data re-use, or data dredging,
is known to be problematic and can often result in biased selection of significant
predictors.

More recently, techniques that modify the log-likelihood by adding a penalty
function of the parameters have been used when inferring logistic models with a
large number of predictor variables. This paper considers three popular penalized
logistic regression algorithms: ridge regression [6], the Least Absolute Shrinkage
and Selection Operator (LASSO) [11] and the elastic net [12]. Analysis of these
methods in the literature has largely focused on the linear regression model in
the asymptotic setting (that is, as the sample size or the number of predictors
approaches infinity). In contrast, there has been relatively little research on the
performance of penalized logistic regression methods, especially in small and
medium sample size problems. This is somewhat surprising given the popularity
of logistic regression in practice.

This paper aims to address the aforementioned gap by comparing and con-
trasting three popular logistic regression algorithms in the small to medium
sample size setting. Due to the mathematical complexity of the logistic model,
all performance comparisons will be empirical and use both simulated data as
well as real data sets.

2 Logistic Regression Algorithms

2.1 Stepwise Regression

Stepwise regression encompasses a range of procedures for automatic selection of
significant predictors for linear or logistic regression models. Stepwise regression
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algorithms can be divided into two broad categories: (1) forward selection, and
(2) backward elimination. In forward selection, the algorithm starts with all
predictors excluded from the model and, at each step, includes a single predictor
variable that is statistically important. For example, statisticians often include a
predictor that results in the largest reduction of the log-likelihood at each stage in
the selection process. The process is continued until all variables are included in
the model or until some pre-determined threshold is met. In contrast, backward
elimination begins with the full model that includes all p predictors and at each
step removes a predictor from the model that does not result in a significant
change to the log-likelihood. Like in forward selection, the elimination process
continues until either all predictors are excluded or some performance threshold
is met. It is also possible to use a hybrid strategy that considers inclusion and
removal of regressors at each step. Due to the similarity of the various stepwise
regression procedures, this paper considers only the forward selection algorithm.

Given a model proposed by forward selection, it remains to infer the model
parameters β. The most popular approach of parameter inference and the one
considered in this paper is that of maximum likelihood. The maximum likelihood
estimator is the estimator that maximises the likelihood or the log-likelihood (2).
Formally, the maximum likelihood estimator of the logistic model parameters is

β̂ML = argmax
β

{
−

n∑
i=1

log (1 + exp(−yix′
iβ)

}
(3)

The maximum likelihood estimator must be obtained numerically. Due to the
convexity of the log-likelihood, the estimator is unique unless the data is com-
pletely (linearly) separable.

The main disadvantage of forward selection and stepwise regression in general
is that the same data set is used for testing whether a predictor is included (or
excluded) at each stage in the algorithm. Each test is therefore conditioned on the
assumption that the previous inclusion (or exclusion) of predictors is ‘correct’.
Statistical corrections for this multiple testing problem are possible, but are by
no means trivial. Consequently, forward selection can result in a biased selection
of pertinent predictors.

3 Penalized Logistic Regression

It is well known that the method of maximum likelihood often overestimates
logistic regression parameters resulting in models that predict poorly. In order
to tackle this problem a number of methods that shrink the parameters and
perform automatic variable selection have been proposed. This paper exam-
ines the three most popular penalized logistic regression methods in use today:
(1) ridge regression, (2) the Least Absolute Shrinkage and Selection Operator
(LASSO) [11], and (3) the elastic net [12]. Note that forward selection may also
be viewed as a type of penalized regression where the penalty function is the
�0 norm. A Bayesian implementation of penalized logistic regression is briefly
considered in Section 4.
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3.1 Ridge Regression

Ridge regression [6,2] maximises the log-likelihood subject to a penalty on the
size of the regression parameters. This results in continuous shrinking of the
maximum likelihood parameter estimates which is known to improve prediction
accuracy. Formally, the ridge regression estimator is

β̂RR = arg max
β

{
l(β)− λ

p∑
i=i

β2
i

}
(4)

where the penalty parameter λ ≥ 0 determines the amount of shrinkage; for
example, λ = 0 denotes no shrinkage, while λ → ∞ results in all parameters
being shrunk to zero. Ridge regression can often result in models that predict
well but cannot infer sparse models, a sparse model being one where majority of
the coefficients are zero. Ridge regression either shrinks all parameters to zero
or includes all predictors in the model.

3.2 Least Absolute Shrinkage and Selection Operator

Least absolute shrinkage and selection operator (LASSO) [11] employs a �1
penalty on the regression parameters rather than the �2 penalty of ridge re-
gression. This results in a procedure that simultaneously performs parameter
shrinkage and pertinent variable selection automatically. Formally, the LASSO
estimator is

β̂LA = arg max
β

{
l(β)− λ

p∑
i=i

|βi|
}

(5)

where λ ≥ 0 determines the amount of shrinkage. The main advantage of LASSO
over ridge regression is that it can generate sparse models which are easier to
interpret. However, the LASSO can exhibit undesirable behaviour in the pres-
ence of highly correlated predictors. For example, if there is a group of predictors
which are highly correlated, the LASSO tends to randomly include one predic-
tor from the group ignoring the other predictors. In addition, empirical obser-
vations [11] show that ridge regression dominates the LASSO in linear models
when there are many correlated predictors.

3.3 Elastic Net

Recently, Zou and Hastie have proposed a new penalized regression technique,
the elastic net [12], to address the poor performance of LASSO given many cor-
related predictors. Like the LASSO, elastic net can produce sparse models as
well as shrink parameter coefficients. However, if there is a group of highly cor-
related predictors, the elastic net includes all the predictors in the group thereby
improving prediction performance. The elastic net penalty is a combination of
the LASSO and ridge regression penalties, defined as

β̂EN = argmax
β

{
l(β)− λ1

p∑
i=i

|βi| − λ2

p∑
i=i

β2
i

}
(6)
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where (λ1, λ2) ≥ 0 are the penalty parameters. In contrast to ridge regression
and the LASSO, elastic net requires inference of two extra penalty parameters
which can be computationally demanding. Furthermore, it has been observed
that the elastic net can overshrink the regression parameters in linear models.
An empirical correction for this behaviour is available but only for the linear
regression model.

4 Bayesian Logistic Regression

Penalized regression methods can be interpreted within the Bayesian statistics
paradigm. Here, the log-likelihood penalty takes the form of a prior distribution
over the parameter coefficients β. For example, ridge regression can be viewed as
a Bayesian method where the prior for the parameters is a multivariate Gaussian
distribution; the variance of the distribution being a function of the penalty
parameter λ. Similarly, the LASSO penalty amounts to assuming a Laplace
prior distribution over the parameter coefficients. Inference proceeds by forming
a posterior distribution of the parameters conditioned on the data.

Bayesian algorithms for penalized logistic regression have received relatively
little attention, perhaps due to the mathematical complexity of the logistic
model. Bayesian sampling approaches based on various approximations to the
posterior distribution are examined in [9,10]. An exact sampling scheme for the
logistic distribution through data augmentation was introduced in [7]. Recently,
an efficient scheme based on z-distributions is given by Gramacy and Polson [4].
We briefly examine how the Bayesian interpretation of the various penalized
regression methods compares to the standard algorithms in Section 5.2.

5 Empirical Comparison

Although a number of papers review penalized logistic regression [1,5], relatively
little work has been published on empirical performance of modern logistic re-
gression methods in small to medium sample size applications. The methods
chosen here represent the most popular approaches to penalized logistic regres-
sion in the literature. The all-subset selection algorithm was not tested because
of the inherent instability (high variance) as well as prohibitive computational
complexity of the method; for p regressors, all-subset selection requires fitting 2p

logistic models! Various extensions of the ridge regression and LASSO, such as
for example group LASSO, which have been developed for correlated predictors
have also been omitted. A number of these algorithms require that the correla-
tion groups are pre-defined before executing the method. This is generally not
possible in practice. Lastly, the DANTZIG [8] selector was not included in the
simulation experiments due to it’s high similarity to the LASSO.

The selected logistic regression methods are now compared using both real
and simulated data. All simulation code was written in the MATLAB c© envi-
ronment and is available from the authors upon request. Special care was taken
during implementation of numerical optimisation routines since both the LASSO
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and elastic net are not differentiable at βi = 0. Furthermore, standard Newton-
Raphson optimisation requires costly matrix inversion and is only feasible when
the number of predictors is relatively small. We have implemented a cyclic coor-
dinate descent algorithm [3] which can be applied to a large number of predictors
and gracefully handles minimisation of the LASSO and elastic net functions.

5.1 A Simulation Study

We have simulated data sets from four different scenarios originally examined
in [12] and reproduced here for convenience. For each simulation, we indepen-
dently generated a training set, a validation set and a test set. All regression
parameters were estimated using only the training data. The validation data set
was used to select the optimal penalty parameters, for the ridge, LASSO and
elastic net algorithms, and the best model for the forward selection procedure.
The optimal penalty parameters were computed using a grid search over a lattice
recommended in [12]. The performance of the methods was computed using only
the test data set. We have chosen the entropy loss function, rather than 0/1 loss,
for this purpose. Unlike the 0/1 loss, the entropy loss is a convex, differentiable
function that uses estimated probabilities to compute classification error and
does not require specification of an arbitrary hard threshold. The entire proce-
dure was repeated for 1000 iterations. The notation ·/ · /· is subsequently used
to denote the sample size of the training, validation and test sets respectively.
The four scenarios are:

1. Example 1: The number of samples was 20/20/200. The true regression co-
efficients were set to β = (3, 1·5, 0, 0, 2, 0, 0, 0)′. The pairwise correlation
between predictors i and j was corr(i, j) = 0.5|i−j|.

2. Example 2: Same as Example 1, except that βi = 0.85 for all i.
3. Example 3: The number of samples was 100/100/400 and corr(i, j) = 0.5 for

all i and j. The regression coefficients (p = 40) were

β = (0, . . . , 0︸ ︷︷ ︸
10

, 2, . . . , 2︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
10

, 2, . . . , 2︸ ︷︷ ︸
10

)′

4. Example 4: The number of samples was 50/50/400. The regression coeffi-
cients (p = 40) were

β = (3, . . . , 3︸ ︷︷ ︸
10

, 2, . . . , 2︸ ︷︷ ︸
15

, 0, . . . , 0︸ ︷︷ ︸
25

)′

The predictors were generated from:

xi = Z1 + εi, Z1 ∼ N(0, 1), i = 1, . . . , 5
xi = Z2 + εi, Z2 ∼ N(0, 1), i = 6, . . . , 10
xi = Z3 + εi, Z3 ∼ N(0, 1), i = 11, . . . , 15

and xi ∼ N(0, 1) for i = 16, . . . , 40, where N(0, 1) represents the standard
normal variable and εj ∼ N(0, 0·01) for j = 1, . . . , 15.
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Table 1. Mean entropy loss for the four simulation examples based on 1000 test iter-

ations; bootstrap estimates of standard errors given in parentheses

Method Simulation

Example 1 Example 2 Example 3 Example 4

Stepwise 0·6046 (0·139) 0·7012 (0·017) 0·0669 (0·001) 0·5088 (0·008)
Ridge 0·4215 (0·028) 0·4249 (0·023) 0·0534 (0·001) 0·2477 (0·002)
LASSO 0·4202 (0·039) 0·4941 (0·041) 0·0527 (0·001) 0·2265 (0·002)
Elastic net 0·4158 (0·033) 0·4381 (0·028) 0·0527 (0·001) 0·2280 (0·002)

In all simulations, the targets y were generated uniformly with probability given
by (1). Example 1 and Example 2 depict scenarios where the true model is
sparse and dense respectively, while Example 3 and Example 4 simulate data
with grouped predictor variables.

Mean entropy loss for the four simulation scenarios is shown in Table 1. Step-
wise regression had the largest mean entropy loss of all the methods tested in
the four scenarios. In contrast, the three penalized regression methods performed
relatively well, with the elastic net having a slight edge over ridge regression and
the LASSO. LASSO performed poorly in Example 2 when compared to ridge
regression and the elastic net. Ridge regression achieved the lowest entropy loss
here which is not unexpected given that the predictors form a dense set. It is
somewhat surprising that LASSO and ridge regression performed quite well on
grouped predictor variables in Examples 3 and 4. Of the three penalized logis-
tic regression methods, the authors recommend the elastic net as it achieves
amongst the lowest entropy loss in all the scenarios tested. The elastic net is
able to handle both sparse and dense predictors, as well as varying levels of
correlation.

It is of interest to compare the performance of penalized regression algorithms
as the number of predictors increases, while keeping the sample size constant.
This roughly mimics real world data sets such as those obtained from Genome
Wide Association Studies (GWAS); here the number of predictors is often much
higher than the number of samples. Figure 1 depicts the mean entropy loss of
elastic net, ridge regression and the LASSO as the ratio r = (p/n) was increased
from r = 0, . . . , 5 for (n = 50). For each ratio r, the regression parameters were
generated with 50% sparseness; that is, approximately half of the regression
parameters contained signal, while the rest were set to zero. In this example,
both the elastic net and ridge regression outperformed the LASSO in terms of
mean entropy loss. This is most evident when there are more predictors than
samples (that is, for r > 1).

5.2 Real Data Examples

The performance of all methods was also examined on real data obtained from
the UCI Machine Learning repository (UCI-MLR). The four data sets were: Pima
Indian diabetes (250/250/268), ionosphere (100/100/151), Haberman’s survival
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Fig. 2. Mean entropy loss performance of all methods on four real data sets from the

UCI Machine Learning repository
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Fig. 3. Regression coefficients estimated by Bayesian sampling for two real data sets

(250/250/268) and Wisconsin diagnostic breast cancer (WDBC) (100/100/369).
During each iteration, a data set was randomly divided into training, validation
and testing sets. The mean entropy loss for each method was recorded using only
the test data; the penalty parameters were inferred with a grid search algorithm
using the validation data. The entire procedure was repeated for 1000 iterations
for each data set. Figure 2 depicts the mean entropy loss of the four methods
tested.

As with simulated data, the penalized regression methods outperformed step-
wise regression in each simulation The performance difference is most evident
on the WDBC dataset which contained a moderate number of predictor vari-
ables (p ≈ 30). In all experiments, the penalized regression methods performed
roughly equally well, with ridge regression slightly outperforming LASSO and
elastic net on the WDBC data.

We also briefly compared the Bayesian LASSO [4] with the standard LASSO
implementation using the UCI-MLR data sets. The Bayesian LASSO outper-
formed the standard LASSO in terms of mean entropy loss in all four data sets;
interestingly, the parameter estimates of the two methods were relatively close.
Figure 3 depicts the the Bayesian coefficient estimates for Haberman’s survival
data and the WDBC data set. The behaviour of the LASSO shrinkage prior
is clearly evident; the Bayesian estimates are much smaller than the maximum
likelihood estimates and correspond to models with significantly better predic-
tion accuracy. The maximum likelihood estimates for the WDBC data set were
quite large and are not shown in Figure 3(b) for reasons of clarity. Therefore,
the Bayesian LASSO should be preferred over the regular LASSO as it provides
better prediction accuracy and an automatic estimate of the penalty parameter.
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6 Conclusion

This paper has compared stepwise regression, ridge regression, the LASSO and
the elastic net using both real and simulated data. In all scenarios, penalized
logistic regression was found to be superior to stepwise regression. Of the three
penalized regression methods, the elastic net is recommended as it automati-
cally handles data with various sparsity patterns as well as correlated groups of
regressors. Additionally, the Bayesian LASSO was found to be superior to the
regular LASSO in terms prediction accuracy in all real data tests. This is in
agreement with previous research comparing Bayesian and standard penalized
regression methods on linear models.

Acknowledgments. The authors would like to thank Robert B. Gramacy for
providing his Bayesian logistic regression simulation source code.
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Abstract. A typical approach to the problem of selecting between mod-

els of differing complexity is to choose the model with the minimum

Akaike Information Criterion (AIC) score. This paper examines a com-

mon scenario in which there is more than one candidate model with

the same number of free parameters which violates the conditions under

which AIC was derived. The main result of this paper is a novel upper

bound that quantifies the poor performance of the AIC criterion when

applied in this setting. Crucially, the upper-bound does not depend on

the sample size and will not disappear even asymptotically. Additionally,

an AIC-like criterion for sparse feature selection in regression models

is derived, and simulation results in the case of denoising a signal by

wavelet thresholding demonstrate the new AIC approach is competitive

with SureShrink thresholding.

1 Introduction

Every day thousands of researchers use the celebrated Akaike Information Cri-
terion (AIC) [1] as a guide for selecting features when building models from
observed data. Perhaps the most canonical example is the use of AIC to deter-
mine which features (covariates) to include in a multiple regression, which forms,
for example, the basis of epidemiological and medical statistics. The AIC was
derived under the assumption that the set of models under consideration (the
candidate models) forms a strictly nested sequence; that is, the more complex
models completely contain all of the simpler models. If we measure a model’s
“complexity” by the number of free parameters it possesses, a necessary (but not
sufficient) requirement for this assumption to hold is that each of the candidate
models possesses a unique number of free parameters.

A classic example in which this assumption is violated is subset selection of
regression models; if we include all possible subsets of q features in our set of
candidate models, there will be

(
q
k

)
different models with exactly k free parame-

ters. It is clear that if the number of features, q, we are considering is large then
the number of models with the same number of parameters in the candidate set
can be enormous.

J. Li (Ed.): AI 2010, LNAI 6464, pp. 223–232, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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While the poor performance of AIC when applied to non-nested sequences
of models has been noted in the literature (see for example, [2]), there appears
to have been no attempts to formally quantify just how badly the AIC may
perform. The primary contribution of this paper is to remedy this situation by
providing a novel asymptotic upper bound quantifying the extent to which AIC
may deviate from the quantity it is attempting to estimate in the setting of non-
nested sequences of models. The most interesting, and worrying, finding is that
the upper bound depends crucially on the maximum number of models being
considered, and in the limit as the sample size n→∞ the upper bound does not
converge to the usual AIC score. This implies the following critical conclusion:
that the poor performance of AIC when applied to non-nested sequences of models
cannot be overcome even by obtaining large amounts of data – the problem is tied
fundamentally to the confluence of models rather than sample size. We believe
this is a very important discovery with profound effects on the way the AIC
should be employed in the research community.

2 Akaike’s Information Criterion

The problem that the Akaike Information Criterion aims to solve is the following:
we have observed n samples y = (y1, . . . , yn) and wish to learn something about
the process that generated the data. In particular, we have a set of candidate
models of differing complexity which we may fit to the data. If we choose too
simple a model then the predictions of future data will be affected by the bias
present due to the limitations of the model; in contrast, if we choose an overly
complex model then the increased variance in the parameter estimates will lead
to poor predictions. The AIC aims to select the model from the candidate set
that best trades off these two sources of error to give good predictions.

2.1 Models and Nested Model Sequences

It is impossible to discuss the properties of AIC and its problems when applied
to non-nested sequence of models without first defining some notation. We let
γ ∈ Γ denote a statistical model, with θγ ∈ Θγ denoting a parameter vector for
the model γ and Γ denoting the set of all candidate models. A statistical model γ
indexes a set of parametric probability distributions over the data space; denote
this by p(y|θγ). The parameter vector θγ ∈ Θγ indexes a particular distribution
within the model γ. The number of free parameters possessed by a model γ (or
equivalently, the dimensionality of θγ) is denoted by kγ .

Using this notation, we can now introduce the notion of a “true” model and
a “true” distribution. The true distribution is the particular distribution in the
true model that generated the observed data y. Let γ∗ denote the true model,
and θ∗ denote the parameter vector that indexes the true distribution. Using
the shorthand notation that pθγ denotes the distribution indexed by θγ in the
model γ, we can say that y ∼ pθ∗

γ∗ .
In the context of AIC the idea of a nested sequence of models is very impor-

tant. If a set of models form a nested sequence then they possess the special
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property that a model with k free parameters can represent all of the distribu-
tions contained in all models with less than k parameters; usually, this involves
setting some of the parameters to zero, though this is neither universally the
case, nor a requirement. The following are two important properties possessed
by nested sequences of models.

Property 1. Each of the models in a nested sequence of models has a unique
number of free parameters.

Property 2. If the true model γ∗ is part of a nested sequence of models, then for
all models γ with kγ > kγ∗ (i.e., with more free parameters) there is a parameter
vector θγ ∈ Θγ that indexes the same distribution as the “true” distribution pθ∗ .

Let this parameter vector be denoted by the symbol θ∗
γ .

In words, this says that if the true distribution can be represented by the model
in the nested sequence with k parameters, then it can also be exactly represented
by all the models with more than k parameters. Thus, the “true” model is sim-
ply the model with the least number of parameters that can represent the true
distribution. An example will illustrate the concepts presented in this section.

Example: Polynomial Models. Consider the class of normal regression mod-
els, where the mean is specified by a polynomial of degree k. If the maximum
degree is q, the model class index γ ∈ {0, 1, . . . , q} denotes the degree of the
polynomial; i.e., γ = k specifies a polynomial of the form

y = a0 + a1x + a2x
2 + . . . akx

k + ε

with ε normally distributed with variance τ . The polynomial model indexed
by γ has kγ = γ + 2 free parameters (including the noise variance) given by
θγ = (a0, . . . , aγ , τ), with the parameter space Θγ = Rk+1 × R+. The models
form a nested sequence as a polynomial of degree k can represent any polynomial
of degree j < k by setting aj+1, . . . , ak = 0; for example, a quintic polynomial
can represent a cubic polynomial by setting a4 = a5 = 0.

2.2 Model Fitting and Goodness of Fit

There are many ways of fitting a model γ to the observed data (often called
“point estimation”); a powerful and general procedure is called maximum like-
lihood (ML), and it is this process that is integral to the derivation of the AIC.
Maximum likelihood fitting simply advocates choosing the parameter vector θγ

for a chosen model γ such that the probability of observed data y is maximised

θ̂γ = argmax
θγ∈Θγ

{p(y|θγ)} (1)

For a model selection criterion to be useful it must aim to select a model from
the candidate set that is close, in some sense, to the truth. In order to measure
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how close the fitted approximating model θ̂γ is to the generating distribution
θ∗, one requires a distance measure between probability densities. A commonly
used measure of distance between two models, say θ∗ and θ̂γ is the directed
Kullback–Leibler (K–L) divergence [3], given by

Δ(θ∗||θ̂γ) = Eθ∗

[
log

p(y|θ∗)
p(y|θ̂γ)

]
(2)

where the expectation is taken with respect to y ∼ pθ∗ . The directed K–L
divergence is non-symmetric and strictly positive for all θ̂γ �= θ∗. Defining the
function

d(θ∗, θ̂γ) = 2Eθ∗

[
log 1/p(y|θ̂γ)

]
(3)

the K–L divergence may be written as

2Δ(θ∗||θ̂γ) = d(θ∗, θ̂γ)− d(θ∗,θ∗) (4)

The first term on the right hand side of (4) is generally known as the cross-
entropy between θ∗ and θ̂γ , while the second is known as the entropy of θ∗. The
use of the Kullback–Leibler divergence can be justified by both its invariance
to the parameterisation of the models (as opposed to Euclidean distance, for
example) as well as its connections to information theory.

2.3 Akaike’s Information Criterion

Ideally, one would rank the candidate models in ascending order based on their
K–L divergence from the truth, and select the model with the smallest K–L
divergence as optimal. However, this procedure requires knowledge of the true
model and is thus not feasible in practice. Even though the truth is not known,
one may attempt to construct an estimate of the K–L divergence based solely on
the observed data. This idea was first explored by Akaike in his groundbreaking
paper [1] in the particular case of a nested sequence of candidate models. Akaike
noted that the negative log-likelihood serves as a downwardly biased estimate of
the average cross entropy (the cross-entropy risk), and subsequently derived an
asymptotic bias correction. The resulting Akaike Information Criterion (AIC)
advocates choosing a model, from a nested sequence of models, that minimises

AIC(γ) = 2 log 1/p(y|θ̂γ) + 2kγ (5)

where θ̂γ is the maximum likelihood estimator for the model γ and the second
term is the bias correction. Under suitable regularity conditions [4], and assum-
ing that the fitted model γ is at least as complex as the truth (i.e., the true
distribution is contained in the distributions indexed by the model γ), the AIC
statistic can be shown to satisfy

Eθ∗ [AIC(γ)] = Eθ∗
[
d(θ∗, θ̂γ)

]
+ on(1) (6)
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where on(1) denotes a term that vanishes as the sample size n → ∞. In words,
(6) states that the AIC statistic is, up to a constant, an unbiased estimator
of twice the Kullback–Leibler risk (average Kullback–Leibler divergence from
the truth) attained by a particular model γ; that is, for sufficiently large sample
sizes, the AIC score is on average equal to the average cross–entropy between the
truth and the maximum likelihood estimate for the fitted model γ. Although the
AIC estimates the cross–entropy risk rather than the complete Kullback–Leibler
risk, the omitted entropy term d(θ∗,θ∗) does not depend on the fitted model γ
and will thus have no effect on the ranking of models by their AIC scores. The
selection of a candidate model using AIC is therefore equivalent to choosing one
with the lowest estimated Kullback–Leibler risk.

In the case of non-nested model sequences, the number of candidate mod-
els with k parameters may be greater than one and the downward bias of the
negative log-likelihood is greater than the AIC model structure penalty. Prob-
lematically, this extra source of additional bias remains even as the sample size
n → ∞. The next section derives a novel upper-bound on this additional bias
under certain conditions.

3 The Bias in AIC for Multiple Selection

The main result of this paper is an expression for the additional downward bias
that is introduced when qk > 1. Let

Γk = {γ ∈ Γ : kγ = k}

denote the set of all candidate models with k parameters, with qk = |Γk| being
the number of candidate models with k parameters. In the case of a nested
sequence of models, qk = 1 for all k. Then, let

m̂k = argmin
m∈Γk

{
log 1/p(y|θ̂m)

}
(7)

denote the candidate model with k parameters with the smallest negative log-
likelihood. We can now recast the model selection problem as one of selecting
between the best of the k parameter models, i.e. we limit our candidates to the
new set of L fitted models

Γ ′ =
{
θ̂m̂1 , . . . , θ̂m̂L

}
(8)

Assuming the following holds

1. The true model γ∗ has no free parameters
2. All candidate models γ ∈ Γ contain the true distribution pθ∗ as a particular

element, i.e., all candidate models are overfitting. Let the parameter vector
that indexes the true distribution for the model γ be denoted by θ∗

γ

3. The maximum likelihood estimator converges to the truth, θ̂γ → θ∗
γ as

n→∞, and is asymptotically normally distributed, θ̂γ ∼ N(θ∗
γ ,J

−1(θ∗
γ))
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4. All candidate models of k parameters are independent; that is,

log
p(y|θ∗)

p(y|θ̂m)
, m ∈ Γk

are independent random variates.

Theorem 1: Under the above conditions we have

2Eθ∗
[
log 1/p(y|θ̂m̂k

)
]

+ 2α(k, qk) = Eθ∗

[
d(θ∗, θ̂m̂k

)
]

+ on(1) (9)

where
α(k, qk) = Eχ2

k
[max {z1, . . . , zqk

}] (10)

and z1, . . . , zqk
are independently and identically distributed χ2

k variates with k
degrees of freedom.

Proof: Following the procedure in [5] the cross-entropy risk can be written

Eθ∗

[
d(θ∗, θ̂m)

]
= Eθ∗

[
d(θ∗, θ̂m)

]
− d(θ∗,θ∗)

+d(θ∗,θ∗)− 2Eθ∗

[
log 1/p(y|θ̂m)

]
+2Eθ∗

[
log 1/p(y|θ̂m)

]
(11)

From regularity conditions the following approximations hold

2 log 1/p(y|θ∗) + 2 log p(y|θ̂m) = (θ∗
m − θ̂m)′H(θ̂m,y)(θ∗

m − θ̂m) + o(k) (12)

d(θ∗, θ̂m)− d(θ∗,θ∗) = (θ∗
m − θ̂m)′J(θ∗

m)(θ∗
m − θ̂m) + o(k) (13)

where

H(θ̂m,y) =

[
∂2 log 1/p(y|θm)

∂θm∂θ′
m

∣∣∣∣
θm=θ̂m

]
, J(θ∗) =

[
∂2Δ(θ∗,θ)

∂θ∂θ′

∣∣∣∣
θ=θ∗

]

are the observed and expected Fisher information matrices respectively. Denote
the right hand side of (12) and (13) by am and bm respectively. The first term,
am, is twice the decrease in the negative log-likelihood due to fitting a model θ̂m,
and the second term, bm, is twice the K–L divergence between the generating
model θ∗ and the fitted model θ̂m. Since there are qk models with k parameters,
there are qk random variables am and bm.

Selecting the model with k parameters that minimises the negative
log-likelihood is equivalent to solving

m̂k = argmax
m∈Γk

{am}



The Akaike Information Criterion and Multiple Model Selection 229

Then we have

2Eθ∗
[
log 1/p(y|θ∗)− log 1/p(y|θ̂m̂k

)
]

= Eθ∗ [am̂k
] + on(1) (14)

Eθ∗
[
d(θ∗, θ̂m̂k

)− d(θ∗,θ∗)
]

= Eθ∗ [bm̂k
] + on(1) (15)

For large n, the random variables satisfy am = bm+on(1) and therefore coincide.
From the properties of the maximum likelihood estimator H(θ̂m,y) → J(θ∗

m) as
n→ ∞, rendering the quadratic forms in (12) and (13) identical. Furthermore,
am converge to centrally distributed χ2

k variates with k degrees of freedom. Thus,

Eθ∗ [am̂k
] = E [max{z1, . . . , zqk

}] (16)

where z1, . . . , zqk
are independently and identically distributed χ2

k variates with
k degrees of freedom, with an identical expression for Eθ∗ [bm̂k

]. Substituting
these expectations into the expression for Eθ∗ [d(θ∗, θ̂m̂k

)] given by (11) com-
pletes the proof. �

4 Discussion and Impact

We now discuss the impact of Theorem 1. In words, the result states that if we
consider more than one candidate model with the same number of parameters,
say k, then the usual AIC complexity penalty of 2k (or alternatively, the bias
correction) for these models will be insufficient. A further negative result is that
under the above conditions, the required bias correction depends on the number
of models with k parameters, qk, and k, but not on the sample size n, and will
not disappear even as n → ∞. The primary effect an underestimation of bias
will have in practice is to lead to an increased probability of overfitting.

As an example, consider the situation in which the “true” model, γ∗, has no
free parameters, and we are considering as alternatives, based on regular AIC
scores, a set of q1 ≥ 1 “independent” models with one free parameter. In the usual
case of a nested sequence of models q1 = 1, and noting that twice the difference
in log-likelihoods between the fit of γ∗ and the alternative one parameter model
is approximately χ2

1 distributed, we determine that AIC has approximately a
16% probability of eroneously preferring the one parameter model (overfitting).
This probability will increase with increasing qk: using the results of Theorem 1,
we see that if qk > 1 then twice the difference in negative log-likelihoods between
the initial model we fit, γ∗, and the best of the one parameter models, γm̂1 , is
distributed as per the maximum of q1 χ2

1 variates with one degree of freedom.
Using standard results on distributions of order statistics [6], we can compute
the probability of overfitting in this scenario for various values of q1; these are
summarised in Table 1. It is clear that even if we consider only four models with
k = 1 parameters, the probability of overfitting is almost one half, and that
it rapidly rises towards one as q1 increases. This demonstrates just how poorly
regular AIC may perform when applied to a non-nested sequence of models.
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Table 1. Probability of AIC overfitting by one parameter for various values of q1

q1 1 2 3 4 5 8 10 15 25 50 100

P(overfit) 0·157 0·290 0·402 0·496 0·575 0·746 0·819 0·923 0·986 0·999 1·000

4.1 Theorem 1 as an Upper Bound

The most restrictive assumption used by Theorem 1 is the requirement that the
models be “independent” (Assumption 4 in Section 3). For many models, this will
not be the case; a simple example is “all subsets” regression models, where many
of the subsets of two or more features will have several features in common. If one
feature is strongly associated with the target, then all subsets containing this fea-
ture will reduce the negative log-likelihood by a similarly large amount, i.e., the
am variates from Theorem 1 will be correlated . However, even in the case that
Assumption 4 is violated, the result of Theorem 1 offers a novel upper bound: not-
ing that if {w1, . . . , wq} are q correlated variates and {z1, . . . , zq} are uncorrelated
variates,with both sets of variates possessing the same marginal distribution, then

E [max {w1, . . . , wq}] < E [max {z1, . . . , zq}]
so that the asymptotic bias correction term in this case will be less than 2α(k, q).
Thus, the result in Theorem 1 acts as an upper bound on the asymptotic bias
correction.

5 Forward Selection of Regression Features

A common application of model selection procedures in machine learning and
data mining is feature selection. Here, one is presented with many features (ex-
planatory variables, covariates) and a single target variable y we wish to explain
with the aid of some of these features. The AIC criterion is often used to deter-
mine if a feature is useful in explaining the target; this is a type of “all subsets”
regression, in which any combination of features is considered plausible a pri-
ori, the data itself being used to determine whether the features are significant
or statistically useful. Unfortunately, as the number of features may often be
very large, the results of Section 3 suggest that the usual AIC is inappropriate,
and choosing features by minimising an AIC score will generally lead to large
numbers of “spurious” features being included in the final model. We propose a
forward-selection AIC-like procedure, called AICm, based on the results of The-
orem 1. Forward selection of features acts by iteratively enlarging the current
model to include the feature that most improves the fit, and produces a type
of nested sequence of models; unfortunately, the sequence is determined by the
available data rather than a priori and so violates the usual AIC conditions.

The main idea behind our procedure is to note that, with high probability,
the important non-spurious features will yield the best improvements in fit and
be included before the spurious features. Thus, if there are k∗ non-spurious
features, the first k∗ subsets created by the forward selection procedure will,
with high probability, be the same irrespective of the random noise corrupting
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(a) “Doppler” (b) Noisy (c) SURE (d) AICm

Fig. 1. Denoising of the “Doppler” Test Signal by SureShrink and AICm

our data, and thus form a usual nested sequence of models. However, once all k∗

non-spurious features have been included, the remaining (q−k∗) subsets depend
entirely on the random noise and form a non-nested sequence of models; the
results of Theorem 1 may be used to avoid selecting these spurious features.

The AICm procedure may be summarised as follows. Let γ[k] denote the set
of the q features included at step k, so that γ[0] = ∅, i.e., we start with an empty
model and let γ̄[k] = {1, . . . , q} − γ[k] denote the set of features not in γ[k].
Then, for k = 0

1. Find the unused feature that most decreases the negative log-likelihood

γ[k + 1] = arg min
j∈γ̄[k]

{
log 1/p(y|θ̂γ[k]∪j)

}

2. If
(
log 1/p

(
y|θ̂γ[k]

)
− log 1/p

(
y|θ̂γ[k+1]

))
< (α(1, q− k)+1)/2 the feature

is rejected and algorithm terminates
3. k ← k + 1; if k = q, algorithm terminates, otherwise go to Step 1.

The threshold for rejection is based on two observations; the first is that even if
all (q − k) remaining features at step k were spurious we would still expect to
see, on average, an improvement in negative log-likelihood of α(1, q− k)/2 from
the best one amongst them (from the expectation of the am variates in Theorem
1). This accounts for the first term in the threshold. The second term arises by
noting that if the improvement exceeds the first threshold, we are deciding the
feature is non-spurious; at this point, we can use the regular AIC penalty of 1/2
a unit to account for the variance introduced by estimating the extra parameter.

5.1 Application: Signal Denoising by Wavelet Thresholding

An interesting example of regression in which the number of features is very
large is denoising or smoothing of a signal using orthonormal basis functions
called “wavelets”. An excellent discussion of wavelets, and their properties for
smoothing, can be found in [7]), and it is from this paper we take our four test
signals. These signals, called “Bumps”, “Blocks”, “HeaviSine” and “Doppler”
are benchmarks in the wavelet literature and are designed to caricature various
types of signals found in real applications.

We tested our AICm procedure on the wavelet smoothing problem by first
applying the discrete wavelet transform to the noise corrupted versions of the test
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Table 2. Squared prediction errors for denoising of the Donoho-Johnston test signals

“Bumps” “Blocks” “HeaviSine” “Doppler”
SNR Sure AICm Sure AICm Sure AICm Sure AICm

1 0·4129 0·3739 0·3140 0·2302 0·2164 0·0315 0·2686 0·0963
10 0·0578 0·0478 0·0530 0·0498 0·0239 0·0079 0·0355 0·0157
100 0·0070 0·0055 0·0066 0·0055 0·0033 0·0015 0·0047 0·0020

signals, and then using our criterion to determine which wavelets (our “features”)
to include, the maximum number of wavelets possible being restricted to n/2
to ensure that the asymptotic conditions are not violated. The closeness of the
resulting smoothed signal to the true signal was assessed using average mean
squared error, and our AICm procedure was compared against the well known
SureShrink algorithm [7]. Three levels of signal-to-noise ratio (SNR) (the ratio
of signal variance to noise variance) were used, and for each combination of
test signal and SNR level, the two criterion were tested one thousand times. The
mean squared errors presented in Table 2 clearly demonstrate the effectiveness of
the AICm procedure; in contrast, applying regular AIC resulted in the maximum
number of n/2 wavelets being included in every case, with correspondingly poor
performance. Figure 1 demonstrates the difference in performance between AICm

and SureShrink for the “Doppler” signals at an SNR of ten; the AICm smoothing
is visually superior to that obtained by SureShrink.

6 Conclusion

This paper examined the failings of AIC as a model selection criterion when the
set of candidate models forms a non-nested sequence. The main contribution
was a novel theorem quantifying the bias in the regular AIC estimate of the
Kullback–Leibler risk, which demonstrated that this bias may not be overcome
even as the sample size n → ∞. This result was used to derive an AIC-like
procedure for forward selection in regression models, and simulations suggested
the procedure was competitive when applied to wavelet denoising.
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Abstract. This paper describes an experimental system for knowledge

acquisition based on a general framework exemplified in the game of

twenty questions. A sequence of propositional questions is put to the

user in an attempt to uncover some hidden concept, and the answers are

used to expand and refine the system’s knowledge of the world. Previ-

ous systems adopting this framework typically represent knowledge as a

matrix of truth values or weights that relate entities to attributes—such

that if the hidden concept is “a bird”, for example, then the answer to

a question about whether the target entity can fly is based on the ex-

tent to which “flying” is generally attributable to “a bird” as measured

by the value in the matrix element indexed by the attribute-entity pair.

Our system adopts a subtly different approach wherein knowledge is a

measure of the extent to which answers to pairs of questions are co-

dependent. Thus, knowledge about birds being able to fly is captured by

the mutual information in the answers to a pair of questions like “Can

it fly?” and “Is it a bird?”. We present a case that this offers a practical

and epistemologically sound basis for acquiring knowledge.

Keywords: knowledge acquisition, mutual information, twenty questions.

1 Introduction

There is a long tradition in computer science whereby the so-called intelligence
of a system is in some way estimated from its ability to answer questions. The
Turing test is the classic example, but widespread active research into auto-
matic answer extraction and open-domain question answering for information
retrieval tasks indicates a continuing interest in creating programmes that can
respond to inquiries[1,4,3]. In theories of epistemology, however, the ability to
generate questions is also important to intelligence. As any four-year old child
will demonstrate, asking questions is one of the most powerful ways to acquire
new knowledge.

This paper describes an investigation into the development of a computer sys-
tem that can refine and expand its factual knowledge of the world (without limit)
by asking carefully selected propositional questions, and processing the answers
received. The underlying methodology follows after the Interrogative Model of

J. Li (Ed.): AI 2010, LNAI 6464, pp. 233–242, 2010.
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Inquiry (I-Model) developed by Jaako Hintikka[5,6], wherein new knowledge and
understanding emerge through a dynamic process of inquiry comprised from two
levels of questions: a principal cognitive goal (or “big question”) whose answer
is obtained by asking a series of subordinate questions. The approach is perhaps
best understood with the example of the game of twenty-questions, where up to
nineteen qualifying questions are posed in order to set up (with as high a prob-
ability of getting an affirmative reponse as is possible) the twentieth question,
which ultimately satisfies the overall objective of the inquiry.

The system described in this paper more or less emulates the game of twenty-
questions, but without any limit imposed as to the number of questions that
may be asked. The user is expected to think of something, and the computer
adaptively tries to guess what it is by selecting an effective sequence of yes/no
questions. Each answer is used to help the system select the next best question so
as to minimise the number of questions needed to satisfy the overall goal of the
inquiry. After each episode (i.e. after the “answer” becomes known at the end
of the inquiry) answers are subsequently used to update the system’s knowledge
base so that future iterations of the game are played more effectively.

Many implementations already exist for playing twenty questions (a particu-
larly good one being http://www.20q.net) and, in that respect, merely creating
another would be largely uninteresting. Indeed, at the outset, our motivation had
more to do with finding a way to expand a system’s knowledge base whenever the
target concept being guessed turned out to be unknown to the system—in this
way, using twenty questions as a basis for knowledge acquistion. The initial idea
was that if the computer ultimately could not guess the hidden concept, the user
would be asked to name it then the computer would add it to its knowledge base,
along with the information acquired as to the entity’s attributes as reflected by
the questions and answers that had been obtained during the interrogation.

Many interesting epistemological issues arose during the development of this
knowledge acquisition system—specifically, matters that arose while trying to 1)
determine how knowledge could be represented, updated, and expanded effec-
tively through the process of inquiry, and 2) decide how subordinate questions
should be selected to achieve the desired goal most efficiently. We report here
how we ultimately overcame these design problems in an unusual way: first, by
representing tacit knowledge directly as questions, and second, by representing
implicit knowledge as the mutual information expressed in the answers to all
pairs of questions.

2 The Knowledge Base

Twenty-questions (in the unlikely event that you don’t know this already) in-
volves uncovering the “hidden thing” by asking up to twenty questions that have
a yes or no answer (leaving aside for the moment the problem of multivalued-
truth and corresponding answers such as sometimes, seldom or usually). For
example, the inquirer may ask “Is it a person?” first, and then following an af-
firmative response might ask “Is this person still alive?”, and so on. Obviously
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twenty such questions allow the inquirer to uniquely identify just over a mil-
lion (220) distinct things. Randomly chosen questions generally don’t result in
an effective strategy for isolating the objective fact, so a good player chooses
questions which divide the search space as nearly in half as is possible (taking
into account possible perceived biases the answerer might be expected to have
in selecting their hidden thing).

To design the knowledge base for a computer system that will play the part
of the inquirer in this guessing game, we need a data structure that will let the
system identify which unasked questions best partitions the search space and
thus represents the best candidate to be asked next. For an adaptive acquisition
system, the data structure must be able to record questions and answers so that
its knowledge can be better conditioned for more effective use in the future, and
it must allow new questions to be added to expand its knowledge base. In this
section we show how an entity-attribute truth table (perhaps the most obvious
choice of data structure) is unsuitable for an adaptive system, and describe a
question-question correspondence matrix that works well as an alternative. We
further discuss how the question-question matrix better reflects epistemological
theory.

2.1 The Entity-Attribute Truth Table

One obvious way to represent propositional knowledge for a question-asking
system is with a simple two-dimensional matrix such as that pictured in Figure 1,
where each row corresponds to an attribute and each column to an entity, and
each cell is set to either true or false (or to some real number for multivalued-
truth representation) to reflect whether or not (or to what degree) the entity
exhibits that attribute. To select the first question to ask, the system analyses
each attribute and chooses the one that best partitions the search space—that
is, the one whose true/false count ratio for all entities is closest to one. (In the
case of a draw, one of the candidates can be chosen at random.) The attribute
is formulated into a question and posed to the user. Once an answer is obtained,
all attributes of entities whose truth value does not match the response to the
question are eliminated from the set of candidates for the next question, and the
process is repeated over the eligible portion of the table. The process stops when
either 1) a single entity is isolated, in which case it is guessed as the hidden fact,
or 2) no more attributes are left untested that can differentiate the remaining
candidate entities, in which case each entity must be guessed in turn, or 3) all
entities are eliminated as possible targets, in which case the system does not
know the answer and must add a new column to the table and somehow label it
with the new entity.

There are several observations to be made about this structure which indicate
a flaw as to its completeness, and which suggest how it can be improved. First,
note that if the first condition arises (i.e. a single entity is isolated by the response
to a question), as when “is it alive?” is asked based on the knowledge matrix in
Figure 1 and is rewarded with a negative reply, then the system must break out
of the process of selecting an attribute to query (i.e. a row of the matrix) and
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Fig. 1. An entity-attribute truth table knowledge base

instead generate a final question testing the principal cognitive goal—turning
the entity label for the column into a question. That is, guessing that the hidden
thing is a particular entity effects the same outcome as if one had instead had
access to an attribute-testing question that asked if the hidden thing has the
attribute of being that particular entity. The identity of the entity can be viewed
as just one more attribute to be tested. Given the attribute/entity format of the
table, this entity-ness attribute value would be set to true for the target entity
and false for all others. Leaving aside for the moment the question of what might
be gained from the addition of an entity-testing question as a row in the matrix,
we note that once the answer is obtained then it follows the third termination
condition arises (i.e. all entities are eliminated as possible targets).

We can similarly reduce the second termination condition to an instance of the
third by creating entity-testing questions for each remaining candidate entity.
That is, the list of possible entities for which no further qualifying attributes
remain untested could each be translated into entity-testing questions of the
form “does the thing you are thinking of have the attribute of being Entity A?”,
where each remaining entity that is not Entity A has some implicit Entity A-ness
attribute set to false. The moment an affirmative response is obtained, all entities
are eliminated as possible candidates because they would not have the entity-
ness attribute marked as existant, by definition. Hence, asking a question that
tests the principal cognitive goal can be made identical to asking a subordinate
question.

But if a column label (i.e. entity name) is converted into a row (i.e. an entity-
ness attribute question), then we must formulate another meaning for the truth-
value of a cell, since it is no longer indexed in the vertical dimension by the entity.
What sort of data structure would allow us to treat specific entity-ness uniformly
with all other attributes? Before we propose one, it is worthwhile noting some
other shortcomings of the entity-attribute truth table. Note, for example, that
in the case of the second stopping condition (with multiple candidate entities), it
is possible for the system to guess the target entity with its first direct question.
If entity-ness is just another attribute, how can the system detect it has just
reached its principal cognitive goal? How does it know it hasn’t merely gained
some additional qualifying information, and that it shouldn’t now go on and
ask other entity-ness questions? What justification is needed to prevent it from
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continuing to ask questions; testing all potential entity-nesses as it pursues iso-
lation of a target entity? Indeed, the user’s intended target might be guessed
at any time (perhaps with the first question), regardless of whether additional
attributes remain that could be tested. How does it know to stop?

One might suggest that the system only be allowed to succeed when the first
stopping condition is reached with an affirmative reply; all else is treated as
failure. But this is unsatisfactory in some circumstances. For example, imagine
that the last testable attribute is whether or not the user is thinking of a tiger,
and the user believes that the final target concept is actually more specifically
a Bengal tiger; then the system has failed in some sense. It would pose tiger as
a final guess, and after the user provides the answer, the system would have to
assume it has reached the cognitive goal or hit the third stopping condition. Ig-
noring this problem for now, imagine the system somehow realises it has reached
the latter state and engages its knowledge acquisition procedure (which we shall
present shortly), and thereby manages to add a question about Bengal-tiger-ness
so that it will be able to guess correctly the next time this entity comes up as
the target. This only puts-off the problem, for in a subsequent iteration of the
game the user may have as the hidden target a female Bengal tiger? Or a female
Bengal tiger in the Sydney zoo? Or a female tiger in the Sydney zoo that just
had cubs? And so on. The more general problem is: what (apart from the third
stopping condition after a negative reply) allows a questioner to know when it
has asked the last question necessary to end the inquiry?

Of course this problem also exists for humans when they play twenty-questions
among themselves. If the target is uncovered in fewer than twenty questions,
some signal is given by the answerer so that the guesser does not continue their
quest. We simply stipulate the same courtesy be given to the computer system.
The user should respond with something other than just “yes” when the final
target is guessed—perhaps by saying “you guessed it” instead.

2.2 Acquisition

Another difficulty for the entity-attribute truth table arises when it comes time
to expand its knowledge base. Actually, there are two problems. When the sys-
tem stops due to condition two, it would be useful if the system could add
another attribute row to its table—an attribute that will in future allow it to
differentiate between competing candidate entities. When the system stops under
condition three, a new column must be added and labeled with the previously
unknown entity. In the absence of quite sophisticated natural language process-
ing software, the only way to achieve this is to manually alter the computer
programme (specifically, its database of knowledge). Of course we may already
have to assume such sophisticated NLP software in order to take attribute labels
and entity names and generate well-formed questions about them.

An entity-attribute truth table was initially used for the knowledge base in
this system. But trying to solve all of the problems outlined above proved a
considerable challenge, and part way through the study it was realised that a
different kind of data structure would obviate all of these shortcomings and make
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it a lot easier to concentrate on the fundamental goal of using the interrogative
model of inquiry as the basis for knowledge acquisition. The key insight was to
represent knowledge not as relationships between attibutes and entities at all,
but simply as relationships between questions.

2.3 A Question-Question Correspondence Matrix

One easy way to eliminate the natural language processing problems entailed
by having to generate questions from attribute labels and entity names, and to
expand the knowledge base with new attributes and entities without recoding,
is simply to represent all tacit knowledge explicitly as wellformed questions.

We noted in the previous section that one could view the act of asking whether
some particular entity is the “final target” as the act of asking whether the
target has the attribute of some particular entity-ness. To do this with a truth
table would entail adding one attribute row for each entity to specifically record
whether or not each entity has the attibute of being itself or some other entity,
making the knowledge base more uniform and thereby simplify processing under
the three stopping conditions mentioned above. Obviously this would make for a
very large truth table with a lot of negative (and generally useless) information.
If we instead represent knowledge as a matrix of questions—explicit questions
about both attributes and entities—then the knowledge can be represented more
tersely, more uniformly, and more usefully.

Q1: is it alive?

Q2: can it fly?

Q3: does it lay eggs?

Q4: is it a fruitbat?

Q5: is it an eagle?

Q6: is it a tiger?

Q7: is it a rock?

0.7 0.9

Q2 Q3 Q4 Q5 Q6 Q7

0.9 0.9 0.9 0.1

0.9 0.8 0.9 0.10.2

0.1 0.9 0.1 0.1

0.1 0.1 0.1

0.2 0.1

0.1

Fig. 2. A question-question matrix knowledge base

Figure 2 shows a small question-question matrix expressing more or less the
same knowledge as is encoded in the truth table of Figure 1. Unlike the truth
table representation, however, the matrix no longer distinguishes between enti-
ties and attributes. All knowledge is encoded uniformly as questions, making it
possible to process them the same way.
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A more significant difference for this knowledge base is that each cell now
contains a probability instead of a truth value. Specifically, it is the probability
that two questions will get the same answer, calculated simply as the number of
times both questions received the same answer divided by the number of times
they were both asked during an inquiry. Using probabilities opens the door for a
multivalued truth system, although this was also possible with the original truth
table and it is not the reason they are used here. It is not generally possible to
talk of the truth relationship between two questions, but the extent to which two
questions provide the same information is important when trying to decide what
question to ask next. This is a complex issue and is treated more thoroughly in
the next section.

For the moment, we make a couple of observations about the question-question
matrix. First, we note that only the upper triangle of the matrix is needed,
where the relationship of one question to all others is assessed by examining all
nonempty cells in the row and column indexed by its question number. Because
the assumed statistical dependency is symmetric, there is no need to use the
lower triangle. Second, we observe that there is now no need to have sophisti-
cated question generators because all linguistic knowledge is encoded explicitly
as questions. When an inquiry terminates unsuccessfully, and the system needs
to expand its knowledge base, it simply asks the user for one new question that
would have helped it guess the target entity. Assuming a cooperative user, the
input is a wellformed question that can be added to the matrix and initialised
with values appropriate to the answers given over the course of the inquiry. This
initialisation is also covered in the next section.

3 Question Selection and Knowledge Acquisition

Given the knowledge representation described in the previous section, we now
describe how it is used to formulate a questioning strategy to satisfy the principal
goal of the inquiry, and how it is updated and expanded with new knowledge.

Just as with the attribute-entity truth table, the goal of the inquirer is to
select as its next question the one whose answer will best partition the search
space in half. From a truth table, this is achieved by choosing the outstanding
candidate question whose counts for true and false associations with eligible enti-
ties have a ratio nearest to one. When the knowledge representation is comprised
of probabilities measuring the extent to which pairs of questions are expected to
receive the same answer, the process is less straightforward.

The first selection function trialed was an attempt to mimic truth counting.
It simply counted the number of probabilities above fifty percent and below
fifty percent and selected the question with the ratio closest to one. This failed
because it would not distinguish between questions whose probabilities tended to
be close to fifty percent (and therefore not discriminating) and questions whose
probabilities where close to either zero or one (and therefore very discriminating).
The function was modified to prefer questions whose affirmative probabilities
summed to a higher value, based on the assumption that the ultimate goal is to
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obtain an affirmative reply to a question, but this gave the system a tendency
to select crude top-level questions in preference to more refined and precise
questions because the former tend to have more absolute answers than do the
latter.

The key insight was to realise that the best question to ask was the one whose
answer provided the most information. This is obviously what we were trying
to do at the outset, but we failed to realised that the measure of information
in a question is not explicitly captured in the cooccurrence statistics of “like”
answers, but is given by the mutual information in the answers two questions are
expected to elicit. Mutual information is a formal statistical property defined as

MI =
p(A ∧B)
p(A) · p(B)

In information theory, it is more plainly described as the number of bits saved
when encoding two events if the probability of one is made conditional on the
other, instead of encoding both events under the assumption of independence[2].
In terms of question relevance as described here, it is a measure of the information
one can expect to gain by asking a question when the answer to another question
is known and assumed to be dependent. This is exactly what is needed when
trying to decide which of the outstanding candidate questions is the best to pose
during an inquiry. For example, if the independent probability of a positive reply
to Question A is 0.5 and for Question B 0.25 then their combined information
content under the assumption of independence is − log2(0.5) +− log2(0.25) = 3
bits. If, however, the probability of a positive reply to Question B is greater, say
0.5, given that the answer to Question A is known also to be positive, then the
information content of the two questions under the assumption of a dependence
is now − log2(0.5) + − log2(0.5) = 2 bits—a savings of one bit, which is the
mutual information in the answers to the two questions.

To calculate mutual information from the knowledge base, it was necessary to
modify it to store counts instead of probabilities so that the various components
of the mutual information formula could be calculated as needed. And to update
the knowledge base in accordance with the information embedded in the replies
of the user after an inquiry, the system simply goes pairwise through all the
questions asked and increments the counts for questions that received the same
answer.

3.1 The Procedure

Choosing the first question to ask is a special case in that the choice must be made
independently (i.e. no other answers are yet known). The first question should pro-
vide a maximum amount of disambiguation information. Ambiguity exists when
mutual information is low; therefore the system selects as its first question
whichever one has the lowest average mutual information with other questions;
indicating that the answer will offer the greatest amount of information.
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At each subsequent step, the system chooses whichever other unasked ques-
tion has the least mutual information with all questions whose answer has been
obtained. In this respect, the next question is whichever one provides the most
new information—which is to say, the one that does the best job of raising the
utility of outstanding potential questions.

The system expects the user to reply with something other than “yes” or “no”
when the target entity is guessed. If it receives the response “you guessed it”
then it assumes a successful line of inquiry, and the counts on question pairs are
updated to reflect the proportions that they received identical answers, allowing
it to pursue more effective lines of questioning on subsequent iterations.

Things are slightly less clean when the system does not know a question
that will achieve successful termination. It will not stop guessing until it has
exhausted all questions that have previously received at least one “yes” answer.
This can become tedious in practice, but does not detract from the epistemoligcal
argument.

When the system reaches a point where there are no questions left to ask, it
gives up. It does this by asking the user to supply one question it could have asked
to identify the target. It also asks the user what the answer to that question would
be (either “yes” or “no”). Having recorded the answers to all question asked, it
adds the new question to the matrix and updates the counts for affirmative
and negative answers and the mutual information for all question pairs. In this
manner, the system can continue to acquire new factual knowledge without limit,
and improve its understanding of the relationships between questions.

4 Remarks

As Phil Murray (editor-in-chief of KM Briefs) recently remarked in the Knowl-
edge Management Forum, “It is not so much knowing the answers that is im-
portant, as it is being able to formulate correct or effective questions”1. We
have shown that it is possible to construct a computer system that can do just
that—a system that can learn an unlimited amount of factual knowledge sim-
ply by asking appropriate propositional questions and processing their answers.
The key was to represent that knowledge as the relationship between questions,
rather than attempt to encode facts as explicit relationships between entities
and the attributes they generally possess. We believe this to be an interesting
epistemoligal view in that it partly solves the problem of what to do with ex-
ceptions. The properties that define any one entity are not so concrete as to
sustain consistent truth values, even multivalued ones, because any one entity
conceptually related to another of the same type class may or may not display
any one particular testable attribute. The representation described in this pa-
per allows us to define related entities in a different way—specifically, as those
things for which the complete set of questions we might pose so as to test all
their known attributes will on the whole elicit more or less a set of answers where
the majority of answers are consistent. It would not surprise us if some readers
1 http://www.km-forum.org/t000013.htm
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of this report object to this claim, or have some question about the methods and
results described (e.g. Question: Does not the mutual information in the answers
to a pair of question change depending on the other questions asked? Answer:
Surprisingly, no.) At the very least, we hope it will generate some interesting
discussion for a conference on artifical intelligence.
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Abstract. Machine learning algorithms like Genetic Programming (GP)

can evolve biased classifiers when data sets are unbalanced. In this paper

we compare the effectiveness of two GP classification strategies. The first

uses the standard (zero) class-threshold, while the second uses the “best”

class-threshold determined dynamically on a solution-by-solution basis

during evolution. These two strategies are evaluated using five different

GP fitness across across a range of binary class imbalance problems, and

the GP approaches are compared to other popular learning algorithms,

namely, Naive Bayes and Support Vector Machines. Our results suggest

that there is no overall difference between the two strategies, and that

both strategies can evolve good solutions in binary classification when

used in combination with an effective fitness function.

1 Introduction

Classification with unbalanced data represents a major challenge in the machine
learning (ML) community. Data sets are unbalanced when they have an un-
even representation of class examples. In binary classification, the class with the
smaller number of examples is called the minority class, while the other class
is the majority class. Unbalanced data sets are common; fraud detection [1],
medical diagnostics [2], and image recognition [3] are only a few examples.

Genetic Programming (GP) is an evolutionary ML technique which has been
successful in evolving reliable and accurate classifiers [4][5][6]. However, GP, like
many other ML approaches, can evolve “biased” classifiers, that is, solutions with
strong majority class accuracy but poor minority class accuracy, when data sets
are unbalanced [2][5][6]. As the minority class often represents the main class in
many problems, accurately classifying examples from this class can be at least
as important, and in some scenarios more important, than accurately classifying
examples from the majority class.

This performance bias is typically due to traditional training criteria being
influenced by the larger majority class [1][2][7]. In GP, the standard fitness func-
tion for classification (overall classification accuracy) is known to evolve biased
solutions compared to improved fitness functions that are more sensitive to the
uneven representation of examples in each class [7]. These improved functions fo-
cus on evolving classifiers with good accuracy on both classes; examples include

J. Li (Ed.): AI 2010, LNAI 6464, pp. 243–252, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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approximating the area under the Receiver Operating Characteristics (ROC)
curve (known as the AUC) in fitness [5][6], or using fixed misclassification costs
for class examples to boost classification rates [2][7].

In binary classification, GP classifiers are usually represented as mathemat-
ical expressions, where the numeric program output is mapped to two class
labels using a fixed class-threshold (zero) [5][7]. However, recent work using
GP for multi-class classification has shown that a more flexible strategy us-
ing a dynamic class-threshold, where the decision boundary is determined on a
solution-by-solution basis, can lead to better performance of evolved solutions
compared to the standard zero-threshold approach [8]. This paper investigates
whether this dynamic-threshold can also lead to improvements in the perfor-
mance of evolved solutions in classification with unbalanced data, compared to
the standard zero-threshold approach. We compare the effectiveness of these two
classification strategies using five different GP fitness functions across a range
of unbalanced data sets. The different GP fitness functions are included in this
comparison to allow for both a fair comparison of the two strategies over different
GP systems, and a thorough evaluation of these fitness functions when data is
unbalanced. The GP fitness functions include the standard approach for classifi-
cation (overall accuracy), and four improved functions for class imbalance. The
GP approach is also compared to Naive Bayes and Support Vector Machines.

The rest of this paper is organised as follows. Section 2 outlines the GP
framework and two classification strategies. Section 3 describes the GP fitness
functions. Section 4 outlines the experimental setup and unbalanced data sets.
Section 5 presents the full experimental results and analysis. Section 6 concludes
this paper and gives directions for future work.

2 GP Framework and Classification Strategies

The genetic programs are represented as (tree-based) mathematical expressions
[4]. We use features and randomly generated floating-point numbers in the termi-
nal set, and a function set comprising of the four standard arithmetic operators,
+,−,× and %, and conditional operator, if. The +,− and × operators have their
usual meanings (addition, subtraction and multiplication) while % is protected
division (usual division except that a divide by zero gives a result of zero). These
four operators take two arguments and return one. The if operator takes three
arguments and returns the second if the first is negative, otherwise the third
is returned. For example, the expression (F1 × F2 − 0.5) can be represented by
genetic program (- (× F1 F2) 0.5), where the arithmetic operators are the
functions, and the variables and constants are the terminals.

Two Classification Strategies

As a mathematical expression, a genetic program classifier computes a single
output value (floating-point number) for a particular data example that must
be classified. A common technique to translate this number into binary class
labels uses the zero-threshold classification strategy: an example will be assigned
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to the majority class if the classifier output is negative, otherwise it will be
assigned to the minority class [5][7].

However, in difficult problems the fixed zero-threshold approach can unneces-
sarily place additional constraints on solutions during evolution. Classifiers are
required not only to separate the predictions for each class, but also ensure that mi-
nority predictions are non-negative and majority predictions are negative. For ex-
ample, a GP solution could have good class separability (i.e., little overlap in class
predictions) but poor classification performance using the zero class-threshold
(Figure 1a). Further evolving the solution to “shift” its predictions relative to the
zero class-threshold could negatively impact on separability (Figure 1b).

2

Majority

Minority

0

Minority

Majority

0

(a) (b)

Fig. 1. Example distributions for the minority and majority classes for two classifiers

(x-axis corresponds to the genetic program output). Solid line is zero class-threshold,

dashed line in (a) is better class-threshold.

A more flexible classification strategy would use a dynamic class-threshold to
find the best decision boundary relative to the class predictions on a solution-
by-solution basis, e.g., the dashed line in Figure 1a. To automatically find the
optimal class-threshold during evolution, a probabilistic classification strategy is
used where the outputs of genetic programs were modelled using two Gaussian
distributions, one for each class; the normal probability density function (φ) of
the class distributions is used to determine the class label of a given example [8].

The two class distributions correspond to the outputs of the genetic program
classifier when evaluated on all training examples from the two classes (Figure 1
shows example distributions for two classifiers). To predict the class of an unseen
example, two φ values are calculated (one for each class distribution), and the
class with the higher φ value is taken as the class of that particular example.

In Eq. (1), μc and σc are the mean and standard deviation of the distributions
for class c (minority or majority class), respectively, Nc is the number of examples
in class c, Pi is the program output on unseen example i, and Pj is the program
output on training example j:

φ(μc, σc, Pi) =
exp

(
−(Pi−μc)2

2σ2
c

)
σc

√
2π

(1)

where

μc =

∑
j∈c Pj

Nc
and σc =

√
1
Nc

∑
j∈c

(Pj − μc)2
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3 GP Fitness Functions

The classification strategy determines how class labels are assigned to examples
in the data set. The fitness function is different; this measures the classification
accuracy of a solution by comparing the predicted class labels to the actual class
labels in the training set. The behaviour of the two classification strategies is
compared using five different GP fitness functions, outlined below.

Fitness Function 1: The function Std (Eq. 2) corresponds to standard GP
fitness for classification, that is, the overall classification accuracy of a solution
on the training examples. Assuming the minority and majority classes are the
positive and negative classes, respectively, Std can be defined using the confusion
matrix in Table 1.

Table 1. Confusion matrix for a two-class classification problem

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Std =
TP + TN

TP + TN + FP + FN
(2)

Fitness Function 2: Research has shown that fitness function Std can favour
the evolution of classifiers biased toward the majority class [5][6][7]. When data
sets are unbalanced, a solution with relatively high overall classification accuracy
can have poor minority class accuracy due to the influence of the majority class.
The fitness function Ave (Eq. 3) uses the average classification accuracy of each
class to avoid this pitfall, where solutions with good accuracy on both classes are
favoured with better fitness, compared to biased solutions with strong accuracy
on only one class.

Ave =
1
2

(
TP

TP + FN
+

TN

TN + FP

)
(3)

AUC Approximation in Fitness

The three functions presented below explore effective approximations to the AUC
in fitness. The AUC is a useful, non-biased performance measure of classifier sep-
arability but is often impractical to use directly in the fitness function during evo-
lution due to the computational overhead required to construct an ROC curve [9].

Fitness Function 3: The function Wmw (Eq. 4) uses the well-known equiv-
alent estimator of the AUC, the Wilcoxon-Mann-Whitney (WMW) statistic in
fitness [6][9][10]. In Eq. (4), Pi and Pj represent the output of a genetic program
when evaluated on an example from the minority class (min) and majority class
(maj), respectively, where indicator function Is depends on the classification
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strategy s. For the zero class-threshold, IZT (Eq. 5) was used; for the dynamic
class-threshold, IDT (Eq. 6) was used.

Wmw =

∑
i∈min

∑
j∈maj Is(Pi, Pj)

Nmin ×Nmaj
(4)

Eq. (5) measures the ordering of minority class predictions to both majority class
predictions and the fixed zero-threshold decision boundary. Eq. (6) measures only
the ordering of minority to majority class predictions, depending on which class
distribution is the left-most distribution (distribution with the smallest mean).

IZT (Pi, Pj) = 1 if Pi > 0 and Pi > Pj , 0 otherwise. (5)

IDT (Pi, Pj) =

⎧⎨
⎩

1 if (μmin ≥ μmaj and Pi > Pj)
or (μmin < μmaj and Pi < Pj),

0 otherwise.
(6)

Fitness Function 4: The function Corr (Eq. 7) is a relatively new fitness
function which makes novel use of the correlation ratio to approximate the AUC
[7]. The correlation ratio measures the linear dispersal between two populations
of data, where the higher the dispersal, the better the class separability. In
Eq. (7), Pci represents the genetic program output when evaluated on the ith

example belonging to class c, M is the number of classes, and Nc is the number
of examples for class c. Function Corr will return values ranging between 0 (poor
separability) and 1 (good separability):

Corr =

√√√√ ∑M
c=1 Nc(μc − μ̄)2∑M

c=1

∑Nc

i=1 (Pci − μ̄)2
(7)

where μc is the mean of classifier outputs for class c, and μ̄ is the overall mean:

μc =
∑Nc

i=1 Pc,i

Nc
and μ̄ =

∑M
c=1 Ncμc

N

Function Corr only measures class separability; to evolve solutions that adhere
to the zero class-threshold strategy, Corr must be adapted to reward solutions
with majority and minority class predictions that are negative and non-negative,
respectively. This was enforced using function AdjustedZT (Eq. 8), which doubles
the original fitness value if solutions adhere to the zero class-threshold. In Eq. 8,
fit corresponds to the original fitness value returned by a given fitness function,
in this case Corr (Eq. 7).

AdjustedZT = fit×
{

2 if μmaj < 0 and μmin ≥ 0,
0 otherwise. (8)

Fitness Function 5: The function Dist (Eq. 9), measures the distance between
the majority and minority class distributions for a given classifier [8]. Eq. (9) re-
turns the point equi-distant from the means of two distributions. In the worst case
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where the means of both class distributions are the same (poor separability), this
distance will be 0. Conversely when there is no overlap between the two class dis-
tributions (good separability), this distance will be large (go to +∞). Similar to
Corr, this function was also adapted for the zero-threshold classification strategy
using function AdjustedZT (Eq. 8), where fit is the value returned from Dist.

Dist =
|μmin − μmaj |
σmin + σmaj

(9)

4 Experimental Parameters, Setup and Data Sets

The ramped half-and-half method was used for generating programs in the initial
population and for the mutation operator [4]. The population size was 500, max-
imum program depth was 8 (to restrict very large programs in the population),
and crossover, mutation and elitism rates were 60%, 35%, and 5% respectively.
The evolution ran for 50 generations or until a solution with optimal fitness was
found. Half of the data set was randomly chosen as the training set and the
other half as the test set, where the examples in each set were different for every
experiment. Both sets preserved the original class imbalance ratio.

The AUC of the evolved solutions (on the test set) was used as the main per-
formance evaluation metric in our analysis, as this is known to be an accurate
single-figure measure classification ability [1][9][10]. The AUC represents a solu-
tion’s classification performance across varying true-positive and false-positive
thresholds and is insensitive to the learning bias (unlike standard overall accu-
racy) [9]. To compute the AUC for a given solution, an ROC curve was con-
structed and the well-known trapezoidal approximation technique was used to
calculate the area under the curve (i.e., the sum of the areas of the individual
trapezoids fitted under each ROC point [9]).

To compare the classification results of the GP approaches with other popular
machine learning approaches, we also trained a Naive Bayes and a Support
Vector Machine classifier on the unbalanced data sets (using WEKA [11]). A
sequential minimal optimisation algorithm was used to train the SVM, with an
RBF kernel and gamma value of 10 (giving the best results from 0.1, 1 and 10).

Unbalanced Data Sets

Five benchmark binary classification problems were used in the experiments,
taken from the UCI Repository of Machine Learning Databases [12], and the
Intelligent Systems Lab at the University of Amsterdam [3].

Ionosphere (Ion). This data set contains 351 recorded radar signals col-
lected using 17 high-frequency antennas targeting free electrons in the iono-
sphere. There are 126 instances of “good” signals (35.8%) and 225 “bad” signals
(64.2%), a class imbalance ratio of roughly 1:2. Signals were processed using
an auto-correlation function returning two attributes per pulse, giving 34 real-
number features (F1–F34) [12]. There are no missing attributes.

Spect Heart (Spt). This data set contains 267 records derived from cardiac
Single Proton Emmision Computed Tomography (Spect) images. There are 55
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“abnormal” records (20.6%) and 212 “normal” records (79.4%), an imbalance
ratio of approximately 1:4. The images contain 22 binary features (F1–F22) that
make up the attributes for each instance [12]. There are no missing attributes.

Yeast (Yst1 and Yst2). This data set contains 1482 instances of protein
localisation sites in yeast cells, with eight amino-acid sequences as numeric fea-
tures (F1–F8) [12]. This is a multi-class classification problem where each class
has a different degree of class imbalance. For our purposes, this problem was de-
composed into many binary classification tasks with only one “main” (minority)
class and everything else as the majority class. Two “main” classes were used:
Yst1 had 244 minority class examples (16%), an imbalance ratio of 1:6; and Yst2
had 163 minority class examples (11%), an imbalance ratio of 1:9.

Pedestrian images (Ped). This data set contains 24,800 (PGM-format)
cut-outs of 4,800 pedestrian (19.4%) and 20,000 (80.6%) non-pedestrian (back-
ground) images, an imbalance ratio of approximately 1:4 [3]. These images are
19×36 pixels in size. 22 low-level pixel statistical features, F1–F22, correspond-
ing to the mean and variance of pixel values around certain local regions in the
image were used as image features. Details can be seen in [7].

5 Experimental Results and Analysis

Table 2 shows the average (with standard deviation) and best AUC of evolved
solutions using the zero and dynamic class-thresholds with the different fitness
functions, over 50 runs. These results also show which classification strategy
was significantly better in terms of AUC performances using a particular fitness
function (denoted by symbol �), according to the 95% confidence interval of the
AUC differences1 over 50 runs. Note that absence of symbol � means that there
was no significant difference between the two classification strategies. Table 2 also
shows the average GP training times in seconds (s) or minutes (m), as well as the
AUC and run times (in parenthesis) using Naive Bayes (NB) and Support Vector
Machines (SVM) on the problems. The best AUC reached by any classifier is
underlined for each problem. Note that no GP run found a solution with optimal
fitness on the training set for any problem.

Table 2 shows, that not surprisingly, the standard GP fitness function for
classification (Std) generally gave poorer AUC performances compared to the
improved GP fitness functions (Wmw, Dist, Corr, and Ave) using either clas-
sification strategy. Closer inspection of these results showed that the solutions
evolved using Std were usually biased toward the majority class (low minority
class accuracy). On the other hand, solutions evolved using the improved GP
fitness functions had higher minority class accuracies and a better balance in
class performances (class accuracies omitted due to space constraints).

Overall, using the standard GP fitness function (Std), Table 2 shows that there
is no major difference between the two classification strategies. The zero-threshold
(ZT) strategy showed significantly better results in two tasks (Ion and Spt), while
1 Calculated using the “common random numbers” technique on a run-by-run basis

(ith run for both strategies used the same random start seed and initial population).
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Table 2. Average (± standard deviation) and best AUC, and average run time using

two GP classification strategies and fitness functions (50 runs). Symbol � denotes a

significantly better AUC performance (95% confidence interval). AUC and run time

(in parenthesis) using Naive Bayes (NB) and Support Vector Machines also included.

Best performance using any approach is underlined for each problem.

Data
GP GP Zero-Threshold GP Dynamic-Threshold

NB SVM
Set

Fitness AUC
Time

AUC
Time

Function Average Best Average Best

Std � 0.81 ± 0.05 0.89 3.1s 0.74 ± 0.11 0.91 3.3s

Ave � 0.81 ± 0.05 0.91 3.0s 0.77 ± 0.10 0.92 3.0s

Ion Wmw 0.82 ± 0.05 0.93 3.6s � 0.86 ± 0.04 0.93 3.6s 0.91 0.93

Corr 0.89 ± 0.04 0.94 2.5s 0.89 ± 0.03 0.96 2.6s (0.02s) (0.08s)

Dist � 0.88 ± 0.04 0.96 1.4s 0.86 ± 0.04 0.94 1.4s

Std � 0.72 ± 0.07 0.81 2.4s 0.64 ± 0.09 0.80 3.5s

Ave � 0.71 ± 0.05 0.81 2.5s 0.68 ± 0.10 0.82 2.9s

Spt Wmw 0.74 ± 0.06 0.85 3.0s 0.76 ± 0.05 0.85 3.0s 0.83 0.68

Corr 0.74 ± 0.05 0.84 2.5s 0.73 ± 0.05 0.81 2.4s (0.04s) (0.2s)

Dist � 0.74 ± 0.05 0.83 1.3s 0.70 ± 0.07 0.82 1.4s

Std 0.82 ± 0.07 0.91 5.6m � 0.85 ± 0.10 0.92 5.6m

Ave 0.86 ± 0.04 0.90 5.4m 0.88 ± 0.09 0.92 5.0m

Ped Wmw 0.89 ± 0.01 0.92 64.8m � 0.93 ± 0.01 0.94 50.1m 0.92 0.93

Corr 0.89 ± 0.03 0.92 4.6m � 0.91 ± 0.01 0.92 4.3m (0.13s) (3.8m)

Dist 0.89 ± 0.01 0.92 2.5m � 0.91 ± 0.03 0.93 2.4m

Std 0.75 ± 0.09 0.85 14.1s 0.73 ± 0.11 0.86 15.2s

Ave 0.79 ± 0.04 0.86 12.9s � 0.82 ± 0.03 0.87 13.1s

Yst1 Wmw 0.82 ± 0.02 0.87 23.9s � 0.83 ± 0.02 0.87 19.9s 0.83 0.71

Corr 0.81 ± 0.03 0.87 12.4s � 0.83 ± 0.02 0.86 11.7s (0.03s) (1.2s)

Dist 0.82 ± 0.02 0.87 6.0s 0.82 ± 0.03 0.88 6.0s

Std 0.87 ± 0.09 0.97 13.3s 0.90 ± 0.11 0.98 14.4s

Ave 0.93 ± 0.04 0.97 12.6s � 0.95 ± 0.03 0.98 14.1s

Yst2 Wmw 0.95 ± 0.02 0.98 16.6s 0.95 ± 0.02 0.98 16.1s 0.95 0.85

Corr 0.95 ± 0.02 0.98 11.3s 0.95 ± 0.03 0.98 10.2s (0.02s) (1.4s)

Dist 0.95 ± 0.03 0.98 5.5s 0.95 ± 0.03 0.98 5.5s

the dynamic-threshold (DT) strategy was better in one task (Ped); there was no
significant difference between the two strategies in the remaining two tasks. This
behaviour is similar using the improved fitness functions Ave and Dist, where the
ZT strategy was better in some tasks (Ion and Spt) while DT was better in others
(Yst1 and Yst2 for Ave, and Ped for Dist). However, the DT strategy did lead
to small (but statistically significant) improvements using two improved fitness
functions, Wmw and Corr, in some problems. Wmw was better in three tasks
and Corr was better in two (no statistical difference in the other tasks).

These results suggest that while the DT strategy is better than ZT for multi-
class classification, this is not the case for problems with two classes only. In
binary classification, either GP classification strategy can lead to good solutions
being evolved when used with a good fitness function, as the evolved GP clas-
sifiers are generally able to “shift” their class predictions relative to the zero



A Comparison of Classification Strategies in GP with Unbalanced Data 251

Table 3. First, second and third place AUC rankings for the GP fitness functions. The

highest possible rank is 250 (same ranked position in 50 experiments over five tasks).

Fitness GP ZT GP DT

Function 1st 2nd 3rd 1st 2nd 3rd

Std 13 30 37 10 23 30

Ave 18 30 48 21 44 58

Wmw 54 56 64 120 47 48

Corr 77 71 59 57 70 54

Dist 89 64 42 42 66 62

class-threshold during evolution (e.g., by tweaking the mathematical expres-
sions representing the classifiers), without negatively impacting class separabil-
ity. Most other ML techniques cannot easily achieve this during training.

Comparing the performance of the GP approaches to NB and SVM, the best-
evolved GP solution always achieved the highest AUC performance by any clas-
sifier on these problems. This shows that GP in combination with a good fitness
function is capable of evolving high-AUC classifiers that outperform both NB
and SVM on the tasks. On average, GP had similar performance to NB when
the level of class imbalance in a problem was high (e.g., more than 80% majority
class such as Ped and Yst). For highly unbalanced tasks (such as Yst) SVM
showed the lowest AUC. When the class distributions were more balanced (such
as Ion), NB and SVM showed similarly good results.

Effectiveness of Different Fitness Functions

To determine which GP fitness functions were most effective, the AUC for each
task was ranked by fitness function into first, second and third places, on a run-
by-run basis (where the ith run of every method shared the same starting seed).
The number of first, second and third place rankings using a particular fitness
function was then counted over all tasks, as shown in Table 3.

Table 3 shows that using the ZT classification strategy, functions Dist and
Corr achieved the best AUC results; these were ranked in first place most often
and also had the highest number of total top-three rankings. These functions
out-ranked and incurred considerably shorter training times (Table 2) than the
well-established Wmw function, suggesting that Dist and Corr are fast and
effective measures to evolve solutions with high AUC using the ZT classification
strategy on these tasks. On the other hand, Wmw clearly out-ranked all other
functions using the DT classification strategy, suggesting that Wmw was most
effective when used in combination with DT strategy. For both classification
strategies the standard GP fitness, Std, produced the worst ranks.

6 Conclusions

The main goals of this paper were to investigate whether a more flexible dynamic-
threshold classification strategy improved the performance of evolved solutions
compared to the standard zero-threshold strategy, and compare the effectiveness
of five different fitness functions across a range of unbalanced data sets.
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Our results show that for the standard GP fitness function and two improved
fitness functions for classification, there is no overall difference between the two
strategies. For the remaining two functions (the correlation ratio and WMW
statistic in fitness), the dynamic class-threshold strategy did lead to small im-
provements over the zero-threshold strategy on some problems. In terms of the
most effective fitness functions on the tasks, two new functions using the correla-
tion ratio and the distance between the class distributions in fitness, achieved the
best AUC rankings (using the zero-threshold strategy), outperforming the well-
known WMW-based function. Using the dynamic class-threshold, the WMW-
based function performed the best suggesting that this fitness function better
exploited this classification strategy in the evolutionary phase.

For future work we plan to develop new GP fitness functions to improve the
performance of the evolved solutions on these and other unbalanced data sets.

References

1. Fawcett, T., Provost, F.: Adaptive fraud detection. Data Mining and Knowledge

Discovery 1, 291–316 (1997)

2. Holmes, J.H.: Differential negative reinforcement improves classifier system learn-

ing rate in two-class problems with unequal base rates. In: Koza, J.R., Banzhaf,

W., Chellapilla, K., et al. (eds.) Genetic Programming 1998: Proceedings of the

Third Annual Conference, pp. 635–644. Morgan Kaufmann, San Francisco (1998)

3. Munder, S., Gavrila, D.: An experimental study on pedestrian classification. IEEE

Transactions on Pattern Analysis and Machine Intelligence 28, 1863–1868 (2006)

4. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press, Cambridge (1992)

5. Winkler, S., Affenzeller, M., Wagner, S.: Advanced genetic programming based

machine learning. Journal of Mathematical Modelling and Algorithms 6(3),

455–480 (2007)

6. Doucette, J., Heywood, M.I.: GP classification under imbalanced data sets: Active

sub-sampling and AUC approximation. In: O’Neill, M., Vanneschi, L., Gustafson,
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Abstract. The cooperative coevolution paradigm decomposes a large
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encoding scheme for building subcomponents based on functional prop-

erties of a neuron. The encoding scheme is used for training feedforward

neural networks. The results show that the proposed encoding scheme
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1 Introduction

Cooperative coevolution (CC) decomposes a large problem into subcomponents
and solves them independently in order to collectively solve the large problem.
The subcomponents are implemented as subpopulations. The subpopulations
in the cooperative coevolution framework are evolved separately and the co-
operation only takes place for fitness evaluation for the respective individuals
in each subpopulation. The way a subcomponent is designed is dependant on
the problem. CC has shown promising results in neuro-evolution and general
function optimisation problems [1,2,3,4]. A major concern in CC based neuro-
evolution is how the subcomponents are designed from the respective network
topology.

In recent years, two major subcomponent design methodologies have been
proposed. These include subcomponent design on the neuron level and synapse
level. The neuron level subcomponent design uses each neuron in the hidden
layer as the main reference point for the respective subcomponent. Each sub-
component consists of the incoming and outgoing connections. The cooperative
coevolution model for evolving artificial neural networks (COVNET) [5] and
multi-objective cooperative networks (MOBNET) [6] build subcomponents by
encoding input and output connections to the respective hidden neuron. They
have been used for training feedforward network architectures. This encoding
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scheme is similar to that of enforced subpopulations (ESP) for training recurrent
neural networks [7,8], which has been applied to pole balancing problems.

In the synapse level encoding, each weight or link in the network forms a sub-
component of the CC framework. The cooperatively coevolved synapse neuro-
evolution (CoSyNE) algorithm was used for training feedforward and recurrent
networks on pole balancing problems [9]. In this encoding scheme, a subcom-
ponent represents a single interconnection which is either the weight or bias in
the network. Therefore, the number of subpopulations depends on the number
of weights and biases.

This paper examines the neural network encoding schemes from literature
for pattern recognition problems. It compares their performance on benchmark
datasets and proposes a new encoding scheme that is similar to the neuron
level. The proposed subcomponent design is called neuron-based subpopulation
(NSP), and is based on the functional properties of a neuron. The aim of NSP is
to train the network similarly to the other encoding schemes – but at the same
time – reduce the training time in terms of number of function evaluations. We
use four benchmark problems from the UCI machine learning repository [10] for
evaluating the performance of the NSP in comparison with those from litera-
ture. We investigate on the optimal depth of search required for the respective
encoding schemes in the CC frameworks for training feedforward networks. Our
goal is to maintain high levels of accuracy in terms convergence while achieving
the fewest fitness function evaluations.

The rest of the paper is organised as follows. Section 2 presents the encoding
scheme in the proposed neuron based subpopulation. Section 3 presents the
results and section 4 concludes the work with a discussion on future work.

2 The Neuron Based Subpopulation

2.1 Preliminaries

Note that the ESP was used for training recurrent neural networks and therefore
recurrent connections were encoded in the subcomponents. This is not present in
either of COVNET or MOBNET. We use the general idea behind ESP and build
a similar encoding scheme which encodes the incoming and outgoing connections
relative to a hidden neuron as a subcomponent. This encoding scheme is used
for comparing with the performance of the NSP method proposed in this work.
Figure 1 shows the schematic of the interconnected input and output links to a
hidden neuron. It is assumed that the network has one hidden layer only. The
number of hidden neurons is equal to the the number of subcomponents. In this
encoding scheme, all individual subpopulations have the same size for the entire
framework.

Henceforth, we refer to the encoding schemes used in COVNET, MOBNET,
ESP due to their similarities as “CME” by taking the first letters from each
abbreviation. ESP and COVNET do not have fixed structure in terms of hidden
neurons. They adapt the number of hidden neurons in the evolutionary process.
However, for comparison of encoding schemes in this work, the CME structure is
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Fig. 1. The CME encoding scheme is summarised from [8,5,6] is used for comparison

in our experiments

fixed. Note that the proposed NSP scheme also has a fixed structure. The advan-
tage of CoSyNE over its previous counterparts is that it achieves a higher level of
modularity with a greater number of subpopulations. This is costly as the num-
ber of function evaluations increases with a greater number of subcomponents
in the initialisation stage in comparison to CME.

2.2 The New Encoding Scheme: Neuron Based Subpopulation
(NSP)

There is a need to balance the level of modularity used in the CC paradigms for
training neural networks. It has been outlined that the level of modularity used
CoSyNE produces a larger number of function evaluations in the initialisation
stage of the CC framework.

The CME on the other hand, has lower level of modularity, meaning lower
number of function evaluations in the initialisation phase. Although this is an
advantage, it fails to deliver the same level of performance in terms of fitness
evaluations when compared to CoSyNE [9]. An efficient subcomponent encoding
scheme should aim to decrease the number of function evaluations at the initial-
isation stage when compared to CoSyNE, while at the same time, it should give
the same or better optimisation performance.

A single subcomponent in CME encodes the incoming and outgoing connec-
tions in reference to a hidden neuron. The neuron based subpopulation (NSP)
breaks down this encodings scheme into a lower level and achieves a higher level
of modularity. Each subcomponent in the NSP consists of incoming connections
associated with neurons in the hidden and output layers. The NSP is moti-
vated by the properties of a neuron as its output is dependant on the weighted
sum of incoming weight links only. The output of a neuron does not depend
on the outgoing connection links in this computation unlike CME. NSP uses
one subpopulation for each neuron. Therefore, each subpopulation for a layer is
composed of the following:
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1. Hidden layer subpopulations: weight-links from each neuron in the hiddenj

layer connected to all inputi neurons and the bias of hiddenj.
2. Output layer subpopulations: weight-links from each neuron in the outputk

layer connected to all hiddenj neurons and the bias of outputk

Figure 2 shows a detailed diagram of the NSP encoding scheme. The general CC
framework for NSP in training feedforward networks is summarised in Algorithm
1. Each neuron in the hidden and output layer acts as a reference point to its
subcomponents given as subpopulations.

Fig. 2. The NSP encoding scheme. The same encoding scheme is used in the rest of

the neurons in the hidden and output layer.

In Algorithm 1, the network evolution problem is decomposed into k subcom-
ponents where k is equal to the number of hidden neurons, plus the number of
output neurons. Each subpopulation contains all the weight links from the pre-
vious layer connecting to a particular neuron. A Cycle is completed when all the
subpopulations are evolved for a fixed number of function evaluations or gen-
erations. At the end of each Cycle, the best components of each subpopulation
are cooperatively evaluated. The algorithm halts if the termination condition
is satisfied. The termination condition is when the network correctly classifies
a given percentage of the training data or when the maximum training time is
reached.

A major concern in the general paradigm is the cooperative evaluation of
each subcomponent in every subpopulation, especially in the initialisation and
evaluation phases shown in Step 3 of Algorithm 1. This is simply done by se-
lecting arbitrary individuals from each subpopulation in the initialisation phase.
In order to evaluate the ith individual of the kth subcomponent, the best indi-
viduals from the rest of the subpopulations would be combined with the chosen
individual and cooperatively evaluated. However, the fitness of the individual is
not divided among the rest of the subpopulations [3].
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Algorithm 1. The NSP CC Framework for Training FNN
Step 1) Decompose the problem into k subcomponents according to the number of

Hidden and Output neurons. k is the number of hidden neurons.

Step 2) Encode each subcomponent in a subpopulation in the following order:

1. Hidden layer subpopulations

2. Output layer subpopulations

Step 3) Initialise and cooperatively evaluate each subpopulation

for each Cycle until termination do
for each Subpopulation do

for n Generations do
i) Select and create new offspring

ii) Cooperatives Evaluate the new offspring

iii) Add new offspring’s to the subpopulation

end for
end for

end for
Get the best solution

Cooperative evaluation is done by combining or concatenating the chosen
individual from a subpopulation k with the best individuals from the rest of the
subpopulations. Note that the position of the particular subpopulation in the
chromosome is retained during concatenation. The final chromosome is encoded
into the network and the training data is used to calculate the network error,
which becomes the inverse of the fitness value. The goal of the evolutionary
process is to increase the fitness which tends to decreases the network error. In
this way, the fitness of each subcomponent in the network is evaluated until the
Cycle is completed.

Other CC frameworks such as CME and CoSyNE evaluate the fitness of each
individual in n trial runs and take the average or best fitness which is done
only in the initialisation phase. We have discussed that MOBNET addresses the
fitness assignment problem through multi-objective optimisation methods. The
NSP framework will use the fitness evaluation given in [3] for the initialisation of
subpopulations since this initialisation methodology uses smaller function evalu-
ations than doing n trial runs. In order to show a fair comparison with NSP, the
CoSyNE and CME, we will use the same method for subpopulation initialisation
and evaluation during evolution.

We note that most CC paradigms have used older evolutionary algorithms
in their subpopulations which include ESP, COVNET, MOBNET and CoSyNE.
Therefore, this work employs an efficient evolutionary algorithm (G3-PCX) [11]
in the subpopulations of the proposed CC framework. This evolutionary algo-
rithm has shown good performance in training feedforward neural networks [12].
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3 Simulation and Analysis

This section presents a experimental study of the NSP and compares it with
CoSyNE and CME discussed in the previous sections. The G3-PCX [11] evolu-
tionary algorithm is used in standard neuro-evolution and all the respective CC
frameworks.

The G3-PCX algorithm uses a population size of 100, 2 offspring and 3 parents
(of which 1 is the current best) for all the respective CC frameworks. This set-
up has been used in [11] and has shown good results for general optimisation
problems. The subpopulations are initialised with random real numbers in the
range of [-5, 5] in all experiments.

3.1 Real-World Problems and Neural Network Configuration

The datasets obtained from the UCI machine learning repository [10] included
Iris, Wine, Cleveland Heart Disease and Wisconsin breast Cancer.

Table 1 shows the neural network configuration and dataset details used for all
the experiments. The data is split into training and testing sets where 70 percent
of the data is used for training and the remaining 30 percent for testing. The maxi-
mum training time given by the number of function evaluations in all the problems
was fixed as 100000. The table also shows the minimum training performance re-
quired for each problem. Note that only in the heart disease classification problem,
the neural networks is trained until is reaches at-least 88 percent classification per-
formance on the training data. This value was determined in sample runs as it was
seen that reaching a better classification performance was difficult for this prob-
lem. In all other problems, the minimum classification performance on the training
data is 95 percent. The network topology configuration for each problem is also
given in Table 1. The number of hidden units was chosen from trial experiments.

We did not do cross-validation for each dataset with the respective CC
paradigm as our goal was not to test on the generalisation given by the net-
work architecture, but to observe the training performance of each paradigm on
the same training and testing data split.

3.2 Number of Generations in Subpopulation

Each subpopulation is evolved for a fixed number of generations in NSP CC
framework shown in Algorithm 1. Note that all subpopulations are meant to
evolve for the same number of n generations which is fixed beforehand.

Table 1. Dataset information and neural network Configuration

Domain Cases Class Feat. Input Out. Hid. Min. Train (%)

Wine 178 3 13 13 3 4 95

Iris 150 3 4 4 3 4 95

Heart 303 2 13 13 1 7 88

Breast Cancer 699 2 9 9 1 5 95
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The results are given in Tables 2 and 3 which report the number of function
evaluations (FuncEval) and the number of successful runs (Success) out of 30
runs. The depth of search (Depth) given by the number of generations used
for all subpopulations and the performance on the test set in percentage (Test
Error) are also shown. The optimal run is determined by the least number of
function evaluations and greater number of successful runs. The values in the
subscript shows the standard deviation. Note that results from the unsuccessful
runs are not included in the mean and the standard deviation. Best results are
shown in bold.

The results show that the optimal performance is given when the CC frame-
work uses a lower depth search from 1 to 16 generations for NSP, CME and
CoSyNE. The optimal depth is shown in bold respective entries of Tables 2 and
3 which reports the least number of function evaluations with the best number
of successful runs.

Table 2. Performance in Iris and wine classification problems

Iris Wine

Method Depth FuncEval Test Error Success FuncEval Test Error Success

1 13056 5970 95.08 1.08 30 13644 3063 94.58 1.28 30

6 15598 8058 94.47 1.34 30 14455 5504 94.67 0.97 30

NSP 11 12513 3635 94.91 1.24 30 13003 3483 92.41 1.70 30

16 13239 3587 93.51 1.28 30 13232 3116 93.67 1.47 30

21 13327 5395 94.55 0.97 29 14845 4076 93.41 1.43 30

26 15908 8103 94.74 1.06 30 13797 4536 94.41 1.38 30

1 35688 12648 95.17 1.19 12 17856 8306 94.64 1.12 28

6 32332 11128 94.73 1.98 11 23597 9648 95.00 1.30 26

CME 11 27689 16262 95.48 1.36 7 25696 9948 92.77 1.65 27

16 36500 9404 94.33 1.84 13 19316 6216 94.22 1.74 29

21 48349 12648 95.11 1.62 7 24797 8648 93.83 0.94 28

26 51984 15648 94.44 1.70 9 30078 7223 94.47 1.38 24

1 30924 8578 95.26 0.65 10 54234 12248 92.58 0.97 29

6 73780 12648 92.98 2.14 9 63119 14648 90.00 2.07 18

CoSyNE 11 68040 16485 92.76 1.11 4 74635 19559 88.00 1.63 5

16 36720 0 94.73 0 1 65178 0 92.50 0 1

21 59400 0 94.73 0 1 – – 0

26 77760 4860 92.10 3.64 2 – – 0

3.3 Analysis and Discussion

In Table 2, for the Iris problem, the NSP shows to outperform the other meth-
ods in terms of least number of function evaluations and best success rate. The
CoSyNE takes the most training time and gives a poor success rate. The CME
performs slightly better than the CoSyNE but tends to be weaker than the NSP.
Therefore, the NSP is the best choice for this problem. The depth of search of
NSP and CME does not make a significant difference. In the case of CoSyNE,
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Table 3. Performance in Heart and Breast Cancer classification problems

Heart Breast Cancer

Method Depth FuncEval Test Error Success FuncEval Test Error Success

NSP 1 36740 2093 78.10 1.04 28 12158 3770 97.35 0.35 30

6 39516 1779 76.89 1.03 28 11113 4128 97.05 0.45 30

11 38489 4629 78.00 0.99 28 11044 4785 97.24 0.50 30

16 38267 8236 78.75 1.03 29 10485 3071 97.16 0.29 30

21 40316 9648 77.82 0.82 28 12830 8111 97.20 0.45 30

26 42768 9544 77.78 1.12 28 11469 3666 97.23 0.47 30

CME 1 60240 9271 79.14 1.15 14 39221 2950 97.83 0.45 16

6 59252 9338 78.84 0.82 13 42221 3250 97.41 0.38 13

11 58917 9117 78.90 0.92 20 38221 2885 97.33 0.44 14

16 53718 8848 80.29 0.85 17 41229 2879 97.63 0.38 15

21 56867 8791 79.34 0.81 12 38771 2734 97.67 0.51 17

26 58713 9867 79.29 0.80 14 44244 3150 97.81 0.45 12

CoSyNE 1 80320 9271 77.14 1.55 2 – – 0

6 – – 0 – – 0

11 – – 0 – – 0

21 – – 0 – – 0

26 – – 0 – – 0

the depth of search plays a significant role. The large depths fail to deliver good
solutions in terms of training time and success rate.

In the results for the Wine classification problem in Table 2, the depth of
search for NSP and CME does not play a significant role; however, it shows
significance in CoSyNE, which show optimal results in depth of 1 generation
only. The best results are given by NSP in terms of least training time and best
success rate.

The results from the Heart classification problem in Table 3 show that the
NSP method outperforms CME and CoSyNE. The CoSyNE method delivered
a solution only with the depth of 1 generation only. It performed poorly when
compared to CME and NSP.

The depth of search in NSP and CME does not show significant difference.
Similar performance is shown for the Cancer problem, where NSP outperforms
other methods. The depth of search for NSP is not significant here. In general, for
all the datasets, NSP achieves the highest success rate in comparison to CoSyNE
and CME. CoSyNE showed the weakest performance in terms of success rate and
function evaluations.

The results in general show that that a lower depth of search used for a sub-
component is efficient especially for CoSyNE. The depth of search in CME and
NSP does not show a significant difference for the interval of [1, 26]. This is due
to the difference in the encoding schemes for the respective CC frameworks which
use different number of subcomponents in the three paradigms. The difference
in the number of subcomponents used in CME and NSP is small. Therefore, the
difference in the depth of search in both methods are not so big.
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In summary, the number of subcomponents used in the CC framework directly
influences the training problem. The NSP and CME perform well regardless
of the depth of search, while the CoSyNE shows optimal performance for the
depth of 1 generation only. The CoSyNE uses a relatively higher number of
subcomponents when compared to CME and NSP.

CoSyNE showed impressive results for pole balancing problems in [9], however,
its contribution in pattern recognition problems is weak. This is due to the nature
of the problem as the pole balancing problem is a control problem.

The pole balancing problem is a dynamical system which requires a higher
level of dependency among the weights of the neural network. Therefore, each
synapse in the neural network has to be adjusted on its own without affecting
the other synapses. CoSyNE showed to be the best algorithm for this problem
as it has the feature of independently adjusting each synapse which was natu-
ral to their encoding scheme. In CoSyNE, each subcomponent has the greatest
flexibility of adaptation without affecting other subcomponents in comparison
to NSP and CME. Therefore, it is better for highly dependent problems such
as the pole balancing problem. The pattern recognition problems studied in this
paper do not have the same level of dependency, and therefore, CoSyNE has not
shown good results.

Note that NSP has also delivered similar generalisation performance in com-
parison to CME and CoSyNE while achieving a better training performance. In
Tables 2 and 3, the generalisation performance is not significantly different for
CME and NSP for all problems.

4 Conclusions and Future Work

This work introduced a new encoding scheme (NSP) for building subcomponents
in the cooperative coevolution framework. The paradigm was tested on four
benchmark problems and compared to two different encoding schemes used in
general (CME and CoSyNE) from literature.

An important question raised from this research was to evaluate the optimal
depth of search in the subcomponents for the respective paradigms. The results
show that the depth of search is sensitive for CoSyNE only. The depth of search
for 1 generation only gives acceptable results in the CoSyNE algorithm in all
the given problems. However, these results were poor when compared to CME
and NSP. NSP and CME performs relatively well in the given depths (1 - 26
generations).

In general, the NSP has shown to outperform the other methods in terms
of the number of function evaluations and the success rate for all the given
problems. Even if the NSP is combined with the cost of evaluation in the initial-
isation stage, it performs better than the other methods and at the same time,
it provides a similar generalisation performance to CME and CoSyNE.

Future work can examine the implementation of the NSP in evolving the
weights and the network architecture at the same time during training. A
paradigm where the different encoding schemes can be combined during training
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can also be explored. This would be implemented by increasing the modularity
by increasing the number of subcomponents as the algorithm is progressing to-
wards the final solution.
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Abstract. The Snowdrift game is a well-known social dilemma model

frequently used in evolutionary game theory to investigate the emergence

of cooperative behaviour under different biologically or socially plausi-

ble conditions. In this paper, we examine a multi-player version of the

Snowdrift game where (i) the agents playing the game are mapped to the

nodes of a regular two-dimensional lattice, (ii) the number of rounds of

the game varies from a “one-shot” version to a fixed number of repeated

interactions, and (iii) a genetic algorithm is used to evolve agent actions

(strategy update) over a fixed number of generations. Comprehensive

Monte Carlo simulation experiments show that cooperative behaviour

is promoted in the multi-player iterated Snowdrift game. This emergent

behaviour may be attributed to the combination of spatial reciprocity,

based on the inherent capabilities of the genetic algorithm to explore the

diverse sets of agents’ strategies, and repeated interactions. The simula-

tion results also uncover some interesting findings regarding the effect of

repeated interactions in the game.

1 Introduction

Understanding the emergence and maintenance of cooperation among compet-
ing entities has been a central theme in many scientific disciplines, including
biology, physics, computer science, operations research, economics, social and
political sciences. Boosted by the seminal books of Maynard Smith [11] and
Axelrod [1], evolutionary game theory has been used extensively as a standard
tool for studying cooperative phenomena. Social dilemma games, such as the
Prisoner’s Dilemma (PD) and the Snowdrift (SD) game, constitute powerful
metaphors describing situations characterised by varying degrees of conflicting
interests between individuals. In both games, players have an opportunity to
either cooperate or defect, with cooperators making a sacrifice to benefit others
at some cost, yet defectors reap the benefit without needing to bear any cost.
However, if every player defects, the outcome becomes worse than if they had
cooperated.

While the PD game reflects such a social dilemma in the strictest sense, the
SD game relaxes some constraints by (i) allowing players to obtain some imme-
diate benefit from their cooperative acts and (ii) sharing the cost of cooperation
between cooperators.
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Table 1. The payoff matrix for the two-player SD game

Cooperate Defect

Cooperate b − c/2 b − c
Defect b 0

A simple narrative can be used to illustrate the basic SD game: two drivers are
on their way driving home, but get trapped on either side of a snowdrift. Both
of them have the options of staying in the car and do nothing (i.e. defect) or
coming off and start shovelling the snowdrift (i.e. cooperate). If they cooperate,
both can enjoy the benefit of getting home while sharing the work. Opting to
defect and let the other one do all the work is the best option, but if both think
the same then no one gets home. Table 1 shows the payoff matrix for the two-
player SD game, where b is the benefit and c is the cost of cooperation. Here,
b > c > 0.

The seemingly minor difference between the PD and the SD game has led to
some significant changes in the behavioural outcome (see [5] for a review). In
particular, spatial structure [12,13] that is widely known to be beneficial for the
evolution of cooperation in the PD literature may be detrimental to cooperation
in the SD game. In their attempt to impose spatial structure on the SD game,
Hauert and Doebeli [7] observed that spatial extension generally fails to promote
cooperative behaviour. They showed that the fraction of cooperators becomes
less for a wide range of parameters within the spatial settings, as contrary to the
non-spatial SD game where intermediate levels of cooperation typically persist.
In particular, cooperation could be fully eliminated if the cost-to-benefit ratio
of cooperation is high.

While intriguing, several studies thereafter (e.g. [15,16,17]) have identified a
number of important factors that influence the results of [7], one of which is the
role of update rules (i.e., how players’ strategies are being updated). In one of
Nowak and May’s earlier works on spatial models (see [13]), they used a sim-
ple imitation-based strategy update mechanism and found that cooperation can
be supported in the Hawk-Dove game – a game with the same payoff ranking
but a slightly different matrix structure to the SD game. Hauert and Doebeli,
on the other hand, employed the replicator rule. Sysi-Aho et al. [15] studied
the effect of changing the strategy update rules in the spatial SD game simi-
lar to that discussed in [7], and found that their evolution-based rules result in
cooperation levels which differ largely from those obtained using the replicator
dynamics. In the model developed by Sysi-Aho et al., the rules have been defined
in such a way that changes in players’ strategies are determined by each player’s
decisions (considering the strategies of other players) within the local neigh-
bourhood. With these strategy evolution rules, cooperation persists through the
whole temptation parameter range.

Motivated by these findings, this paper proposes the use of Genetic Algorithms
(GAs) [8] as the strategy update rule to play the spatial N-player SD game. Using
GAs to evolve cooperation in PD games is not uncommon in the literature, most
notable being the original work from Axelrod himself (see [2]). To the best of our
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knowledge, however, we are not aware of any work that has used GAs for the SD
game, especially the N-player version. It would therefore be interesting to see
how the behavioural outcome of the game is changed when GAs are adopted.
In addition, we also propose a new extension to the N-player SD game, which
we called the N-player Iterated SD (N-ISD) game. The idea of this N-ISD game
is similar to that of the Iterated PD (IPD), where a single game consists of a
number of rounds of the simple SD game instance.

The remainder of this paper is organised as follows: Section 2 briefly intro-
duces background information related to the N-player SD game. In Section 3,
we present the details of our model. Section 4 describes the experimental set-
tings and results. Finally, we draw conclusions in Section 5 and highlight some
potential future work.

2 The N-player Snowdrift Game

The N-player SD game is a generalisation of the two-player SD game, in which a
group of players (N > 2) simultaneously interact with one another rather than
only two playing against each other. Following the storyline previously given,
we can imagine a scenario where several drivers are now trapped at a snowdrift
occurring in the middle of a cross-road. Similarly, everybody wants to go home,
but most likely not all would be willing to do the laborious shovelling job. The
ideal situation is for every driver to shovel, as all will share the labouring cost
and get home in the quickest manner. However, there are always free-riders who
would not want to do anything but take advantage of the efforts of others. The
worst case being no one carries out the job and all get stuck.

Despite a large volume of publications focused on the two-player SD game
from different fields, the N-player version has only recently been studied in de-
tail (e.g. [3,4,9,10,14,19]). Typically, these studies have examined the non-spatial
game with well-mixed populations. Two notable exceptions, however, have con-
sidered spatially structured populations (see [4] and [10]). The fundamental dif-
ference between the N-player game and the two-player one is that the former
concerns multi-player interactions while the latter on pair-wise interactions. As
pointed out by Gokhale and Traulsen [6], although many results from pair-wise
interactions can be generalised to multiple players, as far as the two players
and two strategies (2 × 2) game is concerned, statements derived for pair-wise
interactions do not hold for N-player games with more than two strategies.

3 The Model

We consider the spatial N-player SD game, where interacting individuals (or
agents) are placed on the vertices of a 30×30 square lattice with periodic bound-
ary conditions. The population of agents are initialised with random strategies
and are then randomly distributed on the sites of the lattice. Each agent plays
an iterative game with its local neighbours at every generation. The utility (fit-
ness) of each agent is determined by summing its payoffs in the game against
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the neighbours. At the end of each generation, all agents are presented with an
opportunity to update their strategies according to the payoffs received. The
payoffs are calculated according to the following utility function, U :

U =
{
b× i− c× (N − 1)/i for cooperators,
b× i for defectors. (1)

where b is the benefit, c is the cost of cooperation, and i is the number of
cooperators.

3.1 Strategy Representation

The most straightforward strategy representation for the game is the scheme
proposed by Axelrod for the IPD game [2]. However, as pointed out by Yao and
Darwen [18], Axelrod’s representation scheme does not scale well with the in-
crease in the number of players for N-player games. In addition, it also includes
redundant information by identifying which of the other players cooperated or
defected, whereas the only information requires is the actual number of coopera-
tors or defectors. As such, we have decided to adopt the representation developed
by Yao and Darwen instead.

Under this representation, a history of l rounds for an agent can be represented
as the combination of the following bit strings:

– l bits to represent the agent’s l previous actions, where ‘1’ = defection and
‘0’ = cooperation.

– l×log2N bits to represent the number of cooperators in the previous l rounds
among the agent’s social group, where N is the group size.

Based on preliminary empirical analysis, we have limited the number of previous
actions in memory to 3 (i.e. l = 3), as this value can be used to generate a very
large set of possible strategies. In the case of N = 4, for example, the history
for an agent would be 3 + 3× log24 = 9 bits long based on this representation
scheme.

Figure 1 illustrates a possible history an agent could have. The initial three
bits are the agent’s previous three actions. From the figure we can see that the
agent defected in the last two rounds and cooperated the round before that. The
two-bit sets after the first three bits represent the number of cooperators in the

Fig. 1. History of an agent: the first three bits are the agent’s previous moves; the

subsequent bit sets represent the number of cooperators in the previous rounds
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last three rounds from the agent’s social group. This agent’s history indicates
that there were 3, 1 and 2 cooperators in the agent’s group in the last three
rounds.

An agent’s strategy is used to identify an action (or move) at the next inter-
action, in response to the history. Therefore, when N = 4 the strategy should
be at least 29 = 512 bits in length. Using the example from Figure 1, the history
110 11 01 10 would trigger the agent to make a move corresponding to the bit
listed in the 438th position of its strategy string (438 is the decimal number for
the binary 110110110).

We have added an additional three bits to each strategy to compensate for the
lack of complete history in the first three rounds. This means that the actions
in the first three rounds of each generation are hard-coded into the strategy.
Thereafter, the moves are made based on the history of the agent and its group
members. It is important to note that as the group size increases more bits are
needed for the strategy representation.

3.2 Strategy Update

Strategy update is an evolutionary mechanism in this study. Here, we use a GA
to evolve the pool of agents’ strategies. Each agent plays the game repeatedly
for T iterations at each generation. Every agent uses a unique strategy to decide
the action to play at iteration t, where t ∈ [1..T ]. At the end of T iterations,
agents may change their behaviour by comparing their utility to that of neigh-
bouring agents and employing standard evolutionary operators. For crossover, a
random number is generated to determine whether it should take place. Two-
point crossover with rank-based selection is used, where 60% of the best strategy
within a group is being selected and recombined with 40% of the current strat-
egy of an agent. Note that this will happen only when the crossover rate is
satisfied and the current strategy is ranked below the elite group (in this study,
strategies that rank among the top 50% are considered to be in the elite group).
Otherwise, nothing comes about. This elite preserving mechanism ensures that
good strategies are being carried forward to the next generation. Finally, a ran-
dom number is generated to determine whether a strategy will be mutated. A
mutation consists of random bit-flip in the strategy’s bit representation.

4 Experiments and Results

The underlying hypothesis tested in this study was that the use of GAs would
promote high levels of cooperation in the spatial N-player SD game. Using Monte
Carlo simulations, we have investigated the behavioural outcome of several pa-
rameter settings. Three separate sets of simulation experiments have been con-
ducted. The settings of each set of experiments and their corresponding results
are discussed in this section.

The first set of experiments concerned two variants of our model, one based on
the spatial N-player SD game while the other is the extended spatial N-ISD game.
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Fig. 2. The levels of cooperation with N = 5 over 100 simulation runs for the spatial

N-player SD (T = 1) game and the spatial N-ISD (T = 25) game

The aim here was twofold: to examine the ability of GAs for evolving cooperative
behaviour in general, and to see how the introduction of repeated interactions
within each generation changes the behavioural outcome. The specific model
parameters are as follows:

– The payoff values were calculated using Eq. 1 with b = 3 and c = 1
– All the agents played against one another for 500 generations, with T = 1

for the spatial N-player SD game and T = 25 for the spatial N-ISD game
– The crossover rate was set to 0.7 and the mutation rate to 0.05 for the GA
– The interaction topology was based on the well-known von Neumann neigh-

bourhood structure
– The results reported, were average over 100 simulation runs

In order to clearly identify the impact that spatial extension has in our model, we
have also performed additional simulation runs using the same settings described
above (except for the interaction topology) on non-spatial versions of the N-
player SD game and the N-ISD game. In these non-spatial games, the notion of
local neighbourhood and the neighbours does not exist, consequently the other
players (N was still fixed to 5) were randomly selected from anywhere in the
population.

Figures 2 and 3 show the results of this series of experiments. As can be
seen from Figure 2, cooperation is the dominant strategy when the players are
engaged in the spatial N-ISD game. In the majority of the runs, we have more
than 50% of cooperators in the population. In fact, many runs ended up with
more than 80% of cooperation. There were only a negligible few instances where
the cooperation level is around 40%.
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Fig. 3. The levels of cooperation with N = 5 over 100 simulation runs for the non-

spatial N-player SD (T = 1) game and the non-spatial N-ISD (T = 25) game

In contrast, the levels of cooperation achieved are quite poor in the spatial
N-player SD game. Most of the runs ended up with less than 20% of cooperators
in the population. Particularly, there were a number of runs where cooperators
were completely wiped out. The results indicate that GAs require more learning
interactions within each generation to discover cooperative strategies.

Figure 3 displays the results of non-spatial N-player SD and N-ISD games.
We see that, in the non-spatial N-ISD game, a substantial amount of runs ended
up with 50% of cooperators or less. This is consistent with the literature in
evolutionary game theory predicting that there exists an intermediate level of
cooperation in the typical two-player SD game. In the non-spatial N-player SD
game, however, many runs finished with 0% of cooperators.

From these results, it is clear that spatial models are more likely to promote
higher levels of cooperation than non-spatial ones for the SD game with N-
player interactions when GAs are used as the strategy update rule. Repeated
interactions in each game appear to be an essential characteristic fostering highly
cooperative behaviour. Based on these results, the next question to be asked is:
does this mean that an increase in the number of interactions in each generation
would lead to even higher levels of cooperation? This brings us to the second set
of experiments conducted, aiming to find out more about the effect of repeated
interactions in the spatial N-ISD game. To do so, we run the experiments again
using the same settings as in the first set, but this time we have varied the values
of T from 25 to 50, 75 and 100.

Figure 4 shows the levels of cooperation achieved when the number of repeated
interactions within each generation was varied. Surprisingly, the result indicates
that when the value of T increases, the ratios of cooperation decrease. This
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Fig. 4. The levels of cooperation with N = 5 and varying values of T averaged over

100 simulation runs

Fig. 5. The levels of cooperation with varying values of T and group sizes averaged

over 100 simulation runs

result is in contrast to that expected based on the notion of direct reciprocity
that has served the IPD game so well. To verify whether the differences in results
were significant or not, we have performed t-tests on the 100 individual runs to
compare T = 25 against T = 50, 75 and 100. The p values confirm that, while
the results of T = 25 and T = 50 are insignificant, T = 25 vs. T = 100 are
statistically significant (p = 0.0143).
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In the next stage of simulation experiments, we have repeated the previous
experiments but this time vary the group sizes from N = 3 to 9. The purpose
was to see if the effects of T observed above (see Figure 4) were consistent
across different group sizes. All parameter settings remained identical, except
for the way in which neighbours were selected. Instead of a fixed neighbourhood
structure, this time, the neighbours were randomly selected from the immediate
neighbourhood at the beginning of each run (but did not change thereafter).

Figure 5 shows the simulation results of different T values across different
group sizes averaged over 100 simulation runs. Generally, we see that the trends
are consistent when the values of N increase from 3 to 9. In all cases, we observe
that the number of cooperators dropped regularly when agents were engaged in
more number of rounds per game. In terms of the levels of cooperation, most of
the settings yield more than 50% of cooperators when repeated interactions are
enforced. On a side note, we notice that the cooperation rates of N = 5 with
fixed neighbourhood across T values (see Figure 4) are higher than other group
sizes with randomly picked neighbours.

5 Conclusion and Future Work

In this paper, we have investigated the use of GAs to evolve cooperative be-
haviour in the spatial N-player SD game. Detailed computational simulations
have shown that repeated interactions are essential for GAs to learn and evolve
agents’ strategies to a more cooperative state. A somewhat counter intuitive re-
sult observed in the simulation trials was that as the agents learn more about
the game (as a direct result of increasing the number of iterations), there was a
corresponding drop in the levels of cooperation. Obviously, achieving high levels
of cooperation is challenging in multi-player games, especially for larger values of
N . However, we suggest that the trend in the results can be best explained based
on the payoff structure of the SD game – cooperation being the better option
when the opponent defects. For large values of T , some agents learn that they
could actually free-ride on others’ efforts, hence turning away from cooperating.

Future work will further investigate the effects of repeated interactions across
different evolutionary games.

References

1. Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (1984)

2. Axelrod, R.: The Evolution of Strategies in the Iterated Prisoner’s Dilemma. In:

Davis, L. (ed.) Genetic Algorithms and Simulated Annealing, pp. 32–41. Morgan

Kaufmann, Los Altos (1987)

3. Chan, C.H., Yin, H., Hui, P.M., Zheng, D.F.: Evolution of Cooperation in well-

mixed N-person Snowdrift Games. Physica A: Statistical Mechanics and its Appli-

cations 387, 2919–2925 (2008)

4. Chen, X.-J., Wang, L.: Effects of Cost Threshold and Noise in Spatial Snowdrift

Games with Fixed Multi-person Interactions. Europhysics Letters 90, 38003 (2010)



272 R. Chiong and M. Kirley

5. Doebeli, M., Hauert, C.: Models of Cooperation based on the Prisoner’s Dilemma

and the Snowdrift Game. Ecology Letters 8, 748–766 (2005)

6. Gokhale, C.S., Traulsen, A.: Evolutionary Games in the Multiverse. Proceedings

of the National Academy of Sciences of USA 107, 5500–5504 (2010)

7. Hauert, C., Doebeli, M.: Spatial Structure often Inhibits the Evolution of Cooper-

ation in the Snowdrift Game. Nature 428, 643–646 (2004)

8. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT

Press, Cambridge (1992)

9. Ji, M., Xu, C., Zheng, D.F., Hui, P.M.: Enhanced Cooperation and Harmonious

Population in an Evolutionary N-person Snowdrift Game. Physica A: Statistical

Mechanics and its Applications 389, 1071–1076 (2010)

10. Lee, K.H., Chan, C.H., Hui, P.M., Zheng, D.F.: Cooperation in N-person Evolution-

ary Snowdrift Game in Scale-free Barabási–Albert Networks. Physica A: Statistical

Mechanics and its Applications 387, 5602–5608 (2008)

11. Maynard Smith, J.: Evolution and the Theory of Games. Cambridge University

Press, Cambridge (1982)

12. Nowak, M.A., May, R.M.: Evolutionary Games and Spatial Chaos. Nature 359,

826–829 (1992)

13. Nowak, M.A., May, R.M.: The Spatial Dilemmas of Evolution. International Jour-

nal of Bifurcation and Chaos 3, 35–78 (1993)

14. Souza, M.O., Pacheco, J.M., Santos, F.C.: Evolution of Cooperation under N-

person Snowdrift Games. Journal of Theoretical Biology 260, 581–588 (2009)
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Abstract. This work investigates the use of sampling methods in Ge-

netic Programming (GP) to improve the classification accuracy in binary

classification problems in which the datasets have a class imbalance.

Class imbalance occurs when there are more data instances in one class

than the other. As a consequence of this imbalance, when overall classifi-

cation rate is used as the fitness function, as in standard GP approaches,

the result is often biased towards the majority class, at the expense of

poor minority class accuracy. We establish that the variation in training

performance introduced by sampling examples from the training set is

no worse than the variation between GP runs already accepted. Results

also show that the use of sampling methods during training can improve

minority class classification accuracy and the robustness of classifiers

evolved, giving performance on the test set better than that of those

classifiers which made up the training set Pareto front.

1 Introduction

Classification is the act of determining which class an instance of a dataset
belongs to, based on its properties. Class imbalance occurs when there are a
large number of instances in one class (the majority class) and only a small
number of instances in the other (the minority class). Imbalance is common in
many situations, including medical diagnosis [5] and fraud detection [8]. In these
and many class imbalance situations, it is often the minority class that is of
interest, and has a higher misclassification cost than the majority class.

In standard Genetic Programming (GP) the overall classification accuracy
is often used as a measure of a program’s fitness (ability to correctly classify
instances) during the evolutionary process. Standard GP trains the population
of programs on every training dataset instance at each generation. The fitness
function is the classification accuracy of the program. In situations with class
imbalance this standard approach often causes a bias towards correctly classify-
ing the majority class. A program can have a high fitness, yet rarely classify a
minority class instance correctly.

Methods of approaching the class imbalance problem in genetic programming
fall into two main categories: solutions at the data level; and solutions at algo-
rithm level (including the multi-objective approach). Solutions at the data level

J. Li (Ed.): AI 2010, LNAI 6464, pp. 273–282, 2010.
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involve re-sampling the data to artificially balance the dataset, often through
various forms of under and over sampling. Under-sampling uses fewer than the
total number of majority class instances and over-sampling replicates minority
class examples. If outlying data instances are repeated they can skew the distri-
butions. Under-sampling can lead to the loss of potentially useful information.

The goal of this work is to address the class-imbalance problem by developing
new sampling methods that lead to the evolution of more robust classifiers that
improve the classification performance of genetic programming on unbalanced
datasets and to increase the successful classification rate of the minority class to
be similar to the majority class classification accuracy and as high as the dataset
allows, as lack of data, missing values and noise may also affect accuracy as well
as class imbalance.

The rest of this paper is organised as follows. Section 2 describes the back-
ground work relating to this paper. Section 3 describes the new sampling meth-
ods used for classification tasks with unbalanced datasets. Section 4 describes
the experimental design and Section 5 discusses the results. Section 6 concludes
the paper.

2 Background

Gathercole and Ross [4] use Dynamic Subset Selection (DSS), Historical Subset
Selection (HSS) and Random Subset Selection (RSS) on a large unbalanced
dataset. DSS randomly selects a sample from the training set of size N with
a bias towards those instances which are often misclassified, or have not been
included in the subset for several generations. HSS uses standard GP runs on
the training dataset to determine how ‘difficult’ each instance is by the number
of times it is mis-classified by the best population member in each run. The
cases with greater ‘difficulty’ are then used as the sample subset for HSS runs.
RSS selects a random subset of data instances at each generation, each data
instance has equal probability of being selected. In each method, the subset size
fluctuates around the target subset size.

Doucette and Heywood [3] use a simplified version of DSS, which they call the
Simple Active Learning Heuristic (SALH). This is used alone and then in com-
bination with a fitness function based on the Wilcoxon-Mann-Whitney (WMW)
statistic which approximates the area under the receiver operating curve (AUC).
Subsets were generated by selecting from the training set, with uniform probabil-
ity, an equal number of instances from both minority and majority classes. The
combined use of the WMW fitness function and sampling method was shown to
greatly increase the AUC. The AUC is a robust measure of how well the classifier
can discriminate between the two classes and is approximated by the WMW [9].

Iba [6] applies the re-sampling techniques of boosting and bagging to GP. In
both techniques the entire population of instances is split into subpopulations.
The best individuals from each vote to create a composite tree output. These
techniques use re-sampling to get different training sets for each classifier. In
bagging, the training set is the size of all the training instances, but instances
may appear multiple times or not at all. In boosting, every instance is weighted
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Table 1. Number of samples and sample size for each dynamic sampling method

Method Number of Samples Sample Size

Basic Under 1 2Nmin

Under A, Under B �Nmaj

Nmin
+ 1

2
� 2Nmin

Basic Over 1 2Nmaj

Over A, Over B max{2, 1
2
�Nmaj

Nmin
+ 0.5�} 2� Nmaj

NumSamples
�

to reflect its importance and classifiers have differing voting strengths based on
their accuracy. Paris et al. [7] also apply boosting to GP with success in both
regression and binary classification problems.

3 New Sampling Methods

Static Sampling Before Training. We wish to establish that during training the
variation in performance introduced by random sampling of training examples is
no worse than the variation already inherent due to random selection of the initial
population of trees and random selections made during GP runs. To achieve this,
at the beginning of the evolution process we sampled with uniform probability
(alternately from each class) from the training dataset until we had a balanced
sample (equal numbers of majority and minority class instances) of the desired
size. This sample was taken without replacement and then used in training to
evaluate each program in the population of programs at every generation.

Dynamic Sampling During Training. We used six sampling methods to create
balanced samples from the training dataset. At each generation a new sample
is taken and used to evaluate the current population of genetic programs. The
number of samples and size of each sample is given in Table 1.

Basic Under-sampling. Data instances from the training dataset are sam-
pled without replacement to make up a balanced sample.

Each minority class instance is selected, and then an equal number of instances
from the majority class are randomly selected for the sample.

Basic Over-sampling. All the majority class instances from the training
dataset are used, and minority class instances are sampled repeatedly until there
are equal numbers of majority and minority class instances. Each data instance
is in the sample.

Under-sampling A. Multiple balanced samples are created at each gener-
ation, each using all the minority class instances of the training dataset. Each
sample contains all minority class and an equal number from the majority class,
the majority class is sampled without replacement. Each training set data in-
stance is used in each generation. Each program in the population is run on all
of the sample sets, and the fitness function is the average fitness of the program
across all the sample sets.
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Under-sampling B. Uses the same sampling method as Under-sampling A.
The fitness function is taken to be the minimum ‘fitness’ of the program across
all the sample sets.

Over-sampling A. Over-samples the minority class and under-samples the
majority class. Multiple balanced samples are created at each generation. At each
generation, each program in the population is run on all of the sample sets, and
the fitness function is the average fitness of the program across all the sample sets.
In each generation of evolution each training dataset instance is used.

Over-sampling B. Uses the same sampling method as Over-sampling A.
The fitness function is taken to be the minimum fitness of the program across
all the sample sets.

Basic Under and Over sampling use a balanced subset of fixed size, in which
instances are selected with uniform probability without replacement. This is
essentially the SALH used by Doucette and Heywood [3], although it is unclear
if SALH samples with or without replacement. This is similar to RSS [4] in that
the sample is taken at each generation and instances have equal probability of
being selected within each class.

Over-sampling and Under-sampling methods A and B take multiple SALH
samples and evaluates the population of genetic programs at that generation on
all samples. The fitness of each program is then assigned as either the minimum
fitness recorded across the samples (B), or as the average fitness recorded across
all samples (A). In either case, the fitness is to be maximized.

4 Experimental Design

Datasets. The following three datasets were chosen from the UCI machine learn-
ing repository [1].

Yeast. This dataset has 1484 instances, each with eight attributes. This data is
used for classifying the localization site of proteins in yeast cells. There are
10 possible sites, of which we selected three different sites (MIT, ME1 and
POX) to act as the minority class. MIT, ME1 and POX have 244, 44 and
20 instances respectively, giving imbalance ratios of 1:5, 1:33 and 1:73.

SPECT Heart. This dataset represents the classification of diagnosis of car-
diac Single Proton Emission Computed Tomography (SPECT) images. This
is a binary classification problem; a patient was classed as either normal or
abnormal. The dataset contains 267 SPECT image sets (patients), of which
55 represent abnormal diagnosis (20.6%). The dataset was processed to ob-
tain 22 binary features. This is an approximate class imbalance of 1:4.

Pima Indians Diabetes Database. This dataset has 768 data instances, each
representing a female of Pima Indian heritage over the age of 21. This is
a binary classification task whether each patient shows signs of diabetes,
based on the World Health Organisation criteria. There are eight attributes,
information collected from each patient. There are 768 instances with 268
showing signs positive for diabetes (34.9%). This gives an approximate class
imbalance of 1:2.
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Functions and Terminals. The terminal set represents the input into the GP
system. For each dataset their attributes and constants were used as terminals.
Constant terminals were random numbers generated at the start of the evolu-
tionary process. The function set is {+, −, ×, %, if}. The arithmetic operators
take two arguments. The first three arithmetic operators, +, −, ×, have their
usual meanings. The % is as usual division except when dividing by zero where
the value returned is zero. The if function takes three arguments, if the first
argument is negative then it returns the second, else the third is returned.

Evolutionary Parameters. A population of 500 programs was used, the ini-
tial population was generated using the ramped half-and-half method and then
evolved for 50 generations, unless a solution was found early in which case evo-
lution was terminated. The genetic operators used were crossover, mutation and
reproduction (elitism), at rates of 60%, 30% and 10% respectively. The selection
operator was tournament selection, in which a tournament of size seven was
used to select individuals for the genetic operators. The maximum depth of each
program was six in order to restrict bloat effects.

5 Experimental Results

Results for Standard GP. The results of standard GP on the datasets are pre-
sented in Table 2. It is apparent that results are heavily biased towards the
majority class. The classification accuracy on the minority class of the SPECT
dataset is extremely low, only 4.1%, which shows that the standard fitness func-
tion is not appropriate for this case. From this it is clear that overall accuracy is
unlikely to be a good measure of accuracy of a classifier in a problem with class
imbalance.

Results for Static Sampling. We randomly generated 100 seeds; 50 were used
as the seeds for pseudo-random number generators to generate samples from
the training dataset and the remaining 50 were used to generate, using ramped
half-and-half, the initial populations of GP trees. Using the YeastMIT dataset
and 50 as the sample size, we ran the GP search process for each combination
of sample and initial tree population.

Table 2. Results of standard GP approach, with standard fitness function over the

five datasets, mean ± standard deviation over 50 runs

Data Set Overall Accuracy Minority (%) Majority (%)

YeastPOX 99.2 ± 0.2 45.0 ± 16.2 99.9 ± 0.1
YeastME1 97.2 ± 0.5 36.8 ± 19.2 99.1 ± 0.6
YeastMIT 84.6 ± 1.0 39.2 ± 7.8 93.5 ± 2.1
SPECT 78.0 ± 2.0 4.1 ± 10.7 96.6 ± 3.0
Pima 66.8 ± 2.1 32.0 ± 8.9 85.4 ± 5.0
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Fig. 1. Results showing variability of performance using static sampling. Boxplot of

comparison of standard deviations of classification accuracy of GP (the vertical axis)

using the same trees with GP using the same samples, over the Minority and Majority

Classes and WMW Statistic.

For each initial population of trees there were 50 runs, each with a different
sample used for evaluation during evolution. Similarly, for each sample there were
50 GP runs, each with a different initial population of trees. For each of these
we calculated the standard deviation of classification accuracy of the minority
and majority classes, and the Wilcoxon-Mann-Whitney statistic. The boxplots
in Figure 1 provide comparison between the distributions of standard deviations
across GP with the same sample and different trees, and GP with different
samples but the same initial population of trees. It is shown that the median of
classification accuracy on the majority class, the minority class and the WMW
is higher when the sample is the same than when the initial population of trees
is the same. It is also evident the the spread of the standard deviations is greater
when taken across runs with the same initial populations of trees than the same
sample. Over minority and majority classes and the WMW the variation from
different samples with the same trees is comparable to the variation that comes
from the differing initial trees (with the sample sample). There is a slightly
greater spread across samples with same tree than trees with the same sample.
This shows that the variation introduced by taking different samples is no worse
than the variation between GP runs already accepted.

Results for Dynamic Sampling. For the experiments using sampling we used the
same evolutionary parameters as with standard GP. We generated 50 random
numbers to act as the seeds for the random number generators in each of the
50 GP runs for each of the six sampling methods. Accuracy of classification of
the test data is measured using three statistics: the average performance over
each class, i.e., hitsc

Nc
, and the Wilcoxon-Mann-Whitney (WMW) statistic. Table

3 presents the results of the sampling methods on our five datasets, in the form
of the three statistics above and their standard deviations. The average run time
of a evolutionary run is also given (in seconds).

Table 3 shows that all sampling methods improved the classification accuracy
of the minority class and decreased the classification accuracy of the major-
ity class in comparison to Standard GP. Basic Under-sampling has the fastest
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Table 3. Results of GP with sampling over the test sets of the five datasets with

non-dominated results in bold

Sampling Overall Minority Majority WMW Run time

Method (%) (%) (%) Statistic (s)

YeastPOX

Basic Under 74.47 72.0 ± 13.4 74.5 ± 13.0 0.67 ± 0.13 4.0
Under A 88.81 53.2 ± 22.2 89.3 ± 9.1 0.51 ± 0.22 314.1
Under B 99.20 55.4 ± 18.1 99.8 ± 0.4 0.55 ± 0.18 105.1
Basic Over 87.22 59.4 ± 16.5 87.6 ± 8.8 0.57 ± 0.16 214.0
Over A 90.13 55.8 ± 22.0 90.6 ± 9.1 0.53 ± 0.21 306.0
Over B 97.89 60.2 ± 19.6 98.4 ± 3.7 0.60 ± 0.20 115.9

YeastME1

Basic Under 92.53 96.9 ± 4.7 92.4 ± 2.9 0.95 ± 0.05 0.6
Under A 96.40 90.0 ± 7.3 96.6 ± 1.0 0.89 ± 0.07 114.4
Under B 95.70 92.5 ± 5.3 95.8 ± 1.4 0.91 ± 0.05 136.3
Basic Over 96.50 89.8 ± 6.8 96.7 ± 1.1 0.89 ± 0.07 178.8
Over A 96.55 88.5 ± 6.0 96.8 ± 1.2 0.87 ± 0.06 110.5
Over B 96.06 94.9 ± 6.1 96.1 ± 0.9 0.94 ± 0.06 140.1

YeastMIT

Basic Under 78.22 62.6 ± 6.6 81.3 ± 4.7 0.58 ± 0.05 33.8
Under A 79.90 61.1 ± 4.6 83.6 ± 3.1 0.57 ± 0.04 181.4
Under B 79.72 60.0 ± 5.5 83.6 ± 3.6 0.56 ± 0.05 189.7
Basic Over 78.51 61.8 ± 7.0 81.8 ± 4.9 0.57 ± 0.05 174.1
Over A 80.52 61.3 ± 5.2 84.3 ± 2.8 0.58 ± 0.04 181.9
Over B 79.33 60.7 ± 6.3 83.0 ± 4.5 0.56 ± 0.04 202.1

SPECT
Basic Under 75.18 62.4 ± 10.2 78.4 ± 4.8 0.51 ± 0.07 9.2
Under A 76.85 61.6 ± 9.9 80.7 ± 4.0 0.51 ± 0.07 21.0
Under B 76.33 61.8 ± 11.3 80.0 ± 4.7 0.51 ± 0.08 22.6
Basic Over 77.16 56.4 ± 8.2 82.4 ± 4.0 0.48 ± 0.06 24.7
Over A 75.85 61.0 ± 10.5 79.6 ± 5.1 0.51 ± 0.07 21.4
Over B 76.41 63.0 ± 10.9 79.8 ± 4.8 0.52 ± 0.07 23.3

Pima
Basic Under 62.79 62.2 ± 10.0 63.1 ± 8.1 0.52 ± 0.07 36.3
Under A 59.60 61.1 ± 6.6 58.8 ± 5.3 0.49 ± 0.06 68.7
Under B 60.78 62.6 ± 6.7 59.8 ± 7.7 0.50 ± 0.06 72.0
Basic Over 63.08 63.6 ± 8.9 62.8 ± 6.4 0.54 ± 0.07 70.3
Over A 59.89 61.0 ± 6.7 59.3 ± 7.0 0.49 ± 0.05 65.9
Over B 60.08 63.4 ± 5.9 58.3 ± 6.0 0.51 ± 0.05 76.9

run time of all the sampling methods, and also had the best average minority
class and lowest majority class classification accuracies (except for Pima). Basic
Under-sampling has the highest WMW accuracy and also gave the smallest dif-
ference in class accuracy. Over-sampling B has the next highest minority class
accuracy and WMW. Basic Under-sampling achieved the best results for the
three datasets YeastPOX , YeastME1 and YeastMIT . Over-sampling B gives a
more balanced performance between the minority and majority classes on the
YeastME1 data, but is less accurate at classifying the minority class.
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YeastPOX has a large standard deviation in the minority class under all of
the sampling methods. This can be partly explained by the few minority class
instances, only 10 in each of the training and test sets. The highest WMW and
minority class classification accuracy on the SPECT dataset was with Over-
sampling B. The Pima dataset had highest minority class classification accuracy
under Basic Over-sampling, closely followed by Over-sampling B. The classifica-
tion accuracy was very balanced across the minority and majority classes.

Over all datasets but Pima Basic Under-sampling performed better than
Basic Over-sampling on the minority class and worse on the majority class.
Under-sampling A is the only sampling method which does not give the best
classification accuracy on either majority or minority class for one of the five
datasets.

Robustness and the Pareto Front. In order to evaluate the robustness of the
classifiers evolved through these sampling methods we used standard GP with
a modified fitness function.

fitness = α

(
hitsmin

Nmin

)
+ (1− α)

(
hitsmaj

Nmaj

)
where 0 ≤ α ≤ 1, hits is the number of correct classifications and Nmin and Nmaj

are the number of minority and majority class instances respectively. Figure 2
has plotted the results for 50 runs for each of nine α values and the six sampling
methods. Here, α fitness on the training set approximates the training set Pareto
front. For each sampling method there are four points plotted for each dataset,
corresponding to the retention of the sample for one, five, 10 and 15 generations.
Each sampling method is represented by a different symbol, and the different
number of generations by different colours. In each of the six dynamic sampling
methods above, a new sample is taken from the training set at each generation
and used to evaluate that generation’s classification ability. We then modified
these methods so that a sample was taken and used to evaluate not only that
generation, but the next 4, 9 or 14 generations as well, that is a new sample was
taken every 5, 10 or 15 generations during evolution.

The main point to note from the results presented in Figure 2 is that the
cluster of results from the six dynamic sampling methods lies outside the front
comprised of the test-set results for those classifiers on the training-set Pareto
front. This clearly demonstrates that more robust classifiers have been evolved
by using dynamic sampling. It is much less important that it is difficult to
distinguish the constituent results in the cluster.

With standard GP with the α fitness function, Pima Indian Diabetes dataset
has a large gap in the classification curve on both test and training datasets.
YeastME1 with standard GP with α fitness function: both minority and majority
class accuracy never fall below 45%. The sampling results for the Pima Indian
Diabetes dataset are clustered in a very small area. Interestingly, for YeastPOX

with standard GP with the α fitness function the classification accuracy on the
minority class of the test dataset never falls below 70%. None of the sampling
methods are able to improve on the results of when α = 0.1. This is probably
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Fig. 2. Results of standard GP with α fitness function for 0 ≤ α ≤ 1 across test and

training sets, and the six sampling methods

due to the small number of minority class instances that are present in the
test dataset (only 10 instances). For Pima, SPECT and YeastME1 datasets it is
clear from Figure 2 that the sample methods increase the classification accuracy
beyond the α fitness frontier. This means that the classifiers evolved through the
sampling methods are more robust than those from the α fitness function with
standard GP.

The impact of retaining the sample for more than one generation varies across
datasets and across sampling methods. In most cases the run time decreases
substantially when a sample is retained for more than one generation. How-
ever, surprisingly, in the case of over-sampling methods A and B the run-time
increased.

6 Conclusions

The goal of this work was to address the class-imbalance problem by develop-
ing sampling methods to improve the classification performance of genetic pro-
gramming on unbalanced datasets. By examining the results achieved with our
sampling methods in comparison to the results achieved with standard GP it is
shown that this was achieved. The methods used do not create balanced classifica-
tion success rates across the minority and majority classes. Comparing the results
achieved in our results to those achieved by Bhowan et al. in [2] shows that the
fitness function approach had more success at increasing classification accuracy.
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Our sampling methods generate programs with greater robustness due to be-
ing evaluated on a changing subset of instances throughout evolution. Further
work into the combination of sampling methods with fitness functions also has
the potential to increase accuracy of classification. It would be interesting to alter
our sampling methods to sample with replacement instead of without replace-
ment, and see what effect this has on the classification accuracy both overall and
on the individual classes. In future it would be useful to extend these sampling
methods in a Multi-Objective Genetic Programming (MOGP) framework.
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Abstract. We have developed a method for generating non photorealis-

tic animations of a target image. The animations start as a random col-

lection of triangular strokes on a canvas and the target gradually emerges

as the animation proceeds. We use genetic programming to evolve pro-

grams that draw the brushstrokes. A measure of similarity to the target is

used as the fitness function. The best individual in a generation becomes

a frame of the animation. We have experimented with open and filled
triangles. Both kinds of triangles resulted in animations that our artist

collaborators found engaging and interesting. In particular, the use of

filled triangles generated animations that exhibited a novel immersive

quality. The evolutionary approach requires artistic judgment in select-

ing the target images and values for the various parameters and provides

a rich environment for exploring novel non photo–realistic renderings.

Keywords: Artificial intelligence, Computer graphic, Evolutionary art,

Evolutionary computation, Genetic programming.

1 Introduction

It has been claimed that one of the major benefits of using evolutionary com-
puting to solve an art or design problem is that the evolutionary process can
generate novel, unlikely combinations that a human designer or artist would not
think of [4]. Non photorealistic rendering (NPR) is an area in which artists are
continually seeking novel, creative and unusual kinds of renderings. Our moti-
vation for the work presented in this paper is to investigate whether it might
be possible to find a new style of non photorealistic rendering using a form of
evolutionary computing.

Non photorealistic rendering is a developing art-form where the goal is to show
an image in some more interesting way than as a photograph. Some examples of
non photorealistic renderings include pencil sketches, oil paintings, watercolour
paintings and photomosaics. Traditionally non photorealistic renderings are still
images. However, the use of evolutionary techniques provides an opportunity to
add the time dimension. In an evolutionary run the best individual in a gener-
ation gets fitter and fitter as the generations increase. If the measure of fitness
is similarity to a target image, then the best individual will become more and

J. Li (Ed.): AI 2010, LNAI 6464, pp. 283–292, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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more like the target image as the generations increase. We have found that the
best individuals can be combined into an engaging movie that holds the viewer’s
interest as a recognisable subject slowly emerges from a random collection of
strokes.

Current evolutionary algorithms are primarily designed for optimisation prob-
lems where the aim is to find the optimal solution as quickly as possible with mini-
mal use of resources. These algorithms need some modification for the art domain
where the aim is to find interesting images and animations. For example, an ani-
mation that reveals the target too quickly in the first few generations will not be
very engaging and a rendering that has optimal fitness will be an exact match to
the target and not very interesting as a non photorealistic rendering.

The work presented in this paper is based on the work of Barile and et al. [3].
This work was limited to brushstrokes that were simple grey level lines and
stroke placement was limited to blending pixel values when two strokes crossed.
Nevertheless the system was able to produce animations and still images that
excited our collaborating artists. We build on the work of Barile et al. in three
ways: (1) We use color brush strokes, not just grey scale, (2) We use more
complex triangular brush strokes, not just lines, (3) We explore a wider range
of options when a new stroke will overwrite a pixel already drawn by a previous
stroke, not just blending. The new options are partial stroke where the new stroke
is immediately terminated if it will overwrite a previously drawn pixel, and no
stroke where the new stroke is not drawn at all if it would overwrite a previously
drawn pixel. Our overall goal in this work is to explore a range of brush stokes
and placement strategies and determine whether they can be used to produce
engaging and interesting animations. In particular, our research questions are:

1. How can we construct a system for non photorealistic rendering with trian-
gular brushstrokes using genetic programming?

2. What are the differences between using open and filled triangular strokes?
3. How do the different placement modes (blend, partial stroke, no stroke) affect

the evolved animations?

Where it is necessary to make aesthetic judgments about evolved artworks we
will seek the views our collaborating artists.1

2 Related Work

2.1 Evolutionary Art

Dawkins was one of the first researchers to show how evolution on a computer
could be combined with the aesthetic preferences of a user to produce pleas-
ing or interesting forms in 1986 [5]. In 1991, Sims [11] produced his animation
Panspermia which was about forests of synthetic 3D plant structures. He em-
ployed artificial evolution to evolve the growth rules of plants, for example, how

1 We thank Karen Trist, from Media and Communication, RMIT, for her comments.
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fast branches of a plant can grow. In Turbulence and a number of follow up
works, McCormack [8] used an evolutionary approach to generate a series of
artworks of an imaginary natural world.

2.2 Non Photo-Realistic Rendering

Gooch et al. [6] identify two main approaches to image painting and drawing in
NPR. The first approach uses user-assisted painting programs to place brush-
strokes on the canvas manually. The second approach uses automated programs
to place brushstrokes on the canvas and the stroke positions are calculated with-
out using any user interaction. The automated approach is divided to two dif-
ferent categories. The first category uses standard computer-graphics rendering
without any evolutionary computing technique. The second simulates painting
with an evolutionary computing techniques.

Evolutionary Approach: Various evolutionary techniques have been used for
NPR. For example, Aupetit et al. [1] used an interactive genetic algorithm to
evolve parameters for ant paintings. Samet et al. [10] have designed an NPR
system based on ant colony optimisation that can navigate and sense the envi-
ronment of a target image. They generated painterly and pencil sketch render-
ings. In 2008, Neufeld et al. [9] introduced a system that can replace the user
evaluation interaction. This system can produce non photo-realistic image filters
as well as normal evolved images. Neufeld et al. employed genetic programming
with multi-objective optimization. Barile et al. [2,3] used simple grey line strokes
to generate a non photo-realistic rendering by genetic programming.

3 Configuration of Genetic Programming

An overview of the evolutionary process is shown in algorithm 1. Our programs
are evolved according to the grammar shown in figure 1. To draw a brushstroke

Algorithm 1. Genetic Programming for Non Photorealistic Rendering
Initialise population with four random individuals

while Maximum number of generations is not reached OR pixel differences are too

big (fitness) do
Generate an image from each individual

Compute sum of pixel differences with target (fitness)

If the new best is better than previous best, write frame of movie

Copy the best individual to new population (elitism)

Select two individuals for crossover

Place the children in the new population

Select one individual for mutation

Place child in the new population

end while
Compose a movie from individual frames
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Fig. 1. Grammar of Evolved Programs

on the canvas, we use the triangle function. This function takes nine floating
point arguments as described in in section 3.1. These arguments determine the
position, size, orientation and color of the triangle to be drawn. To implement
a sequence of instructions in tree based genetic programming requires “gluing”
functions [7]. We have used program3 and program4 which enable three and
four statements respectively to be executed sequentially. These values were de-
termined empirically by experimenting with combinations of values from 2 to
10. Evolved Programs are executed by using pre–order traversal so a tree can be
viewed as a linear sequence of brushstrokes. The root of a tree is generally pro-
gram3 or program4. The triangle nodes will always be one level above the leaves,
and the leaves can only be the terminals from the triangle function. Figure 2
shows an example of an evolved program.

Fitness Function: In our system we use a target image, the fitness of an indi-
vidual is its similarity to the target as measured by the sum of pixel differences.
We sum the differences for the three RGB channels between a pixel on the target
image and the corresponding pixel on the evolved image, thus fitness values will
decrease over time.

3.1 Open and Closed Triangular Strokes

In the triangle stroke function, we have nine terminals, line length1, line length2,
angel1, angel2, x, y, red color, green color and blue color. All the parameters are
floating point numbers between 0.0 and 1.0. The line lengths determine the size
of the triangles and can be set by artist users. The size of the triangles has a
large influence on the style of images that are evolved. We have implemented two

Fig. 2. An evolved program
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types of triangular strokes, empty and filled. An empty triangle can be drawn
by knowing two lines and the angle between them, and then applying basic
geometric calculations for the third line.

3.2 Different Stroke Placement Strategies

There are a number of considerations when placing a stroke on the canvas. Firstly,
what to do if the new stroke will write over a pixel that was already written in a
previous stroke (placement mode), and secondly whether to use any information
from the target image in drawing the stroke (guided or unguided search).

Placement Mode: We have experimented with three different modes for deal-
ing with the situation where a new brushstroke would overwrite a pixel already
drawn on the canvas by a previous stroke: blending, partial stroke, no stroke.
In blending mode, if two strokes cross, a new pixel value will be the average
of the canvas pixel and the brush pixel. In partial stroke mode, the new stroke
is drawn until a previously drawn pixel is encountered at which point drawing
ceases. In no stroke mode, the new stroke is not drawn at all if it would overwrite
a previously drawn pixel. In these last two modes, once a pixel has been drawn
there is no possibility of improvement with a later brushstrokes.

Guided and Unguided Search: Using information from the target image in
placing a stroke can enable accelerated convergence. In guided search mode a
pixel in the evolved image is only changed if its new value brings it closer to the
corresponding target pixel. In unguided search, a pixel in the evolved image is
unconditionally updated by a brush stroke. In some situations of guided search
the acceleration is too fast and the target is evident far too early in the first few
generations.

4 Experimental Results

We have experimented2 with many different images and five to twenty runs
for each image. We have explored a large number of combinations of values
for selection, population size, elitism, crossover and mutation rates. The best
configuration is shown in table 1. Surprisingly, small populations are best for
this problem domain.

4.1 Open vs. Closed Triangular Brushstrokes

Figure 3 shows a comparison of filled and unfilled triangle brush strokes for
the same target image. Figure 4 shows the progression of fitness values during
the course of the evaluations for one run. Low fitness values indicate closer
resemblance to the target. Not surprisingly, filled triangles have better fitness
and converge towards a solution faster than the empty triangular brush strokes.
This is because drawing more pixels in a stroke gives more opportunity to be
closer to the target.
2 Some of our animations can be found at http://evol-art.cs.rmit.edu.au/ai10

http://evol-art.cs.rmit.edu.au/ai10
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Table 1. Common GP parameters for our experiments

Functions program3,4 and triangle

Terminals float numbers

Maximum evaluations 80000–100,000

Max Tree size 8

Min Tree size 3

Population 4

Crossover 50%

Mutation 25%

Elitism 25%

Selection Roulette Wheel

Termination Max. generation reached

Stroke mode Blending, partial stroke, no stroke

Target information Guided and unguided search

Artists Evaluations: Our collaborating artists have examined a number of
evolutionary runs with filled and unfilled triangles for a variety of target images.
They conclude that “The filled triangles provide an extension to the application
in a way that the empty triangles do not. The filled triangles offer more possi-
bilities for experimenting with perspective and figure and ground relations”.

4.2 Different Size of Triangles

The size of triangles can directly influence the look of evolved images. An ex-
ample is shown in figure 5. In this figure, small triangles have been rendered by
two small line lengths (L1 = 20 and L2 = 30) and large triangles have been

Fig. 3. Sequence of rendered images with the filled triangle (top) and empty triangle

(bottom) brushstrokes, blending mode, guided search
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Fig. 4. Fitness progression for the runs of figure 3 for 100,000 evaluations

Fig. 5. Left: Fitness for small and large triangles. Right: Rendered images for large

and small triangles.

rendered by two large line lengths (L1 = 150 and L2 = 100). As can be seen
from the graph of figure 5, large triangles tend to give faster convergence by pro-
viding better fitness values. As can be seen from figure 5 at 50, 000 evaluations,
using blending, the fitness values are close to each other. However, the final ren-
dered images are quite different. Smaller triangles can give more photorealism,
but larger triangles give a more interesting rendering. However, for the partial
stroke and no stroke modes small triangles tend to give faster convergence.

Artists Evaluations: Artists comment that “If the aim is to create an immersive
experience that engages the emotions transporting the viewer to an imaginary
world as well as an intellectual response, then large triangles with gradients are
more likely to satisfy this aim. However, if the intention is to engage analytical
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Fig. 6. Comparison of placement modes, unguided search

Fig. 7. Left: Fitness differences between guided search and unguided search; Right:

unguided search(generation= 45, 589), guided search(generation= 45, 528)

thinking about the image, than smaller triangles may be more appropriate.” Also
“there is always correlation between thought and feeling and we cannot think
without any feeling. Rendering images using a big triangle size causes the images
to have a greater affective impact than images made up of small triangles”.

4.3 Different Stroke Placement Modes

Unguided Search. Figure 6 shows examples of the three different modes of
stroke placement blending, partial stroke, no stroke. As can be seen from fig-
ure 6, the blending mode converges towards the target much faster than the
two other modes. We need more generations to get close to the target with the
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“partial stroke” and “no stroke” modes. However these two new modes pro-
vide different styles of animations and this gives artist users more creative
opportunities.

Guided Search. Figure 7 shows the fitness differences between the “guided
search” and “unguided search” approaches. By using guided search, the system
is able to reach to the target very closely, in some cases, even at the initial
generation. Guided search over many generations can achieve a high degree of
photo-realism. The artist needs to terminate the evolution when the desired
degree of photo-realism is achieved.

One current drawback of our algorithms is that they can be slow. A run with
guided search for a relatively small target can be done in minutes, while a run
with unguided search and a large target can take several days.

5 Conclusion

Our overall goal in this work was to explore a range of brush stokes and place-
ment strategies and determine whether they can be used to produce engaging
and interesting animations. We have discovered a number of combinations of
triangular brush strokes and placement strategies that can produce animations
that artists find interesting, in particular large closed strokes in blending mode.
While we cannot claim to have discovered a new style of non photorealistic ren-
dering, we believe that the combination of large triangles and blending is one
that a human artist is unlikely to think of.

With respect to our specific research questions, we have shown how to employ
genetic programming to generate engaging non photo–realistic animations. This
can be done with tree based genetic programming with a triangle draw function
and two gluing functions, program3 and program4.. We found that a popula-
tion size four with 50% crossover, 25%mutation and 25% elitism was the best
configuration. This is consistent with Barile and et al. [2]. We found that runs
with closed triangular brushstrokes converged towards a target faster than open
triangular brushstrokes. Our artist collaborators commented that closed trian-
gular brushstrokes create an immersive experience that is more engaging than
open triangular brush strokes and that open triangular strokes evoke analytical
thinking but filled triangular brushstrokes are more affective. Different modes of
stroke placement provide different kinds of renderings. With the blending mode,
we reach the target quicker and generate a more engaging rendering than with
the partial stroke and no stroke modes. By using information from the target
image (guided search), we have shown that fitness is improved around 100% com-
pared with not using any information from the target image (unguided search).
Guided search provides better resolution of the final image than unguided search,
and images resembling the target are evolved earlier, too early in some cases.

Comments From Our Artist Collaborators: Our artist collaborators made
the following comments while working with our programs: (1) “Triangular brush
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strokes create some good visual illusions”, (2) “Visual illusions made by trian-
gular brush strokes, especially filled triangles, cause an emotional, or affective,
response in a viewer. This is a good thing”, (3) “I like to have control over vari-
ables to create specific effects I have in mind”. These comments suggest that our
programs are capable of rendering images and animations that are conceptually
strong.

Future Work: In future work, we plan to optimize the fitness calculation to
speed up the runs, to explore different kinds of brush strokes and to investigate
special purpose genetic operators for these kinds of rendering tasks.
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Abstract. This paper presents a cellular version of Differential Evolu-

tion (DE) algorithm. The notion behind the geographical distribution of

DE population with local interaction is to study the influence of slow

diffusion of information throughout the population. The study was car-

ried out using the compact configuration of neighborhood from which all

the auxiliary parents for DE recombination were selected. The empirical

study was carried out using a standard benchmark suite consisting of

10 functions. The results show that the structured population with local

interaction improves the convergence characteristics of DE and the per-

formance improvement was also verified using scalability study. A brief

comparison with cellular GA was also included.

1 Introduction

Evolutionary Algorithms (EAs) may or may not impose some sort of spatial
structure on their populations. The large majority of EAs use a single popu-
lation without any structure and are known as panmictic EAs. However, there
also exists a tradition of structuring the population in a lattice-like topology,
originally for parallel implementation [1]. The most commonly used structured-
EA models are island model and diffusion model. The first one evolves separate
subpopulations with occasional migration of individuals inbetween, whereas the
latter one maintains overlapping neighborhoods. In diffusion EAs which are also
known as cellular EAs, genetic interaction for an individual is restricted to a
small neighborhood – the spatial structure around that individual [2].

Cellular EAs (cEAs) were originally designed to adapt EAs to fine grained ar-
chitectures. The essence behind the idea is the effective decentralization of selec-
tion algorithms in order to exploit finely grained parallel architecture. Hence, the
genetic interaction is restricted to a local neighborhood and thereby reduce the
communication cost [3]. Nevertheless, the decentralized population management
not only privileges the parallel implementation of the algorithm but also helps to
improve the sampling of the search space [4,5]. The small neighborhood with par-
tial overlap in cEAs promotes slow diffusion of information through the grid and
thereby has been successful in maintaining the diversity in population [6]. The
cEAs’ advantage in preventing premature convergence is partly attributed to the
lower selection pressure compared to that of panmictic EAs [2].

Differential Evolution (DE) is a very simple to implement EA, which has ex-
hibited better performance than many other EAs [7,8]. Because of its elegant

J. Li (Ed.): AI 2010, LNAI 6464, pp. 293–302, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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features such as simple but powerful search capability, use of few parameters,
high convergence characteristics and robustness, DE has found many applica-
tions in real-world problems [9,10].

In this work, we present the cellular Differential Evolution (cDE) algorithm
for global optimization. In literature, a couple of parallel implementations of
Differential Evolution algorithm have been reported [11,12,13,14]. But, in all
of these proposals, the coarse-grained implementation (i.e. the island model )
of DE has been presented where the purpose was mainly to speedup the algo-
rithm by taking the advantage of parallel architecture. In the contrary, this work
presents a fine-grained implementation of DE – primarily to study its behavior
in local spatial structure rather than to attempt a distributed implementation.
And the results show that the diffuse implementation has improved the overall
performance of the algorithm.

This paper is organized as follows. In Section 2, we present a brief overview
of cellular EA. The canonical DE and the proposed cellular version of DE are
presented in section 3 and 4 respectively. Section 5 summarizes our empirical
studies on benchmark functions and presents statistical and comparative analysis
of results. Finally, Section 6 concludes the paper.

2 Cellular Genetic Algorithm (cGA)

In this section, we present a standard model of cellular Genetic Algorithm (cGA),
an important kind of cEA. This model of cGA or its variants have been studied
by many other researchers [2,15,6]. In this model, the population is spatially
structured in a two-dimensional toroidal grid where each grid-point contains
exactly one individual. The neighborhood of an individual is defined by the
surrounding grid-points which are accessible by a specific number of steps. If
the steps are allowed in axial directions only (north, south, east and west) then
the neighborhood shape is called L (linear) and if diagonal steps are allowed as
well as then the neighborhood shape is called C (compact) [16]. And a number
placed after L or C indicates the number of total individuals (including the
central individual) in that neighborhood. Fig. 1 illustrates the concept.

The algorithmic description of cGA is presented in Fig. 2(A) for minimization
problems. In contrast to canonical GA, here every individual in the population
gets a chance to breed its own offspring mating with other parents chosen from
its neighborhood. And the offspring will replace its principal parent in the central
grid if it has a superior fitness value.

Fig. 1. Neighborhood Models in cellular GA
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proc cGA
for i=1 to WIDTH do

for j=1 to HEIGHT do
randomly initialize pop(i,j)
pop(i,j).fitness = Evaluate (pop(i,j))

end for
end for
for s=1 to MAXSTEP do

for i=1 to WIDTH do
for j=1 to HEIGHT do

p1 = pop(i,j)
p2 =Select(Neighbors(i,j))
ch = Crossover(p1, p2)
ch = Mutate(ch)
ch.fitness = Evaluate (ch)
if (ch.fitness < pop(i,j).fitness) then

newPop(i,j) = ch
else

newPop(i,j) = pop(i,j)
end if

end for
end for
pop = newPop

end for
end proc

proc DE
for i=1 to POPSIZE do

randomly initialize pop(i)
pop(i).fitness = Evaluate (pop(i))

end for
for s=1 to MAXSTEP do

for i=1 to POPSIZE do
p1 = pop(i)
Select p2, p3 and p4 such that   

p1≠ p2 ≠ p3 ≠ p4
trial = Mutate(p2, p3, p4)
ch = Crossover(p1, trial)
ch.fitness = Evaluate (ch)
if (ch.fitness < pop(i).fitness) then

newPop(i) = ch
else

newPop(i) = pop(i)
end if

end for
pop = newPop

end for
end proc

A) Cellular Genetic Algorithm B) Canonical Differential Evolution

Fig. 2. Pseudo-code of a simple cGA and canonical DE

3 Differential Evolution (DE)

Differential Evolution (DE) is one of the most elegant new-generation EAs for
solving real-parameter optimization problems. Like any other EA, it starts with
multiple random initial search points and then systematically guides the popu-
lation towards global optimum using iterative reproduction and selection [9,17].
The pseudo-code description of canonical DE is presented in Fig. 2(B).

In canonical DE, for each individual, xp1
G , three distinct parents, xp2

G , xp3
G and

xp4
G , are selected randomly that participate in a differential mutation operation

for generating a mutated individual xtrial
G as follows:

xtrial
G = xp2

G + F (xp3
G − xp4

G ), (1)

where G is the generation number and F , commonly known as amplification fac-
tor, is a real constant, taken from [0.1, 1.0], that controls the rate at which pop-
ulation evolves [8]. Next, to complement the differential mutation, DE employs
a crossover operation, called discrete recombination, in which the the genes of
offspring xch

G are inherited from xp1
G and xtrial

G determined by a parameter called
crossover probability (Cr ∈ [0, 1]) as follows:

xch
G,j =

{
xtrial

G,j with probability Cr

xp1
G,j with probability (1− Cr),

(2)
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where xG,j , j = {1, · · · , N} denotes j -th parameter of individual vectors. Subse-
quently, a binary knock-out competition is played between each individual xp1

G ,
and its offspring xch

G and the winner is selected deterministically and promoted
to next generation. Besides, there are many other variants of DE with different
learning strategies about which can be learnt from [9].

4 Cellular Differential Evolution (cDE)

From the description in previous two sections and from Fig. 2, many similar-
ities between cGA and canonical DE become apparent. Both algorithms give
every individual a chance to spawn its own offspring irrespective to its fitness
and both play a knock-out tournament between every offspring and its parent
for survival. The substantial differences between these two algorithms are the
presence/absence of spatial structure with the neighborhood concept and the
recombination operators with their application order.

Essentially, it will be interesting to observe how DE will behave if fine-grained
structure is applied to its population and the current work presents our empiri-
cal study in this regard. We propose a spatially structured version of DE, called
cellular DE (cDE) which is outlined in Fig. 3. This cellular version of DE is ex-
pected to improve the convergence characteristics of the algorithm by exploring
the search space using the overlapping neighborhood [15].

proc cDE
for i=1 to WIDTH do

for j=1 to HEIGHT do
randomly initialize pop(i,j)
pop(i,j).fitness = Evaluate (pop(i,j))

end for
end for
for s=1 to MAXSTEP do

for i=1 to WIDTH do
for j=1 to HEIGHT do

p1 = pop(i,j)
p2, p3, p4 =Select(Neighbors(i,j)) such that p1≠ p2 ≠ p3 ≠ p4
trial = Mutate (p2, p3, p4)
ch = Crossover(p1, trial)
ch.fitness = Evaluate (ch)
if (ch.fitness < pop(i,j).fitness) then

newPop(i,j) = ch
else

newPop(i,j) = pop(i,j)
end if

end for
end for
pop = newPop

end for
end proc

Fig. 3. Cellular Differential Evolution
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From the discussion in Section 2, it is evident that many different neigh-
borhood shapes and sizes are possible for the proposed cDE algorithm. In this
study, we adopted a fairly standard neighborhood C9 (See Fig. 1). For each cen-
tral parent, three auxiliary parents were chosen randomly from its neighborhood
such that they are different. The crossover, mutation and the survival selection
operations are kept the same as used in canonical DE (see Section 3).

5 Empirical Study

In this section, we present a numerical study that was carried out to assess the
performance of cDE using a test suite consisting of commonly used benchmark
functions found in literature. The benchmark functions are Sphere Model (fsph),
Generalized Rosenbrock’s Function (fros), Generalized Schwefel’s Problem 2.26
(fsch), Ackley’s Function (fack), Generalized Griewank Function (fgrw), Gener-
alized Rastrigin’s Function (fras), Salmon’s Function (fsal), Whitley’s Function
(fwht), Generalized Penalized Function 1 (fpn1) and Generalized Penalized Func-
tion 2 (fpn2). More details about these functions’ definition and characteristics
can be found in [18] and [9]. Here we study the optimization of this benchmark
suite using the proposed cellular version of DE. Although the focus is to com-
pare the proposed cDE with canonical DE, we also studied the competitiveness
of cDE comparing with real-valued cGA.

5.1 Experimental Study

We performed 25 independent runs on each algorithm and present the statistics
of the trials. Although most of the experiments were done at N = 30 dimension,
some were done at N = 50 and N = 100 dimensions to check the effect on scala-
bility. In each dimension, we allowed an algorithm 10000×N fitness evaluations
at maximum to find the global optimum. If the algorithm can reach an error
value, defined as (f(x) − f(x∗)) where x∗ is the global optimum of f , less than
ε = 10−6 within the maximum allowed fitness evaluations then we assume that it
has found the global optimum. We present the statistics of error values obtained
at the end (AV GEr ±SDEr(CNT )) and the statistics of the fitness evaluations
(AV GEv ± SDEv) required to reach the global optimum (for successful cases
only). CNT denotes the number of successful trials that reach global optimum.

5.2 Experimental Setup

Although the canonical DE needs only three control-parameters, the choice of
these parameters is critical for its performance. For classic DE, F = 0.9 and Cr =
0.9 is a robust setting [10,9]. Hence, we used this fixed setting for parameters in
all experiments both in DE and cDE. As we have restricted the maximum number
of allowed fitness evaluations the performance of DE is greatly influenced by its
population size. For canonical DE and cDE we used P ≈ N as recommended in
[10]. More specifically, the population size and the grid size for the algorithms
were P = 30 (6× 5), P = 49 (7× 7) and P = 100 (10× 10) for N = 30, N = 50
and N = 100 dimensions respectively.
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Table 1. Statistics of error values and fitness evaluations for N=30 and Popsize=30

Best Error Values Required Fitness Evaluations
F DE cDE DE cDE

Fsph 5.22E-17±1.44E-16 (25) 3.94E-21±4.45E-21 (25) 147067.3±8652.8 126848.2±4760.8
Fros 1.29E+01±1.28E+01 (0) 1.18E+01±1.50E+01 (0) – –
Fsch 9.60E-03±8.86E-03 (0) 1.03E-03±1.73E-03 (0) – –
Fack 8.22E-10±9.84E-10 (25) 2.03E-11±3.06E-11 (25) 212332.3±8822.8 182931.6±7986.9
Fgrw 3.74E-03±6.00E-03 (17) 1.97E-03±3.63E-03 (19) 103682.2±69208.8 95707.9±59077.7
Fras 2.69E+01±7.90E+00 (0) 2.49E+01±6.47E+00 (0) – –
Fsal 2.56E-01±5.02E-02 (0) 2.34E-01±4.54E-02 (0) – –
Fwht 3.50E+02±6.09E+01 (0) 2.88E+02±1.13E+02 (0) – –
Fpn1 4.15E-02±1.20E-01 (22) 2.07E-02±8.46E-02 (23) 127959.3±42775.5 105774.2±34487.2
Fpn2 4.39E-04±2.20E-03 (24) 5.45E-20±1.59E-19 (25) 145197.8±34030.8 128319.6±11263.5

Fros† 5.03E+00±2.52E+00 (0) 6.69E-01±1.38E+00 (4) - 57698.5±115397.0
Fras‡ 00E+00±00E+00 (25) 00E+00±00E+00 (25) 180296.0±9812.0 176798.3 ±9424.8

† Popsize = 50, Cr = 0.95, F = 0.75 ‡ Popsize = 50, Cr = 0.2 F = 0.5

Table 2. Statistics of error values and fitness evaluations for N=50 and Popsize=49

Best Error Values Required Fitness Evaluations
F DE cDE DE cDE

Fsph 2.95E-03 ± 3.47E-03 (0) 6.96E-12 ± 7.49E-12 (25) – 334994.5 ± 13242.8
Fros 2.46E+02 ± 2.54E+02 (0) 5.74E+01 ± 3.06E+01 (0) – ±
Fsch 4.93E+03 ± 2.46E+03 (0) 5.50E+01 ± 2.65E+01 (0) – ±
Fack 8.99E-03 ± 3.68E-03 (0) 5.54E-07 ± 2.28E-07 (23) – 438030.3 ± 138564.0
Fgrw 4.28E-03 ± 3.81E-03 (0) 8.88E-04 ± 2.45E-03 (22) – 308906.2 ± 100816.8
Fras 5.96E+01 ± 2.19E+01 (0) 5.10E+01 ± 1.21E+01 (0) – ±
Fsal 1.14E+00 ± 1.66E-01 (0) 3.91E-01 ± 5.01E-02 (0) – ±
Fwht 1.96E+06 ± 9.33E+06 (0) 7.23E+02 ± 2.71E+02 (0) – ±
Fpn1 3.05E-02 ± 8.02E-02 (0) 2.49E-02 ± 6.95E-02 (21) – 278000.3 ± 120315.5
Fpn2 4.77E-02 ± 7.55E-02 (0) 1.01E-10 ± 1.85E-10 (25) – 361820.1 ± 20777.1

5.3 Results and Analysis

The results presented in Table 1, show that compared to canonical DE, the
proposed cDE algorithm was successful to achieve a lower error value and/or
could reach the global optimum using fewer fitness evaluation and/or reached the
global optimum in greater number of trials. For some functions, the performance
of both DE and cDE may not seem to be the best. This is because we did
not perform any parameter tuning and a detailed parameter study is beyond
the scope of this work. Just to give a an idea, we tuned the parameters of
both algorithms as recommended in [9] for Rosenbrock and Rastrigin functions
respectively, and the results are added at the bottom of Table 1, which once again
shows the superiority of cDE. These additional results give us more confidence
about the success of the cellular version of the algorithm.

In order to test the effect of scalability, we evaluated the algorithms at higher
dimensions and the results for N=50 and N=100 are presented in Table 2 and 3
respectively. In every case, the newly proposed cDE algorithm exhibited superior
performance compared to the classic DE. In order to validate the presented
results we performed some statistical analysis of the results in Table 1, 2 and
3 using Student’s t-test and the p-values are reported in Table 4. For N=30
dimension, in most of the cases the t-test indicate significant difference and in
higher dimensions, it shows very significant difference in every case.
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sph (N=30) pn2 (N=30)

ack (N=50) sch (N=50)

sal(N=50) ros (N=100)

grw (N=100) wht (N=100)

Fig. 4. Convergence graphs for comparing cDE and canonical DE (x axis represents

generation and y axis represents fitness)
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Table 3. Statistics of error values for N=100 and Popsize=100

F DE cDE DE cDE
Fsph 4.42E+03±1.16E+03 7.27E-05±3.17E-05 Fras 8.84E+02±4.39E+01 1.16E+02±1.88E+01
Fros 3.82E+08±1.85E+08 2.86E+02±1.88E+02 Fsal 9.67E+00±1.00E+00 1.05E+00±1.59E-01
Fsch 1.14E+05±8.26E+03 5.45E+03±1.37E+03 Fwht 3.49E+15±1.68E+15 1.18E+04±2.83E+03
Fack 9.05E+00±7.05E-01 1.16E-03±3.96E-04 Fpn1 5.11E+05±4.32E+05 2.92E-02±4.84E-02
Fgrw 4.24E+01±9.70E+00 3.41E-05±2.18E-05 Fpn2 3.49E+06±1.74E+06 2.34E-01±7.92E-01

Table 4. p values of t-Distribution calculated from Table 1, Table 2 and Table 3

N=30 N=50 N=100
F p-val (Er) p-val (Ev) F p-val (Er) p-val (Ev) F p-val (Er) p-val (Ev)

Fsph 1.58E-02 8.64E-19 Fsph 3.84E-07 - Fsph 2.63E-30 -
Fros 6.96E-01 - Fros 5.17E-06 - Fros 6.77E-19 -
Fsch 3.32E-08 - Fsch 2.84E-18 - Fsch 3.18E-55 -
Fack 8.77E-07 4.53E-22 Fack 7.16E-22 - Fack 6.08E-55 -
Fgrw 8.61E-02 6.13E-01 Fgrw 4.38E-06 - Fgrw 6.19E-33 -
Fras 1.77E-01 - Fras 2.25E-02 - Fras 1.26E-59 -
Fsal 2.79E-02 - Fsal 1.19E-32 - Fsal 2.34E-46 -
Fwht 1.61E-03 - Fwht 1.51E-01 - Fwht 4.61E-19 -
Fpn1 3.32E-01 1.13E-02 Fpn1 7.17E-01 - Fpn1 1.12E-10 -
Fpn2 1.72E-01 2.27E-03 Fpn2 6.46E-05 - Fpn2 1.74E-18 -

To further validate the effect of local neighborhood, we compare the average
(of the best individuals in different trials) convergence curves of DE and cDE for
different functions in Fig. 4. These graphs clearly show that the cellular model
has significantly improved the convergence characteristics of the algorithm and
at higher dimensions the improvement becomes even more substantial. So based
on the results presented in tables and graphs, we can summarize that in general
the notion of local neighborhood has improved the convergence characteristic of
DE and the performance difference between the newly proposed cDE and DE
becomes more significant at higher dimensions.

Table 5. Comparison with the cGA presented in [6]

cGA cDE
F Mean Std Success Mean Std Success

Fsph 3.70E-05 1.40E-05 0% 3.94E-21 4.45E-21 100.00%
FElp 2.09E+00 2.01E+00 0% 1.41E-20 2.77E-20 100.00%
Fsch 3.51E+00 1.38E+00 0% 1.03E-03 1.73E-03 0.00%
Fack 1.42E-03 3.25E-04 0% 2.03E-11 3.06E-11 100.00%
Fgrw 4.26E-03 5.97E-03 0% 1.97E-03 3.63E-03 76.00%
Fras 1.96E+01 5.54E+00 0% 2.49E+01 6.47E+00 0.00%
Fros 3.50E+01 2.58E+01 0% 1.18E+01 1.50E+01 0.00%
Fwst 4.50E-01 7.60E-01 0% 1.36E-01 3.64E-01 72.00%
Fscf 5.53E-01 2.97E-01 0% 2.90E+00 7.66E-01 0.00%

FF MS 1.58E+01 7.31E+00 0% 1.30E+00 2.49E+00 72.00%

Finally, we compared the performance of cDE with that of the canonical cGA
presented in [6]. The comparative results are presented in Table 5, in terms
of the benchmark presented in [6]. And in every case cDE has outperformed
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canonical cGA by far. These results highlight the high-ranking performance of
the proposed algorithm compared to real-valued cGA.

6 Conclusion

In this work, we present a study on how the population structuring with lo-
cal interaction influences the characteristics of Differential Evolution algorithm.
Generally, in EAs faster convergence increases the risk of ending in local optima.
However, cGA offers a good tradeoff solution to this problem by promoting slow
diffusion of individuals through the grid. This work investigates the effect of
lower selection pressure exercised by local structuring on classic DE algorithm
and the experimental results show that the diffusion model has struck a greater
balance between the DE recombination operators and the knockout selection.

Empirical study using a representative benchmark suite has found that the
newly proposed algorithm possesses superior convergence characteristics com-
pared to the classic DE. The convergence curves show that the population struc-
turing has made DE significantly faster without compromising the success ratio.
The proposed cDE has outperformed the canonical DE in terms of error value,
required evaluation and success ratio in almost every studied function. The effect
of scalability was also investigated and the results show that at higher dimensions
the performance difference becomes even more significant. Statistical validation
of the results were also performed. Competitiveness with the existing cGA was
also shown. Additionally, the proposed cDE algorithm itself becomes an elegant
candidate to exploit the fine grained parallel architecture.

The results presented here provides some important insights about the effect
of local interaction in DE algorithm. These results also suggest that introducing
topological strategies to DE, we can have a very efficient algorithm for real valued
problems. For future study, there are many things to explore such as the effect
of neighborhood shape and size, asynchronous updates policies, analyzing the
selection pressure etc.
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Abstract. In this paper, we investigate the performance of CMA-ES

on large scale non-separable optimisation problems. CMA-ES is a robust

local optimiser that has shown great performance on small-scale non-

separable optimisation problems. Self-adaptation of a covariance matrix

makes it rotational invariant which is a desirable property, especially for

solving non-separable problems. The focus of this paper is to compare

the performance of CMA-ES with Cooperative Co-evolutionary Algo-

rithms (CCEAs) for large scale global optimisation (on problems with

up to 1000 real-valued variables). Since the original CMA-ES is inca-

pable of handling problems with more than several hundreds dimensions,

sep-CMA-ES was developed using only the diagonal elements of the co-

variance matrix. In this paper sep-CMA-ES is compared with several

existing CCEAs. Experimental results revealed that the performance of

sep-CMA-ES drops significantly when the dimensionality of the problem

increases. However, our results suggest that the rotational invariant prop-

erty of CMA-ES can be utilised in conjunction with a CCEA to further

enhance its capability to handle large scale optimisation problems.

1 Introduction

Advances in science and technology provides us with ever more options and
features, however having more features makes it more difficult to find the opti-
mum configuration of these decision variables. The rapid growth in the number
of decision variables brings a grand scale challenge to optimisation techniques.
In nano-technology, the properties of thousands of atoms have to be taken into
account in order to produce a substance with a certain property. In aerodynam-
ics, tens of thousands of parameters have to be tweaked in order to optimise a
component of a space shuttle to a target shape. This shift in the scale of optimi-
sation problems demands new optimisation techniques capable of dealing with
thousands of decision variables.

Many Evolutionary Algorithms (EAs) [6], [3], [2] have been applied to op-
timisation problems, however the performance of these algorithms, like most
of traditional algorithms, deteriorate as the dimensionality of the problem in-
creases. This is referred to as the curse of dimensionality [4]. Divide-and-conquer

J. Li (Ed.): AI 2010, LNAI 6464, pp. 303–312, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://goanna.cs.rmit.edu.au/~xiaodong/ecml


304 M.N. Omidvar and X. Li

is a natural approach for tackling large scale problems. Cooperative Co-evolution
(CC) [15] is such a technique that decomposes a large scale problem into a set
of sub-problems, each of which is optimised using a separate EA. In the original
CC decomposition strategy, each variable is placed in a separate subcomponent.
This new paradigm has shown great success on many optimisation problems [15].
However further investigation revealed that this CC decomposition strategy is
only effective when there is no interdependency between the decision variables
[22]. Shi et al. [19] proposed another technique in which the decision variables
are divided into halves. This dividing-in-half strategy does not scale properly as
the dimensionality of problem increases, mainly because the size of sub-problems
will go beyond the optimisation capabilities of subcomponent optimisers. van den
Bergh and Engelbrecht [22] proposed a new decomposition strategy where they
decomposed a n-dimensional problem into m s-dimensional subcomponents. It
has been shown that this new technique performs better than the original de-
composition strategy when dealing with non-separable problems.

Although grouping interacting variables in a common subcomponent increases
the performance of many CCEAs to a great extent, capturing the hidden depen-
dencies between the variables is a great challenge by itself. Random Grouping
(DECC-G, MLCC) [23] and Delta Grouping [14] are two major techniques that
were proposed recently for capturing the interacting variables. Delta grouping
in particular has shown superior performance in capturing interacting variables
in grouping them in a common subcomponent [14].

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [10] is a suc-
cessful optimisation algorithm that has been designed specifically for local opti-
misation, but it has also shown competitive results for global optimisation [8],
[7]. The self-adaptation of covariance matrix makes CMA-ES rotational invariant
that makes it a perfect choice for non-separable problems.

Most studies on CMA-ES have been carried out with functions with up to
200 dimensions. There are limited studies in which functions with up to 1000
dimensions have been used [17], however these studies were confined with very
few simple test functions. Furthermore, since the introduction of the new test
functions such as CEC’2008 [21] and CEC’2010 [20], which are specifically de-
signed for benchmarking of large scale optimisation algorithms, no systematic
studies have been carried out on evaluating CMA-ES using these newly pro-
posed functions. In this research we benchmark the performance of CMA-ES
on large scale problems proposed in CEC’2008 Special Session and Competition
on Large Scale Global Optimisation [21]. In particular we have the following
research objectives:

– Benchmarking the performance of standard CMA-ES on large scale
problems.

– Comparing the performance of cooperative co-evolutionary algorithms for
large scale optimisation with CMA-ES on the same problem set.

– Verifying the performance of a rotational invariant algorithm such as
CMA-ES on large scale non-separable optimisation problems.
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The organisation of the rest of this paper is as follows. Section 2 explains the
preliminaries, such as CC and CMA-ES. Section 3 presents the experimental
results and their analysis. Finally, Section 4 summarises this paper and gives
directions to future works.

2 Background

This section is dedicated to background information. Section 2.1 describes the
Cooperative Co-evolution [15] and different decomposition strategies proposed
in the past. Section 2.2 describes CMA-ES [10] in more details.

2.1 Cooperative Co-evolution

Cooperative Co-evolution has been proposed by Potter and De Jong [15], ex-
plicitly introduces the notion of modularity in EAs. This notion of modularity is
essential in order to solve complex problems. CC works in the form of co-adapted
subcomponents. In the context of an optimisation problem, a n-dimensional
problem is divided into n 1-dimensional problems, each of which is optimised
using a separate EA in a round-robin fashion. This decomposition scheme works
well only when there is no interaction between the decision variables. It has
been shown that the performance of original CC framework deteriorates when
there are interactions between the decision variables [12]. van den Bergh and
Engelbrecht [22] used a different decomposition strategy in which they divided
a n-dimensional problem into m s-dimensional subproblems. It has been shown
that this new decomposition strategy has a better performance compared to the
original CC framework [22].

CC framework has been applied to many EAs for large scale optimisation
problems. However, the performance of these algorithms deteriorate as the di-
mensionality of the problem increases. Fast Evolution Programming with Co-
operative Co-evolution (FEPCC) [12] is one of the early techniques that has
been applied to problems with up to 1000 dimensions. The experimental results
revealed that FEPCC performed poorly on one of non-separable problems [12].
The reason for poor performance of FEPCC on such problems is due to grouping
of interacting variables in separate subcomponents. As a result, to increase the
performance of CCEAs on large scale non-separable problems, the interacting
variables have to be identified and be grouped in a common subcomponent.

Random grouping has been proposed by Yang et al. [23] in order to increase
the probability of grouping interacting variables in a subcomponent. Although
random grouping has shown better performance compared to other algorithms,
its performance degrades as the number of interacting variables increases [13].
In order to cope with the increased number of interacting variables, more intel-
ligent and systematic techniques are required to capture interacting variables.
Ray and Yao [16] calculated a correlation coefficient matrix from the current
population and divided the decision variables into two subcomponents, based
on a threshold value on correlation coefficients. This technique does not scale
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properly when the dimensionality of the problem increases. This is because the
decision variables are divided into halves and as the dimensionality of the prob-
lem increases the complexity of sub-problems will go beyond the capabilities
of CCEA-AVP. Another disadvantage of CCEA-AVP is the use of correlation
coefficients as a measurement for degree of separability (or non-separability) of
decision variables. Correlation coefficient measures such as Pearson’s correlation
matrix measures the linear dependence between two variables which is not a
proper estimation for separability (or non-separability) of decision variables.

Delta grouping has been proposed by Omidvar et al. [14] as the first systematic
technique for capturing interacting variables. Delta grouping is inspired by the
idea of improvement interval under coordinate rotation explained in detailed in
[18]. In delta grouping, the average amount of change in every dimension is mea-
sured between two consecutive cycles to form a delta vector. Then the variables
are sorted based on the absolute magnitude of their delta values. The motivation
behind delta grouping is that, in a non-separable problem, when a small delta
value is observed in one of the dimensions, there is a high probability to find
another decision variable with relatively small delta value. As a result, grouping
the variables based on the magnitude of their delta values increases the probabil-
ity of grouping two interacting variables in one subcomponent. Delta grouping
has shown great performance [14] on a wide range of benchmark functions [20],
[21] that were proposed especially for large scale global optimisation.

2.2 Covariance Matrix Adaptation Evolution Strategy

CMA-ES is based on Evolution Strategy (ES) [5]. ES is a type of EA which has
been extensively used for continuous optimisation tasks. The individuals in ES
are real-valued vectors that are systematically changed to get better individuals.
Like many EAs, ES rely on three major operations, mutation, recombination,
and selection. Mutation and recombination are used for exploration of the search
space and generating genetic variations, while the selection operator is for ex-
ploitation and convergence to a solution. The mutation operator is an important
operator in ES and is central to understanding of CMA-ES. A detailed expla-
nation of various selection operators can be found in [5]. Recombination is not
a very common operator in state-of-the-art ES implementations, as a result the
focus of this section is on mutation.

Mutation. Mutation is a key operator in ES that generates the maximum
genetic variations. In real-valued continuous optimisation problems the mutation
is done using a multivariate Gaussian distribution. Equation (1) shows how an
individual is mutated using a Gaussian distribution.

ỹ = y + z , (1)

where y is the parent, ỹ is the mutant and the z is defined as follows:

z = σ
(
N1(0, 1), ..., NN(0, 1)

)
, (2)
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where Ni(0, 1) are mutually independent random numbers, generated form a
normal distribution with mean zero and standard deviation 1. σ is the strategy
parameter which is called the step size. Having only one step size creates an
isotropic Gaussian distribution which is symmetric about the mean value which
is y in this case. This situation is depicted in Figure 1(a). Having only one step
size is not very efficient in solving high dimensional problems. In an extended
version of ES, instead of having only one global step size, a vector of step sizes
is maintained. Each of the elements in this vector corresponds to one of the
dimensions. This allows having different step sizes for every dimension. In this
new scheme the mutation is performed using Equations (3).

z =
(
σ1N1(0, 1), ..., σNNN (0, 1)

)
= D

(
N1(0, 1), ..., NN(0, 1)

)T
= DN(0, I) , (3)

as it can be seen form Equation (3), there are different σ values for different
dimensions. This situation is depicted in Figure 1(b). D is a diagonal matrix
with the σ values on the main diagonal. Although this new technique is far
more flexible than the isotropic version, it still loses its efficiency when applied
to non-separable functions. As it can be seen from Figure 1(b), the Gaussian
distribution is scaled in the direction of the coordinate axes. In many real-world
problems, the fitness landscape is not aligned with the coordinate system which
makes this mutation strategy ineffective. As a result another mutation scheme is
needed to work under arbitrary rotations of fitness landscape which is a desirable
technique especially for non-separable problems. Covariance Matrix Adaptation
ES proposes such a rotational invariant version of ES by self-adapting a rotation
matrix M to align the diagonal matrix D with the principal axes of the fitness
landscape [10]. So, the mutation scheme in CMA-ES is as follows:

z = M
(
σ1N1(0, 1), ..., σNNN (0, 1)

)
= MD

(
N1(0, 1), ..., NN(0, 1)

)T
= MDN(0, I) , (4)

it is clear that the rotation matrix M creates correlation between the components
of z, thus, C = MTM . The use of correlation matrix C and the effect of this
new mutation scheme is depicted in Figure 1(c). As it can be seen from Figure
1(c) the step sizes are oriented towards the optimum point which is a desirable
property for solving non-separable problems.

Adaptation of the Covariance Matrix. The covariance matrix C that was
described in the previous section is calculated based on the changes in the mean
values of two successive generations. In this case, it is assumed that the current
population contains enough information to successfully estimate the correlations.
Equation (5) shows how the covariance matrix is updated based on the changes
in two successive generations.
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(a) N(0, σ2I) (b) N(0, D2) (c) N(0, C)

Fig. 1. Figure (a): an isotropic distribution is created when there is only one strategy

parameter. Figure (b): shows the situation when there is a separate step size for each

of the coordinates. Figure (c): is the case where the coordinate system is rotated by a

rotation matrix which is derived from the covariance matrix C.

C
(g+1)
λ =

1
λ

λ∑
i=1

(y(g+1)
i −m(g))(y(g+1)

i −m(g))T , (5)

where m(g) is the weighted average of μ selected points from the sample of λ
offspring in generation g.

In order to accurately estimate the covariance matrix, CMA-ES uses a tech-
nique called cumulation to utilise the information in the evolution path [10]. The
idea of cumulation is simple. Instead of calculating the covariance matrix using
only two consecutive generations, an archive of changes in the mean values is
recorded and the covariance is updated based on this archive. It is clear that
the archive contains far more information about the correlations as compared to
using information from only two consecutive generations.

The next step after calculation of the covariance matrix is to find the rotation
matrix M from the covariance matrix C in order to stretch the multivariate
Gaussian distribution in the direction of the global optimum point. This can be
achieved by performing an eigen-decomposition of the covariance matrix C to
obtain an orthogonal basis for the matrix C. This orthogonal basis is essentially
the matrix of eigen-vectors that can be used for transformation of the sample
points. This process is shown in Equation (6).

N(m, C) = m + N(0, C)

= m + C
1
2 N(0, I)

= m + MDMTN(0, I)
= m + MDN(0, I) , (6)

as it can be seen, DN(0, I) is the situation described in Equation (3) and M
which is the rotation matrix derived from eigen-decomposition of the covariance
matrix C.

One disadvantage of CMA-ES is its relatively high time complexity. This is
mainly due to self-adaptation of covariance matrix and eigen-decomposition. It
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has been shown that the time complexity of calculating and updating the co-
variance matrix is of order O(n3). This makes CMA-ES more computationally
expensive compared to other EAs. A few techniques have been proposed to re-
duce the time complexity of CMA-ES [17], [11], [9], among which sep-CMA-Es
was proposed [17]. In a sep-CMA-ES, the covariance matrix C is constrained to
be diagonal. This reduces the time complexity from O(n3) to O(n2) [17]. How-
ever this modification compromises the rotational invariant property of CMA-
ES. In another implementation, (1+1)-CMA-ES is proposed in which a very
small population size is used [11]. It has been shown that (1+1)-CMA-ES has a
time complexity of O(n2). Although the time complexity of (1+1)-CMA-ES is
improved, this modification makes it less appropriate for multimodal test func-
tions due to small population size. A restart CMA-ES has been proposed called
IPOP-CMA-ES [1] which is more suitable for multimodal test functions, however
IPOP-CMA-ES is only effective for up to 50 dimensions [1]. It is noteworthy that
in higher dimensions, very large population sizes are required which significantly
increases the computational cost of the algorithm.

3 Experimental Results and Analysis

In this section we present the experimental results of running sep-CMA-ES on
CEC’2008 benchmark functions [21]. Tables 1, 2, and 3 contain comparative
results of different algorithms on the same benchmark functions. The mean of
25 independent runs are recorded and the best performing algorithms are high-
lighted in bold.

As it can be seen from Table 1, sep-CMA-ES outperformed other algorithms
on 2 out of 6 benchmark functions with 100 decision variables. It is interesting
that both of these functions (f2, f5) are non-separable. It is also noteworthy
that all other algorithms are benefiting from a co-evolutionary framework, and
yet sep-CMA-ES performed better on non-separable functions. Another inter-
esting observation is that, sep-CMA-ES performed reasonably better than other
algorithms, except for DECC-ML, and DECC-DML, on f3 which is also a non-
separable function. The unique characteristic of DECC-ML, and DECC-DML
is that both of them use a uniform random number generator for self-adapting
subcomponent sizes. Another observation is that sep-CMA-ES performed poorly
on multimodal functions such as f4, and f7.

Tables 2, and 3 compare the performance of sep-CMA-ES with other algo-
rithms on 500, and 1000 dimensions respectively. It can be seen that sep-CMA-
ES does not have the same relative performance on higher dimensions, in fact,
sep-CMA-ES has the best performance only on f3, but CCEAs are better on all
other functions. Overall, the experimental results over all dimensions have shown
that sep-CMA-ES does not scale properly as the dimensionality of problem in-
creases. According to Tables 1, 2, and 3 most of the CC algorithms outperformed
sep-CMA-ES on almost all of the functions and sep-CMA-ES is often placed last
especially on problems with 1000 decision variables.
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Table 1. Results of CEC’08 Function on 100 dimensions

Function DECC DECC-ML DECC-D DECC-DML MLCC sep-CMA-ES

f1 2.7263e-29 5.7254e-28 2.9283e-29 4.7379e-28 6.8212e-14 3.1918e-24
f2 5.4471e+01 2.7974e-04 5.2479e+01 2.4811e-04 2.5262e+01 1.3202e+01
f3 1.4244e+02 1.8871e+02 1.4077e+02 1.9233e+02 1.4984e+02 4.3300e+00
f4 5.3370e+01 0.0000e+00 5.4444e+01 0.0000e+00 4.3883e-13 2.6324e+02
f5 2.7589e-03 3.6415e-03 8.8753e-04 7.8858e-04 3.4106e-14 8.8818e-18
f6 2.3646e-01 3.3822e-14 1.2270e-01 3.1548e-14 1.1141e-13 6.6495e-01
f7 -9.9413e+02 -1.5476e+03 -9.8976e+02 -1.5480e+03 -1.5439e+03 -1.3625e+03

Table 2. Results of CEC’08 Function on 500 dimensions

Function DECC DECC-ML DECC-D DECC-DML MLCC sep-CMA-ES

f1 8.0779e-30 1.6688e-27 3.8370e-29 1.7117e-27 4.2974e-13 4.2256e-22
f2 4.0904e+01 1.3396e+00 3.8009e+01 1.0232e+00 6.6663e+01 4.8619e+01
f3 6.6822e+02 5.9341e+02 5.6941e+02 6.8292e+02 9.2466e+02 3.0788e+02
f4 1.3114e+02 0.0000e+00 1.4631e+02 0.0000e+00 1.7933e-11 1.8262e+03
f5 2.9584e-04 1.4788e-03 2.9584e-04 2.9584e-04 2.1259e-13 9.4260e-02
f6 6.6507e-14 1.2818e-13 5.9828e-14 1.2051e-13 5.3433e-13 8.0505e+00
f7 -5.5707e+03 -7.4582e+03 -4.7796e+03 -7.4579e+03 -7.4350e+03 -6.3868e+03

Table 3. Results of CEC’08 Function on 1000 dimensions

Function DECC DECC-ML DECC-D DECC-DML MLCC sep-CMA-ES

f1 1.2117e-29 5.1750e-28 1.0097e-29 3.3391e-27 8.4583e-13 1.2288e-21
f2 4.2729e+01 3.4272e+00 3.8673e+01 5.81133e+00 1.0871e+02 6.5811e+01
f3 1.2673e+03 1.0990e+03 1.1597e+03 1.22537e+03 1.7986e+03 7.9644e+02
f4 2.4498e+02 0.0000e+00 2.7406e+02 0.0000e+00 1.3744e-10 4.2148e+03
f5 2.9584e-04 9.8489e-04 1.0392e-15 1.4611e-15 4.1837e-13 3.6758e-02
f6 1.3117e-13 2.5295e-13 1.1866e-13 2.2908e-13 1.0607e-12 1.9632e+01
f∗
7 -1.4339e+04 -1.4757e+04 -1.1035e+04 -1.4750e+04 -1.4703e+04 -1.2419e+04

As it was mentioned earlier in Section 2, sep-CMA-ES has a better time and
space complexity as compared to CMA-ES [17], and it has been shown that it
outperforms CMA-ES on partially separable problems when the dimension is
above 100. On the other hand CMA-ES outperforms sep-CMA-ES on fully non-
separable problems, however the full calculation of covariance matrix at the heart
of CMA-ES substantially increases its computational cost. The experimental re-
sults presented in this paper shows that even sep-CMA-ES performed poorly
on benchmark functions especially designed for large scale global optimisation
such as CEC’2008 benchmark functions. We speculate that a CC implementa-
tion of CMA-ES may hold a great promise and has the benefits of both worlds.
CMA-ES has shown superior performance on non-separable functions due to
its rotational invariant property and CC is an efficient framework for breaking
down a large scale problem into more manageable sub-problems. Using CMA-
ES, as the subcomponent optimiser in a CC framework brings the rotational
invariant property of CMA-ES with the scalability strength of CC together in
one algorithm. Since the covariance matrix adaptation only happens after the
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full evaluation of all subcomponents in a CC framework, the CMA part happens
less frequently, compensating the high computational cost of CMA-ES.

4 Conclusion and Future Works

In this paper we investigated the use of CMA-ES on large scale non-separable
problems. CMA-ES is designed as a highly competitive and robust local opti-
miser. We have shown that the performance of CMA-ES degrades significantly
when the dimensionality of the problem increases. This is true for all of EAs, how-
ever CMA-ES suffers from the cures of dimensionality more than other CCEA
algorithms, since CMA-ES needs a large population size in order to maintain di-
versity. This is clearly evident from the performance of CMA-ES on multimodal
test functions. Having a large population size is not practical in higher dimen-
sions due to exponential growth in computational cost. Eigen-decomposition of
the covariance matrix at the heart of CMA-ES is another source of performance
degradation on large scale problem.

Despite its shortcomings on large scale problems, CMA-ES remains a com-
petent solution for optimising small to medium-sized non-separable problems.
Experimental results in Table 1 confirms this on non-separable functions with
100 decision variables. This property of CMA-ES makes it ideal to be incorpo-
rated into a CC framework as a subcomponent optimiser.

In the future, we intend to develop a CC implementation of CMA-ES for
further investigation and comparison on large scale non-separable problems, es-
pecially the newly proposed CEC’2010 [20] benchmark function.

References

1. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing popu-

lation size. In: McKay, B., et al. (eds.) The 2005 IEEE International Congress on

Evolutionary Computation (CEC 2005), vol. 2, pp. 1769–1776 (2005)
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Abstract. Particle Swarm Optimisation (PSO) is an intelligent search

method based on swarm intelligence and has been widely used in many

fields. However it is also easily trapped in local optima. In this paper,

we propose two hybrid PSO algorithms: one uses a Differential Evolu-

tion (DE) operator to replace the standard PSO method for updating a

particle’s position; and the other integrates both the DE operator and

a simple local search. Seven benchmark multi-modal, high-dimensional

functions are used to test the performance of the proposed methods. The

results demonstrate that both algorithms perform well in quickly finding

global solutions which other hybrid PSO algorithms are unable to find.

Keywords: Particle Swarm Optimisation, Differential Evolution.

1 Introduction

Particle Swarm Optimisation (PSO) is a stochastic global optimisation method
which originated from the simulation of the social behaviour of birds within a
flock, as developed by Kennedy and Eberhart in 1995 [1]. It is widely used in
function optimisation [2], object detection [3], optimisation of wireless sensor
networks [4], and many other applications [5,6].

The global optimisation of multi-modal functions is an important topic in
scientific and engineering research since many real situations can be modelled as
nonlinear optimisation problems. The standard PSO has difficulty with consis-
tently converging to global optima, especially for multi-modal, high-dimensional
functions. For escaping from local optima, Bratton and Blackwell [2] proposed a
simplified recombinant PSO for function optimisation. Also, classical Differential
Evolution (DE) operators have been integrated into hybrid PSO algorithms for
global optimisation [8,9]. However, these PSO variants still have problems finding
global solutions for some benchmark multi-modal, high-dimensional functions.

The goal of this paper is to investigate new hybrid PSO techniques for finding
globally optimal solutions of multi-modal, high-dimensional functions. Instead
of using the standard PSO method, we aim to use hybrid PSO techniques for
updating a particle’s position. We will consider two hybrid PSO approaches:
using PSO with a DE operator (called HybridPSO1) rather than strongly de-
pending on the currently global best and local best positions; and integrating

J. Li (Ed.): AI 2010, LNAI 6464, pp. 313–322, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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the DE operator with a local search (called HybridPSO2) to do a small amount
of additional searching for a better position about the current position. Both
approaches will be examined and compared with some existing PSO methods
on seven benchmark multi-modal, high-dimensional functions. We will focus on
whether the new approaches can find the global solutions for these functions,
and investigate the performance of these approaches in converging to a global
solution.

The goal here is to determine whether hybrid PSO can find global optima
which allude other PSO-based methods. This should give some idea as to whether
it would subsequently be worthwhile applying the proposed hybrid PSO methods
to other benchmark sets of test problems including read-world problems. If we
are able to demonstrate effectiveness then a serious comparison with state-of-
the-art algorithms would subsequently be needed.

In the remainder of this paper, Section 2 briefly describes background on PSO
and DE, and Section 3 describes both hybrid algorithms in detail. After present-
ing the experimental design in Section 4, Section 5 discusses the experimental
results. Finally, Section 6 gives conclusions and future work directions.

2 Background

This section briefly describes necessary background information on Particle
Swarm Optimisation and Differential Evolution.

2.1 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is a stochastic method for optimising with-
out explicit knowledge of the gradient of the nonlinear function. PSO maintains
a population of candidate solutions (called particles) and moves these particles
around the search space. Each particle “flies” in a D-dimensional space accord-
ing to the historical experiences of its own and its colleagues. Particle i has both
a position, xi, and a velocity vi, which in “standard” PSO (SPSO), are updated
as follows [10]:

vt+1
ik = w × vt

ik + φ1 × rand()× (pt
ik − xt

ik) + φ2 × rand() × (gt
k − xt

ik) (1)

xt+1
ik = xt

ik + vt+1
ik (2)

for component k = 1, . . . , D. Here w is inertia weight; φ1 and φ2 are acceleration
constants; rand() are random values between 0 and 1; vt

ik is the dimension k
of the ith particle’s velocity in generation t, vt

i is the ith particle’s velocity
in generation t, and vt

i = [vt
i1, v

t
i2, . . . , v

t
iD]; xt

ik is the dimension k of the ith
particle’s position in generation t, xt

i is the ith particle’s position in generation
t, and xt

i = [xt
i1, x

t
i2, . . . , x

t
iD]; pt

i = [pt
i1, p

t
i2, . . . , p

t
iD] is the best position of the

ith particle up to generation t, and gt = [gt
1, g

t
2, . . . , g

t
D] is the global best position

of particles up to generation t. When termination criteria are satisfied, such as
t being equal to the maximum generation, the global best position is taken as
the solution to the problem.
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2.2 Differential Evolution

Differential Evolution (DE) is also a population-based optimisation algorithm. It
has been applied to classical optimisation and multi-objective optimisation [7].
DE creates new candidate solutions by combining existing ones, via three evolu-
tionary operators: mutation, crossover and selection. The classical DE (crossover)
operator is given as:

vt
i = xt

l1 + F (xt
l2 − xt

l3) (3)

xt+1
i,j =

{
vt

i,j rand() < pcr

xt
i,j otherwise

(4)

where xt
l1, x

t
l2, x

t
l3 represent the position of three individual particles (candidate

solutions) from the population at the tth generation; xt
i,j is the jth element (di-

mension) value of the ith individual in the population at the tth generation; F is
the so-called scaling factor (F ∈ [0, 2]), and pcr is called the crossover probability
(pcr ∈ [0, 1]). DE is similar to PSO in that they both feature interaction among
individuals.

2.3 Related Work of Hybrid PSO for Multi-modal Functions

In recent years, researchers have proposed hybrid PSO variants to optimise multi-
modal functions. Zhang et al [9] and Xin et al [8] both combined PSO and DE
operators to search for global solutions of multi-modal functions. Akbari and
Ziarati [11] introduced stochastic local search in PSO for multi-modal function
optimisation. In those methods, their purposes were to improve particles’ ex-
ploration ability. Xin et al [8] used a probability to select standard PSO or DE
operators to control particle movement and maintain population diversity in
case all particles plunge into a local optima. However, those methods still have
problems with some multi-modal functions, such as the Generalised Rastrigin
function (see formula (6) in Section 4). Since the global best position affects
all particles in PSO and it is easily trapped in one of the local optima of the
Generalised Rastrigin function, all particles tend to prematurely converge near
the current best position (not necessarily the true global optima). There is still
an issue of how to improve particles’ ability of exploring the search space for
multi-modal function optimisation.

Since PSO has difficulty escaping from a locally optimal position in multi-
modal function optimisation problems, Bratton and Blackwell [2] proposed a
simple model, removing the effect of the global best position, that has better
performance than standard PSO (SPSO). Therefore, one strategy for improving
the searching ability of PSO is changing the way to update particle positions
and weakening the effect of the global best position.

3 New Hybrid PSO Algorithms

Since DE has similarities with PSO, we propose to replace the position update
method used in SPSO with a DE operator. For exploring a better position in the
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Algorithm 1. HybridPSO1
1: Initialise the particles, the local best positions and the global best position.

2: Use the DE operator to update each particle’s position using (3) and (4).

3: Update the current local best positions and the global best position.

4: If the maximum generation is reached, go to step 5; otherwise return to step 2.

5: Output the global best position particle as the solution.

neighbourhood of the current position, a local search operator is also introduced
after a particle updates its position. The two hybrid algorithms are described in
detail as follows.

3.1 Hybrid PSO Algorithm Based on Differential Evolution

The classical DE operator is introduced to update particle positions in this
algorithm. The hybrid algorithm is called HybridPSO1. The particles positions
are updated by (3) and (4), not by (1) and (2). In the algorithm HybridPSO1,
we use three local best positions to construct new positions and then let each
particle fly to the related new position if the new position is better than the
current position. We save the global position in the memory and update its
position if one new position is better than it. The global position will be returned
as the global solution when the maximum generation is reached. The whole
HybridPSO1 is described in Algorithm 1.

3.2 Hybrid PSO Algorithm Based on Differential Evolution and
Local Search

In any PSO method, the behaviour of particles moving to the next position is
discontinuous. It is possible that one particle cannot hit a better position in
the current region. Based on HybridPSO1, we introduce a simple local search
to better explore the neighbourhood of a local optima. The new hybrid PSO
algorithm is called HybridPSO2. The local search is described in Algorithm
2, where xk

i is the kth generation particle i. Particles are selected to update
their position by the local search after arriving at a new position when the DE
operation finishes. The local search is integrated in the hybrid PSO algorithm
and the whole hybrid algorithm is described in Algorithm 3, where in step 3,
only some particles arriving at new positions are selected to use the local search
(with probability plocal).

3.3 Discussion

Both hybrid PSO techniques weaken the effect of the global best position on all
particles. The way of using the DE operator here, in both hybrid PSO algorithms,
is different from other hybrid PSO techniques based on DE [8,9]. Unlike these
methods of alternating the use of standard PSO method and DE operators,
both hybrid PSO techniques here directly replace the standard PSO method
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Algorithm 2. Local Search
1: Let Δx0

i = xk+1
i − xk

i and itr = 0.

2: If f(xk+1
i ) > f(xk

i ), let Δx0
i = −Δx0

i .

3: If itr < nitr, go to step 4; otherwise go to step 7.

4: x′
i = xk+1

i + Δxitr
i .

5: If f(x′
i) > f(xk+1

i ), let Δxitr+1
i = Δxitr

i /2, otherwise xk+1
i = x′

i;

6: itr = itr + 1; go to step 3.

7: Finish the local search.

Algorithm 3. HybridPSO2
1: Initialise the particles, the local best positions and the global best position.

2: Use the DE operator to update each particle’s position using (3) and (4).

3: Randomly select some particles and perform local search on them using Algo-

rithm 2.

4: Update the current local best positions and the global best position.

5: If the maximum generation is reached, go to step 6; otherwise return to step 2.

6: Output the global best position particle as the solution.

by the DE operator. Weakening the influence from the global best position is
similar to the simplified recombinant PSO [2], but the method for updating
particle positions is different. In [2], each particle is affected by its history and
its neighbour’s history, however, each particle in HybridPSO1 and HybridPSO2
is affected by all particles.

4 Experimental Design

We now describe the test functions and parameter settings for our experiments.

4.1 Multi-modal and High-Dimensional Functions

In practical optimal design problems, objective functions often lead to multi-
modal domains. Multi-modal, high-dimensional functions often contain many
local minima and a single global optimum. As Section 2 mentioned, the Gen-
eralised Rastrigin function contains many local minima (Figure 1 shows the
two-dimensional Rastrigin function, i.e., with D = 2). These local optima make
many PSO variants fail to find the global solution [2,8,9,11].

A standard set of seven benchmark multi-modal functions are employed to
show the global optimisation performance of the proposed HybridPSO1 and
HybridPSO2. These problems each contain many local minima and a single
global optimum.

1. Generalised Schwefel 2.6

f1 = −
D∑

i=1

xi sin(
√
|xi|) xi ∈ [−500, 500] (5)
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Fig. 1. The two-dimensional Generalized Rastrigin function

2. Generalised Rastrigin

f2 =
D∑

i=1

{x2
i − 10 cos(2πxi) + 10} xi ∈ [−5.12, 5.12] (6)

3. Ackley

f3 = −20 exp

⎧⎨
⎩−0.2

√√√√ 1

D

D∑
i=1

x2
i

⎫⎬
⎭−exp

{
1

D

D∑
i=1

cos(2πxi)

}
+20+e xi ∈ [−32, 32]

(7)

4. Generalised Griewank

f4 =
1

4000

D∑
i=1

x2
i −

D∏
i=1

cos(
xi√
i
) + 1 xi ∈ [−600, 600] (8)

5. Penalised function P8

f5 =
π

D
{10 sin

2
(πy1)+

D−1∑
i=1

{1+10 sin
2
(πyi+1}+(yd−1)

2}+

D∑
i=1

μ(xi, 10, 100, 4)

where yi = 1 + 1
4
(xi + 1) xi ∈ [−50, 50] (9)

6. Penalised function P16

f6 = 0.1{10 sin2(3πx1) +
D−1∑
i=1

(xi − 1)2{1 + 10 sin2(3πxi+1)}+

(xd − 1)2{1 + sin2(2πxD)}}+
D∑

i=1

μ(xi, 5, 100, 4) xi ∈ [−50, 50] (10)
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where

μ(xi, a, k,m) =

⎧⎪⎨
⎪⎩
k(xi − a)m xi > a

0 −a ≤ xi ≤ a

k(−xi − a)m xi < a

7. Shifted Rastrigin

f7 =
D∑

i=1

{z2
i − 10 cos(2πzi) + 10} xi ∈ [−5.12, 5.12], zi = xi − oi (11)

where oi is a random value in [−5.12, 5.12].

The global optimal value of Generalized Schwefel 2.6 function is −12569.5, and
the global optimal values of all of the other six functions are zero.

4.2 Parameter Setting

In the literature, D = 30 and D = 100 are usually chosen to test algorithm
performance for solving multi-modal, high-dimensional functions, with D = 30
being the most popular setting. To evaluate the performance of the new hybrid
algorithms and compare with results reported for DM3-PSO [2], DEPSO [8]
and DE [8], D = 30 is selected. To compare with DM3-PSO [2], the number
of function evaluations in HybridPSO1 and HybridPSO2 are limited to 300000.
Table 1 shows the parameter values in the HybridPSO1 and HybridPSO2. We
run each function test 100 times randomly and independently. These parameter
values were chosen based on the literature.

5 Experimental Results and Discussion

We study the results from both hybrid algorithms and compare them with results
reported for DM3-PSO [2], DEPSO [8] and DE [8]. Table 2 shows the comparison.
The results for both SPSO and DM3-PSO come from [2]. Simply, values less
than 10−11 have been round to 0.0. For DEPSO and DE we only list the results
available from [8], which does not give the number of function evaluations.

Table 1. Parameter settings

Parameter Value

Population size 60

D (dimension) 30

nitr 4

plocal 0.05
F 1.2



320 W. Fu, M. Johnston, and M. Zhang

Table 2. Results for solving seven multi-modal functions: mean ± standard deviation of

best function values found from 100 replications. Here ‘±0.0’ means that all replications

found the global optima.

HybridPSO1 HybridPSO2 SPSO[2] DM3-PSO[2] DEPSO[8] DE[8]

f1 −12569.5 ± 0.0 −12569.5 ± 0.0 3522 ± 32 1830 ± 46 −12569.5 ± 0.0 −9639.5 ± 190
f2 0.0 ± 0.0 0.0 ± 0.0 140.156 ± 5.87 9.88 ± 0.86 0.0 ± 0.0 2.2 ± 1.8
f3 0.0 ± 0.0 0.0 ± 0.0 12.93 ± 1.59 0.0 ± 0.0 0.0 ± 0.0 (1.1 ± 0.2)10−5

f4 0.0 ± 0.0 0.0 ± 0.0 0.019 ± 0.004 0.0 ± 0.0 — —
f5 0.0 ± 0.0 0.0 ± 0.0 0.15 ± 0.05 0.0 ± 0.0 — —
f6 0.0 ± 0.0 0.0 ± 0.0 0.003 ± 0.001 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
f7 1.6 ± 1.5 0.14 ± 0.40 — — 55.0 ± 4.4 47.0 ± 7.2

From Table 2, it is found that DM3-PSO, HybridPSO1 and HybridPSO2 can
successfully converge to the global solutions of functions f3, f4, f5 and f6, but
DM3-PSO has difficulty with solving functions f1 and f2. HybridPSO1 and Hy-
bridPSO2 solve six of the multi-modal functions successfully, and gives a good
solution to f7. Especially for f2 (Generalised Rastrigin function), these other
PSO variants cannot even find the global solution [11]. In [8], DEPSO found the
global optima in 7.7 seconds on a 2.8GHz CPU. In HybridPSO1, it only takes
1 second for 300 000 function evaluations with 2.1GHz CPU. HybridPSO1 finds
the global value far less than 300 000 function evaluations (see From Figure 2).
DEPSO [8] took 10.8±0.2 seconds for solving function f3 and HybridPSO1 only
took about 1 second for finding the global optima. For finishing 300000 func-
tion evaluations, HybridPSO2 takes about 1 second. As a final test, the hybrid
PSO methods perform considerably better on f7 than DEPSO and DE. Based
on the analysis and comparison, HybridPSO1 and HybridPSO2 have excellent
performance in solving multi-modal and high-dimensional function optimisation
problems.

Figure 2 plots the best value against each generation (top figure) and against
the count of function evaluations (bottom figure), when using HybridPSO1 and
HybridPSO2 to optimise function f2. In both plots, the vertical axis represents
the best value seen so far, averaging over 100 independent trails. Their evolution
progress demonstrates HybridPSO2 converges faster to the global position in
the early stages based on the population generation. HybridPSO2 has a slightly
faster convergence speed to the global position in the early stages based on the
number of function evaluations, but its speed is slower than HybridPSO1 after
about 2.0× 104 evaluations.

Since we weaken the global best position effect, the whole population does
not appear to get trapped in one local optimal position, and both hybrid PSO
algorithms keep good population diversity. The local search appears to help
particles explore local optima, therefore HybridPSO2 accelerates the progress
of particles evolution in the early stage but at the expense of more function
evaluations.
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Fig. 2. The best function value for the 30-dimensional Generalised Rastrigin function

in each generation (top figure) and each count of function evaluations (bottom figure)

using HybridPSO1 and HybridPSO2

6 Conclusions

The goal of this paper was to investigate hybrid PSO approaches to optimise
multi-modal functions. The goal was successfully achieved by using a DE opera-
tor and integrating a local search. In both hybrid algorithms, the convergence to
local optima was successfully avoided, and the HybridPSO2 can converge faster
to global solutions than the HybridPSO1 in the early stages.

Two hybrid PSO algorithms were developed in this paper. HybridPSO1 re-
places the method in standard PSO with one DE operator and uses it to up-
date particles. HybridPSO2 integrates one local search operator based on Hy-
bridPSO1, explores the local optimal position in particles region. Both hybrid
PSO algorithms are effective to find the global solutions of the seven benchmark



322 W. Fu, M. Johnston, and M. Zhang

multi-modal and high-dimensional functions. In future work, we will investigate
further ways to use different local search operators to help particles fly to the
global best position.
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Abstract. We apply particle swarm optimisation to the detection of

edges and corners as low level features in noisy images and use these

features to recognise simple objects. In this approach, the edges and

the corners of an object are detected by a particle swarm optimisation

algorithm and then the object is classified based on the number of corners

and attributes of the edges by a simple fuzzy rule-based classifier. Several

simple geometric objects in different locations, scales, and orientations

have been used with a variety of impulse noise levels to assess the system.

This system can categorise images containing these simple objects with

high noise levels more accurately than an existing swarm-based edge and

corner detector.

1 Introduction

Detection of low level features in images such as edges and corners is a critical
element in image processing. These features can be detected without knowledge
of the objects in the real world [1]. One of the most important challenges of
edge and corner detectors is to detect the edges and corners in noisy images.
Many edge and corner detectors have been proposed to overcome noise such as
Gaussian-based [2], statistical-based [3], and scale space-based edge [4] and cor-
ner [5] detectors. Significant problems of the Gaussian-based edge detectors are
displacement, removed edges, false edges [2] and also malfunctioning at corners
[6]. The Gaussian filter used to remove noise in these methods often produces
thick edges [7]. Statistical methods such as t-detector [1] and robust rank-order
(RRO) detector [3] have been proposed to overcome the noise. These methods
operate on a large area in comparison to other edge detection methods, but these
methods are not based on an edge model, i.e., they are data-driven. Thus they
cannot recognise edge direction which is required for non-maxima suppression
(NMS) post-processing techniques. Scale space edge detectors operate on a large
area through generating different scales of images. These methods are very fast,
but their main problems are how to choose the size of the filters and how to
combine edge information from different scales [2].

Particle swarm optimisation (PSO) is a population-based evolutionary algo-
rithm for problem solving based on social-psychological principles, introduced
by Kennedy and Eberhart in 1995 [8]. Some advantages of PSO in comparison
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to other population-based evolutionary algorithms such as genetic algorithms
(GA) are ease of its implementation and high rate of convergence [9].

To date, PSO has been used in a number of vision applications such as object
detection, object classification and segmentation [10], but there is very little work
in which PSO has been applied to feature extraction such as edge and corner
detection directly. This paper proposes two novel edge and corner detectors that
use PSO to extract low level features of a noisy image such as its edges and
corners and then a fuzzy rule-based classifier is utilised to detect the object
through those features. This classifier uses the geometric attributes of the objects
to recognise some simple objects.

The main goal in this paper is to detect the edges and corners in noisy im-
ages without using any pre-processing algorithm to remove the noise and any
post processing algorithm to link the edges. Both newly designed detectors are
compared to a swarm-based edge and corner detector proposed in [11] through
applying the fuzzy rule-based classifier to the extracted features. The newly
designed edge detector is based on identifying the boundaries of homogeneous
regions in an image based on pixel intensity.

2 Background

This section describes some background on PSO, and edge and corner detection
approaches.

2.1 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is a global optimisation method, inspired by
the social behavior of animals and other biological populations [12]; it simulates
a simplified social model such as flocking of birds and schooling of fish. PSO was
originally an optimisation method for continuous nonlinear functions; however,
some discrete versions of PSO have also been proposed [13]. In PSO, there is a
finite population of individual solutions (called particles), each having a memory
of previous states [14]. Recently, PSO has been noted by researchers because of
ease of its implementation, fewer operations in comparison to other heuristic
algorithms, and high speed of global convergence [15,9].

In the basic PSO, there is a population of m particles that “fly” through an
n-dimensional search space. The position of the ith particle is represented as the
vector Xi = (xi1, xi1, ..., xin) and is changed according to its own experience
and that of its neighbours. Let Xi(t) denote the position of particle Pi at time
t. Then Xi is changed at each iteration of PSO by adding a velocity V i(t), i.e.,

Xi(t + 1) = Xi(t) + V i(t + 1). (1)

The velocity is updated based on three components: current motion, particle
memory influence, and swarm influence, i.e.,

V i(t+1) = wV i(t)+C1Rand1(Xpbesti−Xi(t))+C2Rand2(X leader−Xi(t)) (2)
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where Rand1, and Rand2 are uniform random variables between 0 and 1. Here,
w denotes an inertia weight which controls the impact of the previous velocity;
C1 (called self confidence) and C2 (called swarm confidence) are learning factors
that represent the attraction of a particle toward either its own success or that
of its neighbours; Xpbesti denotes the best position of the ith particle so far; and
X leader is the position of a particle (the leader) which is used to guide other
particles toward better regions of the search space. The leader of each particle
is specified by a connected neighborhood topology represented as a graph [8].

2.2 Previous Approaches to Edge Detection

The edge detection task is to find the boundaries of image regions based on prop-
erties such as intensity and texture [3]. It is a critical low-level process of image
processing because edges carry useful information. Applying an edge detector to
an image considerably reduces the amount of the data to be processed, but it
preserves the main shape of the objects present in an image. The shape of the
edges depends on many parameters such as geometrical and optical properties
of an image, illumination condition, and also noise level in the image [16]. Edge
detection typically results in an edge map which describes the classification of
each pixel of the image, as well as some other edge attributes such as magnitude
and orientation [17].

A popular edge detection algorithm is based on the homogeneity operator
which subtracts each of the eight surrounding pixel intensities from the center
pixel of a 3× 3 window, i.e.,

HP =
{

max{|IP − INi|, i = 1, . . . , 8} if > threshold
0 otherwise (3)

where P is the particular pixel for which we are going to calculate HP , Ni is ith

neighbourhood of pixel P, IP is the intensity of pixel P, and threshold is a user
specified value.

2.3 Corner Detection as Interest Point Detection

In computer vision terminology, a corner is defined as an interest point that is
created through an intersection of two or more edges. There are many approaches
proposed in the literature [18,19,20]. Most of these approaches need complicated
computations and some of them are poor in detection rate, localisation, repeata-
bility rate, robustness to noise and speed aspects [21]. A recent overview can be
seen in [22].

3 PSO for Low Level Feature Extraction

The approach proposed in this paper is to simplify an image into a list of ge-
ometric properties such as edges (with orientations) and corners (with angles),
suitable for analysis by a classifier system, such as a rule-based system. Our
proposed system consists of two main parts: a PSO-based edge detection algo-
rithm and a PSO-based corner detection algorithm. Previously, we introduced a
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(a) (c)
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(b) (d)

Fig. 1. (a) An example for a curve passing through pixel A and (b) particle encoding

for this curve. (c) An example for a corner composed by two curves and (d) particle

encoding for this corner.

PSO-based edge detection algorithm [23]. In this paper, we improve it to detect
the edges of an image through a better fitness function. The PSO-based corner
detection introduced in this paper is designed to accurately detect the corners
of an image, especially in noisy environments.

3.1 PSO-Based Algorithm for Edge Detection

We adopt the edge detection algorithm from [23], which finds the best fitting
edge as a collection of pixels which are on a continuous curve. This PSO-based
algorithm is applied to each pixel in an image to detect the best curve which can
be fitted that passes through each pixel. In the ideal case, the result of applying
an edge detector to an image will lead to a set of connected curves that indicate
the boundaries of objects.

In each particle, the value of each attribute is an integer in the range 0 to
8. These values represent the direction of the movement from a pixel to one of
the eight possible adjacent pixels in its neighbourhood along a connected curve.
Hence, a particle is represented as 〈d1, d2, . . . , dmax〉, where max is the maximum
number of pixels on a curve (depending on the image size). If the number of pixels
on a curve is less than the dimension of a particle, the remaining cells will be
set to zero. For example, the curve passing through a point corresponding with
a pixel A in Figure 1a is encoded as in Figure 1b.

We expect that a large number of pixels on an edge of an image will have
the same or similar intensity. However, the homogeneity of these pixels must be
larger than the homogeneity of the pixels which are not on an edge. Therefore,
we define two factors of a curve, the homogeneity and uniformity factors. The
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Algorithm 1. PSO-based edge detection algorithm
1: For each pixel P on an image do

2: If P is not marked as an edge then

3: Initialize PSO population randomly for pixel P
4: Repeat

5: For each particle (decoded as curve C) do

6: Evaluate HC (4), LC (5), UC (6) and fC (7)

7: Update best particle if fC is better than the best fitness value

8: For each particle do

9: Find local best particle from neighbourhood

10: Calculate particle velocity (2) and apply velocity constriction

11: Update particle position (1) and apply position constriction

12: Until maximum iterations exceeded or minimum error criteria attained

13: Select best particle in the population and decode it as curve C∗

14: If LC∗ > MinL then mark all pixels on curve C as an edge

homogeneity factor of a curve is the average of the homogeneity of the pixels on
a curve, i.e.,

HC =
1
LC

∑
Pi∈C

HPi
(4)

where Pi is the ith pixel on the curve C and LC is the length of a curve C, given
by

LC =
∑

Pi∈C

{
1 if dPi is horizontal or vertical√

2 otherwise
(5)

and HPi is calculated by using equation (3). The uniformity factor of a curve
measures the similarity of pixel intensities along the curve, i.e.,

UC =
1
LC

LC−1∑
i=1

|IPi+1 − IP | (6)

As we search over curves which pass through a given pixel, we expect to maximize
the homogeneity factor and length of the curve and minimize the uniformity fac-
tor. Hence we propose the following objective function (to maximize). However,
if the curve C crosses itself, the value of fC is set to −∞.

fC =
{

(HC − UC)LC if HC ≥ threshold
−∞ otherwise (7)

Algorithm 1 outlines our PSO-based edge detection algorithm. Here, MinL is
the minimum length of a curve in an image and has the effect of removing noise.

3.2 New PSO-Based Algorithm for Corner Detection

After applying the PSO-based edge detection algorithm (Algorithm 1), all present
edges on an image have been marked. We propose to then apply the following
PSO-based corner detection algorithm to find all corners which are created by
two or more detected edges.
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Algorithm 2. PSO-based corner detection algorithm
1: For each edge E detected by Algorithm 1 on an image do

2: Initialize PSO population randomly for the edge E
3: Repeat

4: For each particle (decoded as corner) do

5: Evaluate θcorner and fcorner (8)

6: Update best particle if fcorner is better than the best fitness value

7: For each particle do

8: Find local best particle from neighbourhood

9: Calculate particle velocity (2) and apply velocity constriction

10: Update particle position (1) and apply position constriction

11: Until maximum iterations exceeded or minimum error criteria attained

12: Select best particle in the population, decode and mark it as a corner

Each corner is composed of at least two curves that intersect each other at
one point. Therefore, to describe a corner, each particle encodes two curves
together. If the maximum length of each curve is 7, then the length of each
corner particle will be 14. The value of each element is an integer in the range
0 to 8, again representing the direction of the movement on two curves which
create the corner. Hence, each particle in the PSO population can be presented
as 〈d1, . . . , d14〉. For example, the corner in Figure 1c is composed of two curves
in different directions (direction 1 and direction 2) that intersect each other at
the red pixel. Elements 1 to 7 indicate the curve in direction 1 and elements 8
to 14 indicate the curve in direction 2. Therefore, the corner is encoded as in
Figure 1d.

We propose an objective function (to be minimized) as

fcorner =
{
|θ| if 10 ≤ |θ| ≤ 170
−∞ otherwise (8)

where θ estimates the angle (in degrees) between two curves that make a corner,
using an average direction several pixels along each of the two curves.

θ = tan−1
(

gradient1−gradient2
1+gradient1×gradient2

)
, where gradienti =

∑
di∈Cdirectioni

Δydi∑
di∈Cdirectioni

Δxdi

Δxdi =

⎧⎪⎨
⎪⎩
−1 di = 0, 6, 7
0 di = 1, 5
1 di = 2, 3, 4

Δydi =

⎧⎪⎨
⎪⎩
−1 di = 0, 1, 2
0 di = 3, 7
1 di = 4, 5, 6

Algorithm 2 outlines our PSO-based corner detection algorithm.

4 Experimental Design

To examine the effectiveness of the proposed PSO algorithms for edge and corner
detection, we designed two sets of experiments. In the first set, we will directly
check the detected edges and corners of images. Similarly to [11], in the second
set, we will use a simple fuzzy rule-based classifier to detect simple objects
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(a)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

(b)

Fig. 2. (a) Simple test shapes (generated randomly in different positions, scales, and

orientations) and (b) some of their noisy images in 10 different impulse noise levels

which are used in the experiment to assess the system

in the images based on the detected corners and edges. The results will be
compared with the approach proposed in [11]. The rest of this section describes
the parameter settings of the PSO system, the image data set, and the simple
fuzzy rules used for object detection.

PSO System. The PSO-based edge and corner detection algorithm used a
population size of 10 and a maximum of 200 iterations. The minimum length
of a curve in the PSO-based edge detection algorithm, MinL was set at 5, and
the maximum length of a curve restricted to 50. These values were chosen based
on initial experiments. Following [8,12], we used the values w = 1, C1 = 2 and
C2 = 2 for the parameters in (Eq. 2).

Test Image Sets. We tested the system on images containing five variants
of simple shapes (squares, circles, crosses, rectangles and triangles) in differ-
ent locations, scales and orientations, and in ten different impulse noise levels
(0, 10, 20, . . . , 90%). The image set includes 5000 images of size 256× 256 pixels.
Some of them are shown in Figure 2a. Examples of the noisy images containing
circles and crosses are shown in Figure 2b.

Simple Fuzzy Rule-Based Classifier for Detection of Simple Objects.
The fuzzy rule-based classifier has been used because of its simplicity. The sys-
tem has been designed based on the Mamadani form of fuzzy inference system
proposed in [24]. The system classifies the shapes based on extracted geometric
attributes from the image. Extracted geometric attributes include the number
of pixels on the horizontal, vertical and diagonal edges separately, and also the
number of corners that are found in an image by the edge and corner detec-
tion algorithms shown in the previous subsections. The rules designed to classify
the objects are shown in Table 1. This system applies these rules to the input
parameters (information about of the corners and the edges) and classifies the
simple objects. Fuzzy membership functions used in this system are triangular
because they are easily designed and implemented.
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(a) (b) (c) (d)

Fig. 3. Four results of the PSO-based algorithm for edge detection: (a) the edges of a

cross in an image with 10% noise; (b) the edges of a cross in an image with 30% noise;

(c) the edges of a circle in an image with 10% noise; (d) the edges of a circle in an

image with 30% noise.

5 Results and Discussion

Results of edge and corner detection. Figure 3 shows the resulting images
by applying the PSO-based edge detection algorithm on four images of the test
image set at different noise levels. The results on other images show a similar
pattern as long as the noise level is 50% or less. We observe that the algorithm
appears to detect the edges well without any preprocessing even in noisy envi-
ronments.

Figure 4 shows the resulting images from applying the PSO-based corner
detection algorithm on four images. We observe that our algorithm can detect
the corners well without any preprocessing even in noisy environments with a
noise level of 50% or less.

Results on Object Detection. Table 2 shows classification rates for the de-
tection of simple objects. The system appears to classify the objects well in
different locations, scales and orientations without any noise. Representation of
small circles in digital images makes it hard to recognise the circular objects for
this system; however Table 2 shows that the classification rate for the circle is
0.98 in non-noisy images. The performance of the system is acceptable for im-
ages with noise level less than 30% but it reduces with increasing noise level. In
comparison to the results from [11] (see Table 2), our PSO-based approaches ap-
pear to give results that are at least as good and often better (except for highly

Table 1. Fuzzy rule-based classifier. NC : number of corners detected by the algorithm

Object Condition

Cross NC ≈ 12

Rectangle NC ≈ 4 and for all corners θ ≈ 90

Square Rectangle and number of edges in different directions almost

equal or zero

Triangle NC ≈ 3

Circle NC ≈ 0 and number of edges in different directions almost equal
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(a) (b) (c) (d)

Fig. 4. Four results of the PSO-based algorithm for corner detection: (a) the corners

of a cross in an image with 10% noise; (b) the corners of a cross in an image with 30%

noise; (c) a circle without any corners in an image with 10% noise; (d) the corners of

a triangle in an image with 10% noise.

Table 2. Classification rates for detection of simple objects in noisy environments

(there are 100 images for each simple shape in every noise levels and the algorithm

runs 20 times for each image). (b) Classification rates for object detection in noisy

environments proposed in [11].

Noise
Rectangle Cross Triangle Circle Square

(a) (b) (a) (b) (a) (b) (a) (b) (a) (b)

0% 1 1 1 1 1 1 0.98 0.7 1 1

10% 1 1 1 0.9 1 1 0.92 0.8 1 0.8

20% 1 1 1 0.8 1 1 0.9 0.7 0.92 0.5

30% 1 0.9 1 0.4 1 1 0.86 0.6 0.84 0.7

40% 0.90 0.9 0.81 0.7 1 0.9 0.77 0.5 0.72 0.3

50% 0.75 0.9 0.64 0.5 0.81 0.9 0.69 0.2 0.63 0.3

60% 0.69 0.7 0.50 0.2 0.62 0.9 0.71 0.4 0.52 0.2

70% 0.55 0.4 0.31 0.2 0.49 0.8 0.57 0.2 0.45 0.2

80% 0.47 0.3 0.17 0.3 0.33 0.6 0.46 0.1 0.39 0.3

90% 0.40 0.2 0 0 0.25 0.2 0.40 0.3 0.31 0.3

noisy triangles). It should be noted that our image set is harder than that used
in [11]. Our images contain five variants of simple shapes in different locations,
scales, and orientations, but images used in [11] contain the same shapes only
in different locations. All triangles used in [11] are only equilateral, while in our
system the triangles are equilateral, isosceles and scalene.

6 Conclusions

In this paper, two PSO-based approaches to the detection of edges and cor-
ners have been proposed. This was successfully achieved by introducing two new
PSO-based algorithms for edge and corner detection, and the performance of
the system was tested by recognition of the simple objects in different noise
levels and compared with the system proposed in [11]. The results show that
our system generally outperforms the system proposed in [11]. In addition, our
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system can detect simple objects in noisy images without using any preprocess-
ing and post processing algorithms. However, the current version of the system
takes a relatively longer time than the swarm-based system proposed in [11].
We will further investigate new ways of overcoming this limitation in the future
through finding better fitness functions and also applying a search mechanism
to handle constraints better in the PSO. We will also compare accuracy of the
newly developed algorithms to some state-of-the art edge and corner detectors
such as t-detector, modified version of Canny edge detector (using ant colony
optimisation), and also scale space-based edge and corner detectors.
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Abstract. Artificial Fish Swarm Algorithm (AFSA) is a kind of swarm 
intelligence algorithms which is usually employed in optimization problems. 
There are many parameters to adjust in AFSA like visual and step. Through 
constant initializing of visual and step parameters, algorithm is only able to do 
local searching or global searching. In this paper, two new adaptive methods 
based on fuzzy systems are proposed to control the visual and step parameters 
during the AFSA execution in order to control the capability of global and local 
searching adaptively. First method uniformly adjusts the visual and step of all 
fish whereas in the second method, each artificial fish has its own fuzzy 
controller for adjusting its visual and step parameters. Evaluations of the 
proposed methods were performed on eight well known benchmark functions in 
comparison with standard AFSA and Particle Swarm Optimization (PSO). The 
overall results show that proposed algorithm can be effective surprisingly.   

Keywords: Artificial Fish Swarm Algorithm (AFSA), particle Swarm 
Optimization (PSO), fuzzy system, global search, local search. 

1   Introduction 

Solving the optimization problems is one of the challenging issues that computer 
scientists always grapple with.  Among the algorithms, swarm intelligence algorithms 
have been proved their capabilities in solving such problems. Among them Particle 
Swarm Optimization (PSO) [1] and Ant Colony Optimization (ACO) [2] are the most 
well-known algorithms that have been ever proposed. These algorithms have some 
characteristics that make them suitable for solving optimization problems, like 
scalability, fault tolerance, consistency, higher speed, flexibility, parallelism, etc.  

Artificial fish swarm algorithm (AFSA) [3], proposed by Li Xiao Lei in 2002, is a 
stochastic population-based algorithm motivated by intelligent collective behavior of 
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fish groups in nature. AFSA has characteristics such as non-sensitive initial artificial 
fish location, flexibility and fault tolerant. It has been applied on different problems 
including fuzzy clustering [4], Resource Leveling [5], optimization of PID controller 
parameters [6], spread spectrum code estimation [7], data mining [8], optimization of 
DNA encoding sequence [9], etc. 

In AFSA, a population of artificial fish exists which move towards an objective by 
performing some behaviors inspired form nature. These behaviors are Swarm, Follow, 
Prey and Movement. Artificial fish do the optimization process by performing the 
behaviors [4][6][7][9]. 

At its time, AFSA has not been comprehensively accepted by scientists for some 
reasons. High computational complexity, difficult implementation of the algorithm 
and the results not significantly better than similar algorithms can be noted here.  In 
fact, algorithms such as PSO with less computational complexity are easier to 
implement and the results obtained from different versions of PSO show better 
performances than AFSA. It is worth mentioning that AFSA is not a version of PSO 
and differs significantly from PSO. One of the outstanding differences between these 
two algorithms is that particles in PSO move just based on the past movements and 
their previous experiences in the problem environment. Nevertheless, artificial fish 
movements depend on their current positions and other members of the group 
situations. Accordingly, movements of the fish differ from particles. 

There are two important parameters in AFSA: Visual and Step. Artificial Fish 
search the problem environment as broad as their Visual, and then they move toward 
the target based on the random value of the step in each iteration. In standard AFSA 
initial values for these parameters have a great affect on the final result because of the 
fact that they remain constant and equal to the initial values until the end of algorithm.  
If larger initial values for Visual and Step is selected, artificial fish swarm move faster 
toward the global optimum and is more capable of passing the local optimums. 
Selecting lower values for these parameters causes better results in local searching.  

In this paper, two fuzzy adaptive methods have been proposed that regulate the 
visual and step of artificial fish. First method generates a weight based on two inputs: 
ratio of the improved fish and iteration number. Visual and step are multiplied by the 
weight to attain the next iteration values for these parameter. It is important to 
mention that in the first method, which is called Fuzzy Uniform Fish (FUF) here, 
parameters of visual and step of all artificial fish are adjusted by a global weight 
attained from fuzzy controller output. The second method, Fuzzy Autonomous Fish 
(FAF), combines inputs like distance from the best artificial fish, fitness ranking of 
the current fish and iteration number for each fish. These parameters are used to 
create a weight value in order to adjust the visual and step in the next iteration. 

Experiment results show the proposed method produced better outcomes in 
comparison to standard AFSA. To achieve better balance between local and global 
searching, the proposed algorithm has employed some fuzzy rules. As a consequence, 
the algorithm searching efficiency and convergence speed to the global optimum has 
been improved considerably. 

Previously, a parameter which is called inertia weight has been applied on particle 
swarm optimization (PSO) algorithm by Shi and Eberhart [10]. Output of the 
proposed fuzzy engines here plays a similar role to the inertia weight in PSO.  
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This paper is organized as follows. Section 2 presents the fuzzy approaches in 
detail through the introduction of input parameters, output weight and fuzzy decision 
strategy. Section 3 experimentally compares the proposed methods with PSO 
algorithm and Standard AFSA using a set of benchmark functions. Finally, 
conclusions are drawn in Section 4. 

2   Proposed Algorithms 

In nature, fish swarms members have a certain visual which directly depends on the 
fish type, environment conditions (e.g. water fog) and around obstacles (e.g. water 
plants and other fish). When the swarm moves towards a target (e.g. food) as much as 
it converges on, visibility is reduced due to density. Here, the main motivation of our 
work is to implement this natural reality for the artificial fish. 

In AFSA, artificial fish search the problem environment based on their visual and 
then they move towards the target by a random value of their step. Determination of 
the initial values of the step and visual influence on the final result essentially. Values 
of these parameters remain constant and equal to the initial values during the 
algorithm execution. If greater initial values have been considered for these 
parameters, artificial fish swarm will move faster towards the global optimum 
because artificial fish are able to search bigger environment around them and move 
with bigger step in each iteration. Under such circumstances, artificial fish are more 
powerful in escaping from the local optimums. Incidentally, there are some 
deficiencies in larger values of step and visual. Accuracy and consistency of the 
algorithm will decrease in such situation. 

In fact, the algorithm acts better in global searching, but after approaching the 
global optimum, it is incapable of an appropriate local search because of the fact that 
the visual is larger than it should be. Therefore, owing to the large value of the visual, 
positions with better fitness are unlikely to be found and fish will pass the global 
optimum, even they may go far from it. Considering smaller values for these 
parameters make algorithm more consistent and accurate but it causes the algorithm 
to move towards the target more slowly and incapable of escaping local optimums.  

Based on the above facts, in order to get better results, larger initial value for 
visual and step is selected first. Afterward, it is reduced during the algorithm 
execution adaptively. As a result, fish move towards the target quickly and are more 
capable of escaping local optimums. Finally, by approaching the target, artificial fish 
can accurately investigate the environment by smaller Visual and Step. 

In order to control values of step and visual and balancing between global search 
and local search, a novel parameter, called Constriction Weight here, is proposed. 
Weight has to be greater than 0 and smaller than 1. Current iteration visual and step 
values are calculated according to the following formulas in presence of weight 
parameter: 
 

                                            (1) 
 

                                             (2) 

1−×= itritr VisualCWVisual

1−×= itritr StepCWStep
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Where CW is Constriction Weight which is generated as a output of the proposed 
fuzzy engines described in the following parts of this paper. Visualitr and Stepitr stand 
for the current iteration visual and step and Visualitr-1 and Stepitr-1 is the pervious 
iteration visual and step respectively.  

With the purpose of attaining better values for the visual and step two different 
fuzzy methods for calculating the weight have been proposed here. 

2.1   Fuzzy Uniform Fish (FUF) 

In this method, weight is a value between 0 and 1 that is calculated as an output of 
the fuzzy engine. All of the fish in the swarm then adjust their visual and step based 
on the output weight. The proposed fuzzy engine has two inputs and one output: 
Iteration number and ratio of improved fish as inputs and constriction weight as an 
output. Iteration Number, normalized between 0 and 1, is the proportion of the 
current iteration number to the final iteration number. In fact, visual and step 
parameters must be larger in initial iterations to achieve better global searching. 
Therefore, visual and step values decreases smoothly in initial iterations of the 
algorithm execution. Progress of the algorithm causes the artificial fish come close 
to the global optimum of the problem. So, in order to increasing the local search 
capability of the algorithm, visual and step parameters must be reduced by larger 
amounts. As a result artificial fish are able to search the global optimum more 
keenly. Considering the above facts, by approaching to the final iterations, the 
proposed fuzzy engine increases the constriction weight to reduce the visual and 
step more sharply. 

Ratio of Improved Fish is the proportion of the number of fish that find better 
positions in problem space (points with higher fitness) to the total number of fish in 
comparison with previous iteration.  

When most of the artificial fish find better positions compared with previous 
iteration, visual and step parameter are suitable. Therefore, there is no need to reduce 
them. In this situation Ratio of Improved Fish value is a number close to 1. 
Conversely, when most of the artificial fish do not experience any improvement rather 
than previous iteration the constriction weight must be increased to reduce the visual 
and step. Act of reducing visual and step raises the probability of the finding positions 
with better fitness values due to the fact that it increases the local searching capability 
of the fish. Considering the above facts, the proposed fuzzy engine increases the 
constriction weight by reduction of the ratio of the improved fish value and vice 
versa. Figures 1(a) and 1(b) show the membership functions for Inputs: Iteration 
Number and Ratio of Improved Fish.  

Constriction Weight is the output of the fuzzy engine which has the membership 
functions of figure 1(c). The proposed fuzzy engine, which is a Mamdani fuzzy 
inference system with centroid of area defuzzification strategy, uses the rules shown 
in the fuzzy associative memory in Table 1. 
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Table 2. Fuzzy associative memory for the proposed FAF engine. VL: very low, L: low, M: 
mid, H: high and VH: very high. 

Distance 
from Best 

Fitness 
Ranking 

Iteration 
Number Weight Distance 

from Best 
Fitness 

Ranking 
Iteration 
Number Weight 
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3   Experimental Results 

In this section, eight benchmark functions are tested for the sake of comparison. All 
of them are standard test functions. Table 3 shows name of the functions, their 
equations and search space for each function [11].  

Table 3. Eight test functions used in this paper 

Name of 
Function Function Search Space 

Ackly  32 32 

Sphere  100 100 

Griewank 
 600 600 

Schwefel’s2.22  10 10 

Step  100 100 

Rastrigin  5.12 5.12 

Non continuous 
Rastrigin 

 5.12 5.12 
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In experiments, initial values for Visual and Step has been considered 40% and 25% 
of the range length of the fitness function variables respectively (For example range 
length of the fitness function variables in Ackly function is 64). Crowd factor is 0.5, 
maximum try-number is 10 and population number in standard AFSA, FAF and FUF is 
30. In global version of PSO (GPSO) [10], inertia weight value linearly decreases from 
0.9 to 0.4 during the algorithm execution. The population size is equal to 5*D where D 
is the problem dimensions. At last, parameters c1 and c2 have been set in form of c1 = c2 
= 2. Experiments repeated 100 times; best, mean and standard deviation obtained from 
running of standard AFSA, FUF, FAF, and GPSO in 30-dimensional spaces on eight 
benchmark functions for 1000 Iterations have been reported on Tables 4.  

As it is shown in table 4 and figure 3, in standard-AFSA, since the visual and step 
parameter are constant during the algorithm execution, algorithm is not able to reach 
the acceptable results in none of the benchmark functions. The main reason for this 
deficiency is that the algorithm is not sufficient flexible in different situations with 
which group are faced in problem the space. In other words, algorithm shows a 
uniform behavior in every possible situation and is not able to keep the balance 
between global and local searching. 

Table 4. Comparison of Standard AFSA, GPSO, FAF and FUF on eight benchmark functions 

Function Algorithm Min Mean Std.Dev 

Ackly 

Std.AFSA 5.7284 6.8145 0.5602 
GPSO 1.8082e-04 7.4578e-04 3.6421e-04 
FUF 1.3322e-14 1.6875e-14 3.2601e-15 
FAF 1.3322e-14 1.7941e-14 3.3704e-15 

Sphere 

Std.AFSA 4.1020+02 7.2819+02 1.8326e+02 
GPSO 3.3124e-07 5.1620e-06 9.0477e-06 
FUF 4.4040e-49 7.0516e-49 1.5620e-49 
FAF 1.2361e-68 8.8204e-63 2.7849e-62 

Griewank 

Std.AFSA 4.0010 6.9563 1.5048 
GPSO 1.2028e-05 0.0390 0.1008 
FUF 2.2204e-16 3.6637e-16 1.0865e-16 
FAF 4.4408e-16 7.54951e-16 1.8724e-16 

Schwefel’s2.22 

Std.AFSA 7.2255 9.7531 1.0017 
GPSO 1.1192e-04 3.0191 4.1696 
FUF 7.1387e-21 9.5280e-16 3.9264e-15 
FAF 1.8153e-08 3.9340e-04 0.0010 

Step 

Std.AFSA 383 667.6500 184.6787 
GPSO 0 0 0 
FUF 0 0 0 
FAF 0 0 0 

Rastrigin 

Std.AFSA 77.5419 162.0464 34.2185 
GPSO 21.9819 41.6566 9.5776 
FUF 0 0.5472 1.0447 
FAF 0 0.5969 1.3846 

Noncontinuous 
Rastrigin 

Std.AFSA 76.3466 139.1457 18.8128 
GPSO 28.3333 74.3343 32.0512 
FUF 0 1.0500 1.1909 
FAF 0 2.3773 2.6676 

Generalized 
Penalized 

Std.AFSA 2.6573 5.1480 1.2510 
GPSO 1.9245e-06 0.0618 0.1120 
FUF 3.6357e-32 1.8239e-30 4.7910e-30 
FAF 3.7648e-32 1.3889e-17 4.7272e-17 
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Fig. 3. Comparison of the average results of Std-AFSA, GPSO, FAF and FUF on 30- 
Dimensional (a) Ackly, (b) Sphere, (c) Griewank, (d) Schwefel 2.22, (e) Step, (f) Rastrigin, (g) 
Noncontinues Rastrigin and (g) Generalized Penalized functions in 1000 iterations. 

Results show that proposed algorithms, FAF and FUF, considerably improved the 
effectiveness. The main reason is that the proposed algorithms dynamically decrease the 
visual and step parameter based on the output of the fuzzy systems which act according 
the group position. Therefore, during the algorithm execution, capability of the 
algorithm in global searching gradually decreases and capability of it in local searching 
increases. Artificial fish pass the local optimum more rapidly, and then they search 
around global optimum more accurately after converging to the global optimum. 
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Both of the proposed algorithms attain similar results on Ackly, Griewank, Step and 
Rastrigin. However, in Sphere which a function without a local optimum, FAF 
produces better results than FUF. Actually, because of the diversity in visual and step 
values among the artificial fish, FAF is more capable in local searching. This can be 
adverse in some functions like Generalized Penalized and Schwefel’s2.22. In FAF, 
when an artificial fish continually experiences higher ranks, it reduce its visual and step 
faster, subsequently, it become frozen finally. In general we can say that the proposed 
algorithms are more efficient than Standard-AFSA and Global version of PSO. 

4   Conclusion 

In this paper, two modified AFSA algorithms have been proposed. Proposed 
algorithms take the members group position into account in adjusting the visual and 
step parameter. Our experimental results show AFSA with an appropriate adaptive 
visual and step can acts better than standard AFSA and other similar optimization 
algorithms like PSO. Two introduced fuzzy engine bring a significant improvement 
on the AFSA performance. Various simulations have been performed to support it. 
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Abstract. Relationships are fundamental to all but the most impersonal forms of
interaction in business. Human agents who are unsure of themselves seek hon-
ourable trading relationships. The establishment and growth of interpersonal re-
lationships is a result of reciprocal exchange of information. This paper addresses
the problem of use of information for developing and utilising relationships be-
tween negotiating agents. The presence of measurable information on the Internet
underpins the philosophy of transparency in electronic business, which has an im-
pact on the behaviour of involved agents. It takes ‘two to tango’ for conducting
business in such a ‘net landscape’ where communities and cliques emerge, shape
and evolve. The paper presents a formalism for electronic negotiation technology
that treats relationships as a commodity. It supports relationship building, main-
taining, evolving, and passing to other agents, and utilises such relationships in
agent interaction. The Honourable Negotiator also takes in account information
about the relationships in networks of respective agents outside the trading space.

1 Introduction

Relationships are fundamental to all but the most impersonal forms of interaction in
business. Human agents who are unsure of themselves seek honourable trading rela-
tionships.Through interactions, including information sharing over Internet social net-
working sites, agents are connected in various social networks, which provide data for
modeling and analysis of the emerging relationships. The presence of such measurable
information underpins the philosophy of transparency in electronic business, which has
an impact on the behaviour of involved agents. The interplay between information, re-
lated directly to negotiation issues and negotiation in electronic business has been stud-
ied in our earlier work on the ‘Curious Negotiator’ [15]. It is founded on the intuition
that “it’s what you know that matters”. Its development deployed (i) information theory,
including entropy-based (random worlds) inference, for forming negotiation strategies
[5,13]; (ii) information mining and delivery techniques [1,18]; and (iii) virtual institu-
tions as the operational environment [5]. This body of work did not consider the use
of information for developing relationships between negotiators. This is the research
problem addressed in this paper.
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According to social penetration theory [3] the establishment and growth of interper-
sonal relationships is a result of reciprocal exchange of information. Such exchange
starts with relatively non-intimate topics and gradually progresses to more personal and
private topics. These encapsulate the philosophy behind the ‘Honourable Negotiator’
— an agency where agents are capable of establishing and reshaping relationships with
other agents to compensate for the lack of understanding of their own preferences over
negotiation outcomes. In brief, an agent aims to secure projected needs by attempting
to build a set of (business) relationships with other agents. A relationship is built by
exchanging private information, and is characterised by its intimacy — degree of close-
ness — and balance — degree of fairness. Each argumentative interaction between two
agents then has two goals: to satisfy some immediate need, and to do so in a way that
develops the relationship in a desired direction. As a very simple example, if I don’t
know anything about how red wine should be cellared then I look for an honourable
wine merchant who does.

There is evidence from psychological studies that humans seek a balance in their
working relationships. The classical view [2] is that people perceive resource alloca-
tions as being distributively fair (i.e. well balanced) if they are proportional to inputs
or contributions (i.e. equitable). However, more recent studies [16,17] show that hu-
mans follow a richer set of norms of distributive justice depending on their intimacy
level: equity, equality, and need. The perception of a relation being in balance (i.e. fair)
depends strongly on the nature of the social relationships between individuals (i.e. the
intimacy level). In purely economical relationships (e.g., business), equity is perceived
as more fair; in relations where joint action or fostering of social relationships are the
goal (e.g. friends), equality is perceived as more fair; and in situations where personal
development or personal welfare are the goal (e.g. family), allocations are usually based
on need. According to [16,17], the more intimacy across the illocutionary categories the
more the need norm is used, and the less intimacy the more the equity norm is used.

The contribution of this paper is in the development of the formalisms that (i) enable
agents to build, manage and utilise in negotiation social relationships based of informa-
tion exchange between them, and; (ii) enable agents to obtain the external information
related to relationships that they need. Further the paper is organised as follows. Re-
lationships are formalised and incorprated in agents strategies in Section 2, including
the agent architecture in Section 2.1. Section 2.2 describes an elaborate means of mea-
suring the intimacy — degree of closeness — and balance — degree of fairness —
that is based on measures of the information in any utterance. Section 2.3 describes the
argumentation framework. Section 3 presents the machinery for extracting and incorpo-
rating relevant information from external sources, including partner prediction and the
software architecture. Section 4 concludes the paper.

2 Information-Based Agency That Handles Relationships

This work continues the development of information-based agency [13]. An
information-based agent has an identity, values, needs, plans and strategies all of which
are expressed using a fixed ontology in probabilistic logic for internal representation
and in an illocutionary language for communication. All of the forgoing is represented
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in the agent’s deliberative machinery. We assume that such an agent resides in a vir-
tual institution [4] and is aware of the prevailing norms and interaction protocols. An
information-based agent makes no a priori assumptions about the states of the world
or the other agents in it — these are represented in a world model, Mt, that is in-
ferred solely from the messages that it receives. The intuition behind information-based
agency is that all illocutionary acts (like Offer, Accept and Reject) give away (valuable)
information. Previous work has been centred on the design of interaction strategies and
on proposing agent architectures able to deal with the exchange of offers [9,6]. Game
theory [12], possibilistic logic [7] and first-order logic [11] have been used for this
purpose. Some initial steps in proposing rhetoric particles have been made, especially
around the idea of appeals, rewards and threats [14]. Expanded dialogues, including
these and other rhetoric moves, are known as argumentation-based interactions. Argu-
mentation in this sense is mainly to do with building (business) relationships. When we
reward or threaten we refer to a future instant of time where the reward or threat will be
effective, its scope goes beyond the current negotiation round.

A multiagent system {α, β1, . . . , βn, ξ, θ1, . . . , θt}, contains an agentα that interacts
with other argumentation agents, βi, information providing agents, θj , and an institu-
tional agent, ξ, that represents the institution where we assume the interactions happen
[4]. The institutional agent reports promptly and honestly on what actually occurs af-
ter an agent signs a contract, or makes some other form of commitment. Agents have
a probabilistic first-order internal language L used to represent a world model, Mt.
An agent’s world model, Mt, is a set of probability distributions for a set of random
variables each of which represents the agent’s expectations about some point of interest
about the world or the other agents in it. Each incoming utterance is translated into a set
of (linear) constraints on one or more of these distributions, and then the posterior state
of the world model is estimated using entropy-based inference. These distributions are
the foundation for the agent’s reasoning.

2.1 An Architecture to Enable Relationships

The agent architecture is shown in Figure 1. Agent α acts in response to a need that
is expressed in terms of the ontology. Needs trigger α’s goal/plan proactive reasoning,
while other messages are dealt with by α’s reactive reasoning.1.Each plan prepares
for the negotiation by assembling the contents of a ‘briefcase’ that the agent ‘carries’
into the negotiation2. The relationship strategy determines which agent to negotiate
with for a given need; it uses risk management analysis to preserve a strategic set of
trading relationships for each mission-critical need — this is not detailed here. For each
trading relationship this strategy generates a relationship target that is expressed in the
dialogical framework as a desired level of intimacy to be achieved in the long term.

1 Each of α’s plans and reactions contain constructors for an initial world model Mt. Mt is
then maintained from percepts received using update functions that transform percepts into
constraints on Mt — for details, see [13].

2 Empirical evidence shows that in human negotiation, better outcomes are achieved by skewing
the opening offer in favour of the proposer. We are unaware of any empirical investigation of
this hypothesis for autonomous agents in real trading scenarios.
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Fig. 1. The agent architecture

Each interaction consists of a dialogue, Ψ t, between two agents with agent α con-
tributing utterance μ and the partner β contributing μ′. Each dialogue, Ψ t, is evaluated
using the dialogical framework in terms of the value of Ψ t to both α and β — see
Section 2.2. The interaction strategy then determines the current set of offers {δi}, and
then the tactics, guided by the interaction target, decide which, if any, of these offers
to put forward and wraps them in argumentation dialogue — see Section 2.3. We now
describe two of the distributions inMt that support offer exchange.

2.2 Valuing Dialogues

Suppose that an interaction commences at time s, and by time t a string of utterances,
Φt = 〈μ1, . . . , μn〉 has been exchanged between agent α and agent β. This dialogue is
evaluated by α in the context of α’s world model at time s, Ms, and the environment
e that includes utterances that may have been received from other agents in the system
including the information sources {θi}. LetΨ t = (Φt,Ms, e), thenα estimates the value
of this dialogue to itself in the context ofMs and e as a 2× L array Vα(Ψ t) where:

Vx(Ψ t) =
(
I l1
x (Ψ t) . . . I lL

x (Ψ t)
U l1

x (Ψ t) . . . U lL
x (Ψ t)

)
where the I(·) and U(·) functions are information-based and utility-based measures
respectively. α estimates the value of this dialogue to β as Vβ(Ψ t) by assuming that β’s
reasoning apparatus mirrors its own.

The balance in a dialogue, Ψ t, is defined as: Bαβ(Ψ t) = Vα(Ψ t)  Vβ(Ψ t) for
an element-by-element difference operator  that respects the structure of V (Ψ t). The
intimacy between agents α and β, I∗t

αβ , is the pattern of the two 2 × L arrays V ∗t
α

and V ∗t
β that are computed by an update function as each interaction round terminates,

I∗t
αβ =

(
V ∗t

α , V ∗t
β

)
. If Ψ t terminates at time t:

V ∗t+1
x = ν × Vx(Ψ t) + (1− ν)× V ∗t

x (1)
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where ν is the learning rate, and x = α, β. Additionally, V ∗t
x continually decays by:

V ∗t+1
x = τ × V ∗t

x + (1 − τ) × Dx, where x = α, β; τ is the decay rate, and Dx is a
2 × L array being the decay limit distribution for the value to agent x of the intimacy
of the relationship in the absence of any interaction. Dx is the reputation of agent x.
The relationship balance between agents α and β is: B∗t

αβ = V ∗t
α  V ∗t

β . The notion
of balance may be applied to pairs of utterances by treating them as degenerate dia-
logues. In simple multi-issue bargaining the equitable information revelation strategy
generalises the tit-for-tat strategy in single-issue bargaining, and extends to a tit-for-tat
argumentation strategy by applying the same principle across the dialogical framework.

2.3 Relationship Strategies and Tactics

Each dialogue has to achieve two goals. First it may be intended to achieve some con-
tractual outcome. Second it will aim to contribute to the growth, or decline, of the
relationship intimacy. We now describe in greater detail the contents of the “Negoti-
ation” box in Figure 1. The negotiation literature consistently advises that an agent’s
behaviour should not be predictable even in close, intimate relationships. The required
variation of behaviour is normally described as varying the negotiation stance that in-
formally varies from “friendly guy” to “tough guy”. The stance is shown in Figure 1,
it injects bounded random noise into the process, where the bound tightens as intimacy
increases. The stance, St

αβ , is a 2×L matrix of randomly chosen multipliers, each≈ 1,
that perturbs α’s actions. The value in the (x, y) position in the matrix, where x = I, U
and y ∈ L, is chosen at random from [ 1

l(I∗t
αβ ,x,y)

, l(I∗t
αβ , x, y)] where l(I∗t

αβ , x, y) is the

bound, and I∗t
αβ is the intimacy.

The negotiation strategy is concerned with maintaining a working set of propos-
als. If the set of proposals is empty then α will quit the negotiation. α perturbs the
acceptance machinery (see Section 2.1) by deriving s from the St

αβ matrix. In line
with the comment in Footnote 2, in the early stages of the negotiation α may decide
to inflate her opening offer. The following strategy uses the machinery described in
Section 2.1. Fix h, g, s and c, set the Proposals to the empty set, acc(α, β, δ) means
“contract δ with agent β is acceptable to α”, and P denotes probability. Let Dt

s = {δ |
Pt(acc(α, β, δ)) > c}, then repeat the following as many times as desired: add δ =
argmaxx{Pt(acc(β, α, x)) | x ∈ Dt

s} to Proposals, remove {y ∈ Dt
s | Sim(y, δ) <

k} for some k from Dt
s. By using Pt(acc(β, α, δ)) this strategy reacts to β’s history of

Propose and Reject utterances.
Negotiation tactics are concerned with selecting some offers and wrapping them in

argumentation. Prior interactions with agent β will have produced an intimacy pattern

expressed in the form of
(
V ∗t

α , V ∗t
β

)
. Suppose that the relationship target is (T ∗t

α , T ∗t
β ).

Following from Equation 1, α will want to achieve a negotiation target, Nβ(Ψ t) such
that: ν ·Nβ(Ψ t) + (1− ν) · V ∗t

β is “a bit on the T ∗t
β side of” V ∗t

β :

Nβ(Ψ t) =
ν − κ

ν
V ∗t

β ⊕ κ

ν
T ∗t

β (2)

for small κ ∈ [0, ν] that represents α’s desired rate of development for her relationship
with β, and⊕ is element-by-element matrix addition. Nβ(Ψ t) is a 2×L matrix contain-
ing variations in the dialogical framework’s dimensions that α would like to reveal to β
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during Ψ t (e.g. I’ll pass a bit more information on options than usual, I’ll be stronger in
concessions on options, etc.). It is reasonable to expect β to progress towards her target
at the same rate and Nα(Ψ t) is calculated by replacing β by α in Equation 2. Nα(Ψ t)
is what α hopes to receive from β during Ψ t. This gives a negotiation balance target
of: Nα(Ψ t)  Nβ(Ψ t) that can be used as the foundation for reactive tactics by striv-
ing to maintain this balance across the dialogical framework. A cautious tactic could
use the balance to bound the response μ to each utterance μ′ from β by the constraint:
Vα(μ′)  Vβ(μ) ≈ St

αβ ⊗ (Nα(Ψ t)  Nβ(Ψ t)), where ⊗ is element-by-element ma-
trix multiplication, and St

αβ is the stance in Fig. 1. A less neurotic tactic could attempt
to achieve the target negotiation balance over the anticipated complete dialogue. If a
balance bound requires negative information revelation in one dialogical framework
category then α will contribute nothing to it, and will leave this to the natural decay to
the reputation D as described above.

The following are a list of components that we have described that could be com-
bined into an agent’s negotiation strategy. These components all constrain the agent’s
actions. We assume that they are all soft constraints and that they operate together with
a hard constraint Ct(α, β, xt) on the message xt that α may send to β at time t.

Information-based strategies. Every communication gives away information and so
has the potential to contribute to the intimacy and balance of a relationship. Information-
based strategies manage the information revelation process. Let M t

αβ be the set of time-
stamped messages that α has sent to β, and M t

βα likewise both at time t. Mt is α’s
world model at time t and consists of a set of probability distributions. xt denotes a
message received at time t. It(α, β, xt) is the information gain — measured as the re-
duction of the entropy ofMt — observed by α after receiving message xt. It(β, α, xt)
is α’s estimate of β’s information gain after receiving message xt from α.

The complete information history of both the observed and the estimated information
gain, Gt(α, β), is:

Gt(α, β) = {(xs, Is(α, β, xs)) | xs ∈M t
βα} ∪

{(xs, Is(β, α, xs)) | xs ∈M t
αβ}

respectively.
In [13] we described the model that α constructs of β. In general α can not be ex-

pected to guess β’s world model,Mt
β , unless α knows what β’s needs are — even then,

α would only knowMt
β with certainty if it knew what plans β had chosen. However, α

always knows the private information that it has sent to β — for example, in Propose(·)
and Reject(·) messages. Such private information could be used by β to estimate α’s
probability of accepting a proposal: Pt

β(acc(α, β, χ′, z)), where χ′ is the need that β
believes α to have.

α’s information-based strategies constrain its actions, xt, on the basis of It(β, α, xt)
and its relation to Gt(α, β). For example, the strategy that gives β greatest expected
information gain:

argmax
z
{ Is

β(β, α, z) | Ct(α, β, z)}
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More generally, for some function f :

argmax
z
{ f(Is

β(β, α, z), Gt(α, β)) | Ct(α, β, z)}

the idea being that the f ‘optimises’ in some sense the information gain taking account
of the interaction history.

Ontology-based strategies. The structure of the ontology may be used to manage the
information revelation process in particular strategic areas. For example, α may pre-
fer to build a relationship with β in the context of the supply of particular goods only
[10]. The structure of the ontology is provided by the Sim(·) function. Given two con-
tracts δ and δ′ containing concepts {o1, . . . , oi} and {o′1, . . . , o′j} respectively, the (non-
symmetric) distance of δ′ from δ is the vector

Γ (δ, δ′) = (dk : o′′k)i
k=1

where dk = minx{Sim(ok, o
′
x) | x = 1, . . . , j}, o′′k = sup(arg minx{Sim(ok, x) |

x = o′1, . . . , o
′
j}, ok) and the function sup(·, ·) is the supremum of two concepts in the

ontology. Γ (δ, δ′) quantifies how different δ′ is to δ and enables α to “work around” or
“move away from” a contract under consideration. In general for some function g;

arg max
z
{ g(Γ (z, xs)) | xs ∈M t

αβ ∪M t
βα ∧ Ct(α, β, z)}

the idea being that the g ‘optimises’ in some sense the ontological relationship with the
interaction history.

3 Providing Agents with Information from External Sources

Information sources {θi} = {θη
i }
⋃
{θρ

i } include two types: {θη
i } which provide opin-

ion on negotiation issues and {θρ
i } which provide opinion about relationships that may

affect α. The {θη
i } agents have been designed to operate with several information

spheres on the Web, categorised according to [8]. The ‘Wisdom of Crowds’ (online
news sites, sites of organisations, businesses) provides information about a specific
topic of interest; an example of how {θη

i } utilises online news sites for developing
an opinion (advice) for α on exchange rate for a certain point in time is presented in
[18]. The ‘Wisdom of Swarms’ (self-organised online forums, where individuals and
institutions exchange information), contain focused and up-to-date information about
a certain subject; an example of how {θη

i } utilises product (digital camera) forums for
extracting information and forming an opinion from comments about the products, in
a form suitable for α, is presented in [1]. Combining the ‘Wisdom of Experts’ (blogs,
which contain the private views and opinion of an individual) about a certain topic is
wise; an example of how {θη

i } provides α with expert opinion about a product prefer-
ence (a range of wines from a specific wine region in Spain) formed from mining the
respective part of the blogosphere is presented in [5]. Further we describe two aspects
of our supporting architecture — the extraction of relevant relationship information and
the prediction of potential partners.
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Extracting relevant relationship information. Each of the above mentioned infor-
mation spheres contains also information about various relations — the extraction and
delivery of such “relationship gossip” is a prerogative of {θρ

i }. α may be interested
in the quality of the information that β provides during their interactions, or may be
looking for honourable ’well-positioned’ trading partners, where ‘well-positioned’ is
defined in terms of the positions that β has in the N s

β networks in which it is involved
in time s outside the marketplace. The position of a negotiating agent β in a network
is given by vector π (β) = 〈πi (β) , i = 1, . . . ,nj〉, where its elements {πi (β)} are the
nj network features of interest to α. Therefore {θρ

i } extracts the N s
β × nj array Πs of

all N s
β positions {π (β)i} of β in the networks in which it is involved.

The collection of features may vary depending on the way the network is extracted
and the information extracting tasks. Technically the problem is to convert the inter-
action data array DA

m, describing the activities of m individuals into an m × m in-
cidence matrix describing the graph Gj (Nj, Lj) with Nj nodes and Lj links, and
πi (β) = fi (Nj , Lj), where fi (Nj , Lj) is a respective network feature, which is a
function of some node or/and link parameters.

Fig.2a is a high level layered view of the extraction of relationships and networks
from different pieces of data on the Web. For instance, directed network structures
between agents can be extracted from the threaded logs of on-line forums, using the
network extraction mechanisms in the Deep Email Miner. Such networks are further
refined based on text mining of the content of the posts. Here, each agent βi is repre-
sented through an nω–dimensional vector τβ

i = 〈τ(ωj)|j = 1, . . . , nω〉, where τ(ωj)
is some function of the term count ωj . The relations then are extracted depending on
the similarity Sim(·) between agents in the term space. The information on directed
edges in the resultant graph includes also {rj} — the estimates of the strength of the
relationships. Sim(·) for each link is a simple initial estimate of an rj — higher values
can be interpreted as βi having a strong relation with βk, when lower values of that are
still above the threshold of link existence can be interpreted as weak relations. These
estimates are utilised by {θρ

i } to provide α with an estimate Cap(βi) of the potential of
a new partner βi to sustain relationship.

Partner prediction. Section 1 presented a simple example when α may need to find
a new partner, relying on external information only. The task for {θρ

i } translates into a
partner recommendation problem. It can be treated as partner prediction and estimation
of relationship capability of predicted partner. For partner prediction, we need to find a
classifier Cs

α that classifies all dyads {α;βi} in α’s network in which α and βi are not
linked in time s into two classes {Partner,Alone}, where Partner labels vertices
with potential to link and Alone labels vertices with no such potential. Considering α
and potential set of agents {βi} that do not have direct link to α, predictors include
the following normalised attributes: number of relations in which an agent is involved;
shortest path between α and each agent βi; a suit of network centrality measures of
respective agents, including closeness (how well related an agent is to all other agents
in considered network) and betweenness (to what extent an agent can reach respective
agents through its relationships); interconnectedness for each βi, measured by the nor-
malised number of direct links to other agents of the kind; relationship importance —
a function of the weights of existing relationships wj ; and the proportion of common
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Fig. 2. Process and architecture for extracting and delivering information from external sources

partners for α and βi out of all partners that they have. Relationship capability for a

predicted partner is estimated from the above as: Cap(βi) =
nβ∑
j=1

wjrj/nβ

nβ∑
j=1

wj .

Information mining architecture. Fig.2b presents what goes into the the ‘Information
Sources’ block in Fig.1. On request either from α or the institutional agent ξ crawlers re-
trieve a snapshot over certain period of time. The integrated mining base is updated with
the retrieved data, after preprocessing the later into a structured and semi-structured
forms. This database is the source for the above described relationship predicting. The
two icons labeled ‘Opinion miners’ and ‘Partner predictors’ represent the θη

i and θρ
i

types of information mining agents. The information providing system uses the virtual
institution protocols for information exchange between the agents [4].

4 Conclusions

We have presented the formalism which extends the information-based agency and is
supporting information mining services to handle relationships and information related
to relationships. The negotiation strategy and tactics treat information as a commodity
and a relationship with an agent as all the information about the interaction with this
agent. The formalism behind the Honourable Negotiator supports requesting and ac-
commodating in the agent’s reasoning relationship information from external sources.
The practical value of presented formalisms is the automation of electronic business
in contemporary ‘net landscape’ where communities and cliques emerge, shape and
evolve. The Honourable Negotiator implements those formalisms in a virtual institu-
tion.
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7. Giménez, E., Godo, L., Rodrı́guez-Aguilar, J.A., Garcia, P.: Designing bidding strategies for
trading agents in electronic auctions. In: Proceedings of the Third International Conference
on Multi-Agent Systems (ICMAS 1998), pp. 136–143 (1998)

8. Gloor, P.A., Krauss, J., Nann, S., Fischbach, K., Schoder, D.: Web science 2.0: Identifying
trends through semantic social network analysis. In: Proceedings of the International Con-
ference on Computational Science and Engineering, pp. 215–222. IEEE Computer Society,
Los Alamitos (2009)

9. Jennings, N., Faratin, P., Lomuscio, A., Parsons, S., Sierra, C., Wooldridge, M.: Automated
negotiation: Prospects, methods and challenges. International Journal of Group Decision and
Negotiation 10(2), 199–215 (2001)

10. Kalfoglou, Y., Schorlemmer, M.: IF-Map: An ontology-mapping method based on
information-flow theory. In: Spaccapietra, S., March, S., Aberer, K. (eds.) Journal on Data
Semantics I. LNCS, vol. 2800, pp. 98–127. Springer, Heidelberg (2003)

11. Kraus, S.: Negotiation and cooperation in multi-agent environments. Artificial Intelli-
gence 94(1-2), 79–97 (1997)

12. Rosenschein, J.S., Zlotkin, G.: Rules of Encounter. The MIT Press, Cambridge (1994)
13. Sierra, C., Debenham, J.: Information-based agency. In: Huang, T.S., Nijholt, A., Pantic,

M., Pentland, A. (eds.) ICMI/IJCAI Workshops 2007. LNCS (LNAI), vol. 4451, Springer,
Heidelberg (2007)

14. Sierra, C., Jennings, N., Noriega, P., Parsons, S.: A Framework for Argumentation-Based
Negotiation. In: Rao, A., Singh, M.P., Wooldridge, M.J. (eds.) ATAL 1997. LNCS, vol. 1365,
pp. 177–192. Springer, Heidelberg (1997)

15. Simoff, S., Debenham, J.: Curious negotiator. In: Klusch, M., Ossowski, S., Shehory, O.
(eds.) CIA 2002. LNCS (LNAI), vol. 2446, pp. 104–111. Springer, Heidelberg (2002)

16. Sondak, H., Neale, M.A., Pinkley, R.: The negotiated allocations of benefits and burdens:
The impact of outcome valence, contribution, and relationship. Organizational Behaviour
and Human Decision Processes (3), 249–260 (1995)

17. Valley, K.L., Neale, M.A., Mannix, E.A.: Friends, lovers, colleagues, strangers: The effects of
relationships on the process and outcome of negotiations. In: Bies, R., Lewicki, R., Sheppard,
B. (eds.) Research in Negotiation in Organizations, vol. 5, pp. 65–94. JAI Press, Greenwich
(1995)

18. Zhang, D., Simoff, S.J., Debenham, J.K.: Exchange rate modelling for e-negotiators us-
ing text mining techniques. In: Lu, J., Ruan, D., Zhang, G. (eds.) E-Service Intelligence -
Methodologies, Technologies and Applications, pp. 191–211. Springer, Heidelberg (2007)



Tuning Java to Run Interactive Multiagent

Simulations over Jason�

Vı́ctor Fernández-Bauset, Francisco Grimaldo,
Miguel Lozano, and Juan M. Orduña

Computer Science Department, University of Valencia,

Dr. Moliner 50, (Burjassot) Valencia, Spain

ferbau@alumni.uv.es, {francisco.grimaldo,miguel.lozano,
juan.orduna}@uv.es

Abstract. Java-based simulation environments are currently used by

many multiagent systems (MAS), since they mainly provide portability

as well as an interesting reduction of the development cost. However,

this kind of MAS are rarely considered when developing interactive ap-

plications with time response constraints. This paper analyses the per-

formance provided by Jason, a well-known Java-based MAS platform, as

a suitable framework for developing interactive multiagent simulations.

We show how to tune both the heap size and the garbage collection of

the Java Virtual Machine in order to achieve a good performance while

executing a simple locomotion benchmark based on crowd simulations.

Furthermore, the paper includes an evaluation of Jason’s performance

over multi-core processors. The main conclusion derived from this work

is that, by means of Java tuning, it is possible to run interactive MAS

programmed using Jason.

1 Introduction and Related Work

MAS platforms capable of handling a large amount of complex autonomous
agents at interactive response times are required by interactive multiagent ap-
plications such as crowd simulations and massive online games. Usually, these
kinds of simulations involve a high number of agents (e.g. pedestrians) interact-
ing in a shared environment. Interactivity, in turn, requires the use of parallel
techniques that allow to validate and to execute the actions requested within a
limited period of time (commonly, 250 ms [6]).

Java-based simulation environments are currently being used by many MAS,
since they mainly provide portability as well as an interesting reduction of the
development cost. However, this kind of MAS are rarely considered when devel-
oping interactive applications with time response constraints, because of Java
being normally less efficient than other languages such as C or C++. This situ-
ation requests performing a specific Java tuning to be able to tackle this type of
� This work has been jointly supported by the Spanish MEC and the European Com-

mission FEDER funds, under grants Consolider-Ingenio 2010 CSD2006-00046 and

TIN2009-14475-C04-04.
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applications. In this paper, we show the Java tuning carried out for the purpose of
evaluating the performace of Jason [1], a well-known Java-based MAS platform.
The aim of this tuning is to adjust both the heap size and the garbage collection
of the Java Virtual Machine in order to satisfy the temporal requirements of in-
teractive multiagent simulations. Therefore, the results presented in this paper
will also be of great value to those researches considering Java-based simulation
environments suitable for developing interactive multiagent applications.

When developing this kind of interactive MAS three layers are normally con-
sidered: the computer architecture, the MAS platform and the graphical engine
(if any). At the low level, different distributed computer architectures have been
applied in order to allow massive interactive simulations to scale up with the
number of agents by simply adding new hardware (e.g. networked-server, P2P,
etc.). For instance, a new approach has been presented for PLAYSTATION3
which supports simulation of simple crowds of up to 15000 individuals at 60
frames per second [11]. Parallel simulation, based on classical Reynolds’s boids
[12], has been also integrated in a PC-Cluster with MPI communication [16] to
finally produce small simulations (512 boids). At the top level, the graphical en-
gine of the application must render the visualization at interactive frame rates.
The computer graphics community generally represents the MAS as a particle
system with local interactions [3,15], though, few works include socially com-
plex and autonomous behaviors [10]. However, they are not normally based on
standard agent architectures.

In the middle level, the MAS platform is in charge of providing the required
data flow to the graphical engine while efficiently using the computational re-
sources. Thus, it constitutes a key middleware that highly influences the global
performance and the scalability of the system. It mainly addresses two impor-
tant issues: modeling the behavior of the agents as well as their parallel lifecycle
execution. Java is a popular language providing built-in support for concurrency
that is commonly used by MAS platforms. Although Java performance has been
studied from different perspectives, probably the most usual is to tune server
applications running on large multi-processor servers [13]. There are more spe-
cific works focused on the evaluation of Java-based multiagent platforms [2,14,8].
However, none of them deals with providing interactivity to the corresponding
MAS. Some researchers have been also testing the performance and scalability
of a few existing MAS platforms [7], showing a lack of both important issues in
many of them. In a previous work [5], the authors analysed Jason’s architecture
and evaluated its performance under both centralised and distributed infras-
tructures. Regardless the infrastructure, the results showed that the execution
options had to be reviewed in order to achieve a more equilibrated response time
distribution, an aspect that we have covered in this work.

The rest of the paper is organized as follows. Section 2 briefly reviews Jason’s
centralised infrastructure and describes the locomotion benchmark used for the
evaluation. Section 3 demonstrates how to tune Java in order to run interactive
multiagent simulations over Jason. Finally, section 4 shows the performance
obtained with different multi-core processors.
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2 Test Description

The goal of this work is to evaluate Jason as a suitable framework for running
interactive multiagent simulations. Jason is a Java-based interpreter for an ex-
tended version of AgentSpeak, a BDI agent-oriented logic programming language
[1]. Jason provides three infrastructures to execute a MAS: Centralised, SACI
and JADE. Whereas the Centralised infrastructure places all the components of
the MAS in the same host, it is also possible to distribute these components in
several hosts using either SACI or JADE technologies. For the sake of simplicity,
this paper focuses on the Centralised infrastructure but the results obtained are
fully applicable for both distributed infrastructures.

In the Jason’s Centralised infrastructure, the environment has its own ex-
ecution thread and it is provided with a configurable pool of threads (PThE)
devoted to executing the actions requested by the agents. In this way, the enviro-
ment is able to deal with several agent requests concurrently. In turn, each agent
owns by default a thread in charge of executing the agent reasoning cycle. In
this manner, all the agents can run concurrently within the MAS. As such, this
approach could limit the number of agents that can be executed, since the total
number of threads would be limited by the Java Virtual Machine (JVM) heap
size. However, Jason offers the possibility to optionally add another configurable
pool of threads (PThA), so that the set of agents can share a smaller number of
execution threads but reducing the level of concurrency. The number of threads
in both PThE and PThA is initialised during the start-up of the MAS and it is
not changed along its execution. By default, the PThE holds 4 threads whereas
the PThA is disabled, so that each agent will have its own execution thread. In
a previous work, we tuned both the PThE and the PThA in order to obtain the
best performance [5].

The main issue to be tackled when running interactive multiagent simulations
is that of being able of efficiently handling a massive and concurrent action pro-
cessing. In this paper, we have used a locomotion testbed. Here, a set of wanderer
agents request movement actions to a grid-like environment, which replies with
the result of the execution. Wanderer agents are written in AgenSpeak and they
cyclically execute the following steps: (i) take start time, (ii) request a random
movement to the enviroment, and (iii) take finish time. On the other hand, the
environment executes each movement action in a synchronized manner to ensure
the world consistency. That is, the environment performs a simple collision test
and informs whether the action can be carried out (i.e. Ok) or it cannot (i.e.
Failure), when it would lead to a collision situation.

The performance evaluation carried out along the paper measures the envi-
ronment response time and the percentage of CPU utilization consumed while
running the locomotion benchmark. These measurements represent respectively
latency and throughput, the two performance parameters commonly considered
when evaluating networked-based distributed computer platforms [4]. We define
the Response Time (RT ) as the time elapsed between an agent asking for an
action and receiving the reply from the environment. Our simulations stop when
all the agents have performed 500 movements or cycles, but we discard the first
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200 cicles when computing the average response time (RT ). Thus, we measure
the system behavior at full load, since the first measurements are distorted due
to the agent creation phase.

As stated above, we are interested in exploring the performace of Jason’s
Centralised infrastructure in depth. Thus, both the environment and the agents
are run on the same host. The results for the Centralised infrastructure shown in
[5] indicated that, when simulating 1000 wanderer agents, the 70% of the agents
were able to act within 85 ± 264 ms. That is, even though the low value of RT
(85 ms) indicated that many actions were processed very fast, there were a few
agents that must wait more than 250 ms for their actions to be executed. This
problem with the high standard deviation of the response time (σRT ), found all
over the measures in [5], is addressed in the following section.

3 Java Tuning

The source of the high standard deviation of the response time of Jason-based
MAS can be envisoned in figure 1. The figure shows that the average response
time per agent cicle (RTc) peaks periodically. This points to a process that
stops the system whenever it is executed: the Java Garbage Collection. Thus,
we have carried out Java Performance Tuning in order to provide some general
recommendations for running interactive multiagent simulations over Jason. It
should be noticed, though, that the optimal tuning parameters will finally depend
on the application and on the hardware underneath.

Fig. 1. Influence of the Java Garbage Collection on the response time

In this section, we show the results obtained when executing the testbed de-
fined in section 2 over an AMD Dual-Core Opteron processor with 4 Gb of
RAM, running a 64-bit version of Linux and the Sun’s HotSpotTMJava Virtual
Machine (JVM) release 1.6.0 07. From version 1.5, this JVM has incorporated
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a technology to begin to tune itself, referred to as Ergonomics. Even though Er-
gonomics significantly improves the performance of many applications, optimal
results often require manual tuning.

There are two main aspects that have to be tuned in order to enhance Java
performance: the heap size and the garbage collector (GC) [9]. Regarding the
former, by default, the initial heap size is 1/64th of the machine’s physical mem-
ory and the maximum heap size is 1/4th of the machine’s physical memory. In
our case, this would mean using 64 Mb and 1 Gb respectively. However, Java
performance can be enhaced by increasing the maximum heap size, as shown in
figure 2. This figure shows the total amount of time consumed by the garbage
collection when we use diferent GCs and increase the heap size while simulating
2500 agents. This time is computed by adding the times needed to complete
every invocation to the GC. Besides, we have set minimum and maximum heap
sizes equal for a faster startup. Note how, regardless of the GC being used, the
total GC time strongly decreases when increasing the heap size up to 2 Gb.
Further on, the gain is very low compared to the fact of being using almost the
whole physical memory.

Fig. 2. Garbage colletion time needed for different heap sizes and GCs

With respect to the garbage collectors, Sun’s HotSpotTMJVM allows the pro-
grammer to choose among three of them: serial, throughput and concurrent low
pause collector. Whereas the serial GC is a sequential collector, the throughput
GC uses multiple threads to collect garbage in parallel and it is suitable for
applications with a large number of threads allocating objects, such as the one
being tested in this paper. On the other hand, the concurrent GC does most
of the collection concurrently with the execution of the application and it is
appropriate for applications that benefit from shorter GC pauses. Additionally,
Java GCs organize the object memory into two generations: young (recently cre-
ated objtects) and tenured (older objects). Java allows to set the ratio between
the young and tenured generation by means of the JVM command-line option
NewRatio. For more details on Java garbaje collection, see [9].
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Bearing all this informacion in mind, we have executed our benchmark using
every GC available. Figure 2 shows the most relevant results that we have ob-
tained. The line named Serial corresponds to the total amount of time consumed
by the garbage collection when simulating 2500 agents using the serial GC. The
Parallel line relates to the use of the throughput GC only for the collection of the
young generation. In turn, the ParallelOld line refers to the use of the throughput
GC for the collection of both the young and the tenured generation. For space
reasons, we skip the results obtained with the concurrent GC since they are up
to ten times higher than those obtained with the rest of the GCs, both for the
total GC time and for the average response time. As we can observe, the serial
GC behaves worse than any configuration of the throughput GC. Moreover, par-
allelizing the collection of the tenured generation does not fasten but actually
slows garbage collection when the heap size is less than 2.5 Gb. This means that
there is not a problem with the collection of old objects but with the young
ones. The reason behind this fact relies on how Jason represents agent’s beliefs
and actions. Both are implemented as objects that are discarded and created
again whenever there is a change in a belief or a new action is requested to
the environment. As each wanderer agent continuously asks the environment for
movement actions and changes its position, we can imagine the huge amount
of objects that “die young”. Thus, enlarging the young generation will benefit
garbage collection.

The default NewRatio for the Server JVM is 2. That is, the tenured generation
occupies 2/3 of the heap while the young generation occupies 1/3. A larger young
generation could accommodate many more short-lived objects, decreasing the
need for slow major collections. Meanwhile, the tenured generation would still
be large enough to hold many long-lived objects. According to this, the line
labeled as Parallel-n=1 in figure 2 shows that we can obtain the lowest garbage
collection times by using the throughput GC for the collection of the young
generation along with the minimum ratio possible between the generations (i.e.
NewRatio = 1). Hence, half of the heap for the young generation and the other
half for the tenured generation.

Finally, we have evaluated the effect of the number of threads devoted to col-
lect garbage when using the parallel throughput GC. By default, this GC uses as
many garbage collector threads as the number of processors available. Though,
the number of threads can be tuned manually through the ParallelGCThreads
command-line option. For this test, we have used a 16-core computer and we
have varied the number of collector threads from 2 up to 16. Besides, we have
tuned Java so it runs efficiently with 2 Gb of heap size and the NewRatio set
to 1. Figure 3 shows the values obtained for the average response time (RT )
plus its standard deviation (σRT ) when increasing the number of agents sim-
ulated. Evidently, the worst values are obtained when only 2 threads are used
for garbage collection. However, in our test it is not necessary to use as many
threads as the number of cores, since we get the same results for 8 and 16 GC
threads.
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Fig. 3. Performance when varying the number of threads used by the throughput GC

Summing up, we can state the following general recommendations for running
interactive multiagent simulations over Jason:

– Enlarge the heap size as much as possible without achieving the amount of
physical memory available. In addition, set minimum and maximum heap
sizes equal for a faster startup.

– Parallelize garbage collection by using the throughput GC whenever your
hardware has at least 2 CPUs in order to reduce GC pause times. Besides,
check whether you need the default number of collector threads (equal to
the number of processors) or you can save any, thus reducing the workload
of the whole machine.

– Increase the size of the young generation up to the size of the tenured gen-
eration (NewRatio=1) to decrease the need for slow major collections.

4 Performance Evaluation

In this section we analyse the results obtained when running the benchmark
described in section 2 on the following distributed shared memory (DSM) multi-
core computers: 2-Core (AMD Dual-Core Opteron, 1.6 GHz, 4 GB RAM), 4-
Core (AMD Quad-Core Opteron, 1.0 GHz, 8 GB RAM), 8-Core (Intel 8-Core
Xeon, 2.6 GHz, 16 GB RAM) and 16-Core (AMD Dual-Core 8218, 1.0 GHz,
32 GB RAM). All of them run the same 64-bit version of Linux and the Sun’s
HotSpotTMJVM release 1.6.0 07.

Table 1 shows the performance obtained when simulating from 1500 to 9500
wanderer agents on the computers described above. The results for 1-core were
obtained through the taskset Linux command. When running the benchmark, we
have followed the Java tuning recommendations stated in section 3. Therefore,
we have used the throughput GC for the collection of the young generation with a
number of collector threads equal to the number of cores. Besides, we have tuned
Java so it runs with 4 Gb of heap size and we have set NewRatio to 1. The left
column in Table 1 shows the percentage of CPU utilization measured during
the execution of the simulation. The central column (RT ) shows the average
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Table 1. Performance obtained for Jason framework over different computers

Cores-Agents CPU(%) RT (ms) σRT (ms) Cores-Agents CPU(%) RT (ms) σRT (ms)

1-1500 89,53 44,59 101,64 8-1500 59,88 31,01 8,58

1-3500 90,01 40,39 189,57 8-3500 67,75 73,82 22,65

1-5500 89,98 71,97 178,42 8-5500 72,09 114,10 40,62

1-7500 87,87 85,93 193,03 8-7500 74,56 146,27 58,26

1-9500 65,97 98,33 2196,68 8-9500 74,92 185,81 278,00

2-1500 89,17 3,92 28,84 16-1500 39,77 57,38 9,60

2-3500 91,13 5,55 27,59 16-3500 46,45 145,86 38,10

2-5500 92,00 9,01 35,38 16-5500 48,27 242,87 62,23

2-7500 91,10 10,39 79,09 16-7500 57,58 282,57 85,73

2-9500 59,72 47,79 1152,10 16-9500 57,51 253,53 534,66

4-1500 76,25 51,97 20,81

4-3500 81,11 132,88 50,71

4-5500 81,48 201,90 76,89

4-7500 83,35 290,71 118,30

4-9500 84,24 386,35 488,37

Response Time in milliseconds for the actions requested by the agents when the
system is at full load, as explained in section 2. Finally, the right column shows
the standard deviation of this Response Time (σRT ).

The results shown in Table 1 demonstrate that we can run interactive mul-
tiagent simulations over Jason, since the values of the RT plus the σRT are
generally under the reference value of 250 ms. As it was also expected, the CPU
utilization decreases as the number of cores increases. For instance, if we com-
pare the results obtained for 3500 agents on each computer, it can be seen that
the more cores in the computer, the lower the percentage of CPU utilization (the
single CPU is shown only as a reference). However, the response time does not
behave the same way. Instead, whereas the RT values for the 2-Core computers
are around a few milliseconds, the RT for the computers with 4 up to 16 cores
reaches tens of milliseconds. The worsening of the response time occurs in all the
computer being tested, although it has a minor impact in the 8-Core computer
because it has the highest processor speed. This fact indicates that, beyond two
cores, the default configuration used by Jason does not properly scale up with
the number of processor cores. Thus, a deeper study must be carried out in order
to allow it to take advantage of the multi-core processors.

Although a fine tuning of the Jason framework for multi-core processors is
beyond the scope of this paper, we have analysed the issue shown in Table 1
in order to clarify the path for future work. We think that the reason behind
this problem is thread context switching. Even though the Java Virtual Machine
schedules its threads to run them as fast as possible, there is no guarantee of
which core a given thread will be assigned to for execution. The operating system
kernel can assing one single thread to different cores during its execution time,
thus provoking thread migrations. The probability of migration increases with
the number of cores in the processor, in such a way that the overhead due to
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thread migrations could exceed the benefits of having more cores for executing
the threads in parallel. To verify this hypothesis, we have measured the number
of migrations (i.e. changes in the core assigned for execution) suffered by the
threads along the simulation. To detect migrations, we have used a system call
retrieving the state of the Java threads periodically and we have analysed the
core where they were located.

Figure 4 shows the total number of thread migrations counted while executing
the same simulations that produced the results of Table 1. We can observe how
the number of migrations is proportional to the number of cores in the computer.
Since a thread migration is a time consuming task, the high number of migrations
produced by computers with more than 2 cores can explain the behavior shown
in Table 1. Nevertheless, it should be noticed that these results do not guarantee
the absence of other still hidden aspects that could prevent the system from
properly scaling with the number of processor cores. In order to fully exploit
the degree of parallelism offered by multi-core processors, tuning the processor
affinity of Jason must be done.

Fig. 4. Number of thread migrations

5 Conclusions and Future Work

In this paper, we have evaluated Jason as a suitable Java-based MAS platform
for developing interactive multiagent simulations. We have shown how to tune
the Java heap size as well as the gargabe collector in order to enhance the
performance of the simulations. Even though the optimal tuning parameters will
finally depend on the application and on the hardware underneath, we have state
some general recommendations for minimizing the impact of garbage collection.
Therefore, the results presented in this paper will also be of great value to those
researches considering other Java-based simulation environments for developing
interactive multiagent applications. The paper also includes a first evaluation
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of Jason’s performance over multi-core processors. As future work, we plan to
carry out a deep study of the Jason framework in order to properly scale it up
with the number of processor cores. Then, tuning the Java processor affinity will
be required to exploit the degree of parallelism offered by multi-core processors.
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Abstract. Cooperative behavior of social insects is widely studied and

mimicked in Artificial Intelligence communities. One such interesting co-

operation is observed in the form of philanthropic activity e.g. army ants

build bridges using their own bodies along the route from a food source

to the nest. Such altruistic behavior helps to optimize the food gathering

performance of the ant colony. This paper presents a multi-agent simu-

lation inspired by army ant behavior. Such cooperation in a multi agent

system can be very valuable for engineering applications. The purpose

of this study is to model and comprehend this biological behavior by

computer simulation.

1 Background

The morphology and behavior of organisms in nature have evolved over a very
long period of time. The organisms that have skillfully adapted to the environ-
ment have survived until the present. Therefore, the forms and behavior of these
organisms have been optimized over the centuries and many of these adaptations
are applicable in engineering [14,5,12,10,3]. In particular, social insects such as
ants and bees form miniature societies within their nests and exhibit very effec-
tive cooperation [15,6]. Ant colony optimization [7] is one of the most famous
applications of social insect to engineering.

Recently, several studies have been made on Constructive Approach [8,11,16,9].
Constructive Approach is a kind of reverse engineering. This approach imitates a
model to understand the object such as an actual living thing or a nature system.
In this study, we created a computer stimulation to model and understand the
altruistic behavior observed in army ants during foraging. Successful biomimicry
of such behavior of ants can find valuable engineering applications.

2 Altruism of Army Ants

Altruism refers to behavior that prioritizes benefits to others rather than self and
sometimes involves acts of self-sacrifice in order to aid others. Some army ants
construct living bridges with their own bodies when they find holes or gullies as
obstacles to their marching routes as shown in Fig. 1 [4]. Such philanthropic acts
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Fig. 1. Scene of building living bridge by army ant

Fig. 2. Simulation environment

are different from the regular behavior of the ants e.g. foraging for and transport
of food. However, if more ants participate in bridge construction than that is
required or if they construct bridges at sites where those are unnecessary, they
may actually hamper the food gathering performance of the whole colony. But,
in nature, the ants are very keen to balance these actions as per requirement and
it has been confirmed that because of such altruistic activity the performance
is improved for the group as a whole. In an experiment by Powell et al., it was
found that the foraging capacity of the army-ant colony increased by up to 26%
due to this altruistic behavior [13]. In this study, this altruism of ants is modeled
and examined in a multi-agent simulation environment.

3 Defining the Problem

This section explains the problems handled in the multi-agent simulation. The
present simulation serves a model for the foraging behavior and the previously
described altruism of ants. The simulation was performed using Swarm library.
Fig. 2 shows a screenshot of the simulation screen where an agent represents an
ant movement.

The actions include foraging for and transport of food and communications
with neighboring ants using pheromone. The nest is the starting point of the
agents and also the point to which the agents return with food. The pheromone
is released by an agent when it finds food. Just as in nature, once secreted
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Altruism

Search Return

???

Discover

Stock

Fig. 3. State transition of agents Fig. 4. Maps for experiment

Table 1. States and behavior of agents

State Behavior

Search This is the initial condition of the agent and it continues random work

until food is found. When food is found, there is a transition to the

Return state. Transition to Altruism state is also possible under “cer-

tain” conditions. When pheromone is sensed, the ants are drawn to the

higher concentrations.

Return The food is returned to the nest. In this state the agent moves toward

nest secreting pheromone. After reaching the nest, the agent transits

to the Search state. An agent in Return state knows the position of the

nest.

Altruism A bridge is constructed across the gully. While in this state, movement

is impossible for an agent. When certain conditions are met, the bridge

is abandoned and the agents transit to the Search state.

the pheromone attenuate and disperse, thus disseminating information among
the ants about the locations of food. A gully hinders movement of agents and
fundamentally prevents the agents from passing over it. However, if an agent
shows altruism and forms a living bridge over the gully, other agents can pass
over the gully. The agents move in accordance with the state transition diagram
shown in Fig. 3. The behavior of agents in different states are shown in Table 1.

The problem is to determine the conditions that induce the transition to the
Altruism state. But it is not concretely known how ants decide the site and
timing of living-bridge construction and when they cease the bridge formation.
Therefore, in this study, several hypotheses are proposed as the altruism initia-
tion conditions and experiments were performed for verification.

4 Judgment Criteria for Entering Altruism State

4.1 Hypotheses

Here, two hypotheses were proposed as the judgement criteria for altruistic ac-
tivity by army ants.
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Table 2. Properties used in Model 1 & 2

Model 1 Model 2

Number of Step 700 700

Time 10 150

Radius 2 -

Pheromone Threshhold - 30

Fig. 5. Simple map - Experimental results

Model 1: Based on the Presence of Neighboring Ants
An ant will start formation of living bridge over a gully only when neighboring
ants are present. Hypothetically, this approach will be more efficient compared to
forming a bridge blindly because when there are neighboring ants the probability
is high that they will utilize the shortcut.

Model 2: Based on the Presence of Pheromone

As described earlier, agents secrete pheromone when they find food, and this
pheromone is used to disseminate information among the ants about the location
of the food. Therefore, the places where pheromone concentrations are higher
than a fixed level are the locations that many ants have passed and/or will
pass through in the future. Hence, a living bridge can be formed judging the
pheromone concentration.

In both models, agents leave the bridge after a fixed amount of time passes.
And we used fixed properties optimized by genetic algorithms (Shown in Ta-
ble 2). In order to judge their validity, these hypotheses were fed into the simu-
lation and their usefulness was verified empirically.

4.2 Experiment to Verify the Hypotheses

The two scenarios shown in Fig. 4 were used in the experiment. In these ex-
periments, performance was measured using the number of food items collected
within a fixed period of time. Each experiment was repeated 10 times with 20
to 180 agents, increased by 20 at a time, and the mean values were compared.

The experimental results from the simple map are shown in Fig. 5. The num-
bers of agents is shown along the horizontal axis and the number of food items
collected within a fixed amount of time is shown along the vertical axis. In simple
map, the Model 1 showed slightly higher performance, but the differences were
small and almost no difference in overall efficiency was observed.

Experimental results using the difficult map are shown in Fig. 6 and Fig. 7.
On the whole, Model 2 performed better in the difficult map. Fig. 7 shows
experimental observations for the difficult map on a different scale. Just like
before, the horizontal axis represents the number of agents, however, the vertical
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Fig. 6. Difficult map - Experimental

results 1

Fig. 7. Difficult map - Experimental

results 2

axis represents the ratio of the total number of times agents crossed bridges to
the total number of times agents helped to form bridges. This ratio indicates how
useful the formed bridges were. From the data, it was found that Model 2 yielded
higher values than Model 1. For Model 1, the ratio was usually about one. This
means that even though a bridge was formed, neighboring agents would have
not used it efficiently. This was because in the difficult map, unlike the simple
map, gullies were present at various locations causing bridges to be formed at
unnecessary sites with Model 1. With Model 2 higher ratios were found compared
to that found with Model 1. Although it is not evident from the graph, in Model
2 the bridges were formed only at those sites that was necessary for bringing
food to the nest. This was because the pheromone was secreted along the way
from the food-source to the nest. And the concentration of pheromone indicated
the the optimal sites for bridge construction. Hence, both the timing and sites of
bridge construction were superior in Model 2. However, Model 2 suffers from the
drawback that bridges cannot be formed until the foraging sites have been found.
In nature, cases are also observed where bridges are formed at necessary sites
before foraging sites are found. So we hypothesize that, for altruistic activity
like bridge formation ants use the pheromone method along with some other
judgement criteria such as the one stated in Model 1.

5 Judgment Criteria with Reference to Chain Formation

5.1 What Is Chain Formation?

Chain formation is another philanthropic cooperative behavior similar to bridge
formation. Chains in this case refer to structures formed by the bodies of the ants
when the ants encounter extreme differences in heights during their marches.
In this way, it is possible for other ants to move safely from one height to
another. In their research, Lioni et al. [1] observed the chain formation be-
havior of ants in nests installed in the laboratory. The results showed that
the probability of participation in chain formation Pe and probability of aban-
doning chain formation Ps can be approximated by the following equations:

Pe = Ce0 +
Ce1X

Ce2 + X
(1) Ps = Cs0 +

Cs1X

Cs2 + Xν
, (2)
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Fig. 8. Performance comparison in terms

foraging time

Fig. 9. Performance comparison in terms

of altruistic activity

where X is the number of ants participating in chain formation and the other
numbers are constants. According to these equations, if many ants are contained
in the formed chain then it is easier for them to participate in chain formation
but more difficult for them to stop. Using these formulas as judgment criteria
for chain formation an experiment was done.

5.2 Experiment to Verify the Chain Formation System

To justify the proposed model of pheromone concentration as the criteria for
transition to altruism state, a comparative study was performed with the Lioni’s
model of chain formation.

In Fig. 8, the number of agents is shown on the horizontal axis and the time
until completion of foraging on the vertical axis. It was found that for some
population sizes when pheromone concentration is used as judgment criteria,
foraging takes shorter time than that is required for chain formula.

In Fig. 9, the number of agents is shown on the horizontal axis and the cu-
mulative time during which the agents are engaged in altruistic behavior on the
vertical axis. It was also observed that when pheromone concentration is used
as judgment criteria, the total time during which the agent are engaged in al-
truistic activity is shorter and less affected by the population size. On the other
hand when the formulas of Lioni et al are applied, the time engaged in altruistic
behavior increases with the number of agents. Fig. 10 compares another aspect
of the models. When pheromone concentration was used as judgment criteria,
bridges were constructed at the required sites, but when the formulas of Lioni et
al. were applied, bridges were constructed at many sites other than the required
sites. It is also clear from Fig. 10 that with the Lioni et al. model, fewer numbers
of agents are in Search state as many of them are in Altruism state.

Procedures using formula (1) of Lioni et al. featured a higher probability of
altruistic behavior at sites where agents are apt to congregate. Therefore, more
altruistic behavior is expected to occur close to the foraging site and the nest
or in between these sites. In Lioni’s model, the altruistic behavior is possible
without finding foraging sites and this is an advantage over the proposed model
based on pheromone concentrations. Nevertheless, the simulation results showed
that in terms of performance, measured as foraging speed, the proposed model
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Fig. 10. Comparison of bridge construction sites

was superior to Lioni’s model. The possible reason behind this could be that
in Lioni et al. experiment calculations were performed by limiting the chain
formation sites to one, hence, their model could not be directly applied to an
environment with a series of bridge formation sites as used here. Therefore, in
consideration of biology, etc. of army ants, we need to combine the pheromone
concentration based model with other judgment criteria.

6 Changes in Strategy Based on Numbers of Agents

6.1 Deciding Group Behavior of Army Ants

It has been confirmed that the group behavior of army ants is seriously affected
by the number of ants that are active [1,2]. For example, when few ants are
available for chain formation, chains are not formed but when large numbers of
ants are available, chains are formed at several sites. However, when the number
of active ants is moderate, initially several chains are formed. But after a certain
time, extension of most of the chains stops and the chains gradually decrease
in size and eventually the extension of only one chain continues. However, it is
still not clear how the ants count the number of neighboring ants and how this
number affects their behavior.

6.2 Comparative Experiment

In order to monitor the effect of group size on the activity of agents, we performed
experiments using Lioni et al. formulas extended with a minimum limit on group
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Fig. 11. Maps used to study the effect of number of agents

Fig. 12. Effect of neighborhood knowl-

edge (Map 1)

Fig. 13. Effect of neighborhood knowl-

edge (Map 2)

size as an additional condition of chain formation. We compared this scheme
with the one that does not take into account the group size. The experiment
was performed using two maps shown in Fig. 11. The results of the experiments
are shown in Fig. 12 and Fig. 13. The horizontal axis shows the number of agents,
and the vertical axis shows the performance in terms of the number of food items
collected within a fixed time. In these figures, “with Check Neighbor” represents
the procedure taking the number of neighboring ants into consideration and
“without Check Neighbor” indicates the procedure not taking the number of
neighboring ants into consideration

In Map 1, the method that did not take into account information about neigh-
boring ants showed high performance. This was because the conditions for bridge
formation were relaxed and hence bridges could be formed at an early stage and
food can be found easily.

Map 2 was used to investigate whether intelligent behavior can be achieved
by avoiding unnecessary bridge formation where a shortcut is not especially
necessary for food collection. In this case, better results were obtained with the
method that checks the number of neighboring ants.

Fig. 14 shows how the bridges extend in size with time for Map 1. In the figure,
1st refers to the largest bridge at the time and 2nd to the next largest bridge.
The horizontal axis shows time and the vertical axis the two largest bridges. It
is apparent from the graph that at first, several bridges coexist and extend for
about the same length, but finally the differences become greater. Fig. 15 shows
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Fig. 14. Changes in size of bridge Fig. 15. Changes in size of chain (Data plot

of [2])

the data obtained in a biological experiment in the research of Lioni et al. [2].
When chains were formed at two sites, records were kept on how each of the
chains extended. In the figure 1st and 2nd show the sizes of the chains at each
site. Fig. 15 was newly plotted based on data taken from the paper.

7 Simulation with Fixed Role Assigned

From the previous experiments, it seems that our model has many properties
similar to actual army ant behavior. To emphasize the similarity between the
simulator agents and the actual army ants, it is important to compare experi-
mental data. We can do that by corresponding the agents behavior to the army
ants behavior.

As a first step, the experiment was performed using a simulator that has
agents with fixed task assigned. Task assignment is the one of the signatures
that is observed in army ant. Army ants have tasks that depend on someone’s
rank. Here we consider two different roles for agents in our simulator

– role A : Search and transport food.
– role B : Build a bridge to support role A.

We performed experiment by assigning agents in these two roles with different
ratios. Fig. 16 shows the experimental results where the performance was com-
pared in terms of the number of food items collected within a fixed time. Rate
0.1 means that 10% agents were assigned to role B in the simulation. “Dynamic
Assignment” labels the experimental results obtained by the simulator used in
Section 6 where the agents have no fixed role.

The results in Fig. 16 indicate that a fixed division of roles may be better than
a dynamic one. Especially Rate 0.5 and Rate 0.6 are better than other ratios.
Although “Dynamic Assignment” was not the best, it performed competitively
on an average. This study points out the possibility of role assignment in our
simulator. But, in the real world, it is not possible to know the role assignments
of ants to solve this problem. Nevertheless, a broader survey can help us to
improve our simulation.
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Fig. 16. Experimental results with task assignment

8 Conclusion

In this work, we have studied a couple of models to simulate the altruistic be-
havior by army-ants for evolving cooperation in a multi-agent environment. We
observed that timely and efficient formation of live-bridges is possible using the
pheromone concentration as the condition for altruism; but for that a foraging
site had to be found beforehand. Since the actual actions of ants are not re-
stricted in this way, the chain formation probability by Lioni et al. was used
as the judgment criteria for bridge formation. However, differences appeared
between the simulated environment and what is observed in nature; and the
foraging performance of the ant colony was decreased.

Then we experimented using the chain formation probability, along with the
number of neighboring active ants, as the condition for altruistic behavior. In
this case, bridge formation at unnecessary sites is decreased and performance
improved. When the changes in the size of the bridges are considered, the be-
havior by actual ants that enables them to make collective decisions has been
observed. However, since there are also cases when higher performance was pos-
sible without considering the numbers of neighboring ants, there is still room for
improvement in this respect.

In order to make the simulation environment more realistic, experiments with
fixed role assigned to the agents were performed. Experiments with roles assigned
in certain ratios showed high performance. But role assignment mechanism in
real world army ants is unknown.

This study shows that mimicking the altruistic behavior in army ants, it is
possible to evolve improved and efficient cooperation in a multi-agent environ-
ment. Such effective cooperation can be used to solve many difficult real world
problems ranging from robotics to computer games. However, there is plenty of
scope for improving the proposed models incorporating more concrete knowledge
about army ants’ behavior in nature.
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Abstract. In classical decision theory, the agents’ preferences are typically mod-
elled with utility functions that form the base for individual and multi-agent
decision-making. However, utility-based preference elicitation is often compli-
cated and sometimes not so user-friendly. In this paper, we investigate the theory
of CP-nets (conditional preference networks) as a formal model for represent-
ing and reasoning with the agents’ preferences. The contribution of this paper is
two-fold. First, we propose a tool, called RA-Tree (Relational Assignment Tree),
to generate the preference order over the outcome space for an individual agent.
Moreover, when multiple agents interact, there is a need to make social choices.
But given a large number of possible alternatives, it is impractical to search the
collective optimal outcomes from the entire outcome space. Thus, in this paper,
we provide a novel procedure to generate the optimal outcome set for multiple
agents. The proposed procedure reduces the size of the search space and is com-
putationally efficient.

Keywords: Social Choice; CP-nets; Collective decision-making.

1 Introduction

Classical decision theory represents agents as having preferences over the outcome
space, and the preferences are usually mathematically represented by utility functions.
Unfortunately, in many situations, the utility-based preference elicitation is complicated
and typical users may not be able to provide much more than qualitative rankings of out-
comes [3]. For instance, in everyday banking situation, it is difficult to require people
to define their utility functions over multiple issues (e.g. interest rate, annual fee, min-
imum deposit, choice of terms, etc.) before they apply for a term deposit service. But
it is easy for them to provide some statements like “I prefer the no-fee account to the
one with monthly administration fees”. Moreover, conditional preferences are easier to
represent in a qualitative way rather than by quantitative preference. For instance, “I
prefer to choose a longer term deposit (e.g. 24 months) if there is no account fee and
the current interest rate is higher than 6%”.

In this paper, we investigate the theory of CP-nets [2] as a formal model for repre-
senting and reasoning with the agents’ preference. The motivation of applying CP-nets
is that, CP-nets can be used to specify individual preference relations in a relatively

J. Li (Ed.): AI 2010, LNAI 6464, pp. 375–384, 2010.
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compact, intuitive, and structured manner, making it easier to encode human prefer-
ences and support decision-making in real world applications. We also propose a new
technique, called RA-Tree, to reason with CP-net topologically, and generate the pref-
erence order over the outcome space for an individual agent.

When multiple agents interact, there is a need to make social choices [1]. In this
paper, given that the individual preferences have been elicited and represented as CP-
nets, the problem of computing the optimal outcome set for multiple agents will be
addressed. Recent work on the complexity of computing dominance relations shows
that dominance testing1 for an arbitrary CP-net is PSPACE-complete [4]. However,
outcome optimization with multiple agents’ CP-nets furthermore requires dominance
testing on each pair of alternatives on each individual CP-net. For example, having 10
binary variables, each involved agent would need to compare

(
210

2

)
= 523776 pairs of

alternatives. This problem is likely to be even harder than NP or coNP problems. Group
decision-making with CP-nets has been studied in the literature, e.g.,[5,9]. However,
most existing works either do not consider computational requirements, or depend on a
strong assumption that the agents’ preferences extend acyclic CP-nets being compatible
with a common order on the variables. Other related works are Li et al. [6] and Li et al.
[7]. The former applies majority rule on arbitrary profiles and proposes an algorithm to
find the possible majority-optimal alternatives; the latter employs a heuristic to reduce
the size of the search space and tries to approximate the fair and optimal outcomes.

To this end, this paper aims at generating the set of all Pareto-optimal outcomes
from a collection of CP-nets. The proposed procedure iteratively deletes the dominated
outcomes by traversing the agents’ RA-Trees. It allows the agents to have different
preferential independence structures, guarantees optimality and is computationally ef-
ficient. Especially when the agents’ CP-net structures are similar in topology, it prunes
the dominated assignments efficiently from the high level in the RA-Trees and greatly
reduces the search effort. The paper is structured as follows. We first provide back-
ground information on CP-net in Section 2. Then we discuss how to reason with CP-net
topologically and present the proposed method to generate the preference order over
the outcome space for an individual agent in Section 3; based on this, we present the
proposed procedure to generate the optimal outcome set for multiple agents in Section
4. Finally we present the concluding remarks and discuss the future work in Section 5.

2 CP-Net Overview

Let V = {X1, . . . , Xn} be a set of n variables. For each Xk ∈ V, D (Xk) is the
value domain of Xk. If X =

{
Xi1 , . . . , Xip

}
⊆ V, with i1 < · · · < ip then D (X)

denotes D (Xi1) × · · · × D
(
Xip

)
and x denotes an assignment of variable values to

X (x ∈ D (X)). If X = V, x is a complete assignment; otherwise x is called a partial
assignment. If x and y are assignments to disjoint sets X and Y, respectively (X ∩ Y =
∅), we denote the combination of x and y by xy. For any assignment x ∈ D (X), we
denote by x [Xk] the value xk ∈ D (Xk) (Xk ∈ X) assigned to variable Xk by that

1 A dominance testing, given an individual CP-net and two alternatives o and o′, tests whether
o is preferred to o′ according to the preferences induced by that CP-net.
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(a) CP-net (b) RA-Tree

(c) Preference order over the outcome space

Fig. 1. An example of CP-net, its RA-Tree and preference order over the outcome space

assignment. Let X, Y, and Z be nonempty sets that partition V and . a preference
relation over D (V). X is (conditionally) preferentially independent of Y given Z iff for
all x, x′ ∈ D (X), y, y′ ∈ D (Y), z ∈ D (Z):

xyz . x′yz iff xy′z . x′y′z

A CP-netN [2] over V is an annotated directed graph G over X1, . . . , Xn, in which
nodes stand for the problem variables. Each node Xk is annotated with a conditional
preference table CPT (Xk), which associates a total order .Xk|u with each instan-
tiation u of Xk’s parents Pa (Xk), i.e. u ∈ D (Pa (Xk)). For instance, let V =
{X1, X2, X3}, all three being binary, and assume that the preference of a given agent
over all possible outcomes can be defined by a CP-net whose structural part is the di-
rected acyclic graph G = {(X1, X2) , (X1, X3) , (X2, X3)}; this means that the agent’s
preference over the values of X1 is unconditional, preference over the values of X2

(resp. X3) is fully determined given the values of X1 (resp. the values of X1 and X2).
The preference statements contained in the conditional preference tables are written
with the usual notation, that is, x1x̄2 : x̄3 . x3 means that when X1 = x1 and X2 = x̄2

then X3 = x̄3 is preferred to X3 = x3. Figure 1(a) shows an example of an agent’s
CP-net.

In this paper, we make the classical assumption that each agent’s CP-nets is acyclic
and do not model indifference, i.e. the ordering.Xk|u, u ∈ D (Pa (Xk)), expressed in
the conditional preference table is total. An individual CP-net N induces a preference
ranking over the outcome space [2]: for any pair of outcomes o1 and o2, N entails
o1 . o2 (denoted by N |= o1 . o2) iff there exists a sequence of improving flips from
o2 to o1 respecting the conditional preference tables of N ; otherwise, N �|= o1 . o2.
An improving flip is the flip of the value of a single variable Xk within an outcome
to directly compute a preferred (better) outcome based on CPT (Xk). Note that the
preference relation induced from a CP-net is generally not complete [2]. Two outcomes
o1 and o2 may also be incomparable according to N (written as N |= o1 �� o2).
N |= o1 �� o2 iff N �|= o1 . o2 and N �|= o2 . o1.
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3 Reasoning with CP-Net Topologically

3.1 The Topological Order of Variables

During the preference elicitation process, the agent specifies its preference following
a particular order of variables: the context of parent features must be specified before
giving out the total order over the domain of a variable. Given an acyclic CP-net N
over a set of n variables V = {X1, . . . , Xn}, a topological order of variables σ =
X1 > · · · > Xn is a linear order on the variables from ancestors to descendants that is
consistent withN , i.e. for each parent variable Xk of a variable X�, we have Xk > X�.
Please note that for an acyclic CP-net N , there may exist more than one topological
order of variables. For instance, both the order of X1 > X2 > X3 and X2 > X1 > X3

are consistent with the structure of the example CP-net in Figure 1(a).

Definition 1. Given an acyclic CP-net N over V = {X1, . . . , Xn}, for any lin-
ear order σ = Xσ

1 > · · · > Xσ
n over V that is consistent with N , we define

Zσ = {Xσ
1 , . . . , X

σ
n} to be an ordered set of varaibles corresponding to σ; and

Zσ
k = {Xσ

1 , . . . , X
σ
k } (1 ≤ k ≤ n) to be the kth prefix subset of Zσ , which consists of

the first k variables in Zσ .

Restricting to the kth prefix subset of variables Zk, we define that ceteris paribus pref-
erence between the values to a prefix subset Zk as follows:

Definition 2. Given an acyclic CP-netN , let σ be a topological order that is consistent
with N , and Zσ = {Xσ

1 , . . . , X
σ
n} be the ordered set of variables corresponding to σ.

For any pair of prefix assignments zσ
k , zσ

k
′ to the prefix subset of variables Zσ

k (zσ
k , zσ

k
′ ∈

D (Zσ
k)), we say that zσ

k is preferred to zσ
k
′ certeris paribus, denoted by zσ

k

cp
. zσ

k
′ if and

only if there exists an improving flipping sequence from zσ
k
′ to zσ

k resticting on the set of

variables Zσ
k . Otherwise, zσ

k

cp

� zσ
k
′.

Lemma 1. Given an acyclic CP-net N , let σ be a topological order that is consistent
with N , and Zσ = {Xσ

1 , . . . , X
σ
n} be the ordered set of variables corresponding to σ.

For any pair of prefix assignments zσ
k , zσ

k
′ ∈ D (Zσ

k ), let W = Zσ − Zσ
k :

– If zσ
k

cp
. zσ

k
′, then for all w ∈ D (W),N |= zσ

kw . zσ
k
′w;

– else, for any w,w′ ∈ D (W),N �|= zσ
kw . zσ

k
′w′.

Proof. If zσ
k

cp
. zσ

k
′, then there exist an improving flipping sequence from zσ

k
′ to zσ

k

restricting on the set of variables Zσ
k . Consequently, for all w ∈ D (W), there must

also exist an improving flipping sequence from zσ
k
′w to zσ

kw in the induced preference
graph over the outcome space, which only flips the values of the set of variables Zσ

k

but keep the set of variables W unchanged. Thus, N |= zσ
kw . zσ

k
′w. On the other

hand, if zσ
k

cp

� zσ
k
′, there does not exist any improving flipping sequence from zσ

k
′ to

zσ
k restricting on the set of variables Zσ

k . As each variable X in Zσ
k is preferentially

independent with the variables in W given the values to the set variables Zσ
k −{X}, for

any w,w′ ∈ D (W), there must not exist any improving sequence from outcome zσ
k
′w′

to zσ
kw. Consequently, N �|= zσ

kw . zσ
k
′w′.
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3.2 Generating the Preference Order over the Outcome Space Using RA-Tree

In this section, we conceptualize the assignment of the variables values as a tree, Re-
lational Assignment Tree (called RA-Tree in the following sections), which constructs
the agent’s preference relations over the outcomes space following the topological order
of variables. Given an acyclic CP-netN over a set of n variables(not necessary binary-
valued), let σ be a topological order that is consistent withN , and Zσ = {Xσ

1 , . . . , X
σ
n}

be the ordered set of variables corresponding to σ. A RA-Tree over Zσ is a M -ary tree
(M denotes the maximum domain size of the variables) that:

1. The depth of the tree is n; the root node being at level 0 represents an empty as-
signment to the variables and then each level k represents the value assignments to
the prefix subset Zσ

k .
2. At each level k, we extends each node zσ

k−1 from the upper (k − 1) level with the
values assign to the next variable Xσ

k ∈ Zσ; and the values of Xσ
k are ordered

preferentially decreasingly from left to right w.r.t. CPT (Xσ
k ), given zσ

k−1;
3. At each level k, there is an edge from a node zσ

k
′ to a node zσ

k (zσ
k and zσ

k
′ differ on

a single variable) if and only if:
– zσ

k and zσ
k
′ have the same parent node zσ

k−1, and given zσ
k−1, the value assigned

to variable Xσ
k by zσ

k is preferred to that assigned by zσ
k
′, i.e. x .Xσ

k |zσ
k−1 x′

where x = zσ
k [Xσ

k ] and x′ = zσ
k
′ [Xσ

k ];
– or, there is an edge from node zσ

k−1
′ to node zσ

k−1 (zσ
k−1 and zσ

k−1
′ are the

parent nodes of zσ
k and zσ

k
′ respectively), zσ

k [Xσ
k ] = zσ

k
′ [Xσ

k ] = x, and given
zσ
k−1 and zσ

k−1
′, there does not exist x′′ ∈ D (Xσ

k ) and x′′ �= x, such that it

satisfies: x .Xσ
k |zσ

k−1 x′′ and x′′ .Xσ
k |zσ

k−1
′
x.

At each level of the RA-Tree, from left to right is a non-increasing order over the prefix
assignments at that level. Based on the transitive closure of the nodes at each level k,

zσ
k

cp
. zσ

k
′ if and only if there is an edge or directed path form zσ

k
′ to zσ

k . Moreover, each
leaf node corresponds to a complete assignment to all the variables (i.e. outcomes),
and the transitive closure at the lowest level of the RA-Tree specifies the (asymmetric)
partial order over the outcome space induced by the CP-net N (see Figure 1(b) and
Figure 1(c) the RA-Tree and the corresponding preference order over the outcome space
of the example CP-net in Figure 1(a)).

4 Making Social Choices with RA-Trees

In many situations, we need to represent and reason about the simultaneous preferences
of several agents, and to aggregate such preferences [9,8]. Given a set of CP-nets of
the agents, our goal for collective decision-making should be to determine either one,
some, or all outcomes that are not dominated by any other outcomes corresponding to
the given aggregation rule [9]. Based on the assumption that the agents’ CP-nets are
acyclic and do not model indifference, we define the following definition of dominance
in collective decision-making with multiple agents’ CP-nets:
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(a) CP-net of Agent 1 (b) CP-net of Agent 2

Fig. 2. Two examples of CP-nets

Definition 3. Given a collection of the agents CP-nets N = {N1, . . . ,Nm} and two
alternatives o, o′, we say that o dominates o′ if and only if for every agent, o′ is not
preferred to o and there is at least one agent who prefers o to o′: ∀Ni ∈ N, Ni �|= o′ . o
and ∃Nj ∈ N, Nj |= o . o′. An outcome o∗ is optimal if and only if it is not dominated
by any other outcomes.

Given a collection of CP-nets N = {N1, . . . ,Nm} over a set of variables V =
{X1, . . . , Xn}, we first define a topological order of variables for each agent i’s CP-net
Ni: σi = Xσi

1 > · · · > Xσi
n . To be more efficient, we try to prune out the dominated

prefix assignments from the higher levels. Thus, the topological order of agents’ CP-
nets should be defined as similar as possible. In this paper, we define the following rules
for choosing the topological order for the agents CP-nets.
Let Gi denote the relation graph over the set of domain variables of an agent i’s CP-net
Ni. For any pair of variables Xk, X�:

– if, for all i ∈ {1, . . . ,m}, there is a directed path from Xk to X� in Gi, then we
have Xk > X� in σi;

– if, for all i ∈ {1, . . . ,m}, there is no directed path from X� to Xk in Gi and
∃j ∈ {1, . . . ,m}, there is a directed path from Xk to X� in σj . Then for all i ∈
{1, . . . ,m}, we have Xk > X� in σi.

– if, for all i ∈ {1, . . . ,m}, there is no directed path between Xk and X�, we then
define a common order that every agent follows, e.g. for all i ∈ {1, . . . ,m}, we
have Xk > X� in σi.

Example 1. Consider the example CP-nets of 2 agents over a set of 4 variables in
Figure 2. For agent 1’s CP-nets, according to the relation graph, we have the following
strict ordering over the variables: X1 > X2, X1 > X3, X1 > X4 and X3 > X4. There
is no directed path between X2 and X4 (resp. X2 and X3), however, according to agent
2’s CP-net, there is a directed path from X4 to X2 (resp. from X3 to X2). Consequently,
the topological order chosen for agent 1’s CP-net is σ1 = X1 > X3 > X4 > X2.
Similarly, the topological order chosen for agent 2 is σ2 = X1 > X4 > X3 > X2.

After the topological order of each agent’s CP-net is determined, we can execute the
RA-optimal procedure. RA-optimal procedure involves a n−iteration (n is the num-
ber of variables) process of pruning dominated prefix assignments. At each iteration
(k ≤ n), we traverse each agent’s RA-Tree at a specific level and aggregate multiple
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agents’ preference over the prefix assignments. Please note that we don’t assume that
we have the complete RA-Tree of each agent in hand, but construct a partial RA-Tree
for the remaining node assignments in the RA-Tree. For each level � (1 < � ≤ n), we
only construct the children nodes of the remaining nodes at level �− 1. Given a collec-
tion of CP-nets N = {N1, . . . ,Nm}, let σi = X i

1 > · · · > X i
n (i ∈ {1, . . . ,m}) be the

chosen topological order ofNi, Zσi = {Xσi
1 , . . . , Xσi

n } be the ordered set of variables
corresponding to σi and Ti be the partial RA-Tree of agent i corresponding to σi:
For k = 1 To n

Step1: For each agent i’s CP-net Ni, consider the kth variable and its parents in all
other agents’ CP-nets. Let X = X

σj

k be the kth variable in Zσj of agent j (j ∈
{1, . . .m} and j �= i) and Sj = {X}∪Paj(X). Let S =

⋃
j∈{1,...,m},j �=i

Sj . Suppose

that Zσi

� is the smallest prefix subset of variables of agent i such that Zσi

� contains
all the variables in S (S ⊆ Zσi

� ). We traverse the �th level of Agent i’s RA-Tree Ti.2

For the simplicity of explanation, we present the proposed procedure under two-
party setting; however, the proposed approach is feasible in multi-agent case ac-
cording to the same principle. For all x, x′ ∈ D (X), we consider CPTj (X) of
agent j and the �th level of agent i’s RA-Tree:

– if for Agent j, x is unconditionally preferred to x′ w.r.t CPTj (X), then delete
all the prefix assignments zσi

�
′ at level � of Ti for which: zσi

�
′ [X ] = x′, and

there is an edge or directed path from zσi

�
′ to any of the remaining prefix as-

signments zσi

� that assigns x to variables X (zσi

� [X ] = x). All children nodes
of the deleted nodes at the lower levels should also be deleted.

– or, for any remaining prefix assignments zσi

� , zσi

�
′ ∈ D (Zσi

� ) that assign the
same value u to Paj (X), but a different value to variable X : zσi

� [X ] = x and
zσi

�
′ [X ] = x′, if for Agent j, given the parent context u, x is conditionally

preferred to x′, then delete all the prefix assignments zσi

�
′ at the �th level of Ti

if there is an edge or directed path from zσi

�
′ to zσi

� . All children nodes of the
deleted nodes at the lower levels should also be deleted.

Step2: In this step, we need to delete the infeasible prefix assignments in the agents’
RA-Trees, as the remaining assignments in one agent’s RA-Tree may have been
deleted when traversing the other agent’s RA-Trees. For instance, if the assignment
x1x2 to variables X1 and X2 is deleted when traversing T1, then all the lower level
prefix assignments are deleted in T1. If the assignment x1x2x3 to variables X1, X2

and X3 is remaining in T2, then we delete the infeasible assignment x1x2x3 in T2.
Moreover, when � = k, (Zσi

� = Zσj

k ), we need to check if there exist some pairs of
prefix assignments zk, zk

′ at level k (�), such that there is no path between zk and
zk

′ in Ti (resp. Tj) but there is a path from zk
′ to zk in Tj (resp. Ti), then we delete

zk
′ in both Ti and Tj .

At the end of the RA-Optimal procedure, we obtain a set of optimal outcomes (the
remaining leaf nodes in the agents’ partial RA-Tree), which is the basis for choosing

2 Please note that if only the first �′th(�′ < �) level of Ti has been constructed, then we will
need to construct Ti from the remaining nodes of the �′th level to the �th level.
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the final outcome preferred by both agents. As to proof the optimality of the proposed
approach, we first extend the following corollary for ordering queries3 from [2].

Corollary 1. LetNi be an acyclic CP-net of agent Ai, and o, o′ be a pair of outcomes.
If there exists a variable X in Ni, such that

– X is a root variable inNi, o assigns a more preferred value to X than that assigned
by o′: x .X

Ni
x′, where x = o [X ] and x′ = o′ [X ];

– Or, o and o′ assign the same values to all ancestors of X in Ni, and given the
assignment provided by o (and o′) to Pai (X), o assigns a more preferred value

to X than that assigned by o′: x .X|u
Ni

x′, where x = o [X ], x′ = o′ [X ] and
u = o [Pai (X)] (= o′ [Pai (X)]);

then Ni �|= o′ . o

Now, we prove that the proposed RA-Optimal procedure guarantees optimality.

Theorem 1. (completeness) The outcomes that are deleted during the RA-Optimal pro-
cedure are not optimal.

Proof. At each iteration, during Step 1, for any deleted prefix partial assignment zσi

�
′,

there must exist another prefix partial assignment zσi

� , such that: zσi

�

cp
.Ni zσi

�
′. Thus

according to Lemma 1, ∀w ∈ D (Zσi − Zσi

� ), Ni |= zσi

� w . zσi

�
′w. As Zσi

� contains
the kth variable and its parents of agent j, according to the criteria of deleting prefix
assignments in Step 1, there must exist another prefix assignment zσi

� , such that there

must exist a variable X , x .X
Nj

x′, or, x .X|u
Nj

x′ where x = zσi

� [X ], x′ = zσi

�
′ [X ] and

u is the parent context assigned by zσi

� and zσi

�
′. Thus, based on Corollary 1, ∀w,w′ ∈

D (Zσi − Zσi

� ), Nj �|= zσi

�
′w′ . zσi

� w. Thus all the outcomes with the deleted prefix
assignment zσi

�
′ is not optimal. Moreover, the deleted prefix assignments in Step 2 and

the corresponding outcomes are also not optimal according to Definition 3.

Theorem 2. (soundness) The outcomes generated by RA-Optimal procedure are
optimal.

Proof. At each iteration, we guarantee that all the dominated prefix assignments at the
current level are deleted during Step 1 and Step 2. When we finish the nth iteration, all
the remaining leaf nodes are not dominated by any other leaf nodes. Thus the outcomes
(remaining leaf nodes) generated by RA-Optimal procedure are optimal.

Example 1 (continued). Now, we demonstrate the execution of the proposed approach
with our running example shown in Figure 2. We choose the topological ordered set
Zσ1 = {X1, X3, X4, X2} for Agent 1 and Zσ2 = {X1, X4, X3, X2} for Agent 2.

In the 1st iteration, as Xσ2
1 = X1 and Pa2 (X1) = ∅, S = {X1} ∪ Pa2 (X1) =

{X1}, Zσ1
1 is the smallest prefix subset of Agent 1 that contains all the variables in S.

We construct the first level of T1, as Agent 2 prefer x1 to x̄1 w.r.t CPT2 (X1) and there

3 An ordering query, given a CP-net Ni of an agent Ai and a pair of outcomes o and o′, asks
whether Ni �|= o′ � o.
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(a) Partial RA-Tree of Agent 1 (b) Partial RA-Tree of Agent 2

Fig. 3. Searching for optimal outcome set

(a) Agent 1 (b) Agent 2

Fig. 4. Preferences over the set of optimal outcomes

is a directed edge from x̄1 to x1 in T1, we delete x̄1 in T1 (see Figure 3(a)). Similarly,
we also delete x̄1 in T2. (see Fig 3(b)). The outcome space has been cut in half after the
1st iteration as all other outcomes with x̄1 will not be considered.

In the 2nd iteration, for Agent 1, consider the second variable in Agent 2’s topo-
logical order Xσ2

2 = X4 and Pa2 (X4) = ∅, thus S = {X4} ∪ Pa2 (X4) = {X4}.
We construct the 3rd level (the smallest level containing S) of T1 from the remaining
node zσ1

1 = x1. Consider CPT2 (X4) of Agent 2, x4 is unconditionally preferred to
x̄4, thus x1x3x̄4 is deleted in T1 as there is a directed edge from x1x3x̄4 to x1x3x4.
Similarly, as Xσ1

2 = X3 and Pa1 (X3) = X1 we need to construct the 3rd level of T2

and two prefix assignments x1x3x4 and x1x3x̄4 are deleted in T2. Because given the
same parent context x1, Agent 1 preferred X3 = x̄3 to X3 = x3, and there is a path
from x1x3x4 (resp. x1x3x̄4) to x1x̄3x4 in T2. During Step 2, we deleted the infeasible
prefix assignment x1x3x4 in T1. After the 2nd iteration, only 2 prefix assignments over
3 variables X1, X3 and X4 are remain.

In the 3rd iteration,Xσ2
3 = X3, Pa2 (X3) = {X1, X4} and S = {X3}∪Pa2 (X3) =

{X1, X3, X4}. Thus we traverse the 3rd level of T1 and similarly, we traverse 3rd level
of T2. No prefix assignment is deleted in this iteration.

During the last iteration, we construct the 4th level of T1 (resp. T2) with the remain-
ing parent nodes x1x̄3x̄4 and x1x̄3x4. No assignment is deleted during Step 1. In Step
2, as there is no directed path between x1x̄2x̄3x̄4 and x1x2x̄3x4 in T1 and there is a di-
rected path from x1x̄2x̄3x̄4 to x1x2x̄3x4 in T2, thus x1x̄2x̄3x̄4 is deleted in both T1 and
T2. The RA-optimal procedure then ends and returns a set of three optimal outcomes
x1x2x̄3x̄4, x1x2x̄3x4 and x1x̄2x̄3x4. For any pair of outcomes in this set, Agent 1 and
Agent 2 have conflict preferences over them (See Fig 4).
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5 Conclusion and Future Work

In this paper, we have introduced RA-Tree, a new method to reason with CP-net topo-
logically and generate the preference order over the outcome space for an individual
agent. When more than one agent is involved, we have also provided an efficient pro-
cedure to find the optimal outcome set for multiple agents. The proposed procedure
reduces the size of the outcome space and thus increases the search efficiency.

In this work, we have assumed so far that we have the complete information about the
agents’ CP-nets. However, in many applications, decision making is more distributed
and agents’ preferences are not common knowledge. Therefore, future work includes
the exploration of possible ways for making social choices with CP-nets under incom-
plete information setting.
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Abstract. This paper addresses a coordination problem during con-

current multiple bilateral negotiations. Real time decisions need to be

taken during negotiation to ensure that the overall negotiation process

is successful in terms of achieving a valuable agreement (an agreement

with high utility). Existing approaches for managing concurrent multi-

ple bilateral negotiation typically rely on historic information such as

the probability distribution of the opponents’ reservation prices, dead-

lines, or the results of the previous negotiations. This paper presents

a novel heuristic coordination mechanism for coordinating concurrent

multiple bilateral negotiations assuming no previous knowledge about

the opponents. The proposed method uses two measures to evaluate the

relative behavior of each opponent. The first measure uses the first-order

differences of the current negotiation offers and calculates the relative

concession for each opponent agent that depends on the mutual conces-

sions of all agents involved in negotiation. The second measure uses a

scoring function to evaluate each of the seller’s last offer during negoti-

ation. We use both measures to change the negotiation strategy during

negotiation. The empirical results show that our model is more effective

when compared with some existing approaches.

Keywords: agents, negotiation, coordination.

1 Introduction

When multiple agents work together for a common goal, their decisions need to
be aligned in a coherent manner as the independent actions of the agents may
not be successful in accomplishing their mission. For example, if two agents A
and B are negotiating with their opponents, then agent A might not be able to
accept an agreement before agent B does.

Negotiation is an effective decision making mechanism and dispute neutral-
ization method that can be used by opponents having conflicting interests [14].
The negotiation is a process where two or more parties interact according to
a certain protocol for the purpose of reaching an agreement over one or more
issues. Price and reliability of a service are examples of negotiation issues. This
paper presents a coordination problem from a buyer’s perspective and focuses on
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the problem of managing concurrent multiple bilateral negotiations in an envi-
ronment characterized by limited critical information about the opponents such
as reservation values, deadlines and negotiation strategies.

The one-to-many form of negotiation is a process where one agent is negoti-
ating with many other agents (> 1) for the purpose of reaching an agreement(s)
[12]. The object of negotiation varies, agents may negotiate about buying or sell-
ing goods [13], procuring resources [1] and services [11] or negotiate about task
assignment [15]. Regardless of the object of negotiation, the negotiating agent(s)
seeks to reach a certain number of agreements. This work focuses on securing
one agreement while negotiating with multiple opponents.

Most existing approaches of managing concurrent multiple bilateral negoti-
ations typically assume a priori knowledge such as the probability distribution
of the opponents’ reservation prices [4], or historic data [12] about the previous
negotiation encounters. We advance the state of the art by proposing a new coor-
dination technique that uses the first-order differences of the agents’ offers and a
scoring function to evaluate the opponents’ last offers in the current negotiation
encounter in order to change the strategy of negotiation in terms of the amount
of the concession in the next negotiation round.

The rest of the paper is organized as follows: section 2 discusses the related
work, while section 3 introduces a formal description of the one-to-many ne-
gotiation form. Section 4 explains the coordination process and describes our
coordination model, while section 5 describes the experimental settings and dis-
cusses the results of the experimental work. Finally, section 6 concludes the paper
and points out some future research directions.

2 Related Work

During the last decade, work has been done to address the one-to-many form
of negotiation as an alternative mechanism to the single-sided auction protocol
[12] [6] [9] [7] [2] [1].

Adopting the one-to-many form of negotiation enables the buyer to propose
counter offers to each individual seller using different negotiation strategies. Ac-
cordingly, the chance of reaching an agreement will be improved since each agent
in the negotiation process can consider the previous offers aiming at predicting
the preferences of its opponent and try to propose an offer that might improve
the probability of reaching an agreement. For more details about the advantages
of using the one-to-many negotiation form over the reverse English auctions, see
[13] and [9].

The first explicit architecture for the one-to-many negotiation form was pre-
sented in [13] where the buyer agent consists of sub-negotiators and a coor-
dinator. The authors [13] propose four different coordination strategies during
concurrent multiple bilateral negotiation: desperate strategy in which the buyer
agent accepts the first agreement and quits negotiations with all other sellers,
patient strategy where the buyer agent makes temporary agreements with some
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or all sellers during negotiation and holds on these agreements until all the
remaining threads of negotiations are finished, then the buyer agent selects
the agreement with the highest utility, optimized patient which is similar to
the patient strategy except that it does not accept a new agreement with less
utility than the highest existing one, and finally the manipulation strategies in
which the coordinator changes the negotiation strategies of its sub-negotiators
during negotiation which was left for future work. Our approach adopts the
same idea as the manipulation strategies method where the agent changes its
negotiation strategy during negotiation.

Our work is similar to some other existing work [12] [11] in terms of choosing
the coordination approach that changes the strategy during negotiation. For
example, the decision making technique in changing the negotiation strategies
[12] during negotiation depends on historic information of previous negotiations
in terms of agreements rate and utilities rate. The difference is that our approach
does not rely on previous information and uses a different technique to change
negotiation strategies.

While [9], [1] consider decommitment penalty during negotiation, we assume
that the buyer agent incur no penalty for exercising decommitment during ne-
gotiation. Having granted the privilege only for the buyer agent to renege from
a deal without a penalty, while forcing the seller agents to honour their agree-
ments can be a realistic scenario in situations where the number of seller agents
is large and/or the seller agents are offering infinite supply (e.g. information). In
such cases, a seller agent might be satisfied to make deals with many potential
buyers in a hope that some of these buyers will confirm their deals later.

Some heuristic methods were proposed to estimate the expected utility in
both a synchronized multi-threaded negotiations and a dynamic multi-threaded
negotiations [4]. The synchronized multi-threaded negotiations model considers
the existing outside options for each single thread, while the dynamic multi-
threaded negotiations considers also the uncertain outside options that might
come in the future. In both cases, the methods assume a knowledge of the prob-
ability distribution of the reservation prices of the opponents. In many cases,
this kind of information is not available.

While [2] proposes a decision making strategy using Markov chains to decide
whether to accept the best available offer or to proceed in negotiation with a hope
to achieve a better deal, our work assumes that the buyer can make temporary
deals with his opponents as explained previously.

The AutONA (A System for Automated Multiple 1-1 Negotiation) [3] was
tested in the HPs Experimental Economics Lab as an automation tool to re-
duce the operational procurement costs. Their experimental results show good
performance. However, the AutONA model uses a probability distribution over
prices per unit, parameterized by the properties that an option (a seller and
a quantity) may have. However, the objective of negotiation in AutONA is to
procure a number of units from many sellers, while in our model we assume that
one agreement is required.
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3 Formal Description

This section presents the one-to-many form of negotiation more formally. Figure
1 illustrates an architecture for the one-to-many negotiation form, in which di

stands for a negotiation thread, si stands for a seller agent and each negotiation
thread corresponds to one seller agent. The buyer agent can initiate a unique ne-
gotiation thread with each different seller. The architecture illustrated in Figure
1 is similar to the architecture proposed in [10] [11] [12] [9], and it will be the
base for our formal description of the one-to-many negotiation form. The for-
mal representation helps in logical grouping and management of the negotiation
threads by the coordinator.

Fig. 1. One-To-Many Negotiation

We assume that a buyer agent b negotiates with a set of sellers S = {s1, s2,
..., sn}. The following model presents a buyer’s perspective. A seller’s perspective
can be constructed in a similar way. We assume the following:

1. The buyer agent b consists of a coordination unit co and a set of threads D.
Formally, b = {co,D},D = {d1, d2, ..., dn}.

2. Given that |D| = |S|, let Rds defines the relationship between the set of
sellers S and the set of threads D, then Rds = {(d1, s1), (d2, s2), ..., (dn, sn)}.

3. Agents negotiate about objects. An object oi ∈ O = {o1, o2, ..., om} repre-
sents a physical item, a logical item (e.g. electronic material), a resource, a
task, or a service.

4. Each object oi is represented by a set of issues Ii, Ii = {isi
1, is

i
2, ..., is

i
k}.

5. Each thread di is associated with a set of parameters which represent the con-
straints of negotiation assigned to that particular thread and with an object
oi. Formally, ∀ di ∈ D, di is associated with a set sti = {oi, tdi

max, wi, yi},
where i ∈ {1, 2, ..., |D|}, given that tdi

max, wi, yi stand for the deadline, the
weight, and the negotiation tactic or strategy of a thread di respectively.
The wi reflects the relative importance of a certain object oi assigned to a
thread di.

6. Since each issue isj can be represented by a set of constraints such as reserva-
tion value, quality level, weight, etc., then ∀ isj ∈ Ii, isj can be represented
by a set of constraints csj = {cj

1, c
j
2, ..., c

j
r}.

7. Agents exchange offers associated with the elements of a set csj .
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8. The power set of D (i.e. 2D) contains all possible groupings of threads, given
that each group is responsible for securing one agreement. The coordinator
(co) selects a subset G ⊆ 2D\∅ s.t ∀ li, lj ∈ G, (li ∩ lj = ∅ ∧

⋃|G|
i=1 li = D).

9. Each li ∈ G has a number of threads that is/are responsible for negotiat-
ing about a distinct object. For Example, If D = {d1, d2}, then 2D\∅ =
{{d1}, {d2}, {d1, d2}}. If G = {{d1, d2}} then G has two threads that nego-
tiate with two sellers for the purpose of buying the same object while one
agreement is needed. If G = {{d1}, {d2}}, then the purpose is to secure two
agreements for two distinct objects from two different providers. It can hap-
pen, for example, that o1 is assigned to l1 = {d1} ∈ G and o2 is assigned to
l2 = {d2} ∈ G and at the same time both objects o1 and o2 are assigned the
same issue set Ii. For example, a book and a pen are two distinct objects,
but both can be represented by the same set of negotiation issues Ii (e.g.
Ii = {price, quality}).

10. If a seller si offers m number of objects, and if the thread di is required to
buy the m objects from the seller si, then the thread di would negotiate
about

⋃m
j=1{Ij} issues, where object oj is associated with Ij .

11. If seller agents si and sj offer more than one object (e.g. o1 and o2) and the
buyer agent seeks to buy both o1 and o2 objects, then si should create two
seller threads (i.e. si1 → o1 and si2 → o2) and sj should also create two seller
threads (i.e. sj1 → o1 and sj2 → o2) then the buyer agent would have four
threads (i.e bd = {{d1, d2}, {d3, d4}} and |G| = 2). The mapping between
the agents would be as follows: Rds = {(d1, si1), (d2, sj1), (d3, si2), (d4, sj2)}.
In this case, the buyer agent seeks two agreements, one from the set {d1, d2}
for buying o1 and another one from the set {d3, d4} for buying o2.

The cardinality of the subset G (i.e. |G|) determines the number of agreements
required by the buyer agent. For example, if |G| = 1 then the scenario describes a
situation where the buyer agent aims to secure one agreement while negotiating
with multiple sellers. Our coordination mechanism assumes that |G| = 1.

4 The Coordination Process

We present the coordination mechanism as a system that has an input, process
and output. The independent variables of negotiation such as the reservation val-
ues and deadlines are part of the required input for the coordination mechanism.
Opponent’s responses in terms of their counter offers are important feedback dur-
ing negotiation. Other information such as the possible arrivals of new outside
options during negotiation can affect the coordination method. However, in our
model, we only consider the feedback in terms of the opponents’ counter offers,
since in many cases, other information may not be available. The outputs of the
coordination process determine the effectiveness of the process in reaching its
goals. Various metrics can be used to measure the effectiveness of the process,
such as the utility and agreement rate.

The idea of our coordination of concurrent negotiations (CCN) model is to
measure the relative behavior of each seller agent during negotiation in terms of
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its concessions. In addition, each opponent’s last offer is evaluated using a scor-
ing function. The two measures form a metric value that is used to change the
strategy of each buyer’s thread in terms of their concessions in the next negoti-
ation round. We assume that the agents use the polynomial function proposed
in [5] to determine the value of the next offer where α(t) = (t/tamax)1/β , where
a stands for an agent, tamax stands for the deadline of agent a, t is the current
time while the β value determines the convexity degree of the concession curve.

The proposed model uses the first-order differences of each agent’s offers dur-
ing the current negotiation for the first measure, while it uses a scoring function
V (xt

si→di
) = (maxb − xt

si→di
)/(maxb − minb) for the second measure, where

xt
si→di

stands for an offer from a seller si to a buyer’s thread di at time t, minb

and maxb are the reservation intervals of the buyer.
Let Δfct

si
and Δfct

di
stand for the sequence of the first-order differences of

a seller si offers and the sequence of the first-order differences of a thread’s
di offers at time t, respectively. Then Δfct

si
= (xt−h

si→di
− xt

si→di
), Δfct

di
=

(xt
di→si

− xt−h
di→si

), where h stands for a number of steps back in the history of
the current negotiation offers (h <= t). At time t and for each (di, si) ∈ Rds, we
calculate the difference between Δfct

si
and Δfct

di
as shown in Equation 1.

∀(di, si) ∈ Rds, Δfct
i = Δfct

si
−Δfct

di
(1)

fct = {Δfct
1, Δfct

2, ..., Δfct
n}, where fct is a set representing the relative con-

cession of each seller si ∈ S at time t. To analyze how each seller agent’s behavior
is compared to the best negotiating seller(s) from the point of view of the buyer
agent in terms of its relative concession, we normalize the values in the set fct,
∀Δfct

i ∈ fct, Δfct
inorm

= (Δfct
i −Min(fct))/(Max(fct)−Min(fct)).

A seller agent si having Δfct
inorm

= 0 indicates that si is the most unfavorite
agent in terms of its relative concession up to time t, while Δfct

inorm
= 1 means

that si is the most favorite seller agent in terms of the amount of its relative
concession up to time t.

Computing the score value measure is done by calculating a scoring value for
each seller’s last offer using the function V and then normalizing the results.
Each normalized value vt

inorm
corresponds to a seller agent si. Up to this point

of time t, the coordinator unit co has an overall view of the relative behavior of
each seller agent. The combined two measures is given by Equation 2.

εt
i = (1− γ)Δfct

inorm
+ γvt

inorm
(2)

given that γ ∈ [0, 1] and εt
i ∈ [0, 1]. At each negotiation round where t > 1 given

that the first round starts at t = 0, εt
i value will be calculated for each seller

then the coordinator (co) changes the strategy (concession rate or βt+1
i value for

the next negotiation round) for each thread di ∈ D according to the following
formula:

βt+1
i =

{
c− cεt

i, εt
i ∈ [0, 0.5)

Max[1− εt
i, ρ], εt

i ∈ [0.5, 1]
(3)

where c stands for the value of concession(c >> 1). In our experiments, we
use c = 10. The ρ value determines the minimum βt+1

i value when εt
i = 1. It is
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obvious from Equation 3 that the strategy choice is characterized by exploitation
of the situation. The co chooses to play tough with lenient opponents while
playing lenient with tough opponents. This decision reflects a certain belief about
the social behavior of the seller agents. If the coordinator has a different belief,
then the strategy updating mechanism may change. A summary of the CCN
algorithm is outlined in Figure 2.

1: for all si ∈ S, di ∈ D do 9: NOMALIZE(vt
i)

2: Δfct
i = Δfct

si
− Δfct

di
10:for all si ∈ S

3: fct[i] = Δfct
i 11: εt

i = (1 − γ) ∗ Δfct
inorm

+ γ ∗ vt
inorm

4: end for 12: end for
5: NORMALIZE(fct) 13: if εt

i ∈ [0, 0.5) then βt+1
i = c − c ∗ εt

i

6: for each si ∈ S 14: else
7: vt

i = V (xt
si→di

) 15: βt+1
i = Max[1 − εt

i, ρ]

8: end for 16: end if

Fig. 2. The CCN algorithm

5 Empirical Evaluation

To validate the proposed coordination model, we build 75 (5 different overlap
percentages x 3 different deadlines x 5 different γ values) different test cases to
ensure that our coordination (CCN) mechanism works in a wide range of possible
negotiation environments. For simplicity, we assume that all agents use the time
dependent tactics proposed by [5]. In each experiment, all buyer’s threads start
having the same deadline, reservation values, and the same negotiation strategy
in terms of their concession (i.e. β value). Only the negotiation strategies will be
changed for the buyer’s threads. Each seller agent selects a random negotiation
strategy before the start of negotiation. The reservation values and deadlines of
the sellers are selected randomly from the same distribution.

In this paper, we benchmark our strategy against five other strategies, namely,
the desperate strategy (DE), the patient strategy (PA), the optimized patient
strategy (OP ) [13], the (eCN) strategy [12], and finally the optimal strategy
(OT ). The optimal strategy assumes full knowledge about the opponents with
regard to their reservation values, deadlines and negotiation strategies. The eCN
uses historic data from previous negotiations and changes the negotiation strat-
egy of a buyer’s thread after the corresponding opponent agent has been classified
either as a conceder or non conceder. We assume that the agents negotiate about
one issue (e.g. price). The feedback is represented by (εt

i) which is calculated as
explained in Section 4. The metrics that we use to evaluate the effectiveness of
the coordination process are the utility gain and the agreement rate.

For the experimental settings, we use various degrees of overlaps between
the reservation intervals of the negotiating agents, namely, 100%, 75%, 50%,
25% and 5%. The deadline of the buyer agent has three states: equal, shorter
or longer than the sellers’ deadlines. We also use 5 classes of γ values, γ ∈
{0, 1, 0.5, (0.5, 1], [0.0, 0.5)}. The minimum interval values for the buyer agent
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(a) Average Utility (b) Agreement Rate

Fig. 3. Average Utility subfigures (a) and Agreement Rate (b)

where selected from [0, 20] and maximum interval values where selected from
the interval [30, 50]. We run 75 different experiments, one for each different
negotiation setting and each experiment was iterated 100 times. Figure 3(a)
shows the average utility rate and the average agreement rate for each type of
strategy over the 75 different negotiation settings. The CCN method performs
better than all other strategies except for the optimal one (OT ). Figure 3(a)
shows that our method outperforms the best control (other than the optimal)
method by about 4.4% when the number of agents is 15 and up to 24% when
the number of agents is 2. Since our results come from unknown distribution, we
use the nonparametric Mann-Whitney U [8] test to compare between the utility
results of the CCN method and the next second best (i.e. eCN) method, the
result of the test shows that the difference between the two samples is highly
significant (P < 0.001, two-tailed test). The reason is that our coordination
strategy measures each opponent’s behavior in relation to the most favorite
opponent’s behavior from the buyer’s point of view which helps in selecting the
appropriate strategy for each thread. As mentioned earlier, the exploitation of
the current situation guides the sellection of strategies for the buyer’s threads.

Figure 3(a) shows that as the number of agents increases, the strategies CCN ,
eCN and OP approach the maximum utility which can be justified by the fact
that when the number of agents increases, the probably of getting an agreement
with higher utility increases given that these strategies does not accept a new
agreement with a less utility than the maximum existing one.

The three controls, DE, PA and OP have the same agreement rate in all dif-
ferent negotiation environments due to the fact that they keep negotiating until
they reach an agreement, if possible. Figure 3(b) shows that the CCN records
the highest number of agreements except for the optimal (OT ). The reason is
that the CCN method monitors the relative behavior of the seller agents and
changes the threads’ negotiation strategies accordingly. In addition, the CCN
monitors the number of outside options (i.e., opponents) left in negotiation, and
if the number of the outside options for the last negotiating buyer’s thread is
zero, then the coordinator accepts a deal from the last remaining opponent if its
offer is less than or equal to the reservation value of the buyer agent.
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Fig. 4. Different γ values

To study the difference between the two evaluation measures (i.e. the relative
concession and scoring value) in terms of their efficiency, we run five different
experiments using the CCN method and each time we iterate the experiment
500 times. Each different experiment has a certain value for γ which reflects the
weight of each measure in determining the εt

i value. The five different values
of γ are (0, 1, 0.5, (0.5, 1], [0.0, 0.5)). The results of the experiments (see Figure
4) show that when γ ∈ [0.5, 1], the utility values seems low when compared to
the other γ values. Again we apply the Mann-Whitney U test for the utility
gain when γ ∈ [0.5, 1] and the utility gain when γ = 0.5, because the graph
show a higher utility values when γ = 0.5. The result of the Mann-Whitney
U test shows that the two samples are not significantly different (P >= 0.05,
two-tailed test). We conclude that both measures have similar effect on utility
gain.

6 Conclusions and Future Work

In the one-to-many form of negotiation, we propose a novel heuristic method for
securing one valuable agreement. The decision making mechanism for selecting
the next concession value in our model depends on analyzing the relative behav-
ior of each opponent during current negotiation. We only consider the opponents’
offers during current negotiation to decide on a new negotiation strategy. The
empirical results show that our coordination mechanism achieves better results
in terms of utility gain and number of agreements when compared with some
exiting methods. In addition, further experiments prove that both the concession
measure and the scoring value measure are similar in their efficiency. Further-
more, this paper presents a formal description for the one-to-many negotiation
model. In future work we intend to investigate more complex situations where
the objective of the buyer agent is to secure more than one agreement (i.e.
|G| > 1).



394 K. Mansour, R. Kowalczyk, and B.Q. Vo

References

1. An, B., Lesser, V., Irwin, D., Zink, M.: Automated Negotiation with Decommit-

ment for Dynamic Resource Allocation in Cloud Computing. In: 9th Int. Conf.

on Autonomous Agents and Multiagent Systems (AAMAS 2010), Toronto, pp.

981–988 (2010)

2. An, B., Sim, K.M., Miao, C.Y., Shen, Z.Q.: Decision making of negotiation agents

using markov chains. Multiagent and Grid Systems 4, 5–23 (2008)

3. Byde, A., Yearworth, M., Bartolini, C.: AutONA: a system for automated multiple

1-1 negotiation. In: IEEE International Conference on E-Commerce, CEC 2003, pp.

59–67 (2003)

4. Cuihong, L., Giampapa, J., Sycara, K.: Bilateral negotiation decisions with uncer-

tain dynamic outside options. IEEE Transactions on Systems, Man and Cybernet-

ics, Part C (Applications and Reviews) 36(1), 31–44 (2006)

5. Faratin, P.: Automated service negotiation between autonomous computational

agents. PhD thesis, University of London (2000)

6. Gerding, E.H., Somefun, D.J.a., La Poutré, J.a.: Automated bilateral bargaining
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Abstract. We propose a formalism for reasoning about actions based on

multi-modal logic which allows for expressing observations as first-class

objects. We introduce a new modal operator, namely [o | α], which allows

us to capture the notion of perceiving an observation given that an action

has taken place. Formulae of the type [o | α]ϕ mean ‘after perceiving

observation o, given α was performed, necessarily ϕ’. In this paper, we

focus on the challenges concerning sensing with explicit observations,

and acting with nondeterministic effects. We present the syntax and

semantics, and a correct and decidable tableau calculus for the logic.

1 Introduction and Motivation

Imagine a robot that is in need of an oil refill. There is an open can of oil on the
floor within reach of its gripper. If there is nothing else in the robot’s gripper, it
can grab the can (or miss it, or knock it over) and it can drink the oil by lifting
the can to its ‘mouth’ and pouring the contents in (or miss its mouth and spill).
The robot may also want to confirm whether there is anything left in the oil-can
by weighing its contents with its arm. And once holding the can, the robot may
wish to replace it on the floor.

The domain is (partially) formalized as follows. The robot has the set of
(intended) actions A = {grab, drink, weigh, replace} with expected meanings.
The robot can perceive observations only from the set Ω = {obsNil , obsHeavy ,
obsMedium , obsLight}. Intuitively, when the robot performs a weigh action, it
will perceive either obsHeavy , obsMedium or obsLight ; for other actions, it will
‘perceive’ obsNil , no perception. The robot experiences its world (domain) via
three Boolean features: P = {full , drank, holding} meaning respectively that
the the oil-can is full, that the robot has drunk the oil and that it is currently
holding something in its gripper. This formalization seems more intuitive than
lumping all observations in with propositions, for instance, by making P =
{full , drank, holding, obsnil , heavy ,medium, light}.

It is the norm in dynamic logics (and some other agent oriented logics) to deal
with observations as elements of knowledge, as propositions; and perception is
normally coded as action, that is, observations-as-propositions evaluate to ‘true’

J. Li (Ed.): AI 2010, LNAI 6464, pp. 395–404, 2010.
� Springer-Verlag Berlin Heidelberg 2010
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or ‘false’ depending on some action(s). However, the approach of interpreting
observations as mere propositions may be counterintuitive to some people, be-
cause knowledge may be seen as something different from events (observations)
that generate or modify knowledge.

Remark 1. If an intelligent agent is regarded as a system, then there are inputs
to the system that affect it, and outputs from the system that affect the environ-
ment. The inputs are observations and the outputs are actions. If one assumes
that the system state is represented by a knowledge base of propositions, then
from the systems view, it is clear that observations and propositions are different
in nature.

Therefore, the ability to distinguish between observations and propositions
allows for a more precise specification of a given domain, as we shall see in the
sequel. It turns out that the notion of observations as explicit syntactic and
semantic objects of a logic is not completely new. For example, Van Benthem,
Gerbrandy and Kooi [15] do so (For more details, the reader is invited to see
Section 5 on related work.)

Although there are several formalisms in the literature on reasoning about
and specifying agents and their actions, we found them lacking when it comes to
treating observations as objects on a par with actions, while retaining important
computational properties. Existing first-order based approaches are in general
undecidable or have too complicated semantics. For these reasons, we prefer to
anchor our framework on a version of dynamic logic and strive for an extension
of it by allowing for observations as explicit entities.

The rest of this paper is organized as follows. We give the syntax and seman-
tics of our logic in Section 2. In Section 3, we show how to correctly specify
agent domains with our logic. Our tableau method, with correctness and decid-
ability results, is given in Section 4. Section 5 covers related work and Section 6
concludes the paper.

2 A Logic for Actions and Observations

The logic we present here allows for expressing observations explicitly, distinct
from propositions. It is called the Logic for Actions and Observations (LAO).
LAO is a non-standard modal logic with quantification and equality over the
actions and observations. It will be able to accommodate formal descriptions of
nondeterminism in the actions and of uncertainty in the observations. Given a
formalization K of our scenario, the robot may have the following queries:

– Is it possible that after grabbing the oil-can, I will not be holding it? That
is, does 〈grab〉¬holding follow from K?

– If I weigh the oil-can and perceive that it is heavy, is it necessary that I have
drunk the oil? That is, does [obsHeavy | weigh] drank follow from K?

LAO is based on LAP (the Logic for Actions and Plans [1]), but with one
major difference: the addition of observations. That is, LAO refers to a set of
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observations that are explicitly identified by a knowledge engineer or agent-
system designer (cf. Remark 1). A minor, yet important difference is the addition
of action and observation variables, quantification and equality.

2.1 Syntax

We work in a propositional language. It contains three sorts: (1) a finite set of
fluents (alias propositional atoms) P = {p1, . . . , pn}, (2) a finite set of names of
atomic actions A = {α1, . . . , αn} and a countable set of action variables VA =
{vα

1 , v
α
2 , . . .}, and (3) a finite set of names of atomic observations Ω = {ς1, . . . , ςn}

and a countable set of observation variables VΩ = {vς
1, v

ς
2, . . .}. We shall refer to

elements of A∪Ω as constants and elements of VA ∪ VΩ as variables. A literal �
is a fluent or its negation.

We are going to work in a multi-modal setting, in which we have a modal
operator [α], one for each element in A; and a modal operator [ς|α], one for each
pair (α, ς) in A×Ω.

Definition 1. Let α, α′ ∈ (A∪ VA), ς, ς ′ ∈ (Ω ∪ VΩ), v ∈ (VA ∪ VΩ) and p ∈ P.
The language of LAO, denoted LLAO, is the least set of those ϕ that contain no
free variables:

ϕ ::= p | � | ¬ϕ | ϕ ∧ ϕ | α = α′ | ς = ς ′ | [α]ϕ | [ς | α]ϕ | (∀v)ϕ.

For example, [vς |α] is not in LLAO, but (∀vς)[vς |α] is.
As usual, we treat ⊥,∨,→,↔, �= and ∃ as abbreviations. The sentence [ς | α]ϕ

is read ‘ϕ must hold after ς is observed, given α is executed’. For instance,
[obsLight | weigh ]¬full means ‘After perceiving that the oil-can is light, given a
weighing action, the can is necessarily not full’. [α]ϕ is read ‘ϕ must hold (af-
ter any/every observation) given α is executed’. For instance, [replace]¬holding
means ‘After replacing the oil-can, it is definitely not being held (regardless of
observations)’. 〈α〉ϕ and 〈ς | α〉ϕ abbreviate ¬[α]¬ϕ and ¬[ς | α]¬ϕ respectively.
One conventional reading for 〈α〉ϕ is ‘It is possible that ϕ holds after α is per-
formed’. The reading of 〈ς | α〉ϕ is ‘It is possible that ϕ holds after ς is perceived,
given α is performed’.

We say that a formula is static if it mentions no actions.
We write ϕ|vc to mean the formula ϕ with all variables v appearing in it

replaced by constant c of the right sort (action or observation).

2.2 Semantics

Our semantics follows that of multi-modal logic K [11]. However, structures
(alias, possible worlds models) are non-standard. Intuitively, when talking about
some world w, we mean a set of features (fluents) that the agent understands
and that describes a state of affairs in the world or that describes a possible,
alternative world. Let w : P −→ {0, 1} be a total function that assigns a truth
value to each fluent. Let S be the set of all possible functions w. We call S the
conceivable worlds.



398 G. Rens et al.

Definition 2. A LAO structure is a tuple S = 〈W,R,O,N,Q〉 such that

1. W ⊆ S is a non-empty (finite) set of possible worlds;
2. R is a mapping that provides an accessibility relation Rα : W −→ W for

each action α ∈ A;
3. O is a non-empty finite set of observations;
4. N : Ω −→ O is a total bijection that associates to each name in Ω, a unique

observation in O;
5. Q is a mapping that provides a perceivability relation Qα : O −→W for each

action α ∈ A;
6. For all w,w′, α, if (w,w′) ∈ Rα then there is an o s.t. (o, w′) ∈ Qα, for

w,w′ ∈W, α ∈ A and o ∈ O.

Rα defines which worlds w+ are accessible via action α performed in world w−

and Qα defines which observations o are perceivable in worlds w+ accessible via
action α. For ς ∈ Ω, N(ς) = o ∈ O. Because N is a total bijection, it follows
that |O| = |Ω|.

Item 6 of Definition 2 implies that actions and observations always appear
in pairs, even if implicitly. For example, if action open-eyes is performed, sev-
eral signals are possible, depending on the situation, like wall-3-meters-ahead
or overcast-sky. If the agent performs an action like step-once-forward, there is
only one observation possible, viz. null, the ‘dummy’ observation. Unlike the
eye, the leg (or wheel) is not a sensory organ. When our agent activates a device
(the agent acts) and the device receives no input signal, it interprets this state
of affairs as the null observation (the null observation will be denoted by the
special named constant, obsNil ). For every action an agent performs, the agent
perceives exactly one observation. This is the approach of POMDPs that we rely
on in the present work [10].

Definition 3 (Truth Conditions). Let S be a LAO structure, with α, α′ ∈ A,
vα ∈ VA, ς, ς ′ ∈ Ω, vς ∈ VΩ and p ∈ P. And let ϕ be any sentence in LLAO. We
say ϕ is satisfied at world w in structure S (written S, w |= ϕ):

1. S, w |= p iff w(p) = 1;
2. S, w |= � for any w ∈W ;
3. S, w |= ¬ϕ iff S, w �|= ϕ;
4. S, w |= ϕ ∧ ϕ′ iff S, w |= ϕ and S, w |= ϕ′;
5. S, w |= α = α′ iff α, α′ ∈ A are the same element;
6. S, w |= ς = ς ′ iff ς, ς ′ ∈ Ω are the same element;
7. S, w |= [α]ϕ iff for all w′ and o, if (w,w′) ∈ Rα and (o, w′) ∈ Qα

then S, w′ |= ϕ;
8. S, w |= [ς | α]ϕ iff for all w′, if (w,w′) ∈ Rα and (N(ς), w′) ∈ Qα

then S, w′ |= ϕ;
9. S, w |= (∀vα)ϕ iff S, w |= ϕ|vα

α for all α ∈ A;
10. S, w |= (∀vς)ϕ iff S, w |= ϕ|vς

ς for all ς ∈ Ω.
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A formula ϕ is true (valid) in a LAO structure (denoted S |= ϕ) if S, w |= ϕ for
every w ∈ W . ϕ is LAO-valid (denoted |=LAO ϕ) if ϕ is true in every structure
S. ϕ is satisfiable if S, w |= ϕ for some S and w ∈ W . We define global logical
entailment (denoted ψ |=G ϕ) as follows: for all S, if S |= ψ, then S |= ϕ.

The motivation behind the definition of S, w |= [o | α]ϕ is as follows. Just as
ϕ needs not hold in worlds w′ if (w,w′) �∈ Rα, worlds w′ are not considered if
(o, w′) �∈ Qα. In other words, whether or not a world w′ is reachable (via Rα), if
the agent perceived o and the agent knows that o is not perceivable in w′, then
the agent knows it is not in w′. Then what is true or false in w′ has no influence
on the verity of S, w |= [o | α]ϕ. But in every world w′ reachable from w and
in which o is perceivable, ϕ must be true. While actions can add worlds that
an agent believes possible, thus increasing uncertainty, observations eliminate
reachable worlds from consideration, thus increasing certainty.

Proposition 1. |=LAO (∀vα)〈vα〉ϕ→ (∃vς)〈vς | vα〉ϕ.

This means that for any structure S and world w, for any action α, if world w′

can be reached from w via α, then there exists an observation perceivable in w′.
Proposition 1 follows from item 6 of Definition 2.

Due to the nature of the ‘observation naming’ function N , in the rest of this
paper, in our intuitive explanations, we let o mean o or ς (such that N(ς) = o)
depending on the context, and similarly we let ς mean ς or o.

3 Specifying Domains in LAO

In this section we address how to formally specify the domain in which an agent
or robot is expected to live, in the language of LAO. Here, φ—with or without
subscripts—denotes some (pre)condition expressed as a static sentence.

Firstly, axioms are required for action outcomes that say when an action is
executable and for observations that say when (in which worlds) an observation
is perceivable. A fundamental assumption in the reasoning about actions and
change (RAC) community is that there must be one executability axiom for
each action type. Executability axioms are similar to the precondition axioms
in Reiter’s situation calculus [12]. In multi-modal logic, one writes 〈α〉� ↔ φ to
mean that it is possible to perform α if and only if the precondition φ holds. For
instance, 〈grab〉� ↔ ¬holding , 〈drink〉� ↔ holding ∧ full , 〈weigh〉� ↔ holding
and 〈replace〉� ↔ holding define in what worlds it is possible to execute each of
the four available actions. There must be an executability axiom for each action
in A.

We follow a systematic approach to specifying domain axioms that is based
on the approach of Demolombe, Herzig and Varzinczak [3], which is in turn
related to Reiter’s approach with functions to systematize the specification of
successor-state axioms in the situation calculus [12]. Here, there is only enough
space to show the result of the systematic approach.

Effect axioms are required to capture the effects of actions. For the robot sce-
nario, there exists an effect axiom ¬holding → (〈grab〉holding∧〈grab〉¬holding)
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for the grab action. A translation for this axiom is, ‘There exists an observation
such that, if I am not holding the oil-can, it is possible that either I will be
holding it or will still not be holding it, after grabbing it.’ grab is a nondeter-
ministic action with respect to holding. And the systematic approach produces
the following effect axiom for drink: full ∧ holding → [drink]¬full .

Frame axioms and condition closure axioms state when actions do not have
effects—these can easily be expressed in LAO [13].

In the same vein as executability axioms, we need perceivability axioms. How-
ever, to explain their specification, we define ontic (physical) actions and sensory
actions. Ontic actions have intentional ontic effects, that is, effects on the en-
vironment that were the main intention of the agent. Sensory actions result in
perception, and might only have (unintentional) side-effects.

Ontic actions (αont) each have a perceivability axiom of the form

(∀o)〈o | αont〉� ↔ o = obsNil.

For ontic actions, the null observation is perceived if and only if the action is
executed. grab, drink and replace are ontic actions:

(∀o)〈o | grab〉� ↔ o = obsNil ;
(∀o)〈o | drink〉� ↔ o = obsNil ;
(∀o)〈o | replace〉� ↔ o = obsNil .

For any instantiation of an observation o′ other than obsNil , according to the
semantics, [o′ | αont]⊥ is a logical consequence of these axioms.

Sensory actions typically have multiple observations and associated conditions
for perceiving them. Sensory actions (αsen) thus each have a set of perceivability
axioms of the form

〈o1 | αsen〉φ1, 〈o2 | αsen〉φ2, . . . , 〈on | αsen〉φn,

for stating when the associated observations are possible, where {o1, o2, . . . , on} =
Dom(Qαsen)1 and the φi are the conditions. The following axioms state when
observations associated with αsen are impossible:

¬〈o1 | αsen〉¬φ1,¬〈o2 | αsen〉¬φ2, . . . ,¬〈on | αsen〉¬φn.

Note that the φi conditions need not characterize pair-wise disjoint sets of worlds,
because more than one observation is allowed in the same worlds, given some
action (see, e.g., obsLight and obsMedium below).

Lastly, to state that the observations not associated with action αsen are
always impossible given αsen was executed, we need an axiom of the form

(∀o)(o �= o1 ∧ o �= o2 ∧ . . . ∧ o �= on)→ ¬〈o | αsen〉�,

for each action.
1 Dom(Qα) is the set of all first elements in the pairs that make up Qα.
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Our only sensory action is weigh and its behavior with respect to perception
can be captured by the following sentences.

〈obsLight | weigh〉(¬full ∨ drank) ∧ [obsLight | weigh](¬full ∨ drank);
〈obsHeavy | weigh〉(full ∨ ¬drank) ∧ [obsHeavy | weigh](full ∨ ¬drank);
〈obsMedium | weigh〉� ∧ [obsMedium | weigh]�;
(∀o)(o �= obsHeavy ∧ o �= obsLight ∧ o �= obsMedium)→ ¬〈o | weigh〉�.

For instance, obsLight is perceivable given weigh was performed, if and only if
either the oil-can is empty or the oil has been drunk.

All this can be done for deterministic and nondeterministic effects of ac-
tions [13]. All the axioms discussed in this section concern the dynamics of an
environment. They are collectively the action laws and are here represented by
LAW . All axioms in LAW are global, that is, true in every possible world. The
state of affairs that an agent is in initially, can be characterized by a static, non-
global sentence KB (knowledge base). The main task in LAO is to determine
whether an arbitrary sentence ϕ is implied by KB , given LAW , that is, whether
LAW |=G KB → ϕ. The next section shows how this can be done.

4 Tableaux for LAO

The tableau calculus we propose is adapted from Castilho, Gasquet and Herzig [1].
It is based on labeled formulae. It is a procedure to determine whether K |=G Ψ ,
where K is any set of global axioms in LLAO and Ψ is any sentence in LLAO.

The tableau calculus for LAO, with all its rules, remarks and observations,
is referred to as CLAO. The set of formulae to be checked (i.e., the initial set of
formulae to which CLAO must be applied) is called the trunk. A labeled formula
is a pair (n, ϕ), where ϕ is a formula and n is an integer from the set of whole
numbers, called the label of ϕ. A skeleton Σ is a ternary relation Σ ⊆ (Ω ∪N)×
A× N. Elements (·, a, n′) of the relation are denoted · a→ n′. A tree T i is a pair
〈Γ i, Σi〉, where Γ i is a set of labeled formulae and Σi is a skeleton. The initial
tree is T 0 = 〈{(0,¬Ψ)}, ∅〉. Each T i+1 may be obtained from T i by applying
certain tableau rules to T i. Other rules add elements to Γ i or Σi, producing a
new state of the tree, but not necessarily a new tree.

Let a particular state of a tree be called a node. The application of a rule to
a node k results in a new node k′. k′ may be a node of the same tree as k, or
k′ may be the first node of a new tree. A tableau for the trunk is a set of trees
T 0, . . ., T n and their states, resulting from the application of tableau rules to
the trunk and subsequent nodes. The tableau rules for LAO are:

– rule ⊥: If Γ contains (n, ϕ) and (n,¬ϕ), then add (n,⊥) to it.
– rule ¬: If Γ contains (n,¬¬ϕ), then add (n, ϕ) to it.
– rule ∧: If Γ contains (n, ϕ ∧ ϕ′), then add (n, ϕ) and (n, ϕ′) to it.
– rule ∨: If Γ contains (n,¬(ϕ ∧ ϕ′)), then add (n,¬ϕ) to it, and create T i =
〈Γ ∪ {(n,¬ϕ′)}, Σ〉, where i is a new integer.



402 G. Rens et al.

– rule =: If Γ contains (n, c = c′) and in fact, constants c and c′ do not refer
to the same constant, then add (n,⊥) to it.

– rule ∀: If Γ contains (n, (∀v)ϕ) then add (n, ϕ|vc ) to it only if the constant c
(of the right sort) appears in a formula in Γ .

– rule ∃: If Γ contains (n,¬(∀v)ϕ) then add (n,¬ϕ|vc1
∨ . . . ∨ ¬ϕ|vcj

) to Γ , for
each constant in {c1, . . . cj} (of the right sort) that appears in the vocabulary.

– rule 〈α〉: If Γ contains (n,¬[α]ϕ), then add (n,¬(∀o)[o | α]ϕ) and (n′,¬ϕ)
to it, and add n

α→ n′ to Σ, where n′ is a fresh integer. For each β ∈ K, add
(n′, β) to Γ .

– rule [α]: If Γ contains (n, [α]ϕ) and Σ contains n
α→ n′, add (n′, ϕ) to Γ .

– rule 〈o | α〉: If Γ contains (n,¬[o | α]ϕ), then add (n′,¬ϕ) to it, and add
n

α→ n′ and o
α→ n′ to Σ, where n′ is a fresh integer. For each β ∈ K, add

(n′, β) to Γ .
– rule [o | α]: If Γ contains (n, [o | α]ϕ) and Σ contains n

α→ n′ and o
α→ n′,

then add (n′, ϕ) to Γ .

The addition of (n,¬(∀o)[o | α]ϕ) to Γ in rule 〈α〉 is due to Proposition 1. To
make explicit that the formulae in K are global, they are all added to each new
world (fresh integer) introduced in rules 〈α〉 and 〈o | α〉.

A tree 〈Γ,Σ〉 is closed if (i,⊥) ∈ Γ for some i. It is open if it is not closed. A
tableau is closed if all of its trees T 0, . . . , T n are closed, else it is open.

Definition 4. If a tableau for ¬Ψ is closed (under K), we write K �LAO Ψ .
If there is a saturated open tableau for ¬Ψ , we write K ��LAO Ψ . A tableau is
saturated if any rule that can be applied has been applied to all open trees.

Theorem 1. CLAO is sound (if K �LAO Ψ then K |=G Ψ), complete (if K |=G Ψ
then K �LAO Ψ) and decidable (CLAO always terminates). [13]

Using CLAO, the following can be proven:

– LAW |=G (full ∧ ¬drank ∧ ¬holding)→ 〈grab〉¬holding;
– LAW |=G (full ∧ ¬drank ∧ holding)→ (∃o)[o | drink]¬full ; and
– LAW |=G (full ∧ ¬drank ∧ holding)→ (∀o)〈o | drink〉¬full .

5 Discussion and Related Work

We believe that calculi based on first-order logic, like the situation calculus [9]
and the event calculus [7] are too rich for our needs. We thus sought a simpler
logic with the potential of being decidable. LAP , the Logic of Actions and Plans,
was found to be a suitable basis for our work. LAP is a multi-modal logic, close to
but simpler than Propositional Dynamic Logic [5]. Castilho, Gasquet and Herzig
[1] claim that it is sufficient to express most of the problems investigated in the
field, however, it does not deal with sensing. To say that LAO is an extension of
LAP is too strong. For example, their definition of [α] is the standard one for
multi-modal logic, whereas the definition of [α] in LAO is not standard, in that
in LAO its definition involves the perceivability relation Qα.
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A series of articles exists concerning probabilistic dynamic epistemic logic
(PDEL) [6,14,15], which add probabilistic notions to dynamic epistemic logic
(DEL) [16]. The language of PDEL includes formulae of the form [A, e]ϕ, where
A is a “probabilistic update model” and e is an “event” from the domain of A.
The terms event and observation often have the same meaning in probability
theory. Observations in probability theory do not describe a state, but cap-
ture information about natural occurrences. The authors [15] allude that their
events are closer to observations than to logical propositions. Therefore, as far
as observations go, PDEL’s [A, e]ϕ corresponds to LAO’s [o | α]ϕ, however, the
semantics of PDEL’s operator is much richer. Note though, that PDEL is an
epistemic logic, not a logic about action.

For our work, we have also found some inspiration from the language ES of
Lakemeyer and Levesque [8], especially because ES has been extended to ESP [4]
to include notions of probability—in a current line of investigation, we also intend
to extend LAO with notions of probability. Although it is a situation-based logic,
ES does not include situation terms. It is a second-order modal dialect with object
and action sorts, and with universal quantification and equality. It has fluent and
rigid functions and predicates. Fluent predicates include the special predicate
Poss for defining preconditions on action executability, and a special predicate
symbol for defining whether a sensing action was successful. The formula [α]ϕ
in ES is defined to mean ‘after α, ϕ is true’. The meaning is similar to that of
the standard modal logic operator, although, in ES, actions are deterministic.
The diamond operator is not defined, but with Poss available, it needs not be
defined. ES’s [α] is thus also different to LAO’s [α].

6 Concluding Remarks

Modal logic based RAC formalisms lack a straight-forward way to deal with
sensing. In an attempt to solve the problem, we presented a multi-modal logic
which includes reasoning about ‘reified’ observations on a par with actions. It
was shown how to specify an agent domain in the language. We provided a
tableau calculus (CLAO) for determining the validity of sentences of the logic,
and it was stated that the calculus is sound, complete and decidable.

By adding observations to a simple dynamic logic explicitly, the resulting logic
may be slightly more complex, while perhaps simplifying, for the domain expert,
dealing with explicit observations (cf. Remark 1). Computational complexity of
CLAO, and the influence of ‘reifying’ observations, must still be established. Since
LAO is at least as expressive as multi-modal logic K and entailment here is global,
we know that LAO is at least exptime.

One of the main problems in systems for RAC is the frame problem. We have
formulated a solution for LAO, which involves universal quantification over ac-
tions. For the interested reader, our frame solution appears in the accompanying
technical report [13]. Alternatively, because LAO is essentially based on LAP
one could in the future, adapt the frame solution from Castilho, Herzig and
Varzinczak [2] to LAO.
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Our next aim is to extend LAO to allow one to express uncertainty in ac-
tion and perception by providing the machinery to specify probabilistic models
(descriptions) for action outcomes and for perceivability of observations.
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Abstract. Real-time heuristic search algorithms are useful when the amount of
time or memory resources are limited or a rapid response time is required. An
example of such a problem is pathfinding in video games where numerous units
may be simultaneously required to react promptly to player’s commands. Classic
real-time heuristic search algorithms cannot be deployed due to their obvious
state-revisitation (“scrubbing”). Recent algorithms have improved performance
by using a database of pre-computed subgoals. However, a common issue is that
the pre-computation time can be large, and there is no guarantee that the pre-
computed data adequately covers the search space. In this work, we present a new
approach that guarantees coverage by abstracting the search space using the same
algorithm that performs the real-time search. It reduces the pre-computation time
via the use of dynamic programming. The new approach has a fast move time and
eliminates learning and “scrubbing”. Experimental results on maps of millions of
cells show significantly faster execution times compared to previous algorithms.

1 Introduction

As search problems become larger, the amount of memory and time to produce an
optimal answer using standard search algorithms such as A* [5] increases substantially.
This is an issue in resource-limited domains such as video game pathfinding. In real-
time search, the amount of planning time per move is bounded independently of the
problem size. This is useful when an agent does not have time to compute the entire
plan before making a move. Recent real-time search algorithms such as D LRTA* [3],
kNN LRTA* [2], and TBA* [1] satisfy the real-time constraint. D LRTA* and kNN
LRTA* both use pre-computed subgoal databases to guide the search. However, as the
search space grows, the pre-computation time is prohibitively long in practice.

In this paper, we describe a new real-time search algorithm called HCDPS (Hill
Climbing and Dynamic Programming Search) that outperforms previous state-of-the-art
algorithms by requiring less pre-computation time, having faster execution times, and
eliminating state-revisitation. This contribution is achieved with two ideas. First, instead
of using a generic way of partitioning the map (e.g., into cliques [10] or sectors [9]),
we partition the map into reachability regions. The reachability is defined with respect
to the underlying pathfinding algorithm which guarantees that when traversing within
such regions, our agent can never get stuck. This fact allows us to replace a learning
algorithm (e.g., LRTA* [7]) with simple greedy hill climbing. Doing so simplifies the
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algorithm, eliminates scrubbing, and allows a minimal online memory footprint per
agent which, in turn, enables many more agents to path find simultaneously.

The second idea is an applying dynamic programming to database pre-computation.
Once we partition the map into regions of hill-climbing reachability, we use dynamic
programming to approximate optimal paths between representatives of any two such
regions. This is in contrast to computing optimal paths for all region pairs with A* [3].
In our experiments, the benefits of this approximation are substantial: a two orders of
magnitude speed-up in the database pre-computation time. In summary, in the domain
of pathfinding on maps of over ten million states, HCDPS takes about five minutes
of pre-computation per map, has a path suboptimality of about 10%, a move time of
0.23μs, and overall execution time two orders of magnitude faster than A* and TBA*.

2 Problem Formulation

We define a heuristic search problem as a directed graph containing a finite set of states
and weighted edges and two states designated as start and goal. At every time step, a
search agent has a single current state, a vertex in the search graph which it can change
by taking an action (i.e., traversing an out-edge of the current state). Each edge has
a positive cost associated with it. The total cost of edges traversed by an agent from
its start state until it arrives at the goal state is called the solution cost. We require
algorithms to be complete (i.e., produce a path from start to goal in a finite amount of
time if such a path exists). We adopt the standard assumption of safe explorability of
the search space (i.e., there are no reachable vertices with in-edges only).

In principle, all algorithms in this paper are applicable to any such heuristic search
problem. However, the presentation and experimental evaluation focus on pathfinding
on grid-based video game maps. In such settings, states are vacant square grid cells.
Each cell is connected to four cardinally and four diagonally neighboring cells. Out-
edges of a vertex are moves available in the cell, and we use the terms action and move
interchangeably. The edge costs are 1 for cardinal moves and 1.4 for diagonal moves.

An agent plans its next action by considering states in a local search space surround-
ing its current position. A heuristic function (or simply heuristic) estimates the optimal
travel cost between a state and the goal. It is used by the agent to rank available actions
and select the most promising one. We consider only admissible and consistent heuris-
tic functions which do not overestimate the actual remaining cost to the goal and whose
difference in values for any two states does not exceed the cost of an optimal path be-
tween these states. In grid maps we use the standard octile distance as our heuristic.
The octile distance uses 1 and 1.4 as the edge costs and is equivalent to the optimal
travel cost on a map without walls. An agent can modify or learn its heuristic function
to improve its action selection with experience.

The defining property of real-time heuristic search is that the amount of planning the
agent does per action has an upper bound that does not depend on the total number of
states in the problem space. We measure the move time as the mean planning per action
in terms of CPU time. The second performance measure of our study is sub-optimality
defined as the ratio of the solution cost found by the agent to the optimal solution cost
minus one and times 100%. To illustrate, suboptimality of 0% indicates an optimal path
and suboptimality of 50% indicates a path 1.5 times as costly as the optimal path.
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3 Related Work

Many search algorithms such as A*, IDA* [6] and PRA* [9] cannot guarantee a con-
stant bound on planning time per action as they produce a complete solution before the
first action is taken. As the problem size increases, the planning time and corresponding
response time will exceed any set limit. Real-time search algorithms repeatedly inter-
leave planning (i.e., selecting the most promising action) and execution (i.e., performing
the selected action). This allows actions to be taken without solving the entire problem
which improves response time at the potential cost of suboptimal solutions. LRTA* was
the first algorithm and updates/learns its heuristic function with experience. The learn-
ing process may make the agent “scrub” (i.e., repeatedly re-visit) the state space to fill
in heuristic local minima or heuristic depressions [8]. This degrades solution quality
and is a show-stopper for video game pathfinding.

Improved performance is possible by pre-computing path information. In its pre-
computation phase, D LRTA* abstracts the search problem using the clique abstraction
of PRA* [10] and then builds a database of optimal paths between all pairs of ground-
level representatives of distinct abstract states. The database does not store the entire
path but only the ground-level state where the path enters the next region. Online, the
agent repeatedly queries the database to identify its next subgoal and runs LRTA* to it.
The issues with D LRTA* are the large amount of memory used and the lengthy pre-
computation time. Further, D LRTA* repeatedly applies the clique abstraction thereby
creating large irregular regions. As a result, membership of every ground state to the
regions has to be explicitly stored which takes up as much memory as the search prob-
lem. Additionally, the abstract regions can contain local heuristic depressions thereby
trapping the underlying LRTA* agent and causing learning and scrubbing.

kNN LRTA* attempts to address D LRTA*’s shortcomings by not using a state ab-
straction and instead pre-computing a set number of optimal paths between randomly
selected pairs of states. On each optimal path, the farthest state that is still reachable
from the path beginning via hill climbing is then stored as a subgoal. Online, a kNN
LRTA* agent uses its database in an attempt to find a similar pre-computed path and
then runs LRTA* to the associated subgoal. While kNN LRTA* is more memory effi-
cient than D LRTA*, its random paths do not guarantee that a suitable pre-computed
path will be found for a given problem. In such cases, kNN LRTA* runs LRTA* to
the global goal which subjects it to heuristic depressions and the resulting learning and
scrubbing. Additionally, pre-computing D LRTA* and kNN LRTA* databases is time-
consuming (e.g., over a hundred hours for a single video game map).

TBA* forgoes LRTA* learning and runs a time-sliced version of A*. It does not pre-
compute any subgoals and has to “fill in” heuristic depressions online with its open and
closed lists. Thus, it consumes more memory per agent and is slower per move.

Our algorithm combines the best features of the previous algorithms. Like D LRTA*
and kNN LRTA*, we run our real-time agent toward a near-by subgoal as opposed to a
distant global goal, but we also guarantee that any problem will indeed have a suitable
series of subgoals each of which is reachable from the preceding one via simple hill
climbing. Like TBA*, we do not store or update heuristic values thereby simplifying
the implementation, eliminating any scrubbing and saving memory. Unlike TBA*, we
also do not use memory for open and closed lists.
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4 Intuition for Our Approach

HCDPS operates in two stages: offline and online. Offline, it analyzes its search space
and pre-computes a database of subgoals. The database covers the space such that any
pair of start and goal states will have a suitable series of subgoals in the database. This
is accomplished by abstracting the space. We partition the space into regions in such
a way that any state in the region is mutually reachable via simple hill climbing with
a designated state, called the representative of the region. Since the abstraction builds
regions using hill climbing which is also used in the online phase, we are guaranteed
that for any start state a our agent can hill climb to a region representative of some
region A. Likewise, for any goal state b, there is a region B that the goal falls into
which means that the agent will be able to hill climb from B’s representative to b. All
we need now is a hill-climbable path between the representative of region A and the
representative of region B. Unlike canonical states used to derive better heuristics [11],
our region representatives are used as subgoals. Unlike visibility polygons used in robot
pathfinding, our regions are applicable to arbitrary search graphs as well as grids.

We could pre-compute such paths by running A* between representatives of any two
regions on the map. However, this pre-computation is expensive as it scales quadrati-
cally with the number of regions. To speed up the pre-computation, we adopt a different
approach. Specifically, for every pair of immediately neighboring regions, we run A*
in the ground-level space to compute an optimal path between region representatives.
We then use dynamic programming to assemble the optimal paths between immediately
neighboring regions into paths between more distant regions until we have an (approx-
imately optimal) path between any two regions. To save memory, the resulting paths
are compressed into a sequence of subgoals so that each subgoal is reachable from the
preceding one via hill climbing. Each such sequence of subgoals is stored as a record
in the subgoal database. We then build an index for the database that maps any state to
its region representative in constant time.

Online, for a given pair of start and goal states, we use the index to find their region
representatives. The subgoal path between the region representatives is retrieved from
the database. The agent first hill climbs from its start state to the region representative.
We then feed the record’s subgoals to the agent one by one until the end of the record is
reached. Finally, the agent hill climbs from the region representative to the goal state.

5 Implementation Details

5.1 Offline Stage

The hill-climbing agent used offline and online is a simple greedy search. In its current
state s, such an agent considers immediately neighboring states and selects the state snext

that minimizes f(snext) = g(s, snext)+h(snext) where g(s, snext) is the cost of traversing
an edge between s and snext and h is the heuristic estimate of the travel cost between snext

and the agent’s goal. Ties in f are broken towards higher g. Remaining ties are broken
randomly. The agent then moves from s to snext and the cycle repeats. Hill climbing is
terminated when a plateau or a local minimum in h is reached: ∀snext [h(s) ≤ h(snext)].
If this happens before the agent reaches its goal, we say that the goal is not hill-climbing
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Fig. 1. Region partitioning of a grid map

reachable from the agent’s position. The agent does not use memory for heuristic values
or open and closed lists.

Our partitioning mechanism is as follows. Each region R starts with a seed (repre-
sentative) state r selected among yet unpartitioned states. Then, for each existing state
in the region, we form a queue of candidate states to be added. Each candidate state is
an immediate neighbor of some existing state in the region. For each candidate state s
we check if s is mutually hill-climbing reachable with r and is closer to r than its cur-
rently associated seed state. If so, we add s to R. The distance check allows an already
assigned state to change regions if its heuristic (octile) distance is closer to another re-
gion’s seed. Partitioning stops when every ground state is assigned to a region. As the
online part of HCDPS starts by heading for the region representative of its start region,
we keep the regions fairly small to reduce suboptimality by imposing a cut-off c such
that any state assigned to a region is no more than c steps from the region representative.
We place seeds regularly along grid axes. In Figure 1 each region is a different color.
Region shapes are based on the map properties and the initial starting seeds.

Given the regions and their representatives, we compute approximately optimal paths
between all pairs of distinct region representatives with the Floyd-Warshall algorithm
[4,12] which incorporates dynamic programming. Specifically, the paths are stored in a
two-dimensional array indexed by region numbers. The array is initialized with actual
optimal paths computed using A* from each region’s representative to representatives
of the immediately neighboring regions, or in general a neighborhood depth up to L
regions away. We iteratively update elements of the array until they stabilize.

Note that this problem does not exhibit optimal substructure. Specifically, an optimal
path between a representative for the region A and a representative for the region B
does not necessarily contain optimal ground-level paths between A and C and between
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C and B even if the path passes through the region C. Thus, the computed paths are
approximations to optimal paths but the savings in time are considerable.

Then we compress each computed path into a series of subgoals. The compression
algorithm we use is an extension of the one used in kNN LRTA*. Specifically, given an
actual path p, we initialize a compressed path p′ by storing the beginning state of p in
it. We then use binary search to find the state si ∈ p such that si is not hill-climbing
reachable from the end state of p′ but the immediately preceding state si−1 ∈ p is. We
add si−1 to p′ and repeat the process until we reach the end state of p which we then
add to p′ as well. Each compressed path is a record in our database.

The offline stage finishes with building an index over the database records to allow
record retrieval in constant time. A two dimensional array is used to store a path record
between each pair of region representatives. Entry (i, j) stores the database record from
region representative i to j. Second, the mapping between each ground-level state and
its region representative is compressed using run-length encoding (RLE) into an array
sorted by state id (a unique scalar). To guarantee constant access time, we build a hash
table which maps every k-th state id to its corresponding record in the RLE array. Prob-
ing the hash table involves dividing the ground-level state id G by k to get a hash table
entry that maps to the RLE entry for ground-level state /G

k 0k. If this RLE range does
not contain G, a linear search is performed to find the correct range. In the worst case,
this searches k entries if each entry represents only one ground-level state.

As an example, let the RLE table entries be: (0, 1), (625, 4), (1200, 3), (1600, 1),
(2100, 6). The first two entries mean that states with ids from 0 to 624 map to region
1. If k = 1000, the hash table has three entries: (0, 0), (1000, 1), (2000, 2). The record
(1000, 1) means that id 1000 maps to entry 1 in the RLE table which is (625, 4) (in-
dexing starts at 0). Id 1000 maps to region 4 as it falls in the range [625, 1200). State id
1500 maps to hash table entry / 1500

10000 = 1 which is (1000, 1). This gets us to RLE entry
(625, 4). 1500 is not in the range [625, 1200) but we scan forward to find RLE entry
(1200, 3). Thus, state 1500 is mapped to region 3 as it is in the range [1200, 1600).

5.2 Online Stage

Given a problem (sstart, sgoal), the HCDPS agent searches its database to find the record
(ri,rj) where sstart is hill-climbing reachable to ri and rj is hill-climbing reachable to
sgoal. ri and rj are region representatives for sstart and sgoal respectively and have a
pre-computed path between them. The agent hill climbs from sstart to ri, follows the
subgoals in the path from ri to rj , and then from rj to sgoal.

There are several enhancements to this basic process designed to improve solution
optimality at the cost of increasing planning time per move. First, we check if the sgoal

is hill-climbing reachable from sstart. If so, then the database is not used at all. Second,
when we use a record, we check if its first subgoal is hill-climbing reachable from sstart.
If so then we direct the agent to go to the first subgoal instead of the record’s start.
Third, when the agent reaches the last subgoal, it checks if sgoal is reachable from its
current position. If so then it heads straight for the goal. Otherwise, it goes to the end
of the record and then to the goal. Finally, to keep all such checks real-time, we limit
the number of hill-climbing steps to a constant, map-independent cutoff c based on the
desired response time and the amount of planning time available per move.
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6 Theoretical Analysis

HCDPS has several desirable properties including:
1. Guaranteed hill-climbability within a record. For each record (i.e., a com-

pressed path), its first subgoal is hill-climbing reachable from the path beginning. Each
subgoal is hill-climbing reachable from the previous one. The end of the path is hill-
climbing reachable from the last subgoal.

2. Guaranteed suitable record. For every state s there is a representative ri state
reachable from s via hill climbing. Every pair of region representatives ri and rj are
connected by a compressed path in the database. Thus, an HCDPS agent can hill climb
from s to ri and then to rj . From there it can hill climb to its goal state.

3. Completeness. For any solvable problem (i.e., a start and an end state that are
reachable from each other), HCDPS will find a path between the start and the end in a
finite amount of time with at most visiting any state twice.

Proof. By Property 1, for any problem (sstart, sgoal) there is a suitable database record
with the start ri and the end rj such that ri is hill-climbing reachable from sstart and sgoal

is hill-climbing reachable from rj . By Property 2, rj is hill-climbable from ri which
means that HCDPS can hill climb from sstart to ri to rj to sgoal. Note that there are no
state re-visitation within each hill climb. So the only possible state re-visitations can
occur when a state visited on the climb from sstart to ri gets re-visited on the climb from
ri to rj . Likewise, a state visited on the climb from ri to rj can be re-visited on the
climb from rj to sgoal. #$

4. Offline Space Complexity. Let NR be the number of regions built by HCDPS
offline. Then the number of compressed paths in the database is O(N2

R). Each path is
at most dmax states where dmax is the diameter of the space and hence the worst-case
database size is O(dmaxN

2
R). Mapping between all states and their regions adds O(N)

space where N is the number of states. Thus, the total worst-case space complexity is
O(N + dmaxN

2
R).

5. Offline Time Complexity. An average region has N/NR states and takes
O(N

√
N/NR) hill climbing steps to build, as a state can be added to at most NR re-

gions due to the distance check. Thus the total partitioning time is O(NNR

√
N/NR).

A* is run for no more than NRBL problems when each of the NR regions has no more
than B immediately neighboring regions. L is the depth of the neighborhood consid-
ered. Thus, the total A* run time is O(NRBLN logN) in the worst case. Running
dynamic programming takes O(N3

R). Each of the resulting N2
R paths requires no more

than O(dmax log dmax) to compress. Building the compressed mapping table requires
a scan of the map and is O(N). Hence the overall worst-case offline complexity is
O(NNR

√
N/NR + NRBLN logN + N3

R + N2
Rdmax log dmax + N).

6. Online Space Complexity. HCDPS uses O(b) for hill climbing where b is the
maximum number of neighbors of any state. However, it needs to load the database
O(dmaxN

2
R) and the index O(N) resulting in the total space complexity of O(dmaxN

2
R+

N). Note that the database is shared among K ≥ 1 of simultaneously pathfinding
agents. Thus, per-agent worst-case space complexity is O( 1

K (N + dmaxN
2
R)).

7. Real-timeness. The worst-case online time complexity is O(b). Using the hash
table, database query time is O(k).
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7 Results

The HCDPS algorithm was compared against D LRTA*, kNN LRTA* and TBA* for
pathfinding on game maps from Counter-Strike: Source (Valve Corporation), a popular
first-person shooter. The grid dimensions varied between 4096×4604 and 7261×4096
cells giving these maps between 18 and 30 million grid cells, which is a two to three
orders of magnitude increase in size over most previous papers. We did not compare
against LRTA* due to its inferior performance. We did not compare to weighted A*and
other approximate search algorithms as they are not real-time. Algorithms were tested
using Java 6 under SUSE Linux 10 on an AMD Opteron 2.1 GHz processor.

We used 1000 randomly generated problems across four maps (one such map is in
Figure 1). There were 250 problems on each map, and they had a solution cost of at
least 1000. For each problem we computed an optimal solution cost by running A*.
The optimal cost was in the range of [1003.8, 2999.8] with a mean of 1882, a median
of 1855 and a standard deviation of 550. We measured the A* difficulty defined as the
ratio of the number of states expanded by A* to the number of edges in the resulting
optimal path. For the 1000 problems, the A* difficulty was in the range of [1, 200] with
a mean of 63, a median of 36 and a standard deviation of 64.

HCDPS was run for neighborhood depth L ∈ {1, 2, 3, 4, 5}. D LRTA* was run with
clique abstraction levels of {9, 10, 11, 12}. kNN LRTA* was run with database sizes of
{10000, 40000, 60000, 80000} records. We used a cutoff c = 250 steps for hill climbing
and k = 1000 for RLE indexing. kNN LRTA* used reachability checks on the 10 most
similar records. TBA* was run with the time slices of {5, 10, 50, 100, 500, 1000} states
expanded. Its cost ratio of expanding a node to backtracking was set to 10.

We chose the space of control parameters with three considerations. First, we had
to cover enough of the space to clearly determine the relationship between control pa-
rameters and algorithm’s performance. Second, we attempted to establish the pareto-
optimal frontier (i.e., determine which algorithms dominate others by simultaneously
outperforming them along two performance measures such as time per move and sub-
optimality). Third, we had to be able to run the algorithms in a practical amount of time
(e.g., building a database for D LRTA*(8) is not practical as it takes over 800 hours).

7.1 Database Generation

Two measures for database generation are generation time and database size. Genera-
tion time, although offline, is important in practice, especially when done on the client
side for player-made maps. Database generation statistics averaged per map are given
in Table 1. HCDPS is one to two orders of magnitude faster than kNN LRTA* and D
LRTA* (levels 9 and 10) in database generation time (DBTime). Additionally, HCDPS
databases are two orders of magnitude smaller than those of D LRTA* and smaller than
kNN LRTA* with better performance (DBSize). TBA* does not compute a database.

We vary how many levels of neighbors (L) are considered at the initialization of the
Floyd-Warshall algorithm. More levels of neighbors improves the suboptimality perfor-
mance at the cost of a longer generation time, specifically the A* time to compute paths
between additional region pairs. For any value of L tried, partitioning the map, dynamic
programming and path compression take about the same amounts of time (140, 0.5
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Table 1. Offline and online results

Algorithm DBTime DBSize Online Total Move time Overall Subopt.
(hours) (KB) mem (KB) mem (KB) (μs) Time (ms) (%)

D LRTA* (12) 0.25 87000 19 87019 3.73 1449.37 15999.2
D LRTA* (11) 1.57 87008 11 87019 3.93 814.66 8497.1
D LRTA* (10) 11.95 87058 8 87066 4.26 662.40 6831.7
D LRTA* (9) 89.88 87453 3 87456 3.94 72.38 819.7

kNN LRTA*(10K) 13.10 256 9 265 7.56 665.00 6851.6
kNN LRTA*(40K) 51.89 1029 5 1034 6.88 93.71 620.6
kNN LRTA*(60K) 77.30 1544 4 1548 6.40 11.10 12.9
kNN LRTA*(80K) 103.09 2058 4 2062 6.55 11.30 12.0

TBA*(5) 0 0 1354 1354 14.31 579.77 1504.5
TBA*(10) 0 0 1354 1354 26.34 532.04 666.5
TBA*(50) 0 0 1354 1354 83.31 488.59 131.1

TBA*(100) 0 0 1354 1354 117.52 487.38 64.7
TBA*(500) 0 0 1354 1354 205.92 458.78 11.4

TBA*(1000) 0 0 1354 1354 229.21 459.81 5.3

HCDPS (1) 0.08 2254 0 2254 0.22 0.74 12.1
HCDPS (2) 0.09 2246 0 2246 0.23 0.78 10.6
HCDPS (3) 0.12 2229 0 2229 0.23 0.72 10.1
HCDPS (4) 0.21 2231 0 2231 0.23 0.74 10.0
HCDPS (5) 0.42 2223 0 2223 0.23 0.73 10.0

A* 0 0 1354 1354 335230 335.23 0

and 130 seconds respectively). However, A* takes 4 seconds for immediate neighbors
(L = 1) and 1250 seconds for a neighborhood of depth L = 5. Of the total database
size, approximately 58% is for compressed record storage, 38% is for the abstraction
index mapping ground-level states to abstract states, and 4% is for the hash table on
the abstraction index to guarantee constant time access. The abstraction mapping size
is less than 1% of the number of map states. The hash table has an entry for every
k = 1000 states resulting in a hash table of fewer than 30000 entries.

7.2 Online Performance

As per Table 1, HCDPS is greatly superior to D LRTA* in terms of suboptimality and
better than kNN LRTA* as well. Furthermore, it is more robust than kNN LRTA* be-
cause it never fails to find a suitable database record and thus never resorts to the global
goal. It is also more robust than D LRTA* because its core agent never gets trapped in a
heuristic depression within a region. This advantage can be quantified in terms of maxi-
mum suboptimality over the 1000 test problems: 277000% for D LRTA*(9), 2600% for
kNN LRTA*(60000) but only 49% for HCDPS(3).

Online memory is reported as the maximum size of the open and closed lists plus the
storage for updated heuristics. HCDPS uses no such memory. Even when considering
the total memory (i.e., adding the database size), HCDPS is substantially better than
D LRTA* and approximately the same as kNN LRTA* to achieve similar suboptimal-
ity performance. It uses about 50% more memory than TBA* and A*. However, the
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memory advantage of TBA* and A* disappears with two or more agents pathfinding
simultaneously on the same map and sharing the HCDPS database. This is very com-
mon in video game pathfinding with anywhere from half a dozen to a thousand agents
pathfinding at once. Furthermore, the HCDPS database is read-only which is advanta-
geous on certain hardware such as flash memory.

Finally, HCDPS has the fastest move (response) time of all algorithms and, in par-
ticular, is about 60 to 1000 times faster than TBA* and about 1.5 million times faster
than A*, which is not a real-time algorithm and needs to compute an entire path before
taking the first move. Even if HCDPS is not used as a real-time algorithm, its overall
planning time per problem is still around 450 times faster than A*.

8 Conclusion and Future Work Directions

In this work we have presented HCDPS, the first real-time heuristic search algorithm
with neither heuristic learning nor maintenance of open and closed lists. Online, HCDPS
is simple to implement and dominates the current state-of-the-art algorithms by being
simultaneously faster and better in solution quality. It is free of learning and the result-
ing state re-visitation — which tends to be a show-stopping problem with all previously
published real-time search algorithms. This performance is achieved by computing a
specially designed database of subgoals. Database pre-computation with HCDPS is
two orders of magnitude faster than kNN LRTA* and D LRTA*. Finally, its read-only
database gives it a smaller per-agent memory footprint than A* or TBA* with two or
more agents. In summary, we feel that HCDPS is presently the best practical real-time
search algorithm for video game pathfinding on static maps. Supporting dynamic search
spaces by modifying the database in real-time is an avenue of future research.
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3. Bulitko, V., Luštrek, M., Schaeffer, J., Björnsson, Y., Sigmundarson, S.: Dynamic control in
real-time heuristic search. JAIR 32, 419–452 (2008)

4. Floyd, R.W.: Algorithm 97: Shortest path. Communications of the ACM 6(5), 345 (1962)
5. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum

cost paths. IEEE Trans. on Sys. Sci. and Cybernetics 4(2), 100–107 (1968)
6. Korf, R.: Depth-first iterative deepening: An optimal admissible tree search. AI 27(3),

97–109 (1985)
7. Korf, R.: Real-time heuristic search. AIJ 42(2-3), 189–211 (1990)
8. Shimbo, M., Ishida, T.: Controlling the learning process of real-time heuristic search.

AI 146(1), 1–41 (2003)
9. Sturtevant, N.: Memory-efficient abstractions for pathfinding. In: AIIDE, pp. 31–36 (2007)

10. Sturtevant, N., Buro, M.: Partial pathfinding using map abstraction and refinement. In: AAAI,
pp. 1392–1397 (2005)

11. Sturtevant, N.R., Felner, A., Barrer, M., Schaeffer, J., Burch, N.: Memory-based heuristics
for explicit state spaces. In: IJCAI, pp. 609–614 (2009)

12. Warshall, S.: A theorem on boolean matrices. J. ACM 1(9), 11–12 (1962)



Heuristic Planning with SAT: Beyond Uninformed
Depth-First Search
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Abstract. Planning-specific heuristics for SAT have recently been shown to pro-
duce planners that match best earlier ones that use other search methods, includ-
ing the until now dominant heuristic state-space search. The heuristics are simple
and natural, and enforce pure depth-first search with backward chaining in the
standard conflict-directed clause learning (CDCL) framework.

In this work we consider alternatives to pure depth-first search, and show that
carefully chosen randomized search order, which is not strictly depth-first, allows
to leverage the intrinsic strengths of CDCL better, and will lead to a planner that
clearly outperforms existing planners.

1 Introduction

Translation into SAT, the satisfiability problem of the classical propositional logic, has
been one of the main approaches to solving AI planning problems. The basic idea, first
presented by Kautz and Selman [1], is to consider a bounded-horizon planning problem,
to represent the values of state variables at every time point as propositional variables,
and to represent the relation between two consecutive states as a propositional formula.
This idea is essentially the same as in the simulation of nondeterministic polynomial-
time Turing machines in Cook’s proof of NP-hardness of SAT [2]. Kautz and Selman’s
idea, and Cook’s even more so, was considered to be only of theoretical interest until
1996 when algorithms for SAT had developed far enough to make planning with SAT
practical and even competitive with other search methods [3].

Recently, planning-specific improvements to generic SAT algorithms have been pro-
posed. Specifically, the conflict-directed clause learning (CDCL) algorithm for SAT can
be forced to do depth-first backward chaining search by a suitable variable selection
scheme [4]. Although the idea is very simple and elegant, surprisingly it also results in
dramatic improvements to SAT-based planning, and lifts its efficiency to the same level
with the currently best algorithms for classical planning [4].

In this paper we propose an alternative search scheme which does not enforce a strict
depth-first search. Algorithms for SAT have a great flexibility in choosing the decision
variables, and the kind of fixed schemes as in the predecessor work, do not, for most
applications, lead to the best possible performance (and for many applications would
lead to a poor performance.) The technical challenge is increasing the flexibility in the
decision variable selection in a way that actually improves performance.

Additionally, we propose heuristics to order goals and subgoals. The predecessor
work [4] ordered them arbitrarily, determined by their order in the input file.

J. Li (Ed.): AI 2010, LNAI 6464, pp. 415–424, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



416 J. Rintanen

Our experiments show that with the new improvements our planner substantially
outperforms all well-known classical planning systems, including LAMA, the winner
of the last (2008) planning competition.

The structure of the paper is as follows. Section 2 explains the background of the
work. In Section 3 we present the earlier variable selection scheme. Section 4 extends
it by goal-ordering heuristics and by relaxing the search order. In Section 5 we experi-
mentally evaluate the impact of the techniques. We conclude the paper in Section 6.

2 Preliminaries

The classical planning problem involves finding an action sequence from a given initial
state to a goal state. The actions are deterministic, which means that an action and
the current state determine the successor state uniquely. A state s : A → {0, 1} is a
valuation of A, a finite set of state variables. In the simplest formalization of planning,
actions are pairs (p, e) where p and e are consistent sets of propositional literals over A,
respectively called the precondition and the effects. We define prec((p, e)) = p. Actions
of this form are known as STRIPS actions for historical reasons. An action (p, e) is
executable in a state s if s |= p. For a given state s and an action (p, e) executable in s,
the unique successor state s′ = exec(p,e)(s) is determined by s′ |= e and s′(a) = s(a)
for all a ∈ A such that a does not occur in e. This means that the effects are true in
the successor state and all state variables not affected by the action retain their values.
Given an initial state I , a plan to reach a goal G (a set of literals) is a sequence of actions
o1, . . . , on such that execon(execon−1(· · · execo2(execo1(I)) · · ·)) |= G.

The basic idea in applying SAT to planning is, for a given set A of state variables, an
initial state I , a set O of actions, goals G and a horizon length T , to construct a formula
ΦT such that ΦT ∈ SAT if and only if there is a plan with horizon 0, . . . , T . This for-
mula is expressed in terms of propositional variables a@0, . . . , a@T for all a ∈ A and
o@0, . . . , o@T − 1 for all o ∈ O. For a given t ≥ 0, the valuation of a1@t, . . . , an@t,
where A = {a1, . . . , an}, represents the state at time t. The valuation of all variables
represents a state sequence so that the difference between two consecutive states corre-
sponds to taking zero or more actions. This can be defined in several different ways [5].
For our purposes it is sufficient that the step-to-step change from state s to s′ by a set X
of actions satisfies the following three properties: 1) s |= p for all (p, e) ∈ X , 2) s′ |= e
for all (p, e) ∈ X , and 3) s′ = execon(execon−1(· · · execo2(execo1(s)) · · ·)) for some
ordering o1, . . . , on of X . These conditions are satisfied by all main encodings of plan-
ning as SAT [4]. The only encoding not satisfying these conditions (part 1, specifically)
is the relaxed ∃-step semantics encoding of Wehrle and Rintanen [6].

Given a translation into propositional logic, planning reduces to finding a horizon
length T such that ΦT ∈ SAT, and reading a plan from a satisfying assignment for ΦT .
To find such a T , early works sequentially tested Φ1, Φ2, and so on, until a satisfiable
formula was found. More efficient algorithms exist [7,8].

3 The Variable Selection Scheme

The conflict-directed clause learning (CDCL) algorithm is the basis of most of the cur-
rently best SAT solvers in the zChaff family [9]. Introductory presentations of CDCL



Heuristic Planning with SAT: Beyond Uninformed Depth-First Search 417

algorithms exist [10,11]. The algorithm repeatedly chooses a decision variable, assigns
a truth-value to it, and performs inferences with the unit resolution rule, until a contra-
diction is obtained (the empty clause is derived, or, equivalently, the current valuation
falsifies one of the input clauses or derived clauses.) The sequence of variable assign-
ments that led to the contradiction is analyzed, and a clause preventing the repeated
consideration of the same assignment sequence is derived and added to the clause set.

The earlier variable selection scheme for planning [4] performed a depth-first search
by a stack-based algorithm, finding one action (decision variable) to be used in the
CDCL algorithm as the next variable to which a value is assigned. In this section we
present two technically simple extensions that allow more flexible traversal orders and
the consideration of more than one candidate decision variable. In Section 4 we will
utilize these extensions by proposing subgoal ordering heuristics and a more flexible
decision variable selection scheme than the strict depth-first one used earlier.

The main challenge in defining a variable selection scheme is its integration in the
overall SAT solving algorithm in a productive way. To achieve this, the variable selec-
tion depends not only on the initial state, the goals and the actions, represented by the
input clauses, but also the current search state of the CDCL algorithm. The algorithm’s
execution state is characterized by 1) the current set of learned clauses and 2) the cur-
rent (partial) valuation reflecting the decisions (variable assignments) and inferences
(with unit propagation) made so far. Our variable selection scheme only uses part 2 of
the execution state, the current partial valuation v.

The earlier variable selection scheme [4] is based on the following observation: each
of the goal literals has to be made true by an action, and the precondition literals of each
such action have to be made true by earlier actions (or, alternatively, these literals have
to be true in the initial state.)

The first step in selecting a decision variable is finding the earliest time point at which
a goal literal can become and remain true. This is by going backwards from the end of
the horizon to a time point t′ in which A) an action making the literal true is taken or B)
the literal is false (and the literal is true or unassigned thereafter.) The third possibility
is that the initial state at time point 0 is reached and the literal is true there, and hence
nothing needs to be done. In case A we have an action already in the plan, and in case B
we choose any action that can change the literal from false to true between t′ and t′ +1
and use it as a decision variable.1 In case A we push the literals in the precondition into
the stack and find supporting actions for them.

In the earlier work it was shown that finding just one action in a depth-first manner is
sufficient for an impressive performance [4]. The new algorithm differs from the earlier
algorithm in two respects. First, the depth-first search is not terminated after one action
is found, but proceeds further (in Fig. 1 all possible candidate actions will be found.)
Second, we replace the stack with a priority queue, which enables the use of a heuristic
to impose different traversal orders. These two changes are technically trivial, and the
challenge is to utilize them in a way that will actually lead to an improved performance.

The extension of the earlier algorithm [4] for computing a set of actions that support
currently unsupported top-level goals or preconditions of actions in the current partial
plan is given in Fig. 1. For negative literals l = ¬a, l@t means ¬(a@t), and for positive

1 Such an action must exist because otherwise the literal would have to be false also at t′ + 1.
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literals l = a it means a@t. Similarly, we define the valuation v(l@t) for negative
literals l = ¬a by v(l@t) = 1 − v(a@t) whenever v(a@t) is defined. For positive
literals l = a of course v(l@t) = v(a@t).

1: procedure support(G, O, T, v)

2: empty the priority queue;
3: for all l ∈ G do push l@T into the priority queue;
4: X := ∅;
5: while the priority queue is non-empty do
6: pop l@t from the priority queue; (* Take one (sub)goal. *)
7: t′ := t − 1;
8: found := 0;
9: repeat

10: if v(o@t′) = 1 for some o ∈ O with l ∈ eff(o)
11: then (* The subgoal is already supported. *)
12: for all l′ ∈ prec(o) do push l′@t′ into the priority queue;
13: found := 1;
14: else if v(l@t′) = 0 then (* Earliest time it can be made true *)
15: o := any o ∈ O such that l ∈ eff(o) and v(o@t′) �= 0;
16: X := X ∪ {o@t′};
17: for all l′ ∈ prec(o) do push l′@t′ into the priority queue;
18: found := 1;
19: t′ := t′ − 1;
20: until found = 1 or t′ < 0;
21: end while
22: return X;

Fig. 1. Computation of supports for (sub)goals

The procedure in Fig. 1 is the main component of the variable selection scheme for
CDCL given in Fig. 2, in which an action is chosen as the next decision variable for

1: S := support(G, O, T, v);
2: if S �= ∅ then v(o@t) := 1 for any o@t ∈ S; (* Found an action. *)
3: else
4: if there are unassigned a@t for a ∈ A and t ∈ {1, . . . , T}
5: then v(a@t) := v(a@(t − 1)) for any a@t with minimal t
6: else v(o@t) := 0 for any o ∈ O and t ≥ 0 with o@t unassigned;

Fig. 2. Variable selection for planning with the CDCL algorithm

the CDCL algorithm if one is available. If none is available, all goals and subgoals
are already supported. The current valuation typically is still not complete, and it is
completed by assigning unassigned fact variables the value they have in the predecessor
state (line 5) and assigning unassigned action variables the value false (line 6). The code
in Fig. 2 replaces VSIDS as the variable selection heuristic in the CDCL algorithm.



Heuristic Planning with SAT: Beyond Uninformed Depth-First Search 419

4 Heuristics for Variable Selection

The variable selection scheme, as described in Section 3, has already led to a plan-
ner that is very competitive with the best existing planners for the classical planning
problem [4]. However, experience from SAT solvers and from the application of SAT
solving to planning specifically [12] suggests that the fixed goal-orderings and the strict
backward chaining depth-first search do not – although better than generic SAT-solvers
[4] – ultimately represent the most efficient form of search in the CDCL context.

First, we will present a goal-ordering heuristic for controlling the priority queue.
If only the first action found is returned, the traversal order in the algorithm in Fig. 1
directly determines the ordering in which variables are assigned in the CDCL algorithm.

Second, the search with strict backward chaining will be relaxed. Backward chaining
means selecting an action with an effect x given a goal x, and taking the preconditions
of the action as new goals, for which further actions are chosen. The search with back-
ward chaining proceeds step by step toward earlier time points (until some form of
backtracking will take place.) In the context of CDCL and other SAT algorithms, the
search does not have to be directional in this way, and actions less directly supporting
the current (sub)goals could be chosen, arbitrarily many time points earlier. The algo-
rithm in Fig. 1 computes a complete set of candidate actions for supporting all goals and
subgoals (as opposed to finding only one as in the predecessor work [4]), but randomly
choosing one action from this set is not useful, and we need a more selective way of
choosing a decision variable.

Next we will consider these two possible areas of improvement, and in each case
propose a modification to the basic variable selection scheme which will be shown to
lead to substantial performance improvements in Section 5.

4.1 Goal Ordering

We considered two measures according to which (sub)goals l@t are ordered.

1. the maximal t′ < t such that v(l@t′) �= 1
2. the maximal t′ < t such that v(l@t′) = 0

Above, v(l@t′) �= 1 includes the case that v(l@t′) is unassigned. In the first case, l gets
a higher priority if it must have been made true earlier than other subgoals. The most
likely plan involves making l first true, followed by making the other subgoals true. The
second case looks at the time when the subgoals must have been false the last time. Em-
pirically the best results were obtained with the first. Intuitively, this measure is a better
indicator of the relative ordering of the actions establishing different preconditions of a
given action.

A key property of these measures is that for every goal or subgoal l@t, the new
subgoals l1@t − 1, . . . , ln@t − 1 all have a higher priority than their parent l@t. This
will still lead to depth-first search, but the ordering of the child nodes will be informed.

4.2 Computation of Several Actions

To achieve a less directional form of plan search with CDCL, we decided to compute
some fixed number N = |S| of actions (not only N = 1 as in [4]) and randomly choose
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one o@t ∈ S. In the algorithm in Fig. 1 this means adding a statement that returns S
as soon as |S| = N . The initial experiments seemed very promising in solving some
of the difficult problems much faster. However, the overall improvement was relatively
small, and it very surprisingly peaked at N = 2.

What happened is the following. For a given top-level goal l ∈ G, several of the
first actions that were chosen supported the goals. However, after everything needed to
support l was included, the computation continued from the next unsupported top-level
goal. So at the final stages of finding support for a top-level goal we would be, in many
cases, instead selecting supporting actions for other top-level goals, distracting from
finding support for l. With N = 2 the distraction is small enough to not outweigh the
benefits of considering more than one action.

This analysis led us to a second variant, which proved to be very powerful. In this
variant we record the time-stamp t of the first action found. Then we continue finding up
to N actions, but stop and exit if the time-stamp of a would-be candidate action is ≥ t.
With this variant we obtained a substantial overall improvement with higher N . Later
in the experiments we use N = 10 because the improvement leveled off at N = 10.

4.3 Discussion

The good performance of the fixed and uninformed variable selection [4] is due to its
focus on a particular action sequence. Any diversion from a previously tried sequence is
a consequence of the clauses learned with CDCL. This maximizes the utility of learned
clauses, but also leads to the possibility of getting stuck in a part of the search space
void of solutions. A remedy to this problem in current SAT solvers is restarts [9]. How-
ever, with deterministic search and without VSIDS-style variable (or action) weight-
ing mechanism restarts make no difference. In SAT algorithms that preceded VSIDS,
a small amount of randomization was used to avoid getting stuck [13]. However, too
large diversion from the previous action sequences makes it impossible to benefit from
the clauses learned with CDCL. Hence the key problem is finding a balance between
focus to recently traversed parts of the search space and pursuing other possibilities.

The flexible depth-first style search from Section 4.2 provides an interesting balance
between focus and variation. The candidate actions all contribute to one specific way
of supporting the top-level goals, but because they often don’t exactly correspond to an
actual plan (except for at the very last stages of the search), varying the order in which
they are considered seems to be an effective way of probing the “mistakes” they contain.
An additional benefit seems to be that the non-linear ordering in which the candidate
actions are used often leaves holes (missing actions) in the incomplete plan, which are
immediately filled by unit propagation. For this reason the number of decisions needed
in the CDCL algorithm is sometimes much smaller.

5 Evaluation

Our base line in the evaluation is the backward chaining fixed variable-selection scheme
introduced in the predecessor work [4]. This scheme was already shown to outperform
the standard VSIDS heuristic, both our own implementation and current best imple-
mentations in generic SAT solvers, including Precosat and RSAT.
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The test material was 968 problem instances from the international planning com-
petitions from 1998 until 2008. Since our variable selection scheme is defined for the
restricted STRIPS language only, we chose all the STRIPS problems except for some
from the first competitions, nor did we choose benchmarks from an earlier competition
if the same domain had been used in a later competition as well.

We used the most efficient known translation from planning into SAT, for the ∃-
step semantics by Rintanen et al. [5], and solved the problems with the algorithm B of
Rintanen et al. [5] with B = 0.9, testing horizon lengths 0, 5, 10, 15, . . . and solving a
maximum of 18 SAT problems simultaneously.

All the experiments were run in an Intel Xeon CPU E5405 at 2.00 GHz with a min-
imum of 4 GB of main memory and using only one CPU core. We ran our planner for
all of the problem instances, giving a maximum of 300 seconds for each instance. The
runtime includes all standard phases of a planner, starting from parsing the PDDL de-
scription of the benchmark and ending in outputting a plan. The different variants of the
planner are the baseline fixed variant base from the earlier paper [4], o with the subgoal
ordering from Section 4.1 but with only one action found and returned by the procedure
call support(G,O, T, v), m with random choice from multiple candidate actions from
Section 4.2, and o+m which combines the previous two. The randomization in m and
m+o affects the runtimes, but not much: different complete runs of all 968 instances
solved couple of instances more or less, depending on whether for some instances the
runtime was slightly below or slightly above the 300 second time limit.

We also tested LAMA [14], the winner of the last (2008) planning competition, and
ran it with its default settings, except for limiting its invariant computation to a max-
imum of 60 seconds according to Helmert’s instructions, to adjust for the 300 second
time limit we used. Due to a bug in one of its components, LAMA is not able to solve
the first instance of OPTICAL-TELEGRAPH and the first 13 instances of PHILOSO-
PHERS (the rest take longer than 300 seconds.)

The results of the experiment are summarized in Table 1. The first column is the
number of (solvable) problem instances in each domain. To get an idea of the differ-
ences in the runtime behavior of the different variants of the planner, we plotted a curve
showing the number of problem instances solved (y axis) with a given timeout limit (x
axis), shown in Fig. 3. Overall, the improvements of the new techniques over the base-
line planner and LAMA are substantial, no matter which time out limit is considered.

Other well-performing planners in the planning competitions starting from 2000, in-
cluding FF and YAHSP from the HSP family of planners which use delete relaxation
heuristics [15] and LPG-td [16], are overall very close to LAMA (within 1.5 per cent)
in terms of number of solved problem instances. These planners solve respectively 786,
7752 and 779 problem instances in 300 seconds. As an illustration of the overall perfor-
mance difference, the number of problem instances FF solves in 30000 seconds equals
the number for our planner with a 90 second time limit. This means that FF would have
to become more than two orders of magnitude faster on average to match the perfor-
mance of our planner.

2 YAHSP does not solve the 30 TPP problems because of a parser bug. Fixing this bug would
probably lift YAHSP’s number close to 805, making it the second fastest planner after ours.
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Table 1. Number of problems solved in 300 seconds for each benchmark domain. Average solu-
tion times and numbers of actions for instances solved by all.

domain VSIDS base o m o+mLAMA
1998-GRIPPER 20 20 20 20 20 20 20
1998-MPRIME 20 16 18 18 20 20 20
1998-MYSTERY 19 16 17 17 17 17 19
2000-BLOCKS 102 71 85 86 90 90 51
2000-LOGISTICS 76 76 76 76 76 76 76
2002-DEPOTS 22 21 21 22 22 22 16
2002-DRIVERLOG 20 15 20 20 19 19 20
2002-FREECELL 20 4 5 5 12 12 18
2002-ZENO 20 18 20 20 20 20 20
2004-AIRPORT 50 40 42 41 43 42 37
2004-OPTICAL-TELEG 14 14 14 14 14 14 2
2004-PHILOSOPHERS 29 29 29 29 29 29 BUG
2004-PIPESWORLD-NO 50 15 20 20 33 34 44
2004-PSR-SMALL 50 50 49 49 50 50 50
2004-SATELLITE 36 29 32 32 32 32 30
2006-PIPESWORLD 50 9 10 12 21 24 38
2006-ROVERS 40 40 40 40 39 39 40
2006-STORAGE 30 29 30 30 30 30 18
2006-TPP 30 26 26 28 30 30 30
2006-TRUCKS 30 19 29 29 30 30 8
2008-ELEVATORS 30 13 30 30 30 30 30
2008-OPENSTACKS 30 15 11 11 15 15 30
2008-PARCPRINTER 30 30 30 30 30 30 28
2008-PEGSOLITAIRE 30 25 21 27 23 30 29
2008-SCANALYZER 30 19 16 26 21 27 27
2008-SOKOBAN 30 2 4 4 5 5 18
2008-TRANSPORT 30 10 12 12 20 21 28
2008-WOODWORKING 30 30 30 30 30 30 28
total 968 701 757 778 821 838 775
time average 9.68 6.24 5.99 3.60 3.53 12.23
size average 81.5360.68 60.4064.6164.33 66.64
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Fig. 3. Number of instances that are solved in a given time

6 Conclusions and Future Work

We have considered a number of goal orderings for a CDCL variable selection scheme
for planning, and demonstrated substantial improvements in the performance of SAT
solvers in solving standard benchmark problems.

A notable difference between our work and VSIDS [9] is that we are not using
weights of decision variables obtained from conflicts as a part of variable selection.
Such weights would be able to order the top-level goals and subgoals in the computa-
tion of actions, based on their role in conflicts. This, we believe, is the most promising
area for future improvement in the implementations of our variable selection scheme.
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Abstract. Engineering design optimization problems often involve a number of
constraints. These constraints may result from factors such as practicality, safety
and functionality of the design and/or limit on time and resources. In addition, for
many design problems, each function evaluation may be a result of an expensive
computational procedure (such as CFD, FEA etc.), which imposes a limitation
on the number of function evaluations that can be carried out to find a near op-
timal solution. Consequently, there is a significant interest in the optimization
community to develop efficient algorithms to deal with constraint optimization
problems. In this paper, a new memetic algorithm is presented, which incorpo-
rates two mechanisms to expedite the convergence towards the optimum. First is
the use of marginally infeasible solutions to intensify the search near constraint
boundary, where optimum solution(s) are most likely to be found. Second is per-
forming local search from promising solutions in order to inject good quality
solutions in the population early during the search. The performance of the pre-
sented algorithm is demonstrated on a set of engineering design problems, using
a low computation budget (1000 function evaluations).

Keywords: constraint handling, engineering design, expensive problems.

1 Introduction

In the recent years, population based heuristic algorithms have gained popularity as
generic optimizers. This is because they do not require any conditions on continuity
or differentiability of objective functions, and hence are suitable for optimization of a
wide range of problems. In addition, they can capture the whole Pareto optimal front
for multi-objective problems in a single run as opposed to most single point methods.

Most engineering design optimization problems contain a number of constraints.
These constraints usually impose limits on space, time, availability of resources, cost,
safety and viability of design, aesthetics, ergonomics, and many more. In addition, many
of the engineering design problems are computationally expensive, which means that
evaluating each design (function evaluation) can take a long time.

Artificial intelligence and heuristic optimization techniques are being increasingly
used these days to solve a variety of real life optimization problems. However, the
usefulness of these applications depend on how efficiently these heuristic methods are
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able to deal with the constraints, especially when there is a limited budget on function
evaluations owing to computational complexity. Consequently, constraint handling has
attracted a lot of attention from the evolutionary optimization community.

Some of the earlier proposals for constraint handling include widely used penalty
function approach, where the objective value is degraded by imposing a penalty on
the solutions that violate any of the constraints. A number of variants of penalty func-
tions have been proposed, which include static penalty function models [16], dynamic
penalty function models [15], annealing penalty function models [18], adaptive penalty
models [11] and death penalty function models [13]. There has also been a number
of other proposals which include special representation schemes [3,20], repair strate-
gies [32], separate ranking of objective and constraint functions [9]. Detailed review
of various constraint handling techniques used in conjunction with evolutionary algo-
rithms can be found in in [1,19].

Since the final aim of optimization is to achieve the feasible optimal solution, a
preference for a feasible solution over an infeasible solution is built into the ranking
in most of the evolutionary algorithms. Such a preference tries to drive the population
towards the feasible search space before improving the objective function(s). However,
many a times, the search space may consist of disconnected feasible regions and such a
preference may result in localization of solutions in a sub-optimal region, which is not
desirable for convergence.

In addition, for most constrained problems, the solution to the optimization prob-
lem is likely to lie on the constraint boundary. Therefore, an infeasible solution near
the constraint boundary may be more suitable for guiding the search than a feasible
solution away from it. Some of the approaches that have exploited information from
the infeasible solutions to expedite the search include use of constraints as additional
objectives [31,26], explicit parent matching schemes [12], preferential treatment of best
infeasible solutions [17] etc.

Recently, Singh et al. [30] proposed an infeasibility driven evolutionary algorithm
(IDEA), which explicitly maintains marginally infeasible solutions during the search.
By maintaining these solutions (in addition to good feasible solutions), the search is
intensified near the constraint boundary, where the optimum solution is likely to occur.
In addition, the algorithm also provides some marginally infeasible solutions near the
optimum solution as an output, which could be used for trade-off studies. The benefit
of using infeasibility driven approach over conventional feasible-first ranking procedure
was demonstrated on a number of benchmark problems in [30,27].

In the presented work, the algorithm proposed in [30,27] has been further refined
in order to find near optimal solutions in relatively fewer function evaluations. In the
literature, often global search methods (such as evolutionary algorithms) are used in
conjunction with local search methods (such as gradient search) to search for optimum
solution efficiently. This hybrid approach is referred to as memetic algorithm [21]. For a
review on memetic algorithms, the readers are referred to [22]. The algorithm presented
in this paper is a memetic algorithm, which uses IDEA as a global search method.
Within each generation, a local search is initiated from a promising solution in the
population. The primary purpose of the local search is to inject good quality solutions
to the population early during the search.
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It is worthwhile mentioning here that the use of surrogate models for approximation
of objective(s) and constraint(s) can be advantageous for solving computationally ex-
pensive problems [14], since the search can be guided using approximations in lieu of
the actual function evaluations. The focus of the present work is to improve upon the
existing IDEA algorithm by embedding local search in it. The algorithm presented here
does not involve surrogate assistance. However, the integration of surrogate modeling
with this algorithm will be considered in the future work for further improvements.

Rest of the paper is organized as follows. Since the proposed algorithm utilizes
concepts from Infeasibility Driven Evolutionary Algorithm (IDEA), a background on
IDEA is given in Section 2. The proposed Infeasibility Empowered Memetic Algo-
rithm (IEMA) is then described in Section 3. The performance of the proposed IEMA
on a set of engineering design problems is then reported in Section 4. Finally, a sum-
mary of the findings of the paper is presented in Section 5.

2 Infeasibility Driven Evolutionary Algorithm (IDEA)

Infeasibility Driven Evolutionary Algorithm (IDEA) was proposed by Singh et al. [30].
It differs from the conventional EAs significantly in the terms of ranking and selection
of the solutions. While most EAs rank feasible solutions above infeasible solutions,
IDEA ranks solutions based on the original objectives along with additional objective
representing constraint violation measure. IDEA explicitly maintains a few infeasible
solutions during the search. In addition, “good” infeasible solutions are ranked higher
than the feasible solutions, and thereby the search proceeds through both feasible and
infeasible regions, resulting in greater rate of convergence to optimal solutions.

The benefits obtained in convergence using explicit preservation of infeasible solu-
tions motivated the development of IDEA [30,27], where the original problem is re-
formulated as an unconstrained problem with “violation measure” of the solutions as
an additional objective. Violation measure is a quantity that is calculated based on the
constraint violations of the solutions in he population. The studies reported in [30,27]
indicate that IDEA has better rate of convergence compared to a conventional EA for a
number of constrained single and multi-objective optimization problems.

A generalized single-objective constrained optimization problem can be formulated
as shown in (1)

Minimize f (x)
Subject to gi(x)≥ 0, i = 1, . . . ,m

h j(x) = 0, j = 1, . . . , p

(1)

where x = (x1, . . . ,xn) is the design variable vector bounded by lower and upper bounds
x ∈ S⊂ℜn. Here, g(x) represents an inequality constraint, whereas h(x) represents an
equality constraint. It is a usual practice to convert the equality constraints to inequality
constraints using a small tolerance (i.e. h(x) = 0 is converted to |h(x)| ≤ ε). Hence, the
discussion presented here is with regards to presence of inequality constraints only.
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To effectively search the design space (including the feasible and the infeasible re-
gions), the original single objective constrained optimization problem is reformulated
as bi-objective unconstrained optimization problem as shown in (2).

Minimize f ′1(x) = f1(x)
f ′2(x) = violation measure

(2)

The additional objective represents a measure of constraint violation, which is referred
to as “violation measure”. It is based on the amount of relative constraint violations
among the population members. Each solution in the population is assigned m ranks,
corresponding to m constraints. The ranks are calculated as follows. To get the ranks
corresponding to ith constraint, all the solutions are sorted based on the constraint vi-
olation value of ith constraint. Solutions that do not violate the constraint are assigned
rank 0. The solution with the least constraint violation value gets rank 1, and the rest
of the solutions are assigned increasing ranks in the ascending order of their constraint
violation values. The process is repeated for all the constraints and as a result each so-
lution in the population gets assigned m ranks. The violation measure of a solution is
the sum of these m ranks of the solution corresponding to m constraints.

The main steps of IDEA are outlined in Algorithm 1. IDEA uses simulated binary
crossover (SBX) and polynomial mutation operators to generate offspring from a pair
of parents selected using binary tournament as in NSGA-II [8]. Individual solutions in
the population are evaluated using the original problem definition (1) and the infeasible
solutions are identified. The solutions in the parent and offspring population are divided
into a feasible set (S f ) and an infeasible set (Sin f ). The solutions in the feasible set and
the infeasible set are ranked separately using the non-dominated sorting and crowding
distance sorting [8] based on 2 objectives as per the modified problem definition (2).
The solutions for the next generation are selected from both the sets to maintain in-
feasible solutions in the population. In addition, some of the infeasible solutions are
ranked higher than the feasible solutions to provide a selection pressure to create better
infeasible solutions resulting in an active search through the infeasible search space.

Algorithm 1. Infeasibility Driven Evolutionary Algorithm (IDEA)
Require: N {Population Size}
Require: NG > 1 {Number of Generations}
Require: 0 < α < 1 {Proportion of infeasible solutions}
1: Nin f = α ∗N
2: Nf = N−Nin f

3: pop1 = Initialize()
4: Evaluate(pop1)
5: for i = 2 to NG do
6: childpopi−1 = Evolve(popi−1)
7: Evaluate(childpopi−1)
8: (Sf ,Sin f ) = Split(popi−1 + childpopi−1)
9: Rank(Sf )
10: Rank(Sin f )
11: popi = Sin f (1 : Nin f )+Sf (1 : Nf )
12: end for

A user-defined parameter α is used to maintain a set of infeasible solutions as a
fraction of the size of the population. The numbers Nf and Nin f denote the number of



Performance of IEMA on Engineering Design Problems 429

feasible and infeasible solutions as determined by parameter α . If the infeasible set Sin f

has more than Nin f solutions, then first Nin f solutions are selected based on their rank,
else all the solutions from Sin f are selected. The rest of the solutions are selected from
the feasible set S f , provided there are at least Nf number of feasible solutions. If S f

has fewer solutions, all the feasible solutions are selected and the rest are filled with
infeasible solutions from Sin f . The solutions are ranked from 1 to N in the order they
are selected. Hence, the infeasible solutions selected first are ranked higher than the
feasible solutions selected later.

3 Infeasibility Empowered Memetic Algorithm (IEMA)

The proposed algorithm is constructed using IDEA as the baseline algorithm. For sin-
gle objective problems, a local search can be a very efficient tool for optimization.
However, its performance is largely dependent on the starting solution, rendering it un-
reliable for global optimization. The proposed algorithm tries to exploit the advantages
of both these approaches, i.e. a) intensifying the search near the constraint boundary by
preserving marginally infeasible solutions and b) effectiveness of local search to expe-
dite the convergence in potentially optimal regions of the search space. As mentioned
before, an approach that combines global and local search is termed as a memetic al-
gorithm. Hence, the proposed algorithm as is referred to as Infeasibility Empowered
Memetic Algorithm (IEMA).

The proposed IEMA is outlined in algorithm 2. In IEMA, during each generation,
apart from the evolution of the solutions using IDEA, a local search is performed from
a solution in the population for a prescribed number of function evaluations (set to
20×nvar in the presented studies, where nvar is the number of design variables). Se-
quential Quadratic Programming (SQP) [24] has been used in the presented studies
for the local search. The starting solution for the local search is determined from the
solutions in the population in the following way:

1. If the local search in the previous generation was able to improve the best solution,
then the new best solution is used as the starting solution for the local search.

2. If the local search was unable to improve the best solution in the previous genera-
tion, it is evident that the existing best solution (in the previous generation) is either
not a good starting solution for the local search, or close enough to optimum (ei-
ther local or global), such that further improvements are difficult. Therefore, in
such a case, a random solution is selected from the high ranked infeasible solutions
and the feasible solutions in the population, in an attempt to improve the objec-
tive value further. High ranked infeasible solutions consist of the the Nin f = α ∗N
solutions (refer to algorithm 2)

After performing the local search the worst solution in the population is replaced by
the best solution found from the local search. The ranking of solutions is done in the
same way as done in IDEA. The injection of good quality solutions found using the
local search guides the population towards potentially optimal regions of the search
space. The evolved solutions in turn act as good starting solutions for the local search
in subsequent generations. In this way, both IDEA and local search work together to
identify the optimum solution.
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Algorithm 2. Infeasibility Empowered Memetic Algorithm (IEMA)
Require: N {Population Size}
Require: NG > 1 {Number of Generations}
Require: 0 < α < 1 {Proportion of infeasible solutions}
1: Nin f = α ∗N
2: Nf = N−Nin f

3: pop1 = Initialize()
4: Evaluate(pop1)
5: for i = 2 to NG do
6: childpopi−1 = Evolve(popi−1)
7: Evaluate(childpopi−1)
8: (Sf ,Sin f ) = Split(popi−1 + childpopi−1)
9: Rank(Sf )
10: Rank(Sin f )
11: popi = Sin f (1 : Nin f )+Sf (1 : Nf )
12: x← Choose starting solution in popi

13: xbest ← Local search (x) {xbest is the best solution found using local search from x}
14: Replace worst solution in popi with xbest
15: Rank(popi) {Rank the solutions again in popi}
16: end for

4 Numerical Experiments

The performance of the proposed IEMA algorithm is reported on four benchmark engi-
neering design problems, viz. Belleville spring design [29], welded beam design [6], car
side impact [28] and bulk carrier design [23] (single objective formulation as studied
in [30]). These problems have been used in the literature by various researchers in order
to test the performance of the constraint handling techniques. The results of IEMA are
compared with those obtained from two other algorithms:

1. Non-dominated sorting Genetic Algorithm (NSGA-II) [8], which is one of the
most widely used Evolutionary Algorithms for optimization presently.

2. Infeasibility Driven Evolutionary Algorithm (IDEA) [30,27], which is the precursor
to IEMA.

The aim of comparing these three algorithms is to highlight the benefit obtained over
NSGA-II by incorporating preservation of good infeasible solutions (IDEA) and then
by the further incorporation of local search (IEMA). To this end, percentage improve-
ments in the objective values using these two algorithms over NSGA-II are reported in
Table 2. In addition, some of the best results reported earlier in the literature for these
problems have also been included for further comparisons.

Very limited number of function evaluations (only 1000) have been allowed for the
studies presented here, inline with the paradigm that function evaluations can be often
very expensive for engineering design problems.

4.1 Experimental Setup

The crossover and mutation parameters are kept same for all the three algorithms
(NSGA-II, IDEA and IEMA), and are listed in Table 1. Thirty independent runs are
performed on each problem using each algorithm.
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Table 1. Parameters used for the experiments

Parameter Value

Population Size 40
Maximum function evaluations 1000
Crossover Probability 0.9
Crossover index 10
Mutation Probability 0.1
Mutation index 20
Infeasibility Ratio (α) 0.2

4.2 Results

The results using the three algorithms are summarized in Table 2. It is seen that IEMA
is able to achieve better objective values than both IDEA and NSGA-II for all problems.
The results of IDEA are better than NSGA-II for all problems except bulk carrier design,
for which it is marginally worse (less than 1 %) than NSGA-II.

The percentage improvement attained in using IEMA and IDEA over NSGA-II varies
for different problems, but it can be seen that as high as 20.43 % improvement over the
best result was obtained using IEMA (for the case of Belleville spring design). Further-
more, the improvements in the median values indicates that IEMA is able to achieve the
good objective values very consistently. Again, for the case of Belleville spring design,
47.25 % improvement was seen in the median value using IEMA as compared to that
obtained using NSGA-II. The improvements in the the other problems are compara-
tively less in magnitude, but still significant and consistent.

Another impressive feature of the performance from IEMA for the studied problems
is its ability to obtain good objective values in much fewer evaluations as compared to
the those reported earlier in literature. In the summary of results shown in Table 2, the
function evaluations used in some of the previous studies are also listed, in addition to
the best values reported. Except the recent studies by Isaacs [14] which also use 1000
evaluations for comparison, the number of function evaluations used in most other stud-
ies are much higher than those used here. Even so, the objectives values reported here
are better (or very close) than the best reported previously1. Also worth mentioning here
is that the best results reported for Belleville spring design and Welded beam design in
[14] use surrogate assisted algorithms, but superior results have been obtained in the
presented studies without the use of surrogates. This also highlights a further scope
of improvement over current studies, i.e. inclusion of surrogate assisted techniques in
IEMA. The best design vectors found using IEMA are listed in Table 3.

Although the results obtained using the proposed IEMA are very promising, it is
not without limitations. The most prominent limitation of IEMA (at least in the current
implementation) is its inability to handle discrete variables (during the local search).
Therefore, experiments have been reported only on problems with continuous variables.
However, it could be resolved with use of more specialized operators. Secondly, the
performance is also likely to deteriorate if the number of variables is very high, because
the calculation of gradients itself will become computationally expensive in that case.

1 Please note that slight variations in the results might also result from different precision of the
variables or machines used for conducting previously reported experiments.
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Table 2. Results for engineering design problems. The numbers in the brackets indicate percent
improvement in the objective values compared to those obtained using NSGA-II. (Note: For
Belleville spring design, the thickness of the spring has been considered as a discrete variable in
[7], but as a continuous variable in others, including the presented studies.)

IEMA IDEA NSGA-II Other best reported
(reference) (evals)

Best 1.97967 (20.43 %) 2.20176 ( 11.50%) 2.48789 2.121964(Coello [2]) (24K)
Median 1.97967 (47.25 %) 3.38646 (9.76%) 3.75291 2.29 (Isaacs [14]) (1K)

Belleville spring [29] Worst 6.32532 7.2774 6.5233 2.16256(Deb,Goyal [7]) (10K)
std. 0.788324 1.28952 0.978053 1.978715 (Siddall [29]) (infeas.)

Feasible runs 30 21 21
Best 2.38096 ( 5.48%) 2.45567 ( 2.52%) 2.51916 2.3854347 (Ray,Liew [25](33K)

Median 2.38096 ( 33.55% ) 2.81411 ( 21.46%) 3.58301 2.44 (Isaacs [14])(1K)
Welded beam [6] Worst 4.69066 4.45493 5.11578 2.38119 (Deb [5])(40K)

std. 0.560984 0.545042 0.71464 2.38119 (Deb [4]) (320K)
Feasible runs 30 30 30

Best 23.5857 ( 1.26 %) 23.6988 (0.79%) 23.8872 23.585651 (Saxena,Deb [28])
Median 23.5857 ( 2.90% ) 24.0132 (1.14%) 24.2895 23.59 (Gu et al. [10])

Car side impact [28] Worst 23.5857 25.2929 26.679
std. 5.25507e-08 0.368223 0.671836

Feasible runs 30 30 30
Best 8.60617 (3.47% ) 8.93236 ( -0.18%) 8.91589 8.6083 (Singh et al.[30])(25K)

Median 8.72483 ( 9.43% ) 9.70404 ( -0.73%) 9.63375
Bulk carrier design [23] Worst 13.1018 11.791 11.827

std. 1.56552 0.848578 0.889552
Feasible runs 24 30 30

Table 3. The best design vectors found using the proposed IEMA

Problem x f
Belleville spring (12.01, 10.0305, 0.204143, 0.2) 1.97967
Welded beam (0.244369, 6.21752, 8.29147 , 0.244369) 2.38096
Car side impact (0.5, 1.22573 , 0.5, 1.20711, 0.875, 0.884189, 0.4,0.345 , 0.192 , 0 , 0 ) 23.5857
Bulk carrier design (280.908, 18.4985 , 25.4265, 0.75, 46.8181, 14) 8.60617

5 Summary and Future Work

In this paper, an Infeasibility Empowered Memetic Algorithm (IEMA) is presented.
IEMA combines the advantages of IDEA, which focuses the search near the constraint
boundaries, with local search, an efficient tool for solving single objective continu-
ous problems. In the proposed algorithm, ranking is done similar to IDEA, and in
each generation, the solutions are enhanced by doing a local search from a good qual-
ity solution in the population. The performance of IEMA is studied on a set of con-
strained engineering design problems for a low number of function evaluations. The
proposed IEMA offers significant improvements over NSGA-II in objective values
for the problems studied, and also compare favorably to the other reported results
in the literature. Further improvements in IEMA by incorporating the use of surro-
gate assisted techniques and enhancements for handling discrete variables are currently
underway.
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Abstract. Measuring the similarity between text fragments at the sentence level 
is made difficult by the fact that two sentences that are semantically related may 
not contain any words in common. This means that standard IR measures of 
text similarity, which are based on word co-occurrence and designed to operate 
at the document level, are not appropriate. While various sentence similarity 
measures have been recently proposed, these measures do not fully utilise the 
semantic information available from lexical resources such as WordNet. In this 
paper we propose a new sentence similarity measure which uses word sense 
disambiguation and synonym expansion to provide a richer semantic context to 
measure sentence similarity. Evaluation of the measure on three benchmark 
datasets shows that as a stand-alone sentence similarity measure, the method 
achieves better results than other methods recently reported in the literature. 

1   Introduction 

Measuring the similarity between small-sized text fragments (e.g., sentences) is a 
fundamental function in applications such as text mining and text summarization, which 
usually operate at the sentence or sub-sentence level [1][2]; question answering, where 
it is necessary to calculate the similarity between a question-answer pair [3][4]; and 
image retrieval, where we are interested in the similarity between a query and an image 
caption [5]. Although methods for measuring text similarity have been in existence for 
decades, most approaches are based on word co-occurrence [6][7]. The assumption here 
is that the more similar two texts are, the more words they have in common. While this 
assumption is generally valid for large-size text fragments (e.g., documents)—and hence 
the widespread and successful use of these methods in information retrieval (IR)—the 
assumption does not hold for small-sized text fragments such as sentences, since two 
sentences may be semantically similar despite having few, if any, words in common.  

One approach to measuring similarity between two sentences is based on 
representing the sentences in a reduced vector space consisting only of the words 
contained in the sentences. For example the sentences “Dogs chase cats” and “Felines 
kill mice” could be represented respectively as the vectors (1, 1, 1, 0, 0, 0) and (0, 0, 0, 
1, 1, 1) in a vector space in which dimensions correspond to the ordered terms ‘cat’, 
‘chase’, ‘dog’, ‘feline’, ‘kill’ and ‘mice’, and a  vector entry of 1 (0) represents the 
presence (absence) of the corresponding word in the sentence. However this in itself 
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does not solve the problem of lack of word co-occurrence, since vector space similarity 
measures such as cosine similarity will still yield a value of 0.  

To solve this problem, rather than assigning a value of 0 for the vector entry 
corresponding to an absent word, we can estimate a non-zero value which reflects the 
extent to which the word is related semantically to the collection of words in the sentence. 
For example, the vector for the first sentence above has a 0 entry corresponding to ‘feline’. 
By comparing the word ‘feline’ semantically with the words ‘dog’, ‘chase’ and ‘cat’ (by 
using a dictionary, for example), we would expect to arrive at a non-zero value, since 
‘feline’ would presumably be found to be semantically related to ‘cat’, as well as to ‘dog’ 
(by virtue of cats and dogs being members of the animal kingdom). This will result in a 
non-zero value for the fourth entry in the first vector, and hence a non-zero value when the 
cosine similarity of the resulting vectors is calculated. We refer to vectors determined in 
this way as semantic vectors. There are different approaches to measuring the similarity 
between a word, x, and a collection of n words. One approach is to take the mean semantic 
similarity between x and each of the n words; another is to use the maximum word-to-
word similarity score, which is the approach taken in Li et al. (2006) [8]. 

Sentence similarity measures can also be defined in which sentences are not 
explicitly represented in a vector space. For example, in Mihalcea et al. (2006) [9], 
each word in a sentence is assigned a score determined as the maximum semantic 
similarity between the word and the words in the opposing sentence. These scores are 
then weighted by inverse document frequency (idf) values, summed over both 
sentences, and finally normalized, resulting in a measure of sentence similarity.  

Although the above approaches differ in how the final similarity score is calculated, 
both are based on the estimation of similarity between a word and a set of words, and the 
purpose of this paper is to explore how this measurement can be improved through better 
utilising the semantic information available from lexical resources such as WordNet [10]. 
The contribution of the paper is two-fold. Firstly, the paper proposes a method by which 
word sense identification, used in conjunction with synonym expansion, can be used to 
create an enriched semantic context, enabling a more accurate estimate of semantic 
similarity. Results of applying the measure to three benchmark datasets shows that as a 
stand-alone measure, the method achieves better results than other methods recently 
reported in the literature. The second contribution of the paper is a novel word sense 
disambiguation (WSD) algorithm that operates by comparing WordNet glosses of the 
target word with a context vector comprising the remaining words in the sentence.  

The remainder of this paper is structured as follows. Section 2 introduces the 
method of synonym expansion through word sense identification. Section 3 describes 
the WSD algorithm that we have developed, and the word-to-word semantic 
similarity measures that we use. Section 4 provides empirical results, and Section 5 
concludes the paper.  

2   Word Sense Disambiguation and Synonym Expansion 

The approach that we present in this section is depicted in Figure 1. For each of the 
sentences being compared, we first apply a word sense disambiguation step to identify 
the sense in which words are being used within the sentence. We then apply a 
synonym expansion step, allowing a richer semantic context from which to estimate  
 



 Short-Text Similarity Measurement 437 

 

Sim
ilarity Score 

Sentence 1

Sentence 2 

WordNet 

WSD for 
Sentence 1 

WSD for 
Sentence 2 

Synonym 
Expansion Set 1 

Synonym 
Expansion Set 2 

Union Set, U 

Semantic 
Vector 1 

Semantic 
Vector 2 
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semantic vectors. The similarity between semantic vectors can then be calculated 
using a standard vector space similarity measure such as cosine similarity. We first 
describe the role of WSD. We then describe the procedure for synonym expansion. 

2.1   The Role of Word Sense Disambiguation (WSD) 

Sentence similarity as measured using methods such as those described in the 
Introduction is based on word-to-word similarities. The standard approach used within 
sentence similarity measures based on WordNet [10] is to simply use the first WordNet 
sense for each of the two words being compared [8][9]. (Senses in WordNet are 
ordered from most-frequent to least-frequent). However this can lead to inaccurate 
similarity measurements. To illustrate, consider the following: 

Sentence 1: I deposited a cheque at the bank. 
Sentence 2: There is oil sediment on the south bank of the river. 

Using the reduced vector space representation we obtain  

S1:  [('deposited', 0), ('cheque', 0), ('bank', 0)] 
S2: [('oil', 0), ('sediment', 0), ('south', 0), ('bank', 0), ('river', 0)] 

U: [('river', 0), ('south', 0), ('oil', 0), ('sediment', 0), ('deposited', 0), ('cheque', 0), ('bank', 0)] 

V1: [0.066, 0.062, 0.058, 0.055, 1.0, 1.0, 1.0] 
V2: [1.0, 1.0, 1.0, 1.0, 0.0, 0.059, 1.0] 

where S1 and S2 contain the word-sense pairs for non-stopwords (stopwords are words 
such as ‘a’, ‘the’, etc, and are removed because they carry little semantic information); U 
is the reduced vector space, consisting of all word-sense pairs in the union of S1 and S2; 
and V1 and V2 are the vectors for S1 and S2 in this reduced vector space. The entry 
corresponding to a word x in V1 (V2) is determined as the maximum similarity between 
x and the words in S1 (S2). For example, 0.066 is the maximum similarity between 
('river', 0) and the words in S1 having the same part of speech. (Many WordNet word-to-
word similarity measures are only defined between words with the same part of speech). 
Calculating the cosine similarity between V1 and V2 results in a value of 0.33.  

The similarity value of 0.33 is likely to be an overestimate. For example, the word 
‘bank’ appears in both sentences, but its sense is different in each. Using a WordNet 
sense of 0 will always result in a maximum similarity between these. Problems might 
also arise between words which are not common between the two sentences. For 
example, there is a sense of ‘deposit’ which is closely related to ‘sediment’ (An oil 
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deposit might be considered a sediment). If we perform the same calculation, but by 
incorporating WSD we now obtain: 

S1:  [('deposited', 1), ('cheque', 0), ('bank', 13)] 
S2: [('oil', 4), ('sediment', 1), ('south', 3), ('bank', 0), ('river', 0)] 

U: [('river', 0), ('bank', 0), ('south', 3), ('deposited', 1), ('sediment', 1), ('cheque', 0), ('oil', 4), ('bank', 13)] 
V1: [0.059, 0.051, 0.052, 1.0, 0.044, 1.0, 0.050, 1.0] 
V2: [1.0, 1.0, 1.0, 0.050, 1.0, 0.059, 1.0, 0.049] 

which results in a cosine similarity value of 0.11. This is lower than that achieved 
without the use of WSD, and is more in accord with the human judgement that S1 and 
S2 bare little semantic similarity.  

Now consider the following sentences, which most humans would consider to be 
semantically related: 

Sentence 3: The world is in economic crisis. 
Sentence 4: The current dismal fiscal situation is global. 

Calculating sentence similarity with and without WSD results in similarity values of 0.08 
and 0.09 respectively. It is problematic that a value 0.08 has been obtained for a pair of 
sentences which we consider to be semantically related, yet a higher value of 0.11 was 
obtained for Sentences 1 and 2, which we consider not to be semantically related. Thus 
use of WSD on its own appears to be insufficient. In the next section we describe how 
using synonym expansion can solve this problem. 

2.2   Increasing Semantic Context through Synonym Expansion 

WordNet [10] represents each unique meaning of a word by a synset consisting of that 
word together with its synonyms (if any). Synonyms are words with the same meaning. 
For example, the synset ['fiscal', 'financial'] represents the sense of ('fiscal', 0): “involving 
financial matters”. Synsets provides a means of expanding the semantic context. For 
example, consider Sentences 3 and 4 above. Disambiguating the words in these sentences 
results in a vector space consisting of the following sense-assigned words: 

U: [('fiscal', 0), ('current', 3), ('crisis', 0), ('dismal', 0), ('situation', 0), ('global', 1), ('world', 1), ('economic', 0)] 

We can use information from the respective synsets of these words to add context to the 
original sentences. For example, Sentence 4 above was originally represented as the set 

 [('current', 3), ('dismal', 0), ('fiscal', 0), ('situation', 0), ('global', 1)] 

Using information from the synsets of these words, we can expand this to  

 [('current', 0), ('blue', 0), ('dark', 0), ('dingy', 0), ('disconsolate', 0), ('gloomy', 0), ('grim', 0), ('sorry', 0), 
('drab', 0), ('drear', 0), ('dreary', 0), ('financial', 0), ('state_of_affairs', 0), ('ball-shaped', 0), ('globose', 0), 
('globular', 0), ('orbicular', 0), ('spheric', 0), ('spherical', 0)] 

It is important to note that all synonyms are added with sense 0. While this might appear 
counter-intuitive, since this may not be the sense of the synonym in the original synset 
(i.e., the synset of the word being expanded), it is precisely through including synonyms 
with sense 0 that we are able to expand the context. There are two inter-related reasons 
for this. Firstly, adding the correct sense for a synonym would achieve nothing, since 
the similarity of some word x to this synonym would be the same as its similarity to all 
other words in the same synset (which includes the identified sense of the original word 
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used to produce the synset). Secondly, WordNet assigns a sense of 0 to the most 
frequently used sense of a word. This means that using this sense is most likely (but not 
guaranteed) to expand the context in a semantic direction of benefit in finding possible 
semantic similarities between words in the two sentence being compared. We also note 
that using synonym expansion does not require the dimensionality of the vector space to 
be increased (i.e., we do not add synonyms to U). The expanded context is utilized when 
we calculate the semantic vectors. Whereas originally the entries for these vectors was 
based only on similarities to words in the original sentence, we now consider similarities 
to the synonyms that have been introduced.  

To complete the above example, the expanded description for Sentence 3 is [('domain', 
0), ('economic', 0), ('crisis', 0)]. This results in the following semantic vectors: 

V3: [0.0, 0.807, 1.0, 0.0, 0.0, 0.068, 0.059, 0.0] 
V4: [1.0, 1.0, 0.111, 1.0, 0.0, 0.074, 1.0, 0.0] 

These vectors have a cosine similarity of 0.38, which is higher than the value of 0.08 
achieved without synonym expansion. 

WSD and synonym expansion pull in opposite directions: WSD tends to decrease 
similarity values; synonym expansion tends to increase them. Thus, even though 
synonym expansion has increased the similarity value for Sentences 3 and 4, it is likely 
also to have increased the similarity value for Sentences 1 and 2. While it may appear 
that WSD and synonym expansion are working at odds, this is not the case. What is 
crucial to note is that synonym expansion is based on identified word senses. The 
semantic context is not expanded blindly, but is focused in the vicinity of the semantic 
context provided by the sense-assigned meanings of the original words. Synonym 
expansion is not independent from WSD, it requires WSD. We also note that ultimately 
it is relative—not absolute—similarity values which are important.  

In Section 4 we demonstrate empirically that the resulting similarity measure 
outperforms other recently-proposed measures. We now describe the WSD algorithm 
we have developed, and the WordNet word-to-word similarity measures which we use. 

3   Word Sense Disambiguation 

Synonym expansion relies on the correct identification of the WordNet sense in which 
the word to be expanded is being used. In this section we describe a novel variant of 
the word sense disambiguation algorithm originally proposed by Lesk (1988) [11].   

Lesk’s (1988) [11] method determines the sense of a polysemous word by calculating 
the word overlap between the glosses (i.e., definitions) of two or more target words. The 
actual senses of the target words are then assumed to be those whose glosses have the 
greatest word overlap. For example, in the case of two words w1 and w2, the Lesk score is 
defined as ScoreLesk(S1, S2) = |gloss(S1) ∩ gloss(S2)|, where S1 ∈ Senses(w1), S2 ∈ 
Senses(w2) and gloss(Si) is the bag of words in the definition of sense Si of wi. Senses which 
score the highest value from the above calculation are assigned to the respective words. 

While this approach is feasible when the context is small (e.g., two words) it leads to 
combinatorial explosion as the number of words increases. For example, in a two-word 
context the number of gloss overlap calculations is |senses(w1)| · |senses(w2)|, whereas in the 
case of an n-word context, this increases exponentially to |senses(w1)| · |senses(w2)| · … · 
|senses(wn)|. For this reason, a simplified version of this approach is commonly used, in 
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which the actual sense for word w is selected as the one whose gloss has the greatest 
overlap with the words in the context of w. That is, ScoreLeskVar(S) = |context(w) ∩ gloss(S)|, 
where context(w) is the bag of words in a context window that surrounds the word w. 

The method that we propose similarly disambiguates words one at a time; however, 
rather than using the context provided only in some fixed-size context window 
surrounding the target word, the method disambiguates the target word using the 
context provided by all remaining words in the sentence. Essentially, the algorithm 
computes the semantic similarity (not overlap) between WordNet glosses of the target 
polysemous word and the text made up of all of the remaining words in the sentence, 
which we refer to as context text. The target word is then assigned the sense associated 
with the gloss which has the highest semantic similarity score to the context text. This 
procedure is then repeated for all other words in the sentence. 

To formalize, let W = {wi | i=1..N} be the set of non-stopwords in the sentence 
containing the words to be disambiguated, and suppose that we wish to disambiguate word 
wi. Let 

iwG be the set of WordNet glosses corresponding to word wi,; i.e., 

{ }| 1..
i i i

k
w w wG g k N= = , where 

iwN is the number of WordNet senses for wi, and 
i

k
wg is 

the set of non-stopwords in the kth WordNet gloss of wi. Let Ri be the context vector 

comprising all words from W, except wi; i.e., { }| ,i j jR w w W j i= ∈ ≠ . The sense for 

word wi is identified as the k value for which 
i

k
wg  is semantically most similar to Ri.  

The problem, therefore, is again one of calculating the similarity between two text 
fragments: the gloss, and the context text. The situation is thus somewhat circular, as our 
motivation for introducing word sense disambiguation was to improve the measurement 
of short-text similarity. Since attempting to identify the sense of polysemous words in the 
gloss and context vectors would lead to an infinite regress, we use only the first WordNet 
sense in comparing these vectors, and define the similarity between a gloss and context 
vector simply as their cosine similarity in the reduced vector space.  

3.1   Word-to-Word Semantic Similarity 

Various word-to-word similarity measures have been proposed in the literature, and 
can broadly be categorized as either corpus-based, in which case similarity is 
calculated based on distributional information derived from large corpora, or 
knowledge-based, in which similarity is based on semantic relations expressed in 
external resources such as dictionaries or thesauri. In this paper we use knowledge-
based measures; specifically, we use lexical knowledge-base WordNet [10]. 

Two widely used WordNet-based measures, and the measures used in this research,  
are shortest path similarity [12] and the Jiang and Conrath [13] measure. Shortest path 
similarity is the simpler of the two, and is defined as: 

1 2
1 2

1
( , )

( , )PathSim w w
length w w

=  (1)

where length is the length of the shortest path between two words, and is determined by 
simple node counting. The Jiang and Conrath measure [13] is a more sophisticated 
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measure, based on the idea that the degree to which two words are similar is 
proportional to the amount of information they share: 

& 1 2
1 2 1 2

1
( , )

( ) ( ) 2 ( ( , ))J CSim w w
IC w IC w IC LCS w w

=
+ − ×

 (2)

where LCS(w1, w2) is the word that is the deepest common ancestor of w1 and w2 in 
the WordNet hierarchy, IC(w) is the information content of word w, and is defined as 
IC(w) = −log P(w), where P(w) is the probability that word w appears in a large 
corpus (e.g., the Brown corpus).  

Unlike shortest path, the Jiang and Conrath measure is not capable of calculating the 
similarity between words with different part-of-speech. For this reason, we use the shortest 
path measure in the word sense disambiguation phase where we are assuming WordNet 
sense 0 for words in the gloss and context vectors, and use either of the measures when 
calculating similarity between sense-assigned words. For a comprehensive review of these 
and other word similarity measures, see Budanitsky & Hirst (2006) [14]. 

4   Empirical Results 

We present results from applying the similarity measure to three benchmark datasets: 
the Microsoft Research Paraphrase (MSRP) Corpus [15], the recognizing textual 
entailment challenge (RTE2, RTE3) [16], and the 30 sentence pairs dataset [17].  

4.1   Paraphrase Recognition 

The MSRP dataset consists of 5801 pairs of text fragments collected from a large 
number of web newswire postings over a period of 18 months. Each pair was manually 
labelled with a binary true or false value by two human annotators, indicating whether 
or not the two fragments in a pair were considered a paraphrase of each other. The 
corpus is divided into 4076 training pairs and 1725 test pairs. Since the proposed 
algorithm is unsupervised (i.e., does not require training from labelled data), we use 
only test data. Since it is a binary classification task, a classification threshold needs to 
be determined (i.e., the candidate pair is classified as a paraphrase if the similarity 
score exceeds this threshold), and the ideal method for comparing performance 
between classifiers is to look at the performance corresponding to different 
thresholds; e.g., by comparing area under ROC-curve. Unfortunately this information 
is not available for other methods, so in line with other researchers, we consider 
thresholds in increments of 0.1, and provide results corresponding to the best 
threshold, which in this case was 0.6. Table 1 compares the performance of our 
measure with other recently reported approaches, as well as two baselines. Our measure 
achieves best performance in terms of both overall accuracy and F-measure, and far 
exceeds the baselines. Best performance achieved by a human judge was 83%.  

4.2   Textual Entailment Recognition 

Textual entailment recognition is the task of determining whether a text fragment is 
entailed by a hypothesis (another text fragment). Entailment is an asymmetric relation  
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Table 1. Comparison of performance with other techniques on MSRP classification dataset. 
Vector-based baseline measures cosine similarity between vectors in a full bag-of-words 
representation with tf-idf weighting. Random baseline was created by randomly assigning a true or 
false value to pairs of text fragments. Baselines are due to Mihalcea et al. (2006) [9]. 

Measure Acc Prec Rec F 
Proposed  Similarity Measure 

J&C 74.6 75.5 91.5 82.7 
Path 73.2 73.9 92.4 82.1 

Islam & Inkpen (2008), Corpus-based 
STS 72.6 74.7 89.1 81.3 

Mihalcea et al. (2006), Corpus-based 
PMI-IR 69.9 70.2 95.2 81.0 
LSA 68.4 69.7 95.2 80.5 

Mihalcea et al. (2006), WordNet-based 
L&C 69.5 72.4 87.0 79.0 
J&C 69.3 72.2 87.1 79.0 

Baselines 
Vector-based 65.4 71.6 79.5 75.3 
Random 51.3 68.3 50.0 57.8 

 

 
based on directional inference, and symmetric similarity measures such as that 
proposed in this paper should not be expected to perform as well as measures 
designed to utilize a deeper semantic analysis specifically to determine entailment. 
Nevertheless, the dataset has been previously been used as a measure of (asymmetric) 
sentence similarity, and we follow suit.  

Table 2 shows performance of our measure compared with that recently reported by 
Ramage et al. (2009) [19]. Note that two sets of results are reported in [19]: one set in 
which the Random Graph Walk method is used as a stand–alone measure, and a 
second set in which the graph walk method is incorporated within an existing RTE 
system (i.e., a system designed specifically to detect entailment) [20]. The baseline 
represents the original performance of this RTE system [20]. The performance of our 
measure markedly exceeds that of both the baseline and the Ramage et al. (2009) 
measure used a stand-alone. It also performs better on the RTE 3 dataset than the 
Ramage et al. [19] method incorporated into the RTE system, but approximately 
equally on the RTE2 dataset. As noted above, participants in the RTE challenge have 
used a variety of strategies beyond lexical relatedness, and accuracies as high as 75.4% 
[16] and 80% [21] respectively have been reported on the RTE2 and RTE3 datasets.  

4.3   30-Sentences Dataset 

This dataset is due to Li et al. (2006) [16], and was created by taking a set of 65 noun 
pairs, replacing the nouns with their dictionary definitions, and having 32 human 
participants rate the similarity in meaning of each of the sentence pairs on a scale of 0.0 
to 4.0. When the similarity scores were averaged, the distribution of the scores was 
heavily skewed toward the low similarity end of the scale, with 46 pairs rated from 0.0 to 
0.9, and 19 pairs rated from 1.0 to 4.0. To obtain a more even distribution across the 
similarity range, a subset of 30 sentence pairs was selected, consisting of all 19 sentence 
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pairs rated 1.0 to 4.0, and 11 taken at equally spaced intervals from the 46 pairs rated 0.0 
to 0.9, [17]. Unlike the dataset described above, in which the task is binary classification, 
this dataset has been used to compare correlation with human-rated similarity.   

The similarity measures proposed in Islam and Inkpen (2008) [18] and Li et al. 
(2006) [8] achieved correlations of 0.853 and 0.816 respectively on this task. Our 
sentence similarity measure exceeds both of these results, achieving correlations of 
0.877 and 0.874 respectively using J&C and Path Length word-to-word similarity 
measures. These figures also exceed the mean human correlation of 0.825, and are not 
far from the highest correlation of 0.921 achieved by a human participant  

Table 2. Comparison of performance against results recently reported by Ramage et al. (2009) 
[19], and a baseline RTE system [20]. Classification threshold is 0.5. 

Measure RTE3 Accuracy RTE2 Accuracy 
Proposed similarity measure 

Path 70.2 62.8 
J&C 68.7 63.8 

Ramage et al., (2009) with Random Graph Walk 
Cosine 55.7 57.0 
Dice 55.7 54.2 
Jensen-Shannon 56.7 57.5 

Ramage et al., (2009) with existing RTE system 
Cosine 65.8 64.5 
Dice 65.4 63.1 
Jensen-Shannon 65.4 63.2 

Baselines 
Existing RTE3 65.4 63.6 

5   Conclusion 

The results from the previous section are positive, and suggest that incorporating 
word sense disambiguation and synonym expansion does to lead to improvement in 
sentence similarity measurement. Importantly, this improvement is gained with very 
little increase in computational cost. Although we have described in this paper how 
these ideas can be incorporated into a measure based on a reduced vector space 
representation, the ideas can readily be applied to measures such as that of Mihalcea 
et al. (2006), which do not use an explicit vector space representation. While the 
empirical results reported in this paper have focused mainly on binary classification 
tasks, we believe that an important test for a sentence similarity measure is how well 
it performs when used in the context of a more encompassing task such as text mining 
or document summarization. Evaluating sentence similarity measures in such contexts 
is difficult, however, as many different factors play a role in the success of such 
systems, and it is difficult to isolate the effect that any specific sentence similarity 
measure may have. As a step towards such a broader evaluation, we are in the process 
of applying the measure to challenging sentence clustering tasks. We are also 
comparing the performance of the disambiguation algorithm with that of other 
disambiguation algorithms directly on standard WSD datasets. 
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Abstract. In this paper we present our approach towards legal citation

classification using incremental knowledge acquisition. This forms a part

of our more ambitious goal of automatic legal text summarization. We

created a large training and test corpus from court decision reports in

Australia. We showed that, within less than a week, it is possible to de-

velop a good quality knowledge base which considerably outperforms a

baseline Machine Learning approach. We note that the problem of legal

citation classification allows the use of Machine Learning as classified

training data is available. For other subproblems of legal text summa-

rization this is unlikely to be the case.

1 Introduction

The legal field is strongly affected by the problem of information overload, due
to the large amount of legal material stored in textual form. Past decisions can
have a binding effect on following decisions, in a process that is known as stare
decisis [12], especially in countries with common law systems, such as Australia,
UK and USA. As a consequence, judges need to know past cases to be coherent
and “just” in their application of law and lawyers use them to find arguments
for their cases. Court decisions or cases can be instructive as they introduce a
new principle or rule, modify or interpret an existing principle or rule, or settle
a question upon which the law is doubtful.

A number of different approaches of information management from other do-
mains have been carried over to the legal domain: for example automatic summa-
rization [9,6], retrieval [11] and information extraction [16]. However, researchers
in the field, such as Hachey and Grover, already noted:

“[...] the legal domain appears to be more complex than scientific articles
and especially news, the most commonly reported domains in the auto-
matic summarization literature. This is evidenced in characteristics of
legal discourse such as the longer average sentence lengths, longer aver-
age document lengths, and the sometimes convoluted and philosophical
nature of legalese where there is not an absolute logical template and
there is a looser notion of topic which lends itself to a less centralized
focus” [8].

J. Li (Ed.): AI 2010, LNAI 6464, pp. 445–454, 2010.
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Automatic summarization of legal cases can support finding (helping in as-
sessing the relevance of the results of a query) and digesting the right documents.
Furthermore it can aid the manual creation of summaries and provide impor-
tant legal information in a format that is more accessible and understandable. In
case-law systems, such as in Australia, because of the importance of relying on
other cases to answer the case at hand, citations are an important aspect of most
judicial decisions. Examining citations tells us how the law we are relying on has
been interpreted. For this reason it is vital to law professionals to know whether
the decision has received positive, negative, cautionary or neutral treatment in
subsequent judgements.

In this paper we outline our system LEXA (Legal tEXt Analyzer): an ap-
proach towards automatically providing information useful to law professionals
from such case reports. LEXA is based on incremental acquisition of annotation
rules, and we describe an evaluation of it on a citation classification task.

The following section discusses related work. This is followed by the descrip-
tion of our annotated legal corpus in Section 3. In Section 4, we present our
approach towards legal citation classification. The following Section 5 discusses
our first results on legal citation classification. The final Section 6 discusses our
achievements so far and outlines future research.

2 Related and Prior Work

In the past automatic summarization has attracted a large body of research, and
a large variety of techniques and approaches have been proposed for this task.
Although there has been a certain amount of research in summarization of legal
texts, this application domain is not mature as other such as news or scientific
articles. Examples of systems for automatic summarization of legal texts are
LETSUM [6] and the work of Hachey and Grover [9].

To our knowledge there have been no attempt to automatically classify ci-
tations in legal cases, citation classification has been applied mainly in the
domain of scientific papers. Following the pioneering approach of Nanba and
Okomura [15], another system that automatically perform citation classification
is described in [20], where different kinds of features are studied to train an IBk
classifier on an annotated corpora.

In 2004 Nakov et.al. [14], pointed out the possibility to use citations contexts
directly for text summarization, as they provide information on the important
facts contained in the paper. A first application of the idea can be found in the
work of Qazvinian and Radev [18], where they create a summary by extracting
a subset of the sentences that constitute the citation context. Mohammad et.al.
[13] apply this approach to multi-document summarization, they also build up
on the claim by Elkiss et.al. [5] about the difference of information given by the
abstract and the citation summary of a paper.

Our knowledge acquisition (KA) methodology is based on incremental ap-
proaches, in particular on the Ripple Down Rules (RDR) methodology [3]. In
RDR, rules are created manually by domain experts without a knowledge en-
gineer. The knowledge base is built with incremental refinements from scratch,
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while the system is running: a domain expert monitors the system and whenever
it performs incorrectly, he signals the error and provides a rule as a correction.

A Single Classification RDR (SCRDR), see Figure 1, is a binary tree; associ-
ated with each node is a rule (a condition and a conclusion). Cases (objects to
be classified) are evaluated as they are passed from node to node, starting from
the root: if the condition of the node is satisfied we follow the so-called except
edge (we say that the node fires), otherwise the if not edge, if there is any. The
final conclusion given by the SCRDR tree is the conclusion of the node that fired
last, i.e. that is deepest in the tree (but is often not a leaf node). To ensure that
a conclusion is always found, the root node typically contains a trivial condition
which is always satisfied. This node is called the default node. When an instance
is misclassified, a new node is added to the tree. If the node nf that fired last
has no except link, a new except link is created and the new node is attached to
it. If nf has already an except link leading to node ne the new node is attached
as an alternative except link. That is done by following the if-not link chain of
ne until no if-not link is found and then creating a new if-not link and attaching
the new node to that link. Then the domain expert formulates a rule for the new
node that is satisfied by the case. This rule represents an explanation for why
the conclusion on the case at hand should be different. The strength of RDR
is easy maintenance: the point of failure is automatically identified, the expert
patches the knowledge only locally, considering the case at hand, and new rules
are placed by the system in the correct position and checked for consistency with
all cases previously correctly classified.

RDR have been applied to different problems and applications. For a recent
survey see [19]. RDR has also been extended to tackle natural language process-
ing tasks. Among such work is also the work on scientific citation classification
in [17] on which the work in this paper builds to a significant extent. However,
our application domain is considerably more complex. Hence, this paper demon-
strates that the Ripple Down Rules approach also successfully extends to more
complex NLP domains.

3 Creating Our Corpus of Legal Citations

AustLII (the Australasian Legal Information Institute) [1,7] provides free access
to a large amount of legal information, including reports on court decisions in
all major courts in Australia. A similar project, the World Legal Information
Institute (WordLII), is an extension to other countries, with the aim of providing
“free, independent and non-profit access to worldwide law”.

We accessed the court case reports in html format from the AustLII website.
Some of the contained citations are marked up with a hyperlink to the corre-
sponding cited case. Notably, some of the Federal Court of Australia (FCA)
cases also contain expert generated citation classes of the cited cases.

We built a robust parser to analyse the html pages of the FCA reports and
extract the relevant information about the citations.
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Examples of the classified citations in FCA documents are:

– Dunstan v Human Rights and Equal Opportunity Commission (No 2) [2005]
FCA 1885 related

– Australian Fisheries Management Authority v PW Adams Pty Ltd (No 2)
(1996) 66 FCR 349 distinguished

– Copping v ANZ McCaughan Ltd (1997) 67 SASR 525 cited
– DJL v Central Authority [2000] HCA 17; (2000) 201 CLR 226 considered

We can decompose each row in the name (e.g. DJL v Central Authority), the legal
citations (e.g. [2000] HCA 17) and the class (e.g. considered). The distribution
among the citation classes for the years 2007-2009 from 2043 FCA documents
containing 18715 labelled citations is shown in Table 1.

Table 1. Distribution of citation classes for 2007-2009. Those selected for our knowl-

edge acquisition task are in bold.

Cited 9346 Referred to 3017 Applied 1803 Followed 1759
Considered 1339 Discussed 706 Distinguished 463 Related 94

Affirmed 91 Quoted 87 Approved 61 Not Followed 57

Reversed 20 Ref to 15 Explained 10 Questioned 9

Disapproved 8 Noted 7 Relied on 4 Doubted 3

Compared 2 Adopted 2 Overruled 2 Referred 2

It is possible that a case is cited differently, in different citing cases, or
even within the same citing case, due to the fact that different aspects of the
cited case may be of interest. As a consequence, combinations such as Ap-
plied/Distinguished are possible and one citation may have more than one class
label attached, though this is rare.

Finding all occurrences of a citation in a case is not trivial, as references are
made in a large variety of ways as opposed to scientific articles. Different ways
of referring to the same case include:

– The full name of the case, e.g. Yevad Products Pty Ltd v Brookfield [2005]
FCAFC 263; (2005) 147 FCR 282, or just Yevad Products Pty Ltd v Brook-
field

– The name of one of the parts, e.g. Yevad or Brookfield
– Indication of the law report, e.g. (2005) 147 FCR 282, or the medium neutral

citation, e.g. [2005] FCAFC 263
– Combination of these components, for example Brookfield 147 FCR
– The name of the respective judge, e.g. In Burgundy Royale Brennan J at

685 said: or I understand Brennan J’s reference to the prospect of a grant of
special leave...

When resolving the last type of reference we only use those citations that are un-
ambiguous, e.g. where a judge’s name is only involved in one possible cited case.
To turn this information into a training corpus usable for supervised machine
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learning, we attached to each citation its class label and the associated sen-
tence(s) as well as the entire paragraph(s) in which the citation occurs. Where a
citation is mentioned multiple times we collect the sentences (paragraphs) sur-
rounding each of the occurrences. For our study we only used a subset of our
training corpus as described in Section 5, but we are going to make the entire
corpus available for other researchers.

4 Building Legal Citation Classification Systems

Our citation classification system is based on creating a knowledge base of rules
to annotate text, and in particular to annotate citations. We built an applica-
tion based on GATE [4]. GATE is a framework for developing components for
processing human language including text, written in Java and available as free
open-source software. We use the Tokenizer, Sentence Splitter, Part of Speech
Tagger and Stemmer resources (provided with GATE) to generate Token anno-
tations and their corresponding features for input texts, building the first layer
of linguistic annotations.

Our system LEXA for classification of citations is based on customized anno-
tations produced by a knowledge base of rules, which take the form of regular
expressions over annotations. Each rule matches a regular expression of tokens
and other annotations, and posts a new annotation. To create these annota-
tions we used the Semantic Tagger from GATE, a finite state transducer which
annotates text based on JAPE (Java Annotation Patterns Engine) grammars.

Our system is composed of different types of rules. A first group of rules is used
in a preliminary phase to identify judge names, parts (e.g. “the plaintiff”, “the
appellant”...), courts (e.g. “a full court of the HCA”...), citations of paragraphs
(e.g. “case at [145-148]” ), etc. The user can create any type of annotation
as needed. A successive level of annotation aims at posting class labels over
citations. This class of rules posts a particular annotation which specify which
class we believe the citation belongs to.

This set of classification rules is acquired interacting with a human user.
The system displays citations (and surrounding text) to the user, specifying the
(known) type of citation. The user, examining the text at hand, can create a
new rule and test it on the entire corpus. At the first level we created rules
to extract Distinguished citations. The user is presented with the surrounding
text of a Distinguished case not yet classified, and creates a rule to identify that
case. The rule can be tested on the entire corpus to see how many Distinguished
and Followed/Applied cases it matches. When the user is satisfied with the rule,
he/she commits the rule to the knowledge base.

When a new case of class Followed/Applied is considered and incorrectly classi-
fied as Distinguished by a first level rule, the user will add a second level exception
rule reverting the tentative classification of Distinguished to Followed/Applied.

After the knowledge base is built, the classification of new citation cases is
done as described in Section 2. An example of a portion of the resulting RDR
tree, including three rules, is shown in Figure 1. We conducted a number of
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R0:
If (True) then 

followed/applied 

except except

R2:
If (Pattern2) then 
distinguished 

if not

if not

R3:
If (Pattern3) then 
followed/applied 

R4:
If (Pattern4) then 
followed/applied 

if not

R1:
If (Pattern1) then 
distinguished 

Pattern1:
{Token.stem==”distinguish”} 
({Token})[0,10] 
{Case} 

Pattern2:
{Case}  
({Token})[0,4] 
{Token.string==”not”}
{Token.string==”applicable”}

Pattern3:
{Token.string==”not”} 
({Token})[0,4] 
{Pattern1match} 

if not

except

Fig. 1. Example of a portion of the RDR tree: R1 matches a word whose stem is

“distinguish”, followed by an annotation of type Case (the annotation that signal the

cases in our corpus), separated by a gap up to 10 words. The exception rule R3 looks

if there is a token “not” up to 4 tokens before the annotation posted by R1.

knowledge acquisition sessions (no legal expert was involved) in order to build a
knowledge base with a reasonable performance on our legal citation classification
corpus.

5 Experimental Results

We considered a two class problem: Distinguished (D) vs. Followed or Applied
(FA). We believe that these classes are particularly relevant for legal professionals
as they are likely to shed light on what criteria have been used to decide if a
given case constitutes a relevant precedent (for Followed or Applied). Similarly,
Distinguished cases would indicate why a cited case is not relevant for the citing
case. The importance of these three classes is further corroborated by the fact
that alternative classification schemes, e.g. from private publishers such as Lexis
Nexis, coincide on those classes while they differ on many other classes. The
Lexis Nexis CaseBase Case Citator [2] explains these classes as follows:

– Applied: A principle of law articulated in the primary case is applied to a
new set of facts by the court in the subsequent case.

– Followed: The annotation is similar to applied but is used in circumstances
where the facts in the primary case resemble reasonably closely the facts in
the subsequent consideration case.

– Distinguished: The court in the subsequent case holds that the legal principles
articulated by the primary case (usually otherwise persuasive or binding
authority) do not apply because of some difference between the two cases in
fact or law.

The respective sub-corpus for the three classes we used contains 460 Distinguished
citations and 3496 Followed or Applied citations with a total of 3956 citations.
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Using the approach sketched in Section 4, we developed a first knowledge base
taking around 30 hours of knowledge acquisition sessions. The knowledge base
contains a total of 34 rules of which 15 are second-level exception rules. Only
seven of the first layer rules contain one (or more) exception rules. The time to
acquire a rule is divided into reading and understanding the text and time to
decide which rule should be created. The first is the most demanding part, as
sometimes the text is long and complex. Sometimes it is difficult to understand
why a certain class label was given.

Comparing Our KA Approach with Machine Learning

While developing our knowledge base, we could test the performance of the rules
directly on the corpus. The root node of the RDR tree classify every case as FA,
i.e. it misclassifies 460 D cases. After adding exceptions rules to the default
node, we recognized 207 citations of class D correctly. However also 133 cases
were incorrectly classified as D. In order to rectify that we added exception rules
to the first level of exception rules classifying cases as D. Those second level
exception rules recognize correctly 80 out of the 133 FA cases. This second level
of exceptions rules also caused 15 out of the 207 D cases to be misclassified
as FA.

The knowledge base we developed in some 30 hours of knowledge acquisition.
To create the 34 rules, we looked at approximately 60 cases (but we tested them
on all cases before deciding to commit a formulated rule). Some of the rules were
dismissed after testing and then manually refined.

To compare the performance of our knowledge base with a baseline machine
learner we trained the Naive Bayes classifier in WEKA [10] using a simple bag of
words model, only indicating presence or absence of a word. To build the model,
for each citation we extract all the words that appear in the surrounding context
(either sentence or paragraph). Comparison with alternative machine learning
approaches is left for future research.

Due to the fact that NB did not do well on recognizing the minority class
of Distinguished cases (which we believe is the more important one for legal
practitioners) we tried to improve the Naive Bayes performance by giving more
weight to the minority class, i.e. by replicating the instances of type D, with
factors of 2, 4, 8, 12 and 20. We found the factors 2 and 4 to produce the best
results. The results are presented in Table 2. Six Naive Bayes models are shown,
using only the words present in the same sentence (s) or all the words in the
paragraph (p), with the original instances or multiplying factor of 2 and 4.

We built a test corpus of unseen data by downloading all FCA cases for 2006
containing a total of 6541 citations with 1274 FA and 160 D citations. This data
had never been used at any stage in developing our system. We applied our
knowledge base as well as the six trained Naive Bayes classifiers to the new test
data. The results are shown in Table 2.

It should be noted, however, that the human expert provided class labels are
not necessarily agreed upon by other human experts. This results effectively in
noise in our data for the purpose of training and testing our classifiers.
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Table 2. NB2s: stands for Naive Bayes with words from surrounding sentence supplied

and cases from class D provided twice - other column titles analogously

Training data 2007-2009 Test data 2006
LEXA NBs NB2s NB4s NBp NB2p NB4p LEXA NBs NB2s NB4s NBp NB2p NB4p

Precision(D) 0.784 0.632 0.814 0.824 0.806 0.784 0.208 0.5 0.137 0.303 0.493 0.219 0.359 0.167
Recall (D) 0.417 0.25 0.485 0.772 0.172 0.898 1 0.263 0.1 0.188 0.206 0.088 0.144 0.606
F-measure(D) 0.545 0.358 0.608 0.797 0.283 0.837 0.344 0.344 0.116 0.232 0.291 0.125 0.205 0.262
Precision(FA) 0.928 0.91 0.937 0.971 0.903 0.987 1 0.913 0.891 0.903 0.907 0.894 0.9 0.926
Recall (FA) 0.985 0.981 0.986 0.979 0.995 0.968 0.506 0.967 0.921 0.946 0.973 0.961 0.968 0.622
F-measure(FA) 0.955 0.944 0.96 0.975 0.946 0.977 0.672 0.939 0.906 0.924 0.939 0.926 0.933 0.744
Accuracy 0.919 0.897 0.928 0.955 0.9 0.96 0.562 0.888 0.829 0.861 0.888 0.864 0.876 0.62

Table 3. Removing cases with differing human expert classifications

Training data 2007–2009 Test data 2006
LEXA NBs NB2s NB4s NBp NB2p NB4p LEXA NBs NB2s NB4s NBp NB2p NB4p

Precision(D) 0.8 0.545 0.804 0.911 0.875 0.912 0.463 0.674 0.154 0.341 0.563 0.214 0.64 0.362
Recall (D) 0.516 0.293 0.511 0.684 0.187 0.827 0.987 0.403 0.083 0.194 0.25 0.083 0.222 0.694
F-measure(D) 0.627 0.382 0.625 0.782 0.308 0.867 0.63 0.504 0.108 0.248 0.346 0.12 0.33 0.476
Precision(FA) 0.903 0.863 0.904 0.936 0.852 0.964 0.996 0.850 0.772 0.799 0.818 0.781 0.816 0.885
Recall (FA) 0.972 0.948 0.974 0.986 0.994 0.983 0.757 0.946 0.872 0.895 0.946 0.914 0.965 0.658
F-measure(FA) 0.936 0.904 0.937 0.96 0.918 0.973 0.86 0.895 0.819 0.844 0.877 0.842 0.884 0.754
Accuracy 0.891 0.833 0.893 0.933 0.853 0.956 0.797 0.827 0.699 0.742 0.793 0.732 0.802 0.666

To identify those “noisy” or at least questionable citations, we compared the
FCA citation classifications with the available classifications of the same citations
by the Lexis Nexis CaseBase Case Citator [2], a commercial database of case
law. In this database experts classify each citation in a scheme of eleven classes
(different from the one of FCA but comparable to it). Of our 460 FCA cases
marked as Distinguished, 225 of them had the same label in CaseBase. Of the 3496
Followed or Applied, only 1041 received either Followed or Applied in CaseBase.

As a consequence of this considerable discrepancy in human expert opinion,
which we think is due to the class boundaries not being very sharp, it appears
to be more appropriate to limit the performance evaluation in our study to
those cases where both human-provided class labels (from FCA and Lexis Nexis
CaseBase) agree. Results for the training and test sets (329 citations) containing
only the cases the human experts agreed on, are shown in Table 3.

These results indicate that the human intuition that went into the knowl-
edge base of our system LEXA generalises significantly better than the Machine
Learner which appears to be overfitting the training data to a much higher de-
gree than LEXA (the performance difference between training and test data is
less for LEXA), with our system obtaining an accuracy of 82.7%. As a conse-
quence, on the less ambiguous sub-corpus our knowledge base is outperforming
the best version of our trained Naive Bayes classifier by a margin of up to some
45% relative to the Naive Bayes F-measure of 34.6% for the important D class.

6 Conclusions and Future Work

In this paper we presented our approach towards automatic legal citation classi-
fication, which characterizes the relation between the present case and the cited
ones. Automatic classification of citations to case law is a novel application in
itself, which we believe to be very relevant in assisting legal research in common
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law. Moreover, we believe that citation analysis in legal cases can bring bene-
fits to a range of other NLP applications, including automatic summarization.
We built an annotated corpus of citations, extracting available data from the
Federal Court of Australia reports, which we are going to release to interested
researchers.

Our system LEXA is based on a knowledge base of rules (described by regular
expressions) to annotate text at multiple levels. We built a knowledge base man-
ually acquiring a set of rules: within less than a week of knowledge acquisition
sessions, our system is able to recognize Distinguished and Followed or Applied
citations with an accuracy of 88.8% on test data. When evaluated on unseen
data, the system outperforms our best Machine Learning model, giving signif-
icantly higher recall and precision for the Distinguished class (34.4% vs 29.1%
F-measure).

Examining an alternative source of classification of the same cases, we found
that human experts often disagree when classifying citations (only 1266 of the
3956 citations have the same label in both sources). This confirms the complexity
of citation classification in the legal domain. We experimented that, when taking
out “ambiguous” citations (the ones on which human experts do not agree),
the performance increases for our knowledge base, with our system bringing a
considerable improvement of F-measure both for Distinguished (50.4% vs. 34.6%)
and Followed/Applied (89.5% vs. 87.7%) over Naive Bayes.

Future work involves integrating this approach in a more comprehensive anal-
ysis of the legal texts, with the aim to build an automatic summarization system.
In order to achieve this, more rules of different types will be needed, to allow
deeper analysis of the text. For automatic summarization the problems in obtain-
ing annotated data makes it more difficult to use Machine Learning approaches.
For this reason we think that knowledge acquisition from experts with RDR is
the path to follow to obtain better results.
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Abstract. In this paper, we propose algorithms to increase the accuracy of 
hazardous Web page detection by correcting the detection errors of typical 
keyword-based algorithms based on the dependency relations between the 
hazardous keywords and their neighboring segments. Most typical text-based 
filtering systems ignore the context where the hazardous keywords appear. Our 
algorithms automatically obtain segment pairs that are in dependency relations 
and appear to characterize hazardous documents. In addition, we also propose a 
practical approach to expanding segment pairs with a thesaurus. Experiments 
with a large number of Web pages show that our algorithms increase the 
detection F value by 7.3% compared to the conventional algorithms. 

Keywords: Information Filtering, Dependency Relation, Thesaurus. 

1   Introduction 

As Internet use becomes more widespread, the number of Web pages for consumers is 
increasing, and includes many blogs and bulletin board systems (BBS). Web pages 
that contain hazardous information on dating, criminal declarations, and libelous 
statements are also increasing. The labor cost associated with monitoring such Web 
pages in order to remove them is also becoming considerable. To detect hazardous 
Web pages, text-based approaches have been proposed that automatically generate a 
set of hazardous keywords from a training dataset which are manually labeled as 
hazardous/harmless. However, conventional text-based approaches lack adequate 
accuracy because they ignore the context where the hazardous keywords appear. For 
example, the word “kill” is used in both hazardous documents such as “kill a man” 
and harmless documents such as “kill a process”. 

In this paper, we propose algorithms to increase the accuracy of hazardous Web 
page detection by correcting the classification of the conventional text-based 
algorithms based on the dependency relations of the hazardous keywords and their 
neighboring segments. In addition, we propose practical algorithms to increase 
performance by expanding the hazardous segment pairs using a thesaurus. Currently 
we are targeting Japanese Web pages; however, the essential algorithms of hazardous 
document detection are applicable to other languages by alternating language specific 
parts such as dependency analysis. 
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In our experiments, we conducted a large-scale performance evaluation using 
220,000 manually labeled Japanese Web pages as training data for our algorithms, 
and another 20,000 Web pages for the evaluation itself. The performance of our 
algorithms exceeded that of conventional algorithms by up to 7.3% in F value. 

2   Related Works 

Several text-based algorithms have been proposed to detect hazardous Web pages [1], 
[2]. The algorithms proposed in [1] automatically generate a set of hazardous keywords 
that appear unusually often in hazardous Web pages in the training datasets. The 
algorithms proposed in [2] calculate the hazard score of Web pages based on the 
similarity of the feature vectors extracted from Web pages of the training datasets and the 
evaluation datasets. In these algorithms, however, documents are split into morphemes 
thus the contexts where they appear are ignored. As a result, they have difficulty in 
accurately discriminating between documents that contain morphemes that are classified 
both as hazardous and harmless depending on the context, such as “kill” and “drugs”. 

Accurate document retrieval algorithms based on dependency relations have been 
proposed [3], [4]. The algorithms proposed in [3] deal with Japanese documents. The 
algorithms split documents into morphemes, analyze their dependency relations, and 
make a binary tree called a “Structured Index” in advance. Users’ queries are written 
in pseudo-natural language, and are also analyzed into the Structured Index and 
matched with the documents. The algorithms described in [4] expand users’ query 
words by extracting contextual terms and relations from external documents. These 
algorithms aim at improving the accuracy of document retrieval by using the 
dependency relations of morphemes. Although the aims of our algorithms are 
different, focusing on dependency relations to detect hazardous documents with high 
accuracy is a promising approach. 

In addition, term expansion using a thesaurus is also a promising approach to 
improving performance. Query expansion algorithms are well researched and many 
types of algorithms have been proposed [5], [6], [7], [8]. Liu’s group [5] offers 
methods to improve query expansion for ambiguous words. In [6], they present an 
approach to combining WordNet and ConceptNet by assigning appropriate weights 
for expanded terms. Yoshioka’s group [7] proposes algorithms to modify a given 
Boolean query by using information from a relevant document set by combining 
probabilistic and Boolean IR models. In the recent research in [8], query expansion 
algorithms based on users’ browsing histories are proposed. In their algorithms, Web 
pages are clustered into a Web community and each query is represented by the Web 
communities to which its accessed Web pages belong. 

A part of our contribution has been reported in [9]. Going beyond this achievement, 
we offer practical query expansion algorithms with a thesaurus that improve the 
detection accuracy for hazardous documents and reduce the computation load and 
memory consumption by removing noisy segment pairs. 

3   Proposed Algorithms 

In this paper, we treat the algorithms of [1] as conventional text-based algorithms. 
Figure 1 shows an overview of the conventional and the proposed algorithms.  
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Fig. 1. Overview of the Conventional Algorithms and the Proposed Algorithms 

 

Documents are classified into either hazardous or harmless. The conventional 
algorithms have an automatically generated set of keywords with a hazard score.  

Documents that contain any keywords with a higher score than a threshold are 
detected as hazardous and the rest are considered harmless. In Figure 1, for example, 
the words “kill” and “drug” are regarded as hazardous because their hazard scores are 
higher than the threshold. In contrast, words with low hazard scores such as “money” 
are regarded as harmless. 

Although documents that contain keywords with high hazard scores are likely to be 
hazardous, not all of them are hazardous. For example, documents which contain 
sentences such as “kill a process” are not hazardous even though they contain the 
hazardous keyword “kill”. In the same way, documents that contain sentences such as 
“make money with dating” are hazardous even though the keyword “money” is 
harmless. Our algorithms correct errors and improve accuracy by detecting 
hazardous/harmless segment pairs from documents classified as harmless/hazardous, 
respectively. In addition, we propose algorithms to expand segment pairs with a 
thesaurus. For example, in our algorithms, the keyword “kill” is harmless when it 
appears as a segment pair with “process”. In addition, expanded segment pairs such as 
“kill program” and “kill computation” are also regarded as harmless. 

In the following section, we describe the conventional generation algorithms of the 
hazardous keyword set in Section 3.1. We describe the proposed generation algorithms 
for hazardous/harmless segment pairs in Section 3.2. Expansion algorithms for 
generated segment pairs are shown in Section 3.3. 

3.1   Generation of Keyword Set 

First we describe the conventional generation algorithms for a hazardous keyword set. 
Algorithms shown in [1] split the documents manually labeled as hazardous/harmless 
into morphemes by morphological analysis and extract hazardous morphemes that 
appear particularly often in hazardous documents. E(m) which is the degree of bias of 
a morpheme m in hazardous documents is calculated based on Akaike's Information 
Criterion (AIC) [10]. In AIC algorithms, the four criteria shown in Table 1 are used, 
where N11/N21 is the number of hazardous/harmless documents where morpheme m 
appears, N12/N22 is the number of hazardous/harmless documents where morpheme m 
does not appear. In [1], E(m) is defined as follows by using AIC dependent/ 
independent models of AIC_DM/AIC_IM based on the findings described in [11].  
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Table 1. Number of Hazardous/Harmless Documents where Morpheme m Appears 

 Documents do contain m Documents do not contain m Sum 
Hazardous Documents N11(m) N12(m) Np 
Harmless Documents N21(m) N22(m) Nn 
Sum N(m) N( ¬ m) N 

Table 2. Example of the Obtained Hazardous Keywords 

Ranks Keywords N11(m) N12(m) N21(m) N22(m) E(m) 
10 Actress 5802 102724 194 10833 6746 
17 Blog 1091 97615 3354 10517 4495 
46 Mobile phone 9253 99273 3259 10526 3167 

106 Sponsor 2561 105965 708 10781 1129 
110 Access 6573 101953 3361 10516 1105 

 

When  N11 (m) / N (m) ≥ N12(m) / N( ¬ m) 

E(m) = AIC_IM(m) - AIC_DM(m) 

When  N11 (m) / N (m) < N12(m) / N( ¬ m) 

E(m) = AIC_DM(m) - AIC_IM(m) 

(1) 

 

Here, AIC_IM(s) and AIC_DM(s) are defined as follows [10]. 
 

AIC_IM(m) = -2 × MLL_IM + 2 × 2 

MLL_IM = Np(m) log Np (m) + N(m) log N(m) + Nn(m) log Nn(m) 

+ N( ¬ m) log N( ¬ m) - 2N log N 

AIC_DM(m) = -2 × MLL_DM + 2 × 3 

MLL_DM = N11(m) log N11(m) + N12(m) log N12(m) 

 + N21(m) log N21(m) + N22(m) log N22(m) - N log N 

(2)

Table 2 shows examples of keywords (morphemes) with high E(m) scores. We used 
10,000 manually labeled Web pages1 as training datasets (5,000 hazardous and 
harmless Web pages each). Here, Web pages that contain information on dating, 
criminal declarations, libelous statements and porn are labeled as hazardous. Table 2 
shows how some keywords with high scores seem to be harmless. In contrast, our 
proposed algorithms aim to detect hazardous documents with high accuracy by using 
the keywords’ neighboring segments. 

3.3   Generation of Segment Pairs 

Here we describe the algorithms for generating hazardous/harmless segment pairs 
from the conventional harmless/hazardous keyword sets. Figure 2 shows an overview 
 

                                                           
1 Web pages are received from NetSTAR Inc. (http://www.netstar-inc.com/eng/) who engage in 

collection and manual classification of URLs. 
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Fig. 2. Generation Algorithms of Harmless Segment Pairs 

Table 3. Example of the Obtained Segment Pairs 

Segment Pairs N11(s) N12(s) N21(s) N22(s) E(s) 
Actress, shot 106 144651 2 72293 74.7 
Produce, Actress 0 144757 2 72293 -2.31 
Sponsor, matchmaking 14 144743 1 72294 20.3 
Sponsor, advertisement 2561 105965 708 10781 1129 
Access, disguise 7 144750 3 72292 16.1 
Access, guide 0 144757 27 72268 -9.20 

 
of the generation algorithms. First, training datasets are classified as hazardous or 
harmless by the conventional algorithms. Dependency relations with hazardous 
keywords in sentences from hazardous documents are analyzed and segment pairs that 
contain hazardous keywords are extracted. The number of hazardous/harmless 
documents where each extracted segment pair “s” does/doesn’t appear is evaluated in 
the same manner as in Table 1. In this case, the total number of documents N in Table 
1 is defined as the number of hazardous documents. Harmless segment pairs are 
obtained by calculating an E(s) value based on expressions (1) and (2) in Section 3.1. 
In the same way, hazardous segment pairs are obtained from the harmless keywords 
with scores below the threshold, and training datasets are classified as harmless by the 
conventional algorithms. For example, in Figure 2, “kill” and “drug” are hazardous 
keywords, however, “kill a process” and “stop drug” are obtained as harmless 
segment pairs. When “money” has a below-threshold hazard score, the segment pair 
of “money” and “date” is hazardous. Table 3 shows examples of segment pairs 
obtained from 10,000 training data sets. Segment pairs with negative scores are 
harmless. 

Here, we describe the appropriateness of using dependency relations to reflect 
contexts when detecting hazardous documents. The co-occurrence of morphemes is a 
possible approach to reflecting contexts. For example, “part-time girlfriend for a man” 
might be a hazardous sentence found in dating Web pages and the co-occurrence of 
“part-time”, “girlfriend” and “man” are learned as hazardous. However, “a man’s 
girlfriend quit her part-time” is a harmless sentence, yet it is regarded as harmful since 
it contains “part-time”, “girlfriend” and “man”. The dependency relationship between 
“part-time” and “girlfriend” does not appear in the latter sentence. Another approach 
to reflect contexts is using a simple n-gram; n adjacent morphemes. As a preliminary 
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experiment, we evaluate the number of cases where 20 hazardous segment pairs 
appear adjacently in 10,000 Web pages (for example, in the sentence “part-time 
girlfriend for a man”, “part-time” and “girlfriend” are adjacent). The segment pairs 
appear 311 times, and 202 times (64.9%) they are adjacent and 109 times (35.1%) 
they are apart. Our algorithms are particularly effective in cases of separated segments 
because a bi-gram approach cannot detect them. 

3.4   Expansion with a Thesaurus 

In order to adapt segment pairs extracted in Section 3.3 to more expressions, we 
expand the segment pairs with a thesaurus. In our algorithms, morphemes that are not 
listed in hazardous keyword sets are expanded. Figure 3 shows an overview of the 
base-line expansion algorithms in which morphemes are expanded to their one-level- 
higher concepts and their whole family of lower level concepts. For example, assume 
that “kill” is regarded as a harmless keyword in the conventional algorithms and a 
segment pair “kill” and “man” is extracted as hazardous by the proposed algorithms, 
then “man” is expanded to the higher concept “human” and its entire family of lower 
level concepts such as “lady”, “Alice”, and “Bob”. Here we believe that the hazard 
score for “kill” is almost the same as for “man” for all lower level concepts of 
“human”.  

In our implementation of the proposed algorithms, we used the Japanese EDR 
thesaurus [12], which consists of 410,000 concepts and 270,000 words in a tree 
topology. Each entry contains a concept ID, concept title, concept explanation, ID list 
of the upper/lower concepts, and more. Each entry can contain several words. For 
example, the concept “school” has one higher concept, which is “building for 
education” and 14 lower concepts, including “elementary school”, “university”, and 
so forth. The concept “school” contains the word “school” only. Due to the large 
number of concept entries, making use of all entries is impractical due to the huge 
requirement for processing time and memory for the number of expanded segment 
pairs. In addition to the removal of ineffective expansion paths described previously, 
concept entries are removed whose words do not appear in the training datasets. In 
our preliminary experiment with 220,000 training datasets and 10,000 evaluation 
datasets, we evaluate the number of words both by type and appearance that appear 
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Table 4. Example of the Expanded Segment Pairs in Each Path 

Expansion 
Path 

Expansion 
Types 

Path Contain 
Higher Layer 

# of Down 
Layers 

Correct Incorrect Correct Ratio 

(1) No 1 433 82 84.1% 
(2) No 2 146 36 80.2% 
(3) No 3 58 25 69.9% 
(4) No 4 41 6 87.2% 
(5) No 5 0 0 - 
(6) Yes 1 27983 1254 95.7% 
(7) Yes 2 1852 349 84.1% 
(8) Yes 3 802 216 78.8% 
(9) Yes 4 551 143 79.4% 
(10) 

Harmless to 
Hazardous 

Yes 5 280 68 80.5% 
(11) No 1 107 23 82.3% 
(12) 

Hazardous to 
Harmless ... ... ... ... ... 

 
solely in training datasets or evaluation datasets or both. Figure 4 shows that only a 
few words appear solely in evaluation datasets, which means there is almost no need 
for a concept entry whose words do not appear in training datasets. The number of 
words in the thesaurus is reduced from 270,000 to 25,000. We compare their 
performance by the required processing time and memory consumption in Section 4. 

In addition, we focus on the expansion paths and their correctness. For example, a 
much lower concept may differ from the original concept. We classified expansion 
paths into 10 types depending on (a) whether they trace a one-level-higher concept, 
and (b) the depth of the paths they trace (up to 5). We defined expansion paths are 
correct when the expanded hazardous/harmless segment pairs appear in 
hazardous/harmless documents of the training datasets. Table 4 shows the number of 
expanded correct/incorrect segment pairs appearing in 200,000 Web pages. “Harmless 
to Hazardous” and “Hazardous to Harmless” mean that a document’s classification as 
harmless/hazardous by the conventional algorithms is reversed by the proposed 
algorithms. In the “Harmless to Hazardous” case, paths (1), (2), (6), and (7) have high 
correctness levels which show expansion paths to the same or nearby levels have high 
correctness and paths to low levels have low correctness. “Hazardous to Harmless” 
has a similar tendency. In the experiment in Section 4, we confirm the improvement 
in the performance of the partial expansion algorithms that optimize the expansion 
paths by removing noisy paths, compared to the baseline algorithms of expanding to 
their one-level-higher concepts and all lower level concepts. 

4   Performance Evaluation 

4.1   Experimental Environments 

Here we compare the performance of the conventional algorithms, the proposed base-
line algorithms (BLA), the proposed base-line expansion algorithms (BLEA), and the 
proposed partial expansion algorithms (PEA). Experimental adjuncts and scenario are 
as follows. 
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Experimental Adjuncts 
Japanese morphological analyzer: MeCab[13] Version 0.98, dictionary of 
morphological analyzer: IPADIC Version 2.7.0, (MeCab default), Japanese 
dependency analyzer: CaboCha[14] Version 0.53, dependency analysis models: 
CaboCha default, thesaurus: EDR thesaurus [12]. 

Datasets 
240,000 manually labeled Web pages (220,000 training data; 110,000 hazardous and 
harmless Web pages each, 20,000 evaluation data; 10,000 hazardous and harmless 
Web pages each). 

Criteria for Evaluation 
We evaluate the recall rate, the precision rate, and the F value of each proposed 
algorithm and the conventional algorithms. In this paper, we define the recall, the 
precision, and F of the detection of hazardous Web pages as follows based on the total 
number of hazardous Web pages All (10,000 in this experiment), the number of Web 
pages detected as hazardous Judge, and the number of detected Web pages that are 
actually hazardous Correct. 

Recall = Correct / All  

Precision = Correct / Judge 

F = 2 / ( 1 / Recall + 1 / Precision ) 

(3)

 (4)

 (5)

Experimental Scenario 

1. Evaluate the trade-off of the recall rate and the precision rate of the 
conventional algorithms using several hazard score thresholds. 

2. In each threshold of 1., correct the classification of the conventional algorithms 
by the proposed algorithms and evaluate the recall rate and the precision rate. 

3. Expand the segment pairs with the thesaurus and evaluate the recall rate and 
the precision. We also evaluate the number of expanded segment pairs, the 
processing time and the memory consumption. 

4.2   Experimental Results 

Recall and precision rates of the conventional algorithms are shown in Figure 4. In the 
conventional algorithms, hazardous keywords are sorted by their hazard scores. With 
a high threshold, only a few hazardous keywords are used and the recall rate is low 
and the precision rate is high. Conversely, with a low threshold, the number of 
keywords used increases and the recall rate increases, but the precision decreases. We 
tested the proposed algorithms with 8 thresholds, producing the recall rates, the 
precision rates and the F values shown in Table 5. 

Figure 5 shows the recall rate, the precision rate, and F value of the conventional 
algorithms, the BLA, and the BLEA. The improvement in the recall results from 
correcting the ‘harmless’ classifications by the conventional algorithms to 
‘hazardous’. The improvement in precision results from correcting both ‘hazardous’ 
and ‘harmless’ classifications to ‘harmless’ and ‘hazardous’ respectively. The 
improvement of the BLA is up to 7.6% in the recall rate, up to 2.0% in the precision 
rate, and up to 4.8% in the F value. The improvement of the BLEA is up to 10.6% in 
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Table 5. Thresholds of the Conventional Algorithms and their Performance (%) 

Threshold # of Keywords Recall Precision F 
A 2 45.3 91.0 60.5 
B 7 54.7 86.3 67.0 
C 12 66.1 80.6 72.7 
D 21 71.3 78.2 74.6 
E 36 77.3 71.6 74.4 
F 84 82.1 67.8 74.3 
G 161 90.5 60.6 72.6 
H 359 95.5 57.6 71.8 
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Fig. 5. Performance Comparison of the Conventional Algorithms, BLA, and BLEA. (Right. 
Recall vs. Precision, Left. F Value, %). 

 
the recall rate, up to 3.2% in the precision rate, and up to 6.6% in the F value. This 
result means that segment pairs expanded by our algorithms detect more 
hazardous/harmless expressions. 

In our experiments, we used the dependency analyzer CaboCha with default 
settings. The accuracy of dependency analysis of CaboCha for Web documents is 
reported as about 85% [15]. In our algorithms, dependency analysis errors reduced the 
number of extracted segment pairs in the training phase and reduced the number of 
corrections in the evaluation phase. In our experiments, however, the effectiveness of 
our algorithms was confirmed even with the default setting of the dependency 
analyzer. Improvement in the accuracy of dependency analysis for Web documents is 
expected to improve the performance of our algorithms. 

Finally we evaluated the effect of removing unnecessary concepts and expanded 
noisy segment pairs based on their expanded path. Table 6 shows the number of 
segment pairs before/after expansion, processing time, and memory consumption. By 
removing unnecessary concepts, the average number of segment pairs is reduced to 
less than a quarter. The average processing time and memory consumption is also 
reduced about a quarter. Table 7 compares the performance of the BLEA and PEA. 
By removing several noisy expansion paths from Hazardous to Harmless segment 
pairs, the recall rate is improved by up to 1.70 and the F value improved by 0.75% 
compared to the peak performance of the BLEA which is 7.3% higher than the 
performance of the same number of keywords in the conventional algorithms. 
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Table 6. Number of Segment Pairs vs. Processing Time, and Memory Consumption 

 BLA BLEA PEA 
Key-
words 

Seg. Pair 
(thousand) 

Seg. Pair 
(million) 

Time 
(sec) 

Memory 
(GByte) 

Seg. Pairs 
(million) 

Time 
(sec) 

Memory 
(GByte) 

2 304 19.3 208 26.3 5.31 87 7.22 
7 224 14 158 19 3.98 68 5.41 

12 138 74.2 943 101 17 168 23.1 
21 82.1 46 592 62.6 10.9 113 14.8 
36 52 30.5 341 41.5 7.44 91 10.1 
84 36.4 20.8 201 28.3 5.09 75 6.92 

161 18.7 10.2 113 13.9 2.42 57 3.29 
359 8.48 3.86 71 5.25 0.953 49 1.3 

Avg. 108 27.4 328 37.2 6.63 88.5 9.02 

Table 7. Performance Comparison of the BLEA vs. PEA (%) 

 BLEA PEA 
Key-
words 

Recall Precision F Recall Precision F 
Diff 

Recall 
Diff 

Precision 
Diff 

F 
2 48.4  93.1  63.7  50.1  93.4  65.2  1.70 0.26 1.51 
7 59.6  88.8  71.3  60.9  88.9  72.3  1.36 0.17 1.02 

12 76.7  82.1  79.3  77.9  82.3  80.1  1.22 0.22 0.75 
21 78.7  80.0  79.3  79.6  80.1  79.9  0.82 0.17 0.50 
36 82.9  74.6  78.5  83.4  74.6  78.8  0.53 0.03 0.26 
84 88.2  70.6  78.5  88.5  70.7  78.6  0.33 0.02 0.14 

161 93.1  63.8  75.7  93.3  63.8  75.8  0.14 0.03 0.07 
359 97.5  60.3  74.5  97.5  60.3  74.5  0  0 0 

5   Conclusion 

In this paper, we propose algorithms to increase the accuracy of hazardous Web page 
detection by correcting the classification of the conventional text-based algorithms 
based on the dependency relations of the hazardous keywords and their neighboring 
segments. In addition, we propose practical algorithms to increase performance by 
expanding the hazardous segment pairs using a thesaurus. 

In our experiments with large scale real Web pages, the performance of the 
proposed base-line algorithms improved the performance of conventional algorithms 
by up to 6.6% in F value. Removing noisy segment pairs based on their expanded 
path is also effective which increased the peak performance of the base-line 
algorithms by 0.75 % and the improvement from the conventional algorithms was 
7.3% in F value. 
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Abstract. Measuring similarity between sentences plays an important role in 
textual applications such as document summarization and question answering. 
While various sentence similarity measures have recently been proposed, these 
measures typically only take into account word importance by virtue of inverse 
document frequency (IDF) weighting. IDF values are based on global 
information compiled over a large corpus of documents, and we hypothesise 
that at the sentence level better performance can be achieved by using a 
measure of the importance of a word within the sentence that it appears. In this 
paper we show how the PageRank graph-centrality algorithm can be used to 
assign a numerical measure of importance to each word in a sentence, and how 
these values can be incorporated within various sentence similarity measures. 
Results from applying the measures to a difficult sentence clustering task 
demonstrates that incorporation of sentential word importance leads to 
statistically significant improvement in clustering performance as evaluated 
using a range of external clustering criteria. 

1   Introduction 

Measuring the similarity between sentences is an important function in applications 
such as extractive text summarization, where the objective is to extract from a document 
or documents a subset of sentences that are representative of the semantic content of the 
document(s) [1][2]. Although measuring text similarity at the document level is well-
established in the Information Retrieval (IR) literature, where documents are 
represented in a common vector space [3], and similarity between them calculated using 
measures such as the Jaccard, Dice or Cosine measures [4], measuring similarity at the 
sentence level is complicated by the fact that two sentences may be semantically related 
despite having few, if any, words in common. Consequently, various measures for short 
text similarity have been recently proposed [5][6][7][8]. To overcome the problem of 
lack of word co-occurrence, these methods are typically based on word-to-word 
similarity measures derived either from distributional information from some corpora 
(corpus-based measures), or semantic information represented in external sources such 
as WordNet [9] (knowledge-based measures).  

While it is widely accepted that incorporating inverse document frequency (IDF) 
scores leads to improved measurement of text similarity at the document level, it is 
not clear that it has the same utility at the sentence level. For example, in evaluating 
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the performance of a variety of sentence similarity measures on a range of tasks, 
Achananuparp et al. (2008) [10] report that measures such as IDF have no clear 
advantage in the overall performance of these similarity measures.  

Other difficulties are also inherent in using IDF scores at the sentence level. For 
example, many words are polysemous (i.e., have multiple meanings), and we may 
wish to disambiguate words prior to measuring similarity between them. The problem 
is that IDF scores are generally not available for specific senses of words, and 
therefore use of non sense-assigned IDF values only serves to add noise. 

In this paper, we explore the idea of incorporating into sentence similarity 
measures a factor based on the importance of words in the sentences being compared. 
We refer to this importance as ‘sentential word importance’ to distinguish it from 
measures such as IDF, which are derived from large corpora. Specifically, we show 
how the PageRank algorithm [11] can be used to assign a numerical measure of 
importance to each word in a sentence. We then show how these importance measures 
can be incorporated into several existing sentence similarity measures. We apply the 
techniques to a difficult sentence clustering task, and show that incorporating 
sentential word importance leads to statistically significant improvement in clustering 
performance, as evaluated using a range of clustering criteria.  

The remainder of the paper is structured as follows. Section 2 describes several 
existing sentence similarity measures. Section 3 describes how PageRank can be used to 
determine sentential word importance, and how this word importance can be 
incorporated into existing similarity measures. Section 4 provides empirical results and 
Section 5 concludes the paper. 

2   Sentence Similarity Measures 

A variety of sentence similarity measures have been proposed in recent years. In this section 
we describe two common measures, and propose a third. In Section 3 we will describe how 
these measures can be improved through incorporation of sentential word importance.  

The sentence similarity measure proposed by Mihalcea et al. (2006) [6] operates as 
follows. Given two sentences S1 and S2, first calculate the similarity between the first 
word in S1 and each word in S2 that belongs to the same part of speech class. The 
maximum of these scores is then weighted with the IDF score of the word from S1. This 
procedure is then repeated for the remaining words in S1, with the weighted maximum 
scores summed, and then normalized by dividing by the sum of IDF scores. This entire 
procedure is then repeated for S2. The overall similarity is finally defined as the average 
of normalized weighted maximums for S1 and S2. In mathematical notation:  
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{ } { }{ }
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where sim(x, y) is the similarity between words x and y. The IDF score is determined using 
an external corpus. The reason for computing the semantic similarity scores only between 
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words in the same part of speech class is that most WordNet-based measures are unable to 
calculate semantic similarity of words belonging to different parts of speech.  

Whereas the above approach does not utilize any explicit sentence representation, the 
approach proposed by Li et al. (2006) [5] is similar to that used to calculate document 
similarity in the Information Retrieval (IR) literature. However, rather than using a 
common vector space representation for all sentences, the two sentences being compared 
are represented in a reduced vector space of dimension n, where n is the number of 
distinct words in the union of the two sentences. Semantic vectors, V1 and V2, are first 
constructed. These vectors represent sentences S1 and S2 in the reduced space. The 
similarity between S1 and S2 is then defined as the Cosine similarity [4] between V1 and 
V2. The elements of Vi are determined as follows. Let vij be the jth element of Vi, and let 
wj be the word corresponding to dimension j in the reduced vector space. There are two 
cases to consider, depending on whether wj appears in Si:  

Case 1: If wj appears in Si, set vij equal to 1. 

Case 2:  If wj does not appear in Si, calculate a word-word semantic similarity score 
between wj and each non-stopword in Si, and set vij to the highest of these 
similarity scores i.e., 

{ }
arg max ( , )

i

ij j
x S

v sim w x
∈

= . 

We note that in their formulation Li et al. (2006) [5] also factor in an information 
content weighting so that the similarity between two words i and j is defined as sim(wi, 
wj) × I(wi) × I(wj), where sim(wi, wj) is defined as above, and I(w) is the information 
content of word w, and is defined as −log p(w) / log(N+1) where p(w) is the probability 
that the word appears in a large corpus and N is the total number of words in the 
corpus. As a measure of word importance, information content, therefore, plays a 
similar role to IDF. Li et al. (2006) [5] also incorporate a factor based on word order.  

The third measure we investigate is derived from distance measures used in the 
clustering literature, and we are not aware of it having been used in the literature on 
sentence similarity measures. The measure, which we refer to as the group average 
method, is straightforward, and simply sums the similarities between all words in the 
first sentence with all words in the second, normalizing by the size of the sentences: 

{ }{ }1 1 2 2
1 2

1 2
1 2
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w S w S
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sim S S
S S
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×

∑ ∑
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Unlike the first two measures described above, which are based on the maximum 
similarity between a word and the words of the opposing sentence, the group average 
method uses all similarities. Intuitively, because it uses all similarity information, one 
might expect it to perform at least as well as the other measures. 

2.1   Word-to-Word Semantic Similarity Measures 

Each of the above measures relies on a measure of word-to-word similarity. Various 
word-to-word measures have been proposed, and these can broadly be categorized as 
being either corpus-based or knowledge-based. Whereas corpus-based measures are 
based on distributional information derived from large corpora such as the Brown 
Corpus, knowledge-based measures utilize semantic relations expressed in resources 
such as dictionaries or thesauri. We use the latter approach. Specifically, we use 
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lexical knowledge-base WordNet [9] in conjunction with the word-to-word semantic 
similarity measure due to Jiang and Conrath [12]. 

The Jiang and Conrath measure is based on the idea that the degree to which two 
words are similar is proportional to the amount of information they share. The 
similarity between words w1 and w2 is defined as: 

& 1 2
1 2 1 2

1
( , )

( ) ( ) 2 ( ( , ))J CSim w w
IC w IC w IC LCS w w

=
+ − ×

 (3)

where LCS(w1, w2) is the word that is the deepest common ancestor of w1 and w2 in 
the WordNet hierarchy, IC(w) is the information content of word w, and is defined as 
IC(w) = −log P(w), where P(w) is the probability that word w appears in a large 
corpus (e.g., the Brown corpus). For a comprehensive review of word similarity 
measures, see Budanitsky & Hirst (2006) [13]. 

3   Graph-Based Word Importance Ranking  

Algorithms such as PageRank [11] and HITS [14] belong to the family of graph-based 
ranking algorithms. The basic idea behind these algorithms is that the importance of a 
vertex within a graph can be determined by taking into account global information 
recursively computed from the entire graph. It is this importance that can be used a 
measure of centrality. We focus here on PageRank.  

PageRank assigns to every node in a graph a numerical score between 0 and 1, 
known as its PageRank score (PR). This score is defined as   

( )

1
( ) (1 ) ( )

( )
i

i j
jj In V

PR V d d PR V
Out V∈

= − + × ∑  (4)

where In(Vi) is the set of vertices that point to Vi, Out(Vj) is the set of vertices pointed 
to by Vj, and d is a damping factor, typically set to around 0.8 to 0.9 [11]. Using the 
analogy of a random surfer on the Web, nodes visited more often will be those with 
many links coming in from other frequently visited nodes, and the role of d is to 
reserve some probability for jumping to any node in the graph, thereby preventing the 
user getting stuck in some disconnected part of the graph.  

Although proposed in the context of Web page ranking, PageRank can be used 
more generally to determine the importance (or centrality) of an object in a network. 
For example Mihalcea and Tarau’s (2004) TextRank [15] and Erkan and Radev’s 
(2004) LexRank [2] both use PageRank for ranking sentences for the purpose of 
extractive text summarization. In these systems, each sentence in a document or 
documents is represented by a node on a graph. However, unlike a Web graph, in 
which edges are directed but unweighted, edges on a document graph are weighted 
with a value representing the similarity between sentences. These edges are usually 
undirected, since similarity is usually a symmetric relation; however it is also possible 
to use directed edges. The modification of PageRank to deal with weighted, 
undirected edges is straightforward:  
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where wij is the similarity between Vi and Vj. Note that the summations are now over all 
vertices in the graph. If weights are binary, then the formula reduces to the original. 

It is straightforward to extend this idea to representing a sentence as a graph in 
which vertices are words, and edge weights represent the similarity between words. 
Edge weights can be determined using word-to-word similarity measures such as the 
Jiang and Conrath measure. Equation 5 can then be used to assign to each word a 
score representing the importance of that word in the sentence.  

As an example, consider the following two sentences, both taken from the famous 
quotations dataset which we have compiled (see Section 4): 

S1: “A deaf husband and a blind wife are always a happy couple.” 

S2: “The woman cries before the wedding; the man afterward.” 

After performing word sense identification using a variant of the Lesk method [16], 
calculating pairwise similarities between the resulting sense-assigned words using the 
method described in Section 2.1, and finally applying PageRank, we obtain the 
following, where numbers below the word/sense pairs are the corresponding PageRank 
values. 

S1: [('deaf', 0), ('husband', 0), ('blind', 0), ('wife', 0), ('happy', 1), ('couple', 1)] 
 [  0.1106        0.2479           0.1157       0.2506       0.16667        0.1085    ] 

S2: [('woman', 0), ('cries', 4), ('wedding', 2), ('man', 0), ('afterward', 0)] 
 [    0.2866         0.1170           0.1096         0.2868         0.2000       ] 

The words found to be most central in Sentence 1 are ‘husband’ and ‘wife’, and the 
words most central in Sentence 2 are ‘woman’ and ‘man’. Both of these sentences are 
about marriage, and the concepts of man/woman and husband/wife are clearly related 
to the concept of marriage. We hypothesize that incorporating these PageRank scores 
into the measurement of sentence similarity will result in an improved measure.  

3.1 Modified Sentence Similarity Measures 

Incorporating PageRank values into the measures described in Section 2 is relatively 
straightforward. The measure proposed by Mihalcea et al. (2006) [6] can be modified as follows: 
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where S
xPR is the PageRank score of word x in sentence S. Note that this incorporates the 

PageRank of both the target word (i.e., words appearing in the outer summations), as well 
as the PageRank values of the words against which the target words are being compared. 
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For the Li et al. (2006) [5] measure, the only modification required is in 
determining the components of the semantic vectors. This is done as follows:  

Case 1: If wj appears in Si, set vij equal to i

j

S
wPR (i.e., the PageRank score for wj in Si). 

Case 2:  If wj does not appear in Si, set vij equal to the highest weighted similarity between 

wj and the words in Si; i.e., 
{ }

( )arg max ( , ) i

j
i

S
ij j w

x S
v sim w x PR

∈
= × . 

For the third approach, we weight the word-to-word similarity measures by the 
PageRank values of the words in their respective sentences, and normalize by the 
product of summed PageRank values for each sentence. 
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4   Empirical Results 

Sentence similarity measures are commonly evaluated on binary classification tasks such 
as the Microsoft Research Paraphrase Corpus (MSRP) [17], or the RTE datasets [18]. 
However, there are a number of problems with evaluating similarity measures in this 
way. Firstly, performing binary classification requires that a threshold be determined, and 
this requires a training set. Most researchers who have used these datasets are interested 
only in unsupervised learning, and usually choose a threshold of 0.5. This choice, 
however, is ad hoc, since similarity measures such as those we have described do not 
output probabilities; moreover, some measures output a consistently higher range of 
values than others. Secondly, performing binary classification does not test the full 
discriminatory capability of a similarity measure. For example, if a measure achieves 
good performance on a classification task, it does not necessarily follow that the measure 
will achieve good performance when used within some other task, such as clustering.  

4.1   Famous Quotations Dataset 

Since our interest in measuring sentence similarity is motivated by our work in sentence 
clustering, we choose to test the similarity measures on the task of clustering famous 
quotations. Quotations provide a rich and challenging context for the evaluation of 
sentence clustering performance because they often contain a lot of semantic 
information (i.e., wisdom packed into a small message), and are often couched in a 
poetic use of language. We have compiled a dataset consisting of 50 famous quotes 
from 5 different classes (marriage, peace, food, nature, knowledge) (10 from each 
class). The quotes are taken from the website in [19]. An excerpt is shown in Table 1. 

4.2   Spectral Clustering 

Since the sentence similarity measures do not represent sentences in a common and 
continuous feature space, popular clustering methods such as K-means, Fuzzy K-means 
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and mixture models, all of which assume that points lie in a metric space, and take 
rectangular attribute data as input, are no longer generally applicable. Instead, we 
require a clustering algorithm which takes as input only pairwise similarities between 
objects (which may be represented in a similarity matrix). Spectral Clustering 
algorithms, which belong to the family of graph-based approaches and which have 
become one of the most popular clustering methods in recent years, satisfy the criterion 
of only requiring pairwise similarities as input. These algorithms are based on matrix 
decomposition techniques: rather than clustering data points in the original vector space, 
data points are mapped onto the space defined by the eigen-vectors associated with the 
top eigen-values, and clustering is then performed in this transformed space, typically 
using a K-means algorithm. A variety of spectral clustering algorithms have been 
proposed, and in this paper we use the algorithm due to Ng et al. (2001) [20]. Detailed 
information on spectral clustering can be found in Luxburg (2007) [21].  

Table 1. Extract from Famous Quotations Dataset 

Knowledge 
1. Our knowledge can only be finite, while our ignorance must necessarily be infinite. 

2. Pocket all your knowledge with your watch and never pull it out in company unless desired. 

3. Knowledge is of two kinds; we know a subject ourselves, or we know where we can find information upon it. 

… 

Marriage 
10. A husband is what is left of a lover, after the nerve has been extracted. 

11. A rich widow weeps with one eye and signals with the other. 

12. A wise woman will always let her husband have her way. 

… 

Nature 
21. The course of nature is the art of God. 

22. From the intrinsic evidence of His creation, the Great Architect of the Universe now begins to appear as a pure mathematician. 

23. Nature, with equal mind, sees all her sons at play, sees man control the wind, the wind sweep man away. 

… 

Peace 
31. There is no such thing as inner peace, there is only nervousness and death. 

32. When fire and water are at war it is the fire that loses. 

33. Once you hear the details of victory, it is hard to distinguish it from a defeat. 

… 

Food
41. Food is an important part of a balanced diet. 

42. At the end of every diet, the path curves back toward the trough. 

43. Hunger is not debatable. 

…  

4.3   Clustering Evaluation Criteria 

Two widely used external cluster quality measures are purity and entropy. The purity 
of a cluster is the fraction of the cluster size that the largest class of objects assigned 
to that cluster represents. Overall purity is the weighted sum of the individual cluster 
purities and is given by 
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L = {w1, w2, …} is the set of clusters, C = {c1, c2, …} is the set of classes, and N is the 
number of objects.  
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Entropy is defined as weighted average of the individual cluster entropy over all clusters: 
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Because entropy and purity measure how the classes of objects are distributed 
within each cluster, they measure homogeneity; i.e., the extent to which clusters 
contain only objects from a single class. However, we are also interested in 
completeness; i.e., the extent to which all objects from a single class are assigned to a 
single cluster. While high purity and low entropy are generally easy to achieve when 
the number of clusters is large, this will result in low completeness, and in practice we 
are usually interested in achieving an acceptable balance between the two.  

The V-measure, also known as the Normalized Mutual Information (NMI) [7], takes 
into account both homogeneity (h) and completeness (c), and is defined as the harmonic 
mean of the two: V = hc / (h + c), where h and c are defined as  
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Unlike the statistical approaches described above, Rand Index and F-measure are 
based on a combinatorial approach which considers each possible pair of objects. 
Each pair can fall into one of four groups: if both objects belong to the same class and 
same cluster, then the pair is a true positive (TP); if objects belong to the same cluster 
but different classes, the pair is a false positive (FP); if objects belong to the same 
class but different clusters, the pair is a false negative (FN); otherwise the objects 
belong to different classes and different clusters, in which case the pair is a true 
negative (TN). The Rand index is simply the accuracy; i.e.,  (TP + FP)/(TP + FP + 
FN + TN). The F-measure is the harmonic mean of precision and recall; i.e., 
2PR/(P+R), where P = TP/(TP + FP) and R = TP/(TP + FN). 

4.4   Results 

Table 2 shows the results of applying the original measures described in Section 2 
(labelled as unweighted), and the modified measures proposed in Section 3 
(weighted). In each case we performed 200 trials, each with a different random 
initialization for the clustering algorithm. Upper numbers are means; numbers in 
parentheses are standard deviations. On all three similarity measures, and for all 
clustering evaluation measures, the improvement in clustering performance achieved 
through weighting by sentential word importance was found to be statistically 
significant at the 0.05 level using a two-sample two-tailed t-test. (In most cases the 
results were significant at the 0.01 level or better). Since inclusion or exclusion of 



474 A. Skabar and K. Abdalgader 

word importance was the only variable, we conclude that incorporating sentential 
word importance does lead to improvement in sentence similarity measurement. 

Best overall performance is achieved using the modified version of Li et al.’s [5] 
measure, and this is followed closely by the modified version of the Mihalcea et al. 
[6] measure. These measures have in common the fact that they are based on the 
maximum semantic similarity between a word and the words in the opposing 
sentence. In contrast, the group average measure averages over all inter-sentence 
word-to-word similarities, and intuitively one might expect it to be a superior measure 
on account of this. However its performance—both for the weighted an unweighted 
versions—is inferior to both the other methods. We speculate that spurious word-to-
word similarities, sometimes originating from incorrect word sense identification, 
result in the addition of noise, thereby leading to its inferior performance. 

Table 2. Clustering Performance on Famous Quotations Dataset 

 Purity Entropy V-measure Rand Index F-measure. 

Modified Li et al. (2006) Method 

0.650 0.508 0.509 0.783 0.476 
Unweighted 

(0.037) (0.022) (0.020) (0.016) (0.024) 

0.679 0.471 0.542 0.805 0.516 
Weighted 

(0.058) (0.056) (0.053) (0.026) (0.049) 

Modified Mihalcea et al. (2006) Method 

0.648 0.515 0.521 0.738 0.443 
Unweighted 

(0.012) (0.017) (0.015) (0.022) (0.020) 

0.695 0.486 0.530 0.781 0.483 
Weighted 

(0.046) (0.058) (0.047) (0.048) (0.065) 

Group Average  Method 

0.565 0.605 0.450 0.646 0.372 
Unweighted 

(0.009) (0.010) (0.012) (0.013) (0.007) 

0.575 0.544 0.506 0.694 0.411 
Weighted 

(0.026) (0.013) (0.016) (0.008) (0.008) 

 

In regard to increased computational cost, we note that the step of calculating 
sentential word importance contributes extremely little. Graph-based centrality 
measures such as PageRank converge quickly, even for a relatively large number of 
nodes. Assuming that sentences contain in the order of 10 or so words, any increase in 
computational cost is virtually insignificant when compared, for example, against the 
cost of computationally expensive tasks such as word sense disambiguation.  

5   Conclusion 

The idea of incorporating word importance in text similarity measurement is not new, 
and IR researchers have been using IDF weights in measuring document similarity for 
decades. However, IDF weights are determined using an external corpus, and while this 
may provide information on how important a word is when taken over a large corpus, it 
provides little information on the importance of a word in the context of the sentence in 
which it appears. We have described how the PageRank algorithm can be used to 
determine sentential word importance, and how the resulting importance scores can then 
be incorporated into a variety of sentence similarity measures. Testing of the methods 
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on a difficult sentence clustering task has demonstrated that incorporating word 
importance leads to a significant improvement in clustering performance. 
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Abstract. Predicting people other people may like has recently become

an important task in many online social networks. Traditional collabo-

rative filtering approaches are popular in recommender systems to ef-

fectively predict user preferences for items. However, in online social

networks people have a dual role as both “users” and “items”, e.g., both

initiating and receiving contacts. Here the assumption of active users and

passive items in traditional collaborative filtering is inapplicable. In this

paper we propose a model that fully captures the bilateral role of user

interactions within a social network and formulate collaborative filter-

ing methods to enable people to people recommendation. In this model

users can be similar to other users in two ways – either having similar

“taste” for the users they contact, or having similar “attractiveness” for

the users who contact them. We develop SocialCollab, a novel neighbour-

based collaborative filtering algorithm to predict, for a given user, other

users they may like to contact, based on user similarity in terms of both

attractiveness and taste. In social networks this goes beyond traditional,

merely taste-based, collaborative filtering for item selection. Evaluation

of the proposed recommender system on datasets from a commercial

online social network show improvements over traditional collaborative

filtering.

Keywords: Machine Learning, Recommender Systems, Collaborative

Filtering.

1 Introduction

Traditional social filtering or recommender systems attempt to discover user
preferences over items by modelling the relation between users and items. The
aim is to recommend items that match the taste (likes or dislikes) of users in
order to assist the active user, i.e., the user who will receive recommendations, to
select items from an overwhelming set of choices. Such systems have many uses
in e-commerce, subscription based services and other online applications, where
provision of personalised suggestions is required [8]. By applying recommenda-
tion techniques it is possible to greatly increase the likelihood of the successful
purchase of products or services by the active user, since services or products are
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personalised and presented to the active user using information obtained from
the purchasing behaviour of like-minded users. In online applications with a very
large number of choices where customer taste is important in making selections,
personalised recommendation of items or people becomes essential.

1.1 Recommender Systems

Approaches to recommender systems can be categorised as content-based or
collaborative filtering methods. In content-based methods, the user will be rec-
ommended items similar to those the user preferred in the past. This is usually
based on models created from item descriptions using information retrieval or
machine learning techniques. In general, a content-based system analyses the
content of the profiles, or descriptions, of items, as well as provided user ratings,
to infer a model that can be used to recommend additional items of interest. In
this paper we do not address content-based recommendation.

Collaborative filtering (CF) methods, on the other hand, recommend items
based on aggregated user preferences of those items, which does not depend
on the availability of item descriptions. In CF, preference information from a
set of users is utilised to make automatic predictions about the interests of
the active user by assuming that user preferences hold over time. Importantly,
predictions are made by models personalised to the taste of each active user
based on information from many users, rather than from a global model making
predictions for all users.

Collaborative filtering algorithms fall into two categories: memory-based and
model-based approaches. Memory-based approaches [1,4,5,7] use heuristics to
make rating predictions based on the entire collection of items previously rated
by users. The unknown rating value rc,s of the active user c for an item s is
typically computed as an aggregate of the ratings of users similar to c for the
same item s. This aggregate can be an average or a weighted sum, where the
weight is a distance that measures the similarity sim(c1, c2) between users c1
and c2.

In contrast, model-based CF approaches [1,2,3,6,9] use the collection of ratings
to learn a model, which is then used to make rating predictions. Although model-
based methods have reported better accuracy of recommendation than memory-
based approaches, there are also some limitations. Firstly, these methods are
computationally expensive since they usually require all users and items involved
to be used in creating models. Secondly, they attempt to predict the rating of a
user rather than correctly rank the items.

1.2 People to People Recommendation

In this paper, we propose a recommendation method for people to people recom-
mendation in social networks. In the traditional scenario where CF is applied,
only the taste of users counts and items are passive in terms of the business
transaction, i.e., once a user selects an item there is no response by that item.
However in social networks, “items” are also users who actively participate in
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social interactions. In this sense, traditional CF is not applicable for people to
people recommendation, since it only considers the taste of one side. We propose
in this paper to extend traditional CF methods so the recommender system will
handle the bilateral nature of such interactions.

We propose SocialCollab, a novel neighbour-based collaborative filtering al-
gorithm to predict, for a given user, other users they may like to contact. This
recommender system is based on the similarity of users in terms of the bilateral
properties of attractiveness and taste. The main contribution of this paper is a
novel approach for recommendation of potential friends or partners based on a
new formalisation of the bilateral nature of interaction in social networks.

The paper is organised as follows. Section 2 presents a bilateral collabora-
tive filtering framework for recommendation in social networks. Experimental
evaluation is in Section 3 and conclusions are in Section 4.

2 Bilateral Collaborative Filtering

2.1 A Prototypical Collaborative Filtering Algorithm

Traditional collaborative filtering can operate in two directions: user-based or
item-based. User-based approaches look for users who share the same rating
patterns with the active user (the user whom the prediction is for) and then uses
the ratings from like-minded users to calculate a prediction for the active user.
On the other hand, item-based collaborative filtering such as that of Amazon.com
[5] creates an item-item matrix determining relationships between pairs of items,
which is then used to infer the taste of the active user.

The most important step in both approaches is determining similarity. Two
items are similar if both are selected together by a set of users. Alternatively, two
users are similar if they both select the same set of items (i.e., they have similar
taste). The underlying assumption of CF approaches is that those who agreed in
the past tend to agree again in the future. User-based approaches assume that
two users will like the same items if they have similar taste. Therefore, an item
is potentially recommended to the active user if it is selected by a similar user:

i⇒ u : ∃s, (s↔ u ∧ s→ i) (1)

where i⇒ u denotes recommending i to u, s↔ u denotes that s is similar to u
and s→ i represents that s selected i.

Item-based approaches assume items can be related by the fact that they
are frequently selected together by users, and will recommend an item which is
similar to items that the active user selected:

i⇒ u : ∃s, (s↔ i ∧ u→ s) (2)

These assumptions are only valid for recommending items to users where the selec-
tion is determined only by the user, not the item. In social networks, this is not the
case – there is a two-way interaction. For user recommendation in social networks,
collaborative filtering needs to be extended, as described in the next section.
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2.2 Collaborative Filtering for Social Networks

In social networks, “items” as the recipients of actions are also users who are
actively participating in social interactions. When they are contacted by other
users, they can make different responses, either positive or negative. Therefore,
traditional CF is not applicable to people recommendation since it only considers
the taste of one side (users) and neglects the other (items). The recommender
framework needs to be extended to handle the bilateral nature of such interac-
tions in people recommendation.

Successful Interaction. We define an successful interaction as:

Definition 1. An interaction between two users is a successful interaction when
it has a positive response.

Positive responses are usually defined in the application domain. For example,
in an online dating site, a user Bob can send a message to another user Alice
to express his interest in her. This message is a contact. This contact creates
an interaction once it receives a corresponding reply. If the reply is positive, i.e.
Alice also expresses her interest in Bob, this interaction becomes a successful
interaction. Otherwise, it is an unsuccessful interaction.

User Attractiveness and Taste. In people recommendation, users have taste
that determines their favourites when they actively make decisions selecting
other users. At the same time, users are also passively involved in interactions
by being selected by other users, which reflects, in some sense, their attractiveness
within the social network. In this regard, both the aspects of users’ taste and
attractiveness need to be modelled. We define the similar attractiveness and
similar taste of users as follows.

Definition 2. Two users are similar in attractiveness (ui
a↔ ui) if they are both

selected by a nonempty set of users in common:

ui
a↔ uj : ∃U, (U → ui ∧ U → uj). (3)

Definition 3. Two users are similar in taste (ui
t↔ uj) if they both select a

nonempty set of users in common:

ui
t↔ uj : ∃U, (ui → U ∧ uj → U) (4)

SocialCollab: Modelling Bilateral Decisions. Just because the active user
likes a user does not mean a successful match since the liked user may not like
the active user. This requires that the liked user also likes the active user. The
point here is that only when ua likes ur and also ur likes ua can an interaction
be a success. Only in this case, ur should be recommended to ua.

To model this behaviour, following traditional collaborative filtering assump-
tions, we define the following two assumptions based on user taste:

1. If people with similar taste to ua like ur, ua will like ur;
2. If people with similar taste to ur like ua, ur will like ua.
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Fig. 1. SocialCollab recommender for bilateral collaborative filtering: ua is the active

user, ur is the recommended user, ustr is a representative user with similar taste to

the recommended user, usaa is a representative user with similar attractiveness to the

active user, usar is a representative user with similar attractiveness to the recommended

user, and usta is a representative user with similar taste to the active user

This can be restated in terms of user attractiveness:

3. If ua likes people with similar attractiveness to ur, ua will like ur;
4. If ur likes people with similar attractiveness to ua, ur will like ua,

since both assumptions lead to the same predicted selections as illustrated in
Figure 1.

Therefore, ur should be recommended to ua when ur likes people with similar
attractiveness to ua and ua likes people with similar attractiveness to ur, or
equivalently, when people with similar taste to ur like ua and people with similar
taste to ua like ur.

More formally, for a predicted successful interaction between ua and ur: de-
noted ua

∗→ ur, there are two conditions to be fulfilled:

5. The attractiveness of the recommended user should match the taste of the
active user, which will facilitate initiation of the interaction from the active
user to the recommended user. In a user-based approach, we define this as:

ua
∗→ ur : ∃s, (s t↔ ua ∧ s→ ur) (5)

and its equivalence in terms of predicted selections in an item-based ap-
proach:

ua
∗→ ur : ∃s, (s a↔ ur ∧ ua → s) (6)

6. The attractiveness of the active user should also match the taste of the
recommended user, to ensure positive responses from the recommended user.
In a user-based approach, this can be expressed as:

ur
∗→ ua : ∃s, (s t↔ ur ∧ s→ ua) (7)

and its equivalence in an item-based approach:

ur
∗→ ua : ∃s, (s a↔ ua ∧ ur → s) (8)
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Algorithm 1. SocialCollab: Modelling Bilateral Decisions
Initialise Cr,a ← ∅; Ca,r ← ∅; R ← ∅
find users with similar taste (ustr, ur)

find users with similar attractiveness (usar, ur)

for all ur do
for all us : (us ∈ ustr) ∧ (us selects ua) do

Cr,a ← Cr,a ∪ {ur} // users with similar taste to ur who selected ua

end for
end for
for all ur do

for all us : (us ∈ usar) ∧ (ua selects us) do
Ca,r ← Ca,r ∪{ur} // users with similar attractiveness to ur selected by ua

end for
end for
for all ur : (ur ∈ Cr,a) ∧ (ur ∈ Ca,r) do

R ← R ∪ {ur} // recommendation set
end for
return R

Therefore, we have the following basis for people to people recommendation.

Definition 4. A recommendation is a predicted successful interaction between
two users:

ur ⇒ ua : (ur
∗→ ua ∧ ur

∗← ua) (9)

Modelling User Selection We assume that if a user u1 initiates an interaction
by sending a contact to another user u2, then u1 likes u2, which makes sense when
considering people’s interactions. However, initiating a contact is not the only
way people can express their interest in others. If users receive contacts from
others, they can also express their interest in the senders by sending positive
responses back to the sender. Therefore we extend the model of user selection to
include either initiating an interaction or giving a positive response to a contact
initiated by another user.

Definition 5. An extended selection between two users (ui → uj) is a relation-
ship:

ui → uj : (ui ⇀ uj ∨ ui ⇁ uj) (10)

where ui ⇀ uj means ui initiates a contact to uj and ui ⇁ uj indicates ui

responds positively to a contact from uj.

The SocialCollab Algorithm. As depicted in Algorithm 1, the method works
as follows. For each potential recommendation candidate ur in the dataset, it
first finds a set of users ustr having similar taste, and another set of users usar

having similar attractiveness, to the candidate ur. Then ur is added to the
recommendation set R for the active user ua if at least one similar user in ustr
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selects ua and at least one similar user in usar is selected by ua. The potential
recommendations for user ua are ranked according to the number of similar users
in the set Cr,a ∪ Ca,r.

3 Experimental Evaluation

In these experiments we aim to evaluate the proposed approach on people recom-
mendation in a realistic setting. Therefore we applied our algorithm on a social
network dataset from a commercial online dating site. We compare our learning
algorithm SocialCollab to the standard CF algorithm. Data was pre-processed
in Oracle 10 and algorithms were implemented in Matlab.

3.1 Experiment Setup

The datasets were collected from a commercial social network site containing
interactions between users. Specifically, the data contains records each of which
represents a contact as a tuple containing the identity of the contact’s sender,
the identity of the contact’s receiver and an indicator showing whether the inter-
action was successful (with a positive response from the receiver to the sender)
or unsuccessful (with a negative response).

The experiments were conducted on a training set covering a one week period
and a test set on a subsequent week, both in March, 2009. Both training and
test sets contain all users with at least one contact in the respective periods.
The datasets used are summarised in Table 1.

Table 1. Dataset Description

#Interactions #Positive #Negative DSR #Ua Involved

Training Set 188255 54754 133501 0.29 3746

Test Set 199083 56677 142406 0.28 2865

We compare SocialCollab to the standard CF algorithm using the evaluation
metrics defined in the next section.

3.2 Evaluation Metrics

The evaluation metrics used in this research are defined as follows:

Definition 6. Success Rate (SR) or Precision is the proportion of the true pre-
dicted successful interactions to all predicted successful interactions:

SR =
ntps

nps
, (11)

where ntps is the number of true predicted successful interactions and nps the
number of predicted successful interactions.



Collaborative Filtering for People to People Recommendation 483

Definition 7. Default Success Rate (DSR) is the proportion of successful inter-
actions to all interactions in the dataset:

DSR =
nts

nall
, (12)

where nts is the number of true successful interactions and nall the number of
all interactions.

Definition 8. Success Rate Improvement (SRI) is the ratio of success rate to
the default success rate:

SRI =
SR

DSR
. (13)

Definition 9. Recall is the proportion of the true predicted successful interac-
tions to all true successful interactions:

Recall =
ntps

nts
, (14)

where ntps is the number of true predicted successful interactions and nts the
number of successful interactions in the dataset.

3.3 Results of Recommendation

We compare SocialCollab to the standard collaborative filtering CF and its ex-
tended version CF+ using the proposed selection method defined in Definition
5. More specifically, CF+ uses the extended selection of Definition 5 rather than
ordinary selection as used in standard CF. The details of the comparison results
of those algorithms on the Top 100 and Top 1000 are shown in Tables 2 and
3, which shows that the proposed algorithms SocialCollab and CF+ both out-
perform the standard CF for recommendation, with the SocialCollab the best
performer. As shown in Table 4, SocialCollab achieves approximately 0.35 SR
on average for the Top 100 recommendations for each active user. This gives
an SRI of about 1.25. The SRI for CF+ and CF on the Top 100 are less than
1 because the majority of interactions in the dataset are negative, leading to
many predicted interactions that are unsuccessful. Figure 2 shows that CF per-
forms at around the default, and CF+ performs better than CF. SocialCollab
outperforms CF+.

Table 2. Comparison on SR for Top 100 Recommendations

Top 10 20 30 40 50 60 70 80 90 100

SocialCollab 0.35 0.34 0.34 0.35 0.34 0.35 0.35 0.35 0.35 0.35

CF+ 0.30 0.28 0.27 0.27 0.28 0.28 0.27 0.27 0.26 0.26

CF 0.28 0.27 0.26 0.26 0.26 0.26 0.26 0.26 0.25 0.25
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Table 3. Comparison on SR for Top 1000 Recommendations

Top 100 200 300 400 500 600 700 800 900 1000

SocialCollab 0.35 0.36 0.36 0.37 0.37 0.37 0.37 0.37 0.37 0.37

CF+ 0.26 0.27 0.27 0.28 0.28 0.28 0.28 0.28 0.28 0.28

CF 0.25 0.26 0.26 0.27 0.27 0.27 0.27 0.27 0.27 0.27
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Fig. 2. Comparisons of SR (left) and Recall (right) for Top 10

Table 4. Comparison of Ranked Recommendation Results

SR SRI

Top 100 Top 10 Top 100 Top 10

A SocialCollab 0.35 0.35 1.25 1.25

B CF+ 0.26 0.30 0.93 1.07

C CF 0.25 0.28 0.89 1

D Default 0.28 0.28 1 1

Impvt. of A over B 0.09 0.05 0.57 0.18

Impvt. of A over C 0.10 0.07 0.36 0.25

Impvt. of A over D 0.07 0.07 0.25 0.25

4 Concluding Remarks

We have proposed an approach for people recommendation by collaborative fil-
tering. Our experimental results show that the novel SocialCollab recommender
performs well in people to people recommendation on social network data from
a commercial online dating site. The proposed algorithms SocialCollab and CF+
both outperform standard CF as measured on both Precision (SR) and Recall,
with SocialCollab being the best. A general framework for ranking in the context
of the SocialCollab algorithm is the subject of further work.
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Abstract. The development of embodied conversational agents (ECAs)

involves a wide range of cutting-edge technologies extending from mul-

timodal perception to reasoning to synthesis. While each is important

to a successful outcome, it is the synthesis that has the most immediate

impact on the observer. The specific appearance and voice of an em-

bodied conversational agent (ECA) can be decisive factors in meeting

its social objectives. In light of this, we have developed an extensively

customizable system for synthesizing a virtual talking 3D head. Rather

than requiring explicit integration into a codebase, our software runs as

a service that can be controlled by any external client, which substan-

tially simplifies its deployment into new applications. We have explored

the benefits of this approach across several internal research projects and

student exercises as part of a university topic on ECAs.

Keywords: Embodied conversational agents, audiovisual speech syn-

thesis, software library.

1 Introduction

Virtual characters are becoming ubiquitous these days: you are ever more likely
to find them in popular movies and TV shows, and their traditional home, the
video games business, continues to grow. But while they are becoming increas-
ingly photorealistic, this has no correspondence in our ability to interact with
them - even games rely mainly on prerecorded animation and speech. What is
missing is an intelligence to act autonomously, the essence of what is referred
to as an ‘agent’. An anthropomorphic agent has significant potential as a user
interface, because interaction with people comes very natural to us. We have
years of experience at looking someone in the face and talking to them.

Embodied conversational agents (ECAs) are defined as animated interface
agents that engage the user in real-time, multimodal dialogue using speech, ges-
ture, gaze, intonation, and other verbal and nonverbal behaviors that are com-
mon to human-human interaction [3]. Even a basic implementation of such an
� This work was funded by the Thinking Head project, an Australian Joint

ARC/NHMRC Thinking Systems Special Research Initiative.
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agent must embrace a variety of technologies in the field of artificial intelligence -
including computer vision, speech recognition, and dialogue management. How-
ever, it is the synthesis that makes the first and lasting impression. After all, if
it doesn’t look or sound like you can or want to have a conversation with it, you
won’t.

Animating a character is hardly unique, but ECAs present special challenges
here, as they need to respond in real-time to events and should be able to say
what they want - i.e. prerecording is often not an option. The synthesis also needs
to fit into a larger architecture of ECA components that it interacts with. In light
of these objectives, we present Head X, an audiovisual synthesis platform for
ECAs that offers extensive configurability and convenient interoperability with
the many other sides of ECA research. The remainder of this paper will detail
the technical design and capabilities of the component as well as our current
work towards applying it to research and education.

2 Background

Several research groups have previously devised noteworthy ECA synthesis sys-
tems. The virtual head Baldi can synthesize highly realistic speech movements
and has found principal use as a speech teacher [7]. Indeed, many animated
agents are intended for pedagogical use, although they typically offer only basic
synthesis and interactivity [10]. Fewer agents also incorporate perceptual and
reasoning capabilities, such as REA, MIT Media Lab’s virtual real estate agent
[1]. Less task specific and more targeted at studying interhuman communication
are the virtual body Greta [12] and virtual head RUTH [11], although the em-
phasis here is firmly on synthesis. Virtual body Max straddles a middle ground,
adding gestural interaction in a virtual environment [6].

While each of the above agents has substantial research value in its own right,
each also has a specific, unchanging identity. This may significantly limit their
reusability in other applications, because users tend to be quite particular about
whom they wish to interact with [5]. It has also been our observation that a
character’s appearance and voice can easily overshadow any other qualities of
the actual interaction. Head X was therefore developed with diversity in mind:
diversity in what it can synthesize, but also in what it can be used for. As the
face is generally the most expressive part of the body, our software focuses on
synthesizing a head. The next section will describe the basic technology involved
in this.

3 System Design

3.1 Face Synthesis

Creating a virtual 3D face is typically the job of an artist, who would invest
substantial manual effort into making it look natural and real. This is rarely
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practical if your budget is small, you need many faces, or have frequently chang-
ing requirements. In such circumstances, it is better to derive faces from a 3D
parametric model whose parameters intuitively lead to the desired outcomes, so
that even non-artists can produce realistic faces. A well-established process for
obtaining such a model is to scan different faces of real people with a laser [2].
The densely sampled geometry that results from this must be matched point-
to-point with the geometry of all other faces, so that a statistical model can be
fitted to the face distribution. Principal component analysis (PCA) can extract
the most important face parameters, but to relate these to facial attributes
such as gender or age, faces need to be labeled to indicate the markedness
of an attribute. The same process can also be followed to distinguish facial
expressions.

To save on effort, quality parametric models can be purchased. We acquired
an academic license to the FaceGen SDK, a parametric face model that also
includes blendshapes for facial expressions [4]. As illustrated in Fig. 1, FaceGen’s
’PhotoFit’ systems also allows a 2D photo of a person to be converted into a 3D
model semi-automatically. Use is limited to those universities with a license, but
it is a comparatively affordable option. Alternatively, we allow the user to import
an existing 3D model and all the needed blendshapes manually; this allows for
potentially greater variety (and the addition of accessory models, such as hair
and glasses), as well as freedom from licensing. Head X visualizes the face mesh
in real-time using OpenGL. Users can customize the pixel shaders to change
the surface properties of objects. Face meshes and textures can also be morphed
while the user is interacting with the software, as shown in Fig. 2.

Fig. 1. Head X animates a virtual head using a FaceGen 3D model and a correspond-

ing face coordinate obtained from the freely available FaceGen Modeller, which also

supports the fitting of a 2D picture to the model. Alternatively, the face can be ani-

mated from a set of models, one for each desired blendshape, built with any basic 3D

modelling tool. Head accessories, such as hair, glasses, and jewelry, can also be added

in this way.
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Fig. 2. Head X offers a diversity of faces and also supports face morphing, even without

a parametric face model. Face shape and texture can be changed interactively while

speech and expressions are animated.

3.2 Speech Synthesis

In video games, animated characters are typically voiced by humans, and the
animation must simply follow the audio signal. Conversely, an ECA should be
able to speak any text. A variety of software options exist for synthesizing the
audio component of speech, but they are rarely as freely configurable as the faces
above. Natural sounding voices mostly follow a unit selection approach that picks
speech fragments from a large database of speech of a single person. Because of
the effort involved in collecting this data, the best voices tend to be offered
commercially. Alternatively, a more direct synthesis of speech, such as diphone
synthesis, allows for greater customization, but at a cost to the naturalness of the
voice. Head X supports two text-to-speech (TTS) interfaces, Microsoft’s Speech
Application Programming Interface (SAPI) and DFKI’s Modular Architecture
for Research on speech sYnthesis (MARY).

The SAPI 5.3 TTS interface [8] is used by a vast library of commercial voices in
multiple languages and accents (indeed, we have partnered with groups from Ger-
many and China on developing multilingual heads). Additionally, SAPI supports
XML extensions, including SSML, that can be added to a text to modify rate,
pitch, and other aspects of the speech. The MARY v4.0 TTS system [14] also
supports custom XML extensions for changing the voice, although fewer voices
are available. However, the MARY TTS and MARY voices are open source,
which make them highly suitable for research purposes. MARY supports both
unit selection, diphone, and hidden Markov model based voice synthesis and
includes tools for building your own voice.

3.3 Speech Animation

The FaceGen model comes with a comprehensive set of mouth shapes used during
speech (so-called visemes), which need to be animated in synchrony with the
audio output. Rather than analyzing the text or audio, we can use the SAPI and
the MARY TTS systems directly for this. The SAPI interface provides real-time
feedback from the voice engine. Viseme events are triggered whenever a viseme
boundary is reached. The SAPI 5 viseme set consists of 22 visemes that are
based on the well-known ’Disney 13’ set. Each SAPI event contains the current
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viseme code (SP VISEME . . .) and its duration. The absolute position of the
viseme can be determined from the position in the audio stream when the event
was triggered. We tested several commercial voices by Microsoft, Cepstral, and
Nuance and found that while they all trigger viseme events, the visemes differ
substantially between engines and voices even. In particular, the tested Nuance
voices deliver multiple events for the same viseme code, albeit at sequential and
sensible temporal locations and durations. It can be difficult to interpret this
correctly; our system therefore combines sequential events of the same viseme
code into one event of larger duration. This is seen as step 2 in Fig. 3(a) where
second and third events labelled “v2” are merged into a single“v2” event.

MARY does not support viseme events, but we can retrieve timed SAMPA
phonemes for the outputted speech. To receive the sequence and duration from
the MARY TTS the REALISED DURATION output from the MARY server is
utilized. This returns a duration and the SAMPA(-like) phoneme. The absolute
position is calculated as the cumulative of the previous durations.

Both the MARY phonemes and the SAPI visemes need to be mapped to the
blendshapes of the 3D model - neither exactly matches what is provided by
FaceGen. We have established visually acceptable mappings for each, based on
earlier work by Wang et al. [15]. For custom 3D models, the mapping can be
separately modified via XML configuration files.

The selected sequence of blendshapes then needs to be blended into an ani-
mation. For this purpose, we take a user-defined number of frames per second
(30, by default) and weigh all the nearby blendshapes discretely for each frame.
The weighting is derived from the mapping itself (if two or more morphs are
specified), a user-modifiable amplitude variable, and the current ramp value.
As illustration in step 4 of Fig. 3(a) each viseme or morph is transitioned to
and from by increasing and decreasing (or ramping) the weight associated with
that morph’s frame. The style of ramp is controlled by a customizable ramping
function. The ramping extends to a user-modifiable overlap into the adjacent
frames. To avoid multiples of the same morph being present in one rendered
frame, the maximum weight of any repeated frames is taken. Even a smooth
ramp and overlap is not safe from aliasing artifacts, however. To overcome this
a final mixing of the current and adjacent frames is performed (as depicted in
Fig. 3(b)).

Non-verbal Animation. Speech is not the only means by which the Head can
communicate with the user. Head X allows the user to define composites of all
blendshapes, including those expressing emotions or eye brow/lid movements,
as expressions that can be triggered interactively (see Figure 4 for the big six
emotions). Note that when multiple blendshapes are applied simultaneously,
unwanted results may appear because the blendshapes will stack. Our system
is therefore designed to offer multiple expression channels, where expressions
on separate channels only interact in restricted ways. By default, there is a
speech channel, an emotion channel, and an idle channel; expressions do not stack
between these. The idle channel is automatically filled with randomly scheduled
animations, such as head bobbing and blinking and subtle expressions that give
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(a) (b)

Fig. 3. Viseme animation: a) Five steps to animating visemes across image frames:

superfluous identical visemes are merged, then mapped to the available blendshapes

via a customizable ramping function, and finally discretized into frames; b) mixing of

the current and adjacent frames to improve aliasing artifacts

Fig. 4. Head X offers a diversity of expressions shown here are the “Big Six” emotions:

happiness, sadness, anger, surprise, fear and disgust

the viewer the impression that the head is alive - this can be freely configured
and disabled and can be used to enable non-verbal backchannelling in dialogue
scenarios.

3.4 External Interfaces

Rather than being an objective in its own right, Head X is intended to work
with other technologies that could benefit from embodiment. For instance, a
head tracker becomes a head that follows the user, thus greatly increasing the
perceived impact of the tracking technology. However, we want researchers and
other developers to spend time on their applications, not on Head X. In fact, our
design does not require the developer to read or compile a single line of Head
X code. Head X runs as a service that fulfills requests by one or more other
programs running concurrently, which are permitted full access to both high-level
(e.g. say this! look there!) and low-level features (e.g. animation blend shapes).
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The development process remains very simple if you only need basic features
and gradually becomes more complex as you acquire more control. Satisfying
this condition with a single interface would have been intractable, so a variety
of interfaces are supplied.

Command Processor. It is important to balance power and diversity against
unnecessary complexity, so a certain homology to the Head X interfaces had to be
established. All action requests - so-called commands - are centrally processed
by the command processor, including those arising from interaction with the
graphical user interface, or any other interface. Commands are scheduled and
processed in sequence. It does not matter where the command originated, the
outcome remains consistent.

By default, text sent to Head X is interpreted as something to be said, not
as a command. Commands can be included inside text, demarcated by curly
brackets, as angled brackets can cause problems with certain XML parsers of
external components. These commands are triggered when their in-text location
is reached during speech output. We can change facial expressions, voices, back-
grounds - indeed, any modifiable part of Head X - interactively in this fashion.
Text can be sent either from a subwindow of the user interface, an on-screen
OpenGL prompt, or remotely via messages or shared memory (see also Fig. 5).

Configuration. An XML configuration file holds the base settings of Head X, in-
cluding 3D models to load, animation and graphics parameters, voice selection and
viseme-to-blendshape mapping, idle behaviour, composite expression definitions,
window properties, subtitle automation, input modes, and which memory sharing
interfaces to expose. Head X can thus be customized to suit a variety of needs. Full

Fig. 5. The interfaces of Head X: remote control by a client application is mainly

achieved through shared memory and/or network messaging, although properties of

the configuration and GUI can be passed on and manipulated as well
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or partial XML configurations can be loaded from a file or an in-line string using
commands anytime, even during dialogue. For most parameter changes, response
time is instantaneous, so changes can be applied on the fly.

Messages. To control Head X from within your own separate application, you
can send messages via the TCP protocol, even across a network. The basic
message type simply includes a text to be parsed and spoken. Further message
types can signal when speech has ended or some other action is triggered or
completed. Clients that link with our lightweight message library (available in
C++ and Java) can sign up to events so that callbacks are performed whenever
a message of a particular type arrives. A web client is also available for observing
messages remotely.

Shared Memory. While message passing can satisfy most basic requirements,
many applications and projects need more direct control. In particular, our mes-
saging system does not guarantee synchrony and also creates substantial load if
thousands of messages are passed every second, such as when driving the anima-
tion remotely. Consequently, a second external interface is provided that relies
on shared memory and process synchronization, which is very close in perfor-
mance and control to actually integrating Head X into your application directly.
Unlike with messages, it will only work for processes on the same machine. The
Head X configuration specifies what data objects should be exposed publicly, so
that other processes can observe and possibly modify the data. Text can be sent
to the head this way, but you can also observe the status of the head; what and
whether something is being spoken or loaded; where we are in a sentence; mouse
and keyboard inputs; and also modify animation morphs directly and change
camera position, lighting, and subtitles. Client libraries for the shared memory
interface are available in C++, Java, and C#.

4 Applications

We are currently employing Head X for several ongoing research projects that
involve the use of virtual characters in teaching and counseling. They include
a training exercise for autistic children, for which the virtually character acts
as a presenter [9], and a talking calendar for elderly people, which links Google
Calendar to a virtual character and allows speech interaction in both directions
[13]. Developing these as external clients of Head X has substantially accelerated
our progress, because the involved researchers only need limited technical knowl-
edge of Head X, which permits them to focus on their own areas of expertise
and favorite programming languages. Since our messaging and shared memory
interfaces are not exclusive to Head X, we have also been able to build up a
library of components that can be shared within a larger ECA framework, allow-
ing researchers to benefit from prior work; including video processing pipelines
using the shared memory interface, audio-visual speaker association and recog-
nition, speech and emotion recognition, user tracking, evolutionary learning, and
dialogue management.
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It is not just researchers who benefit, however; it is also the students, who are
directly exposed to a new way of interacting with a computer. We are presently
employing Head X for teaching a 4th-year university topic on ECAs, where
students independently develop new ECA applications as part of their project
work. Although it has only been run once so far, we have had some interesting
outcomes, including a singing head, a person tracker, a music database, and a
speech-triggered, multi-agent card game. The opportunity to develop a talking
head application adds greatly to the applied learning experience of the course.

The service-based architecture of Head X combined with comprehensive doc-
umentation and sample programs has ensured that students rarely find it too
challenging to develop something. The main issues appear to lie in synchronizing
the application with what the head is doing at any given time (e.g. not to inter-
rupt ongoing speech). We expect to address this by offering higher-level helper
methods for the client interfaces. Another feature that has been frequently re-
quested and is under consideration is the ability to animate and interact with
other 3D models (not just head accessories) in the space of the head, as applica-
tion proposals rather quickly grow from virtual heads to entire virtual worlds.

5 Conclusions

Head X synthesizes a talking head whose face and voice can be freely customized
to suit most needs. This encourages its use in applications that could benefit from
an anthropomorphic interface, because you can always create a character that
suits the task at hand. Integration is simplified by having the software controlled
remotely across a network or by memory sharing, so no linkage or compilation of
Head X code is needed. We have explored the benefits of this approach in research
and student projects, with diverse and interesting applications being built around
Head X. One of the remaining concerns is that the commercial parametric face
model limits use to licensed institutions. We intend to make publicly available
a completely free version1 of Head X in the near future that will still allow
you to import and morph faces from other modeling tools. Furthermore, ECA
applications can rapidly become very complex, as synthesis is only one of many
components. We will hence continue to work towards establishing a more general
framework that allows such situations to be handled robustly and easily, so
that developers can focus on that ultimate goal of making human-computer
interaction more human.

References

1. Bickmore, T., Cassell, J.: Social dialogue with embodied conversational agents. In:

van Kuppevelt, J., Dybkjaer, L., Bernsen, N. (eds.) Advances in Natural, Multi-

modal Dialogue Systems, pp. 23–54. Kluwer Academic, New York (2005)

1 http://csem.flinders.edu.au/research/programs/th/projects/

http://csem.flinders.edu.au/research/programs/th/projects/


Head X: Customizable Audiovisual Synthesis 495

2. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In:

SIGGRAPH 1999: Proceedings of the 26th Annual Conference on Computer

Graphics and Interactive Techniques, pp. 187–194. ACM Press/Addison-Wesley

Publishing Co., New York (1999)

3. Cassell, J.: Embodied conversational agents: representation and intelligence in user

interface. AI Magazine 22(3), 67–83 (2001)

4. FaceGen SDK 3.6, http://www.facegen.com

5. Gulz, A., Haakeb, M.: Design of animated pedagogical agents a look at their look.

Int. J. Human-Computer Studies 64, 322–339 (2006)

6. Kopp, S., Sowa, T., Wachsmuth, I.: Imitation games with an artificial agents:

From mimicking to understanding shape-related iconic gestures. In: Braffort, A.,

Gherbi, R., Gibet, S., Richardson, J., Teil, D. (eds.) Gesture-Based Communication

in Human-Computer Interaction, pp. 436–447. Springer, Berlin (2004)

7. Massaro, D.W.: From multisensory integration to talking heads and language learn-

ing. In: Calvert, G., Spence, C., Stein, B.E. (eds.) Advances in Natural, Multimodal

Dialogue Systems, pp. 153–176. MIT Press, Cambridge (2004)

8. Microsoft Speech API 5.3, http://msdn.microsoft.com/speech

9. Milne, M., Luerssen, M., Lewis, T., Leibbrandt, R., Powers, D.: Development

of a virtual agent based social tutor for children with autism spectrum disor-

ders. In: Proc. 20th Int. Joint Conf. on Neural Networks, pp. 1555–1563. IEEE,

Los Alamitos (2010)

10. Moreno, R., Flowerday, T.: Students’ choice of animated pedagogical agents in sci-

ence learning: A test of the similarity-attraction hypothesis on gender and ethnicity.

Contemporary Educational Psychology 31, 186–207 (2006)

11. Oh, I., Stone, M.: Understanding RUTH: Creating believable behaviors for a virtual

human under uncertainty. In: Duffy, V.G. (ed.) HCII 2007 and DHM 2007. LNCS,

vol. 4561, pp. 443–452. Springer, Heidelberg (2007)

12. Poggi, I., Pelachaud, C., de Rosis, F., Carofiglio, V., Carolis, B.D.: GRETA. A

Believable Embodied Conversational Agent. In: Stock, O., Zancarano, M. (eds.)

Multimodal Intelligent Information Presentation, vol. 27, pp. 3–25. Springer,

Netherlands (2005)

13. Powers, D., Luerssen, M., Lewis, T., Leibbrandt, R., Milne, M., Pashalis, J.,

Treharne, K.: MANA for the Aging. In: Proceedings of the 2010 Workshop on

Companionable Dialogue Systems, ACL 2010, pp. 7–12. ACL (2010)

14. Schroder, M., Trouvain, J.: The German text-to-speech synthesis system MARY:

A tool for research, development and teaching. International Journal of Speech

Technology 6(4), 365–377 (2003)

15. Wang, A., Emmi, M., Faloutsos, P.: Assembling an expressive facial animation

system. In: Sandbox 2007: Proceedings of the 2007 ACM SIGGRAPH Symposium

on Video Games, pp. 21–26. ACM, New York (2007)

http://www.facegen.com
http://msdn.microsoft.com/speech


Diagnosing Component Interaction Errors from
Abstract Event Traces

Wolfgang Mayer, Xavier Pucel, and Markus Stumptner

University of South Australia, Adelaide, SA, 5095, Australia
{mayer,xavier.pucel,mst}@cs.unisa.edu.au

Abstract. While discrete event systems have been widely applied for diagnosing
distributed communicating systems, existing models may not completely satisfy
the requirements for the application of fault identification and repair in software
systems. This paper presents a model-based diagnosis approach that identifies
possible faults based on generic fault models in abstract traces where events may
be associated to multiple system components. We overcome the common limi-
tation that precise fault models are available for each component and leverage
generic fault models of classes of faults instead. We show that diagnoses rep-
resenting entire classes of equivalent solutions can be computed based on local
information and investigate the performance of our algorithm.

1 Introduction

The complexity and size of software systems have rapidly increased in recent years,
with software engineers facing ever growing challenges in building and maintaining
such systems. In particular, testing and debugging still constitutes a major challenge in
practice, as demonstrated by the many research projects dedicated to this topic [2,6] and
the sheer number of software faults identified by commercial providers [3].

Since testing and debugging are among the most costly and time consuming tasks, a
variety of intelligent debugging aids have been proposed within the last three decades.
Model-based software debugging (MBSD) [9,8] is a particular technique that exploits
discrepancies between a program execution and the intended behaviour to isolate pro-
gram fragments that could potentially explain an observed misbehaviour. However,
most model-based techniques have been limited to single programs and have assumed
complete observability of program states. The shift from single programs to distributed
systems requires adaptation of debugging and diagnosis approaches.

This paper extends previous work on diagnosing failed program execution traces to
distributed systems where multiple communicating software components are observed.
From models of the correct interface protocol of each component potential faults that
may explain the events observed in an execution are inferred. We build a system model
from a set of transition systems and introduce fault transitions that reflect generic classes
of faults. Every alteration of the system can be described in terms of our generic classes,
which allows us to deal with totally unforeseen faults. The approach is not limited to the
debugging of programs but also applies to the general class of discrete event systems.

1 This research is partially funded by the Australian Research Council (Grant DP0881854).
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The contributions in this paper are as follows: (i) We provide a formal diagnosis
model based on discrete event systems under partial observability. Different from clas-
sic assumptions our model utilizes generic fault transitions that reflect classes of faults
rather than specific fault transitions associated with an automaton. (ii) Our model also
allows for ambiguity in events in that an observed event may correspond to a number
of events stemming from different automata in the model. (iii) We develop a diagnosis
algorithm that computes the set of minimal explanations incrementally by minimally
unfolding the global transition relation based on an observed event sequence. The algo-
rithm computes classes of equivalent solutions rather than identify all equivalent solu-
tions. Each solution corresponds to a repair modification in the abstract system model.
This paper is organised as follows: We proceed by motivating our approach on a simple
example in Section 2. The formal diagnosis model is described in Section 3. Its prop-
erties and our diagnosis algorithm is discussed in Section 4. The performance of the
approach is assessed empirically in Section 5. Related work is discussed in Section 6
before summarizing the contributions in this paper in Section 7.

2 Motivating Example

The general problem context considered in this work is the diagnosis of communicat-
ing systems where only some events can be observed while others are hidden. We as-
sume that the for each system component an automaton specifying its correct behaviour
is available. Each automaton specifies the expected component behaviour in terms of
event sequences. Events in this context correspond to executions of particular program
instructions or messages exchanged between subsystems. Some of these events can be
observed in an execution trace, for example because relevant debugging instrumentation
has been furnished, while other events remain unobserved. While our model assumes
all observable events that are generated appear in the trace, the information attached to
each event may not be sufficient to associate an event with the emitting component.

Let us consider for example a software system composed of two parallel threads that
execute the same program, which reads from and writes to some data structure protected
by a shared lock. The model of the two threads and the lock are depicted in Fig. 1. The
behavior specified by the automata is implemented in a program that we have instru-
mented in order to observe read and write accesses to the data, and lock acquisitions
and releases. In this model, events li and ui represent respectively the acquisition and
release of the lock by thread i. They occur synchronously in all relevant automata. In
contrast, events r and w represent read and write access to the data, which are not
synchronized. When observing an r event, it is impossible to determine which thread
actually executed it. For the sake of clarity, in this example all events are observed. As
we will see later, our approach also copes with unobserved events, and in particular
unobserved synchronous events.

For example, assume that the event sequence given on the right hand side in Fig. 1 has
been observed. The sequence conflicts with the models of the threads and the lock, since
unprotected r and w events occur between the u and the subsequent l event. Using only
the models of the normal system behaviour, no precise explanation can be devised: since
both threads and the lock are required to derive a conflict with the trace, all components
are possible explanations.
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Fig. 1. Model of three software components: two threads accessing data, a mutual exclusion lock,
and an observed event trace. Events r and w are autonomous, and li and ui are shared. Fault
transitions are dotted. All non-fault events are observable. Initial states are shaded, final states are
double-stroked.

We complement the nominal system behaviour with generic fault transitions that
reflect the classes of faults that manifest as extraneous events (e−) or as missing events
(e+) in the observed trace. The fault transitions are shown as dotted arcs in Fig. 1, and
labels reflect which events are extraneous or missing. These fault models are created
automatically from the normal system models as described in Section 3.

The fault models allow us to identify the minimal alterations that must be made to
the trace to resolve the conflict with the system models. In this example there are two
minimal explanations (as shown on the right hand side in Fig. 1): the unlock operation
before the conflicting data access could be removed (denoted by fault event u1

−) and a
corresponding lock acquisition operation could be inserted after the access (fault event
l2

+); or additional lock and unlock operations (l1
+ and u1

+) could be inserted before
and after the unprotected data access. From these diagnoses manual investigation or
further debugging techniques on the source code level could be applied in order to
correct the problem.

Our diagnosis procedure can identify entire sequences of events that must be inserted
and removed in order to explain an observed discrepancy. In addition to simple symme-
tries that may arise from ambiguity in the association of events to system components,
further equivalent solutions where fault events are possible at one of multiple points in
an observed trace are omitted. As a result, the number of explanations focuses on dif-
ferent resolutions to the problem rather than enumerate all possible fault assumptions.

3 Diagnosis Model

Our diagnosis model is based on the principle of consistency-based diagnosis [11],
where a model of the nominal behavior of a system is contrasted with the actual be-
havior exhibited by a system. Discrepancies between the observed behavior and the
behavior predicted by the model can be exploited to infer possible behavioral changes
(“diagnoses”) in the model that may explain the differences. The diagnosis model
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presented in this paper adopts the principles of Discrete Event Systems (DES) [5] to
describe the nominal behavior of a system.

Definition 1 (Labeled Transition System, LTS). A labeled transition system is a tuple
(S, s0, F, E, T ) where S is a set of states, s0 is the initial state, F ⊆ S is the set of
distinguished final states, E is a finite set of transition labels (“events”), and T ⊆
S × E × S is the set of labeled transitions. We write s

a→T s′ for (s, a, s′) ∈ T . We
omit the subscript T if it is clear from the context.

We specify the nominal behavior of a system using a set of LTSs. Each LTS corresponds
to a system component and governs the sequences of events that are considered correct.
Such discrete event models are particularly well-suited to specifying the expected be-
havior and possible interactions between components without the need to consider any
particular implementation of components. We will use the terms component and LTS
interchangeably if there is no ambiguity.

Definition 2 (System Model). A system model
(
Cs,E,ES , EO

)
(describing the sys-

tem’s nominal behavior) is based on a set of labeled transition systems (LTS) Cs ={
C1, . . . , Cn

}
, where each Ci is an LTS

(
Si, si

0, F
i, Ei, T i

)
. The transition relation

T i in each LTS specifies the possible event sequences that can be exhibited by an indi-
vidual component Ci if Ci is correct. Let E =

⋃
Ei denote the set of events present in

the system model. E can be partitioned into shared events ES ⊆ E and autonomous
events (E \ ES). Some events are observable (EO ⊆ E).

The behavior of the entire system is obtained from the system model by linking the
individual LTSs based on the shared events in ES . The evolution of the system is con-
strained such that transitions labeled with a shared event e must occur simultaneously
in all components where e appears

Definition 3 (Synchronous Product). Let Ai =
(
Si, si

0, F
i, Ei, T i

)
, i ∈ {1, 2} be

two LTS with shared events ES . Let ∼⊆ E1 × E2 be an equivalence relation be-
tween events. The synchronous product transition system A1||∼ESA2 is defined as the
LTS (S, s0, F, E, T ) where S = S1×S2, s0 =

(
s1
0, s

2
0

)
, E = E1 ∪E2, F = F 1×F 2,(

s1, s2
) e→T

(
s′1, s′2

)
if and only if (i): e ∈ E1 \ ES , s1 e→T 1 s′1 and s′2 = s2,

(ii): e ∈ E2 \ ES , s2 e→T 2 s′2 and s′1 = s1, or (iii): e, e′ ∈ ES , e ∼ e′, s1 e→T 1

s′1, s2 e′
→T 2 s′2. The synchronous product operation is commutative and associative.

For brevity we will assume that ∼= {(e, e) | e ∈ E} unless noted otherwise.

The synchronous product may contain states that are not reachable from the initial state,
or states from which no final state is reachable. In an abuse of notation, we do not
distinguish the synchronous product and the automaton obtained by removing these
states and the transitions related to them.

The synchronous product of all LTS in a system model, called the global model
G = C1||∼ES . . . ||∼ESCn, represents all valid event sequences that a correct system may
exhibit. While this model is convenient to define the diagnosis problem addressed in
this paper, the size of G prohibits its explicit construction for all but trivial systems.

Definition 4 (Trace). A trace t of events is a finite sequence e1.e2. . . . .en of events
from ei ∈ E. Let ε denote the empty trace. For each trace there exists an LTS R =
(V, v0, {vn} , U,W ) where U= {e1, . . . , en} and W=

{
vi−1

ei→ vi | i ∈ {1, . . . , n}
}

.
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For brevity we do not distinguish between the trace and its corresponding LTS. A trace
is accepted by an LTS A if and only if a final state in A||∼E∪UR is reachable from
(v0, s0).

A trace reflects correct behavior if it is accepted by the global model G. However, not
all events in an execution can be observed. Recall that the events in G are partitioned
into observable events, EO , and unobservable events. Therefore, an observed trace t
reflects a correct execution if there is a trace t′ accepted by G that exhibits the same
sequence of observable events. The problem of deciding whether an observed trace is
indeed accepted by G is further complicated by the fact that an autonomous event e
may occur in different transition systems Ci.

If an observed trace t is not accepted by G, a fault must have occurred in the execu-
tion. Faults in a system’s implementation can manifest themselves as extraneous events
or as missing events in a trace. In order to isolate particular faults, the system model is
amended with additional transitions that reflect extraneous events in a trace and events
that have been omitted from the trace. The presence of an extraneous event e in a trace
can be modeled by adding a transition to the system model that consumes e but does
not change the state. Similarly, the absence of an event e from the trace can be modeled
by duplicating and relabeling an existing transition for e.

Definition 5 (System Fault Model). Let M =
(
Cs,E,ES , EO

)
with Cs =(

C1, . . . , Cn
)

be a system model with Ci =
(
Si, si

0, F
i, Ei, T i

)
and let G repre-

sent its global model. The System Fault Model MF with LTSs
(
C1

F , . . . , Cn
F

)
and

Ci
F =

(
Si, si

0, F
i, Ei

F , T i
F

)
is obtained from M by amending Ei and T i to include

unobserved fault events e− and e+ for all e ∈ E. A transition labeled e− represents the
fault where event e is present in the trace but is not admitted by G, whereas a transition
labeled e+ represents the absence of an event e in the trace:

Ei
F = Ei ∪

{
e−, e+ | e ∈ EO

}
,

T i
F = T i ∪

{
si e−
→ si

∣∣∣∣ si ∈ Si, e ∈ EO

}
∪
{
si e+

→ s′i
∣∣∣∣ si e→T i s′i

}
.

ES is amended correspondingly.

A global model of the system including all possible faults can be obtained by building
the synchronized product from the individual Ci

F . This global fault model represents
all possible evolutions of the system, including normal and faulty behavior. We will use
GF to refer to the global system model derived from a given diagnosis problem MF .

The diagnosis problem can now be defined by fixing the system fault model and an
observed execution trace:

Definition 6 (Diagnosis Problem). A diagnosis problem is a tuple (MF , r) where
MF =

(
Cs,E,ES , EO

)
is a system fault model and r is an event trace over EO.

A diagnosis Δ for a diagnosis problem is an event trace that is accepted by GF .

Definition 7 (Diagnosis). Let P = (MF , r) be a diagnosis problem with associ-
ated global model GF , and let EO be the set of observable events in GF . Rela-
tion ∼F extends ∼ to match non-fault events in r with fault events in GF : ∼F =∼
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∪
{
(e, e′) , (e′, e) | e ∈ EO, e′ ∈ {e+, e−}

}
. A trace δ is a diagnosis for P if and only

if δ is accepted by GF ||∼F

ES r.
Let EF be the set of all fault events in MF , and let �⊆ E ×E be a partial ordering

of events where all non-fault events are preferred to fault events: e ∈ E \EF , e′ ∈ EF ,
ε � e � e′. Relation � can be extended to an order on event traces such that σ1 � σ2

implies σ1σ � σ2σ and σσ1 � σσ2. A diagnosis δ is minimal if there is no diagnosis
δ′ � δ.

Different ordering relations � can be used. For example, � can be defined to dynami-
cally adjust event orderings based on the previous events in a trace to account for faults
that appear multiple times in a trace or to model dependent or context-specific faults. In
this paper, we focus on a static ordering where all non-fault events are preferred to any
fault event. We do not order different fault events, but consider their frequency; traces
with fewer fault events are preferred.

4 Diagnosis Computation

The global model is convenient to characterize the diagnosis problem and its solutions,
but it does not allow us to efficiently compute diagnoses. We present an incremental
approach to enumerating diagnoses that avoid constructing the global system model.
Discrepancies between the observed trace and individual LTSs in the system model are
exploited to extend the trace with fault transitions that may resolve the discrepancy.
Equivalent diagnoses are identified from symmetries in the model and pruned.

The algorithm we present interleaves the computation of reachable states in the local
models and the global model with the association of events to system components. A
key element of our approach is that much of the global model can be ignored when
computing diagnoses for a given observed trace.

For a given diagnosis problem (MF , r) diagnoses can be constructed incrementally
guided by the observed events in r. The idea is to minimally extend the set of partial
explanations (“prefixes”) to account for the next event in the observed trace. We prune
execution paths that are inconsistent with the observed trace or redundant because they
describe equivalent thread interleavings. By aligning the diagnosis construction with
the actual observations, only the relevant states of GF will be visited. Starting at the
initial state of each LTS Ci, a prefix σ of a diagnosis can be computed incrementally.

We show that prefixes can be incrementally constructed based on local information
without building the global model explicitly (Theorem 1), that enabled fault transitions
partition possible explanations into equivalence classes (Theorem 2), and that symme-
tries in the problem can be reduced by restricting the synchronized product operation
with a static ordering of components (Theorem 3).

Definition 8 (Diagnosis Prefix). A event trace σ is a prefix of a diagnosis δ if there is
an event sequence δ′ such that δ = σδ′.

Since δ is a diagnosis for r, the sub-sequence of δ that contains only events in EO is
also a prefix of r: the prefix partitions r into the events that have already been accounted
for (rσ) and the remaining events (rδ′ ) in the trace. This observation can be exploited
to limit the possible extensions of a given prefix σ.
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Theorem 1. Let s =
(
s1, . . . , sn

)
be a state in GF and let e be the next observed event

in r. It is sufficient to consider the paths pi in Ci from si to a transition labeled with
e′ ∼F e to compute all relevant extensions σ′ = pi||∼ES . . . ||∼ESp

n of σ in GF . Only
unobservable transitions and fault transitions need to be considered in each pi.

Proof. In order to consume e, it is necessary to find an enabled transition in GF that
is labeled with an event e′ ∼F e. Such a transition may be immediately available in
s, or may become available after one or more transitions representing fault events are
traversed. Therefore, it is sufficient to consider only the paths in Ci that originate in the
ith state component of s. If an observable non-fault transitions labeled e′′ occurred in
σ′ it would be observed in r. Since e �∼F e′′ such a path is infeasible and need not be
considered.

Fault assumptions that are unnecessary to enable subsequent fault transitions or the
observed event transition for the same diagnosis prefix can also be omitted.

Theorem 2. Let σ = 〈s1 . . . sjtjsj+1 . . . sm〉 and σ′ = 〈s1 . . . sjtj+1s
′
j+2 . . . s

′
m〉 be

two paths in GF that differ only in the omission of transition tj . Path σ and σ′ yield
equivalent diagnoses if 〈s′m, tj , sm〉 is in GF . Furthermore, if sm = s′m, then σ � σ′.

Proof. Paths σ and σ′ differ only in the transition at position j and possibly the subse-
quent states. Since applying tj in s′m yields the same state as σ, i.e., sm, the transitions
tk, k > j, are independent of tj and hence the transitions commute. This independence
induces equivalence classes of minimal diagnoses where each class includes diagnoses
that differ only in the trace position where tj is assumed. The second part of the theorem
follows from ε � tj .

Paths are further pruned by utilizing symmetries in the system model that arise when
multiple instances of the same component class coexist in the system.

Theorem 3. Let Ci and Cj , Ci = Cj , be two identical copies of the same LTS in the
system model, and let δ be a diagnosis that contains transitions ti{1...mi} and tj{1...mj}
associated with Ci and Cj , respectively. Then δ′ obtained from δ by replacing ti· and tj·
with the corresponding tj· and ti· is a diagnosis.

Proof. Since Ci = Cj , any transition ti enabled in a state si in Ci has a corresponding
enabled transition tj in a state sj in Cj . This property transfers from individual LTSs
Ci to GF , as the ith and jth component of the global states cannot be modified by
transitions not in Ci and Cj . It follows that a canonical representation of equivalent
diagnoses (and their prefixes) can be obtained by imposing a fixed ordering on the LTS
in the system model.

From the properties of � it follows that the minimal diagnosis prefixes can be enu-
merated using a best-first strategy. An incremental approach to constructing an LTS that
accepts the minimal diagnoses is appropriate, since in most diagnosis scenarios a set of
leading diagnoses is typically preferred to computing all possible diagnoses.

Our diagnosis algorithm starts in the global state s0 =
(
s1
0, . . . , s

n
0

)
and unfolds

GF only as much as is necessary to account for the next event in the observed trace r.
Transitions and states are generated in best first order with respect to �. Theorems 1– 3
are applied in order to avoid generating non-minimal and equivalent solutions.

The relevant reachable part of GF is identified starting by applying the synchronous
product operation transition by transition, starting in s0. Only paths that end with a
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transition labeled with an event equivalent to the observed event e and transitions rep-
resenting faults are considered. The expansion of a prefix is suspended if a successful
extension path has been found. Each successful synchronized path constitutes a new
extension σ′ of σ that yields a state s′ and a remaining observed trace suffix rδ′′ where
the initial e has been removed: rδ = e.rδ′′ . Once a prefix is extended, its ancestors on
the path from s0 to the expanded state must also be expanded further to maintain the
frontier of minimal prefixes.

The resulting prefixes are organized in a LTS graph where event sequences leading
to identical global states end in the same vertex. Hence prefixes that result in the same
global state are not expanded multiple times. Each vertex is associated with the global
state s in GF , the remaining observed events rδ′ and the fault transitions in the best
prefix leading to that state.

Once all events in r have been consumed a diagnosis has been found. Since the di-
agnosis prefixes and reachable states in GF are expanded in best-first order, the first di-
agnosis is indeed a minimal diagnosis. To compute further diagnoses, earlier suspended
prefix extension operations must be resumed in best-first order.

5 Evaluation

We conducted an empirical evaluation of the algorithm on a generalized version of the
example given in the Fig. 1. The automaton for the threads was modified such that the
lock can be re-acquired after release. Furthermore, the number of automata, number of
faults in the trace, and the length of the trace was varied to measure the algorithm’s
performance (in terms of CPU time) and the number of minimal diagnoses. We tested
different numbers of locks, critical sections and inconsistent data accesses. The results
obtained from our implementation in Prolog are shown in the table below. The columns
show (from left to right) the number of automata, faults, trace length, the number of
minimal diagnoses and CPU time in seconds. For simplicity our implementation relies
on an iterated depth-first strategy rather than pure best first search. The results were
obtained on SWI Prolog 5.7.11 on an Intel Core2 CPU @1.8Ghz running Linux 2.6.30.

The results show that increasing the number of automata (left table) and trace length
(top rows in the right table) has little impact on the algorithm. The number of explana-
tions remains small and the result is available within a fraction of a second. Increasing
the number of faults (bottom rows in the right table) however dramatically increases the

Automata Faults Length Diags Time (s)
4 2 20 4 0.05

12 2 20 4 0.12
52 2 20 4 0.42
5 2 20 6 0.08
7 2 28 8 0.17
9 2 36 10 0.27

11 2 44 12 0.41

Automata Faults Length Diags Time (s)
3 2 20 4 0.04
3 2 40 4 0.09
3 2 60 4 0.13

4 3 16 32 0.21
5 4 22 151 0.89
6 5 28 732 4.87

Fig. 2. Results for the “Threads and Locks” benchmark problem
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computation time and number of diagnoses. This can be explained by the pathological
example, where each individual fault can be explained by a number of non-equivalent
faults. The results confirm that the approach is suitable for the diagnosis of typical event
traces stemming from the execution of distributed loosely coupled systems, such as web
services.

6 Related Work

The work by Soldani [12] is most closely aligned with ours in that the framework also
relies on automata specifications and models of fault classes to identify whether a sys-
tem operates normally or if a fault has occurred. Our approach generalizes this work
from a single fault event to multiple missing or extraneous events. Furthermore, our ap-
proach provides more detailed fault explanations and constructs the minimal diagnoses
incrementally instead of relying on a diagnoser automaton built off-line.

Yilmaz and Williams [14] employ automata models to identify possible errors in soft-
ware component implementations. A parametric finite state machine model is mutated
to reflect possible faults, which are subsequently confirmed or refuted by comparing the
mutated model to an execution trace obtained from the implementation. Our approach
employs a weaker system model but allows for multiple LTSs and accounts for limited
observability in observed events.

Discrete event systems have been a common tool to monitor executions of sys-
tems [4,13] and diagnose possible faults [10]. Different from monitoring, we aim to
fully explain every observed event rather than recognise known patterns. Our approach
adopts a more flexible fault model than earlier work in that no a-priori limitation on
possible fault transitions is necessary. Compared to dependency-based fault isolation
our approach provides more detailed explanations at the sub-component level.

Similarity-based debugging of programs aims to infer possible faults in programs
from observed correct and incorrect execution traces [1]. Our work differs in that faults
are explained by event sequences and not simple likelihood estimates associated with
individual program elements.

Sequence mining [7] has also been proposed to infer possible event sequences that
are likely to lead to an error from a set of execution traces. We in contrast deal with
multiple faults in a single event trace. (The approach can be extended to multiple traces.)

7 Conclusion

We introduced a diagnosis model for discrete event systems that can infer diagnoses and
possible repairs in abstract event traces. The model builds on a suite of synchronized
transition systems which together determine the normal as well as possible abnormal
system behaviors. Our fault models are generic and are phrased in terms of added and
removed transitions in the observed trace. We showed that possible explanations can be
inferred locally without building the entire system model, guided by the events observed
in the trace. Our algorithm interleaves the association of events to a system component,
the synchronization of component models, and the resolution of discrepancies. Only
distinguished explanations are computed to focus on classes of potential repairs.
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In this work leading diagnoses are identified based on the assumption that faults are
independent. This assumption may be relaxed in future work in order to account for sys-
tematic faults in an implementation that occur in every execution context. Furthermore,
combining the event-based technique with other probabilistic debugging approaches is
an avenue for further research.
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Abstract. Sequential single-item (SSI) auctions have proven a very

effective technique for tackling static task allocation problems in multi-

robot settings and are only recently being applied to dynamic task allo-
cation problems. We complement existing work by evaluating the effects

of using different auctioning and winner determination schemes when

dealing with dynamically appearing tasks. To this end we investigate

the use of plan modification versus re-planning and minimum cost and

regret clearing for winner determination in the auction.

1 Introduction

The wisdom of distributing a task is strongly established in the well-known En-
glish proverbs “two heads are better than one” and “many hands make light
work”. However, the mere weight of numbers is not in itself sufficient to com-
plete tasks in an optimal or even efficient manner. To this end numerous co-
ordination techniques have been proposed for multi-robot systems so that what
can be achieved by the robots in combination is more than just the sum of their
individual actions. Technically, co-ordination can be viewed as a distributed goal
search problem. Given a common goal that can be decomposed into sub-tasks
and several team members, each of which may have differing resources and abil-
ities, determine the allocation of sub-tasks to each team member so that the
common consumption of resources is optimised.

Recently, market-based approaches have become a popular means of achiev-
ing co-ordination [1]. Here we examine the sequential single-item (SSI) auction
scheme which has been successfully applied to co-ordinating multiple robots
where tasks are known at the outset. One of the main advantages of market-
based approaches is that they can incorporate new tasks easily. However, the ef-
fects of this on the optimality of the resulting assignment have not been studied
yet in detail. The contribution of this paper is an investigation of the efficiency
of different approaches for applying sequential single-item auctions in dynamic
task allocation problems where not all tasks are know at the start of the auction.
In particular, we investigate the use of plan modification versus re-planning and
minimum cost and regret clearing for winner determination in the auction. We
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Fig. 1. Example setting with rounds and result of a sequential auction. Dotted edges

are costs, full edges are assigned paths.

present empirical results that demonstrate that SSI auctions can indeed be ap-
plied effectively to dynamic task allocation and under some circumstances even
result in improvements compared to static allocation.

2 Multi-robot Co-ordination

Multi-robot co-ordination is often achieved by organising robots within a struc-
tural framework. The most common frameworks are motivated by social struc-
tures studied in psychology, economics and sociology and, not surprisingly, widely
adopted in team sports. Parker [2] provides a survey which also includes bio-
inspired approaches such as swarms and knowledge sharing approaches.

Auctions are a common market-based methodology by which robots can share
tasks. Extending the economic analogy, robots are traders, tasks are commodities
and each task has a cost (as well as, possibly, a reward). Robots buy and sell
tasks in an attempt to optimise their individual profits, which in total leads to
a maximisation of the overall team profit. At the cost of a high communication
overhead, market-based approaches enjoy the advantages that robots can trade
tasks among one another, co-ordination can be fully decentralised, heterogeneous
systems are easily supported, and dynamic events can be responded to quickly.

A typical auction is composed of three phases: In the initial phase the auc-
tioneer sends a request to all robots notifying them of the tasks that are for
sale. This is followed by the bidding phase, during which the robots evaluate the
tasks, calculate bids for tasks in which they are interested, and return them to
the auctioneer. Finally, during the winner determination phase the auctioneer
determines the winner for each of the tasks and notifies the winning robots.

Several protocols have been investigated for conducting auctions where mul-
tiple tasks and multiple robots are at the auctioneer’s disposal. They can be
categorised into three classes: parallel, combinatorial and sequential auctions.
Sequential auctions are the market-based scheme we adopt so we will consider
them in more detail below. Briefly however, in parallel auctions each robot cal-
culates one bid for every task and the auctioneer assigns all tasks at once. The
example in Figure 1 consists of 4 tasks A, B, C, and D, and uses the MiniSum
team objective where the aim is to minimise the sum of costs for completing all
tasks. Using travel distance as the cost measure, tasks A and C are assigned to
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the left robot (for a cost of 2+7 = 9) and tasks B and D to the right robot (for a
cost of 6+3 = 9) giving a team cost of 18. The computational complexity of this
protocol is O(#robots∗#tasks) but the solutions are likely to be sub-optimal. In
combinatorial auctions each robot calculates a bid for every subset of the tasks
on offer. In our example, the task set {A,B} is assigned to the left robot (for a
cost of 2+2.5 = 4.5) and {C,D} to the right robot (for a cost of 3+6 = 9) giving
a total team cost of 13.5. In this scheme 2n−1 bids are required when n tasks are
on offer so the computational complexity is a prohibitive O(2#tasks ∗#robots).

Sequential auctions are in the middle ground between parallel and combinato-
rial auctions: the auction proceeds over several rounds and a subset of tasks (typ-
ically one) is assigned to a robot in each round. At the start of each round, all
remaining tasks are advertised to all robots. Each robot returns a bid to complete
a single task in addition to those it has committed to in previous rounds. During
the winner determination phase the auctioneer selects one task and assigns it to
one robot (e.g., the lowest bidder). This particular type of auction is referred to as
a sequential single-item (SSI) auction. It starts with a partial solution to the prob-
lem which is then iteratively extended to a complete solution. Figure 1 presents an
example. After the first round taskA is assigned to the left robot as for the parallel
auction. In the second round, tasks B, C, and D are on offer. The left robot bids
2.5 to complete taskB (cost reduced since it has already been assigned taskA) and
the right robot bids 3 for taskB. The auctioneer therefore assigns taskB to the left
robot. In the last two rounds taskC (with cost 6) and then taskD (with additional
cost 3) are assigned to the right robot.The total team cost is 13.5,which is the same
as the optimal solution obtained by the combinatorial auction. However, sequen-
tial auctions are in general not guaranteed to find the optimal solution. Instead,
they provide clearly better solutions than parallel auctions as synergies between
tasks can be exploited. This comes at a computation cost ofO(#tasks2∗#robots),
which is a significant improvement over combinatorial auctions.

We consider SSI auctions here in a similar manner to [3,4,5] and also investi-
gate regret clearing [6], which is an alternative winner determination mechanism
in which the auctioneer (and hence the team) prefers assignments that will be
regretted the least, i.e., those unlikely to change during the auction. The auc-
tioneer assigns the task that maximises the difference between the lowest and
the second lowest bid rather than the one minimising the team objective, as this
was shown to improve over standard minimum cost winner determination.

Auctions should be designed that they minimise a global team objective.
One possibility is to minimise the sum of all costs of all robots, which is called
the MiniSum team objective. In this case, robots bid the increase in their cost
under the assumption that the task(s) will be awarded to them. Alternatively,
the MiniMax/MiniAve objectives minimise the maximum/average cost over all
robots in order to minimise the total/average completion cost.

Note: we have not considered rewards for achieving goals. We do so purely to
consider whether SSI auctions can prove effective in the simpler setting without
rewards, rather than complicating matters unnecessarily and leave the more
complex case to future work.
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3 Dynamic Task Allocation

As outlined in a recent survey [1], dynamic task allocation has been investi-
gated in a number of works. However, our approach differs in that it is based
on sequential single-item auctions, which have been shown to provide a good
compromise between computational complexity and solution quality.

The question we pose here is whether SSI auctions can be effectively applied
to dynamic task allocation problems where tasks to be completed may not all be
known at the start of the auction (i.e., so-called online tasks)

Similar to our approach, is the work by Nanjanath and Gini [7,8] who inves-
tigate dynamic task allocation using sequential auctions. Their focus lies on ad-
dressing robustness issues caused by unreliable robots using sequential auctions,
whereas our focus is on the optimality with respect to dynamically appearing
tasks. Our work can be seen as complementary as we provide an evaluation of
different auction schemes in the presence of online tasks.

There are several considerations distinct to task allocation of online tasks that
do not arise in the static case:

– Since new tasks can appear at any time it is difficult to define a short-term
team objective. Task allocation should seek to minimise the overall time
taken to complete all tasks and, as a result, the MiniSum heuristic is sub-
optimal as it can lead to tasks being completed by only few robots with
many robots being idle. MiniMax and MiniAve can prevent this situation.

– The location where a robot ends up after completing its assigned tasks is
important when subsequent tasks appear. A more central position is likely
to provide better performance.

– Therefore robots should re-order yet to be completed tasks as new tasks are
assigned to them. We adopt a variant of the cheapest insertion heuristic1

that allows re-ordering the robot’s previously last task. Thus the robot can
re-evaluate which task to fulfil last as this decision has high influence on its
cost for reaching tasks that appear later.

Furthermore, it is not clear in dynamic task allocation whether it pays to in-
crementally adjust the tasks assigned to each robot or whether to put all tasks
up for re-consideration. In the context of planning, Nebel and Koehler [9] have
proved that plan repair and re-planning belong to the same complexity class in
the worst case. Accordingly, we implemented and evaluated the following two
dynamic task allocation schemes:

Re-planning. When a new task arrives, all previously assigned but uncompleted
tasks are put up for auction once again.2 This results in the same allocation as
auctioning all available tasks at once as in [4,5,6,7,8].

1 The cheapest insertion heuristic ensures that robots maintain their current task

ordering and insert new tasks into this ordering at the optimal point.
2 Re-planning also allows the robots to re-compute all task costs. However, this is not

relevant in our setting as we do not simulate robot movement as described later.
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Table 1. Comparison of using different heuristics for bid calculation using MiniMax

team objective. Selling a total of n = 10 tasks to m = 3 robots.

Setting Minimum cost Regret clearing

Heuristic k Time ΔTime Cost ΔCost Time ΔTime Cost ΔCost

All permutation

10 1.78s - 67.1 - 1.03s - 58.8 -

5 1.53s - 64.3 - 1.36s - 59.9 -

3 1.12s - 61.2 - 1.13s - 60.2 -

2 1.22s - 61.7 - 1.03s - 59.7 -

1 1.09s - 61.8 - 1.11s - 61.8 -

Modified cheapest insertion

10 1.05s -40.9% 67.1 0.00% 1.03s -36.4% 59.4 0.92%

5 0.91s -40.2% 64.3 0.00% 0.91s -32.7% 59.9 0.00%

3 0.78s -30.3% 61.2 0.00% 0.77s -31.9% 60.2 0.00%

2 0.74s -39.5% 62.0 0.47% 0.72s -30.1% 59.7 0.00%

1 0.64s -40.1% 61.8 0.00% 0.65s -41.5% 61.8 0.00%

Standard cheapest insertion

10 0.62s -65.1% 68.4 1.67% 0.63s -60.8% 60.6 2.98%

5 0.67s -56.3% 64.8 0.79% 0.67s -50.7% 60.6 0.55%

3 0.63s -43.9% 61.3 0.07% 0.62s -45.0% 60.2 0.00%

2 0.59s -51.4% 62.5 1.36% 0.60s -42.2% 59.9 0.20%

1 0.60s -44.6% 62.0 0.28% 0.60s -45.5% 62.0 0.28%

Plan Modification. Robots retain their previously assigned tasks and bid for
the additional cost of undertaking the newly generated task(s).

The focus of this paper is on evaluating how these different dynamic task al-
locations schemes perform in the setting of online tasks in SSI auctions. While
SSI auctions allow by design to easily add new tasks dynamically, we investigate
the effect that this has on the optimality of the solutions and how they compare
to static assignment with all tasks known in advance. In particular, we evaluate
how plan modification compares to re-planning, as this is a direct comparison
between dynamic and static task allocation. Furthermore, we compare minimum
cost and regret clearing winner determination in both settings.

4 Experimental Setting

In order to focus on the research question at hand we make these assumptions:

1. Tasks can be achieved by a single robot and are atomic, i.e., do not have to
be further decomposed.

2. Tasks are loosely coupled (no tight co-ordination).
3. All robots bid the increase in their costs for reaching the advertised tasks.
4. Robots are provided with a map and have perfect localisation.
5. Robots do not wear out.
6. There is no centralised server.
7. New tasks can appear dynamically at any time.
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Assumptions 1–5 are standard assumptions made by previous work on SSI auc-
tions, e.g., [4,5,6,7,8]. Nanjanath and Gini [7,8] also address Assumption 6 and
additionally deal with unreliable execution by the robots. Assumption 7 is new
to this work.

We focus on online tasks, i.e., dynamically new appearing tasks and evaluate
the effect this has on the resulting assignments from the SSI auctions. The
question we investigate is how much worse SSI auctions fare, if not all tasks
can be bid for at once as they are not known from the start of the auctions
and therefore sets of tasks have to be auctioned in subsequent rounds. As a
simulation of the dynamic scenario, we split the existing tasks into a number of
subsets, and sell all tasks of one subset before continuing with the next subset
until every task has been assigned to a robot.

The physical movement of the robots can have significant effects on the run
time of the experiments that is likely to introduce random unexpected situations
such as robots getting stuck, which makes it prohibitive to rerun and compare
same experiments with varying auction schemes. As we are mainly interested
in the effect online tasks have on the optimality of the SSI auction, we do not
simulate the movement of the robots and thus the execution of the tasks. A good
discussion of addressing the robustness of sequential auctions in such cases can
be found in [7,8].

The setting used for our experiments is a realistic floor plan of a hospital
that comes with the Player/Stage [10] robot middle-ware. 26 distinct positions
are identified on the map. The maps used by Koenig et al. [4] are simpler with
fewer positions although they have the ability to modify their maps by randomly
opening and locking ‘doors’ on the map.

Experiments were conducted for combinations of m robots R = {r1, . . . , rm}
and n tasks T = {t1, . . . , tn} assigning k tasks K ⊆ T in each round, with
m ∈ {3, 5, 10}, n ∈ {10, 15, 20}, and k ∈ {1, 2, 3, 5, n}. Each setting was evalu-
ated using 25 randomly generated scenarios (as in Koenig [6]) and results aver-
aged. Moreover, the scenarios are “standardised” by incrementally adding robot
positions and task positions as these are increased in the experiments noted pre-
viously3, i.e., if |R1| < |R2| then R1 ⊂ R2, and equally for T1 and T2. Every
robot can initiate new auctions and act as a participant. A centralised auctioneer
is therefore not required. In our simulation, we let an arbitrary robot know of
new tasks, which then starts a new round of auctions.

We began by first reproducing results from previous work on SSI auctions by
Koenig and Zheng and their collaborators [3,4,6]. Our experiments showed the
same trends, most notably that regret clearing provided a clear advantage over
minimum cost winner determination for the MiniMax team objective. In order
to determine the effectiveness of SSI auctions for dynamic task allocation we
ran experiments using both the minimum cost and the regret clearing winner
determination methods as well as the re-planning and plan modification dynamic
task allocation schemes.

3 This allows us to directly compare the resulting assignments from experiments with

different number of robots and tasks.



512 A. Schoenig and M. Pagnucco

5 Experimental Results and Evaluation

Our first experiment tests the claim that performance can be improved by mod-
ifying the cheapest insertion heuristic to allow re-ordering of the last task the
robot intends to complete. Table 1 shows a comparison of the standard cheapest
insertion heuristic against our variant. Experiments were run on 3 robots and
10 online tasks arriving dynamically in sets of size k ∈ {1, 2, 3, 5, 10}. The first
group considers all permutations of all uncompleted and newly arrived tasks, and
is thus guaranteed to find the optimal ordering. The second group represents our
modified heuristic that allows the last of all committed tasks to be re-ordered,
while the last group uses the standard cheapest insertion heuristic. The baseline
is the first group “all permutations” as this yields the optimal outcome.

We see that our modified cheapest insertion heuristic showed no variation from
the optimal in 8 out of 10 cases while the standard cheapest insertion heuristic
showed variations in most cases. This leads us to conclude that our modification
to the heuristic provides a significant cost improvement at only small increase in
run-time. The null hypothesis that this is false can be rejected with a one-sided
paired t-test with confidence 0.999 (0.995) and mean difference of 0.75% (0.38%)
for minimum cost (regret clearing) winner determination .

Table 3 shows our main results for applying SSI auctions to dynamic task allo-
cation. Comparing minimum cost with regret clearing for winner determination,
the minimal values are highlighted in bold font. Underlined values indicate where
dynamic task allocation resulted in an improvement over allocating all tasks at
once as in the static problem setting. Table 2 compares the plan modification
and re-planning task allocation schemes.

Table 2. Comparison of using plan modification and re-planning to dynamically assign

n = 15 tasks using minimum cost winner determination. Cheapest insertion heuristic

did not allow re-ordering any committed tasks.

Setting Plan modification Re-planning

m k Time Sum Max Time Sum Max

3

15 2.37s 208.7 81.9 2.36s 208.7 81.9

5 1.52s 206.1 79.6 3.80s 208.7 81.9

3 1.27s 213.4 81.9 5.30s 208.7 81.9

2 0.97s 217.3 84.0 7.50s 208.7 81.9

1 0.86s 218.9 82.2 11.76s 208.7 81.9

5

15 2.84s 189.3 52.9 2.82s 189.3 52.9

5 1.44s 190.2 51.1 3.85s 189.3 52.9

3 1.23s 195.1 51.0 5.75s 189.3 52.9

2 1.05s 199.9 53.3 8.78s 189.3 52.9

1 0.92s 203.2 54.2 14.55s 189.3 52.9

10

15 3.79s 128.8 30.0 3.73s 128.8 30.0

5 2.14s 140.1 28.1 6.04s 128.8 30.0

3 1.72s 144.2 28.1 8.55s 128.8 30.0

2 1.50s 148.6 28.5 14.54s 128.8 30.0

1 1.13s 149.1 28.3 21.05s 128.8 30.0
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Table 3. Experimental results of using plan modification for dynamic task allocation

using MiniMax team objective. Cheapest insertion heuristic allowed re-ordering the

last committed task.

Setting Minimum cost Regret clearing M.C. versus R.C.

n tasks m robots k tasks/round Cost ΔCost Cost ΔCost ΔCost

10

3

10 67.1 - 60.1 - -10.4%

5 64.3 -4.2% 59.9 -0.4% -6.9%

3 61.2 -8.8% 60.2 0.1% -1.7%

2 62.0 -7.7% 59.7 -0.7% -3.7%

1 61.8 -7.9% 61.8 2.8% 0.0%

5

10 45.0 - 40.7 - -9.5%

5 43.5 -3.4% 40.7 0.0% -6.3%

3 42.5 -5.6% 42.0 3.2% -1.1%

2 44.0 -2.2% 42.4 4.1% -3.6%

1 42.9 -4.7% 42.9 5.3% 0.0%

10

10 26.7 - 24.3 - -9.1%

5 26.3 -1.3% 25.3 4.5% -3.8%

3 26.0 -2.7% 25.4 4.9% -2.0%

2 26.4 -1.2% 25.8 6.4% -2.1%

1 26.1 -2.1% 26.1 7.6% 0.0%

15

3

15 80.8 - 76.0 - -6.0%

5 83.2 3.0% 79.0 4.0% -5.1%

3 79.2 -1.9% 77.9 2.5% -1.7%

2 82.6 2.3% 79.5 4.7% -3.8%

1 82.3 1.9% 82.3 8.4% 0.0%

5

15 54.4 - 50.4 - -7.4%

5 53.3 -2.1% 51.0 1.1% -4.4%

3 55.3 1.6% 52.6 4.2% -4.9%

2 56.4 3.7% 55.4 10.0% -1.7%

1 55.7 2.3% 55.7 10.5% 0.0%

10

15 30.5 - 28.3 - -7.0%

5 31.5 3.3% 30.4 7.3% -3.4%

3 30.6 0.5% 30.3 6.9% -1.2%

2 30.7 0.8% 30.3 6.9% -1.4%

1 30.4 -0.1% 30.4 7.4% 0.0%

20

3

20 98.8 - 89.9 - -9.0%

5 98.1 -0.7% 92.6 2.9% -5.7%

3 93.1 -5.8% 91.2 2.3% -1.1%

2 95.1 -3.7% 94.1 4.6% -1.1%

1 97.0 -1.8% 97.0 7.8% 0.0%

5

20 62.5 - 58.9 - -5.6%

5 63.0 0.9% 60.2 2.1% -4.5%

3 61.2 -2.1% 61.2 3.8% 0.0%

2 63.5 1.7% 63.0 7.0% -0.8%

1 63.0 0.9% 63.0 7.0% 0.0%

10

20 34.2 - 31.3 - -8.7%

5 34.9 2.0% 33.4 6.7% -4.4%

3 33.1 -3.3% 33.1 6.0% 0.0%

2 33.4 -2.6% 33.0 5.6% -1.0%

1 33.2 -3.1% 33.2 6.1% 0.0%
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The following results are particularly noteworthy:

Minimum Cost and Plan Modification. SSI auctions using minimum cost winner
determination and plan modification outperform re-planning in the majority of
cases. This is due to SSI auctions not being guaranteed to find the optimal so-
lution since not all synergies between tasks can be considered by the robots in
the auction. Assignments based on SSI auctions can get stuck in local minima
instead of converging to the global minimum. The higher the ratio of tasks to
robots, the more likely SSI auctions are to result in sub-optimal solutions. When
randomly drawn subsets of tasks are up for bid however, as in the dynamic set-
ting, these local minima can be avoided to some extent. However, the hypothesis
that dynamic task allocation using plan modification results in an improvement
has been statistically rejected when tested using a one-sided t-test and a 5%
significance level. So is the hypothesis that it is worse than static assignment.
Our experiments showed therefore that dynamic task allocation is statistically
no worse than static task allocation when using minimum cost winner determi-
nation, and can even result in an improvement.

Regret Clearing and Plan Modification. Assigning tasks dynamically using regret
clearing winner determination and plan modification provides worse results both
in terms of the maximums and the sums than using re-planning. In contrast
to minimum cost winner determination, regret clearing rarely produced results
where plan modification performed better than re-planning. The argument can
be made that this follows from the reason given by Koenig et al. [6] for using
regret clearing in the first place. Its design goal was to assign the tasks in such a
way that those assignments which would be least regretted are made first. This
encourages avoiding local minima in a similar way to randomly drawn subsets
for dynamic allocation. The additional random partitioning that is caused by
dynamic task allocation with plan modification thus only marginally improves
the assignment.

Minimum Cost vs Regret Clearing. Regret clearing performed strictly better in
most instances. We evaluated the hypothesis that regret clearing results in lower
team costs for the MiniMax team objective rather than minimum cost winner
determination using a one-sided paired t-test. The null hypothesis that this is
not the case can be rejected with confidence 0.999 and a mean difference of
3.41%. Based on our experiments, regret clearing is the preferred method for
dynamic task allocation, though the improvements compared to minimum cost
determination are not as significant as when applied to static task allocation.

6 Conclusions and Further Work

We have investigated SSI auctions applied to dynamic task allocation with
online tasks and demonstrated that they indeed provided a powerful frame-
work in this setting. In our empirical trials, we compared plan modification
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to re-planning and minimum cost winner determination to regret clearing. Plan
modification provided significant improvements in run-time, while resulting in
reasonable assignments. A surprising insight was that it could even result in im-
provements in the resulting team costs if the ratio of tasks per robot is relatively
high and when used in combination with minimum cost winner determination.
We conclude that this is caused by the fact that random subsets of tasks can help
to avoid local minima, in which the hill-climbing nature of sequential auctions
is destined to get trapped. However, regret clearing provided consistently bet-
ter assignments than minimum cost winner determination while having similar
running times.

For future work we think the following improvements regarding bidding and
selling are promising. For bidding, clustering tasks based on their proximity
makes sense as this allows capturing the “synergies” between tasks. This addi-
tional information could help rule out combinations which are unlikely to win.
For selling, giving robots the option to resell tasks which they previously com-
mitted to could improve the performance as new tasks are dynamically allocated.
This builds on related work [7,8] and requires an efficient way of determining
which tasks should be re-sold to avoid starting too many auctions.
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Abstract. We study the problem of mechanism design for a double auc-

tion market where multiple buyers and sellers buy and sell a commodity.

We design and implement a matching algorithm that maximizes mar-

ket liquidity, including the number of transactions and buy/sell-volume.

We prove that, given the number of matches, the algorithm also maxi-

mizes auctioneer’s profit. Based on the CAT Tournament (Trading Agent

Competition Market Design) platform, we show with experiments that

the new matching method not only increases market liquidity but also

significantly improves market share and auctioneer’s profit in the long

term, compared with equilibrium matching, the most commonly used

matching method.

1 Introduction

A double auction is a market mechanism that allows multiple buyers and sellers
trade simultaneously [1,2,3]. Given the supply and demand of sellers and buyers
(i.e. traders), a double auction is characterized by (i) how to match bids (offers
to buy) and asks (offers to sell), and (ii) what price to execute each matched
ask-bid pair (clearing price). Similar to the design of other market mechanisms,
the main concerns of double auction design include incentive compatibility (IC),
market liquidity, market efficiency (social welfare) and market profit (auctioneer’s
revenue). Although all these properties are desirable, it is impossible for a double
auction mechanism to possess all of them. McAfee and Wurman et al. showed
that there is no double auction mechanism that is both efficient and incentive
compatible [4,5].

As a tradition in the research of mechanism design, most existing work on
double auctions put emphasis on incentive compatibility and social welfare (e.g.
[4,5,3]). However, the other properties, especially market liquidity, are equally
important. The liquidity of a market, which indicates the number of transactions
and buy/sell volume of the market, not only effects market profit and social
welfare but also flags the success and reputation of the market. A market with
high liquidity can attract traders to the market as it brings trading opportunities.
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This paper makes an endeavour at the design of non-IC double auction mech-
anism. Without restriction of incentive compatibility, we can maximize matches
and set clearing prices in terms of bidding prices, therefore it becomes possible to
maximise market liquidity and optimize other market indicators, such as market
share, market profit and social welfare. To this end, we propose a new matching
algorithm, named maximal matching (MM), for any double auction mechanism
and prove that it maximises the matches of incoming bids and asks. By compar-
ing the algorithm with the most commonly used matching method, equilibrium
matching (EM), we demonstrate through a set of experiments that maximal
matching not only maximizes market liquidity, but also significantly improves
market share (in terms of the number of traders) and auctioneer’s profit.

The rest of the paper is organized as follows. Section 2 introduces the mar-
ket model and lists the commonly used criteria for double auction mechanism
design. Section 3 presents maximal matching algorithm. Section 4 analyses the
properties of maximal matching and compares maximal matching with equilib-
rium matching. Section 5 shows the experimental results of both maximal and
equilibrium matching, which gives a support to the theoretical results presented
in Sect. 4. Finally we conclude the work.

2 Preliminaries

2.1 The Market Model

We study the problem of matching in a double auction market where multiple
buyers and sellers buy and sell one commodity. Let T = S∪B be a set of traders,
where S is the set of sellers, B is the set of buyers, and S ∩ B = ∅1. A shout
is a message that a trader sends to the auctioneer (the double auction market)
for either buying or selling one unit of the commodity with a specified price2.
Let Ω be the set of all possible shouts. For each shout s ∈ Ω, we write p(s) to
represent the bidding price of s (non-negative), and t(s) to denote the trader
who sends s.

A double auction is running as follows: each trader submits a number of shouts
to the auctioneer, and the auctioneer decides which sell and buy shouts to be
matched and what price to execute each match.

Definition 1. An ask is a shout a ∈ Ω such that t(a) ∈ S. A bid is a shout
b ∈ Ω such that t(b) ∈ B. For any finite set X ⊂ Ω, we let Xask = {x ∈ X :
t(x) ∈ S} and Xbid = {x ∈ X : t(x) ∈ B}. A matching of X, denoted by
M(X), is a collection of pairs {(a1, b1), (a2, b2), ...}, where ai ∈ Xask, bi ∈ Xbid,
p(ai) ≤ p(bi), and ai �= aj, bi �= bj when i �= j.

1 In the real word, a trader can be both a seller and a buyer for the same commodity.

In such a case, we model it as two different roles as the decision making for selling

and buying is different.
2 For sake of simplicity, we assume that each shout contains only one unit of the

commodity. It is possible to extend the model to handle a shout with multiple units

by splitting the shout into many shouts with one unit each.
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2.2 Objectives Considered in Double Auction Mechanism Design

The following desirable objectives or desiderata are mostly considered in double
auction design [6]:
– Incentive Compatibility. A double auction is said to be incentive compatible

if all of the participants maximize their utilities when they truthfully reveal
any private information asked for by the auction.

– Liquidity Maximization. The goal is to maximize: (a) number of transactions,
(b) sell volume: the total amount of cleared asks, and (c) buy volume: the
total amount of cleared bids [3].

– Profit Maximization. Each pair of ask and bid that are matched produces a
profit, which is the difference between the bid price and the ask price. This
objective is to maximize the sum of these differences, over all matched pairs.

– Social Welfare Maximization (Efficiency). This objective corresponds to max-
imizing the goods of the buyers and sellers in aggregate. That is, the goods are
allocated to the agents who value them most highly.

– Individual Rationality. A double auction is individual rational if it gives its
traders non-negative utility/profit.

3 Matching Algorithm

This section will present our maximal matching algorithm. Before doing that, let
us briefly introduce the most commonly used matching policy for double auction
markets–equilibrium matching (EM).

3.1 Equilibrium Matching

Equilibrium Matching is used to find a uniform price p∗ (equilibrium price)
which balances the bids and the asks going to be matched so that all the bids
with price p ≥ p∗ and all the asks with price p ≤ p∗ are matched [1]. EM can be
easily implemented as follows:
1. Sort all asks (bids) in ascending (descending) order w.r.t. their price.
2. Based on this sort order, starting at the top, add each ask-bid pair to the

result matching, if ask’s price is less than or equal to bid’s price.
Algorithm 3.1 describes the above implementation. A more deliberate, and yet

popular, implementation, named 4-Heap, is given by Wurman et al. [5]. A uni-
form price is normally determined by the last matchable or the first unmatchable
shout pair w.r.t. the matching order in Algorithm 3.1 [4,5].

3.2 Maximal Matching

A double auction with EM can be incentive compatible or efficient (but not both)
with some special pricing polices [4,5]. However, no double auction mechanism
with EM can maximize liquidity as the uniform clearing price might prohibit
some matchable shouts from being matched. In order to maximise the number



Maximal Matching for Double Auction 519

Algorithm 3.1. EquilibriumMatching
Input: Asks: sorted in ascending order, Bids: sorted in descending order

Output: Matching
begin1

Matching ← ∅; I ← 1;2

while Asks �= ∅ and Bids �= ∅ do3

Ask ← read I-th ask from Asks; Bid ← read I-th bid from Bids;4

if p(Ask) ≤ p(Bid) then5

Matching ← Matching ∪ {(Ask, Bid)}; I ← I + 1;6

else7

jump out while loop;8

end9

end10

end11

Fig. 1. Equilibrium Matching vs. Maximal Matching

of matches/transactions, it is essential to allow different matches cleared at dif-
ferent prices3. Otherwise, some matches might be cleared at a price which is not
between the ask price and the bid price of them, i.e. it will act against individ-
ual rationality, which is a basic assumption of double auction mechanism design.
Based on this idea, we introduce a new matching algorithm, named Maximal
Matching (MM), as we shall prove that it maximises the number of matches in
Sect. 4. The algorithm is given in Algorithm 3.2, which can be summarised in
the following five steps:
1. Given an input of shouts, calculate the matching (the set of matched pairs)

with Algorithm 3.1, and mark all the matched shouts as matched and all the
other shouts as unmatched (lines 4-6).

2. Recursively check how many matches MM can achieve if the input shouts
were matched asks and unmatched bids (line 8).

3. Recursively check how many matches MM can achieve if the input shouts
were unmatched asks and matched bids (line 9).

4. Choose the minimum of the numbers from the last two steps as the extra
number of matches MM can achieve (line 10).

3 Sales of identical goods or services are transacted at different prices is named price
discrimination [7].
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5. Cross match extra matchable shouts with the matched shouts in step 1: the
ask in the first matched pair is rematched with the last extra matchable bid,
while the bid in the pair is rematched with the last matchable ask, then the
second matched pair with the second last extra matchable ask and bid, and
so on until all extra matchable shouts are matched (lines 11-19).

Algorithm 3.2. MaximalMatching
Input: Asks: sorted in ascending order, Bids: sorted in descending order

Output: Matching
begin1

Matching ← ∅;2

if Asks = ∅ or Bids = ∅ then Return;3

Matching ← EquilibriumMatching(Asks, Bids);4

MatchedAsks ← all asks from Matching in ascending order;5

MatchedBids ← all bids from Matching in descending order;6

if (Bids \ MatchedBids) = ∅ or (Asks \ MatchedAsks) = ∅ then Return;7

MM1 ← MaximalMatching(MatchedAsks, (Bids \ MatchedBids));8

MM2 ← MaximalMatching((Asks \ MatchedAsks), MatchedBids);9

ExtraNumberOfMatches ← Min(|MM1|, |MM2|);10

I ← ExtraNumberOfMatches; N ← |Matching| + 1;11

while I > 0 do12

(Ask1, Bid1) ← read I-th in match from Matching;13

Ask2 ← read N-th ask from Asks;14

Bid2 ← read N-th bid from Bids;15

Matching ← Matching ∪ {(Ask1, Bid2), (Ask2, Bid1)};16

Matching ← Matching \ {(Ask1, Bid1)};17

N ← N + 1; I ← I − 1;18

end19

end20

Figure 1 shows a matching example of both EM and MM with the same
set of shouts, where the numbers are the prices of shouts (other information is
omitted), M indicates the last matchable pair with EM, and the arrowed lines
link each matched pair. We can see that MM achieves two extra matches than
EM does.

Complexity Analysis. MM is equivalent to finding a maximum bipartite
matching in a bipartite graph G = (V = (Xask, Xbid), E), where E only con-
tains one edge for each pair of ask a and bid b if p(a) ≤ p(b). Let na = |Xask|,
nb = |Xbid|, and nem and nmm are the numbers of matches got with EM and
MM, respectively. MM runs in O(na logna) + O(nb lognb) + O((nem)2) time in
the worst case, where O(na logna) and O(nb lognb) are the complexities of sort-
ing asks and bids (e.g. merge sort), and O((nem)2) is that of the rest of MM.
The worst case condition for MM is that nem = min(na, nb) − 1 holds for all
EMs of MM, unless min(na, nb) ≤ 1. So we can rewrite the complexity of MM
as O(max(na, nb) log max(na, nb) + min(na, nb)2). As reference, the best known
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worst-case performance bipartite matching algorithm is the Hopcroft-Karp algo-
rithm, which runs in O(|E|

√
na + nb), where |E| ≥ (nem)2 in our model, time in

the worst case [8].

4 Properties of Maximal Matching

In this section, we analyse a number of key properties of MM, especially mar-
ket liquidity. In the following, given a set of shouts X , we use MEM (X) and
MMM (X) to indicate the matching got from EM and MM, respectively, and use
NEM (X) and NMM (X) for the corresponding number of matches.

4.1 Maximizing the Number of Transactions

We prove that MM indeed maximizes the number of transactions. Before the
proof, we first give two lemmas about the connection between MM and EM.

Lemma 1. Given a set of shouts X, let XEM and XMM are all the shouts
included in MEM (X) and MMM (X), respectively, then XEM ⊆ XMM .

Proof. Since MM first finds all the matches that can be found with EM, then
checks if unmatched shouts could be matched with the matched ones, and if so,
adds extra matchable shouts in the matching by changing which ask and bid
to match, but without removing any already matched shouts, so all shouts in
MEM (X) are included in MMM (X). #$

Lemma 2. Given a set of shouts X, NEM (X) ≤ NMM (X) ≤ 2 ∗NEM (X).

Proof. From Lemma 1, we can get NMM (X) ≥ NEM (X) because MM will return
at least the number of matches returned from EM. Since in MM all the extra
matchable shouts have to be matched with matched shouts in EM, so at most
NEM (X) pairs of extra matchable shouts can be added. #$

Theorem 1. Given a set of shouts X, NMM (X) is maximal.

Proof. Assume that NMM (X) is not maximal, i.e. there is at least one more
pair of ai>NMM (X) and bj>NMM (X) (i and j can be different) from the sorted
asks and bids that should be included in the result matching (assume that the
index starts from 1). We also know p(ai) > p(bj) because of the sort and the
jump condition in Algorithm 3.1 (line 6). Thus ai and bj have to be matched
with another bid and ask with index ≤ NEM (X), respectively. Now we check
two conditions of NMM (X): one is NEM (X) ≤ NMM (X) < 2 ∗ NEM (X) and
the other is NMM (X) = 2 ∗NEM (X).
1. If NEM (X) ≤ NMM (X) < 2 ∗ NEM (X), the recursive call of MM will end

up with either p(ak) > p(bNMM(X)−k+2) or p(aNMM(X)−k+2) > p(bk) for
some integer k ∈ [1, e + 1], where e = NMM (X) − NEM (X). If p(ak) >
p(bNMM(X)−k+2) for some k, based on the sort order, we also have
p(bNMM(X)−k+2) ≥ p(bj), so we get p(ak) > p(bj), that is, bj has to be
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matched with some ask aj′<k. However, each aj′<k has already been matched
with another bid bNMM(X)−j′+1, and, based on the sort order, we know
p(bNMM(X)−j′+1) ≤ p(bNMM(X)−k+2), thus p(ak) > p(bNMM(X)−j′+1), i.e.
bNMM(X)−j′+1 cannot be matched with any ask ordered after ak−1. If we
want to match bj , we have to remove some already matched bid. Similarly
for p(aNMM(X)−k+2) > p(bk). Thus either ai or bj will not be matchable if
k = 1, or some already matched shout(s) will be removed if k > 1, which
contradicts the assumption.

2. If NMM (X) = 2 ∗ NEM (X), every shout with index ≤ NEM (X) will be
matched with another shout with index > NEM (X) in MMM (X). Thus we
cannot match more shouts without losing matched ones in MMM (X), which
again contradicts the assumption. #$

4.2 Maximizing Sell/Buy-Volume

Apart from the number of transactions, sell-volume and buy-volume are also
measures of the liquidity of a marketplace. We show that MM not only improves
both of them compared with EM, but also maximizes buy-volume and minimizes
sell-volume compared with any matching method that gives the same number of
matches as MM.

Definition 2. Given a matching M, the sell-volume is
∑

(a,b)∈M p(a). The
buy-volume is

∑
(a,b)∈M p(b).

Given a set of shouts X , we have
∑

(a,b)∈MMM (X) p(a) ≥
∑

(a,b)∈MEM (X) p(a)
and

∑
(a,b)∈MMM(X) p(b) ≥

∑
(a,b)∈MEM (X) p(b) because of Lemma 1. So MM

will improve, if possible, sell-volume and buy-volume compared with EM.

Theorem 2. Given a set of shouts X, ∀M ∈ {M : |M(X)| = NMM (X)}∑
(a,b)∈MMM (X) p(a) ≤∑

(a,b)∈M(X) p(a) ∧∑(a,b)∈MMM (X) p(b) ≥∑
(a,b)∈M(X) p(b).

Proof. Given a set of shouts X , from the MM algorithm, we know that the first
NMM (X) asks in ascending order and the first NMM (X) bids in descending
order are matched. Thus the corresponding sell-volume and buy-volume will
be minimal and maximal, respectively, given that the number of matches is
NMM (X). #$

4.3 Maximizing Profit

In this section, we give the definition of the auctioneer’s profit and analyse the
impact of MM on that profit. Especially, we prove that MM maximizes the
auctioneer’s profit compared with any other matching method that matches the
same number of pairs as MM.

Definition 3. Given matching M , the auctioneer’s profit is the difference be-
tween the sum of the price of all bids and that of all asks in M :

U(M) =
∑

(a,b)∈M p(b)−
∑

(a,b)∈M p(a)
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Theorem 3. Given a set of shouts X, U(MMM (X)) ≤ U(MEM (X)). Further-
more, ∀M ∈ {M : |M(X)| = NMM (X)}U(MMM (X)) ≥ U(M(X)).

Proof. Given a set of shouts X , let m = NEM (X) and n = NMM (X). From
Lemma 2 we know m ≤ n. From Lemma 1, if m = n, we have U(MMM (X)) =
U(MEM (X)). If m < n, then

U(MEM (X)) =
∑m

i=1 (p(bi)− p(ai))
U(MMM (X)) =

∑m
i=1 (p(bi)− p(ai)) +

∑n
i=m+1 (p(bi)− p(ai))

where bi means the ith bid from Xbid in descending order and ai is the ith
ask from Xask in ascending order w.r.t. their price. Since p(bi) ≥ p(ai) when
i ≤ m, and p(bi) < p(ai) when i > m, we get

∑m
i=1 (p(bi)− p(ai)) ≥ 0 and∑n

i=m+1 (p(bi)− p(ai)) < 0. Thus U(MMM (X)) ≤ U(MEM (X)).
Given the number of matches NMM (X), we can easily get U(MMM (X)) is

maximal from Theorem 2. #$

Although the auctioneer’s profit with MM might be less than that with EM in
the short term, the lost profit is actually used in liquidity maximization. High
liquidity attracts traders, which will recursively increase liquidity and also lead
to increased profit in the long term. We will show this from the experiments in
Sect. 5.

4.4 Maximizing Social Welfare

Maximizing social welfare means maximizing the sum of traders’ valuations of
the item they are holding, i.e. matched buyers and unmatched sellers. Given bids
B′ that are matched and asks A′ that are unmatched, then the term that we wish
to maximize is:

∑
b∈B′ p(b) +

∑
a∈A′ δp(a), where δ ∈ [0, 1] is a discount factor

of the valuation of the goods that are not matched/traded. This is reasonable
because, for instance, some commodities have an expiry date, e.g. ice cream and
flowers, and there might be an inventory cost for un-traded goods.

Let BMM and BEM are the matched bids in MM and EM, respectively,
we know from Lemma 1 that BMM ⊇ BEM , so we have

∑
b∈BMM

p(b) ≥∑
b∈BEM

p(b). If δ = 0, MM maximizes social welfare. The proof is similar to the
proof of Theorem 2.

5 Experimental Results

We have integrated the EM and MM specified in Sect. 3 in jackaroo4 which is
a successful market under the CAT Tournament (Trading Agent Competition
Market Design) platform. A CAT game is a simulation of exchange markets, and
consists of buyers, sellers, and specialists. Each specialist operates and sets the
rules for a single exchange market, and traders buy and sell goods in one of the
available markets. In the CAT tournaments, the buyers and sellers are provided
by the organizers, whereas specialists are designed by the entrants [9].
4 Achieved 3rd, 1st, and 2nd in CAT Tournament 2008, 2009, and 2010, respectively.
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In our experiments, we use two markets (two variations of jackaroo) that use
the same rules except that one uses EM and the other uses MM, and 80 profit-
seeking traders with different intelligences to simulate a real market situation. We
compare these two markets in 500 virtual days. In each day, each trader chooses
only one market to exchange goods, and depending on the profit a trader got in
that market, the trader might move to the other market on the next day.

Figures 2 and 3 show the main results related to our analysed properties in
Sect. 4. Please note that Fig. 3 (a) shows information for each day, the rest use
the average value of every 25 days. From Fig. 2 we can see that the transaction
volume with MM is about 5 times that with EM, and both the buy-volume and
sell-volume of the market with MM are about 4 times those of the EM market.
As we mentioned in Sect. 4, good market liquidity will attract traders to the
marketplace. This can be observed from the experiments. Figure 3 (a) shows
the trader distribution in each day: in the very beginning, traders are equally
distributed, but after 50 days, the MM market attracted most traders and it
could maintain this until day 500. Because of trader attraction, the auctioneer’s
profit in the MM market is actually higher than that gained from the EM mar-
ket (see Fig. 3 (b)), though the average profit for each transaction in the MM
market is much smaller than that in the EM market (see Fig. 3 (c)). Note that,
because the CAT Tournament platform was designed specifically for Trading
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Agent Competition, it may not be the perfect testing environment for matching
policies. Nonetheless, our experiments have provided a positive support to our
theoretical results.

6 Conclusion

We have developed a new matching approach, called maximal matching, for a
double auction market. We compared maximal matching with the most studied
matching algorithm, equilibrium matching, and analysed its properties. The most
distinctive property of maximal matching is liquidity maximization, which is a key
factor in measuring the success of a marketplace. We also showed the advantages
of maximal matching from experiments by using the CAT Tournament platform.

It is easy to see that a double auction mechanism with maximal matching is
not necessarily incentive compatible. The essential feature of incentive compati-
bility is that the clearing price of a match does not depend on the bidding prices
of the match. Maximal matching cannot guarantee this because the intersection
of the clearing price ranges of all matches might be empty, while equilibrium
matching can have incentive compatibility depending on how the uniform clear-
ing price is chosen [4,5]. However, incentive compatibility is not compatible with
most other desirable properties and is also very hard to achieve, especially in
dynamic/online double auction (e.g. stock exchanges), where shouts are coming
and leaving over time and there is more than one matching to search sequen-
tially [3,10].
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Ray, Tapabrata 425

Rens, Gavin 395

Rintanen, Jussi 415

Schmidt, Daniel Francis 213, 223

Schoenig, Adrian 506

Schultz, Carl 62

Setayesh, Mahdi 323

Simoff, Simeon 344

Singh, Hemant K. 425

Skabar, Andrew 435, 466

Smith, Tony C. 233

Smith, Warren 425

Squire, David McG. 194

Stumptner, Markus 496

Suter, David 194

Szeto, Chi-Cheong 92

Takisima, Yasuhiro 455

Tan, Swee Chuan 112

Teng, Shyh Wei 112

Thielscher, Michael 1

Ting, Kai Ming 112

van De Molen, Chris 233

Varzinczak, Ivan 395

Vo, Bao Quoc Bao 375, 385

Wang, Xin 132

Wobcke, Wayne 476

Wu, Xiyuan 132

Xu, Lei 92

Yanagihara, Tadashi 455

Yazdani, Danial 334

Yearwood, John 102, 184

Zaidi, Nayyar Abbas 82, 194

Zhang, Dongmo 42, 516

Zhang, Ke 122

Zhang, Mengjie 243, 253, 273, 313, 323

Zhao, Dengji 516

Zhao, Lei 102

Zheng, Qinghua 132

Zhuang, Zhi Qiang 72


	Title Page
	Preface
	Conference Organization
	Table of Contents
	Knowledge Representation and Reasoning
	Pushing the Envelope: General Game Players Prove Theorems
	Introduction
	Background
	Game Description Language
	Formalising and Encoding Temporal Game Properties

	Proving Multiple Temporal Game Properties at Once
	Expressiveness and Correctness of the Proof Method
	Experimental Results
	Summary
	References

	Temporal Belief-Change: $κ$-functions Approach
	Introduction
	Temporal Ranking Function: Temporal Belief Framework
	Temporal  and AGM Revision
	Temporal  and KM Belief Update
	Discussion and Conclusion
	References

	Resource-Sensitive Reasoning with Sequential Information
	Introduction
	Sequence-Indexed Linear Logic
	Main Theorems
	Applications
	References

	Frame-Based Dialogue Management Automated Error Recovery Approach
	Introduction
	Journaling System and Causality Tracking Mechanism
	Journaling System
	Causality Tracking Mechanism

	Example
	Future Work
	Conclusion
	References

	Characterizing Relevant Belief Revision Operators
	Introduction
	Preliminaries
	Belief Revision Issue

	Prime Implicants Based Revision
	Incorporating Prime Implicants
	Preference Ordering over Terms
	Prime Implicant Based Revision

	Relevant Revision
	Conclusion
	References

	Belief Erasure Using Partial Imaging
	Introduction
	Background
	Partial Imaging
	Probabilistic Removal Functions
	Variants of Imaging
	Selective Imaging
	Selective Partial Imaging

	Discussion and Conclusion
	References

	The Impact of Qualification on the Application of Qualitative Spatial and Temporal Reasoning Calculi
	Introduction
	A General Definition of QSTR Applications
	Selecting QSTR Calculi
	Qualification When Input Is a Consistent Atomic Network
	Qualification When Input Is a Consistent Non-Atomic Network
	Qualification When Input Is an Inconsistent Network

	Properties of QSTR Applications
	Conclusions
	References

	Two Methods for Constructing Horn Contractions
	Introduction and Background
	Contractions under Horn Logic
	Transitively Relational Partial Meet Horn Contraction
	Connections between EEHC and TRPMHC
	Conclusion
	References


	Data Mining and Knowledge Discovery
	Database Normalization as a By-product of Minimum Message Length Inference
	Introduction
	Minimum Message Length
	A Typical Normalization Procedure - An Example
	MML Interpretation of Normalization
	Conclusion and Future Work
	References

	A Heuristic on Effective and Efficient Clustering on Uncertain Objects
	Introduction
	Related Work
	Clustering Uncertain Objects with Expected Squared Euclidean Distance
	Reduce UK-means to K-means
	Approximate UK-means

	Experimental Evaluation
	Execution Time
	Clustering Results

	Conclusion
	References

	A New Supervised Term Ranking Method for Text Categorization
	Introduction
	A New Feature Ranking Method
	Term-Category Weighting
	Maximum Gap

	Experiments
	Experimental Results
	Conclusion
	References

	A Comparative Study of a Practical Stochastic Clustering Method with Traditional Methods
	Introduction
	Traditional Clustering Methods
	Practical Stochastic Clustering Method
	Experiments and Results
	Concluding Remarks
	References

	An Effective Pattern Based Outlier Detection Approach for Mixed Attribute Data
	Introduction
	Patterns and Outliers in Mixed Attribute Data
	Pattern Based Outlier Detection Algorithm 
	Experimental Results and Comparison
	Synthetic Data
	Real World Data

	Conclusions
	References

	Incremental Projection Vector Machine: A One-Stage Learning Algorithm for High-Dimension Large-Sample Dataset
	Introduction
	Related Work
	The SVD in Data Mining
	Single Hidden Layer Feed Forward Networks (SLFNs)
	Extreme Learning Machine
	Projection Vector Machine

	The Proposed Algorithm: Incremental Projection Vector Machine
	Performance Evaluation
	Selections of Parameters
	Experimental Results and Analysis

	Conclusions and Future Work
	References


	Machine Learning
	Model-Based Viewpoint Invariant Human Activity Recognition from Uncalibrated Monocular Video Sequence
	Introduction
	Related Work
	Contributions

	Human Pose Estimation
	Human Activity Recognition
	Experiments
	Conclusion and Future Work
	References

	On Optimizing $Locally$ Linear Nearest Neighbour Reconstructions Using Prototype Reduction Schemes
	Introduction
	An Overview : LLR and PRS
	Schema for the Proposed Solution
	Experimental Set-Up, Results and Evaluation
	Conclusions
	References

	Efficient Two Stage Voting Architecture for Pairwise Multi-label Classification
	Introduction
	Preliminaries
	Two Stage Voting Architecture (TSVA)
	Experimental Results
	Conclusion
	References

	Newton Trees
	Introduction
	Notation and Previous Work
	Notation
	Related Work

	Stochastic Distance-Based Probability Estimation Trees
	Gravitational Partitions
	Tree Generation
	Stochastic Probability Calculation

	Experiments
	Conclusions and Future Work
	References

	Learning Parse-Free Event-Based Features for Textual Entailment Recognition
	Introduction
	Feature Space Engineering
	Lexical and Syntactic Features
	Semantic Features
	Event-Based Features
	Other Features

	Empirical Analysis
	Data
	Experiments

	Classification Model Reverse Engineering
	Concluding Remarks
	References

	A Gradient-Based Metric Learning Algorithm for k-NN Classifiers
	Introduction
	Related Work
	Approach
	Experimental Results
	Conclusion
	References


	Statistical Learning
	Dimensionality Reduction for Classification through Visualisation Using L1SNE
	Introduction
	SNE and t-SNE
	Formulation of SNE
	t-Distributed SNE

	Laplacian-distrubted (L1) SNE
	Experimental Results
	Handwritten Digits
	Photographs of Faces

	Conclusions
	References

	Review of Modern Logistic Regression Methods with Application to Small and Medium Sample Size Problems
	Introduction
	Logistic Regression Algorithms
	Stepwise Regression

	Penalized Logistic Regression
	Ridge Regression
	Least Absolute Shrinkage and Selection Operator
	Elastic Net

	Bayesian Logistic Regression
	Empirical Comparison
	A Simulation Study
	Real Data Examples

	Conclusion
	References

	The Behaviour of the Akaike Information Criterion When Applied to Non-nested Sequences of Models
	Introduction
	Akaike's Information Criterion
	Models and Nested Model Sequences
	Model Fitting and Goodness of Fit
	Akaike's Information Criterion

	The Bias in AIC for Multiple Selection
	Discussion and Impact
	Theorem 1 as an Upper Bound

	Forward Selection of Regression Features
	Application: Signal Denoising by Wavelet Thresholding

	Conclusion
	References

	Unbounded Knowledge Acquisition Based upon Mutual Information in Dependent Questions
	Introduction
	The Knowledge Base
	The Entity-Attribute Truth Table
	Acquisition
	A Question-Question Correspondence Matrix

	Question Selection and Knowledge Acquisition
	The Procedure

	Remarks
	References


	Evolutionary Computation
	A Comparison of Classification Strategies in Genetic Programming with Unbalanced Data
	Introduction
	GP Framework and Classification Strategies
	GP Fitness Functions
	Experimental Parameters, Setup and Data Sets
	Experimental Results and Analysis
	Conclusions
	References

	An Encoding Scheme for Cooperative Coevolutionary Feedforward Neural Networks
	Introduction
	The Neuron Based Subpopulation 
	Preliminaries
	The New Encoding Scheme: Neuron Based Subpopulation (NSP)

	Simulation and Analysis
	Real-World Problems and Neural Network Configuration
	Number of Generations in Subpopulation 
	Analysis and Discussion

	Conclusions and Future Work
	References

	Evolving Cooperation in the Spatial N-player Snowdrift Game
	Introduction
	The N-player Snowdrift Game
	The Model
	Strategy Representation
	Strategy Update

	Experiments and Results
	Conclusion and Future Work
	References

	Sampling Methods in Genetic Programming for Classification with Unbalanced Data
	Introduction
	Background
	New Sampling Methods
	Experimental Design
	Experimental Results
	Conclusions
	References

	Evolutionary Non Photo–Realistic Animations with Triangular Brushstrokes
	Introduction
	Related Work
	Evolutionary Art
	Non Photo-Realistic Rendering

	Configuration of Genetic Programming
	Fitness Function:
	Open and Closed Triangular Strokes
	Different Stroke Placement Strategies

	Experimental Results
	Open vs. Closed Triangular Brushstrokes
	Different Size of Triangles
	Different Stroke Placement Modes

	Conclusion
	References

	Cellular Differential Evolution Algorithm
	Introduction
	Cellular Genetic Algorithm (cGA)
	Differential Evolution (DE)
	Cellular Differential Evolution (cDE)
	Empirical Study 
	Experimental Study
	Experimental Setup
	Results and Analysis

	Conclusion
	References

	A Comparative Study of CMA-ES on Large Scale Global Optimisation
	Introduction
	Background
	Cooperative Co-evolution
	Covariance Matrix Adaptation Evolution Strategy

	Experimental Results and Analysis
	Conclusion and Future Works
	References


	Particle Swarm Optimization
	Hybrid Particle Swarm Optimisation Algorithms Based on Differential Evolution and Local Search
	Introduction
	Background
	Particle Swarm Optimisation
	Differential Evolution
	Related Work of Hybrid PSO for Multi-modal Functions

	New Hybrid PSO Algorithms
	Hybrid PSO Algorithm Based on Differential Evolution
	Hybrid PSO Algorithm Based on Differential Evolution and Local Search
	Discussion

	Experimental Design
	Multi-modal and High-Dimensional Functions
	Parameter Setting

	Experimental Results and Discussion
	Conclusions
	References

	Edge and Corner Extraction Using Particle Swarm Optimisation
	Introduction
	Background
	Particle Swarm Optimisation
	Previous Approaches to Edge Detection
	Corner Detection as Interest Point Detection

	PSO for Low Level Feature Extraction
	PSO-Based Algorithm for Edge Detection
	New PSO-Based Algorithm for Corner Detection

	Experimental Design
	Results and Discussion
	Conclusions
	References

	Fuzzy Adaptive Artificial Fish Swarm Algorithm
	Introduction
	Proposed Algorithms
	Fuzzy Uniform Fish (FUF)
	Fuzzy Autonomous Fish (FAF)

	Experimental Results
	Conclusion
	References


	Intelligent Agent
	The Honourable Negotiator: When the Relationship IsWhat Matters
	Introduction
	Information-Based Agency That Handles Relationships
	An Architecture to Enable Relationships
	Valuing Dialogues
	Relationship Strategies and Tactics

	Providing Agents with Information from External Sources
	Conclusions
	References

	Tuning Java to Run Interactive Multiagent Simulations over Jason
	Introduction and Related Work
	Test Description
	Java Tuning
	Performance Evaluation
	Conclusions and Future Work
	References

	Emergence of Cooperation in a Bio-inspired Multi-agent System
	Background
	Altruism of Army Ants
	Defining the Problem
	Judgment Criteria for Entering Altruism State
	Hypotheses
	Experiment to Verify the Hypotheses

	Judgment Criteria with Reference to Chain Formation
	What Is Chain Formation?
	Experiment to Verify the Chain Formation System

	Changes in Strategy Based on Numbers of Agents
	Deciding Group Behavior of Army Ants
	Comparative Experiment

	Simulation with Fixed Role Assigned
	Conclusion 
	References

	An Efficient Approach for Ordering Outcomes and Making Social Choices with CP-Nets
	Introduction
	CP-Net Overview
	Reasoning with CP-Net Topologically
	The Topological Order of Variables
	Generating the Preference Order over the Outcome Space Using RA-Tree

	Making Social Choices with RA-Trees
	Conclusion and Future Work
	References

	Real-Time Coordination of Concurrent Multiple Bilateral Negotiations under Time Constraints
	Introduction
	Related Work
	Formal Description
	The Coordination Process
	Empirical Evaluation
	Conclusions and Future Work
	References

	A Logic for Reasoning about Actions and Explicit Observations
	Introduction and Motivation
	A Logic for Actions and Observations
	Syntax
	Semantics

	Specifying Domains in LAO
	Tableaux for LAO
	Discussion and Related Work
	Concluding Remarks
	References


	Search and Planning
	Taking Learning Out of Real-Time Heuristic Search for Video-Game Pathfinding
	Introduction
	Problem Formulation
	Related Work
	Intuition for Our Approach
	Implementation Details
	Offline Stage
	Online Stage

	Theoretical Analysis
	Results
	Database Generation
	Online Performance

	Conclusion and Future Work Directions
	References

	Heuristic Planning with SAT: Beyond Uninformed Depth-First Search
	Introduction
	Preliminaries
	The Variable Selection Scheme
	Heuristics for Variable Selection
	Goal Ordering
	Computation of Several Actions
	Discussion

	Evaluation
	Conclusions and Future Work
	References

	Performance of Infeasibility Empowered Memetic Algorithm (IEMA) on Engineering Design Problems
	Introduction
	Infeasibility Driven Evolutionary Algorithm (IDEA)
	Infeasibility Empowered Memetic Algorithm (IEMA)
	Numerical Experiments
	Experimental Setup
	Results

	Summary and Future Work
	References


	Natural Language Processing
	Short-Text Similarity Measurement Using Word Sense Disambiguation and Synonym Expansion
	Introduction
	Word Sense Disambiguation and Synonym Expansion
	The Role of Word Sense Disambiguation (WSD)
	Increasing Semantic Context through Synonym Expansion

	Word Sense Disambiguation
	Word-to-Word Semantic Similarity

	Empirical Results
	Paraphrase Recognition
	Textual Entailment Recognition
	30-Sentences Dataset

	Conclusion
	References

	LEXA: Towards Automatic Legal Citation Classification
	Introduction
	Related and Prior Work
	Creating our Corpus of Legal Citations
	Building Legal Citation Classification Systems
	Experimental Results
	Conclusions and Future Work
	References

	Hazardous Document Detection Based on Dependency Relations and Thesaurus
	Introduction
	Related Works
	Proposed Algorithms
	Generation of Keyword Set
	Expansion with a Thesaurus
	Generation of Segment Pairs

	Performance Evaluation
	Experimental Environments
	Experimental Results

	Conclusion
	References

	Improving Sentence Similarity Measurement by Incorporating Sentential Word Importance
	Introduction
	Sentence Similarity Measures
	Word-to-Word Semantic Similarity Measures

	Graph-Based Word Importance Ranking
	Modified Sentence Similarity Measures

	Empirical Results
	Famous Quotations Dataset
	Spectral Clustering
	Clustering Evaluation Criteria
	Results

	Conclusion
	References


	AI Applications
	Collaborative Filtering for People to People Recommendation in Social Networks
	Introduction
	Recommender Systems
	People to People Recommendation

	Bilateral Collaborative Filtering
	A Prototypical Collaborative Filtering Algorithm
	Collaborative Filtering for Social Networks

	Experimental Evaluation
	Experiment Setup
	Evaluation Metrics
	Results of Recommendation

	Concluding Remarks
	References

	Head X: Customizable Audiovisual Synthesis for a Multi-purpose Virtual Head
	Introduction
	Background
	System Design
	Face Synthesis
	Speech Synthesis
	Speech Animation
	External Interfaces

	Applications
	Conclusions
	References

	Diagnosing Component Interaction Errors from Abstract Event Traces
	Introduction
	Motivating Example
	Diagnosis Model
	Diagnosis Computation
	Evaluation
	Related Work
	Conclusion
	References

	Evaluating Sequential Single-Item Auctions for Dynamic Task Allocation
	Introduction
	Multi-robot Co-ordination
	Dynamic Task Allocation
	Experimental Setting
	Experimental Results and Evaluation
	Conclusions and Further Work
	References

	Maximal Matching for Double Auction
	Introduction
	Preliminaries
	The Market Model
	Objectives Considered in Double Auction Mechanism Design

	Matching Algorithm
	Equilibrium Matching
	Maximal Matching

	Properties of Maximal Matching
	Maximizing the Number of Transactions
	Maximizing Sell/Buy-Volume
	Maximizing Profit
	Maximizing Social Welfare

	Experimental Results
	Conclusion
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




