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Message from the General Chairs

The Cryptology Research Society of India (CRSI) has been successfully coor-
dinating Indocrypt, the International Conference series of Cryptology in India,
since 2000. Indocrypt 2010 was the 11th event in this series that was organized
by the C.R. Rao Advanced Institute of Mathematics, Statistics and Computer
Science (AIMSCS) and the University of Hyderabad, India, under the aegis of
the Cryptology Research Society of India.

Indocrypt 2010 was held during December 12–15, 2010, with a one-day work-
shop followed by three-day conference. Living up to its own reputation, it has
stood up to become a leading forum for the dissemination of the latest research
results in cryptology. It brought together eminent researchers from across the
world to present and discuss a wide spectrum of research results and their ap-
plications in cryptology and information security.

The hard work of all the members of the Organizing Committee was one of
the most significant factors leading to the success of the event. We express our
special thanks to Guang Gong and Kishan Chand Gupta (Program Co-chairs)
for coordinating and leading the effort of the Program Committee.

We are thankful to Rajat Tandon, Arun Agarwal and K. Nageswara Rao
(Organizing Co-chairs) along with all other members of the Organizing Com-
mittee who coordinated all the local arrangements with ardor.

We express our heartfelt thanks to DIT, DRDO, DST and MSRI for being
sponsors of the event. Last but not the least, we extend our most sincere thanks
to the authors, the reviewers and the participants for their vital contributions
to the success of the event.

December 2010 Siddani Bhaskara Rao
Bimal K. Roy



Message from the Technical Program Chairs

Indocrypt 2010, the 11th International Conference on Cryptology in India, took
place during December 12–15, 2010 at Hyderabad, India. The General Chairs,
S.B. Rao and Bimal Roy, did an excellent job in keeping all strands together and
making this conference successful. The main program was preceded by a day of
tutorial presentations by Sanjit Chatterjee and Guang Gong.

This year, the conference received 72 submissions. Each paper was assigned
to at least 3 and on an average 3.9 Program Committee members. During 2
weeks of discussions, 240 comments were produced by 36 Program Committee
members and many more reviews were added. After rigorous reviews and detailed
discussions, the Program Committee accepted 22 papers out of which 3 papers
were accepted under anonymous shepherding.

Our sincere thanks to the eminent invited speakers, Neal Koblitz and Bart
Preneel. Neal Koblitz spoke on “Getting a Few Things Right and Many Things
Wrong” and Bart Preneel gave a talk on “Cryptographic Hash Functions: Theory
and Practice.”

It would have been impossible to make this event successful without the con-
tribution and support we received from several corners. We would like to express
our gratitude to all authors around the world for submitting their papers to this
conference. Our special thanks to the Program Committee members and exter-
nal reviewers who spared their valuable time and gave their expert comments
on the submitted papers.

We would like to give our heartfelt thanks to Honggang Hu and Sumit Kumar
Pandey for their constant support. We extend our gratitude to the Organizing
Committee, volunteers and participants. We would also like to thank Qi Chai
for the website design, and easychair.org, a nice and easy-to-use conference man-
agement system.

We are grateful to the Department of Electrical and Computer Engineering,
University of Waterloo, Canada and Applied Statistics Unit, Indian Statistical
Institute, Kolkata, India for providing infrastructural support. Last but not the
least, we are grateful to those whose names are missed here, but have contributed
in some way or the other to Indocrypt 2010.

It is a pleasure to see Indocrypt as a well-accepted cryptology conference
where new results are submitted. We wish you a happy reading.

December 2010 Guang Gong
Kishan Chand Gupta
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Getting a Few Things Right
and Many Things Wrong

Neal Koblitz

Department of Mathematics
University of Washington

Seattle, Washington 98195-4350, Seattle, USA
koblitz@math.washington.edu

Abstract. The history of cryptography from ancient times to the present
is full of tales of blunders and oversights, typically occurring when an
over-confident encryptor is outwitted by a patient and clever cryptan-
alyst. In contrast, mathematics (if properly peer-reviewed) is perfect.
There is never error, because by definition one cannot prove a theorem if
it is false. So in order to remove the contingent and subjective elements
from cryptography there have been concerted efforts in recent years to
transform the field into a branch of mathematics, or at least a branch
of the exact sciences. In my view, this hope is misguided, because in its
essence cryptography is as much an art as a science.

I will start by describing a setting (taken from a recent paper written
with Alfred Menezes and Ann Hibner Koblitz) in which the conventional
wisdom about parameter selection might (or might not) be wrong. Then I
will illustrate the pitfalls of working in cryptography by giving a (far from
exhaustive) survey of the many misjudgments I have made and erroneous
beliefs I have had over the course of 25 years working in this field. I
will then describe a few of the embarrassing moments in the history of
“provable security”, which is the name of an ambitious program that
aims to transform cryptography into a science.

G. Gong and K.C. Gupta (Eds.): INDOCRYPT 2010, LNCS 6498, p. 1, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Partial Key Exposure Attack on RSA –
Improvements for Limited Lattice Dimensions

Santanu Sarkar, Sourav Sen Gupta, and Subhamoy Maitra

Applied Statistics Unit, Indian Statistical Institute,
203 B T Road, Kolkata 700 108, India

sarkar.santanu.bir@gmail.com, sg.sourav@gmail.com, subho@isical.ac.in

Abstract. Consider the RSA public key cryptosystem with the param-
eters N = pq, q < p < 2q, public encryption exponent e and private
decryption exponent d. In this paper, cryptanalysis of RSA is studied
given that some amount of the Most Significant Bits (MSBs) of d is ex-
posed. In Eurocrypt 2005, a lattice based attack on this problem was
proposed by Ernst, Jochemsz, May and de Weger. In this paper, we
present a variant of their method which provides better experimental
results depending on practical lattice parameters and the values of d.
We also propose a sublattice structure that improves the experimental
results significantly for smaller decryption exponents.

Keywords: Cryptanalysis, Factorization, Lattice Reduction, Public Key
Cryptosystem, RSA, Sublattice.

1 Introduction

The RSA [15] public key cryptosystem can be briefly described as follows:

– primes p, q, (generally considered of same bit size, i.e., q < p < 2q);
– N = pq, φ(N) = (p− 1)(q − 1);
– e, d are such that ed = 1 + kφ(N), k ≥ 1;
– N, e are public and plaintext M ∈ ZN is encrypted as C ≡ M e mod N ;
– secret key d needed to decrypt ciphertext C ∈ ZN as M ≡ Cd mod N .

One important model of cryptanalysis in the field of RSA is side channel attacks
such as fault attacks, timing attacks, power analysis etc. [3,12,13], by which an
adversary may obtain some bits of the private key d.

Boneh et al. [3] studied how many bits of d need to be known to factor the
RSA modulus N . The constraint in [3] was the upper bound on e, that had been√

N . The idea of [3] has been improved by Blömer and May [2] where the bound
on e was increased upto N0.725. Then the work by Ernst et al. [8] improved the
result for full size public exponent e. Sarkar and Maitra [16] extended the work
of [8] by guessing few bits of one prime. Recently, the work by Aono [1] improved
the results of [8] when some portion of Least Significant Bits (LSBs) of d are
exposed and d < N0.5. In this paper, we propose a variant of the idea presented
in [8] to make the results more practical when some portion of Most Significant

G. Gong and K.C. Gupta (Eds.): INDOCRYPT 2010, LNCS 6498, pp. 2–16, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Partial Key Exposure Attack on RSA 3

Bits (MSBs) of d are exposed and d < N0.6875. One may argue that exposing
LSBs and MSBs pose two different scenarios. But if we compare the two methods
by the total number of bits of d that one needs to know for cryptanalysis, our
method improves the results of [8] for a larger range of d than [1].

In this paper we consider the case when some MSBs of d are exposed. So one
can write d = d0 + d1 where the attacker knows d0. Attacker can also find an
approximation k0 = � ed0−1

N � of k. Let k1 = k − k0 and d be of bitsize δ log2 N .
Ernst et al. [8] considered the polynomial f1(x, y, z) = ed0 − 1 + ex −Ny − yz
and it is clear that (d1, k, s) is a root of f1 where s = 1 − p − q. Further, the
approximation k0 of k has been used to consider the polynomial f2(x, y, z) =
ed0 − 1− k0N + ex−Ny − yz − k0z. In this case, (d1, k1, s) is the root of f2. If
one can find the root of either f1 or f2, N can be factored.

Given (δ − γ) log2 N many MSBs of d, one can find the root of f1 or f2 in
poly(log N) time if any of the following holds [8]1:

γ < 5
6 −

1
3

√
1 + 6δ,

γ < 3
16 and δ ≤ 11

16 ,
γ < 1

3 + 1
3δ − 1

3

√
4δ2 + 2δ − 2 and δ ≥ 11

16 .

In this paper we consider the polynomial fe(x, y) = 1 + (k0 + x)(N + y) over Ze

where the terms k0, k1, d0, d1, s are same as mentioned before. Clearly (k1, s) is
the root of fe. If one gets s, then immediately the factorization of N is possible.
We use Coppersmith’s [5] method for roots of modular polynomials to find such a
root. As predicted in [8, Section 5], this leads to lattices of smaller dimension and
hence better practical results for fixed lattice parameters within certain range
of d. However, [8] does not precisely analyze this situation, and so we provide a
comprehensive treatment of such an analysis in Section 2.

Though the theoretical bounds on γ, as given in [8], work for d < φ(N), the
experimental results could only be achieved for the range d ≤ N0.7 with lattice
dimension upto 50. Our experimental results are better than that of [8] for
d ≤ N0.64 with smaller lattice dimensions. The results explaining experimental
advantage are presented in Section 4.

Although the practical attacks are mounted using lattices with small dimen-
sion, where the lattice parameters are generally predetermined, the results of
this kind are often compared in asymptotic sense in literature. In this direction,
we show that the root of fe can be obtained in poly(log N) time if λ < 3

16 , where
λ = max{γ, δ − 1

2}. Our results are as good as [8] for N0.4590 ≤ d < N0.6875 in
terms of asymptotic bound.

The reader may note that our results are not better than those in [8] if we
consider the asymptotic performance. It is only better in practical experimen-
tal scenario, where we obtain results of the same quality as in [8] by using
lattices with comparatively smaller dimension. The reason is that we use Cop-
persmith’s [5] idea for the modular polynomial, while [8] used Coron’s [6] version
for ease of presentation. Thus, the lattice dimension obtained in [8] was a cubic
in a certain parameter while we obtain a quadratic, hence smaller. This idea has
1 The terms δ, β in [8] are denoted as γ, δ respectively in our analysis.
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already been pointed out in [8] itself, but rigorous analysis for limited lattice
dimensions is studied here.

Further, in Section 3, we propose the construction of a sublattice by deleting
certain rows of the above mentioned lattice. This provides significantly improved
results for smaller decryption exponents. Once again, experimental evidences in
Section 4 support our claim.

1.1 Preliminaries

Let us start with some basic concepts on lattice reduction techniques. Consider
a set of linearly independent vectors u1, . . . , uω ∈ Zn, with ω ≤ n. The lattice
L, spanned by {u1, . . . , uω}, is the set of all integer linear combinations of the
vectors u1, . . . , uω. The number of vectors ω is the dimension of the lattice. Such
a lattice is called full rank when ω = n. By u∗

1, . . . , u
∗
ω, we denote the vectors

obtained by applying the Gram-Schmidt process [4, Page 81] to u1, . . . , uω. The
determinant of L is defined as det(L) =

∏ω
i=1 ||u∗

i ||, where ||.|| denotes the
Euclidean norm on vectors. Given a bivariate polynomial g(x, y) =

∑
ai,jx

iyj ,

the Euclidean norm is defined as ‖ g(x, y) ‖=
√∑

i,j a2
i,j and the infinity norm

is defined as ‖ g(x, y) ‖∞= maxi,j |ai,j |. We shall follow these notation in this
paper.

Fact 1. Given a basis u1, . . . , uω of a lattice L, the LLL algorithm [14] generates
a new basis b1, . . . , bω of L with the following properties.

1. ‖ b∗i ‖2≤ 2 ‖ b∗i+1 ‖2, for 1 ≤ i < ω.
2. For all i, if bi = b∗i +

∑i−1
j=1 μi,jb

∗
j then |μi,j | ≤ 1

2 for all j.

3. ‖ bi ‖≤ 2
ω(ω−1)+(i−1)(i−2)

4(ω−i+1) det(L)
1

ω−i+1 for i = 1, . . . , ω.

Here b∗1, . . . , b
∗
ω denote the vectors obtained by applying Gram-Schmidt process

to b1, . . . , bω.

In [5], Coppersmith discusses lattice based techniques to find small integer roots
of univariate polynomials modn, and of bivariate polynomials over the integers.
The idea of [5] can also be extended to more than two variables, but the method
becomes heuristic. Lemma 1 is relevant to the idea of [5] for finding roots of
bivariate polynomials over integers.

Lemma 1. Let g(x1, x2) be a polynomial which is the sum of ω many monomi-
als. Suppose g(y1, y2) ≡ 0 mod n, where |y1| < Y1 and |y2| < Y2. If ‖ g(x1Y1,
x2Y2) ‖< n√

ω
, then g(y1, y2) = 0 holds over integers.

We apply Gröbner Basis based techniques to solve for the roots of bivariate
polynomials. Though our technique works in practice as noted from the experi-
ments we perform, theoretically this may not always happen. Thus we formally
state the following heuristic assumption, that we will require for our theoretical
results.
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Assumption 1. Suppose that one constructs a lattice using the idea of Cop-
persmith [5] in order to find the root of a bivariate modular equation. Further,
consider that the lattice reduction is executed using the LLL algorithm. Let the
polynomials corresponding to the first two basis vectors of the lattice after LLL
reduction be {f1, f2} and they share the common root of the form (x(0)

1 , x
(0)
2 ). If

J be the ideal generated by {f1, f2}, then one can efficiently collect the root by
computing the Gröbner Basis of J .

Note that the time complexity of the Gröbner Basis computation is in general
double-exponential in the degree of the polynomials [7].

2 The Lattice Based Technique

We start with the following theorem.

Theorem 1. Consider the RSA equation ed ≡ 1 (mod φ(N)). Let d = N δ and
e be Θ(N). Suppose we know an integer d0 such that |d−d0| < Nγ . Then, under
Assumption 1, one can factor N in poly(log N) time when

λ <
1
12m3 − 13

12m + 1
4m2t + 1

4mt
1
2m3 + m2 + 1

2m + 1
2 t2 + 1

2 t + m2t + 1
2mt2 + 3

2mt

where λ = max{γ, δ − 1
2} and m, t are non-negative integers.

Proof. From the RSA equation, we have ed = 1+ k(N +1− p− q). When MSBs
of d are known, we can write d = d0 + d1, where d0, corresponding the MSBs
of d, is known to the attacker, but d1 is not. The attacker can also calculate
k0 = � ed0−1

N � as an approximation of k and set k1 = k − k0.
We can write ed = 1 + (k0 + k1)(N + s), where s = 1 − p − q. Thus 1 +

k0N +k0s+k1N +k1s ≡ 0 (mod e) and we are interested in finding the solution
(x0, y0) = (k1, s) of

fe(x, y) = 1 + k0N + k0y + Nx + xy

in Ze. Note that we are considering the polynomial fe(x, y) reduced modulo
e, and hence the modified constant term 1 + k0N is actually equivalent to 1 +
k0N − ed0, which is much smaller than the original. This helps in reducing the
bit size of some elements in the matrix corresponding to the lattice we describe
below.

Following results by Blömer and May [2, Proof of Theorem 6], and Ernst
et al. [8, Section 2], it can be shown that |k1| < 4Nλ, for λ = max{γ, δ− 1

2}. We
also have |s| ≤ 2N0.5, by definition. Now, let us take X = Nλ and Y = N0.5.
One may note that X, Y are the upper bounds of the roots (x0, y0) = (k1, s)
of fe(x, y), neglecting the respective small constants 4 and 2 respectively. For
integers m, t ≥ 0, we define two sets of polynomials

gi,j(x, y) = xif j
e (x, y)em−j where j = 0, . . . , m, i = 0, . . . , m− j + t,

hi,j(x, y) = yif j
e (x, y)em−j where j = 0, . . . , m, i = 1, . . . , m− j.
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Note that gi,j(k1, s) ≡ 0 (mod em) and hi,j(k1, s) ≡ 0 (mod em). We call gi,j

the x-shift and hi,j the y-shift polynomials, as per construction.
Next, we form a lattice L by taking the coefficient vectors of the shift polyno-

mials gi,j(xX, yY ) and hi,j(xX, yY ) as basis. One can verify that the dimension
of the lattice L is ω = (m+1)2 + t(m+1). The matrix LM , containing the basis
vectors of L, is lower triangular and has diagonal entries of the form

X i+jY jem−j for j = 0, . . . , m and i = 0, . . . , m− j + t, and
XjY i+jem−j for j = 0, . . . , m and i = 1, . . . , m− j,

coming from gi,j and hi,j respectively. Thus, one can calculate the determinant
of L as

det(L) =

⎡
⎣ m∏

j=0

m−j+t∏
i=0

X i+jY jem−j

⎤
⎦
⎡
⎣ m∏

j=0

m−j∏
i=1

XjY i+jem−j

⎤
⎦ = Xs1Y s2es3

where

s1 =
1
2
m3 + m2 +

1
2
m +

1
2
t2 +

1
2
t + m2t +

1
2
mt2 +

3
2
mt,

s2 =
1
2
m3 + m2 +

1
2
m +

1
2
m2t +

1
2
mt, and

s3 =
2
3
m3 +

1
2
m2t +

3
2
m2 +

1
2
mt +

5
6
m.

To utilize Gröbner basis techniques and Assumption 1, we need two polynomials
f1(x, y), f2(x, y) which share the roots (k1, s) over integers. From Lemma 1
and Fact 1, we know that one can find such f1(x, y), f2(x, y) using LLL lattice
reduction algorithm over L when

2
ω(ω−1)

4 (det(L))
1

ω−1 <
em

√
ω

.

Now, for large N, e we have (det(L))
1

ω−1 , e is much larger than 2
ω(ω−1)

4 ,
√

ω.
Hence we approximate the required condition by det(L) < em(ω−1). Given
the values of det(L) and ω obtained above, we get the required condition as
Xs1Y s2es3 < em((m+1)2+t(m+1)−1), i.e., Xs1Y s2 < es0 , where

s0 = m
(
(m + 1)2 + t(m + 1)− 1

)
− s3

=
1
3
m3 +

1
2
m2 − 5

6
m +

1
2
m2t +

1
2
mt.

Now putting the values of the bounds X = Nλ, Y = N0.5 in Xs1Y s2 < es0 , and
considering e to be Θ(N), we get the condition as

λ

(
m3

2
+ m2 +

m

2
+

t2

2
+

t

2
+ m2t +

mt2

2
+

3mt

2

)
+

1
2

(
m3

2
+ m2 +

m

2
+

m2t

2
+

mt

2

)
<

m3

3
+

m2

2
− 5m

6
+

m2t

2
+

mt

2
. (1)
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From Equation (1) we get the required bound for λ as follows:

λ <
1
12m3 − 13

12m + 1
4m2t + 1

4mt
1
2m3 + m2 + 1

2m + 1
2 t2 + 1

2 t + m2t + 1
2mt2 + 3

2mt
.

Now, one can find the root (k1, s) from f1, f2 under Assumption 1. The claimed
time complexity of poly(log N) can be achieved because

– the time complexity of the LLL lattice reduction is poly(log N); and
– given a fixed lattice dimension of small size, we get constant degree polyno-

mials and the Gröbner Basis calculation is in general double-exponential in
the degree of the polynomial.

This completes the proof of Theorem 1. 
�

Let us illustrate the lattice generation technique for m = 3, t = 0. We use the
shift polynomials e3, xe3, ye3, fe2, x2e3, xfe2, x2e3, xfe2, x3e3, x2fe2, y2e3,
yfe2, f2e, xf2e, y3e3, y2fe2, yf2e, f3 and build the following lattice L with
the basis elements coming from the coefficients of these shift polynomials, as
discussed before. In this case, the lattice dimension turns to be (m+1)2+t+mt =
16. The ‘−’ marked places contain non-zero elements, but we do not write those
as those elements do not contribute in the calculation of the determinant.

poly 1 x y xy x2 x2y x3 x3y y2 xy2 x2y2 x3y2 y3 xy3 x2y3 x3y3

e3 e3

xe3 Xe3

ye3 Y e3

fe2 − − − XY e2

x2e3 X2e3

xfe2 − − − X2Y e2

x3e3 X3e3

x2fe2 − − − X3Y e2

y2e3 Y 2e3

yfe2 − − − XY 2e2

f2e − − − − − − − − X2Y 2e

xf2e − − − − − − − − X3Y 2e

y3e3 Y 3e3

y2fe2 − − − XY 3e2

yf2e − − − − − − − − X2Y 3e

f3 − − − − − − − − − − − − − − − X3Y 3

The technique of Ernst et al. [8] as well as our strategy explained in the proof
of Theorem 1 fall under the generalized strategy presented in Jochemsz and
May [10].

In [8], Ernst et al. present two methods for lattice based cryptanalysis of RSA
with partial key exposure. In Method I, dimension of the proposed lattice is
ω1 = (m2

2 + 5m
2 +3)t+ m3

6 + 3
2m2 + 13

3 m+ 4 and the technique will be successful
for

γ <

( 1
12 −

1
6δ
)
m3 + 1

4m2t− 1
4mt2 +

( 1
2 − δ
)
m2

+ 1
2mt− 1

2 t2 +
( 5

12 −
17
6 δ
)
m− 1

2 t− 2δ − 1
2

1
6m3 + 1

2m2t + m2 + 3
2mt + 17

6 m + t + 1
(2)
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In case of Method II of [8], dimension of the corresponding lattice is ω2 =
(1
2m2 + 5

2m+3)t+ 1
3m3 + 5

2m2 + 37
6 m+5 and the required condition for success,

with δ ≤ 11
16 , is

γ <
1
12m3 + 1

4m2t + 1
4m2 + 3

4mt− 1
3m + 1

2 t− 1
1
2m3 + m2t + 1

2mt2 + 5
2m2 + 7

2mt + t2 + 6m + 4t + 3
(3)

In case of our method, the corresponding lattice dimension of ω = mt+ t+m2 +
2m + 1 produces equivalent results if λ = max{γ, δ − 1

2}, and

λ <
1
12m3 − 13

12m + 1
4m2t + 1

4mt
1
2m3 + m2 + 1

2m + 1
2 t2 + 1

2 t + m2t + 1
2mt2 + 3

2mt
. (4)

At this point, let us present some numerical values of m, t, as in Table 1, that
clearly show that theoretical bound presented in Theorem 1 is better than that
of Ernst et al. [8] for similar lattice dimension. Larger values of γ in our case
indicate that we need to know less amount of MSBs of the decryption exponent
d. Moreover, the negative values of γ in case of Method I of [8] suggests that it
is not theoretically possible to get desired results for the corresponding values
of (m, t).

Table 1. Comparison of our theoretical results with that of [8] for some specific m, t

δ Our Method I of [8] Method II of [8]
γ (m, t) LD γ (m, t) LD γ (m, t) LD

0.45 0.158 (10, 4) 165 0.082 (6, 2) 192 0.118 (5,1) 168
0.45 0.160 (11, 4) 192 0.099 (7, 3) 300 0.132 (5,2) 196
0.5 0.143 (7, 3) 88 -0.007 (4, 2) 98 0.107 (4,1) 112
0.55 0.162 (11, 5) 204 -0.012 (7, 1) 210 0.126 (6,1) 240

In view of the above data, our method proves to be considerably efficient in
terms of the lattice dimension as well. One can observe that our method offers
same or better values of γ compared to [8, Method I] or [8, Method II] with a con-
siderably lower lattice dimension. The reason, as already mentioned in the Intro-
duction, is that we use Coppersmith’s [5] idea for solving the modular polynomial,
while [8] used Coron’s [6] version. Thus, the lattice dimension they obtained was
a cubic in m whereas we obtain a quadratic in m (as t is linear in m).

Note that the maximum bit size of an entry corresponding to x shift is
Xm+tNm and the maximum bit size of an entry corresponding to y shift is
Y mem in our lattice. These bounds are of the same (or lower) size as those in
case of the lattice constructed by Ernst et al. [8] in most of the cases. Hence, a
smaller lattice dimension in our case will automatically imply better efficiency. It
is worth noticing that comparatively smaller lattice dimension for same values
of m, t allows us to tune these parameters to higher values and obtain better
results at the same cost.

As it is generally studied in cryptanalytic materials, we also obtain the asymp-
totic bounds for our technique as follows.
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Corollary 1. Consider the RSA equation ed ≡ 1 (mod φ(N)). Let d = N δ

and e be Θ(N). Suppose we know an integer d0 such that |d − d0| < Nγ. Then
one can factor N in poly(log N) time under Assumption 1 when λ < 3

16 , where
λ = max{γ, δ − 1

2}.
Proof. Putting t = τm and neglecting o(m3) terms in Equation (1), we get

1
2
τ2λ +

(
λ− 1

4

)
τ +
(

1
2
λ− 1

12

)
< 0.

Substituting the optimal value of τ = 1
λ

( 1
4 − λ

)
, we get the required condition

as λ < 3
16 . 
�

The corresponding asymptotic bounds for the methods proposed by Ernst
et al. [8] are

– Method I: γ < 5
6 −

1
3

√
1 + 6δ,

– Method II (1st result): γ < 3
16 and δ ≤ 11

16 ,
– Method II (2nd result): γ < 1

3 + 1
3δ − 1

3

√
4δ2 + 2δ − 2 and δ ≥ 11

16 .

On the other hand, cryptanalysis using our method is possible when λ < 3
16 ,

with λ = max{γ, δ − 1
2}. As λ < 3

16 , we have γ < 3
16 and δ − 1

2 < 3
16 , that is,

δ < 11
16 .

Thus our result and Method II (1st result) are of same quality in terms of
asymptotic bound when δ < 11

16 = 0.6875. However, when δ < 0.4590, then the
bound on γ using Method I of [8] is ≥ 3

16 , and our result is worse than that of [8]
in this case. Hence, our asymptotic results are of the same quality as the work
of Ernst et al. [8] for N0.4590 ≤ d < N0.6875.

But in experimental situations, our result is better than that of [8] for d ≤
N0.64. These experimental advantages are detailed in Section 4.

3 Further Improvement Using Sublattice

From the experimental results of Ernst et al. [8, Method II], one may note that
for small values of δ (e.g., δ = 0.3), the experimental results are better than
the theoretical bounds. This happens in case of our experiments as well. Our
method suggests the theoretical bound

λ <
1
12m3 − 13

12m + 1
4m2t + 1

4mt
1
2m3 + m2 + 1

2m + 1
2 t2 + 1

2 t + m2t + 1
2mt2 + 3

2mt
.

When, t = 0, we have λ <
1
12m3− 13

12m
1
2 m3+m2+ 1

2 m
< 1

6 ≈ 0.167, for all m. But the
experimental evidences for t = 0 in the range δ = 0.3 and δ = 0.35 are clearly
better. This is because, for these parameters, the shortest vectors may belong
to some sub-lattice. However, the theoretical calculation in [8] as well as in our
Theorem 1 cannot capture that. Further, identifying such optimal sub-lattice
seems to be difficult as pointed out by Jochemsz and May [11, Section 7.1]. In
this section, we propose a strategy to obtain better experimental results using a
special structure of the sublattice.
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Our strategy: Recall our construction of the lattice L in Section 2. The rows
of the matrix LM corresponding to L came from the coefficients of gi,j(xX, yY )
and hi,j(xX, yY ), where

gi,j(x, y) = xif j
e (x, y)em−j with j = 0, . . . , m, i = 0, . . . , m− j + t,

hi,j(x, y) = yif j
e (x, y)em−j with j = 0, . . . , m, i = 1, . . . , m− j.

The strategy for constructing a sublattice is to keep the x-shift portion of
LM unchanged and judiciously delete a few rows from the y-shift portion of
LM to produce a new matrix L

′
M . We propose deleting the rows generated by

hi,j = yif j
e em−j, where j = 0, . . . , m and i = 2, . . . , m − j. In other words, the

new matrix L
′
M can be constructed from the shift polynomials gi,j(xX, yY ) and

hi,j(xX, yY ), where

gi,j(x, y) = xif j
e (x, y)em−j with j = 0, . . . , m, i = 0, . . . , m− j + t,

hi,j(x, y) = yf j
e (x, y)em−j with j = 0, . . . , m− 1.

Let L
′
be the lattice defined by L

′
M . As all the rows of L

′
M come from LM , L

′

is a sublattice of L and we propose L
′
to be our chosen sublattice.

One may easily calculate that the number of rows of the sublattice is ω
′
R =

1
2 (m + 1)(m + 2) + m + t(m + 1). Hence, we obtain a substantial reduction
of 1

2m(m − 1) in terms of lattice dimension, which makes the LLL operation
considerably faster. Experiments show that applying LLL to L

′
(with lower

lattice dimension) yield results of same quality as those in case of L as shown in
Table 4 in Section 4.

Let us illustrate the strategy for choosing a sublattice in case of m = 3, t = 0.
Please refer back to Section 2 for our original lattice having 16 rows. Here,
following our strategy, we delete rows 9, 11, 12 from top and obtain the following
sublattice. The reduction in number of rows in this case is 1

2m(m − 1) = 3,
as expected. This reduction produces considerably better results in practice as
higher values of m can be used. For example, number of rows reduces to 43 from
64 in case of m = 7, t = 0.

poly 1 x y xy x2 x2y x3 x3y y2 xy2 x2y2 x3y2 y3 xy3 x2y3 x3y3

e3 e3

xe3 Xe3

ye3 Y e3

fe2 − − − XY e2

x2e3 X2e3

xfe2 − − − X2Y e2

x3e3 X3e3

x2fe2 − − − X3Y e2

yfe2 − − − XY 2e2

f2e − − − − − − − − X2Y 2e

xf2e − − − − − − − − X3Y 2e

yf2e − − − − − − − − X2Y 3e

f3 − − − − − − − − − − − − − − − X3Y 3

It is also worth noting that this reduction in dimension allows us some extra
x-shifts by increasing the value of t, which improve our results even further.
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Note that our choice of sublattice is purely heuristic at this point and it will be
interesting if one can furnish the theoretical justification for this strategy. We
have noted that the idea of [9] cannot be immediately exploited to theoretically
capture the sublattice structure.

The main motivation of exploring the idea of sublattice is the observation
that experimental results perform better than theoretical bounds. This happens
for low values of d. During experimentation, we indeed observed that improved
results are obtained for d = N0.3, N0.35 using sublattices. However, for d ≥ N0.4,
we could not achieve any improvement using the sublattice based technique over
our lattice based technique.

4 Experimental Results

We have implemented the code in SAGE 4.1 on a Linux Ubuntu 8.10, Dual
CORE Intel(R) Pentium(R) D CPU 1.83 GHz, 2 GB RAM, 2 MB Cache ma-
chine. Let us present two examples to explain our improvements.

Example 1. We consider 500 bits p, q, i.e., 1000 bits N = pq. The exponent e is
of 1000 bits and d is of 300 bits. The details of p, q, e, d are available in Appendix
A. The idea of [8, Method I] has been implemented on our platform and we get
the following comparison which shows that our method is more efficient. By LD,
we mean the Lattice Dimension.

Method m, t, LD MSBs of d to be known Time (seconds)
Method I of [8] 2, 2, 40 95 30.22
Our (Lattice) 5, 0, 36 75 6.15

Method I of [8] 3, 1, 50 75 451.42
Our (Lattice) 6, 0, 49 66 26.72

Method I of [8] 4, 2, 98 66 9101.23
Our (Lattice) 7, 0, 64 63 104.57

Our (Sublattice) 7, 0, 43 63 49.66

For lattice dimension 98, using [8, Method I], successful result could not be
achieved when 63 MSBs are available. 
�

Example 2. We take the same p, q as in Example 1, and consider 1000-bit e and
600-bit d. The details of p, q, e, d are given in Appendix A. We implemented the
idea of [8, Method II] on our platform to get the following comparison, which
shows the efficiency of our method.

Method m, t, LD MSBs of d to be known Time (seconds)
Method II of [8] 2, 2, 50 491 82.47
Method II of [8] 3, 1, 70 477 618.86

Our method 5, 0, 36 467 12.34
Our method 6, 0, 49 459 67.02
Our method 6, 1, 56 451 197.68

In these cases, we have checked that our sublattice based technique does not
provide any improvement over the general method. This is because there are
probably no sublattice structures to improve the bound of γ. 
�
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Table 2. Experimental results for Method I (left) and Method II (right) of [8] for 1000
bit N in our implementation. LLL time is presented in seconds.

δ γ γ (expt.), m = 1 γ (expt.), m = 2
asym. t = 0 t = 1 t = 2 t = 0 t = 1 t = 2

0.30 0.28 0.194 0.195 0.199 0.209 0.209 0.210
0.35 0.25 0.136 0.148 0.153 0.142 0.159 0.158
0.40 0.22 0.097 0.117 0.114 0.096 0.140 0.139
0.45 0.19 0.048 0.100 0.098 0.047 0.117 0.117
0.50 0.17 0 0.083 0.083 0 0.098 0.111
0.55 0.14 0 0.081 0.083 0 0.086 0.108
0.60 0.12 0 0.045 0.048 0 0.061 0.105
0.638 0.10 0 0 0 0 0.013 0.069
0.65 0.10 0 0 0 0 0 0.055
0.70 0.07 0 0 0 0 0 0
0.75 0.05 0 0 0 0 0 0
0.80 0.03 0 0 0 0 0 0
0.85 0.01 0 0 0 0 0 0
Lattice dim. 10 16 22 20 30 40
LLL time <1 1 3 5 11 29

δ γ γ (expt.), m = 1 γ (expt.), m = 2
asym. t = 0 t = 1 t = 2 t = 3 t = 0 t = 1 t = 2

0.30 0.19 0.197 0.197 0.198 0.194 0.192 0.193 0.201
0.35 0.19 0.147 0.147 0.146 0.143 0.158 0.159 0.158
0.40 0.19 0.116 0.119 0.120 0.124 0.139 0.140 0.140
0.45 0.19 0.101 0.109 0.117 0.115 0.120 0.129 0.135
0.50 0.19 0.084 0.111 0.120 0.118 0.109 0.123 0.133
0.55 0.19 0.081 0.110 0.116 0.118 0.109 0.122 0.134
0.60 0.19 0.052 0.109 0.115 0.121 0.112 0.124 0.132
0.638 0.19 0 0.074 0.078 0.082 0.076 0.110 0.123
0.65 0.19 0 0.058 0.058 0.060 0.060 0.096 0.106
0.70 0.18 0 0 0 0 0 0.048 0.051
0.75 0.14 0 0 0 0 0 0 0
0.80 0.11 0 0 0 0 0 0 0
0.85 0.08 0 0 0 0 0 0 0
0.90 0.05 0 0 0 0 0 0 0
0.95 0.03 0 0 0 0 0 0 0
Lattice dim. 14 20 26 32 30 40 50
LLL time < 1 2 4 37 9 50 415

We present the results for 1000 bit N here because RSA moduli of this order
are used in practice. We also detail the comparison of results of our method with
that of [8] for 256 bit N in Appendix B. We experiment with Methods I, II of [8]
on our platform as results for 1000 bits N are not available in the paper [8].
These results are presented in Table 2. We present the experimental results of
our lattice based technique for 1000 bit N in Table 3.

Our results (presented in Table 3) are better than that of [8] (presented in
Table 2) for δ ≤ 0.638. In these cases the experiments we performed were always
successful. Beyond that bound, not every attempt with the lattice dimensions
mentioned in Table 2 was successful. However, we successfully reached the range
δ = 0.64 in some of our experiments. The results can be further improved with
higher lattice dimensions.

In Table 4 we present the improvements using our sublattice based technique
for small values of d. Improved results are obtained only for δ = 0.3, 0.35, as we
discussed before.

Table 3. Experimental result of our lattice based method for 1000 bit N

δ γ m = 4, t = 0 m = 5, t = 0 m = 6, t = 0
asympt. expt. expt. expt.

0.30 0.19 0.211 0.226 0.232
0.35 0.19 0.178 0.191 0.194
0.40 0.19 0.152 0.162 0.169
0.45 0.19 0.135 0.145 0.154
0.50 0.19 0.124 0.134 0.144
0.55 0.19 0.125 0.134 0.141
0.60 0.19 0.127 0.133 0.141
0.638 0.19 0 0 0.142
Lattice dimension 25 36 49
LLL time (in sec) 3 14 100
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Table 4. Experimental result of our sublattice based method for 1000 bit N

δ m = 4, t = 0 m = 5, t = 0 m = 6, t = 0 m = 7, t = 0 m = 8, t = 0
0.30 0.211 0.226 0.232 0.235 0.237
0.35 0.178 0.191 0.193 0.196 0.199

Sublattice dimension 19 26 34 43 53
LLL time (in sec) < 1 3 14 50 140

5 Conclusion

In this paper we consider the partial key exposure attack on RSA and provide
better results than what were obtained by Ernst et al. [8], for certain parameters.
We present experimental evidences to show how our technique improves those
of [8] in the following ways:

– we provide better efficiency at smaller lattice dimensions in practice,
– our method offers similar asymptotic results for certain range of δ,
– we propose a strategy for constructing sublattice to improve the efficiency

even further.

We would like to clarify that the practical advantages we obtain over [8] are due
to using Coppersmith’s techniques (for modular polynomials) instead of Coron’s
idea (for integer polynomials), as predicted in [8].

Our work puts forward two natural open problems. The first is to improve
the range of δ for our improvements over the work of Ernst et al. [8]. The
second open problem would be to provide a theoretical model for constructing
the sublattice or a formal justification of our heuristic sublattice strategy. This
will further improve the bounds of γ within a certain range of δ, as expected
from our experimental observations.
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Appendix A

Details of Example 1

We consider 500 bits p, q, i.e., 1000 bits N = pq. The primes p, q are

291208439798748853010189716174472934796239231793982589697372703133
261175039299368917615319875150921817582610829859036449324861513036

8371602851843098873, and

265778313902463222317152253854708224764165033731853280284472891789
062446101991648433388961946084205843676898740199746957586412762306

7945908748061533789.

The exponents e (1000 bit) and d (300 bit) are respectively
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633659207269763691614318309112645615624937344891468168077011470730
734567370416913513224299682574666504358768181321713995792175285110
782709376523075587078428798930130008033274080589338770453162800745
974280531760365977715845874495002301803152689903266741084269299572

0687649380410410817145354934370336339, and

181484575860550810792607045617061963443145516645416687824939098511

5060612463635344515223099.

Details of Example 2

We take the same p, q as in Example 1, and e (1000 bit), d (600 bit) are

755866522413637537405569044813113208989323652063169738965946925168
120592494997810405959067104175688239321540340057400025402891228245
428304843173745975891137588373228155962701256304650041482255610952
204472762268658877432231024488308423653626705252851781044432017010

8273107293503245751392242116148600457, and

310467162954524537052338316072300982788100901813501555561309089978
891346487969392904811057700697506260195168811102476929658811788095

0937431880308630354291294168946380568110823581913.

Appendix B

Here we present the experimental results for 256 bit N in tabular form to
compare our results with that of [8]. In Table 5, we reproduce the results
of [8, Fig. 5, 6] when N is of 256 bits. We add one extra row of data con-
taining the run time of the program to show how the implementation of the
techniques of [8] works on our platform.

Table 5. Experimental results for the techniques of [8] for 256 bit N .
In the table on the left, LLL time A is the data given for Method I
in [8, Fig. 6] and LLL time B is the data from our implementation for Method II
of [8]. In the table on the right, LLL time A is the data given for Method II in [8, Fig.
6] and LLL time B is the data from our implementation for Method II of [8]. All the
LLL times are given in seconds.

δ γ γ (expt.), m = 1 γ (expt.), m = 2
asym. t = 0 t = 1 t = 2 t = 0 t = 1 t = 2

0.30 0.28 0.19 0.19 0.19 0.19 0.21 0.21
0.35 0.25 0.13 0.14 0.14 0.14 0.16 0.16
0.40 0.22 0.09 0.11 0.11 0.09 0.14 0.15
0.45 0.19 0.04 0.10 0.10 0.05 0.12 0.12
0.50 0.17 0 0.08 0.09 0 0.10 0.11
0.55 0.14 0 0.08 0.08 0 0.09 0.11
0.60 0.12 0 0.04 0.04 0 0.06 0.10
0.65 0.10 0 0 0 0 0 0.06
0.70 0.07 0 0 0 0 0 0.01
0.75 0.05 0 0 0 0 0 0
0.80 0.03 0 0 0 0 0 0
0.85 0.01 0 0 0 0 0 0
Lattice dim. 10 16 22 20 30 40
LLL time A 1 2 8 3 25 100
LLL time B <1 <1 <1 <1 2 4

δ γ γ (expt.), m = 1 γ (expt.), m = 2
asym. t = 0 t = 1 t = 2 t = 3 t = 0 t = 1 t = 2

0.30 0.19 0.19 0.20 0.20 0.20 0.19 0.19 0.19
0.35 0.19 0.15 0.16 0.16 0.16 0.16 0.16 0.16
0.40 0.19 0.12 0.12 0.12 0.12 0.14 0.15 0.15
0.45 0.19 0.10 0.11 0.12 0.12 0.12 0.13 0.13
0.50 0.19 0.08 0.11 0.12 0.12 0.12 0.13 0.13
0.55 0.19 0.08 0.11 0.11 0.11 0.11 0.12 0.13
0.60 0.19 0.05 0.11 0.11 0.11 0.11 0.12 0.13
0.65 0.19 0 0.05 0.06 0.06 0.05 0.08 0.10
0.70 0.18 0 0 0 0 0 0.04 0.05
0.75 0.14 0 0 0 0 0 0 0
0.80 0.11 0 0 0 0 0 0 0
0.85 0.08 0 0 0 0 0 0 0
0.90 0.05 0 0 0 0 0 0 0
0.95 0.03 0 0 0 0 0 0 0
LLL time A 1 7 17 32 30 40 50
LLL time B < 1 < 1 < 1 5 < 1 6 43
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Table 6. Experimental results for our method for 256 bit N

δ γ m = 4, t = 0 m = 5, t = 0 m = 6, t = 0
asympt. expt. expt. expt.

0.30 0.19 0.211 0.219 0.227
0.35 0.19 0.172 0.184 0.195
0.40 0.19 0.145 0.160 0.164
0.45 0.19 0.133 0.141 0.156
0.50 0.19 0.121 0.129 0.137
0.55 0.19 0.117 0.133 0.137
0.60 0.19 0.117 0.129 0.145
0.625 0.19 0 0.109 0.137
Lattice dimension 25 36 49
LLL time (in sec) <1 1 5

Next we present our results when N is of 256 bits in Table 6. One may note
that our results are better than that of [8] (presented in Table 5) for δ ≤ 0.625.
The experimental data till δ ≤ 0.625 is presented based on that fact that we are
always successful to factorize N in experiments following the idea of Theorem 1.
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Abstract. In this paper we show that solving systems coming from the
public key of the Unbalanced Oil and Vinegar (UOV) signature scheme
is on average at least as hard as solving a certain quadratic system with
completely random quadratic part. In providing lower bounds on direct
attack complexity we rely on the empirical fact that complexity of solving
a non-linear polynomial system is determined by the homogeneous part
of this system of the highest degree. Our reasoning explains, in particu-
lar, the results on solving the UOV systems presented by J.-C. Faugere
and L. Perret at the SCC conference in 2008.
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1 Introduction

Multivariate public key cryptography is one of the alternatives for the post-
quantum era, i.e. when a large enough quantum computer is built and the public
key cryptosystems used today (RSA, ECC, El Gamal) are broken. Other than
resistance to quantum computer attacks, multivariate public key cryptosystems
(MPKCs) enjoy other useful properties. In particular, they are quite fast com-
pared to conventional schemes and require only very moderate resources. This
makes MPKCs excellent candidates for use in resource constraint devices, like
RFIDs and smart cards. Still there are two issues that pose obstacles on the
way of using MPKCs. The first one is the issue of key sizes. The second problem
is that MPKC proposals are being broken on a regular basis, which weakens
believe in a possibility of constructing both secure and efficient MPKC.

Quite a few attempts have been undertaken in order to tackle the first prob-
lem. Mainly, the researchers concentrated on reducing the secret key size. In the
recent paper [23] the authors undertook an attempt to reduce the public key
size, based on yet unbroken (under proper parameter choice) UOV scheme [15].

G. Gong and K.C. Gupta (Eds.): INDOCRYPT 2010, LNCS 6498, pp. 17–32, 2010.
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There has been no lack in proposals of MPKCs, see [7,10] for an overview. On
the down side for the designers, the cryptanalytic progress has also been substan-
tial. New proposals aim mainly at fixing problems exposed by the cryptanalysis,
but then it often happens that “fixed” proposals get broken again (observe for
example the sequence Matsumoto-Imai scheme [17] → its cryptanalysis [20] →
HFE [21]→ cryptanalysis of HFE challenge 1 [13] or a less known sequence MFE
cryptosystem [26] → its SOLE cryptanalysis [8]→ improved MFE [25] → crypt-
analysis of the improved versions [5]; there are many more such “sequences”).
There is a need in theoretical backing of design principles used in constructions
of MPKCS. Note that for the classical cryptosystems one has some empirical
certainty in the security of these systems. Namely, it is believed that breaking
RSA in the classical computational model is as hard as factoring. For the ECC
there is a believe that there exists no sub-exponential algorithm for solving the
discrete logarithm problem in a group of points of an elliptic curve. Even better
arguments are provided in the lattice-base and hash-based cryptography. For ex-
ample, rigorous security reductions are provided for the cryptosystems based on
random lattices as well as more compactly representable ideal lattices. Some at-
tempts on providing “provability” or “reducibility” for MPKCs were undertaken
by N. Courtois in his note [6]. There for providing security proofs he assumed
strong properties of certain multivariate constructions themselves. It would be
desirable instead to anchor security to some known problem(s) on which MP-
KCs are built. In this paper this will be a weaker version of the MQ-problem.
Surprisingly enough, the methods used by the authors in [23] are also applicable
to tackle the problem of “provable security” in the case of MPKCs as we will
show.

The object of this paper is the Unbalanced Oil and Vinegar (UOV) scheme
proposed in [15]. Note that for suitably chosen parameters (in particular, v > o,
e.g. v = 2o, see Section 2) the progress in cryptanalysis of this scheme is con-
nected mainly with the progress in solving generic quadratic systems over a finite
field [4,14], which is one of the underlying hard problems the UOV is based on.
Despite some progress, the above problem is still considered to be hard on av-
erage. Considering lack of structural attacks on the UOV for carefully chosen
parameters, the system remains unbroken for more than ten years now. In this
paper we show that breaking a UOV system directly is on average at least as
hard as solving a quadratic system with a random quadratic part. We would like
to be careful here on what we mean. What is meant is that using only direct
(or general) attacks on the UOV, i.e. attacks based on Gröbner bases/XL-like,
it is not possible to break the UOV if the parameters are large enough (and
it is in principle possible to compute these). Still, our approach says nothing
about structural attacks on the UOV. In particular, our approach says that the
balanced Oil and Vinegar is secure against direct attacks, but it is a matter
of the polynomial time algorithm to find an equivalent secret key [16]. So our
claim is related to the direct solving attacks only. One, of course, should also be
careful with “provably secure” in this context. If it is possible to solve a random
quadratic system with certain parameters, this implies a jeopardy for a UOV



Towards Provable Security of the UOV Signature Scheme 19

scheme which anchors to such a system. In particular, in [14,4] it was shown
that it is possible to forge signatures of the UOV with certain parameters. Still,
moderate increase of parameters would render such an attack inefficient, due to
high complexity of the anchoring problem.

The paper is organized as follows. In Section 2 we review the UOV scheme.
Then in Section 3 we present the idea of [23] and show how it can be used for
inserting a random (rather than partially cyclic) matrix in a UOV public key. In
the following section we gather important points necessary for the further expo-
sition. Our reduction arguments follow in Section 5 where we present our main
result in Theorem 1. Section 6 provides some lower bounds on direct attacks
using results of the previous section. We conclude in Section 7.

2 The UOV Signature Scheme

The idea of the Oil and Vinegar trapdoor was first proposed by J. Patarin in
[22] and stems from his cryptanalysis of the Matsumoto-Imai scheme [20].

Let K be a finite field. Let o and v be two integers and set n = o+ v. Patarin
suggested to choose o = v. The original scheme was broken by Kipnis and Shamir
in [16], and it was recommended in [15] to choose v > o (Unbalanced Oil and
Vinegar (UOV)). Next we describe the idea of the UOV scheme.

The UOV scheme is a single field construction, so we work solely in the
polynomial ring K[X ], where X = {x1, . . . , xn}. We divide the variable set
X into two sets: vinegar variables (xi)i∈V , V = {1, . . . , v} and oil variables
(xi)i∈O, O = {v + 1, . . . , n}. Here |V | = v, |O| = o and v + o = n. We define o
quadratic polynomials qk(X) = qk(x1, . . . , xn) by

qk(X) =
∑

i∈V, j∈O

α
(k)
ij xixj +

∑
i,j∈V, i≤j

β
(k)
ij xixj +

∑
i∈V ∪O

γ
(k)
i xi + η(k), k = 1, . . . , o

(1)
Note that oil and vinegar variables are not fully mixed, just like oil and vinegar
in a salad dressing.

The map Q = (q1(X), . . . , qo(X)) can be easily inverted. First, we choose
the values of the v vinegar variables x1, . . . , xv at random. Therewith we get a
system of o linear equations in the o variables xv+1, . . . , xn which can be solved
by Gaussian elimination. If the system does not have a solution, choose other
values of x1, . . . , xv and try again.

The public key P of the UOV scheme consists of o quadratic polynomials in
n variables.

P = (p(1), . . . , p(o))

=

(
n∑

i=1

n∑
j=i

p
(1)
ij xixj +

n∑
i=1

p
(1)
i xi + p

(1)
0 , . . . ,

n∑
i=1

n∑
j=i

p
(o)
ij xixj +

n∑
i=1

p
(o)
i xi + p

(o)
0

)
(2)

After having chosen an ordering on monomials, we can write down the public
coefficients into an o× (n+1)·(n+2)

2 -matrix MP .
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MP =

⎛
⎜⎜⎝

p
(1)
11 p

(1)
12 . . . p

(1)
nn p

(1)
1 . . . p

(1)
n p

(1)
0

...
...

p
(o)
11 p

(o)
12 . . . p

(o)
nn p

(o)
1 . . . p

(o)
n p

(o)
0

⎞
⎟⎟⎠ .

In the case of UOV, the public key is given as

P = Q ◦ T , (3)

with an affine invertible map T and the central map Q as defined in (1).

Remark 1. In contrast to other multivariate schemes the second affine map S is
not needed for the security of UOV and therefore is left out. So we indeed use
P = Q ◦ T and not P = S ◦ Q ◦ T .

Other than the attack on the balanced version [16] , there exists a number of
attacks on different parameter choices, see e.g. [4,2]. Essentially, the UOV scheme
remains unbroken. For example the parameter choice: v = 2o, o = 26 over the
field GF (28) is considered to be secure [2,4,7].

3 Inserting a Random Matrix in the UOV Public Key

Let q
(k)
ij be the coefficients of quadratic terms of the central map polynomials

from (1). Due to equations (2) and (3), we get the following equations for the
coefficients of the quadratic terms of the public key:

p
(r)
ij =

n∑
k=1

n∑
l=k

αij
kl · q

(r)
kl =

v∑
k=1

n∑
l=k

αij
kl · q

(r)
kl (1 ≤ i ≤ j ≤ n, r = 1, . . . , o) (4)

with

αij
kl =
{

tki · tli (i = j)
tki · tlj + tkj · tli (i �= j) (5)

Note that the right hand side of equation (4) only contains coefficients of the
quadratic terms of Q and coefficients of T and is linear in the former ones. The
second ”=” in equation (4) is due to the fact that all the qij (i, j ∈ O) are zero.

Denote D := v·(v+1)
2 + o · v. Let the monomials xixj , 1 ≤ i, j ≤ n be ordered

w.r.t the given degree monomial ordering 1. The given monomial ordering <ord

also induces an ordering on the set of pairs Pr = {(i, j)|1 ≤ i ≤ j ≤ n}, namely
(i′, j′) > (i′′, j′′) iff xi′xj′ >ord xi′′xj′′ .

We define Q to be the o × D matrix containing the non-zero coefficients of
the central polynomials with respect to the monomial ordering defined above.
1 In fact we do not need a monomial ordering as is used in computer algebra; we just

need some ordering of monomials. Still we prefer to work with monomial orderings
in this paper.
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Additionally, we define a D × D matrix A containing the coefficients of the
equations (4):

A =
(
αij

kl

)
,

where indices (k, l) are taken according to the monomial ordering as above and
1 ≤ i ≤ v, i ≤ j ≤ n. Thus equation (4) yields

M ′ = Q · A, (6)

where M ′ is a submatrix of MP composed of the first D columns.
In order to obtain a UOV scheme, we assign random values from K to the

coefficients of T . Then the entries of the matrix A can be computed by equation
(5). Equation (6) yields a linear relation between the coefficients of P and Q,
given T . To use this relation properly, we need the matrix A to be invertible.
Practically for large enough fields (e.g. K = GF (28)) this property is satisfied
in an overwhelming number of cases. Assuming A is invertible, we can prove the
following proposition:

Proposition 1. Given an o×D matrix B and an affine invertible map T such
that the corresponding matrix A is invertible, it is possible to construct a UOV
scheme with the secret key (Q, T ) and the public key P with MP = (B|C), where
C is a (o× ((n + 1)(n + 2)/2−D))-matrix.

Proof. Under the assumption of A being invertible, equation (6) yields a bijection
between the entries of M ′ and the quadratic coefficients of Q. Therefore, if we
assign the entries of M ′ the values of the matrix B, we get a uniquely determined
quadratic part of the central map Q. Since the linear part and constant terms
of Q do not have any influence on the quadratic part of the public key, they can
be chosen arbitrarily.

4 Preparation

In this section we gather some points which are useful for understanding the
core part that follows.

We have already mentioned and will be mentioning the notion of a quadratic
system with a completely random quadratic part.

Definition 1. Let {f1, . . . , fm} be a set of quadratic polynomials from the poly-
nomial ring K[x1, . . . , xn], K a finite field, of the form fl =

∑
i<j aijxixj +∑

i bixi + cl, 1 ≤ l ≤ m. We say that the quadratic system f1 = · · · = fm = 0 has
a completely random quadratic part, if aij’s are chosen from K uniformly and
independently at random and bi’s and cl’s are arbitrary.

So in this sense, we require coefficients of quadratic monomials to be random
and we do not impose any restrictions on the affine part.
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All the following reasoning will be based on one assumption that appears
to be quite reasonable due to considerable empirical evidence gathered by the
community of polynomial system solving.

Assumption. Solving a random quadratic system with m equations and n vari-
ables is as hard as solving a quadratic system with m equations and n variables
with a completely random quadratic part.

This assumption deals mainly with Gröbner bases techniques and other general
techniques for polynomial system solving. Since these techniques are general, it
is quite plausible to assume that they are not able to catch any peculiarities that
may be present in an affine part, and thus the complexity is determined mainly
by the quadratic part. See more discussion on this issue after Corollary 1.

We will proceed as follows. First, by inserting a random matrix in the Macauley
matrix of the public key as in Section 3, we will show that solving the system
coming from the public key yields a solution to a certain system with a com-
pletely random quadratic part (Proposition 2). Still this is not enough, since
additional information about that system is known, which renders the problem
of finding a solution simple. Therefore, we modify a bit the key generation pro-
cedure to vaporize this additional information. Then in Theorem 1 we show that
solving the system coming from the public key yields a solution to a certain
system with a completely random quadratic part, where one has no additional
information about the system in the sense of the above assumption. Using the
assumption we conclude average hardness of direct solving the public system
and then derive some (although quite conservative) estimates on complexity.

Let us make a remark about “security reduction” we are doing here. It is not
a security reduction in a usual cryptographic sense. In particular, we do not have
any probabilistic models, advantages, etc. What we mean is that if one is able to
solve the public system, then one is able (given some values of the solution vec-
tor!) solve a system with a completely random quadratic part, which we assume
to be hard by the assumption we made here.

5 Security Reduction

Lemma 1. Let T be an invertible affine map which leads to an invertible trans-
formation matrix A. Then, every UOV-scheme that has the affine map T as a
part of the secret key can be obtained via the construction of Proposition 1.

Proof. Let (Q, T ) be a UOV scheme, such that T leads, via equation (5), to an
invertible transformation matrix A. Let Q be the o ×D matrix containing the
non-zero quadratic coefficients of Q and L be the o× (n + 1)-matrix containing
its linear coefficients and constant terms. Let B be defined as B = Q · A. Since
A was assumed to be invertible, this is an 1:1 relation between the matrices
B and Q. We start with (B, T ) and follow the construction described in the
Proposition. If the linear and constant part is chosen to be L, we will end up
with the UOV scheme (Q, T ).
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In the classical UOV key generation we start with a random UOV central
map Q, random invertible affine T and then obtain a public key P , which can be
written with a matrix MP = (B|C). According to Lemma 1 we may equivalently
start with B, the same T and end up with the same Q up to linear terms, which
may be assigned arbitrarily. In this sense both constructions are equivalent. In
order to provide a security reduction we will need the latter construction.

Let (P ,Q, T ) be a UOV scheme obtained via Proposition 1. We impose the
following monomial ordering. Let Y, Z ⊂ X = {1, . . . , n} be two disjoint subsets
of X (note that X is now a set on indexes not to be confused with the variables
set in Section 2) such that X = Y ∪ Z. The sets Y and Z have cardinalities v
and o resp., so that o + v = n. The monomial ordering with x1 > · · · > xn is
then an ordering chosen in such a way that the following holds:

xixj > xkxl > xmxp > xu ∀i, j, k ∈ Y ∀l, m, p ∈ Z ∀u ∈ X. (7)

One example of such an ordering is a weighted-degree ordering where each vari-
able of Y has weight 3 and each variable of Z has weight 2. With this ordering
quadratic monomials composed of Y -variables will be the largest, then follow
“mixed” with variables from Y and Z, and finally those composed of Z-variables.
We will need this ordering later in the proof of Proposition 2, in the follow-up
procedure of the key generation, and in Theorem 1.

Now let P (x) be polynomials of the public key P . Let h be a hash value of
the given document. The task of an attacker that wants to attack UOV directly
is to find a solution of P (x) = h. Any solution to P (x) = h provides a valid
signature, therefore enables signature forgery.

Proposition 2. Let P (x) be polynomials of the public key P of a UOV scheme
that is constructed by choosing completely random B and T , following Propo-
sition 1, and using an ordering satisfying (7). If it is possible to get a solution
x′ = (x′

1, . . . , x
′
n) of P (x) = h, then it is possible to get a solution of a quadratic

system of o equations and v variables with a completely random quadratic part.

Proof. The public key P is represented by a matrix MP = (B|C), where the
columns are ordered according to the chosen ordering that satisfies (7). Due to
this ordering the public key polynomials may be written as

p(k) =
∑

i,j∈Y

a
(k)
ij xixj +

∑
i∈Y,j∈Z

b
(k)
ij xixj +

∑
i,j∈Z

c
(k)
ij xixj +

∑
i∈X

d
(k)
i xi + e(k), (8)

for k = 1, . . . , o. Again according to the monomial ordering we have chosen,
coefficients a

(k)
ij and b

(k)
ij are elements of the matrix B and therefore are chosen

completely at random. Now a solution x′ = (x′
1, . . . , x

′
n) may be seen as x′ =

((x′
i)i∈Y , (x′

j)j∈Z). Plug in values (x′
j)j∈Z for variables (xj)j∈Z in (8). Therewith

one obtains a quadratic system with o equations and v variables (xi)i∈Y of the
form

p̃(k) =
∑

i,j∈Y

a
(k)
ij xixj +

∑
i∈Y

d̃ij
(k)

xi + ẽ(k), k = 1, . . . , o.
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Note that coefficients a
(k)
ij are completely random and are taken from the initial

construction in (8). The system we need to solve is therefore

P̃ ((xi)i∈Y ) = h. (9)

So finding a solution x′ of P (x) = h provides a solution to (9), where P̃ has
completely random quadratic part.

Proposition 2 seemingly provides a reduction for the problem of direct solving
of P (x) = h to the problem of solving a quadratic system with a completely
random quadratic part. The way we presented the public key P this is not really
true. Indeed, if the attacker knows the variable sets Y and Z he may simply
fix the variables from Y ending up with a “non-random” system with variables
from Z. In fact, if we suppose that the coefficients c

(k)
ij are zero, then by fixing

Y -variables the attacker ends up with a linear system as is the case for UOV
maps. So the problem here is that having additional information about Y and
Z the system (9) is not as hard as it is supposed to be.

Note that when the attacker uses Gröbner methods for solving, he/she would
usually fix v variables first in order to end up with an o× o system. This is due
to the fact that a random quadratic system with o equations and v variables
over GF (q) is expected to have qv−o solutions. In order to be able to compute
a solution it is preferable to “cut down” the solution space. By assigning values
to some v − o variables, the system still has o equations, but o variables, and is
expected to have a unique solution, which is the found with Gröbner basis tech-
niques. The idea of our reduction is to disguise the monomial ordering that was
used and, in particular, the sets Y and Z. Below we show that after the process
of fixing the attacker, at least on average, is intrinsically faced with solving a
quadratic system which is at least as hard as a certain “random” one. For the
reduction we need the following key generation procedure:

Key generation procedure

1. Choose a o×D matrix B completely (and uniformly) at random.
2. Choose an affine map T at random. If it is not invertible, choose again.
3. Choose Y ⊂ X, |Y | = v at random. Set Z := X \ Y .
4. Use the construction of Proposition 1 with a monomial ordering satisfying

(7), obtain the central map Q and the matrix C. The secret key is (Q, T ).
5. Let M = (B|C) be a matrix with the columns indexed by monomials with

degree up to 2 ordered with the ordering chosen in the previous step. Let
M ′ be the matrix M whose columns are permuted according to the graded
lexicographic ordering. The public key is the set of polynomials with the
matrix MP = M ′.

Now the attacker observing the matrix MP does not know which monomial
ordering was used and what are the sets Y and Z. Therefore he is not able to
figure out where the random part

∑
i,j∈Y a

(k)
ij xixj is (see proof of Proposition 2).

Note also that except of a minor modification of the key generation procedure,
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the scheme stays essentially the same. In particular, one does not need to store
the set Y : after obtaining a key pair, signature generation and verification are
independent on a monomial ordering used.

Remark 2. A legitimate question here is whether an attacker observing the ma-
trix MP is able to figure out monomials xixj , i, j ∈ Z and therefore the sets Y
and Z. In principle, he must be able to do so, since the coefficients of mono-
mials xixj , i, j ∈ Z are not completely random, but obtained via the “reverse”
computation, after computing Q from B and T . It may be shown that the co-
efficients of the matrix C in the construction satisfy certain quadratic relations.
So, in principle, by choosing a subset S ⊂ X of cardinality o and checking if
coefficients xixj , i, j ∈ S satisfy these quadratic relations, it may be possible to
distinguish Z from other subsets of X . In order to do so one has to go through
all o-subsets of n and this has complexity dominated by O(

(
n
o

)
). It can be shown

to be worse than one can do with system solving, as we proceed below.
Moreover, in the monomial ordering as in the above construction, we may also

choose an arbitrary order of variables, unknown to the attacker. Then it is not
really clear for the attacker, how to apply the quadratic relations that exist for
the matrix C.

All in all, it seems that it is computationally impossible for the attacker to
figure out the partition of X into Y and Z. It is a future research point to confirm
this statement more rigorously.

The next theorem shows that the attacker applying the fixing+solving technique
has to face some random system, at least on average.

Theorem 1. Let v = αo, α ≥ 1. Let

P (x) = h (10)

be an o× (o+ v) system of public equations for a UOV scheme obtained with the
procedure above. Suppose that the system (10) is solved by first fixing v variables
(variables are chosen at random, as well as the values fixed) and then solving
the o × o system, which is obtained after plugging in the fixed values in (10).
Then solving (10) is on average at least as hard as solving an o× α

α+1o quadratic
system with a completely random quadratic part.

Proof. Let Y and Z be disjoint variable sets as in the construction. So the public
key is given by equations (8), where Y and Z are unknown to the attacker. The
attacker fixes v variables to concrete values. Since v = αo, we expect on average

α
α+1v variables to be fixed in Y and 1

α+1v in Z. So there remains a set YF ⊂ Y of
variables in Y that are not fixed, |YF | = v − α

α+1v = 1
α+1v = α

α+1o. Denote the
non-fixed variables in Z by ZF . After plugging in the fixed values the attacker
obtains a system

P̃ (xi|i ∈ YF ∪ ZF ) = h. (11)

Again note that the sets YF and ZF are not known to the attacker. Let x′ =
(x′

i|i ∈ YF ∪ ZF ) be a solution of (11). Suppose the attacker is given the values
of x′

i, i ∈ ZF . After plugging in these values in (11) he/she obtains a system
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˜̃P (xi|i ∈ YF ) = h (12)

with a completely random quadratic part (all quadratic terms in (8) are “killed”
except the ones with i, j ∈ YF ). The system (12) has o equations and |YF | = α

α+1o
variables. Since the values x′

i, i ∈ ZF were given to the attacker, the actual
solving of (11) is at least as hard as solving (12).

The corollary below specifies the above theorem to the choice of α that is used
in the UOV to avoid the structural attack of [15].

Corollary 1. If v = 2o, then the quadratic system with a completely random
quadratic part from Theorem 1 has o equations and 2

3o variables. In other words,
the ratio #eqs/#vars = 3/2 in this case.

Let us discuss the above results. It may seem surprising that we have such a
reduction to a hard problem, considering that the legitimate signer is able to get
the solution x′. The catch here is that the system (12) is not completely random,
only its quadratic part is. So it is not surprising that the signer, knowing the
decomposition P = Q ◦ T is able to get a solution which also yields a solution
to (12). Similarly, the attacker, who via some structural attack is able to get the
decomposition P = Q ◦ T or an equivalent one, is also able to solve (12). If we
consider only direct attacks, though, the situation is different. There is a quite
strong experimental evidence that the complexity of solving a non-linear sys-
tem is determined by its homogeneous part of the highest degree, e.g. [14,4]. In
particular, in [3] an affine sequence of polynomials is defined to be semi-regular
(practically speaking random) if its homogeneous part of the highest degree is
semi-regular. Complexity estimates in [3] rely on the domination of the homo-
geneous highest degree part. If we take this domination assumption, we may
state that from the point of view of Gröbner basis algorithms (in particular F5
[12]) complexity of solving (12) and a completely random quadratic system of o
equations in α

α+1o variables is roughly the same. Figuratively speaking, Gröbner
basis algorithms are not able to see peculiarities that are hidden in the linear
part of (12). The above reasoning is compliant with the assumption we made in
Section 4.

In [14] J.-C. Faugère and L. Perret discuss security of the UOV scheme under
direct attacks. In particular, they apply their implementation of the F5 algorithm
to solve UOV systems with o = 16 and v = 16, 32 over GF (24). Based on their
experimental data, they conclude in particular: “These experiments suggest that
the systems obtained when mounting a specify2+solve signature forgery attack
against UOV behave like semi-regular systems”. It is now clear why they came
to such a conclusion: they intrinsically face solving a “random” system (12). In
fact as we have seen in the proof of Theorem 1 a system the attacker faces is a
o × o system (11), which is (much) harder than (12). We made a reduction to
(12) to use a “random” quadratic system as a “provably secure” anchor. Also
the following known observation is noticeable. We see from Theorem 1 that the

2 We called it “fix”.
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larger α is, the more variables we expect in an “underlying” random system
(and the number of equations stays the same). Therefore, as α (and thus v)
increases, we expect this system to be “more random” and thus harder to solve.
This is confirmed in [2], where the authors say “From experiments, we could con-
clude that the time complexity increases exponentially with increasing v. This
fact can be understood intuitively by the observation that for increasing v, the
scheme becomes more random, which makes it more difficult to solve.”. Theo-
rem 1 provides a theoretical explanation of this intuition. Note that although
we are mentioning some previously known work here, clearly the key generation
construction from Section 4 was not used there. Still, due to Lemma 1 the usual
key generation and the modified one yield essentially the same result. Therefore,
the reduction results naturally explain the older experimental results.

As a result, we have a theoretical argument for security of the UOV schemes
under direct attacks. Note that such security is not that common for MPKCs.
Many proposals may actually be broken already by direct attacks: Matsumoto-
Imai, some instances of HFE [13], MQQ scheme [18], and many others. Some
others although not broken by direct methods, show their distinction from ran-
dom systems. In particular, solving succeeds at degrees lower than one would
expect from a random system.

6 Expected Lower Bounds on Direct Attacks Complexity

In this section we present lower bounds of attacker’s complexity, when using
direct solving methods. These lower bounds are based on average hardness the
attacker has to face as is described in Theorem 1 and Corollary 1. In order to pro-
vide concrete formulas for lower bounds we use complexity estimates for the F5
algorithm that exist for semi-regular sequences [3]. These complexity estimates
are also in accordance with the assumption we made in the previous section.
Similar complexity estimates exist for the XL algorithm, see [27].

In order to formalize the notion of a random system, the notion of a
(semi-)regular system was introduced in [3]. The definition of a semi-regular
system is as follows.

Definition 2 ([3]). Let f1, . . . , fm ∈ K[X ] be a sequence of homogeneous poly-
nomials. This sequence of polynomials is semi-regular if

- 〈f1, . . . , fm〉 �= K[X ],
- for all 1 ≤ i≤m and g ∈ K[X ] : deg(g ·fi)<dreg and g ·fi ∈ 〈f1, . . . , fi−1〉 ⇒

g ∈ 〈f1, . . . , fi−1〉.

Here dreg is the degree of regularity defined in [3] and it determines the degree
at which a Gröbner basis algorithm like F5 terminates.

The definition above is for homogeneous systems only. A sequence f1, . . . , fm

of affine polynomials is called semi-regular if the sequence fh
1 , . . . , fh

m is semi-
regular, where fh

i is the homogeneous part of fi of the highest degree.
Further, there is a result saying what is the asymptotic complexity of solving

a semi-regular system.
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Proposition 3 ([3]). Let f1, . . . , fm be an affine semi-regular sequence. Then
the total number of arithmetic operations in K performed by the F5 algorithm
is bounded by

O
(
m · dh

reg

(
n + dh

reg − 1
dh

reg

))ω

.

Here dh
reg is the degree of regularity of the corresponding homogeneous semi-

regular sequence, and ω is the exponent of linear algebra elimination procedure,
2 < ω ≤ 3.

For our results we also need explicit formulas for the degree of regularity that
plays a role in the proposition above. Namely, the following result from [3] is of
interest.

Theorem 2 ([3]). With the notation as above, let m = kn, k is a constant
k > 1. Then the degree of regularity of a homogeneous quadratic semi-regular
sequence in m polynomials and n variables behaves asymptotically like:

dreg = (k − 1
2
−
√

k(k − 1))n +O(n1/3), n →∞.

Note that the above results are asymptotic. Therefore, one has to be careful
when applying these to concrete instances. Now having all this machinery we
may state the main result of this section.

Theorem 3. We use the same notation as in previous sections. Let v = αo, α ≥
1 and o is large enough. Let (10) be an o× (o+ v) system of public equations for
a UOV scheme obtained with the procedure of Section 3. Suppose that the system
(10) is solved by first fixing v variables and then solving the o × o system with
the F5 algorithm, which is obtained after plugging in the fixed values in (10).
The complexity of this approach is lower bounded by

O
(
o2 ·DR(α) ·

( α
α+1o + DR(α)o− 1

DR(α)o

)ω)
, (13)

where

DR(α) =
(
1− α

2(α + 1)
− 1√

α + 1

)
.

Proof. Due to Theorem 1 complexity of solving (10) is bounded from below by
complexity of solving a o× α

α+1o affine quadratic semi-regular system. Now the
result is obtained by setting n = α

α+1o, m = o, k = α+1
α in Theorem 2.

The above lower bound is dominated by the binomial coefficient. The following
result gives a simplified lower bound on the logarithm of complexity necessary
for the direct attack
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Proposition 4. Using notation as above, if we denote by Compl the lower
bound on complexity as in Theorem 3, then for large enough o we have

log Compl ≥ ω · 3α + 2− 2
√

α + 1
2(α + 1)

·H
( α + 2− 2

√
α + 1

3α + 2− 2
√

α + 1

)
· o,

where log is the binary logarithm and H(x) = −x log x− (1−x) log(1−x) is the
binary entropy function.

Proof. Let us rewrite the binomial coefficient in (13) in terms of o and α:

( α
α+1o + DR(α)o− 1

DR(α)o

)ω

=
(3α+2−2

√
α+1

2(α+1) o

α+2−2
√

α+1
2(α+1) o

)ω

.

Using Stirling’s approximation for large n and 0 < λ < 1: log
(

n
λn

)
≈ nH(λ) and

the fact that (13) is dominated by the binomial coefficient, we have the result
by a direct computation.

The following corollary shows the above results specified for the case α = 2.

Corollary 2. Using the notation above and assuming α = 2 we have that com-
plexity of direct F5-approach is lower bounded by

O
(
o2 · 2−

√
3

3
·
( 4−√

3
3 o

2−√
3

3 o

)ω)
,

The lower bound on the logarithm of complexity is

log Comp ≥ ω · 4−
√

3
3

·H
(2−

√
3

4−
√

3

)
· o ≈ 0.4 ω · o. (14)

In practice the lower bound (14) is pretty bad: by setting ω = 3 one needs to have
o around 70 to guarantee the security level of 80 bits. So for practical security
tighter bounds are needed.

Remark 3. The main reason why our lower bound is so bad is the use of the
oracle in the proof of Theorem 1. This oracle gives an attacker on average the
values of o

α+1 variables and therefore makes the system much easier to solve.

Note that we assumed that the attacker in the direct attack proceeds by first
fixing v variables to concrete values and then solving an o× o system. Here we
implicitly assumed that the attacker solves this o × o system “directly”. There
are other possibilities. For example, it has been shown to be a good practice
(especially when the underlying coefficient field is not too large) first to guess at
a couple of variables and then proceed with solving, e.g. with a Gröbner basis
algorithm. Recent results, also in context of the UOV, on a “hybrid” approach [4]
indicate that one may actually improve a bit on the complexity estimates above3.
3 In the sense that the attack is more efficient
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Still, we believe that the complexity estimates above grasp the essence of the
problem, namely that on average one deals with an exponential-time algorithm.
Therefore, we do not use the improved strategies here to derive more accurate
lower bounds. Potentially, one may even try to proceed without the initial fixing
of v variables. This may be possible if one uses e.g. a SAT-solver approach, see
e.g. [1]. By this approach we do not need to cut down our variety to make things
work; a SAT-algorithm is able to find one solution of a system directly. SAT-
solvers may be quite efficient for sparse systems over GF (2). Note that here we
are dealing with larger fields, rather than GF (2), and there methods of SAT-
solving are not so well understood. Moreover, complexity of such algorithms is
hard to estimate due to rich heuristics employed there. Therefore, we do not
attempt to include analysis based on SAT-solver in this paper.

7 Conclusion and Future Work

In this paper we presented a theoretical reasoning on why breaking UOV systems
directly is on average at least as hard as solving quadratic systems with a random
quadratic part. This reasoning is based on the assumption that the complexity
of solving an affine system is determined by its homogeneous part of the highest
degree, which we believe to be a very plausible assumption. It would be interesting
to test this assumption further, e.g. by using the mutant concept, [19].

As an immediate future work we see investigating the question whether similar
results may be obtained for other trapdoors, e.g. Rainbow [9] and enSTS [24]. A far
more reaching question for the UOV systems would be to see under which assump-
tions (if any) finding a decomposition of the form P = Q ◦ T can be reduced to
some problem that is believed to be hard. Existence of an efficient decomposition
finding for the balanced variant makes funding such a reduction a very challenging
task. Moreover, it is of interest to develop a more formal approach which would
enable security reduction in a classical cryptographic sense.
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reduction to zero (F5). In: Mora, T. (ed.) Proceedings of the 2002 International
Symposium on Symbolic and Algebraic Computation ISSAC, pp. 75–83. ACM
Press, New York (July 2002)

13. Faugère, J.-C., Joux, A.: Algebraic Cryptanalysis of Hidden Field Equations (HFE)
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Abstrct. Multivariate Cryptography is one of the alternatives to guaran-
tee the security of communication in the post-quantum world. One major
drawback of such schemes is the huge size of their keys. In [PB10] Pet-
zoldt et al. proposed a way how to reduce the public key size of the UOV
scheme by a large factor. In this paper we extend this idea to the Rainbow
signature scheme of Ding and Schmidt [DS05]. By our construction it is
possible to reduce the size of the public key by up to 62 %.

Keywords: Multivariate Cryptography, Rainbow Signature Scheme,
Key Size Reduction.

1 Introduction

Besides lattice-, code- and hash-based cryptosystems, multivariate cryptography
is one of the main alternatives to guarantee the security of communication in
the post-quantum world [BB08]. Multivariate schemes are fast and efficient and
seem especially suitable for signatures on low cost devices like RFIDs or smart
cards.

Since the invention of multivariate cryptography in the 1980’s, a huge vari-
ety of schemes both for encryption and signatures have been proposed. On the
one hand, we have the so called BigField-Schemes like Matsumoto-Imai [MI88]
and HFE [Pa96]. On the other hand, we have the SingleField-Schemes like UOV
[KP99] and Rainbow [DS05]. In between, there are the so called MiddleField
schemes like �-IC [DW07] and MFE [WY06]. For all of these schemes there exist
many variations and improvements, like the minus variation [PG98] [PC01], In-
ternal Perturbation [Di04] and Projection [DY07]. One common drawback of all
multivariate schemes is the large size of their public and private keys. Therefore,
the question of key size reduction for multivariate schemes is an important area
of research.

In the last years, a lot of work was done to look at possibilities to reduce the
key sizes. Most researchers hereby concentrated on the reduction of the private
key. We mention here the proposals of Yang and Chen for creating schemes with
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sparse central maps [YC05] and approaches with so called equivalent keys of Hu
et al. [HW05]. In [PB10] Petzoldt et al. presented an idea how to reduce the
public key size of the UOV signature scheme by a large factor. The principle
idea is, to compute the coefficients of the central map in such a way, that the
corresponding public key gets a compact structure.

In this paper we show how to extend this idea to the Rainbow signature
scheme, which was proposed by J. Ding and D. Schmidt in 2005 [DS05]. The
result is a Rainbow scheme, whose public key belongs to a certain subset of the
set of all valid Rainbow public keys. By doing so it is possible to reduce the size
of the public key by up to 62 %. Furthermore, we can reduce the number of field
multiplications needed during the verification process by 30 %.

The structure of this paper is as follows:
In Section 2 we describe the Rainbow signature scheme of Ding and Schmidt.

Section 3 gives an overview on the approach of [PB10] to create a UOV scheme
with partially cyclic public key. Section 4 deals with notations and definitions
we need for our construction in Section 5. Section 6 looks at security aspects
of the new scheme and Section 7 gives concrete parameter sets and compares it
with other multivariate schemes of the UOV family. Finally, Section 8 concludes
the paper.

2 Multivariate Public Key Cryptography

Multivariate Public Key Cryptography is one of the main approaches for secure
communication in the post-quantum world. The principle idea is to choose a
multivariate system F of quadratic polynomials which can be easily inverted
(central map). After that one chooses two affine linear invertible maps S and T
to hide the structure of the central map. The public key of the cryptosystem is
the composed map P = S ◦ F ◦ T which is difficult to invert. The private key
consists of S, F and T and therefore allows to invert P .

2.1 The Principle of Oil and Vinegar (OV)

One way to create easily invertible multivariate quadratic systems is the principle
of Oil and Vinegar, which was first proposed by J. Patarin in [Pa97].

Let K be a finite field. Let o and v be two integers and set n = o+ v. Patarin
suggested to choose o = v. After this original scheme was broken by Kipnis and
Shamir in [KS98], it was recommended in [KP99] to choose v > o (Unbalanced
Oil and Vinegar (UOV)). In the following we describe the more general approach
UOV.

We set V ′ = {1, . . . , v} and O = {v + 1, . . . , n}. Of the n variables x1, . . . , xn

we call x1, . . . , xv the Vinegar variables and xv+1, . . . , xn Oil variables. We define
o quadratic polynomials fk(x) = fk(x1, . . . , xn) by

fk(x) =
∑

i∈V ′, j∈O

α
(k)
ij xixj +

∑
i,j∈V ′, i≤j

β
(k)
ij xixj +

∑
i∈V ′∪O

γ
(k)
i xi + η(k) (k ∈ O)
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Note that Oil and Vinegar variables are not fully mixed, just like oil and vinegar
in a salad dressing.

The map F = (fv+1(x), . . . , fn(x)) can be easily inverted. First, we choose
the values of the v Vinegar variables x1, . . . , xv at random. Therewith we get a
system of o linear equations in the o variables xv+1, . . . , xn which can be solved
by Gaussian Elimination. (If the system doesn’t have a solution, choose other
values of x1, . . . , xv and try again).

2.2 The Rainbow Signature Scheme

In [DS05] J. Ding and D. Schmidt proposed a signature scheme called Rainbow,
which is based on the idea of (Unbalanced) Oil and Vinegar [KP99].

Let K be a finite field and V be the set {1, . . . , n}. Let v1, . . . , vu+1, u ≥ 1
be integers such that 0 < v1 < v2 < · · · < vu < vu+1 = n and define the
sets of integers Vi = {1, . . . , vi} for i = 1, . . . , u. We set oi = vi+1 − vi and
Oi = {vi +1, . . . , vi+1} (i = 1, . . . , u). The number of elements in Vi is vi and we
have |Oi| = oi. For k = v1+1, . . . , n we define multivariate quadratic polynomials
in the n variables x1, . . . , xn by

fk(x) =
∑

i∈Ol, j∈Vl

α
(k)
i,j xixj +

∑
i,j∈Vl, i≤j

β
(k)
i,j xixj +

∑
i∈Vl∪Ol

γ
(k)
i xi + η(k),

where l is the only integer such that k ∈ Ol. Note that these are Oil and Vinegar
polynomials with xi, i ∈ Vl being the Vinegar variables and xj , j ∈ Ol being
the Oil variables.

The map F(x) = (fv1+1(x), . . . , fn(x)) can be inverted as follows. First, we
choose x1, . . . , xv1 at random. Hence we get a system of o1 linear equations (given
by the polynomials fk (k ∈ O1)) in the o1 unknowns xv1+1, . . . , xv2 , which can
be solved by Gaussian Elimination. The so computed values of xi (i ∈ O1)
are plugged into the polynomials fk(x) (k > v2) and a system of o2 linear
equations (given by the polynomials fk (k ∈ O2)) in the o2 unknowns xi (i ∈ O2)
is obtained. By repeating this process we can get values for all the variables
xi (i = 1, . . . , n)1.

The Rainbow signature scheme is defined as follows:

Key Generation. The private key consists of two invertible affine maps S : Km →
Km and T : Kn → Kn and the map F(x) = (fv1+1(x), . . . , fn(x)) : Kn → Km.
Here, m = n− v1 is the number of components of F .

The public key consists of the field K and the composed map P(x) = S ◦F ◦
T (x) : Kn → Km.

Signature Generation. To sign a document d, we use a hash function h : K∗ →
Km to compute the value h = h(d) ∈ Km. Then we compute recursively x =
S−1(h), y = F−1(x) and z = T −1(y). The signature of the document is z ∈ Kn.
Here, F−1(x) means finding one (of the possibly many) pre-image of x.
1 It may happen, that one of the linear systems does not have a solution. If so, one

has to choose other values of x1, . . . xv1 and try again.
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Verification. To verify the authenticity of a signature, one simply computes
h′ = P (z) and the hashvalue h = h(d) of the document. If h′ = h holds, the
signature is accepted, otherwise rejected.

The size of the public key is

m ·
(

n · (n + 1)
2

+ n + 1
)

= m · (n + 1) · (n + 2)
2

field elements, (1)

the size of the private key

m ·(m+1)+n ·(n+1)+
u∑

l=1

ol ·
(

vl · ol +
vl · (vl + 1)

2
+ vl+1 + 1

)
field elements.

(2)
The length of the needed hash value is m field elements, the length of the sig-
nature is n field elements.

The scheme is denoted by Rainbow(v1, o1, . . . , ou). For u = 1 we get the
original UOV scheme.

Rainbow over GF (28) is commonly believed to be secure for at least 26 equa-
tions [BF09], [PB1a]. The actual design of the Rainbow layers is thereby not
so important, as long as the following four items are taken into consideration
[PB1a]:

– to defend the scheme against the Rainbow-Band-Separation attack (see sub-
section 6.2) one must have n ≥ � 5

3 · (m− 1)�.
– to defend the scheme against the MinRank attack (see subsection 6.3) one

must have v1 ≥ 9.
– to defend the scheme against the HighRank attack (see subsection 6.4) one

must have ou ≥ 10.
– to defend the scheme against the UOV attack (see subsection 6.5) one must

have n− 2 · ou ≥ 11.

In particular, (v1, o1, o2) = (17, 13, 13) is a good choice for the parameters of
Rainbow over GF (28).

3 The Approach of [PB10]

In this section we describe briefly the approach of [PB10] to create a UOV-based
scheme with a partially cyclic public key.

For SingleField schemes, both the public key P and the central map F are
quadratic maps from Kn to Ko and therefore can be written as

P(x) =
n∑

i=1

n∑
j=i

p
(k)
ij xixj +

n∑
i=1

p
(k)
i xi + p

(k)
0 resp.

F(x) =
n∑

i=1

n∑
j=i

f
(k)
ij xixj +

n∑
i=1

f
(k)
i xi + f

(k)
0 (k = 1, . . . , o)
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In the special case of the unbalanced Oil and Vinegar Signature Scheme
[KP99] P is given as a concatenation of the central UOV-map F and an affine
invertible map T = ((tij)n

i,j=1, cT ), i.e. P = F ◦ T .
The authors of [PB10] observed, that this equation leads (after fixing the

affine map T ) to a linear relation between the coefficients of P and those of F
of the form

p
(k)
ij =

n∑
i=1

n∑
j=i

αrs
ij · f (k)

rs , (3)

where the coefficients αrs
ij are given as

αrs
ij =
{

tri · tsi (i = j)
tri · tsj + trj · tsi otherwise . (4)

The relation (3) can be written in the form

p(k) = A′ · f (k), (5)

with two vectors containing the coefficients of the quadratic monomials of the
k-th components of P resp. F and a matrix

A′ =
(
αrs

ij

)
(1 ≤ i ≤ v, i ≤ j ≤ n for the rows, 1 ≤ r ≤ v, r ≤ s ≤ n for the columns).

(6)

By fixing the vectors p(i) i = 1, . . . , o and inverting this relation, the authors
of [PB10] were able to compute the central map F of a UOV scheme (with
invertible affine map T ), whose public key has a coefficient matrix MP of the
form

MP = (B|C),

where the rows of B are given by the vectors p(i) i = 1, . . . , o and C is a matrix
without apparent structure. By choosing the matrix B as a partially circulant
matrix, they were able to reduce the public key size of the UOV scheme by a
large factor.

4 Preliminaries

In this section we introduce some notations and definitions we need for the
construction of our scheme in the next section. We restrict ourselves to the case
of two Rainbow layers.

4.1 Notations

We denote
D1 = v1·(v1+1)

2 +v1 ·o1 the number of quadratic terms in the central polynomials
of the first layer.
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D2 = v2·(v2+1)
2 +v2 ·o2 the number of quadratic terms in the central polynomials

of the second layer.
D = n·(n+1)

2 the number of quadratic terms in the public polynomials.
For the invertible affine map S = (S, cS) we divide the m×m matrix S into four
parts:

S =
(

S11 S12
S21 S22

)
, where S11 is the upper left o1 × o1 submatrix of S.

4.2 The Monomial Ordering

To make the description of our construction easier, we use a special “blockwise”
ordering of monomials:

– The first block (consisting of D1 monomials) contains the monomials which
appear in the first Rainbow layer (i.e. the monomials xixj (1 ≤ i ≤ v1, i ≤
j ≤ v2)).

– The second block (consisting of D2 −D1 monomials) contains the monomi-
als which appear in the second but not in the first Rainbow layer (i.e. the
monomials xixj ((1 ≤ i ≤ v1, v2+1 ≤ j ≤ n)∨(v1 +1 ≤ i ≤ v2, i ≤ j ≤ n)).

– The third block contains the remaining quadratic monomials (i.e. the mono-
mials xixj (v2 + 1 ≤ i ≤ j ≤ n)).

– The fourth and last block consists of the linear and constant monomials.

Inside the blocks we use the lexicographical ordering.

Example. For (v1, v2, n) = (2, 4, 6) we get the following ordering of monomials
x2

1 > x1x2 > x1x3 > x1x4 > x2
2 > x2x3 > x2x4 > x1x5 > x1x6 > x2x5 >

x2x6 > x2
3 > x3x4 > x3x5 > x3x6 > x2

4 > x4x5 > x4x6 > x2
5 > x5x6 > x2

6 >
x1 > x2 > x3 > x4 > x5 > x6 > 1.

5 The Scheme

In this section we describe how to construct a Rainbow scheme with a partially
cyclic key. We restrict here to the case of two Rainbow layers.2

5.1 Properties of the Rainbow Public Key

For the Rainbow signature scheme the public key is given as a the concatenation
of three maps

P = S ◦ F ◦ T .

We denote the concatenated map F ◦ T by Q and get

P = S ◦ Q.

2 With a similar idea it is possible to create a partially cyclic public key for a Rainbow
scheme with u layers. We don’t handle it here.
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Note that the relation between the maps Q and F has the same form as the
relation between public key and central map in the UOV case. Therefore we get
exactly the same equations as in section 3.

q
(k)
ij =

n∑
r=1

n∑
s=i

αrs
ij · f (k)

rs (1 ≤ k ≤ m), (7)

where the coefficients αrs
ij are given as

αrs
ij =
{

tri · tsi (i = j)
tri · tsj + trj · tsi otherwise . (8)

Due to the special structure of the central map F , we can reduce the number of
terms in equation (7). We get

q
(k)
ij =

v1∑
r=1

v2∑
s=r

αrs
ij · f (k)

rs (1 ≤ k ≤ o1)

q
(k)
ij =

v2∑
r=1

n∑
s=r

αrs
ij · f (k)

rs (o1 + 1 ≤ k ≤ m), (9)

Analogous to the case of the UOV we want to write equation (9) in a com-
pact form. To do this, we define a quadratic D2 ×D2 matrix A containing the
coefficients αrs

ij

A =
(
ars

ij

)
(1 ≤ i ≤ v2, i ≤ j ≤ n for the rows, 1 ≤ r ≤ v2, r ≤ s ≤ n for the columns).

(10)

The order in which the αrs
ij appear in the matrix, is thereby given by the mono-

mial ordering defined in subsection 4.2 (for both rows and columns). We divide
the matrix A into the four parts

A =
(

A11 A12
A21 A22

)
,

where A11 is the upper left D1 ×D1 submatrix of A.
We write down the coefficients of P , Q and F (according to the monomial

ordering defined above) into three matrices P ′, Q′ and F ′ and divide these
matrices as follows

We define the matrices P , Q and F to be the matrices consisting of the first D2
columns of P ′, Q′, resp. F ′. With these definitions we get the following relations
between the three matrices P , Q and F :

P = S ·Q or
(

B1
C1
B2

)
=
(

S11 S12
S21 S22

)
·
(

Q11 Q12
Q21 Q22

)
(11)

Q = F ·AT or
(

Q11 Q12
Q21 Q22

)
=
(

F1 0
F2

)
=
(

AT
11 AT

21
AT

12 AT
22

)
(12)
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B1

B2

C1

Q11 Q12

Q21 Q22

F1 0 0

F2 0

D1 D2 D linear

o1

o2

o1

o2

o1

o2

F ′

Q′

P ′

Fig. 1. Layout of the matrices P ′, Q′ and F ′

5.2 Construction

Additionally to the requirement that S and T are invertible, which is needed for
the correctness of the scheme, we need the following assumptions to be true:

– The lower right o2 × o2 submatrix S22 of S must be invertible.
– The transformation matrix A must be invertible.
– The upper left D1 ×D1 submatrix A11 of A must be invertible.

To justify these assumptions we carried out a number of experiments. For each
of the values of (v1, o1, o2) listed in Table 1 we created 1000 matrices S and A
and observed how many of them were invertible.

Table 1. Percentage of invertible (sub-)matrices

Rainbow(256, v1, o1, o2) (4,2,2) (9,6,6) (11,9,9) (14,11,11) (17,13,13)
invertible matrices S22 99.6 99.8 99.5 99.4 99.6
invertible matrices A 99.8 99.7 99.6 99.8 99.7
invertible matrices A11 99.5 99.6 99.4 99.5 99.4

At the beginning of our construction we assign the elements of B1 and B2
elements of K, so that they get a compact structure.

For this we choose two vectors a(1) = (a(1)
1 , . . . , a

(1)
D1

) ∈ KD1 and a(2) =

(a(2)
1 , . . . , a

(2)
D2−D1

) ∈ KD2−D1 at random. Then we set

b
(1)
ij = a

(1)
((j−i) mod D1)+1 (13)

for the elements of the m×D1 matrix B1 and

b
(2)
ij = a

(2)
((j−i) mod (D2−D1))+1 (14)

for the elements of the o2 × (D2 −D1) matrix B2.
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Our goal is to compute the coefficients of the central map F in such a way
that B1 and B2 appear in the matrix P representing the public key as shown in
figure 1. From equations (11) and (12) we get(

Q11
Q21

)
= S−1 ·B1 (15)

F1 = Q11 · (A−1
11 )T (16)

Q12 = F1 ·AT
21 (17)

Q22 = S−1
22 · (B2 − S21 ·Q12) (18)

F2 = (Q21||Q22) · (A−1)T (19)

5.3 Key Generation and Key Sizes

Key Generation

1. Choose randomly two vectors a(1) ∈ KD1 and a(2) ∈ KD2−D1 . Compute the
entries of the matrices B1 and B2 by formulas (9) and (10).

2. Choose randomly two affine invertible maps S = (S, cS) : Km → Km and
T = (T, cT ) : Kn → Kn. If the matrix S22 (see subsection 4.1) is not
invertible, choose another map S.

3. Compute for T the corresponding transformation matrix A using (10) and
(8). Both A and its upper left D1×D1 submatrix A11 have to be invertible.
If this is not the case, choose another map T .

4. Compute the matrix
(
Q11Q21

)
using (15) .

5. Compute the quadratic coefficients of the central polynomials of the first
layer by formula (16).

6. Compute the entries of the matrices Q12 and Q22 by formulas (17) and (18).
7. Compute the quadratic coefficients of the central polynomials of the second

Rainbow layer by formula (19).
8. Choose the coefficients of the linear and constant terms of the central poly-

nomials at random.
9. Compute the public key of the scheme by P = S ◦ F ◦ T .

The resulting public key has the form shown in figure 1.
The public key consists of the vectors a(1) and a(2), the matrix C1 = S11 ·

Q12 + S12 ·Q22 and the last (n+1)·(n+2)
2 −D2 columns of the matrix P .

The private key consists of the maps S, Q and T .
Note that both public and private keys of our scheme are from a subset of all

valid Rainbow public resp. private keys. So, each instance of our scheme can be
seen as a Rainbow scheme.
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The size of the public key is

D1+(D2−D1)+o1·(D2−D1)+m·
(

(n + 1) · (n + 2)
2

−D2

)
= m· (n + 1) · (n + 2)

2
−o1·D1−(o2−1)·D2

(20)

field elements, the size of the private key

m · (m + 1) + n · (n + 1) +
2∑

l=1

ol ·
(

vl · ol +
vl · (vl + 1)

2
+ vl+1 + 1

)
field elements.

(21)

Signature generation and verification work as for the standard Rainbow scheme.

5.4 Efficiency of the Verification Process

Besides the considerable reduction of the public key size, the number of multi-
plications needed in the verification process is decreased by about 30 %.

This can be seen as follows: To evaluate an arbitrary public key, for every
quadratic term two K-multiplications are needed. Together with the n multi-
plications for the linear terms, one needs n · (n + 2) multiplications for each
polynomial. Hence, to evaluate the whole public key, one needs

m · n · (n + 2) K−multiplications (22)

When evaluating our partially cyclic public key, some of the multiplications can
be used several times (For example, a

(1)
1 × x1 appears in every of the m public

polynomials.) Thus, we do not have to carry out all the multiplications one by
one. A close analysis shows, that by using this strategy we can reduce the number
of K-multiplications needed in the verification process to

m · n · (n + 2)−
(m

2
· (2 · v1 · v2 − v2

1 − v1) +
o2

2
· (v2

1 − 2v1v2 − v1 + 2v2v3 − v2
2 − v2)

)
,
(23)

which, for (v1, o1, o2) = (17, 13, 13), leads to a reduction of 30 %.

6 Security

In this section we look at known attacks against the Rainbow signature scheme
and study their effects against our scheme.

6.1 Direct Attacks [BB08], [YC07]

The most straightforward way for an attacker to forge a signature for a mes-
sage h is to solve the public system P (x) = h by an algorithm like XL or
a Gröbner Basis method. To study the security of our scheme against direct
attacks, we carried out experiments with MAGMA [BC97], which contains an
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efficient implementation of Faugeres F4-algorithm [Fa99] for computing Gröbner
Bases. Table 2 shows the results of our experiments against random systems, the
standard Rainbow scheme and our partially cyclic version.

As the table shows, F4 cannot solve our systems significantly faster than those
of the standard Rainbow scheme.

Definition 1. Let p(x) = p(x1, . . . , xn) be a quadratic multivariate polynomial
and

dp(x, c) = p(x + c) − p(x)− p(c) + p(0)

its discrete differential. For p we define a matrix Hp by

dp = xT ·Hp · c

For the matrix Hpi representing the quadratic part of the i-th public polynomial
we write in short Hi.

6.2 Rainbow-Band-Separation [DY08]

The goal of this attack is to find an equivalent private key by which one can forge
signatures for arbitrary messages. One tries to find a basis change of variables
which transforms the matrices Hi into “Rainbow form” (see figure 2)

To achieve this, one has to solve several overdetermined systems of quadratic
equations. The complexity of the attack is determined by the complexity of its
first step, which consists of solving an overdetermined system of m + n − 1
quadratic equations in n variables. Table 3 shows the results of our experiments
with the Rainbow Band Separation attack. The quadratic systems were again
solved with MAGMA. As the table shows, the RBS attack can not take an
advantage out of the special structure of our public key.

Table 2. Results of the experiments with direct attacks

(v1, o1, o2) (8,5,6) (9,6,6) (10,6,7) (11,7,7)
cyclicRainbow 406 s 3135 s 23528 s 220372 s
Rainbow 405 s 3158 s 23560 s 222533 s
random system 408 s 3178 s 23621 s 221372 s

∗v1×v1

∗o1×v1

0o2×v1

∗v1×o1

0o1×o1

0o2×o1

0v1×o2

0o1×o2

0o2×o2

1 ≤ i ≤ o1

∗v1×v1

∗o1×v1

∗o2×v1

∗v1×o1

∗o1×o1

∗o2×o1

∗v1×o2

∗o1×o2

0o2×o2

o1 + 1 ≤ i ≤ m

Fig. 2. Matrices Hi in the Rainbow form
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Table 3. Results of our experiments with the Rainbow Band Separation attack

(256, v1, o1, o2) (8,5,6) (9,6,6) (10,6,7) (11,7,7)
cyclicRainbow 403 s 3163 s 23583 s 223726 s
Rainbow 412 s 3152 s 23652 s 224273 s

6.3 MinRank Attack [GC00], [BG06]

In the MinRank attack one tries to find linear combinations H =
∑m

i=1 αiHi of
the matrices representing the homogeneous quadratic parts of the public polyno-
mials such that rank(H) ≤ v2. This linear combination are with high probability
linear combinations of the central polynomials of the first Rainbow layer.

These linear combinations can be found by choosing randomly a vector v ∈
Kn and trying to solve the system (

∑m
i=1 αiHi) ·v = 0 for the αi (i = 1, . . . , m).

After having found o1 linear combinations of this form, the attacker is able
to extract the first Rainbow layer. After that, it is possible to recover the other
layers one by one and therefore to find an equivalent private key. The complexity
of the MinRank attack is determined by the complexity of finding the linear
combinations, which is about o1 · qv1+1 ·m3.

Table 4 shows the results of our experiments with the MinRank attack. For
every parameter set listed in the table we created 100 Rainbow schemes and
attacked each of these schemes by the MinRank attack. The table shows the
average number of vectors v we had to test until finding o1 linear combinations
of rank ≤ v2.

As the table shows, linear combinations with rank ≤ v2 can not be found
easier for our scheme than for the standard Rainbow scheme. Furthermore, for
our scheme these linear combinations do not show any visible structure. Note
that the parameters listed in the table are far below those actually used for
Rainbow. For the parameters proposed in subsection 2.2 the complexity of the
attack is much higher than 280.

6.4 HighRank Attack [GC00], [DY08]

In the HighRank attack one tries to identify the variables appearing the lowest
number of times in the central equations. These are the variables of the last
Rainbow layer.

To do this, one forms random linear combinations H of the matrices Hi. If H
has nontrivial kernel, one checks if the solution set of (

∑m
i=1 λiHi) · kerH = 0

has dimension n− o2. Then, with probability q−o2 , we have

ker(H) ⊆ T (O) with O = {x ∈ Kn|x1 = · · · = xn−o2 = 0}.

Table 4. Results of experiments with the MinRank attack

(q, v1, o1, o2) (8,3,2,2) (8,4,3,3) (16,3,2,2) (16,4,3,3)
cyclicRainbow 7635 83534 124174 2982618
Rainbow 7724 84676 125463 3028357
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After having found a basis of T −1(O), one extends this basis to a basis of the
whole space Kn. This enables an attacker to forge signatures the same way as
a legitimate user. The complexity of the attack is determined by the complexity
of finding a basis of T −1(O), which is about qou ·m3.

For each of the parameter sets listed in Table 5 we created 100 Rainbow
schemes. The table shows the average number of linear combinations we had to
test until finding a basis of T −1(O).

Table 5. Results of our experiments with the HighRank attack

(q, v1, o1, o2) (8,3,2,2) (8,4,3,3) (16,3,2,2) (16,4,3,3)
cyclicRainbow 64.2 511.5 257.3 4093.7

Rainbow 65.1 512.3 256.8 4097.8

As the table shows, for both the Rainbow and the cyclic Rainbow scheme we
have to test nearly the same number of linear combinations to find a basis of
T −1(O). Note that the parameters listed in the table are far below those actually
used for Rainbow. For the parameters proposed in subsection 2.2 the complexity
of the attack is much higher than 280.

6.5 UOV Attack [KP99]

Since a Rainbow scheme can be seen as a UOV scheme with vu vinegar and ou oil
variables, it can be attacked by the UOV attack of Kipnis and Shamir [KP99].
The goal of this attack is to find the pre-image T −1(O) of the Oil-subspace
O = {x ∈ Kn|x1 = · · · = xn−o2 = 0} under the affine invertible map T . One
chooses randomly a linear combination H of the matrices H1, . . . , Hm and sets
G := H ·H−1

j for some j ∈ {1, . . . , m}. After that, one computes all the minimal
invariant subspaces of G. With high probability, these invariant subspaces are
also subspaces of T −1(O). After having found a basis of T −1(O), one extends
this basis to a basis of the whole space Kn. This enables an attacker to forge
signatures for arbitrary messages. The complexity of the attack is determined
by the complexity of finding a basis of T −1(O), which is about qn−2·ou ·m3.

For each of the parameter sets listed in the table we created 100 instances
of both schemes. Then we attacked these instances by the UOV-attack. Table 6
shows the average number of matrices G we had to test until finding a basis of
T −1(O).

Table 6. Results of the experiments with the UOV attack

(16, v1, o1, o2) (3,2,2) (5,3,3) (9,6,6) (12,10,10)
cyclicRainbow 1734 531768 852738 1183621
Rainbow 1728 532614 847362 1146382
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As the table shows, for both schemes we have to test nearly the same number
of matrices G to find a basis of T −1(O). Note that the parameters listed in the
table are far below those actually used for Rainbow. For the parameters proposed
in subsection 2.2 the complexity of the attack is much higher than 280.

6.6 Summary

As the previous five subsections showed, known attacks against the Rainbow
signature scheme do not work significantly better in our case, which means that
they can not use the special structure of our public key. So, in this sense our
scheme seems to be secure and we do not have to increase our parameter sets.

However, in the future we are going to study the security of our scheme under
other attacks, e.g. decomposition attacks [FP09]. It might also be possible that
some dedicated attacks against our scheme exist.

7 Parameters

Based on the security analysis in the previous section we propose for our scheme
the same parameters as suggested for the standard Rainbow Scheme (see
section 2), namely

(q, v1, o1, o2) = (256, 17, 13, 13).

Table 7 compares our scheme with others from the UOV family. Additionally to
the parameters proposed above, the table contains key- and signature sizes for
a more conservative parameter set for m = 28.

For 26 equations, we get a key size reduction of 25.9−10.2
25.9 = 62%, for 28 equa-

tions 32.2−12.9
32.2 = 60%.

Table 7. Comparison of different UOV-based signature schemes

Scheme public key private key hash size signature size
size (kB) size (kB) (bit) (bit)

UOV(256,26,52) 80.2 76.1 208 624
cyclicUOV(256,26,52) 14.5 76.1 208 624
Rainbow(256,17,13,13) 25.9 19.1 208 344
cyclicRainbow(256,17,13,13) 10.2 19.1 208 344
UOV(256,28,56) 99.9 92.8 224 672
cyclicUOV(256,28,56) 16.5 92.8 224 672
Rainbow(256,19,14,14) 32.2 24.3 224 376
cyclicRainbow(256,19,14,14) 12.9 24.3 224 376
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8 Conclusion

In this paper we showed a way how to extend the approach of [PB10] to the
Rainbow signature scheme. The result is a Rainbow-like scheme, which reduces
the size of the public key by 62 % and the number of field multiplications needed
during the verification process by 30 %. We believe that our idea might be a
good approach for implementing the Rainbow scheme on low cost devices, e.g.
smartcards. Furthermore, it’s a quite general idea, which should be applicable
to a number of other SingleField Scheme, for example enSTS [TG10].

Points of research for the future are in particular security issues of the scheme
as well as the use of PRNG’s to construct the public key.
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Abstract. The unified model (UM) is a family of key agreement proto-
cols that has been standardized by ANSI and NIST. The NIST standard
explicitly permits the reuse of a static key pair among the one-pass and
three-pass UM protocols. However, a recent study demonstrated that
such reuse can lead to security vulnerabilities. In this paper we revisit
the security of the one- and three-pass UM protocols when static key
pairs are reused. We propose a shared security model that incorporates
the individual security attributes of the two protocols. We then show,
provided appropriate measures are taken, that the protocols are secure
even when static key pairs are reused.

1 Introduction

The unified model (UM) is a family of two-party key agreement protocols of
the Diffie-Hellman variety. This well-known family of protocols has been stan-
dardized in ANSI X9.42 [1], ANSI X9.63 [2] and NIST SP 800-56A [12]. The
NIST SP 800-56A standard, which includes several discrete logarithm based key
agreement protocols along with the UM family, explicitly permits the reuse of
static (long-term) key pairs among different key agreement protocols.

Recent work studied the effect of reusing static key pairs among different
key agreement protocols [4]. The paper described a plausible scenario where the
three-pass UM protocol may become insecure if parties reuse static key pairs with
the one-pass UM protocol as permitted in NIST SP 800-56A. The paper also
proposed a shared security model for key agreement protocols having identical
security attributes. Protocols having different security attributes, such as the
one-pass and three-pass UM protocols, are not covered in that security model.

In this work, we revisit the security of the one- and three-pass UM protocols
when parties are allowed to share their static keys among the two protocols. Our
aim is to investigate whether it is possible to obtain meaningful assurances about
the security of the individual members of this protocol pair in the combined
setting. The adversary in this combined model is afforded considerable additional
strength since she can use information learned in protocol sessions of one-pass
UM to attack protocol sessions of three-pass UM and vice versa.
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While a reductionist security argument for three-pass UM can be found in the
literature [11], no such formal argument has been presented for one-pass UM.
We illustrate by way of example in §2 that a formal security argument for a
multi-pass key agreement protocol does not guarantee that the corresponding
“natural” one-pass variant is also secure. This leads us to formally study the
security of one-pass UM. In §3 a security model is presented for one-pass UM
that is motivated by the corresponding model of three-pass UM. This is followed
by a reductionist security argument for one-pass UM in the proposed model.

In §4 we propose a combined security model for one- and three-pass UM that
incorporates the security attributes of the individual protocols. We then show in
§5 that it is possible to maintain the individual security guarantees of one- and
three-pass UM in the combined model. This is achieved by adding appropriate
protocol identifiers in the key derivation functions and without any negative
impact on the efficiency of the protocols.

Notation and terminology. Let G = 〈g〉 denote a multiplicatively-written
cyclic group of prime order q, and let G∗ = G \ {1}. The Computational Diffie-
Hellman (CDH) assumption in G is that computing CDH(U, V ) = guv is
infeasible given U = gu and V = gv where u, v ∈R [1, q − 1]. The Deci-
sional Diffie-Hellman (DDH) assumption in G is that distinguishing DH triples
(ga, gb, gab) from random triples (ga, gb, gc) is infeasible. The Gap Diffie-Hellman
(GDH) assumption in G is that the CDH assumption holds even when a CDH
solver is given a DDH oracle that distinguishes DH triples from random triples.
Let MAC denote a message authentication code algorithm such as HMAC.

The Unified Model (UM) family of key agreement protocols are of the Diffie-
Hellman variety where the two communicating parties Â and B̂ exchange static
public keys. Party Â’s static private key is an integer a ∈R [1, q − 1], and her
corresponding static public key is A = ga. Similarly, party B̂ has a static key
pair (b, B), and so on. A certifying authority (CA) issues certificates that binds
a party’s identifier to its static public key. A party Â called the initiator com-
mences the protocol by selecting an ephemeral (one-time) key pair and then
sends the ephemeral public key (and possibly other data) to the second party.
The ephemeral private key is a randomly selected integer x ∈ [1, q − 1] and the
corresponding ephemeral public key is X = gx. Upon receipt of X , the responder
B̂ selects an ephemeral private key y and sends Y = gy (and possibly other data)
to Â; this step is omitted in one-pass protocols. The parties may exchange some
additional messages, after which they accept a session key.

2 (In)Security of One-Pass Key Agreement Protocols

In a multi-pass key agreement protocol both parties have their own ephemeral
secrets which play distinct roles in the derivation of the session key. However,
there are situations, e.g., email systems, where one of the parties may be off-
line and hence not available for immediate response. One-pass key agreement
protocols can be useful in such scenarios.
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One-pass protocols are by their very nature non-interactive and proceed with-
out any ephemeral secret contributed by the responder. Such a protocol can be
obtained by appropriately modifying a multi-pass key agreement protocol. In
fact, most (if not all) of the one-pass protocols available in the literature (in-
cluding those standardized by different standards bodies) are derived from a
two- or three-pass key agreement protocol. Some well known examples are the
UM [12], MQV [9], HMQV [7] and CMQV [13] families of protocols.

A natural method to derive a one-pass key agreement protocol from a multi-
pass protocol is to set the responder B̂’s ephemeral public key Y to be equal to his
static public key B. Examples are one-pass UM [12], one-pass MQV [9], and one-
pass HMQV [7]. Another natural method is to set Y to be the identity element
of G. The latter approach was followed in the case of one-pass CMQV [13].
However, given any provably secure multi-pass protocol, application of one of
these natural conversions does not necessarily yield a secure one-pass variant.

As an illustrative example, consider the following version of the two-pass
MTI/C0 protocol that was proven secure in [8]. The initiator Â chooses an
ephemeral secret x ∈R [1, q − 1] and sends the message Bx to the responder B̂.
The responder, in turn, chooses an ephemeral secret y ∈R [1, q−1] and sends the
message Ay to Â. The shared secret is gxy which Â computes as (Ay)x/a and B̂
computes as (Bx)y/b. It is easy to see that setting y = b or y = 0 yields a trivially
insecure one-pass protocol. In particular, the shared secret is Bx in case y = b
and B0 in case y = 0. So the adversary can simply choose x and impersonate any
party Â to B̂. As another example, consider Protocol 2 (in the public key setting)
as proposed by Boyd et al. in [3]. Here Â (resp. B̂) encapsulates keying material
KA (resp. KB) under the public key of B̂ (resp. Â) and sends the encapsulation
along with an ephemeral public key gx (resp. gy) to B̂ (resp. Â). The session key
is then derived from KA, KB and gxy as per the protocol specification. Like the
MTI/C0 protocol, the one-pass variant will be trivially insecure as the receiver
B̂ has no means of determining who sent him the message.

The above two examples are only illustrative and there is no suggestion in
the literature to use them as secure one-pass protocols. However, consider the
case of the one-pass HMQV protocol which at first glance appears to be secure
and in fact was claimed to be provably secure in [7]. It was later shown [10] that
the protocol succumbs to an unknown-key share attack [5]. On the other hand,
not all one-pass key agreement protocols are necessarily insecure. The one-pass
UM and MQV protocols appear to resist all known attacks and one-pass CMQV
comes with a reductionist security argument in a security model appropriately
designed for the one-pass protocol environment.

3 One-Pass UM Protocol

In this section we provide a security model for one-pass key agreement protocols,
followed by a formal description of the one-pass UM protocol and its reductionist
security argument in the given security model.
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3.1 Security Model

The security model for one-pass key agreement protocols as defined here is pri-
marily motivated by the corresponding definition of one-pass CMQV in the full
version of [13]. However, our ultimate aim is to provide a combined security anal-
ysis of the one- and three-pass UM protocols. Hence our definition is specifically
crafted with one-pass UM in mind (as specified in NIST SP 800-56A [12]) and
the security model for three-pass UM as defined in [11].

The model assumes that there are n parties each having a static key pair and
a certificate that binds the corresponding public key to that party. There is no
requirement for the certifying authority (CA) to obtain a proof of possession of
the static private key from the respective party. However, the CA must perform
a validation check of the public key to ascertain that it belongs to G∗.1

Protocol sessions. A party Â can be activated via an incoming message to
create a session. The incoming message has the form (Â, B̂) or (Â, B̂, X). If Â
was activated with (Â, B̂) then Â is the session initiator ; otherwise Â is the
session responder. If Â is the session initiator then Â creates a separate session
state and selects an ephemeral public key X . The session is labeled active and
identified via a session identifier (Â, B̂, X). The initiator then computes the
session key as per the protocol specification, sends the message (B̂, Â, X), and
completes the session. If Â is the session responder then Â creates a separate
session state that is identified via a session identifier (Â, B̂, X), computes the
session key as per the protocol specification, and completes the session. Note that
the responder does not send a message to the initiator in a one-pass protocol.
Suppose that s = (Â, B̂, X) is a session owned by Â. A session s∗ = (Ĉ, D̂, Y )
is said to be matching to s if Ĉ = B̂, D̂ = Â and Y = X .

The model mandates that the responder validate that X ∈ G∗ upon receiving
the message (Â, B̂, X). The session is aborted in case the verification fails and
the party deletes all information specific to that session.

Adversary. The adversary M is modeled as a probabilistic Turing machine
and controls all communications. Parties submit outgoing messages to M, who
makes decisions about their delivery. The adversary presents parties with incom-
ing messages via Send(message), thereby controlling the activation of parties.
The adversary does not have immediate access to a party’s private informa-
tion. However, in order to capture possible leakage of private information, M is
allowed to make the following queries:
• SessionStateReveal(s): This query allows M to obtain all the secret informa-
tion available in the session state of s. We assume that the query is only made
at an initiator and that M can learn the ephemeral secret x through this query.
• Expire(s): If s has completed then its session key is deleted and the session is
labeled expired. We assume that M only issues this query to sessions that have
completed but are unexpired. At any point in time a session is in exactly one of
the following states: active, completed, aborted, expired.
1 It is easy to mount a small-subgroup attack on the UM family of protocols if the

static public key is not validated.
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• SessionKeyReveal(s): If the session is completed but unexpired thenM obtains
the corresponding session key. Like the previous query, we assume that M only
issues this query to sessions that have completed but are unexpired.

• Corrupt(party): This query allows M to obtain complete control over the
party. In particular, M obtains that party’s static private key, the contents of
all active sessions owned by the party, and the session keys of the completed but
unexpired sessions owned by the party. (However, M cannot obtain the session
key of an already expired session.) In addition, M is allowed to select a new
static key pair for the party. Parties against whom the adversary issued this
query are called corrupt, while a party that is not corrupt is called honest.

Fresh session. As in a multi-pass key agreement protocol, the goal of the ad-
versary M in the one-pass protocol is to distinguish the session key held by a
‘fresh’ session from a random key. However, the definition of a fresh session in a
one-pass protocol differs from that in a multi-pass protocol. This is due to the
intrinsic asymmetric nature of the protocol where only the initiator contributes
an ephemeral secret. Formally, we define a fresh session as follows.

Definition 1 (one-pass fresh session). Let s be the identifier of a completed
session, owned by party Â with peer B̂. Let s∗ be the identifier of a matching
session of s, if it exists. Define s to be fresh if none of the following hold:

1. M issued a SessionKeyReveal(s) query or a SessionKeyReveal(s∗) query.
2. Â is the initiator and one of the following holds: (a)M issued Corrupt(Â) be-

fore Expire(s); (b) M issued SessionStateReveal(s) and Corrupt(Â); (c) M
issued Corrupt(B̂).

3. Â is the responder and one of the following holds: (a) M issued Corrupt(Â);
(b) s∗ exists and M issued either Corrupt(B̂) before Expire(s∗) or both
Corrupt(B̂) and SessionStateReveal(s∗); (c) s∗ does not exist and M issued
Corrupt(B̂).

Adversary’s goal. To capture indistinguishability, M is allowed to make a
special Test query to a fresh session s. In response, M is given with equal
probability either the session key held by s or a random key. If M guesses
correctly whether the key is random or not, thenM is said to be successful. Note
that M can continue interacting with the parties after issuing the Test query,
but must ensure that the test session remains fresh throughout the experiment.

Definition 2 (one-pass security). The one-pass UM protocol is said to be
secure if the following conditions hold:

1. If two honest parties complete matching sessions then, except with negligible
probability, they both compute the same session key.

2. No polynomially-bounded adversary M can distinguish the session key of
a fresh session from a randomly chosen session key with probability greater
than 1

2 plus a negligible fraction.
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Remark 1. By replaying messages from Â to B̂ an adversaryM can force multi-
ple sessions owned by B̂ to hold the same session key κ. Let Sκ be the set of all
such sessions. Since all sessions in Sκ have the same session identifier, M cannot
compromise a single session in Sκ without compromising all sessions in Sκ.

Remark 2. The definition of fresh session in one-pass UM is more restrictive
than the corresponding definition for three-pass UM. In particular, a session in
the one-pass protocol is no longer considered as fresh if the adversary just issues
a Corrupt query to the responder. On the other hand, whereas three-pass UM
does not provide key-compromise impersonation (KCI) resilience [6] (for either
initiator or the responder), KCI resilience is provided for the initiator in one-pass
UM. This is by virtue of the asymmetric nature of the one-pass protocol which
also accounts for (weak) forward secrecy when the initiator is compromised. Our
security model for one-pass protocols captures weak forward secrecy with resepct
to the initiator but does not capture KCI resilience.

3.2 Protocol Descriptions

In the one-pass UM protocol, denoted UM1 and depicted in Figure 1, the re-
sponder’s ephemeral public key is set to be the static public key of that party.
The protocol is formally described in Definition 3. In UM1, Λ denotes optional
public information that can be included in the key derivation function H .2

x, X

B̂, b, BÂ, a, A

κ = H(gxb, gab, Â, B̂, Λ)

X

Fig. 1. UM1: The one-pass UM protocol (simplified)

Definition 3 (UM1). Each party obtains the certified static public key of its
peer along with assurance that the key is valid. The protocol proceeds as follows.

1. Upon activation (Â, B̂), party Â (the initiator) does the following:
(a) Select an ephemeral private key x ∈R [1, q−1] and compute the ephemeral

public key X = gx.
(b) Compute σe = Bx and σs = Ba.
(c) Compute κ = H(σe, σs, Â, B̂, Λ) and destroy x, σe, σs.
(d) Send (B̂, Â, X) to B̂ and complete session (Â, B̂, X) with session key κ.

2 The key derivation function in the one- and three-pass UM protocols also includes
an integer keydatalen that indicates the bitlength of the secret keying material to be
generated, and a bit string AlgorithmID that indicates how the derive keying material
will be parsed and for which algorithm(s) it will be used. We will henceforth omit
keydatalen and AlgorithmID since they are not relevant to our security analysis.
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2. Upon activation (B̂, Â, X), party B̂ (the responder) does the following:
(a) Verify that X ∈ G∗.
(b) Compute σe = Xb and σs = Ab.
(c) Compute κ = H(σe, σs, Â, B̂, Λ) and destroy σe, σs.
(d) Complete session (B̂, Â, X) with session key κ.

Three-pass UM. The three-pass UM protocol, denoted UM3, is depicted in
Figure 2 (and formally described in [11]). In Figure 2, I and R denote the
constant strings “KC 2 U” and “KC 2 V”, and Λ1 and Λ2 are optional public
strings. The session key is κ, whereas κ′ is an ephemeral secret key used to
authenticate the exchanged ephemeral public keys and the identifiers.

Y , tB=MACκ′ (R, B̂, Â, Y, X, Λ1)

X

tA=MACκ′ (I, Â, B̂, X, Y, Λ2)

(κ′, κ) = H(gxy , gab, Â, B̂, Λ)

y, Y

B̂, b, B

x, X

Â, a, A

Fig. 2. UM3: The three-pass UM protocol (simplified)

3.3 Security Argument

For simplicity we consider Λ = X where X is the initiator’s ephemeral public
key.3 Furthermore, we do not allow parties to initiate sessions with themselves;
this restriction is relaxed at the end of §4.

Theorem 1. If H is modeled as a random oracle and G is a group where the
GDH assumption holds, then one-pass UM is a secure key agreement protocol.

Proof. It is easy to see that matching sessions produce the same session key. We
will verify that for a security parameter λ, no polynomially-bounded adversary
M can distinguish the session key of a fresh session from a randomly chosen
session key with probability 1

2 + p(λ) for some non-negligible function p(λ).
Let M denote the event that M succeeds in the distinguishing game, and

suppose that Pr(M) = 1
2 + p(λ) where p(λ) is non-negligible. We assume that

M operates in an environment with n parties, and where each party is activated
at most t times to create a new session. We will show how M can be used to
construct a polynomial-time algorithm S that, with non-negligible probability
of success, solves a CDH instance (U, V ).

Since H is a modeled as a random function, M has only two strategies for
winning the distinguishing game with probability significantly greater than 1

2 :
3 If Λ is empty, then maintaining consistency in the responses to SessionKeyReveal

and H queries in Theorem 1’s simulation requires further checks. More precisely, S
has to identify relations among H queries, session keys, and ephemeral public keys
by using the DDH oracle for each possible combination.
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(i) induce a non-matching session s′ to establish the same session key as the
test session s, and thereafter issue a SessionKeyReveal(s′) query; or

(ii) query the random oracle H with (gxb, gab, Â, B̂, X) where s = (Â, B̂, X) is
the test session or its matching session.

Since the input to the key derivation function includes the identities of the com-
municating parties and the exchanged ephemeral public key, non-matching com-
pleted sessions produce different session keys except with negligible probability
of H collisions. This rules out strategy (i).

Now, let H∗ denote the event thatM queries H with (gxb, gab, Â, B̂, X) where
(Â, B̂, X) is the test session or its matching session. Since H is a random function,
we have Pr(M |H∗) = 1

2 where negligible terms are ignored. Hence

Pr(M) = Pr(M ∧H∗) + Pr(M |H∗) Pr(H∗) ≤ Pr(M ∧H∗) +
1
2
,

so Pr(M ∧H∗) ≥ p(λ). The event M ∧H∗ will henceforth be denoted by M∗.
Let st denote the test session selected by M, and let sm denote its matching

session (if it exists). Consider the following events:

1. Event E1: M issues neither Corrupt(Â) nor Corrupt(B̂).
2. Event E2: The event is comprised of the following sub-events:

– the owner of st is the session initiator and M does not issue Session-
StateReveal(st);

– the owner of st is the session responder, the session matching to st exists,
and M does not issue SessionStateReveal(sm).

It is easy to see that M∗ = (M∗∧E1)∨(M∗∧E2). Since Pr(M∗) is non-negligible,
it must be the case that either p1 = Pr(M∗ ∧ E1) or p2 = Pr(M∗ ∧ E2) is non-
negligible. The events E1 and E2 are considered separately.

We will show how to construct a solver S that takes as input a CDH challenge
(U, V ), has access to adversary M and a DDH oracle, and produces a solution
to the CDH challenge. We use the following conventions: the DDH oracle on
input (ga, gb, gc) returns the bit 0 if gc �= gab, and the bit 1 if gc = gab. Also,
ξ : G × G → G is a random function known only to S and such that ξ(X, Y ) =
ξ(Y, X) for all X, Y ∈ G. The algorithm S, which simulates M’s environment,
will use ξ(S, T ) to ‘represent’ CDH(S, T ) in certain situations where S does not
know logg S or logg T . Except with negligible probability,M will not detect that
ξ(S, T ) is being used instead of CDH(S, T ).

Event M∗ ∧E1. Suppose that M∗∧E1 occurs with non-negligible probability.
In this case S establishes n parties. Two of these parties denoted by Û and V̂ are
assigned static public keys U and V , respectively. The remaining n−2 parties are
assigned random static key pairs. The simulation of M’s environment proceeds
as follows:

1. Send(Â, B̂). S follows protocol UM1. However, if Â ∈ {Û , V̂ }, then S deviates
from the protocol description by setting σs = ξ(A, B).
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2. Send(B̂, Â, X). S follows protocol UM1. However, if B̂ ∈ {Û , V̂ }, then S
deviates from the protocol description by setting σs = ξ(A, B), σe = ξ(X, B).

3. SessionStateReveal(s). S responds faithfully to the query.
4. Expire(s). S responds faithfully to the query.
5. SessionKeyReveal(s). S responds faithfully to the query.
6. Corrupt(Â). If Â ∈ {Û , V̂ } then S aborts with failure. Otherwise, S responds

faithfully to the query.
7. H(σe, σs, Â, B̂, X).

(a) If Â ∈ {Û , V̂ } and σs �= ξ(A, B), then S obtains τ = DDH(A, B, σs).
If τ = 1 and {Â, B̂} = {Û , V̂ }, then S aborts with success and out-
puts CDH(U, V ) = σs. If τ = 1 and {Â, B̂} �= {Û , V̂ }, then S returns
H(σe, ξ(A, B), Â, B̂, X).

(b) If B̂ ∈ {Û , V̂ } and either σe �= ξ(X, B) or σs �= ξ(A, B), then S sets
τe = 1 if either DDH(X, B, σe) = 1 or σe = ξ(X, B). Similarly, S sets
τs = 1 if either DDH(A, B, σs) = 1 or σs = ξ(A, B).
If τe = 1 and τs = 1, then S returns H(ξ(X, B), ξ(A, B), Â, B̂, X).

(c) S simulates a random oracle in the usual way4.
8. Test(s). If Û and V̂ are not the session peers then S aborts with failure.

Otherwise, S answers the query faithfully.

Analysis of M∗∧E1. The simulation of M’s environment is perfect except with
negligible probability. The probability that Û and V̂ are the communicating
parties of the test session is at least 2/n2, in which case S does not abort as in
Step 8. Suppose this is indeed the case and suppose that event M∗∧E1 occurs. In
event E1 the adversary does not corrupt the test session’s communicating peers
and therefore failure as in Step 6 does not occur. Under event M∗ the adversary
queries H with σs = CDH(U, V ) and thus S is successful as in Step 7a. The
probability of S’s success in this event is therefore bounded by Pr(S) ≥ 2p1/n2.

Event M∗ ∧E2. Suppose that M∗∧E2 occurs with non-negligible probability.
In this case S establishes n parties. One of these parties, denoted by V̂ , is assigned
the static public V . The remaining parties are assigned random static key pairs.
Further, S selects a random integer r ∈R [1, nt]. The rth session created will be
called sU . The simulation of M’s environment proceeds as follows:

1. Send(Â, B̂). S follows protocol UM1. However, if Â = V̂ , then S deviates
from the protocol description by setting σs = ξ(A, B). Further, if the session
activated is sU , then S deviates from the protocol description by setting
X = U and σe = ξ(X, B).

2. Send(B̂, Â, X). S follows protocol UM1. However, if B̂ = V̂ , then S deviates
from the protocol description by setting σs = ξ(A, B) and σe = ξ(X, B).

3. SessionStateReveal(s). If s = sU then S aborts with failure. Otherwise, S
responds faithfully to the query.

4. Expire(s). S responds faithfully to the query.

4 i.e., S returns random values for new queries and replays answers if the queries were
previously made.
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5. SessionKeyReveal(s). If s is either sU or sU ’s matching session then S aborts
with failure. Otherwise, S responds faithfully to the query.

6. Corrupt(Â). If Â = V̂ then S aborts with failure. Otherwise, S responds
faithfully to the query.

7. H(σe, σs, Â, B̂, X).
(a) If Â = V̂ and σs �= ξ(A, B), then S obtains τ = DDH(A, B, σs).

If τ = 1, then S returns H(σe, ξ(A, B), Â, B̂, X).
(b) If X = U and σe �= ξ(X, B), then S obtains τ = DDH(X, B, σe).

If τ = 1 and B̂ = V̂ , then S aborts with success and outputs CDH(U, V ) =
σe. If τ = 1 and B̂ �= V̂ , then S returns H(ξ(X, B), σs, Â, B̂, X).

(c) If B̂ = V̂ and either σe �= ξ(X, B) or σs �= ξ(A, B), then S sets τe = 1
if either DDH(X, B, σe) = 1 or σe = ξ(X, B). Similarly, S sets τs = 1 if
either DDH(A, B, σs) = 1 or σs = ξ(A, B).
If τe = 1 and τs = 1, then S returns H(ξ(X, B), ξ(A, B), Â, B̂, X).

(d) S simulates a random oracle in the usual way.
8. Test(s). If the responder B̂ is not V̂ and the ephemeral public key X is not

U then S aborts with failure. Otherwise, S answers the query faithfully.

Analysis of M∗ ∧ E2. The simulation of M’s environment is perfect except
with negligible probability. Suppose that event E2 occurs; then the probabil-
ity that B̂ = V̂ and that either the test session or its matching session is sU

(that is X = U) is at least 2/tn2. Suppose this is the case, whence S does not
abort as in Step 8. Note that in this case the test session’s responder is V̂ and
ephemeral public key is U . Suppose also that event M∗ ∧ E2 occurs. Since the
adversary is successful, the test session is fresh and therefore S does not abort
as in Steps 3, 5 and 6. Under event M∗ the adversary queries H with σe such
that σe = CDH(U, V ), and thus S is successful as in Step 7b. The probability of
S’s success in this event is therefore bounded by Pr(S) ≥ 2p2/tn2.

Overall analysis. During the simulation, S performs group exponentiations,
simulates oracle queries, and accesses the DDH oracle, all of which take polyno-
mial time. If M’s running is also polynomial then S is a polynomially-bounded
algorithm that succeeds in solving the CDH challenge with probability at least

Pr(S) ≥ 2
n2 max

(
p1,

1
t
p2

)
. (1)

Thus S is a polynomially-bounded CDH solver, contradicting the GDH assump-
tion in G. �

4 Combined Security Model for UM1 and UM3

In this section we propose a combined security model for UM1 and UM3. The
aim is to capture the security assurances guaranteed by the individual proto-
cols even when parties use the same static key in the two protocols. Note that
such reuse is explicitly allowed by the NIST standard [12], but can lead to a
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security vulnerability [4]. The description of the combined model closely follows
the description of the individual models of one-pass (see §3) and three-pass UM
(see [11]) and is essentially a “union” of the two models. The crucial addition
is that of an identifier Π in the protocol description. For the one-pass protocol
this identifier Π is set to UM1 and for the three-pass protocol it is set to UM3.

In the following, we assume that messages are represented as vectors of binary
strings. If m is a vector then #m denotes the number of its components. Two
vectors m1 and m2 are said to be matched, written m1 ∼ m2, if the first t =
min{#m1, #m2} components of the vectors are pairwise equal as binary strings.

Session creation. A party Â can be activated via an incoming message to
create a session. The message has the form (Π, Â, B̂) or (Π, Â, B̂, Y ), where
Π ∈ {UM1, UM3} identifies which protocol is activated. If Â was activated with
(Π, Â, B̂) then Â is the session initiator ; otherwise Â is the session responder.

Session initiator. If Â is the session initiator then Â creates a separate session
state where session-specific short-lived data is stored and selects an ephemeral
public key X . The session is labeled active. If Π = UM1 the session is identified
via a session identifier s = (UM1, Â, B̂, X) and a session key is computed as
per the protocol specification. Â sends the message (UM1, B̂, Â, X) and then
completes the session. If Π = UM3 then the session is identified via a (temporary
and incomplete) session identifier s = (UM3, Â, B̂, X, ∗, ∗, ∗). In this case the
outgoing message is (UM3, B̂, Â, X).

Session responder. If Â is the session responder and Π = UM1, then Â
creates a separate session state that is identified by a session identifier s =
(UM1, Â, B̂, Y ), computes the session key as per the one-pass UM protocol, and
completes the session. If Â is the session responder and Π = UM3, then Â creates
a separate session state and prepares an ephemeral public key X and key confir-
mation tag tA. The session is labeled active and identified via a (temporary and
incomplete) session identifier s = (UM3, Â, B̂, Y, X, tA, ∗). The outgoing message
is (UM3, B̂, Â, Y, X, tA).

Session update. This is applicable only in the case of UM3. A party Â can
be activated to update an active session via an incoming message of the form
(UM3, Â, B̂, X, Y, tB) or (UM3, Â, B̂, Y, X, tA, tB). If the message is of the former
type then upon receipt of this message, Â checks whether she owns an active ses-
sion with identifier s = (UM3, Â, B̂, X, ∗, ∗, ∗); except with negligible probability,
Â can own at most one such session. If no such session exists then the message is
rejected; otherwise, Â prepares a key confirmation tag tA, updates the identifier
to s = (UM3, Â, B̂, X, Y, tB, tA), sends the message (UM3, B̂, Â, X, Y, tB, tA), and
completes the session by accepting a session key. On the other hand, if the incom-
ing message is (UM3, Â, B̂, Y, X, tA, tB), then Â first checks whether she owns an
active session with identifier s = (UM3, Â, B̂, Y, X, tA, ∗). If not the message is
rejected; otherwise Â updates the identifier to s = (UM3, Â, B̂, Y, X, tA, tB) and
completes the session by accepting a session key.

Aborted sessions. Both protocols require that parties perform some checks
on incoming messages. For example, in both UM1 and UM3 the parties need to
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perform some form of public-key validation while in UM3 parties are required
to verify a tag. If in a protocol a party is activated to create a session with
an incoming message that does not meet the protocol specifications, then that
message is rejected and no session is created. If a party is activated in UM3
to update an active session with an incoming message that does not meet the
protocol specifications, then the party deletes all information specific to that
session (including the session state and the session key if it has been computed)
and aborts the session. Abortion occurs before the session identifier is updated.

Matching sessions. A session s with identifier (UMi, . . .), i ∈ {1, 3}, is called
a UMi-session. For a session (UMi, Â, B̂, . . .), we call Â the session owner, B̂
the session peer, and together Â and B̂ are referred to as the communicating
parties. Let s = (UMi, Â, B̂, CommA) be a session owned by Â. A session s =
(UMj , Ĉ, D̂, CommC) is said to be matching to s if i = j, Â = D̂, B̂ = Ĉ and
CommA ∼ CommC . It can be seen that the session s, except with negligible
probability, can have more than one matching session if and only if CommA has
exactly one component, i.e., is comprised of a single outgoing message.

Adversary. As in §3.1, the adversaryM is a probabilistic Turing machine, con-
trols all communications, and presents messages to parties via the Send query. In
addition, M can issue SessionStateReveal, Expire, SessionKeyReveal, Corrupt
and Test queries as described in §3.1. In the case of UM1, the SessionStateReveal
query can only be issued at an initiator, while in UM3 the query can be issued
to initiators and responders.

Remark 3. The adversary in this combined model has the same power that she
enjoys against UM1 or UM3 when run in isolation. Nevertheless, the model allows
M considerable additional strength, namely using the information learned in
protocol sessions of UM1 to attack protocol sessions of UM3 and vice versa. In
fact, this is precisely the attack scenario that was considered in [4].

Definition 4 (fresh session). Let s be the identifier of a completed Π-session,
owned by party Â with peer B̂. Let s∗ be the identifier of the matching session
of s, if the matching session exists. If Π = UM1, define s to be fresh if none of
the following conditions hold:

1. M issued a SessionKeyReveal(s) query or a SessionKeyReveal(s∗) query.
2. Â is the initiator and one of the following holds: (a)M issued Corrupt(Â) be-

fore Expire(s); (b) M issued SessionStateReveal(s) and Corrupt(Â); (c) M
issued Corrupt(B̂).

3. Â is the responder and one of the following holds: (a) M issued Corrupt(Â);
(b) s∗ exists and M issued either Corrupt(B) before Expire(s∗) or both
Corrupt(B̂) and SessionStateReveal(s∗); (c) s∗ does not exist and M issued
Corrupt(B̂).

If Π = UM3, define s to be fresh if none of the following conditions hold:

1. M issued a SessionKeyReveal(s) query or a SessionKeyReveal(s∗) query.
2. M issued Corrupt(Â) before Expire(s).
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3. M issued SessionStateReveal(s) and either Corrupt(Â) or Corrupt(B̂).
4. s∗ exists and M issued one of the following:

(a) Corrupt(B̂) before Expire(s∗).
(b) SessionStateReveal(s∗) and either Corrupt(Â) or Corrupt(B̂).

5. s∗ does not exist and M issued Corrupt(B̂) before Expire(s).

Definition 5 (security in the combined model). UM1 and UM3 are said to
be secure in the combined model if the following conditions hold:

1. For i ∈ {1, 3} if two honest parties complete matching UMi-sessions then,
except with negligible probability, they both compute the same session key.

2. For i ∈ {1, 3} no polynomially-bounded adversary M can distinguish the
session key of a fresh UMi-session from a randomly chosen session key with
probability greater than 1

2 plus a negligible fraction.

To circumvent the protocol interference attack of [4] on one- and three-pass
UM in the combined model, one-pass UM (see §3.2) is modified by including
the protocol identifier UM1 (in addition to the ephemeral public key X) in the
optional input Λ to the key derivation function. Similarly, the protocol identifier
UM3 is included in the optional input Λ (in addition to the ephemeral public
keys X and Y ) to the key derivation function in three-pass UM (see §3.2).

5 Security Argument for Shared Reuse

This section provides a reductionist security argument for UM1 and UM3 in the
combined model.

Theorem 2. If H is a random oracle, the MAC scheme is secure, and G is a
group where the GDH assumption holds, then UM1 and UM3 are secure in the
combined model.

Proof. It is easy to see that matching sessions compute the same session key. We
will verify that no adversaryM can distinguish the session key of a fresh session
from a randomly chosen session key.

Let M denote the event that M is successful, and suppose that Pr(M) =
1
2 + p(λ) where p(λ) is non-negligible. Let H∗ denote the event that M queries
H with (σe, σs, Â, B̂, Λ), where s = (Π, Â, B̂, ∗) is the test session or its matching
session. Since H is a random function, we have Pr(M |H∗) = 1

2 where negligible
terms are ignored. It follows that Pr(M ∧H∗) ≥ p(λ). The event M ∧H∗ will
henceforth be denoted by M∗.

Let st = (Π, Â, B̂, ∗) denote the test session selected by M, and let sm =
(Π, B̂, Â, ∗) denote its matching session (if it exists). Consider the following
events:

1. Event E1: Π = UM3, sm exists, andM issues neither SessionStateReveal(st)
nor SessionStateReveal(sm).

2. Event E2: M issues neither Corrupt(Â) nor Corrupt(B̂).
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3. Event E3: Π = UM1 and either
– the owner of st is the session initiator and M does not issue Session-

StateReveal(st);
– the owner of st is the session responder, sm exists, andM does not issue

SessionStateReveal(sm).
4. Event E4: Π = UM3, sm does not exist, and M does not issue Session-

StateReveal(st).

It can be see that M∗ = (M∗∧E1)∨ (M∗ ∧E2)∨ (M∗ ∧E3)∨ (M∗∧E4). Since
Pr(M∗) is non-negligible, it must be the case that either p1 = Pr(M∗ ∧E1),
p2 = Pr(M∗ ∧E2), p3 = Pr(M∗ ∧E3), or p4 = Pr(M∗ ∧ E4) is non-negligible
in λ. These events are considered separately.

We will show how to construct a solver S that takes as input a CDH chal-
lenge (U, V ), has access to adversary M, a DDH oracle, and a MAC oracle, and
produces a solution to the CDH challenge or a MAC forgery. We adopt the same
conventions for the DDH oracle and the ξ function as presented in the security
argument for the one-pass protocol.

Event M∗ ∧ E1. Suppose that M∗ ∧ E1 occurs with non-negligible probabil-
ity. In this case S establishes n parties, who are assigned random static key pairs,
and selects s1, s2 ∈R [1, nt]. The s1’th and s2’th sessions created will be called
sU and sV , respectively. The simulation ofM’s environment proceeds as follows:

1. Send(UM1, Â, B̂). S follows protocol UM1. However, if the session being cre-
ated is the s1’th or s2’th session, then S aborts with failure.

2. Send(UM1, Â, B̂, X). S follows protocol UM1. However, if the session being
created is the s1’th or s2’th session, then S aborts with failure.

3. Send(UM3, Â, B̂). S follows protocol UM3. However, if the session being cre-
ated is the s1’th or s2’th session, then S deviates from the protocol descrip-
tion by setting the ephemeral public key X to be U or V , respectively.

4. Send(UM3, B̂, Â, X). S follows protocol UM3. However, if the session being
created is the s1’th or s2’th session, then S deviates from the protocol de-
scription by setting the ephemeral public key Y to be U or V , respectively,
and setting σe = ξ(Y, X).

5. Send(UM3, Â, B̂, X, Y, tB). S follows protocol UM3. However, if X ∈ {U, V },
then S deviates from the protocol description by setting σe = ξ(X, Y ).

6. Send(UM3, B̂, Â, X, Y, tB, tA). S follows protocol UM3.
7. SessionStateReveal(s). S responds faithfully to the query except if s ∈
{sU , sV } in which case S aborts with failure.

8. Expire(s). S responds faithfully to the query.
9. SessionKeyReveal(s). S responds faithfully to the query except if s∈{sU , sV }

in which case S aborts with failure.
10. Corrupt(Â). If Â owns session sU or sV , and that session is not expired, then

S aborts with failure. Otherwise, S responds faithfully to the query.
11. H(σe, σs, Â, B̂, X, UM1). S simulates a random oracle in the usual way.
12. H(σe, σs, Â, B̂, X, Y, UM3).
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(a) If X ∈ {U, V } and σe �= ξ(X, Y ), then S obtains τ = DDH(X, Y, σe).
If τ = 1 and Y ∈ {U, V } and Y �= X , then S aborts with success and
outputs CDH(U, V ) = σe. If τ = 1 and either Y �∈ {U, V } or Y = X ,
then S returns H(ξ(X, Y ), σs, Â, B̂, X, Y, UM3).

(b) If Y ∈ {U, V } and σe �= ξ(X, Y ), then S obtains τ = DDH(X, Y, σe).
If τ = 1, then S returns H(ξ(X,Y), σs, Â, B̂, X, Y, UM3).

(c) S simulates a random oracle in the usual way.
13. Test(s). If s �∈ {sU , sV } or if sU and sV are non-matching, then S aborts

with failure. Otherwise, S answers the query faithfully.

Analysis. S’s simulation of M’s environment is perfect except with negligible
probability. Suppose that event M∗∧E1 occurs. The probability that M selects
one of sU , sV as the test session and the other as its matching session is at
least 2/(nt)2. In this case S does not abort as described in Steps 1, 2, 7 and 13.
Since the test session is fresh, S does not abort as described in Steps 9 and 10.
Except with negligible probability of guessing ξ(U, V ), a successful M queries
H with (CDH(U, V ), CDH(A, B), Â, B̂, X, Y, UM3) where {X, Y } = {U, V }, in
which case S is successful as described in Step 12a. The probability that S is
successful is bounded by Pr(S) ≥ 2p1/(nt)2, where negligible terms are ignored.

Event M∗ ∧E2. Suppose that M∗∧E2 occurs with non-negligible probability.
In this case S establishes n parties, two of which, denoted Û and V̂ , are assigned
static public keys U and V , respectively. The remaining n−2 parties are assigned
random static key pairs. The simulation ofM’s environment proceeds as follows:

1. Send(UM1, Â, B̂). S follows protocol UM1. However, if Â ∈ {Û , V̂ }, then S
deviates from the protocol description by setting σs = ξ(A, B).

2. Send(UM1, B̂, Â, X). S follows protocol UM1. However, if B̂ ∈ {Û , V̂ }, then
S deviates from the protocol description by setting σs = ξ(A, B), σe =
ξ(X, B).

3. Send(UM3, Â, B̂). S follows protocol UM3.
4. Send(UM3, B̂, Â, X). S follows protocol UM3. However, if B̂ ∈ {Û , V̂ }, then
S deviates from the protocol description by setting σs = ξ(A, B).

5. Send(UM3, Â, B̂, X, Y, tB). S follows protocol UM3. However, if Â ∈ {Û , V̂ },
then S deviates from the protocol description by setting σs = ξ(A, B).

6. Send(UM3, B̂, Â, X, Y, tB, tA). S follows protocol UM3.
7. SessionStateReveal(s). S responds faithfully to the query.
8. Expire(s). S responds faithfully to the query.
9. SessionKeyReveal(s). S responds faithfully to the query.

10. Corrupt(Â). If Â ∈ {Û , V̂ } then S aborts with failure. Otherwise, S responds
faithfully to the query.

11. H(σe, σs, Â, B̂, X, UM1).
(a) If Â ∈ {Û , V̂ } and σs �= ξ(A, B), then S obtains τ = DDH(A, B, σs).

If τ = 1 and {Â, B̂} = {Û , V̂ }, then S aborts with success and out-
puts CDH(U, V ) = σs. If τ = 1 and {Â, B̂} �= {Û , V̂ }, then S returns
H(σe, ξ(A, B), Â, B̂, X, UM1).
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(b) If B̂ ∈ {Û , V̂ } and either σe �= ξ(X, B) or σs �= ξ(A, B), then S sets
τe = 1 if either DDH(X, B, σe) = 1 or σe = ξ(X, B). Similarly, S sets
τs = 1 if either DDH(A, B, σs) = 1 or σs = ξ(A, B).
If τe = 1 and τs = 1, then S returns H(ξ(X, B), ξ(A, B), Â, B̂, X, UM1).

(c) S simulates a random oracle in the usual way.
12. H(σe, σs, Â, B̂, X, Y, UM3).

(a) If Â ∈ {Û , V̂ } and σs �= ξ(A, B), then S obtains τ = DDH(A, B, σs).
If τ = 1 and B̂ ∈ {Û , V̂ }, then S aborts with success and outputs
CDH(U, V ) = σs. If τ =1 and B̂ �∈ {Û , V̂ }, then S returns H(σe, ξ(A, B),
Â, B̂, X, Y, UM3).

(b) If B̂ ∈ {Û , V̂ } and σs �= ξ(A, B), then S obtains τ = DDH(A, B, σs).
If τ = 1, then S returns H(σe, ξ(A, B), Â, B̂, X, Y, UM3).

(c) S simulates a random oracle in the usual way.
13. Test(s). If Û and V̂ are not the session peers then S aborts with failure.

Otherwise, S answers the query faithfully.

Analysis. The simulation of M’s environment is perfect except with negligible
probability. The probability that Û and V̂ are the communicating parties of
the test session is at least 2/n2, in which case S does not abort as in Step 13.
Suppose this is indeed the case and suppose that event M∗ ∧E2 occurs. In this
event M does not corrupt the test session communicating peers and therefore
failure as in Step 10 does not occur. Under event M∗ the adversary queries
H with σs = CDH(U, V ), and thus S is successful as in Step 11a or 12a. The
probability of S’s success in this event is therefore bounded by Pr(S) ≥ 2p2/n2,
where negligible terms are ignored.

Event M∗ ∧E3. Suppose that M∗∧E3 occurs with non-negligible probability.
In this case S establishes n parties. One of these parties, denoted by V̂ , is assigned
the static public V . The remaining parties are assigned random static key pairs.
Furthermore, S selects a random integer r ∈R [1, nt]. The rth session created
will be called sU . The simulation of M’s environment proceeds as follows:

1. Send(UM1, Â, B̂). S follows protocol UM1. However, if Â = V̂ , then S devi-
ates from the protocol description by setting σs = ξ(A, B). Further, if the
session activated is sU , then S deviates from the protocol description by
setting X = U and σe = ξ(X, B).

2. Send(UM1, B̂, Â, X). S follows protocol UM1. However, if B̂ = V̂ , then S
deviates from the protocol description by setting σs = ξ(A, B) and σe =
ξ(X, B).

3. Send(UM3, Â, B̂). S follows protocol UM3.
4. Send(UM3, B̂, Â, X). S follows protocol UM3. However, if B̂ = V̂ , then S

deviates from the protocol description by setting σs = ξ(A, B).
5. Send(UM3, Â, B̂, X, Y, tB). S follows protocol UM3. However, if Â = V̂ , then
S deviates from the protocol description by setting σs = ξ(A, B).

6. Send(UM3, B̂, Â, X, Y, tB, tA). S follows protocol UM3.
7. SessionStateReveal(s). If s = sU then S aborts with failure. Otherwise, S

responds faithfully to the query.
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8. Expire(s). S responds faithfully to the query.
9. SessionKeyReveal(s). If s is either sU or sU ’s matching session then S aborts

with failure. Otherwise, S responds faithfully to the query.
10. Corrupt(Â). If Â = V̂ then S aborts with failure. Otherwise, S responds

faithfully to the query.
11. H(σe, σs, Â, B̂, X, UM1).

(a) If Â = V̂ and σs �= ξ(A, B), then S obtains τ = DDH(A, B, σs).
If τ = 1, then S returns H(σe, ξ(A, B), Â, B̂, X, UM1).

(b) If X = U and σe �= ξ(X, B), then S obtains τ = DDH(X, B, σe).
If τ = 1and B̂ = V̂ , then S aborts with success and outputsCDH(U, V )=
σe. If τ = 1 and B̂ �= V̂ , then S returns H(ξ(X, B), σs, Â, B̂, X, UM1).

(c) If B̂ = V̂ and either σe �= ξ(X, B) or σs �= ξ(A, B), then S sets τe = 1
if either DDH(X, B, σe) = 1 or σe = ξ(X, B). Similarly, S sets τs = 1 if
either DDH(A, B, σs) = 1 or σs = ξ(A, B).
If τe = 1 and τs = 1, then S returns H(ξ(X, B), ξ(A, B), Â, B̂, X, UM1).

(d) S simulates a random oracle in the usual way.
12. H(σe, σs, Â, B̂, X, Y, UM3).

(a) If Â = V̂ or B̂ = V̂ , and σs �= ξ(A, B), then S obtainsτ =DDH(X, Y, σe).
If τ = 1, then S returns H(σe, ξ(A, B), Â, B̂, X, Y, UM3).

(b) S simulates a random oracle in the usual way.
13. Test(s). If the responder B̂ is not V̂ and the ephemeral public key X is not

U then S aborts with failure. Otherwise, S answers the query faithfully.

Analysis. The simulation of M’s environment is perfect except with negligible
probability. Suppose that event M∗∧E3 occurs. The probability that B̂ = V̂ and
that either the test session or its matching session is sU (i.e., X = U) is at least
2/n2t. Suppose this is the case, whence S does not abort as in Step 13. Since M
is successful, the test session is fresh and therefore S does not abort as in Steps 7,
9 and 10. Under event M∗ the adversary queries H with σe = CDH(U, V ) and
thus S is successful as in Step 11b. The probability of S’s success in this event
is therefore bounded by Pr(S) ≥ 2p3/n2t, where negligible terms are ignored.

Event M ∧E4. Suppose that M∧E4 occurs with non-negligible probability. In
this case S establishes n parties. Two of these parties, denoted by Û and V̂ , are
assigned static public keys U and V , respectively. The remaining n − 2 parties
are assigned random static key pairs. Furthermore, S is given a MAC oracle with
key k̃ that is unknown to S. S selects r ∈R [1, nt]; the rth session created will
be called sr. The simulation of M’s environment proceeds as follows:

1. Send(UM1, Â, B̂). S follows protocol UM1. However, if Â ∈ {Û , V̂ }, then S
deviates from the protocol description by setting σs = ξ(A, B). If the session
created is the rth session, then S aborts with failure.

2. Send(UM1, B̂, Â, X). S follows protocol UM1 However, if B̂ ∈ {Û , V̂ }, then S
deviates from the protocol description by setting σs = ξ(A, B), σe = ξ(X, B).
If the session created is the rth session, then S aborts with failure.

3. Send(UM3, Â, B̂). S follows protocol UM3. If the session created is the rth
session and {Â, B̂} �= {Û , V̂ }, then S aborts with failure.
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4. Send(UM3, B̂, Â, X). S follows protocol UM3. However, if B̂ ∈ {Û , V̂ }, then
S deviates from the protocol description by setting σs = ξ(A, B). If the cre-
ated session is the rth session, then S deviates from the protocol description
as follows. If {Â, B̂} �= {Û , V̂ } then S aborts with failure. Otherwise, S se-
lects a random session key κ and sets the MAC key κ′ equal to the (unknown)
key k̃ of the MAC oracle. S queries the MAC oracle with (R, B̂, Â, Y, X) and
sets tB equal to the oracle response.

5. Send(UM3, Â, B̂, X, Y, tB). S follows protocol UM3. However, if Â ∈ {Û , V̂ },
then S deviates from the protocol description by setting σs = ξ(A, B). If
Â was activated to update sr, then S selects a random session key κ and
sets the MAC key κ′ equal to the (unknown) key k̃ of the MAC oracle. S
queries the MAC oracle with (I, Â, B̂, X, Y ) and sets tA equal to the oracle
response.

6. Send(UM3, B̂, Â, X, Y, tB, tA). S follows protocol UM3. If B̂ was activated to
update sr, then S completes the session without verifying the received tA.

7. SessionStateReveal(s). S answers the query faithfully. However, if s = sr

and the owner of sr is the session responder, then S aborts with failure.
8. Expire(s). S answers the query faithfully. However, if s = sr and sr does not

have a matching session, then S aborts with success and outputs as its MAC
forgery the key confirmation tag received by s (and the associated message).

9. SessionKeyReveal(s). S answers the query faithfully.
10. Corrupt(Â). If Â ∈ {Û , V̂ } then S aborts with failure. Otherwise, S answers

the query faithfully.
11. H(σe, σs, Â, B̂, X, UM1).

(a) If Â ∈ {Û , V̂ } and σs �= ξ(A, B), then S obtains τ = DDH(X, Y, σs).
If τ = 1 and {Â, B̂} = {Û , V̂ }, then S aborts with success and out-
puts CDH(U, V ) = σs. If τ = 1 and {Â, B̂} �= {Û , V̂ }, then S returns
H(σe, ξ(A, B), Â, B̂, X, UM1).

(b) If B̂ ∈ {Û , V̂ } and either σe �= ξ(X, B) or σs �= ξ(A, B), then S sets
τe = 1 if either DDH(X, B, σe) = 1 or σe = ξ(X, B). Similarly, S sets
τs = 1 if either DDH(A, B, σs) = 1 or σs = ξ(A, B).
If τe = 1 and τs = 1, then S returns H(ξ(X, B), ξ(A, B), Â, B̂, X, UM1).

(c) S simulates a random oracle in the usual way.

12. H(σe, σs, Â, B̂, X, Y, UM3).

(a) If Â ∈ {Û , V̂ } and σs �= ξ(A, B), then S obtains τ = DDH(A, B, σs).
If τ = 1 and B̂ ∈ {Û , V̂ } and B̂ �= Â, then S aborts with success and
outputs CDH(U, V ) = σs. If τ = 1 and either B̂ �∈ {Û , V̂ } or B̂ = Â,
then S returns H(σe, ξ(A, B), Â, B̂, X, Y, UM3).

(b) If B̂ ∈ {Û , V̂ } and σs �= ξ(A, B), then S obtains τ = DDH(A, B, σs).
If τ = 1, then S returns H(σe, ξ(A, B), Â, B̂, X, Y, UM3).

(c) S simulates a random oracle in the usual way.

13. Test(s). If s �= sr or if sr has a matching session, then S aborts with failure.
Otherwise, S answers the query faithfully.
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Analysis. S’s simulation of M’s environment is perfect except with negligible
probability. Suppose that event M∗ ∧ E4 occurs. The probability that the test
session is the rth session, and Û and V̂ are its communicating parties, is at least
2/(n3t). Suppose that this is indeed the case (so S does not abort in Steps 1,
2, 3 and 4). Since event E4 has occurred, S does not abort in Steps 7 and 13.
Also by definition of a fresh session, M is only allowed to corrupt either Û or
V̂ after expiring the test session. Therefore before aborting as in Step 10, S is
successful as in Step 8. Except with negligible probability of guessing ξ(U, V ),
a successful M must query H with (CDH(X, Y ), CDH(U, V ), Â, B̂, X, Y ) where
{Â, B̂} = {Û , V̂ }, in which case S is successful as described in Step 11a. The
probability that S is successful is bounded by Pr(S) ≥ 2p4/n3t, where negligible
terms are ignored.

Overall analysis. During the simulation S performs group exponentiations,
simulates oracle queries, and accesses the DDH oracle, all of which take polyno-
mial time. If M’s running is also polynomial then S is a polynomially-bounded
algorithm that produces a MAC forgery or succeeds in solving the CDH challenge
with probability at least

Pr(S) ≥ max
(

2p1
(nt)2

,
2p2
n2 ,

2p3
n2t

,
2p4
n3t

)
. (2)

�
Reflections. In the simulations of events M∗∧E2 and M∗∧E4, it was implicitly
assumed (in the success events in the hash queries) that Û and V̂ are distinct
parties. More precisely, if a party is allowed to initiate a session with itself then
S may fail as M may produce CDH(U, U) or CDH(V, V ) instead of CDH(U, V ).
The case Û = V̂ can be encompassed by a reduction from the Gap Square
Problem (GSP), which is the problem of computing gu2

given gu and a DDH
oracle. S’s actions are modified as follows: given U = gu, S selects v ∈R [1, q−1]
and computes V = Uv. The output produced by S in events M∗ ∧ E1 and
M∗ ∧ E3 is σv−1

e . In events M∗ ∧ E2 and M∗ ∧ E4, S’s output is σv−1

s if the
communicating parties are Û and V̂ , σs if Û is both the owner and peer of the
test session, and σv−2

s if V̂ is both the owner and peer of the test session.

6 Concluding Remarks

We revisited the question of security of the one- and three-pass UM protocols
where parties are allowed to reuse their static keys among the two protocols. Our
work shows that it is possible to formally argue the security of key agreement
protocols having different security attributes in a combined setting.
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Abstract. Xoring two permutations is a very simple way to construct
pseudorandom functions from pseudorandom permutations. The aim of
this paper is to get precise security results for this construction when the
two permutations on n bits f and g are public. We will first prove that
f ⊕ g is indifferentiable from a random function on n bits when the at-
tacker is limited with q queries, with q � √2n. This bound is called the
“birthday bound”. We will then prove that this bound can be improved
to q3 � 22n. We essentially instantiate length preserving random func-
tions, starting from fixed key ideal cipher with high security guarantee.

Keywords: Indifferentiability, Luby-Rackoff Backwards with public
permutations, Building random oracles from ideal block ciphers.

1 Introduction

The thema of this paper is to prove some security bounds about the indiffer-
entiability of the Xor of two public random permutations on n bits from one
random public function on n bits. We will look for security bounds “beyond
the birthday bound” and smaller than the “information bound”, i.e. when the
number of queries q is q � 2n, but we may have q �

√
2n. Therefore, this pa-

per is in relation with previous work about the Xor of two permutations, about
previous work dealing with security proofs “beyond the birthday bound” for
various ideal cryptographic constructions, and, of course, about previous work
on indifferentiability.

Luby-Rackoff Backwards
The problem to construct pseudorandom functions (PRF) from pseudorandom
permutations (PRP) is called “Luby-Rackoff Backwards”. This problem was first
considered in [3]. This problem is obvious if the pseudorandom permutations
are secret and if we are interested in an asymptotical polynomial versus non
polynomial model (since a PRP is then a PRF). However, this problem is not
obvious if we want security beyond the birthday bound, or if the permutations are
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public. When the permutations are secret, Lucks ([11]) has proved that the Xor
of k independent pseudorandom permutations gives security when q � 2

k
k+1 n.

(For k = 2 this gives O(2
2
3 n)). This bound was improved in [2,19] and [20] where

proofs of security for q � 2n are given. (However, Lucks proof is much simpler).
When q = 2n, as pointed out in these papers, it is easy to distinguish π1 ⊕ π2
from a random functions R since ⊕x∈{0,1}n(π1 ⊕ π2)(x) = 0. In this paper π1
and π2 will be public, and therefore our bounds are necessary smaller than the
bounds obtained when π1 and π2 are secret. We will in fact match the original
bound proven by Lucks, i.e. q � 2

2
3 n.

Security proofs beyond the birthday bound
Many papers have been published with security proofs beyond the birthday
bound for various ideal cryptographic constructions. For example Aiello and
Verkatesan [1] for doubling the length of pseudorandom functions with the Benes
construction, or Maurer and Prietrzak [12] or Patarin [16,17] for Feistel schemes.

Indifferentiability
However the main topic of this paper is related to indifferentiability theory since,
again, π1 and π2 will be public. The notion of indifferentiability was introduced
by Maurer, Renner and Holenstein [13]. Since then, a lot of works has been
done about indifferentiability. For example, in [6], Coron et al have shown how
to construct a random oracle from an ideal block cipher. Their proved security
bound is in q �

√
2n, where n is the number of bits of the output of the ideal

cipher. With our construction we will also be able to construct random oracles
from ideal block ciphers. The other direction (constructing an ideal cipher from
an oracle model) was proved in [7]. Their construction uses a 6-round Feistel
scheme, and the security is proved for q16 � 2n. This is below the birthday bound
(q �

√
2n). In his PhD, [22], Seurin has obtained a better bound, q4 � 2n, but

for more rounds: 10 rounds instead of 6. This bound is better but still below
the birthday bound. Our problem is different and simpler, this is why we will be
able to obtain better security bounds.

Related Works
Recently Dodis et al [8], has shown XOR of a random permutation and its in-
verse is actually indifferentiable from a random function. However, they achieved
a birthday security bound. Whereas, we show with XOR of two independent ran-
dom permutations one can get a security proof with beyond birthday security
guarantee.

2 Bounding Distinguisher’s Advantage

A distinguisher (attacker) D, for two oracles F and G, is an algorithm which
has access to either oracle F or oracle G and outputs either 0 or 1 after making
queries to the given oracle. The advantage AdvD(F ,G) or simply AdvD of the
distinguisher D is defined as

AdvD = |Pr[DF → 1]− Pr[DG → 1]|.
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The view V of the distinguisher is nothing but the list of the queries made by
and the responses it received from the given oracle. VF and VG be the random
variables corresponding to the distinguisher’s view, when D is interacting with
F and G respectively. V be the set of all possible views. One can actually easily
show [4,5,15],

AdvD ≤
1
2

∑
V ∈V

|Pr[VF = V ]− Pr[VG = V ]|.

Below, we state two well known theorems [4,5,15] regarding upper bounds on
AdvD.

Theorem 1. If for all V ∈ V, we have

Pr[VG = V ] ≥ (1− ε) Pr[VF = V ],
then AdvD ≤ ε.

Theorem 2. If for all V ∈M ⊆ V, we have

Pr[VG = V ] ≥ (1− ε1) Pr[VF = V ]

and Pr[VF �∈ M] ≤ ε2, then AdvD ≤ ε1 + ε2.

3 Indifferentiability

The notion of indifferentiability was introduced by Maurer, Renner and Holen-
stein in [13]. This is an extension of the classical notion of indistinguishability,
where one or more oracles are publicly available, such as random oracles, random
permutations, or ideal ciphers. This notion of indifferentiability is used to show
that an ideal primitive G (for example a random function) can be replaced by a
construction C that is based on some other ideal primitive F (for example, C is
the Xor of two random permutations).

Definition 1. Indifferentiability [13]
A Turing machine C with oracle access to an ideal primitive F is said to be
(t, qC , qF , ε) indifferentiable from an ideal primitive G if there exists a simulator
S with an oracle access to G and running time at most t, such that for any
distinguisher D, it holds that

AdvD((CF ,F), (G, SG)) < ε.

The distinguisher makes at most qC queries to C or G and at most qF queries
to F or S. Similarly, CF is said to be (computationally) indifferentiable from
G if running time of D is bounded above by some polynomial in the security
parameter k and ε is a negligible function of k.

The previous definition is illustrated in Figure 1. In = {0, 1}n denotes the set of
all bit strings of length n. As in this paper, R : In → In is a random function,
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CF ≡ π1 ⊕ π2 F ≡ {π1, π
−1
1 , π2, π

−1
2 } G ≡ R SG

D

Fig. 1. The indifferentiability notion

π1, π2 : In → In are two random permutations, and C is π1 ⊕ π2. The distin-
guisher has either access to the system formed by the construction C and π1, π2,
or to the system formed by the random function R and a simulator S. In the
first system (left), the construction C computes its output by making calls to π1,
π2, π−1

1 and π−1
2 . In our case C{π1,π2} is just π1 ⊕ π2, so in our case C does not

need access to π−1
1 , π−1

2 but just π1, π2. The distinguisher can also make calls to
π1, π2, π−1

1 and π−1
2 directly. In the second system (right), the distinguisher can

either query the random function R, or the simulator S that can make query to
R. We see that the role of the simulator is to simulate the random permutations
π1, π2 and to simulate also π−1

1 , π−1
2 , such that no distinguisher can tell whether

it is interacting with C and π1, π2, π−1
1 and π−1

2 , or with R and S. Notice that
the simulator does not see the distinguisher’s queries to π. However, it can call
R directly when needed for the simulation. The output of S should be indistin-
guishable from that of random oracle permutations π1, π2, and the output of S
should look consistent with what the distinguisher can obtain from R.

4 Our Simulator

S denotes the simulator, and D the distinguisher. After α queries, S maintains
always the sequence (xi, ai, bi), 1 ≤ 1 ≤ α, containing previous responses, as
we will see, with ∀i, 1 ≤ i ≤ α, ai ⊕ bi = R(xi).When D contacts R, he makes
only direct queries: D gives a value x′

i to R, and obtains the value R(x′
i). S does

not know these values x′
i. When D contacts S, we can assume without losing

generality that D can make only 3 types of queries: A direct query, or an inverse
query with aα, or an inverse query with bα.

Direct query
In a direct query, D gives a new value xα to S (i.e. xα /∈ {x1, . . . , xα−1}) and S
will give to D a value aα to simulate π1(xα) and a value bα to simulate π2(xα).
We can assume, without losing generality that D chooses xα /∈ {x1, . . . , xα−1}
because if xα = xi, i ≤ α − 1, then S will always answer aα = ai and bα = bi

and D will learn nothing new. Our simulator will compute aα and bα like this:

1. S asks for the value R(xα).
2. aα is randomly chosen with a uniform distribution in

In \ {a1, a2, . . . , aα−1, R(xα)⊕ b1, R(xα)⊕ b2, . . . , R(xα)⊕ bα−1}.
3. bα = R(xα)⊕ aα
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We will denote Vα−1 = {a1, a2, . . . , aα−1} and Qα−1 = {R(xα) ⊕ b1, R(xα) ⊕
b2, . . . , R(xα)⊕ bα−1}. Therefore we will have: Qα−1 = {bα ⊕ aα ⊕ b1, bα ⊕ aα ⊕
b2, . . . , bα ⊕ aα ⊕ bα−1}, and aα is randomly chosen in In \ (Vα−1 ∪Qα−1).

Inverse query with aα

In such inverse query, D gives a new value aα to S (i.e. aα /∈ {a1, a2, . . . , aα−1})
and S will give to D a value xα to simulate π−1

1 (aα) and a value bα to sim-
ulate π2(xα). We can assume, without losing generality that D chooses aα /∈
{a1, a2, . . . , aα−1} because if aα = ai, i ≤ α − 1, then S will always answer
xα = xi and bα = bi and D will learn nothing new. Our simulator will compute
xα and bα like this:

1. xα is randomly chosen with a uniform distribution in
In \ {x1, . . . , xα−1}.

2. S asks for the value R(xα).
3. If R(xα) ⊕ aα /∈ {b1, b2, . . . , bα−1} then S gives this xα to D and gives

bα = R(xα)⊕ aα to D.
4. If R(xα) ⊕ aα ∈ {b1, b2, . . . , bα−1} then S goes back to 1 above, and tries

with another xα randomly chosen in In \ {x1, . . . , aα−1}.

This process continues until S has found like this a value xα such that R(xα)⊕
aα /∈ {b1, b2, . . . , bα−1} and then it gives this xα to D and bα = R(xα) ⊕ aα.
If S cannot find such a xα it does not answer, but in general this probability
will be negligible if α � 2n. Therefore, when S answers, the value xα has been
randomly chosen with a uniform distribution in In \{x1, . . . xα−1}\Wα−1 where
Wα−1 = {x ∈ In such that R(x) ⊕ aα ∈ {b1, b2, . . . , bα−1}}.
Remark. A variant would be to choose a simulator S that will abort after k
failed xα, where k is an integer. In this paper we can actually assume k = 2,
as we are looking for a security proof when q � 2

2n
3 . We do not assume that

D makes “timing attacks” but only that D computes from the values given
by S without using the time for S to give them. However it would not change
anything to assume that D tries to use this time since when S answers a value
xα, whatever the time S has used to compute xα, xα is always randomly chosen
in In \ {x1, . . . xα−1} \Wα−1 and D knows this set In \ {x1, . . . xα−1} \Wα−1.
Therefore the time gives no more information to D.

Inverse query with bα

In such inverse query, D gives a new value bα to S (i.e. bα /∈ {b1, . . . , bα−1})
and S will give to D a value xα to simulate π−1

2 and a value aα to simulate
π1(xα). Our simulator will compute xα in a symmetric way as we have just
seen for inverse query with aα. This means that S will randomly choose xα

with uniform distribution in In \ {x1, . . . xα−1} \ W ′
α−1 with W ′

α−1 = {x ∈
In such that R(x) ⊕ bα ∈ {a1, a2, . . . , aα−1}} and that S will give this xα to D
and S will give aα to D with aα = R(xα)⊕ bα.

Whatever the query of D is, direct, inverse with aα, or inverse with bα, S will
store and memorize the values (xα, aα, bα) generated to the sequence (xi, ai, bi),
1 ≤ i ≤ q.
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5 Distinguisher Characterization

Distinguisher D′

For any distinguisher D, with q queries, we consider another distinguisher D′

with q′ queries, q′ ≥ q such that:
1. The first q queries of D′ are exactly those of D.
2. D′ outputs the same decision, 0 or 1, as D.
3. For any direct query x that D makes directly to R, D′ will make at the end
a direct query with this value x to S.
We can assume that D′ does not make any duplicate query, since S and R will
always give the same answers on the same questions. Since D and D′ always
output the same decision, we have: AdvD = AdvD′ . If q is the number of queries
that D makes to S or R, with q1 the number of queries that D makes to R and
q2 the number of queries that D makes to S, then q = q1 + q2, q′ = q + q1, D′

makes q1 queries to R (as D) and q = q1 + q2 queries to S.
Let, T = ((x1, a1, b1), · · · , (xq, aq, bq)) be the view of the distinguisher D′. The

ith triple (xi, ai, bi) implies D′ received the triple during the ith direct/inverse
query to the Simulator or the Random permutations. Bn be the set of all per-
mutations from In to In. D′ tries to distinguish whether the sequence T , came
from π1 and π2 with π1, π2 ∈R Bn or from the simulator. pT and p∗T be the
probabilities that D′ receives the tuple T while interacting with the random
permutations and simulator respectively. As D and D′ output the same decision
bit we have,

AdvD = AdvD′ ≤ 1
2

∑
T

|pT − p∗T |

Any sequence T = {(xi, ai, bi), 1 ≤ i ≤ q}, such that xi, ai, bi ∈ In, xi’s are
pairwise distinct, ai’s are pairwise distinct and bi’s are pairwise distinct as well
is called distinct q-sequence. For any distinct q-sequence T we have,

pT =
q∏

α=1

1
(2n − (α− 1))2

,

because π1, π2 are random permutations. For any other sequence T of q-triples
pT is zero.

6 Proof of Security When q � √
2n

Theorem 3. π1, π2 be two random permutations and R be a random function
In → In. S be the simulator as defined before. Then for any distinguisher D,
for the systems (π1⊕π2, {π1, π2}) and (R, S) making at most q queries we have,
AdvD ≤ O( q2

2n )

Proof. As discussed before, at first we construct the distinguisher D′ starting
from the distinguisher D. We know,

AdvD = AdvD′ .
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pT and p∗T are the probabilities that D′ receives the distinct q-sequence T =
{(xi, ai, bi), 1 ≤ i ≤ q} while interacting with the random permutations and
simulator respectively. We already know,

pT =
q∏

α=1

1
(2n − (α− 1))2

.

Now, if we can show
p∗T ≥ (1− ε)pT ,

for all distinct q-sequence T , then by Theorem 1 that would imply

AdvD′ ≤ ε.

As we are interested in the lower bound of p∗T , we evaluate p∗
′

T where we impose
one extra condition, that is while answering the inverse queries the simulator
never makes a bad guess. We define Gα to be the event, that this extra condition
is satisfied during (x1, a1, b1), · · · , (xα, aα, bα) responses. Also, (Xα, Aα, Bα) be
the random variable corresponding to αth triple received by D′. We are interested
in a lower bound for

Pα ≡ Pr[(Xα, Aα, Bα) = (xα, aα, bα) ∩Gα

|(Xi, Ai, Bi) = (xi, ai, bi) for 1 ≤ i ≤ α− 1 ∩Gα−1].

Direct query with xα

We have |Vα−1 ∪Qα−1| ≥ (α− 1). Hence,

Pα ≥
1
2n
× 1

2n − (α− 1)
.

The term 1
2n , comes from the probability over the random function i.e. R(xα) =

aα ⊕ bα, the condition Gα−1 implies R(xα) was not queried beforehand.

Inverse query with aα

Conditioned on the event Gα−1, the probability that the simulator guesses xα

in the first trial and R(xα) outputs aα ⊕ bα is 1
2n−(α−1) ×

1
2n . For inverse query

with bα we also get the same bound as above. So, whether αth query is direct or
inverse query we always have

Pα ≥
1− α−1

2n

(2n − (α− 1))2
.

Hence,

p∗T ≥ p∗
′

T =
q∏

α=1

Pα ≥
q∏

α=1

1− α−1
2n

(2n − (α − 1))2
≥ pT (1− q2

2n
).

This would imply AdvD′ ≤ q2

2n . 
�



76 A. Mandal, J. Patarin, and V. Nachef

7 Proof of Security When q � 2
2
3
n

Theorem 4. π1, π2 be two random permutations and R be a random function
In → In. S be the simulator as defined before. Then for any distinguisher D,
for the systems (π1⊕π2, {π1, π2}) and (R, S) making at most q queries we have,
AdvD ≤ O( q3

22n )

Proof. As discussed before, at first we construct the distinguisher D′ starting
from the distinguisher D. We know,

AdvD = AdvD′ .

For any tuple T = ((x1, a1, b1), · · · , (xq, aq, bq)) for all the values A ∈ In, let
NA(T ) be the number of (i, j), 1 ≤ i ≤ q, 1 ≤ j ≤ q such that ai ⊕ bj = A. M

be the set of q-tuples such that T ∈M iff NA(T ) ≤ 24q2

2n−q for all A ∈ In. pT and
p∗T be the probabilities that D′ receives the tuple T = {(xi, ai, bi), 1 ≤ i ≤ q}
while interacting with the random permutations and simulator respectively. We
already know,

pT =
q∏

α=1

1
(2n − (α− 1))2

.

Theorem 5 from Appendix A implies,

∑
T 
∈M

pT ≤
2n

212n
=

1
211n

.

Now, if we can show
p∗T ≥ (1− ε)pT

for all T ∈ M , then by Theorem 2 that would imply

AdvD′ ≤ 1
211n

+ ε.

While answering the inverse queries, it might be possible that the simulator
makes some bad guess of xα. As we are interested in the lower bound of p∗T , we
evaluate p∗

′
T where we impose some extra conditions, the simulator is allowed

to make only one bad guess while answering inverse queries and the bad guess
can not be same as any xi for 1 ≤ i ≤ q or some previous bad guess. For
1 ≤ α ≤ q, we define Gα to be the event, that this extra condition is satisfied
during (x1, a1, b1), · · · , (xα, aα, bα) responses. Also, (Xα, Aα, Bα) be the random
variable corresponding to αth triple received by D′. We are interested in a lower
bound for

Pα ≡ Pr[(Xα, Aα, Bα) = (xα, aα, bα) ∩Gα

|(Xi, Ai, Bi) = (xi, ai, bi) for 1 ≤ i ≤ α− 1 ∩Gα−1].
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Direct query
If T ∈M , we have |Vα−1 ∪Qα−1| ≥ 2(α− 1)− 24q2

2n−q . Hence, we have

Pα ≥
1
2n
× 1

2n − 2(α− 1) + 24q2

2n−q

.

The term 1
2n , comes from the probability over the random function i.e. R(xα) =

aα⊕bα. The condition Gα−1, guarantees that xα was not queried to the random
oracle R, as a bad first guess in some previous inverse query. Assuming q ≤ 2n/4
we get,

Pα ≥
1− 96q2

22n

(2n − (α− 1))2
.

Inverse query with aα

Conditioned on the event Gα−1, the probability that the simulator guesses xα

in the first trial and R(xα) outputs aα ⊕ bα is 1
2n−(α−1) ×

1
2n . Conditioned on

the event Gα−1, the probability that the simulator guesses xα in the second trial
satisfying R(xα) = aα ⊕ bα and condition Gα is at least,

2n − q − (α − 1)
2n − (α− 1)

× α− 1
2n

× 1
2n − (α− 1)

× 1
2n

.

2n−q−(α−1)
2n−(α−1) corresponds to the probability that the first guess does not collide

with x1, · · · , xq and the possible bad first guesses in the previous inverse queries.
As the first guess is not queried before, α−1

2n is the probability that the first
guess is bad. 1

2n−(α−1) ×
1
2n is the probability that the second guess is xα and

R(xα) = aα ⊕ bα. Hence all together we have,

Pα ≥
1

2n − (α− 1)
× 1

2n
+

2n − q − (α− 1)
2n − (α− 1)

× α− 1
2n

× 1
2n − (α− 1)

× 1
2n

=
1
2n
× 1

2n − (α− 1)
×
(
1 +

2n − q − (α − 1)
2n − (α− 1)

× α− 1
2n

)
Again assuming q ≤ 2n/4, we can show

Pα ≥
1− 4q2

22n

(2n − (α− 1))2
.

For inverse queries with bα, we also get the same lower bound as above. Hence,
whether αth query is direct or inverse query we always have

Pα ≥
1− 96q2

22n

(2n − (α− 1))2
.
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Hence,

p∗T ≥ p∗
′

T =
q∏

α=1

Pα ≥
q∏

α=1

1− 96q2

22n

(2n − (α− 1))2
≥ pT (1− 96q3

22n
).

This would imply AdvD′ ≤ 1
211n + 96q3

22n . 
�

8 Application of Our Work

Even though the problem of constructing a public random function from pub-
lic random permutations are interesting in its own right, here we briefly men-
tion some possible application of our result. There are numerous cryptographic
schemes [8,14,23,24] where length preserving Random Functions are needed.
Only known instantiation of those non-invertible length-preserving primitives
were due to Dodis et al [8]. However, as stated below their instantiation does
not always serve the purpose as the birthday security bound over there fails to
preserve the high security of the constructions.

1. In Crypto 2007, Maurer and Tessaro [14] considered the problem of extending
the domain of public random functions approaching optimal security bound,
starting from length preserving random functions. With our result, if we
choose to instantiate the random function as XOR of two fixed key ideal
ciphers. Even though we won’t be able to guarantee the optimal Θ(2n(1−ε))
security bound we can easily guarantee beyond birthday security bound up
to O(2

2n
3 ) queries.

2. Stam in Crypto 2008 [24], Shrimpton and Stam in ICALP 2008 [23] consid-
ered the problem of building collision resistant compression functions start-
ing from length preserving random functions. However, here whether we use
our instantiation or instantiation due to Dodis et al [8] do not matter, be-
cause here the goal of their work is to achieve collision resistancy as close as
the Birthday Barrier.

9 Conclusion

In this paper, we have proved the indifferentiability of the Xor of two random
permutations on n bits from a random function on n bits when the number of
queries satisfies q �

√
2n (birthday bound) or q � 22n/3. The simulator S used

was the same in both cases. In fact, it is conjectured that for this simulator the
security is probably in q � 2n, which if true would extend Maurer and Tessaro’s
[14] result preserving the optimal Θ(2n(1−ε)) bound.

Acknowledgements. We sincerely thank Jean Sébastien Coron for his valuable
comments and long discussions on initial drafts of this paper.
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A Property of the ai ⊕ bj Values

We will assume that q2 ≥ n · 2n.

Theorem 5. For all A of In, if the values (a1, a2, . . .aq) are pairwise distinct
and randomly chosen in In and if the values (b1, b2, . . . bq) are pairwise distinct
and randomly chosen in In, then: the number NA of (i, j), 1 ≤ i ≤ q, 1 ≤ j ≤ q
such that ai ⊕ bj = A satisfies:

Pr[NA ≥
24q2

2n − q
] ≤ 1

212n

This also means that the number UA of (a1, a2, . . . , aq, b1, b2, . . . , bq) such that
the ai are pairwise distinct, the bi are pairwise distinct, and NA ≥ 24q2

2n−q satisfies:
UA ≤ 1

212n [2n(2n − 1) . . . (2n − q + 1)]2.

Remark. The coefficient 1
212n here is not very important, we can easily change

it to another even smaller coefficient. What is important for us here is the O( q2

2n )
value.
Proof of Theorem 5. When new values aα and bα are generated, the probability
that ∃j, j ≤ α−1 such that aα⊕bj = A is ≤ α−1

2n−(α−1) since we have α−1 values
bj, and since aα is randomly generated in In \ {a1, a2, . . . , aα−1}. Similarly, the
probability that ∃j, j ≤ α − 1 such that aj ⊕ bα = A is ≤ α−1

2n−(α−1) , and the
probability that aα ⊕ bα = A is ≤ 1

2n−(α−1) . Therefore the probability that aα

and bα will increase NA from the values ai, bi, 1 ≤ i ≤ α − 1 is ≤ 2α
2n−(α−1) .

Moreover, if it occurs, then NA will increase by at maximum 2 since if it exists
j such that aα ⊕ bj = A then j is unique because all the bj values are pairwise
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distinct. If NA ≥ 2k, where k is an integer, then for at least k such values α, NA

was increased by at least 1, i.e. for at least k values α we had: ∃j ≤ α − 1 such
that aα ⊕ bj = A, or aj ⊕ bα = A, or aα ⊕ bα = A. Therefore,

Pr[NA ≥ 2k] ≤
(
q
k

)
·
( 2q

2n − (q − 1)
)k

Pr[NA ≥ 2k] ≤ q!
k!(q − k)!

( 2q

2n − (q − 1)
)k

Pr[NA ≥ 2k] ≤ qk

k!
( 2q

2n − q

)k
Pr[NA ≥ 2k] ≤ 1

k!
( 2q2

2n − q

)k (1)

From Stirling formula, k! ∼k→+∞ kke−k
√

2πk. If k ≥ 12q2

2n−q this gives

k! ≥
( 12q2

e(2n − q)
)k ≥ ( 4q2

2n − q

)k
Therefore, from (1), Pr[NA ≥ 2k] ≤ 1

2k and since k ≥ 12q2

2n−q ≥ 12n we have:

Pr[NA ≥ 24q2

2n−q ] ≤ 1
212n as claimed.
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Abstract. Luby and Rackoff provided a construction (LR) of 2n-bit
(strong) pseudorandom permutation or (S)PRP from n-bit pseudoran-
dom function (PRF), which was motivated by the structure of DES.
Their construction consists of four rounds of Feistel permutations (or
three rounds, for PRP), each round involves an application of an indepen-
dent PRF (i.e. with an independent round key). The definition of the LR
construction can be extended by reusing round keys in a manner deter-
mined by a key-assigning function. So far several key-assigning functions
had been analyzed (e.g. LR with 4-round keys K1, K2, K2, K2 was proved
secure whereas K1, K2, K2, K1 is not secure). Even though we already
know some key-assigning functions which give secure and insecure LR
constructions, the exact characterization of all secure LR constructions
for arbitrary number of rounds is still unknown. Some characterizations
were being conjectured which were later shown to be wrong. In this pa-
per we solve this long-standing open problem and (informally) prove the
following:

LR is secure iff its key-assigning is not palindrome (i.e. the order
of key indices is not same with its reverse order).

We also study the class of LR-variants where some of its round functions
can be tweaked (our previous characterization would not work for the
variants). We propose a single-key LR-variant SPRP, denoted by LRv,
making only four invocations of the PRF. It is exactly same as single-key,
4-round LR with an additional operation (e.g. rotation) applied to the
first round PRF output. So far the most efficient single-key LR construc-
tion is due to Patarin, which requires five invocations. Moreover, we show
a PRP-distinguishing attack on a wide class of single-key, LR-variants
with three PRF-invocations. So,

4 invocations of PRF is minimum for a class of a single-key LR-
variants SPRP and LRv is optimum in the class.
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1 Introduction

Strong Pseudorandom permutations or SPRPs, which were introduced by Luby
and Rackoff [4], formalize the well established cryptographic notion of block
ciphers. They provided a construction of SPRP, well known as LR construction,
which was motivated by the structure of DES [6]. The basic building block is
the so called 2n-bit Feistel permutation (or LR round permutation) LRFK based
on an n-bit pseudorandom function (PRF) FK :

LRFK (x1, x2) = (FK(x1)⊕ x2, x1), x1, x2 ∈ {0, 1}n.

Their construction consists (see Fig 1) of four rounds of Feistel permutations (or
three rounds, for PRP), each round involves an application of an independent
PRF (i.e. with independent random keys K1, K2, K3, and K4). More precisely,
LRK1,K2,K3 and LRK1,K2,K3,K4 are PRP and SPRP respectively where

LRK1,...,Kr := LRFK1 ,...,FKr
:= LRFKr

(. . . (LRFK1
(·)) . . .).

After this work, many results are known improving performance (reducing the
number of invocations of FK) [5] and reducing the key-sizes (i.e. reusing the
round keys [7,8,10,12,11] or generate more keys from single key by using a
PRF [2]). However there are some limitations. For example, we cannot use as
few as single-key LR (unless we tweak the round permutation) or as few as
two-round since they are not secure. Distinguishing attacks for some other LR
constructions are also known [8]. We list some of the know related results (see
Table 1). Here all keys K1, K2, . . . are independently chosen.

– LRK1,K2,K3 is PRP but not SPRP. [4] and LRK1,K2,K3,K4 is SPRP. [4]
– LRK1,K2,K2 is PRP. [14]
– LRK1,K2,K1,K2 ,LRK1,K2,K2,K2 ,LRK1,K2,K1,K1 andLRK1,K1,K2,K2 areSPRP. [8]

Our Contribution. In [11] author conjectured a necessary and sufficient con-
dition for all secure LR constructions, which was later shown to be wrong [8]. So
far we do not know any proven characterization. In this paper we solve it and
prove the following theorem.

Theorem 1. Let FK be a PRF, K1, . . . , Kt be t independent keys and σ =
(σ1, . . . , σr) be an r-tuple with elements from [1..t] := {1, 2, . . . t}, called a key-
assigning function. The construction LRKσ1 ,...,Kσr

is (S)PRP if and only if σ is
not palindrome1 and r ≥ 3 (or 4 respectively). As a corollary, any 4-round LR
is SPRP if and only if it is PRP.

Due to the above result we now know that no single-key with any arbitrary
round LR can be secure. However if one modifies the round permutation then
secure single-key construction is possible. There are some known secure vari-
ants [8,11] among which the designs due to Patarin are most efficient. There are

1 An r-tuple σ = (σ1, . . . , σr) is called palindrome if σi = σr+1−i, ∀i.
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Fig. 1. The 4-round and 3-round LR constructions with independent round keys, i.e.
K1, K2, K3 and K4 are chosen independently

Fig. 2. 4-round (3-round for PRP) single-key LR-variant due to Patarin requires 5 (or
4) invocations of FK . Here ξ is a simple function with low spreading number [8] e.g.
one-bit rotation.

other efficient LR variants where k-wise independent universal hash function is
required [5]. The SPRP design LRFK◦ξ◦FK (LRK,K,K(·)) due to Patarin requires
five invocations of the underlying PRF FK (see Fig 2). This is almost same as
4-round single-key LR except the last round in which the composition function
FK ◦ ξ ◦ FK := FK(ξ(FK(·))) is applied instead of FK where ξ is a simple func-
tion, e.g. one-bit rotation. The similar construction is PRP for 3 rounds. The
same result is true if we apply the tweak in the first round or use any ξ with
small spreading number2 [8]. In this paper we also prove the following results:

1. We first show that the PRF invocation in the tweak of 3-round Patarin
construction (see right part of Fig 2) is essential. If we drop it then we have
a PRP distinguishing attack. Moreover, this distinguishing attack works for
many other choices of ξ (instead of rotation).

2. One may ask the same for the 4-round construction. Surprisingly, we show
that the extra invocation of FK in the tweak is redundant. In particular,
LRK,K,K(LRξ◦FK (·)) is SPRP (see Fig 3).

3. Next we show that we cannot go below 4 invocations in a wide class of LR
variants (with linear shuffle, defined the class and shuffle in Sec 5). In par-
ticular we show that any single-key, 3-round, Feistel encryption with linear
shuffle is not PRP. So in that class, our construction is optimum. However,

2 It is a parameter defined in [8]. Spreading of ξ is the maxc∈{0,1}n #{x : x⊕ξ(x) = c}.
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we do not know the optimality when we have non-linear shuffle. This is an
interesting open problem.

In summary, we prove the following result.

Theorem 2. LRK,K,K(LRξ◦FK (·)) is SPRP (see Fig 3) whenever FK is PRF
where ξ is one-bit rotation (or other simple function with low spreading number).
Moreover, a single-key, 3-round LR-variant with any linear shuffle is not PRP.

Fig. 3. Our 4-round single-key LR variant requires only 4 invocations of FK . It is
almost same as 4-round single-key LR except the rotation (or ξ) which is applied to
the output of the first internal function.

Organization of the paper. We first describe notation and the proof tool,
called Patarin’s coefficient H-technique in Section 2. In section 3, we demonstrate
our distinguishing attacks on LR and some of its variants. Then we characterize
the secure LR construction in Section 4. In Section 5, we generalize LR variants
and show that 3-round single-key general LR constructions are not secure. In
section 6, we propose an optimum 4-round LR variant and prove its SPRP
security and finally we conclude.

2 Notation and Preliminaries

A distinguishing adversary A is a probabilistic algorithm which has access to
some oracles and which outputs either 0 or 1. Oracles are written as superscripts.
The notation AO1,O2 ⇒ 1 (or AO ⇒ 1) denotes the event that the adversary A,
interacts with the oracles O1,O2 (or O), and finally outputs the bit 1. In what
follows, by the notation X

�← S, we will denote the event of choosing X uniformly
at random from the finite set S. Let RFn be an n-bit to n-bit random function.
An n-bit pseudorandom function (PRF) is a function F : K×{0, 1}n → {0, 1}n,
where K �= ∅ is the key space of the PRF such that the prf-advantage

Advprf
F (A) =

∣∣∣Pr
[
K

�← K : AFK ⇒ 1
]
− Pr

[
ARFn ⇒ 1

]∣∣∣
is negligible for any efficient adversary A. We denote Advprf

F (q) (or Advprf
F (q, t))

by maxAAdvprf
E (A) where maximum is taken over all adversaries which makes

at most q queries (and runs in time t respectively). We write FK( ) instead of
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F (K, .). Let Perm(n) denote the set of all permutations on {0, 1}n. We require
a blockcipher E(K, ), K ∈ K, to be a strong pseudorandom permutation. The
advantage of an adversary A in breaking the strong pseudorandomness of E(, )
is defined in the following manner.

Adv±prp
E (A) = |Pr

[
K

�← K : AEK( ),E−1
K ( ) ⇒ 1

]
−

Pr
[
π

�← Perm(n) : Aπ( ),π−1( ) ⇒ 1
]
|.

If adversary has only access to encryption oracle E(K, ·) then we call it prp-
advantage Advprp

E (A). Similar to prf-advantage we define Adv±prp
E (q) and

Adv±prp
E (q, t) by maxAAdv±prp

E (A). Similar definition can be given for
Advprp

E (q) and Advprp
E (q, t). In this paper we reserve q to mean the number of

queries.

Pointless queries: Let M and C represent plaintext and ciphertext respectively.
We assume that an adversary never repeats a query, i.e., it does not ask the
encryption oracle with a particular value of M more than once and neither
does it ask the decryption oracle with a particular value of C more than once.
Furthermore, an adversary never queries its deciphering oracle with C if it got
C in response to an encipher query M for some M and vice versa. These queries
are called pointless as the adversary knows what it would get as responses for
such queries. In this paper we assume adversaries make no pointless queries.

2.1 Patarin’s Coefficient H-Technique

The following describes Patarin’s coefficient H technique [9] (also known as
Decorrelation theorem due to Vaudenay [13]) which would be used in our se-
curity analysis.

The view of an adversary AO+1,O−1 is the tuple ψ := ((M1, C1, δ1), . . .,
(Mq, Cq, δq)) where A makes ith query Mi or Ci and obtains responses Ci or
Mi if δi = +1 or −1 respectively. In case of O+1 = O and O−1 = O−1 we have
that O(Mi) = Ci, ∀i. Since A does not make any pointless query, all Mi (and
Ci) are distinct.

Patarin’s coefficient H technique says that prp-advantage of any distinguisher
AO+1,O−1 making total q non-trivial queries to E is small if the followings hold
for a subset S ⊆ (M×M×{+1,−1})q (the set S is known as set of bad views):

1. Pr[view(ARPM,RP−1
M ) ∈ S] ≤ ε1 i.e. the probability of bad view is small.

2. For any ψ := ((M1, C1, δ1), . . . , (Mq, Cq, δq)) �∈ S (ψ is called a good or
non-bad view),

PrK [E(K, Mi) = Ci, ∀i] ≥
(1− ε2)
|M|q = (1− ε2)× Pr[RF(Mi) = Ci, ∀i].

So, each good view can occur with probability more than (1 − ε2) times
the probability of the view for the random function RF. In other words, on
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the average probability of good view are almost same for both E(K, ) and
random function.

More precisely, if above holds then Adv±prp
E (A) ≤ ε1 + ε2 + q(q− 1)/2|M|. The

third term arises from the well known fact [1] that Adv±prp
RF (A′) ≤ q(q−1)

2|M| for
any A′ making q non-trivial queries. Thus given any encryption algorithm E(·) it
suffices to identify a set of bad views S and the values of ε1 and ε2 corresponding
to the bad-views set.

3 Distinguishing Attack on Luby-Rackoff and Its Variants

Given f : {0, 1}n → {0, 1}n, called internal function, the Luby-Rackoff (LR)
round function (or the Feistel permutaion) LRf : {0, 1}2n → {0, 1}2n is defined
by LRf (x1, x2) = (f(x1)⊕x2, x1) where x1, x2 ∈ {0, 1}n. Clearly, LR−1

f (y1, y2) =
(y2, f(y2)⊕y1) and hence we also call it LR round permutation. The r-round LR
permutation is defined by the sequential composition of the r round permutations
LRf := LRfr ◦ . . .◦LRf1 where f = (f1, . . . , fr). If the internal functions are keyed
functions, i.e. fi = FKi , then we simply denote the r-round LR encryption
by LRK1,...,Kr . Given a family of function-tuples F , the induced family of LR
permutations (or encryption with key f �← F) is LRF = {LRf : f ∈ F}.

A Key-assigning is an r-tuple σ = (i1, . . . , ir) with elements from [1..k]. Now
given a sequence of k function families F = 〈F1, . . .Fk〉 we define the function-
tuple family F⊗σ := {(fi1 , . . . fir) : fj ∈ Fj}. In practice, each function family
is indexed by an independent key. The single-key (i.e. k = 1) r-round LR for
a function family F is nothing but F⊗1r

. In case of k independent random
functions Γ = 〈Γ1, . . . , Γk〉 mapping n-bits to n-bits, we have a random function
tuple Γ⊗σ. It is easy to see that if σ is palindrome then F⊗σ is a family of
palindrome function tuples. By using hybrid argument one can show that for
any PRF F ,

Adv±prp
LRKσ1 ,...,Kσr

(q) ≤ Adv±prp
LRΓ⊗σ

(q) + Advprf
F (rq).

Because of it, we always assume random function instead of PRF. The Table 1
provides some known designs which are proved (or mentioned) secure.

Table 1. Some known secure, efficient LR designs and its variants. Let Γ =
(Γ1, Γ2) where Γ1 and Γ2 are independent random functions. σ′ = (1, 2, 2), σ ∈
{(1, 2, 2, 2), (1, 2, 1, 1), (1, 2, 1, 2), (1, 1, 2, 2)}. The author of [8] did not provide any
proof, only mentioned that H technique can be applied to prove these SPRP. However
in this paper we provide a general proof which covers the proof of these constructions.

Construction (Γ1 ◦ ξ ◦ Γ1, Γ1, Γ1) (Γ1 ◦ ξ ◦ Γ1, Γ1, Γ1, Γ1) Γ⊗σ Γ⊗σ′

Security PRP [8] SPRP [8] SPRP [8] PRP [14]
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3.1 Distinguishing Attack on Luby-Rackoff Encryptions with
Palindrome Key-Assigning

Let sw : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n be the swap-function i.e.
sw(x1, x2) = (x2, x1). Note that for any function f and palindrome function-tuple
f = (f1, . . . , fr) we have (LRf ◦sw◦LRf )(x1, x2) = LRf (x1, f(x1)⊕x2) = (x2, x1)
and hence we have the following (see Fig 4)

LRf ◦ sw ◦ LRf = LRf1 ◦ . . . ◦ (LRfr ◦ sw ◦ LRfr ) ◦ . . . ◦ LRf1 (since f is palindrome)

= LRf1 ◦ . . . ◦ (LRfr−1 ◦ sw ◦ LRfr−1) ◦ . . . ◦ LRf1

= . . . = LRf1 ◦ sw ◦ LRf1 = sw

So, if F is any palindrome family then Pr
f �←F [LRf ◦ sw ◦ LRf (0,0) = (0,0)] = 1.

So, LRF can be distinguished from the random permutation RP by making two
adaptive queries (Y1, Y2) := O(0,0) and (Z1, Z2) := O(Y2, Y1). The probability
that Z1 = Z2 = 0 is one when O = LRF (this also gives ciphertext-forging
attack). When the distinguisher is interacting with RP, the probability is almost
1/22n. Hence Advprp

LRΓ⊗σ
(2, t) ≥ 1−1/22n. As a corollary single-key LR with any

number of rounds is not PRP.

Fig. 4. It illustrates how the distinguishing attacks works for palindrome key-assigning

3.2 Distinguishing Attack on Some Variant of Single-Key 3-Round
Luby-Rackoff Encryptions

From the previous section we now know that the any r-round single-key (or
3-round, double-key with key assigning σ = 〈1, 2, 1〉) LR is not PRP. The best
known PRP, single-key LR variant is due to Patarin [8]. In this variant (see Fig 2)
the last round (or the first round) internal function is defined as f ◦ ξ ◦ f where
ξ is the one-bit left rotation. As mentioned in Fig 2, we want to study whether
we can simply use rotation tweak without using the extra invocation of f (to
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Fig. 5. It gives an idea how our 3-round LR variant (simpler version of Patarin’s 3-
round by dropping one invocation) distinguishing attack works. Here u = v<<2⊕ (x2⊕
y1)<<1 and Δ = (x2 ⊕ x′

2 ⊕ y1 ⊕ y′
1)<<1.

save one extra invocation of f). Here we show that we cannot do that for three
round constructions. We provide a distinguishing attack where the rotation is
applied to the first round instead of the last round. Same analysis would work
for the last round, too. The function family of this modification can be described
as F (2) := {(ξ ◦ f, f, f) : f ∈ F}. Our attack on LRξ := LRF(2) requires four
encryption queries.

1. 1st and 2nd Query: (1) LRξ(x1, x2) = (y1, y2) and (2) LRξ(x1, x
′
2) = (y′

1, y
′
2).

Call this event by E1 and let Δ = (x2 ⊕ x′
2 ⊕ y1 ⊕ y′

1)
<<1.

Lemma 1. Pr
f
�←F [f(x1)<<1 ⊕ f(y2) = x2 ⊕ y1 | E1] = 1

2. 3rd and 4th Query: (3) LRξ(y2,0) = (z1, z2) and (4) LRξ(y′
2, Δ) = (z′1, z

′
2).

Call this event by E2.

Lemma 2. Pr
f
�←F [z2 ⊕ z′2 = y2 ⊕ y′

2 | E1, E2] = 1.

The above two lemmas are easy to verify from the Fig 5 and hence we skip the
proofs. When distinguisher is interacting with 2n-bit random permutations the
probability Pr[z2 ⊕ z′2 = y2 ⊕ y′

2 | E1, E2] ≈ 1/22n. So, we can use this event to
make a distinguishing attack. Hence Advprp

LRξ
(4) ≥ 1− 1/22n.

Remark 1. Similar attack can be carried out for the other simple variants, e.g.
when ξ(x) = α · x (the Galois field multiplication by the primitive element α)
or any other linear function ξ (note that both rotation, or multiplication by a
primitive element are linear over GF (2) and GF (2n), respectively). In fact, with
a closer look on the attack one can see that attack works for any function ξ such
that Pr

v
�←{0,1}n [ξ(ξ(v ⊕ c1)) ⊕ ξ(ξ(v ⊕ c1)) = Δ] is significantly high for some

fixed constant Δ (depending on c1 and c2). Here the probability is computed
over random choice of v. Note that this measurement is completely different from
the spreading number considered in [8].
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4 Security Analysis of LR with Non-palindrome
Key-Assigning Function

Here we characterize all secure LR encryptions. Informally we prove that LR
is secure if and only if the key-assigning is not palindrome. We have already
seen the “only if” part which is more intuitive. However it is not obvious why
non-palindrome key-assigning give a secure LR encryption. To understand the
intuition let us first assume that σ1 �= σr , i.e. the first and last round keys are
independent. Then the input to the first round function can be collided due
to choices of plaintext (the first n-bit same as that of a previous plaintext).
But we cannot control anymore collisions after that. It does not matter if we
choose first n bits of plaintext same as the last n bits of the ciphertext as they
are fed to independent random functions. The similar argument works when an
attacker chooses a ciphertext. In general, for a non-palindrome σ, there must
exist r′ < r/2 − 1 such that σi = σr+1−i for i = 1, .., r′ but σi �= σr+1−i for
i = r′ + 1. The similar argument would be applied to the random functions at
rounds r′ +1 and r− r′. The random functions Γσr′+1

and Γσr−r′ at round r′ +1
and r − r′ are protecting a plaintext and ciphertext query respectively.

Theorem 1. Let σ be an r-sequence. Then LRΓ⊗σ is (S)PRP if and only if σ is
not palindrome and r ≥ 3 (or r ≥ 4 respectively). In this case, Advprp

LRΓ⊗σ
(q, t)

(or Adv±prp
LRΓ⊗σ

(q, t) for SPRP) is at most (1+r2)q2

2n−1 + q2

22n .

Corollary 1. Let r ≥ 4. Then LRΓ⊗σ is SPRP if it is PRP.

The corollary is interesting as it says that any PRP LR for more than 4 round
has to be SPRP. Note that it is not true for three rounds as we already know
three round independent-keyed is PRP but not SPRP. This is a straightforward
application of the theorem. We prove the theorem by using Patarin H-coefficient-
technique as describe in Sec 2.1

Construction of the set of bad views S and computation of ε1
For 1 ≤ i ≤ q, we denote Mi = (Pi, Qi), Ci = (Xi, Yi) ∈ {0, 1}n × {0, 1}n.
We first define a set of bad views S (as we discuss in Patarin H coefficient
technique). Given a view ψ = ((M1, C1, δ1), . . . , (Mq, Cq, δq)) we call Pj fresh if
Pj �= Pi, Yi, Yj for all i < j. Similarly Yj is fresh if Yj �= Pi, Yi, Pj for all i < j.

Definition 1. A view ψ=((M1, C1, δ1), . . . , (Mq, Cq, δq))∈({0, 1}2n×{0, 1}2n×
{+1,−1})q is called bad if there is a j such that either Pj is not fresh and
δj = −1 or Yj is not fresh and δj = 1.

Let S be the set of all bad views. Now we provide an upper bound of the
probability that a view is bad when an adversary is interacting with a random
permutation RP and its inverse RP−1. We show that

Pr[view(ARP,RP−1
) ∈ S] ≤ ε1 :=

q2

2n − 1
(1)
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If the ith query is encryption (i.e. δi = 1) then Ci = (Xi, Yi) is uniformly
distributed over a set of size at least 22n − i + 1. Thus Pr[Yi = c] ≤ 1/(2n − 1)
for any constant c ∈ {0, 1}n provided q ≤ 2n (o.w. the equation is obviously
true). Thus Yi is one of Pj or Yj or Pi has probability at most 2i − 1. Similar
result is true when δi = −1. Thus a view is bad view, has probability at most
q2/(2n − 1). So we have proved the Eq. 1.

Some Notations and Properties of Good Views. We say that Mi =
(Pi, Qi) is fresh if Mi �= sw(Cj), j < i. Similarly we define a fresh Ci. Let
r ≥ 4 and σ be a non-palindrome sequence such that r′ is the size of the com-
mon prefix of σ and σrev. Note that r′ ≤ r/2− 1. Given a good (non-bad) view
ψ = ((M1, C1, δ1), . . . , (Mq, Cq, δq)) we define the following sets of query-indices

Nψ,P = {i : Pi is fresh}, Nψ,Y = {i : Yi is fresh},

Nψ,M = {i : Mi is fresh}, Nψ,C = {i : Ci is fresh}.
In the following, we state some lemmas whose proofs are straightforward and
easy to verify.

Lemma 3. For all i, Pi �= Yi. We also have i ∈ Nψ,P or i ∈ Nψ,Y if δi = −1 or
+1 respectively. Let Mi = sw(Cj), then j ∈ Nψ,C (i.e. Cj is fresh) or j ∈ Nψ,M

(i.e. Mj is fresh) if j < i or i < j respectively.

For each query number i, we define two sets of round numbers I ′i ⊆ Ii ⊆ [1..r]
as follows:

1. δi = 1: We define Ii := [1..r] or [2..r] or [r′ + 1..r] if Pi is fresh or Mi is fresh
or Mi is not fresh, respectively. I ′i = Ii \ {r − 1, r} (note that r ≥ 3).

2. δi = −1: We define Ii := [1..r] or [1..r− 1] or [1..r− r′] if Yi is fresh or Ci is
fresh or Ci is not fresh, respectively. We define I ′i = Ii \ {1, 2}.

Some Observations on LR. Now we state some useful and easy to verify
properties of the r-round LR computations LR(P, Q) = (X, Y ). Let u[�], v[�]
denote the input and output of the internal function at the �th round.

Lemma 4. The �th intermediate input u[�] = (v[�− 1]⊕ v[�− 3]⊕ . . . v[�%2 +
1])⊕R where R = P or Q if � is odd or even respectively.

If � �∈ Ii \ {1, r} then either � ≤ r′ or r − � ≤ r′. Moreover there is a j < i such
r− � ∈ Ij . In that case ui[�] = uj[r− �] and vi[�] = vj [r− �] (similar proof can be
made as we did for distinguishing attack on palindrome key-assigning).3 Thus
ui[�] (or vi[�]) for � ∈ Ii, i ∈ [1..q] (we denote it by uI) together determine all
intermediate inputs (or outputs respectively). This can be further extended to
the following result.
3 If r′ or r − r′ �∈ Ii (i.e either Mi or Ci is not fresh) then ui[�] = uj [r − �] where

� = r′ + 1 or r − r′. However σ� �= σr−� (by definition of r′). Hence independent
random functions are applied to these same intermediate input.
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Lemma 5. vI′ := {vi[�] : � ∈ I ′i , i ∈ [1..q]} and ψ together determine all inter-
mediate inputs and outputs.

We denote the relation by the function I, i.e. I(vI′ , ψ) is the tuple of all interme-
diate inputs. Now we see that if we choose vI′ at random then the probability that
all intermediate inputs in uI are distinct is at least (1− ε2) where ε2 := r2q2/2n.

Proposition 1. For any �, �′ with σ� = σ�′ , Pr
vI′

�←[ui[�] = uj [�′]] ≤ 1/2n where
ui[�] and uj[�′] are determined from I(vI′ ) and vI′ is chosen at uniform distri-
bution.

Proof. We prove it in different cases. If �, �′ ∈ {1, r} then the probability is
zero because the view ψ is good. In fact, if one of these is either 1 or r then the
probability is 1/2n as that one is constant (determined by ψ not by vI′) and the
other one is non-trivial linear function of vI′ . For any � �∈ {1, r}, ui[�] is indeed
non-trivial linear function of vI′ . Now if we show that the linear functions are
different for ui[�] and uj[�] then by randomness of vI′ the above probability is
1/2n. Let j < i and � = r′ + 1 (if Mi = sw(Ci′−1)) or r− r′ (if Ci = sw(Mi′−1)).
Then ui[�] = ui′ [r − �] and r − � − 1 ∈ I ′i. Hence vj [r − � − 1] contributes to
ui[�]. If i′ �= j then we are done. Otherwise note that if �′ = r − � then σ� �= σ�′ .
So �′ �= r − � and hence by above lemma the two linear functions are indeed
different.

Proof of Theorem 1. We apply Patarin’s coefficient H-technique. We already
have defined the set of bad views S and we know ε1 := q2/(2n − 1). Let E
be the event that for all �, �′ with σ� = σ�′ , ui[�] �= uj [�′] where � ∈ Ii and
�′ ∈ Ij . By the Proposition 1, we know that Pr[E] ≤ ε2 := r2q2/2n since there
are at most r2q2 possible values of i, �, j, �′. So the number of possible vI′ values
such that uI′ are all distinct is at least 2n|I′|(1− ε2). Given any such vI′ (which
determines the rest of the intermediate outputs) the probability that these are
indeed the intermediate outputs is exactly 2−n|I| = 2−n(|I′|+2q). This is true
since |I| = |I ′| + 2q and there are |I|’s distinct inputs for the internal random
functions which takes some specific given values vI . Thus, for any fixed good view
ψ, Pr[view = ψ] ≥ (1− ε2)/22nq where ε2 := r2q2/2n. Hence we have proved our
theorem by applying the Patarin’s H-technique as described in Sec 2.1.

5 General Feistel Round Permutation

The LR round permutation can be expressed as LRf (x1, x2) = ρ(f(x1), x1, x2)
where ρ(v, x1, x2) = (v ⊕ x2, x1), v, x1, x2 ∈ {0, 1}n = F. So ρ : F3 → F2 is
a linear function which can be characterized by the matrix M =

(
L1
L2

)
where

L1 = (1, 0, 1) ∈ F3 and L2 = (0, 1, 0) ∈ F3. A general Feistel function Ff,ρ :
{0, 1}2n → {0, 1}2n with the internal function f and mix function ρ is defined
by Ff,ρ(X) = ρ(f(X [1..n]), X) (see Fig 6). In practice, the internal function f is
a strong cryptographic object and the mix function is a simple (mostly using xor
or rotation or at most modular addition) efficiently computable function. We do
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Fig. 6. A general LR or Feistel round permutation

not use or assume any cryptographic property on the mix function. However we
require the Feistel function to be invertible (independent of the internal function)
and hence we need some types of the mix function, called shuffle.

Definition 2 (Shuffle). A function ρ : {0, 1}3n → {0, 1}2n is called shuffle if
for any v ∈ {0, 1}n, ρ(v, ·, ·) := ρv is a permutation over {0, 1}2n and there ex-
ists a function τ : {0, 1}2n → {0, 1}n such that τ(ρ(v, x1, x2)) = x1, ∀v, x1, x2 ∈
{0, 1}n, i.e. the function ρ−1

v,1 is independent of v where ρ−1
v = (ρ−1

v,1, ρ
−1
v,2). More-

over it is called smooth if ρ, ρ−1
v and τ are efficiently computable.

Now we prove that (smooth) shuffle is the necessary and sufficient to have (effi-
ciently computable) invertibility of the Feistel function.

Lemma 6. The Feistel function Ff,ρ is permutation for all functions f if and
only if the mix function ρ is shuffle. In this case, Ff,ρ and F−1

f,ρ are efficiently
computable if the shuffle ρ is smooth and the function f is efficiently computable.

Proof. When ρ is a shuffle the inverse of the Feistel function can be shown
to be F−1

f,ρ(y1, y2) = ρ−1
v (y1, y2) where v = f(τ(y1, y2)). Hence F−1

f,ρ is efficiently
computable if f , τ , ρ−1

v are efficiently computable. Clearly Ff,ρ is efficient if f
and ρ are so. To prove the “only if” part it is easy to see that for all v, ρv must
be invertible by choosing the constant internal function f(x1) = v, ∀x1. We show
that the first n bit of the inverse does not depend on v. If not then for some v, v′,
x1 �= x′

1 and x2, x
′
2 we have ρ(v, x1, x2) = ρ(v′, x′

1, x
′
2). If we define a function f

such that f(x1) = v and f(x′
1) = v′ then the Feistel mapping is not injective as

Ff,ρ(x1, x2) = Ff,ρ(x′
1, x

′
2).

The r-round Feistel function (or permutation when we have shuffle) F(fr ,ρr) ◦ . . .◦
F(f1,ρ1) is similarly denoted by Ff ,ρρρ where f =(f1, . . . , fr) and ρρρ=(ρ1, . . . , ρr).

In case of linear shuffle functions ρi’s are characterized by 2 × 3 matrix over
GF (2n). The Lemma 7 characterizes all linear shuffles. More generally when we
have linear shuffle over GF (2) we have 2n × 3n matrix over GF (2). However
we can have non-linear shuffle functions too. One such example is ρ(v, x1, x2) =
(v � (v ⊕ x2), x1) where � is modulo 2n integer addition. A more complicated
shuffle function may look like ρ(v, x1, x2) = (y1 := πv,x1(x2), π′

y1
(x1)) where

πv,x1 and π′
y1

are any permutations. In fact, it is a general form of a shuffle if
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we assume that ρ(v, x1, ·) (equivalently τ(y1, ·)) is a permutation over {0, 1}n.
This assumption is reasonable, otherwise we do not have complete diffusion in
two rounds. In this paper we are only interested in linear shuffles. Now we state
the version of Lemma 6 in case of linear shuffle. The proof is an immediate
application of Lemma 6.

Lemma 7. A linear function M2×3 is shuffle if and only if
(1) c1 ·M1∗ ⊕ c2 ·M2∗ = (0, 1, 0) for some pair of constants (c1, c2) ∈ F2 and
(2) rank(M∗2 M∗3) = 2, i.e. the 2× 2 matrix (M∗2 M∗3) is invertible.

5.1 PRP Attack on Three Round Linear-Mix Single-Key Feistel
Function

Now we provide a PRP distinguishing attack on three-round single key Feistel
function with any linear shuffles (may be different for each round). Let f =
(f, f, f) and ρρρ = (ρ1, ρ2, ρ3) be tuple of three linear shuffles. A very similar
distinguishing attack as in Sec. 3 also works for F := Ff ,ρρρ. Our attack requires
four encryption queries.

1. 1st and 2nd Query: (1) F(x1, x2) = (y1, y2) and (2) F(x1, x
′
2) = (y′

1, y
′
2). Call

this event by E1. Let c1 · Y1 ⊕ c2 · Y2 = ρ−1
3 (Y1, Y2)[1..n] since ρ3 is linear

shuffle.

Lemma 8. There is a constant Δ, a linear function of x1, x2, x
′
2, y1, y2, y

′
1

and y′
2, such that

Pr
f
�←F [ρ1(f(τ), τ,0)[1..n] = ρ1(f(τ ′), τ ′, Δ)[1..n] | E1] = 1

where τ = c1 · y1 ⊕ c2 · y2, and τ ′ = c1 · y′
1 ⊕ c2 · y′

2.

2. 3rd and 4th Query: (3) F(τ,0) = (z1, z2) and (4) F(τ ′, Δ) = (z′1, z
′
2). Call this

event by E2.

Lemma 9. There is a constant Δ′, a linear function of x1, x2, x
′
2, y1, y2, y

′
1

and y′
2, such that

Pr
f
�←F [c1 · (z1 ⊕ z′1)⊕ c2 · (z2 ⊕ z′2) = Δ′ | E1, E2] = 1

The above two lemmas are straightforward and tedious (the main thing is to
compute Δ and Δ′). The idea of the proof is provided in the Figure 7. When
distinguisher is interacting with 2n-bit random permutations the above proba-
bility approximately 1/22n. So we can use this event to make a distinguishing
attack. So, at least four invocations of the underlying PRF are required to obtain
a secure Feistel encryption.
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Fig. 7. It gives an idea how our attack works for 3-round Feistel with linear shuffle. The
* denotes a linear function without involving v. We can express all internal variable by
linear functions of v. The Δ′ = ∗1 −∗2 and Δ is defined in a way such that the second
internal inputs (for the queries (τ,0) and τ ′, Δ) in the right half of the figure match.
This can be done as the second input has non-zero coefficient in the first output and
the coefficient of v (only unknown variable) are same for both queries.

6 SPRP Security Analysis of Single-Key 4-Round Feistel
Function

In this section we first study the following simple variant of 4-round single-key
LR. Let ρ be the LR shuffle and ρ′(v, x1, x2) = (ξ(v)⊕x2, x1) where ξ(v) := v<<1

is one-bit left rotation. Let LRv = FF⊗14 ,ρρρ where ρρρ = (ρ′, ρ, ρ, ρ). A similar
security analysis would work for any function ξ with low spreading number, i.e.
Pr

v
�←[ξ(v) ⊕ v = c] is small for all c. We illustrated our design in Fig 3. In

this section, we prove the SPRP security of this. In other words, we would that
the Patarin’s single-key SPRP LR-variant is not optimum and one invocation of
PRF is completely of redundant. We follow the similar notation as in the proof
of Theorem 1. In fact, the main idea of the proof remain same.

Let fK(Pi) = Vi and fK(Yi) = Wi. The four intermediate inputs of fK during
the computation LR′

f4(Pi, Qi) = (Xi, Yi) are

Pi, ai := V <<1
i ⊕Qi, bi := Xi ⊕Wi, and Yi.

We want to prove that except the forced collisions (due to the choice of plaintexts
or ciphertexts) all intermediate inputs are distinct with high probability given
that a view is good or non-bad (the same definition of bad views as we have for
Theorem 1). We have defined Nψ,P and Nψ,Y . Given a good view ψ, let the pair
(v,w) be called ψ-compatible if vi = vj (or wj) whenever Pi = Pj or Yj and
wi = wj whenever Yi = Yj where v = (v1, . . . , vq) and w = (w1, . . . , wq). Let
N denote the number of distinct Pi’s and Yi’s (which are actually intermediate
inputs).

Lemma 10. Given a good view the number of ψ-compatible pairs is 2nN . Among
which there are at least 2nN(1−13q2/2n) compatible elements give distinct ai :=
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Fig. 8. Case: δj = +1, Pj = Yi and i < j

v<<1
i ⊕Qi, bi = Xi ⊕ wi, for all 1 ≤ i ≤ q and they are different from Pj’s and

Yj’s for all 1 ≤ j ≤ q. We call these DI-compatible (distinct-input compatible).

Proof. We compute the probability of the complement event when we choose
compatible pairs at random. We consider the case when δj = +1 (i.e. an encryp-
tion query) and Pj = Yi, i < j (illustrated in Figure 8). In this case, the four
intermediate inputs for ith query are Pi, Yi, ai = ξ(vi)⊕Qi and bi = wi⊕Xi. Since
Pj = Yi, the four intermediate inputs for jth query are Pj , Yj , aj = ξ(wi) ⊕ Qj

and bi = wj ⊕Xj. Note that vi, wi and wj are chosen at random. Hence (v,w)
is not DI-compatible due to the ith and jth query has probability at most 13/2n.
In particular, except the case for bi = aj , the probability is 1/2n and there are
11 such possible collisions. The Pr[bi = aj] = Pr[wi ⊕ ξ(wi) = c] = 1/2n−1 (it
can be easily checked and was shown in [8]) where c = Xi⊕Qj. The other cases
can be proved similarly. Since there are

(
q
2

)
pair of queries and for each pair the

probability is bounded by 13/2n, we have proved that probability that a random
compatible pair is DI-compatible is at least (1− 13/2n).

If a DI-compatible pair becomes all intermediate outputs then the all inter-
mediate inputs are determined by these. Moreover these intermediate inputs
are distinct. There are N + 2q distinct intermediate inputs (including Pi’s and
Yi’s). Hence probability that the intermediate outputs are given by a specific
DI-compatible pairs is exactly 2−n(N+2q). So we have proved that

Pr[view = ψ] ≥ 2nN (1− 13q2/2n)× 2−n(N+2q) =
1− 13q2/2n

22nq
.

Hence we have proved the SPRP-security of our proposal LRv.

Theorem 2. Adv±prp
LRv (q, t) ≤ 14q2

2n−1 + q2

22n .

7 Conclusion

This paper characterizes all secure LR constructions. So we know which LR are
secure and which are not. If we make simple tweak in the LR-round then we can
have secure single-key construction. Previously proposed tweak due to Patarin
costs an extra invocation. In this paper we show that this extra invocation is
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redundant in case of SPRP design (4-round) but completely necessary in case
of PRP design (3-round). We also provide a distinguishing attack on a wide
class of single-key LR variants which invoke the underlying internal function 3
times. So 4-invocations is necessary for single-key LR type designs. Hence our
proposed design is optimum. However we do not know yet whether there are any
non-linear shuffles such that single-key Feistel with three rounds is SPRP.
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for his comments.
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Abstract. A number of end-to-end verifiable voting schemes have been
introduced recently. These schemes aim to allow voters to verify that
their votes have contributed in the way they intended to the tally and
in addition allow anyone to verify that the tally has been generated
correctly. These goals must be achieved while maintaining voter privacy
and providing receipt-freeness. However, most of these end-to-end voting
schemes are only designed to handle a single election method and the
voter interface varies greatly between different schemes. In this paper, we
introduce a scheme which handles many of the popular election methods
that are currently used around the world. Our scheme not only ensures
privacy, receipt-freeness and end-to-end verifiability, but also keeps the
voter interface simple and consistent between various election methods.

Keywords: Prêt à Voter, voting scheme, end-to-end verifiability,
receipt-freeness, simple and consistent voter interface.

1 Introduction

In a traditional secret ballot election, voters mark their choice on a piece of
paper and drop it into a box. The ballots are mixed together to break the link
between the voter and her choice. Then these ballots are tallied under scrutiny.
While the secret ballot meets its desired goals of ensuring voter privacy, lack of
transparency and verifiability is considered a problem. There is no way for the
voter to verify that her vote has contributed correctly to the tally and significant
trust must be placed in the election officials to have carried out the election
procedures and tally correctly.

End-to-end verifiable voting schemes aim to address these issues. These
schemes allow voters to verify that their votes have contributed in the way they
intended to the tally (individual verifiability) and in addition allow anyone to
verify that the tally has been generated correctly (universal verifiability). These
goals must be achieved while maintaining voter privacy. In addition, the voter
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should not be able to prove to others how she voted as adversaries can then
coerce or bribe the voter to vote in a certain way (receipt-freeness).

1.1 Motivation

The most common election method is the First-Past-The-Post (FPTP) method,
where a voter simply puts a mark next to the candidate of her choice. The
majority of the existing end-to-end voting schemes are designed to handle FPTP
elections. Some examples are Prêt à Voter (PaV) [9], [27], Scratch & Vote [2],
Punchscan [24], Scantegrity [8], [7], Bingo Voting [6] and MarkPledge [18], [1].

However, many other election methods exist and are used widely. Typically,
these allow the voter to indicate multiple preferences or allot a full or partial
ranking of the candidates. A plethora of tallying methods also exist and are
used around the world. In the Appendix, we provide a summary of the election
methods we will discuss in this paper.

It is argued in the decision theory community that these ranked elections
are superior as less votes are wasted and that they offer resistance to strategic
voting. However, they introduce potential coercion problems. For example, if the
election consists of a large number of candidates, a very large number of possible
candidate rankings exist. Adversaries can force voters to cast their votes using
specific orderings, and check whether ballots with these unique orderings appear
among the cast ballots. This has been referred to as the Italian attack in the
media and literature. We discuss Italian attacks further in Section 5.

Ranked election methods are typically less discussed in the end-to-end voting
literature. There are a few notable exceptions. Several schemes [15], [31], [21] have
been designed for Instant Runoff Voting (IRV) elections. Shuffle-Sum [5] handles
both IRV and the Single Transferable Vote (STV), but it does not directly handle
partial rankings. Condorcet elections can be handled in the scheme introduced
in [10]. However, in order to foil the Italian attack, its user interface is quite
different: instead of ranking the candidates, every voter is required to cast a
number of ballots, where each ballot is a pairwise comparison of two candidates.

No generic end-to-end verifiable voting scheme exists that can handle a wide
variety of election methods. This is an important consideration as several differ-
ent elections, employing different election methods are often held at the same
time. For example, on election day, a voter in the polling station may need to cast
several ballots, each for a separate election using a different election method. The
average voter is unable to understand complicated instructions and procedures
to cast their vote. Therefore, the voting interface needs to be kept simple and
consistent to avoid confusion. Two attempts, one with cryptography and one
without cryptography, in this direction have been made in [32] and [25], where a
generic solution to handle various election methods is introduced. Unfortunately,
neither of them is receipt-free in ranked elections.

1.2 Our Contribution

In this paper, we gather together many diverse concepts and building blocks in
the literature, unifying them into one generic scheme which handles a number
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of popular election methods. In addition to achieving the goals of voter pri-
vacy, receipt-freeness and end-to-end verifiability, our scheme has a simple and
consistent voter interface across various election methods. In order to enable
our scheme to be used in high-profile political elections, we also aim to achieve
robustness so that the election can be run even in the presence of a minority
of dishonest election officials and is able to recover from cheating when it is
detected. We summarize our contributions in more specific detail in Section 6.

1.3 Structure of the Paper

In Section 2 we summarize the various cryptographic building blocks we will
employ in our scheme. This is followed by an overview of the proposed scheme
in Section 3. As discussed, the user interface is kept consistent for different elec-
tion methods. The exact details of how the votes are processed for the different
election methods is abstracted from the voter and we describe these details in
Section 4. We then provide an informal analysis of the security properties of the
scheme in Section 5 before concluding in Section 6.

2 Building Blocks

2.1 Paillier Cipher

The Paillier cipher [20] is an efficient, semantically secure public key cryptosys-
tem which provides the additive homomorphic property. It is a fundamental
building block of our scheme and works as follows: let n be an RSA modulus
n = pq, where p and q are large primes. Let g be an integer of order a multiple
of n modulo n2, e.g. g = n + 1. The public key is (g, n), and the secret key
is λ = lcm((p − 1), (q − 1)). To encrypt m ∈ Zn, we randomly choose r ∈ Z∗

n

and compute the ciphertext c = Epk(m, r) = gmrn (mod n2). To decrypt c, we
compute m = L(cλ mod n2)/L(gλ mod n2) mod n, where the L-function takes
input values from the set Sn = {u < n2|u = 1 mod n} and L(u) = (u− 1)/n.

– Homomorphic property: For two ciphertexts under the same public key
c1 = Epk(m1, r1) and c2 = Epk(m2, r2), we have Epk(m1, r1) ·Epk(m2, r2) =
Epk(m1 + m2, r1 · r2). Moreover, for a value k ∈ Zn, we have Epk(m, r)k =
Epk(k·m, rk). This property is fundamental to the construction of our scheme
and will be used extensively along with the Baudron homomorphic counter
[3] detailed in the following section.

– Paillier re-encryption: Given a Paillier ciphertext c = gmrn (mod n2), a
re-encryption of this ciphertext can be generated without knowledge of the
secret key λ. A value t ∈ Z∗

n is randomly selected and the re-encryption c′

of c is calculated as c′ = c · tn = gm(t · r)n (mod n2).
– Threshold Paillier: The key pair for the Paillier cipher can be jointly gener-

ated by threshold parties, so that each party has a share of the secret key, but
no single party knows the entire secret key. This technique can be found in
[14], [12]. Moreover, ciphertexts can be decrypted by these threshold parties
in a verifiable manner [13].



Versatile Prêt à Voter 101

– Verifiable shuffle for Paillier: In a verifiable shuffle, a mix server receives
a batch of ciphertexts, re-encrypts each ciphertext and then outputs the
results in a random order. It also publishes a proof so that the correctness
of the shuffle can be publicly verified, but the proof should not reveal the
relationship between the inputs and the outputs. Verifiable shuffle for Paillier
can be designed using existing techniques from [16], [4], [19], [22].

2.2 Baudron’s Homomorphic Counter

Suppose there are k + 1 candidates and the total number of eligible voters is
M , where M < 2L. We can define a set of counters {20, 2L, 22L, . . . , 2kL} as the
election parameters, one for each candidate. Encryptions corresponding to each
counter represent votes for the candidate who has been assigned the counter.
Multiplying these encrypted votes together results in an encrypted counter where
the received votes for each candidate is kept in a separate area of the counter
without overflow between adjacent areas of the counter. For more technical de-
tails, please see [3].

2.3 Plaintext Equivalence Test (PET)

Suppose (g, n) is the Paillier public key and the secret key λ is shared among
threshold parties. For two ciphertexts c1 = Epk(m1, r1) = gm1r1

n (mod n2)
and c2 = Epk(m2, r2) = gm2r2

n (mod n2), the Plaintext Equivalent Test
(PET) [30] can be used to check whether these two ciphertexts contain the same
plaintext, without revealing either plaintext. Denote c = c1/c2 = gm1−m2(r1/r2)n

(mod n2). If m1 = m2, for some random value r ∈ Zn, both c and cr will contain
the 0 plaintext. But if m1 �= m2, cr will contain a random plaintext. Therefore, if
cr is threshold decrypted, the result can tell whether the two ciphertexts contain
the same plaintext without revealing either plaintext.

2.4 Binary Conversion and Plaintext Inequivalence Test (PIT)

For a Paillier ciphertext c = Epk(m, r), where the binary representation of its L-
bit long plaintext is m = m1m2 · · ·mL, the Binary Conversion technique [28] can
be used to convert the ciphertext c into separate encryptions of every individual
bit of the plaintext m. This process can be illustrated as

Epk(m1m2 · · ·mL, r) → Epk(m1, r1), Epk(m2, r2), . . . , Epk(mL, rL)

Binary Conversion needs to be carried out by the threshold parties, and it is
publicly verifiable. The above process can be reversed by anyone as:

Epk(m, r′) =
L∏

i=1

Epk(mL+1−i, rL+1−i)2
i−1

Moreover, for any two Paillier ciphertexts which have been converted into the
encryption of individual bits of the plaintext, the threshold parties can apply
techniques in [11] to check whether these two ciphertexts contain the same plain-
text, or which ciphertext contains larger plaintext. This phase is also publicly
verifiable, and does not reveal either plaintext.



102 Z. Xia et al.

3 System Overview

We first describe the ballot generation phase in our proposed scheme. We then
describe the vote capture phase, which is where the individual voter interacts
with the system. This is the phase that is consistent from the voter’s point
of view, no matter what election method is being employed. The techniques
employed in the vote processing phase are different depending on which election
method is being used and the details are abstracted from the voter. We will
describe the various vote processing techniques in Section 4.

– Ballot generation: All ballot forms are generated by a trusted party before
the election. We trust this party for privacy, but the integrity of the election
result does not rely on this party. Suppose there are 5 candidates in a sample
election: Alice, Bravo, Charlie, Delta and Echo. They are assigned counters
20, 2L, 22L, 23L and 24L respectively, where 2L is larger than the total
number of eligible voters in the election. These are published prior to the
election as system parameters. A ballot, as shown in Figure 1, consists of two
columns with a vertical perforation down the middle. The left hand column
lists the candidate names in a random order. The barcode in the right hand
column contains an encrypted value for each candidate and a proof. The
encrypted values are called “onions” for historical reasons, and their ordering
should match the candidate list. The proof proves that each onion encrypts
a unique counter. To generate the proof, the party first generates a list of
pseudo ciphertexts:

{Epk(20, 1), Epk(2L, 1), Epk(22L, 1), Epk(23L, 1), Epk(24L, 1)}

Anyone can check that this list is well-formed because all the randomisations
are 1. For each ballot, the party generates a proof that the onion list is a
shuffle of the pseudo ciphertexts.

Fig. 1. A ballot form example



Versatile Prêt à Voter 103

– Vote capture: To prevent the local officials from learning the candidate
ordering, the ballots are delivered to the polling stations in sealed envelopes
and these sealed ballots are handed to the voters during the voting phase.
The voter opens the envelope to obtain the ballot and can then randomly
decide whether to audit the ballot or use it to cast a vote. If the voter chooses
to audit her ballot, she submits it to the local officials without marking her
choice. After the onions have been threshold decrypted, anyone can check
whether the candidate list can be reconstructed from the onions. Once a
ballot is audited, it cannot be used to cast a vote, and the voter will be
provided with another ballot. The voter can audit several ballots until she
is satisfied. Then, the voter marks the ballot as instructed: selecting a single
candidate, multiple candidates, or by providing a ranking of candidates. This
is pictured in Figure 2.

Fig. 2. Completing the ballot form. (a) Single cross. (b) Preference list.

As follows, the voter separates the ballot along the perforation and shreds
the left hand column. It is important to ensure via some process that the
left hand column is destroyed before the voter is allowed to submit the vote.
Otherwise, the voter can prove to an adversary how she voted. The remaining
right hand column, as shown in Figure 3, contains the vote to be cast. The
voter now brings it to the election officials and it is scanned into the election
system and digitally signed. The voter retains the signed right hand side
as her receipt. All the received votes are published on the bulletin board
and the voter can check whether her vote has been recorded correctly by the
election system. If not, the signed receipt can be used to initiate a complaint.
The use of the Prêt à Voter style ballot form provides two advantages. Firstly,
it is simple and very similar to the current paper based ballots that voters are
already familiar with. Secondly, if the voter mistakenly casts an invalid vote,
e.g. over-vote or under-vote, it can be discovered by the local officials before
the vote is scanned and the voter can be assisted in casting a valid vote by
being instructed appropriately and being provided with new ballots. Note
that the election official cannot violate the vote secrecy by simply looking
at the filled in right hand side, as the corresponding left hand side has been
destroyed.
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Fig. 3. The vote. (a) Single cross. (b) Preference list.

4 Vote Processing

As discussed earlier, the vote processing phase is transparent to voters. At a
high level, this phase can be regarded as an oracle. If it was provided with the
received votes and was told which election method is used, it will generate the
election result based on that election method. Moreover, the oracle will output
some data onto the bulletin board. The data is enough to publicly verify the
tally, but it provides no information that can be used by an adversary to coerce
voters.

4.1 Vote Processing for FPTP

The vote processing for FPTP elections is the same as in the Scratch & Vote
scheme [2]. When the votes, as shown in Figure 3(a) are received, the proofs for
each vote are checked and votes with invalid proofs are discarded. The proof is
important to prevent malicious parties from casting invalid vote, e.g. negative
vote(s) or multiple votes. For the remaining votes, the onion corresponding to the
selected candidate is aggregated into a counter as described previously. Finally,
this counter is threshold decrypted and the election result is announced along
with the tally for each candidate.

In [31], a strategy is introduced to announce only the election winner without
revealing any other information. Firstly, onions are aggregated into the counter.
However, instead of decrypting the counter, the threshold parties can apply the
Binary Conversion technique to convert it into separate encryptions of each bit
of the plaintext. For our sample election, the plaintext is 5L bits long, and every
L-bit block represents the received vote for a different candidate. The candidate
with the most votes can be identified using the plaintext inequivalence test (PIT)
and this can be publicly verified. The exact number of votes received by each
candidate is kept secret in this method.

4.2 Vote Processing for Approval Voting

In Approval Voting, a voter can mark one or several crosses, and all the crosses
are equally weighted. The vote processing for Approval Voting is similar to
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FPTP. First, all proofs are checked and votes with invalid proof are removed. All
onions corresponding to selected candidates in a ballot are then aggregated into
a single ciphertext. From this point on the techniques and options are similar to
those described above.

4.3 Vote Processing for Supplementary Vote

In Supplementary Vote elections, the votes, as shown in Figure 4, contain either
one or two preferences. To tally the received votes, the proof of every vote is
checked and all votes with invalid proofs are removed. The onions corresponding
to the valid ballots are ordered according to the indicated preference. For exam-
ple, the votes in Figure 4 will be ordered as {θD} and {θB, θA} respectively (note
that these θ values are ciphertexts and the subscripts are used for notational con-
venience). Now, the first onion in every vote is selected and aggregated into a
counter. The threshold parties then apply the Binary Conversion technique to
convert this ciphertext into a number of ciphertexts, where each encrypts the
received votes for a particular candidate. After generating a pseudo ciphertext1

Epk(Q, 1), where Q is the winning quota, the threshold parties apply the PIT to
check whether some candidate has received more votes than the quota. If yes, the
election ends and this candidate wins. Otherwise, the threshold parties identify
the two candidates with the most votes using the PIT, and all other candidates
are eliminated.

Fig. 4. Supplementary Vote. (a) One preference. (b) Two preferences.

Suppose Bravo and Delta are the two remaining candidates. We first generate
two pseudo ciphertexts θ̄B = Epk(2L, 1) and θ̄D = Epk(23L, 1) for them respec-
tively. Then we shuffle all the votes using the verifiable shuffle. In the next step,
for every vote in the outputs, the threshold parties apply the PET to compare
its first onion with θ̄B and θ̄D. If it matches with one of the pseudo ciphertexts,
this vote will be sorted into the pile for that candidate. For these votes, the
second preference will never be used. So if any vote has a second onion, it will
1 Note that in the rest of this paper, if we mention pseudo ciphertext, we mean that

the ciphertext is generated using the randomisation value 1. Therefore, anyone can
verify that the pseudo ciphertext is well-formed.
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be removed from the vote, e.g. θA will be removed from the vote {θB, θA}. For
the other votes where the first onion does not match with any of the pseudo ci-
phertexts, we check whether it contains a second preference. If no, the vote will
be removed from the tally. Otherwise, its first onion will be removed, leaving
only the second onion, and we leave these votes in an unsorted pile. We now
check the two piles of votes for the remaining candidates, if their difference is
larger than the number of votes in the unsorted pile, the election ends and the
remaining candidate with more votes wins. But if their difference is smaller than
the number of votes in the unsorted pile, we aggregate all votes in the three piles
into one ciphertext2. Then this ciphertext is threshold decrypted and one of the
two remaining candidates with the most votes wins.

4.4 Vote Processing for Instance Runoff Voting (IRV)

To tally the received votes in IRV elections, proofs are checked and any vote with
an invalid proof is discarded. Once again, the onions corresponding to the valid
ballots are ordered according to the indicated preference e.g. the vote in Figure
3(b) will be re-written as {θE, θA, θB, θC , θD}. The first onion of every vote is
selected and aggregated into a counter. The threshold parties then apply the
Binary Conversion technique to transfer this encrypted counter into a number
of ciphertexts, where each encrypts the received votes for a candidate. After
generating a pseudo ciphertext of the quota as Epk(Q, 1), the threshold parties
can use the PIT to check whether some candidate has received more votes than
the quota. If yes, the election ends, and this candidate wins. Otherwise, the
threshold parties use the PIT to identify the candidate with the least votes and
this candidate is eliminated. Suppose Alice is eliminated in the first round, a
pseudo ciphertext for Alice is generated as θ̄A = Epk(20, 1). Then all votes are
inserted into the verifiable shuffle. In the outputs, the threshold parties apply
the PET to locate the onion θA in every vote, and this value will be removed
from the vote. Again, the first onion of every vote is selected and aggregated
into a counter and then the threshold parties apply the Binary Conversion and
PIT to check whether some candidate has received more votes than the quota.
The above process is repeated until some candidate receives more votes than
the quota or only one candidate remains. For a vote with partial rankings, if all
preferences are removed, it is removed from the tally.

4.5 Vote Processing for Single Transferable Vote (STV)

In STV elections with fraction transfer, if some candidate receives more votes
than the quota but not all seats are filled, the votes that exceed the quota need
to be transferred. However, the transfer value is not an integer but a fraction.
For example, if the quota is q and if a candidate receives m votes, where m > q,
the transfer value will be (m − q)/q. Although this value can be treated as an
integer if we multiply all the vote values by q, the Baudron counter can no more

2 Note that at this moment, all votes in the three piles contain only one onion.
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be used because there might be overflow between adjacent locations within the
counter.

Here, the Shuffle-Sum techniques [5] to tally STV elections can be employed,
but with modifications to allow partial ranking. Before the election, two pseudo
ciphertexts θ̄0 = Epk(0, 1) and θ̄1 = Epk(1, 1) are generated. These two values
are used to record which are the voter’s genuine choices and which are appended
choices. Every received vote will first be transferred into the so called Preference-
order table, e.g. the vote in Figure 4(b) will be transferred as:

Candidate θB θA θE θD θC

Preference 1 2 3 4 5
True/Fake θ̄1 θ̄1 θ̄0 θ̄0 θ̄0
Weight Epk(wv)

In the above table, the order of the voter’s genuine preferences need to match
with the vote, but the appended preferences can be in any order. Anyone can
verify that the above table is correctly generated. The following procedures are
similar to the Shuffle-Sum protocol: the above table can be transferred between
the First-preference table and the Candidate-elimination table to elect some
candidate or to eliminate some candidate from the vote. Note that in any case
if all the genuine choices are eliminated, the vote will be discarded. This can be
checked that in the third row of the Preference-order table, the encrypted value
under the first preference encodes plaintext 0.

We will not go into the details of the Shuffle-Sum protocol. For more infor-
mation, please see [5]. But superior than the Shuffle-Sum protocol, our scheme
always enable us to check whether all seats are filled in the first round using the
homomorphic tallying. The process is the same as in Supplementary Vote and
IRV elections. Therefore, we only need to apply the mixnets tallying if all seats
are not filled in the first round.

4.6 Vote Processing for Condorcet Voting

In Condorcet Voting, the Binary Conversion technique or PET/PIT are not used,
and the proof in the vote does not need to be checked. Instead, each received
vote is interpreted as follows: e.g. the ciphertexts in the vote in Figure 3(b) will
be arranged as per the preferences as {θE , θA, θB, θC , θD}. A group of ciphertext
triples are then generated.

{θE , θA, θ̄1} {θE, θB, θ̄1} {θE , θC , θ̄1} {θE, θD, θ̄1} {θA, θB, θ̄1}
{θA, θC , θ̄1} {θA, θD, θ̄1} {θB, θC , θ̄1} {θB, θD, θ̄1} {θC , θD, θ̄1}

In the above group, for each ciphertext triple, the first two ciphertexts are
taken from the vote with the same order, and the third one is a pseudo encryption
of plaintext 1, θ̄1 = Epk(1, 1) = g1 · 1n (mod n2).

Similarly, another group of ciphertext triples are generated, in which the first
two ciphertexts are taken from the vote in the reverse order, and the third value3

3 Note that in Paillier cipher, the plaintext space is Zn so we cannot directly encrypt
the plaintext −1, but we can encrypt n− 1 instead.
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is a pseudo encryption of −1, θ̄−1 = Epk(−1, 1) = g−1 · 1n (mod n2).

{θD, θC , θ̄−1} {θD, θB, θ̄−1} {θD, θA, θ̄−1} {θD, θE , θ̄−1} {θC , θB, θ̄−1}
{θC , θA, θ̄−1} {θC , θE , θ̄−1} {θB, θA, θ̄−1} {θB, θE , θ̄−1} {θA, θE , θ̄−1}

Now, we treat all the ciphertext triples in the above two groups as inputs and
insert them into the verifiable shuffle. Note that in the outputs, the last value of
the ciphertext triple is no longer a pseudo ciphertext i.e. its randomisation is no
longer 1. Then, for each of the output ciphertext triples, the threshold parties
decrypt the first two values. Now, in exactly half of the result triples, the two
candidates are in the alphabetic order, and in the other half, they are in the
reverse alphabetic order. All triples where the two candidates are in the reversed
alphabetic order are now removed. The remaining triples are as follows:

{Alice, Bravo, θ1} {Alice, Charlie, θ1} {Alice, Delta, θ1}
{Alice, Echo, θ−1} {Bravo, Charlie, θ1} {Bravo, Delta, θ1}
{Bravo, Echo, θ−1} {Charlie, Delta, θ1} {Charlie, Echo, θ−1}
{Delta, Echo, θ−1}

After all the received votes are interpreted in the above format, a pairwise
comparison of every two candidates is done to check which candidate is more
preferred by the voters. For example, to compare Alice and Bravo, the triple in
every vote which contains these two candidates is selected. The third values of
these triples is aggregated into one ciphertext using the additive homomorphic
property. If this ciphertext is decrypted, a positive plaintext indicates that Alice
is more preferred than Bravo, and a negative plaintext indicates the opposite. If
there exists a candidate who wins every pairwise comparison, that candidate is
elected. In case the tally does not result a winner, some other additional methods
must be used to determine the winner.

5 System Analysis

In this section, we present an informal analysis of our proposed scheme.

– Privacy and receipt-freeness: The random candidate ordering provides voter
privacy. If the left hand column as depicted in Figure 2 is detached and
destroyed, the right hand column does not reveal how the voter voted. In
addition, to see if our scheme provides receipt-freeness we must consider the
Italian attack. As discussed earlier, if a ranked election contains a large num-
ber of candidates, adversaries can coerce the voter to cast the vote with a
unique ordering of candidates, and then they can check whether this pattern
has appeared in the list of cast ballots. Our scheme never reveals the entire
plaintext vote and is therefore robust against this attack. A variant of the
Italian attack can be found in [29]. For example, the adversary can coerce
the voter to put a very unpopular candidate as the first preference and a very
popular candidate as the second preference. In any round, if the unpopular
candidate is eliminated but there is no transfer from this eliminated candi-
date to that popular candidate, the adversaries will know that the voter did
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not follow the instructions. In our scheme, the transfer history is kept secret
during the vote processing phase and therefore, our scheme is robust against
this variant of the Italian attack as well.

– End-to-end verifiability: In our scheme, voters can use the “cut-and-choose”
method to check whether the ballots are correctly generated. This ensures
that the voter’s intention will be correctly encoded. Each voter is also pro-
vided with a receipt, and the voter can check that the vote has been recorded
by the system. These two actions provide individual verifiability. As the en-
tire vote processing phase can be publicly verified, our scheme also achieves
universal verifiability.

– Robustness: We have ensured that the various steps in the vote processing
phase can either be done by any party without requiring the knowledge of
the secret key or by a threshold set of parties. Therefore, so long as there
exists a quorum of honest threshold parties, the correct election result will
always be generated.

– Complexity: Our scheme has been designed so that it handles both homo-
morphic tallying and mixnet based tallying. Hence we can tailor the design
of the vote processing phase based on different election methods, so that
the election result can always be output in the most efficient manner. In
FPTP and Approval Voting elections, all received votes are tallied using the
homomorphic property. Hence the election result can be generated very ef-
ficiently. In Supplementary Vote, IRV and STV elections, the received votes
also can be tallied using the homomorphic property if the election winner(s)
can be identified in the first round. Otherwise, we need to use mixnets in
the vote processing phase, and this phase may contain several rounds. In
Condorcet voting, we interpret each of the received vote into a number of
data triples, where each data triple pairwise compares two candidates. This
process is done by mixnets and its complexity is quadratic in the number of
candidates.

– Usability: Voters only need to be involved in the vote capture phase, and
their experience is simple and consistent for various election methods. Also,
the ballot form in our proposed scheme is very similar to those used in
current paper based elections around the world.

5.1 Open Problems

A number of avenues to improve our scheme exist and we list a few. Note that
some of the identified problems are common to existing voting schemes.

– Authority knowledge attack: All ballots are generated by a single party. Hence
we need to trust this party for privacy and receipt-freeness. Generating the
ballots in a distributed fashion is desirable, because it ensures no one but
the voter ever learns the candidate ordering. However, achieving distributed
ballot generation is not easy in our scheme. There are three major obstacles:
Firstly, how to prove the ballot is well-formed in the distributed fashion. Sec-
ondly, how to print the ballot without the printer(s) learning the candidate
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ordering. And thirdly, how to ensure robustness so that the scheme can be
run even in the presence of some dishonest election officials. Solving one or
two of the above obstacles might be possible, but it is still an open problem
whether all these three obstacles can be solved at the same time.

– Chain voting attack: If adversaries can successfully smuggle a blank ballot
form out of the polling station, they can use this ballot to coerce voters.
They mark an initial ballot with the candidate of their choice and give it to
a voter entering the polling station. If the voter emerges with another blank
ballot, she is rewarded. The adversaries can repeat this attack with the next
voter using the new ballot. Ryan and Peacock have discussed this attack in
[26], and some of their countermeasures also work for our scheme.

– Randomisation attack: Adversaries can coerce voters to bring out their re-
ceipts with some unique pattern, e.g. the cross always at the top or the
ranking is in the ascend order. Although they do not know how these vot-
ers have cast their votes, they effectively force the voter to vote randomly.
In FPTP elections, there exists a countermeasure to foil the randomisation
attack. If the voter was coerced to bring out her receipt with the cross at
the top, she can keep auditing ballots until she receives one with her favorite
candidate at the top. But in ranked elections, such a countermeasure is not
so effective and the voters may still be coerced to cast their votes randomly.

– Usability: Voters with certain specific disabilities may not be able to tear
the paper ballot apart along the perforation. In future works we hope to
investigate how to improve the accessibility of our schemes for these voters.

– Scalability: Our scheme is not suitable for elections with a large number of
candidates. Since the candidate list is in random order, voters may have
difficulty to find candidates in a long candidate list, especially in ranked
elections. Moreover, the size of the homomorphic counter will become very
large if there are many candidates, and some of the building blocks will
become inefficient.

6 Conclusion

We have introduced a generic end-to-end verifiable voting scheme that handles
many of the currently used election methods. We believe our work is an impor-
tant step forward from the voter’s point of view, keeping the voting experience
simple and consistent no matter what election method is employed. Our work is
based on the success of many existing concepts and building blocks, and we also
contribute several improvements to these previous works:

– Lundin [17] and Popoveniuc et. al. [23] have earlier discussed how end-to-end
verifiable voting schemes can be designed using the modular approach. For
example, they discuss how the front-end and back-end of Prêt à Voter [9], [27]
and Punchscan [24] can be designed in a mix-and-match fashion. However,
they only focus on a single election method. In this paper, we extend the
concept to multiple election methods and illustrate that multiple back-ends,
each for a different election method, can be designed in the modular fashion,
with a unified front-end.
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– We introduce a very simple and straightforward solution to the Shuffle-Sum
protocol [5] to handle partial ranking, and we also show that the Shuffle-Sum
protocol can be designed much more efficiently if the election result can be
tallied in the first round.

– We introduce a novel tallying method for Condorcet elections. Compared to
the scheme in [10], we have simplified the voter interface without introducing
extra complexity in the tallying phase.

In the future, we hope to introduce further enhancements to mitigate the open
problems.
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Appendix

We briefly summarise the vote casting procedure and tallying details of the
various election methods considered in this paper for reference.

– First-Past-The-Post (FPTP): In FPTP elections, the voter simply puts
a mark next to her preferred candidate and the candidate with the most
votes wins. FPTP is used in various elections in Canada, India, the UK and
some elections in the US.

– Approval Voting: In Approval Voting, the voter can indicate multiple
preferences up to a set maximum. All votes carry the same weight and the
candidates with the most votes wins. Approval Voting is currently used in
some local council elections in the UK.

– Supplementary Vote: In Supplementary Vote elections, the voter marks
her ballot as follows: she first marks 1 next to her most favourite candidate.
If she also has a second preference, she marks 2 next to this candidate.
Tallying takes place in at most two rounds. In the first round, only the first
preference on every ballot is taken into account. If some candidate receives
more than half of the votes, the election ends and this candidate wins. If no
candidate wins in the first round, all candidates apart from those in the first
two places are eliminated. Now, ballots with the first preference for one of
the eliminated candidates are checked for their second preferences. If a ballot
does not have a second preference or its second preference is also for one of
the eliminated candidates, it is discarded. Otherwise, its second preference is
treated as its first preference. Now, one of the two non eliminated candidate
with the most votes wins. Supplementary Voting is used to elect mayors in
the UK (e.g. the London Mayor Elections) and a variant is used in the Sri
Lankan presidential elections.

– Instance Runoff Voting (IRV): IRV is also sometimes called alternative
vote or preferential voting. In IRV elections, voters rank candidates based
on their preference and depending on the election, ranking all candidates
may be mandatory or optional. The winner is determined by a quota, which
is normally half of the received votes. In the first round of tallying, only
the first preference of every ballot is taken into account. If some candidate
receives more votes than the quota, the candidate wins and the election
ends. Otherwise, the candidate with the least votes will be eliminated and
all ballots with the highest preference for this voter will be redistributed
among the remaining candidates, based on the next preference. In case the
next preference is empty or all the remaining preferences are for eliminated
candidates, the ballot is discarded. The process is repeated until a winner is
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found. Currently, IRV is used in some local government elections in the US,
New Zealand and Malta. Moreover, there are proposals to replace the FPTP
system used for parliamentary elections in the UK with the IRV.

– Single Transferable Vote (STV): Unlike the other methods described so
far, in STV, more than one candidate is elected. To cast a vote, the voter
ranks as few or as many candidates as she likes. To be elected, a candidate
must receive more votes than a set quota. In the first phase of tallying,
only the first preference on every ballot is taken into account. If no one
receives more votes than the quota, the candidate with the least votes will
be eliminated, and all ballots for this candidate will be redistributed among
the remaining candidates, based on the next preference. However, if some
candidates receive more votes than the quota, they will be elected and it will
be checked if all seats are filled. If yes, the election ends. Otherwise, the tally
continues so as to fill the remaining seats. Elected candidates do not need
votes they receive over the quota and the surplus votes are transferred to
the remaining candidates based on the next preference4. The above process
is repeated until all seats are filled. STV is a popular election method and is
currently used to elect the lower house of parliament in some territories in
Australia, in local government elections in Scotland as well as some elections
in Northern Ireland.

– Condorcet voting: In Condorcet elections, the voter provides a full ranking
of the candidates. This allows every candidate to be compared to every other
candidate. For each pairwise combination, it is checked which candidate is
more preferred by the voters and the election winner is the candidate who
wins every pairwise combination. Note that this process does not always
result in a winner and special methods are required to determine the winner,
but these techniques are out of the scope of this paper. The Condorcet
method is not used in political elections, but it can be found in popular
media, e.g. elections organised by MTV.

4 Note that there are several different methods to transfer the surplus votes. For
example, fraction transfer is used in Australia and Scotland, and random transfer is
used in Northern Ireland.
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Abstract. Cryptographic hash functions are an essential building block
for security applications. Until 2005, the amount of theoretical research
and cryptanalysis invested in this topic was rather limited. From the hun-
dred designs published before 2005, about 80% was cryptanalyzed; this
includes widely used hash functions such as MD4 and MD5. Moreover, se-
rious shortcomings have been identified in the theoretical foundations of
existing designs. In response to this hash function crisis, a large number
of papers has been published with theoretical results and novel designs.
In November 2007, NIST announced the start of the SHA-3 competition,
with as goal to select a new hash function family by 2012. About half
of the 64 submissions were broken within months. We present a brief
outline of the state of the art of hash functions half-way the competition
and attempt to identify open research issues.

Cryptographic hash functions map input strings of arbitrary length to short fixed
length output strings. They were introduced in cryptology in the 1976 seminal
paper of Diffie and Hellman on public-key cryptography [4]. Hash functions can
be used in a broad range of applications: to compute a short unique identifier of
a string (e.g. for a digital signature), as one-way function to hide a string (e.g.
for password protection), to commit to a string in a protocol, for key derivation
and for entropy extraction.

Until the late 1980s, there were few hash function designs and most pro-
posals were broken very quickly after their introduction. The first theoreti-
cal result is the construction of a collision-resistance hash function based on
a collision-resistant compression function, proven independently by Damg̊ard [3]
and Merkle [10] in 1989. Around the same time, the first cryptographic algo-
rithms were proposed that are intended to be fast in software; the hash functions
MD4 [14] and MD5 [15] fall in this category. Both were picked up quickly by
application developers as they were ten times faster than DES; in addition they
were not patent-encumbered and they posed less export problems than an en-
cryption algorithm. As a consequence, hash functions were also used to construct
MAC algorithms (e.g., HMAC as analyzed by Bellare et al. [2,1]) and even block
ciphers and stream ciphers.
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During the 1990s, a growing number of hash functions were proposed [13], but
unfortunately very few of these designs have withstood cryptanalysis. Notable
results were obtained by Dobbertin, who found collisions for MD4 in 1995 [5].
Very few theoretical results were available in the area. At the same time however,
MD5 and SHA-1, the latter introduced in 1995 by NIST (National Institute for
Standards and Technology, US) [7], were deployed in an ever growing number of
applications, resulting in the name “Swiss army knifes” of cryptography.

Wang et al. made substantial progress in the differential cryptanalysis of hash
functions of the MD4 type: in 2004 they found collisions for MD4 by hand and
for MD5 in a few minutes [17]. They managed to reduce the cost of collisions
for SHA-1 by three orders of magnitude [16]. Suddenly hash functions moved
to the center stage in cryptology: many new theoretical results were obtained,
new designs were proposed and the cryptanalytic techniques of Wang et al. were
further developed. Today RIPEMD-160 [6] seems to be one of the few older
160-bit hash functions for which no shortcut attacks are known. In 2002, NIST
introduced the SHA-2 family of hash functions [8] with as goal to match the
security levels provided by 3-DES and AES (output results of 224 to 512 bits).
Even if attempts to cryptanalyzed SHA-2 have failed so far, there is a concern
that the attacks of Wang et al. would also apply to these functions, which have
design principles that are quite similar to those of SHA-1.

In November 2007, NIST announced that it would organize an open compe-
tition to select the SHA-3 algorithm [11]. In October 2008, 64 candidates were
submitted; 51 of these were admitted to the first round and in July 2009, 14
were selected for the second round. In December 2010, NIST will announce 4 to
6 finalists; the final winner will be announced in the second Quarter of 2012.

Our talk presents an overview of the state of hash functions. We discuss the
main theoretical results, describe some of the most important attacks, including
the rebound attack [9]. Next we give an update on the status of the SHA-3
competition and explain why SHA-3 will be a hash function that is very different
from SHA-2. One can expect that the SHA-3 competition will result in a robust
hash function with a good performance, that will co-exist with SHA-2. One can
also expect that NIST will standardize a tree mode for hash functions to obtain
improved performance on multi-core processors (see [3,12] and several SHA-3
submissions). For the long term, we face the challenging problem to design an
efficient hash function for which the security can be reduced to a mathematical
problem that is elegant and for which we have a convincing security reduction.

References

1. Bellare, M.: New proofs for NMAC and HMAC: security without collision-
resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619.
Springer, Heidelberg (2006)

2. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)



Cryptographic Hash Functions: Theory and Practice 117

3. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

4. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. on Infor-
mation Theory IT-22(6), 644–654 (1976)

5. Dobbertin, H.: Cryptanalysis of MD4. Journal of Cryptology 11(4), 253–271 (1998);
See also Gollmann, D. (ed.): FSE 1996. LNCS, vol. 1039, pp. 53–69. Springer,
Heidelberg (1996)

6. Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: a strengthened version of
RIPEMD. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 71–82. Springer,
Heidelberg (1996)

7. FIPS 180-1, Secure Hash Standard, Federal Information Processing Standard
(FIPS), Publication 180-1, National Institute of Standards and Technology, US
Department of Commerce, Washington D.C. (April 17, 1995)

8. FIPS 180-2, Secure Hash Standard, Federal Information Processing Standard
(FIPS), Publication 180-2, National Institute of Standards and Technology, US
Department of Commerce, Washington D.C. (August 26, 2002) (Change notice 1
published on December 1, 2003)

9. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound
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Abstract. Many RFID protocols use cryptographic hash functions for
their security. The resource constrained nature of RFID systems forces
the use of light weight cryptographic algorithms. Tav-128 is one such
128-bit light weight hash function proposed by Peris-Lopez et al. for a
low-cost RFID tag authentication protocol. Apart from some statistical
tests for randomness by the designers themselves, Tav-128 has not un-
dergone any other thorough security analysis. Based on these tests, the
designers claimed that Tav-128 does not posses any trivial weaknesses. In
this article, we carry out the first third party security analysis of Tav-128
and show that this hash function is neither collision resistant nor sec-
ond preimage resistant. Firstly, we show a practical collision attack on
Tav-128 having a complexity of 237 calls to the compression function and
produce message pairs of arbitrary length which produce the same hash
value under this hash function. We then show a second preimage attack
on Tav-128 which succeeds with a complexity of 262 calls to the compres-
sion function. Finally, we study the constituent functions of Tav-128 and
show that the concatenation of nonlinear functions A and B produces
a 64-bit permutation from 32-bit messages. This could be a useful light
weight primitive for future RFID protocols.

Keywords: Hash function, Tav-128, Cryptanalysis, RFID, Compression
function.

1 Introduction

RFID technology has gained wide acceptance in the market-place in the last
decade. Due to the security vulnerabilities found in various RFID protocols and
implementations, researchers have been focusing on designing secure RFID pro-
tocols. RFID tags have hard constraints on their size, the chip area and power
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consumption. Due to these constraints public key cryptography becomes gener-
ally impractical for use in the RFID protocols. Consequently, researchers have
relied on cryptographic hash functions [13,22,21,9,7] or block ciphers [10] in the
design of RFID protocols. Unlike block ciphers, hash functions do not require
exchange of a key before operation of the protocol and hence RFID community
has thought them to be simpler to implement. However, Feldhofer and Rech-
berger [11] have shown that the number of gates required to implement most
common hash functions on an RFID chip is much higher than that for some
block ciphers.

It is interesting to note that in NIST’s ongoing SHA-3 hash function competi-
tion [17], among the hash functions selected for the second round [19] of the com-
petition, only CubeHash with hash values upto 512 bits has been reported with a
hardware implementation of less than 10,000GateEquivalents (GE) [2]. In a recent
study on the FPGA implementation of fourteen second round 256-bit SHA-3 can-
didates [12], it was reported that only Keccak, CubeHash and Luffa hash functions
have throughput to area ratio better than the current NIST standard SHA-2 [18].
On a similar note, challenges involved in the design of compact dedicated hash
functions with large hash values and some hash function proposals based on the
compact block cipher PRESENT [4] were discussed in [5]. Very recently, another
lightweight hash function has been proposed by Aumasson et al. [1].

Tav-128 is a 128-bit lightweight cryptographic hash function developed by
Peris-Lopez et al. [20] which is utilized in an RFID authentication protocol pro-
posed by the designers. Peris-Lopez et al. remark that Tav-128 “can be fitted in
low-cost RFID tags and provides a suitable security level for most applications”.
Apart from some statistical randomness tests on Tav-128 by the designers them-
selves, the hash function has not undergone any other thorough security analysis.
Based on these tests, the designers claimed that Tav-128 does not posses any
trivial weaknesses. In this work, we carry out the first third party analysis of
Tav-128 and show that it is not a strong hash function. In particular, we show
that practical collisions can be found for messages of any arbitrary length. Us-
ing ideas from our collision attack, we also show a second preimage attack on
Tav-128.

Results: In this work we show the following.

1. A collision attack on Tav-128 with a complexity ≈ 237.
2. A second preimage attack on Tav-128 with a complexity ≈ 262.
3. Suggestion for a low cost 64-bit permutation primitive based on Tav-128.

The organization of the paper is as follows. In § 2, we present the notation used
and describe the security requirements of a cryptographic hash function. In § 3
the structure of Tav-128 is explained. In § 4, we describe our collision attack and
provide colliding message pairs for Tav-128. We show a second preimage attack
on Tav-128 in § 5. We conclude with some open problems on the constructions
of light weight primitives for secure protocols in § 6.
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2 Notation and Preliminaries

2.1 Notation

In this work, the following notation are used.
+ : Addition modulo 232.
− : Subtraction modulo 232.
‖ : Concatenation of two quantities.
�: Left bit-shift operator (on 32-bit quantities).
�: Right bit-shift operator (on 32-bit quantities).

2.2 Security Requirements of Cryptographic Hash Functions

A cryptographic hash function produces a fixed length digest, called the hash
value, for an arbitrary sized message. It must satisfy some or more of the follow-
ing properties, depending on the intended use of that hash function [16].

Preimage Resistance: A hash function h(.) is preimage resistant if it is
computationally infeasible to find an x for any given y such that h(x) = y.

Second Preimage Resistance: A hash function h(.) is second preimage
resistant if it is computationally infeasible to find an x2 given any x1 such that
h(x1) = h(x2) and x1 �= x2.

Collision Resistance: A hash function h(.) is collision resistant if it is
computationally infeasible to find a pair (x1, x2), x1 �= x2 such that h(x1) =
h(x2).

By “computational infeasibility”, we mean that the complexity of an algo-
rithm to break any one of the security properties is not less than the generic
attack for breaking that property. For a hash function producing an �-bit hash
value, the complexity of birthday attack is 2�/2, and that for the preimage and the
second preimage attack is 2�. Note that for some iterated hash function modes
such as those based on Merkle-Damg̊ard construction [8,15], the complexity to
find a second preimage for a target message of 2t blocks is 2�−t [14]. If an attack
can be described against any one of these properties and that attack has better
complexity than these generic attacks then it is known as a “breaking” of the
hash function.

3 The Tav-128 Hash Function

As previously mentioned, Tav-128 has been designed as a lightweight hash func-
tion to be used in an RFID authentication protocol [20] proposed by the de-
signers. Tav-128 is intended to be a cryptographically secure hash function. The
designers of Tav-128 note that choosing an output size of 128-bit is governed
by the fact that a hash size of 64-bit would imply that “finding collisions is a
relatively easy task due to the birthday paradox (around 232 operations)”.

The hash function outputs a digest of 128-bit for a message of any length.
The structure of Tav-128 is as shown in Figure 1. A message of length 32 × k
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Fig. 1. The Merkle-Damg̊ard structure of Tav-128. Compression function f is {0, 1}32×
{0, 1}160 → {0, 1}160 . Final transformation g simply outputs the final state S.

is hashed by following the Merkle-Damg̊ard [8,15] mode of operation where the
compression function f : {0, 1}32×{0, 1}160 → {0, 1}160 is iterated k times. The
final truncation transformation g outputs last four 32-bit words of the 160-bit
internal state. The reference implementation of Tav-128 from [20] is provided in
Appendix B.

3.1 The Compression Function f

Each call to the f function with a 32-bit message m updates 5 variables, each
of which is of size 32 bits. These 5 variables are the register a0 and the states
S[0], S[1], S[2] and S[3]. The f function utilizes 4 functions A, B, C and D to
update these variables and also uses two internal variables h0 and h1 in this pro-
cess. The functions C and D together is called C&D function and its definition
can be seen in the reference implementation of Tav-128 provided in Appendix B.
The two functions A and B are shown in Table 1. The schema of the compres-
sion function is described in Figure 2. The symbol ⊕ in Figure 2 denotes bit wise
XOR of two 32-bit integers.

Table 1. Nonlinear functions A and B in Tav-128

A(h0, m) B(h1, m)

for(i=0; i<32; i++) for(i=0; i<32; i++)

h0 = (h0 � 1) + (h0 + m) 1 h1 = (h1  1) + (h1 � 1) + h1 + m

For Tav-128 to be considered as a collision resistant hash function, it should
take 264 compression function calls to find a collision and 2128 compression func-
tion calls to mount a (second) preimage attack. Note that Tav-128 has an internal
state of 160 bits but outputs a hash value of 128 bits. Hence, long message sec-
ond preimage attack [14] is cheaper than the brute force second preimage attack
for a target message of size more than 232 message blocks. For a target message
of 232 blocks, the cost of both second preimage attacks is the same.
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Fig. 2. Schema of the compression function f of Tav-128

4 Collision Attack on Tav-128

The compression function of Tav-128 first initializes the variables h0 (resp. h1)
with a constant and then a non-linear function A (resp. B) updates this value
depending on the 32-bit message m.

The authors of the hash function justify the inclusion of these two functions
by stating that [20] “We have also tried to include a filter phase (corresponding
to algorithms A and B) in the input of the Tav-128 function, in order to avoid
the attacker to have direct access to any bit of the internal state. Not having this
possibility, some attacks that have been found on other cryptographic primitives
in the past are precluded.”.

In § 4.1, we investigate if the claim above is true and whether the application of
these two functions weaken or strengthen the hash design. As described in § 4.1,
we find that the inclusion of these two functions, at least for the IV chosen,
indeed improves the security.

4.1 Non-existence of Collisions at the Level of Functions A and B

We note that the functions A(h0, ·) and B(h1, ·) are not permutations. It is easy
to find collisions on m in either of the two functions A or B. Some such examples
are presented in Table 2. Some more analysis of functions A and B is presented
in Appendix A.
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Table 2. Examples of collision in A and B functions

S. No. Function A Function B
h0 m A(h0, m) h1 m B(h1, m)

1 0x768c7e74
0x74093e01

0x6dabc1e3 0x768c7e74
0x4505b289

0x3d8fd817
0x09057d79 0x62ee7bbd

2
0x0

0x1bd18de3
0x099587a6 0x0

0x51b70ece
0xd3502587

0x554216d3 0x17cac654

Despite the fact that collisions in A and B are easily found, it does not appear
easy to find collisions in both A and B simultaneously. Note that the only place
where the message m is used in the compression function f is in functions A and
B. Further computations in functions C and D only operate on the intermediate
values h0 and h1 and state variables S[0], S[1], S[2] and S[3]. Therefore, if a
message pair m1 and m2 could be found such that A(h0, m1) = A(h0, m2) and
B(h1, m1) = B(h1, m2) for the IV specified values h0 = h1 = 0x768c7e74, then
the pair (m1, m2) will constitute a collision for the full hash function Tav-128.
In order to find collisions in Tav-128, we therefore investigate collisions in the
concatenation of outputs of functions A and B.

To search for collisions in A(h0, m)‖B(h1, m) we used the following strategy.

1. Create a table of size 232 corresponding to all 32-bit messages m containing
the triplet (A(h0, m), B(h1, m), m).

2. Sort this table.
3. Look for a pair of adjacent rows in the sorted table where the first two entries

are equal.

Since the size of the file in the strategy above would be ≈ 128 Gigabytes, sorting
it would become computationally expensive on a standard PC. The standard
sorting methods having complexity O(n log n) will result in an effort of the
order of 245.3 for n =128 GB = 240 bits. Therefore, we resorted to the use of a
disk sorting algorithm. Disk sorting algorithms typically sort a file in multiple
runs or passes of sorting, sorting a part of the file in each pass. The sorted parts
of the file are merged in subsequent passes. These algorithms never require more
memory than that which is physically available on the system. Due to hardware
limitations (we used a standard PC with 4 GB RAM and about 500 GB hard
disk), we could not efficiently used disk sorting on the complete file in a single
trial. The temporary files created in various runs of the disk sorting routine
would exhaust the entire free space on the hard disk. Therefore, we modified the
strategy slightly by dividing the file into 16 chunks of roughly equal size and then
using disk sorting on each file of approximately 8 GB. Finally we combined these
16 files by using the merge sort algorithm. For sorting individual files, we used
disk based sorting algorithm psort [3]. For merging individual files, we wrote our
own merge sort routine.

Our search reveals that there is no pair of messages on which both A and B
functions collide starting from the IV. Thus there does not exist any collision on
32-bit messages at the level of A and B function.
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4.2 On the Map (m‖m) → A(h0, m)‖B(h1, m)

As remarked by the designers of Tav-128 [20], individual functions A and B
are quite efficient, requiring very few gates to implement them. Therefore they
seem to have potential applications in light weight protocols. However, our dis-
cussion in § 4.1 shows that it is very easy to find collisions in these individ-
ual functions. Therefore the use of these functions in any application where
collisions in these functions could cause loss of security is immediately ruled
out. Contrary to what one would expect, however, we have found that the
64-bit map (m‖m) → A(h0, m)‖B(h1, m) is a permutation for the IV value
h0 = h1 = 0x768c7e74. Since this is a light weight permutation, constructed
from two light weight primitives, it may be a useful tool for future protocols
requiring low cost constructs.

Note: The map (m‖m)→ A(h0, m)‖B(h1, m) is a permutation for the given IV.
However, this does not rule out the possibility that it may not be a permutation
for a random IV. We did not find such an IV in our (small) experiments, but
since there are 232 possible IV’s one cannot be certain. If there does exist an
IV h0 = h1 = α such that A(α, m1) = A(α, m2) and B(α, m1) = B(α, m2) for
32-bit messages m1 and m2, then it gives another collision attack on Tav-128
as follows. Randomly attempt to find a message m0 such that the variable a0
at the end of one round of Tav-128 comes out equal to α. If we succeed to find
such a message then there exists a 2-block message pair (m0‖m1) and (m0‖m2)
which collides on Tav-128. Intuitively, the success probability of this attack is
expected to be worse than the collision attack on Tav-128 we propose in the
following section.

4.3 Finding Collisions at the Level of C&D Function

From Figure 2, we note that if the intermediate values h0 and h1 collide for two
different messages immediately after one application of the C&D function, then
S[0] will have the same value for both the messages. Since the message does not
get used in subsequent computations, all the register values (h0, h1, S[0], . . .,
S[3]) and hence the final hash output will also be same for these messages.

We used a strategy similar to the one described in § 4.1 to generate such
message pairs. We restate it here for clarity.

1. Create a table of size 232 corresponding to all 32-bit messages m containing
the triplet (h0, h1, m), where the values of the variables h0 and h1 are after
one application of the C&D function.

2. Sort this table.
3. Look for a pair of adjacent rows in the sorted table where the first two entries

are equal.

The pair of messages thus obtained (third entries in the two adjacent rows above)
are colliding for the full 160-bit internal state of Tav-128 after one application
of the C&D function. Therefore these are the message pairs which collide for
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the hash function. We obtained 11 message pairs satisfying these requirements.
For two of these pairs, the colliding hash value and the intermediate values of
h0 and h1 after the first application of C&D function are presented in Table 3.

The cost of collision attack. Recall that our attack finds collisions after one
application of the C&D function and there are 4 applications of this function
in the Tav-128. Thus each random search of suitable message pair in our attack

costs about 1
4
th of the cost of evaluating the hash value for that message pair.

The estimate of effort of our attack is about 232 calls to about 1
4
th of the hash

function, followed by sorting the lists of h0 and h1 and subsequent search for
colliding pair. In fact, we experimentally found that the cost of finding a message
pair which satisfies our requirements is a little less than 229, rather than the
expected 232. The whole process of creating the files, sorting them, merging to
create one file and finally searching for colliding pairs on this merged file took
less than 1 working day on a standard PC. We estimate this effort to be about
237 calls of Tav-128. This is significantly below the birthday bound of 264 for a
hash function producing 128-bit digests.

4.4 Colliding Message Pairs

Two pairs of colliding messages are presented in Table 3. Both the message
pairs are 32 bits and the hash output H(M) is 128 bits. h0 and h1 are the
intermediate values of the variables after one iteration of the C&D function.
Since the chaining variables h0, h1, S[0], S[1], S[2] and S[3], and hence the full
160-bit state (a0, S[0...3]), are all equal for each message pair, appending any
arbitrary message at the end of the colliding pair will still collide for Tav-128.
Given the results in Table 3, it is trivial to construct messages of any length ≥
32-bit which will collide for Tav-128.

Table 3. Colliding message pairs for Tav-128

S.No. M h0 h1 H(M)

1
0x80e19efb

0x9feaad6c 0x58b49a48 11a208c1 822c7b31 c41dd0a4 10a9c8c0
0x8e474d73

2
0x1f399d6d

0xa148201c 0x97094b03 dd7d4e3a b426513a 6631c011 9241384f
0x90adacf0

5 Second Preimage Attack

In § 4, we exploited the non randomness in the functions A, B and C&D of
the compression function of Tav-128 to mount a cheap collision attack on the
hash function. We use a similar approach to find a second preimage for Tav-
128 for a given target message M = m

(1)
1 ‖m(2)

1 ‖m(3)
1 ‖ . . . ‖m(N)

1 , where each
m

(i)
1 ∈ {0, 1}32.
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To find a second preimage, the adversary starts from the first block of M

and looks for another message block m
(1)
2 such that m

(1)
1 �= m

(1)
2 but h0 and

h1 values after the first application of the C&D function collide. If the adver-
sary can find such a message m

(1)
2 then the second preimage of M would be

m
(1)
2 ‖m(2)

1 ‖m(3)
1 ‖ . . . ‖m(N)

1 . Otherwise, the adversary keeps m
(1)
1 unchanged and

does the same exhaustive search on the second message block m
(2)
1 . The adver-

sary repeats this process until a message pair m
(i)
1 , m

(i)
2 can be found which is

different and yet collides for Tav-128 after one application of the C&D function.
Whenever the adversary finds such a pair, it produces the second preimage of
M under Tav-128 as M

′
= m

(1)
1 ‖m(2)

1 ‖ . . . ‖m(i)
2 ‖m

(i+1)
1 ‖ . . . ‖m(N)

1 . We can see
that M and M

′
are unequal in the ith block and equal otherwise.

The cost of second preimage attack. We denote the 64-bit h0‖h1 part of
the internal chaining value after one application of the C&D function in the ith

iteration of the compression function by C&D(m(i)
j ), where m

(i)
j denotes the ith

block of jth message. In the ith iteration, the adversary searches for a 32-bit
message m

(i)
2 such that C&D(m(i)

1 ) = C&D(m(i)
2 ), where m

(i)
1 is the ith block of

the given target message M . Hence, in the ith iteration the adversary looks for
a second preimage for C&D(m(i)

1 ) which has the length 64 bits. The complexity
to find a second preimage would be about 264 calls to the compression function
up to the end of the first call to the C&D which is about 1

4
th of the Tav-128

compression function. This roughly equals 262 calls to the compression function.
However, for each iteration of Tav-128, we have at most 232 choices for m

(i)
2 .

Hence, the expected length of the given target message is 264

232 = 232 message
blocks. In other words, the message for which second preimage can be found
using our attack must have a length of the order of 232 blocks of 32-bits each,
i.e. 237 bits. Although it is unrealistic to consider such a long message for an
RFID application, our attack nonetheless shows an undesirable property of Tav-
128. The cost of our attack is 262 calls to the compression function of Tav-128
which is significantly below the theoretical bound of 2128 for a hash function
producing 128-bit hash values.

6 Conclusions and Open Problems

In this paper we presented a practical collision attack and a second preimage
attack on the hash function Tav-128. Both these attacks demonstrate that the
security of Tav-128 hash function reduces to only 1/4th of it. Following our
attacks, we state that Tav-128 is not a cryptographically secure hash function.

The construction of a library of light weight primitives having collision resis-
tance and difficult inversion property is an open problem. Such a library will
certainly be of use to designers of light weight secure protocols, not limited
to just RFID applications. The cost comparison of such primitives and condi-
tions on the optimal cost of an individual primitive also remain interesting open
problems.
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A Some Properties of Functions A and B

In this section we comment on some combinatorial properties of the functions A
and B. As already mentioned, these functions are not permutations over input
messages.

A.1 Analyzing Function A

The for loop runs 32 times and updates h0. Let the initial value of h0 before
the loop starts be h0,0 and the updated value of h0 after the ith iteration be h0,i.
In step i, the loop will perform the following operation.

h0,i = (h0,i−1 � 1) + (h0,i−1 + m) � 1.

We therefore analyze the following equation.

x = (y � 1) + (y + m)� 1 (1)

In the equation above, there are 3 variables: x, y and m. Consider the problem of
solving for y given x and m. We make the following observations on this problem.

1. For all pairs of x and m, there exist two distinct values of y satisfying Equa-
tion 1.

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/submissions_rnd2.html
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2. Let these two values of y be y1 and y2. The difference of y1 and y2 is al-
ways 0x55555555 (or its additive inverse modulo 232, i.e.0xaaaaaaab since
the addition in Equation 1 is modulo 232). Note that the 32-bit constant
0x55555555 represents alternating sequence of 0 and 1 bits.

3. Note that Equation 1 can be written as

(x− y � 1) = (something)� 1.

The most significant bit (msb) of the rhs is always zero, hence the msb of
(x− y � 1) must also be always 0.

Despite the inversion of a single step of Equation 1 being trivial for a message m
(given x and y), the problem of inverting the for loop (i.e. finding an m given
h0,0 and h0,32) is difficult.

A.2 Analyzing Function B

Similar to the analysis above, let us try to study the following equation.

(y � 1) + (y � 1) + y + m = x (2)

We would like to solve Equation 2 for y, given the values of x and m. It is
interesting that unlike in the case of Equation 1, this time we may or may not
be able to solve the equation. The following cases can occur:

1. For some values of (x, m), there is no solution for y. For example: x =
0x7409c642 and m = 0x3d303017.

2. For some values of (x, m), there is exactly one value of y satisfying Equa-
tion 2. E.g. x = 0x152e1fdb and m=0x3d77b373, for which y=0xcfeafa67.

3. For some values of (x, m), there are two values of y satisfying Equation 2.
E.g. x = 0x4a6cd8f5 and m = 0x10dff39b, for which y = 0x5995f863 and
0xa2ba8aac.

The probability of occurrence of the three cases above are roughly 1
3 .

Similar to the case of function A, the inversion of the for loop (computing m
from h1,0 and h1,32 where the symbols have similar meaning) corresponding to
32 calls to Equation 2 is a difficult problem.

B Tav-128 Reference Code from [20]

/************************************************************************/

Process the input a1 modifying the accumulated hash a0 and the state

/************************************************************************/

void tav(unsigned long *state, unsigned long *a0, unsigned long *a1)

{

unsigned long h0,h1;

int i,j,r1,r2,nstate;
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/* Initialization */

r1=32; r2=8; nstate=4;

h0=*a0; h1=*a0;

/* A - Function */

for(i=0;i<r1;i++){h0=(h0<<1)+((h0+(*a1))>>1);}

/* B - Function */

for(i=0;i<r1;i++){h1=(h1>>1)+(h1<<1)+h1+(*a1);}

/ * C & D - Function */

for(j=0;j<nstate;j++) {

for(i=0;i<r2;i++) {

/* C - Function */

h0^=(h1+h0)>>3;

h0=((((h0>>2)+h0)>>2)+(h0<<3) +(h0<<1))^0x736B83DC;

/* D - Function */

h1^=(h1^h0)>>1;

h1=(h1>>4)+(h1>>3)+(h1<<3)+h1;

} // round-r2

state[j]+=h0;

state[j]^=h1;

} // state

/* a0 updating */

*a0=h1+h0;

}

/***********************************************************************************/

Initialization of the state and a0 with random values obtained from www.random.org

/***********************************************************************************/

void init state(unsigned long *state, unsigned long *a0)

{

state[0]=0xa92be51d;

state[1]=0xba9b1ef0;

state[2]=0xc234d75a;

state[3]=0x845c2e03;

a0[0]=0x768c7e74;

}
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Abstract. A hash function is near-collision resistant, if it is hard to find
two messages with hash values that differ in only a small number of bits.
In this study, we use hill climbing methods to evaluate the near-collision
resistance of some of the second round SHA-3 candidates. We practi-
cally obtained (i) 184/256-bit near-collision for the 2-round compres-
sion function of Blake-32; (ii) 192/256-bit near-collision for the 2-round
compression function of Hamsi-256; (iii) 820/1024-bit near-collisions for
10-round compression function of JH. Among the 130 possible reduced
variants of Fugue-256, we practically observed collisions for 7 variants
(e.g. (k, r, t) = (1, 2, 5)) and near-collisions for 26 variants (e.g. 234/256
bit near-collision for (k, r, t) = (2, 1, 8)).

Keywords: Hash functions, Near-collisions, SHA-3 Competition.

1 Introduction

Hill climbing methods are simple heuristic algorithms that aim to provide “good”
solutions to “hard” optimization problems in short running times. These algo-
rithms start with a random point and iteratively improve it by making small
changes, then they terminate after converging to a local optimum. They are
successful for problems for which the value of the problem at a specific point
gives some information about “close” points [24]. For the well known traveling
salesman problem, these methods get within approximately 10-15% of optimal
solution in relatively short time [9].

There are many hard search problems in the field of cryptography, such as
factorization of RSA numbers, finding secret key in symmetric cryptosystems or
building efficient components with good cryptographic properties. However, the
success of the simple optimization techniques have been very limited in most
of these problems (e.g. [4]). One of the reasons of the failure is that most of
the cryptographic problems (such as searching for the secret key) have only
one single solution and no other “good” solutions. Another reason is due to the
discontinuity of the most cryptographic functions, i.e. small changes in the input
usually result in random looking changes in the outputs. Clark in his PhD thesis
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[5] claims that these techniques might give significant and surprising results if
used in the right way. Searching for cryptographically strong Boolean functions is
one of the cryptographic problems that benefit from these methods [15,16,8,17].

After the announcement of the SHA-3 hash competition by National Insti-
tute of Standards and Technology (NIST) [18], the submitted hash functions
have been a prolific source of new cryptographic problems. A secure crypto-
graphic hash function is expected to resist collision, second preimage and preim-
age attacks [18]. Moreover, resisting other attacks such as partial preimage and
near-collision attacks increases the confidence in the algorithm.

Truncating some of the output hash bits might be necessary for compatibility
of systems or desired for the efficiency purposes. In such cases, near-collision
results have significant importance, since the output differences may diminish
after a truncation operation and collisions may be obtained [6,10].

Hill climbing methods seems to be more promising for searching near-collisions
compared to other type of attacks, since the problem does not have a singular
solution, but rather many optimal solutions. We select a subset of the 14 second
round SHA-3 candidates, namely Blake [2], Fugue [7], Hamsi [20] and JH [27],
and analyze the security of their compression functions using a simple hill climb-
ing method. In our approach, we give differences to the input message blocks,
and we select the subset of algorithms such that each algorithm has a differ-
ent type of message loading. In Blake, 512-bit message blocks are injected using
10 different permutations, whereas in Fugue, 32-bit message blocks are directly
assigned to the state. In Hamsi, 32-bit message block is expanded by a linear
mapping and then the expansion is loaded to the state. In JH, the message block
is XORed to different parts of input and output chaining value. Evaluation of
the remaining candidates is left as a future study.

We observed that for some of the reduced versions of these candidates, the
hill climbing method produced better results compared to the generic random
search. We practically present near-collision examples for reduced compression
functions of Blake-32, Fugue-256, Hamsi-256 and JH-256 that were obtained in
short running times.

Organization of the paper is as follows. In Section 2, generic methods to
find near collisions are discussed. Then, in Section 3, the proposed hill climbing
method is described. Section 4, the results we obtained for reduced versions of
Blake, Fugue, Hamsi and JH are presented. Finally, the results are summarized
in Section 5.

2 Near-Collisions

A hash function H is near-collision resistant, if it is “hard” to find two messages
with hash values that differ in only a small number of bits [14]. An l/n-bit near-
collision is obtained, whenever two messages m1, m2 satisfying

weight(H(m1)⊕H(m2)) = n− l (1)

are found, where weight represents the Hamming weight. If the attacker ini-
tializes the hash functions with a value different from its original initial value,
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the result is a pseudo near-collision. If the same pseudo initial value is used for
both messages m1 and m2, the result is a semi-free-start near-collision, whereas
if a difference is introduced in the initial values, the result is a free-start near-
collision [22].

Let h be a compression function which takes a m-bit message block and an n-
bit chaining value as inputs and generates the n-bit chaining value as the output.
An l/n-bit near-collision on h is obtained whenever two message blocks M1, M2
and two chaining values CV1, CV2 satisfying

weight(h(M1, CV1)⊕ h(M2, CV2)) = n− l (2)

are found. Clearly, l = n corresponds to a collision on the compression function.
A generic method to find near-collisions for a compression function is to gen-

erate (M i, Ci
1, C

i
2) values (i > 0) , such that H(M i, Ci

1) = Ci
2 and then compare

the Ci
2’s to find the closest pair. The method approximately requires

√
2n/
(
n
l

)
compression function calls with approximately same amount of memory, to find
an l/k-bit near collision [11].

3 Hill Climbing Method

If the compression function h has strong diffusion properties, for a randomly
chosen message M and input chaining value CV , the Hamming weight of

h(M, CV )⊕ h(M, CV ⊕ δ) (3)

is approximately n
2 , where δ is an n-bit vector with small Hamming weight.

However if the diffusion of δ is not satisfied, h(M, CV ) and h(M, CV ⊕ δ) might
be correlated, i.e., the value of h(M, CV ) might provide some exploitable infor-
mation about the value of h(M, CV ⊕ δ) (e.g. some bits positions may always
be equal). In such cases, the hill climbing algorithms to find near-collisions may
work better than the generic approaches.

The aim of our hill climbing method is to minimize the function

fM1,M2(x) = weight(h(M1, x) ⊕ h(M2, x)) (4)

where x ∈ {0, 1}n, for given message blocks M1 and M2. Let CV be a randomly
chosen chaining value. We define the set of k-bit neighbors of an n-bit CV as

Sk
CV = {x ∈ {0, 1}n|weight(CV ⊕ x) ≤ k}. (5)

Clearly, the size of Sk
CV is equal to

∑k
i=0

(
n
i

)
.

For message blocks M1 and M2, we define a chaining value CV to be k-opt, if

fM1,M2(CV ) = min
x∈Sk

CV

fM1,M2(x). (6)

The hill climbing method proposed in this section works as follows. Given a pair
of message blocks M1 and M2, we randomly select a candidate chaining value
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CV and calculate fM1,M2(CV ). Then, we search the set Sk
CV to find a better

chaining value. If found, our candidate is updated. Then, a new search is started
in the k-bit neighbor of the new candidate. The algorithm terminates whenever
a k-opt chaining value is obtained. The pseudocode of the method is presented
in Algorithm 1.

Algorithm 1. HillClimbing(M1, M2, k)

Randomly select CV ;
fbest = fM1,M2(CV );
while (CV is not k-opt)

CV = x such that x ∈ Sk
CV with f(x) < fbest;

fbest = fM1,M2(CV );
return (CV, fbest)

Given current CV , the next candidate can be selected in two ways. In the first
way, the first chaining value that has lower f value is chosen and this approach is
known as the greedy gradient ascent. In the second way, the best chaining value
in Sk

CV is chosen and this approach is known as the steepest ascent. We made
preliminary experiments to compare the efficiency of both approaches, using
same parameter k and we observe that the greedy approach results in better
near-collisions in same running times. For example, the greedy approach results
are on the average 2% better than the steepest ascent results, when we run the
algorithm for the 2-round compression function Blake.

4 Experimental Results

Searching Sk
CV s with larger k (> 3) values might result in better near-collisions,

but the method is no longer efficient. Moreover, when k is large, it is harder to
find correlated h(M, CV ) and h(M, CV ⊕ δ), where weight of δ is k. For our
experiments, we use k values less than or equal to 2.

To evaluate the success of the hill climbing method, it is compared to generic
search approaches. However, the approach presented in Section 2 requires huge
amount of memory that makes it harder to compare, since the hill climbing
method requires no significant memory. Hence, we propose a modified generic
search with no memory requirement, however with a larger time complexity.

In the proposed approach, we randomly try input chaining values CV to
minimize

weight(h(M1, CV )⊕ h(M2, CV )) (7)

for a given M1 and M2 pair. For a secure compression function, the distribution of
the expression in (7) is Binomial with parameters n and 1/2 and observing a value
with weight l, i.e. obtaining an l/n-bit near-collision, requires approximately
2n/
(
n
l

)
compression function calls with almost no memory requirement. Table

1 shows the expected time complexity to obtain l/n-bit near-collisions for a
compression function with 256, 512 or 1024-bit output, using this approach.
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Table 1. Approximate time complexity to obtain l/n-bit near-collisions

l/n Complexity (≈)

128/256, 256/512, 512/1024 24

151/256, 287/512, 553/1024 210

166/256, 308/512, 585/1024 220

176/256, 323/512, 606/1024 230

184/256, 335/512, 623/1024 240

191/256, 345/512, 638/1024 250

197/256, 354/512, 651/1024 260

We repeat our experiments approximately 225 times and consider our method
successful, whenever we obtained an l/n-near collision with l ≥ 184 for n = 256,
l ≥ 335 for n = 512 and l ≥ 623 for n = 1024. These bounds are achievable by
the generic random search with complexity of 240 as given in Table 1.

4.1 Blake-32

Blake [2] is based on the HAIFA iteration mode with a compression function that
uses a modified version of the stream cipher ChaCha. The compression function
of Blake-32 inputs 256-bit CV, 512-bit message block, 128-bit salt and 64-bit
counter and outputs 256-bit CV. The function is composed of 10 rounds and in
each round, the nonlinear function G that operates on four words is applied to
columns and diagonals of the state.

In our experiments, 1-bit difference to the input message blocks are given and
the counter and the salt are fixed to zero. For 1-round compression function of
Blake-32, we easily obtained 252/256-bit near-collisions. These near-collisions are
obtained whenever we give a 1-bit difference to the 9th, 11th, 13th or 15th word of
the message blocks (due to the fixed permutations). Then, we consider 1.5-round
compression function in which the half round corresponds to the applications of
G to the columns of the state. The best result we obtained for 1.5-round and
2-round Blake is 209/256-bit and 184/256-bit near collisions, respectively (See
Table 2). For larger rounds, the hill climbing method did not provide significantly
better results compared to the generic random search.

The results presented in this paper are obtained by giving input difference to
only the message bits. Giving additional differences to input chaining value, salt
and counter as in [1] increases the flexibility of the attacker, however decreases
the practicability of the attack. Another flexibility for the attackers is to start the
attack on a middle round, instead of the first round of the compression function
as in [1,25]. To compare the available results, we run our algorithm for 4-round
compression function for a couple of days. Comparison of near-collision attacks
on Blake-32 is given in Table 3.

The result on the compression function is conjectured to be expandable to
a semi-free start near-collision attack on reduced round Blake-32, by choosing
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Table 2. Example Near Collisions for the Compression Function of Blake

1-Round Compression Function: 252/256-bit Near Collision

M1
8f4a6174 719e5909 41112fdc e5fa805a 1bdea684 b491ec4a 4deb8a83 5f31cf20

6a111277 4b6ff9f9 3f210a47 67388c82 a54cbe2a 3ac0d8e6 8042a2a5 c0549b9e

M2
8f4a6174 719e5909 41112fdc e5fa805a 1bdea684 b491ec4a 4deb8a83 5f31cf20

6a111277 4b6ff9f9 3f210a47 67388c82 a54cbe2a 3ac0d8e6 8042a2a5 c0549b1e

CV c34a1a90 c6955a4e c0c7e9ab cbf5b76c fbab3691 3368498b a8801cd7 20267316

h(M1, CV ) ⊕ h(M2, CV ) 00000000 80000000 00000000 00000080 01000000 00000000 80000000 00000000

1.5-Round Compression Function: 209/256-bit Near Collision

M1
4ffcdfb9 5429ec40 18f9d1d6 c2b5b039 09c31d11 18d1bc19 532edb9c 58e3664a

f757e1bf 6b0acf84 6d01bd05 0ec90891 a439a1bf c8de2b0e be5a524a ae843e5a

M2
4ffcdfb9 5429ec40 18f9d1d6 c2b5b039 09c31d11 18d1bc19 532edb9c 58e3664a

f757e1bf 6b0acf84 6d01bd05 0ec90891 a439a1bf c8de2b0e be5a524a ae843eda

CV 67134117 63e4044d 1a0bbd2b b99824e3 cb638884 8b8d284f 13977bba ad75b3a0

h(M1, CV ) ⊕ h(M2, CV ) 00006020 80080801 88008008 80808898 412300a1 03003810 99100081 b1008118

2-Round Compression Function: 184/256-bit Near Collision

M1
3bd4eee9 035c9cd7 d35de9f7 cd3ab897 6f4fc516 e117aa80 ff72acc8 05c22424

87aa2e99 cec2210d 2fd0974b 652e8e26 37acc0e7 5a7a7157 c5bb6f9b 7853cda1

M2
3bd4eee9 035c9cd7 d35de9f7 cd3ab897 6f4fc516 e117aa80 ff72acc8 05c22424

87aa2e99 cec2210d 2fd0974b 652e8e26 37acc0e7 5a7a7157 c5b96f9b 7853cda1

CV c25dd2cd 2030a7b6 0fc043e8 5a0b5096 f084c81f 1f90d7d6 af48e019 34cd3554

h(M1, CV ) ⊕ h(M2, CV ) 01c40003 180ac188 20818018 31442186 13309080 0858600b 143a4041 7f3144d0

short messages such that the padding and the message fits one message block,
i.e. the length of the padded message is 512-bits. This is possible since padding
operation does not require to process an extra block.

4.2 Fugue

Fugue, designed by Halevi et al. [7], is a sponge-like design inspired by the hash
function Grindahl. Fugue-256 is based on the F -256 function that uses a large
internal state of thirty 32-bit words. F -256 operates 32-bit message blocks using
a round transformation that consists of the following operations; (i) TIX(I) that
loads the 32-bit message blocks to the state, (ii) ROR3 that rotates the state
by three columns, (iii) CMIX that mixes columns and (iv) SMIX that applies
a nonlinear substitution to the first four columns of the state. The pseudocode
of F -256 is given in Algorithm 2.

Table 3. Comparison of results on reduced-round compression function of Blake-32

Paper Rounds Complexity Type Difference

� 1 21 252/256-bit near-collision Message

� 1.5 < 226 209/256-bit near-collision Message

� 2 < 226 184/256-bit near-collision Message

[25] 4 (4-7) 221 152/256-bit near-collision Message, CV

� 4 237.39 182/256-bit near-collision Message

[1] 4 (3-6) 256 232/256-bit near-collision Message, CV, Salt, Counter
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The third party analysis of Fugue is very limited compared to other candi-
dates. First external analysis of Fugue is done by Khovratovich [12], in which
structures are used to find collisions. However the attack requires 2352 time
and memory complexity which is significantly higher than the generic attack
complexities. Aumasson and Phan [3] show an efficient distinguisher for a slightly
modified version of the finalization of Fugue.

Algorithm 2. F-256(M1, . . . , Mm, CV0, . . . , CV7, k, r, t)

for i ← 0 to 21
Si = 0;

for i ← 22 to 29
Si = CVi−22;

for i ← 1 to m
TIX(Mi);
for j ← 1 to k

ROR3; CMIX; SMIX;
for i ← 1 to r × k

ROR3; CMIX; SMIX;
for i ← 1 to t

S4+ = S0; S15+ = S0; ROR15; SMIX;
S4+ = S0; S16+ = S0; ROR14; SMIX;

return (S1, S2, S3, S4, S15, S16, S17, S18.)

Table 4. Summary of best results for different reduced versions of F -256

(k, r, t) Best Near-collision result

(1,1,1),(1,1,2),(1,2,1),(1,2,2), Collision

(1,2,3),(1,2,4),(1,2,5)

(1,1,3),(1,2,6),(1,3,1),(1,3,2),

(1,3,3),(1,3,4),(1,3,5),(1,3,6),

(1,3,7),(1,3,8),(2,1,1),(2,1,2), ≥ 231/256-bit near-collision

(2,1,3),(2,1,4),(2,1,5),(2,1,6),

(2,1,7),(2,1,8)

(1,1,4),(1,1,5),(1,2,7),(1,2,8), ≥ 184/256-bit near-collision

(1,3,9),(1,3,10),(2,1,9),(2,1,10)

Designers also proposed parameterized Fugue, F [n, k, s, r, t] where n is the
output size, k is the number of sub-rounds per round transformation, s is the
state size, r is the number of rounds in the first phase of finalization and t
is the number of rounds in the second phase of the final transformation. For
the output size 256, the default values are F [8, 2, 30, 5, 13]. In our experiments,
130 (= 2 × 5 × 13) reduced versions based on the selection of k, r and t are
evaluated with the default values of n and s. Experiments are repeated using 32-
bit random messages without considering the padding scheme. For each version,
we repeat the experiment 225 times and the results better than 184/256-bit near-
collisions are summarized in Table 4. Table 5 gives examples for three of these
cases.
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Table 5. Example near-collisions for Fugue

(k,r,t)=(1,2,5): Collision

M1 490f3725

M2 0c021472

CV 54091f45 2b019af6 6950d523 2542deba

7ec4fc2a e5672d97 13f9d54c 51a838f9

h(M1, CV ) ⊕ h(M2, CV ) 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

(k,r,t)=(2,1,8): 234/256-bit near-collision

M1 02442aec

M2 94b7d6b8

CV d8a49539 55b27d25 8b51ff28 90b8aeab

c6921ca9 40de0de3 b83e522c 93df1165

h(M1, CV ) ⊕ h(M2, CV ) 00000000 00000000 50e18100 216b3040

00000000 00000000 00000000 02030400

(k,r,t)=(2,1,10):185/256-bit Near collision

M1 c6699e14

M2 3679710d

CV d2c5af72 6d17c1ff e1341948 49df91d7

3be47b3c bb4bf4a9 16f631d7 9f6282b4

h(M1, CV ) ⊕ h(M2, CV ) 20029e40 3d911e80 92200ce0 a4015824

ac94b07c 82b4a500 00000000 03d24000

4.3 Hamsi

Hamsi, designed by Küçük [20], is based on the concatenate-permute-truncate
design strategy. The compression function of Hamsi-256 inputs a 32-bit message
block and a 256-bit chaining value and outputs a 256-bit chaining value. The
compression function acts on a state of 512 bits, which can be considered as a
4x4 matrix of 32-bit words.

First, 32-bit message block is expanded to 256 bits using a linear code (128,16,
70) over F4. Then, the expanded message and the chaining value, each of being
eight 32-bit words is loaded to the state of Hamsi-256. Then, the state is XORed
with the predefined constants and a round counter and each of the 128 columns of
the state goes through a 4x4 s-box. Finally, a linear transformation L, is applied
to the four independent diagonals of the state. The compression function has 3
rounds, and a round transformation contains addition of constants, substitution
and diffusion operations.

Nikolic [19] found 231/256-bit near-collisions for the compression function of
Hamsi-256 for fixed message blocks. Wang et al. [26] improved the attack and
practically showed 233/256-bit near-collisions for the compression function of
Hamsi-256. Another improvement is proposed by Yun-qiang and Ai-lan using a
genetic algorithm [28].

In our experiments, no input difference is given to the chaining values and
two random 32-bits message blocks are chosen as input. In all previous attacks
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Table 6. Comparison of near-collision results on Hamsi-256

Paper by Rounds |δCV | |δM | Result

Nikolic 3 14 0 (256-25)/256-bit NC

Wang et al. 3 16 0 (256-23)/256-bit NC

Aumasson et al. 3 6 0 (256-25)/256-bit NC

Yun-qiang et al. 3 4 0 (256-20)/256-bit NC

� 1 0 ≥ 70 bits (256-24)/256-bit NC

� 2 0 ≥ 70 bits (256-64)/256-bit NC

Table 7. Example Near-collisions for the Compression Function of Hamsi

1- Round Compression Function: 232/256-bit Near-collision

M1 22e20185

M2 dd1dfe7a

CV f6bf6de4 13429c65 b149b61a af8ed58d

e3068bc8 e0397375 22866132 a8c5d4d3

h(M1, CV ) ⊕ h(M2, CV ) 00042000 80040000 28040100 10000000

40080802 c8080000 00040000 0801004b

2- Round Compression Function: 192/256-bit Near-collision

M1 cf15a470

M2 2287860c

CV 5b0ef41a f6933669 9d50a0b1 f3a0d239

63d65d26 fdca6f81 1509bfea f6e73e66

h(M1, CV ) ⊕ h(M2, CV ) 8810058e 00021462 c330a008 7224440b

02008812 31040d80 8a9c0060 0c028448

[19,26,28], weight of input difference given to the chaining values is smaller that
the weight of the output difference. So, the attackers inherently assume that
they have already obtained better near-collisions [21]. Moreover, in all attacks,
the message expansion is avoided by not giving any difference to the message
blocks. As also suggested by the designer [21], near collisions by giving difference
to the message blocks are harder to obtain. Comparison of the results and the
near-collision examples obtained for the 1- and 2-round compression function
are provided in Table 6 and 7, respectively.

4.4 JH

JH, defined by Wu [27], is an iterated hash function with a novel mode of op-
eration. In the compression function of JH, the 1024-bit chaining value and the
512-bit message block are compressed into the 1024-bit chaining value. Initially,
the lower half of the state is XORed with the input message block and then the
bijection function E is applied. Then, the upper half of the state is XORed with
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Table 8. Near-collisions for the compression function of JH

Rounds Near-collision Complexity

1 1023/1024 220.31

2 1020/1024 218.57

3 1019/1024 219.20

4 1013/1024 219.80

5 1005/1024 225.01

6 991/1024 227.57

7 942/1024 220.71

8 907/1024 224.24

9 816/1024 219.77

10 820/1024 223.24

Table 9. Example near-collisions for 9-round and 10-round compression function of
JH

9- Round Compression Function: 816/1024-bit Near Collision

M1 7b6d6a9e 464d09e1 86410000 35aeff35 db02a693 1da2914e 0e340511 4bb9b2df

9847eb69 ab7422cd efa4d5ed eb7c248f c09f84f4 8e71652f c8af1bed 911a8de6

M2 9b6d6a9e 464d09e1 86410000 35aeff35 db02a693 1da2914e 0e340511 4bb9b2df

9847eb69 ab7422cd efa4d5ed eb7c248f c09f84f4 8e71652f c8af1bed 911a8de6

CV 64cdd586 e453fbab 60c0a125 a596b15e 22735167 8d69b439 b8039dd3 327bacbb

55685b28 5a717a0b e1cc05c8 fc607792 fc31f4cb 49ff1ca2 be3aba98 1618e6a3

da5021d9 895c668b ab40f1c5 6526e807 4074d5b1 e8141140 63bc2df1 8f738ba6

5def4921 0385997f da7b308d 30f64dd7 56a7301e 64bc927a da94cded 3ede8236

h(M1, CV ) ⊕ h(M2, CV ) 54504100 45114010 50045455 40400101 41444001 15450001 00554501 11041044

44004114 10004501 10455441 04115401 40551514 14105014 01500441 01501004

b0010405 04010514 44511000 54001541 05100545 04144510 10040144 00514404

11445500 45005400 01000400 01100014 44040455 44440000 05000405 45441440

10- Round Compression Function: 820/1024-bit Near Collision

M1 2dcdeb76 ed262d2f 16c56a55 90cb76fa 59e71f06 765a5e59 6aa1ba10 24fe14b1

aaa28629 918fea7f da88deba 87110630 ca28d5ed 83465471 be02a361 2df6564f

M2 2bcdeb76 ed262d2f 16c56a55 90cb76fa 59e71f06 765a5e59 6aa1ba10 24fe14b1

aaa28629 918fea7f da88deba 87110630 ca28d5ed 83465471 be02a361 2df6564f

CV faa3c300 af6a90ae b49356e2 6994afd8 ef1a1119 5a43864d d2a9b5f1 bcc08129

468a89c5 df2c42eb 8abe5884 f3688af1 98978ec7 b63c05a3 5af13a34 43c52bc2

2313f9b7 e8013174 2a3389ff 439c0432 ad4ab2e8 23934359 33a12345 52a427f7

bbae8074 2bf65083 ec04ee67 21e2e376 20760866 ad6f586e 97837de8 22c7c119

h(M1, CV ) ⊕ h(M2, CV ) d0848cda 80b0560d 00000000 00000000 00000000 00000000 24981865 56b25240

4a83359e 400c1b6b 00000000 00000000 00000000 00000000 13709c6e db64dc89

06e12007 4490779e 00000000 00000000 00000000 00000000 e417dc75 f465014e

44496142 3105c9a0 00000000 00000000 00000000 00000000 5404400f a8013ca8
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the input message block The bijective function includes a grouping function, the
round function (run 35 times), an additional substitution layer together with
a de-grouping function. Basic building blocks of the compression function are
two 4× 4 s-boxes and a (4, 2, 3) Maximum Distance Separable (MDS) code over
GF (24).

In [23], Rijmen et al. found 1008/1024-bit semi-free-start near-collision for 19
rounds of JH for all hash sizes with 2156.77 compression function calls and 2143.70

byte memory complexity, and 768/1024-bit semi-free-start near-collision for 22
rounds with 2156.56 compression function calls and the same memory complexity,
employing the rebound attack [13].

In our experiments, we choose two 512-bit random messages with 1-byte dif-
ference, and without considering the padding block, the attack is successful up
to 10 rounds of the compression function of JH (out of 35) and the best results
are summarized in Table 8.

Table 9 provides example near-collisions for 9 and 10 round compression func-
tion of JH. An interesting observation is that for the 10-round example, four
32-bit parts of equal bits are evenly spaced showing that they are not scattered
around as in other examples. This is due to the permutation function used in
JH. Linear transformation of JH causes prorogation of differences on two 4-bit
words into a single word, this property might further be exploited by choosing
specific message blocks to find better near-collisions.

5 Conclusion

In this study, we propose a simple hill-climbing method to find near-collisions
for the reduced round compression functions of some of the round two SHA-3
candidates. The method produced better results compared to the generic random
search, when the diffusion of chaining value bits is not fully satisfied.

We run the algorithms approximately 225 times and compared the best ob-
tained near-collision to the one obtained with 240 complexity with generic ran-
dom search.

We practically obtained (i) 184/256-bit near-collision for the 2-round com-
pression function of Blake-32; (ii) 192/256-bit near-collision for the 2-round com-
pression function of Hamsi-256; (iii) 820/1024-bit near-collisions for 10-round
compression function of JH. For Fugue, it is possible to define 130 different re-
duced versions by the selection of the parameter (k, r, t). We obtained collisions
for 7 reduced cases, near-collisions with distance less than 25 for 18 cases and
near collisions with distance less than or equal to 72 for 8 cases.

The results obtained in this study do not affect the security of the hash func-
tions against preimage, second preimage and collision attacks, but rather give a
security margin of the compression functions against near-collision attacks. Since
Fugue, Hamsi and JH process an additional message block including the padding,
the results cannot be directly extended to the hash function. For 2-round hash
function Blake-32, by selecting message blocks that include the padding, the re-
sults are conjectured to be expandable to a semi-free start near-collision attack.
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As a future study, we plan to incorporate some hash function specific informa-
tion to the search algorithm to achieve better near-collisions. Evaluating other
SHA-3 candidates is left as another future study.
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20. Küçük, Ö.: The Hash Function Hamsi. Submission to NIST (2008)
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Abstract. In this paper we propose a new sequential mode of operation
– the Fast wide pipe or FWP for short – to hash messages of arbitrary
length. The mode is shown to be (1) preimage-resistance preserving, (2)
collision-resistance-preserving and, most importantly, (3) indifferentiable
from a random oracle up to O(2n/2) compression function invocations. In
addition, our rigorous investigation suggests that any variants of Joux’s
multi-collision, Kelsey-Schneier 2nd preimage and Herding attack are
also ineffective on this mode. This fact leads us to conjecture that the
indifferentiability security bound of FWP can be extended beyond the
birthday barrier. From the point of view of efficiency, this new mode, for
example, is always faster than the Wide-pipe mode when both modes
use an identical compression function. In particular, it is nearly twice as
fast as the Wide-pipe for a reasonable selection of the input and output
size of the compression function. We also compare the FWP with several
other modes of operation.

1 Introduction

A hash function H : {0, 1}∗ −→ {0, 1}n is a mathematical function which takes
as input a binary string of arbitrary length and outputs a binary string of fi-
nite length. A secure hash function can be applied in many applications such
as data authentication, digital signature, commitment protocols and password
protection. A very popular trend of designing a hash function is executing a
fixed-input-length (FIL) compression function in a sequential mode as many
times as to take the whole message as input. Many practical hash functions,
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Table 1. Comparison among several hash modes of operation with respect to indif-
ferentiability attacks. All numbers are in bits. By Input and Output in the table, we
mean bits into and bits out of the compression function.

Mode Hash-length Input Output Rate Lower Bound Upper Bound Condition
MD[17] n a b = n a− b 0 0 a > b

MDP[10] n a b = n a− b n/2 n/2 a > b

Wide-pipe[15] n a b = 2n a− b ≈ n ≈ n a > b

Sponge[2] n a b = a a− n n/2 n/2 a > n

JH[23,4] n a b = a a/2 n/3 n a > 2n

FWP nnn aaa b = 2nb = 2nb = 2n a− b
2

a− b
2a− b
2

n/2n/2n/2 nnn a > b/2a > b/2a > b/2

such as MD4 [20], MD5 [21], SHA-0 [18], SHA-1 [19] follow the aforementioned
design paradigm. These hash functions precisely have two components: (1) a
compression function and (2) a mode of operation.

This paper is all about design and analysis of a new hash mode of operation,
which is named the Fast wide pipe or FWP for short.

Related work. The classical Merkle-Damgärd mode is the most widely used and
most studied hash mode of operation. [17,8]. The mode is simple and collision-
resistance-preserving.1 All the practical hash functions mentioned before are
based on the Merkle-Damgärd mode. The landscape is no longer the same. A
telltale proof of declining interest of the designers in this mode is that none of
the 51 hash functions competing in the ongoing NIST hash function competi-
tion uses the classical Merkle-Damgärd mode. The main reasons for discarding
this mode by the designers are a few influential attacks: Length extension attack,
multi-collision attack [11], Kelsey-Schneier 2nd preimage attack [14] and Herding
attack [12]. On the positive side, the slow and gradual departure of the classical
Merkle-Damgärd hash mode has motivated two new lines of research which go
nearly hand in hand: (1) design of new modes of operation and (2) development
of new security frameworks to analyze hash functions. The first line of research
has indeed resulted in a number of new modes of operation – Wide-pipe [15],
HAIFA [5], Sponge [2], EMD [1], JH[23] are some of them. One of the major re-
sults of the second line of research is the indifferentiability framework developed
by Maurer et al. [16]. Against this framework, we measure the extent to which
a hash function is behaving as a random oracle under a suitable assumption on
the underlying compression function. Informally speaking if a hash function is
indifferentiable from a random oracle then, for example, it does not come un-
der length extension attack (assuming the underlying compression function is
a FIL random oracle). It is, therefore, important that a new mode of opera-
tion is both collision-resistance-preserving and indifferentiable from a random
oracle. Another crucial issue is to recognize that a hash function indifferentiable
1 In a collision-resistance-preserving hash function collision resistance of a compression

function implies collision resistance of the entire hash function.
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from a random oracle does not guarantee that it is collision-resistance-preserving
(e.g. modes of operation designed in [7] are not collision-resistance-preserving,
although they are indifferentiable from random oracles[1]). These two properties
should be analyzed separately [1].

Our contribution. To make a hash function resistant against Joux’s multi-
collision-type attacks, Lucks has proposed to make the intermediate chaining
values of the Merkle-Damgärd mode twice as long as the final hash value; this
mode is known as the Wide-pipe mode [15]. Suppose the compression func-
tion in a Merkle-Damgärd based hash function is defined as C : {0, 1}m+n →
{0, 1}n. Lucks has, very rightly, advocated to use a compression function C :
{0, 1}m+2n → {0, 1}2n to avoid Joux’s multi-collision-type attacks [11,13]. We
call this compression function Lucks’ compression function. The message and
chaining input to the Lucks’ compression function are m and 2n bits. Using any
Lucks’ compression function C : {0, 1}m+2n → {0, 1}2n we design a hash function
FWP, where the message and the chaining input to the compression function are
m+n and n bits; we, thus, speed up the hashing operation by allowing m+n bits
of message instead of just m bits per compression function invocation . At the
same time we prove that the FWP mode is collision-resistance preserving and
indifferentiable from a random oracle up to O(2n/2) compression function invo-
cations. The fact that the FWP does not come under Joux’s multi-collision-type
attacks, such as Kelsey-Schneier 2nd preimage attack, leaves open the possibility
to extend the indifferentiability bound beyond the birthday barrier.

In Table 1, we compare our results with several other competing hash modes
with respect to indifferentiability attacks. Against other attacks such as collision
all the modes perform almost identically. It is readily observable that the FWP
outperforms all other modes in at least one of the three properties, namely Rate,
Lower Bound and Upper Bound in Table 1. The important features of the FWP
are pointed out below.

1. FWP performs better than the Wide-pipe with respect to the rate of the
hash function. For example, when the input size of the compression function
is three times the output size – which is a reasonable choice – FWP is twice
faster than the Wide-pipe.

2. Efficiency-wise, FWP has similar performance as Sponge and JH. However,
there is a strong evidence that the indifferentiability security bound of FWP
can be extended beyond n/2 bits, while there already exists an attack on
the Sponge with work factor n/2 bits.

2 Notation and Convention

In addition to the above notation, we shall use another set of notation in the con-
text of indifferentiability results of the hash function FWP. They are described
in Sect. 5.1.
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Table 2. Notation

{0, 1}≤l {ε} ∪ {0, 1} ∪ {0, 1}2 ∪ {0, 1}3 ∪ . . . ∪ {0, 1}l
[x, y] The set of integers x, x+ 1, . . . , y

a||b concatenation of a and b

|X| Size of set X; Bit-length if X is a string

pad(M) The sequence of bits after padding M

fixed-input-length Fixed input length

variable-input-length Variable input length

FWP Fast wide-pipe

3 The New Mode Fast Wide Pipe or FWP

In this section we define a new sequential mode of operation Fast Wide Pipe (or
FWP for short) for hashing messages of length up to 264 bits.

Diagrammatic representation of the mode FWP is given in Fig. 1. An algo-
rithmic description is in Algorithm 1. The padding rule pad(M) is the execution
of the following operation: append t zero bits and a 64-bit encoding of |M | to the
message M . Select the least integer t ≥ 0 such that |M |+t+n+64 = 0 mod l (see

Fig. 1. The new mode FWP. Message M = m1m2 . . . m�(M) is hashed by FWPro. The
symbols are described in Table 3.

Algorithm 1. The FWP mode of operation with the compression function C
(i.e., FWPC)
Input: Message M
Output: Hash output h of size n bits
Initialize: h−1 = h′

−1 = 0n

1: M0||M1|| . . . ||Mk−1 =pad(M) where |Mi| = l for all i < k− 1 and |Mk−1| = l−n;
2: (hk−2, h

′
k−2) =FWPC

t (h−1, h
′
−1, M0, M1, . . . , Mk−2); /* See subfunction below */

3: C(hk−2||h′
k−2||Mk−1) = h′′

k−1||h′
k−1;

4: return hash output h = h′
k−1;

Subfunction FWPC
t (h−1, h

′
−1, M0, M1, . . . , Mk−2)

5: for i = 0 to k − 2 do
6: C(hi−1||Mi) = h′′

i ||h′
i;

7: hi = h′′
i ⊕ h′

i−1;
8: end for
9: return (hk−2, h

′
k−2);
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Algorithm 1 for the notation). We now make attempts to analyze the security
of the FWP. For the sake of simplicity, we assume l−n ≥ 64 which ensures that
the length-encoding is completely included in the last block. The entire analysis
can be modified easily to include the case l − n < 64.

4 Security of the FWP: Resistance against Collision and
Preimage Attacks

The main results of this section are two theorems which prove that the collision
and the preimage attacks on the FWP mode can be reduced to similar attacks
on the underlying compression function (see Algorithm 1 for the definition of
the FWP mode). In other words, the theorems show that finding collision and
preimage on the FWP are at least as hard as finding collision and preimage on
the compression function.

Before establishing the security results, we first define the following functions.
The functions CT , CB : {0, 1}l+n → {0, 1}n are defined as CT (x) = h′ and
CB(x) = h′′ where C(x) = h′′||h′ (the compression function C of the FWP is
defined in Algorithm 1).

Theorem 1. If the compression function CT is preimage resistant so is the
FWPC .

Proof. The theorem can be verified easily by observing the last block of FWPC .

Glancing at the XOR operations, one may be tempted to conclude that the FWP
may be vulnerable against the generalized birthday attack [22]. The following
theorem drives away such fears.

Theorem 2. If the compression function CT is collision resistant so is the
FWPC .

Proof. To prove the theorem we need to prove that, if there exists an adversary
who finds a pair of messages (M, M ′) such that FWPC(M)=FWPC(M ′) and
M �= M ′ then there exists an adversary who can find X �= X ′ such that CT (X) =
CT (X ′).

Suppose an adversary finds a pair (M, M ′) such that FWPC(M)=FWPC(M ′)
and M �= M ′. Now there are two possible cases.
Case 1: |M | �= |M ′|. Suppose that the number of message-blocks in pad(M) and
pad(M ′) are a and b where a �= b. Note, as per our definition of C and FWPC ,
Ma−1 �= M ′

b−1 due to the length padding. Now, FWPC(M)=FWPC(M ′) implies
CT (ha−2||h′

a−2||Ma−1) = CT (gb−2||g′b−2||M ′
b−1). Therefore, we get a collision

on CT .
Case 2: |M | = |M ′|. Suppose that the number of message-blocks in pad(M) is
a. Now there are two cases.
Case 2(a): CT (ha−2||h′

a−2||Ma−1) = CT (ga−2||g′a−2||M ′
a−1)

where ha−2||h′
a−2||Ma−1 �= ga−2||g′a−2||M ′

a−1. Therefore, we obtain a collision
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on CT .
Case 2(b): CT (ha−2||h′

a−2||Ma−1) = CT (ga−2||g′a−2||M ′
a−1)

where ha−2||h′
a−2||Ma−1 = ga−2||g′a−2||M ′

a−1.
The above equation implies that FWPC

t (0n||0n||M0|| . . . ||Ma−2)=
FWPC

t (0n||0n||M ′
0|| . . . ||M ′

a−2) which in turn implies collision on CT by Lemma 1
(the definition of FWPC

t is provided in Algorithm 1). Now the only remaining
part needed to complete the proof is the proof of Lemma 1 which is provided
below.

The following lemma has been used in Theorem 2. It will be further used to
obtain some indifferentiability results of the FWPC in Sect. 5.

Lemma 1. If the compression function CT is collision resistant then the FWPC
t

is free-start collision resistant for fixed length messages. In other words, if there
exists an adversary who finds two triples (h−1, h

′
−1, M) �= (g−1, g

′
−1, M

′) such
that |M | = |M ′| (|M | is a multiple of l) and FWPC

t (h−1, h
′
−1, M) = FWPC

t (g−1,
g′−1, M

′), then there exists an adversary who finds X �= X ′ such that CT (X) =
CT (X ′).

Proof. Suppose there exists an adversary who finds two triples (h1, h
′
1, M) �=

(g1, g
′
1, M

′) such that |M | = |M ′| (the number of message-blocks in M is a) and
FWPC

t (h−1, h
′−1, M) =FWPC

t (g−1, g
′−1, M

′). In order to obtain a pair X �= X ′

such that CT (X) = CT (X ′) we need to check at most a equations whether they
are satisfied:

C(hi−1, Mi)
?= C(gi−1, M

′
i) where i = a− 1, . . . , 0.

We claim that the above verification will produce some m with 0 ≤ m ≤ a − 1
such that CT (hm−1, Mm) = CT (gm−1, M

′
m) and (hm−1, Mm) �= (gm−1, M

′
m) and

thus, the lemma is proved. This claim can be proved by the following crucial
observation on FWPC

t .

Observation: For all i ∈ [0, a−1], (hi, h
′
i) = (gi, g

′
i) implies one of the following

two statements: (1) (hi−1, Mi−1) �= (gi−1, M
′
i−1) which implies collision on CT ,

(2) (hi−1, Mi−1) = (gi−1, M
′
i−1) which implies (hi−1, h

′
i−1) = (gi−1, g

′
i−1).

Next, we move on to analyze the FWP in a different security framework known
as the indifferentiability framework.

5 Security of the FWP Mode: Indifferentiable from a
Random Oracle

In this section we discuss the indifferentiability property of the FWP mode. In
the context of hash function, an important use of the indifferentiability frame-
work developed by Maurer et al. [16] is the determination of whether a variable-
input-length hash function behaves reasonably randomly when the underlying
compression function is a fixed-input-length random oracle. There is a consider-
able chance for the reader to be lured into believing that the collision resistance
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preservation (described in Sect. 4) and the indifferentiability property of a hash
function may be related. In particular, one may be inclined to intuiting that one
property implies the other. Such intuition is not true [1]. These two properties
are orthogonal and need to be analyzed separately.

5.1 Preliminaries: Introduction to Indifferentiability Framework

We begin with the definition of a random oracle; this useful object will be used
frequently in the subsequent discussion.

Definition 1 (Random oracle). A random oracle is a function RO : X → Y
chosen uniformly at random from the set of all |Y ||X| functions that map X → Y .
In other words, a function RO : X → Y is a random oracle if and only if, for
each x ∈ X, the RO(x) is chosen uniformly at random from Y .

Corollary 1. If a function RO : X → Y is a random oracle then

Pr[RO(x) = y|RO(x1) = y1, RO(x2) = y2, . . . , RO(xq) = yq] =
1
|Y |

where x /∈ {x1, x2, . . . , xq}, y ∈ Y and q ∈ Z.

Now we introduce the indifferentiability framework and briefly discuss its sig-
nificance. The following definition is a slightly modified version of the original
definition provided in [16,7].

Definition 2 (Indifferentiability framework). [16] A Turing machine T
with oracle access to an ideal primitiveF is said to be (tA, tS , q, σ, ε)-indifferentiable
from an ideal primitive G if there exists a simulator S such that for any distinguisher
A the following equation is satisfied:

AdvA((T,F), (G, S)) = |Pr[AT,F = 1]− Pr[AG,S = 1]| < ε

The simulator S is an interactive algorithm which has oracle access to G and
runs in time at most tS. The distinguisher A runs in time at most tA and makes
at most q queries. The total message blocks queried by A is at most σ.

Briefly, the significance of indifferentiability property is described as follows:
Suppose, an ideal primitive G (e.g. a variable-input-length random oracle) is
indifferentiable from an algorithm T based on another ideal primitive F (e.g.
a fixed-input-length random oracle). In such case, any cryptographic system P
based on G is as secure as the P based on TF (i.e., TF replaces G in P). See [16]
for more on that.

Pictorial Description of Def. 2(Fig. 2). In the figure, five entities involved
in Def. 2 are shown with an example. Suppose, the oracle Turing machine T , the
ideal primitives F , G are, respectively, a hash function H , random oracles ro and
RO. The exchange of queries and responses is also shown in the figure. Note that
it is forbidden to issue queries in the opposite directions. For example, the hash
function H can send a query to ro and receive response, but never the other way
round. In this setting, Def. 2 addresses the degree to which any computationally
bounded adversary is unable to distinguish between Option 1 and Option 2. �
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5.2 Indifferentiability Framework for FWP: Designing a
Simulator S

In this section we describe the entities of Fig. 2 with respect to the hash function
FWP: {0, 1}≤264 → {0, 1}n. The mode FWP is defined in Fig. 1. In the rest of the
paper the H is understood to be the FWP hash function. The fixed-input-length
random oracle ro : {0, 1}r+n → {0, 1}2n is the compression function invoked by
the FWP mode. The variable-input-length random oracle RO is defined as RO :
{0, 1}≤264 → {0, 1}n. The only remaining part to complete the indifferentiability
framework is designing a simulator S. This section is devoted to that. The fifth
entity of Fig. 2, which is an arbitrary distinguisher A, is discussed in Sect. 5.3.
We kick off with the notation.

Notation. Table 3 provides the notation useful to follow our indifferentiability
results on the new hash function FWP. Note that the notation can be very easily
adapted to any hash function based on a sequential mode of operation. �
Now we define a few terms – in relation to Fig. 1 and 2 – which will be used to
arrive at our main indifferentiability results of Sect. 5.3.

Queries and lists. We now define various types of queries and lists (or arrays)
that can potentially be used by a distinguisher to separate a hash function from
a random oracle. The first assumption is that a distinguisher does not resubmit
to an oracle a query whose response is already known. This is a valid assumption
because, in our case, an identical oracle – any of FWP hash function, ro, RO and
S of Fig. 2 – gives identical response to an identical query (it would be further
clear when we shall concretely define the simulator S). Our next assumption
is that, unless otherwise specified, a query is known to be submitted by the
distinguisher. In the present case, we are not interested in queries submitted by
the simulator S or by the hash function FWP. Now we define two special types
of queries.

Definition 3 (Short and long query). A query submitted to S or ro is defined
as a short query. Similarly, a query submitted to FWP or RO is defined as the
long query (see Fig. 2).

Fig. 2. The entities and their be-
havior involved in the indifferentia-
bility framework of Def. 2; T ≡ H ,
F ≡ ro, G ≡ RO, S ≡ simulator (see
description above). In Sect. 5.2, H
is the FWP hash function.

Fig. 3. Several databases maintained by
the distinguisher
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Table 3. The notation used in the indifferentiability framework for FWP (see Fig. 1)

Symbol bit-length Description

Ashort, Along - Current query-response arrays

Ainter - Array for intermediate query-responses

A[i, i− 1, . . . j] - Array (or bit-string) A truncated between indices i and j

A - A distinguisher

A′ - Modification of the distinguisher A
�(M) - Number of compression function calls to hash M

λ 0 Empty String

M ≤ 264 Message M = m1m2 . . .m�(M)

mk, m�(M) r, r − n Messages of kth and �(M)th compression functions (k < m�(M))

MesgVer - Message verification algorithm

MesgRecon - Message reconstruction algorithm

q, σ - Maximum number of queries and blocks used by distinguisher

ro, RO - Random oracles

S - Set of reconstructed messages given a short query

S - The simulator

tA, tS - Time of A and S

uk′ n Chaining input to kth compression function (k < m�(M))

u�(M)′′||u�(M)′ 2n Chaining input to �(M)th compression function

uk, u�(M) r + n, r + n Total input to kth and �(M)th compression functions

vk′, vk′′ n, n Two halves of output from kth compression function

vk 2n Total output from kth compression function

z n Final hash value

At this time it is important to discuss a subclass of short and long queries known
as trivial queries. For easy understanding, we try to introduce the notion without
the rigors of mathematical notation as much as possible; however, our treatment
is logically sound and foolproof. The motivation behind the determination of
trivial queries is that their outputs are implied by the previous queries and
their responses, no matter whether the distinguisher is interacting with Option
1 or Option 2 of Fig. 2. Therefore, trivial queries cannot be used to distinguish
between two systems, even if they satisfy specific ‘bad’ conditions. Before we for-
mally define trivial queries, some discussion on the databases maintained by the
distinguisher and two special functions MesgVer and MesgRecon are necessary.
We first discuss them briefly.

Databases of the distinguisher. Let us assume that a distinguisher uses two
arrays: (1) Ashort for storing short queries and the responses, and (2) Along for
long queries and the responses (see Fig. 3). Queries and their responses are
indexed by the time they are submitted. Note that the simulator S can access
Ashort but not Along.

Discussion on algorithms MesgVer and MesgRecon. Informally speaking,
MesgVer is a function which takes two inputs – the current list Ashort, a long
query M – to verify whether the long query M is a valid message for the hash
mode FWP. What it essentially does is compute all compression function inputs
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Algorithm 2. Message verification algorithm MesgVer(·, ·)
Input: Array Ashort, bit-string M (|M | ≤ 264)
Output: A bit b
(See Table 3 and Fig. 1 for the notation.)

1: Set b = 1;
2: for i = 1 to �(M) do
3: Compute ui from mi, vi−1, vi−2;
4: if �v such that (ui, v) ∈Ashort then
5: return b = 0;
6: else
7: Compute vi using ui and Ashort;
8: end if
9: end for

10: return b;

– u1, u2, . . . , u�(M) – sequentially and checks whether they exist in Ashort. The
MesgVer algorithm has been described in Algorithm 2.

The MesgRecon algorithm, in some sense, works in the opposite direction. It
takes the current list Ashort and a short query x as inputs and reconstructs a set
of messages S such that each message M ∈ S is a valid message for FWP mode
and, moreover, the input to the last compression function is x. The algorithm is
described in Algorithm 3. �

Now we are ready to define the trivial queries.

Definition 4 (Trivial short query). A short query x is a trivial short query
if the following conditions hold:

– MesgRecon(Ashort, x) = {M}.
– The M has been queried previously as a long query (i.e. ∃v such that

(M, v) ∈Along).

Definition 5 (Trivial long query). A long query M is a trivial long query
if the following conditions hold:

– MesgVer(Ashort, M)=1. Suppose the final input u�(M) computed in
MesgVer(Ashort, M) is the ith query in Ashort.

– MesgRecon(Ashort[i− 1, . . . , 2, 1], u�(M)) = {M}.

The nontrivial short and long queries are obvious from the above definitions.

Definition 6 (Nontrivial queries). A short query x is a nontrivial short
query if it is not a trivial short query. Similarly, a long query M is a nontrivial
long query if it is not a trivial long query.

At this point it is useful to, once more, remember the motivation behind separat-
ing the trivial queries from all queries. The distinguisher may communicate with
(FWP, ro) or (RO, S). Irrespective of whether it is communicating with (FWP, ro)
or (RO, S), the responses of the trivial queries should be implied by the previous
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Algorithm 3. Message reconstruction algorithm MesgRecon(·, ·)
Input: Array Ashort, bit-string x (|x| = r + n)
Output: A set of reconstructed messages S
Assumption: For simplicity we assume r−n ≥ 64. This makes 64-bit length-encoding

in the last
message block. If r−n < 64 then we need more than one block to determine the length.
(See Table 3 and Fig. 1 for the notation.)
1: Compute �(M) from x[64, . . . , 2, 1];
2: Break x = u�(M)′ ||v�(M)−1 ′||m�(M) such that v�(M)−1′ = x[r, r − 1, . . . , r − n + 1];
3: Construct G = {(u, v) ∈Ashort | v[n, . . . , 2, 1] = v�(M)−1′};
4: if |G| �= 1 then
5: return S = Ø;
6: end if
7: for i = �(M)− 1 to 1 do
8: mi = u[r, . . . , 2, 1];
9: Compute vi−1′ = ui+1′⊕ vi′′;

10: if i �= 1 then
11: Construct G = {(u, v) ∈Ashort | v[n, . . . , 2, 1] = vi−1′};
12: if |G| �= 1 then
13: return S = Ø;
14: end if
15: else
16: if u[r + n, . . . , r + 1] = IV and vi−1′ = IV ′ then
17: Compute M = m1m2 . . . m�(M);
18: return S = {M};
19: else
20: return S = Ø;
21: end if
22: end if
23: end for

query-responses. Therefore, the trivial queries do not help a distinguisher to dif-
ferentiate between (FWP, ro) and (RO, S) (see Fig. 2). We have just concretely
defined the trivial queries in Def. 4and 5. However, we still cannot say whether
the trivial queries indeed fulfil the motivation until we prove the existence of a
compatible simulator. Such a simulator S is described below.

Our design of indifferentiability framework is now complete, except estab-
lishing a property that shows, under trivial queries, both (FWP, ro) and (RO,
S) behave identically, if they are supplied with identical Ashort and Along. We
capture this property in the following lemma.

Lemma 2. Suppose, for a distinguisher A, the lists Ashort and Along are iden-
tical for both (FWP, ro) and (RO, S) after the ith query. Then the following
statements are true.

1. If M is the (i + 1)th trivial long query then the probability distributions of
FWPro(M) and RO(M) are identical.
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Algorithm 4. The simulator S(·)
Input: short query x
Output: 2n-bit string v
1: S=MesgRecon(Ashort, x);
2: if |S| = 1 then
3: return v = RO(M); /* S = {M} */
4: end if
5: return v = ro(x);

2. If x is the (i + 1)th trivial short query then the probability distributions of
S(x) and ro(x) are identical.

Proof. The proof is immediate from the construction of the simulator S which
is described in Algorithm 4.

5.3 Bounding the Advantage of an Arbitrary Distinguisher

After designing the simulator S in the previous section, now we are left with the
most important part of the paper: to compute an ε as a function of (tA, tS , q, σ)
(see Def. 2). To that end, we first design an arbitrary oracle algorithm A (see
Algorithm 5 in Appendix B) that separates (FWP, ro) from (RO, S).

Algorithm 5 is characterized by two functions: (1) the fquery(·, ·) which com-
putes the next query, and (2) the fcond(·, ·) which decides whether the system
is (FWP, ro) or (RO, S). Both the functions take the arrays Ashort, Along as in-
puts. To bound the advantage of A, we slightly modify A to design A′ which is
described in Algorithm 6 of Appendix B. We now discuss the algorithms briefly.

Discussion on Algorithm 5 and 6. Both A and A′ have identical query func-
tion fquery. We only modify fcond of A to design f ′

cond of A′. The additional
parts of A′ are placed within boxes in Algorithm 6. The algorithm A′, in ad-
dition to Ashort and Along, uses an extra array Ainter which, using a function
MesgDecom(Mi), stores all intermediate inputs and outputs for any long query
Mi applied to FWP. Our main task is to define a suitable f ′

cond such that the
following inequality holds:

max
A
|Pr[A(FWP, ro) = 1]− Pr[A(RO, S) = 1]| ≤ max

A′
Pr[A′(FWP, ro) = 1](1)

where the maximum values of the right hand side and the left hand side are
based on the suitable choices of (1) fquery and fcond, and (2) f ′

cond respectively.
It is easy to show that he above inequality implies AdvA((FWP, ro), (RO, S)) ≤
maxA Pr[A′(FWP, ro) = 1]. We now define a suitable f ′

cond recursively.

Definition 7 (f ′
cond of Algorithm 6). The definition is divided into two com-

plementary parts.
(1) Let the ith query computed by fquery of A′ be a nontrivial long query denoted
by Mi. Then f ′

cond = 1 if one or more following conditions are satisfied.
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– Collision between the final input for the current long query Mi and the final
input for some previous long query Mj. That is, u

�(Mi)
i = u

�(Mj)
j for some

j < i.
– Collision between the final input for the current long query Mi and some

intermediate input for some previous long query Mj. That is, u
�(Mi)
i = uk

j

for some j ≤ i and k < �(Mj).
– Collision between some intermediate input for the current long query Mi

and the final input for some previous long query Mj. That is, uk
i = u

�(Mj)
j

for some j < i and k < �(Mi).
– Collision between the final input for the current long query Mi and some

previous short query xj . That is, u
�(Mi)
i = xj for some j < i.

Otherwise f ′
cond = 0.

(2) Let the ith query computed by fquery of A′ be a nontrivial short query denoted
by xi. Then f ′

cond = 1 if the following condition is satisfied.

– Collision between the current short query xi and the final input for some
previous long query Mj. That is, xi = u

�(Mj)
j for some j < i.

Otherwise f ′
cond = 0.

Now we state the following theorem.

Theorem 3. Under Def. 7 of f ′
cond the following inequality holds.

AdvA((FWP, ro), (RO, S)) ≤ max
A′

Pr[A′(FWP, ro) = 1].

Proof. The theorem has been proved for a general domain extension in [3]. Note
that, in the present case, the event A′(FWP, ro) = 1 is also an event invoked
by A(FWP, ro) according to Def. 7 – exactly this event has been termed a Bad
event for a GDE in [3]. So by using Theorem 1 of [3] we have our result.

In the remainder of the section we strive to obtain an upper bound ε on
maxA′ Pr[A′(FWP, ro) = 1]. According to Theorem 3, ε is an upper bound on
AdvA((FWP, ro), (RO, S)) too.

We have two databases Ashort and Ainter which essentially store all invocations
to ro. Each element of Ashort and Ainter is of the form (u, v) where u ∈ {0, 1}r+n

and v ∈ {0, 1}2n. We denote the ith pair by Ashort(i) = (Ashort(i, 1), Ashort(i, 2))
and Ainter(i) = (Ainter(i, 1), Ainter(i, 2)).

Whenever we add a pair (u, v) to Ainter it corresponds to a pair (M, i) such
that when we compute FWP ro(M), the ith intermediate input, output are u
and v respectively. Note, when i = �(M) FWP ro(M) = v[2n, 2n− 1, . . . n + 1].

We define the following bad events. It mainly considers one of the following
cases: (1) the unexpected collisions in the first or last half of the outputs of ro
which are stored in one of the two databases Ashort and Ainter during query-
responses of A′ and (2) collision on the least significant n bits of inputs of ro
stored in Ainter with least significant n bits of inputs of ro stored in one of the
two lists.
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1. Type-1 bad. Ashort vs. Ashort for output collision: If Ashort(i, 2)[n, n −
1, . . . 1] = Ashort(i′, 2)[n, n − 1, . . . 1] or Ashort(i, 2)[2n, 2n − 1, . . . n + 1] =
Ashort(i′, 2)[2n, 2n− 1, . . . n + 1] for some i �= i′.

2. Type-2 bad. Ashort vs. Ainter for output collision: If Ashort(i, 2)[n, n −
1, . . . 1] = Ainter(i′, 2)[n, n − 1, . . . 1] or Ashort(i, 2)[2n, 2n − 1, . . . n + 1] =
Ainter(i′, 2)[2n, 2n− 1, . . . n + 1] for some i, i′ such that the following is not
true:

Ainter(i′, 2) corresponds to the pair (M, j) and the computation of
FWP ro(M) up to j − 1 intermediate input is already in the list
{Ashort(r) : r ≤ j − 1} and the jth intermediate input is Ainter(i′, 2).

3. Type-3 bad. Ainter vs. Ainter for output collision: If Ashort(i, 2)[n, n −
1, . . . 1] = Ainter(i′, 2)[n, n − 1, . . . 1] or Ashort(i, 2)[2n, 2n − 1, . . . n + 1] =
Ainter(i′, 2)[2n, 2n− 1, . . . n+1] for some i, i′ such that the pairs correspond-
ing to Ashort(i, 2) and Ainter(i′, 2) are not identical.

4. Type-4 bad. Ainter vs. both list for input collision: Ainter(i, 1)[n, n−1, . . .1] =
Ainter(i′, 1)[n, n − 1, . . . 1] or Ainter(i, 1)[n, n − 1, . . . 1] = Ashort(j, 1)[n, n −
1, . . . 1] for some i �= i′.

Lemma 3. If f ′
cond (see definition 7) returns 1 then at least one of the above

four types of bad events occurs.

Proof. The proof is immediate.

Note that for a short query we add one element to Ashort and for a long query we
add � = �(M) elements to Aint. In total we update σ elements in two databases
after q queries, where σ is the total number of blocks in all q queries (both short
and long). We define badi to be one of the Bad events when we add ith element,
1 ≤ i ≤ σ. The complement of the event is denoted by goodi. We estimate the
following probability for different possible cases:

Pr[badi| ∧i−1
j=1 goodj ].

We divide Bad events into two cases based on whether the ith update (u, v) is
on Ashort or on Ainter.

– Case 1. Bad event on the update of Ashort: It can happen in two ways. Either
the adversary correctly guesses u which already exists in Ainter or the outputs
collide accidentally with one of the previous outputs stored in Ashort or Ainter
given that the guess is not correct. Note that if the guess is not correct then
the input u is fresh and its output is uniformly distributed. The collision
occurs in one of the n-bits with probability at most 2(i− 1)/2n. Moreover,
if u appears as jth intermediate input of FWP ro(M) for some M such that
(M, j) corresponding to an element of Ainter then the type-4 bad event occurs
with probability (i− 1)/2n.

Now, given that good event, all information to A so far, is independent of
the internal computation. So the guess is correct with some internal input
having the probability bounded by (i− 1)/2n. So

Pr[badi| ∧i−1
j=1 goodj ] ≤ 4(i− 1)/2n.
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– Case 2. Bad event on the update of Ainter: This probability can be bounded
by random oracle collision probability as the input u freshly appears due to
the good event. The following can be shown easily:
Pr[type-4 badi| ∧i−1

j=1 goodj ] ≤ (i− 1)/2n, Pr[type-2 or 3 badi| ∧i−1
j=1 goodj ] ≤

2(i− 1)/2n and hence Pr[badi| ∧i−1
j=1 goodj ] ≤ 3(i− 1)/2n.

Combining all these cases we obtain that the probability of bad event is at most
σ(σ − 1)/2n−1.

Now we state our indifferentiability results.

Theorem 4. The FWP hash is (tA, tS , q, σ, ε∗)-indifferentiable in the random
oracle model for the compression function, for any tA, with tS = � · O(q2) and
ε∗ = σ2/2n−1 where the simulator S is described in Algorithm 4.

6 Resistance of FWP against Some Recent Attacks

One of the most significant works in hash function cryptanalysis in recent times
is the discovery of the multi-collision attack on the Merkle-Damgärd mode [11].
Using similar technique as multi-collision attack, Kelsey and Schneier devised an-
other very influential attack that recovered 2nd preimage with work lower than
the brute-force when long messages were used in the Merkle-Damgärd mode.
These two attacks do not work on the FWP mode. Any variants of these types
of attacks do not seem to work too on the FWP transform. The above two at-
tacks crucially rely on the intermediate collisions on n-bit chaining values which
cannot be adjusted by message modification. The FWP mode has 2n-bit chain-
ing value which also cannot be adjusted by message modification. Therefore,
the complexity of such attacks on the FWP mode appears to be no less than
the brute-force. The same argument applies to the FWP’s resistance to Herding
attack [12] too. In the full version of the paper we shall provide further evidence
why the FWP should be able to resist all variants of the above attacks.

6.1 Comparison of the FWP with Other Modes

The highlight of the FWP mode is that the compression function takes n bits
of previous chaining value while produces 2n bits of ouput. With the emergence
of new types of attacks on the Merkle-Damgärd mode (see Sect. 6), it has been
found necessary that the compression function output should be at least 2n
bits to generate n bits of hash output. This type of constructions is known as
the Wide-pipe mode propounded by Lucks [15] (see Fig. 4 (c)). Many modern
hash functions use this type of mode [9] to defend against multi-collision type
attacks. The main problem with that mode is that the 2n bits of chaining value,
which are fed into the next compression function, reduce the bandwidth of the
message-block and, thereby, impede the speed of the hash function. To skirt this
difficulty the Sponge construction with 2n bits of compression function output
has been proposed [2] (see Fig. 4(d)). Unfortunately this construction collapses
as easily as Merkle-Damgärd mode against all the attacks of Sect. 6. Another
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competing proposal is the HAIFA [5] mode. The HAIFA mode can be viewed as
a special Merkle-Damgärd mode with an additional counter injected into each
compression function call. This extra counter is very useful to thwart the attacks
described in [13,12]. However, the price to pay is the reduction of bandwidth for
message in each compression function call, resulting in slower performance. In
addition, the HAIFA mode is still as weak against Joux’s multi-collision attack
as the old Merkle-Damgärd mode.

7 Conclusion and Open Problems

This paper proposes a new sequential mode of operation, known as FWP, to
hash messages of arbitrary length. The mode is collision-resistance-preserving,
preimage-resistance-preserving and indifferentiable from a random oracle up to
O(2n/2) compression function invocations. The mode is also shown to be more
efficient than the Wide-pipe mode. Comparison of the FWP with other proposals
has been outlined. No known attacks have so far been found in this mode, indi-
cating that it may be possible to stretch the indifferentiable security bound of
the mode beyond the birthday barrier of 2n/2. We leave this as an open problem.
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A Comparison of Modes
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Fig. 4. (a) The FWP mode. (b) A four-block example of the FWP mode. (c) The
Widepipe mode. (d) The Sponge mode.

B Arbitrary Distinguisher

Algorithm 5. An arbitrary distinguisher A(·, ·) telling apart (FWP, ro) and
(RO, S)
Input: An oracle Osmall : {0, 1}r+n → {0, 1}2n /* Osmall is either ro or S */

An oracle Obig : {0, 1}≤264 → {0, 1}n /* Obig is either FWP or RO */
Output: A bit b
1: Initialize: Ashort, Along= Ø;
2: for i = 1 to q do
3: (Xi, tag) = fquery(Ashort, Along); /* tag = 0, 1 implies long, short queries */
4: if tag = 0 then
5: Mi = Xi, zi ←− Obig(Mi);
6: Along=Along∪{(Mi, zi)}; /* Updating Along */
7: b = fcond(Ashort, Along);
8: if b = 1 then
9: return b; /* The system is (FWP, ro) */

10: end if
11: end if
12: if tag = 1 then
13: xi = Xi, yi ←− Osmall(xi);
14: Ashort=Ashort∪{(xi, yi)}; /* Updating Ashort */
15: b = fcond(Ashort, Along);
16: if b = 1 then
17: return b; /* The system is (FWP, ro) */
18: end if
19: end if
20: end for
21: return b = 0; /* The system is (RO, S) */
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Algorithm 6. Algorithm A′(·, ·) computing Bad events
Input: An oracle Osmall : {0, 1}r+n → {0, 1}2n, /* Osmall is ro */

An oracle Obig : {0, 1}≤264 → {0, 1}n /* Obig is FWP */
Output: A bit b

1: Initialize: Ashort, Along= Ø, Ainter = Ø, Bad=0;
2: for i = 1 to q do
3: (Xi, tag) = fquery(Ashort, Along); /* tag = 0, 1 implies long, short queries */
4: if tag = 0 then
5: Mi = Xi, zi ←− Obig(Mi);
6: Along=Along∪{(Mi, zi)}; /* Updating Along */
7: Ainter = Ainter ∪MesgDecom(Mi); /* Updating Ainter */

8: b = f ′
cond(Ashort, Along, Ainter); /* Checking condition for Bad event */

9: if b = 1 then
10: return b; /* Bad event */
11: end if
12: end if
13: if tag = 1 then
14: xi = Xi, yi ←− Osmall(xi);
15: Ashort=Ashort∪{(xi, yi)}; /* Updating Ashort */

16: b = f ′
cond(Ashort, Along, Ainter); /* Checking condition for Bad event */

17: if b = 1 then
18: return b; /* Bad event */
19: end if
20: end if
21: end for
22: return b = 0; /* Good event */
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Abstract. ARIA [5] is a block cipher proposed at ICISC’03. Its design
is very similar to the Advanced Encryption Standard (AES). The au-
thors propose that on 32-bit processors, the encryption speed is at least
70% of that of the AES. It is claimed to offer a higher security level than
AES. In this paper we present three new attacks of reduced round ARIA
which shows some weaknesses of the cipher. Moreover, our attacks have
the lowest memory complexity compared to existing attacks on ARIA.
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1 Introduction

The ARIA block cipher [5] was presented at ICISC’03. Its design is very sim-
ilar to the advanced encryption standard (AES/Rijndael) [4]. ARIA employs
two kinds of S-Boxes and two types of substitution layers which are different
between even and odd rounds. They skip using a MixColumns operation and
use an 16 × 16 binary matrix with branch number 8 in their diffusion layer.
The authors propose that ARIA can increase the efficiency in 8-bit and 32-bit
software implementations in comparison to AES. Moreover, they claim to have
better security against all existing attacks on block ciphers.

Wu et al. [9] showed that there exist good impossible differentials to break up
to 6 rounds of ARIA. Later Li et al. [7] presented also some impossible differential
attacks of up to 6 rounds of ARIA. In this paper we apply another technique on
ARIA which is called the boomerang attack [8].

The boomerang attack is a strong extension to differential cryptanalysis [2]
in order to break more rounds than plain differential attacks can, since the
cipher is treated as a cascade of two sub-ciphers, using short differentials in each
sub-cipher. These differentials are combined in an adaptive chosen plaintext and
ciphertext attack to exploit properties of the cipher that have a high probability.
Biryukov [3] proposed a similar boomerang attack on the AES-128 which can
break up to 5 and 6 out of 10 rounds. Table 1 summarizes the existing results
on ARIA and our new attacks.

The paper is organized as follows: In Section 2 we give a brief description
of the ARIA block cipher. In Section 3 we describe the boomerang attack.

G. Gong and K.C. Gupta (Eds.): INDOCRYPT 2010, LNCS 6498, pp. 163–175, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Table 1. Comparison of attacks on ARIA

Attack # Rounds Data Memory Time Source

Impossible Differential 5 271.3 CP 272 mem∗ 271.6 [7]
Meet-in-the-Middle Attack 5 225 CP 2122.5 mem∗ 265.4 [10]
Boomerang Attack 5 2109 ACPC 257 mem 2110 Sec. 4
Integral Attack 5 227.5 CP 227.5 mem∗ 276.7 [6]

Impossible Differential 6 2121 CP 2121 mem∗ 2112 [9]
Impossible Differential 6 2120.5 CP 2121 mem∗ 2104.5 [7]
Impossible Differential 6 2113 CP 2113 mem∗ 2121.6 [7]
Integral Attack 6 2124.4 CP 2124.4 mem∗ 2172.4 [6]
Meet-in-the-Middle Attack 6 256 CP 2122.5 mem∗ 2121.5 [10]
Boomerang Attack 6 2128 KP 256 mem 2108 Sec. 5

Meet-in-the-Middle Attack 7 2120 CP 2187 mem∗ 2185.3 [10]
Boomerang Attack 7 2128 KP 2184 mem 2236 Sec. 5

Meet-in-the-Middle Attack 8 256 CP 2252 mem∗ 2251.6 [10]

CP: Chosen Plaintexts, KP: Known Plaintexts, ACPC: Adaptive Chosen Plaintexts
and Ciphertexts, mem: memory usage in blocks.
∗ We estimated the memory usage of this attack since it was not mentioned in the
paper.

In Section 4, we present a boomerang attack on 5-round ARIA. In Section 5
we propase an attack on a 6-rounds as well as on 7-rounds of ARIA. We con-
clude the paper in Section 6.

2 Description of ARIA

ARIA is a substitution and permutation network whose structure is based on the
advanced encryption standard (AES) [4]. ARIA uses data blocks of 128 bits with
an 128, 192 or 256-bit key. A different number of rounds is used depending on
the length of the key, 10, 12, or 14 rounds when a 128, 192 or 256-bit key is used,
respectively. ARIA contains two kinds of S-boxes and two types of substitution
layers which are different between even and odd rounds. The diffusion layer of
ARIA uses a 16× 16 binary matrix with a branch number 8.1 ARIA is claimed
to be more efficient in 8-bit and 32-bit software implementations than the AES.
The plaintexts are treated as a 4 x 4 byte matrix, which is called the state.

1 A differential branch number of a linear transformation M is given by

min
a �=0
{wb(a) + wb(M(a))}

where wb(a) is the number of non-zero elements of the vector a. We always mean
differential branch number whenever we write branch number [4].
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A round applies three operations to the state: Substitution Layer (SL). ARIA
uses two S-Boxes S1 and S2 and also their inverse S−1

1 , S−1
2 , where S1 is the same

S-Box used for the AES. Each S-Box is defined to be an affine transformation of
the inversion function over GF(28).

S1, S2 : GF (28) → GF (28),

S1 : x %→ A · x−1 ⊕ a,

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and a =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
0
1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

S2 : x %→ B · x247 ⊕ b,

where

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 1 1 1 0
0 0 1 1 1 1 0 1
1 1 0 1 0 1 1 1
1 0 0 1 1 1 0 1
0 0 1 0 1 1 0 0
1 0 0 0 0 0 0 1
0 1 0 1 1 1 0 1
1 1 0 1 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

ARIA has two types of S-box layers for even and odd rounds as shown in Figures
2 and 3. Type 1 is used in the odd rounds and type 2 is used in the even rounds.

Before the first round, an initial ARK operation is applied and the DL oper-
ation is omitted in the last round. The bytes coordinates of a 4 x 4 state matrix
are labeled as in Figure 1.

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

Fig. 1. Byte coordinates of a 4 x 4 state matrix of ARIA
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Fig. 2. S-box layer SL1

Fig. 3. S-box layer SL2

Diffusion Layer (DL). A mapping GF(28)16 → GF(28)16 is performed which
is given by

(x0, x1, . . . , x15) %→ (y0, y1, . . . , y15),

where

y0 = x3 ⊕ x4 ⊕ x6 ⊕ x8 ⊕ x9 ⊕ x13 ⊕ x14,

y1 = x2 ⊕ x5 ⊕ x7 ⊕ x8 ⊕ x9 ⊕ x12 ⊕ x15,

y2 = x1 ⊕ x4 ⊕ x6 ⊕ x10 ⊕ x11 ⊕ x12 ⊕ x15,

y3 = x0 ⊕ x5 ⊕ x7 ⊕ x10 ⊕ x11 ⊕ x13 ⊕ x14,

y4 = x0 ⊕ x2 ⊕ x5 ⊕ x8 ⊕ x11 ⊕ x14 ⊕ x15,

y5 = x1 ⊕ x3 ⊕ x4 ⊕ x9 ⊕ x10 ⊕ x14 ⊕ x15,

y6 = x0 ⊕ x2 ⊕ x7 ⊕ x9 ⊕ x10 ⊕ x12 ⊕ x13,

y7 = x1 ⊕ x3 ⊕ x6 ⊕ x8 ⊕ x11 ⊕ x12 ⊕ x13,

y8 = x0 ⊕ x1 ⊕ x4 ⊕ x7 ⊕ x10 ⊕ x13 ⊕ x15,

y9 = x0 ⊕ x1 ⊕ x5 ⊕ x6 ⊕ x11 ⊕ x12 ⊕ x14,

y10 = x2 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x8 ⊕ x13 ⊕ x15,

y11 = x2 ⊕ x3 ⊕ x4 ⊕ x7 ⊕ x9 ⊕ x12 ⊕ x14,

y12 = x1 ⊕ x2 ⊕ x6 ⊕ x7 ⊕ x9 ⊕ x11 ⊕ x12,

y13 = x0 ⊕ x3 ⊕ x6 ⊕ x7 ⊕ x8 ⊕ x10 ⊕ x13,

y14 = x0 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x9 ⊕ x11 ⊕ x14,

y15 = x1 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ x8 ⊕ x10 ⊕ x15.

Round Key Addition (ARK). The round keys are derived from the key
using the key schedule which uses a 3-round 256-bit Feistel cipher. We skip its
description since we do not use it in our attack. We refer the reader to [5] for
more details.

3 The Boomerang Attack

The boomerang attack was introduced by Wagner [8]. It is a strong extension of
differential cryptanalysis which uses two differentials that cover half of the cipher
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each instead of one differential for the whole cipher. In general the less rounds a
differential covers, the higher its probability will be. Using two highly probable
short differential which have a higher probability in combination than a long
differential will decrease the complexity of an attack based on these differential
cryptanalysis in some cases. This is true for the AES where boomerang attacks
appear to be much stronger than the differential cryptanalysis.

Two plaintexts (P, P ′) are called a pair, while two pairs (P, P ′, O, O′) are
called a quartet. We split the boomerang attack into two steps: The boomerang
distinguisher step and the key recovery step. The boomerang distinguisher is used
to find all plaintexts sharing a desired difference that depends on the choice of
the differential. These plaintexts are used in the key recovery step afterwards to
recover subkey bits for the initial round key.

Distinguisher Step

During the distinguisher step we treat the cipher as a cascade of two sub-
ciphers EK(P ) = E1K(E0K(P )), where K is the key used for encryption and
decryption. Since we always use the same key we omit the key K and write
E(P ) = E1(E0(P )) instead. We assume that the differential α → β for E0
occurs with probability p, while the differential γ → δ for E1 occurs with prob-
ability q, where α, β, γ and δ are differences of intermediate encryption values.
The backward direction E0−1 and E1−1 of the differential for E0 and E1 are
denoted by α ← β and γ ← δ and occur with probability p and q respectively.
The attack works as follows:

1. Choose a pool of s plaintexts Pi, i ∈ {1, . . . , s} uniformly at random and
compute a pool P ′

i = Pi ⊕ α.
2. Ask for the encryption of Pi, i.e., Ci = E(Pi) and ask for the encryption of

P ′
i , i.e., C′

i = E(P ′
i ).

3. Compute the new ciphertexts Di = Ci ⊕ δ and D′
i = C′

i ⊕ δ.
4. Ask for the decryption of Di, i.e., Oi = E−1(Di) and ask for the decryption

of D′
i, i.e., O′

i = E−1(D′
i).

5. For each pair (Oi, O
′
i), i ∈ {1, . . . , s} check if Oi⊕O′

i is equal to α and store
the quartet (Pi, P

′
i , Oi, O

′
i) into a set Θ if true.

A pair (Pi, P
′
i ), i ∈ {1, . . . , s} with the difference α satisfies the differential

α→ β with probability p. The output of E0 is Ai and A′
i, i.e., E0(Pi) = Ai and

E0(P ′
i ) = A′

i have a certain difference β = Ai ⊕ A′
i with probability p. Using

the ciphertexts Ci and C′
i we can compute the new ciphertexts Di = Ci ⊕ δ and

D′
i = C′

i ⊕ δ. Let Bi = E1−1(Di) and B′
i = E1−1(D′

i) are the decryption of
Di and D′

j with E1−1 i ∈ {1, . . . s}. A difference δ leads to a difference γ after
passing E1−1 with probability q. Since δ = Ci ⊕Di and δ = C′

i ⊕D′
i we know

that γ = Ai ⊕Bi and γ = A′
i⊕B′

i with probability q2. Since we also know, that
Ai⊕A′

i = β with probability p, it follows that (Ai⊕Bi)⊕(Ai⊕A′
i)⊕(A′

i⊕B′
i) =

γ ⊕ β ⊕ γ = β = (Bi ⊕ B′
i) holds with probability p · q2. A β difference leads

to an α difference after passing the differential E0−1 with probability p. Thus,
a pair of plaintexts (Pi, P

′
i ) with Pi ⊕ P ′

i = α generates a new pair of plaintexts
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(Oi, O
′
i) where Oi ⊕O′

i = α with probability p2 · q2. A quartet containing these
two pairs is defined as:

Definition 1. A quartet (Pi, P
′
i , Oi, O

′
i) which satisfies

Pi ⊕ P ′
i = α = Oi ⊕O′

i,
Ai ⊕A′

i = β = Bi ⊕B′
i,

Ai ⊕Bi = γ = A′
i ⊕B′

i,
Ci ⊕Di = δ = C′

i ⊕D′
i,

is called a right quartet which occurs with probability Prc = p2 · q2. A quartet
(Pi, P

′
i , Oi, O

′
i) which only satisfies the condition P ⊕P ′

i = α = Oi⊕O′
i is called

a wrong quartet.

Figure 4 displays the structure of the boomerang step. Any attacker who applies
a boomerang distinguisher does not know the internal states Ai, A

′
j , Bi, B

′
j , since

he can only apply a chosen plaintext and ciphertext attack on the cipher. The set
Θ which is the output of the boomerang distinguisher, therefore contains right
and wrong boomerang quartets. It is impossible to form another distinguisher
which separates the right and the wrong boomerang quartets, since the interior
differences β and γ cannot be computed.

P

C

P ′

C ′

O

D

O′

D′

αα

ββ
γ

γ

δ

δ

E0E0

E1E1

E0E0

E1E1

A

A′

B

B′

Fig. 4. The boomerang attack
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Key Recovery Step

The second step of the boomerang attack is the key recovery step. From now on,
an adversary operates on the set Θ that was stored by the boomerang distin-
guisher. Let k be some key bits of the last round keys derived from the cipher
keys K. Let dk(C) be the one round partial decryption of C under the key k
(the size of k is usually much smaller than the size of K). The key recovery step
works as follows:

- For each key-bit combination of k

1. Initialize a counter for each key-bit combination with zero.
- For all quartets (Pi, P

′
j , Oi, O

′
j) stored in Θ

2. Ask for the encryption of Pi, P
′
i , Oi, O

′
i and obtain the cipher-

text quartet (Ci, C
′
j , Di, D

′
j) respectively. Decrypt the ciphertexts

Ci, C
′
j , Di, D

′
j, i.e., C̄i = dk(Ci), C̄′

j = dk(C′
j), D̄i = dk(Di) and

D̄′
j = dk(D′

j).
3. Test whether the differences C̄i ⊕ D̄i and C̄′

j ⊕ D̄′
j have a desired

difference an attacker would expect depending on the differential
being used. Increase a counter for the used key-bits if the difference
is fulfilled in both pairs.

4. Output the key-bits k with the highest counter as the right one and perform
an exhaustive key search on the remaining key bits.

Four cases can be differentiated in Step 3, since Θ contains right and wrong
quartets and the key-bit combination k can either be right or wrong. A right
quartet encrypted with the right key bits will have the desired difference needed
to pass the test in Step 3 with probability 1. Hence, the counter for the right
key bits is increased. The three other cases are: a right quartet is used with false
key bits (PrcKf

), a wrong quartet is used with the correct key-bits (PrfKc) or a
wrong quartet is used with a false key-bit combination (PrfKf

). The probabili-
ties in the three later cases are very small and for our analysis only the biggest
one counts. For simplicity we set

PrcKf
= PrfKc = PrfKf

=: Prfilter.

The probability that a quartet in one of the three undesirable cases is counted for
a certain key bit combination is Prfilter. The differentials have to be chosen such
that the counter of the correct key bits is significantly higher than the counter
of each false key bit combination. If the differentials have a high probability the
key recovery step outputs the correct key-bits in Step 4 with a high probability
much faster than exhaustive search.

4 A Boomerang Attack on 5-Round ARIA

In this section we mount a boomerang attack on 5-round ARIA-128. Note that
this attack works on the other versions as well. The cipher is treated as E(P ) =
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E1(E0(P )), where a differential for E0 containing rounds 1 to 3 and a differential
for E1 is covering rounds 4 to 5. We apply a key recovery attack to retrieve 56
key-bits of the first round. The notations used in our attack are defined as:

– Pi, Oi are plaintexts.
– Ci, Di are ciphertexts.
– a is a known non-zero byte difference.
– ∗ is a non-zero byte differences.
– ? is an unknown byte differences.

4.1 The Differential for E0

Considering the S-box being used there are 126 values which occur with proba-
bility 2−7, one with probability 2−6 and 129 with probability 0. We choose the b
difference such that it transforms into an a difference with probability 2−6. Thus,
the non-zero differences in bytes 3, 4, 6, 8, 9, 13 and 14 in the input difference
α of the differential for E0 transforms into an a difference in bytes 3, 4, 6, 8,
9, 13 and 14 with probability 2−42. DL1 then leaves an a difference in byte 0,
while the remaining bytes become zero. Since ARK is linear it does not alter
this difference. SL2 produces a non-zero difference in byte 0 and DL2 spreads
this difference in bytes 3, 4, 6, 8, 9, 13 and 14. At the end of the differential
we obtain a difference called βout where all the 16 bytes of the state difference
are unknown. We have to guarantee that the differential for E0−1 starts with
a difference which is equal to βout in order to get the correct α difference after
E0−1. We discuss this below in more details. The probability of the differen-
tial for E0, i.e., the transformation of an α difference into a βout difference, is
given by

Pr(α → βout) = 2−42.

The differential E0 is shown in Figure 5.

α

b b

b b

b b

b

ARK0,SL1−−−−−−−→
2−42

a a

a a

a a

a

DL1−−−→
a

ARK1−−−−→
a

SL2,DL2−−−−−−→
∗ ∗
∗ ∗
∗ ∗
∗

ARK2−−−−→
∗ ∗
∗ ∗
∗ ∗
∗

SL3,DL3,ARK3−−−−−−−−−−−→

βout

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

Fig. 5. The differential for E0
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δ

a
ARK−1

5 ,SL−1
5 ,ARK−1

4−−−−−−−−−−−−−−−→
∗

DL−1
4 ,SL−1

4−−−−−−−−→

γ

∗ ∗
∗ ∗
∗ ∗
∗

Fig. 6. The differential for E1−1

4.2 The Differential for E1−1

The ciphertext difference δ consists of one a difference in byte 0 and a zero dif-
ference in the remaining bytes. The non-zero difference remains after the inverse
of round 5. The DL−1

4 operation spreads this non-zero difference to bytes 3, 4,
6, 8, 9, 13 and 14. Remember that there is no DL5 operation in the last round
of ARIA. We call the γ the output difference of the differential. The probability
of E1−1 is Pr(γ ← δ) = 1. The differential E1−1 is shown in Figure 6.

4.3 The Differential for E0−1

For the following steps we need that the output difference βout of the differential
for E0 is equal to the input difference βin for the differential for E0−1. Note
that βin and βout are not only equal in the same positions of non-zero differences
but are also equal in each byte. We compute the probability that this actually
happens. From the boomerang condition inside the cipher for two differences γ1
and γ2 we know that

βout ⊕ γ1 ⊕ γ2 = βin

holds with some probability. When γ1 and γ2 are equal in all the bytes, we simply
write γ. We compute the probability for that to occur below. Thus, the above
condition reduces to:

βout ⊕ γ ⊕ γ = βout = βin (1)

Using the differentials above, the differences βin and βout are equal with proba-
bility 2−56. This is the probability that the 7 non-zero bytes in γ1 are equal to
the 7 non-zero bytes in γ2.

Let A, A′, B, B′ be the internal state after SL3 in the forward direction when
encrypting P, P ′, O, O′, respectively. The notation from Figure 4 is used. Since
DL is linear γ can be expressed as

γ = K3 ⊕DL3(A) ⊕K3 ⊕DL3(B) = DL3(A⊕B) (2)

and as

γ = K3 ⊕DL3(A′)⊕K3 ⊕DL3(B′) = DL3(A′ ⊕B′). (3)
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βin

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

ARK−1
3 ,DL3−−−−−−−−−→

∗ ∗
∗ ∗
∗ ∗
∗

SL3−−−→
2−49

a a

a a

a a

a

ARK−1
2 ,DL2−−−−−−−−−→

a

SL2−−−→
∗

ARK−1
1 .DL1,SL1−−−−−−−−−−−−→

∗ ∗
∗ ∗
∗ ∗
∗

ARK−1
0−−−−−→

α

∗ ∗
∗ ∗
∗ ∗
∗

Fig. 7. The differential for E0−1

Equations (2) and (3) can be combined, which leaves A⊕A′ = B⊕B′. In other
words, DL3 can be undone with probability 1 due to the boomerang condition
(1). This means that we know exactly that after DL3 in the backward direction
bytes 3, 4, 6, 8, 9, 13, and 14 are non-zero while the remaining bytes are zero.
There are several cases for which an a difference in bytes 3, 4, 6, 8, 9, 13, and
14 occurs after SL3. There are 7 · 127 cases, each with probability 2−43, there is
one case with probability 2−42 and there are 1267 cases, each with probability
2−49. Thus on average, after SL3 an a difference in bytes 3, 4, 6, 8, 9, 13, and
14 occurs with probability (2−6.93)7 = 2−48.79. DL2 outputs an a difference in
byte 0 and a zero difference in the remaining bytes. SL2 then transforms the a
difference in byte 0 into a non-zero difference, which is spread into the bytes 3,
4, 6, 8, 9, 13, and 14 after DL1. The output difference α of the differential for
E0−1 contains these non-zero and zero differences. The differential for E0−1 has
the probability Pr(α ← βin) ≈ 2−49 to occur. It is shown in Figure 7.

4.4 The Attack

The adversary first collects data and stores the filtered data in the set φ. A
key-search is then applied to the remaining quartets in φ in order to find 56 bits
of K0. Let k0 be a 56-bit subkey in the position of bytes 3, 4, 6, 8, 9, 13, and
14. Let e0,k(X) be the partial encryption of X under the subkey k before DL1
is applied. The attack is as follows:

1. Choose 253 structures Sj , j ∈ {1, 2, . . . , 253} each consists of 256 plaintexts
Pi,j , i ∈ {1, 2, . . . , 256} which have all possible values in seven bytes (3, 4, 6,
8, 9, 13, and 14). Ask for the encryption of the Pi,j to obtain the ciphertexts
Ci,j , i.e., Ci,j = E(Pi,j). Compute P ′

i,j = Pi,j ⊕ α and ask for the encryption
of P ′

i,j to obtain C′
i,j , i.e., C′

i,j = E(P ′
i,j).

2. For each ciphertext Ci,j compute a new ciphertext Di,j = Ci,j ⊕ δ, where δ is a
fixed 128-bit value with a non-zero value a in byte 0 and zero in the remaining
bytes. For each ciphertext C′

i,j compute a new ciphertext D′
i,j = C′

i,j ⊕ δ,
respectively.
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3. Ask for the decryption of the Di,j and D′
i,j to obtain the new ciphertexts Oi,j ,

i.e., Oi,j = E−1(Di,j) and O′
i,j , i.e., O′

i,j = E−1(D′
i,j), respectivly.

4. Store only those quartets (Pi,j , P
′
l,j , Oi,j , O

′
l,j) in the set φ where Oi,j ⊕ O′

l,j

have a non-zero difference in bytes 3, 4, 6, 8, 9, 13, and 14 and a zero difference
in the remaining bytes.

5. For each 56-bit candidate key k
• Set a counter to zero.

For each quartet passing the test in Step 4:
5.1. Partially encrypt the plaintext quartet (Pi,j , P

′
l,j , Oi,j , O

′
l,j), i.e.,

P̄i,j = e0,k(Pi,j), P̄ ′
l,j = e0,k(P ′

l,j), Ōi,j = e0,k(Oi,j) and Ō′
l,j =

e0,k(O′
l,j).

5.2. Increase the counter for the used 56-bit subkey k by one if P̄i,j ⊕ P̄ ′
l,j

and Ōi,j ⊕ Ō′
l,j have a difference of a in all the bytes 3, 4, 6, 8, 9, 13,

and 14.
6. Output the 56-bit subkey k with the highest counter.

4.5 Analysis of the Attack

We have 253 structures which contain 255 plaintext pairs of the desired difference
each. Thus, we expect about #PP = 253 · 255 = 2108 quartets in total. Since
we use structures of all possible values in seven bytes, we get 255 pairs with
the desired difference needed in the differential E0. Thus, the transition in this
differential happens with probability one in this case. A right quartet occurs
with probability

Prc = Pr(α → βout) · (Pr(γ ← δ))2 · Pr(γ1 = γ2) · Pr(α ← βin)
= 1 · 1 · 2−56 · 2−49 = 2−105,

since all the differential conditions are fulfilled. A random difference of two
plaintexts has 9 zero byte difference with probability Prf = 2−72. Thus, af-
ter Step 4 we have about #C = 2108 · 2−105 = 23 right and approximately
#F = 2164 · 2−72 = 292 wrong quartets. A quartet passes the test in Step 5.2
with probability Prfilter = 2−112, since we have a 56-bit filtering condition on
both pairs of a quartet. Thus, #CKc = 23 right boomerang quartets for the
right key and #FKc = #F ·Prfilter = 292 ·2−112 = 2−20 wrong quartets for each
wrong subkey guess remain after this step.

Using the Poisson distribution2 we can compute the success rate of our attack.
The probability that the counter of a wrong key is at least 3 assuming Yi ∼
Poisson(μ = 2−20) is

Pr(Y ≥ 3) = e−2−20 · (2−20)3

3!
≈ 2−62.

2 Normally, we would use a binomial distribution but we use the Poisson distribution
as an approximation. X ∼ Poisson(μ) means that the random variable X follows
the Poisson distribution with mean μ.
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For all the 256−1 wrong keys used in our analysis we expect about 256 ·2−62 =
2−6 wrong keys which have a count of at least 3 quartets. The probability that
the right key has a count of at least 3 quartets using Z ∼ Poisson(μ = 23) is

Pr(Z ≥ 3) ≈ 0.98.

We can increase the success probability by increasing the number of quartets
which also increases the data and time complexity of the attack.

Each structure of data can be analyzed sequentially. Thus, the total memory
complexity is determined by Step 1 to 3, which is about 2 · 256 = 257 blocks
and additionally 256 counters. The memory complexity of Step 4, 5.1 and 5.2
(is negligible compared to the memory complexity of the first two steps). The
time complexity of Step 1 to 3 is 2 · 256 = 257 encryptions. Since we have to
run these steps for each structure of data the time complexity of the attack is
about 253 · 257 = 2110 5-round encryptions. The data complexity is of size about
253 · 256 = 2109 adaptive chosen plaintexts.

5 Boomerang Attack on 6 and 7-Round ARIA

The attack of the previous section can be easily extended to a 6-round attack on
ARIA-192 and ARIA-256. Therefore, we need the following property of ARIA.

Property 1. The round key addition (ARK) and the diffusion layer (DL) can be
interchanged, due to its linearity.

Using this property we can change the order of DL5 and ARK5. Thus, we can use
our 5-round boomerang distinguisher to apply a 6-round attack in the following
way. We add one round after the boomerang distinguisher as shown in Figure
8. We can guess 7 byte of K6 at bytes 3, 4, 6, 8, 9, 13 and 14. This allows us
to choose the desired difference φ such that after SL6 in backward direction
a known difference a occurs in each of these bytes. The DL5 operation then
outputs an a difference in byte 0 while the remaining bytes become zero. From
this point the 5-round boomerang distinguisher works as explained above. Using
the attack in the previous sections and the improvements on the boomerang
attack presented by Biham et al. [1] we obtain the following results. Since we
have to guess 56 bits after the distinguisher, using the notation from [1], we have
mb = rb = 0, mf = rf = 56, tf = 38.08. For our attack to work we need about
23 · 2105 · 2−1 = 2107 structures. The data complexity of the attack is 2128 known
plaintexts using the data reduction technique from [1]. The memory complexity
of the attack is 2mb+mf + 2rb+tf ≈ 256. The expected time complexity of the
attack is N(2+22rb+tf−n−1+2mb+tb+2tf−n−1+2mf+2tb+tf−n−1) ≈ 2108 memory
accesses. This attack can be applied to all instances of ARIA.

We can easily extend our 6-round attack guessing an entire 128 bit subkey
from either the top or the bottom of the cipher. Thus, the memory complexity
increases to 256 ·2128 = 2184 and the expected time complexity increases to about
2108 ·2128 = 2236 memory accesses. Thus, our attack on 7-rounds of ARIA is only
applicable to ARIA-192 and ARIA-256.



New Boomerang Attacks on ARIA 175

φ

v v

v v

v v

v

ARK−1
6 ,SL6−→

a a

a a

a a

a

DL5−→

δ

a
ARK−1

5−→

Fig. 8. The round after the distinguisher

6 Conclusion

In this paper we have shown some new attacks on the ARIA block cipher. Our
attacks on 6 and 7-rounds of ARIA have the lowest memory complexity compared
with existing attacks. This paper shows some weaknesses of reduced versions of
ARIA, but the full round ARIA remains still secure.
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1 Introduction

This paper describes our findings of cube attacks [16], also known as AIDA [30], alge-
braic [11] and side-channel (cube) attacks [17] applied to a variable number of rounds
of all members of the KATAN family of block ciphers [13]. As far as we are aware of,
this is the first paper detailing these attacks on the KATAN ciphers.

The cube attack is a kind of algebraic technique that exploits the existence of low-
degree polynomial equations in the output of cryptographic algorithms. An attractive
feature of the cube attack is that it requires only black-box access to the cryptographic
function, that is, the knowledge of internal details of the target function is not required.
Informally, if the decomposition of algebraic multivariate polynomial equations at the
output of a target cipher has degree at most d + 1, then linear equations on unknown
key bits can potentially be extracted, provided that at most 2d computations (encryp-
tions) are feasible. Thus, the basic setting is key-recovery, but distinguish-from-random
variants have been demonstrated in [2]. In [16] the cube attack has been applied to
reduced-round variants of the Trivium [14] stream cipher.

Algebraic cryptanalysis exploit the multivariate polynomial system of equations in
ANF format representing a given cipher [11]. The aim is to solve such systems for the
unknown key (usually in a known-plaintext setting, but often we use chosen-plaintext
attack to reduce the running time). Typically, quadratic equations are the main target
representation. We convert the ANF equations to CNF format and feed it to a SAT
solver, in our case MiniSat [18] and CryptoMiniSat [26]. Furthermore, we introduce a
novel pre-processing step on the system of equations before giving it to a SAT solver.
This allows us to break a larger number of rounds. Ultimately, we combine the cube
and algebraic attacks on reduced-round KATAN ciphers.

We also combined the cube and side-channel techniques to attack the full-round
KATAN32, following the model in [17]. Table 4 summarizes all the attack complexi-
ties in this paper. Up to the moment, we know of no other independent attacks on the
KATAN ciphers, even for reduced-round versions.

This paper is organized as follows: Section 2 briefly describes the KATAN family
of block ciphers; Section 3 provides some theoretical background on algebraic attacks;
Section 4 gives theoretical framework and our experimental findings on AIDA/cube
attacks; Section 5 combines both attacks; Section 6 describes side-channel cube attack;
Section 7 concludes the paper.

2 The KATAN Family of Block Ciphers

KATAN is a family of lightweight, hardware-oriented block ciphers consisting of three
variants with 32, 48 and 64-bit blocks. For all KATAN ciphers, key size is of 80 bits (n =
80), and they all iterate 254 rounds [13]. The block size is used as suffix to designate
each cipher member, as KATAN32, KATAN48 and KATAN64. The design of these
ciphers was inspired by the stream cipher Trivium [14]. The structure of KATAN32
cipher consists of two LFSR’s, called L1 and L2, loaded with the plaintext and then
transformed by two nonlinear Boolean functions, fa and fb as follows (Table 1 lists the
bit sizes and the indices xi and y j of L1 and L2).
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fa(L1) = L1[x1]+ L1[x2]+ (L1[x3] ·L1[x4])+ L1[x5] · IR)+ ka

fb(L2) = L2[y1]+ L2[y2]+ (L2[y3] ·L2[y4])+ L2[y5] ·L2[y6])+ kb

where IR is the output of an LFSR i.e. L1[x5] is used whenever IR = 1. The values of
IR for each round are specified in [13]. For the i-th round, ka = k2i and kb = k2i+1 that
is, only two key bits are used per round. The output of each of these functions is loaded
to the least significant bits (LSB) of the other LFSR, after they are left-shifted. This
operation is performed in an invertible manner.

For KATAN48, fa and fb are each applied twice per round, so that the LFSR’s are
clocked twice (but the same pair of key bits are reused). For KATAN64, each Boolean
function is applied three times per round, again with the same pair of key bits reused
three times.

The selection of bits xi and yi in fa and fb are listed in Table 1. In this report, plain-
text and ciphertext bits are numbered in right-to-left order starting from 0. Thus, for
instance, a plaintext block for KATAN32 will be numbered as p = (p31, . . ., p0). The
key schedule algorithm of all KATAN ciphers is a linear mapping that expands an 80-bit
key K to 508 subkey bits according to

ki =

{
Ki, for 0 ≤ i ≤ 79

ki−80 + ki−61 + ki−50 + ki−13, otherwise

Thus, the subkey of the i-th round is ka||kb = k2i||k2i+1.

Table 1. Parameters for the fa and fb functions

Cipher |L1| |L2| x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6
KATAN32 13 19 12 7 8 5 3 18 7 12 10 8 3
KATAN48 19 29 18 12 15 7 6 28 19 21 13 15 6
KATAN64 25 39 24 15 20 11 9 38 25 33 21 14 9

After r rounds, at most 2 ∗ r key bits are mixed with the internal state since two
key bits are xored per round. Thus, at least 40 rounds are needed before complete key
diffusion for any KATAN cipher is achieved. Further details about these ciphers can be
found in [13].

For analyses purposes, the numbering of the key bits in the user key in our attacks is
K = (K79, . . ., K0).

3 Algebraic Attacks Using SAT Solvers

Algebraic cryptanalysis is a type of cryptographic attack that relies on solving a mul-
tivariate polynomial representation of a given cipher or hash function. It was initially
formulated as early as 1949 by Shannon [29]. Algebraic attacks, since the controver-
sial paper of [11], have been applied to several stream ciphers [1,9,10] and is able to
break some of them but it has not been successful in breaking real-life block ciphers,
except Keeloq [7,21]. Compared to statistical analysis, such as linear and differential
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cryptanalysis, algebraic attacks require a comparatively small number of text pairs. The
adversary formulates the cipher as a polynomial multivariate system of equations. This
representation is usually over small finite fields like GF(2). This system of equations is
often sparse, since efficient implementations of real-world systems require a low gate-
count. In the subsequent stage, the adversary solves the system. The problem of solving
such system is NP hard in general and is recognized as the MQ problem. An instance
of an MQ problem is a set of functions

f1(x1, . . . ,xn) = y1, f2(x1, . . . ,xn) = y2 , . . . , fm(x1, . . . ,xn) = ym

where fi can always be converted to a quadratic polynomial by introducing new vari-
ables. Notice that n is the number of variables and m is the number of equations. Let
c = m

n denote the degree of “overdefinition” of a system [4]. Hence, c = 1 denotes
exactly a defined system, c > 1 an overdefined system and c < 1 an underdefined sys-
tem. The polynomial representation of most block ciphers are overdefined or if not then
c ≈ 1. It turned out that the more the system is overdefined and sparse the easier it is to
be solved [11]. For one instance of KATAN cipher, c < 1. This because in all versions,
the key size is larger than the block size. Thus, more than one pair is required to find
the correct key.

There are multiple methods for solving such systems. The traditional method uses the
Gröbner basis approach such as Buchberger [6] or F4 [20] and F5 [19] algorithms. The
drawback of such methods is memory, implying that after a while the algorithm outputs
the result or it crashes due to running out of memory. This is true particularly for large
systems, but they are usually faster than other methods for small systems and when the
characteristic of field q is not 2. When q = 2, more efficient methods were proposed,
such as converting these equations to Boolean expressions in Conjunctive Normal Form
(CNF) [4] and deploying various SAT-solver programs. Other strategies include the XL
family [12,11], the recent MutantXL [15,25], ElimLin [8] and the Raddum-Semaev
[27] algorithms. We focus on SAT-solver based methods in this paper. From now on we
will work only with the field GF(2). To solve such polynomial system by SAT solvers,
the attacker initially converts the system from Algebraic Normal Form (ANF) to CNF.
There is an efficient conversion method due to Bard-Courtois-Jefferson [4]. We also use
a direct method which we call “local interpolation”. Let assume that the total degree of
the equations is at most 6. We proceed as follows:

– If there are equations which contain more than 6 variables, split these long XORs
into several shorter XORs with at most 6 variables, by adding extra variables, for
example abc + de f + gh = 1 becomes abc + de f = x and x + gh = 1.

– for each equation, convert the Boolean function to CNF and write it explicitly.

The concatenation of these CNFs gives a file with extension .cnf on which we can
apply any SAT solver. The magic number 6 originates from [4], and is called the cutting
number—sometimes 4, 5, or rarely 7 is optimal instead.

The area of SAT Solving has seen tremendous progress over the last years. Many
problems (e.g. in hardware and software verification) and in our application in crypt-
analysis that seemed to be completely out of reach a decade ago can now be handled
routinely. Besides, new algorithms and better heuristics, refined implementation tech-
niques turned out to be vital for this success. New SAT solvers can now solve large
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systems in reasonable time. Since 2002, almost each year a SAT Race competition [28]
was established. In 2007 and 2010 respectively, MiniSat [18] and CryptoMiniSat [26]
won the Gold prizes. We used these two SAT solvers in our analysis but since the tim-
ings of MiniSat were faster, we do not report CryptoMinisat results in this paper.

3.1 Straightforward Algebraic Attack on KATAN Using SAT Solvers

One instance of KATAN32 can be represented as 8,620 very sparse quadratic equa-
tions with 8,668 variables, KATAN48 as 24,908 equations and 24,940 variables and
KATAN64 as 49,324 equations and 49,340 variables. As can be observed, the system
is underdefined. That is because the key size is larger than block size for all versions.
To have a defined or an overdefined system, we need multiple samples.

A summary of our results is in Table 4. We used the “guess and determine” algebraic
attack initially proposed in [4]. This implies that we fix t bits of the key and then we
show that recovering the other 80− t bits is faster than exhaustive search. This is rep-
resented in the column titled “Fixed” in Table 4. In fact, we fix t LSB of the key, since
heuristically we obtained better results than fixing the t MSB of the key. We used the
graph partitioning method by Wong and Bard [31] to derive the best state variables to
fix, but it did not bring about anything better than using the heuristic of fixing the least t
significant bits of the key. Note, if we fix t bits, the algebraic attack is solving a system
of equations to recover the 80− t remaining bits.

We represent the time complexity of the SAT Solver (MiniSat) in seconds using a 3
Ghz CPU. Note that our algebraic attacks are in the chosen-plaintext scenario, except
in some rare cases as noted. We noticed that chosen-plaintext attack is much stronger
against KATAN family than known-plaintext (KP) attack. In our attacks, we followed
the following structure for the chosen plaintexts for KATAN32: pi+1 = ((pi � 19)+
1)� 19 and pi+1 = ((pi � 29)+1)� 29 for KATAN48 and pi+1 = ((pi � 39)+1)�
39 for KATAN64 for i ≥ 1, where pi is the i-th plaintext we pick and p1 can be arbitrary
and � and � are shift right and shift left respectively and + is xor. Note that bits
19,29,39 are exactly bit 0 of L1 register for KATAN32, KATAN48 and KATAN64
respectively. This choice of the bits makes the SAT solver run faster. Moreover, we
believe it is fair to assume each round encryption of KATAN takes at least 3 CPU
cycles. This yields a comparison between the complexity of our attacks and exhaustive
key search.

Deploying the straightforward method of converting ANF to CNF and then feeding
it to a SAT solver, we could break up to 79 rounds of KATAN32 and 64 rounds of
KATAN48 and 60 rounds of KATAN64. But, we can do better by performing a pre-
processing on the system of equations before applying it to a SAT solver. Using this
pre-processing (see next section), we could break 79 rounds of KATAN32. We only
tried this method on KATAN32 equations. Further research would apply this technique
to other members of the family.

3.2 The Pre-processing SAT-Solver Attack

In this attack, we use the equations generated as described earlier and solve them with
the SAT solver MiniSat [18]. It is simpler to formulate KATAN as a sparse system. But,
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this may not be the best representation for a SAT solver. One characteristic of these
equations is that there are many of them with the form x = y, as well as x = 0, y = 1
and more rarely x + y = 1. Also, in a typical example (78 rounds, 45 key bits fixed and
20 CPs of KATAN32) there are 51,321 total equations. Naturally one wants to take
advantage of these special equations, during pre-processing, to create a smaller system
which has fewer variables and equations.

More precisely, the four heuristics of a CNF problem are (1) the number of variables,
(2) the number of clauses, (3) the average number of symbols per clause, and (4) the
total number of symbols in the system. The pre-processing algorithm that we describe
in the next section is designed on the principle of primarily reducing (1) and (2) while
causing the minimum possible increase in (3) and (4). To be specific, at each iteration,
a substitution will be made and this substitution reduces (1) and (2) by one, and the
substitution is selected in the style of the “greedy algorithm” using (4) as the criterion.

The following pre-processing algorithm, due to Bard, is a refinement of the “mas-
saging” algorithm of [4] and so we call it “turbo-massage”. Starting with the equations
that were generated, we ran the pre-processing algorithm; after that, we converted the
polynomials into a CNF problem, according to [4] and ran MiniSat on that CNF prob-
lem to get a solution. We will explain the pre-processors here and refer the reader to [4]
or [3] for the process of converting a polynomial system into a CNF problem.

3.3 The Turbo-Massage Pre-processing Algorithm

As described before, the equations can be thought of as a series of polynomials f1(x) =
0, f2(x) = 0, . . .. We define the operation “fully-substitute” as follows: Let f (x) be a
polynomial with some monomial µ. To fully-substitute f (x) into g(x) on µ means to

– Write g(x) in the form g(x) = µh1(x)+ h2(x).
– Write f (x) in the form f (x) = µ + h3(x).
– Replace g(x) with h1(x)h3(x)+h2(x), which is mathematically equivalent, because

in any satisfying solution x, we would have µ = h3(x).
– By clever use of data structures, this can be made highly efficient.

Observe that for the four common forms: x = y, as well as x = 0, y = 1, and more rarely
x + y = 1, the “fully-substitute” definition does what one would do if solving a system
of equations with a pencil and paper. For more higher weight f (x), understanding what
it does to g(x) is more complex.

We must also use a non-standard definition of the weight of a polynomial f (x). We
define it to be the number of monomials in f (x), but excluding the constant +1 from
the tabulation. The reason for this is that if f (x) has weight w according to this modified
definition, then 2w−1 conjunctive normal form clauses of length w will be required to
represent the polynomial, assuming all the monomials are already defined. The total
number of symbols is then w2w−1 and so minimizing w is crucial in keeping the CNF
problem small and thus solvable. We now perform the following algorithm:

– INPUT: A system of polynomial equations over GF(2), and a weight-limit wmax.
– Mark all polynomials “unused.”
– While the set of unused polynomials is not empty do:
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• Locate the lowest weight unused polynomial f (x).
• If f (x) exceeds wmax, terminate.
• Mark f (x) as “used.”
• If f (x) has weight 1, then select µ to be the only monomial in f (x).
• If f (x) has weight 3 or higher, select µ to be the monomial which appears least

frequently in the entire system of equations.
• If f (x) has weight exactly 2, select µ to be the monomial which appears most

frequently in the entire system of equations.
• For any polynomial g(x) containing the monomial µ, simply “fully-substitute”

f (x) into g(x) on µ.

The “turbo-massaging” algorithm will always terminate, because eventually every poly-
nomial has been marked used. In practice, it will terminate early, where all unused
polynomials are of weight wmax or higher. If there are n “used” polynomials, then there
will be n monomials which appear nowhere in the entire system except in exactly one
polynomial. This is, of course, the monomial µ which was chosen when that polyno-
mial was getting used. In our system of equations, it was almost always the case (by an
overwhelming margin) that µ was degree one. And so, each used polynomial effectively
amputates one variable from the polynomial system of equations.

The special case of weight 2 deserves explanation. When f has weight 1, there is no
decision to be made, but it is noteworthy that the weight of g will decrease. When f has
weight 2, then the weight of g will not change during the “fully-substitute” operation,
except in some odd cases like substituting x = y into zx + zy+w+ x + y = 0, where the
weight goes from 5 to 1 instantly. Since the weight is not likely to change and we are
eliminating a monomial, it makes sense to eliminate a common monomial. When the
weight of f is 3 or more, then the weight of g will increase. If we choose µ to be very
popular, appearing k times, then the total weight of the system will increase by k(w−2).
Thus, it makes sense to keep the weight growth bounded and choose µ to be rare. This
heuristic was found after an enormous number of iterations of “trial-and-error.”

For example, in the 78-round, 20 CP, 45-bit-key case of KATAN32, the weight went
from 110,726 to 101,516 after 47,032 polynomials got used. Furthermore, the “fully
substitute” function was called 330,587 times. There were 50,033 equations at this
point, down from 51,321, representing 1,288 equations that became 0 = 0. In other
words, the original system was not full rank. The average weight of a polynomial, us-
ing the modified definition of weight, was roughly 2.02898. The system had 53,993
distinct monomials, plus 2,005 variables which appeared only in degree 1 monomials,
and ended with a CNF problem of 55,398 variables, and 156,010 clauses. The conver-
sion process, which must be run only once and not 245 times, takes between 20 and 29
minutes in all the cases explored here.

It should be noted that in other polynomial systems it might be the case that µ is
often quadratic or higher degree. It remains open if one should force µ to be linear when
possible. This is a question that the authors hope to investigate shortly. As it comes to
pass, wmax = 2 turned out to be slightly better than wmax = 3 for this problem, but in
other cases up to wmax = 5 has been used.

A minor note for algebraic geometers familiar with the concept of a Macaulay matrix
[23] in the Lazard [22] family of algorithms (including F4 [20], XL and their variants
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[12,11]) is that this algorithm is like a Gaussian Elimination on that matrix, but stopping
early. The pivoting strategy used is reducible to the Markowitz pivoting algorithm [24].
However, the “fully-substitute” is not the same in this case, as adding x = y to zx +
zy+w+x+y = 0 would result in zx+ zy+w = 0. On the other hand, fully-substituting
x = y into zx + zy + w + x + y = 0 would result in zx + zx + w + x + x = 0 which turns
into w = 0. As you can see, full-substitution is distinct from adding, and is very similar
to what a mathematician would do if solving a system of polynomial equations with a
pencil and paper.

3.4 Results

The first result was 76 rounds, 20 CP and 45 (fixed) key bits of KATAN32, broken faster
than by brute force. To extend this result, we explored using fewer key bits, and more
rounds. First we conducted the above process for 20 CPs, and for 76, 77, 78, 79 and 80
rounds. Every case was run 50 times.

Because we fixed 45 bits of the key, and so assuming one nano-second per round for a
brute force attacker, our attack against r rounds is faster than brute force if and only if it
runs in t seconds with 245t < r28010−9 or more plainly t < r23510−9 ≈ r(34.3597 · · ·).
We also ran trials with 43 bits of the key fixed for 76 rounds and there the threshold
would be 4 times greater or 137.439r seconds and for 41 bits of the key 549.755r
seconds.

The running times are given in Table 2. Observe the enormous variance in each trial.
In some cases, the fastest run is 1000× faster than the slowest. This is very typical in
SAT-solver-based cryptanalysis. We excluded the three fastest and slowest trials and
took the mean and standard deviation of the remaining 44 trials.

The running time of 245 executions, all added together, is the sum of 245 samples
from independent random variables. Therefore, the central limit theorem applies and
regardless of the actual distribution of running times, if the mean is m1 and stdev is
σ1, the sum of 245 of them will be normally distributed and have a mean of 245m1 and
a standard deviation of 222.5σ1. Since σ/m is an important instrument in gauging the
reliability of a normal sample, it is interesting to note here that σ/m (for the sum of
245 execution times) would be 2−22.5(σ1/m1) which is phenomenally tiny. Thus, the
running time of the real-world attacker would be essentially constant.

Notice, that we claim that the 245 running times are independent, but we do not
claim that they are identically distributed. On the other hand, one could conceive of a
cipher where one key bit was ignored by the cipher, in which case the running times for
two keys which differ only in that bit would be highly dependent. These cases are of
pedagogical interest only, because no cipher designer would ever do that.

As can be seen in Table 2, we are between 80.75 and 2.39 times faster than brute
force search for up to and including 79 rounds. In the case of 80 rounds, out of 50 trials,
29 of them timed-out after 1 hour. Since this is majority, it is not possible that the mean
is less than the required 2748.77 seconds, and so we are not faster than brute-force for
80 rounds. For 43 key bits and 41 key bits, the attack becomes vastly more efficient.
But, we cannot test 39 key bits, as the time-out value would have to be set to 167,125
seconds or roughly 46 hours, for each of 50 processes.
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Table 2. Running time and some statistical results for different number of rounds of the prepro-
cessed equations for KATAN32. The running times are in second.

# of rounds 76 77 77 78 79 80 76 76
fixed 45 45 45 45 45 45 43 41

first batch second batch
1 2.89 1.00 2.43 11.04 17.05 59.62 1.50 1.75
2 3.15 2.16 3.69 11.54 24.97 64.61 5.48 1.91
3 3.39 2.25 4.01 14.51 26.86 100.28 15.75 3.36
4 3.39 3.39 4.12 15.83 28.82 135.34 25.88 3.77
5 4.61 3.93 4.40 19.17 54.27 157.10 34.81 5.17
6 6.73 4.16 4.44 24.99 57.02 166.41 39.92 5.65
7 8.29 4.22 4.65 51.46 60.72 230.60 39.97 8.64
8 8.46 4.58 4.72 63.04 64.08 277.04 45.06 11.35
9 11.54 4.81 5.07 86.06 70.34 353.45 50.19 21.71
10 13.15 4.84 6.41 89.89 89.17 354.07 50.79 35.31
11 17.19 4.96 6.81 109.21 109.86 402.56 52.09 41.71
12 17.62 5.44 10.08 115.86 130.28 423.76 60.94 53.7
13 23.64 5.62 14.54 141.19 137.77 433.73 75.35 55.77
14 26.60 5.74 15.03 148.91 145.05 463.78 102.91 61.6
15 27.69 5.83 18.16 161.49 210.29 516.65 116.01 78.29
16 37.32 6.80 18.51 163.23 217.28 687.88 121.89 84.18
17 38.04 7.64 19.51 206.66 269.08 1163.48 123.25 87.51
18 39.67 8.38 21.31 218.43 326.69 1591.56 123.36 104.76
19 48.68 9.54 21.35 230.86 402.61 2180.93 124.39 108.29
20 50.63 10.08 21.57 236.17 408.39 3261.20 131.54 128.62
21 56.51 11.32 22.06 241.45 537.16 3274.25 132.67 138.37
22 62.53 13.81 22.41 248.64 547.32 29 timeouts 134.03 166.93
23 66.03 15.72 22.63 256.66 718.58 207.34 170.14
24 81.25 16.69 27.15 293.66 780.44 208.48 182.83
25 88.88 17.47 28.45 319.31 873.25 233.40 183.9
26 101.43 17.86 32.39 377.06 893.29 258.52 185.41
27 115.13 19.19 45.27 455.50 949.06 300.38 200.08
28 127.09 19.63 49.92 504.97 1007.55 326.94 223.6
29 176.33 22.76 54.80 593.65 1223.91 374.62 246
30 200.26 24.29 54.82 822.36 1244.11 387.17 248.05
31 224.75 29.68 73.71 854.80 1388.40 444.42 254.58
32 243.36 30.09 82.72 880.31 1436.00 449.31 256.05
33 258.53 33.27 85.42 1111.59 1632.59 542.73 263.13
34 278.53 34.02 85.56 1118.54 1838.31 829.13 275.75
35 294.99 35.62 97.22 1197.05 1864.98 905.35 304.75
36 353.49 35.94 97.76 1388.38 1875.87 954.94 305.1
37 407.02 43.33 103.34 1449.29 2031.08 1217.79 305.18
38 423.38 43.65 111.18 1514.89 2038.93 1367.94 328.86
39 475.98 48.18 118.48 1517.73 2167.55 1390.52 352.89
40 506.67 48.22 119.15 1533.10 2262.50 1618.79 356.23
41 687.95 49.96 184.91 1538.97 2369.57 2234.32 403.7
42 842.95 73.62 222.26 1689.96 2413.38 2455.77 407.63
43 942.88 106.69 226.48 1894.40 2495.42 2668.97 418.7
44 2387.95 133.21 335.07 2031.93 2641.90 3246.26 427.04
45 2400.12 186.39 456.45 2375.14 2960.11 3326.73 429.21
46 3722.62 201.89 662.92 2682.71 3460.90 3530.63 555.35
47 4471.28 302.66 815.38 2837.97 4023.81 7157.16 577.3
48 > 6000 344.63 976.94 3731.61 4129.64 9378.05 6248.59
49 > 6000 433.70 2378.61 > 6000 4212.65 > 10,000 6763.91
50 > 6000 524.56 > 6000 > 6000 > 6000 > 10,000 9655.8

Threshold-time 2611.34 2645.70 2645.70 2680.06 2714.42 2748.78 10445.35 41781.40
# faster 47 50 49 48 49 21 48 50
Median 95.16 17.67 30.42 348.19 883.27 n/a 245.96 184.66

Mean of all but 6 463.21 38.98 100.88 768.47 1146.77 n/a 868.70 205.97
Stdev of all but 6 957.09 60.29 168.93 786.56 1054.09 n/a 1381.91 154.29

Kurtosis of all but 6 9.51 9.19 9.30 0.17 -0.12 n/a 9.33 -0.46
Times faster 5.64 67.87 26.23 3.49 2.37 n/a 12.02 202.85

than brute force
Mean of log 4.648 2.914 3.650 5.938 6.369 n/a 5.706 4.810
Stdev of log 1.820 1.185 1.421 1.380 1.396 n/a 1.513 1.319

Kurtosis of log -0.582 -0.470 -0.620 -0.514 -0.985 n/a -0.985 0.867
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In addition to MiniSat, we ran all 50 instances with CryptoMiniSat [26], a SAT-
Solver constructed specifically for cryptography by Mate Soos. However, it was con-
sistently slower than MiniSat. We suspect that this is the case because CryptoMiniSat
was intended to minimize the impact of long-XORs, which are normally very damag-
ing to the running time of SAT-solver methods; however, we have no long-XORs in our
equations, in fact, no sum was longer than 5 symbols after pre-processing, excluding
the constant monomial.

3.5 The Gibrat Hypothesis

In [4], [8] as well as [3], Bard hypothesized that the true distribution of the running times
of a CNF-problem in a polynomial-system-based SAT problem follows the Gibrat dis-
tribution. That is to say, that the logarithm of the running time is normal. The running
times here were such that their standard deviations exceeded the mean. If the distri-
bution of the running time were normal, having σ > µ would imply a very significant
fraction of the running times would be negative. Therefore, it is not possible that the
running time is normally distributed. On the other hand, we also tabulated the mean and
standard deviation of the logarithm.

The ratio of the mean and standard deviation of the logarithm of running times is
much more reasonable. The kurtosis is the typical measurement of the “normalness” of
a distribution and the kurtosis of the logarithms of the running times are far closer to 1
(and are in fact within ±1) than the kurtosis of the running times themselves (which had
kurtoses over 9). So the hypothesis that the running times are Gibrat, from [4], seems
well-justified for these examples.

3.6 A Strange Phenomena

We were perplexed to discover that solving 77 rounds was far easier than solving 76
rounds or 78 rounds. Therefore, we ran the experiments again, with both sets of results
listed in the Table 2 as first batch and second batch. As you can see, in both cases, 77
rounds is much easier than 76 or 78—and with a very large margin. Moreover, this re-
mained true as well in our experiments with CryptoMiniSat. As random variables, the
ith iteration of the 76 round attack and the ith iteration of the 77 round attack had ab-
solute correlation of 0.060419 · · · and likewise between 77 and 78 it was −0.09699 · · ·.
These extremely low correlations make it safe to hypothesize that the running times
are independent and this removes the possibility that the effect is an artifact of some
methodology error. Note, the formula for correlation that we used is

Cor(X ,Y ) =
E(X −µx)E(Y −µy)

σxσy

as is standard. Moreover, we observed the same behaviour when dealing with the size of
the vertex separator in the variable-sharing graph representation of polynomial system
of equations of KATAN32 using the strategy described in [31]. For KATAN32, the size
of vertex separator is not increasing with the number of rounds and as a matter of fact
it fluctuates. We offer no explanation as to the cause of the weakness of the 77-round
version of KATAN32.
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4 AIDA/Cube Attacks

AIDA/cube attacks [16] are generic key-recovery attacks that can be applied to cryp-
tosystems in a black-box setting, that is, the internal structure of the target cipher is
unknown. An important requirement is that the output from the cryptosystem can be
represented as a low-degree decomposition multivariate polynomial in Algebraic Nor-
mal Form (ANF), called master polynomial, in the key and the plaintext. This attack
does not depend on the knowledge of the master polynomial, which may be dense, or
whose representation is so large that it cannot even be stored.

Let p(x1, . . . ,xn,v1, . . . ,vm) denote a master polynomial over GF(2) in ANF, with xi,
1 ≤ i ≤ n and v j,1 ≤ j ≤ m, the public variables (plaintext, IV bits) and v j the secret
key variables. We assume the adversary is allowed to query the master polynomial at
values xi (that is, a chosen-plaintext, chosen-IV setting) of its choice (these are also
called tweakable parameters) and obtain the resulting bit from the master polynomial.
This way, the adversary obtains a system of polynomial equations in terms of secret
variables only. The ultimate goal of the attack is to solve this system of equations, which
reveals the key variables v j. For this attack, the master polynomial is decomposed as
follows:

p(x1, . . . ,xn,v1, . . . ,vm) = tI · pS(I) + q(x1, . . . ,xn,v1, . . . ,vm)

where tI is a monomial containing only public variables from an index set I ⊂
{1,2, . . . ,n} called cube or hypercube; ’+’ stands for bitwise xor; pS(i) is called the
superpoly of I in p. The superpoly of I in p does not contain any common variable
with tI and each monomial in q does not contain at least one variable from I, since they
have all been factored out in pS(I). The pS(I) of interest are linear mappings in terms
of v j’s. Any tI that leads to a linear pS(I) in key bits is called maxterm. The output of
the offline phase of the attack consists of linear equations in the user key bits directly.
Further, Gaussian elimination allows one to reconstruct the user key (independent of
the key schedule algorithm). For instance, let

p(x1,x2,x3,v1,v2,v3,v4) = x2.x3.v3 + x1.x2.v1 + x2.v4 + x1.x3.v2.v3 + x1.x2.v2 + 1

Let I = {1,2}, so that tI = x1.x2 and we have the following decomposition

p(x1,x2,x3,v1,v2,v3,v4) = x1.x2.pS(I) + q

where pS(I) = v1 + v2 and q = x2.x3.v3 + x2.v4 + x1.x3.v2.v3 + 1.
The main motivation for this decomposition of the master polynomial is that the

symbolic sum over GF(2) of all evaluations of p by assigning all possible binary values
to the variables in I (and a fixed value, usually 0, to all the public variables not in I) is
exactly pS(I), the superpoly of tI in p. This is the fundamental theorem in [16]. In the
example,⊕

xi,i∈I

p(x1,x2,x3,v1,v2,v3,v4) = p(0,0,x3,v1,v2,v3,v4)+

p(0,1,x3,v1,v2,v3,v4)+
p(1,0,x3,v1,v2,v3,v4)+
p(1,1,x3,v1,v2,v3,v4) = v1 + v2 = pS(I)
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since tI = 0 whenever either of x1, x2 is zero. In q, since each monomial does not contain
at least one of the variables in tI , each monomial will appear an even number of times
in the summation of p and the xor sum will be zero.

The cube attack has a pre-processing (offline) and an online phase. In the former,
the aim is to find monomials tI’s that lead to linear superpolys. The maxterms are not
key dependent, so they need to be computed only once per master polynomial, for a
fixed number of rounds. For each maxterm, the adversary computes the coefficients
of the v j’s, effectively reconstructing the ANF of the superpoly of each tI . This step
is performed by linearity tests [5]. The main issue in the pre-processing is to find the
correct combination of |I| public variables (out of n) xi that result in linear superpolys.
Since the exact form of the master polynomial is unknown, this step is heuristic and
consists in randomly choosing the cube variables and using linearity tests to check the
superpolys. This phase is performed only once for a given cipher and a fixed number of
rounds.

Besides the linearity tests there are also ’constant’ tests that are used to determine the
constant terms 0 or 1 in the superpoly’s. The public variables not in the maxterms should
be set to the same fixed value in both phases. After a sufficient1 number of linearly
independent (LI) superpolys have been found, the online phase starts by evaluating the
superpolys, that is, summing up p over all the values of the corresponding maxterm,⊕
xi,i∈I

p and deriving the value of the linear combination of secret v j bits. If the degree

of tI is d, each xor sum requires 2d evaluations of p (which implies a chosen-plaintext
setting). Thus, the time and data complexities are proportional to the maximum degree
d among all maxterms.

The online complexity is proportional to 2di encryptions, for a superpoly whose max-
term has di variables, since the ciphertexts have to be collected (and xored) for this same

amount of chosen plaintexts. If t LI superpolys are available, then
t

∑
i=1

2di encryptions

will be needed to recover each superpoly. On the other hand, if the key size is k bits,
then 2k−t encryptions shall be enough to recover the remaining unknown part of the

key. In total, the time complexity becomes 2k−t +
t

∑
i=1

2di .

4.1 Cube Attack on KATAN32

Table 5 shows cubes and maxterms for 50-round KATAN32. The maxterm is shown
in hexadecimal (the bits set to ’1’ are the selected bits) for a compact description in
the tables in the appendix. We used Gaussian elimination to select LI equations. Ex-
perimentally, not all ciphertext bits leak information on the key bits (cube equations).
We found that the same maxterm can be used for different key equations, for distinct
cipher bits. This means that we can save data and computational complexity during
the online phase. Out of the 46 maxterms obtained in total, we observed that the max-
term 1B8EE77Bx gives equations k2 + k12 and k8 + k26 + 1 and a similar phenomenon

1 An ideal quantity is a trade-off between the number of linearly independent superpolys and
the effort to recover the remaining key bits.
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happened for the maxterm EB3AEAE6x and 9CF75766x . Thus, the data complexity
becomes 43 · 220 = 225.42 and the time complexity is 225.42 + 280−46 ≈ 234 50-round
KATAN32 computations.

Table 6 shows cubes and maxterms for 60-round KATAN32. Out of the 41 maxterms
obtained in total, we observed that the maxterm EF2FF9EFx gives equations k26 + 1
and k22 + k32 + 1 and a similar phenomenon happened for the maxterm B7F2DFDFx .
Thus, the data complexity becomes 39 ·225 ≈ 230.28 CP and time complexity is 230.28 +
280−41 = 239 60-round KATAN32 encryptions.

In all our cube attacks, we ran 10,000 linearity tests and then we tested the equations
for 50 distinct random keys to be sure they are correct.

4.2 Cube Attack on KATAN48

Table 8 shows cubes and maxterms for 40-round KATAN48. All 31 obtained maxterms
have degree 20. The data complexity is 31 · 220 ≈= 224.95 CP. The memory cost is
negligible. The computational complexity is 224.95 + 249 ≈ 249 40-round KATAN48
computations, which is dominated by the exhaustive search for the remaining 49 key
bits.

4.3 Cube Attack on KATAN64

Table 9 shows cubes and maxterms for 30-round KATAN64. All 25 maxterms found
have degree 16. The data complexity of the attack is 25 ·216 ≈ 220.64 CP. The memory
cost is negligible. Since only two subkey bits are used per round, there are at most 60
key bits involved in 30 rounds. The time complexity is 220.64 + 260−25 ≈ 235 30-round
KATAN64 computations.

5 Combining Cube and Algebraic Attacks

The bottleneck in cube attacks is that after some rounds, the degree of maxterms be-
comes large. Therefore, it takes a long time to find a linear superpolynomial. But still,
if we even get a few linear superpolynomials, it would help to reduce the complexity of
the classical algebraic attack. In fact, the overall complexity would be the sum of those
two complexities. For a small number of rounds, algebraic attacks are successful, but
for larger number of rounds it becomes slower. In such cases, the result of cube attacks
and classical algebraic attacks can be combined. For instance, observing Table 4, we
have obtained a 3-bit condition on the key bits for 71-round KATAN32 using cube at-
tacks with time complexity 229.58. The complexity of algebraic attack alone is 266.60.
Binding these two attacks reduces the complexity of algebraic attack by 1/8 because it
reduces the number of keys to be guessed from 35 to 32. In fact, we need to guess 3
bits less in order to get the same complexity. So, in Table 4, this reduces our complexity
to 263.60.
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6 Side-Channel Attack for Full-Round KATAN32

In this section we consider side-channel attack models such as [17] in which internal
cipher data leaks after r rounds, where r < 254, of some full-round KATAN cipher.
On one hand, such data is supposed to have been independently captured by some side
channels for instace, power or timing analysis or electromagnetic emanations (which
is a strong assumption). On the other hand, for our attack setting, only one bit of the
cipher state is needed.

The position of the internal cipher data that leaks is selected by the adversary such
that its polynomial representation has low degree d and it can be regarded as ciphertext
bit c j after r rounds. Unlike [17], though, we consider c j to be error free, that is, noise-
free. Cube attacks are further employed to derive information on the key from c j. In this
setting, the same bit c j is supposed to be accessible after each encryption of 2d CP by
the adversary. The adversary chooses different cubes in order to obtain new equations
from c j, all of which are mutually linearly independent.

Table 3. Maxterms, 29 cube equations from ciphertext bit c19 from 40-round KATAN32

Maxterm Degree Cube equation Cipher bit
41356548x 12 k4 c19
2464E14Cx 12 k15 c19
1EA26848x 12 k5 +1 c19
E3516900x 12 k1 +k16 c19
4A8E6888x 12 k0 +k17 +1 c19
EBD02900x 12 k3 +k10 +1 c19
A0867A0Cx 12 k14 +k17 +1 c19
C0C34C43x 12 k4 +k10 +k19 c19
E2A54302x 12 k11 +k15 +k23 c19
9C045983x 12 k2 +k7 +k11 +k16 +k24 +k26 c19
bd30cb11x 15 k13 c19
7c366259x 16 k18 c19
2cd5f264x 16 k6 +k15 +1 c19
b7351759x 18 k3 +k18 +k23 c19
cf9df815x 19 k3 +1 c19
75e471eex 19 k24 +1 c19
65765d7ax 19 k0 +k10 +k16 +k18 +k19 +k26 +k30 +k43 c19
ab7f3a4bx 20 k7 c19
b61d73f9x 20 k8 +1 c19
3d7f3476x 20 k2 +k19 c19
e4f636bex 20 k6 +k16 c19
acd1bbf6x 20 k12 +k20 +k29 c19
bdcddcacx 20 k16 +k21 +k26 +1 c19
deff1456x 20 k7 +k9 +k18 +k26 c19
37d7d2b3x 20 k16 +k23 +k26 +k43 c19
d7035eefx 20 k4 +k8 +k14 +k18 +1 c19
ad754de7x 20 k2 +k16 +k19 +k20 +k26 +k43 c19
17dfaa6dx 20 k13 +k18 +k21 +k22 +k23 +k26 +k30 +1 c19
6afeaf85x 20 k0 +k9 +k18 +k24 +k25 +k26 +k27 +k30 c19
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Table 4. AttackcomplexitiesonKATANfamilyofblockciphers (memorycomplexity isnegligible)

Cipher # Rounds Time1 Time2 Data Fixed Attack Source
KATAN32 40 11 sec 3 KP 0 MiniSat, LI conv. Sect. 3.1

50 234 225.42 CP 0 AIDA/Cube Sect. 4.1
50 11 sec 3 KP 0 MiniSat, LI conv. Sect. 3.1
60 239 230.28 CP 0 AIDA/Cube Sect. 4.1
60 18 sec 3 KP 0 MiniSat, LI conv. Sect. 3.1
65 1.81 min 3 KP 0 MiniSat, LI conv. Sect. 3.1
66 8.85 min 3 KP 0 MiniSat, LI conv. Sect. 3.1
67 26 sec 3 KP 30 MiniSat, LI conv. Sect. 3.1
68 2.55 min 3 KP 30 MiniSat, LI conv. Sect. 3.1
69 47.76 min 3 KP 35 MiniSat, LI conv. Sect. 3.1
70 1.64 min 10 CP 35 MiniSat, LI conv. Sect. 3.1
71 3.58 min 10 CP 35 MiniSat, LI conv. Sect. 3.1
71 3.58 min 10 CP 35 MiniSat & Cube, LI conv. Sect. 5
75 12.50 h 3 KP 35 MiniSat, LI conv. Sect. 3.1
76 1.59 min 20 CP 45 MiniSat, BCJ conv./Pre-Proc Sect. 3.2
76 4.1 min 20 CP 43 MiniSat, BCJ conv.Pre-Proc Sect. 3.2
76 3.08 min 20 CP 41 MiniSat, BCJ conv./Pre-Proc Sect. 3.2
77 18 sec 20 CP 45 MiniSat, BCJ conv./Pre-Proc Sect. 3.2
78 5.80 min 20 CP 45 MiniSat, BCJ conv./Pre-Proc Sect. 3.2
79 14.72 min 20 CP 45 MiniSat, BCJ conv./Pre-Proc Sect. 3.2

254 251 223.80 CP 0 Side-Channel Sect. 6
KATAN48 40 249 224.95 CP 0 AIDA/Cube Sect. 4.2

40 2 sec 5 CP 40 MiniSat, LI conv. Sect. 3.1
50 7 sec 5 CP 40 MiniSat, LI conv. Sect. 3.1
60 13.18 min 5 CP 40 MiniSat, LI conv. Sect. 3.1
61 7.12 min 5 CP 45 MiniSat, LI conv. Sect. 3.1
62 11.86 min 10 CP 40 MiniSat, LI conv. Sect. 3.1
63 17.47 min 10 CP 45 MiniSat, LI conv. Sect. 3.1
64 6.42 h 5 CP 40 MiniSat, LI conv. Sect. 3.1

KATAN64 30 235 220.64 CP 0 AIDA/Cube Sect. 4.3
40 2 sec 5 CP 40 MiniSat, LI conv. Sect. 3.1
50 12 sec 5 CP 40 MiniSat, LI conv. Sect. 3.1
60 3.17 h 5 CP 40 MiniSat, LI conv. Sect. 3.1

Time1: time complexity unit for attacking r rounds is number of r-round KATAN computations.
Time2: clock time for algebraic attacks; KP: known plaintext; CP: chosen plaintext;
LI converter: local interpolation converter; BCJ: Bard-Courtois-Jefferson converter
negl: negligible, Pre-Proc: preprocessed system of equations

In this model, only very few internal cipher bits are allowed to leak. In our case, only
a single internal bit will be used. Assume one can get the value of internal bit c19 after
40 rounds (c.f. Table 3). We can recover 29 key bits via cube attack with data complexity
10 · 212 + 215 + 2 · 216 + 218 + 3 · 219 + 12 · 220 = 223.80 CP. The remaining key bits are
recovered by brute force. This brings about the time complexity of 251 encryptions to
attack the full 254-round KATAN32.
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Table 5. Maxterms, LI cube equations and ciphertext bit for 50-round KATAN32

Maxterm Degree Cube equation Cipher bit
1B8EE77Bx 20 k2 + k12 c10
1B8EE77Bx 20 k8 + k26 +1 c31
B1FF633Ax 20 k16 +1 c10
EB3AEAE6x 20 k22 c9
EB3AEAE6x 20 k16 + k20 + k28 + k31 + k35 + k42 c28
AEF689F9x 20 k16 + k32 +1 c30
56CE3DFAx 20 k12 c10
7FDAA996x 20 k5 c10
D77FE20Ex 20 k25 c28
AF19DFB4x 20 k6 c12
DC3C97EDx 20 k4 + k11 +1 c30
61BC7B9Fx 20 k5 + k20 c9
23B35FD7x 20 k0 c12
9CF75766x 20 k15 +1 c6
9CF75766x 20 k7 +1 c26
E58FB7CAx 20 k22 + k26 c26
C7E6C7CBx 20 k11 + k21 + k31 +1 c10
3E3BE3EAx 20 k13 +1 c10
3FFCCD62x 20 k8 + k10 + k13 + k14 + k20 + k24 c30
EF4FD985x 20 k6 + k11 + k22 + k32 + k33 + k37 c7
2F6D66FAx 20 k3 +1 c31
BE5E19F3x 20 k2 + k7 + k9 + k12 + k16 + k17 + k21 + k26 + k27 + k30 + k34+ c29

k39 + k43
ECDD58BDx 20 k6 + k7 + k16 + k17 + k20 + k23 + k25 + k26 + k27 + k34 +1 c29
DEBCFB22x 20 k4 + k17 + k28 + k35 + k37 + k45 c8
FE3E09D7x 20 k11 + k22 c9
F83B3AEBx 20 k18 c29
BACCAF37x 20 k2 + k12 + k14 + k22 c12
7FD07B66x 20 k15 + k31 +1 c8
BAFEA8D3x 20 k27 c10
AF6AAE75x 20 k1 +1 c9
3ADC3DD7x 20 k0 + k2 + k12 + k20 + k24 + k31 c10
A7D3F749x 20 k2 + k10 + k12 + k21 + k23 + k30 c8
8FF7D615x 20 k16 + k18 + k28 +1 c28
AF88BDFAx 20 k17 c9
FE1A11FFx 20 k5 + k14 + k19 + k22 + k31 +1 c12
DFF9C30Dx 20 k23 c29
95BF5D4Dx 20 k2 + k4 + k7 + k8 + k10 + k14 + k16 + k18 + k22 + k24 + k26+ c6

k35 +1
9DF2EE93x 20 k21 + k38 +1 c27
6DD3973Bx 20 k12 + k14 + k29 c11
A271A7FFx 20 k1 + k9 + k10 + k16 + k20 + k21 +1 c10
F6CDFA15x 20 k8 + k14 + k15 + k18 + k24 + k29 + k33 + k40 c29
5E5AB5EBx 20 k12 + k14 + k16 + k20 + k22 + k25 + k26 + k39 c31
FD847AF6x 20 k24 + k33 +1 c9
F770ECECx 20 k5 + k16 + k24 + k26 + k27 + k30 + k32 + k34 + k35 + k36 + k43 c5
FBAE4E3Ax 20 k7 + k28 + k29 + k33 + k44 +1 c27
EEB6A9A7x 20 k6 + k9 + k16 + k18 + k19 + k25 + k28 + k37 + k38 + k41 + k43+ c7

+k48
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Table 6. Maxterms, cube degree and equations and ciphertext bit for 60-round KATAN32

Maxterm Degree Cube equation Cipher bit
B6F7FAFDx 25 k30 +1 c31
EFE7F6FAx 25 k38 c11
F7CDFFCEx 25 k28 +k30 +k32 +k36 +k40 +k42 +k49 +k50 +1 c31
FEBF7EAEx 25 k28 +k30 +k40 +k54 +1 c14
63D7FFF7x 25 k16 +k26 +k30 +k38 +k40 +k43 +k44 c27
3F7BBF5Fx 25 k8 +k18 +k20 +k26 +k32 c17
EF2FF9EFx 25 k26 +1 c12
EF2FF9EFx 25 k22 +k32 +1 c31
FFF3F573x 25 k15 +k17 +k19 +k23 +k32 +k33 +k35 +k37 +k41 +k43+ c11

k44 +1
DA9EFFF7x 25 k4 +k10 +k14 +k22 +k24 +k29 +k30 +k49 +1 c11
FFD6BABFx 25 k46 c31
FF5777F6x 25 k47 c11
B7F2DFDFx 25 k16 +1 c16
B7F2DFDFx 25 k13 +k16 +1 c17
BDF7FD97x 25 k27 +k34 c11
7FDEBFDCx 25 k14 +k21 +k22 +k41 c15
EFF9B7EDx 25 k13 +k31 +1 c16
FFF5FDCCx 25 k19 +k23 +k27 +k35 +k38 +k43 +k48 +1 c9
EEBB7DF7x 25 k22 +1 c16
F7C6EDFFx 25 k8 +k18 +k35 +k43 +1 c14
FE3BF77Ex 25 k17 +k33 +1 c15
9FFE7FAEx 25 k10 +k18 +k20 +k24 +1 c17
EFFFDD9Ax 25 k38 +k39 c12
FEF7779Bx 25 k23 +k27 c14
CFFF7BE6x 25 k12 c14
EABFF73Fx 25 k32 +k36 +1 c13
BC7FCF7Fx 25 k2 +1 c14
FADFECFBx 25 k43 +1 c14
DDD3FF3Fx 25 k28 +1 c13
EB67DDFFx 25 k16 +k26 +k28 +k35 +k40 +k44 +1 c30
FEEFB8FEx 25 k30 +k32 +k42 c31
3CFFEF7Ex 25 k14 +k16 +k20 +k22 +1 c13
DFEFF4DDx 25 k15 c31
AFBEFDCFx 25 k10 c17
DAF9FFEDx 25 k28 +k32 +k36 +k45 +1 c18
DF733FEFx 25 k16 +k21 +1 c17
BF7BEE6Fx 25 k1 +1 c13
FFEE57FCx 25 k11 +k29 +k33 +k35 +k37 +k39 +k41 +k44 +k45 +k49+ c11

k50 +k51 +k59 +k60 +1
FA7ECFFDx 25 k17 +k22 +k24 +k27 +k28 +k33 +k34 +k39 c16
B9E77FFEx 25 k10 +k20 +k24 +k26 +k28 +k30 +k36 +k37 +k38 +k44+ c11

k53 +1
FF37EDEBx 25 k50 c29
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Table 7. Maxterms, cube degree and equations and ciphertext bit for 71-round KATAN32

Maxterm Degree Cube equation Cipher bit
FFFFD5FCx 27 k52 +k54 +k60 c14
FFFFF7C5x 27 k31 +k51 +k53 +k54 +k64 +k71 c31
FFF3FA7Fx 28 k46 +1 c18

Table 8. Maxterms, cube degree and equations and ciphertext bit for 40-round KATAN48

Maxterm Degree Cube equation Cipher bit
66140B44FE81x 20 k3 +k8 c37
2096B841C6F2x 20 k0 +k6 c18
2004D819B69Fx 20 k8 c46
01E07456499Bx 20 k3 +k12 +k18 +1 c13
874108B1E347x 20 k2 +k9 c43
85DF1310A226x 20 k11 c43
D9F00150D11Ex 20 k1 +k12 +1 c12
204D49C8B56Cx 20 k4 c16
3000F607DC4Ex 20 k6 +1 c43
75045046CC5Ex 20 k9 c15
8D705440E2CBx 20 k5 +k14 +k18 c42
5024603E9A37x 20 k3 +k6 +k8 +k10 +k23 +1 c16
5024603E9A37x 20 k1 +k2 +1 c44
3034E083566Dx 20 k7 +1 c18
81E48D04DB19x 20 k1 +k3 +k5 +k14 +k15 +1 c41
41482473ADB4x 20 k4 +k19 +1 c42
3D4635605382x 20 k13 c39
51902406CABFx 20 k3 +k8 +k10 +1 c44
583088DB0C6Ex 20 k1 +k2 +k9 +k16 c16
5040C4CE9AF1x 20 k0 +k2 +k4 +k21 +1 c41
7749008CBAC1x 20 k1 +k5 +k8 +k10 +k11 +k13 +1 c42
96940C46139Ex 20 k0 +k1 +k9 +k12 +k14 +k20 +1 c41
96800804FF5Bx 20 k0 +k3 +k8 +k9 +k15 +k17 +1 c46
211013326F3Dx 20 k4 +k8 +k10 +k16 +k25 c15
18574012A577x 20 k6 +k8 +k12 +k14 +k29 +1 c47
81668801EE97x 20 k0 +k1 +k5 +k6 +k8 +k9 +k14 +k15 +k31 +1 c46
3050A044F5EDx 20 k1 +k8 +k9 +k13 +k15 +k24 +1 c46
42BF16A44AA0x 20 k7 +k9 +k22 c10
50AD4122AA1Fx 20 k10 +k27 c12
0AAB9004F89Dx 20 k0 +k3 +k10 +k11 +k26 c20
C884A100FCF3x 20 k3 +k11 +k13 +k14 +k15 +k17 +k28 c18
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Table 9. Maxterms, cube degree and equations and ciphertext bit for 30-round KATAN64

Maxterm Degree Cube equation Cipher bit
0CB0C29808C10001x 16 k5 c44
2E2128800020305Ax 16 k4 c7
10E2002920014471x 16 k1 +k5 +k12 c47
0A12042100446263x 16 k8 +k10 +k19 c12
029290CC02C10140x 16 k2 c5
AE0C032002100492x 16 k9 c9
4241092108534C00x 16 k1 c44
0E0864A20828A800x 16 k0 c56
4104901087403083x 16 k7 c8
44010B12812A0124x 16 k3 c49
0200A0D00305E08Ax 16 k3 +k10 c48
041102168238A802x 16 k6 c9
439C00A810940044x 16 k3 +k8 +k17 c9
60910A0B93000802x 16 k1 +k8 c47
018C084049C98003x 16 k0 +k1 +k2 +k8 +k11 c8
3C1500040080C097x 16 k4 +k15 c48
0800FD4900016180x 16 k5 +k9 +k18 c54
002091443A501C40x 16 k2 +k13 c45
1027118032506001x 16 k1 +k5 +k10 +k21 c10
0080DC00814454A8x 16 k5 +k7 +k14 c49
11320C0241095220x 16 k4 +k5 +k7 +k9 +k15 +k20 +k24 c50
8E200808003A8D40x 16 k3 +k6 +k12 +k16 c51
00458C3220521011x 16 k0 +k2 +k5 +k10 +k11 +k13 +k20 c11
4024935C01018048x 16 k0 +k5 +k9 +k11 +k22 c49
8004007882307052x 16 k0 +k6 +k12 +k23 c6

7 Conclusions

This paper described algebraic, AIDA/cube and side-channel attacks on the KATAN
family of block ciphers [13]. A new feature observed in cube attacks is that the same
maxterm suggests more than one linear independent equation on the key bits. This phe-
nomenon leads to a reduction in the data complexity of our attacks.

For algebraic attacks, deploying pre-processing step on the system of equations be-
fore feeding it to the SAT solvers decreases the complexity of the attack for KATAN32.
As topic for further research, this method can be tried on other family members.

In the side-channel attack for KATAN32, we observed significant leakage from bit
19 after 40 rounds. More specifically, we could recover 29 linear independent equations
on the key bits. Surprisingly enough, this bit position is exactly the LSB of register
L1. This finding is similar to the structure of chosen plaintexts picked in attacking var-
ious versions using SAT solvers (Sect. 3.1). We leave similar side-channel analysis of
KATAN48 and KATAN64 as future work.

Table 4 summarizes the attack complexities on the KATAN family of block ciphers.
In this table, we keep two different time complexities: Time1 and Time2, since there
is no straightforward and unique way to convert one into the other. Recall that Time1
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measures the effort in number of encryptions, while Time2 measures the effort in clock
time. The former is used for attacks that explicitly perform partial encryption or decryp-
tion, while the latter is used for attacks related to internal operations in SAT solvers.
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Abstract. In this paper we present a new statistical cryptanalytic tech-
nique that we call improbable differential cryptanalysis which uses a dif-
ferential that is less probable when the correct key is used. We provide
data complexity estimates for this kind of attacks and we also show a
method to expand impossible differentials to improbable differentials.
By using this expansion method, we cryptanalyze 13, 14, and 15-round
CLEFIA for the key sizes of length 128, 192, and 256 bits, respectively.
These are the best cryptanalytic results on CLEFIA up to this date.
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1 Introduction

Statistical attacks on block ciphers make use of a property of the cipher so
that an incident occurs with different probabilities depending on whether the
correct key is used or not. For instance, differential cryptanalysis [1] considers
characteristics or differentials which show that a particular output difference
should be obtained with a relatively high probability when a particular input
difference is used. Hence, when the correct key is used, the predicted differences
occur more frequently. In a classical differential characteristic the differences are
fully specified and in a truncated differential [2] only parts of the differences are
specified.

On the other hand, impossible differential cryptanalysis [3] uses an impossible
differential which shows that a particular difference cannot occur for the correct
key (i.e. probability of this event is exactly zero). Therefore, if these differences
are satisfied under a trial key, then it cannot be the correct one. Thus, the correct
key can be obtained by eliminating all or most of the wrong keys.

In this paper we describe a new variant of differential cryptanalysis in which
a given differential holds with a relatively small probability. Therefore, when the
correct key is used, the predicted differences occur less frequently. In this respect,
the attack can be seen as the exact opposite of (truncated) differential crypt-
analysis. For this reason, we call this kind of differentials improbable differentials
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and we call the method improbable differential cryptanalysis. Early applications
of improbable events in differential attacks were mentioned in [4] and [5].

Accurate estimates of the data complexity and success probability for many
statistical attacks are provided by Blondeau et al. in [6,7] but these estimates
work for the cases when an incident is more probable for the correct key. We make
necessary changes on these estimates to be able to estimate data complexity and
success probability of improbable differential attacks.

Moreover, we show that improbable differentials can be obtained when suit-
able differentials that can be put on the top or the bottom of an impossible
differential exist. Expanding an impossible differential to an improbable differ-
ential in this way can be used to distinguish more rounds of the cipher from a
random permutation; or it can be turned into an improbable differential attack
that covers more rounds than the impossible differential attack.

CLEFIA [8] is a 128-bit block cipher developed by Sony Corporation that has
a generalized Feistel structure of four data lines. Security evaluations done by
the designers [8,9] show that impossible differential attack is one of the most
powerful attacks against CLEFIA for they provided 10, 11, and 12-round im-
possible differential attacks on CLEFIA for 128, 192, and 256-bit key lengths,
respectively. In [10,11], Tsunoo et al. provided new impossible differential at-
tacks on 12, 13, and 14-round CLEFIA for 128, 192, and 256-bit key lengths,
respectively. Moreover, in [12], Zhang and Han provided a 14-round impossible
differential attack on 128-bit keyed CLEFIA but due to the arguments on the
time complexity, it remains unknown whether this attack scenario is successful
or not.

In this work, we expand the 9-round impossible differentials introduced in
[10] to 10-round improbable differentials and use them to attack 13, 14, and 15-
round CLEFIA for 128, 192, and 256-bit key lengths, respectively. To the best of
our knowledge, these are the best cryptanalytic results on CLEFIA. The paper
is organized as follows: The description of the improbable differential attack,
estimates of the data complexity, and expansion of impossible differentials to
improbable differentials are given in Sect. 2. The notation and the description of
CLEFIA is given in Sect. 3. In Sect. 4, we expand 9-round impossible differentials
on CLEFIA to 10-round improbable differentials and use them to attack 13, 14,
and 15-round CLEFIA. We conclude our paper with Sect. 5.

2 Improbable Differential Cryptanalysis

Statistical attacks on block ciphers make use of a property of the cipher so that
an incident occurs with different probabilities depending on whether the correct
key is used or not. We denote the probability of observing the incident under a
wrong key with p and p0 denotes the probability of observing the incident under
the correct key.

In previously defined statistical differential attacks on block ciphers, a dif-
ferential is more probable for the correct key than a random key (i.e. p0 > p).
Moreover, an impossible differential attack uses an impossible differential that
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is not possible when tried with the correct key (i.e. p0 = 0). We define the im-
probable differential attack as a statistical differential attack in which a given
differential is less probable than a random key (i.e. p0 < p). Hence, improbable
differential attacks can be seen as the exact opposite of differential attacks.

We aim to find a differential with α input difference and β output difference
so that these differences are observed with probability p0 for the correct key and
with probability p for a wrong key where p0 < p. One way of obtaining such
differences is by finding nontrivial differentials that have α input difference and
an output difference other than β, or vice versa. Hence these differentials reduce
the probability of observing the differences α and β under the correct key.

We define an improbable differential as a differential that does not have the
output difference β with a probability p′, when the input difference is α. Thus, p′

denotes the total probability of nontrivial differentials having α input difference
with an output difference other than β. Hence for the correct key, probability
of observing the α and β differences (i.e. satisfying the improbable differential)
becomes p0 = p · (1 − p′). Note that p0 is larger than p · (1 − p′) if there are
nontrivial differentials having α input difference and β output difference. Hence
the attacker should check the existance of such differentials.

An improbable differential can be obtained by using a miss in the middle
[3] like technique which we call the almost miss in the middle technique. Let
α difference becomes δ with probability p1 after r1 rounds of encryption and β
difference becomes γ after r2 rounds of decryption as shown in Fig. 1. With the
assumption that these two events are independent, if δ is different than γ, then α
difference does not become β with probability p′ = p1 · p2 after r1 + r2 rounds of
encryption. Note that p1 and p2 equal to 1 in the miss in the middle technqiue.
Furthermore, we define an expansion method for constructing an improbable
differential from an impossible differential in Sect. 2.2.

Note that the impossible differential attacks can be seen as a special case of
improbable differential attacks where the probability p′ is taken as 1.

p1

p2

p’=p1
.p2

Fig. 1. Almost miss in the middle technique
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2.1 Data Complexity and Success Probability

Since p0 is less than p, our aim is to use N plaintext pairs and count the hits that
every guessed subkey gets and expect that the counter for the correct subkey
to be less than a threshold T . Number of hits a wrong subkey gets can be seen
as a random variable of a binomial distribution with parameters N , p (and a
random variable of a binomial distribution with parameters N , p0 for the correct
subkey). We denote the non-detection error probability with pnd which is the
probability of the counter for the correct subkey to be higher than T . And we
denote the false alarm error probability with pfa which is the probability of the
counter for a wrong subkey to be less than or equal to T . Therefore, the success
probability of an improbable differential attack is 1 − pnd.

Accurate estimates of the data complexity and success probability for many
statistical attacks are provided by Blondeau et al. in [6,7] and these estimates
can be used for improbable differential attacks with some modifications. Unlike
improbable differential cryptanalysis, in most of the statistical attacks p0 > p
and this assumption is made throughout [6]. Hence, we need to modify the
approximations N ′, N ′′ and N∞ of the number of required samples N that are
given in [6] for the p0 < p case in order to use them for improbable differential
attacks. We first define the Kullback-Leibler divergence which plays an important
role in these estimates.

Definition 1 (Kullback-Leibler divergence [13]). Let P and Q be two
Bernoulli probability distributions of parameters p and q. The Kullback - Leibler
divergence between P and Q is defined by

D(p||q) = p ln
(

p

q

)
+ (1 − p) ln

(
1 − p

1 − q

)
.

Secondly, we modify Algorithm 1 of [6] for the p0 < p case which computes the
exact number of required samples N and corresponding relative threshold τ := T

N
to reach error probabilities less than (pnd, pfa). The estimates for non-detection
and false alarm error probabilities are denoted by Gnd(N, τ) and Gfa(N, τ).

Algorithm 1. [from [6], modified for the p0 < p Case]
Input: p0, p, pnd, pfa

Output: N , τ
τmin := p0, τmax := p
repeat

τ := τmin+τmax

2
Compute Nnd such that ∀N > Nnd, Gnd(N, τ) ≤ pnd

Compute Nfa such that ∀N > Nfa, Gfa(N, τ) ≤ pfa

if Nnd > Nfa then τmin = τ
else τmax = τ

until Nnd = Nfa

N := Nnd

Return N , τ
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Nnd and Nfa can be calculated by a dichotomic search and the following
Equations 1 and 2 can be used for the estimates Gnd(N, τ) and Gfa(N, τ),
respectively. The number of samples obtained from the algorithm with these
estimates is denoted by N∞.

Theorem 1 ([14]). Let p0 and p be two real numbers such that 0 < p0 < p < 1
and let τ such that p0 < τ < p. Let Σ0 and Σk follow a binomial law of respective
parameters (N, p0) and (N, p). Then as N → ∞,

P (Σ0 ≥ τN) ∼ (1 − p0)
√

τ

(τ − p0)
√

2πN(1 − τ)
e−ND(τ ||p0), (1)

and

P (Σk ≤ τN) ∼ p
√

1 − τ

(p − τ)
√

2πNτ
e−ND(τ ||p). (2)

A simple approximation N ′ of N is defined in [6] when the relative threshold is
chosen as τ = p0 which makes non-detection error probability pnd of order 1/2.
We define N ′ for the p0 < p case as in [15]:

Proposition 1. For a relative threshold τ = p0, a good approximation of the
required number of pairs N to distinguish between the correctly keyed permutation
and an incorrectly keyed permutation with false alarm probability less than or
equal to pfa is

N ′ = − 1
D(p0||p)

[
ln

(
ν · pfa√
D(p0||p)

)
+ 0.5 ln(− ln(ν · pfa))

]
(3)

where

ν =
(p − p0)

√
2πp0

p
√

(1 − p0)
.

In [6] a good approximation of N ′ which is also valid for the p0 < p case is
defined as follows

N ′′ = − ln(2
√

πpfa)
D(p0||p)

. (4)

2.2 Improbable Differentials from Impossible Differentials

An improbable differential can be obtained by combining a differential (or two)
with an impossible differential in order to obtain improbable differentials cover-
ing more rounds. Let δ � γ be an impossible differential and α → δ and γ ← β
be two differentials with probabilities p1 and p2, respectively. Then we can con-
struct improbable differentials α � γ, δ � β and α � β with probabilities p′

equal to p1, p2 and p1 · p2 as shown in Fig. 2.
This expansion method can be used to construct improbable differentials to

distinguish more rounds of the cipher from a random permutation; or an im-
possible differential attack can be turned into an improbable differential attack
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p’=1

p1

p’=p1

p2

p’=p2

p1

p2

p’=p1.p2

Impossible Differential Expanded Improbable Differentials

Fig. 2. Expansion of an impossible differential to improbable differentials

on more rounds of the cipher when suitable differentials α → δ or γ ← β exist.
However, such a conversion might require more data to obtain the correct key
and hence result in higher data and time complexity. If the size of the guessed
key decreases in the converted improbable differential attack, so does the mem-
ory complexity. The guessed subkeys can be represented by one bit of an array
in impossible differential attacks. However, we need to keep counters for the
subkeys in improbable differential attacks and hence the memory complexity is
higher when the same number of subkeys are guessed.

3 Notation and the CLEFIA

3.1 Notation

We use the notations provided in Table 1 in the following sections.

3.2 CLEFIA

CLEFIA is a 128-bit block cipher having a generalized Feistel structure with
four data lines. For the key lengths of 128, 192, and 256 bits, CLEFIA has 18,

Table 1. Notation

a(b) b denotes the bit length of a
a|b Concatenation of a and b
[a, b] Vector representation of a and b
at Transposition of a vector a
a ⊕ b Bitwise exclusive-OR (XOR) of a and b

[x{i,0}, x{i,1}, x{i,2}, x{i,3}] i-th round output data
Δa XOR difference for a
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22, and 26 rounds. Each round contains two parallel F functions, F0 and F1 and
their structures are shown in Fig. 3 where S0 and S1 are 8 × 8-bit S-boxes. The
two matrices M0 and M1 that are used in the F-functions are defined as follows.

M0 =

⎛
⎜⎜⎝

0x01 0x02 0x04 0x06
0x02 0x01 0x06 0x04
0x04 0x06 0x01 0x02
0x06 0x04 0x02 0x01

⎞
⎟⎟⎠ , M1 =

⎛
⎜⎜⎝

0x01 0x08 0x02 0x0a
0x08 0x01 0x0a 0x02
0x02 0x0a 0x01 0x08
0x0a 0x02 0x08 0x01

⎞
⎟⎟⎠ .

The encryption function uses four 32-bit whitening keys (WK0, WK1,
WK2, WK3) and 2r 32-bit round keys (RK0, . . . , RK2r−1) where r is the
number of rounds. We represent the bytes of a round key as RKi =
RKi,0|RKi,1|RKi,2|RKi,3. The encryption function ENCr is shown in Fig. 4.

k0 k3k2k1

x0

x1
x2

x3

y0
y1

y2

y3

k0 k3k2k1

x0

x1
x2

x3
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y1

y2

y3

S0

S1

S0

S1

S1

S0

S1

S0

M0

M1

F0

F1

Fig. 3. F0 and F1 functions
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C0 C1 C2 C3

Fig. 4. Encryption function

4 Improbable Differential Attacks on CLEFIA

In this section, we present 10-round improbable differentials and introduce an
improbable differential attack on 13-round CLEFIA with key length of 128 bits.
We also introduce improbable differential attacks on 14 and 15-round CLEFIA
for key lengths 196 and 256 bits in Appendix A and B. Moreover, we provide a
practical improbable differential attack on 6-round CLEFIA in Appendix C. In
these attacks our aim is to derive the round keys and we do not consider the key
scheduling part as done in [9,10,11].
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4.1 10-Round Improbable Differentials

We will use the following two 9-round impossible differentials that are introduced
in [10],

[0(32), 0(32), 0(32), [X, 0, 0, 0](32)] �9r [0(32), 0(32), 0(32), [0, Y, 0, 0](32)]
[0(32), 0(32), 0(32), [0, 0, X, 0](32)] �9r [0(32), 0(32), 0(32), [0, Y, 0, 0](32)]

where X(8) and Y(8) are non-zero differences. We obtain 10-round improbable
differentials by adding the following one-round differentials to the top of these
9-round impossible differentials,

[[ψ, 0, 0, 0](32), ζ(32), 0(32), 0(32)] →1r [0(32), 0(32), 0(32), [ψ, 0, 0, 0](32)]
[[0, 0, ψ, 0](32), ζ′(32), 0(32), 0(32)] →1r [0(32), 0(32), 0(32), [0, 0, ψ, 0](32)]

which hold when the output difference of the F0 function is ζ (resp. ζ′) when the
input difference is [ψ, 0, 0, 0] (resp. [0, 0, ψ, 0]). We choose ψ and corresponding
ζ and ζ′ depending on the difference distribution table (DDT) of S0 in order to
increase the probability of the differential. One can observe that the values 10, 8,
6 and 4 appear 9, 119, 848 and 5037 times in the DDT of S0, respectively. When
ψ, ζ and ζ′ is chosen according to these differences, the average probability of
the 10-round improbable differentials becomes

p′ = ((9 · 10 + 119 · 8 + 848 · 6 + 5037 · 4)/256)/6013 ≈ 2−5.87.

4.2 Improbable Differential Attack on 13-Round CLEFIA

We put one additional round on the plaintext side and two additional rounds
on the ciphertext side of the 10-round improbable differentials to attack first 13
rounds of CLEFIA that captures RK1, RK23,1 ⊕ WK2,1, RK24, and RK25.

We place the whitening key WK2 at the XOR with the 11th-round output
word x{11,2} and XOR with RK23. Moreover, we place the whitening key WK1
at the XOR with the first round output word x{1,2}, as shown in Fig. 5. These
movements are equivalent transformations.

Data Collection. For a single choice of ψ and corresponding ζ values, we
choose 2K structures of plaintexts where the first word x{1,0} and the second,
third and fourth bytes of the second word x{1,1} are fixed (similarly, we fix the
first, second and fourth bytes of the second word x{1,1} for a choice of ψ and
ζ′). We construct pairs where the first byte (resp. third byte) of the second word
x{1,1} has the difference ψ, the third word x{1,2} has the difference ζ (resp. ζ′)
and the fourth word x{1,3} has the same difference with the output of F1, which
is obtained from the guessed round key RK1, when the input difference of F1 is
ζ (resp. ζ′). Such a structure proposes 2 · 6013 · 271 pairs.

We keep the ciphertext pairs having the difference [0, [0, Y, 0, 0], β, γ] where γ
is non-zero and β represents every 255 difference value that can be obtained from
the multiplication of M1 with [0, Y, 0, 0]t. Such a difference in the ciphertext pairs
is observed with a probability of 1/232 · 255/232 · 255/232 · (232 − 1)/232 ≈ 2−80.
Therefore, 6013 · 2K−8 pairs remain.
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x{0,0}=0 x{0,1}=[ ,0,0,0] x{0,2}= x{0,3}=X

x{1,0}=[ ,0,0,0] x{1,1}= x{1,2}=0 x{1,3}=0

x{11,3}=0x{11,2}=[0,Y,0,0]x{11,1}=0x{11,0}=0

x{12,3}=0x{12,2}=x{12,1}=[0,Y,0,0]x{12,0}=0
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Fig. 5. Improbable differential attack on 13-round CLEFIA

Key Recovery. We keep counters for RK23,1 ⊕ WK2,1|RK24|RK25 for every
guess of RK1 and increase the corresponding counter when the improbable differ-
ential is obtained with a guessed key. Keys satisfying the improbable differential
are obtained by differential table look-ups indexed on the input and the output
differences of the 12th-round F1 and 13th-round F1. The probability of satis-
fying the improbable differential for a wrong key is p = 2−40 from the average
probabilities 2−8 and 2−32 for the 12th and 13th-round F1 functions respectively.
Therefore, the probability of obtaining the improbable differential for the correct
key is p0 = p · (1 − p′) ≈ 2−40.02.

During the attack we try to obtain the 104-bit round key, namely RK1,
RK23,1 ⊕ WK2,1, RK24, RK25 and for the correct key to get the least num-
ber of hits, false alarm probability pfa must be less than 2−104. Feeding the
Algorithm 1 with the inputs p, p0, pfa = 2−105, and pnd = 1/100 shows that
when the threshold T is 673474 < 220, N∞ ≈ 259.38 pairs are needed for the
correct key to remain below the threshold and all of the wrong ones to remain
above it with a success probability of 99%.

Attack Complexity. With the 280 ciphertext filtering conditions, we need 280 ·
259.38 = 2139.38 pairs to perform the attack. Since we have 6013 choices for ψ,
we need 2K ≈ 254.83 structures so that 6013 · 272+K = 2139.38. Hence, the data
complexity of the attack is 2126.83 chosen plaintexts.
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For every guess of RK1 and RK24 and for every choice of ψ, we perform 259.38

F-function computations which is 264 · 259.38 · 1/2 · 1/13 ≈ 2118.68 encryptions.
However, the time complexity is 2126.83 encryptions for obtaining the ciphertexts.

The memory complexity of the attack comes from the 20-bit counters kept
for the 104-bit round keys RK1|RK23,1 ⊕ WK2,1|RK24|RK25, which require
20 · 2104 ≈ 2108.32 bits.

5 Conclusion

In previously defined statistical differential attacks on block ciphers, attacker’s
aim is to find an incident that is more probable for the correct key than a random
key. Moreover, an impossible differential attack uses an impossible differential
that is not possible when tried with the correct key. However, in this paper we
introduced the improbable differential attack in which a given differential is less
probable when tried with the correct key. Hence the impossible differential attack
is just a special case of the improbable differential attack. We also modified the
data complexity estimates given for statistical attacks by Blondeau et al. in order
to use them in improbable differential attacks.

Moreover, we defined the almost miss in the middle technique for obtaining
improbable differentials and we introduced a method for expanding impossible
differentials to improbable differentials when suitable differentials that can be
put on the top or the bottom of an impossible differential exist. Finally, we
proposed improbable differential attacks on 13, 14, and 15-round CLEFIA by
using this expansion method. To the best of our knowledge, these are the best
cryptanalytic results on CLEFIA. Results of these improbable differential attacks
and the impossible differential attacks of [10] on CLEFIA are summarized in
Table 2.

In order to provide security against improbable attacks, block cipher designers
should ensure that their designs contain no good improbable differentials. Since
the almost miss in the middle technique uses two truncated differentials, pro-
viding upper bounds for truncated differentials may be used to provide security
against improbable attacks.

Table 2. Results of the impossible differential attacks of [10] and improbable differen-
tial attacks on CLEFIA

#Rounds Attack Key Length Data Time Memory Success Reference
Type Complexity Complexity (blocks) Probability

12 Impossible 128, 192, 256 2118.9 2119 273 - [10]
13 Improbable 128, 192, 256 2126.83 2126.83 2101.32 %99 Sect. 4.2
13 Impossible 192, 256 2119.8 2146 2120 - [10]
14 Improbable 192, 256 2126.98 2183.17 2126.98 %99 App. A
14 Impossible 256 2120.3 2212 2121 - [10]
15 Improbable 256 2127.40 2247.49 2127.40 %99 App. B



The Improbable Differential Attack 207

Acknowledgments

I would like to express my deep gratitude to Ali Aydın Selçuk for his review and
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A Improbable Differential Attack on 14-Round CLEFIA

We expand our 13-round attack by one round on the ciphertext side to break
14-round CLEFIA for the key length of 192 or 256 bits. This attack captures
168 bits of the round keys, namely RK1, RK23,1, RK24 ⊕ WK3, RK25 ⊕WK2,
RK26, and RK27.

We move the whitening keys WK1, WK2, and WK3 in the same way as in
the 13-round attack.

Data Collection. We generate pairs in the same way as in the 13-round attack
and we want 13th-round output difference to be [[0, Y, 0, 0], β, γ, 0] to perform
the attack. Consequently, we keep the ciphertext pairs satisfying the difference
[[0, Y, 0, 0], β′, γ, δ] where γ and δ are non-zero and β′ is the XOR of β with the
255 possible values that can be obtained from the multiplication of M0 with
[0, Y, 0, 0]t. Such a difference in ciphertext pairs is observed with a probability
of 255/232 · ((255 · 255)/232 · (232 − 1)/232 · (232 − 1)/232 ≈ 2−40. Therefore,
6013 · 2K+32 pairs remain.

Key Recovery. We guess the second byte of RK24 and check if the second
word of the output of 13th-round has difference β. The probability of this event
is 2−8 and therefore, 6013 · 2K+24 pairs remain. In order to check whether the
72-bit key RK23,1|RK25 ⊕ WK2|RK27 satisfies the improbable differential, we
use differential tables indexed on the input and output differences of the 12th-
round, 13th-round and 14th-round F1 functions. The input values of these F1
functions are obtained by the guesses of RK24 ⊕ WK3 and the first, third and
fourth bytes of RK26. The input of the 13th-round F0 is obtained from RK27
candidates.

The probability of a candidate key to satisfy the improbable differential using
three F1 differential tables is p = 2−72 from the average probabilities 2−8, 2−32

and 2−32 for the 12th, 13th and 14th-round F1 functions, respectively. Feeding
the Algorithm 1 with the inputs p, p0, pfa = 2−169, and pnd = 1/100 shows that
when the threshold T is 1022026 < 220, N∞ ≈ 291.98 pairs are needed for the
correct key to remain below the threshold and all of the wrong ones to remain
above it with a success probability of 99%.

Keeping a key table for the attacked 168 key bits would require a memory
that exceeds 2128 blocks where a block is 128 bits long. For this reason, we keep
all of the 2126.98 plaintexts in a table, then guess RK1 and choose the plaintext
pairs for the attack.

Attack Complexity. We need 291.98+40+8 = 2139.98 pairs in total to perform
the attack. Since we have 6013 choices for ψ, we need 2K ≈ 254.98 structures
so that 6013 · 272+K = 2139.98. Hence, the attack has data complexity of 2126.98

chosen plaintexts.
For every guess of RK1, RK24⊕WK3, and RK26, we perform 291.98 F-function

computations which is 296 · 291.98 · 1/2 · 1/14 ≈ 2183.17 encryptions.
We keep 20-bit counters for the 72-bit keys RK23,1|RK25 ⊕ WK2|RK27 but

the memory complexity is dominated by the ciphertext table of 2126.98 blocks.
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B Improbable Differential Attack on 15-Round CLEFIA

We expand the 14-round improbable differential attack by one round on the
ciphertext side to attack 15-round CLEFIA in which we exhaustively search for
the 15th-round keys RK28 and RK29. Our aim is to obtain the value of the 232-
bit round key, namely RK1, RK23,1, RK24, RK25, RK26⊕WK3, RK27⊕WK2,
RK28 and RK29.

We move the whitening keys WK1, WK2, and WK3 in the same way as in
the 14-round attack.

For the inputs p = 2−72, p0, pfa = 2−233, and pnd = 1/100, Algorithm 1
produces the outputs N∞ ≈ 292.40 and T = 1361613 < 221. Hence, the data
complexity of the attack is 2127.40 chosen plaintexts and the memory complexity
is 2127.40 blocks.

The time complexity of the attack comes from 292.40 F-function computations
for RK1, RK24, RK26 ⊕ WK3 guesses and the exhaustive search of RK28 and
RK29, which is 292.40 · 296 · 2 · 264 · 1/2 · 1/15 ≈ 2247.49 encryptions.

C Practical Improbable Differential Attack on 6-Round
CLEFIA

From the 9-round impossible differential used in Sect. 4, one can easily obtain
the following 4-round impossible differential

[0(32), 0(32), 0(32), [ψ, 0, 0, 0](32)] �4r [?(32), ?(32), ?(32), ψ
′
(32)]

where ψ′ is any difference other than ψ. We obtain a 5-round improbable differ-
ential by adding the following 1-round differential

[[ψ, 0, 0, 0](32), ζ(32), 0(32), 0(32)] →1r [0(32), 0(32), 0(32), [ψ, 0, 0, 0](32)]

to the top of the 4-round impossible differential. The differential holds with
probability p′ = 10/256 if we choose ψ = 08000000x and ζ = 7EFCE519x.

In order to attack 6-round CLEFIA, we prepare plaintext pairs with the dif-
ference [[ψ, 0, 0, 0](32), ζ(32), 0(32), 0(32)]. Then we guess RK11 and increase the
counter for the guessed RK11 if X5,3 has the difference ψ′

(32). We expect the
correct RK11 to have the smallest counter.

Feeding the Algorithm 1 with the inputs p = 1 − 2−32, p0 = p · (1 − 10/256),
pfa = 2−33, and pnd = 1/100 shows that when the threshold T is 184, N∞ = 185
pairs are needed for the correct RK11 to remain below the threshold and all of
the wrong ones to remain above it with a success probability of 99%.
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Abstract. We present the concept of greedy distinguishers and show
how some simple observations and the well known greedy heuristic can
be combined into a very powerful strategy (the Greedy Bit Set Algo-
rithm) for efficient and systematic construction of distinguishers and
nonrandomness detectors. We show how this strategy can be applied to
a large array of stream and block ciphers, and we show that our method
outperforms every other method we have seen so far by presenting new
and record-breaking results for Trivium, Grain-128 and Grain v1.

We show that the greedy strategy reveals weaknesses in Trivium re-
duced to 1026 (out of 1152) initialization rounds using 245 complexity –
a result that significantly improves all previous efforts. This result was
further improved using a cluster; 1078 rounds at 254 complexity. We also
present an 806-round distinguisher for Trivium with 244 complexity.

Distinguisher and nonrandomness records are also set for Grain-128.
We show nonrandomness for the full Grain-128 with its 256 (out of
256) initialization rounds, and present a 246-round distinguisher with
complexity 242.

For Grain v1 we show nonrandomness for 96 (out of 256) initialization
rounds at the very modest complexity of 27, and a 90-round distinguisher
with complexity 239.

On the theoretical side we define the Nonrandomness Threshold, which
explicitly expresses the nature of the randomness limit that is being
explored.

Keywords: algebraic cryptanalysis, distinguisher, nonrandomness de-
tector, maximum degree monomial, Trivium, Grain, Rabbit, Edon80,
AES, DES, TEA, XTEA, SEED, PRESENT, SMS4, Camellia, RC5,
RC6, HIGHT, CLEFIA, HC, MICKEY, Salsa, Sosemanuk.

1 Introduction

The output of a sensibly designed cipher should appear random to an external
observer. Given a random-looking bit sequence, that observer should not be able
to tell if the sequence is genuinely produced by the cipher in question or not.
This simple idea is the core of cryptographic distinguishers and nonrandomness
detectors.
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Recently we have seen several attempts at finding distinguishers and non-
randomness detectors and the best ones seem to be built using the maximum
degree monomial test (see [27,11]) or some derivative of it. This test is superb
for detecting nonrandomness, but it also provides a window into the internals of
the cryptographic algorithm we are examining. The maximum degree monomial
test can provide statements such as “The IV bits are not mixed properly”, which
can be invaluable to the algorithm designer.

The core of this test is a bit set, and the efficiency of the test is largely
determined by how this bit set is selected. For this selection process, it seems
that guesswork has been the most prominent ingredient. The reason for this
may be that systematic methods have seemed too complicated to find or use,
or simply that the importance of bit set selection has been underestimated. By
far, the best systematic approach we have seen so far was due to Aumasson
et al. [2]. They used a genetic algorithm to select a bit set, and this is a very
reasonable approach for unknown and complex searchspaces. The complexity of
the searchspace depends on the algorithm we are examining, but are they really
so complex that we need to resort to such methods? In this paper we present
a very simple deterministic and systematic approach that outperforms all other
methods we have seen so far. We call it the Greedy Bit Set Algorithm.

Stream ciphers have an initialization phase, during which they “warm up” for
a number of rounds before they are deemed operational. Block ciphers are not
explicitly initialized in this way, but they do operate in rounds. For our purposes,
this can be translated into an initialization phase.

How many rounds are needed to warm up properly? This is a question that
every algorithm designer has been faced with, but we have not yet seen any
satisfactory answer to this question. We make some observations that lead us to a
definition of the Nonrandomness Threshold, which helps us to better understand
the nature of the problem. The Greedy Bit Set Algorithm is a tool that can
and should be used by designers to determine realistic lower bounds on the
initialization period for their algorithm.

We go on to show how the Greedy Bit Set Algorithm performs against a
wide variety of new and old stream and block ciphers, and we find new record-
breaking results for Trivium, Grain-128 and Grain v1. We reveal weaknesses
in Trivium reduced to 1026 out of 1152 initialization rounds in 245 complexity,
thereby significantly improving all previous efforts. By using a cluster we are
able to improve this result even further to 1078 rounds at 254 complexity. For
Trivium we also present a new 806-round distinguisher of complexity 244. Both
distinguishing and nonrandomness records are also set for Grain-128. We show
nonrandomness in 256 (out of 256) initialization rounds, and present a 246-round
distinguisher with complexity 242. For Grain v1 we show nonrandomness for 96
(out of 256) initialization rounds for a cost of only 27.

The paper is organized as follows. In Section 2 we give an overview of the black
box model attack scenario and explain the maximum degree monomial test. We
also briefly describe the software tools developed for this paper. In Section 3
we present our Greedy Bit Set Algorithm, comment on the importance of key
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weight and define the Nonrandomness Threshold. In Sections 4 and 5 we present
and summarize our findings for the various algorithms. Finally, some concluding
remarks are given in Section 6.

As a frame of reference, this article takes Filiol [12], Saarinen [27] and Englund
et al. [11] as a starting point, and the most relevant previous work is due to
Aumasson et al. [1,2] (see also Knudsen and Rijmen [19], Vielhaber [30], Dinur
and Shamir [10] and Fischer, Khazaei and Meier [13]).

2 Background

2.1 The Black Box Model

Distinguishers may be built for block ciphers, stream ciphers, MACs, and so
on, so adopting a black-box view of the cryptographic primitive is instructive.
Consider the set-up in Fig. 1, dividing entities into potential input and output
parameters to the left and right, respectively.

Black
box

Key �
IV �
Plaintext �

Ciphertext �

Fig. 1. Black box view of a cipher

A distinguisher attempts to determine if a given black box produces true ran-
dom output or not. No cryptographic primitive produces truly random output,
so the distinguisher can be thought of as a classifier. Given an output producing
black box, the distinguisher answers “random” or “cipher”, depending on its
assertion. The distinguisher is said to be efficient if it significantly outperforms
guessing, where the meaning of ’significantly’ depends on the application.

For a distinguisher, the key is fixed and unknown. That is, the distinguisher
may invoke the black box several times with different IVs, but the key is kept
fixed. The IV bits constitute the input parameter bit space B = {0, 1}m. The
fixed key black box scenario is typical for real-world applications, and distin-
guishers are practical in the sense that they can be used in such a scenario.

Nonrandomness detectors are what we get when the input parameter bit space
B includes key bits1. This renders them less useful in a real-world fixed key black
box scenario, since they are related-key creatures by construction. Their merit,
however, is that they can do a better job of detecting nonrandomness. This is
invaluable for the cryptographic community, as we can get earlier indications on
weaknesses in specific algorithms. Distinguishers show weaknesses in how IV bits
1 We have not examined the effect of allowing plaintext bits in B, but this has the

potential of working very well as these bits usually enter the state after both key
and IV bits. This is true for block ciphers, but generally not for stream ciphers as
encryption in that case usually works by simply XORing plaintext and keystream.
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are handled, while nonrandomness detectors, in addition, can show weaknesses
in how key bits are handled.

Explicitly summarizing the above, we have

Distinguisher: A {’random’,’cipher’}-classifier whose input parameter bit
set B does not include key bits.

Nonrandomness detector: A {’random’,’cipher’}-classifier whose input
parameter bit set B does include key bits.

Note, using a known or chosen key makes the {’random’,’cipher’}-classifier a
nonrandomness detector, as we are then restricting the key space and effectively
allowing key bits in B. A related discussion can be found in [19].

2.2 The Maximum Degree Monomial Signature

Algebraic techniques in general have recently been shown to be very powerful,
and the maximum degree monomial (MDM) test stands out as a highly efficient
randomness test. We have used this test in the following natural setting.

Consider a black box cipher that has been modified to produce output during
its l initialization rounds. Choose a subset S = {0, 1}n of the input variables B
and regard the l-bit initialization round output of the black box as a Boolean
vector function of the n variables x1, · · · , xn in S. Letting f : {0, 1}n → {0, 1}l

denote the Boolean vector function, the sum∑
x∈{0,1}n

f(x)

produces a maximum degree monomial signature {0, 1}l for the cipher. Note
that this implicitly defines l (regular) Boolean functions fi, 1 ≤ i ≤ l, one for
each output bit. The ith signature bit is the coefficient of the maximum degree
monomial x1 · · ·xn in the algebraic normal form of fi (see [27,2]).

An ideal cipher produces a random-looking MDM signature. That is, if a
boolean function g : {0, 1}n → {0, 1} is chosen uniformly at random from the
universe of all such boolean functions, the maximum degree monomial exists in
g with probability 1

2 .
The MDM signature for Trivium over the set consisting of every third IV bit,

setting all other key and IV bits to zero, is

000 . . .000︸ ︷︷ ︸
930 zeros

101 . . . .

The long sequence of leading zeros is very striking. We conclude that the sequence
appears random-like close to where the first 1-bit appears, at round 931. We say
that we have observed 930 zero rounds, and one interpretation of this is that
930 initialization rounds are not sufficient to properly mix the corresponding IV
bits. Note that this is a nonrandomness result (chosen key).
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Running the MDM test (producing the MDM signature and counting the
number of initial zero rounds) over any given bit set S (permitting both key and
IV bits) for an otherwise fixed key and fixed IV will produce a nonrandomness
result. Fixed key nonrandomness detection over a bit set of size n has complexity
2n and requires O(l) space.

If the bit set S contains only IV bits, we have also implicitly produced a
corresponding distinguisher. To assess the efficiency of this distinguisher, its
performance needs to be sampled over random keys. Many different bias tests
can be used here, but we have used MDM signature bit constantness (equal
to zero) as measure, and two approaches stand out as simple, reasonable and
typical.

Taking the minimum number of zero rounds over N randomly sampled keys
assesses a distinguisher in N × 2n time and O(l) space. The time required for
running this distinguisher is, however, only 2n. Higher values for N increase the
confidence level of the zero round number estimate.

Alternatively, taking the maximum number of zero rounds over N random
keys assesses a distinguisher in N × 2n time and O(l) space. In the black box
attack scenario, we need to examine N different black boxes before we find one
that our distinguisher works for. The total running time for this distinguisher is
therefore N × 2n. Taking the maximum costs us a factor N .

It is reasonable to take the maximum approach when the number of zero
rounds varies heavily over the randomly selected keys. Without so much varia-
tion, it is more reasonable to take the minimum. This trades a few zero rounds
for better time complexity. If complexity is less important, the highest zero round
count is obtained by taking the maximum.

One key point is that the MDM test seems to be highly efficient and works
very well in practice for some cryptographic algorithms. Another key point that
makes the MDM tests attractive is that all output sequences can be successively
XORed, so only a negligible amount of storage is required. Furthermore, one
does not need to know anything at all about the internals of the algorithm
that is being tested. The algorithm will quite politely but candidly reveal how
susceptible any black box algorithm is to the MDM test.

2.3 Black Box Framework

A specialized cryptographic library that permits output of initialization data
was put together for this paper. The library was written in C and supports
bitsliced implementations and threading to make good use of multiple cores.
This is something that the MDM test benefits from since it is spectacularly
parallelizable. A unified interface makes it simple to author generic tests that
can be used for all supported algorithms, and LATEX-graphs of the results can
be generated. This framework is an excellent tool for testing future generators.
Interested researchers may find both ready-to-use executables and source code
at [29]. The stream- and block ciphers used for this paper are listed in Table 1.
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Table 1. Algorithms used to obtain the results in this paper

Stream ciphers Block ciphers
Trivium [8] Rabbit [6] AES-128 [24] AES-256 [24]
Grain v1 [16] Grain-128 [15] DES [23] PRESENT [7]
Edon80 [14] MICKEY v2 [3] RC5 [25] RC6 [26]
HC-128 [34] HC-256 [33] TEA [31] XTEA [32]
Salsa20/12 [5] Sosemanuk [4] SEED [20] SMS4 [9]

Camellia [22] HIGHT [17]
CLEFIA [28]

3 The Algorithm and a Threshold

3.1 The Greedy Bit Set Algorithm

The trick to obtaining good results with the MDM test is to find an efficient bit
set S for summation, a bit set that produces many zero rounds. The well known
greedy heuristic provides a very simple but yet highly successful algorithm that
outperforms all methods we have seen so far. The algorithm is made explicit
in Fig. 2.

Algorithm GreedyBitSet
Input: key k, IV v, bit space B, desired bit set size n.
Output: Bit set S of size n.

S ← ∅;
repeat n times {

S ←GreedyAddOneBit(k, v, B, S);
}
return S;

Fig. 2. The Greedy Bit Set Algorithm

Note that k and v are fixed, and that the bit space parameter B determines
if key and/or IV bits may be used to build the resulting bit set. The subroutine
GreedyAddOneBit is specified in Fig. 3.

Further note that the algorithm in Fig. 2 illustrates the straightforward greedy
“add best bit”-strategy for building the resulting bit set S. GreedyBitSet can, by
avoiding unnecessary recalculations, easily be implemented to sport a running
time of precisely2

1 +
∑

0≤i<n

(m − i)2i < m2n

initializations for building a bit set of size n, where m is the size of the permissible
bit space B.
2 There are m choices for the first bit, m− 1 choices for the second bit, and so on.
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Algorithm GreedyAddOneBit
Input: key k, IV v, bit space B, bit set S of size n.
Output: Bit set S′ of size n + 1.

bestBit← none;
max← −1;
for all b ∈ B\S {

zr ← numInitialZeroRounds(MDMsignature(k, v, S ∪ {b}));
if (zr > max) {

max← zr;
bestBit← b;

}
}
return S ∪ {bestBit};

Fig. 3. The GreedyAddOneBit subroutine

As a generalization one may allow other bit set building strategies, or a non-
empty starting bit set. In this somewhat generalized form we denote an instance
of the algorithm

GreedyBitSet(strategy, starting bit set, primitive, bit space, key, IV).

For example, running the Greedy Bit Set Algorithm with the “add best bit”-
strategy on Trivium starting with an empty bit set, allowing only IV bits in the
bit set, using the all-ones key and setting all remaining IV bits to zero may be
denoted

GreedyBitSet(Add1, ∅, Trivium, {IV},1,0).

Instead of starting with an empty bit set one may begin by computing a small
optimal bit set and go from there. For most of our results below we have used
optimal bit sets of sizes typically around five or six.

An alternative bit set building strategy is denoted “AddN”. AddN operates
by adding the N bits that together produce the highest zero round count when
added to the existing set. These bit sets should heuristically be better than
the ones produced using the Add1 strategy as local optima are more likely to
be avoided. The performances of the Add1 and Add2 strategies for Grain-128
are compared in Fig. 4, where the darker curve represents the Add2-strategy.
GreedyBitSet with AddN strategy can be implemented with a running time of
precisely3

1 +
∑

0≤i<k

(
m − iN

N

)
2i < mN2k

initializations for building a bit set of size kN .
We have standardized the graphs for uniform comparison between algorithms.

Given a bit set, the portion of leading zero rounds in the initialization rounds is
denoted ’bit set efficiency’.
3 There are

(
m
N

)
choices for the first bit,

(
m−N

N

)
choices for the second bit, and so on.
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bit set efficiency

bit set size
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Fig. 4. Add1 (gray) vs. Add2 strategy (black) for Grain-128
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Fig. 5. The all-zeros key works better than the all-ones key for Trivium

For an ideal cipher, a bit set of size n produced by the Greedy Bit Set Algo-
rithm will admit around lg (m − n) zero rounds.

3.2 Key Weight and the Nonrandomness Threshold

For some ciphers we have found that the result of the MDM test depends heavily
on the weight of the key. A typical example of this is Trivium, for which the test
seems to work best for the all-zeros key and worst for the all-ones key. Fig. 5
shows the efficiency of the bit sets produced by the Greedy Bit Set Algorithm
for Trivium, starting with an empty set, using zero IV fill for these two keys.

For Trivium it seems that the all-zeros and all-ones keys are extreme cases.
All other keys we have tried end up producing a curve that lies between these
two, and a curve produced by averaging over several randomly chosen keys cer-
tainly falls between as well. So which value is most interesting: the maximum,
minimum or the averaged one? Which zero round count should be reported? An
attacker working on a deadline might be interested in the average performance
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over random keys, or possibly in the worst case performance if her deadline is
really tight. But the algorithm designer may have quite other preferences.

Consider an algorithm analyst that needs to determine a reasonable number
for how many initialization rounds that are needed for balancing initialization
time and security in Trivium. Using the graphs in Fig. 5, the analyst can see
that 1000 rounds will just barely withstand signs of improper mixing in this
setting. At 972 rounds we start finding keys that allow us to prove that the
bit mixing is inadequate. As we keep reducing the number of rounds, more and
more keys show the same vulnerability. At 790 rounds, more or less all keys
simultaneously chant “Inadequate mixing” in four-part harmony. The algorithm
designer should, of course, in this case decide on an initialization round count
well above 972. How much more is debatable.

Recall that we use a bit set S = {0, 1}n which is a subset of the entire bit space
B = {0, 1}m. The highest round count value 972 obtained above should really be
viewed as a lower bound of a threshold - the Nonrandomness n-Threshold for bit
sets of size n. That is the nature of the limit we are exploring here, a threshold
for the existence of proof of inadequate bit mixing. Testing a specific bit set
of size n over a single key and IV provides a lower bound for this threshold.
The true threshold value is conceptually obtained by repeating the MDM Test
several times taking the maximum over all possible keys, IVs and bit sets of size
n for a total complexity of

(
m
n

)
2m−n.

Definition 1. Nonrandomness n-Threshold
The maximum number of zero rounds attainable according to

max numInitialZeroRounds(MDMsignature(k, v, B, S)),

where the maximum is taken over S ⊆ B with |S| = n, k ∈ K and v ∈ V .
B, K and V are the bit set-, key- and IV space, respectively.

4 Results

The algorithms are grouped according to susceptibility to the MDM test be-
low, where particularly interesting algorithms are given room for elaboration.
An algorithm is given a susceptibility rating high, significant, moderate or low
according to its tendency to submit to the MDM test as the bit set size gets
larger.

A direct comparison of our results to the previous best ones can be found in
Table 2 in Section 5.

4.1 High Susceptibility

TEA and The Bit Flip Test. TEA is the top candidate. Starting with an
empty bit set, we reach a full 100% zero round count after only two key bits have
been added. It is the key bits that are the weak link, and this is a previously
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known deficiency in TEA (see [18]). The picture becomes quite different when
one considers IV bit mixing. Allowing IV bits only results in a susceptibility that
seems to be inherently low.

It seems that the shortcomings in key bit mixing have been properly dealt with
for XTEA, as the Greedy Bit Set Algorithm cannot show anything beyond a low
susceptibility level for any bit type. There is something we can learn from TEA.
The TEA flaw is revealed by flipping two key bits, in which case the output does
not change. We can devise an automated test for these simple symmetry faults.
A Bit Flip Test can be defined by adding the two output sequences produced
before and after flipping all bits in a given bit set. Trying all bit sets of small size
will catch design flaws such as the one in TEA. The Bit Flip Test is, in fact, a
MDM test for a bit set of size 1 with a prior change of basis. Instead of summing
over a perfect cube, we sum over the “tilted” cube that is the result of a linear
transformation of the basis.

Two such two-bit configurations are known for TEA, and we have verified that
no other ones exist. We have also verified that none of the other algorithms we are
considering here show any such bit flip weaknesses for small bit set sizes (five or so).

The Bit Flip Test should really be part of every algorithm designer’s toolbox.
This test, and many others, should be used routinely to check for errors or
unexpected behavior.

Grain-128. For Grain-128, IV bits have a tendency to be more efficient than key
bits and, as with Trivium, low weight keys work better than high weight keys.
Running the Greedy Bit Set Algorithm on the all-zeros key with the Add2-
strategy up to bit set size 40, IV bits only, we produced a nonrandomness de-
tector for the full Grain-128 with its 256 initialization rounds. The successive
development from the optimal 6-set to bit set size 40 is shown in Fig. 6.

We now turn our attention from nonrandomness detectors to distinguishers.
The best previous distinguisher result on Grain-128 was due to Aumasson et
al. [1]. Taking the maximum number of rounds over 64 random key trials, they
found a 237-round distinguisher for a bit set of size 40.
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Fig. 6. Insufficient IV bit mixing in full Grain-128 (all 256 rounds)
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Our greedy bit set of size 40 turns out to provide a 246-round distinguisher,
measured by taking the maximum zero round count observed over 16 random
key trials for a complexity of 242. The bit set is given below (zero indexed), and
the order in which the bits have been added to the set has been preserved. The
remaining IV bits were set to zero. The first six bit indices form the optimal
6-set.

34 59 63 64 67 69 55 61 25 85 35 58 2 73 30 38 5 6 10 44
24 50 3 77 91 95 12 13 41 72 19 29 15 79 7 37 21 45 8 71

To summarize the case for Grain-128, we have found one greedy nonrandom-
ness detector showing that 256 (out of 256) rounds are insufficient for mixing
the IV bits. This detector uses a bit set of size 40 and has complexity 240.

We also found a greedy 246-round distinguisher with complexity 242. This
distinguisher uses the 38 first bits of the bit set above, taking the maximum
zero round count over 16 random keys. The two last bits did not improve the
distinguisher.

Trivium. There are several interesting observations for Trivium, apart from the
importance of key weight that we have already established in Section 3.2. Key
and IV bits are equally effective, but allowing both kinds in our bit set will take
us much further. To see why this is not a contradiction, have a look at Fig. 7,
which depicts the case where we allow only IV bits.
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Fig. 7. GreedyBitSet(Add1, Opt7, Trivium, {IV}, 0,0)

This graph is unique in that the curve drops significantly after the bit set has
been built to size 27. Using every third bit for our bit set turns out to be the
most effective choice. This is due to the threefold structure of Trivium, and this
is not a new observation (see [21]). It doesn’t seem to matter much which third
we choose, but once we have started to build up our set we do best if we stick
to that implicit third. After 27 bits we run out of bit space, but we can allow
both key and IV bits.
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Our best greedy nonrandomness detector using both key and IV bits takes
us 1026 out of 1152 rounds. This is for the zero key, which we noted before was
heavily biased. The greedy strategy was to start from the optimal 5-set and to
use the Add2-strategy up to bit set size 29, via the Add1-strategy up to bit set
size 37, to finally just guessing the last few bits for a total bit set size of 45. The
resulting bit set is

Key bits 1 4 7 10 12 16 19 22 25 31 34 37
40 43 46 49 52 55 58 61 64 70 73 76

IV bits 1 4 7 10 16 19 25 28 31 34 37 40
43 46 49 52 55 58 64 67 70

The every-third-structure is evident in this bit set, so it would be interesting
to measure the zero round performance of the corresponding 54-bit set with 27
key and 27 IV bits. Considering the bit set performance drop we saw in Fig. 7
above, it is reasonable to assume that we will see the same effect once we try to
go beyond this supposedly near-optimal 54-bit set. More than one million core
hours of computation on a cluster showed that we get 1078 zero rounds after 254

encryptions.
We also present a distinguisher for 806-round Trivium. As noted before, one

can use the internal structure of Trivium by using every third IV bit for the bit
set. Unfortunately, we run out of bits after 27 of them have been added. We
can, however, skip exploiting the threefold structure and, instead, just use the
fact that multiplication is always performed between neighboring state variables.
Using every second IV bit for the bit set will avoid fast initial term growth and
take us 803 rounds over randomly selected keys. This was the minimum number
of rounds obtained over 16 trials, so the resulting complexity is 240. Taking the
maximum produces an 806-round distinguisher with complexity 244.

4.2 Significant Susceptibility

Grain v1 is definitely susceptible, as one can see from the direction of the curve
in Fig. 8. The level of susceptibility seems limited, however, as the extrapolated
greedy-curve will not hit the roof for any bit set of relevant size.

Key bits seem to work a little better than IV bits, in general, but our best
nonrandomness result is 96 zero rounds for the all-zeros key with the optimal
IV bit set of size 7 given by (zero-indexed)

1 22 26 37 45 47 55

A 90-round greedy distinguisher was derived from a bit set of size 35 by taking
the maximum zero round count over 16 random keys for a complexity of 239.
The zero-indexed IV bit set is

1 22 26 37 45 47 55 12 16 4 28 29 36 0 39 31 34 10
11 7 32 9 50 13 25 59 5 3 57 53 51 42 33 38 8
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Fig. 8. GreedyBitSet(Add1, Opt5, Grain v1, {Key, IV},0,0)

4.3 Moderate or Low Susceptibility

AES, DES, CLEFIA and HIGHT all start at and stay within a bit set efficiency
in the range 25-50%. These algorithms show only very slight or no sign of budging
as the bit set size increases.

The remaining ciphers have a bit set efficiency below 25%. Edon80 deviates
from the norm by having a somewhat erratic curve, but it seems to stay within
the 0-25% efficiency range. Sosemanuk does show a tendency to be affected by
the MDM test, but all other algorithms seem to be more or less inherently non-
susceptible.

It is interesting to see that the bit set efficiency for IV bits in RC5, and for IV
bits in RC6 and key bits in XTEA to a lesser extent, show a decreasing tendency
as the search progresses and bit set sizes increase. The curve for RC5 IV bits
can be seen in Fig. 9.

HC-128 and HC-256 set a record of sorts at the low end by showing no signif-
icant susceptibility while producing an extremely large amount of initial data.
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Fig. 9. IV bit sets for RC5 show decreasing efficiency
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The yet unmentioned and remaining algorithms (Camellia, MICKEY v2,
PRESENT, Rabbit, Salsa20/12, SEED and SMS4) all seem to be inherently
non-susceptible.

5 Results Summary

We have shown how to find efficient bit sets in a systematic and deterministic
way by using the Greedy Bit Set Algorithm. The record-breaking distinguishers
and nonrandomness detectors derived from using the Greedy Bit Set Algorithm
show that this algorithm outperforms all other bit set selection schemes we have
seen so far. Table 2 compares the previous best results to ours for Trivium,
Grain-128 and Grain v1.

We presented a nonrandomness detector showing that Grain-128 with full 256-
round initialization does not behave sufficiently random. This detector uses an
IV bit set of size 40 and has a complexity of 240. We also presented a 246-round
distinguisher over random keys with complexity 242.

For Trivium we found a greedy 1026-round nonrandomness detector with
complexity 245. Using a cluster, we went on to find a nonrandomness detector
for 1078 out of 1152 rounds with 254 comlexity. We also presented a 806-round
distinguisher with 244 complexity.

For Grain v1 we showed nonrandomness up to 96 rounds with complexity 27,
and a 90-round distinguisher with complexity 239.

Table 2. Comparison to previous results

Algorithm Attack type Rounds Time Authors Rounds Time Authors
Trivium distinguisher 790 230 [2] 806 244 this paper
Trivium nonrandomness 885 227 [2] 1078 254 this paper
Grain-128 distinguisher 237 240 [1] 246 242 this paper
Grain-128 nonrandomness - - - 256 240 this paper
Grain v1 distinguisher 81 224 [1] 90 239 this paper
Grain v1 nonrandomness - - - 96 27 this paper

6 Concluding Remarks

With the exception of TEA, all block ciphers we have tested seem reasonably
resistant to the maximum degree monomial test. Due to differences in how zero
rounds are measured in stream and block ciphers, one should, however, not
immediately draw the conclusion that block ciphers are safer than stream ciphers.

The Greedy Bit Set Algorithm can be examined with more elaborate strategy
variants, bit selection schemes, randomness tests, cryptographic algorithms, al-
lowing plaintext bits in the bit set, and so on. The most urgent and constructive
goal, however, would be to explain why the MDM test fails miserably for some
algorithms. What minimal set of properties is guaranteed to render the MDM
test useless?
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Let us elaborate on the concept of “weak” bits, see [2,13]. Weak bits are
such that they significantly increase the efficiency (the number of zero rounds)
of a bit set if they are added to it. The first question one might ask is: Do
weak bits exist at all? The Greedy Bit Set Algorithm answers this question
and reveals some deeper insight into the concept of weakness. Our algorithm
successively builds larger bit sets by repeatedly adding the weakest remaining
single bit (Add1 strategy). For Trivium, bits at every third bit position eagerly
reappear among the top ranked bits again and again as the bit set size steadily
increases. The bits at other (off-third) positions do not show up as top ranked
at all. This zero round distribution regularity is clear evidence that Trivium has
weak bits. Other algorithms show no sign of weak bits. This does not prove their
non-existence in any way, but we surmise that any bit selection strategy for a
truly perfect algorithm should not perform much better than random choice.
For Grain-128, there are signs of bit weakness, but they are much less conclusive
than for Trivium.

The existence of weak bits is algorithm dependent. Also, when we use
GreedyBitSet we successively expand a bit set with the currently weakest bit.
This means that the existence of weak bits does not only depend on the choice
of test, but also on the current state of the test. As for drawing conclusions on
the existence of globally weak bits, defining how to measure bit weakness is only
the first step into a rather non-trivial enterprise.

One consequence of this is that one cannot prove any general performance
guarantees for GreedyBitSet stating that we will obtain a good bit with some
supposedly high probability. As we have seen, for Trivium we do, for RC5 we
don’t.

Also, more intelligent analysis of the zero round distribution over the remain-
ing bit space could lead to better practical assessment measures for bit weakness
that could be used to improve The Greedy Bit Set Algorithm.

Automatic cryptanalysis can be performed on many cryptographic primitives.
A toolbox of various tests, MDM-based and others, should be at the disposal
of every algorithm designer. Such a toolbox can be used to reveal unexpected
design weaknesses and to give better estimations on the required number of
initialization rounds. The interested reader is referred to [29].

We wish to thank the anonymous reviewers for their insightful comments.
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Abstract. In this paper, we give a new way to represent certain finite
fields GF (2n). This representation is based on Charlier polynomials. We
show that multiplication in Charlier polynomial representation can be
performed with subquadratic space complexity. One can obtain bino-
mial or trinomial irreducible polynomials in Charlier polynomial repre-
sentation which allows us faster modular reduction over binary fields
when there is no desirable such low weight irreducible polynomial in
other representations. This representation is very interesting for NIST
recommended binary field GF (2283) since there is no ONB for the cor-
responding extension. We also note that recommended NIST and SEC
binary fields can be constructed with low weight Charlier polynomials.

Keywords: Charlier polynomials, binary field representation, polyno-
mial multiplication, subquadratic space complexity.

1 Introduction

Finite fields have many applications in coding theory, digital signal processing
and cryptography [7], [8], [9]. Efficient arithmetic of finite field is an important
factor for cryptographic applications. Before implementing cryptographic appli-
cations efficiently, several choices have to be made. The representation of finite
field elements and choice of irreducible (reduction) polynomial have a crucial
impact on the efficiency of field arithmetic [6]. These selections can be influ-
enced by security considerations, application platform and constraints of the
particular computing environment [1]. The measure of efficiency in hardware
implementations is the number of #AND and #XOR.

The binary extension field multiplication can be performed in two steps: poly-
nomial multiplication over GF (2) and modular reduction over GF (2n). As the
complexity of finite field multiplication depends on the number of non-zero terms
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in the reduction polynomials, it is desirable to use the reduction polynomials
with as few non-zero terms as possible. Over binary fields, the use of trinomial
or when trinomial does not exist for the corresponding extension, pentanomial is
preferred since there is no irreducible binomial or quadranomial except for x+1
in GF (2)[x].

There are mainly three types of representation of finite fields of characteristic
2, namely canonical (polynomial) basis, normal basis, redundant representation.
Recently, Dickson polynomial representation has been proposed to obtain effi-
cient binary field multiplication using low weight irreducible polynomial in [4]
and [5]. Hasan and Negre formulate the multiplication of two elements in the field
as a product of Toeplitz or Hankel matrix. Dickson polynomials seem interesting
when no optimal normal basis (ONB) in any type exists for the field. This is
the case for NIST recommended binary fields GF (2163) and GF (2283). By using
Dickson polynomial representation, one can obtain irreducible Dickson binomi-
als or trinomials. Depending on the choice of basis, binary field multiplication
can be performed in different ways.

In this paper, we give a new way to represent certain finite fields GF (2n).
This representation is based on Charlier polynomials. We show that multiplica-
tion in Charlier polynomial representation can be performed with subquadratic
space complexity. One can obtain binomial or trinomial irreducible polynomials
in Charlier polynomial representation which allows us faster modular reduction
over binary fields when there is no desirable such low weight irreducible polyno-
mial in other representations. This representation is very interesting for NIST
recommended binary field GF (2283) since there is no ONB for the corresponding
extension. We also note that recommended NIST and SEC binary fields can be
constructed with low weight Charlier polynomials such as GF (2113), GF (2131)
and GF (2233).

This paper is organized as follows: Section 2 describes Charlier polynomial and
gives some general results on Charlier polynomials in GF (2)[x]. In section 3, we
present the general method to multiply two polynomials in Charlier polynomial
representation and give the total arithmetic complexity. We compare complexity
of multipliers in view of #AND and #XOR gates in Section 4. We conclude
the paper in Section 5.

2 Charlier Polynomials

In this section, we give preliminaries and describe a new representation of binary
fields.

Charlier polynomials are the monic orthogonal polynomials associated with
the inner product [2].

Definition 1. The Charlier polynomials are C0(x) = 1, C1(x) = x with the
recursion

Cn(x) = (x − n + 1)Cn−1(x)

for n ≥ 2.
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Table 1. Charlier Polynomials in GF (2)[x]

C0(x) 1
C1(x) x

C2(x) x2 + x

C3(x) x3 + x2

C4(x) x4 + x2

C5(x) x5 + x3

C6(x) x6 + x5 + x4 + x3

C7(x) x7 + x6 + x5 + x4

C8(x) x8 + x4

C9(x) x9 + x5

C10(x) x10 + x9 + x6 + x5

Since we work in binary fields, we give the Charlier polynomials in GF (2)[x] for
n ≤ 10 in Table 1. All values in Table 1 are computed by using Software for
Algebra and Geometry Experimentation (Sage) [11].

2.1 Conversion of Coefficients from Polynomial Representation to
Charlier Polynomial Representation

The polynomial basis {1, x, x2, · · · , xn−1}, where x is a root of an irreducible
polynomial of degree n over GF (2) is usually preferred to represent the elements
of GF (2)[x]. Let a(x) = a′

n−1x
n−1 + · · · + a′

1x + a′
0, where a′

i ∈ GF (2) be a
polynomial with the standard (canonical) representation. Let Cn(x) = βn be
the n-th Charlier polynomial in GF (2)[x], where n ≥ 0. a(x) can be represented
by using Charlier polynomials as a = an−1βn−1 + · · · + a1β1 + a0β0, where
ai ∈ GF (2) by using Algorithm 1.

Algorithm 1. Conversion of Coefficients From Polynomial Representation to
Charlier Polynomial Representation
Input: a(x) =

∑n−1
i=0 a′

ix
i

Output: (a0, a1, · · · , an−1), where a =
∑n−1

i=0 aiβi

1: T ← a
2: for i = n downto 1 do
3: if deg(T ) = i then
4: ai ← 1
5: T ← T + βi

6: else
7: ai ← 0
8: end if
9: end for

10: a0 ← T
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Note that since we are working in characteristic two, Algorithm 1 is self-
inverse. One can obtain polynomial representation for Charlier representation
by changing ai with a′

i in Algorithm 1.

2.2 Charlier Basis

A basis for the finite field GF (2n) is a set of n elements {β0, β1, · · · , βn−1} ∈
GF (2n) such that every element of the binary field can be represented uniquely
as a linear combination of basis elements. For a given a ∈ GF (2n), we can write

a =
n−1∑
i=0

ai · βi

where ai ∈ GF (2) for 0 ≤ i ≤ n − 1.

Theorem 1. Let f be an irreducible polynomial of degree n in GF (2)[x]. The
set {β0, β1, · · · , βn−1} forms a basis of GF (2n) ∼= GF (2)[x]/(f).

Proof. Consequences of Algorithm 1 show that the set {β0, β1, · · · , βn−1} is lin-
early independent and each element in GF (2n) is uniquely expressed by us-
ing the set {β0, β1, · · · , βn−1}. Then, the set {β0, β1, · · · , βn−1} forms a basis of
GF (2n) ∼= GF (2)[x]/(f). ��

Theorem 2. Let Cn(x) = βn be the n-th Charlier polynomial in GF (2)[x],
where n ≥ 0. Then, for all i, j ≥ 0 Charlier basis satisfies the following equation

βi · βj = βi+j + � · βi+j−1

where � ∈ GF (2). If i and j are both odd number, then � = 1. If i or j is an even
number, then � = 0.

Proof. We will prove the theorem by induction on i and j. By using Table 1, the
theorem is true for few terms. Assume that theorem is true for i = n − 1. Then
we need to show that it is true for i = n. We have four cases:

i. n is even and j is odd
ii. n is even and j is even
iii. n is odd and j is odd
iv. n is odd and j is even

Let j < n − 1.

i. Let n be even and j be odd. Note that β1 = x

βnβj = (β1βn−1 + βn−1)βj

= βn−1(βj(β1 + 1))
= βn−1(βj+1 + βj + βj)
= βn+j
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ii. Let n and j be even.

βnβj = (β1βn−1 + βn−1)βj

= βn−1(βj(β1 + 1))
= βn−1(βj+1 + βj)
= βn+j + βn+j−1 + βn+j−1

= βn+j

iii. Let n and j be odd. Remember that addition of two odd integers is even.

βnβj = (β1βn−1)βj

= βn−1(βj+1 + βj)
= βn+j + βn+j−1

iv. Let n be odd and j be even.

βnβj = (β1βn−1)βj

= βn−1βj+1

= βn+j

Note that if j = n− 1 or j = n, then this case can be proved by considering the
factors of βj or βj+1 as shown above. ��

3 Polynomial Multiplication Using Charlier Polynomials
over Binary Fields

In this section, we describe polynomial multiplication in Charlier polynomial rep-
resentation for binary fields and give the total arithmetic complexity. Remember
that multiplication in finite fields can be performed in two steps: multiplication
over GF (2) and modular reduction over GF (2n). Therefore, we divide this sec-
tion into multiplication and reduction parts. Throughout this section, M(n) and
A(n) denote the minimum number of multiplications and the minimum number of
additions for corresponding algorithm for two n-term polynomials multiplication,
respectively. The upper bounds of the required number of multiplications and ad-
ditions to multiply polynomials in Charlier basis is given in the following theorem.

Theorem 3. Let a = an−1βn−1 + · · · + a0β0 and b = bn−1βn−1 + · · · + b0β0 be
n-term polynomials over GF (2) and a · b = c = c2n−2β2n−2 + · · · + c0β0. Then,
the coefficients of the polynomial, c are computed with

M(n) + M(
⌊n

2

⌋
) multiplications and

A(n) + A(
⌊n

2

⌋
) + 2

⌊n
2

⌋
− 1additions

by using any multiplication method.
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Proof.

c0 = a0b0

c1 = a0b1 + a1b0 + a1b1

c2 = a0b2 + a2b0 + a1b1

c3 = a0b3 + a3b0 + a1b2 + a2b1 + a1b3 + a3b1

...
c2n−3 = an−2bn−1 + an−1bn−2 + � · an−1bn−1

c2n−2 = an−1bn−1

where � = 1 if n− 1 is odd, otherwise, � = 0. There are extra terms when we com-
pare this multiplication with ordinary multiplication. The extra terms can be ex-
pressed with a2i+b2j+1, where 0 ≤ i, j ≤

⌊
n
2 − 1

⌋
− 1. These elements correspond

to multiplication of two
⌊

n
2

⌋
-term polynomials. Therefore, the total multiplica-

tion complexity is M(n)+M(
⌊

n
2

⌋
). We need 2

⌊
n
2

⌋
−1 extra additions to combine

these. Similarly, the total addition complexity is A(n) + A(
⌊

n
2

⌋
) + 2

⌊
n
2

⌋
− 1. ��

Example 1. Let n = pj, where p is a prime number and j is a positive integer. Let
a = an−1βn−1 + · · ·+a0β0 and b = bn−1βn−1 + · · ·+ b0β0 be n-term polynomials
over GF (2) and a · b = c = c2n−2β2n−2 + · · · + c0β0. Then, by using Karatsuba
multiplication method [13],

1. If p = 2, the required number of multiplications is nlog23 +
⌊

n
2

⌋log23 and the
required number of additions is 8nlog23 − 11n + 3.

2. If p = 3, the required number of multiplications is nlog36 +
⌊

n
2

⌋log36
and the

required number of additions is 116
15 nlog36 − 29

5 n + 7
5 .

We give an example to show that Theorem 3 is working.

Example 2. Let a = a3β3 +a2β2 +a1β1 +a0β0 and b = b3β3 + b2β2 + b1β1 + b0β0
be 4-term polynomials over GF (2) in Charlier polynomial representation. Let
a · b = c = c6β6 + · · · + c0β0. Then,

c0 = a0b0

c1 = a0b1 + a1b0 + a1b1

c2 = a0b2 + a2b0 + a1b1

c3 = a0b3 + a3b0 + a1b2 + a2b1 + a1b3 + a3b1

c4 = a1b3 + a3b1 + a2b2

c5 = a2b3 + a3b2 + a3b3

c6 = a3b3

a1b1, (a1b3 + a3b1) and a3b3 are the extra terms when we compare this multipli-
cation with ordinary multiplication. The computation of these extra terms can
be achieved by the following method:
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Let x0 = a1, y0 = b1, x1 = a3 and y1 = b3. Then, the extra terms can be
computed as follows:

m′
1 = x0y0,

m′
2 = (x0 + x1)(y0 + y1) − m′

1 − m′
3,

m′
3 = x1y1

The computation of extra terms requires 3 multiplications and 4 additions. One
needs at most 9 + 3 = 12 multiplications and 24 + 4 + 3 = 31 additions by using
Karatsuba method to compute a · b = c = c6β6 + · · · + c0β0.

Remark 1. Note that some or all elements of extra terms may be obtained with-
out any cost, i.e. these are computed in n-term polynomials product. This, of
course, depends your choice on multiplication method. Therefore, this reduces
multiplication and addition complexity. However, in this paper, we give upper
bounds.

Example 3. Let us consider Example 2. Consider two 4-term polynomials in
standard representation a(x) =

∑3
i=0 aix

i and b(x) =
∑3

i=0 bix
i. Karatsuba

algorithm computes the product c(x) = a(x)b(x) =
∑6

i=0 cix
i with the following

9 multiplications:

m0 = a0b0

m1 = a1b1

m2 = a2b2

m3 = a3b3

m4 = (a0 + a1)(b0 + b1)
m5 = (a0 + a2)(b0 + b2)
m6 = (a1 + a3)(b1 + b3)
m7 = (a2 + a3)(b2 + b3)
m8 = (a0 + a1 + a2 + a3)(b0 + b1 + b2 + b3)

The extra terms in Charlier polynomial representation, i.e. a1b1, (a1b3 + a3b1)
and a3b3, are obtained without any cost:

m′
1 = m0, m

′
2 = m6 + m0 + m3, m

′
3 = m3

Thus, one needs 9 multiplications and 24+3=27 additions by using Karatsuba
method to compute c = a · b = c6β6 + · · · + c0β0

Remark 2. Let a = an−1βn−1 + · · · + a0β0 be n-term polynomial over GF (2)
and a2 = c = c2n−2β2n−2 + · · · + c0β0. Then,

c = an−1β2n−2 + an−1 · �β2n−3 + · · · + 0β3 + a1β2 + a1β1 + a0β0

Proof of this remark is very similar to Theorem 3. Note that the cost of squaring
in Charlier polynomial representation is just reduction.

Now, we show how modular reduction process can be performed for irreducible
Charlier polynomials.
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3.1 Irreducible Charlier Binomials

Selected irreducible Charlier binomials are given in Table 2.

Table 2. Irreducible Charlier Binomials

β2 + β0 β3 + β0

β5 + β0 β7 + β0

β9 + β0 β41 + β0

β63 + β0 β71 + β0

β105 + β0 β127 + β0

β169 + β0 β177 + β0

Reduction. By using irreducible Charlier binomial, one can perform reduction
operation as follows:

Let f = βn + β0 be an irreducible polynomial of degree n over GF (2). Let
n ≤ i ≤ 2n− 2. Then,

βnβi−n = βi + βi−1 · �
β0βi−n = βi + βi−1 · �

βi = βi−n + βi−1 · �
βi = βi−n + (βi−n−1βn + βi−2 · �1) · �
βi = βi−n + βi−n−1 · �

If i−n and n or i−n−1 and n are both odd, then � = 1 or �1 = 1, respectively..
Otherwise, � = 0 or �1 = 0. Note that βn = 1. � · �1 = 0 since if i − n is odd,
then, i − n − 1 is even. Same trick is applicable for trinomial case.

3.2 Irreducible Charlier Trinomials

Table 3 tabulates selected irreducible Charlier trinomials. According to Table
3, it should be noted that recommended NIST or SEC binary fields such as
GF (2113), GF (2131), GF (2233) and GF (2283) can be constructed with irreducible
Charlier trinomials [10] and [12].

Reduction. By using irreducible Charlier trinomial, one can perform reduction
operation as follows:

Let f = βn + βk + β0 be an irreducible polynomial of degree n over GF (2)
and k be even. Let n ≤ i ≤ 2n− 2. Then,

βnβi−n = βi + βi−1 · �
(βk + β0)βi−n = βi + βi−1 · �

βi = βi−n+k + βi−n + βi−1 · �
βi = βi−n+k + βi−n + (βi−n+k−1 + βi−n−1) · �
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Table 3. Irreducible Charlier Trinomials

β113 + β10 + β0 β131 + β29 + β0

β167 + β2 + β0 β169 + β3 + β0

β171 + β4 + β0 β187 + β3 + β0

β211 + β10 + β0 β221 + β2 + β0

β227 + β3 + β0 β231 + β13 + β0

β233 + β11 + β0 β233 + β17 + β0

β283 + β3 + β0 β283 + β14 + β0

β291 + β21 + β0 β311 + β3 + β0

β323 + β22 + β0 β331 + β21 + β0

β347 + β28 + β0 β359 + β24 + β0

β401 + β13 + β0 β403 + β26 + β0

β419 + β14 + β0 β443 + β9 + β0

β463 + β11 + β0 β469 + β23 + β0

β511 + β11 + β0 β541 + β3 + β0

β551 + β18 + β0 β557 + β11 + β0

If i − n and n are odd, then � = 1. Otherwise, � = 0.
Let f = βn + βk + β0 be an irreducible polynomial of degree n over GF (2)

and k be odd. Let n ≤ i ≤ 2n − 2. Then,

βnβi−n = βi + βi−1 · �
(βk + β0)βi−n = βi + βi−1 · �

βi = βi−n+k + βi−n + (βi+k−n−1 + βi−1) · �
βi = βi−n+k + βi−n + βi−n−1 · �

If i − n and n are odd, then � = 1. Otherwise, � = 0.

3.3 Reduction Complexity

Table 4 shows reduction complexity for irreducible Charlier binomials and
trinomials.

Table 4. Reduction Complexity

Form #XOR

Charlier Binomial βn + β0
3n
2

Charlier Trinomial βn + βk + β0 3n

Remember that the cost of reduction process in polynomial basis represen-
tation strictly depends on the choice of reduction polynomial. Then, if one
uses trinomial or pentanomial, reduction process requires 2n or 4n XOR gates,
respectively.
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4 Multiplication Complexity

In this section, we give modular multiplication complexity of multipliers in
view of #AND and #XOR gates. Let n = pj . Table 5 compares the space
complexity and time complexity of selected multipliers. Note that this table
is prepared by using Karatsuba multiplication method for Charlier basis [13].
According to Table 5, Charlier polynomial representation has better complexity
than Dickson polynomial representation and ONB II. Therefore, binary fields can
be constructed with low weight Charlier polynomials efficiently when there does
not exist ONB for the corresponding extension. Remember that we give upper
bounds for Charlier binomials and trinomials. The complexity of the field multi-
plication for Charlier polynomials can be further reduced by cleverly combining
computed values (see Example 3). Therefore, for some cases, multiplication com-
plexity for Charlier polynomial representation is also comparable with ONB I.

Table 5. Space Complexity Comparison of Selected Multipliers

p #AND #XOR Critical Delay

Charlier Binomial 2 nlog23 +
⌊

n
2

⌋log23 8nlog23 − 10n + 3 3log2(n)TX + TA

Charlier Binomial 3 nlog36 +
⌊

n
2

⌋log36 116
15

nlog36 − 29
5

n + 7
5

4log3(n)TX + TA

Charlier Trinomial 2 nlog23 +
⌊

n
2

⌋log23 8nlog23 − 8n + 3 3log2(n)TX + TA

Charlier Trinomial 3 nlog36 +
⌊

n
2

⌋log36 116
15

nlog36 − 14
5

n + 7
5

4log3(n)TX + TA

Polynomial Basis [13] 2 nlog23 6nlog23 − 8n + 2 (3log2(n)− 1)TX + TA

Polynomial Basis [13] 3 nlog36 29
5

nlog36 − 8n + 11
5

(4log3(n)− 1)TX + TA

Dickson Binomial [4] 2 2nlog23 11nlog23 − 11n (2log2(n) + 1)TX + TA

Dickson Binomial [4] 3 2nlog23 48
5

nlog36 − 11n + 3
5

(3log3(n) + 1)TX + TA

Dickson Trinomial [4] 2 2nlog36 11nlog23 − 4n + 1 (2log2(n) + 6)TX + TA

Dickson Trinomial [4] 3 2nlog36 48
5

nlog36 − 2n + 1
5

(3log3(n) + 6)TX + TA

ONB I [3] 2 nlog23 + n 11
2

nlog23 − 4n− 1
2

(2log2(n) + 1)TX + TA

ONB I [3] 3 nlog36 + n 24
5

nlog36 − 3n− 4
5

(3log3(n) + 1)TX + TA

ONB II [3] 2 2nlog23 11nlog23 − 12n + 1 (2log2(n) + 1)TX + TA

ONB II [3] 3 2nlog36 48
5

nlog36 − 10n− 2
5

(3log3(n) + 1)TX + TA

Remark 3. NIST recommended binary field GF (2283) can be constructed effi-
ciently by using Charlier polynomials since there is no ONB for the correspond-
ing extension.

5 Conclusion

In this paper, we give a new way to represent certain finite fields GF (2n). This
representation is based on Charlier polynomials. We show that multiplication in
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Charlier polynomial representation can be performed with subquadratic space
complexity. One can obtain binomial or trinomial irreducible polynomials in
Charlier polynomial representation which allows us faster modular reduction
over binary fields when there is no desirable such low weight irreducible polyno-
mial in other representations. This representation is very interesting for NIST
recommended binary field GF (2283) since there is no ONB for the corresponding
extension. We also note that recommended NIST and SEC binary fields can be
constructed with low weight Charlier polynomials.
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Abstract. Efficiency and security are the two main objectives of every
elliptic curve scalar multiplication implementations. Many schemes have
been proposed in order to speed up or secure its computation, usually
thanks to efficient scalar representation [30,10,24], faster point operation
formulae [8,25,13] or new curve shapes [2]. As an alternative to those
general methods, authors have suggested to use scalar belonging to some
subset with good computational properties [15,14,36,41,42], leading to
faster but usually cryptographically weaker systems. In this paper, we
use a similar approach. We propose to modify the key generation pro-
cess using a small Euclidean addition chain c instead of a scalar k. This
allows us to use a previous scheme, secure against side channel attacks,
but whose efficiency relies on the computation of small chains computing
the scalar. We propose two different ways to generate short Euclidean
addition chains and give a first theoretical analysis of the size and dis-
tribution of the obtained keys. We also propose a new scheme in the
context of fixed base point scalar multiplication.

Keywords: point multiplication, exponentiation, addition chain, SPA,
elliptic curves.

1 Introduction

After twenty five years of existence, elliptic curve cryptography (ECC) is now one
of the major public-key cryptographic primitives. Its main advantages, compared
to it main competitor RSA, are its shorter keys and the lack of fast theoretical
attacks. The recent factorization of an RSA modulus of 768 bits [17] is here
to highlight the significant role that ECC will play during the next decade. In
particular, it has been shown that ECC is suitable for cryptographic applications
on devices with small resources. However, if 160-bit ECC is believed to remain
secure, from a theoretical point of view, at least until 2020 [3], physical attacks
on cryptographic devices have proved to be an immediate threat [22]. Thus,
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software or hardware ECC implementations have to deal with two apparently
opposite requirements: efficiency and security. Indeed, protecting a device from
physical attacks usually involves costly countermeasures.

In 2007,Méloni proposed a secure algorithm based on Euclidean addition chains
[27]. As they only involve additions, they are naturally resistant to SCA. However,
the efficiency of such a method relies on the existence of a small chain computing
the scalar. It has been pointed out that finding such a chain becomes more and
more difficult when the scalar grows in size. For cryptographic sizes, finding a good
chain is costlier than the scalar multiplication itself. So, instead of proposing a new
scalar multiplication scheme, we propose to modify the key generation pro-
cess. More precisely, we show that it is possible to generate the key as a small
Euclidean addition chain, allowing us to use Méloni’s fast and secure scheme.

From a general point of view, generating keys in a specific shape is not a
new idea. Various methods have been proposed through the years to generate
scalars belonging to some subset of the set of all possible keys, with good com-
putational properties [14,36,41,42]. However, this usually implies some serious
security issues [33,34,9,38]. Some methods remain cryptographically secure in
the context of a fixed base point but require large amount of stored data [4,15]
(Coron et al. [15] suggest to store from 50 to 100 points for the same security
level as that considered in the present work). Finally, some schemes use special
endomorphisms, such as the Frobenius map, on Koblitz curves [20].

From that perspective, our approach is quite different. Méloni’s scheme only effi-
ciently applies on curve in Weierstrass form. Moreover, it is particularly suitable to
small devices with low computational resources because of its low memory require-
ment (at most two stored points) and resistance to side channel attacks. Yet, gen-
erating random Euclidean addition chains leads to several problems. First, what
is the size of the keys we can generate for a given chain length? In other words, is it
possible to achieve a certain level of security with relatively small chains? The sec-
ond problem is that of distribution. Indeed, many different chains of same length
can compute the same integer. It is then important to ensure that generating keys
this way does not weaken the discrete logarithm problem.

In this paper, we produce the first practical and theoretical results on random
Euclidean addition chain generation. We also show that it can lead to efficient
and SPA-secure scalar multiplication methods.

This work is organized as follows. In Section 2 we review Méloni’s scheme.
In Section 3 we recall some background about Euclidean addition chains and
set notations. In Section 4 and 5, we describe two different families of Euclidean
addition chains and give some results on their distribution (notice that in Section
4 two variants are described). Finally, in Section 6 we propose some comparisons
with existing side-channel resistant scalar multiplication methods.

2 Scalar Multiplication Using Euclidean Addition Chains

For the sake of concision, we do not give details about scalar multiplication and
side channel attacks. We invite the reader to refer to [7,12] for detailed overview
of elliptic curve based cryptography.
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This section is dedicated to a specific scalar multiplication algorithm based
on Euclidean addition chains.

2.1 Euclidean Addition Chains

Definition 1. An Euclidean addition chain (EAC) of length s is a sequence
(ci)i=1...s with ci ∈ {0, 1}. The integer k computed from this sequence is obtained
from the sequence (vi, ui)i=0..s such that v0 = 1, u0 = 2 and ∀i � 1, (vi, ui) =
(vi−1, vi−1+ui−1) if ci = 1 (small step), or (vi, ui) = (ui−1, vi−1+ui−1) if ci = 0
(big step). The integer k associated to the sequence (ci)i=1...s is vs + us, we will
denote it by χ(c).

Example : From the EAC (10110) one can compute the integer 23 as follows :
(1, 2) → (1, 3) → (3, 4) → (3, 7) → (3, 10) → (10, 13) → 23 = χ(10110).

2.2 Point Multiplication Using EAC

From any EAC c and any point P of an elliptic curve, it is shown in [27] that a
new point Q can be computed using the following algorithm :

Algorithm 1. EAC Point Mul(c:EAC,
P:point)
Require: P , [2]P
Ensure: Q = χ(c)P
1: (U1, U2)← (P, [2]P )
2: for i = 1 . . . length(c) do
3: if ci = 0 then
4: (U1, U2)← (U2, U1 + U2)
5: else
6: (U1, U2)← (U1, U1 + U2)
7: end if
8: end for
9: return Q = U1 + U2

Algorithm 2. Point multiplication
Require: P and an integer k
Ensure: Q = kP
1: c← Find EAC(k)
2: return Q = EAC Point Mul(c,P)

In [27], it is shown that any scalar multiplication can be performed using
the preceding algorithm. It is achieved by finding an Euclidean addition chain
computing the scalar. We will denote by Find_EAC , the algorithm which returns
an addition chain for an integer k.

It has been shown in [27] that the for loop of algorithm 1 can be efficiently
implemented on elliptic curves in Weierstrass form using Jacobian coordinates.
This leads to a fast point multiplication method resistant to side channel attacks
since at each step of the for loop, the same operation is used .

The efficiency of algorithm 2 directly depends on the length of the chains
and the complexity of the algorithm Find_EAC. Although finding an Euclidean
addition chain computing a given integer k is quite simple (it suffices to choose an



Random Euclidean Addition Chain Generation and Its Application 241

integer g co-prime with k and apply the subtractive form of Euclid’s algorithm)
finding a short chain remains a hard problem. As an example, the average length
of the computed chain for k with g uniformly distributed in the range [1, k] is
O(ln2 k) [18]. For 160-bit scalars, experiments have shown that, on average, it is
required to try more that 45,000 different g to find a relatively small chain using
the Montgomery heuristic [32].

2.3 Our Approach

We propose in this paper to proceed differently. Instead of randomly choosing an
integer k and then trying to find a suitable EAC c to finally compute the point
kP , we propose to randomly generate a small length EAC c and then compute
the associated point on the curve. More precisely, we will see in the next sections
that the chains will be chosen in a subset of short chains for key distribution
matters.

From definition 2.1, notice the random generation of a s-length EAC boils
down to the random generation of a s-bit integer. As an example, algorithm 3
shows how to process Diffie-Helmann key exchange protocol with EAC.

Algorithm 3. Diffie-Helmann using EAC
Require: a point P
Ensure: Output a common key K
1: A randomly generates a short EAC c1

2: B randomly generates a short EAC c2

3: A computes Q1 =EAC Point Mul(c1, P ) and send it to B
4: B computes Q2 =EAC Point Mul(c2, P ) and send it to A
5: A computes K =EAC Point Mul(c1, Q2)
6: B computes K =EAC Point Mul(c2, Q1)

Using this approach we compute points kP for a subset S of all possible values
for the integers k. Hence we do not deal any more with the classical Discrete
Logarithm Problem but with the Constrained Discrete Logarithm Problem.

Name : CDLP
Input : p a prime number, g a generator of a group G, S ⊂ Zp, and gx for x ∈ S.
Problem : Compute x.

The complexity of the discrete logarithm problem (DLP) over a generic group
directly depends on the size of this group. It has been shown that the constrained
version of this problem (CDLP), where only a subset S of the group is considered,
has a similar complexity. Indeed, for a random set S, Ω(

√
|S|) group operations

[28] are required to solve the CDLP. As an example, if one naively chooses to
generate random Euclidean chain of length 160 (which means there are 2160 of
them), we will see, in section 3, that the biggest integer that can be generated
is F164 
 2112.7. This means that the number of elements of the set S is at most
2113, leading to a security of at most 66.5 bits.
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In this paper, we propose to study two families of EAC providing good balance
between security and efficiency. In practice, it implies that the chains are long
enough so that the corresponding set S of generated keys is sufficiently large,
but short enough so that the scalar multiplication remains fast.

3 Notations and Properties

We give in this section some notations and important results for the sequel of
this paper.

Definition 2. Let n and p be two integers, we define :

. M as the set of EAC and Mn as the set of EAC of length n > 0,

. Mn,p as the set of EAC of length n > 0 and Hamming weight p > 0.

. χ the map from M to N, such that for m ∈ M, χ(m) be the integer computed
from the EAC m,

. ψ the map from M to N × N, such that for m ∈ M, ψ(m) = (vs, us) if
m ∈ Ms,

. S0 the matrix
(

0 1
1 1

)
corresponding to a big step iteration,

. S1 the matrix
(

1 1
0 1

)
corresponding to a small step iteration.

With these notations, for m = (m1, . . . , ms) ∈ Ms, we have :

ψ(m) = (1, 2)
s∏

i=1

Smi and χ(m) = 〈(1, 2)
s∏

i=1

Smi ,(1, 1)〉.

Let r and s be two integers, we will denote by mm′ the element of Mr+s obtained
from the concatenation of m ∈ Mr and m′ ∈ Ms. This way, for n > 0, mn is a
word of Mnr if m ∈ Mr.

For convenience, M0 will correspond to the set with one element e which is
the identity element for the concatenation.

For m and m′ two elements of Mr such that ψ(m) = (v, u) and ψ(m′) =
(v′, u′) we will say that ψ(m) � ψ(m′) if v � v′ and u � u′.

Proposition 1. Let n > 0, Fi be the ith Fibonacci number, αn =
(1+

√
2)n+(1−√

2)n

2 and βn = (1+
√

2)n−(1−√
2)n

2
√

2
:

. ψ(0n) = (Fn+2, Fn+3), ψ(1n) = (1, n + 2), χ(0n) = Fn+4, χ(1n) = n + 3,

. ∀m ∈ Mn, χ(1n) � χ(m) � χ(0n), and ψ(1n) � ψ(m) � ψ(0n),

. Sn
0 =
(

Fn−1 Fn

Fn Fn+1

)
, Sn

1 =
(

1 n
0 1

)
,

. (S0S1)
n =
(

αn − βn βn

βn αn + βn

)
, (S1S0)

n =
(

αn 2βn

βn αn

)
.

Proof. The first property is straightforward. The other ones can be proved by
induction.
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Notice that from Sm+n
0 = Sm

0 Sn
0 , we can recover a well known identity on

Fibonacci sequence, namely :

Fm+n = Fm−1Fn + FmFn+1. (1)

Proposition 2. Let n > 0 and m = (m1, . . . , mn) ∈ Mn, then the map ψ is
injective and χ(m1, . . . , mn) = χ(mn, . . . , m1).

Proof. We refer to [19] for standard link between EAC, Euclidean algorithm and
continued fractions, which explains the second point. It is also explained that if
ψ(m) = (v, u) then (u, v) = 1 and the only chain which leads to (v, u) is obtained
using the additive version of Euclidean algorithm.

4 A First Family of EAC

We will consider in this section M0
n the subset of M2n whose elements are EAC

beginning with n zeros.

4.1 Some Properties of M0
n

From proposition 2 the restriction of χ to Mn is not injective because of the
mirror symmetry property.

Proposition 3. The restriction of χ to M0
n is injective.

Proof. Let x and y be two words of M0
n such that χ(x) = χ(y), and m0n,

m′0n, be the words obtained when reading x and y from right to left. Using
the symmetry property, we have χ(m0n) = χ(m′0n). Let (v, u) = ψ(m) and
(v′, u′) = ψ(m′), then

χ(m0n) = χ(m′0n)
⇔ Fnu + Fn−1v + Fn+1u + Fnv = Fnu′ + Fn−1v

′ + Fn+1u
′ + Fnv′

⇔ Fn+2(u − u′) = Fn+1(v′ − v)

Since (Fn+1, Fn+2) = 1, then Fn+2 divides v′ − v. Now from proposition 1,
since v and v′ are less or equal than Fn+2 and nonzero, then |v′ − v| < Fn+2
which implies that v = v′ and so u = u′. Hence ψ(m) = ψ(m′), so m = m′.

Proposition 4. χ(M0
n) ⊂ [(n + 1)Fn+2 + Fn+3, F2n+4], the lower (resp. the

upper) bound being reached by 0n1n (resp. 02n). The mean value is (3
2 )n

Fn+4.

Proof. Let 0nx1y and 0nx0y be two elements of M0
n where x and y are chains

of size a and n − 1 − a with a ∈ [0, n − 1]. From the definition of χ it follows
that χ(0nx1y) < χ(0nx0y). Hence the smallest integer is computed from the
word 0n1n and the greatest from 0n0n. Now χ(0n1n) = 〈(1, 2)Sn

0 Sn
1 ,(1, 1)〉 and

χ(02n) = 〈(1, 2)S2n
0 ,(1, 1)〉. From proposition 1, we deduce that χ(0n1n) = (n +

1)Fn+2 + Fn+3 and χ(02n) = F2n+4.
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To compute the mean value, let us consider n independent Bernoulli random
variables C1, . . . , Cn such that ∀i ∈ [1, n], Pr(Ci = 0) = Pr(C1 = 1) = 1/2. The
mean value is E(X) where X = χ(0nC1 . . . Cn). Now

X = 〈(1, 2)Sn
0

n∏
i=1

(
Ci 1

1−Ci 1

)
,(1, 1)〉.

Notice that X is a polynomial of Z[C1, . . . , Cn]/(C2
1 − C1, . . . , C

2
n −Cn). As the

Ci are independent then ∀J ⊂ [1, n], E(
∏

j∈J Cj) =
∏

j∈J E(Cj), hence

E(X) = 〈(1, 2)Sn
0
∏n

i=1

( E(Ci) 1
1−E(Ci) 1

)
,(1, 1)〉 = 〈(1, 2)Sn

0
∏n

i=1

( 1
2 1
1
2 1

)
,(1, 1)〉.

The final result comes from proposition 1 and the equality :

∀n ∈ N∗,
(

1
2 1
1
2 1

)n

= (3/2)n−1
(

1
2 1
1
2 1

)
.

4.2 Application to Existing Standards

Using the set χ(M0
n), we can generate (with algorithm 1) 2n distinct points

χ(c)P for a point P whose order is greater than F2n+4. Of course, when the
order d of the point P is known, we have to choose the largest integer n such
that F2n+4 < d.

Because of the results on the difficulty to solve the CDLP problem, we have
to consider the set M0

n only for n � 160. For n = 160, we have χ(M0
160) ⊂

[161F162 + F163, F324], that is to say

χ(M0
160) ⊂ [2118.6, 2223.6].

Such data fit well with the secp224k1 and secp224r1 parameters where the
order of the point P is about 2223.99 [6]. Those parameters are consistent with
ANSI X.962, IEEE P1363 and IPSec standards and are recommended for ANSI
X9.63 and NIST standards.

4.3 A Variant for the secp160k1 and secp160r1 Recommended
Parameters

In the secp160k1 and secp160r1 recommended parameters, the order d of the
point P is around 2160. Using the set M0

n, this leads us to choose n = 114
which only gives rise to 2114 distinct points. Hence the complexity of an attack
is Ω(257) which may expose this method to some attacks.

Notice that if we use an element c of M0
160 with the point P of order d then

the algorithm 1 computes (χ(c) mod d)P . If the values of {χ(c) mod d, c ∈
M0

160} are well distributed among Z/dZ, then we can use the above mentioned
method, provided that computing χ(c)P with algorithm 1 be more efficient than
computing kP with k ∈ Z/dZ, with a classical SPA-resistant method. This last
point will be discussed in section 6, we will focus now on the problem of the
distribution. To this end, we will adapt results on Stern sequences from [35].
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Table 1. Distribution of χ(M0
n) modulo d

�
�n

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13
#χ(Mn

0 )
d

10 294 312 214 70 12 4 1 0.66
15 10814 12044 6216 2026 436 76 15 0.66
20 266749 327372 194442 74219 20589 4344 789 100 18 1 0.7
25 6493638 8894037 5979946 2627531 850691 216285 44567 7832 1233 162 15 1 1 0.74
29 74024780 115132679 88980442 45585634 17436296 5315191 1347286 294399 56344 9674 1459 193 18 4 0.79

Theorem 1. Let d be a prime number, m ∈ M� such that ψ(m) = (v, u). If
d� |u, and d� | v then there exist constants cd ∈ R+ and τd ∈ [0, 1[ so that for all
α ∈ (Z/dZ)∗, r ∈ N∣∣∣∣#{x ∈ Mr | χd(mx) = α}

2r
− d

d2 − 1

∣∣∣∣ < cdτ
r
d , and

∣∣∣∣#{x ∈ Mr | χd(mx) = 0}
2r

− 1
d + 1

∣∣∣∣ < cdτ
r
d .

Proof. See annex for the proof and the link with Stern sequences.

Taking m as the all zeros 160 bits vector, this asymptotic result let us think that
the values χ(c) for c ∈ M0

160 are well distributed modulo d since (F162, d) =
(F163, d) = 1. In order to illustrate this theoretical result, we made several nu-
merical tests by generating all EAC of M0

n (from n = 10 to n = 29) and reducing
the corresponding integer modulo a n-bits prime number (recall that for a prac-
tical use, we consider elements of M0

160 and a point P of order d about 2160).
Table 1 seems to show that even for chains whose length is much smaller than d,
the distribution is not so bad. For each value of n, a random n-bits prime dn has
been generated. We have then computed for each α ∈ Z/dnZ, the cardinality
δα of χ−1(α) in M0

n. Let T = {δα | α ∈ Z/dnZ}, for each t in T we have then
computed how many integers in [0, d − 1] are exactly computed t times. As an
example, for t = 0 we know how many integers are never reached when reducing
modulo d the value χ(c) for c ∈ M0

n.

5 A Second Family of EAC and an Open Problem

In order to generate a 160 bits integer, the author of [26] gives numerical results
which show that the search for a chain whose length be less than 260 needs
about 223 tests using a heuristic from Montgomery [32]. With such chains, Al-
gorithm 1 needs less multiplications than the classical SPA-resistant algorithms.
We investigated the problem of choosing shorter chains in order to speed up the
performances of algorithm 1. Once the length � is fixed we have to deal with two
constraints :

– the number p of 1’s in the chain must be chosen so that the greatest integer
generated is as near as d (
 2160) as possible,
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– because of the non-injectivity of χ ,
(

�
p

)
must be greater than 2160 in order

to hope that the integers generated reach most of the elements of [1, 2160].

These two constraints lead us to study the sets M�,p where p < �/2.

Theorem 2. Let (p, �) ∈ N2 such that 0 < 2p < �. Let Fi be the ith Fibonacci,
αp = (1+

√
2)p+(1−√

2)p

2 , βp = (1+
√

2)p−(1−√
2)p

2
√

2
, then

i) For all m ∈ M�,p we have, F�−p+4 +pF�−p+2 � χ(m) � F�−2p+4(αp +βp)+
βpF�−2p+2.

ii) The lower bound is reached if and only if m = 1p0�−p or m = 0�−p1p.
iii) The upper bound is reached if and only if m = (01)p0�−2p or m = 0�−2p(10)p.

Proof. See annex.

To improve the performances of Algorithm 1, we choose to use chains whose
length is 240. In this case p = 80 seems to be the best choice with respect to our
two constraints. With such parameters, we can randomly generate about 2216

chains computing integers in the interval [2117.7, 2158.9]. Unfortunately, it seems
to be a hard problem to compute the number of distinct integers generated in
this way.

This naturally leads us to consider the set M3p,p. Numerical experiments for
some values of p let us think that the cardinality of χ(M3p,p) is near from 22p.
Notice that from the preceding theorem, it can be proved that the upper bound
for � = 3p is equivalent to γ

( (1+√
2)(1+

√
5)

2

)p where γ = (1+
√

5)4

32
√

5
+ (1+

√
5)4

32
√

10
+

(1+
√

5)2

8
√

10
which is close to γ21.96p. We end this section with an open problem :

What is the cardinality of χ(M3p,p) ? The good performances of this method
(see next section) make this problem of interest. Notice that a straightforward
argument gives that the number of distinct integers generated (for the proposed
parameters) is greater than 2106. Indeed, it follows from proposition 3 that the
chains 0120c, where c ∈ M120,80 give rise to distinct integers.

6 Comparisons

In this paper we have proposed three different ways to compute a point on the
curve from an Euclidean addition chain :

Method 1: use a chain from M0
160 for curves of order about 2224.

Method 2: use a chain from M0
160 for curves of order about 2160 even if χ(c)

can be greater than the order, using the results on Stern sequences.
Method 3: use a chain from M240,80 for curves of order about 2160.

The interest of Method 1 is that it is the only method for which we have
a proved security. The main drawback is that it forces us to work on curves
defined over larger fields (
 2224 elements instead of 2160). However, we will see,
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in Section 6.2, that it might not be such a problem in practical implementations.
Moreover, this method shows to be particularly relevant in the context of fixed
base point scalar multiplication.

Method 2 allows us to reduce the size of the underlying fields by using Stern’s
results. Numerical samples tend to show that the generated keys are well dis-
tributed but we still lack a complete security proof.

Finally, in Method 3, we try to reduce both the size of the fields and the
length of the chains. In that case, it becomes very complicated to analyze the
distribution of the generated keys. In particular, the system becomes highly
redundant, which might lead to a bias in the set of possible chains. Typically,
this would make this method irrelevant for signature and key-exchange schemes.

We propose to compare our work to other side-channel resistant methods with
a similar security level. We do not take into account special key generation meth-
ods as they usually provide lower security level [33,34]. One could try to increase
the size of the underlying field (as we do with Method 1) to solve this issue,
however this would make those approaches slower than general algorithms. In
the fixed point scenario, special key generation methods usually provide enough
security but require in the same time a large amount of stored data: from 50
to 1000 precomputed points [15,4] when we only require a table of two stored
points.

In Table 2, we summarize the cost, in terms of field multiplications, of various
SPA-resistant scalar multiplication schemes providing a security of 80 bits. In
order to ease comparisons, we make the traditional assumption that the cost of
a field squaring (S) is 80 percent of that of a field multiplication (M).

Random Base Point. In that scenario, a new base point P is computed for
each new session. This implies that it is not possible to precompute offline mul-
tiples of P to speed up the process.

We consider the following SPA resistant methods:

– Dummy operations consist of adding a dummy point addition during the
double-and-add algorithm, when the current bit is a 0.

– The Montgomery ladder is a SPA resistant algorithm from Peter Mont-
gomery [31], performing one doubling and one addition for each bit of the
scalar. It is only efficient on Montgomery curves.

– Unified formulae allow to perform doubling and addition with the same
formulae on specific curve shapes. They can be then combined with the NAF
representation for scalar multiplication. The cost of the unified operation is
11M, 12M and 14M on Edwards [2], Hessian [16] and Jacobi curves [23]
respectively. We do not compare to Brier and Joye general unified formulae
due to their quite high cost (18M) [5].

– Möller proposed a modified version of Brauer (2w-ary) algorithm [29]. Using
precomputations, its pattern is independent from the scalar itself. In that
case, we used the latest and fastest point addition and point doubling formu-
lae in Jacobian coordinates (see [1] for complete overview). One can also refer
to the Left-to-Right recodings methods proposed in [39] whose performances
are similar.
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Fixed Base Point. In the context of a fixed base point we propose a new scalar
multiplication scheme based on our chains generation method. Notice that in
Methods 1 and 2, the 160 first steps of Algorithm 1 are fixed, independently of
the scalar, and correspond to big steps. Hence we can precompute and store the
points F162P and F163P and then generate random chains of length 160. We
compared these methods to the classical Comb method.

Table 2. Cost of various SPA resistant scalar multiplication methods providing 80 bits
of security

Point gen. Method curve field size (bits) # precomp. points #Field Mult.

random

Dummy operations general 160 1 3530
Montgomery ladder Montgomery 160 1 1463

Unified formulae Edwards 160 1 2335
Unified formulae Hessian 160 1 2548
Unified formulae Jacobi 160 1 2973
Unified formulae Edwards 160 7 2130
Unified formulae Hessian 160 7 2324
Unified formulae Jacobi 160 7 2711
Möller’s recoding general 160 16 1843

fixed

Comb Method general 160 2 1754
Comb Method general 160 4 1177
Comb Method general 160 8 866
Comb Method general 160 16 688

random
Method 1 general 224 1 2104

Method 1 (x only) general 224 1 1790

fixed
Method 1 general 224 2 1048

Method 1 (x only) general 224 2 888

random
Method 2 general 160 1 2104

Method 2 (x only) general 160 1 1790
Method 3 general 160 1 1576

Method 3 (x only) general 160 1 1336

fixed
Method 2 general 160 2 1048

Method 2 (x only) general 160 2 888

To be completely fair, we evaluate in the next section the additional cost of
working on larger fields with Method 1.

As for Method 2 and 3, Table 2 shows our different methods provide very
good results. In the random point scenario, Methods 2 and 3 perform generally
better that their counterparts. Only Montgomery’s algorithm can be claim to
be faster, but its use is restricted to Montgomery’s curves. Besides, computing
the x coordinate only with Method 3 leads to a faster scheme. In the fixed based
point scenario, the Comb method requires at least 4 times more stored points
to perform faster than our methods.
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6.1 Comparison of Method 1 with Algorithms Working on 160-Bit
Integers

Recall that Method 1 requires to work on fields of larger size (2224 elements).
Hence to be fair in our comparisons, we need to evaluate the additional cost of
performing multiplications in larger fields. To this end, we are going to consider
three contexts for modular multiplication. For each of them, we will identify
scenarios for which it is worth using our method.

a) The CIOS method [21]: the Coarsely Integrated Operand Scanning
method is an efficient implementation of Montgomery’s modular multiplication
for a large class of processor. From [21] a modular multiplication between two in-
tegers stored as s words of w bits needs 2s2+s w-bits multiplications, 4s2+4s+2
w-bits additions, 6s2 + 7s + 2 w-bits read instructions and 2s2 + 5s + 1 w-bits
write instructions. Using these results, we can estimate the cost in terms of w-
bits operations of the methods listed in Table 2.This leads us to the following
remarks.

On a 32 bits processor, for a random point P , Method 1 with x-only is the
most performant SPA resistant method which can be used on any curve and
which only stores the point P . For a fixed point P , if only two points can be
stored, this latter is better than Comb method. On a 64 bits processor, the
preceding remarks remain true. Moreover, the fixed point method (without
the x coordinate trick) is competitive with the Comb method when only two
points are stored. On a 128 bits processor, since two words are needed to store
160 bits integer or 224 bits integer, we only have to compare the number of
field multiplications in Table 2. This shows that our method in the fixed point
context is better than the Comb method when storing 2 or 4 points. For random
point context, if one needs an SPA resistant algorithm which works on any
curve and stores no more than one point, then our method gives the best result.

b) The GNU multiprecision library: we provide benchmarks for fair
comparisons between modular multiplications in the case of practical use with
the library GMP. We compute several times 228 modular multiplications (using

Table 3. Performances of Method 1 using CIOS method on 32 bits processor

s # Field mult. 32 bits × 32 bits + 32 bits Read 32 bits Write
Method 1, x-only 7 1790 187950 404540 617550 239860

Dummy 5 3530 194150 430660 660110 268280
Method 1, fixed point, x-only 7 888 93240 200688 306360 118992
Comb method, 2 stored points 5 1754 96470 213988 327998 133304

Table 4. Performances of Method 1 using CIOS method on 64 bits processor

s # Field mult. 64 bits × 64 bits + 64 bits Read 64 bits Write
Method 1, fixed point 4 1048 37728 85936 132048 55544

Comb method, 2 stored points 3 1754 36834 87700 135058 59636
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Table 5. Time to compute 228 modular multiplications with GnuMP

p 32 bits Intel T2500 2.0Ghz 64 bits AMD Opteron 8382 2.6Ghz
Tmin 135.96s Tmin 28.12s

160bits 2160 − 231 − 1 Tmax 140.49s Tmax 32.49s
Taverage 137.88s Taverage 30.42s

Tmin 198.22s Tmin 32.24s
224bits 2224 − 296 + 1 Tmax 201.86s Tmax 33.93s

Taverage 200.51s Taverage 32.67s
Taverage 224/Taverage 160 1.45 1.07

Tmax 224/Tmin 160 1.48 1.17

Table 6. Performances of Method 1 with GnuMP

Point gen. Method curve storage Mult. (32 bits proc.) Mult. (64 bits proc.)

random
Method 1 general 1 3114 2462

Method 1 (x only) general 1 2650 2095

fixed
Method 1 general 2 1552 1227

Method 1 (x only) general 2 1315 1039

mpz mul and mpz mod) on 32 and 64 bits processors. We consider reduction
modulo a prime number p conformant to the ANSI X9.63 standard [6] (resp.
FIPS186-3 standard [40]) for the 160 bits (resp. 224 bits) case. From these
benchmarks, we deduce an average time to compute a modular multiplication
as detailed in table 5. Let us now consider the ratio in the most pessimistic
case : the cost of a 224 bits modular multiplication is 1.17 times (resp. 1.48
times) the cost of a 160 bits multiplication for 64 bits (resp. 32 bits) processor.
Taking into account these results, we can give an estimate in terms of 160 bits
multiplications of Method 1. This shows the interest of Method 1, specially
in the fixed point context (see table 2).

c) Hardware context: we considered in this section two kinds of com-
ponents from the STMicroelectronics portfolio. The first embeds the Public
Key 64 bits crypto processor from AST working at 200Mhz (CORE65LPHVT
technology) and the second the 128 bits hardware smartcard cryptographic
coprocessor Nescrypt working at 110Mhz. The AST crypto processor can
compute about 2040816 160-bits modular multiplications and 1449275 224-bits
modular multiplications per second. Taking into account these results, table 7
gives the time needed by the modular multiplications when computing a point
multiplication. Once again, in the random point context, Method 1 obtains best
performances if one needs an SPA resistant algorithm working on a general
curve and storing only one point. In the fixed point context, Method 1 is faster
than the Comb method with two points. Notice that we only consider the
multiplications done by the cryptoprocessor for the times given in table 7. We
do not take into account the overhead involved by the communications between
the processor and the crypto processor.
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Table 7. Time comparison for scalar multiplication methods in milliseconds

Point gen. Method curve # precomp. points msecs

random (160 bits)

Dummy operations general 1 1.73
Montgomery ladder Montgomery 1 0.717
Unified formulae Edwards 1 1.144
Unified formulae Hessian 1 1.249
Unified formulae Jacobi 1 1.457
Unified formulae Edwards 7 1.044
Unified formulae Hessian 7 1.139
Unified formulae Jacobi 7 1.328
Möller’s recoding general 16 0.903

fixed (160 bits)

Comb Method general 2 0.859
Comb Method general 4 0.577
Comb Method general 8 0.424
Comb Method general 16 0.337

random (224 bits) Method 1 general 1 1.452
Method 1 (x only) general 1 1.235

fixed (224 bits) Method 1 general 2 0.723
Method 1 (x only) general 2 0.613

Nescrypt 128 bits crypto processor can compute about 339506 modular mul-
tiplications per second both for 160 bits and 224 bits integers. Indeed in both
cases, only two 128 bits blocks are used to manipulate these integers. Hence we
can do the same remarks as in the section about the CIOS method.

7 Conclusions

The goal of this paper was to describe subsets of integers k for which the compu-
tation of kP is faster, when dealing with the problem of SPA-secure exponenti-
ation over an elliptic curve. We studied three such subsets and produced the first
practical and theoretical results on random Euclidean addition chain generation.
Table 2 shows that our methods provide good results in various situations when
compared with the best SPA-secure methods.

We proved that the Method 1 we considered is secure and fast. In particular, in
the context of a fixed base point, it is competitive with actual methods and faster
when using similar amount of storage. We detailed several practical scenarios for
which the method is relevant and improves efficiency : in CIOS context, in the
context of GNU multiprecision library, and on some cryptoprocessors.

At last, we began the theoretical study of the other proposed methods. We
made links between Method 2 and Stern sequences which enabled to obtain
optimistic but asymptotic results. We managed to begin the study of the dis-
tribution of integers generated by Method 3. Both methods would improve the
performances once again. For example Method 3 would be faster than Mont-
gomery ladder, thus it would be worth studying it further. We have proved some
results that may be useful for any further investigation.
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Jacobi form. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 391–401. Springer, Heidelberg (2001)

24. Longa, P., Gebotys, C.: Setting speed records with the (fractional) multibase non-
adjacent form method for efficient elliptic curve scalar multiplication. In: Jarecki,
S., Tsudik, G. (eds.) Public Key Cryptography – PKC 2009. LNCS, vol. 5443,
pp. 443–462. Springer, Heidelberg (2009)

25. Longa, P., Miri, A.: New composite operations and precomputation scheme for
elliptic curve cryptosystems over prime fields. In: Cramer, R. (ed.) PKC 2008.
LNCS, vol. 4939, pp. 229–247. Springer, Heidelberg (2008)

26. Meloni, N.: Arithmétique pour la Cryptographie basée sur les Courbes Elliptiques.
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Annex

Proof of Theorem 1

Definition 3. Let (a, b) ∈ N2, the generalized Stern sequence
(sa,b(r, n))r∈N,n∈[0,2r] is defined by sa,b(0, 0) = a, sa,b(0, 1) = b, and for r � 1,
sa,b(r, 2n) = sa,b(r − 1, n), sa,b(r, 2n + 1) = sa,b(r − 1, n) + sa,b(r − 1, n + 1).

In his original paper, Stern gave a practical description of his sequence using the
following diatomic array [37] :

(r = 0) a b
(r = 1) a a + b b
(r = 2) a 2a + b a + b a + 2b b
(r = 3) a 3a + b 2a + b 3a + 2b a + b 2a + 3b a + 2b a + 3b b

...

where each line r is exactly the sequence sa,b(r, n) for n ∈ [0, 2r]. Notice that
to compute the row r, you just have to rewrite row r − 1 and insert their sum
between two elements. In the case (a, b) = (1, 1), the sequence is called the Stern
sequence and has been well studied. For example, see the introduction of [35] or
[11] for the link with the Stern Brocot array.

Now we will point deep connections between Stern sequences and the ψ and
χ maps. These connections should not surprise us, because both are linked with
continued fractions. As an example, if (a, b) = (1, 1), an easy induction enables
us to prove that when n ∈ [0, 2r[, the sequence (s1,1(r+1, 2n), s1,1(r+1, 2n+1))
describes the set ψ(Mr).

(r = 0) 1 1
(r = 1) 1 2 1
(r = 2) 1 3 2 3 1 (M2 = { 00, 01, 10, 11})
(r = 3) 1 4 3 5 2 5 3 4 1 (ψ(M2) = { (3, 5), (2, 5), (3, 4), (1, 4)})

...

Let us note Δ : N2 → N2 such that Δ(x, y) = (y, x). Another induction enables
to prove that when n ∈ [0, 2r+1 − 1], (s1,1(r + 1, n), s1,1(r + 1, n + 1)) describes
ψ(Mr) ∪ Δ(ψ(Mr)). For � ∈ N∗ and m ∈ M�, let Ar(m) = {ψ(mx) | x ∈
Mr} ∪ {Δ(ψ(mx)) | x ∈ Mr}.
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From now on, in order to simplify the notations, we will denote by s(r, n)
the value sa,b(r, n). Let us define the sequences

(
S(r, n)

)
r∈N,n∈[0,2r−1] by

S(r, n) = (s(r, n), s(r, n + 1)) and
(
Sd(r, n)

)
r∈N,n∈[0,2r−1] by Sd(r, n) = (s(r, n)

mod d, s(r, n + 1) mod d). The following link between ψ and S can be proved
by induction.

Lemma 1. Let r � 0, � > 0 and let m ∈ M� such that ψ(m) = (a, b). Then
S(r + 1, .) is a one to one map from [0, 2r+1 − 1] onto Ar(m).

It means that in our case, the values ψ(c) and Δ(ψ(c)) for c ∈ M0
� correspond

to the elements S(� + 1, n) for n ∈ [0, 2�+1 − 1] and (a, b) = (F�+2, F�+3). Re-
cently, Reznick proved in [35] that, for d � 2, (a, b) = (1, 1), and r sufficiently
large, the sequence {Sd(r, n)}n∈N is well distributed among Sd := {(i mod d, j
mod d) | gcd(i, j, d) = 1}. We need a similar result for any couple (a, b) in order
to show that the values χ(c) are asymptotically well distributed modulo d. We
will use similar notations and follow the arguments of [35] to prove the next
theorem. We define :

– for γ ∈ Sd, Bd(r, γ) := #{n ∈ [0, 2r − 1] |Sd(r, n) = γ},
– χd, the map such that χd(m) = χ(m) mod d,
– ψd the map such that if ψ(m) = (v, u) then ψd(m) = (v mod d, u mod d),
– Nd the cardinality of Sd.

Theorem 3. Let (a, b, d) ∈ N3 such that d be prime and (a, d) = (b, d) = 1.
There exist constants cd and ρd < 2 so that if m ∈ N and α ∈ Sd, then for all
r � 0,

|Bd(r, α) − 2r

Nd
| < cdρ

r
d.

Proof. Due to the lack of space, we just give a short proof of this, following the
arguments of section 4 in [35] and pointing out the differences. Since d is prime,
we have Sd = Z/dZ × Z/dZ \ {(0, 0)}, and Nd = d2 − 1. We can define a graph
Gd and the applications L and R in the same way, and also have Ld = Rd = id.
In the proof of lemma 14, we have to give a slightly different proof that for each
α = (x, y) ∈ Sd there exists a way from (a, b) to α in the graphGd. Notice that since
(0, 0) �∈ Sd, then either x �= 0 or y �= 0. If y �= 0, we notice that Rk′

(Lk(a, b)) =
(a + k′(b + ka), b + ka). As (a, d) = 1, we can choose k such that b + ka = y.
Thus, as y �= 0, we can choose k′ such that a + k′(b + ka) = x and we are done.
If x �= 0, then we consider Lk′

(Rk(a, b)) = (a + kb, b + k′(a + kb)) : in the same
way, we can choose (k, k′) such that a+ kb = x and b+ k′(a+ kb) = y. In the first
line of the proof of lemma 14, we also have to consider (r0, n0) ∈ N×N such that
Sd(r0, n0) = (0, 1) rather than Sd(0, 0) = (0, 1). Thus the adjacency matrix of
the graph satisfies the same properties as in theorem 15 of [35]. So the conclusion
remains true for Bd.

From Theorem 3 and Lemma 1 we can now give the proof of Theorem 1.
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Proof. Let α ∈ (Z/dZ)∗, and (βi, γi)1�i�d the d elements of Z/dZ × Z/dZ \
{(0, 0)} such that βi + γi = α, then

#{x ∈ Mr | χd(mx) = α} =
∑d

i=1 #{x ∈ Mr | ψd(mx) = (βi, γi)}.

If n ∈ [0, 2r+1] is such that Sd(r + 1, n) = (βi, γi) then , thanks to Lemma 1,
it corresponds to x ∈ Mr such that ψd(mx) = (βi, γi) or ψd(mx) = (γi, βi). In
this last case, there exists an integer j, such that (γi, βi) = (βj , γj). Hence,

d∑
i=1

#{n ∈ [0, 2r+1−1] | Sd(r+1, n) = (βi, γi)} = 2×#{x ∈ Mr | χd(mx) = α}.

Now by definition of Bd :

d∑
i=1

#{n ∈ [0, 2r+1 − 1] | Sd(r + 1, n) = (βi, γi)} =
d∑

i=1

Bd(r + 1, (βi, γi)).

Thus,

#{x ∈ Mr | χd(mx) = α}
2r

− d

d2 − 1
=

d∑
i=1

(
Bd(r + 1, (βi, γi))

2r+1 − 1
d2 − 1

)
.

Then we can use Theorem 3 and the triangular inequality to prove the first
inequality of the theorem. Using this inequality for α �= 0 we prove the second
inequality.

Proof of Theorem 2
From now on, we will denote by m, the value χ(m). Let us set M = sup {m | m ∈
M�,p} and I = inf {m | m ∈ M�,p}. If m ∈ M�,p is not one of the words of
the points ii) (resp. iii)), we will propose m′ ∈ M�,p such that m′ < m (resp.
m′ > m). The lemmas in the two following subsections give the details about
the words m′ we use to compare.

We first look for m ∈ M�,p such that m = I. First suppose that two 1’s in the
word m are separated by one 0 or more. Then we can consider (m, n, s) ∈ (N∗)3

and (a, b) ∈ N2 and (x, y) ∈ Ma ×Mb such that m is one of the words

1m0n1s, x10m1n0y or y01n0m1x.

We won’t consider the third case because it is the symmetric of the second one.
The lemma 2 shows that 1m0n1s > 1m+s0n and that x10m1n0y > x1n+10m+1y.
So if m = I, there are no 0 between two 1 of the word m, and so there are
integers a and c such that m = 0a1p0c. From lemma 3 we show that a = 0 (and
so c = � − p) or c = 0 (and so a = � − p).

Now we look for m ∈ M�,p such that m = M . If there are two consecutive
1’s in the word m, as 2p < � the word m will also have two consecutive 0’s.
We can consider the symmetry such that a subword 00 appears in m before a
subword 11. In this case there exists (a, b, n) ∈ N3 and (x, y) ∈ Ma ×Mb such
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that m = x00(10)n11y. In this case, we have from lemma 4 that m < x(01)n+2y.
Now assume that there are no subword 11 in m. If two 1’s in the word m are
separated by two 0’s or more, then there exists (m, n, a, b) ∈ (N∗)2×N2, x ∈ Ma

and y ∈ Mb such that m is one of the words

x010n(01)m, x010n(01)m0, x010n(01)m02y,

10n(01)m, 10n(01)m0, or 10n(01)m02y.

The Lemmas (5) and (6) give us in any case m′ ∈ M�,p such that m < m′.
We have just proved that 11 is not a subword of m, and that two 1’s of m are
separated by exactly one 0. So the word m or its symmetric is 0a(01)p0c where
(a, c) ∈ N×N. The lemma (7) shows that M is reached when a = 0 (so c = �−2p)
or when c = 1 (so a = � − 2p − 1). Then the point iii) is proved.

Now we just have to apply Proposition 1 to deduce i) from ii) and iii).

Lemmas to Find the Lower Bound

Lemma 2. Let (m, n, s) ∈ (N∗)3 and (a, b) ∈ N2. Let x ∈ Ma and y ∈ Mb. We
have

i) 1m0n1s > 1m+s0n and
ii) x10m1n0y > x1n+10m+1y.

Proof. For the point i) , we compute

1m0n1s = (1, 2)
(

1 m
0 1

)(
Fn−1 Fn

Fn Fn+1

)(
1 s
0 1

)(
1
1

)
, so

1m0n1s = (s + 1)Fn−1 +
(
(s + 1)(m + 2) + 1

)
Fn + (m + 2)Fn+1. (2)

Also, 1m+s0n = (1, 2)
(

1 m + s
0 1

)(
Fn−1 Fn

Fn Fn+1

)(
1
1

)
, so

1m+s0n = (2 + m + s + 1)Fn+1 + (2 + m + s)Fn. (3)

The difference between (2) and (3) is msFn, so it is positive in the conditions
of the lemma. We can notice that there is equality when s = 0 or when m = 0,
which can also be explained by the symmetry.

To prove the point ii), let us set (v, u) = ψ(x). We have

ψ(x10m1n0) = (v, u)
(

1 1
0 1

)(
Fm−1 Fm

Fm Fm+1

)(
1 n
0 1

)(
0 1
1 1

)

=
(
(nFm+Fm+1)u+(nFm+1+Fm+2)v, Fm+2u+(Fm+1+(n+1)Fm+2)v+(u−v)nFm

)
.

(4)

We also compute

ψ(x1n+10m+1) = (v, u)
(

1 n + 1
0 1

)(
Fm Fm+1

Fm+1 Fm+2

)



258 F. Herbaut et al.

= (Fm+1u + (Fm + (n + 1)Fm+1)v, Fm+2u + (Fm+1 + (n + 1)Fm+2)v). (5)

As u > v, we can deduce the point ii) from the comparison components by
components of the vectors (4) and (5).

Lemma 3. Let (a, b, c) ∈ (N∗)3, we have 0a1b0c > 1b0a+c.

Proof. We first compute the left hand side

0a1b0c = (1, 2)
(

Fa−1 Fa

Fa Fa+1

)(
1 b
0 1

)(
Fc−1 Fc

Fc Fc+1

)(
1
1

)

= (Fa+2Fc−1 + (bFa+2 + Fa+3)Fc + Fa+2Fc + (bFa+2 + Fa+3)Fc+1+)

= Fa+2Fc+1 + Fa+3Fc+2 + bFa+2Fc+2. (6)

We also compute the right hand side

1b0a+c = (1, 2)
(

1 b
0 1

)(
Fa+c−1 Fa+c

Fa+c Fa+c+1

)(
1
1

)
= (Fa+c−1 + (b + 2)Fa+c + Fa+c + (b + 2)Fa+c+1)

= Fa+c+4 + bFa+c+2.

With eq. 1, page 242 we show that it is

Fa+2Fc+1 + Fa+3Fc+2 + bFa+c+2. (7)

The difference between (6) and (7) is b(Fa+c+2 − Fa+2Fc+2) = bFcFa, which is
positive in the conditions of the lemma. In the cases c = 0 or a = 0, there is
equality which we already knew by the symmetry.

Lemmas to Compute the Upper Bound

Lemma 4. Let (n, a, b) ∈ N3. For all x ∈ Ma and y ∈ Mb we have

x00(10)n11y < x(01)n+2y.

Proof. We first compute

S2
0 (S1S0)

n
S2

1 =
(

1 1
1 2

)(
αn 2βn

βn αn

)(
1 2
0 1

)
=
(

αn + βn 3αn + 4βn

αn + 2βn 4αn + 6βn

)
.

We set (v, u) = ψ(x), so we have

ψ(x00(10)n11) = (v, u)
(

αn + βn 3αn + 4βn

αn + 2βn 4αn + 6βn

)
= (v(αn + βn) + u(αn + 2βn), v(3αn + 4βn) + u(4αn + 6βn)) .

(8)
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From the other hand

S0S1 (S0S1)
n

S0S1 =
(

0 1
1 2

)(
αn − βn βn

βn αn + βn

)(
0 1
1 2

)

=
(

αn + βn 2αn + 3βn

2αn + 3βn 5αn + 7βn

)
, so

ψ(x(01)n+2) = (v(αn + βn) + u(2αn + 3βn), v(2αn + 3βn) + u(5αn + 7βn)) . (9)

As v < u we can compare the vectors (8) and (9) components by components
and then conclude.

Lemma 5. Let (m, n, a, b) ∈ (N∗)2×N2 . For all x ∈ Ma and y ∈ Mb, we have

i) x010n(01)m < x(01)m+10n

ii) x010n(01)m0 < x(01)m+10n+1

iii) x010n(01)m02y < x(01)m+10n+2y.

Proof. We compute

S0S1S
n
0 =
(

0 1
1 2

)(
Fn−1 Fn

Fn Fn+1

)
=
(

Fn Fn+1
Fn+2 Fn+3

)
.

We deduce

S0S1S
n
0 (S0S1)

m =
(

Fn Fn+1
Fn+2 Fn+3

)(
αm − βm βm

βm αm + βm

)
and so

S0S1S
n
0 (S0S1)

m =
(

αmFn + βmFn−1 αmFn+1 + βmFn+2
αmFn+2 + βmFn+1 αmFn+3 + βmFn+4

)
. (10)

From the other hand, we can write (S0S1)
m+1

Sn
0 = (S0S1)

m
S0S1S

n
0 so

(S0S1)
m+1

Sn
0 =
(

αm − βm βm

βm αm + βm

)(
Fn Fn+1

Fn+2 Fn+3

)
, and then

(S0S1)m+1 Sn
0 =
(

αmFn + βmFn+1 αmFn+1 + βmFn+2

αmFn+2 + βm(Fn + Fn+2) αmFn+3 + βm(Fn+1 + Fn+3)

)
(11)

Let us set (v, u) = ψ(x).

ψ(x010n(01)m) = (v, u)
(

αmFn + βmFn−1 αmFn+1 + βmFn+2
αmFn+2 + βmFn+1 αmFn+3 + βmFn+4

)(
1
1

)

= v(αmFn+2 + βmFn−1 + βmFn+2) + u(αmFn+4 + βmFn+1 + βmFn+4). (12)

We also have

ψ(x(01)m+10n) = (v, u)
(

αmFn + βmFn+1 αmFn+1 + βmFn+2

αmFn+2 + βm(Fn + Fn+2) αmFn+3 + βm(Fn+1 + Fn+3)

) (
1
1

)
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= v(αmFn+2 + βmFn+1 + βmFn+2) + u(αmFn+4 + βmFn+2 + βmFn+4). (13)

The difference between (13) and (12) is vβmFn + uβmFn so we deduce the first
point.

To prove the point ii) we use (10) which gives

S0S1S
n
0 (S0S1)m S0 =

(
αmFn+1 + βmFn+2 αmFn+2 + βmFn−1 + βmFn+2

αmFn+3 + βmFn+4 αmFn+4 + βmFn+1 + βmFn+4

)
(14)

Let us set (v, u) = ψ(x). We have

x010n(01)m0 = v(αmFn+3 + βmFn−1 + 2βmFn+2)
+u(αmFn+5 + βmFn+1 + 2βmFn+4).

(15)

From (11) we deduce

(S0S1)m+1 Sn+1
0 =

(
αmFn+1 + βmFn+2 αmFn+2 + βmFn+3

αmFn+3 + βmFn+1 + βmFn+3 αmFn+4 + βmFn+2 + βmFn+4

)
(16)

So

x(01)m+10n+1 = v(αmFn+3 + βmFn+4) + u(αmFn+5 + βmFn+3 + βmFn+5). (17)

The difference between (17) and (15) is vβmFn so we have the positivity. To
prove iii) we compute from (14) and (16)

S0S1S
n
0 (S0S1)

m
S2

0 =
(

αmFn+2 + βmFn−1 + βmFn+2 αmFn+3 + βmFn−1 + 2βmFn+2
αmFn+4 + βmFn+1 + βmFn+4 αmFn+5 + βmFn+1 + 2βmFn+4

)

and (S0S1)
m+1

Sn+2
0 =

(
αmFn+2 + βmFn+3 αmFn+3 + βmFn+4

αmFn+4 + βmFn+2 + βmFn+4 αmFn+5 + βmFn+3 + βmFn+5

)
.

We compare components by components and then deduce iii)

Lemma 6. Let (m, n, b) ∈ (N∗)2 × N and y ∈ Mb. We have

i) 10n(01)m < (01)m+10n−1,

ii) 10n(01)m0 < (01)m+10n,

iii) 10n(01)m02y < (01)m+10n+1y.

Proof. We will use the computations of the proof of lemma 5. Let us consider
that ψ(x) = (1, 1). In this case ψ(x0) would be (1, 2), and we would have
x010n(01)m = 10n(01)m. So with (12) we have

10n(01)m = αmFn+2 +βmFn−1 +βmFn+2 +αmFn+4 +βmFn+1 +βmFn+4. (18)
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With (11) we have

(01)m+10n−1 = αmFn+1 + βmFn + βmFn+1 + 2αmFn+3 + 2βmFn+1 + 2βmFn+3,
(19)

so (01)m+10n−1 − 10n(01)m = αmFn−1 + βmFn+2, and then we have the point
i) . In the same way, we also have

10n(01)m0 = αmFn+3+βmFn−1+2βmFn+2+αmFn+5+βmFn+1+2βmFn+4, and

(01)m+10n = αmFn+2 +βmFn+1 +βmFn+2 +2αmFn+4 +βmFn+2 +βmFn+4, so

(01)m+10n − 10n(01)m0 = Fn(αm + 2βm) and then we deduce the point ii) .

Now, ψ(10n(01)m02) = (1, 1)S0S1S
n
0 (S0S1)mS2

0 , and with (15) we find

ψ(10n(01)m02) = (αm(Fn+2 + Fn+4) +βm(Fn−1 + Fn+5),
αm(Fn+3 + Fn+5) + βm(Fn−1 + Fn+5)).

(20)

With (11) we compute

ψ((01)m+10n+1) = (αm(Fn+1+ 2Fn+3) + βm(Fn+1 + 3Fn+3),
αm(Fn+2 + 2Fn+4) + βm(Fn+2 + 3Fn+4).

(21)

The difference of the first component of (21) by the first component of (20) is
αmFn−2 + βmFn+2, and the difference of the second components is αmFn +
βm(2Fn+4 − Fn−1 − Fn+1) so the point iii) is proved.

Lemma 7. Let (a, b, c) ∈ N × N∗ × N. If c �= 1 and a �= 0 then 0a(01)b0c <

(01)b0a+c.

Proof. We compute

0a(01)b0c = (1, 2)
(

Fa−1 Fa

Fa Fa+1

)(
αb − βb βb

βb αb + βb

)(
Fc−1 Fc

Fc Fc+1

)(
1
1

)

= αb(Fa+2Fc+1 + Fa+3Fc+2) + βb(Fa+1Fc+1 + Fa+4Fc+2). (22)

On the other hand

(01)b0a+c = (1, 2)
(

αb − βb βb

βb αb + βb

)(
Fa+c−1 Fa+c

Fa+c Fa+c+1

)(
1
1

)

= αbFa+c+4 + βb(Fa+c+2 + Fa+c+4). (23)

Using eq. 1, we prove that the difference between (23) by (22) is βbFa(Fc+1−Fc).
It is zero if and only if a = 0 or c = 1, and positive otherwise.
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Abstract. In the recent years, Higher-order Side Channel attacks have
been widely investigated. In particular, 2nd-order DPA have been
improved and successfully applied to break several masked implemen-
tations. In this context, the development of sound and practical counter-
measures against attacks of arbitrary fixed order d is of crucial interest.
Surprisingly, while many studies have been dedicated to the attacks,
only a very few methods have been published that claim to provide secu-
rity against dth-order side channel attacks whatever the order d. Among
them, the one proposed by Courtois and Goubin at ICISC 2005 was es-
pecially interesting due to its great efficiency. In this paper we show that
the method is however flawed and we exhibit several higher-order attacks
that can defeat the countermeasure for any value of d.

1 Introduction

The observation of a device during its execution (e.g. through power consumption
measurements) can give information on the internal values actually manipulated
by the device. Based on this idea, a powerful attack targeting symmetric cipher
implementations and called Differential Power Analysis (DPA for short) has
been proposed by Kocher et al. in 1998 [1]. The main idea is to observe the
device during the manipulation of key-dependent data (called sensitive data in
the sequel), and to retrieve information about the key (and eventually the whole
key) from this observation. Since the introduction of DPA, and more generally
of Side Channel Analysis (SCA for short), many works have focused either on
the enhancement of such attacks or on the search of sound countermeasures. In
the latter area of research, masking techniques are currently the most promising
type of countermeasure. The idea is to split any sensitive variable manipulated
by the device into several shares such that the knowledge on a subpart of the
shares does not give information on the sensitive value itself. When the number
of shares is d + 1, the countermeasure is usually called a dth-order masking
scheme. When such a scheme is applied, the attacker has to retrieve information
about the d + 1 shares — i.e. to observe at least d + 1 leakage points on the
device — in order to gain knowledge about the targeted sensitive variable. Such
an attack is called a (d + 1)th-order SCA attack and it has been shown that

G. Gong and K.C. Gupta (Eds.): INDOCRYPT 2010, LNCS 6498, pp. 262–281, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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its complexity increases exponentially with the order d [2]. While some 1st-
order masking techniques have been successfully proved to be secure against 1st-
order SCA attacks (see for instance [3, 4]), the practicality of 2nd-order attacks
has been also demonstrated [5, 6, 7]. The construction of an efficient dth-order
masking scheme thus became of great interest. The main difficulty resides in the
handling of d + 1 shares of a unique intermediate variable through a non-linear
function (i.e. the cipher s-boxes). Several solutions to this so-called higher-order
masking problem have been proposed in the literature: [8] and [9] only solve
the problem for 2nd-order SCA attacks, [10] makes unrealistic assumptions on
the adversary capabilities, assuming that some parts of the computation are
unconditionally secured against SCA, and [11] has been broken for any order
d ≥ 3. Finally there are basically two types of constructions that claim (and
are believed) to be secure against SCA for any arbitrary fixed order d: on one
hand, the construction of Ishai et al. [12] and its recent adaptation by Rivain and
Prouff [13] and, on the other hand, the construction of Courtois and Goubin [14]
based on table re-computation techniques. In the present paper, it is argued that
Courtois and Goubin scheme can actually always be broken by a 2nd-order SCA
attack, making [12] and [13] the unique known solutions for the arbitrary higher-
order masking problem.

The paper is organized as follows. In Sec. 2, the concept of Higher-order
SCA (HO-SCA for short) and the Higher-order masking problem are formally
defined. We also introduce some basics about homographic functions on which
the construction proposed in [14] is based. In Sec. 3, Courtois and Goubin’s
scheme is presented. We then exhibit in Sec. 4 the construction weaknesses (or
flaws) that make it vulnerable to 2nd-order SCA attacks (for any order of the
masking scheme). We then evaluate the actual amount of information leakage
resulting from each of the presented flaws and compare them with information
leakage for the classical Boolean and affine masking schemes. These theoretical
results are finally confirmed by simulations of SCA attacks in Sec. 5.

2 Preliminaries

2.1 Higher-Order Side-Channel Attacks and Higher-Order Security

SCA attacks exploit a dependency between a subpart of the secret key and the
variations of a physical leakage as function of the plaintext. This dependency
results from the manipulation of some sensitive variables by the implementation.
We say that a variable is sensitive if it depends on both the plaintext and the
secret key. For example, the x-or (denoted ⊕) between a key byte and a plaintext
byte is a sensitive variable.

As recalled in introduction, the manipulation of sensitive data may be pro-
tected using a dth-order masking scheme. When such a scheme is applied, it is
expected that no HO-SCA of order less than or equal to d can be successful. The
next definition formalizes the notion of security with respect to dth-order SCA
for a cryptographic algorithm. Note that this definition corresponds exactly to
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that involved in Courtois and Goubin’s paper [14], along with numerous other
papers (e.g. [15, 3, 16, 17, 18]).

Definition 1 (dth-Order Security). A cryptographic algorithm A is secure
against dth-order SCA if every family of at most d intermediate variables of A
is independent of any sensitive variable.

If a family of d intermediate variables depends on a sensitive variable then we say
that the algorithm admits a dth-order flaw. A dth-order SCA aims at exploiting
such a flaw.

In the rest of the paper, we will use a large letter (e.g. X) to denote a random
variable, while a lowercase letter (e.g. x) will denote a particular value taken by
a random variable.

2.2 Higher-Order Masking

Let M and K denote two random variables respectively associated with some
plaintext subpart values m and a secret sub-key k manipulated by a crypto-
graphic algorithm. Let us moreover denote by Z the sensitive variable M ⊕ K.
When dth-order aditive masking is involved to secure the manipulation of Z, the
latter variable is randomly split into d + 1 shares R0, R1, ..., Rd such that:

Z = R0 ⊕ R1 ⊕ · · · ⊕ Rd . (1)

The Ri’s, i > 0, are usually called the masks and are randomly generated. In
this case, the share R0, called the masked variable, plays a particular role and is
defined such that R0 = Z ⊕ R1 ⊕ · · · ⊕ Rd.

To enable the application of a transformation S on a variable Z split in d + 1
shares, as in (1), a so-called dth-order masking scheme (or simply a masking
scheme if there is no ambiguity on d) must be designed. It leads to the processing
of d + 1 new shares R′

0, R
′
1, · · · , R′

d such that:

S[Z] = R′
0 ⊕ R′

1 ⊕ · · · ⊕ R′
d . (2)

Usually, the R′
i’s, i > 0, are generated at random and the share R′

0 is defined
such that R′

0 = S[Z] ⊕ R′
1 ⊕ · · · ⊕ R′

d. When S is non-linear, the critical point
is to deduce R′

0 from (Ri)i≥0 and (R′
i)i>0 without compromising the security of

the scheme against dth-order SCA. Several solutions have been proposed to deal
with this issue (e.g. [12,13,14,8,11]). In this paper we pay particular attention to
those based on the pre-processing of a masked s-box [14,8,11]. They involve so-
called (additive) masking functions in their description. We give hereafter some
basics about those functions:

– we denote by Gi the ith input masking function X �→ X ⊕Ri and by G′
i the

ith output masking function X �→ X ⊕ R′
i,

– for every integer j ≥ 1, we denote by Gj..1 and G′
j..1 the function Gj ◦· · ·◦G1

and G′
j ◦ · · · ◦ G′

1 respectively,
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– for every j, we have G−1
j..1 = Gj..1 and G′−1

j..1 = G′
j..1: masking functions

are involutive over GF(2n) and pairwisely commutative with respect to the
composition law ◦.

When formulated in terms of masking functions, the masked variables R0 and
R′

0 respectively satisfy R0 = Gd..1(Z) and R′
0 = Gd..1(S[Z]), and the problem of

the construction of a dth-order masking scheme can be stated as follows:

Problem 1 (Construction of a dth-order masking scheme). Let S denote
a non-linear function defined over the definition set of Z. Let (Gi)i≤d (resp.
(G′

i)i≤d) be respectively a family of d input (resp. output) additive masking func-
tions and let Gd..1(Z) be the dth-order masked representation of Z. Define a dth-
order secure construction of the masked representation (G′

d..1 ◦ S)(Z) of S(Z)
taking at inputs Gd..1(Z) and the families (G′

i)i≤d and (Gi)i≤d.

Before starting the discussion about the masking scheme proposed in [14], we
recall in the following section some basics about the so-called homographic func-
tions, that are the core of the solution to Problem 1 proposed in [14].

2.3 Preliminaries on Homographic Functions

Let ∞ denote an element not included in GF(2n) and let us denote by GF(2n)
the set GF(2n)∪ {∞}. Homographic functions over GF(2n) are functions which
take the general form X �→ aX+b

cX+d for (a, b, c, d) ∈ GF(2n)4 and X ∈ GF(2n) \
{∞, d/c}. They are defined in X = ∞ and X = d/c by mapping those elements
into a/c and ∞ respectively.

Homographic functions have a compact representation since every such func-
tion A : X �→ aX+b

cX+d can be represented by a 2 × 2 matrix denoted by MA and
satisfying:

MA =
(

a b
c d

)
. (3)

The composition of two homographic functions is also homographic. Moreover,
composing two homographic functions can be done efficiently by multiplying
their respective matrix-representations: if MA and MB are the matrix repre-
sentations of the homographic functions A and B, then the matrix representation
MA◦B of A ◦ B satisfies:

MA◦B = MA ×MB .

Eventually, the set of invertible homographic mappings (i.e. s.t. ad �= bc) forms
a group H under the composition law ◦. The neutral element is the identity
function Id over GF(2n) and the matrix representation MA−1 of the inverse
A−1 — for any A ∈ H — can be easily deduced from MA:

MA−1 =
(

d b
c a

)
, (4)

where MA satisfies (3).
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3 Masking Scheme Based on the Pre-processing of a
Homographic Masked s-Box

The method proposed by Courtois and Goubin in [14] to solve Problem 1 for
any order d may be viewed as an adaptation of the generic dth-order table
recomputation (recalled in Appendix A) to the particular case of the AES s-
box. In the next section, we give the main outlines of Courtois and Goubin’s
masking scheme. The presentation is then completed in the following sections,
where each step of the scheme is detailed.

3.1 Courtois and Goubin’s Scheme: General Principle

To solve Problem 1, the table recomputation methods follow the hereafter
approach:

1. From the look-up table representation of S, compute the look-up
table representation of the following masked s-box S�:

S� = G′
d ◦ · · · ◦ G′

2 ◦ G′
1 ◦ S ◦ G1 ◦ G2 ◦ · · · ◦ Gd . (5)

2. Evaluate S� on Gd..1(Z).

The processing of the first step must be done without ever manipulating a
(d−1)-tuple U of intermediate variables such that (U, Gd..1(Z)) is sensitive (i.e.
depends on Z). This constraint implies several table recomputations during step
1 (see e.g. [11,8] and Appendix A). The core idea of Courtois and Goubin in [14]
is to use homographic functions in such way that the costly table recomputations
are replaced by 2-dimensional matrix products (as noticed in Sec. 2.3).

Homographic Extension. Courtois and Goubin approach requires to extend
the functions S, (Gi)i and (G′

i)i defined over GF(2n) to (homographic) functions
S, (Gi)i and (G

′
i)i defined over GF(2n). As explained in Sec. 3.2, this is straight-

forward for the masking functions Gi’s and G′
i’s and possible for the AES s-box

S due to its particular algebraic structure. Eventually, the method introduced
in [14] enables the construction of the following function with only 2× 2 matrix
products:

S� = G
′
d ◦ · · · ◦ G

′
2 ◦ G

′
1 ◦ S ◦ G1 ◦ G2 ◦ · · · ◦ Gd . (6)

The core point is that the function S� exactly corresponds to the masked function
S� over the set GF(2n) \ {∞, Gd..1(0)}. In the rest of the paper, we will denote
by Gd..1 (resp. G

′
d..1) the function Gd ◦ · · · ◦ G1 (resp. G

′
d ◦ · · · ◦ G

′
1).

The ∞-masking problem. Unfortunately, as noticed by the authors them-
selves, a direct application of S� to a masked variable Gd..1(Z) would introduce a
first-order flaw, called ∞-masking problem1 in the following. Indeed, the masking
1 Note that the∞-masking problem is very close to the zero-masking problem (see for

instance [19]).
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functions G
′
d..1 and Gd..1 do not mask the ∞ element (Gd..1(∞) = G

′
d..1(∞) =

∞). To overcome this issue, Courtois and Goubin propose to reroute the ∞ ele-
ment by involving two new families of d random functions (αi)i and (βi)i in H.
This leads the authors to the construction of the following new masked s-box:

S�� = α−1 ◦ S� ◦ β−1 ,

where α and β respectively denote the functions α1 ◦ · · · ◦ αd and β1 ◦ · · · ◦ βd.
We recall hereafter the different steps of Courtois and Goubin’s masking

scheme at order d:

1. Generate at random two families of d homographic permutations
(αi)1≤i≤d and (βi)1≤i≤d.

2. Compute A and B such that:

A =
(
α−1

d ◦ · · · ◦
(
α−1

2 ◦
(
α−1

1 ◦ G
′
1

)
◦ G

′
2

)
◦ · · · ◦ G

′
d

)
and

B =
(
G1 ◦ · · · ◦

(
Gd−1 ◦

(
Gd ◦ β−1

d

)
◦ β−1

d−1

)
◦ · · · ◦ β−1

1

)
,

where the order of the computation (given by the brackets) is of
importance to achieve dth-order security.
Note that we have A = α−1 ◦ G

′
d..1 and B = Gd..1 ◦ β−1.

3. Compute the representation of the homographic function

S�� = A ◦ S ◦ B .

4. Compute step by step from right to left:

α1 ◦ · · · ◦ αd ◦ S�� ◦ β1 ◦ · · · ◦ βd(Gd..1(Z)) . (7)

Note that this processing outputs S�(Gd..1(Z)) that is, by definition of S�,
G′

d..1(S(Z)) for Z ∈ GF(2n) \ {0}. To enable computation on the 0 element,
a pre-processing and a post-processing are applied on (7). Those steps, which
involve swapping functions, are detailed in Sec.(s) 3.2 and 3.3.

3.2 Homographic Masked AES s-Box

We show here, how the masked s-box S� = G′
d..1◦S◦Gd..1 can be represented as a

composition of Homographic functions. In the sequel, τg,h denotes the swapping
function that exchanges the elements g and h and leaves all the other elements
unchanged.

The AES s-box. The AES s-box is defined as the composition of an affine
function with the inverse function over GF(2n)� extended in 0 by setting 0−1 = 0.
To be compliant with the notations introduced in previous sections, we will
denote this extended inverse function by S in the following. As noticed in [14],
it can be extended over GF(2n) to a function τ0,∞ ◦S where S is a homographic
function defined by:
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S(X) =

⎧⎨
⎩

S(X) = X−1 if X /∈ {0,∞}
0 �→ ∞
∞ �→ 0

.

The masking functions. Every masking function Gi (resp. G′
i) can be straight-

forwardly extended to a homographic function Gi (resp. G′
i) by setting Gi(∞) =

∞ (resp. G′
i(∞) = ∞). For every i, the matrix representation MGi

(resp. MG′
i
)

is obtained by setting a = d = 1, c = 0 and b = Ri (resp. b = R′
i) in (3).

As a consequence, the masked representation S� of S defined in (5) can be
considered as a restriction to GF(2n) of the function

τ∞,R′ ◦ S�,

where R′ = R′
1 ⊕ · · · ⊕ R′

d and S� is a homographic function defined in (6). Let
us remark that the swapped elements verify ∞ = G′

d..1(∞) and R′ = G′
d..1(0)

respectively.

3.3 Courtois and Goubin’s Scheme

We sum up in the following the masked s-box construction at order d proposed
in [14]:

Algorithm 1. Masked s-box computation
Input: the random families (α−1

i )i≤d and (β−1
i )i≤d and the masking functions (Gi)i≤d

and (G
′
i)i≤d

Output: the masked s-box S�� and the swapping elements {g, h}
1. Construct A = α−1 ◦G

′
d..1:

MA ←↩MId

for j from 1 to d do

MA ←↩M
α−1

j
×MA ×MG

′
j

2. Construct B = Gd..1 ◦ β−1:
MB ←↩MId

for j from d downto 1 do

MB ←↩MGj
×MB ×Mβ−1

j

3. Construct S�� ←↩ A ◦ S ◦ B

MS�� ←↩MA ×MS ×MB

4. Evaluate g = A(∞)

g ← A1
A3

// where MA =
(

A1 A2

A3 A4

)
5. Evaluate h = A(0)

h← A2
A4

// where MA =
(

A1 A2

A3 A4

)
return (S��, g, h)
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In Algorithm 1, we used two different symbols ←↩ and ← to highlight the dif-
ference between an instantiation of a matrix and an instantiation of a variable.
It must however be noted that the operation ←↩ is itself composed of ← opera-
tions which correspond to the manipulation of the matrix coordinates. Since the
attacks - described in the next section - target the matrix instantiations, we give
hereafter the details of the implementation of ←↩ in terms of ←.

Algorithm 2. Operation ←↩
Input: Two 2× 2 matrices MA = (ai,j)0≤i,j≤1 andMB = (bi,j)0≤i,j≤1

Output: The matrix MB such thatMA =MB

1. b00 ← a00

2. b01 ← a01

3. b10 ← a10

4. b11 ← a11

return MB

It can be checked that for every Z ∈ GF(2n) we have:

[G′
d..1 ◦ S](Z) = [α ◦ τg,h ◦ S�� ◦ β] (Gd..1(Z)) . (8)

Namely, by applying the transformations β, S��, τg,h and α to the masked rep-
resentation Gd..1(Z) of Z we get the masked representation G′

d..1(S(Z)) of S(Z).
Hence, once the homographic function S�� and the elements g and h are gener-
ated by the means of Algorithm 1, the masked representation G′

d..1(S(Z)) of the
AES s-box output is got by processing the following algorithm to the masked
representation Gd..1(Z) of Z.

Algorithm 3. Masked s-box evaluation
Input: the masked input Gd..1(Z), the outputs of Alg. 1 (S�� and {g, h}), and the
random families (αi)i and (βi)i

Output: G′
d..1(S(Z))

1. U ← Gd..1(Z)
2. for j from d downto 1 do

3. U ← βj(U)
4. V ← S��(U)
5. W ← τg,h(V )
6. for j from d downto 1 do

7. W ← αj(W )
return W

The completeness of Algorithm 3 is a straightforward consequence of (8) and
the constructions performed in Algorithm 1.
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4 The Flaws

The variable U manipulated at Step 4 of Algorithm 3 satisfies

U = β ◦ Gd..1(Z) ,

that is
U = B−1(Z) , (9)

where B is the homographic function designed at Step 2 of Algorithm 1. Hence,
U can be viewed as the homographically masked representation of Z, where B−1

plays the role of an homographic masking function. Thus, as any kind of masking
(e.g. Boolean [20], multiplicative [19] or affine [21]), the homographic masking
function can be overcome by simultaneously targeting the manipulation of the
masked variable and the manipulation of the masking material during the masked
s-box construction (Algorithm 1). This remark leads to a straightforward flaw
of order 5, that can be reduced to flaws of order 4, 3 and 2, and this, whatever
the scheme order d. We exhibit them in Sec. 4.1. Additionally, we exhibit in
Sec. 4.2 another kind of 2nd-order flaw related to the masking of the ∞ element.
In Sec. 4.3, we eventually quantify the amount of information leakage resulting
from those flaws when the scheme is implemented on a standard device.

4.1 First Category of Flaws

Let us denote by (B1, B2, B3, B4) the 4-tuple such that B satisfies:

MB =
(

B1 B2
B3 B4

)
. (10)

Equations (9) and (10) imply the following relation between Z, U and B:

Z = B(U) =
B1U + B2

B3U + B4
. (11)

The above equation suggests us that information on U combined with informa-
tion on the function B reveals information on the sensitive variable Z. Infor-
mation on U can be retrieved during its manipulation at the end of the last
iteration of the first loop (Step 2–Step 3) in Algorithm 3. Information on B can
be obtained by observing the instantiation of the matrix-representation of B
during the last iteration of the second loop in Algorithm 1. This processing is
indeed done by calling Algorithm 2 and thus implies the manipulation of the 4
coordinates B1, B2, B3 and B4 of MB.

Due to (11), we have Pr[Z] �= Pr[Z | (U, B1, B2, B3, B4)] and we thus straight-
forwardly deduce the existence of the following 5th-order flaw on Z:

5th-order flaw: {B1, B2, B3, B4, U} . (12)
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At this point, it must be noted that the full description of B is not required
to exhibit, together with U , a flaw on Z. Indeed, it can be easily checked (see
Sec. 4.3) that subsets of {U, B1, B2, B3, B4} are also dependent on Z. In other
words, the scheme described in Sec. 3.3 admits flaws of order lower than 5. We
list them hereafter:

4th-order flaws: {B2, B3, B4, U}, {B1, B2, B4, U}, {B1, B2, B3, U} , (13)
3rd-order flaws: {B1, B2, U}, {B2, B3, U}, {B2, B4, U} , (14)
2nd-order flaw: {B2, U} . (15)

A similar analysis could be done to exhibit a flawonS(Z)by combining information
on the intermediate variableV = A◦S(Z) (Step 4 inAlgorithm3)with information
on A (matrix instantiation at the end of the first loop in Algorithm 1). As a matter
of fact, by construction of A, we have S(Z) = A−1(V ) when Z belongs to GF(2n)�.
Again, the variableV can be viewed as the homographicallymasked representation
of S(Z) by the homographic masking function A.

4.2 Second Category of Flaws

The masking scheme contains another 2nd-order flaw than the one exhibited in
the previous section. This flaw is close to the zero-masking problem [19] or its
projective version mentioned in [14]. To deal with the ∞-masking problem, the
value g = A(∞) is computed in Algorithm 1. This variable g combined with the
intermediate variable V occurring at Step 4 of Algorithm 3 reveals information
on Z. Indeed, it can be checked that

(V = g) iff
(
S(Z) = ∞

)
iff (Z = 0) .

We hence have Pr[Z] �= Pr[Z | (V, g)], that implies the following 2nd-order flaw:

2nd-order flaw: {V, g} . (16)

As we will see in Sec. 5, this flaw will lead to a powerful second-order SCA against
Courtois and Goubin’s Scheme. Actually, will show that this second-order flaw
is very similar to the one related to affine masking [21] (see Remark 3, Sec. 4.3).

4.3 Information Theoretic Evaluation

In the previous section, we have shown that Courtois and Goubin’s masking
scheme has flaws of orders 2 to 5 whatever the order of the scheme. This is
sufficient to claim that the countermeasure fails in achieving dth-order security
for all d. However, the physical leakage of an implementation does not reveal
the exact values of the variables manipulated but a noisy function of them. In
this section, our purpose is to quantify the amount of information that each
flaw reveals about the sensitive variable Z when the scheme is implemented on
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a classical embedded device. To achieve this goal, we first model the relation-
ship between the physical leakage and the value of the variable manipulated at
the time of the leakage. Secondly, we follow the approach introduced in [22] to
evaluate theoretically the amount of information leaked with respect to each
flaw.

Leakage Model. Every intermediate variable Yi of an algorithm processing can
be associated with a variable Li representing the information leaking about Yi

through side channel. This leakage can be expressed as the sum of a deterministic
leakage function ϕ of Yi with an independent additive noise βi:

Li = ϕ(Yi) + βi . (17)

In the following, we shall say that a d-tuple L of leakage variables Li is a dth-
order leakage if it corresponds to d different intermediate variables Yi that jointly
depend on some sensitive variable (i.e. is a dth-order flaw).

Thanks to (17), we can associate a dth-order leakage L to each d-tuple of
intermediate variables listed in (12)–(16). We shall use the notation

L ← (Y1, · · · , Yd)

to specify the set of intermediate data manipulations that are related to L.

Information Theoretic Evaluation. To evaluate the information revealed
by each of the flaws exhibited in (12)–(16) with respect to HO-SCA, we follow
the information theoretic approach introduced in [22]. Namely, we compute the
mutual information between the sensitive variable Z and L. For comparison
purpose, we proceed similarly for Boolean and affine maskings (see for instance
[20] and [21] for a detailed description of those maskings). We list hereafter the
leakages we consider and the underlying leaking variables:

5th-order leakage of homographic masking: L ← (U, B1, B2, B3, B4) . (18)
4th-order leakage of homographic masking: L ← (U, B1, B2, B4) . (19)
3rd-order leakage of homographic masking: L ← (U, B1, B2) . (20)
2nd-order leakage of homographic masking: L ← (U, B2) . (21)
2nd-order leakage of homog. mask. (2nd cat.):L ← (V, g) . (22)
2nd-order leakage of Boolean masking: L ← (Z ⊕ B2, B2) . (23)
2nd-order leakage of affine masking: L ← (B1 · Z ⊕ B2, B2) . (24)
3rd-order leakage of affine masking: L ← (B1 · Z ⊕ B2, B2, B1) . (25)

Remark 1. The Boolean and affine maskings listed above can be viewed as
particular cases of homographic masking by fixing respectively (B1, B3, B4) =
(1, 0, 1) and (B3, B4) = (0, 1) in (11).

Remark 2. For Flaws (13) and (14) only the best choice of leaking variables has
been considered.
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Remark 3. Flaws (22) and (24) are in fact very similar. Each of them can be
interpreted as targeting a pair of intermediate variables (Y1, Y2) that depends
on a sensitive variable Z in the following way:

(Y1 = Y2) iff (Z = 0) .

In Flaw (22), we have Y1 = V and Y2 = g and we have Y1 = B1 · Z ⊕ B2 and
Y2 = B2 in Flaw (24).

For each kind of leakage, we computed the mutual information between Z and the
tuple of leakages in the Hamming weight model with Gaussian noise: the leakage
Li related to a variable Yi is distributed according to (17) with ϕ = HW and
βi ∼ N (0, σ2) (the different βi’s are also assumed independent). According to the
assumptions made in [14] and recalled in Sec. 3, we assumed that the variable Z
and the Bi’s are uniformly distributed over their definition sets. In this context,
the signal-to-noise ratio (SNR) of the leakage is defined as Var [ϕ(Yi)] /Var [βi] =
2/σ2 (since the Yis are 8-bits variables).

Figure 1 summarizes the information theoretic evaluation for each leakage2.
As expected, when the noise is small, the amount of information given by the
intermediate variables involved in Flaws (18) to (21) is an increasing function
of the leakage order. When the noise increases, its impact on the information
leakage is more important when the order of the flaw is high. Eventually, after
some threshold, the ranking between the information leakages is reversed, as it
can be observed between, e.g. , the 2O-Homographic (21), 3O-Homographic (20)
and 4O-Homographic (19)3.

5 Attacks Simulations and Comparisons

In Sec. 4.3, we have quantified the amount of sensitive information that each
flaw exhibited in Sec.(s) 4.1 and 4.2 provides about Z. We will now see how
those leakages can be exploited to perform HO-SCA that succeed in recovering
the AES sub-keys.

To exploit the flaws exhibited in Sec.(s) 4.1 and 4.2, we have applied two types
of HO-SCA: higher-order CPA (HO-CPA for short) such as introduced in [17] and
improved in [23], and higher-order template attacks (HO-TA for short) [24, 25].
Since each attack category involves adversaries with different capabilities (the
one in HO-TA being much stronger than the one in HO-CPA), we think that

2 Due to the cost of some mutual information computations, it was not possible to
give results for all the flaws and all the noise standard deviations values. In partic-
ular, Flaw (18) could not be evaluated and evaluations of Flaws (19) and (20) are
extrapolated on Figure 1 with dashed gray lines.

3 The abrupt decrease of the mutual information for Flaws (19),(20) and (21) was not
expected and does not correspond to the experimental results showed in Sec. 5. We
believe these incoherences are due to a lack of precision of the estimation methods
we involved.
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Fig. 1. Mutual information (log10) between the leakage and the sensitive variable over
an increasing noise standard deviation (x-axis)

they together give a good overview of the scheme resistance against higher-
order side channel attacks. We give in Appendix B the details of the attacks
we have performed. Observations of the leakage vectors L in (18)–(25) have
been simulated according to (17) by fixing ϕ equal to the Hamming weight
function HW(). Due to the great computational complexity of template attacks
for n = 8 and d > 3 (see Appendix B), we were not able to perform them for
those parameters. To circumvent this issue and in order to be able to compare
the efficiencies of all the (HO-CPA and HO-TA) attacks, we therefore choose to
also perform our attacks simulations for n = 4. In this case, the flaws correspond
to an s-box processing that does not exactly correspond to the non-linear part
of the AES s-box (defined for n = 8), but it shares with it the same algebraic
properties: it is the inverse function in GF(2n)� extended in 0 by setting 0−1 = 0.
We first present the attack simulations over GF(16) and then, we present the
simulations over GF(256). For comparison purposes, we also presented attack
simulations against Boolean and affine maskings.

Each attack simulation has been performed 100 times for various SNR values
(+∞, 1, 1/2, 1/5 and 1/10), that is for several noise standard deviation values
(σ = 0, 1,

√
2,
√

5,
√

10 for n = 4 and σ = 0,
√

2, 2,
√

10, 2
√

5 for n = 8). Tables
1 and 2 summarize the number of leakage measurements required to observe a
success rate of 90% in retrieving k for the different attacks.

General Comments. As it can be observed in Tables 1 and 2, all the attacks
recover the key with a success rate equal to 90% when the leakage is noise-free
(SNR = ∞). The inefficiency of the 2O-CPA to exploit the flaw (21) for n = 8
was an expected result. Indeed, this flaw was quantified in Sec. 4.3 to be equal
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Table 1. Attack Simulations over GF(16).

Masking Attack L←? SNR
∞ 1 0.5 0.25 0.1 0.05

ICISC04
Flaw 1

2O-CPA (21) 2600 9000 20 000 55 000 300 000 > 106

2O-TA (21) 360 4000 10 000 35 000 200 000 106

3O-TA (20) 130 2800 15 000 35 000 200 000 106

4O-TA (19) 120 2300 9000 30 000 250 000 > 106

5O-TA (18) 120 2600 10 000 40 000 > 5.103 > 5.103

ICISC04
Flaw 2

2O-CPA (22) 210 800 1800 4000 25 000 80 000
2O-TA (22) 50 400 1100 4000 15 000 60 000

1O-Bool 2O-CPA (23) 60 220 600 1200 8000 25 000
2O-TA (23) 20 180 330 1400 9000 30 000

Affine
2O-CPA (24) 200 700 1700 5000 25 000 90 000
2O-TA (24) 50 500 1200 2800 15 000 60 000
3O-TA (25) 20 300 1000 2400 20 000 65 000

Table 2. Attack Simulations over GF(256)

Masking Attack L←? SNR
∞ 1 0.5 0.25 0.1

ICISC04
Flaw 1

2O-CPA (21) 107 > 107 > 107 > 107 > 107

2O-TA (21) 140 000 > 106 > 106 > 106 > 106

3O-TA (20) 70 000 > 106 > 106 > 106 > 106

4O-TA (19) 20 000 - - - -
5O-TA (18) - - - - -

ICISC04
Flaw 2

2O-CPA (22) 7000 25 000 50 000 200 000 600 000
2O-TA (22) 1400 20 000 40 000 180 000 450 000

1O-Bool 2O-CPA (23) 250 1100 2600 15 000 45 000
2O-TA (23) 20 500 1200 7000 20 000

Affine
2O-CPA (24) 7000 25 000 50 000 200 000 550 000
2O-TA (24) 1200 20 000 40 000 200 000 550 000
3O-TA (25) 280 15 000 35 000 200 000 500 000

to at most 1.82 · 10−5 and such a small mutual information cannot be exploited
by a CPA in less than 106 measurements.

HO-TA versus HO-CPA. As expected, HO-TA are much more efficient than
HO-CPA attacks. They succeed in exploiting all the information contained in
the leakages related to the mask values B1,..., B4 (resp. g) to unmask the masked
variable U (resp. V ) and to finally recover the key. Moreover, the more informa-
tion is exploited about the homographic masking function B (i.e. the higher the
order of the template attack) the more efficient is the attack. We experimented
that this was not the case with HO-CPA attacks: higher-order CPAs against
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homographic masking loss in efficiency when the order increases i.e. when in-
formation on B2 is exploited simultaneously with that on other coordinates B1,
B3 and B4 of B. The good efficiency of template attacks in terms of number
of leakage measurements must however be mitigated since their computation
cost quickly increases with the order. This explains why we did not succeed in
performing our attack simulations for SNRs greater than 1 when n = 8.

Comparison of The Different Flaws. As expected after our information
theoretic evaluation campaign conducted in Sec. 4.3, attacks exploiting Flaw (16)
are much more efficient than those exploiting Flaws (12)–(15). Furthermore, the
similitude of efficiency between the HO-TAs against Flaws (16) and (24) (affine
masking) confirms that they both provide the same security level (as stated
in Remark 3, Sec. 4.3). If we do not take into account the second category of
flaws, homographic masking seems to provide better resistance against HO-SCA
than Boolean or affine masking. Indeed, even in the n = 4 scenario, HO-CPA and
HO-TA against homographic masking are about 10 times less efficient than those
against affine masking. Based on this observation, we think that this masking
can be a good alternative to classical masking schemes if the second category of
flaws can be patched.

6 Conclusion and Open Issues

In this paper, we have exhibited several weaknesses in the higher-order masking
scheme proposed by Courtois and Goubin in [14]. Two kinds of flaws have been
exhibited that render the construction vulnerable, in both cases, to 2nd-order
SCA. It is a matter of fact that Courtois and Goubin’s scheme was made partic-
ulary efficient by the use of homographic functions and then was attractive for
high-order masked implementations of the AES. Our results demonstrate that
this countermeasure must nevertheless be avoided if perfect resistance against
dth-order SCA is expected. On the other hand, if the second category of flaws
can be patched, then we think that the construction of Courtois and Goubin
can be of interest to achieve satisfying resistance when the leakage signals con-
tain enough noise. Indeed, we argued in this paper that the construction of
Courtois and Goubin at any order d can be reduced to what we called a ho-
mographic masking scheme. Our theoretical and experimental evaluation of this
masking shows that it offers better resistance to SCA than both Boolean and
affine maskings. However, the study of the performances of a masking scheme
based on homographic functions was out of the scope here and raises several non
trivial implementation issues. We think that this study is an interesting avenue
for further research on this subject.
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A Generic dth-Order Table Recomputation Scheme

We recall here the outlines of a generic masking scheme which has been involved
several times in the literature to solve Problem 1 (see e.g. [26, 11]). The core
idea is to extend to higher orders a method, called table re-computation, which
has been widely used to protect implementations against 1st-order SCA (see
for instance [27, 28]). It essentially amounts to deduce from Gd..1 and G′

d..1 the
look-up table representation of a new function S� satisfying:

S�(Gd..1(Z)) = G′
d..1 ◦ S (Z) , (26)

for every Z, or equivalently,

S� = G′
d..1 ◦ S ◦ Gd..1 , (27)

since Gd..1 is involutive.
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The tricky part in this approach is the concurrent construction of S� which
must not introduce any flaw with respect to dth-order SCA. An attempt to define
a construction secure at any order d has been done in [11] where different table
re-computation algorithms have been proposed. However, it has been shown
in [29] that none of those methods were secure against dth-order attacks when
d is greater than or equal to 3. We recall hereafter the most straightforward
algorithm proposed in [11].

Algorithm 4. Generic dth-order Table recomputation Scheme
Input: the look-up table S and the families of masking functions (Gi)1≤i≤d and
(G′

i)1≤i≤d

Output: the look-up table S�

1. S� ← S

2. for j from 1 to d do

3. Stmp ← S�

4. for x from 0 to 255 do
//Construct S�(x) = G′

j ◦ S� ◦Gj(x)
5. tmp← Gj(x)
6. tmp← Stmp[tmp]
7. S�[x]← G′

j(tmp)
8. end
9. end

B Attacks Description

Higher-Order Template Attacks. In HO-TA, the attacker owns some tem-
plates of the leakage that he previously acquired during a profiling phase (see for
instance [24,25]). More precisely, for every possible value z he has some estima-
tion of the probability density function (pdf for short) of the random variable
(L | Z = z). We denote by fL,z those pdfs. Based on their estimations, a guess
k̂ on k is tested by estimating a likelihood.

Let φσ denotes the pdf of the Gaussian distribution N (0, σ) which satisfies
φσ(x) = 1√

2πσ
exp

(
− x2

2σ2

)
for every x ∈ R. Since the coordinates of L are as-

sumed to satisfy (17) in this paper, we can exhibit the exact expression of fL,z :

– for the first category of flaws listed in (12)–(15), we have:

fL,z (�) =
∑

(b1,··· ,b4)
∈GF(2n)4

Pr [B1=b1, · · · , B4=b4] φσ (l1-ϕ(u))
d∏

i=2

φσ (li-ϕ(bji)) ,

(28)
where li denotes the ith coordinate of the d-tuple � and where (u, bj2 , · · · , bjd

)
is the value taken by the random variable (U, Bj2 , · · · , Bjd

) defined such that
L ← (U, Bj2 , · · · , Bjd

) (i.e. satisfies one of the Relations (18)–(21)).
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• for the second category of flaws (16), we have:

fL,z (�) =
∑

(a1,··· ,a4)
∈GF(2n)4

Pr [A1=a1, · · · , A4=a4] φσ (l1 − ϕ(v)) φσ (l2 − ϕ(g)) ,

(29)
where we recall that v and g respectively denote the values taken by the
random variables V = A ◦ S(Z) and A(∞).

We give hereafter the main steps of the HO-TA we performed:

1. [Measurements] For N random plaintexts (mi)i, perform N leakage mea-
surements (�i)i = (li1, .., l

i
d)i at d different times.

2. [Hypotheses Construction] For every key hypothesis k̂, and every plaintext
mi, compute the hypothesis ẑi on the value taken by Z.

3. [Discrimination] Then, process the likelihood L(k̂|(�i, ẑi)i) of the key guess
k̂:

L(k̂|(�i, ẑi)i) =
N∏

i=1

fL,ẑi
�i . (30)

4. [Key-candidate Selection] Select the key guess k̂ that maximizes (30).

Higher-Order CPA attacks [17,23]. HO-CPA share the same two first stages
with HO-TA but have a different discrimination process. The likelihood compu-
tation is replaced by a correlation estimation. Namely, the samples (�i)i and (ẑi)i

are used to estimate the correlation coefficient ρ
[
ϕ̂(Ẑ), C(L)

]
, where Ẑ denotes

the random variable associated to the sample (ẑi)i, where C is a combining func-
tion that converts L into a 1-dimensional variable and where ϕ̂ is a well-chosen
prediction function. The guess k̂ leading to the greatest correlation (in absolute
value) is selected as key-candidate.

The analysis conducted in [23] states that a good choice for C is the normalized
product combining:

C : L �→
∏

i

(Li − E [Li]). (31)

In [23], it is also shown that the best choice for ϕ̂ given C is:

ϕ̂ : z �→ E [C(L)|Z = z] . (32)

From now and until the end of the paper, we assume that C and ϕ̂ respectively
satisfy (31) and (32).4

If the leakage function ϕ in (17) is assumed to be known and if the noise is
assumed to be independent with 0 mean, then (32) can be rewritten:
4 As explained in [23], the attacker may not be able to evaluate ϕ̂ without knowing

the exact distribution of L given Z (as in a profiling attack scenario). In a security
evaluation context, it however makes sense to assume that the attacker has this
ability.
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– for the first category of flaws:

ϕ̂ : z �→ E

[
(U − E [U ])

d∏
i=2

(Bji − E [Bji ]) | Z = z

]
, (33)

where (U, Bj2 , · · · , Bjd
) is defined s.t. L ← (U, Bj2 , · · · , Bjd

) (i.e. satisfies
one of the Relations (18)–(21)).

– for the second category of flaws:

ϕ̂ : z �→ E [(V − E [V ])(g − E [g]) | Z = z] , (34)

where V and g respectively denote the random variables V = A ◦ S(Z) and
A(∞).

Thanks to (33) and (34), the values ϕ̂(z) can be pre-computed and stored in
a look-up table when ϕ is assumed to be known, which will be the case in our
attack simulations reported in the next section.

About the Efficiency of HO-SCA. Since they are based on a maximum
likelihood test, HO-TA need less observations N than HO-CPA do to recover k
from a dth-order flaw. However, (28) shows that their processing involves N ×
d×24n evaluations of the function φσ to test each key hypothesis k̂, whereas HO-
CPA require less than (10 + d) × N elementary operations (products, additions
and look-up table accesses) for this test. In the next section, we have followed
the classical approach which consists in measuring the efficiency of an attack in
terms of the number of leakage measurements N required to observe a success
rate of 90% in retrieving the key. We did this choice to ease the comparison of
our results with those published in the literature. However, we think that the
computation cost should not be neglected when quantifying the efficiency of an
attack. This factor explains in particular why we did not succeed in performing
all our HO-TA simulations for d ≥ 3.
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1 Introduction

The Advanced Encryption Standard (AES)[7] is a 128-bit block cipher with
variable key lengths of 128, 192, and 256 bits, which are denoted as AES-128,
AES-192 and AES-256, respectively. Since its selection as the standard by NIST
in 2001, AES has drawn a great amount of attention from worldwide cryptol-
ogy researchers. In this paper we reevaluate the security of AES-128 against
impossible differential attacks.

Impossible differential cryptanalysis, an extension of the differential attack
[4], was first introduced by Knudsen [11] and Biham [2] to analyze DEAL and
Skipjack, respectively. Impossible differential attacks use differentials that hold
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with probability zero to derive the right key by discarding the wrong keys which
lead to the impossible differential.

Previous attacks, which are applicable up to seven rounds of AES-128 are as
follows. The first attack is a Square attack which requires 2128 − 2119 chosen
plaintexts and 2120 encryptions [9]. The second attack is a collision attack that
requires 232 chosen plaintexts and about 2128 encryptions [10]. The third attack
is an impossible differential attack presented independently in [1] and [14] that
requires 2115.5 chosen plaintexts and has a time complexity equivalent to 2119

7-round encryptions. The most recently published impossible differential crypt-
analysis on AES-128 was proposed in [12]. This attack is based on the attacks
proposed in [1] and [14] and requires 2112.2 chosen plaintexts, and has a running
time of 2117.2 memory accesses. Finally an improved meet in the middle attack
on 7-rounds of AES-128 has been proposed in [8] which requires about 280 chosen
plaintexts and 2113 encryptions in the online stage, but at the expense of 2123

encryptions in the precomputation stage and 2122 blocks of memory. Since our
proposed attack is in the single key scenario, here we do not elaborate on the
related-key attacks on AES, but the reader is referred to [5] for the latest result
which is a related-key boomerang attack on AES-128.

In this paper, we introduce a new 4-round impossible differential of AES,
and exploit it to present a new attack on 7-round AES-128. In addition to the
previous techniques including precomputation technique, early abort technique,
and using structures of plaintexts and hash tables, our proposed attack uses
some additional precomputation tables and key schedule considerations. The
proposed 4-round impossible differential allows us to use the key schedule, in a
way more lucrative than [12], to reduce the time complexity. This attack requires
2106.2 chosen plaintexts and has a time complexity equivalent to 2110.2 7-round
encryptions. We summarize our result along with previously known results on
AES-128 in Table 1. In this table, data complexity is the number of the required
chosen plaintexts (CP), and time complexity is measured in encryption (E) units
or memory accesses (MA).

Table 1. Summary of previous single key attacks and our new attack on AES-128

Rounds Data Time Memory Attack Source
(CP) (Byte) type

5 229.5 231 E 242 ID [3]
6 291.5 2122 E 293 ID [6]
7 2128 − 2119 2120 E 268 S [9]
7 232 2128 E 2100 C [10]
7 2115.5 2119 E 2109 ID [1]
7 2115.5 2119 E 245 ID [14]
7 2112.2 2112.2E + 2117.2 MA ≈ 2112.3 E 293.2 ID [12]
7 280 2113 + 2123 ≈ 2123 E 2126 MitM [8]
7 2106.2 2107.1E + 2117.2 MA ≈ 2110.2 E 294.2 ID This work

ID: Impossible Differential, MitM: Meet in the Middle, S: Square, C: Collision.



284 H. Mala et al.

The rest of this paper is organized as follows. Section 2 provides a brief descrip-
tion of AES. A 4-round impossible differential of AES is introduced in Section
3. We propose our improved impossible differential attack on 7-round AES-128
in Section 4. Finally, we conclude the paper in Section 5.

2 A Brief Description of AES

The AES [7] is an iterated block cipher with the SPN (substitution-permutation
network) structure that supports key sizes of 128, 192, and 256 bits. The number
of rounds for these three variants are 10, 12, and 14, respectively. To describe
AES, a 128-bit plaintext is represented by a 4 × 4 matrix of bytes, where each
byte represents a value in GF(28). An AES round applies the following four
transformations to the state matrix:

• SubBytes (SB): a byte-wise nonlinear transformation that applies the same
invertible S-box on each of the 16 bytes of the state.

• ShiftRows (SR): a linear transformation that rotates the i-th row of the state
matrix by i bytes to the left (i=0, 1, 2, 3).

• MixColumns (MC): another linear transformation which is a multiplication
of each column by a constant 4 × 4 matrix over the finite field GF(28).

• AddRoundKey (AK): a bit-wise XOR operation between the state matrix
and the subkey of the current round.

In the first round, an additional AddRoundKey operation is applied (whitening)
and in the last round, the MixColumns operation is omitted. Thus in our attack
on 7 rounds of AES-128, we will take these two points into consideration.

The key schedule of AES-128 takes the 128-bit cipher key and transforms it
into 11 subkeys of 128 bits each. The subkey words are represented by W [0, ..., 43],
where each 4-byte W [i] forms a column of a round key. The first 4 words of W [·]
are loaded with the cipher key, and the remaining key words are generated by the
following algorithm:

• For i = 4 : 43, do
− if i = 0 mod 4 then W [i] = W [i− 4]⊕SB(W [i− 1] ≪ 8)⊕RCON [i/4],
− otherwise W [i] = W [i − 1] ⊕ W [i − 4],

where RCON [·] is an array of predetermined constants, and ≪ n is the rotation
of a word by n bits to the left. In this paper, we will use the following notations:
xI

i , x
SB
i , xSR

i , xMC
i , and xAK

i denote the input of round i and the intermediate
values after the application of SB, SR, MC and AK operations of round i, respec-
tively. The subkey of round i is denoted by ki and the whitening key is denoted
by k0.

The byte located in the m-th row and n-th column of some intermediate state
xi (or a key ki) is denoted by xi,(4n+m). For bytes located in positions j1, j2, ...
we use the notation xi,(j1,j2,...). We denote the z-th column of xi by xi,col(z).
We finally denote the bytes in xi corresponding to the places after applying
the ShiftRows operation on column z of xi by xi,SR(col(z)), e.g., xi,SR(col(0)) is
composed of bytes (0, 7, 10, 13). The concatenation of two bit strings a and b is
denoted by a|b.
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3 A 4-Round Impossible Differential of AES

In [3] a four-round impossible differential property of AES was presented which
has been used in all the subsequent impossible differential attacks on AES. This
property states that given a pair of (xI

i , x
′I
i ) with the difference ΔxI

i = xI
i ⊕

x
′I
i which has only one non-zero byte, then the corresponding (xSR

i+3, x
′SR
i+3 ) pair

cannot have the difference ΔxSR
i+3 = xSR

i+3 ⊕ x
′SR
i+3 in which at least one of the

four sets of bytes SR(col(j)), j = 0, 1, 2, 3 is equal to zero. It is known that
this impossible differential is composed of two deterministic differentials which
contradict in the middle.

Among the previous impossible differential attacks on 7-round AES-128
[1,12,14], only [12] exploits the redundancy in the key schedule of AES-128.
In [12], first four attacks with four overlapping target subkey sets are applied
separately, then the attacker checks the consistency of these four subkey sets
to get a smaller number of suggestions for their union. We observed that by a
modification in the impossible differential, we can use the key schedule with only
one attack. The proposed impossible differential in one of its possible cases is il-
lustrated in Fig. 1. One may consider this impossible differential as the previous
work’s impossible differential in which the two deterministic differentials have
been swapped.

This impossible differential, in its general form, states that given a pair of
(xMC

i , x
′MC
i ) which have zero differences in at least one of the four sets of bytes

SR−1(col(j)), j = 0, 1, 2, 3, then the corresponding (xSR
i+4, x

′SR
i+4 ) pair cannot have

zero differences in all bytes except one.

4 Impossible Differential Attack on 7 Rounds of AES-128

Based on the impossible differential property described in Section 3, we mount
our new attack on 7-round AES-128. The attack is illustrated in Fig. 2. To reduce
the size of the target key space, we change the order of the two linear transfor-
mations MixColumns and AddRoundKey in the 6th round. We use a collection
of previously known techniques, including traditional precomputation tables [3],
the early abort technique [13], as well as several different precomputation tables
and key schedule considerations to reduce the complexity of the attack.

4.1 Precomputation Stage

In this section we prepare 4 (types of) precomputation tables T1, T2, T3,i, T4,j, for
extracting the proper subkeys of k7,SR(col(0)), k0,SR−1(col(2)), k1,(10), and k1,(8),
respectively.

Table T1: For all of the 232×
(4
3

)
×(28−1) ≈ 242 possible pairs of (xAK

6,col(0), x
′AK
6,col(0))

which have the zero difference in exactly 3 out of the 4 bytes, compute the values
of (xSR

7,(0,7,10,13), x
′SR
7,(0,7,10,13)). Store the obtained pairs in a hash table T1 indexed

by their difference. T1 has 232 rows and on average about 242

232 = 210 pairs lie in
each of these rows.
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AK

SB SR MC AK

SR-1

SR-1

SB-1

SB-1 MC-1 AK

Contradiction!

SR-1SB-1 MC-1 AK

: A byte with zero difference

? : A byte with unknown difference

: A byte with non-zero difference

? ? ? ? ? ?

 

Fig. 1. One sample of the 4-round impossible differential of AES

Table T2: For all of the about 248 possible pairs of (xMC
1,col(2), x

′MC
1,col(2)) which

have zero differences in bytes 9 and 11, and non-zero differences in bytes 8 and
10, compute the values of (xI

1,(2,7,8,13), x
′I
1,(2,7,8,13)). Store the obtained pairs in a

hash table T2 indexed by their difference. T2 has 232 rows and on average about
248

232 = 216 pairs lie in each row.

Tables T3,i, i = 0, 1, 2, 3: For all of the about 232 possible pairs of
(xAK

1,(0,10), x
′AK
1,(0,10)) which have non-zero differences in these 2 bytes, compute

the values of ΔxMC
2,col(0). Then for i = 0, 1, 2, 3 choose the pairs (xAK

1,(0,10), x
′AK
1,(0,10))

whose corresponding difference ΔxMC
2,col(0) is zero in byte i (we obtain about

232 × 2−8 = 224 such pairs). Store the qualified pairs (xAK
1,(10), x

′AK
1,(10)) in a hash

table T3,i indexed by the 24-bit parameter xAK
1,(0)|x

′AK
1,(0)|ΔxAK

1,(10). Each table T3,i

has 224 rows and on average about 224

224 = 1 pair lies in each row.

Tables T4,j, j = 8, 9, 10, 11: For all of the about 232 possible pairs of
(xAK

1,(2,8), x
′AK
1,(2,8)) which have non-zero differences in these 2 bytes, compute the

value of ΔxMC
2,col(2). Then for j = 8, 9, 10, 11 choose the pairs (xAK

1,(2,8), x
′AK
1,(2,8))

whose corresponding difference ΔxMC
2,col(2) is zero in byte j (we obtain about 232 ×

2−8 = 224 such pairs). Store the qualified pairs (xAK
1,(8), x

′AK
1,(8)) in a hash table T4,j
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indexed by the 24-bit parameter xAK
1,(2)|x

′AK
1,(2)|ΔxAK

1,(8). Each table T4,j has 224 rows

and on average about 224

224 = 1 pair lies in each row.
Since in the attack procedure each of the 4 tables T4,j, j = 8, 9, 10, 11 can be

used together with only one of the tables T3,i, i = 0, 1, 2, 3, thus we say T4,conj(i)
is the conjugate of T3,i, where for i = 0, 1, 2, 3, the conj(i) are 10, 11, 8, 9,
respectively.

4.2 The Attack Procedure

The following attack algorithm gets 2n structures of plaintexts and returns ε 14-
byte joint subkeys k0,(0,2,5,7,8,10,13,15)|k1,(0,2,8,10)|k7,(0,7,10,13). Note that based on
the key schedule of AES-128, the byte k1,(0) is determined by the two bytes k0,(0)
and k0,(13), also k1,(2) is determined by the two bytes k0,(2) and k0,(15).

SB SR MC AK

4-round impossible differential

AK

AK

k0

SR-1SB-1

Round 7

Round 6

Round 1

p1=2-32

SB SR MC
Round 2

p2=2-14

MC-1

p'=2-22

k1

k7

 

Fig. 2. New impossible differential attack on 7 rounds of AES-128

The attack algorithm is as follows (Algorithm 1):

1. Take 2n structures of plaintexts such that each structure contains 264 plain-
texts that are fixed in the 8 bytes (1, 3, 4, 6, 9, 11, 12, 14) and take all the
possible values in other 8 bytes. It is obvious that

(264

2

)
≈ 2127 plaintext

pairs can be obtained from each structure. Totally, we can collect about
2n+64 plaintexts and 2n+127 plaintext pairs (P, P ′) with the desired differ-
ence ΔP = P ⊕ P ′ shown in Fig. 2.

2. To specify the ciphertext pairs that have non-zero differences only in bytes
SR(col(0)) = (0, 7, 10, 13), for each structure, first, obtain its 264 ciphertexts
and store them in a hash table H1 indexed by their values in the 8 bytes
(1, 2, 3, 4, 5, 6, 8, 9). Then rearrange the ciphertexts of each row of H1 having
more than one text in another table H2 indexed by their values in the 4
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bytes (11, 12, 14, 15). By following this 2-staged filtration of pairs, each two
texts which lie in the same row of H2 form a proper pair (i.e., a pair with the
required plaintext and ciphertext differences). Store the proper pairs, then
erase the hash table H2 and repeat the process for the next row of H1. After
examining all rows of H1, this table is refreshed for the next structure. As this
procedure is considered a 96-bit filtration on all the 2n+127 plaintext pairs,
at the end of this step the expected number of the remaining proper pairs
from all the structures is 2n+127 × 2−96 = 2n+31 pairs. Thus, to implement
this step we need about 264 blocks of memory for the hash table H1, and
4×2n+31 blocks of memory for storing the proper ciphertext pairs and their
corresponding plaintext pairs. The size of H2 is comparatively negligible.

3. In this step, we use a well-known property of invertible S-boxes: Given an
input and an output difference of the SubBytes operation, there is on av-
erage one pair of actual values that satisfies these differences. Using this
property, in the following way, will reduce the memory complexity of the
attack. Since for any proper plaintext pair (P, P ′), the difference ΔxI

1 = ΔP
is known, the knowledge of the difference ΔxSB

1,(0,5,10,15) can be used to find

the actual value of (xI
1,(0,5,10,15), x

′I
1,(0,5,10,15)), and consequently the value of

k0,(0,5,10,15). There are only (28 − 1)2 ≈ 216 possible values of ΔxMC
1,col(0) in

which only the two bytes 0 and 2 are non-zero. Consequently, there are the
same number of ΔxSB

1,(0,5,10,15) for further analysis. Based on these consider-
ations, perform the following substeps:
(a) Initialize 232 empty lists, each corresponding to a different value of

k0,(0,5,10,15).
(b) For each of the 2n+31 remaining proper pairs, and for each of the about

216 possible differences in ΔxSB
1,(0,5,10,15), compute the keys which lead

this specific plaintext pair to this specific difference. Add this plaintext
pair to the list corresponding to the obtained key value.

For each of the 2n+31 proper pairs, about 216 values of ΔxSB
1,(0,5,10,15) are

examined. Then, these 2n+31 × 216 = 2n+47 options are distributed in 232

lists. Thus for a given subkey guess k0,(0,5,10,15), the expected number of
stored pairs in the corresponding list is 2n+15 pairs.

For each of the 232 possible values of k0,(0,5,10,15), access the corresponding
list and for each of the 2n+15 plaintext pairs (P, P ′) in that list, perform the
following steps:

4. Access the row with index ΔP(2,7,8,13) in table T2. For each pair (y1, z1) in
that row, select the value P(2,7,8,13)⊕y1 as a candidate for k0,(2,7,8,13). Based
on the structure of table T2, the expected number of these candidates for
k0,(2,7,8,13) will be about 216.

5. For each of the 216 candidates for k0,(2,7,8,13) perform the following substeps.
(a) Simply compute the two bytes k1,(0,2) as below:

k1,(0) = k0,(0) ⊕ SB(k0,(13)) ⊕ c, k1,(2) = k0,(2) ⊕ SB(k0,(15)) ⊕ c′,

where c and c′ are constants known from the key schedule.
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(b) Partially encrypt the plaintext pair to get (xAK
1,(0,2), x

′AK
1,(0,2)) and (xMC

1,(8,10),

x
′MC
1,(8,10)).

(c) For i = 0, 1, 2, 3:
i. Access the row with index xAK

1,(0)|x
′AK
1,(0)|ΔxAK

1,(10) in table T3,i. For each
pair (y2, z2) in that row, select the value xMC

1,(10) ⊕ y2 as a candidate
for k1,(10). Based on the structure of table T3,i, the expected number
of these candidates will be about 1.

ii. Access the row with index xAK
1,(2)|x

′AK
1,(2)|ΔxAK

1,(8) in table T4,conj(i). For
each pair (y3, z3) in that row, select the value xMC

1,(8)⊕y3 as a candidate
for k1,(8). Based on the structure of table T4,conj(i), the expected
number of these candidates will be about 1.

6. Access the row with index ΔC(0,7,10,13) in table T1. For each pair (y4, z4) in
that row, select the value C(0,7,10,13) ⊕ y4. Based on the structure of table
T1, we expect to obtain about 210 candidates k7,(0,7,10,13) from this table.

7. In this step, for each of the 2n+15 corresponding proper pairs, we know
216 × 4 × 210 = 228 joint values of k0,(2,7,8,13)|k1,(0,2,8,10)|k7,(0,7,10,13) that
result in the impossible differential. Remove these values from the list of
all the 280 possible values for these joint subkeys (Note that k0,(0,5,10,15) is
previously guessed). After the trial of all of the pairs, if the list is not empty,
announce the values in the list along with the guess of k0,(0,5,10,15) as the
candidates for the correct 112-bit target subkey.

4.3 Complexity of the Attack

In step 7, for each of the 232 values of k0,(0,5,10,15), and for each of the 2n+15

corresponding proper pairs, the attacker removes on average 228 values out of
the 280 possible values from the key space. Thus the probability that a wrong
subkey survives the elimination with one proper pair is 1 − 228

280 = 1 − 2−52. So,
about ε = 2112(1 − 2−52)2

n+15
values of the 112-bit target subkey remain as the

output of the attack algorithm. If we take ε equal to 1, then n will be about
43.3. With this value for n, the attack requires 2n+64 = 2107.3 chosen plaintexts.
The time complexities of different steps of the attack are calculated as functions
of n in the second column of Table 2.

Based on the second column of Table 2, the time complexity of this attack
is dominated by steps 2 and 7, which is equal to 2n+64 encryptions plus 2n+75

memory accesses.
Suppose Algorithm 1 outputs ε candidates for the 16-byte target subkeys

k0,(0,2,5,7,8,10,13,15)| k1,(0,2,8,10)| k7,(0,7,10,13). For each of these values, two other
bytes of k0 are determined as below:

k0,(4) = k1,(8) ⊕ k1,(0) ⊕ k0,(8)

k0,(6) = k1,(2) ⊕ k1,(10) ⊕ k0,(10)

Thus only 6 bytes of k0 are unknown. To find the whole key, the attacker must
perform about 248 trial encryptions for each of the ε output values of Algorithm



290 H. Mala et al.

Table 2. Time complexity of the different steps of Algorithm 1

Step Time Complexity for n = 42.2

2 2n+64 E 2106.2

3 2n+31 × 216 = 2n+47 MA 289.2

4 232 × 2n+15 × 216 = 2n+63 MA 289.2

5(a) 232 × 2n+15 × 216 = 2n+63 MA 2105.2

5(b) 232 × 2n+15 × 216 × 4
16
× 1

7
= 2n+58.2 E 2100.4

5(c)i 232 × 2n+15 × 216 × 4 = 2n+65 MA 2107.2

5(c)ii 232 × 2n+15 × 216 × 4 = 2n+65 MA 2107.2

6 232 × 2n+15 × 210 = 2n+57 MA 299.2

7 232 × 2n+15 × 216 × 4× 210 = 2n+75 MA 2117.2

1. Thus the total time complexity to obtain the whole key is 2n+64 + ε × 248

encryptions plus 2n+75 memory accesses. By choosing ε = 258, equation ε =
2112(1 − 2−52)2

n+15
yields n = 42.2. Thus the data complexity of the attack is

2n+64 = 2106.2, and for this value of n the time complexity of different steps
of the attack is represented in the third column of Table 2. The dominant part
of the time complexity is about 2n+64 + 258 × 248 ≈ 2107.1 encryptions plus
2n+75 = 2117.2 memory accesses. In a 32-bit implementation, each round of AES
may be implemented by 20 memory accesses (16 table lookups for SB+MC+SR,
and 4 table lookups for AK) [7], so one could declare the total complexity as
2107.1 + 1

7 × 1
20 × 2117.2 ≈ 2110.2 encryptions.

The memory complexity of the attack is dominated by the memory required
to produce 232 lists of step 3, which is equal to 2n+31 × 216 × 2 = 290.2 blocks of
memory, and the memory required as the list of removed candidates of k0,(2,7,8,13)
| k1,(0,2,8,10) | k7,(0,7,10,13). For each guess of k0,(0,5,10,15), there exist only 280 such
candidates, and also for each guess of k0,(0,5,10,15) this list is refreshed, thus, we
only need about 280 96-bit blocks of memory for step 7. The memory required for
the pre-computation tables is negligible. Thus the memory complexity is about
290.2 128-bit blocks of memory.

5 Conclusion

In this paper, we proposed a new impossible differential attack on 7-round AES-
128. Our proposed attack uses a different 4-round impossible differential that
allows the attacker to use the redundancy in the key schedule of this cipher
in a way more commodious than the previous work [12]. The attack requires
about 2106.2 plaintexts, and has a time complexity equivalent to about 2110.2

encryptions which is better than previously published single key attacks on 7
rounds of AES-128.
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Abstract. In response to various cryptanalysis results on white-box
cryptography, Bringer et al. presented a novel white-box strategy. They
propose to extend the round computations of a block cipher with a set
of random equations and perturbations, and complicate the analysis by
implementing each such round as one system that is obfuscated with
annihilating linear input and output encodings. The improved version
presented by Bringer et al. implements the AEw/oS, which is an AES
version with key-dependent S-boxes (the S-boxes are in fact the secret
key). In this paper we present an algebraic analysis to recover equivalent
keys from the implementation. We show how the perturbations and sys-
tem of random equations can be distinguished from the implementation,
and how the linear input and output encodings can be eliminated. The
result is that we have decomposed the white-box implementation into a
much more simple, functionally equivalent implementation and retrieved
a set of keys that are equivalent to the original key. Our cryptanalysis
has a worst time complexity of 217 and a negligible space complexity.

Keywords: White-Box Cryptography, AES, Cryptanalysis, Structural
Cryptanalysis.

1 Introduction

In the past decade, we have witnessed a trend towards the use of software appli-
cations with strong security requirements. Consider for example online banking
and digital multimedia players. Building blocks to enable their security include
cryptographic primitives such as the DES or the AES [13]. However, these build-
ing blocks are designed to be secure only when they are executed on a trustworthy
system, which is typically no longer a valid assumption. White-box cryptogra-
phy aims to address this issue – it aims to implement a given cryptographic
cipher such that it remains ‘secure’ even when the adversary is assumed to have
full access to the implementation and its execution environment (the white-box
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c© Springer-Verlag Berlin Heidelberg 2010



Cryptanalysis of a Perturbated White-Box AES Implementation 293

attack context). We refer to a white-box implementation as an implementation
of a cipher to which these techniques are applied.

At SAC 2002, Chow et al. introduced the concept of white-box cryptography,
applied to the AES [5], and to the DES in [6]. The main idea is to generate
a network of re-randomized lookup tables that is functionally equivalent to a
key-instantiated primitive. However, subsequent papers have shown that this
strategy is prone to differential cryptanalysis [10,11,9,16] and algebraic crypt-
analysis [2,12,15]. In [1], Billet and Gilbert proposed a traceable block cipher, by
implementing the same instance of a cipher in many different ways. The security
is based on the Isomorphisms of Polynomials (IP) problem [14]. Unfortunately,
analysis of this IP problem [8] has defeated this approach. Based on the idea to
introduce perturbations to reinforce the IP-based cryptosystems [7], Bringer et
al. [3] reinforced the traceable block cipher, and presented a perturbated white-
box AES implementation [4]. The main idea of the perturbated AES white-box
implementations is to extend the AES rounds with a random system of equations
and perturbation functions. The perturbations introduced at the first round are
canceled out at the final round with a high probability; to guarantee correct exe-
cution, several such instances need to be implemented such that a majority vote
can reveal the correct result. The random system of equations is discarded in the
final round. As a challenging example, they apply their technique to the AEw/oS
– a variant of the AES with non-standard, key-dependent S-boxes. These S-boxes
are in fact the secret key. To the best of our knowledge, no attack against this
white-box AEw/oS implementation has been proposed so far.

Our contribution. We developed a cryptanalysis of the perturbated white-box
AEw/oS implementation; which extends naturally to perturbated white-box
AES implementations. In a white-box attack context, the adversary will have
access to each of the (obfuscated) rounds – these consist of the composition
of random linear input and output encodings, the AES round operation with
key-dependent S-boxes, and encompass the random system of equations and
perturbated functions. The presence of the (unknown) linear encodings and the
extra equations makes it hard to recover the secret information – the S-boxes –
from the implementation.

In this paper, we describe the structural analysis of the white-box AEw/oS
round operations. We show how to derive a set of equivalent S-boxes and lin-
ear encodings that describe a functionally equivalent implementation (due to
the construction of the implementation, there are many candidate keys). As a
result, we obtain a significantly simpler version of the white-box AEw/oS imple-
mentation, which is also invertible, thus defeating the security objective of the
original implementation. Our cryptanalysis has a worst time complexity of 217

and a negligible space complexity.

Organization of the paper. To support the cryptanalysis description, in Sect. 2,
we present an overview of the perturbated white-box AEw/oS implementation
as presented by Bringer et al. [4]. The cryptanalysis comprises three main steps,
which are presented in Sect. 3.
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2 The White-Box AEw/oS Implementation

In this section, we describe the perturbated white-box AEw/oS implementation,
which is the Advanced Encryption Standard (AES) [13] with non-standard S-
boxes – the choice of S-boxes is in fact the secret key, and there are 160 of
them comprised in the entire implementation. Fig. 1 depicts the implementation,
where X is the plaintext input, Zr are the intermediate states (outputs of the
perturbated round functions R′

r), where Z10 is the final output.

X = (x0, . . . , x15)

Y 1
1 Y 2

1 Y 3
1

M1

Z1

R′
1

R1 Φ̃ Ran1

1.1: Perturbated first round R′
1.

(a) AddRoundKey K0

(b) SubBytes {S1,0, . . . , S1,15}
(c) ShiftRows

(d) MixColumns

1.2: Original first round R1.

Mr

M−1
r−1

Y 1
r−1 Y 2

r−1 Zr−1

Y 2
r Y 3

r

Zr

Zr−1

I

R′
r

Y 1
r

Rr Ranr

1.3: Perturbated intermediate rounds
R′

r.

for r from 2 to 9:

(a) AddRoundKey Kr−1

(b) SubBytes {Sr,0, . . . , Sr,15}
(c) ShiftRows

(d) MixColumns

1.4: Original intermediate rounds Rr.

OΦ

M−1
9

Y 1
9 Y 2

9

Y 1
10 Y 2

10

Z10

Z9R′
10

R10

1.5: Perturbated final round R′
10.

(a) AddRoundKey K9

(b) SubBytes {S10,0, . . . , S10,15}
(c) ShiftRows

(d) AddRoundKey K10

1.6: Original final round R10.

Fig. 1. Description of the Perturbated White-box AEw/oS Implementation

The perturbated round functions. Each round R′
r of the perturbated AEw/oS

is expressed as a system of 43 multivariate polynomials over GF
(
28

)
; the final

round as a system of 16 multivariate polynomials. Each system is defined over 43
variables (bytes), except for the initial round, which is defined over the 16 bytes
of the plaintext. These extra variables and equations are due to the extension
of the AES rounds with a perturbation system of 4 polynomials and a system
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of 23 random polynomials Ranr. The latter is introduced to dissimulate the
perturbation and mask all internal operations.

The perturbation initialization system Φ̃ is included in the first round R′
1 and

comprises of 4 polynomials that “often” take the predefined value (ϕ1, ϕ2, ϕ3, ϕ4)
and is constructed as Φ̃(X) = (0̃(X) + ϕ1, 0̃(X) + ϕ2, 0̃(X) + ϕ3, 0̃(X) + ϕ4),
where the 0̃-polynomial “often” vanishes.1 The 4-byte output of Φ̃(X) is then
carried through all intermediate rounds to ensure that all intermediate values
Zr are perturbated and all rounds are closely linked. These perturbations are
canceled out at the final round R′

10 by the perturbation cancelation system OΦ

– a function where OΦ(ϕ1, ϕ2, ϕ3, ϕ4) = 0. The result of this function is XOR-ed
with the output of the original functionality, i.e. the ciphertext Y 1

10, to result
into Z10: Z10 = Y 1

10 ⊕ Y 2
10.

Linear Encodings (Mr)1≤r≤9. Annihilating linear input and output encodings
Mr over GF

(
28

)
between successive rounds ensure that all the variables are

interleaved to make analysis hard – e.g. to prevent that an adversary is able to
distinguish the system of random equations from the original functionality. These
encodings Mr can be represented as a 43×43 diagonal block matrix constructed
as follows:

Mr = πr ◦

⎛
⎜⎜⎜⎝

A
(1)
r

. . .
A

(7)
r

Br

⎞
⎟⎟⎟⎠ ◦ σr ,

where (1) the A
(l)
r |l=1,...,7 are random invertible 5 × 5 matrices of which the

inverse has exactly 2 non-zero coefficients in GF
(
28

)
on each row; (2) Br is

a random invertible 8 × 8 matrix of which the inverse has at least 7 non-zero
coefficients in GF

(
28

)
on each row; and (3) πr and σr are random permutations

at byte level of {1, . . . , 43} defined such that the matrices A
(l)
r |l=1,...,7 mix the

16 original polynomials with 19 random polynomials, whereas Br mixes the 4
perturbation polynomials with the remaining 4 random polynomials. We refer
to [4] for determination of the constraints on the matrices. Our cryptanalysis
exploits these characteristics of the linear encodings Mr.

Obtaining the Correct Result. Due to the introduction of the perturbation in the
first round, there is a probability that the ciphertext is incorrect (when Φ̃(X) �=
(ϕ1, ϕ2, ϕ3, ϕ4) and thus Y 2

10 = OΦ(Φ̃(X)) �= 0). Therefore, four correlated in-
stances of the perturbated white-box AEw/oS implementation are generated.
Each with a different perturbation function, constructed such that there are al-
ways two instances that give the correct result (ciphertext) while the other two
result into different random values with an overwhelming probability. A majority
vote can then be used to distinguish the correct result. We refer to [3,4] for a dis-
cussion on the correlation of the four 0̃-polynomials. Our cryptanalysis requires
only one instance of the perturbated white-box AEw/oS implementation.

1 The construction of the 0̃-polynomials is described in [3,4].
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Summary. Putting everything together, the perturbated white-box AEw/oS im-
plementation consists of four instances of implementations with different pertur-
bations; each instance comprising of 10 rounds R′

r, defined as follows:⎧⎨
⎩

M1 ◦ (R1‖Φ̃‖Ran1) for R′
1 ,

Mr ◦ (Rr‖I‖Ranr) ◦ M−1
r−1 for R′

r|2≤r≤9, where I is the identity function ,⊕
◦(R10‖OΦ) ◦ M−1

9 for R′
10 .

Along the specifications of Bringer et al. [4], each instance accounts ≈142 MB,
which brings the full size of the white-box implementation to ≈568 MB.

3 Cryptanalysis of the White-Box AEw/oS
Implementation

In this section we describe our cryptanalysis, which comprises of the following
three steps:

1. Analysis of the final round: distinguish the system of random equations and
the perturbations from the AEw/oS round operations, and recover the input
encoding M−1

9 up to an unknown constant factor s.t. the linear equivalent
input of the original final round R10 can be observed.

2. Separate the output bytes of the S-boxes: eliminate the MixColumns opera-
tion from the penultimate round R9 s.t. the unknown factors of the linear
equivalent output of R9 can be included into the secret S-boxes.

3. Full structural decomposition, i.e. recovering all linear input/output encod-
ings up to an unknown constant factor and eliminating the MixColumns op-
eration within all rounds. Recover linear equivalent key-dependent S-boxes.

Note that not all the information of the secret S-boxes and linear mappings can
be extracted since there are many equivalent keys which yield the same white-box
implementation. Indeed, we can multiply the input/output of an S-box with a
fixed constant and compensate for it in the adjacent linear mapping. Our attack
recovers an equivalent key, and hence the decomposed implementation can for
example be used to decrypt arbitrary ciphertexts although the implementation
was only intended to encrypt plaintexts.

Setup. Choose a random 16-byte plaintext X , encrypt it with the four correlated
implementations, and select one of both instances that result into the correct
ciphertext (using the majority vote). For that instance, store the intermediate
and final states Zi|i=1,...,10 (which are clearly readable in a white-box attack
context), where the final state equals the ciphertext, i.e. Z10 = Y 1

10. Throughout
our cryptanalysis, we will refer to these states as the initial unmodified states.

3.1 Analysis of the Final Round

The first phase of our cryptanalysis focuses on the perturbated final round R′
10,

which is lossy since the system of random equations is discarded. We will recover



Cryptanalysis of a Perturbated White-Box AES Implementation 297

a significant part of the linear input encoding, i.e., the first 16 rows of the linear
input encoding M−1

9 up to an unknown 16×16 diagonal matrix Λ9. This enables
us to observe the linear equivalent input Λ9Y

1
9 of the original final round R10.

This phase consists of several consecutive steps.

Recover pairs of intermediate bytes in Z9 generating each input byte of Y 1
9 of

R10. Due to the specific characteristics of M9, i.e. the matrices A
(l)
9 |l=1,...,7 mix

the 16 original polynomials with 19 random polynomials, the concatenated 35-
byte output of A

(l)−1
9 |l=1,...,7 consists of the 16-byte input Y 1

9 of R10, while the
remaining 19 bytes are discarded in R′

10. Therefore, since these A
(l)−1
9 |l=1,...,7

matrices in M−1
9 have exactly 2 non-zero coefficients on each row, each input

byte y1
9,i of the original final round R10 is a linear combination in GF

(
28

)
of

exactly two intermediate bytes of Z9. The pair of intermediate bytes generating
y1
9,i is denoted by (z9,i1 , z9,i2).
In a white-box attack context, the adversary has access to the description of

the (obfuscated) system of polynomials, and is able to manipulate the internal
states. Hence, he can freely choose to modify bytes of Z9 and observe the cor-
responding output Z10. In this context, we present an algorithm to obtain the
following sets:

SZ9(y1
10,i): the set containing the pair of intermediate bytes (z9,i1 , z9,i2) corre-

sponding to each output byte y1
10,i of R10. Due to the lack of the MixColumns

step in the final round, R10 comprises of 16 one-to-one monovariate polyno-
mials, and hence these sets can easily be assigned to the corresponding input
byte y1

9,i by applying the inverse ShiftRows step;
SZ9(OΦ): the set containing those intermediate bytes of Z9 which function as

input bytes of the B−1
9 matrix in M−1

9 that only affects the 4-byte input Y 2
9

of OΦ. This set contains at least 7 and at most 8 bytes.2

The setup of the algorithm is to generate for each output byte z10,i|i=0,...,15 of
the perturbated final round R′

10 a set SZ9(z10,i) consisting of those intermediate
bytes of Z9 which influence z10,i. Repeat the following steps for each intermediate
byte z9,i of Z9 one at a time:

Step 1: Make the intermediate byte z9,i active by introducing a non-zero differ-
ence Δz9,i ∈ GF

(
28

)
\ {0} while keeping all other bytes of Z9 fixed to

their initial value (∀l �= i : Δz9,l = 0);
Step 2: Compute R′

10 and observe its output Z10 by comparing with the stored
initial final state Y 1

10 (ciphertext): if the number of affected output bytes
z10,i is larger than 5 bytes, then assign the current active intermediate
byte z9,i directly to the set SZ9(OΦ). Else z9,i is assigned to each set

2 Since B9 mixes the 4 perturbation polynomials with 4 random polynomials, the
8-byte output of B−1

9 consists of the 4-byte input Y 2
9 of OΦ and the other 4-byte

output is discarded in the perturbated final round R′
10, hence we only focus on Y 2

9 .
If Y 2

9 only depends on 7 intermediate bytes of Z9 instead of 8 (special case of 8 × 8
B−1

9 matrix), we are only able to identify 7 bytes.
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SZ9(z10,i) of the output bytes z10,i it affects. In case that the number
of affected output bytes is zero, z9,i is assigned to no set. Fig. 2 depicts
the effect of one active intermediate byte z9,i on the output bytes of Z10
and explains the different cases.

M−1
9

Y 1
9 Y 2

9

⊕

Z9

R10 OΦ

Y 1
10 Y 2

10

Z10

R′
10

(2)(1)

(3)

z9,i + Δz9,i

Fig. 2. In case that the active intermediate byte z9,i of Z9 influences the input Y 1
9 of R10

through one of the A
(l)−1
9 matrices [case (1)], the maximum number of affected input

bytes of R10 equals 5 since A
(l)−1
9 are 5×5 invertible matrices. This trivially translates

to a maximum of 5 affected ciphertext bytes due to the lack of the MixColumns step in
R10 and accordingly to a maximum of 5 affected output bytes z10,i in Z10. So the case
there are more than 5 affected output bytes z10,i only occurs when the active byte z9,i

influences the input Y 2
9 of OΦ through B−1

9 [case (2)], which causes the output Y 2
10 to

change in more than 5 bytes. However, with a very low probability, only 5 or less bytes
of Y 2

10 are affected which introduces false positives (see below). In case that the active
intermediate byte z9,i only affects the input of the system of random polynomials [case
(3)] - which has been discarded in R′

10 - the number of affected output bytes is zero.

Concerning Step 2, false positives can occur, i.e. the incorrect assignment of z9,i

to the sets SZ9(z10,i) instead of the set SZ9(OΦ). An active intermediate byte
z9,i which influences the 4-byte input Y 2

9 of OΦ through the B−1
9 matrix, modifies

the initial value (ϕ1, ϕ2, ϕ3, ϕ4). Since the 16-byte output Y 2
10 of OΦ - which is

zero for Y 2
9 = (ϕ1, ϕ2, ϕ3, ϕ4) and random otherwise - is XOR-ed with the real

ciphertext Y 1
10 to form the ouput Z10, the probability that the number of affected

output bytes z10,i is 5 or less is given by
∑5

i=1

(16
i

)
(1/28)16−i(1−1/28)i ≈ 1/276.

This corresponds also with the probability that z9,i is faulty assigned to each set
SZ9(z10,i) of the affected output bytes z10,i (false positive).

Hence, at the end, the probability that each set SZ9(z10,i)|i=0,...,15 contains
exactly the pair of intermediate bytes (z9,i1 , z9,i2) generating the corresponding
input byte y1

9,i and that the set SZ9(OΦ) contains the 7 or 8 intermediate bytes
functioning as input bytes of the B−1

9 matrix, equals ≈ (1 − 1/276)a with a = 7
or 8, which is ≈ 1. In that case SZ9(y1

10,i) = SZ9(z10,i).
The worst case scenario, i.e. the set SZ9(OΦ) contains less than 7 or 8 inter-

mediate bytes and some or all sets SZ9(z10,i)|i=0,...,15 contain next to the pair
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of intermediate bytes (z9,i1 , z9,i2) also additional intermediate bytes which only
influenced the input Y 2

9 of OΦ (false positives), only occurs with a probability
of ≈ 1− (1− 1/276)a with a = 7 or 8, which is ≈ 0. In that case, after the setup
of the algorithm, the sets SZ9(z10,i)|i=0,...,15 need to be reduced to the pair of
intermediate bytes (z9,i1 , z9,i2) while completing the set SZ9(OΦ). This case is
fully handled in App. A.1, which is based on pairs of sets of plaintext-ciphertext
together with all intermediate states for the same perturbated instance of the
cipher we selected during the setup phase of our cryptanalysis.

Note: A side-effect of the above algorithm is the recovery of the set SZ9(OΦ).
Keeping those 7 or 8 intermediate bytes fixed to their initial value ensures that
the 4-byte input Y 2

9 of OΦ remains unmodified, i.e. (ϕ1, ϕ2, ϕ3, ϕ4), such that the
output of OΦ remains zero and hence we can always observe the real ciphertext:
Z10 = Y 1

10. This allows us to circumvent the perturbations.

Decompose the linear input encoding M−1
9 . Each unknown input byte y1

9,i of
the original final round R10 is a linear combination in GF

(
28

)
of a pair of

intermediate bytes (z9,i1 , z9,i2), which has been recovered in the previous step.
Thus, there are two non-zero coefficients ci,1, ci,2 ∈ GF

(
28

)
\{0} on a row of one

of the A
(l)−1
9 matrices in M−1

9 such that z9,i1 • ci,1 + z9,i2 • ci,2 = y1
9,i, where •

denotes multiplication in the Rijndael Galois Field [13]. In this step, we recover
both coefficients up to an unknown factor α9,i, which enables us to observe the
linear equivalent input byte α9,i • y1

9,i.
Both coefficients ci,1 and ci,2 can be expressed in terms of a single unknown

parameter α9,i as follows: (1) compute the output byte of Z10 corresponding
to y1

10,i – knowing that Z10 = Y 1
10 (see note above) – where the relevant input

bytes (z9,i1 , z9,i2) are fixed to their initial value in Z9, and (2) find another pair
of values (z′9,i1

, z′9,i2
) by fixing z′9,i1

= z9,i1 + ‘01’ and searching for z′9,i2
which

yield the identical output byte in Z10. Hence, since equal output bytes means
equal input bytes for R10,

z9,i1 • ci,1 + z9,i2 • ci,2 = y1
9,i

(z9,i1 + ‘01’) • ci,1 + z′9,i2 • ci,2 = y1
9,i ,

from which we can derive that ci,1 = εi • ci,2, with εi = z9,i2 + z′9,i2
.

By assigning ‘01’ to ci,2, only the linear equivalent input byte y1
9,i can be

recovered, i.e. α9,i • y1
9,i = εi • z9,i1 + z9,i2 with α9,i unknown. As a result, we

retrieve an expression of the first 16 rows of the linear mapping M−1
9 up to

(unknown) constants α9,i. That is, we obtain the following equation:⎛
⎜⎝

α9,0 • y1
9,0

...
α9,15 • y1

9,15

⎞
⎟⎠ = M−1

9 [0..15]′Z9 =

⎛
⎜⎝α9,0

. . .
α9,15

⎞
⎟⎠

⎛
⎜⎝ L9,0

...
L9,15

⎞
⎟⎠ Z9 , (1)

where L9,i denotes the i-th row of M−1
9 and contains the unknown coefficients

ci,1, ci,2. The recovered submatrix is denoted by M−1
9 [0..15]′ = Λ9 ◦ M−1

9 [0..15]
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with Λ9 = diag(α9,0, . . . , α9,15), which transforms Z9 into the linear equivalent
input Λ9Y

1
9 of R10. Each row of M−1

9 [0..15]′ is all ‘00’ except an εi and ‘01’ on
the relevant columns, i.e. the columns corresponding to the pair of intermediate
bytes (z9,i1 , z9,i2).

3.2 Separate the S-Boxes

As a result of the first phase of the cryptanalysis, the adversary is able to derive
the input bytes y1

9,i of the original final round R10 up to unknown coefficients
α9,i, i.e. Λ9Y

1
9 . Due to the annihilating nature of the linear encodings between

successive perturbated rounds, this also corresponds to the linear equivalent
output of the preceding, penultimate round R9. Therefore, R9 can be expressed
as

Λ9 ◦ MixColumns ◦ ShiftRows ◦ {S9,0, . . . , S9,15} ◦
⊕
K8

◦M−1
8 [0..15] , (2)

where the set {S9,i}|i=0,...,15 represents the 16 different invertible 8-to-8 bit orig-
inal S-boxes of R9, which together with the round key K8 are part of the secret
key.

The objective in this step of our cryptanalysis is to include the unknown
factors of the linear equivalent output of R9 into the secret S-boxes by separat-
ing the output bytes of the S-boxes, which can be achieved by eliminating the
MixColumns operation from the round. However, due to the presence of the un-
known values in Λ9, this is not trivial since the MixColumns step is an invertible
linear transformation which operates on four bytes. We address this problem in
this section.

The main idea is to search for a transformation such that the matrix Λ9 has
the same factors α for each four bytes of a MixColumns operation. Even though
this factor remains unknown, such a diagonal matrix can be swapped with the
MixColumns operation (multiplication with a diagonal matrix with all the same
elements is a commutative operation in the group of square matrices). As a
result, the MixColumns operation is the final operation and can be eliminated
by multiplying the result with the inverse MixColumns operation.

In total there are four parallel MixColumns steps MCi|i=0,...,3 since each step
MCi operates on the output bytes of four different S-boxes. Accordingly, Λ9 can
be divided into four 4 × 4 diagonal submatrices Λ9,i, each containing those un-
known factors α corresponding to the four output bytes of each MCi: Λ9,i =
diag(α9,i, α9,i+4, α9,i+8, α9,i+12) for i = 0, . . . , 3. Hence out of the requirement
Λ9,i ◦ MCi = MCi ◦ Λ′

9,i, we seek a 4 × 4 diagonal matrix Λ′
9,i = MC−1

i ◦ Λ9,i ◦ MCi.
This is the case when all diagonal entries of Λ9,i are identical, e.g. Λ9,i =
diag(α9,i, α9,i, α9,i, α9,i), and moreover Λ′

9,i = Λ9,i. Here we present an algorithm
- which has been successfully implemented in C++ and confirmed by computer
experiments - such that:

Given black-box access to the structure as shown in (2), a white-box adversary
is able to ensure that all diagonal entries of Λ9,i become identical and hence
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construct Λ′
9,i = diag(α9,i, α9,i, α9,i, α9,i) for each of the four parallel MixColumns

steps MCi|i=0,...,3 such that (2) becomes:

MixColumns ◦ Λ′
9 ◦ ShiftRows ◦ {S9,0, . . . , S9,15} ◦

⊕
K8

◦M−1
8 [0..15] . (3)

Since in (3) the ShiftRows step is just a permutation on byte level, the unknown
diagonal entries in Λ′

9 can be included into the secret S-boxes by applying the
inverse ShiftRows step.

The setup of the algorithm is to generate for each MCi|i=0,...,3 a set SZ8(MCi)
consisting of those intermediate bytes of Z8 which influence the input of MCi.
This is done by making each intermediate byte of Z8 (the input of (2)) one at
a time active and observing the corresponding active output bytes in Λ9Y

1
9 (the

output of (2)). Since each input byte of MCi depends on a pair of intermediate
bytes of Z8 and due to the special structure of the A

(l)−1
8 |l=1,...,7 matrices in

M−1
8 , modifying one of the bytes in SZ8(MCi) results in making one or two of

the four input bytes of MCi active in most cases. However in the special case when
the four input bytes of MCi are controlled by two distinct pairs of intermediate
bytes of Z8, only exactly two input bytes of MCi can be made active.

Repeat the following steps for each MixColumns step MCi|i=0,...,3:

Step 1: Given the initial unmodified value of the intermediate state Z8, store
the corresponding 4-byte output of MCi in Λ9Y

1
9 , denoted by YMCi ;

3

Step 2: Modify one byte in SZ8(MCi) and store the corresponding 4-byte output
of MCi in Λ9Y

1
9 , denoted by Y ′

MCi
. In the case when less than three bytes

between YMCi
and Y ′

MCi
have become active and hence at least three of

the four input bytes of MCi have become active,4 we discard this case
and continue with Step 4;

Step 3: Given the pair (YMCi
, Y ′

MCi
), keep the first factor α9,i fixed while varying

the other three factors (α9,i+4, α9,i+8, α9,i+12) over GF
(
28

)
\{0} by mul-

tiplying the second, third and fourth byte within both values (YMCi , Y
′
MCi

)
with respectively β, γ, δ ∈ GF

(
28

)
\ {0}. For each combination (β, γ, δ)j

with the corresponding pair (Y (j)
MCi

, Y
′(j)
MCi

) with j = 1, . . . , (28−1)3, invert
the MixColumns step, i.e. (Y (j)

MC−1
i

, Y
′(j)
MC−1

i

) = (MC−1(Y (j)
MCi

), MC−1(Y ′(j)
MCi

)), and
construct the following solution set by comparing both values:

S = {(β, γ, δ)j | one or two active bytes between (Y (j)
MC−1

i

, Y
′(j)
MC−1

i

)} ;

Step 4: Repeat Step 2 and Step 3 for each byte in SZ8(MCi) one at a time;
Step 5: At the end, a solution set S has been constructed for each modified byte

in SZ8(MCi). The triplet (β, γ, δ)i for MCi is derived as the intersection
between all solution sets.

3 YMCi = (α9,i • y1
9,i, α9,i+4 • y1

9,i+4, α9,i+8 • y1
9,i+8, α9,i+12 • y1

9,i+12) .
4 The branch number of the MixColumns step equals 5.
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As can be observed in Step 3, the algorithm only keeps track of single and
double active input bytes5 to each MixColumns step for each modified byte in
SZ8(MCi) and each combination (β, γ, δ)j . When modifying one byte in SZ8(MCi),
we distinguish the following two cases:

1. one or two of the four input bytes of MCi have become active. The resulting
solution set S obtained in Step 3 is considered valid and contains the triplet
(β, γ, δ)j for which the same one or two bytes have become active between
(Y (j)

MC−1
i

, Y
′(j)
MC−1

i

), which only occurs when the triplet made all diagonal entries

of Λ9,i identical (i.e. all equal to α9,i) such that Λ9,i could be swapped with
the MixColumns step MCi. This triplet is contained within all valid solution
sets;

2. at least three of the four input bytes of MCi have become active and the
case has not been discarded in Step 2. Hence the resulting solution set S
obtained in Step 3 is considered invalid.

Hence, in Step 5 only one intersection occurs between all solution sets, i.e. be-
tween valid sets since there is no intersection with invalid sets.

The triplet (β, γ, δ)i as outcome of the above algorithm applied to each MCi are
the factors needed to ensure that all diagonal entries of Λ9,i become identical to
the first factor α9,i, i.e. diag(‘01’, βi, γi, δi) ◦ Λ9,i = diag(α9,i, α9,i, α9,i, α9,i) =
Λ′

9,i. So by multiplying each set of four rows corresponding to each MCi of the re-
covered submatrix M−1

9 [0..15]′ (see (1)) with the derived quartet (‘01’, βi, γi, δi),
the adversary is able to construct Λ′

9 in which the diagonal entries corresponding
to each MCi are identical:⎛

⎜⎜⎝
I4×4 0 0 0

0 B 0 0
0 0 Γ 0
0 0 0 Δ

⎞
⎟⎟⎠M−1

9 [0..15]′ =

⎛
⎜⎜⎝

D9 0 0 0
0 D9 0 0
0 0 D9 0
0 0 0 D9

⎞
⎟⎟⎠

⎛
⎜⎝ L9,0

...
L9,15

⎞
⎟⎠ , (4)

where B = diag(β0, β1, β2, β3), Γ = diag(γ0, γ1, γ2, γ3), Δ = diag(δ0, δ1, δ2, δ3),
D9 = diag(α9,0, α9,1, α9,2, α9,3). The obtained submatrix of (4) is denoted by
M−1

9 [0..15]′′ = Λ′
9 ◦ M−1

9 [0..15] with Λ′
9 = diag(D9, D9, D9, D9).

3.3 Decomposing the Rounds

The final phase of our cryptanalysis presents the full decomposition of the pertur-
bated white-box AEw/oS implementation and shows how to obtain a set of can-
didate S-boxes (the secret key). We present an algorithm to recover all remaining
linear encodings up to a constant factor and to eliminate the MixColumns oper-
ation, when applied to all perturbated intermediate rounds R′

r|2≤r≤9 from the
bottom up.

5 Keeping track of double active input bytes is necessary due to the special case
mentioned in the setup of the algorithm.
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Given black-box access to a perturbated intermediate round R′
r which linear out-

put encoding M−1
r [0..15]′′ = Λ′

r ◦ M−1
r [0..15] has already been recovered s.t. the

linear equivalent output Λ′
rY

1
r of the original intermediate round Rr can be ob-

served and the MixColumns step can be separated from the S-boxes, i.e.:

MixColumns ◦ Λ′
r ◦ ShiftRows ◦ {Sr,0, . . . , Sr,15} ◦

⊕
Kr−1

◦M−1
r−1[0..15] ,

a white-box adversary is able to derive the linear input encoding up to an un-
known factor, i.e. M−1

r−1[0..15]′′ = Λ′
r−1 ◦ M−1

r−1[0..15], s.t. the linear equivalent
input Λ′

r−1Y
1
r−1 of Rr can be observed and the MixColumns step of the preceding

round Rr−1 can be separated from the S-boxes, and hence the structure of Rr

becomes:

MixColumns ◦ Λ′
r ◦ ShiftRows ◦ {Sr,0, . . . , Sr,15} ◦

⊕
Kr−1

◦Λ′−1
r−1 .

As a result of the previous two phases of the cryptanalysis – i.e. the recovery of
the linear output encoding M−1

9 [0..15]′′ up to a constant factor (see (4)) and the
elimination of the MixColumns step (see (3)) of the penultimate round R9 – the
above algorithm first applies to R′

9 and then to the remaining perturbated inter-
mediate rounds R′

r|2≤r≤8 from the bottom up since each linear input encoding
matches the linear output encoding of the preceding round. The main steps of
the algorithm are:

1. Assign to each input byte y1
r−1,i of the original round Rr a pair of interme-

diate bytes (zr−1,i1 , zr−1,i2) of Zr−1 contained within the set SZr−1(y1
r−1,i);

2. Decompose the linear input encoding M−1
r−1: recover the first 16 rows up

to a 16 × 16 diagonal linear bijection Λr−1 = diag(αr−1,0, . . . , αr−1,15), i.e.
M−1

r−1[0..15]′ = Λr−1 ◦ M−1
r−1[0..15];

3. Eliminate the MixColumns step in the preceding round Rr−1 by converting
Λr−1 into Λ′

r−1 where the diagonal entries corresponding to each MCi|i=0,...,3

are identical: M−1
r−1[0..15]′′ = Λ′

r−1 ◦ M−1
r−1[0..15] with Λ′

r−1 = diag(Dr−1,
Dr−1, Dr−1, Dr−1), where Dr−1 = diag(αr−1,0, αr−1,1, αr−1,2, αr−1,3).

We refer to App. A.2 for a detailed description of each step, which are very similar
to the ones stated in Sect. 3.1 and 3.2. However, the algorithm for separating
the MixColumns step from the S-boxes applied to the first round R1, i.e. the
case when r = 2, is simplified since the perturbated round R′

1 lacks an input
encoding.

As a result of the algorithm mentioned above, the white-box adversary has
black-box access to the following structures of each round Rr|r=1,...,10:⎧⎪⎨

⎪⎩
SR ◦

⊕
K′

10
◦{S10,i}|i=0,...,15 ◦

⊕
K9

◦Λ′−1
9 for R10 ,

MC ◦ SR ◦ Λ′′
r ◦ {Sr,i}|i=0,...,15 ◦

⊕
Kr−1

◦Λ′−1
r−1 for Rr|2≤r≤9 ,

MC ◦ SR ◦ Λ′′
1 ◦ {S1,i}|i=0,...,15 ◦

⊕
K0

for R1 ,

(5)
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where each set {Sr,i}|i=0,...,15;r=1,...,10 represents the 16 different invertible 8-
to-8 bit original S-boxes of Rr, which together with round keys Kr|r=0,...,10 are
part of the secret key. By altering Λ′

r|r=1,...,9, its order with the ShiftRows step
can be reversed, i.e. Λ′′

r = SR−1 ◦ Λ′
r ◦ SR = diag(Dr, D

�1
r , D�2

r , D�3
r ) where

D�i
r denotes the matrix Dr = diag(αr,0, αr,1, αr,2, αr,3) whose diagonal entries

are cyclically shifted i-times to the right. Note that the first and final rounds
respectively lack a linear input and output encoding.

MixColumns

ShiftRows

ShiftRows

MixColumns

ShiftRows

...

...

· · · · · ·S1,0 S1,i S1,15

⊕k0,0

⊗α1,0

· · ·

· · ·

⊕k0,i

⊗α1,i′ mod 4

· · ·

· · ·

⊕k0,15

⊗α1,0

⊕kr−1,0 ⊕kr−1,i · · ·· · ·
Sr,0

⊗α−1
r−1,0 · · ·

⊗αr,0

· · ·
· · ·

Sr,i

⊗α−1
r−1,i mod 4

⊗αr,i′ mod 4

· · ·
· · ·

· · ·
⊕kr−1,15

Sr,15

⊗α−1
r−1,3

⊗αr,0

· · · ⊕k9,i · · · ⊕k9,15⊕k9,0

⊗α−1
9,0

S10,0

⊕k′
10,0

· · ·
· · ·

· · ·
· · ·

⊗α−1
9,i mod 4

S10,i

⊕k′
10,i

· · · · · ·

S10,15

⊗α−1
9,3

⊕k′
10,15

⊕
K0

{S1,i}

⊕
Kr−1

{Sr,i}

⊕
K9

{S10,i}
⊕

K′
10

{S ′
10,i}

{S ′
r,i}

{S ′
1,i}

R1

(Rr)2≤r≤9

R10

Λ′′
1

Λ′−1
r−1

Λ′′
r

Λ′−1
9

Fig. 3. Our Invertible Functionally Equivalent AEw/oS Implementation

In the structures of (5), only the ShiftRows and MixColumns steps are known
to the adversary. Since all unknown linear bijections Λ′−1

r |r=1,...,9 and Λ′′
r |r=1,...,9

are 16×16 diagonal matrices, the unknown factors α as diagonal entries can easily
be included into respectively the input and output of the secret S-boxes. Hence
the linear equivalent key-dependent S-boxes, denoted by S′

r,i, have the following
form for each round Rr|r=1,...,10:

S′
10,i|i=0,...,15 =

⊕
k′
10,i

◦S10,i ◦
⊕

k9,i
◦

⊗
α−1

9,i mod 4
,

S′
r,i|i=0,...,15;r=2,...,9 =

⊗
αr,i′ mod 4

◦Sr,i ◦
⊕

kr−1,i
◦

⊗
α−1

r−1,i mod 4
,

S′
1,i|i=0,...,15 =

⊗
α1,i′ mod 4

◦S1,i ◦
⊕

k0,i
.

(6)



Cryptanalysis of a Perturbated White-Box AES Implementation 305

Although all components in the S-boxes of (6) are unknown to the adver-
sary, each S-box S′

r,i|i=0,...,15;r=1,...,10 can be defined by varying its input byte
αr−1,i mod 4 • y1

r−1,i (in the case of R1: the i-th plaintext byte xi) over GF (28)
and record the corresponding output byte in SR−1(MC−1(Λ′

rY
1
r )) (in the case of

R10: in SR−1(Z10)). In order to vary the input, we keep one of the pair bytes
zr−1,i1 fixed and vary the other byte zr−1,i2 .

Fig. 3 depicts an overview of the full decomposition of the perturbated white-
box AEw/oS implementation in order to obtain an invertible, functionally equiv-
alent version.

4 Conclusion

In this paper we presented a structural cryptanalysis of the perturbated white-box
AEw/oS implementation, presented by Bringer et al. [4]. Our attack has a worst
time complexity of 217 and negligible space complexity (see App. B). Our crypt-
analysis trivially extends to perturbated white-box AES implementations as well.

The technique decomposes the obfuscated round structure of the white-box
implementation. After eliminating the system of random equations and pertur-
bations, we show how to distinguish the output bytes of individual S-boxes –
by eliminating the MixColumns from the round functions. This elimination step
is crucial in our cryptanalysis, and a proof of concept has been implemented in
C++. From the obtained structure, a definition for each S-box can be derived.
These S-boxes are linear equivalent to the original (secret) key that was chosen to
construct the implementation. Indeed, there are several candidate keys possible
that yield the same white-box implementation. This is embodied by the factors
α that we meet in our cryptanalysis – these can take any value in GF

(
28

)
\ {0}.

Each equivalent key consists of 160 bijective key-dependent 8-bit S-boxes, which
can be used to construct a simpler, functionally equivalent version of the white-box
AEw/oS implementation (as depicted in Fig. 3 in Sect. 3.3). The S-boxes occupy a
total storage space of ≈ 41 kB; hence the total size of the implementation is signif-
icantly reduced from several hundred MB to just a few tens of kB. On top of this,
the implementation becomes invertible, which renders it useless for many practical
implementation where white-box cryptography would be of value.

The cryptanalysis is independent of the definition of the perturbation func-
tions that are introduced in the first round; we exploit the characteristics of
the input/output linear encodings and some properties of the AEw/oS block ci-
phers (such as the MixColumns operation). Modifying some specifications in an
attempt to mitigate our cryptanalysis, such as the number of non-zero elements
on the rows of the A

(l)−1
r may turn the white-box implementation useless (its

size will increase exponentially).
Although our cryptanalysis is specific to the particular structure of the imple-

mentation, some algorithms are of independent interest. In particular for research
in structural cryptanalysis. Future research may include research to extend these
algorithms to more generic constructions, e.g., where the MixColumns operations
are also key dependent.
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A Algorithms

A.1 Algorithm: Recover Pairs of Intermediate Bytes in Z9

Generating Each Input Byte of Y 1
9 of R10 - Worst Case

Scenario

The worst case scenario, i.e. the set SZ9(OΦ) contains less than 7 or 8 inter-
mediate bytes and some or all sets SZ9(z10,i)|i=0,...,15 contain next to the pair
of intermediate bytes (z9,i1 , z9,i2) also additional intermediate bytes which only
influenced the input Y 2

9 of OΦ (false positives), occurs with a probability of
≈ 1 − (1 − 1/276)a with a = 7 or 8, which is ≈ 0. In that case, after the setup
of the algorithm, the sets SZ9(z10,i)|i=0,...,15 need to be reduced to the pair of
intermediate bytes (z9,i1 , z9,i2) while completing the set SZ9(OΦ).

Being able to do so, another triplet consisting of plaintext-ciphertext {X, Z10
= Y 1

10} together with the intermediate state Z9 is required for the same pertur-
bated instance of the cipher we selected in the setup phase of the cryptanalysis
(see Sect. 3). We introduce the index m to refer to each of both triplets, i.e.
{Xm, (Z9)m, (Z10)m} with m = 1, 2, where m = 1 concerns the triplet stored
during the setup phase of the cryptanalysis. By applying the setup of the al-
gorithm mentioned in Sect. 3.1 as well to the newly computed triplet – and in
case the worst case scenario occurs again – we obtain the sets S m

Z9
(z10,i) and

S m
Z9

(OΦ) for both triplets m = 1, 2, where the set S m
Z9

(OΦ) is incomplete and
some sets S m

Z9
(z10,i) contain more than 2 bytes for both m = 1, 2.

First combine the retrieved information by taking the union
⋃

m=1,2 S m
Z9

(OΦ),
denoted by S ∪

Z9
(OΦ), and removing in all sets S m

Z9
(z10,i)|m=1,2;i=0,...,15 those

intermediate bytes z9,i ∈ S ∪
Z9

(OΦ). Then repeat the following steps for each
output byte z10,i one at a time:

Step 1: Take the intersection
⋂

m=1,2 S m
Z9

(z10,i), denoted by S ∩
Z9

(z10,i):
If |S ∩

Z9
(z10,i)| = 2, then this set identifies the pair of intermediate bytes

(z9,i1 , z9,i2) corresponding to the output byte y1
10,i and is assigned to the

set SZ9(y1
10,i). Go to Step 4.

Else take all possible combinations when choosing two bytes out of
S ∩

Z9
(z10,i), with a total number of

(|S ∩
Z9

(z10,i)|
2

)
.

Step 2: Repeat the following for each combination and for both triplets {Xm,
(Z9)m, (Z10)m} with m = 1, 2: construct (Z9)m|m=1,2 in which the cho-
sen two bytes are replaced by ‘00’ while the others remain fixed to their
original value. Compute the perturbated final round R′

10 and compare
both output bytes (z10,i)m|m=1,2;
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Step 3: If only one collision occurs in Step 2 for all possible combinations,
then the two bytes chosen out of S ∩

Z9
(z10,i) in the combination for

which the collision occurred, identify the pair of intermediate bytes
(z9,i1 , z9,i2) corresponding to the output byte y1

10,i and are assigned to
the set SZ9(y1

10,i). Go to Step 4.
Else in the case more than one collision occurs (hence for more than

one combination), go back to Step 1 and continue with the next output
byte. At the end, repeat all these steps again for the output bytes for
which more than one collision occurred. In case multiple collisions con-
tinue to occur, start over again with a new and different triplet m = 2.

Step 4: Assign all intermediate bytes of both sets S m
Z9

(z10,i)|m=1,2 which are not
an element of SZ9(y

1
10,i) to the set S ∪

Z9
(OΦ) and remove in all remaining

sets S m
Z9

(z10,j)|m=1,2;i<j those intermediate bytes z9,i ∈ S ∪
Z9

(OΦ).

At the end, we obtained the sets SZ9(y
1
10,i)|i=0,...,15 and trivially SZ9(OΦ) =

S ∪
Z9

(OΦ).
Concerning Step 3, always at least one collision occurs, i.e. for the combi-

nation in which the two bytes chosen out of S ∩
Z9

(z10,i) are in fact the pair of
intermediate bytes (z9,i1 , z9,i2) producing the input byte y1

9,i of the original final
round R10. Hence when both bytes are replaced by ‘00’ in (Z9)m|m=1,2 while the
other bytes remain fixed to their initial value, the 8-byte input of B−1

9 remains
unmodified. The latter ensures that the 4-byte input Y 2

9 of OΦ is unchanged, i.e.
(ϕ1, ϕ2, ϕ3, ϕ4), such that the output of OΦ remains zero and hence we can ob-
serve the real ciphertext for both m = 1, 2: (Z10)m = Y 1

10⊕OΦ(ϕ1, . . . , ϕ4) = Y 1
10.

The former ensures that the input byte y1
9,i becomes ‘00’ for both m = 1, 2

which causes that the corresponding output bytes y1
10,i in the ciphertext collide.

The probability that only one collision occurs, equals (28−1
28 )[(

|S∩
Z9

(z10,i)|
2 )−1].

In the worst case, i.e. when |S ∩
Z9

(z10,i)| = 10, the probability becomes ≈ 0.84 .
Hence it is assumed that the algorithm succeeds in the worst case with only 1
or 2 additional triplets.

A.2 Algorithm: Recover the Linear Input Encoding Up to an
Unknown Constant Factor of Each Perturbated Intermediate
Round R′

r|r=2≤r≤9

The adversary is able to observe the linear equivalent output Λ′
rY

1
r of the original

intermediate round Rr due to the knowledge of the linear output encoding up
to an unknown constant factor, i.e. M−1

r [0..15]′′ = Λ′
r ◦ M−1

r [0..15]. Moreover,
due to the fact that the MixColumns step is separated from the S-boxes, he can
apply its inverse and observe Y 1′

r = MC−1(Λ′
rY

1
r ) = Λ′

r ◦ MC−1(Y 1
r ). Hereby, the

diffusion property of the MixColumns step is lost and hence there is again a one-
to-one correspondence between single active input and output bytes, which is
the ShiftRows step. Now we describe each step of the algorithm:

Assign a pair of intermediate bytes (zr−1,i1 , zr−1,i2) of Zr−1 to each input byte
y1

r−1,i of Rr. By making each intermediate byte zr−1,i one at a time active and
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keeping track of the corresponding active bytes in Y 1′
r , a pair (zr−1,i1 , zr−1,i2) is

assigned to each output byte y1′
r,i due to the specific predefined structure of the

A
(l)−1
r−1 |l=1,...,7 matrices in M−1

r−1. By inverting the ShiftRows step, these pairs
are reassigned to the corresponding input bytes y1

r−1,i of Rr.

Decompose the linear input encoding M−1
r−1. This step is completely similar as the

one described in Sect. 3.1, but then applied to Rr. Hence search for two different
values of the intermediate bytes, i.e. {(zr−1,i1 , zr−1,i2), (zr−1,i1 ⊕‘01’, z′r−1,i2

)},
which both map onto the same value of the input byte y1

r−1,i by indirectly ob-
serving the corresponding output byte y1′

r,i in Y 1′
r . As a result, a relation between

both coefficients is derived, i.e. ci,1 = εi • ci,2, with εi = zr−1,i2 + z′r−1,i2
. By

assigning ‘01’ to ci,2, only the linear equivalent input byte y1
r−1,i can be recov-

ered, i.e. αr−1,i • y1
r−1,i = εi • zr−1,i1 + zr−1,i2 where αr−1,i ∈ GF

(
28

)
\ {0} is

unknown.
As a result, we obtain the first 16 rows of the linear input encoding M−1

r−1 up
to an unknown 16× 16 diagonal linear bijection Λr−1, i.e. M−1

r−1[0..15]′ = Λr−1 ◦
M−1

r−1[0..15] with Λr−1 = diag(αr−1,0, . . . , αr−1,15). Each row of M−1
r−1[0..15]′ is

all ‘00’ except a ‘01’ and εi on the relevant columns.

Eliminate the MixColumns step in the preceding round Rr−1. The algorithm to
convert Λr−1 into Λ′

r−1 in which the unknown diagonal entries corresponding
to each MixColumns step MCi|i=0,...,3 are identical s.t. the order between Λ′

r−1
and the MixColumns step can be reversed, is identical to the one applied to the
penultimate round R9 in Sect. 3.2. However there is one special case, i.e. to
generate Λ′

1 when applied to the first round R1. In contrast to all intermediate
rounds, the first round lacks a linear input encoding, and thus it is possible to
make only one of the four input bytes to the i-th MixColumns step MCi active
by modifying the corresponding byte in the plaintext X . So for r = 2, each
set SX(MCi) contains exactly four plaintext bytes. Moreover, when constructing
the solution sets S in Step 3 for each modified plaintext byte in SX(MCi), the
algorithm only needs to keep track of single active input bytes. This simplifies
the algorithm and increases the performance in this special case.

As a result, we recover the new submatrix M−1
r−1[0..15]′′ = Λ′

r−1 ◦M−1
r−1[0..15],

where Λ′
r−1 = diag(Dr−1, Dr−1, Dr−1, Dr−1) with Dr−1 = diag(αr−1,0, αr−1,1,

αr−1,2, αr−1,3), which transforms the 43-byte intermediate value Zr−1 into the
linear equivalent input Λ′

r−1Y
1
r−1 of Rr.

B Complexity

The time complexity of our cryptanalysis is expressed in the number of per-
turbated round evaluations (parsing system of equations over GF

(
28

)
). With

respect to the round operations, other computations in the attack are negligible
and have been ommitted for simplicity.
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– Setup phase of the cryptanalysis: encryption of one randomly chosen plain-
text by all four correlated instances of the perturbated white-box AEw/oS
implementation requires 4 · 10 round executions;

– Analysis of the final round: construction of both sets SZ9(y1
9,i) and SZ9(OΦ)

for the final round needs (1) without the worst case scenario 43 round eval-
uations or (2) with the worst case scenario – which occurs with a negligible
probability – an additional 2 ·(8 ·4 ·10+43+2 ·5 ·

(10
2

)
) (under the assumption

that only eight plaintexts need to be encrypted in order to find an additional
triplet with probability 1−(1/2)8 ≈ 0.996); the recovery of the coefficients of
the linear combination up to an unknown factor α for each pair intermediate
bytes demands 16 · 28 round operations;

– Separate the S-boxes: elimination of the MixColumns step in the penultimate
round R9 requires 43 + 4 · 8 round evaluations;

– Decomposing the rounds: construction of the set SZr−1(y
1
r−1,i) for all inter-

mediate rounds Rr|2≤r≤9 needs 8 · 43 round evaluations; the recovery of the
coefficients of the linear combination up to an unknown factor α for each
pair of intermediate bytes for the intermediate rounds Rr|2≤r≤9 demands
8 · 16 · 28 round operations; the elimination of the MixColumns step in the
rounds Rr|1≤r≤8 requires 7 · (43 + 4 · 8)+ (4 · 4) round evaluations; finally, in
order to define the linear equivalent key, 10 · 16 · 28 perturbated rounds need
to be executed.

This brings the total worst time complexity down to 80493 = 216.2966 pertur-
bated round evaluations.

The space complexity of our cryptanalysis is negligible.
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1 Motivation

Intel has recently extended its popular x86 architecture to support the Ad-
vanced Encryption Standard (AES) [1,2]. The new instructions perform a full
AES round in a single instruction. Making good use of these instructions is not
simple because they have a latency of several cycles. Good performance depends
on the execution of multiple AES instructions being overlapped in the processor’s
pipeline, while also carefully managing other resources such as registers. Exist-
ing compilers do not do this well, so Intel provides a library of highly-optimized
assembly routines implementing various AES modes [3,4].

Assembly code is both difficult and expensive to understand, maintain or
modify. The need for assembly language programming is a major barrier to
experimenting with new variations of the code. New versions of architectures
often require changes in the assembly. Maintaining multiple versions of the same
basic piece of assembly code is a costly software engineering problem. As newer
versions of architectures appear, sub-optimal code may be used, simply to avoid
creating yet another version.
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Assembly programming also makes it difficult to combine multiple algorithms
into a single piece of code. For example, it is often faster to do encryption and
authentication together rather than separately, by interleaving the code from
each algorithm [5]. But if the code for each algorithm consists of hand-tuned
assembly library routines, manually creating a combined version is a cumbersome
engineering task. In contrast, our generator can automatically intermingle two
pieces of code with little programmer effort.

This paper describes a program generator that takes an annotated C version of
AES code, generates many different variants and automatically finds a variant of
the code that runs well on the target processor. The system is flexible enough that
the cryptographer can specify multiple different ways of varying the code using
several strategies. These strategies are also described. The generator uses an
iterative, feedback-directed approach to finding efficient code for the particular
architecture. The main contributions of this paper are:

• We automate the application of low-level optimizations used in the Intel
library.

• We automate the search for the best variation of optimizations, and show
that the resulting code can be equal to or faster than hand-tuned assembly.

• We show that CTR mode caching can give good speedups on AES-NI.
• We show that exploiting the properties of xor can speed up CBC mode.
• We show the ease of optimizing when using function-stitching with GCM.

The remainder of this paper is organized as follows: Section 2 provides back-
ground on Intel’s AES instruction set extension. Our implementation of the
program generator is described in Section 3. A breakdown of optimizations and
features are in Sections 4—6, with the flexibility of the generator with AES
counter (CTR) mode discussed in Section 4, making algorithmic variations with
AES cipher-block-chaining (CBC) mode in Section 5, and exploiting instruction
level parallelism with AES Galois/Counter Mode (GCM) in Section 6. An anal-
ysis of our experimental results appears in Section 7 with related and future
work mentioned in Sections 8 and 9, respectively. Our conclusions are offered in
Section 10.

2 Intel AES-NI Instructions

The Intel Advanced Encryption Standard New Instructions (AES-NI) are six
new x86 instructions to support AES encryption, decryption and key expansion
which debuted on the Intel Westmere architecture [4]. The aesenc instruction
performs a full “round” of encryption in a single instruction. The AES algorithm
consists of 10, 12 or 14 “rounds of encryption”, which corresponds to using key
sizes of 128, 192, or 256 bits, respectively. The code for encrypting a single block
consists of a chain of 10, 12, or 14 aesenc instructions. The output of each round
becomes the input to the next round, so each round must complete before the
subsequent one can start. This can be seen in the loop of Figure 1, which shows
the C code implementation of our round 1 AES counter mode (CTR).
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#include <wmmintrin.h>
#include "aes -table.h"
void AES_CTR_Encrypt( __m128i * plaintext , __m128i * ciphertext ,

__m128i * key , long long ivec , long nonce ,
int blocks ){

__m128i result , result0 , result1 ;
__m128i fake_key , saved_r1 , table_mask;
__m128i counter_block = _mm_setzero_si128();
unsigned scalar_key0 , scalar_result0 , scalar_result1;
unsigned my_counter , scalar_counter = 0;
int i = 0;

counter_block = _mm_insert_epi64(counter_block , ivec , 1);
counter_block = _mm_insert_epi32(counter_block , nonce , 1);
counter_block = _mm_srli_si128(counter_block , 4);

result0 = _mm_xor_si128( counter_block , key[0]);
scalar_key0 = _mm_extract_epi32(key[0], 3);
result1 = _mm_insert_epi32(result0 , scalar_key0 & 0xFFFFFF , 3);
saved_r1 = _mm_aesenc_si128(result1 , key[1]);
table_mask = _mm_cvtsi32_si128(table3 [0]);
saved_r1 = _mm_xor_si128(saved_r1 , table_mask);

for(i = 0; i < blocks; i++){
my_counter = scalar_counter++;
scalar_result0 = (( _bswap(scalar_key0)) & 0xFF) ^ my_counter;
table_mask = _mm_cvtsi32_si128(table3[scalar_result0]);
result1 = _mm_xor_si128(saved_r1 , table_mask);

result = _mm_aesenc_si128(result1 , key[2]);
result = _mm_aesenc_si128(result , key[3]);
result = _mm_aesenc_si128(result , key[4]);
result = _mm_aesenc_si128(result , key[5]);
result = _mm_aesenc_si128(result , key[6]);
result = _mm_aesenc_si128(result , key[7]);
result = _mm_aesenc_si128(result , key[8]);
result = _mm_aesenc_si128(result , key[9]);

fake_key = _mm_xor_si128(key[10], plaintext[i]);
result = _mm_aesenclast_si128(result , fake_key );
ciphertext[i] = result;

}
}

Fig. 1. AES CTR (round 1) encryption in C using AES-NI instructions

In the current hardware implementation of AES-NI, the aesenc instruction
has a latency of six cycles [6]. Thus, encrypting a 16-byte block using a 128 bit
key requires ten rounds, or at least 60 cycles. However, a new aesenc instruction
can be started every two cycles. Therefore, with parallel modes of operation, such
as AES CTR, the encryption of multiple blocks can be overlapped.

Intel provides a library of hand-tuned assembly routines which overlap the
execution of AES instructions [4]. The library uses standard techniques for ex-
ploiting instruction-level parallelism (ILP), such as manually unrolling loops and
manually interleaving the instructions from the unrolled iterations. For example,
the AES CTR version unrolls the loop four times and interleaves the resulting in-
structions. The assembly code is carefully written to make good use of processor
resources and achieves excellent performance.
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3 The AES-GEN Generator

Our generator (AES-GEN) automates many of the optimization techniques used
in the Intel library and adds some additional ones. The main difference is that
the system of creating variants of the AES code is general. So it can be applied
to any of the AES modes or similar code, and can find efficient code for any
processor with the AES-NI instruction set.

Our generator builds code using two types of variants. The first type relates
to choices in the basic source code that is generated. For example, you can
encourage key values to be stored in registers by assigning them to variables.
We call these algorithmic variants. The second type of variant is in the ordering
of the code that is generated. For example, in CTR, the main loop may be
unrolled several times and the instructions from the different iterations can be
interleaved. These types of variants are aimed at better exploiting instruction-
level parallelism, so we call them ILP variants.

Figure 2 shows the structure of the AES-GEN system. In the first phase it
considers algorithmic variants, such as assigning key values to registers, using
streaming stores, and xor options. This is done with a pass through a Python-
powered template engine called Cheetah [7]. The generator then applies opti-
mizations to the post-templated code to exploit ILP, such as loop unrolling and
instruction scheduling to build the ILP variants. The resulting optimized C code
is compiled and, based on performance, the tuning script modifies the param-
eters to the generator and a new version of the code is created. This iterative
process is repeated thousands of times, until an efficient variant of the code is
found.

Algorithmic
variant
generator

Annotated
C source
code

Data

Optimized C
source code

Executable
code

Code
tuning
script

Tuning parameters

Compiler

Intel C

generator
variant
ILP

dependence
graph

Fig. 2. Structure of the AES-GEN generator

The input to the generator is annotated C code which implements the en-
cryption loop. The annotations can be used to express algorithmic variants and
other information. After converting the code to a simple version of static single
assignment (SSA) form [8], a data dependency graph is built to feed into the
scheduler.
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AES-GEN uses two scheduling strategies. The basic block scheduler applies
a standard list scheduling algorithm [9] to the data dependence graph to gener-
ate code that can be executed in parallel. For example, if the loop is unrolled
with an unrolling factor of two, and there are no data dependencies between
iterations, the basic block scheduler will build a data dependence graph that
includes statements from both iterations. The instructions from both iterations
will be interleaved in the generated code, which will usually allow them to ex-
ecute in parallel. The generator uses variable renaming to eliminate false data
dependencies.

The ILP variants that AES-GEN creates are based on standard compiler
optimizations for VLIW architectures [10]. Like a standard VLIW compiler, we
model data dependencies and build schedules of statements based on these data
dependencies. However, unlike a standard VLIW compiler, we do not attempt
to accurately model processor resources. We assume that we do not have a clear
idea of the available resources and generate a large number of different variants
of the code instead. We use iterative feedback and machine learning to find a
variant of the code that fits the actual machine resources. The result is that our
generator should does a reasonable job of finding good code for any current or
future processors supporting the Intel AES instructions.

Nonetheless, we need some way to affect the amount of ILP that is exposed
by the generated code. Exposing more ILP usually results in more code growth,
more variable renaming and greater register pressure. We can adjust the ILP
in several ways, while limiting code growth. We often use modulo scheduling
[11] instead of loop unrolling. Modulo scheduling is a form of software pipelining
where the length of the loop kernel is fixed in advance and instructions are
scheduled based on a measure of their dependency modulo value.

Each statement in the source code has a latency value, which is a notional
number of cycles that it will take to theoretically execute. AES-GEN uses these
notional latencies when building the schedule. By increasing or decreasing the
latencies of statements, the ordering of the statements in the schedule can be
changed, which in turn affects the amount of ILP in the schedule. For basic block
scheduling, the ordering of statements is determined entirely by the latencies.

Our modulo scheduler can also control the amount of exposed ILP by varying
the initiation interval (II). The II is the number of notional cycles that elapse
between starting successive iterations of the loop. Lower II values result in higher
amounts of instruction-level parallelism that exist in the generated code. By
varying both the II and the latency of the instructions in the loop, a very large
space of possible modulo schedules for the loop can be explored. Figure 3 shows
a possible transformation of the CTR loop (from Figure 1) when latencies are
set to 2 cycles per instruction and an II of 6.

Part of the motivation for building AES-GEN came from results obtained
from an earlier and less robust generator we created that built only counter
and cipher-block-chaining code [12]. These algorithms were hard-coded into a
generator and left us with little flexibility to try slightly different algorithmic
variants to achieve faster AES implementations.
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/* pre modulo - scheduled code */
for(i = 0; i < blocks - 4; i += 1 ){

sp0_result = _mm_aesenc_si128(sp0_result , key[9]);
sp1_result = _mm_aesenc_si128(sp1_result , key[6]);
sp2_result = _mm_aesenc_si128(sp2_result , key[3]);
sp3_table_mask = _mm_cvtsi32_si128(table3[sp3_scalar_result0]);
sp4_scalar_counter = scalar_counter++;
sp4_fake_key = _mm_xor_si128(key[10], plaintext[i + 4]);
sp0_result = _mm_aesenclast_si128(sp0_result , sp0_fake_key);
sp1_result = _mm_aesenc_si128(sp1_result , key[7]);
sp2_result = _mm_aesenc_si128(sp2_result , key[4]);
sp3_result1 = _mm_xor_si128(saved_r1 , sp3_table_mask);
sp4_my_counter = sp4_scalar_counter;
ciphertext[i] = sp0_result8;
sp1_result = _mm_aesenc_si128(sp1_result , key[8]);
sp2_result = _mm_aesenc_si128(sp2_result , key[5]);
sp3_result = _mm_aesenc_si128(sp3_result1 , key[2]);
sp4_scalar_result0 = (( _bswap(scalar_key0)) & 0xFF) ^ sp4_my_counter;
// variable copy cleanup

}
/* post modulo - scheduled code */

Fig. 3. An example modulo-scheduled body of the CTR (round 1) encryption loop

AES-GEN uses annotated C code as input. Therefore, prototype implementa-
tions of AES code can be fed into the generator immediately to give us quick feed-
back on its performance on the target architecture. This allows an exploratory
approach to thinking about new ways to write the AES code. With an assembly
language implementation, the cost of experimenting with new ways of writing
the code is very high. Every change made may require a completely different
schedule and register allocation. AES-GEN allows us to write a straightforward
C implementation of the code and then it handles all low-level details associated
with finding a good schedule.

4 Generator Flexibility with CTR

The first algorithm we ported to AES-GEN was AES CTR. Apart from the
counter increment, this algorithm has no cyclic data dependences, so a lot of
ILP is available.

The CTR code AES-GEN builds shows that the same modulo scheduled code
works well for various input sizes of both 1K and 32K. When loops are unrolled,
a second loop is necessary to encrypt any remaining blocks. This second loop is
slow, which is a problem for very small inputs which spend a large proportion
of time in the second loop. With modulo scheduling there is a single loop, which
flows smoothly from one iteration to another.

With the ease of generating code variants from different source files, we are
able to explore optimizations very specific to each AES mode without significant
rewrites as would be necessary with hand-tuned assembly. Specifically to CTR,
the 16-byte counter value must be incremented for each block. If the loop is un-
rolled, counter increments are scheduled together as they are the first statements
of each iteration. However, this creates a data dependency from one increment
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to the next, which slightly limits ILP. Splitting the counter into multiple vari-
ables is a possible solution [4], but this increases register pressure. With modulo
scheduling, the statements from multiple iterations are overlapped seamlessly
and there is only a single copy of each statement within the generated loop
body. For a loop such as the one for CTR-128, where an iteration of the loop
takes around 20 cycles, the cyclic data dependence from the counter increment
is too small to affect the schedule.

Faster Than “Optimal” CTR

We used this flexibility to create implementations of AES CTR mode that are
faster than the “optimal” code. The Intel AES instructions implement a full
round of AES in a single instruction. On the Intel Westmere microarchitecture,
the AES instructions have a throughput of one instruction every two cycles.
Therefore, if an implementation of AES CTR completes each round in an average
of a little over 2 cycles per round, we consider it close to “optimal”. Table 1 shows
the cycles/round for our generated versions of AES-CTR. These implementations
are pretty close to “optimal”, especially for large inputs.

Table 1. Performance of AES-GEN CTR code in cycles per AES round

Encryption Mode AES-128 AES-256

1K buffer 4080B buffer 1K buffer 4080B buffer
CTR (plain) 2.194 2.007 2.142 2.002
CTR (round 1) 2.106 1.956 2.017 1.905
CTR (round 2) 2.230 2.077 1.982 1.854

Our implementations of AES achieve good performance by keeping the hard-
ware AES unit running at maximum capacity. However, while the AES unit is
saturated, the rest of the processor core is largely idle. If we could use these
other idle resources to implement some of the AES CTR rounds, we might be
able to exceed the speed of the “optimal” code.

We explored a new version of the AES CTR code that mixes Intel AES in-
structions and a traditional AES implementation based on table lookups. We
used counter-mode caching [13] to reduce the number of table lookups for the
first two rounds. We created two versions of the code: one where round 1 of
AES is implemented using table lookups rather than the Intel AES instruction
(shown in Figure 1), and another where both rounds 1 and 2 use table lookups.

These versions of AES CTR work only for inputs of up 4080 bytes (255 blocks).
Despite the size limitation, the AES CTR code using table lookups is valuable.
AES is commonly used to encrypt data packets in wireless networks, which are
typically less than 2K in length. Table 2 show results of these implementations
with input sizes of 1024 bytes and 4080 bytes.

The results in Table 2 show that replacing round 1 with scalar instructions and
table lookups is faster than using the AES-NI equivalent. With a 1K buffer,
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Table 2. Performance of AES-GEN CTR code measured in cycles per byte

Encryption Mode AES-128 AES-256

1K buffer 4080B buffer 1K buffer 4080B buffer
CTR (plain) 1.371 1.255 2.142 1.752
CTR (round 1) 1.316 1.222 1.765 1.667
CTR (round 2) 1.398 1.298 1.734 1.622
CTR (Intel assembly) 1.38 1.88

the 128 and 256 bit implementations of AES using this method achieves a 5% and
7%speedup, respectively (seeTable 5).Themaximumpossible speedup fromelimi-
nating theAES instruction for oneof fourteen rounds is about7.1%, soa 7%speedup
is an excellent result.Replacing 2 roundswith table lookupsperforms slightlyworse
than Intel’s implementation with AES-128, but achieves over an 8% speedup when
using a 256 bit key. We believe that the results in Tables 1 and 2 demonstrate
that it is possible for AES CTR to run faster that the “optimal” possible when
using just Intel AES instructions. These are also the first implementations—to our
knowledge—that complete an AES round in under two cycles.

5 Algorithmic Variants with CBC

Unlike counter mode, cipher-block-chaining (CBC) mode does not pipeline well.
AES CBC encrypts the input plaintext directly and in order to eliminate patterns
in the ciphertext, CBC combines the output of encrypting one 16-byte block with
the plaintext for the next block, using an xor operation. This results in a large
cyclic data dependency in CBC code, which prevents pipelining of the encryption.
This dependence makes CBC slow and makes optimization difficult. On the other
hand, the difficulty of optimizing CBC makes any speedup very welcome.

Figure 4(a) shows a C translation of the assembly code in the Intel hand-
optimized high-performance AES encryption library [4]. The code is a direct
implementation of standard descriptions of CBC mode [14]. It combines the re-
sult (variable r in the code) from the previous block of encryption with plaintext
of the current block, using an xor operation. It then applies the standard AES
encryption algorithm to the result. The cyclic dependency in the loop includes
all statements except two: the first statement in the loop, which loads the plain-
text and the last statement, which stores the encrypted block to memory. This
long cyclic dependency prevents any significant exploitation of instruction-level
parallelism in the CBC loop.

It is possible to slightly shorten the length of the cyclic dependence in the CBC
loop. The first two statements in the cyclic data dependency are xor operations.
As the xor operator is both commutative and associative, these expressions can
be rewritten to increase the amount of exploitable ILP.

Neither the value in plain nor the value in key0 depends on any value com-
puted within the cyclic data dependence. Figure 4(b) shows a version of the code
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while(i < size) { while(i < size-1) { while(i < size-1) {

p = plain[i]; r = xor(r, tmp); r = aesenc(r, key1);

r = xor(r, p); r = aesenc(r, key1); r = aesenc(r, key2);

r = xor(r, key0); r = aesenc(r, key2); /* more rounds */

r = aesenc(r, key1); /* more rounds */ r = aesenc(r, key8);

r = aesenc(r, key2); r = aesenc(r, key8); p = plain[i+1];

/* more rounds */ p = plain[i+1]; tmp = xor(p, key0);

r = aesenc(r, key8); tmp = xor(p, key0); fake = xor(tmp, key10);

r = aesenc(r, key9); r = aesenc(r, key9); r = aesenc(r, key9);

r = enclast(r, key10); r = enclast(r, key10); r = enclast(r, fake);

cipher[i] = r; cipher[i] = r; correct = xor(r, tmp);

i++; i++; cipher[i] = correct;

} } i++;

}

(a) (b) (c)

Fig. 4. AES CBC algorithm implementations

with the load of the plaintext and the first xor operation scheduled to execute
in parallel with the encryption code for the previous block.

With very careful programming, it is possible to further reduce the length of
the cyclic dependency. Recall that the final round of AES encryption involves
three steps: (1) substitute bytes, (2) shift rows, and (3) add round key. The add
round key step is an xor operation, where the result of the previous steps are
combined with the key using xor. All three steps are implemented with the single
x86 aesenclast instruction. The result of the aesenclast is used to store the
ciphertext to memory and is also fed into the next round using an xor operation.
Given that the last stage of aesenclast is an xor computation, we can combine
the aesenclast and xor statements.

Performing this transformation removes the second xor operation from the
cyclic data dependence. However, a problem occurs because the result of the
aesenclast operation is not just used in the encryption of the next block. The
result is also stored to memory as the ciphertext. It is possible to repair the
result coming from the aesenclast operation, at the cost of adding another xor
operation to the code.

Figure 4(c) shows code implementing this strategy. This version of the code
contains an additional xor operation in comparison with all the other versions,
so more work must be done on each iteration of the loop. However, both original
xor operations have been removed from the cyclic data dependence. To our
knowledge, we are the first to propose this way of writing AES CBC code.

CBC XOR Performance

We compared the four different versions of the AES CBC code, each with their
own strategy for dealing with the xor operations. Table 3 shows the performance
of each of the four versions, alongside performance numbers on from Intel’s high
performance, hand-tuned assembly version [4].
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Table 3. Performance of AES CBC versions found in Figure 4 in cycles per byte

Encryption Mode AES-128 AES-256

1K buffer 32K buffer 1K buffer 32K buffer
CBC version (a) 4.539 5.315 6.042 6.815
CBC version (b) 4.156 4.067 5.656 5.567
CBC version (c) 3.851 3.759 5.351 5.259
Intel assembly 4.15 5.65

As these results show, removing the xor operations from the cyclic dependence
chain makes a significant difference to performance. The version that removes
both instructions from the cyclic dependence gives the best performance, even
though it increases code size. Moving the load of the plaintext and the first xor
operation forward affects the performance of our CBC implementations.

The influence of moving the load operation forward is particularly visible for
the 32K inputs as version (a) of Figure 4 does not move the load and cache
misses cause poor performance. Although Intel’s hand-tuned assembly version
of the code uses the same approach as in Figure 4(a), it performs faster. Our
version in Figure 4(c) is nonetheless faster than the assembly, because it uses a
fundamentally more efficient approach.

A final question is whether we could further improve the performance of our
code in Figure 4(c) by more careful programming or writing in assembly. To
address this question we compute the number of cycles per round of AES en-
cryption. Given that the code is dominated by a large cyclic dependency of AES
instructions, the best we can hope to do is perform the encryption in 6 cycles
per round. Additional CBC results in Table 5 show the performance of each ver-
sion of our CBC code in cycles per round completed and suggest that our CBC
version (c) is already quite close to optimal and that any possible remaining
speedups from careful coding are likely to be small.

Applicability of XOR Optimizations to AES CTR

Note that in AES CTR mode the result of the last AES round is combined with
the plaintext using an xor operation. The technique we use in Figure 4(c) can
also be used to reverse the order of these two operations in AES CTR. This
slightly reduces the length of the long chain of data dependences in AES CTR.
Given that AES CTR is fully parallelizable, there is no large-scale execution
speed benefit. However, shortening the long dependence chain in CTR mode has
three benefits.

First, it reduces the execution time of very short inputs. With short inputs the
execution time is dominated by latency of one execution rather than throughput
of many blocks. Secondly, where loop unrolling is used to implement AES-CTR,
there needs to be a final sequential loop which deals with any iterations that
are not an even multiple of the unrolling degree (this is one of the major rea-
sons we do not advocate loop unrolling). Shortening the long dependence chain
speeds up this loop. Finally, when creating modulo schedules, the number of
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iterations overlapped in the schedule depends on the length of the dependence
chain that is being pipelined. A slightly shorter dependence chain means slightly
less overlapping of iterations, which means slightly less code growth and register
pressure.

6 Exploiting ILP by Function-Stitching with GCM

Many applications require both encryption and authentication of the same data.
In AES, Galois/Counter Mode (GCM) [15] combines both the already-mentioned
counter mode (CTR) of encryption with Galois authentication. The GCM algo-
rithm operates by applying a GHASH function after a block of data has been
encrypted in CTR mode. Due to this behaviour, there are opportunities to get
speedups by overlapping the execution of both using a process called function
stitching [5].

Writing code that schedules statements from two algorithms together in the
same loop is tedious and time-consuming. Often the two algorithms contain
different mixes of instructions, which create good opportunities for exploiting
ILP between the algorithms. However, manual scheduling is always difficult.
AES-GEN simplifies this problem greatly. We simply provide sequential code for
the two algorithms in the same loop. The generator builds the data dependency
graph and attempts to find a good software pipeline that overlaps the execution
of the two algorithms.

Intel provides C code listings of GCM code [16] and we have adapted both the
one- (1x) and four-at-a-time (4x) implementations for use in our generator. GCM
encrypts data using AES CTR and authenticates it by applying the GHASH to
the encrypted blocks. The main loop body of our GCM 1x and 4x implementation
contains both the encryption and fully inlines the GHASH function and our
modulo scheduler mixes statements from both algorithms in the schedule. With
larger input sizes, we are able to achieve speedups by applying AES-GEN to
function-stitched code. This can be seen in Table 4.

The results in Table 4 show that our generator is able to overlap the execution
of the AES encryption code and the Galois field multiplication using modulo
scheduling. As GCM is essentially CTR encryption and authentication, we can
safely say that the GHASH function takes the majority of run time. The GHASH

Table 4. Performance of AES GCM 128 in various modes in cycles/byte

Encryption Mode AES-128

1K buffer 4K buffer 16K buffer
GCM 1x (AES-GEN) 5.175 4.892 4.883
GCM 1x (Intel C) 5.49 5.36 5.33

GCM 4x (AES-GEN) 3.964 3.597 3.505
GCM 4x (Intel C) 4.16 3.88 3.70
GCM 4x (Intel assembly) 3.85 3.60 3.54
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function has a large dependency chain and despite this, speedups are achieved
in both 1x and 4x versions by pulling out several instructions from GHASH and
replacing them with constants.

We also used associating rules to replace sequential chains of xor operations
with balanced trees of xor operations. Even these improvements, it is difficult
to exploit ILP with GCM 4x. Each loop iteration contains 40 to 56 long-latency
AES-NI instructions. This is why we see speedups of less than 1% in 4K and
16K and perform slower than the assembly version when using 1K of input data.
We suspect that the biggest reason for not being able to match the hand-tuned
assembly version is due to the compiler. We suspect that low-level optimizations
are not being exploited in full. This is a basis for one of several ideas to improve
our GCM results as we mention in Section 9.

7 Experimental Results

We tested our generated code on an Intel 3.2GHz Core i5 650 machine (cpu
family 6, model 37), with all power management disabled, lightly loaded, and
running 64-bit Linux. All code is compiled with the Intel C Compiler (icc) with
-O3. We call our generated code from a simple timing harness that provides a
random input of plaintext, a random key schedule, and a random initialization
vector. We use the processor’s time stamp counter to measure timings report the
median time of 10 million runs. Our timings include only the encryption itself,
not the key expansion.

Results for CTR, CBC (1 stream), and GCM (1x) in previous sections show
our generator produces variants that are as fast or faster than their Intel hand-
tuned counterparts. To significantly improve upon the assembly numbers in both
CTR and CBC, we make algorithmic variations to the annotated C code before
we pass it to AES-GEN. This shows the usefulness and versatility of AES-GEN
in general. With CTR, we re-write the counter from a vector to a scalar value;
with CBC, additional encryption streams requires minimal code additions; with
GCM, we collapse the xor chains into trees. These high-level changes, written
in C, are easy to make and AES-GEN creates further algorithmic variants—as
described in Section 3—automatically.

More specifically detailing AES-GEN’s performance requires a look at Table
5. This shows the execution time of our generated code in cycles per byte and
cycles per completed AES round. For comparison and when available, we also
include results from Intel [4,16] for inputs of 1K. Discussion on these results have
been mentioned in greater detail in previous sections.

The main aim of AES-GEN is to automatically generate code that makes good
use of the AES-NI instructions, rather than having to write the assembly code by
hand. If the generated code is as efficient as the assembly language, then we get
the benefits of maintainability, retargetability and flexibility without sacrificing
performance. The results in Table 5 show that we have largely achieved that
goal. In all cases but one, our generated code achieves performance that is at
least as good as the assembly implementations. The exception is GCM, where
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Table 5. Performance of generated code in cycles/byte and cycles/round. (*) Results
for CTR (round 1) and CTR (round 2) reference 4080B, all others reference 32K.

AES-128 AES-256
Intel cycles/byte cycles/round Intel cycles/byte cycles/round

Encryption Mode 1K 1K 32K* 1K 32K* 1K 1K 32K* 1K 32K*
CTR 1.38 1.371 1.258 2.194 2.013 1.88 1.875 1.756 2.142 2.007
CTR (round 1)* 1.316 1.222 2.106 1.956 1.765 1.667 2.017 1.905
CTR (round 2)* 1.398 1.298 2.230 2.077 1.734 1.622 1.982 1.854
CBC – 1 stream 4.15 3.852 3.753 6.162 6.005 5.65 5.352 5.253 6.117 6.004
CBC – 2 streams 1.930 1.878 3.087 3.004 2.682 2.628 3.065 3.003
CBC – 3 streams 1.293 1.256 2.069 2.009 1.792 1.762 2.048 2.013
CBC – 4 streams 1.33 1.298 1.270 2.077 2.033 1.819 1.771 2.079 2.024
CBC – 5 streams 1.290 1.257 2.064 2.011 1.798 1.756 2.055 2.007
GCM 1x 5.49 5.175 4.825 8.280 7.720 5.574 5.262 8.918 6.014
GCM 4x 3.85 3.964 3.527 6.342 5.643 4.543 4.037 5.192 4.614

our code is slightly slower for 1K inputs, but faster for larger input sizes (see
Table 4).

Why Not Optimize with a Standard Compiler?

The techniques we use to optimize the AES implementations are mostly stan-
dard compiler optimizations to exploit instruction level parallelism. Most of these
techniques have been implemented in compilers, particularly compilers for VLIW
architectures [10]. In principle, a standard compiler could do most of these opti-
mizations. However, exploiting instruction level parallelism is not a priority for
compilers that target out-of-order architectures.

Even a quick glance at Table 6 shows the large performance gap between
even aggressive optimization with a standard compiler compared to AES-GEN.
If we decided to only pursue avenues of optimization based on the results with a
standard compiler (icc in this case), we would never consider using CTR (round
2). It runs slower than both the standard and round 1 versions of CTR in both
128- and 256-bit modes. However, from Table 5, we see that CTR (round 2)
with AES-GEN gives us our best counter results with a 256 bit keysize. We see
similar behaviour with CBC results in Table 6—it’s not clear that using more
streams is better. This makes AES-GEN an important tool to fully experiment
with different AES implementations.

Implementing efficient AES code would be much more straightforward if a
standard compilers had good modulo schedulers. However, adding such a sched-
uler and other sophisticated optimizations needed for a compiler to reorder mem-
ory operations would be a significant engineering task. Out-of-order pipelines are
sufficiently complex that a compiler can rarely predict, in advance, exactly which
code ordering is likely to be best, so an approach that uses experimentation is
valuable. AES-GEN was built to be flexible enough to explore specific optimiza-
tions for general problems.
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Table 6. Standard compiler vs. AES-GEN in cycles/byte. (*) Results for CTR (round
1) and CTR (round 2) reference 4080B, all others reference 32K.

AES-128 AES-256
1K 32K* 1K 32K*

Encryption Mode icc gen icc gen icc gen icc gen
CTR 2.000 1.371 1.880 1.258 3.273 1.875 3.132 1.756
CTR (round 1)* 1.828 1.316 1.722 1.222 2.902 1.765 2.788 1.667
CTR (round 2)* 2.148 1.398 2.043 1.298 3.285 1.734 3.173 1.622
CBC – 1 stream 4.280 3.852 5.065 3.753 5.781 5.352 6.565 5.253
CBC – 2 streams 2.257 1.930 2.193 1.878 3.029 2.682 2.953 2.628
CBC – 3 streams 1.897 1.293 1.852 1.256 2.935 1.792 2.896 1.762
CBC – 4 streams 1.893 1.298 1.990 1.270 2.916 1.819 2.922 1.771
CBC – 5 streams 1.926 1.290 2.081 1.257 2.926 1.798 3.140 1.756
GCM 1x 7.820 5.175 7.571 4.825 9.340 5.574 9.260 5.262
GCM 4x 4.300 3.964 3.844 3.527 4.777 4.543 4.283 4.037

8 Related Work

The most closely related to work to ours has been from various outlets at In-
tel, including its hand-tuned assembly language library [4,16] for the AES-NI
instructions. Both this library and our generator use standard techniques for
optimizing assembly code in the presence of long-latency instructions. The main
difference is that our generator automates the process of applying these and
other optimizations. Although our performance is similar, the generated code is
actually very different. We use modulo scheduling to execute multiple iterations
together, whereas the Intel code uses loop unrolling to achieve the same goal.
The Intel library code also achieves significant code size savings by combining
the AES code for different key sizes.

Akdemir et al. present performance results for CBC using AES-NI on multi-
core processors [6]. To achieve speedups with CBC, they utilize multiple cores
and multiple threads. They also present a method for overlapping the execution
of the key expansion with the encryption. Our implementations do not con-
sider this technique, but would be worthwhile looking into as our attempts with
function stitching with GCM provided excellent results.

Gopal et al. [5] proposed using function stitching as cryptographic applica-
tions often process pairs of independent algorithms. In AES GCM, for example,
both encryption and authentication algorithms are serially executed. In their
work, they present several different stitching techniques, among them stitching
CBC with SHA-1 [17] which are executed in parallel within a single composite
function to achieve better speeds—often at the speed of only the longer executing
portion. Gopal et al. [18] optimized GCM further in a white paper released while
our paper was under review by improving the GHASH function is by treating
constants differently while encrypting four blocks at a time. We’ve implemented
a similar technique as an algorithmic variant to assign any permutation of con-
stants used in the GHASH function to registers.
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Like AES-GEN, there are code generators that focus on a particular subset
of problems as they are ideal for optimizing a small piece of code that use large
amounts of processing time and which the best optimizations are not obvious.
Code generators have been very successfully applied to several domains such as
Spiral, which generates code for linear transformations [19] and FFTW, which
generates code for computing the discrete Fourier transform [20].

9 Future Work

Our GCM 1K results are slightly slower than those published by Gueron [16].
Results published by Gopal et al. in [18] are also significantly better than our
GCM results with higher input sizes. However, this comparison isn’t exactly
like for like. Gopal’s measurements include the use of hyper-threading with two
threads of GCM running simultaneously—our numbers do not. We believe that
their GCM results are nonetheless significantly faster than ours and will inves-
tigate ways to improve performance. We want to augment our current testing
framework to accommodate hyper-threading so we can better compare results.

Our program generation process takes input source code, makes algorithmic
changes, is then sent to the variant generator, then compiled to exploit possible
low-level optimizations. We’d like to include an additional step to further im-
prove the compiled code. We have observed the post-compiler assembly code and
believe that there are additional optimization opportunities that are not taken
by the compiler.

We are currently working on expanding our benchmark suite with several
other modes of encryption and authentication. While CTR, CBC, and GCM
modes all have unique algorithm properties that test AES-GEN’s flexibility,
more AES benchmarks would further show its usefulness in a more general case.
It is our belief that other loop driven algorithms that have many long-latency
instructions would benefit from our tool. Additionally, with other researchers
expressing interest in using AES-GEN, we will also work towards to a stable
version that could be released.

10 Conclusion

AES-GEN is used to generate code that uses the Intel AES instructions. The
generator reads in annotated source code and uses iterative methods to try to
find a variant of the source code which executes fast on the target hardware.
The generator is also a useful experimental tool for programmers. The ability to
make small, exploratory changes to an algorithm that can be easily scheduled
differently and quickly evaluated is extremely valuable.

Our results show that AES-GEN creates faster code without a massive in-
crease in code size, due to its good modulo scheduler. We have implemented
several algorithmic variants of AES CTR, CBC and GCM modes. Our standard
implementations of AES counter perform almost exactly the same as the hand-
tuned assembly code, which is a good result. However, we also discuss additional
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implementations that are faster than anything published by Intel; to our knowl-
edge, we have the fastest cycle per round implementations of AES CTR and
AES CBC on the Westmere architecture.

With AES-GEN, it is easy for us to generate CBC code that operates on any
number of input streams, as we simply make those changes in high-level C code
and re-run the generator. We also presented dependency reduction strategies for
the cyclic-dependant algorithm by exploiting the properties of the xor operation.
These strategies yielded good results and testing these changes would have been
a time consuming task if one were to make the changes in assembly.

Similarly with GCM, we were able to try a number of techniques in an at-
tempt to improve GCM code generation with minimal effort. Trying to optimize
multiple algorithms running in the same loop body as GCM does would be te-
dious in assembly. AES-GEN’s modulo scheduler is very effective at building
good “function-stitched” code.

Our goal was to maximize the performance of the Intel AES-NI instructions.
We believe that we have done that. AES-GEN generates many variations of
the AES algorithm and a good solution is found quickly that is tuned for any
particular architecture that supports AES-NI.

Acknowledgments. Thanks to Mike O’Hanlon and Vinodh Gopal of Intel for
suggestions, feedback and comments on our generator research.
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1 Introduction

The elliptic-curve discrete-logarithm problem (ECDLP) is the number-theoretic
problem behind elliptic-curve cryptography (ECC): the problem of computing a
user’s ECC secret key from his public key. Pollard’s rho method solves this prob-
lem in O(

√
�) iterations, where � is the largest prime divisor of the order of the

base point. A parallel version of the algorithm by van Oorschot and Wiener [18]
provides a speedup by a factor of Θ(N) when running on N computers, if � is
larger than a suitable power of N . In several situations a group automorphism
of small order m provides a further speedup by a factor of Θ(

√
m). No further

speedups are known for any elliptic curve chosen according to standard security
criteria; this is the end of the story.

However, these asymptotic iteration counts ignore many factors that have
an important influence on the cost of an attack. Understanding the hardness
of a specific ECDLP requires a more thorough investigation. The publications
summarized on www.keylength.com, giving recommendations for concrete cryp-
tographic key sizes, all extrapolate from such investigations. To reduce extrapo-
lation errors it is important to use as many data points as possible, and to push
these investigations beyond the ECDLPs that have been carried out before.

Certicom published a list of ECDLP prizes in 1997 [11] in order to “increase
the cryptographic community’s understanding and appreciation of the difficulty of
the ECDLP”. These challenges range from very easy exercises, solved in 1997 and
1998, to serious cryptanalytic challenges. The last Certicom challenge that was
publicly broken was a 109-bit ECDLP in 2004. Certicom had already predicted
the lack of further progress: it had stated in [11, page 20] that the subsequent
challenges were “expected to be infeasible against realistic software and hardware
attacks, unless of course, a new algorithm for the ECDLP is discovered.”

Since then new hardware platforms have become available to the attacker.
Processor design has moved away from increasing the clock speed and towards
increasing the number of cores. This means that implementations need to be
parallelized in order to make full use of the processor. Running a serial imple-
mentation on a recent processor might take longer than 5 years ago, because
the average clock speed has decreased, but if this implementation can be paral-
lelized and occupy the entire processor then the implementation will run much
faster. An extreme example of this high parallelism at reduced clock speed is the
NVIDIA GTX 295 graphics card. This card contains two G200b Graphics Pro-
cessing Units (GPUs); each GPU contains 30 cores; each core contains 8 ALUs;
each ALU is capable of performing a 32-bit operation every cycle. Each ALU
operates at just 1.242 GHz, but 480 ALUs together have a tremendous amount
of computational power.

Certicom’s estimate a decade ago was that ECC2K-130, the first “infeasible”
challenge, would require (on average) 2700000000“machine days” of computation.
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Our main result is that a cluster of just 534 graphics cards running our software
would solve ECC2K-130 in just 24 months.

In this paper we explain how we use Pollard’s rho algorithm to compute
ECDLP on GPUs. In particular, we give details on how we implement binary-
field multiplication, a problem that at first seems quite poorly suited to GPUs,
and on how we implement a complete ECDLP iteration function. Some of our
optimizations are specific to ECC2K-130, but most of our implementation tech-
niques can be reused in larger ECDLP computations. Furthermore, the binary-
field arithmetic operations that we optimize are also the primary bottlenecks in
various cryptographic computations; the same implementation techniques open
up the interesting possibility of using GPUs as high-performance coprocessors
to offload binary-field ECC computations from busy Internet servers.

This paper is part of a large collaborative project that has optimized ECDLP
computations for several different platforms and that aims to break ECC2K-
130. See [1] and http://www.ecc-challenge.info for more information about
the project. All of the platforms use the same ECC2K-130 iteration function,
allowing an objective comparison of the power of different platforms and putting
our GPU speeds in perspective: finishing the computation in two years would
require
• 1595 standard PCs (3.2 GHz AMD Phenom II X4 955 CPU) [1]; or
• 1231 PlayStation 3 computers (Cell CPU with 6 usable SPEs and 1 PPE)

[10]; or
• 534 GTX 295 graphics cards, as shown in this paper; or
• 308 XC3S5000-4FG676 FPGAs [12];

or any combination of the above.

2 The GTX 295 Graphics Card

The most impressive feature of GPUs is their theoretical floating-point per-
formance. Each of the 480 ALUs on a GTX 295 can dispatch a single-precision
floating-point multiplication (with a free addition) every cycle. There are also 120
“special-function units” that can each dispatch another single-precision floating-
point multiplication every cycle, for a total of 745 billion floating-point multi-
plications per second.

The most useful GPU arithmetic instructions for the ECC2K-130 computa-
tion are 32-bit logical instructions (ANDs and XORs) rather than floating-point
multiplications, but 596 billion 32-bit logical instructions per second are still
much more impressive than (e.g.) the 28.8 billion 128-bit logical instructions per
second performed by a typical 2.4 GHz Intel Core 2 CPU with 4 cores and 3
128-bit ALUs per core.

However, the GPUs also have many bottlenecks that make most applications
run slower, often one or two orders of magnitude slower, than the theoretical
throughput figures would suggest. The most troublesome bottlenecks are dis-
cussed in the remainder of this section and include a heavy divergence penalty,
high instruction latency, low SRAM capacity, high DRAM latency, and relatively
low DRAM throughput per ALU.
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2.1 The Dispatcher

The 8 ALUs in a GPU core are fed by a single dispatcher. The dispatcher cannot
issue more than one new instruction to the ALUs every 4 cycles. The dispatcher
can send this one instruction to a warp containing 32 separate threads of com-
putation, applying the instruction to 32 pieces of data in parallel and keeping
all 8 ALUs busy for all 4 cycles; but the dispatcher cannot direct some of the 32
threads to follow one instruction while the remaining threads follow another.

Branching is allowed, but if threads in a warp take different branches (“di-
verge”) then the threads taking one branch will no longer operate in parallel
with the threads in the other branch. For example, if 32 threads are split among
all three branches in the code if(x) if(y) aaa else bbb else ccc, then the
first threads will execute aaa while the other threads remain idle; next the sec-
ond threads will execute bbb while the other threads remain idle; and finally the
third threads will execute ccc while the other threads remain idle. The total
time is the sum of the times taken by aaa, bbb, ccc, rather than the maximum
of those times.

2.2 Instruction Latency

Each thread follows its instructions strictly in order. NVIDIA does not document
the exact pipeline structure but recommends running at least 192 threads (6
warps) on each core to hide arithmetic latency. If 8 ALUs are fully occupied
with 192 threads then each thread runs every 24 cycles; evidently the latency of
an arithmetic instruction is below 24 cycles.

One might think that a single warp of 32 threads can keep the 8 ALUs fully
occupied, if the instructions in each thread are scheduled for 24-cycle arithmetic
latency (i.e., if an arithmetic result is not used until 6 instructions later). How-
ever, our experiments show that the minimum number of threads that can keep
the 8 ALUs fully occupied is 128. Our experiments also show a drop in the ALU
utilization for 128 threads when more than 25% of the instructions are com-
plex instructions that include memory access, or when complex instructions are
adjacent.

NVIDIA also recommends running many more than 192 threads to hide mem-
ory latency. This does not mean that one can achieve the best performance by
simply running the maximum number of threads that fit into the core. Threads
share several critical resources, as discussed below, so increasing the number of
threads means reducing the resources available to each thread. The ECC2K-130
computation puts extreme pressure on shared memory, as discussed later in this
paper; to minimize this pressure we ended up using just 128 threads, skirting
the edge of severe latency problems.

2.3 SRAM: Registers and Shared Memory

Each core has 16384 32-bit registers divided among the threads running on the
core. For example, if the core is running 256 threads, then each thread is assigned
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64 registers. If the core is running 128 threads, then each thread is assigned 128
registers, although the “high” 64 registers are somewhat limited: the architecture
does not allow a high register as the second operand of an instruction, and does
not allow access to the last high register.

The core also has 16384 bytes of shared memory that provide variable array
indexing and communication between threads. This memory is split into 16
banks, each of which can dispatch one 32-bit read or write every two cycles.
If the 16 threads in a half-warp read from the same location or 16 different
banks then there are no bank conflicts, but if the threads all read from different
locations of the same bank then they take 16 times as long.

Threads also have fast access to an 8192-byte constant cache. This cache can
broadcast a 32-bit value from one location to every thread simultaneously, but
it cannot read more than one location per cycle.

2.4 DRAM: Global Memory and Local Memory

The CPU makes data available to the GPU by copying it into the DRAM on
the graphics card outside the GPU. The cores on the GPU can then load data
from this global memory and store results in global memory to be retrieved by
the CPU. Global memory is also a convenient temporary storage area for data
that does not fit into shared memory. However, global memory is limited to a
throughput of just one 32-bit load from each GPU core per cycle, with a latency
of 400–600 cycles.

Each thread also has access to local memory. The name “local memory” might
suggest that this storage is fast, but in fact it is another area of DRAM, as slow as
global memory. Instructions accessing local memory automatically incorporate
the thread ID into the address being accessed, effectively partitioning the local
memory among threads without any extra address-calculation instructions.

There are no hardware caches for global memory and local memory. Program-
mers can, and must, set up their own schedules for copying data to and from
global memory.

2.5 Choice of GPU

We decided to focus on the GTX 295 because it provides an excellent price-
performance ratio. The price of a GTX 295 was only about $500 when we began
this project. We built several $2000 PCs, each containing two GTX 295s and
a standard CPU, following the advice of Bernstein, Chen, Chen, Cheng, Hsiao,
Lange, Lin, and Yang in [6] and [5]; each PC is (considering the extra cost of
power and cooling) more than twice as expensive as a PC containing a CPU
alone, but it gives us several times better performance.

Similar GPUs are also widely available in computing clusters, which typically
use self-contained 1U rackmount Tesla S1060 units. Each S1060 contains 4 G200
(or G200b) GPUs and is microarchitecturally identical to a pair of slightly over-
clocked GTX 295s. The United States TeraGrid network includes two such GPU
clusters, namely Lincoln (384 GPUs) and Longhorn (512 GPUs).
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There are two other GPU architectures of note: AMD’s Evergreen (R8xx)
GPUs, as in the Radeon HD 5970, and NVIDIA’s very new Fermi (GF1xx) line
of GPUs, as in the GTX 480. All of these GPUs pose similar parallelization
challenges, but there are many differences in the details. The current dominance
of G200-based Tesla GPUs in computer clusters makes these GPUs the most
attractive target for now. We focus on the GTX 295 throughout this paper.

3 The ECDLP and Parallel Pollard Rho

The standard method for solving the ECDLP in prime-order subgroups is
Pollard’s rho method [15]. For large instances of the ECDLP, one usually uses
a parallelized rho method due to van Oorschot and Wiener [18]. This section
briefly reviews the ECDLP and the parallel rho method.

The ECDLP is the following problem: Given an elliptic curve E over a finite
field Fq and two points P ∈ E(Fq) and Q ∈ 〈P 〉, find an integer k such that
Q = [k]P .

Let � be the order of P , and assume in the following that � is prime. The
parallel rho method is a client-server approach in which each client does the
following:

1. Generate a pseudo-random starting point R0 as a known linear combination
of P and Q: R0 = a0P + b0Q;

2. apply a pseudo-random iteration function f to obtain a sequence Ri+1 =
f(Ri), where f is constructed to preserve knowledge about the linear com-
bination of P and Q;

3. for each i, after computing Ri, check whether Ri belongs to an easy-to-
recognize set D, the set of distinguished points, a subset of 〈P 〉;

4. if at some moment a distinguished point Ri is reached, send (Ri, ai, bi) to
the server and go to step 1.

The server receives all the incoming triples (R, a, b) and does the following:

1. Search the entries for a collision, i.e., two triples (R, a, b), (R′, a′, b′) with
R = R′ and b �≡ b′ (mod �);

2. obtain the discrete logarithm of Q to the base P as k = a′−a
b−b′ modulo �.

The expected running time of this parallel version of Pollard’s rho algorithm
is approximately

√
π�/2 calls to the iteration function f , assuming perfectly

random behavior of f .

4 ECC2K-130 and the Iteration Function

The specific ECDLP addressed in this paper is given in the Certicom challenge
list [11] as Challenge ECC2K-130. The given elliptic curve is the Koblitz curve
E : y2 + xy = x3 + 1 over the finite field F2131 ; the two given points P and Q
have order �, where � is a 129-bit prime.
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This section reviews the definition of distinguished points and the iteration
function used in [1]. For a more detailed discussion, an analysis of communication
costs, and a comparison to other possible implementation choices, the interested
reader is referred to [1].

4.1 Definition of the Iteration Function

A point R ∈ 〈P 〉 is distinguished if HW(xR), the Hamming weight of the x-
coordinate of R in normal-basis representation, is smaller than or equal to 34.
The iteration function is defined as

Ri+1 = f(Ri) = σj(Ri) + Ri,

where σ is the Frobenius endomorphism and

j = ((HW(xRi)/2) mod 8) + 3.

The restriction of σ to 〈P 〉 corresponds to scalar multiplication with a par-
ticular easily computed scalar r. For an input Ri = aiP + biQ, the output of f
will be Ri+1 = (rjai + ai)P + (rjbi + bi)Q.

Each walk starts by picking a random 64-bit seed s which is then expanded
deterministically into a linear combination R0 = a0P + b0Q. To reduce band-
width and storage requirements, the client does not report a distinguished triple
(R, a, b) to the server but instead transmits only s and a 64-bit hash of R. On the
occasions that a hash collision is found, the server recomputes the linear combi-
nations in P and Q for R = aP +bQ and R′ = a′P +b′Q from the corresponding
seeds s and s′. This has the additional benefit that the client does not need to
keep track of the coefficients a and b or counters for how often each Frobenius
power is used. This speedup is particularly beneficial for highly parallel archi-
tectures such as GPUs, which otherwise would need a conditional addition to
each counter in each step.

4.2 Computing the Iteration Function

The main task for each client is to repeatedly compute the function f de-
fined above. Each iteration starts with a point R = (x, y), computes a normal-
basis Hamming weight HW(x) and thus j = ((HW(x)/2) mod 8) + 3, computes
σj(R) = (x2j

, y2j

), and adds (x, y) to (x2j

, y2j

) on E.
The addition on E requires 2 multiplications, one squaring, 6 additions, and

1 inversion in F2131 in affine Weierstrass coordinates; see, e.g., [7]. Inversions are
significantly more expensive than multiplications but Montgomery’s trick [14]
reduces these expenses in a batch of inversions: it replaces m separate inversions
with 3(m − 1) multiplications and 1 inversion. For example, a 10-way batched
inversion takes 3 · (10 − 1) = 27 multiplications and 1 inversion; each of the
original inversions is thus replaced by 0.1 inversions and 2.7 multiplications.

The obvious way to compute x2j

for 3 ≤ j ≤ 10 is to first square 3 times,
obtaining x23

, and then square repeatedly, at most 7 more times, until reaching
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x2j

. However, this involves several expensive branches depending on the value of
j. A branch-free strategy stated in [8] is to compute r = x23

, s = r+b0(r2+r), t =
s + b1(s4 + s), u = t + b2(t16 + t) where j = 3 + b0 + 2b1 + 4b2, i.e., where
HW(x) = 2b0 + 4b1 + 8b2 + · · · . The computation s = r + b0(r2 + r) is a
conditional squaring, computing s = r = x23

if b0 = 0 or s = r2 = x24
if b0 = 1,

i.e., s = x23+b0 ; similarly t = x23+b0+2b1 and u = x23+b0+2b1+4b2 = x2j

.
In total, each iteration in a batch of 10 iterations takes 4.7 multiplications, 0.1

inversions, 1 squaring, 2 3-squarings (where a 3-squaring means a sequence of 3
squarings), 2 conditional squarings, 2 conditional 2-squarings, 2 conditional 4-
squarings, and 1 normal-basis Hamming-weight computation. As the batch size
increases, the number of multiplications per iteration converges to 5 while the
number of inversions per iteration converges to 0.

If each inversion is replaced by computing the (2131 − 2)nd power using the
sequence of multiplications and squarings shown in [8, Figure 5.3] then each
iteration in a batch of 10 iterations takes 5.5 multiplications, 1.3 squarings, 2.6
m-squarings for various m, 2 conditional squarings, 2 conditional 2-squarings, 2
conditional 4-squarings, and 1 normal-basis Hamming-weight computation.

4.3 Bitslicing

The next step in optimizing multiplications in F2131 , squarings in F2131 , etc. is
to decompose these arithmetic operations into the operations available on the
target platform.

Modern microprocessors operate on words of many bits, say n bits. The fast
XOR logical instruction reads two n-bit words, computes n bit XORs (additions
in F2) in parallel, and produces an n-bit output word. Similar comments apply
to other logical instructions: AND (multiplication in F2), OR, etc.

If one n-bit word can be viewed as n independent elements of F2, then k n-
bit words can be viewed as n independent elements of the vector space Fk

2 , for
example representing n independent elements of the field F2k on a suitable basis.
If an operation in F2k can be carried out with T (k) additions and multiplications
in F2 then the same operation can be carried out in parallel on n elements in
F2k with T (k) XOR instructions and AND instructions.

This technique is called bitslicing. It was introduced by Biham [9] in an imple-
mentation of the Data Encryption Standard. The speedups that can be achieved
from bitslicing binary-field arithmetic on a modern CPU were demonstrated last
year by Bernstein in [3]. We decided to use bitslicing on a GPU as it allows very
efficient use of logical operations in implementing binary-field operations. The
final cost of our optimized bitsliced multiplier turned out to be smaller than a
lower bound for the cost of a traditional non-bitsliced table-based multiplier.

The most obvious challenge in efficient bitsliced arithmetic is to optimize
T (k), the number of bit operations required for an operation in F2k . However,
the requirement to work on nk bits in parallel creates additional challenges that
are particularly troublesome for GPUs: an n-bit GPU instruction is efficient only
if n is very large (32 bits times ≥128 threads), but if n is very large then the
cost of accessing nk bits becomes a bottleneck.
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The rest of this section reviews the techniques that produce the smallest
number of bit operations known for the ECC2K-130 iteration function. The
rest of this paper explains how we made the iteration function run quickly on
the GPU: Section 5 analyzes 131-bit polynomial multiplication, and Section 6
analyzes the complete iteration function.

4.4 Choice of Basis

There is no irreducible trinomial of degree 131 in the polynomial ring F2[z]. The
standard representation of F2131 is as F2[z] modulo an irreducible pentanomial,
such as z131 + z13 + z2 + z + 1. Multiplication on the basis 1, z, z2, . . . , z130 of
F2[z]/(z131 + z13 + z2 + z + 1) involves one 131-bit polynomial multiplication
and just 455 extra bit operations.

However, the ECC2K-130 iteration involves not only several multiplications
but also also many squarings, including m-squarings, making normal bases par-
ticularly attractive. A squaring in normal basis corresponds to a simple cyclic
shift of the coefficients. An m-squaring corresponds to a cyclic shift by m posi-
tions. Working with x in normal basis also removes the need to convert x from
pentanomial basis to normal basis.

The main problem with normal bases is the cost of multiplication. However,
F2131 has a type-II optimal normal basis, and Shokrollahi’s type-II multiplier [16]
(see also [13]) has a surprisingly small overhead above the cost of polynomial
multiplication. Bernstein and Lange [8] recently reduced this overhead further
and showed that combining the optimal normal basis with an optimal polynomial
basis achieves a significantly lower cost than a pentanomial basis for the ECC2K-
130 iteration.

Our final GPU implementation uses this multiplier, as described in Section 6.
Here we give a short summary of the mathematics necessary for understanding
the implementation. For full details see [8].

Field elements such as x and y are represented on the permuted optimal
normal basis

(
ζ+ζ−1, ζ2+ζ−2, ζ3+ζ−3, . . . , ζ131+ζ−131

)
of F2131 , where ζ ∈ F2262

is a primitive 263rd root of 1. Squaring is a permutation of coefficients in this
basis, although no longer a simple cyclic shift. Multiplication has four steps:

• Convert each input to the optimal polynomial basis
(
ζ +ζ−1, (ζ +ζ−1)2, (ζ +

ζ−1)3, . . . , (ζ + ζ−1)131
)
. A streamlined recursive conversion takes just 325

bit operations.
• Apply 131-bit polynomial multiplication, obtaining a product of the form

a2(ζ + ζ−1)2 + a3(ζ + ζ−1)3 + · · ·+ a131(ζ + ζ−1)131 + · · ·+ a262(ζ + ζ−1)262.
• Apply a double-size inverse conversion, obtaining the same product as a

linear combination of ζ + ζ−1, ζ2 + ζ−2, ζ3 + ζ−3, . . . , ζ262 + ζ−262. This
transformation takes just 779 bit operations.

• Reduce the product to the original basis
(
ζ+ζ−1, ζ2+ζ−2, ζ3+ζ−3, . . . , ζ131+

ζ−131
)

using the identities ζ262 + ζ−262 = ζ + ζ−1, ζ261 + ζ−261 = ζ2 + ζ−2,
etc. This transformation takes just 130 bit operations.
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We use the name multprep for the initial conversion of an input from permuted
optimal normal basis to optimal polynomial basis. We use the name ppn for the
remaining steps, taking two inputs in optimal polynomial basis and delivering
an output in normal basis.

Sometimes the output of a multiplication is used again as input to another
multiplication, and is not used for any squarings. In such cases Bernstein and
Lange keep the lower half of the polynomial product in polynomial-basis repre-
sentation and use the conversion routine only to compute the polynomial reduc-
tion, ending up in polynomial-basis representation and skipping a subsequent
multprep. We use the name ppp for this operation, taking two inputs in optimal
polynomial basis and delivering an output in optimal polynomial basis.

The costs of either type of field multiplication, ppn or ppp, are dominated
by the costs of the 131-bit polynomial multiplication. The next section opti-
mizes polynomial multiplication for the GPU, and Section 6 optimizes the entire
iteration function for the GPU.

5 Polynomial Multiplication on the GPU

With optimal polynomial bases (see Section 4.4), each iteration involves slightly
more than five 131-bit polynomial multiplications and only about 10000 extra bit
operations. We are not aware of any 131-bit polynomial multiplier using fewer
than 11000 bit operations; in particular, Bernstein’s multiplier [3, Section 2] uses
11961 bit operations.

These figures show that polynomial multiplication consumes more than 80%
of the bit operations in each iteration. We therefore placed a high priority on
making multiplication run quickly on the GPU, preferably below 200 cycles in
a single core. This section explains how we achieved this goal.

5.1 The Importance of Avoiding DRAM

We began by exploring an embarrassingly vectorized approach: T threads in a
core work on 32T independent multiplication problems in bitsliced form. The
32T × 2 inputs are stored as 262 vectors of 32T bits, and the 32T outputs are
stored as 261 vectors of 32T bits.

The main difficulty with this approach is that, even if the outputs are perfectly
overlapped with the inputs, even if no additional storage is required, the inputs
cannot fit into SRAM. For T = 128 the inputs consume 134144 bytes, while
shared memory and registers together have only 81920 bytes. Reducing T to 64
(and tolerating 50% GPU utilization) would fit the inputs into 67072 bytes, but
would also make half of the registers inaccessible (since each thread can access at
most 128 registers), reducing the total capacity of shared memory and registers
to 49152 bytes.

There is more than enough space in DRAM, even with very large T , but
DRAM throughput then becomes a serious bottleneck. A single pass through the
input vectors, followed by a single pass through the output vectors, keeps the
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DRAM occupied for 523T cycles (i.e., more than 16 cycles per multiplication),
and any low-memory multiplication algorithm requires many such passes.

We implemented and optimized several multiplication algorithms and com-
plete iteration functions using this approach, but our best result using this ap-
proach was only 26 million iterations per second on a GTX 295. The remainder
of this section describes a faster approach.

5.2 How to Fit into Shared Memory

The SIMD programming model of GPUs highly relies on the exploitation of data-
level parallelism. However, data-level parallelism does not require having each
thread work on a completely independent computation: parallelism is also avail-
able within computations. For example, the addition of two 32-way-bitsliced field
elements is nothing but a sequence of 131 32-bit XOR operations; it naturally
contains 131-way data-level parallelism. Similarly, there are many ways to break
131-bit binary-polynomial multiplication into several smaller-degree polynomial
multiplications that can be carried out in parallel.

Registers do not communicate between threads, so having several threads
cooperate on a single computation requires the active data for the computation
to fit into shared memory. On the other hand, registers have more space than
shared memory; during multiplication we use some registers as spill locations
for data not involved in the multiplication, reversing the traditional direction of
data spilling from registers to memory.

Our final software carries out 128 independent 131-bit multiplications (i.e.,
four 32-way bitsliced 131-bit multiplications) inside shared memory and regis-
ters, with no DRAM access. This means that each multiplication has to fit within
1024 bits of shared memory. This would not have been a problem for schoolbook
multiplication, but it was a rather tight fit for the fast Karatsuba-type multi-
plication algorithm that we use (see below); more simultaneous multiplications
would have meant compromises in the multiplication algorithm.

We decided to use 128 threads. This means that 32 threads are cooperating
on each of the four 32-way bitsliced 131-bit multiplications. We expected, and
ran experiments to confirm, that this would be enough threads to hide almost
all latencies in the most time-consuming parts of the iteration function, particu-
larly multiplication. Our 131-bit multiplication algorithm allows close to 32-way
parallelization, as discussed below, although the parallelization is not perfect.

We would have had fewer latency problems from 192 or 256 threads, but
the overall benefit is small and overwhelmed by increased parallelization re-
quirements within each multiplication. In the opposite direction, we could have
reduced the parallelization requirements by running 96 or 64 threads, but below
128 threads the GPU performance drops almost linearly.

5.3 Vectorized 128-Bit Multiplication

Our main task is now to multiply 131-bit polynomials, at each step using using 32
parallel bit operations to the maximum extent possible. We repeat the resulting
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algorithm on 128 independent inputs to obtain what the code actually does with
128 threads: namely, 128 separate multiplications of 131-bit polynomials, stored
in bitsliced form as 4 · 131 32-bit words, using 128 parallel 32-bit operations to
the maximum extent possible.

We begin with the simpler task of multiplying 128-bit polynomials. Here we
apply three levels of Karatsuba expansion. Each level uses 2n XORs to expand
a 2n-bit multiplication into three n-bit multiplications, and then 5n − 3 XORs
to collect the results (with Bernstein’s “refined Karatsuba” from [4]).

Three levels of Karatsuba result in 27 16-bit polynomial multiplications. The
inputs to these multiplications occupy a total of 864 bits, consuming most but
not all of the 1024 bits of shared memory available to each 131-bit multiplication.
We scheduled the code from [4] for a 16-bit polynomial multiplication, fitting it
into 67 registers, and applied it to these 27 multiplications in parallel, leaving 5
threads idle out of 32. In total 108 16-bit polynomial multiplications coming from
the four independent 131-bit polynomial multiplications are carried out by 108
threads in the 27xmult16 subroutine. In this subroutine each thread executes
413 instructions (350 bit operations and 63 load/store instructions) resulting in
a total of 44604 instructions.

For comparison, applying two levels of Karatsuba would produce 9 32-bit
multiplications. Our best register allocation for the 32-bit multiplier from [4]
would require 161 registers, requiring additional spills to shared memory.

The initial expansion is trivially parallelizable. We merged it across all three
levels, operating on blocks of 16 bits per operand and using 8 loads, 19 XORs,
and 27 stores per thread.

Collection is more work. On the highest level (level 3), each block of 3 16-bit
results is combined into a 32-bit intermediate result for level 2. This takes 5
loads (2 of these conditional), 3 XORs and 3 stores per thread on each of the 9
blocks. On level 2 we operate on blocks of 3 32-bit intermediate results leading
to 3 64-bit blocks of intermediate results for level 1. This needs 6 loads and 5
XORs for each of the 3 blocks. The 3 blocks of intermediate results of this step
do not need to be written to shared memory and remain in registers for the
following final step on level 1. On level 1 the remaining three blocks of 64 bits
are combined to the final 128-bit result by 12 XORs per thread.

5.4 Vectorized 131-Bit Multiplication

To multiply 131-bit polynomials we split each input into a 128-bit low part and
a 3-bit high part, handling the 3 × 3-bit and 3 × 128-bit products separately.

The 3 × 3-bit multiplication is carried out almost for free by an otherwise
idle 16×16 multiplication thread. The 3×128-bit multiplication is implemented
straightforwardly by 6 loads for the 3 highest bits of each input, 3 · 4 combined
loads and ANDs per input, and 24 XORs.

Overall our multiplier uses 13087 bit operations, and about 40% of our ALU
cycles are spent on these bit operations rather than on loads, stores, address cal-
culations, and other overhead. We lose an extra factor of about 1.1 from 32-way
parallelization, since the 32 threads are not always all active. For comparison,
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the Toom-type techniques from [4] use only 11961 bit operations, saving about
10%, but appear to be more difficult to parallelize.

6 ECC2K-130 Iterations on the GPU

Recall that polynomial multiplication, the topic of the previous section, con-
sumes more than 80% of the bit operations in the ECC2K-130 computation.
This does not mean that the 20% overhead can be ignored! Imagine, for exam-
ple, that the polynomial-multiplication code is carrying out useful bit operations
in 40% of its cycles, while the remaining code fits much less smoothly into the
GPU and is carrying out useful bit operations in only 5% of its cycles. The total
time would then be triple the polynomial-multiplication time.

This section discusses several aspects of the overhead in the ECC2K-130 com-
putation. Our main goal, as in the previous section, is to identify 32-way par-
allelism in the bit operations inside each 131-bit operation. This is often more
challenging for the “overhead” operations than it is for multiplication, and in
some cases we change algorithms to improve parallelism.

6.1 Basis Conversion (multprep)

As explained in Section 4.4 we keep most elements of F2131 in (permuted) normal
basis. Before those elements are multiplied we convert them from normal basis
to polynomial basis.

Consider an element a of F2131 in (permuted) normal basis:

a = a0(ζ + ζ−1) + a1(ζ2 + ζ−2) + · · · + a130(ζ131 + ζ−131).

On the first two levels of the basis conversion algorithm the following sequence
of operations is executed on bits a0, a62, a64, a126:

a62 ← a62 + a64, then
a0 ← a0 + a126, then

a64 ← a64 + a126, then
a0 ← a0 + a62.

Meanwhile the same operations are performed on bits a1, a61, a65, a125; on bits
a2, a60, a66, a124; and so on through a30, a32, a94, a96. We assign these 31 groups
of bits to 32 threads, keeping almost all of the threads busy.

Merging levels 2 and 3 and levels 4 and 5 works in the same way. This as-
signment keeps 24 out of 32 threads busy on levels 2 and 3, and 16 out of 32
threads busy on levels 4 and 5. This assignment of operations to threads also
avoids almost all memory-bank conflicts (see Section 2).
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6.2 Multiplication with Reduction (ppp and ppn)

Recall that a ppp operation produces a product in polynomial basis, suitable
for input to a subsequent multiplication. A ppn operation produces a product in
normal basis, suitable for input to a squaring.

The main work in ppn, beyond polynomial multiplication, is a conversion of
the product from polynomial basis to normal basis. This conversion is almost
identical to multprep above, except that it is double-size and in reverse order.
The main work in ppp is a more complicated double-size conversion, with similar
parallelization.

6.3 Squaring and m-Squaring (sq, msq and sqseq)

Squaring (subroutine sq) and m-squaring (subroutine msq) are simply permuta-
tions in normal basis, costing 0 bit operations, but this does not mean that they
cost 0 cycles.

The obvious method for 32 threads to permute 131 bits is for them to pick
up the first 32 bits, store them in the correct locations, pick up the next 32 bits,
store them in the correct locations, etc.; each thread performs 5 loads and 5
stores, with most of the threads idle for the final load and store. The addresses
determined by the permutation for different m-squarings can be kept in constant
memory. However, this approach triggers two GPU bottlenecks.

The first bottleneck is shared-memory bank throughput. Recall from Sec-
tion 2 that threads in the same half-warp cannot simultaneously store values
to the same memory bank. To almost completely eliminate this bottleneck we
wrote a greedy search tool that decides on a good order to pick up 131 bits,
trying to avoid all memory bank conflicts for both the loads and the stores.
For almost all values of m, including the most frequently used ones, this tool
found a conflict-free assignment. For two values of m the assignment involves
a few bank conflicts, but these values are used only in inversion, not in the
main loop.

The second bottleneck is constant-cache throughput. If thread i loads from a
constant array at position i then the constant cache serves only one thread per
cycle. To eliminate this bottleneck we move these loads out of the main loop and
dedicate 10 registers per thread to hold 20 load and 20 store positions for the 4
most-often used m-squarings, packing 4 1-byte positions in one 32-bit register.
Unpacking the positions costs just one shift and one mask instruction for the
two middle bytes, a mask instruction for the low byte, and a shift instruction
for the high byte.

6.4 Hamming-weight Computation (hamming and below)

The hamming subroutine computes the Hamming weight of x in a parallel man-
ner: multiple bits are added per clock cycle. The basic operation in this subrou-
tine is a full adder, picking up 3 bits b1, b2, b3 and storing 2 bits c0, c1 such that
b1 + b2 + b3 = 2c1 + c0.
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In the first addition round 96 bits are added into 64 result bits, of which 32
are on level 0 (corresponding to 20) and the other 32 belong to level 1 (corre-
sponding to 21). In the next round, the 32 bits on level 0 are added to 34 of
the remaining 131− 96 = 35 bits in groups of 3 giving 22 bits on level 0 and 22
bits on level 1; simultaneously 30 of the 32 bits on level 1 are added producing
10 bits on level 1 and 10 on level 2. Note that 22 + 10 = 32 and thus these
operations can be handled simultaneously. The following steps are analogous: in
every round the maximal multiple of 3 bits per level is handled and produces bits
on that level and the one above. Each output is carefully positioned to simplify
address calculations in subsequent steps. Eventually there is only one bit per
level and the Hamming weight can be read off. Note that after the second round
fewer than 32 bits are used at once, but we have achieved the shortest length
possible.

Once the Hamming weight is computed the subroutine below tests whether
the weight is below 34, i.e., whether the point is distinguished.

6.5 Kernel-Launch Overhead, Register Spills, etc

GPU code is organized into kernels called from the CPU. Calling (launching) a
kernel takes several microseconds on top of any time needed to copy data be-
tween global memory and the CPU. To eliminate these costs we run a single
kernel for several seconds. The kernel consists of a loop around a complete it-
eration; it performs the iteration repeatedly without contacting the CPU. Any
distinguished points are masked out of subsequent updates; distinguished points
are rare, so negligible time is lost computing unused updates.

We stream a batch of iterations in a simple way between global memory and
shared memory; this involves a small number of global-memory copies in each
iteration. We avoid spilling any additional data to DRAM; in particular, we
avoid all use of local memory.

All of this sounds straightforward but in fact required completely redesigning
our programming environment. To explain this we briefly review NVIDIA’s stan-
dard programming environment and the problems that we encountered
with it.

Non-graphical applications for NVIDIA GPUs are usually programmed in
CUDA, a C-like language designed by NVIDIA. NVIDIA’s nvcc compiler trans-
lates a *.cu CUDA file into a *.ptx file in a somewhat machine-independent
language called PTX. NVIDIA’s ptxas compiler translates this *.ptx file into a
machine-specific binary *.cubin file. The *.cubin file is loaded onto the GPU
and run.

NVIDIA’s register allocators were designed to handle small kernels consisting
of hundreds of instructions; their memory-use scaling appears to be quadratic
with the kernel size, and their time scaling appears to be even worse. For medium-
size kernels we found NVIDIA’s compilers intolerably slow; even worse, the re-
sulting code involved frequent spills to local memory, dropping performance by
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an order of magnitude. For larger kernels the compilers ran out of memory and
crashed.

We experimented with writing code in the PTX language, but this language
still requires compilation by ptxas; even though ptxas is labelled as an “assem-
bler” it turns out to be the culprit in NVIDIA’s register-allocation problems.
To control register allocation we eventually resorted to the reverse-engineered
assembler cudasm by van der Laan [17]. We fixed various bugs in cudasm and,
to improve usability, extended Bernstein’s qhasm programming language [2] to
support cudasm. We used qhasm on top of cudasm to implement the whole ker-
nel: more than 90000 instructions after macro processing for batch size 32. We
then designed our own assembly-level function-call convention and merged large
stretches of instructions into functions to reduce instruction-cache misses.

6.6 Overall Results

Table 1 reports timings of all major building blocks in our software. For example,
in the multprep row of the table, the cycles/iteration column is 52, indicating that
multprep was responsible for 52 cycles in each iteration. The calls/iteration col-
umn is 4.12, indicating that an average iteration involved 4.12 calls to multprep;
in fact, a batch of 128 iterations involved 527 calls to multprep. The cycles/call
column is 12.

We collected these numbers by performing the following experiment. On a
typical pass through the main loop (specifically, the 10000th pass), inside each
thread, we checked the GTX 295’s hardware cycle half-counter before and after
each use of multprep, and tallied the cycles spent inside multprep. We repeated
this experiment 20 times, with 128 threads in each experiment, yielding a total
of 20 · 128 = 2560 cycle counts. We divided the cycle counts by 16384 because
each pass through the main loop performs 16384 = 128 · 128 iterations: our
implementation always handles 128 iterations in parallel, and on top of this we
chose a batch size of 128. The average of these cycle counts was 52. Table 1 also
reports standard deviations: e.g., 52 ± 1.

After measuring one operation we removed the cycle counters and placed them
around each occurrence of another operation. Only one operation is measured
at a time. Cycle counting is not free, so the sum of times measured for the in-
dividual operations is slightly more than the time measured for the entire main
loop. The operations shown in Table 1 are as follows:

• ppp multiplies two field elements in polynomial basis, producing output in
polynomial basis.

• ppn multiplies two field elements in polynomial basis, producing output in
normal basis.

• multprep converts from normal basis to polynomial basis.
• sqseq is the sequence of squarings used to compute x2j

: a 3-squaring, a
conditional squaring, a conditional 2-squaring, and a conditional 4-squaring.
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Table 1. Timings of major building blocks within an iteration

operation calls/iteration cycles/call cycles/iteration

complete iteration 1164.43 ± 12.05 100.00%
ppp 2.9766 158.08 ± 0.23 470.55 ± 0.68 40.41%
ppn 2.0625 159.54 ± 1.64 329.05 ± 3.38 28.26%
sqseq 2.0000 44.99 ± 0.83 89.97 ± 1.67 7.73%
readfen 7.9844 9.03± 0.10 72.12 ± 0.82 6.19%
multprep 4.1172 12.63 ± 0.05 52.00 ± 0.21 4.47%
writefen 5.9844 7.91± 0.27 47.35 ± 1.63 4.07%
hamming 1.0000 41.60 ± 0.11 41.60 ± 0.11 3.57%
add 7.0000 4.01± 0.06 28.04 ± 0.40 2.41%
readbit 5.0000 2.90± 0.84 14.52 ± 4.22 1.25%
cadd 2.0000 6.81± 0.77 13.62 ± 1.53 1.17%
below 1.0000 11.26 ± 0.16 11.26 ± 0.16 0.97%
msq 1.0703 9.60± 0.12 10.27 ± 0.13 0.88%
copy 2.0000 3.73± 0.87 7.45 ± 1.74 0.64%
writebit 4.0000 1.25± 0.02 5.00 ± 0.09 0.43%
131-bit poly mult 5.0391 119.11 ± 0.13 600.21 ± 0.65 51.55%
27xmult16 5.0391 65.02 ± 0.19 327.66 ± 0.98 28.14%
DRAM access 139.01 ± 5.73 11.94%
inversion 13.74 ± 0.16 1.18%

• msq is an m-squaring for any m ∈ {1, 2, 3, 4, 8, 16, 32, 65}.
• add adds two field elements.
• cadd is conditional field addition, i.e., addition masked by an extra bit.
• hamming computes Hamming weight.
• below checks for a distinguished point.
• readfen copies a field element from global memory to shared memory.
• writefen copies a field element the other way.
• readbit copies a bit from global memory to shared memory.
• writebit copies a bit the other way.
• copy copies a field element within shared memory.

There are some additional rows in the table showing total time spent in 131-bit
polynomial multiplication; total time spent in the 27xmult16 subroutine; total
time spent on global-memory access; and total time spent in inversion.

Each of the instructions in our software handles 128 iterations, but is also
followed by 128 threads, keeping the GPU core busy for at least 16 cycles. The
number of cycles spent per iteration is therefore at least 0.125 times the number
of instructions. For example, 27xmult16 occurs 5.04 times per iteration and
involves 413 instructions, accounting for 0.125 · 5.04 · 413 ≈ 260 cycles in each
iteration. The actual number of cycles spent on 27xmult16 is about 25% higher
than this; the gap is explained in part by instruction-cache misses and in part
by the delays for complex instructions discussed in Section 2.
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The complete kernel uses 1164 cycles per iteration on average on a single core
on a GTX 295 graphics card. Therefore we achieve 63 million iterations per sec-
ond on a single card (60 cores, 1.242 GHz). The whole ECC2K-130 computation
would be finished in two years (on average; the rho method is probabilistic) using
534 GTX 295 graphics cards.
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T., Gurkaynak, F., Kleinjung, T., Lange, T., Mentens, N., Niederhagen, R., Paar, C.,
Regazzoni, F., Schwabe, P., Uhsadel, L., Van Herrewege, A., Yang, B.-Y.: Breaking
ECC2K-130. Cryptology ePrint Archive, Report 2009/541 (2009),
http://eprint.iacr.org/2009/541

2. Bernstein, D.J.: qhasm: tools to help write high-speed software,
http://cr.yp.to/qhasm.html

3. Bernstein, D.J.: Batch binary Edwards. In: Halevi, S. (ed.) Advances in Cryptol-
ogy - CRYPTO 2009. LNCS, vol. 5677, pp. 317–336. Springer, Heidelberg (2009)
Document ID: 4d7766189e82c1381774dc840d05267b,
http://cr.yp.to/papers.html#bbe

4. Bernstein, D.J.: Minimum number of bit operations for multiplication (2009),
http://binary.cr.yp.to/m.html (accessed 2009-12-07)

5. Bernstein, D.J., Chen, H.-C., Chen, M.-S., Cheng, C.-M., Hsiao, C.-H., Lange, T.,
Lin, Z.-C., Yang, B.-Y.: The billion-mulmod-per-second PC. In: Workshop Record
of SHARCS 2009: Special-purpose Hardware for Attacking Cryptographic Systems,
pp. 131–144 (2009), http://www.hyperelliptic.org/tanja/SHARCS/record2.pdf

6. Bernstein, D.J., Chen, T.-R., Cheng, C.-M., Lange, T., Yang, B.-Y.:
ECM on graphics cards. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 483–501. Springer, Heidelberg (2009) Document ID:
6904068c52463d70486c9c68ba045839, http://eprint.iacr.org/2008/480/

7. Bernstein, D.J., Lange, T.: Explicit-formulas database,
http://www.hyperelliptic.org/EFD/ (accessed 2010-09-25)

8. Bernstein, D.J., Lange, T.: Type-II optimal polynomial bases. In: Anwar Hasan,
M., Helleseth, T. (eds.) WAIFI 2010. LNCS, vol. 6087, pp. 41–61. Springer,
Heidelberg (2010) Document ID: 90995f3542ee40458366015df5f2b9de,
http://binary.cr.yp.to/opb-20100209.pdf

9. Biham, E.: A fast new DES implementation in software. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 260–272. Springer, Heidelberg (1997)

10. Bos, J.W., Kleinjung, T., Niederhagen, R., Schwabe, P.: ECC2K-130 on Cell CPUs.
In: Bernstein, D.J., Lange, T. (eds.) Progress in Cryptology – AFRICACRYPT
2010. LNCS, vol. 6055, pp. 225–242. Springer, Heidelberg (2010) Document ID:
bad46a78a56fdc3a44fcf725175fd253, http://eprint.iacr.org/2010/077

11. Certicom. Certicom ECC challenge (1997),
http://www.certicom.com/images/pdfs/cert_ecc_challenge.pdf
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Abstract. RC4, the widely used stream cipher, is well known for its
simplicity and ease of implementation in software. In case of a special
purpose hardware designed for RC4, the best known implementation till
date is 1 byte per 3 clock cycles. In this paper, we take a fresh look at
the hardware implementation of RC4 and propose a novel architecture
which generates 1 keystream byte per clock cycle. Our strategy considers
generation of two consecutive keystream bytes by unwrapping the RC4
cycles. The same architecture is customized to perform the key schedul-
ing algorithm at a rate of 1 round per clock.

Keywords: Fast Implementation, Hardware, RC4, Stream Cipher.

1 Introduction

RC4 is one of the widely used software stream ciphers that is mostly implemented
in software. This cipher is used in network protocols such as SSL, TLS, WEP
and WPA. As well the cipher finds applications in Microsoft Windows, Lotus
Notes, Apple AOCE, Oracle Secure SQL etc. Though several other efficient and
secure stream ciphers have been discovered after RC4, it is still the most popular
stream cipher algorithm due to its simplicity, ease of implementation, speed and
efficiency. The algorithm can be stated in a few lines, yet after two decades of
analysis, its strengths and weaknesses are of great interest to the community. In
spite of several cryptanalysis attempts on RC4 (see [1,2,4,9,10,11,13,14,15,16,18]
and references therein), the cipher stands secure if used properly.

In this paper we present a novel hardware design of RC4 for fast generation of
keystream. To motivate our contribution, we need to discuss the basic framework
of RC4 first. A short note on RC4 follows.

1.1 RC4 Algorithm

The RC4 stream cipher has been designed by Ron Rivest for RSA Data Se-
curity in 1987. It uses an S-Box S = (S[0], . . . , S[N − 1]) of length N , each
location storing one byte. Typically, N = 256, and S is initialized as the iden-
tity permutation, i.e., S[y] = y for 0 ≤ y ≤ N − 1. A secret key k of size
l bytes (typically, 5 ≤ l ≤ 16) is used to scramble this permutation. An array

G. Gong and K.C. Gupta (Eds.): INDOCRYPT 2010, LNCS 6498, pp. 347–363, 2010.
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K = (K[0], . . . , K[N − 1]) is used to hold the secret key, where the key is re-
peated in K at key length boundaries. i.e., K[y] = k[y mod l], for 0 ≤ y ≤ N −1.

RC4 has two components, namely, the Key Scheduling Algorithm (KSA)
and the Pseudo-Random Generation Algorithm (PRGA). The KSA uses the
secret key K to generate a pseudo-random permutation S of 0, 1, . . . , N − 1 and
the PRGA uses this pseudo-random permutation to generate pseudo-random
keystream bytes. The two pieces of the RC4 algorithm are as shown in Algo-
rithm 1 and Algorithm 2. Any addition used related to the RC4 is in general
addition modulo N unless specified otherwise. The keystream output byte Z is
XOR-ed with the message byte to generate the ciphertext byte at the sender end,
and is XOR-ed with the ciphertext byte to get back the message byte at the re-
ceiver end. The software implementation of RC4 is simple. Detailed comparison
of the software performance of eStream portfolio and RC4 is given in [19].

Input: Secret Key K.
Output: S-Box S generated by K.

for i = 0, . . . , N − 1 do
S[i] = i;

end

Initialize counter: j = 0;

for i = 0, . . . , N − 1 do
j = j + S[i] + K[i];
Swap S[i]↔ S[j];

end

Algorithm 1. KSA

Input: S-Box S, output of KSA.
Output: Random stream Z

generated from S.

Initialize the counters: i = j = 0;

while TRUE do
i = i + 1;
j = j + S[i];
Swap S[i]↔ S[j];
Output Z = S[S[i] + S[j]];

end

Algorithm 2. PRGA

1.2 Our Contribution

A 3-clock efficient implementation of RC4 on a custom pipelined hardware was
proposed in Kitsos et al. [6] in 2003. Though there are already a few attempts
to propose efficient hardware implementation [3,5,7,12] of RC4, the basic issue
remained ignored that the design motivation should be initiated from the ques-
tion that “In how many clocks a byte can be generated in an RC4 hardware?” To
the best of our knowledge, this line of thought has never been studied and ex-
ercised in a disciplined manner in the existing literature, which in fact, is quite
surprising.

In this paper we present a novel hardware for RC4 from this specific design
motivation. Our model is a generic circuit based on simple ideas of combinational
and sequential logic design. The main contribution of our work is to take a new
look at RC4 by combining consecutive pairs of cycles in a pipelined fashion, and
to read off the values of one state of the S-box from previous or later rounds of the
cipher. To the best of our knowledge, the unwrapping of RC4 cycles to extract
S-box information from previous or later stages is an idea which has never been
exploited in designing an efficient hardware for RC4. The comprehensive design
strategy and analysis of the circuit is presented in the following sections.
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1.3 Organization of the Paper

Section 2: In this section, we propose the basic idea for our hardware implemen-
tation. This includes the modifications in the RC4 algorithm required for our
hardware, and the circuits to perform each step of the modified algorithm.

Section 3: This section deals with a comprehensive timing analysis of the pro-
posed architecture and presents a timing diagram for a few illustrative clock
cycles in details.

Section 4: Here we present the complete circuit for our hardware, and prove
our claim (‘one byte per clock’) as a formal theorem. In this section, we also
discuss the minor modifications required to perform the KSA round using the
same circuit (see Section 4.1), and compare our proposed architecture with the
existing models for RC4 hardware, as found in the literature (see Section 4.2).

Section 5: This section concludes the paper by suggesting platforms for the prac-
tical implementation of the proposed hardware. We also present some ideas re-
garding parallelization of the circuit.

2 Hardware Implementation

We consider the generation of two consecutive values of Z together, for the two
consecutive message bytes to be encrypted. Assume that the initial values of the
variables i, j and S are i0, j0 and S0, respectively. After the first execution of
the PRGA loop, these values will be i1, j1 and S1, respectively and the output
byte is Z1, say. Similarly, after the second execution of the PRGA loop, these
will be i2, j2, S2 and Z2, respectively. Thus, for the first two loops of execution
to complete, we have to perform the operations shown in Table 1.

Table 1. Two consecutive loops of RC4 Stream Generation

Steps First Loop Second Loop
1 i1 = i0 + 1 i2 = i1 + 1 = i0 + 2
2 j1 = j0 + S0[i1] j2 = j1 + S1[i2] = j0 + S0[i1] + S1[i2]
3 Swap S0[i1]↔ S0[j1] Swap S1[i2]↔ S1[j2]
4 Z1 = S1[S0[i1] + S0[j1]] Z2 = S2[S1[i2] + S1[j2]]

For hardware realization, to store the S value, we use a bank of 8-bit registers,
256 in total. The output lines of any one of these 256 registers can be accessed
through a 256 to 1 Multiplexer (MUX), with its control lines set to the required
address i1, j1, i2 or j2. Thus, we need 4 such 256 to 1 MUX units to simultane-
ously read S[i1], S[i2], S[j1] and S[j2]. Before that, let us study how to compute
the increments of i and j at each level.
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2.1 Step 1: Calculation of i1 and i2

We first note that incrementing i0 by 1 and 2 can be done by the same clock pulse
applied to two synchronous 8-bit counters both initialized with the value i0; in
one counter the clock pulse is applied to the input of all the flip-flops, and in
the other, it is applied to all the flip-flops except the one at the LSB position, as
shown in Fig. 1. Also, we need to load these counters with new values every other
clock cycle (alternate with incrementing), and hence these must be counters with
parallel load mechanism, so that the loading takes a single clock pulse.

i0

i2i1

Fig. 1. [Circuit 1] Circuit to compute i1 and i2

Note that it is possible to simplify the implementation even further. We know
that i1 and i2 will always be equal but for the LSB, which is always 0 for i1 and
1 for i2. Hence one needs only to implement a 7-bit counter for the 7 common
MSBs of i1, i2, and append appropriate LSB.

2.2 Step 2: Calculation of j1 and j2

The values of j1 and j2 will be computed and stored in two 8-bit registers.
To compute j1, we need a 2-input parallel adder unit. It may be one using
a carry lookahead adder, or one using scan operation as proposed by Sinha
and Srimani [17], or one using carry-lookahead-tree as proposed by Lynch and
Swarzlander, Jr. [8]. For computing j2, there are two special cases:

j2 = j0 + S0[i1] + S1[i2] =
{

j0 + S0[i1] + S0[i2] if i2 �= j1,
j0 + S0[i1] + S0[i1] if i2 = j1.

Note that the only change from S0 to S1 is the swap S0[i1] ↔ S0[j1], and hence
we need to check if i2 is equal to either of i1 or j1. Now, i2 can not be equal
to i1 as they differ only by 1 modulo 256. Therefore, S1[i2] = S1[j1] = S0[i1] if
i2 = j1, and S1[i2] = S0[i2] otherwise. In both the cases, three binary numbers
are to be added. Let us denote the kth bit of j0, S0[i1] and S1[i2] (either S0[i2]
or S0[i1]) by ak, bk and ck, respectively, where 0 ≤ k ≤ 7. We first construct two
9-bit vectors R and C, where the kth bits (0 ≤ k ≤ 8) of R and C are given by

Rk = XOR(ak, bk, ck) for 0 ≤ k ≤ 7, R8 = 0, and
C0 = 0, Ck = ak−1bk−1 + bk−1ck−1 + ck−1ak−1 for 1 ≤ k ≤ 8.



One Byte per Clock: A Novel RC4 Hardware 351

Register bank S0Register bank S0

i1

i2

j0

j2j1

3 input
Adder

3 input
Adder

2 input
Adder

Comparator
(0 if equal)

256 to 1
MUX

256 to 1
MUX

2 to 1
MUX

Fig. 2. [Circuit 2] Circuit to compute j1 and j2. (All connectors are 8-line bus.)

Note that in case of RC4, all additions are done modulo 256. Hence, we can
discard the 9th bit (k = 8) of the vectors R, C while adding them together, and
carry out normal 8-bit parallel addition considering 0 ≤ k ≤ 7. Therefore, one
may add R and C by a parallel full adder as used for j1. The circuit to compute
j1 and j2 is as shown in Fig. 2.

2.3 Step 3: Swapping the S Values

Step 3 in Algorithm 2 consists of one of the following 8 possible data transfer re-
quirements among the registers of the S-register bank, depending on the different
possible values of i1, j1, i2 and j2. We have to check if i2 and j2 can be equal to i1
or j1 (we only know that i2 �= i1). All the cases in this direction can be listed as in
Table 2. A more detailed explanation for each case is presented in Appendix A.

After the swap operation is completed successfully, one obtains S2 from S0.
From the point of view of the receiving registers (in the S-register bank) in case
of the above mentioned register-to-register transfers, we can summarize the cases
as follows.

Table 2. Different cases for the Register-to-Register transfers in the swap operation

# Condition Register-to-Register Transfers

1 i2 �= j1 & j2 �= i1 & j2 �= j1
S0[i1] → S0[j1], S0[j1] → S0[i1],
S0[i2] → S0[j2], S0[j2] → S0[i2]

2 i2 �= j1 & j2 �= i1 & j2 = j1 S0[i1] → S0[i2], S0[i2] → S0[j1] = S0[j2], S0[j1] → S0[i1]
3 i2 �= j1 & j2 = i1 & j2 �= j1 S0[i1] → S0[j1], S0[i2] → S0[i1] = S0[j2], S0[j1] → S0[i2]
4 i2 �= j1 & j2 = i1 & j2 = j1 S0[i1] → S0[i2], S0[i2] → S0[i1] = S0[j1] = S0[j2]
5 i2 = j1 & j2 �= i1 & j2 �= j1 S0[i1] → S0[j2], S0[j2] → S0[j1] = S0[i2], S0[j1] → S0[i1]
6 i2 = j1 & j2 �= i1 & j2 = j1 S0[i1] → S0[j1] = S0[i2] = S0[j2], S0[j1] → S0[i1]
7 i2 = j1 & j2 = i1 & j2 �= j1 Identity permutation, no data transfer.
8 i2 = j1 & j2 = i1 & j2 = j1 Impossible, as it implies i1 = i2 = i1 + 1.
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– S2[i1] can receive data from any one of S0[i1], S0[j1] or S0[i2],
– S2[j1] can receive data from any one of S0[i1], S0[j1], S0[i2] or S0[j2],
– S2[i2] can receive data from any one of S0[i1], S0[j1], S0[i2] or S0[j2],
– S2[j2] can receive data from any one of S0[i1], S0[i2] or S0[j2].

In view of the above discussions, the input data (1 byte) for each of the 256
registers in the S-register bank will be taken from the output of an 8 to 1
MUX unit, whose data inputs are taken from S0[i1], S0[j1], S0[i2], S0[j2], and the
control inputs are taken from the outputs of three comparators comparing (i) i2
and j1, (ii) j2 and i1, (iii) j2 and j1. The circuit to realize the swap operation is
shown in Fig. 3.

8 to 1
MUX

Comp
1 if eq

i2
j1

Comp
1 if eq

j2
i1

Comp
1 if eq

j2
j1

8
options

for
S2[i1]

8 to 1
MUX

8
options

for
S2[j1]

8 to 1
MUX

8
options

for
S2[i2]

8 to 1
MUX

8
options

for
S2[j2]

8 to 256
Decoderi1 8 to 256

Decoderj1 8 to 256
Decoderi2 8 to 256

Decoderj2

k -th
line

k -th
line

k -th
line

k -th
line

S[k ]
registerInput for S2[k ]

Output for
next round

8
8 8

8

Fig. 3. [Circuit 3] Circuit to swap S values. (Data lines shown only for a fixed k.)

For simultaneous data transfers during the swap operation, we propose that
the S-registers in the register bank be constituted by Master-Slave J-K flip-flops.
The details of such flip-flops are presented in Appendix B. By using this type of
registers, one can perform all the required register-to-register transfer operations
in a single clock cycle.

2.4 Step 4: Calculation of Z1 and Z2

In step 4 of Algorithm 2, we have S1[i1] + S1[j1] = S0[j1] + S0[i1], and

Z1 = S1 [S0[j1] + S0[i1]] =

⎧⎨
⎩

S2[i2] if S0[j1] + S0[i1] = j2,
S2[j2] if S0[j1] + S0[i1] = i2,
S2[S0[j1] + S0[i1]] otherwise.
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Thus, the computation of Z1 involves adding S0[i1] and S0[j1] first, which can be
done using a 2-input parallel adder. The 256 to 1 MUX, which is used to extract
appropriate data from S2, will be controlled by another 4 to 1 MUX. This 4 to
1 MUX is in turn controlled by the outputs of two comparators comparing (i)
S0[j1] + S0[i1] and i2, and (ii) S0[j1] + S0[i1] and j2. The circuit to compute Z1
is as illustrated in Fig. 4.

Register bank S2

256 to 1
MUX

i2
j2

S0[i1]

2 input
Adder

4 to 1
MUX

Comparator
(0 if equal)

Comparator
(0 if equal)

S0[j1]

Z1

Fig. 4. [Circuit 4] Circuit to compute Z1

Computation of Z2, however, involves adding S1[i2], S1[j2], as follows:

Z2 = S2 [S2[i2] + S2[j2]] = S2 [S1[j2] + S1[i2]] .

Note that we never actually store configuration S1 of the register bank. This
is because we move from state S0 to S2 directly to make the algorithm more
efficient. Hence, we have to unwrap one cycle of RC4 and gather the values of
S1[i2] and S1[j2] from the S0 state. S1[i2] and S1[j2] receive the values from the
appropriate registers of S0 as given below, depending on the following conditions:

– i2 �= j1 and j2 �= i1 and j2 �= j1: S1[i2] = S0[i2] and S1[j2] = S0[j2]
– i2 �= j1 and j2 �= i1 and j2 = j1: S1[i2] = S0[i2] and S1[j2] = S0[i1]
– i2 �= j1 and j2 = i1 and j2 �= j1: S1[i2] = S0[i2] and S1[j2] = S0[j1]
– i2 �= j1 and j2 = i1 and j2 = j1: S1[i2] = S0[i2] and S1[j2] = S0[j1]
– i2 = j1 and j2 �= i1 and j2 �= j1: S1[i2] = S0[i1] and S1[j2] = S0[j2]
– i2 = j1 and j2 �= i1 and j2 = j1: S1[i2] = S0[i1] and S1[j2] = S0[i1]
– i2 = j1 and j2 = i1 and j2 �= j1: S1[i2] = S0[i1] and S1[j2] = S0[j1]

These conditions can be realized using an 8 to 1 MUX unit controlled by the
outputs of three comparators comparing (i) i2 and j1, (ii) j2 and i1, (iii) j2
and j1. Note that we can use the same control lines as in case of the swapping
operation. The computation can be performed using the circuit as shown in
Fig. 5.



354 S. Sen Gupta et al.

Register bank S2
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0 i2
0 j2

0 i2
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Comp
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2 input
Adder

i2
j1

Comp
1 if eq

j2
i1

Comp
1 if eq

j2
j1

2 input
Adder

2 input
Adder

Fig. 5. [Circuit 5] Circuit to compute Z2

3 Timing Analysis

Let us denote the operational clock by φ, and its ith cycle by φi for all i ≥ 0.
We denote the initial clock cycle by φ0, which triggers the PRGA circuit. Based
on this notation, the timing analysis for the complete PRGA circuit (shown in
Fig. 7) is as follows. We analyze the first two iterations of our model, that is, the
generation of Z1, Z2 and Z3, Z4, and the analysis for the subsequent iterations
fall along similar lines.

Initialization: The initial inputs to the circuit are i0 = 0, j0 = 0 and S0 from
the output of KSA. The two registers in Fig. 1 are preloaded with i0, i.e., the
values are set to 0. The S-registers in the register bank are all set to store the
corresponding 8-bit values of S generated by the KSA.

Clock cycle φ0: At the trailing edge of φ0, the registers containing i0 increment
to produce i1 and i2. Also, the inputs to the four 256 to 1 MUX units are read
from S0.

Clock cycle φ1: At the start of this cycle, we already have i1, i2 and S0. Hence,
one can obtain: (i) S0[i1] and S0[i2] from the first two 256 to 1 MUX, controlled
by i1, i2, and (ii) j1 and j2 by combining j0, S0[i1] and S0[i2], using the circuit
in Fig. 2.

The values i1, i2, j1, j2, S0[i1] and S0[i2] are latched at the leading edge of φ1.
At the trailing edge of φ1, the latched values of j1, j2 are accessed to control the
last two 256 to 1 MUX.

Simultaneously, the first register of Fig. 1 is loaded (in parallel) with the value
of i2 at the trailing edge of φ1, replacing the previous entry i1. The second one
already contains i2.

Clock cycle φ2: As we have latched j1, j2 released, we obtain S0[j1] and S0[j2]
from the last two 256 to 1 MUX controlled by j1, j2. These two values from S0
are latched at the leading edge of φ2.
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φ0 φ1 φ2 φ3 φ4 φ5

i0 → i1, i2

j0 → j0

S0 → S0

Read S0[i1], S0[i2]

Compute
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Latch all

Load i2

Get j1, j2

Read S0[j1], S0[j2]
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j2 → j2
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Read S2[i3], S2[i4]

Compute
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Latch all
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Get j3, j4

Read S2[j3], S2[j4]

i4 → i5, i6

j4 → j4

S2 → S4

Get latched values

Compute for
Z1, Z2

Read S4 → Z3, Z4

Read S4[i5], S4[i6]

Compute
j5, j6

Latch all

Fig. 6. Timing diagram for the complete PRGA circuit

At the trailing edge of φ2, the swap operation takes place among the appro-
priate registers of S0. One has all the values required for the swap module shown
in Fig. 3, and hence can obtain the new configuration S2 from S0.

Simultaneously, the latched values for i1, i2, j1, j2, S0[i1] and S0[i2] are ac-
cessed, and the registers in Fig. 1 are incremented to i3 and i4 at the trailing
edge of φ2.

Clock cycle φ3: At the start of this cycle, one has i1, i2, j1, j2, S0[i1], S0[i2],
S0[j1] and S0[j2], released from the latches. Moreover, the register-bank config-
uration is S2 at this stage. Hence, one can compute Z1 using circuit in Fig. 4,
and Z2 using circuit in Fig. 5. The combinational logic of these circuits operate
during the cycle and the bytes from S2 are read at the trailing edge of φ3.

Simultaneously, during cycle φ3, the indices i3, i4 control the first two 256 to
1 MUX units to produce S0[i3] and S0[i4], similar to cycle φ1. These values are
used to produce j3, j4 and they are latched at the leading edge of φ3. At the
trailing edge of φ3, the latches for j3, j4 are accessed.

Clock cycle φ4: Similar to cycle φ2, here we obtain S2[j3], S2[j4], and latch
these values at the leading edge of φ4. Another swap operation is performed at
the trailing edge of φ4 to produce S4 from S2. Simultaneously, the first register
in Fig. 1 is loaded with i4 (replacing i3), and incremented to i5, i6 at the trailing
edge of φ4.

Clock cycle φ5: Similar to cycle φ3, we compute the combinational logic for
Z3, Z4 in this cycle (using circuits in Fig. 4 and Fig. 5), and the final values of
Z3 and Z4 are read from S4 at the trailing edge of φ5.

The process continues similarly over the clock cycles and we obtain a timing
diagram as shown in Fig. 6. The combinational logics operate between the clock
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pulses and the latches operate with the edges of the pulses (loaded at the leading
edge and released at the trailing edge). All read, swap and increment operations
are done at the trailing edges of the clock pulses.

One may observe that the first two bytes Z1, Z2 of the output are obtained at
the end of the third clock cycle φ3 and the next two bytes Z3, Z4 are obtained
at the fifth clock cycle φ5. A formal statement to summarize the observation is
given in the next section.

4 The Complete Circuit

The complete circuit diagram for the PRGA stage of our RC4 hardware is shown
in Fig. 7. Here, Li denotes the latches operated by the trailing edge of φ2n+i,
i.e., the (2n + i)th cycle of the master clock φ where n ≥ 0. For example, the
latches labeled L1 (four of them) are released at the trailing edge of φ1, φ3, φ5, . . .
and the latches labeled L2 (eight of them) are released at the trailing edge of
φ2, φ4, φ6, . . . etc. We can now generalize our previous observation to state the
following.

S0

i2

j1

Sn

Sn+2

jn

in

Sn Sn+2

jn+1

jn+2

in+1

in+2

jn+2
jn+2

in+2

L1
L2

L1

L1

L1

Circuit 1

Circuit 2

Circuit 3
(Swap)

Circuit 4

Circuit 5
Zn+2

Zn+1

Fig. 7. Circuit for PRGA stage of RC4

Theorem 1. The hardware proposed for the PRGA stage of RC4, as shown in
Fig. 7, produces “one byte per clock” after an initial delay of two clock cycles.

Proof. Let us call the stage of the PRGA circuit shown in Fig. 7 the nth stage.
This actually denotes the nth iteration of our model, which produces the output
bytes Zn+1 and Zn+2.

The first block (Circuit 1) operates at the trailing edge of φn, and increments
in to in+1, in+2. During cycle φn+1, the combinational part of Circuit 2 operates
to produce jn+1, jn+2. The trailing edge of φn+1 releases the latches of type
L1, and activates the swap circuit (Circuit 3). The combinational logic of the
swap circuit functions during cycle φn+2 and the actual swap operation takes
place at the trailing edge of φn+2 to produce Sn+2 from Sn. Simultaneously, the
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latch of type L2 is released to activate the Circuits 4 and 5. Once again, the
combinational logic of these two circuits operate during φn+3, and we get the
outputs Zn+1 and Zn+2 at the trailing edge of φn+3.

This complete block of architecture performs in a cascaded pipeline fashion,
as the indices i2, j2 and the state Sn+2 are fed back into the system at the end
of φn+2 (actually, in+2 is fed back at the end of φn+1 to allow for the increments
at the trailing edge of φn+2). Hence, the operational gap between two iterations
(e.g., nth and (n + 2)th) of the system is two clock cycles (e.g., φn to φn+2), and
we obtain two output bytes per iteration of the model.

Hence, the PRGA architecture proposed in Fig. 7 produces 2N bytes of output
stream in N iterations, over 2N clock cycles. Note that the initial clock pulse φ0
is an extra one, and the production of the output bytes lag the feedback cycle
by one clock pulse in every iteration (e.g., φn+3 in case of nth iteration). Hence,
our model practically produces 2N output bytes in 2N clock cycles, that is “one
byte per clock”, after an initial lag of two clock cycles. �

4.1 Issues for the Circuit of KSA

Note that the general KSA routine runs for 256 iterations to produce the initial
permutation of the S-box. Moreover, the steps of the KSA phase in RC4 are
quite similar to the steps of PRGA, apart from the following:

– Calculation of j involves the key K along with S-box S and index i.
– Calculation of Z1, Z2 not required (actually, not recommended).

We propose the use of our PRGA architecture (Fig. 7) for the KSA round as
well, with some modifications to the design, as follows.

K-register bank: We have to introduce a new register bank for key K. It will
contain l number of 8-bit registers, where 8 ≤ l ≤ 15 in practice.

K-register MUX: To read data K[i1 mod l] and K[i2 mod l] from the K-registers,
we need to have two 16 to 1 multiplexer unit. The first l input lines of this
MUX will be fed data from registers K[0] to K[l − 1], and the rest 16 − l
inputs can be left floating (recall that 8 ≤ l ≤ 15). The control lines of these
MUX units will be i1 mod l and i2 mod l respectively, and hence the floating
inputs will never be selected.

Modular Counters: To obtain i1 mod l and i2 mod l, we have to incorporate
two modular counters (modulo l) for the indices. These will be synchronous
counters and the one for i2 will have no clock input for the LSB position,
similar to circuit in Fig. 1.

Extra 2-input Adders: Two 2-input parallel adders to be appended to Fig. 2 for
adding K[i1 mod l] and K[i2 mod l] to j1 and j2 respectively.

No Outputs: Circuits of Fig. 4 and Fig. 5 have to be removed from the overall
structure, so that no output byte is generated during KSA. If any such byte
is generated, the key K may be compromised, and hence, the output module
have to be disconnected during the KSA stage. One can do so by resetting
these modules permanently throughout the KSA operation.
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Using this modified hardware configuration, we can implement two rounds of
KSA in 2 clock cycles, that is “one round per clock”, after an initial lag of 1
cycle. Total time required for KSA will be 256 + 1 = 257 clock cycles in this
case.

4.2 Comparison with Existing Architecture

Combining our KSA and PRGA architectures, we can obtain 2N output-stream
bytes in 2N + 258 clock cycles, counting the initial delay of 2 cycles for PRGA.
The best hardware implementation of RC4 till date is described in [6], which
provides an output of N bytes in 3N + 768 clock cycles. A formal comparison
of the timings is shown in Table 3. One can easily observe that for large N , the
throughput of our RC4 architecture is 3 times compared to that of the hardware
configuration proposed in [6].

Table 3. Timing comparison of our hardware with that of [6]

Operations Clock cycles needed Clock cycles needed
for hardware in [6] for our model

Per round of KSA 3 1
Complete KSA routine 256× 3 = 768 256 + 1 = 257
N output bytes from PRGA 3N N + 2
N output bytes from RC4 3N + 768 257 + (N + 2) = N + 259
Per byte output from RC4 3 + 768

N
1 + 259

N

Another aspect to compare is the cost of the hardware configuration proposed
in the two cases. Table 4 in Appendix C summarizes the hardware components
required for our model. The reader may note that the hardware components used
in the architecture proposed in [6, Figure 3] can be compared with the ones we
use. The hardware of [6] uses three 256-byte RAM blocks for the S-box, while we
use only one such 256-byte block built by master-slave J-K flip-flops. The number
of registers for our K-register bank is the same as the ones used for the K-box
in [6]. Both architectures use the same number of 8-bit registers in addition
to these banks. Our architecture requires in excess only a constant number of
combinational and sequential logic components compared to that in [6]. Thus,
not only in terms of throughput, but also in terms of memory requirement, our
architecture is better than that proposed in [6].

5 Conclusion

In this paper we try to answer the question of RC4 hardware efficiency in terms of
the throughput, that is, the number of keystream bytes generated per clock cycle
of the system. We have proposed a novel architecture for a generic RC4 hardware
in this direction, using basic combinational and sequential logic components. Our
architecture performs the KSA stage of RC4 at a rate of “one round per clock”
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and produces “one byte per clock” in case of the PRGA routine. To the best of
our knowledge, this is 3 times faster than the current best hardware configuration
for RC4.

Simulation of our architecture using VHDL and its implementation on an
FPGA module are in progress. To get the best performance in terms of fast
real-time clock cycles, one may also want to fabricate the architecture onto an
ASIC board, or a processing chip. We would also like to add that this hardware
model can generate even higher throughput provided one has enough memory
space to perform the swap and read operations at the same time, that is, if two
copies of the S array can be maintained.
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i2 j2
j2 i2

)
◦
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i1 j1
j1 i1

)
This involves 4 simultaneous register to register transfers:

S0[i1] → S0[j1], S0[j1] → S0[i1], S0[i2] → S0[j2], S0[j2] → S0[i2]

Case 2: i2 �= j1 and j2 �= i1 and j2 = j1
In this case the data transfers are represented by the following permutation
on data in S0. (

i2 j1
j1 i2

)
◦

(
i1 j1
j1 i1

)
This involves 3 simultaneous register to register transfers:

S0[i1] → S0[i2], S0[i2] → S0[j1] = S0[j2], S0[j1] → S0[i1]

Case 3: i2 �= j1 and j2 = i1 and j2 �= j1
In this case the data transfers are represented by the following permutation
on data in S0. (

i2 i1
i1 i2

)
◦

(
i1 j1
j1 i1

)
This again involves 3 simultaneous register to register transfers:

S0[i1] → S0[j1], S0[i2] → S0[i1] = S0[j2], S0[j1] → S0[i2]
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Case 4: i2 �= j1 and j2 = i1 and j2 = j1
In this case the data transfers are represented by the following permutation
on data in S0. (

i2 i1
i1 i2

)
◦

(
i1 i1
i1 i1

)
This involves 2 simultaneous register to register transfers:

S0[i1] → S0[i2], S0[i2] → S0[i1] = S0[j1] = S0[j2]

Case 5: i2 = j1 and j2 �= i1 and j2 �= j1
In this case the data transfers are represented by the following permutation
on data in S0. (

j1 j2
j2 j1

)
◦

(
i1 j1
j1 i1

)
This involves 3 simultaneous register to register transfers:

S0[i1] → S0[j2], S0[j2] → S0[j1] = S0[i2], S0[j1] → S0[i1]

Case 6: i2 = j1 and j2 �= i1 and j2 = j1
In this case the data transfers are represented by the following permutation
on data in S0. (

j1 j1
j1 j1

)
◦

(
i1 j1
j1 i1

)
This involves 2 simultaneous register to register transfers:

S0[i1] → S0[j1] = S0[i2] = S0[j2], S0[j1] → S0[i1]

Case 7: i2 = j1 and j2 = i1 and j2 �= j1
In this case the data transfers are represented by the following permutation
on data in S0. (

j1 i1
i1 j1

)
◦

(
i1 j1
j1 i1

)
This is identity permutation, and does not involve any data transfer.

Case 8: i2 = j1 and j2 = i1 and j2 = j1
This case cannot occur, as it implies i1 = i2, which is impossible because
i2 = i0 + 2 = i1 + 1.

Appendix B: Master-Slave J-K Flip-Flops

The master-slave configuration is basically two J-K flip-flops connected together
in series, as shown in Fig. 8. The input signals J and K are connected to the
Master flip-flop which locks the input while the clock input is high. As the clock
input of the Slave flip-flop is the inverse of the Master clock input, the outputs
from the Master flip-flop are seen by the Slave only when the clock input goes
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Fig. 8. Master-Slave J-K flip-flop

low. Therefore on the trailing edge of the clock pulse, the locked outputs of the
Master flip-flop are fed through to the J-K inputs of the Slave flip-flop. The
circuit accepts input at the Master J-K flip-flop when the clock signal is high,
and passes it to the output on the trailing edge of the clock.

This enables us to make data interchange between two registers or cyclic
data transfers among three registers, as needed by the swap operations, in just
one clock. Recall that the registers in the S-register bank are made of these
Master-Slave J-K flip-flops. We connect the registers participating in the swap
operation using combinational logic circuits during the relevant clock cycle (φr ,
say), and wait for the clock pulse. At the leading edge of φr , the Master flip-
flop of each register accepts the incoming new value, and it is passed on to the
output through the Slave flip-flop only at the trailing edge of φr. Thus, the swap
operation completes at the end of the cycle φr, and avoids all data collisions. This
controlled flow of data helps perform the swap operations in a single clock-cycle.

Appendix C: Hardware Components

Table 4 lists all hardware components required for the RC4 architecture proposed
in this paper. It counts all sequential and combinational components required
for the circuit of PRGA (Fig. 7), as well as the extra components required for
the proposed modifications to perform the KSA.
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Véron, Pascal 238

Wyseur, Brecht 292

Xia, Zhe 98

Yang, Bo-Yin 328

Zhang, Bingsheng 176


	Title Page
	Organization
	Table of Contents
	Invited Talk
	Getting a Few Things Right and Many Things Wrong

	Security of RSA and Multivariate Schemes
	Partial Key Exposure Attack on RSA – Improvements for Limited Lattice Dimensions
	Introduction
	Preliminaries

	The Lattice Based Technique
	Further Improvement Using Sublattice
	Experimental Results
	Conclusion
	References

	Towards Provable Security of the Unbalanced Oil and Vinegar Signature Scheme under Direct Attacks
	Introduction
	The UOV Signature Scheme
	Inserting a Random Matrix in the UOV Public Key
	Preparation
	Security Reduction
	Expected Lower Bounds on Direct Attacks Complexity
	Conclusion and Future Work
	References

	CyclicRainbow – A Multivariate Signature Scheme with a Partially Cyclic Public Key
	Introduction
	Multivariate Public Key Cryptography
	The Principle of Oil and Vinegar (OV)
	The Rainbow Signature Scheme

	The Approach of PB10
	Preliminaries
	Notations
	The Monomial Ordering

	The Scheme
	Properties of the Rainbow Public Key
	Construction
	Key Generation and Key Sizes
	Efficiency of the Verification Process

	Security
	Direct Attacks BB08, YC07
	Rainbow-Band-Separation DY08
	MinRank Attack GC00, BG06
	HighRank Attack GC00, DY08
	UOV Attack KP99
	Summary

	Parameters
	Conclusion
	References


	Security Analysis, Pseudorandom Permutations and Applications
	Combined Security Analysis of the One- and Three-Pass Unified Model Key Agreement Protocols
	Introduction
	(In)Security of One-Pass Key Agreement Protocols
	One-Pass UM Protocol
	Security Model
	Protocol Descriptions
	Security Argument

	Combined Security Model for UM1 and UM3
	Security Argument for Shared Reuse
	Concluding Remarks
	References

	Indifferentiability beyond the Birthday Bound for the Xor of Two Public Random Permutations
	Introduction
	Bounding Distinguisher's Advantage
	Indifferentiability
	Our Simulator
	Distinguisher Characterization
	Proof of Security When $q \ll \sqrt{2^n}$
	Proof of Security When $q \ll 2^{\frac {2}{3}n}$
	Application of Our Work
	Conclusion
	References

	The Characterization of Luby-Rackoff and Its Optimum Single-Key Variants
	Introduction
	Notation and Preliminaries
	Patarin's Coefficient H-Technique

	Distinguishing Attack on Luby-Rackoff and Its Variants
	Distinguishing Attack on Luby-Rackoff Encryptions with Palindrome Key-Assigning
	Distinguishing Attack on Some Variant of Single-Key 3-Round Luby-Rackoff Encryptions

	Security Analysis of LR with Non-palindrome Key-Assigning Function
	General Feistel Round Permutation
	PRP Attack on Three Round Linear-Mix Single-Key Feistel Function

	SPRP Security Analysis of Single-Key 4-Round Feistel Function
	Conclusion
	References

	Versatile Prˆet `a Voter: Handling Multiple Election Methods with a Unified Interface
	Introduction
	Motivation
	Our Contribution
	Structure of the Paper

	Building Blocks
	Paillier Cipher
	Baudron's Homomorphic Counter
	Plaintext Equivalence Test (PET)
	Binary Conversion and Plaintext Inequivalence Test (PIT)

	System Overview
	Vote Processing
	Vote Processing for FPTP
	Vote Processing for Approval Voting
	Vote Processing for Supplementary Vote
	Vote Processing for Instance Runoff Voting (IRV)
	Vote Processing for Single Transferable Vote (STV)
	Vote Processing for Condorcet Voting

	System Analysis
	Open Problems

	Conclusion
	References


	Invited Talk
	Cryptographic Hash Functions: Theory and Practice
	References


	Hash Functions
	Cryptanalysis of Tav-128 Hash Function
	Introduction
	Notation and Preliminaries 
	Notation
	Security Requirements of Cryptographic Hash Functions

	The Tav-128 Hash Function 
	The Compression Function f

	Collision Attack on Tav-128 
	Non-existence of Collisions at the Level of Functions A and B 
	On the Map $(m\|m) \rightarrow A(h_0,m)\|B(h_1,m)$
	Finding Collisions at the Level of C& D Function 
	Colliding Message Pairs 

	Second Preimage Attack 
	Conclusions and Open Problems 
	References

	Near-Collisions for the Reduced Round Versions of Some Second Round SHA-3 Compression Functions Using Hill Climbing
	Introduction
	Near-Collisions
	Hill Climbing Method
	Experimental Results
	Blake-32
	Fugue
	Hamsi
	JH

	Conclusion
	References

	Speeding Up the Wide-Pipe: Secure and Fast Hashing
	Introduction
	Notation and Convention
	The New Mode Fast Wide Pipe or FWP
	Security of the FWP: Resistance against Collision and Preimage Attacks
	Security of the FWP Mode: Indifferentiable from a Random Oracle
	Preliminaries: Introduction to Indifferentiability Framework
	Indifferentiability Framework for FWP: Designing a Simulator S
	Bounding the Advantage of an Arbitrary Distinguisher

	Resistance of FWP against Some Recent Attacks
	Comparison of the FWP with Other Modes

	Conclusion and Open Problems
	References


	Attacks on Block Ciphers and Stream Ciphers
	New Boomerang Attacks on ARIA
	Introduction
	Description of ARIA
	The Boomerang Attack
	A Boomerang Attack on 5-Round ARIA
	The Differential for E0
	The Differential for E1-1
	The Differential for E0-1
	The Attack
	Analysis of the Attack

	Boomerang Attack on 6 and 7-Round ARIA
	Conclusion
	References

	Algebraic, AIDA/Cube and Side Channel Analysis of KATAN Family of Block Ciphers
	Introduction
	The KATAN Family of Block Ciphers
	Algebraic Attacks Using SAT Solvers
	Straightforward Algebraic Attack on KATAN Using SAT Solvers
	The Pre-processing SAT-Solver Attack
	The Turbo-Massage Pre-processing Algorithm
	Results
	The Gibrat Hypothesis
	A Strange Phenomena

	AIDA/Cube Attacks
	Cube Attack on KATAN32
	Cube Attack on KATAN48
	Cube Attack on KATAN64

	Combining Cube and Algebraic Attacks
	Side-Channel Attack for Full-Round KATAN32
	Conclusions
	References

	The Improbable Differential Attack: Cryptanalysis of Reduced Round CLEFIA
	Introduction
	Improbable Differential Cryptanalysis
	Data Complexity and Success Probability
	Improbable Differentials from Impossible Differentials

	Notation and the CLEFIA
	Notation
	CLEFIA

	Improbable Differential Attacks on CLEFIA
	10-Round Improbable Differentials
	Improbable Differential Attack on 13-Round CLEFIA

	Conclusion
	References

	Greedy Distinguishers and Nonrandomness Detectors
	Introduction
	Background
	The Black Box Model
	The Maximum Degree Monomial Signature
	Black Box Framework

	The Algorithm and a Threshold
	The Greedy Bit Set Algorithm
	Key Weight and the Nonrandomness Threshold

	Results
	High Susceptibility
	Significant Susceptibility
	Moderate or Low Susceptibility

	Results Summary
	Concluding Remarks
	References


	Fast Cryptographic Computation
	Polynomial Multiplication over Binary Fields Using Charlier Polynomial Representation with Low Space Complexity
	Introduction
	Charlier Polynomials
	Conversion of Coefficients from Polynomial Representation to Charlier Polynomial Representation
	Charlier Basis

	Polynomial Multiplication Using Charlier Polynomials over Binary Fields
	Irreducible Charlier Binomials
	Irreducible Charlier Trinomials
	Reduction Complexity

	Multiplication Complexity
	Conclusion
	References

	Random Euclidean Addition Chain Generation and Its Application to Point Multiplication
	Introduction
	Scalar Multiplication Using Euclidean Addition Chains
	Euclidean Addition Chains
	Point Multiplication Using EAC
	Our Approach

	Notations and Properties
	A First Family of EAC
	Some Properties of Mn0
	Application to Existing Standards
	A Variant for the secp160k1 and secp160r1 Recommended Parameters

	A Second Family of EAC and an Open Problem
	Comparisons
	Comparison of Method 1 with Algorithms Working on 160-Bit Integers

	Conclusions
	References


	Cryptanalysis of AES
	Attack on a Higher-Order Masking of the AES Based on Homographic Functions
	Introduction
	Preliminaries
	Higher-Order Side-Channel Attacks and Higher-Order Security
	Higher-Order Masking
	Preliminaries on Homographic Functions

	Masking Scheme Based on the Pre-processing of a Homographic Masked s-Box
	Courtois and Goubin's Scheme: General Principle
	Homographic Masked AES s-Box
	Courtois and Goubin's Scheme

	The Flaws
	First Category of Flaws
	Second Category of Flaws
	Information Theoretic Evaluation

	Attacks Simulations and Comparisons
	Conclusion and Open Issues
	References

	Improved Impossible Differential Cryptanalysis of 7-Round AES-128
	Introduction
	A Brief Description of AES
	A 4-Round Impossible Differential of AES
	Impossible Differential Attack on 7 Rounds of AES-128
	Precomputation Stage
	The Attack Procedure
	Complexity of the Attack

	Conclusion
	References

	Cryptanalysis of a Perturbated White-Box AES Implementation
	Introduction
	The White-Box AEw/oS Implementation
	Cryptanalysis of the White-Box AEw/oS Implementation
	Analysis of the Final Round
	Separate the S-Boxes
	Decomposing the Rounds

	Conclusion
	References
	Algorithms
	Algorithm: Recover Pairs of Intermediate Bytes in Z9 Generating Each Input Byte of Y91 of R10 - Worst Case Scenario
	Algorithm: Recover the Linear Input Encoding Up to an Unknown Constant Factor of Each Perturbated Intermediate Round Rr'|r=2 r 9

	Complexity


	Efficient Implementation
	A Program Generator for Intel AES-NI Instructions
	Motivation
	Intel AES-NI Instructions
	The AES-GEN Generator
	Generator Flexibility with CTR
	Algorithmic Variants with CBC
	Exploiting ILP by Function-Stitching with GCM
	Experimental Results
	Related Work
	Future Work
	Conclusion
	References

	ECC2K-130 on NVIDIA GPUs
	Introduction
	The GTX 295 Graphics Card
	The Dispatcher
	Instruction Latency
	SRAM: Registers and Shared Memory
	DRAM: Global Memory and Local Memory
	Choice of GPU

	The ECDLP and Parallel Pollard Rho
	ECC2K-130 and the Iteration Function
	Definition of the Iteration Function
	Computing the Iteration Function
	Bitslicing
	Choice of Basis

	Polynomial Multiplication on the GPU
	The Importance of Avoiding DRAM
	How to Fit into Shared Memory
	Vectorized 128-Bit Multiplication
	Vectorized 131-Bit Multiplication

	ECC2K-130 Iterations on the GPU
	Basis Conversion (multprep)
	Multiplication with Reduction (ppp and ppn)
	Squaring and m-Squaring (sq, msq and sqseq)
	Hamming-weight Computation (hamming and below)
	Kernel-Launch Overhead, Register Spills, etc
	Overall Results

	References

	One Byte per Clock: A Novel RC4 Hardware
	Introduction
	RC4 Algorithm
	Our Contribution
	Organization of the Paper

	Hardware Implementation
	Step 1: Calculation of i1 and i2
	Step 2: Calculation of j1 and j2
	Step 3: Swapping the S Values
	Step 4: Calculation of Z1 and Z2

	Timing Analysis
	The Complete Circuit
	Issues for the Circuit of KSA
	Comparison with Existing Architecture

	Conclusion
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




