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Preface

ASIACRYPT 2010 was held in the Swissôtel Merchant Court in Singapore, dur-
ing December 5–9, 2010. The conference was sponsored by the International
Association for Cryptologic Research (IACR) in cooperation with the Coding
and Cryptography Research Group of Nanyang Technological University. It was
also supported by the Singapore Tourism Board, and co-sponsored by the Na-
tional Research Foundation of Singapore, Lee Foundation, IBM Singapore Ltd.,
O’Connor’s Singapore Ltd., Puffersoft Ltd., Privylink Ltd., Hewlett-Packard Sin-
gapore Ltd., Jardine OneSolution Ltd., and Singapore Mathematical Society. San
Ling chaired the conference and I served as the Program Chair.

There were 216 valid submissions. The Program Committee aided by 221
external reviewers spent 83 days on reviews and discussions. They spared no
effort to increase the quality of their reviews. Every paper received at least
three independent reviews, and papers from the committee members received
five reviews. In total, there were more than 730 reviews followed by intensive
discussion. This long and tough process, wrapped up with an intensive face-to-
face meeting by the committee members convened at UC Santa Barbara, yielded
35 accepted papers. I regret not being able to select more of such high-quality
papers due to space limitations. The proceedings include the revised versions of
the accepted papers. The authors are fully responsible for their contents.

The best paper award was given to “Rotational Rebound Attacks on Reduced
Skein” by Dmitry Khovratovich, Ivica Nikolić, and Christian Rechberger. There
were a further two best papers, “Improved Single-Key Attacks on 8-Round AES-
192 and AES-256” by Orr Dunkelman, Nathan Keller, and Adi Shamir, and “Ef-
ficient Public-Key Cryptography in the Presence of Key Leakage” by Yevgeniy
Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs, that were
solicited for full version submission to the Journal of Cryptology. The conference
program included two invited talks: “Cryptography, from Theory to Practice: A
Personal Perspective” by Hugo Krawczyk, and “Cryptographic Hash Functions
and the SHA-3 Competition” by Bart Preneel.

There are many people I would like to acknowledge but only a few can be
listed here. First I would like to thank all the authors of the submitted papers.
I am deeply grateful to all the members of the Program Committee for their
expertise and enthusiasm that brought success to a difficult project. I also want
to express appreciation to the external reviewers listed in the following pages.
Special thanks to Shai Halevi for providing and setting up the splendid review
software, and Huaxiong Wang and his staff at Nanyang Technological Univer-
sity, who helped me to manage the review process in many ways. Finally, I
am indebted to Kaoru Kurosawa, Mitsuru Matsui, Nigel Smart, and Tatsuaki
Okamoto, who gave me invaluable advice as Chairs of past IACR conferences.

September 2010 Masayuki Abe
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Nico Döttling
Xiwen Fang
Sebastian Faust
Serge Fehr
Matthieu Finiasz
Dario Fiore
Matthias Fitzi
Manuel Forster
David Mandell Freeman
Eiichiro Fujisaki
Jun Furukawa
Martin Gagne
Sebastian Gajek
Steven Galbraith
David Galindo
Viktor Galliard
Sanjam Garg
Praveen Gauravaram
Valerie Umana Gauthier
Craig Gentry
Mark Gondree
Zheng Gong



Organization IX

Dov Gordon
Aline Gouget
Jens Groth
Sylvain Guilley
Fuchun Guo
Jian Guo
Risto Hakala
Goichiro Hanaoka
Kristiyan Haralambiev
Carmit Hazay
Mathias Herrmann
Fumitaka Hoshino
Jialin Huang
Qiong Huang
Xinyi Huang
Jung Yeon Hwang
Sebastiaan Indesteege
Tetsu Iwata
Ragesh Jaiswal
Marc Joye
Kimmo Järvinen
Eike Kiltz
Kitak Kim
Thorsten Kleinjung
Kazukuni Kobara
Tetsutaro Kobayashi
François Koeune
Vladimir Kolesnikov
Woo Kwon Koo
Takeshi Koshiba
Daniel Kraschewski
Hugo Krawczyk
Noboru Kunihiro
Minoru Kuribayashi
Mario Lamberger
Gregor Leander
Ji-Seon Lee
Kwangsu Lee
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Rotational Rebound Attacks on Reduced Skein

Dmitry Khovratovich1,2, Ivica Nikolić1, and Christian Rechberger3

1 University of Luxembourg
2 Microsoft Research Redmond, USA

3 Katholieke Universiteit Leuven, ESAT/COSIC, and IBBT, Belgium
dkhovrat@microsoft.com, ivica.nikolic@uni.lu,

christian.rechberger@esat.kuleuven.be

Abstract. In this paper we combine a recent rotational cryptanaly-
sis with the rebound attack, which results in the best cryptanalysis of
Skein, a candidate for the SHA-3 competition. The rebound attack ap-
proach was so far only applied to AES-like constructions. For the first
time, we show that this approach can also be applied to very different
constructions. In more detail, we develop a number of techniques that
extend the reach of both the inbound and the outbound phase, leading
to cryptanalytic results on an estimated 53/57 out of the 72 rounds of
the Skein-256/512 compression function and the Threefish cipher.

The new techniques include an analytical search for optimal input val-
ues in the rotational cryptanalysis, which allows to extend the outbound
phase of the attack with a precomputation phase, an approach never
used in any rebound-style attack before. Further we show how to com-
bine multiple inside-out computations and neutral bits in the inbound
phase of the rebound attack, and give well-defined rotational distinguish-
ers as certificates of weaknesses for the compression functions and block
ciphers.

Keywords: Skein, hash function, rotational cryptanalysis, rebound at-
tack, distinguisher.

1 Introduction

Rotational cryptanalysis and the rebound attack proved to be very effective
in the analysis of SHA-3 candidates and related primitives. Rotational crypt-
analysis succeeded in the analysis of Addition-Rotation-XOR primitives (ARX),
particularly in reduced variants of Threefish [10], Shabal [1], BMW [18]. Re-
bound attack, first presented in [16], is mostly aimed at byte-oriented primitives
with a SPN structure. It gives the best attacks so far on reduced variants of the
SHA-3 candidates Grøstl and ECHO [16,15], LANE [14], Cheetah [22] and the
hash function Whirlpool [12], among others.

In this paper we introduce the combination of these two attacks with the appli-
cation to the Skein compression function. We start with a number of preliminaries
in Section 2. Our attacks will be based on methods to show non-random proper-
ties. For this we need definitions and bounds for distinguishers, which we give in

M. Abe (Ed.): ASIACRYPT 2010, LNCS 6477, pp. 1–19, 2010.
c© International Association for Cryptologic Research 2010



2 D. Khovratovich, I. Nikolić, and C. Rechberger

Section 3. There we introduce the rotational collision set property for n-bit com-
pression functions and ideal ciphers, and demonstrate a lower bound about q · 2n

for the complexity of finding such set of size q in the black-box approach.
Then weproceed to the analysis of Skein and Threefish. We provide a much more

careful and precise estimation of rotational probabilities compared to [10]. We rep-
resent the propagationof the rotational property analytically, andderive necessary
conditions on the key bits to enlarge the rotational probability. We also correct [10]
in terms of the independence assumptions, and find the best values of key bits with
optimized search.Althoughweattack the tweakedversionofThreefish [8],we stress
that our attack is well applicable to the first version, and even benefits from more
from the better diffusion the tweaked rotation constants provide.

This analysis gives us a simple rotational distinguisher for Threefish on up to
44 rounds. We advance even further and show how to put the rotational property
into the outbound phase of the recent powerful rebound attack. The inner part
of the rebound attack, the inbound phase, is accelerated with the method of the
auxiliary path [9] and neutral bits [3]. In contrast to the first attacks on Skein,
where auxiliary paths were used in the differential attacks, we show how to involve
them into the rotational attack. As a result, we get a rotational distinguisher for
the reduced Skein compression function. We attack 53 rounds of Skein-256 and 57
rounds of Skein-512 (Section 4).

Our results demonstrate substantial weaknesses both in the reduced Threefish
cipher and the Skein compression function. The designers of Skein do not directly
address the security of these primitives in the model that we consider, although
the security of Threefish against all “standard attacks” is claimed. Also, our
attacks show that the reduced Threefish does not behave as an ideal cipher,
which is essential for the Skein security proofs. Had Skein have the reduced
Threefish inside, the indifferentiability from the random oracle property of the
Skein hash would be violated.

2 Preliminaries

2.1 Description of Skein

Skein is a family of hash functions, based on the block cipher Threefish of which
the following versions are relevant for the SHA-3 proposal: Threefish-256 — 256-
bit block cipher with 256-bit key and Threefish-512 — 512-bit block and key.
Both the internal state I and the key K consist of Nw (Nw = 4, 8 for Threefish-
256,-512, respectively) 64-bit words. The Nw words of the s-th subkey Ks are
defined as follows:

Ks
j = K(s+j) mod (Nw+1), 0 ≤ j ≤ Nw − 4;

Ks
Nw−3 = K(s+Nw−3) mod (Nw+1) + ts mod 3;

Ks
Nw−2 = K(s+Nw−2) mod (Nw+1) + t(s+1) mod 3;

Ks
Nw−1 = K(s+Nw−1) mod (Nw+1) + s,

where s is a round counter, t0 and t1 are tweak words, and
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Table 1. Summary of the attacks on Skein and Threefish

Rounds Attack Method Reference

Skein/Threefish-256 (72 rounds)

24∗ Key recovery Related-key differential [7]

39 Key recovery Related-key rotational [10]

53 Distinguisher Rotational rebound Section 4

Skein/Threefish-512 (72 rounds)

25∗ Key recovery Related-key differential [7]

33∗ Key recovery Related-key boomerang [5]

35∗ Key recovery Known-related-key distinguisher [2]

42 Distinguisher Related-key rotational [10]

57 Distinguisher Rotational rebound Section 4

∗ — the attack was designed for the untweaked version.

t2 = t0 + t1, KNw = �264/3� ⊕
Nw−1⊕
j=0

Kj .

The formal description of internal rounds is as follows. Let Nr be the number of
rounds (Nr = 72 for Threefish-256,-512). Then for every 1 ≤ d ≤ Nr

– If d mod 4 = 1 add a subkey by setting Ij ← Ij +K
d/4
j ;

– For 0 ≤ j < Nw/2 set (I2j , I2j+1)← MIX((I2j , I2j+1));
– Apply the permutation π on the state words.

At the end, a subkey KNr/4 is added. The operation MIX has two inputs x0, x1

and produces two outputs y0, y1 with the following transformation:

y0 = x0 + x1

y1 = (x1 ≪R(d mod 8)+1,j
)⊕ y0

The exact values of the rotation constants Ri,j as well the permutations π (which
are different for each version of Threefish) can be found in [7]. We note that the
rotation constants were changed in the Skein tweak [8], and we attack the new
version although a similar analysis is applicable to the old version as well.

The compression function F (Hi−1,Mi) of Skein is defined as:

F (Hi−1,Mi) = EHi−1,Ti(Mi)⊕Mi,

where EK,T (P ) is the Threefish cipher, Hi−1 is the previous chaining value, Ti

is the tweak, and Mi is the message block.
The best known analysis of Skein is rotational distinguishers on the underlying

Threefish cipher [10], which attack 39 rounds of Skein-256 and 42 rounds of
Skein-512 (see Table 1).
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2.2 Rotational Cryptanalysis

The main idea of the rotational cryptanalysis is to consider a pair of words
where one is a rotation of the other. The (X,

←−
X ) is called a rotational pair [with

a rotation amount r], where
←−
X the rotation ofX by r bits to the left. A rotational

pair is preserved by any bitwise transformation, particularly by the bitwise XOR
and by any rotation. The probability that the rotational pair comes out of the
addition is given by the following formula[6]

P(←−−−x+ y =←−x +←−y ) =
1
4
(1 + 2r−n + 2−r + 2−n).

For large n and small r we get the following table:

r pr log2(pr)

1 0.375 −1.415

2 0.313 −1.676

3 0.281 −1.831

For r = n/2 the probability is close to 1/4. The same holds for rotations to the
right. When an addition of rotational inputs does not produce rotational outputs
then we say that the addition produced a rotational error.

The use of constants can violate the rotational property. Yet, if the constants
are rotational as well, then the property is preserved, i.e. if C =

←−
C then

←−
X⊕C =←−−−−

X ⊕ C.
Rotational analysis deals with constants by introducing rotational corrections

in pairs of inputs:
(X,
←−
Xmodified).

Then the rotational path is constructed so that the pre-fixed corrections and the
errors from the failed modular addition compensate the errors from the use of
constants.

We stress that in order to apply the rotational attack for the full scheme, all
its inputs must be rotational pairs [with corrections].

2.3 Rebound Attack

The rebound attack [13,16] was described as a variant of differential cryptanalysis
optimized to the cryptanalysis of hash functions, and at the same time can be
seen as a high-level model for hash function cryptanalysis. So far it was mainly
applied to AES-like constructions because of the simple way useful truncated
differential characteristics can be found in them for a number of rounds.

The rebound attack is aimed to construct solutions for the most expensive
part of a truncated differential trail. In the inbound phase, which covers only a
few rounds, we construct solutions that connect low-weight input and output
differences. In the outbound phase these solutions are propagated through the
other rounds in both directions.
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3 Rotational Distinguishers

In order to convincingly argue that a particular attack algorithm indeed shows
non-random behavior of a hash function or a compression function, we need to
argue that an attacker with only a black-box access to an ideal primitive of the
same domain and range is not able to produce the same behavior with the same
or better effort and probability.

Next in this section, we define a basic rotational distinguisher with corrections
and give bounds on complexity of the resulting problems. Any shortcut algorithm
will have to beat those bounds in order to make a convincing case for an attack.
To do this, we adapt two known distinguisher concepts. The q-multicollision
distinguisher of [4] will be the basis for a rotational distinguisher with corrections
fixed by the attacker.

3.1 Rotational Distinguishers with Fixed Corrections

Due to the presence of counters, the rotational input pairs in Skein never convert
to rotational output pairs. However, low-weight corrections applied to the input
pairs, admit such a conversion:

Skein(
←−
X ⊕ e) P=

←−−−−−−
Skein(X),

where Skein is the compression function F , with reasonably high probability. We
say that X is a rotational collision for function f , if

f(
←−
X ) =

←−
f (X ⊕ e).

When the rotational correction is not fixed, the rotational collision search com-
plexity is given by an equivalent of the birthday paradox and is about 2n/2.

However,we provide a stronger distinguisher for the Skein compression function
F , which asks for a set of rotational collisions with the same correction e:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

←−−−−
F (X1) = F (

←−
X1 ⊕ e);←−−−−

F (X2) = F (
←−
X2 ⊕ e);

. . .←−−−−
F (Xq) = F (

←−
Xq ⊕ e).

Since the value of e is defined from the first equation, each new rotational collision
costs about 2n for a random function, and less for the Skein compression function
as we show in the further text.

However, we prove the advantage of our distinguisher in a more strong setting
by taking into account the fact that the Skein compression function is built on
a block cipher EK(P ):

F (IV,M) = EIV (M)⊕M.
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We admit corrections only in the IV, so a rotational collision is formulated as

←−−−−−−
F (IV,M) = F (

←−
IV ⊕ e,←−M) ⇐⇒

⇐⇒ ←−−−−−
EIV (M)⊕←−M = E←−

IV⊕e
(
←−
M)⊕←−M ⇔ ←−−−−−

EIV (M) = E←−
IV⊕e

(
←−
M).

Thus the appropriate definition is as follows.

Definition 1. A set

{e; (P1,K1), (P2,K2), . . . , (Pq ,Kq))}

is called a rotational q-collision set for a cipher EK(·) if

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

←−−−−−
EK1(P1) = E←−

K1⊕e
(
←−
P1);←−−−−−

EK2(P2) = E←−
K2⊕e

(
←−
P2);

. . .←−−−−−
EKq(Pq) = E←−

Kq⊕e
(
←−
Pq).

We follow the line of the first attack on the full AES [4] and compare the prob-
lem of finding a rotational collision set for an ideal cipher with that for reduced
Threefish. Our results demonstrate that the versions of Threefish that we con-
sider do not behave like an ideal cipher, and, thus, does not provide required
security level for the Skein mode of operation (i.e., violate the random oracle
property).

The complexity of the generic attack in measured in the number of queries to
the encryption and decryption oracles of an ideal cipher.

Lemma 1. To construct a rotational q-collision set for an ideal cipher with an
n-bit block an adversary needs at least O(q · 2 q−2

q+2 n) queries on the average.

Proof. The proof is similar to the proof of the multicollision lemma in [4]. We
provide only a sketch of it.

First, we show that a rotational collision set is uniquely determined by q + 1
query parameters. Then for any such set we compute the probability that it gives
a collision set. The exact formula depends on the total number L of queries and
their configuration, but the lower bound is

L ≥ O(q · 2 q−2
q+2 n)

4 Rotational Rebound Attack on Skein

4.1 Overview

Our attack consists of three parts: an inbound phase, an acceleration phase, and
an outbound phase. In the inbound phase we prepare enough rotational pairs of
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Fig. 1. The complete rotational rebound attack on Skein-256, -512

Table 2. Structure of the rebound attack on Skein

Outbound Acceleration I Inbound Acceleration II

Rounds Probability Rounds Rounds Rounds

Skein-256 (53 rounds)

3-42 2−244 43-44 45-52 53-55

Skein-512 (57 rounds)

3-46 2−495 47-48 49-56 57-59

states for the outbound phase. The acceleration phase speeds up the outbound
phase. An illustration of the attack proposal is given Fig. 1), while also given in
Table 2.

The probability of the outbound phase depends on the values of particular
key bits (see details in Section 4.4). As a result, we put global conditions on the
keys, which are given in Tables 3 and 4.

For the distinguisher, we produce many M and K, such that

E←−
K⊕e

(
←−
M) =

←−−−−−
EK(M),

where E is the Threefish-256 reduced to rounds 2-54 (2-58 for the 512-bit ver-
sion). For the Skein compression function, we produce many M , IV , and T such
that

F (
←−−−
IV ||T ⊕ e,←−M) =

←−−−−−−−−−
F (IV ||T,M)

for the same e. The total complexity is about 2244 per pair in Skein-256, and
2495 per pair in Skein-512. Therefore, we are able to construct a set of rotational
collisions for the Skein compression function with complexity lower than for
a random function. Also, we can construct a rotational q-collision set for the
cipher Threefish with complexity lower than for an ideal cipher. This proves the
relevance of our attack.
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Table 3. Pre-fixed values of key bits in Skein-256. The middle 58 bits of ki coincide
(with regard to the rotation) in related keys.

K0 K1 K2 K3 K4

K 0111..10 0100..11 0011..10 0000..11 0101..01
←−
K ⊕ e 11..0011 00..1010 11..0110 00..1001 01..0011

Table 4. Pre-fixed values of key bits in Skein-512

K0 K1 K2 K3 K4 K5 K6 K7 K8

K 0111..01 0100..01 0011..01 0000..01 0111..10 0000..01 0011..01 0000..01 0001..10
←−
K ⊕ e 11..0011 00..0010 11..0010 00..0001 11..0011 00..0010 11..0010 00..0001 01..0101

4.2 Inbound Phase

The inbound phase can be seen as the inner loop of the attack algorithm. The
goal is to use all degrees of freedom available to efficiently provide enough start-
ing points for the outbound part. The details depend on the variant of Skein
considered, the choice of round key additions that are covered by the inbound
phase, etc. In the following we describe the technique in a way that is indepen-
dent of such details.

Let us consider 8 consecutive rounds. The addition of the round key Ks in
the middle will be our matching point. We enumerate a large set of internal
states both before and after the round key addition such that (1) the expected
rotational trail is followed in the 8 rounds, and (2) it is possible to compute a
subkey Ks that matches the global constraints set up for later phases of the
attack, and connects those two internal states. In experiments we found that by
simply forcing a part (less than a quarter of the bits) of the state to a particular
value can lead to pairs following a rotational trail with probability 1 for 3-5
rounds in forward direction. For the inbound phase we actually need less. Two
rounds in forward direction and backwards direction is enough for both chunks
of 4 rounds we operate on independently. In addition, for those two rounds,
many differentials exist that allow for manipulation of the outputs of those 4-
round chunks in a way that resembles message modification techniques in MD5
or SHA-1 [21,20]. To connect those chunks of 4-round computations, we use the
degrees of freedom in the choice of the subkey Ks. The global conditions

On the other hand, note that this does not fully determine the key yet, as the
compression function also has a tweak input which serves as another source for
degrees of freedom. This leaves some control over subkeys Kk+1 and Kk−1.

4.3 Acceleration Phase

The acceleration phase of the attack may be seen as part of the inbound phase
or part of the outbound phase. Technically, starting from here computations
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are done in an inside-out manner, yet remaining degrees of freedom are used to
accelerate the search for right pairs in the outbound phase.

As soon as we get a right pair of computations for the inbound phase, we
produce many more of them from the given one as follows. We follow the simple
idea of neutral bits as e.g. applied in the analysis of SHA-0 and SHA-1 [3].
We view them as auxiliary path [9] (also formalized as tunnels or submarines
in [11,19,17]) and apply the differences specified by the path to the key and the
tweak.

The configuration of the auxiliary path for Skein-256 is given in Table 5. We
apply the original path difference to the first execution of the pair, and the
rotated path difference to the second execution.

We consider ⊕-differences here, so we have to take into account the fact that
the tweak and the key are added by the modular addition. Therefore, we choose
the difference so that the probability of the carry is low. However, since adjacent
bits are often neutral as well, a carry bit may still preserve the rotational pair.

Table 5. Configuration of the auxiliary path for Skein-256. Ki is the i-th word of the
first subkey K0.

Round Subkey Subkey words

45 K11 K1 K2 K3 K4

0 0 δ δ

Tweak Tweak words

T 11 T⊕ T0

0 δ

49 K12 K2 K3 K4 K0

0 δ δ 0

T 12 T0 T1

δ δ

53 K13 K3 K4 K0 K1

δ δ 0 0

T 13 T1 T⊕
δ 0

In Skein-256 we take various δ and apply the resulting auxiliary path Pδ to
the right pair. We choose δ so that the differences in the subkey K12 compensate
each other. Then we check whether the modular additions in rounds 43-44 and
53-55 are not affected by the modification. If so, we get another rotational pair
for rounds 43-55.

In experiments, we found that 44 of the 64 possible individual bits that re-
sult in a local collision of the latter type behave neutral with probability larger
than 0.75 for three rounds in forward direction and simultaneously two rounds
in backwards direction, 37 consecutive bits of those have a probability very close
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to 11. Details for this phase will be found in Appendix in Table 6. Overall,
the results mean that every time those five rounds in the outbound phase are
computed, and the effort of those is less than 237, the amortized effort for those
computations will be negligible. If the effort for those five rounds is more, the
effect of this acceleration phase, the speed-up, still grows roughly exponential
with the number of neutral bits used.

4.4 Outbound Phase

We follow the idea of [10], and introduce corrections in the Threefish keys. But
unlike [10], we consider modular corrections, i.e. we define the related-key pair
by (K,

←−
K + e), where e is a low-weight correction, “+” is modular addition,

and the rotation amount is fixed to 2 to bypass the key schedule constant. Each
64-bit word w in Skein can be seen as a concatenation of two words w1, w2, i.e.
w = w1||w2 where w1 represent the two most significant bits of w and w2 the
rest 62 bits.

To obtain a high number of rounds in the outbound phase, we carefully choose
optimal corrections and fix some of the key bits. More specifically, we found the
best values of key bits with the optimized exhaustive search. Now we explain
how to optimize the search in Skein-256 (Figure 2).

We consider two rounds of Skein-256 with a subkey addition in between
(rounds 4-5, 8-9, etc.). Note that the outer double rounds (6-7, 10-11, etc) simply
keep the rotational pairs, so the probability does not depend on the number of
round. The outer rounds probability is 2−8.5 for Skein-256 and 2−17 for Skein-
512.

We denote the four words of the internal state before the double rounds by
(A,B,C,D). Therefore, we have

(A,B,C,D) = (a1||a2, b1||b2, s1||s2, t1||t2);
(
←−
A,
←−
B,
←−
C ,
←−
D) = (a2||a1, b2||b1, s2||s1, t2||t1).

Similarly, we denote by

K = [k1||k2, k3||k4, k5||k6, k7||k8];
←−
K ⊕ e = [k′2||k′1, k′4||k′3, k′6||k′5, k′8||k′7].

the rotational pair of subkeys. Then the corrections ei can be defined as

ei = k′2i+1||k′2i+2 − k2i+1||k2i+2.

In Figure 2 the pairs are presented one a top of another with the symbol ”- - - - -
- -” between them. By Cz1,...,zk

we denote the carry from the sum z1+. . .+zk, i.e.
1 The fact that carries have to behave equivalently for round key additions in both

forward and backward direction puts constraints on the inbound phase which are
ignored here to keep the exposition simple. This either results in less degrees of
freedom available to perform the exhaustive-search part of the attack, or reduces the
number of possible combinations of neutral bits, and has to be taken into account
in the overall estimate of the time complexity.
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<<<

a1

∣∣∣∣a2

a2||a1

b1||b2
b2||b1

[a1 + b1 + Ca2,b2 ]
∣∣∣∣[a2 + b2]

[a2 + b2 + Ca1,b1 ]
∣∣∣∣[a1 + b1]

r1||r2
r2||r1

[e1 +D2]||e2
[e2 +D1]||e1

[k′8 + i1 + Ck′
7,i2 ]||[k′7 + i]

k7||k8 + i

[e1 + k7 +D2 + Ce2,k8,i]||[e2 + k8 + i]

[e2 + k′8 + i1 +D1 + Ce1,k′
7,i2 ]||[e1 + k′7 + i2]

<<<

s1
∣∣∣∣s2

t2||t1
t1||t2

s2||s1

[s1 + t1 + Cs2,t2 ]
∣∣∣∣[s2 + t2]

[s2 + t2 + Cs1,t1 ]
∣∣∣∣[s1 + t1]

v1||v2
v2||v1

[w1 + U2]||w2

[w2 + U1]||w1

k′4||k′3
k3||k4

k′6||k′5
k5||k6

[w1 + k3 + U2 + Cw2,k4 ]||[w2 + k4]

[w2 + k′4 + U1 + Cw1,k′
3
]||[w1 + k′3]

k′2||k′1
k1||k2

[
s2 + t2 + k′6 + Cs1,t1,k′

5

] ∣∣∣∣[s1 + t1 + k′5]

[s1 + t1 + k5 + Cs2,t2,k6 ]
∣∣∣∣[s2 + t2 + k6]

[
a2 + b2 + k′2 + Ca1,b1,k′

1

] ∣∣∣∣[a1 + b1 + k′1]

[a1 + b1 + k1 + Ca2,b2,k2 ]
∣∣∣∣[a2 + b2 + k2]

f1||f2
f2||f1

[
s2 + t2 + k′6 + f2 + Cs1,t1,k′

5,f1

] ∣∣∣∣[s1 + t1 + k′5 + f1]

[s1 + t1 + k5 + f1 + Cs2,t2,k6,f2 ]
∣∣∣∣[s2 + t2 + k6 + f2]

x1||x2

x2||x1

[
a2 + b2 + k′2 + x2 + Ca1,b1,k′

1,x1

] ∣∣∣∣[a1 + b1 + x1 + k′1]

[a1 + b1 + k1 + x1 + Ca2,b2,k2,x2 ]
∣∣∣∣[a2 + b2 + x2 + k2]

Fig. 2. Rotational pair through two rounds with key addition of Skein-256

when zi < 2r, then Cz1,...,zk
= (z1+. . .+zk) ≫r. The variables r, v,D,U , x, f are

introduced to maintain the 2+62 bit representation of the words. With i = i1||i2
we denote the round counter. Since the rotation preserves the rotational property,
we can omit the rotations in the second round of the double subkey rounds, and
only require rotational output pairs after the additions in this round. To obtain
such pairs for the first output, the following conditions have to hold:

a1 + b1 + k1 + x1 + Ca2,b2,k2,x2 = a1 + b1 + x1 + k
′
1

a2 + b2 + x2 + k2 = a2 + b2 + k′2 + x2 + Ca1,b1,k′
1,x1

Similarly, for the rest 3 outputs, we get the following conditions:

w1 + k3 + U2 + Cw2,k4 = w1 + k′3
w2 + k4 = w2 + k′4 + U1 + Cw1,k′

3

s1 + t1 + k5 + f1 + Cs2,t2,k6,f2 = s1 + t1 + k′5 + f1
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s2 + t2 + k6 + f2 = s2 + t2 + k′6 + f2 + Cs1,t1,k′
5,f1

e1 + k7 +D2 + Ce2,k8,i = e1 + k′7 + i2

e2 + k8 + i = e2 + k′8 + i1 +D1 + Ce1,k′
7,i2

The above 8 equations, can be reduced to:

k′1 − k1 = Ca2,b2,k2,x2 (1)
k′2 − k2 = −Ca1,b1,k′

1,x1 (2)

k′3 − k3 = Cw2,k4 + U2 (3)
k′4 − k4 = −(Cw1,k′

3
+ U1) (4)

k′5 − k5 = Cs2,t2,k6,f2 (5)
k′6 − k6 = −Cs1,t1,k′

5,f1 (6)

k′7 − k7 = Ce2,k8,i +D2 − i2 (7)
k′8 − k8 = i− i1 − (Ce1,k′

7,i2 +D1) (8)

This system gives as a hint how to choose the corrections ei and the values of
some of the subkey bits. For each carry Cz1,...,zk

it holds 0 ≤ Cz1,...,zk
< k.

Yet the probability that a carry will take a specific value in this range, when zi

are randomly chosen, is not uniformly distributed. When the carries come from
sums with 4 terms, the probability is highest for the values 1 and 2. Therefore,
for our brute force, we limit the differences k′1− k1, k2− k′2, k′5− k5, k

′
6− k6, only

to these two values.
The variables U1,U2,D1,D2, are determined as follows:

U1 = ((s2 + t2 + Cs1,t1)⊕ v2)− ((s2 + t2)⊕ v2)
U2 = ((s1 + t1 + Cs2,t2)⊕ v2)− ((s2 + t2)⊕ v2)
D1 = ((a2 + b2 + Ca1,b1)⊕ r2)− ((a2 + b2)⊕ r2)
D2 = ((a1 + b1 + Ca2,b2)⊕ r1)− ((a1 + b1)⊕ r1)

These variables can take only odd values and a zero. Since Cw2,k4 can take 0, 1
and U2 can take 0, 1 it means that k′3 − k3 (see (3)) can also take 1 and 2 (the
same values as the one for the subkeys discussed above). A similar reasoning
is applicable to the difference k4 − k′4. The differences k′7 − k7, k8 − k′8 that
are left, are the only one that actually depend on the round counter. Yet, since
Ce2,k8,i can take the values 0, 12, i.e. it is not fixed but rather flexible, the whole
expression Ce2,k8,i + D2 − i2, for any i2 can take the values 1, 2 (recall that D2

can be any odd value). Therefore the difference k′7 − k7 can be 1 or 2 (with
probability that depends on the round counter i2). Finally, let us focus on the
difference k′8 − k8 which is determined by the expression i− i1 − Ce1,k′

7,i2 −D1.
For a specific counter i, when k′7 + e2 = 0, the carry Ce1,k′

7,i2 is fixed. Hence in
this case, the whole expression can take only one value, 1 or 2, but not the both.
This limits k′8 − k8 to only a single value.
2 It can take the value 2 as well, but the probability is really low because the counter
i is only 4-5 bits.
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Now recall that ki, k
′
i are the values of the particular subkey words, and not

the key words. Once we fix all of the differences in the subkey words of some
round, then in the next round, practically the same differences will appear shifted
by one index. Also, since the value of the difference in the last key word K4 is
determined from the other words, we would have to fix the values of k1, k3, k5, k7

and the two least significant bits of k2, k4, k6, k8 so that the difference in K4 will
be as expected. We fix only two bits because we choose the initial difference to
be 1 or 2.

In our brute force search, first we find good values for the differences and the
two most significant key bits of each key word. We try all possible differences
1 or 2, and then we fix the key bits values, such that the difference in the two
most significant bits of K4 will also be 1 or 2, and we take into account the
limitation on k′8−k8 for each counter. Then, we try all possible differences 1 and
2 in the least 62 bits of the each key word. We choose the differences that pass
with highest probability through the double subkey rounds. Also, we fix the 2
least significant bits in each key word, so that the difference in the least 62 bits
of K4 will also be 1 or 2. Finally, to increase the probability we fix the values of
the bits 60,61 (the next two bits after the 2 most significant bits). This results
in fixing the two most significant bits of k2, k4, k6, k8 which in return increases
the probability that the carries take the expected values.

Rather than finding the above values through a theoretically small brute force,
we have tested our approach on a real double subkey rounds Skein-256. That is,
most of the values, were found and confirmed to be good by taking rotational
input pairs of states and rotational input pair of key words with corrections and
testing the probabilities on double subkey rounds. In some cases the theoretical
probabilities did not coincide with the empirical. This is because there are some
hidden dependencies. For example, both U1 and k′5 − k5 depend on s2, t2. Once
we had the optimal corrections (and some bit values) of the keys for the double
subkey rounds, we found the probability for 4 consecutive rounds. We start with
a random rotational input pair of states and go through three rounds. Then we
add the subkeys (with the particular counters) and then we go for an additional
round.

We fix 6 bits in K: 4 MSBs and 2 LSBs, and 6 bits in KB: 2 MSBs and 4
LSBs. The values of these bits are given at Table 3. In Skein-256 the probability
to pass rounds 3–42 (i.e. 10 key additions) is 2−244. A detailed table with round-
by-round probabilities is given at Table 7 of the Appendix.

Optimal values for the differences and some key bits can be obtained for Skein-
512 as well. A property of the double subkey rounds Skein-512 that helps to run
the brute force search is that these two double subkey rounds can be split into
two non-intercepting halves (see Fig.3 in the Appendix). Then, for each half, the
optimal differences can be found independently. Note that this simply speeds
up the brute force for optimal differences and values, but has no impact on the
actual probability of the inbound phase. Unlike Skein-256, in Skein-512 we could
not find empirically the probabilities for 4 consecutive rounds because they were
too low. Hence, we considered each 4 rounds as double round + double subkey
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round and simply multiplied the probabilities of these two. The values for the
optimal 6 bits of each key word in Skein-512 are given in Table 4. In Skein-512
the probability to pass rounds 3–46 is about 2−494 (details in Table 8).

4.5 Probabilities in the Khovratovich-Nikolić Analysis

The paper [10] provided the rotational analysis of Threefish on up to 42 rounds.
The probability estimates were based on several independence assumptions,
which must be corrected as follows:

– The probability of the rotational pair propagation through double
rounds without key addition (2-3, 6-7, etc.) is not a multiplication of prob-
abilities for a single round. The problem is that two consecutive modular
additions ((a� b) � c) have lower rotational probability than expected. For
example, the rotational probability of one round in Skein-256 is 2−3.35 for
the rotation by 2, but the probability of two rounds is 2−8.52 instead of
22·(−3.35) = 2−6.7.

– The rotational inputs to the round before the key addition (4, 8, etc.) are
not uniformly distributed, and this partly compensates the negative effect
of the dependency (see above). We note that the non-uniformity of inputs
is best approximated with restricting the two most significant bits from the
value {00}.

– The propagation of the rotational inputs through the double round with
the key addition in Threefish-256, with the appearance and the correction
of errors, can not be considered as two independent events (i.e., as getting
rotational pairs in the further MIX operations independently). As a result,
the probability of this event can not be computed as a multiplication of other
probabilities, and must be computed as a single value.

4.6 Degrees of Freedom Analysis

Now we discuss the following question: How often can this inbound phase be
repeated? After fixing the differences and the corrections, for Skein-256 we have

256 + 256 + 128 = 640

degrees of freedom available to perform the attack. The outbound phase fixes
24 of the 256 bits of the key, (also 12 bits of the 128-bit tweak), and in addition
may need up to 256 bits to follow the longest possible trail with high probability.
What remains is

640− 36− 256 = 348

degrees of freedom to be spent by the inbound and the acceleration phase. If vari-
ants with less rounds are targeted, this number is higher, as less repetitions are
needed for the shorter outbound phase. Overall, this is enough for our purposes.
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4.7 Summary and Complexity Estimates

We experimentally verified the probabilities of the outbound phase, and took
various dependencies into account, and also experimentally verified parts of the
acceleration and inbound phase.

Using the Skein-256 compression function as an example, we describe the
resulting attack. As illustrated already in Fig. 1, the 8-round inbound part is
performed close to the output of the cipher/compression function, the 5 round
acceleration area (3 rounds in forward direction and 2 rounds in backward direc-
tion) surrounding it. The majority of the inside-out computation is then done
in backwards direction, covering about 40 rounds. In total this gives about 53
rounds. Additionally, early stopping techniques will only require the computa-
tion of a small number of rounds in the outbound part before another trial is
made, saving a factor of the computational complexity that is in the order of
the number of rounds.

We estimate the amortized cost for the rounds covered by inbound and accel-
eration phase for both Skein-256 and Skein-512 by 1, as there are plenty of long
ranging neutral bits that cover up costs in solving the right pairs in those inner
rounds. In Skein-256, we will spend 2244 in the outbound+acceleration phases
to find 2244 starting pairs for the outbound phase. One such pair will pass this
phase with probability close to one. Therefore with an effort that is roughly
equivalent to 2244 calls to the compression function of Skein-256 we can find one
rotational pair of messages and chaining values (with corrections) that produces
a rotational pair of updated chaining values. To produce 27 such pairs, i.e. to find
27-rotational collisions in Skein-256, we only need 27+244 = 2251 calls. On the
other hand, in a random function one has to make at least 27 · 2 128−2

128+2 256 ≈ 2255

calls (see Lemma 1).
Similarly, for the compression function of Skein-512, we can create 28 rota-

tional collisions with 28+495 = 2503 compression function calls, while a random
function would require 28 · 2 256−2

256+2 512 ≈ 2512 calls.

5 Conclusion and Future Work

Our results do not threaten the practical use of full-round Skein or Threefish.
However, we show that these constructions behave non-random in settings where
all or most inputs can be chosen, and this for more rounds than initially thought.
We do not assume any other modifications. We argue that variants of Threefish
reduced from 72 to about 53/57 rounds is not an ideal cipher in a similar way
as AES-256 was shown not to be an ideal cipher in the first attack on AES [4].
For the Skein compression function a similar argument is made. Since Skein has
a very light-weight output transformation, our non-randomness results can also
carry over to the actual hash function. There, less degrees of freedom limit, but
not prohibit, the applicability of some of our new techniques. To summarize, the
following ideas and approaches lead to the improved results:
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– The rebound approach as a high-level model for the attack.
– Considering rotational corrections with respect to integer addition instead

of XOR.
– Based on analytic reasoning, we find an efficient search method for fixing a

subset of input bits before other phases of attacks.
– Using the degrees of freedom in the internal state to efficiently solve for the

inner 8-rounds.
– Using the 8-round local collision as long-range neutral bits in an inside-out

manner to speed up the outbound phase.

It will be interesting to study how rotational properties found in other construc-
tions, some of which have been reported recently, can also be amplified in a way
similar to what we demonstrated in this paper for Skein. The inbound and accel-
eration techniques we use in our analysis are to a large extent independent of the
statistical property that is meant to be produced at the inputs and outputs of
Skein. Hence, in addition to the rotational attacks described in this paper, also
more traditional differential attacks aiming for collision or near-collision attacks
will be able to take advantage of those techniques.
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A Details

Table 6. Neutral bits in the acceleration phase. These are used in an inside-out manner,
with those computations being 8 rounds apart. A single 64-bit word is used, enumera-
tion is from 0 (LSB) to 63 (MSB). The probabilites are measured over 100 right pairs
over two rounds backwards and three rounds forwards direction for Skein-256.

bit prob. bit prob. bit prob. bit prob. bit prob. bit prob. bit prob. bit prob.

7− 17 1.00 18 0.99 19 1.00 20 0.99 21 1.00 22 0.99 23 1.00 24 0.99
25 0.95 26 0.94 27 0.93 28 0.82 31 0.79 33 0.86 36 0.77 38− 45 1.00
46 0.99 47 1.00 48 0.99 49 0.98 50 0.97 51 0.96 52 0.96 53 0.96
54 0.90 55 0.84

Table 7. Round-by-round rotational probabilities for Skein-256

Rounds 1-2 3-5 6-9 10-13 14-17 18-21

Prob. log2 − −15.13 −21.97 −21.84 −24.44 −24.69

Rounds 22-25 26-29 30-33 34-37 38-41 42

Prob. log2 −23.83 −26.09 −23.44 −31.75 −27.09 −3.3

Table 8. Round-by-round rotational probabilities for Skein-512

Rounds 1-2 3 4-5 6-7 8-9 10-11 12-13 14-15

Prob. log2 − −6.7 −26.35 −17.05 −26.21 −17.05 −24.26 −17.05

Rounds 16-17 18-19 20-21 22-23 24-25 26-27 28-29 30-31

Prob. log2 −28.26 −17.05 −28.29 −17.05 −23.79 −17.05 −23.56 −17.05

Rounds 32-33 34-35 36-37 38-39 40-41 42-43 44-45 46

Prob. log2 −27.18 −17.05 −32.23 −17.05 −35.17 −17.05 −31.86 −6.7
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Fig. 3. Double subkey round in Skein-512 divided into two nonintersecting halves –
red and blue



Finding Second Preimages of Short Messages for
Hamsi-256

Thomas Fuhr

ANSSI, Paris, France and TELECOM-ParisTech, Paris, France
thomas.fuhr@ssi.gouv.fr

Abstract. In this paper we study the second preimage resistance of
Hamsi-256, a second round SHA-3 candidate. We show that it is possible to
find affine equations between some input bits and some output bits on the
3-round compression function. This property enables an attacker to find
pseudo preimages for the Hamsi-256 compression function. The pseudo
preimage algorithm can be used to find second preimages of the digests of
messages M with complexity 2251.3, which is lower than the best generic
attacks when M is short.

Keywords: hash functions, Hamsi, second preimage.

1 Introduction

Hamsi is a family of hash functions that have been submitted to the NIST SHA-3
competition by Küçük [4]. It contains 4 versions, with respective outputs of 224,
256, 384, and 512 bits. It is based on the Merkle-Damgård domain extender,
however its design is rather original as it does not make use of a block cipher in
Davies-Meyer mode. The Hamsi compression function uses short message blocks
and its security relies on a complex message expansion. Instead of a keyed per-
mutation, a fixed permutation is applied to the concatenation of the incoming
chaining variable and the expanded message. The new chaining variable is ob-
tained by truncation of the output of the permutation and feedforward with the
previous chaining variable.

Previous work. Several distinguishers on the Hamsi compression function have
already been discovered. Some of them rely on the fact that the algebraic degree
of the internal permutation is small. In [1], Aumasson noticed that the algebraic
degree of 5 rounds of the compression function as a function of the incoming
chaining variable is at most 243. Aumasson and Meier then enhanced this obser-
vation to find zero-sum distinguishers on a 6-round version of the compression
function [2]. Several results of differential cryptanalysis have also been found
on the compression function. As a difference on the message has only a small
probability to propagate, they concern pseudo near collisions on the compression
function [8,9]. Calik and Turan found out that for some given differences in the
incoming chaining variables, the difference on one output bit of the compression
function can be predicted with probability one, leading to a pseudo preimage
attack [3].

M. Abe (Ed.): ASIACRYPT 2010, LNCS 6477, pp. 20–37, 2010.
c© International Association for Cryptologic Research 2010
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Our contribution. In this article we describe a weakness of the Hamsi compres-
sion function, that can be used to find second preimages for Hamsi-256 with
a complexity equivalent to 2251.3 compression evaluations, improving the best
known attack for short messages. This is the first attack that breaks the generic
bounds for one of the second round SHA-3 candidates. Our method can be re-
lated to cube attacks [5] and AIDA [11]. It is based on an accurate choice of
the variables, and on the setting of some initial conditions on the internal state
to control the propagation of these variables and to prevent the algbraic degree
from growing. We aim at solving a system of polynomial equations, and herefore
we set the values of some variables to constants and try to solve the system
with the remaining variables. Our main idea consists in setting some conditions
on the message block and the chaining variable in order to find affine relations
between the output of the compression function and some bits of the incoming
chaining variable. These relations can be used to find second preimages for the
full hash function.

Related work. Shamir and Dinur independently discovered an algebraic second
preimage attack against Hamsi-256 based on cube techniques. Their attack was
presented at the Crypto 2010 rump session, and also breaks the complexity of
generic attacks against single-pipe Merkle-Damgård hash functions when the
initial message is short [10].

Outline of the paper. In Section 2 we briefly describe the hash function Hamsi-
256. In Section 3, we display two algebraic properties of the S-box used in Hamsi,
and show how to use it to write the result of the first two rounds of the com-
pression function as an affine function of some bits of the chaining variable.
After that we show how to extend this property to find affine equations on the
full Hamsi-256 compression function in Section 4. Under some conditions on the
message block and the incoming chaining variable, we managed to find 14 (resp.
11) output bits of the compression function that can be written as an affine
function of 7 (resp. 8) bits of the incoming chaining variable, the message block
and the rest of the chaining variable being fixed. In Section 5, we describe how to
use these equations to find pseudo preimages for the full Hamsi-256 compression
function, along with some optimization techniques and an evalation of the com-
plexity1. Then, in Section 6, we show how to use the pseudo preimage algorithm
to find second preimages for the full hash function with a complexity equivalent
to 2251.32 compression evaluations, which is our main result. Finally, in Section 7,
we study the application of generic techniques on the Merkle-Damgård domain
extender variant used in Hamsi. The resulting complexity is slightly higher than
in the case of the Merkle-Damgård domain extender, due to the fact that the
message blocks have less entropy than required for a direct application of generic
techniques. Therefore our second preimage attack is more efficient than generic
techniques when the initial message is short.
1 A pseudo preimage of a chaining variable C∗ is a couple (m, C) where m is a message

block and C is a chaining variable such that the result of the compression function
F(C, m) is C∗.
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Notation. Throughout the paper, variables represented by small letters are 32-
bit variables, and capital letters stand for the whole internal state, or messages.
The j-th LSB of variable v is denoted v(j).
H(M) represents the digest of message M by Hamsi-256. F(C,m) stands for

the output of the Hamsi-256 compression function applied to chaining variable
C and message block m, and the iteration of the compression function on several
message blocks is defined recursively as follows:

F1(C,m1) = F(C,m1)
∀i ≥ 2, Fi(C,m1, . . . ,mi) = F(Fi−1(C,m1, . . . ,mi−1),mi)

2 Description of Hamsi-256

In this article we focus on Hamsi-256. Our technique also applies to Hamsi-224,
however, unlike for Hamsi-256, it does not break the generic bounds.

Hamsi-256 uses a compression function that maps a 256-bit chaining variable
Hi−1 and a 32-bit message block to a new 256-bit chaining variable. It consists
of the following operations:

Message expansion. Firstly, the 32-bit message block m is expanded into a 256-
bit variable E(M) = (m0, ...,m7). The expansion function is a linear code over
GF (4).

Concatenation. The expanded message is then concatenated with the incoming
chaining variable C = (c0, ..., c7) to produce a 512 state S represented by a 4×4
matrix of 32-bit registers. The concatenation function is the following:

C : (E(M), C)→ ( s0, s1, s2, s3, = ( m0, m1, c0, c1,
s4, s5, s6, s7, c2, c3, m2, m3,
s8, s9, s10, s11, m4, m5, c4, c5,
s12, s13, s14, s15 ) c6, c7, m6, m7 ).

Round function. After the concatenation the following round permutation is
applied three times (or eight times for the last message block):

R : S → L(S(A(S))),

where A consists in adding a constant value and a counter to the state, S
is a substitution layer based on the use of the second 4-bit to 4-bit S-box of
Serpent and L is a diffusion layer that operates on 4 sets of 4 32-bit variables in
parallel.

More precisely, S consists in applying, for all i ∈ {0 . . .3} and j ∈ {0 . . .31},
the S-box to bits j of words si, si+4, si+8, si+12. In other words, the same S-box
is applied in parallel to the 128 columns of the internal state.
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Table 1. S-box used in Hamsi. Inputs and outputs in hexadecimal, lsb of x corresponds
to words s0, . . . , s3.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] 8 6 7 9 3 C A F D 1 E 4 0 B 5 2

The diffusion layer works as follows. It takes as inputs (a, b, c, d) = (s0, s5, s10,
s15) (resp. (s1, s6, s11, s12), (s2, s7, s8, s13), (s3, s4, s9, s14)) and consists of the
following operations:

a := a ≪ 13
c := c ≪ 3
b := (b ⊕ a⊕ c) ≪ 1
d := (d⊕ c⊕ (a� 3)) ≪ 7
a := (a⊕ b⊕ d) ≪ 5
c := (c⊕ d⊕ (b� 7) ≪ 22

Truncation and feedforward. After the third round, the output of the compres-
sion function is obtained by applying a truncation function to the state and
xoring the result to the former chaining value.

T : S → Σ = (s0, s1, s2, s3, s8, s9, s10, s11)
X : Σ → C∗ = C ⊕Σ.

Domain extender. To build a variable-length hash function, Hamsi makes use of
the Merkle-Damgård construction. The padding consists in concatenating to the
message a “1” and as many “0”s as necessary to get an integer number of blocks,
and then by further concatenating the message length encoded on 64 bits. For
the last block, the permutation consists of 8 rounds (instead of 3).

3 An Observation on the Two-Round Hamsi-256
Compression Function

In this Section we focus on a reduced version of the Hamsi-256 compression
function, where the internal permutation is reduced to two rounds. The result
we get will be used in the following Sections to break the full version of Hamsi-
256. We show how to find pseudo preimages for this reduced-round version of
the compression function.

3.1 Study of the Hamsi S-Box

On the Hamsi S-box we notice the following properties.
We use the fact that S[9] = 1, S[C] = 0, S[B] = 4, and S[E] = 5 to deduce

that
∀(x, b) ∈ {0, 1}2, S[(x, b, x̄, 1)] = (x+ b, 0, b, 0). (1)
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As a result, only one bit of the output depends on x. Similarly we have S[3] = 9
and S[9] = 1, which leads to

∀x ∈ {0, 1}, S[(1, x, 0, x̄)] = (1, 0, 0, x). (2)

If the input of an S-box depends on only one variable bit, then the output of the S-
box can be expressed as an affine function of this bit. with that in mind, properties
1 and 2 have been found according to the following criteria. First, only one output
bit of the S-box should depend on x. Second, input bits 0 and 2 or 1 and 3 must
not depend on x, so that for an appropriate choice of a first round S-box, only the
input bits coming from the chaining variable depend on x.

3.2 An Interesting Set of Variables

Let us now consider any value of the message block m. Without knowing the
incoming chaining value, we can compute s0, s1, s6, s7, s8, s9, s14, s15 after the
first round constant addition. Let us now suppose that the j-th bit of s14 is
s
(j)
14 = 1. Then, independently of the value of s(j)6 , if s(j)2 = x(j) and s(j)10 = x(j),

only the first output bit of the j-th S-box of the 3-rd column will depend on x(j)

(according to equation 1). Let J be a set of variables that satisfies this property.
We can then define one variable bit x(j) ∈ {0, 1} for each j such that s(j)14 = 1.

After the first S-box layer, only the word s2 depends on the variable set X =
{x(j)}j∈J , through an affine relation. After the first round diffusion layer and
the second round constant addition, words s2,s7,s8, and s13 depend linearly on
X , which means that only one input bit of each S-box of the second substitution
layer can depend on X . As a consequence, the output of this layer is also an affine
function of X . The second diffusion layer, the truncation and the feedforward
cannot increase the degree, so the whole output of the compression function is
an affine function of X .

3.3 Building and Solving the Linear System

We can then try to invert the 2-round compression function F , ie to find a
message block M and a chaining value C that maps to a given value C∗. The
idea is to express the output of the compression function as an affine system of
a given set of variables, and to solve this system. With an appropriate choice
of variables, we know that the system is affine but we first need to compute its
coefficients. To achieve it we do the following:

1. Choose a message block M and compute the resulting value of s14 before
the first substitution layer.

2. Compute the resulting set of variables X = {x(j)}j∈J . If |J | < 16, choose
another value for M .

3. Choose a chaining value C such that for all j ∈ J , s(j)2 ⊕ s(j)10 = 1 after the
first constant addition. C is then divided into a variable part (the bits c(j)0

and c(j)4 for j ∈ J) and a constant part (the other bits).
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4. Compute F(M,C) to get the constant coefficients of the system.
5. For each j ∈ J , derive Cj from C by complementing the values of c(j)0 and
c
(j)
4 . Compute F(M,Cj) ⊕ F(M,C) to get the coefficients of x(j), using an

interpolation method.
6. Solve the affine system of 256 equations in |J| unknowns to find a preimage

of C∗. If it has no solution, choose another value of the constant part of C.
If all the values have been tried, increase the value of M .

We can then assume that the complexity of solving the resulting equation system
is smaller that the complexity of one evaluation of the compression function. To
avoid useless computation, one can for example try to find solutions to subsys-
tems, and abort as soon as an inconsistency is detected. Each system allows us
to test 2|J| values of F(M,C) with a complexity of less than |J |+ 2 evaluations
of the compression function. As |J | ≥ 16, the total complexity of this algorithm
is about 18× 2256−16 ≈ 2244 compression evaluations.

4 Linear Equations for the Full Hamsi-256 Compression
Function

In this Section we show how to apply similar techniques to find linear equations
for the full Hamsi-256 compression function.

If we try to use the same property on the S-box as in the previous Section, we
cannot find any large set of variables that lead to linear equations. To this end,
property 2 is more interesting. If the message block is such that before the first
substitution layer, s(j)0 = 1 and s

(j)
8 = 0, if we set s(j)4 = x(j) and s

(j)
12 = x(j),

only the j-th bit of s12 depends on x(j) after the S-box layer. The same remark
applies to s1, s5, s9, s13, with s(j)5 = y(j), s(j)13 = y(j), s(j)1 = 1, and s(j)9 = 0,.

In comparison with the technique used in Section 3, we use more freedom
degrees (for each variable, two bits of the message and one bit of the chaining
variable). However, as s12 is the d input of the diffusion layer, the dependence
in x(j) does not propagate fast during the first round.

The internal state S before the permutation rounds can then be divided into
three parts:

– Variable bits: The sets of variables X,Y .
– Conditional bits: Bits of the initial internal state that must take a given

value so that the dependence of the internal state in the variables after the
first substitution layer are as described in equation 2. Each Variable bit
requires the definition of three Conditional bits: two on the message block
and one on the incoming chaining variable.

– Constant bits: All the other parts of the internal state.

These bits are not necessarily directly bits from the incoming message block or
chaining variable: they can be a linear function of such bits. For example, when
considering equation 2, the Conditional bits on the incoming chaining value are
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the exclusive or of two bits (s(j)4 and s
(j)
12 , or s(j)5 and s

(j)
13 ). The corresponding

Variable bit can then be taken as the value of one of these two bits.
As a result, it is possible to find sets of variables X = {x(j)}j∈Jx and Y =

{y(j)}j∈Jy such that some output bits of the whole compression function depend
linearly on the Variable bits X,Y , provided the Conditional bits take a given
value and once the Constant bits are set.

Algebraic properties of the Hamsi-256 S-box. To find these sets of variables we
have to take into account the following properties.

1. Any function f from 1 bit to n bits is affine. It can be defined as f(b) =
f(0)⊕(f(1)⊕f(0))b. Therefore, if all input bits of a 4-bit S-box are constant
except one, the output ofthe S-box is an affine function of the remaining input
bit. If this input bit is an affine function of the variables in X ∪ Y , it is also
the case for the 4 output bits, as a composition of affine functions.

2. Similarly, if the input of an S-box depends on only one of the variables, its
output is an affine function of this variable.

3. If (b0, b1, b2, b3) is the output of an S-box with input (a0, a1, a2, a3) : the only
nonlinear monomial in the expression of b0 is a0a2, and b3 only depends on
nonlinear monomials a0a1a2 and a1a3. Therefore, if the monomial a0a2 is an
affine function of X ∪ Y , so is b0. Similarly, if monomials a1a3 and a0a1a2

are affine in X ∪ Y , so is b3.

We will now use these properties in an automated search as sufficient conditions
to guarantee that some final and intermediate bits involved in the computation
of the compression function are affine functions of a set of variables.

Optimal sets of variables. For our second preimage attack we then have to deter-
mine optimal sets of variable bits. In our attack two phases are time-consuming:
the generation of the affine equation system, and the test of the solutions. The
complexities mainly depend on the number of variables Nvar and the number
of resulting affine equations Neq. For a given number of variables Nvar, we then
look for the choice of the variable set that leads to the largest affine equation
system, using an exhaustive search. The cost of the system generation decreases
when the number of variables increases, whereas the cost of testing the solutions
mainly decreases when the number of equations increases. A precise evaluation
of the complexity of the attack is given in section 5. The optimal values for Nvar

and Neq can then be found as a tradeoff between the complexity of these two
algorithms.

Furthermore, the equation systems that have been generated can be reused
if one tries to find a pseudo preimage for multiple targets, which is the case in
some parts of our attack. Therefore, the optimal sets of equations are different
in the different parts of the attack.

Finding the optimal sets of variables. For a given value of Nvar, we determine
the set X ∪Y of variables that leads to the maximal value of Neq. We achieve it
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through an automated exhaustive search on all the sets of variables Xi ∪Yi that
contain exactly Nvar elements.

Let us now consider a fixed set X ∪Y . We try to determine which output bits
can always be expressed as an affine function of the Variables of X ∪ Y , under
the assumption that all the Conditional bits take the right constant value and
that all the Constant bits are fixed. We then do the following:

For each pair of variables {z, z′} ∈ X ∪ Y , we determine the set of output
bits Sz,z′ that are always affine functions of z and z′ when the Conditional bits
take the right value and the other parts of the initial state are set to a fixed
constant value. How to determine these sets will be depicted below. Once this is
done, the bits in the set SX,Y = ∩{z,z′}∈X∪Y Sz,z′ are affine functions of the set
of variables X ∪ Y . If the algebraic expression of an output bit b as a function
of the variables in X ∪ Y contains a monomial of degree 2 or more, let z and z′
be two variables of this monomial. Then b cannot be in Sz,z′ , because for some
assignment of all the other variables, the expression of b contains the monomial
zz′.

Let us now describe how to find Sz,z′ . After the first S-box layer, only one
bit depends on each of the variables z and z′. We then study the propagation of
these variables through the compression function. The propagation is not always
deterministic - it is probabilistic through the S-box layers. For each intermediate
bit of the internal state, we then determine if it is independent from z and z′, if
it can depend linearly on z and/or z′ or if it can be quadratic in z and z′. The
diffusion layer L is linear. Therefore a bit of the internal state after the diffusion
layer is always affine in z, z′ if and only if all the input bits it depends on also
are always affine in z, z′. A does no change the degree of each bit of the internal
state. S is nonlinear and can increase the degree. More precisely, if two different
input bits of a given S-box can depend respectively on z and z′, some output
bits may be quadratic. At the end of the compression function, T and X cannot
increase the degree.

Let us now consider a fixed set X ∪ Y . We try to determine which output
bits can always be expressed as an affine function of the Variables of X ∪Y , un-
der the assumption that all the Conditional bits take the right constant value and
that all the Constant bits are fixed. Equivalently, we can try to determine the out-
put bits bi which polynomial expression as a function of the Variable bits can con-
tain monomials of degree ≥ 2. This means that for some choice of (z, z′) ∈ X∪Y
and for some assignment of all the other variables, the polynomial expression of
bi can contain the monomial zz′. Therefore, for each choice of (z, z′) ∈ X ∪ Y ,
we compute which bits of the internal state can contain the monomials z, z′,
and zz′ during the intermediate computation and in the resulting chaining
value.

Using this method, we found the following properties for 7 and 8 variables.
Provided that the message block and the whole chaining variable except the x
and y variables, and under the assumption that Ncond conditions on the message
block and the chaining value are verified:
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– Output bits 9, 18, 44, 88, 144, 152, 183, 185, 188, 193, 219, 221, 228 and 246
depend linearly on (x3, x26, x30, y4, y6, y7, y15), which makes 14 output bits
and 7 variables with Ncond = 21.

– Output bits 11, 39, 46, 185, 188, 195, 218, 220, 230, 248 and 255 depend
linearly on (x3, x28, x29, y1, y6, y7, y15, y31) , which makes 11 output bits and
8 variables with Ncond = 24.

Once the Conditional bits are assigned the right value and the Constant bits are
assigned any value, the relation between some output bits (denoted Equation
bits) and the Variable bits can be described as a linear equation system.

5 Pseudo Preimages for the Hamsi-256 Compression
Function

In this Section we try to find pseudo preimages of a given value C∗ of the chaining
variable. We aim at finding m,C such that F(C,m) = C∗. In the first subsection
we describe an optimized algorithm that makes the following operations with a
reduced complexity. Once we know that Neq output bits t0, . . . , tNeq−1 are affine
functions of Nvar variable bits z0, . . . zNvar−1, computing the inverse of the com-
pression function can be achieved as follows. We also give here a correspondance
between the operations described and the steps of the algorithm that compute
them.

– Set the initial value of the chaining variable C and the message block m such
that all the conditions are verified (steps 1 and 2).

– Compute the output bits t0, . . . , tNeq−1 of F(C,m) (steps 3 to 7).
– The output bits t0, . . . , tNeq−1 of the compression function is then an affine

function of the variables. Compute the coefficients of this function (step 8).
– Solve the resulting system of affine equations (step 9). If it does not have

any solution, start again.
– If the linear system has a solution mi, Ci, compute the compression function

to determine whether F(Ci,mi) = C∗ (step 10). This occurs with probability
2Neq−256. If not, start again.

5.1 Building and Solving the Equation Systems

A basic idea. The first idea to compute the coefficients of the equation system
would be to reuse the idea of Section 3. More precisely we could evaluate the
compression function with all the variables set to 0 to get the constant coef-
ficients, and once for each variable to get the coefficients for this variable, by
running the compression function.

But to determine the coefficients, we only need to compute the parts of the
state that really depend on the Variable bits and impact the Equation bits, which
involve less computation than running the whole compression function.

Furthermore, some small changes in the incoming chaining variable do not
impact immediately the whole internal state. Some parts of the computation can
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then be reused when computing the constant coefficients of different equation
systems. We will describe a method to compute these systems below.

A more efficient method. To achieve a more efficient computation of the coeffi-
cients, we can use the following ideas:
– The coefficients of each variable only depend on the propagation of the vari-

able through the second and the third diffusion layer. Therefore they can be
recovered from the inputs of the affected S-boxes.

– The first two rounds of the Hamsi-256 compression function are an affine
function of the variables defined in Section 3.

We then use a set |J | of 8 variables as defined in section 3, denoted auxiliary
variables, to compute more efficiently 28 equation systems. We know from the
analysis of section 3 that the whole internal state up to the input of the third S-
box layer are affine functions of these variables, provided that some Conditional
bits have the apropriate value. Instead of running the whole compression function
to get the constant coefficients for each system, we only modify one auxiliary
variable from one system to the next one. Therefore, some intermediate values
do not need to be computed again.

Once we have computed the intermediate values of the internal state with all
the principal and auxiliary variables set to 0, we can deduce all the values of the
internal state for any of the 28 possible assignments of the auxiliary variables by
studying the propagation of the 8 auxiliary variables through the S-box layer of
round 2.

We can then improve the attack as follows.
1. Set the value of the Conditional bits from the chaining variable to their

appropriate value.
2. Choose the Constant bits of the chaining variable, and the message block m

such that all the conditions are verified.
3. Choose a set of 8 auxiliary variables such that the resulting auxiliary condi-

tions are verified. For a random value of the initial internal state, we can find
8 auxiliary variables with a good probability. If not so, go back to step 2.

4. Compute the first two rounds of the compression function with all the Vari-
ables and auxiliary variables set to 0. Keep trace of the results of internal
operations.

5. Compute the propagation of the auxiliary variables in the first two rounds.
6. For each value of the set of auxiliary variables, recover the inputs of the

S-boxes involving the Variables in rounds 2 and 3.
7. Recover the constant coefficients by running the part of the third round that

affect the Equation bits.
8. Recover the other coefficients of the system by studying the propagation of

the Variables during rounds 2 and 3.
9. Solve the resulting linear equation system. If it does not have any solution,

go back to step 2.
10. Set the Variable bits according to one of the solutions of the equation system,

and compute the compression function. If the result is not the target C∗, go
back to step 2.
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5.2 Complexity Evaluation of the Attack

We now aim at evaluating the complexity of the different steps of the attack.
As we try to avoid useless computations, we mainly use operations on bits and
not on 32-bit registers. We could use parallelism by building several systems
at the same time, with different values of the Constant bits of the incoming
chaining variable. Therefore we argue that the right metrics for evaluating the
complexity of the attack is the number of elementary bitwise operations (AND,
OR, XOR) it involves. To compare it to generic attacks, we use the analysis
of Shamir and Dinur [10] and evaluate the number of bitwise operations in the
Hamsi-256 compression function to about 10500.

Steps 1 to 3 are setup steps and have a negligible complexity compared to
the other steps. We also argue that the choice of auxiliary variables can be the
same for a large range of systems, therefore the study of which parts of the
intermediate internal state they impact can be precomputed once and has a
neligible complexity.

Step 4 involves the computation of about 2 out of 3 rounds of the compression
function. A careful analysis of which output bits of the S-boxes need to be
computed and which parts of the linear diffusion layers need to be run leads to
5248 operations for the 7-variable systems and 4852 operations for the 8-variable
systems.

Step 5 involves the computation of at most 7 second round S-boxes per aux-
iliary variable, and at most 7 × 20 = 140 XOR operations per variable for the
second round diffusion layer, which makes at most 1120 elementary operations
for 28 systems.

Step 6 consists in xoring the values of the inputs of some S-boxes before
rounds 2 and 3 for different values of the auxiliary variables. The values of these
variables can be chosen following a Gray code, to minimize the parts of the state
that ha to be computed again. Therefore, only 7 input bits of the second S-box
layer can be affected. For the third S-box layer, only some S-boxes are useful
(45 for the 7-variable systems, 34 for the 8-variable systems). This step then
requires 7 + 4× 45 = 187 (resp. 7 + 4× 34 = 143) XORs for the 7-variable (resp.
8-variable) systems.

Step 7 requires to evaluate the constant coefficients of the system. These coef-
ficients can be recovered by computing some parts of the output of the compres-
sion function, knowing the output of the second round. This consists in applying
the diffusion operations and the feedforward. To compute the feedforward one
needs to invert Neq bits of the first round constant addition. This step costs
473 + 54 + 28 = 555 (resp. 328 + 37 + 22 = 387) operations per system.

Step 8 consists in recovering the coefficients of degree 1 monomials. This can
be achieved by studying the propagation of the variables through the S-boxes.
For the 7-variable (resp. 8-variable) systems the inputs of 17 (resp. 20) S-boxes
depend on the variables before the second substitution layer. For some of them,
only some output bits need to be computed. For each 7-variable (resp. 8-variable)
system, this requires 210 (resp. 200) operations. The propagation through the
second diffusion layer to the inputs of the useful third round S-boxes requires 60
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(resp. 46) XORs. In the third round, the outputs of 45 (resp. 34) S-boxes affect
the Equation bits. To evaluate the coefficients of the variables, 3 cases can occur
for the third round S-box layer:

1. The input of the S-box does not depend on Variables. Then the output does
not depend on the Variables either, and no computation is required. This
occurs for 5 (resp. 9) S-boxes.

2. One input bit can a priori depend on one or several Variables. Then its output
depend on the same Variables as its input, and computing the coefficients
is equivalent to one S-box evaluation. This occurs for 31 (resp. 17) S-boxes,
leading to a complexity of 364 (resp. 155) operations.

3. Two input bits can a priori depend on the Variables. As the dependences
are not deterministic, 3 different cases of dependences can occur during the
actual computation of the system. Each of them leads to a different propaga-
tion of the difference. If the adversary uses parallelism, he needs to compute
the dependences for the 3 cases, leading to a complexity equivalent to 3 S-box
computations. This occurs for 6 (resp. 8) S-boxes, leading to a complexity
of 211 (resp. 213).

The linear coefficients can be derived using simple operations from the bits
representing the propagation of the variables through the second and the third
S-box layer. The overall commplexity to retrieve the coefficients from these bits
is then at most 125 (resp. 101) operations.

Putting everything together, the average costs to compute the coefficients of
an equation system are:

– 5248+1120
28 + 187 + 210 + 60 + 555 + 364 + 211 + 125 = 1737 operations for

7-variable systems,
– 4852+1120

28 + 143 + 200 + 46 + 387 + 155 + 213 + 101 = 1268 operations for
8-variable systems,

Overall, the cost to construct the 7 variable system is about T (7)
build = 2−2.59 com-

pression evaluations. The complexity to build the 8-variable system is T (8)
build =

2−3.05 compression evaluations.
Step 9 then consists in solving the equation system, which complexity Tsolve

is small compared to the evaluation of the compression function. We use the
Gauss algorithm. Therefore the complexity is as follows: for each of the Nvar

variables, for each of the Neq equations, we compute at most (Nvar + 1) XORs,
and the average number of XORs is Nvar/2. This leads to an overall complexity
of Nvar(Nvar + 1)Neq/2 operations per system, which means 392 operations for
7-variable systems and 396 operations for 8-variable systems. One can therefore
bound the complexity of this step by T (7)

solve = 2−4.74 and T (8)
solve = 2−4.72.

The success probability of step 10 is then 2Neq−256 = 2−242, leading to an
overall complexity of 2256−NeqTtest compression evaluations (the complexity to
test one solution is Ttest ≈ 1). Each system of equations enables to test 2Nvar
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values of the chaining variable, therefore one needs to compute about 2256−Nvar

systems. The best pseudo-preimage algorithm is then obtained for 8 variables:

T
(8)
preimage = 2248(T (8)

build + T
(8)
solve) + 2245T

(8)
test ≈ 2246.2. (3)

Variability. We also need to make sure that the search space is big enough to
find the second preimages we need. We can only detect a certain type of pseudo
preimages for a given output, that can be defined by the conditions that are
imposed on the input message block and chaining variable. For 8 variables, we
have 24 such bit conditions (16 on the message block and 8 on the chaining
variable). The original search space has a size 2256+32 = 2288, we then expect
2288−24 = 2264 couples (C,m) to fulfill these conditions. We also need to find
8 auxliary variables. An auxiliary variable can be defined when one condition
on the message block and one condition on the chaining variable are verified
(according to Section 3). As we have 32 potential auxiliary variables, the proba-
bility that at least 8 of them can be chosen is at least 1/2. Therefore we expect
at least 2263 candidates, among which 27 are pseudo-preimages of a given value.
This argument confirms that the search space is big enough to make the attack
work.

6 Second Preimages for the Full Hamsi-256

As we showed in Section 5, pseudo preimages can be found for the Hamsi-256
compression function with a complexity about 2246.2 compression evaluations.
This threatens the security of Hamsi-256, because one can use a pseudo preimage
algorithm to build a second preimage finding algorithm using a basic meet-in-the
middle approach. In this section we describe this both this basic method and
show how to improve it. The main idea is the following: the complexity of the
pseudo-preimage attack is dominated by the complexity of the construction of
the equation systems, especially the complexity to recover the coefficients of the
equations. In the general second preimage setting, one can then try to invert one
of the intermediate chaining variables. As the coefficients of the linear system
are the same whatever the value of the chaining variable we try to invert, we
can spare some computation.

6.1 A Basic Second Preimage Algorithm

The most natural idea to generate second preimages using our pseudo preimages
algorithm consists in using a basic meet-in-the middle approach. The algorithm
is the following :

1. Compute 25.9 pseudo preimages of the chaining value after the ninth message
block.

2. Compute intermediate hash values for sequences of 8 message blocks until
reaching one of the values computed in step 1. The expected number of such
messages is around 2251.1.



Finding Second Preimages of Short Messages for Hamsi-256 33

This would lead to a second preimage attack with a complexity about 2 ×
2251.1 = 2252.1. However, the original message must be contain at least 9 blocks,
so as to make sure that we have enough variability to build a second preimage
of an equivalent length. An improvement of our technique would lead to an
improvement of the best second preimage attacks on Hamsi-256.

6.2 Pseudo Preimages in a Set of Images

In the first step of the basic attack, a large amount of the computation time is
consumed to generate the systems. If one has several targets, this computation
can be done only once. In this section we will describe another algorithm that
benefits from this remark.

We will now describe how to find pseudo preimages of an element of a set of
N images, which is an easier problem than finding a pseudo preimage of given
element. In our method, the computation of the coefficients of the linear equation
systems only depends on the target by xoring it to the constant coefficients. We
can therefore use a similar method to compute a preimage of an element of a
set by computing the coefficients only once, and trying to solve the system of
equations for all the N elements of the set.

The beginning of the resolution of the equation system is also common for
all the targets. One aim at solving the equation yi = Ax, where {yi}, i ∈ I are
constant binary vectors of size Neq, x is an unknown binar vector of size Nvar

and A is a fixed binay matrix. One can then begin with the computation of the
Gauss algorithm on a basis of the y space. The complexity of this part can be
denoted Tinvert. A similar argument than the one used in previous section allows
to estimate it as NeqNvar(Neq +Nvar)/2. The end of the resolution consists in
checking whether the remaining equations are verified. In other words, testing
at most Neq linear relations on the ouptut bits, leading to a complexity of at
most Tcheck = N2

eq elementary operations. Therefore this step can be overlooked
in numerical applications.

As a result, the complexity of the new algorithm is derived from equation 3:

Tset(N) =
2256−Nvar

N
(Tbuild + Tinvert) + 2256−NvarTcheck + 2256−NeqTtest (4)

We also have T (7)
invert ≈ 1029 operations, and T (8)

invert ≈ 836 operations, which
means T (7)

invert ≈ 2−3.35, ad T (8)
invert ≈ 2−3.65 compression evaluations.

6.3 Second Preimages for Short Messages

We can now consider the following algorithm. It requires that the original mes-
sage contains at least 10 complete blocks. If this condition is fulfilled, its com-
plexity does not depend on the message length. Therefore it is more efficient
than Kelsey and Schneier’s attack only for short messages.

We consider a message M = m0|| . . . ||m9|| . . . ||m� and try to find a second
preimage of the digest of M . Therefore we consider the chaining variable h10 =
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F10(IV,m0, . . . ,m9). First, we try to find x pseudo preimages of h10, namely
(h9,1,m9,1), . . . , (h9,x,m9,x). We use our 8-variable set. The complexity of this
step is about:

T1(x) = x× (2248(T (8)
build + T

(8)
solve) + 2245T

(8)
test) ≈ 2246.2 × x (5)

In a second step, starting from S = {h9, h9,1, . . . , h9,x} where h9,0 = F9(IV,m0,
. . . ,m8), we search y pseudo preimages of one element of the set S, (h8,1,m8,1),
. . . , (h8,y,m8,y). For this step we use 7-variable equation systems. The complexity
of the second step is:

T2(x, y) = (
2249

x+ 1
(T (7)

build + T
(7)
invert) + 2242T

(7)
test)× y ≈ 2247.1 y

x+ 1
+ 2242y. (6)

Finally, using a probabilistic approach, we try to find (m∗0|| . . . ||m∗7) �=
(m0|| . . . ||m7) such that the resulting chaining variable h∗8 = F7(IV,m∗0, . . . ,m

∗
7)

collides with one of the h8,j with h8,0 = F8(IV,m0, . . . ,m7). The complexity of
this step is then:

T3(y) =
2256

y + 1
. (7)

Let us denote m8,0 = m8 and m9,0 = m9. For j as defined above, there exists
i such that F(h8,j ,m8,j) = h9,i. As a result, F10(IV,m∗0, . . . ,m∗7,m8,j ,m9,i) =
h10, and

H(m∗0|| . . . ||m∗7||m8,j ||m9,i|| . . . ||m�) = H(M). (8)

This leads to a second preimage for H(m) with complexity

T (x, y) = T1(x)+T2(x, y)+T3(y) ≈ 2246.2×x+
2247.1y

x+ 1
+2242× y+

2256

y + 1
. (9)

For Hamsi-256 the best compromise is found when the complexity of all these
steps are almost the same. For x = 11 and y = 71 we then have :

T1(x) ≈ 2249.66, T2(x, y) ≈ 2249.66, T3(y) ≈ 2249.83

This leads to a complexity of about T (x, y) ≈ 2251.30 compression evaluations.

7 The Kelsey-Schneier Second Preimage Attack

In previous sections we described a second preimage attack that runs faster than
generic attacks on hash functions. To be exhaustive we also need to argue that
it runs faster than generic attacks on the domain extender used to design Hamsi.

In [7], Kelsey and Schneier showed a generic attack on single-pipe Merkle-
Damgård hash functions. To achieve it, they use either a multicollision finding
algorithm created by Joux [6], or fixed points. As Hamsi-256 is based on the
Merkle-Damgård domain extender, this attack can also be used against Hamsi-
256. However, it makes use of very short message blocks, that do not give the ad-
versary enough freedom degrees to apply the attack to Hamsi-256. Furthermore,
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the specific design of the compression function does not enable an adversary to
generate fixed points easily.

In this Section we describe a modified version of the attack, so as to make it
applicable to Hamsi-256. The modification is trivial, however the complexity of
the new attack slightly differs from the complexity of the original attack. The
aim of this Section is therefore to find an estimation of the complexity of the
best generic attack against Hamsi-256.

7.1 Description of the Attack

Definition 1. A (p, q) expandable message for a Merkle-Damgård hash function
H is a set of (q − p+ 1) messages (μp, . . . , μq) such that

1. H(μp) = H(μp+1) = . . . = H(μq) = h.
2. ∀i ∈ {p, . . . , q}, μi contains exactly i blocks after the padding.

The original second preimage attack works as follows. Let us now suppose that
we want to find a second preimage of the Hamsi-256 digest of an �-block message
M = m0||m1||...||m�−1 . We aim at finding a message M ′ such that H(M) =
H(M ′). We look for M ′ such that M and M ′ have the same length.

1. Generate a (p, q) expandable message for H, for some appropriate values of
p and q that will be discussed later on.

2. Choose the common digest value h as chaining variable, and compute the
compression function for random sequences of 8 message blocks, to find
(m∗1, . . . ,m

∗
8) such that F8(h,m∗1, . . . ,m

∗
8) is one of the chaining values in-

volved in the computation of H(M), CVi = Fi(IV,m0, . . . ,mi) for i ∈
{p+ 8, . . . , q + 8}.

3. Compute μj−8. The message M ′ = μj−8||m∗1|| . . . ||m∗8||mj+1||..||m�−1 is a
second preimage of H(M).

7.2 Expandable Messages for Hamsi-256

Expandable messages are generated using the multicollision algorithm of [6].
Expandable messages of size 2k can be generated by iterating the following
search.

Set C0 = IV (the initialization vector of Hamsi-256). For all i in {0, . . . , k −
1}, find two sequences of message blocks Li,0 = (ai,1, . . . , ai,αi) and Li,1 =
(bi,1, . . . , bi,αi+2i) such that :

Ci+1 = Fα(Ci, ai,1, . . . , ai,αi) = Fαi+2i(Ci, bi,1, . . . , bi,αi+2i).

Let p =
∑k−1

i=0 αi, and j ∈ {p, . . . , r + 2k − 1}. We can write j = p+
∑k−1

i=0 xi2i,
with xi ∈ {0, 1}. Then the sequence μj = (L0,x0 , . . . Lk−1,xk−1) has length j, and
Fj(C0, μj) = Ck. In the generic case, Kelsey and Schneier take αi = 1 for all i.
The cost of each step of the search is then about 2n/2 because of the birthday
paradox, leading to an overall complexity of about k2n/2.
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Hamsi-256 has the specific property that the message blocks are small com-
pared to the chaining variables. Therefore, if the attacker chooses αi = 1 , he
can generate only 232 values for the sequence Li,0. In the first iterations, the
probality to find a collision is very small, and the cost of iterations for i ≥ 3
is about 2256−32 = 2224. To keep an equivalent complexity, one then needs to
choose αi = 4 for each value of i leading to a (4k, 4k+2k−1) expandable message
after about k2128 compression evaluations.

7.3 Complexity Evaluation

In the case of Hamsi-256 we choose p = 4k and q = 4k + 2k − 1 such that
q + 8 ≤ �− 1. The last two compression functions of the computation of H(M)
involve message blocks representing the bitlength of m, and the block before
contains padding bits so we do not take the resulting chaining value into account.

The cost of the expandable message generation is then about k2128 compres-
sion function evaluations. The average number of trials for the second step is
then about 2256

q−p+1 = 2256−k. The message μj−8 can be recovered easily. The
overall complexity of the attack is then:

T (k) = k2128 + 2256−k (10)

The complexity of the attack is the same as the one found by Kelsey and Schneier,
but the condition on the message length is slightly different (� ≥ 4k + 2k + 8
instead of � ≥ k + 2k + 1). As a result, our attack described in previous Section
is more efficient than this generic attack for messages which length is between
10 and 96 blocks.

7.4 Possible Improvements

Some small improvement of our second preimage attack could be obtained by
mixing the attack on the domain extender by Kelsey and Schneier with our
pseudo preimage finding algorithm. For example, one could try to invert some of
the intermediate chaining variables involved in the computation ofH(m) between
the two steps of the generic attack, so as to increase the potential number of
targets for the second phase. Such an attack could however only be efficient
for short messages, as the interest of our pseudo preimage algorithm is that it
discards some values of (C,m) due to linear relations. If the target space becomes
larger than 214, almost every value of F(m,C) will be computed anyway, and
applying our technique is pointless.

8 Conclusion and Openings

In this article we displayed the first attack on Hamsi-256 that runs faster than
generic attacks on hash functions. Though it has some similarities with differen-
tial attacks, such as the study of the propagation of variables or the reduction
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of the search space by setting some conditions, it is mainly an algebraic at-
tack. For short messages, our algorithm is faster than generic attacks on the the
Merkle-Damgård domain extender as used for Hamsi. While the attack complex-
ity does not represent any practical immediate threat for the use of Hamsi-256,
it enlightens some weaknesses in its design.
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Abstract. In this paper, we present non-full-active Super-Sbox analy-
sis which can detect non-ideal properties of a class of AES-based per-
mutations with a low complexity. We apply this framework to SHA-3
round-2 candidates ECHO and Grøstl. The first application is for the
full-round (8-round) ECHO permutation, which is a building block for
256-bit and 224-bit output sizes. By combining several observations spe-
cific to ECHO, our attack detects a non-ideal property with a time com-
plexity of 2182 and 237 amount of memory. The complexity, especially in
terms of the product of time and memory, is drastically reduced from
the previous best attack which required 2512 ×2512. Note that this result
does not impact the security of the ECHO compression function nor the
overall hash function. We also show that our method can detect non-
ideal properties of the 8-round Grøstl-256 permutation with a practical
complexity, and finally show that our approach improves a semi-free-
start collision attack on the 7-round Grøstl-512 compression function.
Our approach is based on a series of attacks on AES-based hash func-
tions such as rebound attack and Super-Sbox analysis. The core idea is
using a new differential path consisting of only non-full-active states.

Keywords: AES-based permutation, ECHO, Grøstl, SHA-3, Super-Sbox.

1 Introduction

Hash functions are used in the wide range of cryptographic applications. Since
the break of MD5 and SHA-1 [1,2], cryptographers have been seeking secure and
efficient hash constructions. From these backgrounds, NIST started the compe-
tition to determine the future standard hash function called SHA-3 [3].

In the SHA-3 competition, 14 algorithms are being considered as round 2 can-
didates. At the present time, none of them has been seriously broken in terms of
the important security properties such as collision resistance or preimage resis-
tance. However, regarding some candidates, building blocks such as compression
functions or internal permutations have been shown that they do not satisfy
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c© International Association for Cryptologic Research 2010
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ideal properties. Although it does not damage the security of hash functions im-
mediately, the analyses against building blocks are useful to know the potential
weakness, security margin, validity of the security proof, and so on.

Many of the SHA-3 candidates are based on the design strategy of AES [4,5].
Recently, an outstanding progress in the cryptanalysis against AES-based hash
functions or permutations has been made [6,7,8,9,10,11,12,13,14,15,16]. Specif-
ically, Rebound attack proposed by Mendel et al. at FSE 2009 [7], Start-from-
the-Middle attack proposed by Mendel et al. at SAC 2009 [8], and Super-Sbox
analysis applied to the rebound attack by Lamberger et al. at Asiacrypt 2009
[15] and by Gilbert and Peyrin at FSE 2010 [9] have wide range of their ap-
plications and are powerful analytic tools. In fact, the rebound based attack
has been applied to several SHA-3-candidates [7,8,9,10,11,12,13,14,17] such as
Grøstl [18], ECHO [19], JH [20], Cheetah [21], LANE [22], Twister [23]. It has
also been applied to other hash functions [7,8,9,15,16] such as Whirlpool [24]
and AES hashing modes.

ECHO [19], designed by Benadjila et al., is one of the round 2 algorithms in
the SHA-3 competition using a 2048-bit AES-based permutation. The number
of rounds in the permutation is 8 for ECHO-224 and -256, and 10 for ECHO-
384 and -512. At FSE 2010, Gilbert and Peyrin showed that the full-round
(8-round) ECHO permutation could be distinguished from an ideal permutation
with time of 2768 and memory of 2512 by using the Super-Sbox analysis [9]. After
that, Peyrin [25,26] improved this attack which required 2512 in both time and
memory. Because the 8-round ECHO permutation is a building block to generate
256-bit or 224-bit hash values and compression part from 2048-bits to 256- or
224-bits is not considered, the impact of this attack seems almost negligible. In
addition, as long as it is evaluated by the framework of [9], the time or memory
cannot be below 25121. To sum up, there is no powerful analysis on the ECHO
hash function nor compression function. Even though attacks on the permutation
reached full-round, the complexity is too high.

Note that the reduced ECHO compression function is attack by Peyrin [26].
Recently, Schläffer presented the analysis on ECHO [27] and Ideguchi et al.
presented the analysis on Grøstl [28]. These results are listed in Table 1.

Our Contributions

In this paper, we present non-full-active Super-Sbox analysis which can detect
non-ideal properties of a class of AES-based permutations with a low complexity.
To demonstrate its applicability, we first apply the non-full-active Super-Sbox
analysis to the 8-round Grøstl-256 permutation, which is an AES-based permu-
tation consisting of the 8×8 state. This attack can detect a non-ideal property
of the 8-round Grøstl-256 permutation with time of 248 and memory of 28, while
detecting the same property of an ideal permutation requires 296. We then apply
this framework to the full-round (8-round) ECHO permutation by optimizing the
attack with taking several properties specific to ECHO into account. This attack

1 Reasons of this limitation are explained in [9, Section 4.4] and [26, Appendix B].
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Table 1. Comparison of attack results on ECHO and on Grøstl

Target Rounds Time Memory Attack Type Paper

8 (full) 2768 2512 Distinguisher [9]

ECHO-256/-224 8 (full) 2512 2512 Distinguisher [26]

Permutation 8 (full) 2182 237 Distinguisher Sect. 5.2

7 2128 232 Distinguisher [26]

7 2118 238 Distinguisher Append. A

ECHO-256/-224 3 264 264 Distinguisher [26]

Single-pipe Comp. Func. 3 232 238 Distinguisher Append. B

Grøstl-256 8 2112 264 Distinguisher [9]

Permutation 8 264 264 Distinguisher [28]

8 248 28 Distinguisher Sect. 4.4

Grøstl-512 7 2152 264 Semi-free-start coll. [17]

Comp. Function 7 2152 256 Semi-free-start coll. Sect. 5.3

ECHO-256 4 264 264 Collision [27]

Hash Function 5 296 264 Distinguisher [27]

ECHO-256 / -512 3/3 264/296 264/264 Semi-free-start coll. [26]

Comp. Function 7/7 2107/2106 264/264 Distinguisher [27]

Grøstl-256 Comp. Func. 10 (full) 2192 264 Distinguisher [26]

Grøstl-512 Comp. Func. 11 2640 264 Distinguisher [26]

can detect a non-ideal property of the 8-round ECHO permutation with time of
2182 and memory of 237, while detecting the same property of an ideal permuta-
tion requires 2256. Note that the 8-round ECHO permutation is a building block
for ECHO-256 and ECHO-224. As far as we know, this is the first result on the
full-round ECHO permutation which can work with both time and memory (or
product of these factors) below 2256 (or 2224). Note, however, that the role of the
convolution in the ECHO compression function is very important for its security
and our distinguisher cannot be extended to the ECHO compression function,
nor the hash function. Finally, we show that our approach also improves the
amount of memory for the semi-free-start collision attack on the 7-round Grøstl-
512 compression function to 256 from 264. In appendices, we show new results
on the reduced-round ECHO permutation and compression function. An attack
on the 7-round ECHO permutation and a low complexity distinguisher on the
3-round single-pipe ECHO-256 compression function are included. The attack
results are summarized in Table 1. The technical details in this paper are as
follows.

Low complexity distinguishers on AES-based permutations. We present
a new strategy of the Super-Sbox analysis which can work for a class of
AES-based permutations in generic. The core idea is using a differential
path whose inbound part, in particular inside the Super-Sbox, consists of
only non-full-active states. Regarding non-active bytes, the difference is al-
ways 0 through the SubBytes and InverseSubBytes operations regardless of
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its value. Hence, attackers can freely choose the value without breaking the
differential path. This freedom degrees enable attackers to control values
(or differences through the SubBytes operation) of other bytes inside the
Super-Sbox to be connected efficiently.

Observations on the property of ECHO permutation. We explain two
new observations on the ECHO permutation when dealing with the byte-wise
truncated differential path. First, we find that the linearity of the jointed two
linear operations (MixColumns inside the BigSB and the following BigMC)
should be taken into account in order to correctly calculate the complexity
for a certain differential path. Second, there are freedom of the differential
paths inside BigSB available to attackers to reduce the complexity.

In Section 2, we describe AES-permutation, ECHO, and Grøstl. In Section 3,
we introduce previous work. In Section 4, we present the framework of non-full-
active Super-Sbox analysis and show its application to the 8-round Grøstl-256
permutation. In Section 5, we attack the full-round ECHO permutation and the
7-round Grøstl-512 compression function. In Section 6, we conclude this paper.
Results on other variants of ECHO are described in appendices.

2 Specifications

AES [4,5] is a 128-bit block-cipher represented by a 4 × 4 byte state. Here we
consider a general AES-based permutation with r × r state where each element
is a c-bit word. The row and column positions of a word/byte is denoted by i
and j, respectively where i, j ∈ [0, r−1]. As shown in Fig. 1, the state is updated
by four operations in a round of the AES-based permutation.

– SubBytes (SB): non-linear word/byte substitution according to an S-box.
– ShiftRows (SR): each word/byte at row j is rotated to left by j positions.
– MixColumns (MC): multiply each column by a MDS matrix.
– AddRoundKey (AK): bit-wise XOR of the current state and a constant.

2.1 ECHO Permutation

ECHO [19] designed by Benadjila et al. is a hash function using a 2048-bit AES-
based permutation as its building block. The permutation consists of 8 rounds
for ECHO-224 and -256, and 10-rounds for ECHO-384 and -512. The 2048-bit

SubBytes ShiftRows
AddRoundKey

S-box
Multiplied by 

an MDS matrix Known Constant

1
2
3
4
5
6
7

0
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2
3

4
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7
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1
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6

7

0

r cells

r cells

c bits

Fig. 1. The operations inside a round of AES-based permutation
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Fig. 2. One round of ECHO permutation

F C D 1

Fig. 3. Notations for ECHO BigWords

internal state can be represented by a 4× 4 matrix where each element is a 128-
bit AES state called a BigWord. The round operation in the ECHO permutation
manipulates 128-bit BigWords instead of 8-bit bytes. One round of the ECHO
permutation shown in Fig. 2 has three operations:

– BigSB: substituting each BigWord by applying two AES-rounds.
– BigSR: each BigWord at row j is rotated to left by j positions.
– BigMC: multiply each 4 bytes of the ECHO state by a MDS matrix.

To simplify the dedicated analysis on ECHO, as introduced by [26], we denote
4 types of byte-wise truncated differences of the BigWord as shown in Fig. 3.

2.2 Grøstl Permutation and Compression Function

Grøstl designed by Gauravaram et al. [18] is another hash function built upon
the AES-based permutations. Grøstl-256 permutation uses an 8× 8 state where
each element is an 8-bit byte, while Grøstl-512 permutation uses an 8×16 state.
The number of rounds in the permutation is 10 for Grøstl-224 and -256, and 14
for Grøstl-384 and -512. The Grøstl-512 uses different ShiftRows operation from
Grøstl-256, where the bytes at row 7 are rotated to left by 11 positions.

3 Previous Work

Rebound attack was proposed by Mendel et al. at FSE 2009 [7], which is useful
to analyze AES-based permutations. It divides a differential path into two parts;
inbound and outbound phases. Inbound phase controls the most expensive part
of the differential path with a very low average complexity, then outbound path
is satisfied probabilistically. It needs to make sure the total number of starting
points generated at the inbound phase is enough to fulfill the outbound path.

Start-from-the-Middle attack was proposed by Mendel et al. at SAC 2009 [8].
It improves the rebound attack by extending the number of controlled rounds
from 2 to 3. The idea is to utilize the independence and the freedom of each
search procedure as much as possible. As a result, without increasing the time
and memory, 3 rounds of the differential path can be fulfilled efficiently.

Super-Sbox analysis for the rebound attack was independently proposed by
Lamberger et al. at Asiacrypt 2009 and by Gilbert and Peyrin at FSE 2010 [9].
Super-Sbox combines 2 non-linear layers and 1 diffusion layer to 1 non-linear
layer with a larger substitution-box. It can extend the inbound phase by one
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more round. As a side effect, attackers need to spend more time and memory to
exploit the differential property of the Super-Sbox.

Peyrin proposed a differential path for ECHO with an increased granularity
[26]. This can reduce the number of active bytes inside an active BigWord, and
thus the attack complexity can be reduced.

4 Framework of Non-full-active Super-Sbox Analysis

In this section, we use the following notations:

r: a number of rows and columns in a state.
c: a number of bits of each cell (word) in a state.
s: a number of non-active columns in the initial state of the differential path.
Col(x): a state where x columns are fully active, namely, r×x bytes are active.
SR(Col(x)), SR−1(Col(x)): a state where Col(x) is passed over SR and SR−1.
F : a state where all bytes are active.
x/y: a state where y bytes become non-active from a state x.

In the Super-Sbox analysis, as long as we follow the strategy of Gilbert and
Peyrin [9], the attack complexity is lower-bounded by 2rc. In this section, we
present a new framework called non-full-active Super-Sbox analysis which can
detect non-ideal properties with a lower complexity. We first make a truncated
differential path whose inbound part, in particular inside the Super-Sbox, con-
sists of non-full-active states. For non-active bytes, the differential transition 0
to 0 is always held regardless of its value, and thus attackers can freely choose
the value without breaking the path. This gives attackers the freedom degrees
to adjust other bytes inside the Super-Sbox.

Non-full-active Super-Sbox analysis can be applied to AES-based permuta-
tions. We assume that the MixColumns operation is composed of MDS matrix
[5]. Namely, the sum of the number of active bytes in the input and output states
is greater than or equal to r + 1, otherwise 0.

4.1 Non-full-active Truncated Differential Path

We show a generic description of the non-full-active differential path. The dif-
ferential path has a parameter s, which is the number of non-active columns in
the initial state. The parameter s determines the complexity of the attack. The
differential path is depicted in Fig. 4 with instantiating the case r = 8 and s = 3.

To make the differential path, we start from the state after the 2nd and 5th
rounds, whose states are Col(1)/s and SR−1(Col(1))/(r− (s+1)), respectively.
The differential propagation through the 3rd round in forward and the 5th round
in backward are deterministic, which result in F/Col(s) and F/SR−1(Col(r −
(s + 1))), respectively. We then need to check that the differential propagation
through the MixColumns operation in the 4th round is consistent with the MDS
property. Because input and output states have r− s and r− (r− (s+1)) active
bytes in each column respectively, the sum of active bytes in the input and output



44 Y. Sasaki et al.
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Fig. 4. (Bottom) New differential path for 8-round AES-based permutations with
instantiating r = 8 and s = 3. (Top) Previous path for the Super-Sbox analysis [9].

is r− s+ r− (r− (s+1)) = r+ 1. Hence, the differential path is consistent with
the MDS property. Next, we determine the differential propagation through the
6th round in forward. The number of active bytes should be reduced as much as
possible after the 6th round in order to make the target non-ideal property hard
for an ideal permutation. Hence, we maximize the number of non-active bytes
with satisfying the MDS property, which results in the state Col(1)/s. Similarly,
we determine the differential propagation through the 2nd round in backward.
We make the number of active bytes to be the same as the state after the 6th
round2, which results in SR−1(Col(1))/s. The rest of the path is deterministic.

4.2 Low Complexity Inbound Phase

We explain how to compute the inbound phase for our path. Details of states
inside the inbound phase are shown in Fig. 5, with denoting each state by #i,
where 0 ≤ i ≤ 8. The inbound phase starts from the state after the SubBytes in
the 3rd round (#0) and the state input to the 6th round (#8). The goal of the
inbound phase is finding paired values satisfying the differential path through
#0 to #8. We find 2c such paired values with 2c computations and 2c memory.

States #0 and #8 include r − s and s + 1 active bytes, respectively. First,
we choose and fix the differences of all active bytes in #0 and the differences
of s active bytes out of s + 1 active bytes in #8. Then, for each 2c possible
differences of the last active byte in #8, we aim to store a corresponding paired
value. Due to the linearity of the operations, we can compute the corresponding
differences in state #2 and corresponding s-byte differences in each column of
#6. The Super-Sbox analysis can be applied between #2 and #6, namely we can
compute them column by column independently. Previous Super-Sbox analysis
spent 2rc of time and 2rc of memory for this computation, while we efficiently
connect these two states by using the freedom degrees of the non-active states.
In the following, we only show the Super-Sbox computations in the left most
column, which is emphasized with bold squares in Fig. 5. The other columns can
be connected with the same procedure.

2 With a lower probability, the number of active bytes can be smaller. However, this
will not lead to any advantage in the distinguishing attack.
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Fig. 5. Inbound phase for the new differential path with non-full-active states
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Fig. 6. Computation procedures inside each Super-Sbox

Computation procedure inside the Super-Sbox. The operations inside the
Super-Sbox are shown in Fig. 6. Because the ShiftRows operation does not give
any impact inside the Super-Sbox, we omit it in Fig. 6. To stress that each Super-
Sbox is computed column by column, we denote the states inside the Super-Sbox
by #2A, #4A, #5A, and #6A in Fig. 6. The goal of this procedure is efficiently
producing 2c paired values which satisfy the fixed part of the differences of #2A
and #6A. This procedure finds 2c paired values with a time complexity of 2c

and 2c memory. The attack procedure is as follows.

0. For each active byte whose difference is fixed in #2A and #6A, compute SB
and Inverse-SB for all possible 2c values and a fixed difference. Store these
2c values and corresponding output differences as a look up table. We sort
tables according to the output differences so that table look-up only requires
1 memory access. As a result, (r − s) + s = r look-up tables are prepared.

1. Choose a difference of one active byte in #4A. (The top byte of #4A is
chosen in Fig. 6.)

2. We have other r−s−1 active bytes in #4A and need to make sure the same
number of bytes in #5A are non-active. This is done by solving a system
of equations and we will obtain one solution of the system. As a result,
differences in #4A and #5A become consistent and are uniquely fixed.



46 Y. Sasaki et al.

3. From a fixed difference of #4A and the given difference of #2A, for each
active byte, we obtain a pair of values which connects these differences by
looking up tables generated in Step 0. Do the same for fixed s-byte differences
of #6A and #5A. Note that values for non-active bytes are not fixed yet.

4. Then we connect the values of active bytes of #4A and #5A. We use the
freedom degrees of non-active bytes to effectively achieve this. There are s
non-active bytes in #4A and s active bytes in #5A whose values are fixed
in Step 3. By solving a system of equations, we can calculate the values of s
non-active bytes in #4A so that the fixed s bytes of #5A can be consistent.

5. With the fixed values in #4A, we compute the non-fixed active byte in #5A,
and further compute the corresponding value in #6A. We store entire values
and differences of states #2A and #6A in a table.

6. We iterate Step 1 to Step 5 2c times by changing the difference of the chosen
active byte in #4A.

Complexity of inbound phase. We assume r and s are enough small com-
pared to 2c (e.g. r = 8, s = 3, and 2c = 256 in Fig. 4). Step 0 requires 2c

computations and 2c memory. Step 1 to Step 4 can be computed with a com-
plexity of 1 (Based on the assumption, the cost for looking-up r tables and
solving systems of equations of size s are ignored). Step 5 uses a memory of 1.
Because Steps 1 to 5 are repeated 2c times in Step 6, the complexity of this
procedure is time 2c and memory 2c. Note that 2c values and differences of the
non-fixed active byte are stored in the table. Therefore, we obtain 1 solution on
average for any difference of the non-fixed byte.

After we finish the computation for all Super-Sboxes, we choose a difference
of the non-fixed byte in #8 in Fig 5. For each of its possible 2c differences,
we compute the corresponding difference in #6, and obtain the value which
connects #2 to #6 by looking up each Super-Sbox. Note, we obtain one solution
on average for any pair of differences in #2 and #6. To sum up, we can obtain
2c starting points, which are solutions of the inbound phase, with time 2c and
memory 2c. In other words, we obtain a starting point with time 1 on average.

4.3 Outbound Phase and the Freedom Degrees

After the inbound phase, we compute the outbound phase. The differential
path described in Fig. 4 has two probabilistic differential propagations: 1) the
backward computation through the 2nd round and 2) the forward computation
through the 6th round. In both rounds, the MixColumns or InverseMixColumns
operations need to produce s non-active bytes. Therefore, for each of these
rounds, the success probability is 2−cs. Finally, this attack requires 22cs starting
points for the outbound, and each starting point is generated with time 1 on
average. Hence, with a time 22cs, we find a pair following the differential path.

We also need to confirm that the available freedom degree is enough. Our
attack starts from the states #0 and #8 in Fig. 5. #0 and #8 include r− s and
s+1 active bytes respectively, and thus we have 2c(r+1) freedom degrees in total.
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Table 2. The complexity to find a property with our attack and ideal permutation

s 1 2 3 4 5 6 7 8

Ours 22c 24c 26c 28c 210c 212c 214c 216c

Ideal 2
cr
2 2cr 2

3cr
2 22cr 2

5cr
2 23cr 2

7cr
2 24cr

Hence, as long as the parameter s satisfies 2c(r+1) ≥ 22cs, which is converted to
below, we have enough freedom degrees.

s ≤ r + 1
2

(1)

4.4 Target Class of AES-Based Permutations and an Example

Let us consider the complexity for an ideal permutation. The last MixColumns is
not taken into account because it is fully linear. Hence, the problem is regarded
as finding a crs-bit collision. A crs-bit collision can be found by the birthday
attack because attackers have enough freedom degrees due to Eq. (1). Hence,
the complexity for an ideal permutation is 2

crs
2 . The comparison of the non-full-

active Super-Sbox analysis and the ideal case is shown in Table 2.
From Table 2, we can see r > 4 is a condition so that our attack can work.

Therefore, our attack cannot be applied to AES (r = 4). Note that the ECHO
permutation is regarded as an AES-based permutation with r = 4 at a BigWord
level. However, it has other structures and this enables us to greatly reduce the
attack complexity on the ECHO permutation. See Section 5 for details.

Let us consider an application for a real primitive. Grøstl-256 uses an AES-
based permutation with r = c = 8. In previous Super-Sbox analysis [9], the
8-round permutation is distinguished with time 2112 and memory 264, which
is too expensive to be implemented. In our attack, we choose s = 3, whose
differential path is shown in Fig. 4. Consequently, from Table 2, we can detect a
pair of values following the differential path with time 248 and 28 memory, while
finding a pair of values in an ideal permutation requires 296, which is infeasible.
Choosing other s is also possible as long as s ≤ 4.

5 Applications to ECHO and Grøstl

5.1 New Observations on ECHO

In this section, we explain several new observations on the ECHO permutation
when dealing with the dedicated byte-wise differential path.

Complexity analysis for jointed MixColumns and BigMC. In the ECHO
permutation, 2-round AES permutation inside BigSB can be considered as a
non-linear layer with Super-Sboxes and a diffusion layer consisting of ShiftRows,
MixColumns and AddRoundKey. Note that from the second MixColumns inside
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Fig. 7. A differential path for a 1-round ECHO permutation

BigSB to the following BigMC are successively performed. We show that the
linearity of jointed MixColumns and BigMC should be considered to correctly
compute the complexity for certain differential paths.

As an example, let us check the complexity for the differential path shown in
Fig. 7 assuming the differences and real values at state #1 have full freedom.
In the previous analysis [26, Appendix B], the complexity for this differential
path is likely to be divided into three parts and analyzed independently. State
#1 to #2 can be fulfilled when the output of each active Super-Sbox has only 1
active byte. Since there are totally 12 bytes required to be zero, the probability
is regarded as 2−96. The complexity from #2 to #3 is 1. And since 12 bytes
are required to be zero from #3 to #4, the probability is regarded as 2−96. As
a result, the total probability is regarded as 2−96×2 = 2−192. However we show
that MixColumns and BigMC cannot be considered separately, and thus the
correct probability needs to be reconsidered.

We can see that the freedom of the difference for state #2 or #3 is at most 232,
since #2 has only 4 active bytes. As a contradiction for the previous analysis,
the freedom of difference at #3 (232) seems impossible to fulfill the differential
propagation to #4 (2−96). However, we show that this propagation is fulfilled
only with a probability of 2−24, and thus 232 freedom degrees are enough.

This fact can be understood from two directions. First, for a position-fixed
active byte and the fixed MDS matrix used in MixColumns between #2 and
#3, the 4 active bytes inside each active BigWord at #3 has a fixed linear
relationship. Then if BigMC generates the required difference at #4 for one of
4 active-byte positions with a probability of 2−24 (e.g. 4 top-left bytes from 4
active BigWord at #3 generate 1 active byte at the top-left of state #4), the
other three active-byte positions become the same differential pattern at #4
with probability 1. Another interpretation is that one can switch the operation
order, namely performing BigMC first and MixColumns later. When 4 active
bytes in #2 generate only 1 active byte through BigMC with a probability of
2−24, the differential path from #3 to #4 through MixColumns is fulfilled with
probability 1. As a result, the total complexity is 296+24 = 2120 instead of 2192.
Note that this fact was independently discovered by [27] as SuperMixColumns.

Freedom of the differential path inside BigSB. We can use the freedom of
the differential path inside BigSB to reduce the attack complexity. Our attacks
only care about the differences at the start and end states of the permutation.
We notice that while keeping the differential path at a BigWord level, attackers
can use the freedom of the differential paths at a byte level inside BigSB.

We again use the differential path in Fig. 7 as an example. In order to fulfill
the differential path, the 4 active bytes in state #2 must be at the same position
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inside the leftmost column of each BigWord3. As a result, the differential path
inside the BigSB has 4 choices for the positions of active bytes, and thus, the
complexity for the differential path in Fig. 7 can be reduced from 2120 to 2118.

5.2 Attack on Full-Round ECHO Permutation

Truncated Differential path. We use the differential path explained in Sec-
tion 4.1 with parameter s = 1 at a BigWord level, which is shown in Fig. 8.
We use the notation BigSB[x, y, z], where x, y, z ∈ {F,D,C, 1} to show that x,
which is the input differential pattern to BigSB, changes into y after the 1st
AES-round and into z after the 2nd AES-round.

Inbound phase. The detailed differential path for the inbound phase is de-
scribed in Fig. 9. The inbound phase starts from a middle of BigSB in the 3rd
round (#α) and the input state to the 6th round (#β), where the differential
form in #α is C. We first choose and fix a difference of #α and a difference
of one of active BigWords of #β, and compute the corresponding differences of
3 If 4 active bytes in state #2 are in different positions inside each BigWord, the path

for Fig. 7 becomes impossible. This may be used as a countermeasure of our attack.
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#2 and #6. In the inbound phase, for each of 232 possible differences of the
non-fixed active BigWord in #β, we find a pair of values that satisfies the cho-
sen differences of #α and #β. The attack procedure follows the one explained
in Section 4.2 with some optimization specific to ECHO. In the followings, we
describe details to compute 1 Super-Sbox of ECHO with the size of 128 bits.

0. Generate a look-up table for each 4 active BigWord with fixed difference
in #2A and #6A, With the procedure in Section 4.2, this costs 2128 time
and 2128 memory. [8] pointed out that this could be performed efficiently
by looking inside BigSB. The BigSB can be regarded as 4 Super-Sboxes
(SB, SR, MC, AK, SB) with the size of 32 bits and the linear part (SR, MC,
AK). Then, for a given output difference of BigSB, we can calculate back the
corresponding difference of the linear part, and thus values are searched by
looking up four 32-bit Super-Sboxes independently. Hence, look-up tables for
4 BigWords can be generated by computing 16 Super-Sboxes, which requires
16× 232 in both time and memory.

1. Choose a difference of one active BigWord in #4A.
2. By solving a system of equations, compute differences of 2 active BigWords

in #4A so that 2 target BigWords in #5A can be non-active.
3. For each active BigWord with fixed difference, obtain a pair of values which

connects differences between #4A and #2A, and between #6A and #5A by
looking up tables generated in Step 0.

4. By solving a system of equations, calculate the value of 1 non-active BigWord
in #4A so that the fixed value of 1 BigWord in #5A can be consistent.

5. With the fixed paired values in #4A, compute the non-fixed active BigWord
in #5A and #6A. Only if the computed difference of #6A has the diagonal
form D, store entire values and differences of states #2A and #6A in a table.

6. Iterate Steps 1 to 5 2128 times by changing the difference of the chosen
BigWord in #4A.

In Step 0, look up tables are generated with 236 time and 236 memory. Steps 1
to 5 are iterated 2128 times. In Step 5, the computed difference has the diagonal
form D with a probability of 232/2128 = 2−96, and thus we store 232 data after
2128 iterations. Hence, the complexity for 1 Super-Sbox with the size of 128 bits is
2128 computations and 236+232 memory. Note that we need 236+(4×232) < 237

memory for 4 Super-Sboxes. In the end, the inbound phase generates 232 starting
points with 2128 computations and 237 memory, which is 296 computations on
average to generate 1 starting point.

Success probability and freedom degrees. If details are considered, Step 3
succeeds only probabilistically. Look-up tables for each BigWord consists of 4
Super-Sboxes with the size of 32 bits. Assume that each Super-Sbox has the
same property as the AES Sbox. Namely, for a randomly given a pair of input
and output differences, with a probability of approximately 2−1, there exists
approximately 2 paired values satisfying the differences. In Step 3, we look-
up 16 Super-Sboxes. Hence, the success probability is 2−16 and we obtain 216

paired values. We compute Steps 4 and 5 for all 216 paired values, and thus they
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are computed 2128 times in total by the 2128 iteration of Step 6. Consequently,
the total time and memory for the inbound phase will not change. Note that
the estimation by using average numbers is imprecise only if the cost for the
outbound phase is cheaper than the inbound phase. Because our attack iterates
the inbound phase 254 times, the evaluation with average numbers is valid.

We then check the freedom degrees. In the inbound phase, we can choose up
to 296 differences for #α and 232 differences for the fixed active BigWord in #β.
Hence, the inbound phase can be iterated 2128 times and thus we can generate
2160 starting points in maximum, which are enough to satisfy the outbound.

Outbound phase. The differential path shown in Fig. 8 includes two proba-
bilistic differential propagations.

InverseBigMC in the 2nd round. For each of diagonal positions, Inverse
MixColumns outputs one non-active byte. This probability is (2−8)4 = 2−32.

BigSB and BigMC in the 6th round. Observations explained in Section 5.1
are applied for this part. The probability that the differences in 2 BigWords
propagate as D → 1 → C is (2−24)2 = 2−48. By taking the freedom of
the differential path inside BigSB into account, the probability becomes
4× 2−48 = 2−46. In the BigMC operation, MC is computed for 4 positions.
Due to the property of jointed MixColumns and BigMC operations, all of the
4 positions will make 1 non-active byte with a probability of 2−8 in total. As
a result, the total success probability of the 6th round is 2−46× 2−8 = 2−54.

In the end, the success probability of the outbound phase is 2−32×2−54 = 2−86.

Total complexity and comparison with ideal case. In our attack, we
generate 286 starting points and each of them is generated with 296 computations
on average. Hence, the total complexity is 286×296 = 2182. Note that this attack
requires 237 memory. On the other hand, for the ideal case, the property is
regarded as finding a 512-bit collision. This requires 2256, which is much higher
than our attack on ECHO.

5.3 Improving Semi-free-start Collisions on 7-Round Grøstl-512

We improve the semi-free-start collision attack on 7-round Grøstl-512 compres-
sion function proposed by Mendel et al. [17]. It uses the previous Super-Sbox
analysis and thus requires 264 memory. We show the memory can be reduced to
256 with the non-full-active Super-Sbox analysis. Because our outbound phase
is the same as [17], we only explain the inbound phase.

In the Super-Sbox analysis with a rectangle state such as r×2r, several Super-
Sboxes include non-active bytes. Hence, the framework explained in Section 4
can be applied and the data stored for each Super-Sbox can be reduced. In
the previous differential path [17, Fig.7] shown in Fig. 10, the 9th Super-Sbox
at #PSH

3 takes a full-active column as input and output a full-active column,
which requires 264 memory. In fact, this is a bottleneck in the entire attack.
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We reduce the number of active bytes where we choose the differences at the
initial step of the inbound phase (#P4). This results in a differential path where
each Super-Sbox has at least one non-active byte. The new path is shown in
Fig. 10. Each Super-Sbox can be computed based on the procedure explained
in Section 4.2, which results in generating 256 starting points with 256 time and
256 memory. Note that the differential propagation from #PSH

3 to #P3 must be
consistent with the MDS property. We confirmed that the amount of memory
could not be below 256 due to this limitation.

Because we reduced the number of active bytes, the freedom degree was also
reduced. The success probability of the outbound phase is 2−152, and thus we
need 2152 starting points. Because our attack can choose 22-byte differences (8-
byte for #PSH

2 and 14-byte for #P4) at the initial step, up to 28×22 = 2176

starting points can be produced, which is enough to satisfy the outbound path.

6 Conclusions

We presented the non-full-active Super-Sbox analysis which can detect non-ideal
properties of a class of AES-based permutations with a low complexity. The core
idea is using a differential path consisting of only non-full-active states. This gives
us the freedom to efficiently control inside the Super-Sbox. We then applied this
framework to the full-round ECHO permutation by taking properties specific to
ECHO into account. Consequently, our attack could detect a non-ideal property
with time 2182 and memory 237. Note because of the convolution operation, our
attack cannot be extended to the hash or compression function. We then applied
our approach to Grøstl to obtain the distinguishing attack on the 8-round Grøstl-
256 permutation with a practical cost, and to obtain an improvement on the
semi-free-start collision attack on the 7-round Grøstl-512 compression function.
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attack on the full LANE compression function. In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912, pp. 106–125. Springer, Heidelberg (2009)

14. Mendel, F., Rechberger, C., Schläffer, M.: Cryptanalysis of Twister. In: Abdalla,
M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS,
vol. 5536, pp. 342–353. Springer, Heidelberg (2009)

15. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound
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A Attack Procedures on 7-Round ECHO Permutation

Using the differential path shown in Fig. 11, we present an attack on the 7-round
ECHO permutation with time of 2118 and memory of 238.

Step 1. An attacker picks up a difference at state #A (from 2128 patterns) and
calculates the difference back to #B (state after the second SubBytes).

Step 2. The transformation from #B to #C can be divided into 64 independent
4-byte Super-Sboxes. For each Super-Sbox with fixed output difference, by
testing all 232 output values, the attacker can make a table of all possible
input values and differences. At the end of Step 2, all the possible pairs at
#C are stored in a table named T1 that is composed of 64 small tables each
with size 232. Hence, we need 238 memory for this step.

Step 3. For each active BigWord at #D, the attacker picks up a difference and
calculates a corresponding difference of BigColumn at #C. Then attacker
checks whether the calculated difference exists in T1. Once it exists, the
attacker uses the corresponding real values at #C to calculate back the real
values at #D. This test is repeated for all possible differences for each active
BigWord of #D, and all possible differences and real values at #D are stored
in a new table named T2. The time and memory for Step 3 are both 232.
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Fig. 11. Differential path for 7-round ECHO permutation
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Step 4. For all the possible pairs at each active BigWord at #D, the attacker
calculates the pairs at #E and stores the results as a table named T3.

Step 5. For all the possible 232 differences at #F, the attacker calculates the
differences at #E and checks whether the calculated difference exists in T3.

When Steps 1 to 5 are applied to Fig. 11, the inbound and backward outbound
phases are merged and calculated efficiently. ABy applying the procedure once,
with time of 232 and memory of 238, the attacker gets 232 start points. Note that
with the 2128 freedom of the differences at #A, the forward outbound phase can
be fulfilled. As a result, the total complexity is 2118 in time by the observations
in Section 5.1 and 238 in memory.

B Attack on 3-Round ECHO-SP Compression Function

Note that, for the attack in Appendix A, there is no specific requirement for the
differences at state #A. Using this property we can find a non-ideal property of
the 3-round single-pipe ECHO compression function specified in [19].

The differential path is shown in Fig. 12. An attacker makes sure the differ-
ences at #A can be cancelled in the compression calculation, i.e. for each row
of BigWords at #A, the difference labeled as A is the same with the one labeled
as B. By applying the procedure in Appendix A, this differential path can be
satisfied using 232 time and 238 memory, while it costs 264 for the ideal case.
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Abstract. We revisit narrow-pipe designs that are in practical use, and
their security against preimage attacks. Our results are the best known
preimage attacks on Tiger, MD4, and reduced SHA-2, with the result
on Tiger being the first cryptanalytic shortcut attack on the full hash
function. Our attacks runs in time 2188.8 for finding preimages, and 2188.2

for second-preimages. Both have memory requirement of order 28, which
is much less than in any other recent preimage attacks on reduced Tiger.
Using pre-computation techniques, the time complexity for finding a new
preimage or second-preimage for MD4 can now be as low as 278.4 and
269.4 MD4 computations, respectively. The second-preimage attack works
for all messages longer than 2 blocks.

To obtain these results, we extend the meet-in-the-middle framework
recently developed by Aoki and Sasaki in a series of papers. In addition
to various algorithm-specific techniques, we use a number of conceptually
new ideas that are applicable to a larger class of constructions. Among
them are (1) incorporating multi-target scenarios into the MITM frame-
work, leading to faster preimages from pseudo-preimages, (2) a simple
precomputation technique that allows for finding new preimages at the
cost of a single pseudo-preimage, and (3) probabilistic initial structures,
to reduce the attack time complexity. All the techniques developed await
application to other hash functions. To illustrate this, we give as another
example improved preimage attacks on SHA-2 members.

Keywords: Preimage,MD4,Tiger, SHA-2,Hash function,Cryptanalysis.

1 Introduction

After the spectacular collision attacks on MD5 and SHA-1 by Wang et al.
and follow-up work [12,39,44,45], implementors have reconsidered their choices.
While starting a very productive phase of research on the design and analysis
of cryptographic hash functions, the impact of these results in terms of practi-
cal and worrying attacks turned out to be less than anticipated (exceptions are
e.g., [26,38,40]). Instead of collision resistance, another property of hash func-
tions is more crucial for practical security: preimage resistance. Hence, research

M. Abe (Ed.): ASIACRYPT 2010, LNCS 6477, pp. 56–75, 2010.
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on preimage attacks and the security margin of hash functions against those
attacks seems well motivated, especially if those hash functions are in practical
use.

An important ongoing challenge is to find an efficient and trustworthy new hash
function for long term use (e.g., in the SHA-3 competition). For new hash func-
tions, an important first step to get confidence in them is to apply known crypt-
analysis methods in order to break them. So the cryptanalysts’ toolbox needs to
be well equipped for this.

The new techniques we present in this paper contribute to both issues at
the same time. They give new, generically applicable tools to cryptanalysts
for analyzing compression functions and hash functions, and at the same time
applications of them improve significantly upon known preimage attacks on
hash functions in practical use, like MD4, Tiger, and SHA-256/512. In the fol-
lowing we outline the new tools and new results that will be described later
in the paper. We describe them in a way to fit into the meet-in-the-middle
(MITM) framework of Aoki and Sasaki as recently developed in a series of pa-
pers [6,7,8,36,37], although we note that the basic approach was pioneered by
Lai and Massey [23]. Other interesting approaches to preimage attacks appeared
in [11,13,21,22,24,25,28,29,34,46].

New methods. New methods described in this paper that are independent of
a particular attack or hash functions are the following:

– Probabilistic initial structure, compared with (deterministic) initial
structure, is found be useful for significantly reducing attack complexity
for the first. To improve the time complexity of a MITM preimage attack,
the attackers usually need to find more neutral words. This usually reduces
the number of attackable steps, due to the fact that the more neutral words,
the faster the neutrality is destroyed, and the less step can be covered for
independent chunks, initial structure, and partial matching. Hence, there is
a tradeoff between the size of neutral words, and attackable steps. In this
paper, using MD4 in Section 3 as an example, we show one can use more
neutral words, and maintain long initial structure at the same time, with
cost of turning the initial structure into a probabilistic one. A similar tech-
nique has been used in [37], however there it serves the purpose of better
approximating the initial structure, and the attack complexity is not reduced
due to limited bits for partial matching.

– Incorporating multi-target scenarios into the MITM framework,
leading to faster preimage attacks. The MITM framework is the basis for
several theoretically interesting results on the preimage resistance of various
hash functions, mostly close to brute force search complexities. One reason
for this is that in order to exploit all the options of this framework, matching
points of the meet-in-the-middle phase can be anywhere in the computation
of the compression function, and not necessarily at their beginning or end.
Even though this gives an attacker more freedom in the design of a compres-
sion function attack, this always leads to big efficiency losses when the attack
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on the compression function is converted to an attack on the hash function.
Hence, an attacker basically has to choose between a more restricted (and
potentially much slower) strategy in the compression function attack that
allows more control over the chaining values and in turn allows efficient tree-
or graph-based conversion methods, or to fully exploit the freedom given by
the latest versions of the MITM framework in the compression function at-
tack at the cost of inefficient conversion methods. In Section 2.2 we describe
a way to combine the best of both worlds. Later in the paper, this results in
the best known preimage attacks for Tiger and the SHA-2 members.

– A simple precomputation technique that allows for finding new preim-
ages at the cost of a single pseudo-preimage. See Section 3 for an applica-
tion to MD4, where this approach is shown to outperform any point on the
time/memory trade-off curve by Hellman [18] (which was proven optimal
in [10] in the generic case).

New results in perspective. In addition to the conceptual ideas that con-
tribute to the cryptanalysts’ toolbox in general, we also apply those ideas and
present concrete results. In fact, we manage to improve the best known preimage
attacks on a number of hash functions in practical use. A table of best related
works, and the comparison with our main results can be found in [16].

– Tiger: One of the few unbroken but time-tested hash functions, designed
by Anderson and Biham [5] in 1996, Tiger is sometimes recommended as
an alternative to MD4-like designs like SHA-1, especially because it is faster
than SHA-1 on common platforms. Tiger is in practical use e.g., in decen-
tralized file systems, or in many file sharing protocols and applications, often
in a Merkle-tree construction (also known as TigerTree [3]). The best colli-
sion attack on Tiger is on 19 rounds [30].1 So far the best preimage attack
on the Tiger hash function is by Wang and Sasaki [42]. Independently of
our work, they applied the MITM preimage attack to Tiger reduced to 23
steps with time complexity higher than ours (1.4 × 2189) and requirements
of 222 units. Our new attack improves those in many aspects and seems to
be the first cryptanalytic shortcut attack on the full Tiger hash function.
Our attack on the full 24 rounds hash functions has time complexity 2188.8

(compression function attack is 2185.4) and memory requirements are only in
the order of 28. These results are obtained using the multi-target technique
mentioned above, and a dedicated technique to construct an initial structure
in a precomputation.

– MD4: Even though very efficient collision search methods exist for MD4
[43,35], this hash function is still in practical use. Examples include pass-
word handling in Windows NT, the S/KEY one-time-password system [17],

1 If an attacker can choose both the difference and the actual values not only of the
message, but also of the chaining input, then the full compression function can be
attacked, see Mendel and Rijmen [31]. However, this attack cannot be extended on
the hash function, whereas all the attacks in this paper can.
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integrity checks in popular protocols e.g., rsync [2] or file-sharing protocols [1]
and applications. The time complexity for the best known compression func-
tion attack is reduced from 296 (by Leurent [27]) to 272. Assuming 2128 pre-
computation using the large computation technique mentioned above, and 281

storage, the effort for finding any new preimage (be it for the same or a differ-
ent target hash value as a challenge) can now be as low as 278.4.

– SHA-2: The members of the SHA-2 family of hash functions are probably
among the most interesting cryptanalytic targets, not only because of the
uptake of its adoption in all places where a hash function is needed (and they
are countless), but also because they are used to compare them to candidates
of the ongoing SHA-3 competition. We use SHA-2 members as an example
to illustrate the effect of using the multi-target scenario. This way we also
improve the best known preimage attacks on reduced SHA-256 and reduced
SHA-512. They are described in [16, Appendix A].

Outline. This paper is organized as follows. Section 2 describes the MITM
preimage attack, four different methods converting the pseudo-preimage to preim-
age (including two new ones), and also recapitulates techniques to extend MITM
based preimage attacks. We apply these new techniques to MD4 and Tiger in
Section 3 and Section 4, respectively. Section 5 concludes the paper.

2 The Meet-in-the-Middle Preimage Attack

The general idea of the preimage attack, illustrated in Fig 1, can be explained
as follows:

1. Split the compression function into two chunks, where the values in one
chunk do not depend on some message word Wp and the values in the other
chunk do not depend on another message word Wq (p �= q). We follow the
convention and call such words neutral with respect to the first and second
chunk, respectively.

2. Fix all other values except for Wp,Wq to random values and assign random
values to the chaining registers at the splitting point.

3. Start the computation both backward and forward from the splitting point to
form two lists Lp, Lq indexed by all possible values of Wp and Wq, containing
the computed values of the chaining registers at the matching point.

4. Compare two lists to find partial matches (match for one or a few registers
instead of the full chaining) at the matching point.

5. Repeat the above three steps with different initial configurations (values for
splitting point and other message words) until a full match is found.

6. Note that the match gives a pseudo-preimage as the initial value is deter-
mined during the attack. However, it is possible to convert pseudo-preimages
to a preimage using a generic technique described in [33, Fact 9.99]. One can
compute many pseudo-preimages, and then find a message which links the
IV to one of the input chaining of the pseudo-preimages.
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With the work effort of 2l compression evaluations (let the space for both Wp

and Wq be 2l), we obtain two lists, each one containing 2l values of the register
to match. When we consider all of the 22l possible pairs, we expect to get around
2l matches (assume we match l bits at the matching point). This means that
after 2l computations we get 2l matches on one register, effectively reducing
the search space by 2l. Leaving all the other registers to chance allows us to
find a complete match and thus a pseudo-preimage in 2n−l computations if the
chaining is of n bits. We repeat the pseudo-preimage finding 2l/2 times, which
costs 2n−l/2, and then find a message which links to one of the 2l/2 pseudo-
preimages, this costs 2n−l/2. So the overall complexity for finding one preimage
is 2n−l/2+1, with memory requirement of order 2l.

matchsplit

Target

Fig. 1. Meet-in-the-Middle Pseudo-Preimage Attack against Davies-Meyer Hash
Functions

Remark on bits for partial matching. Assume we have m bits for partial
matching, we expect 22l−m good candidates with the m-bit matched. However
we still need to check if one of the remaining candidates gives a full match
(pseudo-preimage), the checking costs about 22l−m (a bit less indeed, since we
can store the computed candidates up to the point before partial matching, and
re-check the partial matching portion only). To minimize the time complexity,
we require m ≥ l, so that the partial matching costs 22l−m ≤ 2l, which can be
neglected.

2.1 Multi-Target Pseudo Preimage (MTPP)

In [27], Leurent provides an unbalanced-tree multi-target pseudo-preimage
method to convert the pseudo-preimages to preimage with complexity (l ln(2) +
1) · 2n−l, compared with 2n−l/2+1 in [33, Fact 9.99]. Suppose the matching point
is at the end of compression function. The matching process is to find lp + lq = t
(lp ∈ Lp, lq ∈ Lq, and t ∈ T , the set of known targets). When we are given k
targets, the chance to find a match increases by a factor k, i.e., it takes 2n−l/k
to find a pseudo-preimage which links to one of the k targets. To find 2k pseudo-
preimages, it takes 2n−l/1 + 2n−l/2 + 2n−l/3 + · · · + 2n−l/2k � k ln(2) · 2n−l.
To find a preimage, it is expected to repeat 2n−k blocks finding a message, which
links to one of the 2k targets. Taking the optimal k = l, the overall complexity is

2n−k + k ln(2) · 2n−l = (l ln(2) + 1) · 2n−l . (1)
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Note this conversion does not necessarily increase the memory requirement, i.e.,
it can be the same as for finding a pseudo-preimage, since we compute the 2l

pseudo-preimages in sequence.

Enhanced 3-Sum Problem. The above conversion comes with an assumption
that the matching can be done within 2l. Note from each chunk, we have 2l

candidates (denoted as Lp and Lq), and given 2k targets (denoted as T ), we
are to find all possible (lp, lq, t), where lp ∈ Lp, lq ∈ Lq and t ∈ T , such that
lp + lq = t. We call this problem the Enhanced 3-Sum Problem, where the
standard 3-sum problem decides whether there is a solution [4]. Current research
progress [9] shows that the problem can be solved in O(22l) or slightly faster.
So this approach expects the matching to be done in 22l (for k = l) instead
of the assumed 2l. However the matching only occurs in the final feed-forward
operation (“+” in most of the MD hash families), which is a small portion of the
compression. Hence this approach expects 22l “+” operations to be somewhat
equivalent to 2l compression computations by counting the number of “+” in
the compression, when l is relatively small (e.g., ≤ 7 for MD4 and Tiger, since
there are about 27 “+” in MD4 compression; we simply count the number of
operations (“+”, “−”, “×” and sbox lookup) in the case of Tiger).

2.2 Generic Multi-Target Pseudo Preimage (GMTPP)

The framework of Aoki and Sasaki could not take advantage of a multi-target
scenario to speed-up the conversion from pseudo-preimage to preimages. The
reason is a rather strong requirement on the compression function attack by
the MTPP approach outlined above. By generalizing the setting, we weaken
the assumption on the compression function attack, and hence allow the MITM
framework to take advantage of new speed-up possibilities.

When the matching point is not at the end of the compression function, we
can still make use of the multi-targets. Consider the sum of the size of Wp and
Wq to be 2l, and assume we can re-distribute the 2l bits to Wp and Wq freely2.
Given 2k targets, we can distribute the 2l bits to l + k/2 and l − k/2, so that
we can have 2l+k/2 candidates for each direction (combining the 2l−k/2 and 2k

targets to get 2l+k/2 candidates). In this way, we can find a pseudo-preimage
in 2n−l−k/2 and finding 2k targets costs Σ2k

i=12
n−l · i−1/2 � 2n−l+1+k/2 (see [16,

Appendix B] for a proof). So we can find the preimage in

2n−k + 2n−l+1+k/2 = 3 · 2n−2l/3 (2)

taking the optimal k = 2l/3. For this method to work, we will need more match-
ing bits: 4l/3 bits instead of l (we have 24l/3 candidates for both directions).
The memory requirement hence increases to 24l/3. Here we trade memory for
speed from 2n−l/2l (time/memory) to 2n−l−k/2/2l+k/2 for k = 0, . . . , 2l/3. And
we have full control on any other speed/memory balance in-between by making
use of the proper number of given targets, i.e., less than 2k.
2 This being a very natural assumption is illustrated by the fact that for both MD4

and SHA-2 we can give a useful application that uses this.
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Table 1. Comparison of methods converting pseudo-preimage to preimage

Name Reference Time Memory PM Assumption

Traditional Section 2,[33] 2n−l/2+1 2l l -

GMTPP new, Section 2.2 3 · 2n−2l/3 24l/3 4l/3 redistribute neutral bits

MTPP Section 2.1, [27] (l ln(2) + 1) · 2n−l 2l 2l
Enhanced 3-SUM
PM at feedforward

FPLP new, Section 2.3 2n−l max(2z,2l) l
2n precomputation

subset of chaining of size 2z

2.3 Finding Preimages Using Large Precomputation (FPLP)

Here, we describe a simple technique to turn a large class of pseudo-preimage
attacks into preimage attacks without any speed loss. The method requires an
initial large precomputation of order 2n and hence needs to be compared with the
time/memory trade-off proposed by Hellman [18]. This means that the time and
memory requirements of a dedicated attack need to be below the TM2 = N2

tradeoff curve in order to be considered as an improvement over the generic
attack.

The approach may be described as follows: in the precomputation phase,
one tries to find messages for all possible chaining outputs, i.e., find mi such
that hash(mi) = hT for (almost) all possible target hash values hT , but only
store those messages mi in a table together with the output, which can actually
“happen” in the pseudo-preimage attack. In the online phase, after the pseudo-
preimage attack is carried out, a simple lookup into this memory is enough to
find the right linking message. The memory requirement depends on the subset
of all possible chaining inputs the pseudo-preimage attack can possibly result in.
If this subset can be restricted enough, and the pseudo-preimage attack is fast
enough, the approach may outperform the generic method. In Section 3.3, we
give an actual example where this is the case for MD4, which seems to be the
first result of this kind.

Four different conversion techniques are summarized in Table 1. Our point
here is to illustrate and compare various approaches and the assumptions they
make on the compression function attack. For simplicity, other conversion meth-
ods somewhat similar to MTPP (tree construction in [32], alternative tree and
graph construction in [13]) are not listed. As an example, the new attack on
the MD4 compression function satisfies only assumptions of the traditional and
the FPLP approach, the new attack on the Tiger compression function and
the SHA-2 compression function satisfy the assumption made by the GMTPP
approach.

3 Improved Preimage Attack against MD4

3.1 Description of MD4

MD4 follows the traditional MD-strengthening, the original message is padded
by 1, followed by many 0’s and the 64-bit length information so that the length of
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padded message becomes a multiple of 512. Then divide the padded message into
blocks of 512 bits and feed into the compression function iteratively. Output of
the final compression is the hash. The compression function follows the Davies-
Meyer construction, and comes with two major parts: message scheduling and
step function. Message scheduling divides the 512-bit message block into 16
words (32 bit each) and expands them into 48 using permutations, as shown in
following table.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

Starting from input chaining, the expanded words are fed into the step function
iteratively. The output of the last step is added with the input chaining to give
the output of the compression function. The step function takes four registers as
input, and update one as Qi = (Qi−4 +Fi(Qi−1, Qi−2, Qi−3)+Mπ(i) +Ci) ≪ ri
for i = 0, . . . , 47, where Ci and ri are predefined constants, π is a permutation
defined in above table, and the functions Fi are defined as in the following table.
We use typewriter font to denote the hex numbers, such as 5A827999, � for
FFFFFFFF, and � for 00000000.

First pass 0 ≤ i < 16 Fi = IF Ci = K0 = �

Second pass 16 ≤ i < 32 Fi = MAJ Ci = K1 = 5A827999
Third pass 32 ≤ i < 48 Fi = XOR Ci = K2 = 6ED9EBA1

3.2 Faster Pseudo Preimage Attack

In this section, we present a pseudo-preimage attack in 272. Separation of chunks
is: steps {10, . . . , 26} for the initial structure, steps {40, . . . , 47, 0, . . . , 9} for the
first chunk, steps {27, . . . , 36} for the second chunk, steps {37, 38, 39} for partial
matching. We choose (M9, Q6) asWp and (M14, Q26) asWq. The initial structure
covers 17 steps from Step 10 to Step 26, as shown in Fig 2 with a = b = �.
Note that every register and message words within the initial structure except
Q6,M10,M14,M9, Q26 are fixed to some random values. The concept of 4-cycle
local-collision path has been used in [41,14,27]. However, none of those paths
help in our MITM preimage attack, since we cannot find more proper choices of
neutral words. In our initial structure, the relation between Q6 and Q26 satisfies

Q26 −Q6 = ϕ(M9,M10,M14) (3)

for some function ϕ. Note ϕ is fixed when all other registers/message words are
fixed.

We fix all other registers in Fig 2 in such a way that the influence of the
registers in the bold line is absorbed when passing through the F function (this
is called cross absorption property). Details can be found in [16]. All required
values are shown in Fig 2. However, this setting results in no solution, since it
is over-constrained on M12 and M13. To overcome this problem, we propose a
probabilistic initial structure.
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Fig. 2. 17-Step Probabilistic Initial Structure for MD4

Probabilistic Initial Structure. Consider the probability for a = IF(b, a, x),
where a, b are fixed constants, and x is a random value in �232 . The equation
does not always hold for all x. However, if |b| (Hamming weight) is very close
to 32, then we can expect high probability for the equation to hold. Instead of
setting inputs of IF to be strictly � or �, we use some other values which are close
to � or � (similarly, we force two inputs of MAJ to be very close), which enables
us to find some solutions for the initial structure, as shown in Fig 2, where a, b
are variables to be decided later.

We list the equations of the constraints here:

Step 11: Q9 = Q8

Step 12: Q11 = � ⇔ Q7 +Q8 +M11 = �

Step 13: Q12 = a ⇔ (Q8 +Q9 +M12) ≪ 3 = a
Step 15: Q13 = Q12 = a ⇔ (Q9 +M13) ≪ 7 = a
Step 16: Q15 = Q13 = a ⇔ (a+M15) ≪ 19 = a
Step 17: Q16 = Q15 = a ⇔ (a+ a+M0 +K1) ≪ 3 = a
Step 18: Q17 = Q16 = a ⇔ (a+ a+M4 +K1) ≪ 5 = a
Step 19: Q19 = b ⇔ (a+ a+M12 +K1) ≪ 13 = b
Step 20: Q20 = Q19 = b ⇔ (a+ a+M1 +K1) ≪ 3 = b
Step 22: Q21 = Q20 = b ⇔ (a+ b+M5 +K1) ≪ 5 = b
Step 24: Q23 = Q21 = b ⇔ (b+ b+M13 +K1) ≪ 13 = b
Step 25: Q24 = Q23 = b ⇔ (b + b+M2 +K1) ≪ 3 = b

(4)

The above system of equations allows us to have choices for a and b. Note that
we used two probabilistic approximations in two places, i.e., IF(a, �, Q10) = �

at Step 13, and MAJ(b,Q18, a) = a at Step 20. Each happens with probability
2|a|−32 and 2−|a⊕b|, respectively (assumeQ10 andQ18 are uniformly distributed).
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To have high probability, we search the a, b which maximize prob = 2|a|−|a⊕b|−32.
We found a = EFFFBFEF, and b = EFCF1F6F, which give prob = 2−8. Solving (4)
leaves M0 = C37DFE86, M1 = C377EA76, M2 = C3D92B76, M4 = 44FE0488,
M5 = 452D2004, M12 = C0FD8501, M13 = C15EC601, M15 = 07FE3E10, Q8 =
Q9 = 1E81397E, and Q7 +M11 = E17EC682. To ensure this works as expected,
we verified the probability using a C program [15] , and the experiment confirms
the result.

The pseudo-preimage algorithm

1. Fix all mentioned message words/registers as above.
2. Randomly assign all other message words, except M9,M10 and M14.
3. Compute (Q7, Q8, Q9) and (Q23, Q24, Q25).
4. For all (Q26,M14) compute forward from step 27 up to step 36, and obtain

the list (Lq, Q26,M14) (expected size 264).
5. For all (Q6,M9), compute backward from step 9 up to step 0, and obtain

the list (Li
p, Q6,M9) (expected size 264).

6. Do feedforward and add the target, continue computing backwards up to
step 40, and obtain the list (Lp, Q6,M9) (expected size 264).

7. Do partial matching with Q36 and Q39 (264+64−64 = 264 pairs left), then
match with Q38 (264−32 = 232 pairs left).

8. For each pair left, compute the right M10, such that Q37 is also matched (we
have 232 pairs (M14,Q26, M9, Q6, M10) fully matched).

9. Check if any pair left satisfies Eqn (3), if yes, output the pseudo-preimage;
otherwise repeat the above process until a pseudo-preimage is found
(232+8−32 = 28 repetitions expected).

Clearly, the complexity is 272 with memory requirement 264. There are some
other additional properties. Note that given a new target, we can reuse the two
lists Li

p and Lq, so that the computation starts from Step 6 in the algorithm,
which results in slightly faster pseudo-preimage in 269.4. Furthermore, such an
attack gives pseudo-preimage with chaining limited to the set Li

p only.

3.3 Preimage Attack on the MD4 Hash Function

To find preimage using the pseudo-preimage attack above, we need to correct
the padding. Note that M13 is precomputed, hence the length of last block is
fixed, we need to fix the least significant 9 bits of M14 accordingly, i.e., 447 (1BF
in hex). Note that adding more blocks will only affect the length by a multiple
of 512 (29). We leave the number of additional blocks for chance as done in
the algorithm in Section 3.2. A small modification on the algorithm (computing
255 candidates for each direction during each repetition, and 2128−55×2+8 = 226

repetitions are needed, hence the size of Li
p increases to 255+26 = 281) will result

in pseudo-preimage in 269.4+9 = 278.4 with memory requirement 255. This can
be further converted into a preimage in 299.7 using the traditional conversion
(link to input chaining of the last padded block), as the number of blocks can be
resolved by expandable message (we compute a pseudo-preimage following the
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padding rule in 278.4, then apply the traditional conversion. Now, padding is no
longer a problem when inverting the second last block etc.).

The resulting message of this attack has at least 250 blocks, due to the fact
thatM15 is the most significant word of the length (M15||M14 denotes the length)
and we have preset M15 to 07FE3E10.

Precomputation. Similarly we can restrict the input chaining to a subset
of size 281, by re-using the lists whenever looking for a new pseudo-preimage.
So the pseudo-preimage can also be converted to preimage in 278.4, when large
precomputation is allowed. To achieve this, we precompute about 2128 differ-
ent message blocks (prefixed by the expandable message) and store those with
output in the restricted subset. This requires storage of order 281 and precompu-
tation effort 2128. Given a target, we compute a pseudo-preimage (with padding
done), and it can be converted to a preimage by looking up the stored chaining
values. Hence this requires online computation 278.4 only. Using a similar 2128

precomputation, the generic Hellman tradeoff would either require almost 27.8

times more memory (288.8) to achieve the same runtime, or would lead to online
computation that is almost 215.6 times slower (294) if the same memory would
be available.

3.4 Second-Preimage Attack on the MD4 Hash Function

In contrast to finding preimages, we can avoid the padding issues when find-
ing second-preimages by finding pseudo-preimages for second last block etc., as
done in [27]. Given 2128 precomputation, the complexity of this second-preimage
attack is in 269.4 with 272 memory when k ≥ 2, i.e., it works for all messages
with original length before padding at least 2 blocks (1024 bits, at least 3 blocks
after padding). Similarly, it works in time 299.7 and 264 memory without pre-
computation. Although a faster second-preimage attack exists [46], the attack
only works for very long messages, i.e., at least 256 blocks. For comparison, a
second preimage can be found in 2n−k, if the given message is of more than 2k

blocks, due to Kelsey and Schneier [20] (264 for both time and memory if the
optimal k = 64 can be achieved).

4 Preimage Attack against Tiger

Before presenting the result, we give some notations used in this Section. Let
Xo and Xe denote the odd bytes and even bytes from register X , respectively.
More generally, let us denote Xs so that those bits indexed by the set s are
the same as in X and the rest are set to 0. To be consistent, we can define
e = {0, . . . , 7, 16, . . . , 23, 32, . . . , 39, 48, . . . , 55} and o = {8, . . . , 15, 24, . . . , 31,
40, . . . , 47, 56, . . . , 63}.

4.1 Description of Tiger

Tiger is an iterative hash function based on the MD structure. The message is
padded followed by the 64-bit length of the original message so that the length of



Advanced Meet-in-the-Middle Preimage Attacks 67

the padded message becomes a multiple of 512. Then it is split into blocks of 512
bits and fed into the compression function iteratively. The compression of Tiger
takes 3 chaining words and 8 message words (each word is of 64 bits) as input
and produces the updated 3 chaining words as output. It consists of two parts:
message expansion and step function. The input chaining is fed forward, together
with output of last step function, to produce the output of the compression
function, which is a variant of the Davies-Meyer construction. We introduce the
step function and message expansion in details as follows.

Step Function. We name the three input chaining words of compression func-
tion as A,B and C. These three registers are updated as follows. C ← C ⊕X ;
A← A− even(C); B ← (B + odd(C)) ×mul. The result is then shifted around
so that A, B, C become C, A, B. Here +, −, × are addition, subtraction and
multiplication, in �264 , respectively. The two non-linear function even and odd
are defined as follows.

even(x) = T1[x0
B ]⊕ T2[x2

B ]⊕ T3[x4
B ]⊕ T4[x6

B ] ,
odd(x) = T4[x1

B ]⊕ T3[x3
B ]⊕ T2[x5

B ]⊕ T1[x7
B ] ,

where T1, . . . , T4 are four S-boxes defined on {0, 1}8 → {0, 1}64, and xi
B denotes

the i-th least significant Byte of x, the details can be found in [5]. mul is 5, 7, 9
for the three passes, respectively.

Message Expansion. The 512-bit message block is split into 8 message
words X0, . . . , X7, each of 64 bits. The key scheduling function takes X0, . . . , X7

as input and produces message words {X8, . . . , X15} and {X16, . . . , X23} re-
cursively as follows. (X8, . . . , X15) = KSF(X0, . . . , X7), (X16, . . . , X23) =
KSF(X8, . . . , X15), where the key scheduling function KSF is defined as follows.
We use (X8, . . . , X15) = KSF(X0, . . . , X7) as an example here.

First Step: Second Step:
Y0 =X0 − (X7 ⊕K3) X8 =Y0 + Y7

Y1 =X1 ⊕ Y0 X9 =Y1 − (X8 ⊕ (Y 7 � 19))
Y2 =X2 + Y1 X10 =Y2 ⊕X9

Y3 =X3 − (Y2 ⊕ (Y 1 � 19) X11 =Y3 +X10

Y4 =X4 ⊕ Y3 X12 =Y4 − (X11 ⊕ (X10 � 23))
Y5 =X5 + Y4 X13 =Y5 ⊕X12

Y6 =X6 − (Y5 ⊕ (Y 4 � 23)) X14 =Y6 +X13

Y7 =X7 ⊕ Y6 X15 =Y7 − (X14 ⊕K4)

withK3 = A5A5A5A5A5A5A5A5,K4 = 0123456789ABCDEF, and Y denotes bitwise
complement of Y .

Attack Preview. The MITM preimage attack has been applied to Tiger, how-
ever for variants reduced to 16 and 23 steps [19,42], out of 24 in full Tiger. The
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difficulty lies on finding good neutral words, longer initial structure and partial
matching. In our attack, we find a 4-step initial structure, extend the partial
matching to 5 steps and provide choice of neutral words achieving this. However
each of them comes with constraints posed on message words/registers, due to
the very complicated message scheduling used in Tiger. Throughout the descrip-
tion of the attack, we will explicitly give all those constraints, and explain how
they can be fulfilled using the multi-word technique, i.e., utilizing the degrees of
freedom of most message words and registers to fulfill these constraints, which
are usually left as random in the original MITM preimage attacks.

4.2 Precomputed Initial Structure

The original initial structure does not apply to Tiger, since the message words
are xor-ed into the chaining, followed by addition/subtraction operations. One
cannot swap the order of xor and addition/subtraction, unless the chaining values
are within certain range so that we can either approximate xor by addition, or
approximate addition by xor. We can either restrict one of the inputs to �, or
force the output to be �, e.g., X ⊕ � = X + �, and X ⊕ Y = � if and only if
X + Y = �. Under this restriction, we are able to have a 4-step initial structure
as shown in Fig 3(a), which comes with the following three constraints.

Constraint 1. Variables from Xi lie on the odd bytes only, so that (Xe
i ) is

fixed.

Constraint 2. Assume we have control over Xi+4 on those bits so that (Xi+4
mul )o

is fixed, and there is no carry from even bytes to odd bytes so that we can even-
tually move the X ′i+4 further up above the odd function in step i+ 1. The idea
is to keep the input to the odd function unchanged when we move the (Xi+4

mul )e as
shown in Fig 3(b).

Constraint 3. Ci+3 ⊕ Xi+4 should be 1 for those bits, where variables from
Xi+4 lie.

After the precomputed initial structure (PIS) is formed, we essentially swap the
order of Xe

i and (Xi+4
mul )o, which are 4 steps away from each other originally.

4.3 Message Compensation

The length of each independent chunk is at most 7 steps, due to the fact that
any consecutive 8 message words can generate all other words (i.e., related to
all other words). Message compensation is used to achieve the maximum length
(or close to maximum) for each chunk. Since we are able to have 4-step PIS, we
would have 7 + 4 + 1 + 7 = 19 steps for two chunks. Details are shown in Fig 4.
Where X7, . . . , X13 form the first chunk (7 steps), X14, . . . , X18 may be dealt
with using precomputed initial structure as shown above, and X19, . . . , X23, X0,
X1 are the second chunk (7 steps). In this way, we have 19-step extended chunks.
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For the first chunk, we use a few bits of X18 as the neutral word (we will
discuss which bits are to be used later). We force X18 to be the only one affected
in the third pass (i.e., X16, . . . , X23). We come up with such a configuration
following the rule that there are as few words affected in the current pass as pos-
sible. In summary, we have {X2, . . . , X6, X10, X11, X12, X18} affected as shown
in Fig 4(a). Note this comes with

Constraint 4. We use at most the least significant 23 bits of X18 so that these
bits disappear when (X18 � 23) is done (as shown in Fig. 4(a)), hence it does
not affect X20 etc.

For the second chunk, we use a few bits of X14 as the neutral word and avoid
difference in X7 in the first pass. Meanwhile, we avoid differences in X8, . . . , X13

andX15 for the second pass. In the end, we have {X0, . . . , X3, X14, X16, . . . , X23}
affected as shown in Fig 4(b). Note this comes with a constraint.

Constraint 5. X15 remains constant.

The two neutral words affect some common message words, i.e., X2, X3, X6

and X18. We will need to choose the bits from two neutral words X14 and X18

properly, so that

Constraint 6. X14 and X18 will not affect any common bits of any word si-
multaneously, i.e., for X2, X3, X6 and X18.

We are left with the choices of the neutral bits for minimizing the attack com-
plexity, which will be discussed later in Section 4.5.

4.4 Partial Matching and Partial Fixing

The direct partial matching works for 3 steps by computing backwards. Further-
more, by fixing the even bytes of the first message word (partial fixing technique)
in forward direction, Isobe and Shibutani [19] are able to achieve 4-step, and 5-
step by Wang and Sasaki [42]. In addition to the 4-step initial structure, we
further post more conditions on message words in order to achieve 5-step partial
matching (different from [42]), as shown in Fig 3(c), it covers step 2 to step 6.

Constraint 7. The partial information below X3 as in Fig 3(c) computed from
X6 should cover all even bytes so that we can compute the even function in step 3;

Constraint 8. Xo
2 should be related to X14 only, so that we can compute the

odd function at step 2 independently of X18.

To summarize, we are to use {X7, . . . , X13} as one chunk, {X19, . . . , X23,
X1, X2} as the other chunk; precomputed initial structure covers steps us-
ing {X14, . . . , X18} (i = 14 for Section 4.2); and partial matching works for
{X2, . . . , X6}. Hence, the full Tiger of all 24 steps is covered.
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4.5 Attack Description and Complexity Analysis

In this section, we show how to set the message words and registers for the PIS
in order to have all constraints fulfilled. We also give algorithms with complexity
evaluations, when necessary, to demonstrate how the attack works.

Fulfilling all Constraints. To have constraints about X18 fulfilled (i.e., Con-
straints 2, 4, and 8), we choose neutral bits from Xsb

18 , where sb = {0, . . . , 7,
16, . . . , 22}. Similarly, to have Constraint 1 on X14 fulfilled, we restrict the
neutral bits from bytes 3, 5, 7 of X14, i.e., X

sf

14 with sf = {24, . . . , 31,
40, . . . , 47, 57, . . . , 63} (bit 56 is reserved for padding). Due to the fact that
addition/subtraction will only propagate differences towards MSB, the least sig-
nificant bits of Xsf

14 that may affect on X2, X3, X6, X18 are 43 (due to �19), 62
(due to �19 twice), 24, and 24, respectively. However, Xsb

18 has very low chance
(� 0) of affecting up to bit 43 of X2, bit 62 of X3, bit 24 of X18, and we will filter
candidates so that the influence on X6 is limited to up to bit 23. Hence, Con-
straint 6 can be fulfilled. To fulfill Constraint 5, we force Y sf

6 = X
sf

14 (through
setting X

sf

13 = �), and X
sf

7 = K
sf

4 . We leave Constraint 3 for PIS setup, and
Constraint 7 for partial matching, to be addressed later.

Precomputed Initial Structure. For the precomputed initial structure to
work, we have to preset several message words. BesidesXsf

13 = 0 andXsf

7 = K
sf

4 ,
we still need to take care of the padding. We set X56

6 = 1, i.e., the length
of original message in last block is 447 (7 × 64 − 1). Hence, we need to set
X
{0,...,8}
7 = 447. Note that adding more blocks will affect the length by a multiple

of 29, which has no effect on the 9 LSBs of X7. To reduce the influence of Xsf

14

on X6, we further set (Y 4 � 23⊕ Y5)sf = �, so that only Xsf

6 out of X6 will be
affected. Note the PIS can be done in 215 evaluations of key scheduling (leaving
restriction on Xsf

14 for probability only). This is negligible since we can reuse the
PIS for at least 216 times, to be discussed later.

Finding good candidates - Backward. We use bits from Xsb
18 to compute

the good candidates for backward direction. Constraint 2 further restricts us to
choose values such that X{0,...,7}

18 and X{16,...,23}
18 are multiple of 9 (mul = 9 for

third pass). Hence, we can have 28/9�×27/9� = 28.8 good candidates. Finally,
we filter out candidates which do not fulfill Constraint 6. Experiments show
that the remaining good candidates are about 28. Note these good candidates
need to be computed under the constrainted PIS, we use message modification
techniques to fulfill the constraints for PIS, and to get the 28 good candidates
in less than 219 key scheduling evaluations. Details can be found in [15].

Finding good candidates - Forward. We use bits from X
sf

14 to compute the
good candidates for backward direction. To have Constraint 3 fulfilled, we need
to filter the candidates, such that it gives � for Csb

i+3 as in Fig 3(b), this reduces
the number of candidates to 223−15 = 28. Note that this part can be re-used
for many different (at least 216) Ci, by changing the even bytes, which we can
freely set at the very beginning of the MITM preimage attack. Hence, the time
complexity for this part is also negligible.
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Probabilistic Partial Matching. Partial matching matches A2 from both
sides, where we can compute A2 in the forward direction without any problem.
However, in the backward direction, we only know information of bytes 0, 1, 2, 4, 6
ofX6 (red), as to computeBe

3 . Note thatB3 = (B6⊕X6 + even(B6))/5−odd(B5)
(mul = 5 for first pass), where B5 and B6 are known. We rewrite it to B3 =
(B6⊕X6)/5+K5, whereK5 = even(B5)/5−odd(B4). We can compute bytes 0, 1,
2 of B3, yet we still need bytes 4, 6 from information of bytes 4, 6 ofX6 only. Note
thatB{32,...,39}

3 = (B{32,...,39}
6 ⊕X{32,...,39}

6 −Bo×232)/5+K
{32,...,39}
5 +Ca×232,

where Bo ∈ {0, . . . , 4} denote borrow from bit 31 when ‘/5’ is carried out, and
Ca ∈ {0, 1} denote the carry for the ‘+’ from bit 31. We deal with the Bo by com-
puting all possible choices, and guess the Ca = K31

5 which results in a probability
3/4 for the Ca to be correct. This gives an example for byte 4, and we can deal
with byte 6 similarly. The process results in 25 times more computations for partial
matching, together with probability 9/16. However, we shall only need to repeat
the even and the ‘−’ at Step 3, so that the essential repetition is equivalent to less
than 2−1 compression computations per candidate.

Complexity of Finding a (Second) Preimage. Following the MITM preim-
age attack framework, the pseudo-preimage attack works as follows.

1. Randomly choose A14, B14, C14.
2. Compute precomputed initial structure.
3. Compute candidates in backward and forward directions.
4. Repeat for 216 values of C14 by looping all values in byte 4 and 6 (this step

is to make time complexity for first three steps negligible):
(a) For each candidate for backward and forward directions, compute A2

independently.
(b) Carry out probabilistic partial matching. If a full match on A2 is found,

further re-check if the “guess” is correct.
5. Repeat 1-4 until a pseudo-preimage is found.

The pseudo-preimage attack works in time 2185.4 (2192−8×1.5× (3/4)−2), which
can be reduced to 2182.4 when more than 24 targets are available (by using tar-
gets as part of backward candidates as in GMTPP). The pseudo-preimage can
be converted to preimage attack with time complexity 2189.7 using the tradi-
tional conversion, with memory requirement of order 28. Following the GMTPP
framework, the time complexity can be further reduced to 2188.8 (by computing
24 pseudo preimages and 2192/24 linking messages), with the same memory re-
quirement. Similarly, the second-preimage attack works in 2188.2, when the given
message is of more than 24 blocks.

5 Concluding Discussion

We conclude with a discussion of results and some open problems that are inde-
pendent of particular hash functions. In this paper we have extended the frame-
work around meet-in-the-middle attacks that is currently being developed by the
community with a number of general approaches. We illustrated those extensions
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with improved preimage attacks on various time-tested hash functions, with the
first cryptanalytic attack on the full Tiger hash function probably being the most
interesting example. Other examples include various improved preimage attacks
on MD4 and step-reduced SHA-2.

One of the generic ideas presented was the following. Under the meet-in-
the-middle preimage attack framework, we presented new techniques to con-
vert pseudo-preimage into preimage faster than the traditional method, i.e., the
Generic Multi-Target Pseudo Preimage and a simple precomputation technique.
It will be interesting to see if an algorithm solving the Enhanced 3-Sum Problem
faster than 22n for a set size of 2n exists, so that the MTPP can be valid for
any l. On the other hand, we found pseudo-preimage for MD4 in 272, it will
be interesting to see if any of the new conversion techniques or other unknown
techniques works when converting pseudo-preimage to preimage for MD4.

We expect the techniques outlined in this paper to also improve existing preim-
age attacks on well studied hash functions like MD5, SHA-1, HAVAL, and others.
Also, the narrow-pipe SHA-3 candidates seem to be natural targets.
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Abstract. Knudsen and Preneel (Asiacrypt’96 and Crypto’97) intro-
duced a hash function design in which a linear error-correcting code is
used to build a wide-pipe compression function from underlying block-
ciphers operating in Davies-Meyer mode. Their main design goal was to
deliver compression functions with collision resistance up to, and even
beyond, the block size of the underlying blockciphers. In this paper, we
present new collision-finding attacks against these compression functions
using the ideas of an unpublished work of Watanabe and the preimage
attack of Özen, Shrimpton, and Stam (FSE’10). In brief, our best attack
has a time complexity strictly smaller than the block-size for all but two
of the parameter sets. Consequently, the time complexity lower bound
proven by Knudsen and Preneel is incorrect and the compression func-
tions do not achieve the security level they were designed for.

Keywords: Collision attack, coding theory, compression function.

1 Introduction

Hash functions are currently at the centre of the cryptographic community’s
attention. While most of this attention is geared directly towards the SHA-
3 competition (by analysing its remaining candidates), other, arguably more
fundamental questions regarding hash function design should not be forgotten.
After all, the study of the underlying principles of hash function design are
potentially beneficial for the SHA-3 decision process.

The two most revered principles in hash function design are (i) the Merkle-
Damg̊ard iterative construction, or more generally the principle of designing
a secure compression function and (ii) the Davies-Meyer construction, or more
generally the principle of using a blockcipher as underlying primitive. Indeed, the
currently standardized hash functions from the SHA family follow this approach
(as did their predecessor MD5) as well as several of the SHA-3 candidates.

It was already recognized early on that the output sizes of traditional block-
ciphers are insufficient to yield a secure compression function [16]. This still
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holds true today: for all the (optimally secure) PGV blockcipher-based compres-
sion functions [10,1,12] based on an n-bit blockcipher, the (time) complexity of
collision- and preimage-finding attacks is at most 2n/2, resp. 2n; when n = 128
(e.g. AES) the resulting bounds are mostly unacceptable for current practice (in
particular for collision resistance).

To achieve acceptable security (based on small block sizes) it is necessary to
output a multiple of the block-length. In the 1990s many constructions were
proposed for this goal, mostly outputting 2n bits with the explicit collision re-
sistance target of 2n (see [3,9] for an overview). The standard goal for these
constructions has been optimal collision-resistance: a target output size is fixed
and the compression function should be collision resistant up to the birthday
bound for that digest size. In three papers [4,5,6], Knudsen and Preneel adopted
a different approach, namely to fix a particular security target and let the output
size (and relatedly the number of blockcipher calls) vary as needed in order to
guarantee a particular security target without imposing optimal security.

Specifically, given r independent ideal compression functions f1, . . . , fr, each
mapping cn bits to n bits, they create a new ‘bigger’ compression function out-
putting rn bits. Following principles (i) and (ii) already mentioned, they then
propose to instantiate the underlying ideal compression functions with a blockci-
pher run in Davies-Meyer mode and to iterate the compression function to obtain
a full blockcipher-based hash function. However, they derive their security from
the compression function, so that is where we will focus our attention.

The f1, . . . , fr are run in parallel where each of their inputs is some linear
combination of the blocks of message and chaining variable that are to be pro-
cessed; the rn-bit output of their construction is the concatenation of the out-
puts of these parallel calls. The elegance of the KP construction is in how the
inputs to f1, . . . , fr are computed. They use the generator matrix of an [r, k, d]
error-correcting code over �2c to determine how the ck input blocks of the ‘big’
compression function are xor’ed together to form the inputs to the underlying r
functions. (In a generalization they consider the fi as mapping from bcn′ to bn′

bits instead and use a code over �2bc .)
The (deliberate) effect of this design is that when two inputs to the ‘big’

compression function differ, the corresponding inputs for the underlying func-
tions will differ for at least d functions. In particular, when using a systematic
generator, a change in the systematic part of the input results in at least d − 1
so-called active functions in the non-systematic part. Intuitively this means that
one has to find a preimage, resp. a collision for the d − 1 active functions in
parallel. Based on this observation, Knudsen and Preneel claim that (under an
assumption) any collision attack needs time at least 2(d−1)n/2 (and as many fi

evaluations) and they conjecture that a preimage attack will require time at
least 2(d−1)n. Additionally, they give preimage and collision attacks (sometimes
matching their lower bounds).

Watanabe [14] already pointed out a collision attack beating the one given
by Knudsen and Preneel for many of the parameter sets. In particular, his dif-
ferential attack works whenever r < 2k and has a query and time complexity of
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Table 1. A summary of collision attacks on the Knudsen-Preneel compression func-
tions, with constant and polynomial factors (in n) ignored. Non-MDS parameters are
in italic, for e ∈ {2, 4} the underlying primitive is fi : {0, 1}2n → {0, 1}n, and for e = 3
it is fi : {0, 1}3n → {0, 1}n.

Algorithm 4, [8] Algorithm 2 ÖSS Knudsen-Preneel
Code Complexity Complexity Complexity Lower Attack

Query Time Time/Query Query Time Bound Time

[r, k, d]2e 2kn/(3k−r) Thm. 4, [8] 2dn/(d+1) 2rn/(2k) [8] 2(d−1)n/2 [6]

[5, 3, 3]4 23n/4 23n/4 23n/4 25n/6 24n/3 2n 24n/3

[8 , 5 , 3 ]4 25n/7 25n/7 23n/4 24n/5 27n/5 2n 23n/2

[12 , 9 , 3 ]4 23n/5 23n/5 23n/4 22n/3 24n/3 2n 23n/2

[9 , 5 , 4 ]4 25n/6 25n/6 24n/5 29n/10 211n/5 23n/2 22n

[16 , 12 , 4 ]4 23n/5 24n/5 24n/5 22n/3 27n/3 23n/2 22n

[6, 4, 3]16 22n/3 22n/3 23n/4 23n/4 23n/2 2n 25n/4

[8, 6, 3]16 23n/5 23n/5 23n/4 22n/3 24n/3 2n 27n/6

[12, 10, 3]16 25n/9 25n/9 23n/4 23n/5 26n/5 2n 211n/10

[9, 6, 4]16 22n/3 22n/3 24n/5 23n/4 22n 23n/2 23n/2

[16, 13, 4]16 213n/23 220n/23 24n/5 28n/13 22n 23n/2 23n/2

[4, 2, 3]8 2n 2n × 2n 22n 2n 23n/2

[6, 4, 3]8 22n/3 22n/3 23n/4 23n/4 23n/2 2n 25n/4

[9, 7, 3]8 27n/12 27n/12 23n/4 29n/14 28n/7 2n 28n/7

[5, 2, 4]8 × × × 25n/4 23n 23n/2 27n/4

[7, 4, 4]8 24n/5 24n/5 24n/5 27n/8 29n/4 23n/2 23n/2

[10, 7, 4]8 27n/11 29n/11 24n/5 25n/7 22n 23n/2 23n/2

essentially k2n. Thus he demonstrated that the proven collision resistance lower
bound given by Knudsen and Preneel is incorrect whenever r < 2k and d > 3.
For a code with minimum distance d = 3 he matches the Knudsen-Preneel 2n

collision-resistance lower bound, but does not violate it; the two codes proposed
by Knudsen and Preneel with r ≥ 2k (namely [4, 2, 3]8 and [5, 2, 4]8) seem beyond
reproach. Yet this was the first indication that something is amiss with the claim
by Knudsen and Preneel. A second indication arrived at FSE’10, when Özen,
Shrimpton, and Stam [7] demonstrated a remarkably efficient preimage attack
that, for 9 out of 16 cases, runs in time 2rn/k which was shown optimal. More-
over, using a yield-based argument, they showed that an information-theoretic
adversary in principle should be able to find collisions after only 2rn/(2k) queries.

Our contribution. In this paper we deal what we believe will be the final blow
against the Knudsen-Preneel compression functions. Our contribution is four-
fold, with a summary provided in Table 1. For completeness, we have also inves-
tigated the time complexity that one would obtain by straightforward adaptation
of the ideas and query complexities of ÖSS; we refer to the full version of this
paper [8] for the details.

The mise en place in Section 4 provides a detailed mathematical characteri-
zation of the Knudsen-Preneel compression function’s preprocessing. As a first
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simple result, this allows us in Section 5.1 to revise the attack of Watanabe in a
way that slightly reduces the time requirements, yet significantly increases the
number of collisions it can produce. More precisely, after an initial effort of d2n,
we can generate (up to) 2(k−d)n collisions in constant time (for k > d).

In our revised version of Watanabe’s attack, we fix a pure tensor to create a
differential. By adaptively looking for an arbitrary tensor and using the same
type of queries as Özen, Shrimpton, and Stam we arrive in Section 5.2 at a new,
symbiotic collision-finding attack with time complexity d2dn/(d+1). The attack
works whenever d ≤ k (as in Watanabe’s case). Even more amazing is that if the
inequality is strict, that is if d < k, the adversary can create further collisions
(like our revised attack) in constant time (up to 2(k−d)n collisions).

Thirdly, in Section 6.1 we introduce a parametrized information-theoretic
collision attack. It turns out that the new symbiotic attack and the old ÖSS
information-theoretic collision attack are both on opposite ends of the spectrum
of this parametrized attack, yet optimality is typically achieved somewhere in
the middle—with KP([4, 2, 3]8) and KP([5, 2, 4]8) again as exceptions—yielding
query complexity 2kn/(3k−r).

Our final contribution is a reduced-time variant of our optimized attack above.
For this we use the same ideas as ÖSS, but with a crucial twist: where they used
the dual code to look for preimages efficiently, we will use the dual shortened
code to search for collisions efficiently. As a result, for 12 out of 16 suggested
parameters we can mount a collision attack whose time complexity matches its
query complexity (ignoring constants and logarithmic factors). Even better, only
for KP([5, 2, 4]8) we are unable to beat the time-complexity of any prior attack
we are aware of, for the rest we set new records.

2 Preliminaries

With some minor modifications, we will adhere to the notation also used by
Özen, Shrimpton, and Stam.

Linear error correcting codes. An [r, k, d]2e linear error correcting code C is
the set of elements (codewords) in a k-dimensional subspace of �r

2e (for r ≥ k),
where the minimum distance d is defined as the minimum Hamming weight
(taken over all nonzero codewords in C). The dual code [r, r− k, d⊥]2e is the set
of all elements in the r−k-dimensional subspace orthogonal to C (with respect to
the usual inner product), and its minimum distance is denoted d⊥. The Singleton
bound puts a limit on the minimum distance: d ≤ r−k+1. Codes matching the
Singleton bound are called maximum distance separable (MDS). An important
property of an MDS code is that its duals is MDS as well, so d⊥ = k + 1.

An [r, k, d]2e code C can be generated by a matrix G ∈ �k×r
2e , meaning that

C = {x · G|x ∈ �k
2e} (using row vectors throughout). A generator matrix G is

called systematic iff it has the form G = [Ik|P ] for P ∈ �k×(r−k)
2e and Ik the

identity matrix in �k×k
2e . Furthermore, G is the generator matrix of an MDS

code iff any k columns are linearly independent. For an index set I ⊆ {1, . . . , r}
we define GI ∈ �k×|I|

2e as the restriction of G to those columns indexed by I.
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For a code and any index set I ⊆ {1, . . . , r}, we want to define Ĩ ⊂ {1, . . . , r}
such that GĨ is invertible (thus in particular |Ĩ| = k) and Ĩ ⊆ I or I ⊆ Ĩ. For
MDS codes, the existence of such an Ĩ can be shown easily (and we can impose
uniqueness e.g. by virtue of an ordering). For non-MDS codes there exist some
I for which such an Ĩ does not exist (for example the I ⊂ {1, . . . , r} for which
|I| = k but GI is not invertible), however for any target cardinality it is possible
to find an I (of that cardinality) that does have an Ĩ (e.g. by first going through
the systematic columns); we call such an I admissible.

A given [r, k, d]2e code C can be shortened to obtain a new, derived code C′. Let
i ∈ {1, . . . , r}, then consider the set of all codewords in C that are 0 on position
i. The new code C′ consists of these codewords with position i dropped, however
we sometimes ‘quasi-shorten’ and keep the superfluous zeroes present (we always
keep the original indexing). It is easy to see that C′ is an [r − 1, k − 1, d]2e code
unless all codewords in C had a 0 on position i or k = 1 (in the latter case the
shortening might result in the trivial one-codeword code {0r−1}). The shortening
of an MDS code is an MDS code itself. By repeated application one can shorten
by any index set I0 ⊂ {1, . . . , r} for which θ = |I0| < k to obtain a derived
[r − θ, k − θ, d] MDS code C′. If G is systematic and I0 = {1, . . . , θ} we can
generate the shortened code by dropping the first θ rows of GI , where I =
{1, . . . , r}\I0 = {θ + 1, . . . , r}. (For the four non-MDS codes used by Knudsen
and Preneel we will perform a separate analysis on repeated shortening.)

Blockwise-linear compression functions. A compression function is a map-
ping H : {0, 1}tn → {0, 1}sn for some blocksize n > 0 and integer parame-
ters t > s > 0. For positive integers c and n, we let Func(cn, n) denote the
set of all functions mapping {0, 1}cn into {0, 1}n. A compression function is
Public Random Function (PuRF)-based if its mapping is computed by a pro-
gram with oracle access to a finite number of specified oracles f1, . . . , fr, where
f1, . . . , fr

$← Func(cn, n). When a PuRF-based compression function operates on
input W , we write Hf1,...,fr (W ) for the resulting value. Of primary interest for
us will be single-layer PuRF-based compression functions without feedforward.
These call all oracles in parallel and compute the output based only on the results
of these calls; in particular, input to the compression function is not considered.

Most PuRF-based (and blockcipher-based) compression functions are of a spe-
cial type. Instead of arbitrary pre- and postprocessing, one finds only functions
that are blockwise linear. The Knudsen-Preneel construction is also blockwise
linear, so let us recall from [7] what is a blockwise-linear scheme.

Definition 1 (Blockwise-linear scheme). Let r, c, b, t, s be positive integers
and let matrices Cpre ∈ �

rcb×tb
2 , Cpost ∈ �

sb×rb
2 be given. We define H =

BLb(Cpre,Cpost) to be a family of single-layer PuRF-based compression func-
tions Hn : {0, 1}tn → {0, 1}sn, for all positive integers n with b|n. Specifically,
let n′b = n, and f1, . . . , fr ∈ Func(cn, n). Then on input W ∈ {0, 1}tn (in-
terpreted as column vector), Hn

f1...fr (W ) computes the digest Z ∈ {0, 1}sn as
follows:
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1. Compute X ← (Cpre ⊗ In′ ) ·W ;
2. Parse X = (xi)i=1...r and for i = 1...r compute yi = fi(xi);
3. Parse (yi)i=1...r = Y and output Z = (Cpost ⊗ In′) · Y .

where ⊗ denotes the Kronecker product and In′ the identity matrix in �n′×n′
2 .

In the definition above we silently identified {0, 1}n with the vector space �n
2 .

The map corresponding to (Cpre⊗ In′) will occasionally be denoted Cpre and its
image �(Cpre) ⊆ {0, 1}rcn. It will be convenient for us to write the codomain of
Cpre as a direct sum, so we identify {0, 1}rcn with

⊕r
i=1 Vi where Vi = �

cn
2 for

i= 1, . . . , r. If x1 ∈ V1 and x2 ∈ V2, then consequently x1 +x2 will be in V1⊕V2.
(This extends naturally to L1 + L2 when L1 ⊂ V1, L2 ⊂ V2.)

Knudsen-Preneel compression functions. Knudsen and Preneel [4,5] intro-
duced a family of hash functions employing error correcting codes. (We use the
journal version [6] as our frame of reference). Although their work was ostensibly
targeted at blockcipher-based designs, the main technical thread of their work
develops a transform that extends the range of an ‘ideal’ compression function
(blockcipher-based, or not) in a manner that delivers some target level of secu-
rity. As is nowadays typical, we understand an ideal compression function to be
a PuRF. In fact, the KP transform is a special instance of a blockwise-linear
scheme (Definition 1), in which the inputs to the PuRFs are determined by a
linear code over a binary field with extension degree e > 1, i.e. �2e , and with
Cpost being the identity matrix over �rb×rb

2 (corresponding to concatenating
the PuRF outputs). The extension field itself is represented as a subring of the
matrix ring (of dimension equalling the extension degree) over the base field.
We formalize this by an injective ring homomorphism ϕ : �2e → �

e×e
2 and let

ϕ̄ : �r×k
2e → �

re×ke
2 be the component-wise application of ϕ and subsequent

identification of (�e×e
2 )r×k with �re×ke

2 (we will use ϕ̄ for matrices over �2e of
arbitrary dimensions). For completeness, there is also a group homomorphism
ψ : �2e → �

e
2 such that for all g, h ∈ �2e it holds that ψ(gh) = ϕ(g) · ψ(h).

Definition 2 (Knudsen-Preneel transform). Let [r, k, d] be a linear code
over �2e with generator matrix G ∈ �k×r

2e . Let ϕ : �2e → �
e×e
2 be an injec-

tive ring homomorphism and let b be a positive divisor of e such that ek > rb.
Then the Knudsen-Preneel compression function H = KPb([r, k, d]2e) equals
H = BLb(Cpre,Cpost) with Cpre = ϕ̄(GT ) and Cpost = Irb.

If H = KPb([r, k, d]2e), then Hn : {0, 1}kcn → {0, 1}rn with c = e/b is defined for
all n for which b divides n. Moreover, Hn is based on r PuRFs in Func(cn, n).
For use of H in an iterated hash function, note that per invocation (of H) one
can compress (ck − r) message blocks (hence the requirement ek > rb ensures
actually compression is taking place), and the rate of the compression function
is ck/r−1. We will concentrate on the case (b, e) ∈ {(1, 2), (2, 4), (1, 3)} and then
in particular on the 16 parameter sets given by Knudsen and Preneel.1 Since b
is uniquely determined given e (and c), we will often omit it.
1 We note that our analysis is also valid for c = 5 (mimicking the MD4/5 situation).
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Security notions. A collision-finding adversary is an algorithm whose goal is
to find two distinct inputs W,W ′ that hash to the same value, so H(W ) =
H(W ′). We will consider adversaries in two scenarios: the information-theoretic
one and a more realistic concrete setting. For information-theoretic adversaries
the only resource of interest is the number of queries made to their oracles.
Otherwise, these adversaries are considered (computationally) unbounded. In
the concrete setting, on the other hand, we are interested in the actual runtime
of the algorithm and, to a lesser extent, its memory consumption (and code-size).

3 Prior Art on the Knudsen-Preneel Hash Functions

Knudsen and Preneel’s security claims. Knudsen and Preneel concentrate
on the collision resistance of their compression function in the complexity theo-
retic model. Under a fairly generous (but plausible) assumption, they essentially
show that if H = KPb([r, k, d]2e), then finding collisions in Hn takes time at
least 2(d−1)n/2. For preimage resistance Knudsen and Preneel do not give a cor-
responding theorem and assumption, yet they do conjecture it to be essentially
the square of the collision resistance.

Knudsen and Preneel also present two attacks, one for finding preimages [6,
Proposition 3] and one for finding collisions [6, Proposition 4] (see results in
Table 1). Both attacks revolve around finding multi-preimages for the systematic
part of the construction in sufficient numbers to make it likely that completion
to the non-systematic part will yield a full preimage respectively a full collision.

Watanabe’s collision-finding attack. Knudsen and Preneel left a consider-
able gap between the actual complexity of attacks and their lower bounds in the
case of collision resistance. Watanabe [14] has pointed out a collision attack that
runs in time k2n (and as many PuRF evaluations). Thus, for many of the pa-
rameter sets, it beats the one given by Knudsen and Preneel. More interestingly,
his attack serves as proof that the lower bound given by Knudsen and Preneel
is incorrect for a large class of parameters: whenever r < 2k and d > 3, which
involves 6 out of 16 parameter sets. (See also Table 1.)

Assume that the code’s generator matrix is systematic, that is G = (Ik|P )
with P ∈ �k×(r−k)

2e . Then the goal is to generate, for each i ∈ {1, . . . , k}, a
colliding pair of inputs xi = x′i (and fi(xi) = fi(x′i)) in such a way that their
completion to full ‘codewords’ satisfies xi = x′i for i ∈ {k + 1, . . . , r}. This is
done by ensuring that xi ⊕ x′i = Δi where Δ =

∑k
i=1Δi ∈ �ken′

2 \{0} is in the
kernel of ϕ̄(PT )⊗ In′ (since r− k < k the kernel is guaranteed to contain a non-
trivial element). Mutual independence of the inputs to the PuRFs corresponding
to the code’s systematic part allow the initial collision searches to be mounted
independently. Unfortunately, since the collisions need to be rather special (due
to fixed Δi’s), the birthday paradox does not apply and a collision search costs
about 2n queries and time (per PuRF). On the plus side, the attack is trivially
memoryless and parallellizable.
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Özen-Shrimpton-Stam preimage-finding attack. An extensive security
analysis for the preimage resistance of KP-constructions, falsifying the designers’
conjectured lower bound, has been provided by Özen, Shrimpton, and Stam [7].
Additionally, they also provided a related collision-finding attack with a surpris-
ingly low query complexity: 2rn/(2k) (but no analysis of its time complexity).

At the core of the Özen-Shrimpton-Stam attacks is the simple observation
that (0a ||x1) ⊕ (0a ||x2) yields a string of the form (0a ||X). More generally,
any linear combination of strings with the same pattern of fixed zero bits will
yield a string with the same form. By restricting PuRF queries to strings with
the same (blockwise) pattern one can optimize the yield of these queries (i.e. the
maximum number of KP compression function evaluations an adversary can
compute for a given number of queries). Matching the yield with the size of the
codomain (resp. its square root) gives rise to an information-theoric preimage
(resp. collision) attack.

A second observation is that, in the case of a preimage attack, the dual code
can be used to find the preimage far more efficiently than a naive method.
Direct application of this method however is disappointing (see Table 1). The
resulting time complexities are typically much higher than the corresponding
query complexities and the attack is seldom competitive with that of Knudsen
and Preneel, let alone with that of Watanabe.

4 Decoding the Knudsen-Preneel Preprocessing

An important property that is exploited by both Watanabe and ÖSS is linearity
of Cpre. Indeed, the image �(Cpre) itself can be regarded as an ekn′-dimensional
subspace of �ern′

2 , or equivalently as an [ern′, ekn′, d′]2 code C⊗ (where the
minimum distance d′ is largely irrelevant; it satisfies d ≤ d′ ≤ de). This has the
consequence that if X = Cpre(W ) and X ′ = Cpre(W ′) collide, it is guaranteed
thatΔ = X⊕X ′ ∈ �(Cpre), i.e. the differenceΔ itself is a (nonzero) codeword in
C⊗. Below we will give a more detailed mathematical characterization of �(Cpre),
with a special eye towards the improved collision-finding algorithms we will give
later on. Most of the results below are mathematically rather straightforward
(and the proofs are left to the full version); the machinery is mainly needed to
ensure that, when using canonical bases for the various vector spaces, everything
lines up correctly and consistently with the actual Knudsen-Preneel compression
function.

Recall that we are given an injective ring homomorphism ϕ : �2e → �
e×e
2

and a group isomorphism ψ : �2e → �
e
2 that satisfy ϕ(g)ψ(h) = ψ(gh) for all

g, h ∈ �2e . Let [r, k, d]2e be a linear code with generator matrix G ∈ �k×r
2e , let b

be a positive divisor of e such that ek > rb and finally let n = bn′ be a multiple
of b. Then the input processing Cpre : {0, 1}ekn′ → {0, 1}ern′

of the Knudsen-
Preneel compression function is defined by Cpre(W ) = (ϕ̄(GT ) ⊗ In′ ) ·W (and
note that ern′ = rcn).

Characterization of�(Cpre) as a sum. We have already written the codomain
of Cpre as a direct sum of PuRF inputs by identifying {0, 1}ren′

with
⊕r

i=1 Vi
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where Vi = �
en′
2 for i= 1, . . . , r. Here we will use a second interpretation that

emphasizes the code. We will consider
⊕n′

j=1 Uj where Uj = �
r
2e for j= 1, . . . , n′.

Since�r
2e , and by extension

⊕n′

j=1 Uj , is a vector space over�2e , whereas {0, 1}ern′

is a stand-in for the vector space �ern′
2 over �2, we cannot find a vector space

isomorphism (as for the earlier direct sum). Nonetheless we can find a suitable
group isomorphism from

⊕n′

j=1 Uj to {0, 1}ern′
.

To define the group isomorphism we exploit that, luckily, the underlying �2e

arithmetic is essentially preserved by Cpre : {0, 1}ekn′ → {0, 1}ern′
, even though

the ‘⊗In′ ’ in Cpre(W ) = (ϕ̄(GT )⊗ In′) ·W garbles things up. To formalize this,
let ρ : �n′

2e → �
en′
2 be the group isomorphism such that ρ(gδ) = (ϕ(g)⊗In′) ·ρ(δ)

for all δ ∈ �n′
2e and g ∈ �2e .

As usual, we will extend ρ to e.g. r-tuples of elements in �n′
2e (and hence

to vectors in �n′r
2e ) by component-wise application, i.e. ρ̄ : �n′r

2e → �
en′r
2 . This

suffices for a group isomorphism from
⊕n′

j=1 Uj to {0, 1}ern′
as well.

Lemma 1. Let I0 ⊂ {1, . . . , r}, let C′ be the (quasi) shortening of C on I0 and
let C′j = C′ ⊆ Uj for j= 1, . . . , n′. Then X =

∑r
i=1 xi ∈ �(Cpre) with xi = 0 for

all i ∈ I0 iff ∃ ! ∀j=1,...,n′ gj =
∑r

i=1 gji ∈ C′j such that xi = ρ(
∑n′

j=1 gji).

The following proposition develops the key idea on how to recognize that a given
X ∈ �ern′

2 is an element of �(Cpre). This result is exploited in [7] to efficiently
find preimages for Knudsen-Preneel compression functions.

Proposition 1. Let H = KPb([r, k, d]2e), M ∈ �e×re/b
2 and a nonzero X ∈

�
ern′
2 be given. Suppose that M = ϕ̄(hT ) for some h ∈ C⊥, then X ∈ �(Cpre)

iff for all positive integers n′ it holds that (M ⊗ In′) ·X = 0.

Since �n′r
2e is isomorphic (as vector space over �2e) to the tensor product �r

2e ⊗
�

n′
2e this leads in a natural way to a function from �

r
2e × �n′

2e to {0, 1}ren′
by

considering pure tensors g ⊗ δ with g ∈ �r
2e and δ ∈ �n′

2e . Note that we do not
discriminate between different representatives, that is for nonzero β ∈ �2e we
have that g ⊗ δ = (βg)⊗ (β−1δ).

Lemma 2. If g ∈ �r
2e and δ ∈ �n′

2e then ρ̄(g ⊗ δ) ∈ �(Cpre) iff g ∈ C or δ = 0.

The following lemma states that invertibility of GĨ suffices to invert Cpre.

Lemma 3. Let G be a generator matrix for an [r, k, d]2e code. Let Ĩ ⊂ {1, . . . , r}
be such that GĨ is invertible, with transposed inverse G−T

Ĩ . Let n′ be an integer
and, for i= 1, . . . , r, let Vi = �

en′
2 be a direct-sum-decomposition of �ern′

2 as
before. If given xi ∈ Vi for i ∈ Ĩ, or equivalently X̃ =

∑
i∈Ĩ xi, then

W = (ϕ̄(G−T

Ĩ )⊗ In′) · X̃

is the unique element for which X ′ = Cpre(W ) satisfies x′i = xi for i ∈ Ĩ.
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Algorithm 1 (Revised Watanabe Collision Attack).

Input: H = KPb([r, k, d]2e) satisfying d ≤ k, a nonzero g ∈ C ⊆ �
r
2e with

|χ(g)| ≤ k, a block size n = bn′, and an arbitrary nonzero δ ∈ �n′
2e .

Output: A colliding pair (W,W ′) ∈
(
{0, 1}ekn′)2

such that Hn(W ) =

Hn(W ′), W �= W ′ and Cpre(W )⊕ Cpre(W ′) = ρ̄(g ⊗ δ).

1. Initialization. Compute Δ ← ρ̄(g ⊗ δ), set I ← χ(g) and determine
Ĩ ⊇ I for which GĨ is invertible.

2. Query Phase. For i ∈ I do

a. Generate a random xi
$← Vi(= �

en′
2 ) and set x′

i ← xi ⊕Δi;
b. Query yi ← fi(xi) and y′i ← fi(x

′
i);

c. If yi = y′i then keep (xi, x
′
i) and proceed to next i, else return to a.

3. Degrees of Freedom. For i ∈ Ĩ\I pick xi
$← Vi and set x′

i ← xi.

4. Finalization. Output (W,W ′) where

W ← (ϕ̄(G−T

Ĩ )⊗In′)·(
∑

i∈Ĩ
xi) and W ′ ← (ϕ̄(G−T

Ĩ )⊗In′)·(
∑

i∈Ĩ
x′

i) .

5 A New Symbiotic Collision-Finding Attack

5.1 Revising Watanabe’s Attack

Watanabe’s attack has complexity k2n, requires k > r − k and essentially finds
a single collision. Below we give a revised and improved version of his algorithm.
It only has complexity d2n, requires k ≥ d and it potentially results in many,
many collisions. More precisely, if k > d then after the initial effort (of d2n) we
can find a new collision in constant time, for up to a whopping 2(k−d)n collisions.

In his note, Watanabe describes his attack as a differential attack. Where
originally Δ was computed as some non-trivial kernel element, we will compute
it based on a codeword g ∈ C of sufficiently low weight and an arbitrary (nonzero)
‘block multiplier’ δ. In particular, we will set Δ = ρ̄(g ⊗ δ). By using a minimal
weight codeword the attack performs best.

For the revised attack to work, we need one further ingredient. Watanabe
assumes a systematic code and exploits that, when k < r − k, there exists a
nonzero codeword g ∈ C for which χ(g) ⊆ {1, . . . , k}. This allows easy com-
pletion of a partial collision to a full collision. Our revised version allows an
arbitrary (nonzero) codeword g of weight at most k (existence of which requires
d ≤ k). Thus χ(g) might no longer map to the systematic part of the code.
Luckily, Lemma 3 provides completion to a full collision, provided I = χ(g) is
admissible. For MDS codes all codewords are admissible; for the four non-MDS
codes proposed by Knudsen and Preneel it can be verified that the minimum
distance codewords are admissible.

Theorem 1 (Revised Watanabe attack). Let H = KPb([r, k, d]2e) be given
with d ≤ k. Consider Hn (with b|n). Then Algorithm 1 using a minimum-weight
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Algorithm 2 (New Symbiotic Collision Attack).

Input: H = KPb([r, k, d]2e) satisfying d ≤ k, a g ∈ C ⊆ �r
2e with |χ(g)| = d,

and a block size n = bn′.
Output: A colliding pair (W,W ′) ∈

(
{0, 1}ekn′)2

such that Hn(W ) =

Hn(W ′), W �= W ′ and Cpre(W )⊕ Cpre(W ′) = ρ̄(g ⊗ δ) for some nonzero

δ ∈ �n′
2e to be determined.

1. Initialization. Set α = d/(d + 1), I = χ(g) and determine Ĩ. Let g =
(g1, . . . , gr) with gi ∈ �2e for i= 1, . . . , r.

2. Query Phase. Define

X = ({0}n
b
− αn

e × {0, 1}αn
e )e

and, for i ∈ I let Qi = X ⊂ Vi. Query fi ∀ xi ∈ Qi and store the results.

3. Local Collision Detection. For i ∈ I create a list Li of all tuples
(g−1

i ·ρ−1(xi⊕x′
i), xi, x

′
i) satisfying xi, x

′
i ∈ Qi, xi �= x′

i and fi(xi) = fi(x
′
i).

4. Global Collision Detection. Find a set of |χ(g)| tuples in the respec-

tive Li that all share the same first element. That is, for some δ ∈ �n′
2e

and (xi, x
′
i)i∈I it holds for all i ∈ I that (δ, xi, x

′
i) ∈ Li.

5. Degrees of Freedom. For i ∈ Ĩ\I pick xi
$← Vi and set x′

i ← xi.

6. Finalization. Output (W,W ′) where

W ← (ϕ̄(G−T

Ĩ )⊗In′)·(
∑

i∈Ĩ
xi) and W ′ ← (ϕ̄(G−T

Ĩ )⊗In′)·(
∑

i∈Ĩ
x′

i) .

codeword g (and an arbitrary nonzero δ) finds collisions for Hn in expected time
d2n (using as many PuRF evaluations).

5.2 A New Symbiotic Attack

Our revised version of Watanabe’s attack clearly shows that an attacker poten-
tially has a lot of freedom. Below we transform some of this freedom into a faster
attack. More to the point, as in the revised Watanabe attack we still look for a
collision with differential Δ = ρ̄(g ⊗ δ) and fix the codeword g ∈ C, but we do
not fix the multiplier δ up front. Instead we determine it based on the outcomes
of the queries we make. To increase our success probability, we restrict to the
same kind of queries as Özen, Shrimpton, and Stam did.

Theorem 2 (Symbiotic attack). Let H = KPb([r, k, d]2e) be given with k ≥ d.
Consider Hn (with b|n). Then Algorithm 2 finds collisions for Hn in d2dn/(d+1)

time (using as many PuRF evaluations) and memory (expressed in n-bit blocks).

Proof (Sketch). We will leave showing the correctness of Algorithm 2 to the full
version of this paper [8] and only prove here that a collision is expected and that
the query and time complexities are as claimed.

Since |X | = 2αn by construction, the attack has the stated query complexity
(per PuRF) for α = d/(d + 1) since all queries are made during the Query
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Phase. Using a naive approach, Local Collision Detection step can be
performed in roughly 2dn/(d+1) comparisons resulting in partial collision lists of
expected cardinality |Li| ≈ 2(2α−1)n for i ∈ I.

For Global Collision Detection, we just enumerate one partial collision
list and check for membership against the others. Assuming constant time mem-
ory access, the time complexity of this step is at most (d− 1)maxi∈I |Li|. Since
α < 1 it follows that 2α− 1 < α making the Query Phase dominant with its
time complexity of 2αn.

Since we have d active PuRFs in total, the probability of finding a common
element among d such lists is then (

∏
i |Li|)/|X |d−1, or 2((2α−1)d−α(d−1))n. To

ensure an expected number of collisions of one, we need the second exponent to
be at least zero, and indeed, solving for zero gives the desired α = d/(d+1). ��

6 A Parametrized Collision-Finding Attack

6.1 Optimizing the Query Complexity

The symbiotic attack and the information-theoretic attack by Özen, Shrimpton,
and Stam have completely different query complexities and which one is the best
seems very parameter dependent. However, it turns out that both attacks are the
extreme cases of a more general parametrized attack, as given by Algorithm 3.

Theorem 3. Let H = KPb([r, k, d]2e) be given. Consider Hn (with b|n). Then
collisions for Hn can be found with Alg. 3 using 2αn queries (per PuRF) where

α =

{
(r − θ)/(2k − θ) for 0 ≤ θ ≤ min(r − d, r − k) ;
(r − θ)/(r + k − 2θ) for r − k ≤ θ ≤ r − d .

Proof. That the attack has the stated query complexity follows readily from the
usual observation that |X | = 2αn combined with the computation of α exactly
matching the theorem statement. What remains to show is that collisions are
indeed output and expected with good probability.

For correctness, let (W,W ′) be output by the algorithm and consider X =
Cpre(W ) andX ′ = Cpre(W ′). First, notice that Lemma 3 implies that projecting
(X ⊕ X ′, X,X ′) onto

⊕
i∈Ĩ Vi is in LĨ . Now, either of the steps Degrees of

Freedom, Filtering or Skip ensures that (Δ̃, X̃, X̃ ′) ∈ LI . Finally, since
LI ⊆ L̃I it follows that (xi, x

′
i) ∈ Li for i ∈ I and hence by construction

(Local Collision Detection) we have fi(xi) = fi(x′i) for those i.
Moreover Collision Pruning guarantees that Δ̃ + 0 ∈ �(Cpre) and De-

grees of Freedom ensures that the projections of Δ̃ + 0 and X ⊕ X ′ onto⊕
i∈Ĩ Vi are equal. Hence, xi = x′i for all i ∈ I0.
Let us move on to the number of expected collisions output. Since |X | = 2αn,

the expected number of local collisions found per active PuRF for i ∈ I is
|Li| ≈ |X |2/2n = 2(2α−1)n. Using that |I| = r− θ we arrive at a total number of
potential collisions of |L̃I | ≈ 2(2α−1)(r−θ)n. For a true collision to occur, we need
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Algorithm 3 (Parameterized Collision Attack).

Input: H = KPb([r, k, d]2e), an index set I0 ⊂ {1, . . . , r} with θ = |I0| and
0 ≤ θ ≤ r − d, and a block size n = bn′.

Output: A colliding pair (W,W ′) ∈
(
{0, 1}ekn′)2

such that Hn(W ) =

Hn(W ′),W �= W ′, and if X = Cpre(W ) and X ′ = Cpre(W ′) then for
all i ∈ I0 it holds that xi = x′

i.

1. Initialization. Set I ← {1, . . . , r}\I0, determine Ĩ, and set

α←
{

(r − θ)/(2k − θ) for 0 ≤ θ ≤ min(r − k, r − d) ;

(r − θ)/(r + k − 2θ) for r − k ≤ θ ≤ r − d .

2. Query Phase. As in Algorithm 2.

3. Local Collision Detection. For i ∈ I create a list Li of all tuples
(xi ⊕ x′

i, xi, x
′
i) satisfying xi, x

′
i ∈ Qi, xi �= x′

i and fi(xi) = fi(x
′
i).

4. Merge Phase. Create L̃I =
{∑

i∈I (Δi, xi, x
′
i) | (Δi, xi, x

′
i) ∈ Li

}
.

5. Collision Pruning. Create LI consisting precisely of those elements of
L̃I whose first vector (when mapped to the full space) is in (Cpre);

LI =
{

(Δ̃, X̃, X̃ ′)|(Δ̃, X̃, X̃ ′) ∈ L̃I ∧ Δ̃+ 0 ∈ (Cpre)
}
.

6. Filtering. If Ĩ ⊂ I then only select (Δ̃, X̃, X̃ ′) ∈ LI for which X̃ is
in the projection of (Cpre) onto

⊕
i∈I Vi. Create LĨ by projecting the

selected elements in LI to the subspace
⊕

i∈Ĩ Vi.

7. Degrees of Freedom. If I ⊂ Ĩ, then for i ∈ Ĩ\I pick xi
$← Vi and set

x′
i ← xi. Create LĨ by adding

∑
i∈Ĩ∩I0

(0, xi, x
′
i) to all elements in LI .

8. Skip. If Ĩ = I set LĨ ← LI .

9. Finalization. For some (Δ̃, X̃, X̃ ′) ∈ LĨ output (W,W ′) where

W ← (ϕ̄(G−T

Ĩ )⊗ In′) · X̃ and W ′ ← (ϕ̄(G−T

Ĩ )⊗ In′) · X̃ ′

to find a tuple (xi, x
′
i)i∈Ĩ such that both

∑
i∈Ĩ xi and

∑
i∈Ĩ x

′
i can be completed

to codewords subject to the constraint that xi = x′i for i ∈ I0.
If the eventual collision consists of (X,X ′), then Δ = X ⊕X ′ is a codeword

as well and the above implies that Δi = 0 for i ∈ I0. Hence, Lemma 1 applies
and Δ̃ =

∑
i∈I Δi is somehow ‘spanned’ by the shortened code. The restriction

θ ≤ r−d ensures nontriviality of the shortened code (shortening any further and
the shortened code would consist of the zero codeword only resulting in W =
W ′, so no collision). In case of MDS codes, the shortened code has parameters
[r − θ, k − θ, d′]2e , in particular it has dimension k − θ. (For non-MDS codes it
is possible that a higher dimension is achieved.)

As a result, a fraction 2(k−r)αn of the differentials will be satisfactory, leading
to an expected number of |LI | ≈ 2((2α−1)(r−θ)−α(r−k))n. If I ⊆ Ĩ or equivalently
r − θ ≤ k we are done whenever |LI | ≥ 1. Since r − θ ≤ k can be rewritten to
θ ≥ r − k we are in the second case, with α = (r − θ)/(r + k − 2θ). Writing
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F = (lg |LI |)/n and substitution lead to F ≈ (2α − 1)(r − θ) − α(r − k) =
α(2r − 2θ − r + k)− (r − θ) = 0 or |LI | ≈ 1 as desired.

If on the other hand Ĩ ⊂ I, further filtering is needed. In particular, given
a potential ‘half’ of a collision X we need to check if it can correspond to a
codeword. Since Ĩ ⊂ I, we can uniquely complete X to a codeword given k
of its elements (all within I). The remaining |I| − k coordinates need to be
in sync. Per remaining element, this occurs with probability 2−αn, leading to
|L̃Ĩ | ≈ |LI | · 2−αn(r−θ−k). Now we are in the first case since 0 ≤ θ ≤ r − k.
Writing F = (lg L̃Ĩ)/n, we obtain F ≈ ((2α−1)(r−θ)−α(r−k))−α(r−θ−k) =
α(2k− θ)− (r− θ). Since we aim for F = 0, α = (r− θ)/(2k− θ) as desired. ��
Corollary 1. Assuming d ≤ k, substitution of θ = r − k in Theorem 3 gives
α = k/(3k − r). This is optimal (for Algorithm 3) whenever r ≤ 2k.

Proof. That the substition does what it says can be readily verified, so we restrict
ourselves to prove the optimality here. Let f1(θ) = (r− θ)/(2k− θ) and f2(θ) =
(r − θ)/(r + k − 2θ) be two real valued functions defined over closed intervals
0 ≤ θ ≤ r − k and r − k ≤ θ ≤ r − d respectively. Note that both f1(θ) and
f2(θ) are continuous in their respective domains (since their respective poles
fall outside the domains). So both f1(θ) and f2(θ) attain their maximum and
minimum in the closed intervals [0, r − k] and [r − k, r − d] respectively. Since
f ′1(θ) = (r−2k)/(2k−θ)2 ≤ 0 (for r ≤ 2k) and f ′2(θ) = (r−k)/(r+k−2θ)2 ≥ 0
we can conclude that f1(θ) is decreasing and f2(θ) is increasing. Therefore, they
both attain their minimum at their shared boundary θ = r − k. ��
Remark 1. The only two parameter sets proposed by Knudsen and Preneel not
satisfying the conditions of the corollary above are [4, 2, 3]8 and [5, 2, 4]8. In both
cases d > k and only f1(θ) is applicable. For [5, 2, 4]8 one can check that 2k < r
and f ′1(θ) ≥ 0. Hence, the minimum α is attained at θ = 0. For [4, 2, 3]8 it holds
that 2k = r, so that f1(θ) is in fact a constant function and both θ = 0 and
θ = 1 lead to the same α.

Remark 2. Substitution of θ = 0 in Theorem 3 gives α = r/(2k) and the resulting
query complexity coincides with that reported by Özen, Shrimpton, and Stam.
On the other extreme, substitution of θ = r − d gives α = d/(2d − r + k)
(assuming d ≤ k). For MDS codes this simplifies to α = d/(d+1), this time duly
coinciding with our symbiotic attack. For non-MDS codes there seems to be a
slight mismatch. The reason is that if a non-MDS code is maximally shortened
(by θ = r− d), the shortened code has dimension 1, whereas in the derivation of
Theorem 3 we pessimistically assumed k − θ = 0 (at least for the KP non-MDS
codes that satisfy r − d = k). Correcting for this looseness would result in a
match with the symbiotic attack.

6.2 Generic Collision Attack against MDS Constructions

If we want to run Algorithm 3 (with fixed θ = r−k and α = k/(3k−r) as obtained
in Corollary 1) we ideally want a time complexity almost coinciding with the



90 O. Özen and M. Stam

targeted query complexity. For θ = r−k it holds that I = Ĩ, obviating the need
for the steps Filtering and Degrees of Freedom. We have already seen
that Local Collision Detection costs at most a small logarithmic factor,
which leaves only the Merge Phase and Collision Pruning to worry about.
Together, these two steps are designed to produce LI . A naive approach would
enumerate all elements in the much larger L̃I , which is wasteful. Our task is
therefore, given the lists of partial collisions Li for i ∈ I, to create LI more
efficiently.

In the sequel, we will follow in the footsteps of Özen, Shrimpton, and Stam
who used the dual code in a similar problem related to their preimage-finding
attack. An important innovation for the collision-finding attack stems from the
realization that Δ can be regarded as belonging to the (quasi) shortened code.
This allows the use of the dual of the shortened code to speed up the search. As
the minimum distance of the dual code is an important parameter in determining
the overall time-complexity and shortening a code reduces the minimum distance
of its dual accordingly, we make a significant efficiency gain this way.

Road map. We present our collision attack against Knudsen-Prennel compression
functions whose Cpre is based on MDS codes in Alg. 4, whereas its analysis is
given in Thm. 4. We leave the generalization of our attack to (KP-suggested)
non-MDS parameters together with the proof of Thm. 4 to the full version of
this work where we also investigate a more space efficient version of Alg. 4.

Reducing the Time Complexity. Since I = Ĩ and θ = r − k, we know
from Algorithm 3 that it is enough to find a nonzero Δ ∈ �(Cpre) of the form
Δ = Δ′ + 0 for Δ′ =

∑
i∈Ĩ Δi to complete the collision. Now notice that Δ′

is lying in a smaller space �(C′pre) identified by C′ that is the [r − θ, k − θ, d′]
shortened code obtained from C (by dropping the zeroes of the codewords from
all the positions appearing in I0). This observation allows us to guarantee that
Δ ∈ �(Cpre) once we determine that a candidate Δ′ is in �(C′pre). Hence, it is
enough for our purposes to limit ourselves to �(C′pre) rather than looking for
membership in the larger space �(Cpre).

To this end, we first identify an index set Ih′ ⊆ {1, . . . , r} (the role of h′ will
be explained momentarily) defining a subspace

⊕
i∈Ih′ Vi for which �(C′pre)

when restricted to this subspace, is not surjective. As a consequence, we will
be able to prune significantly the total collection of candidate Δ′s keeping only
those that are possibly in �(C′pre) (restricted to

⊕
i∈Ih′ Vi). In the sequel, we

will show how to efficiently find an index set Ih′ , and how to efficiently prune.
An important parameter determining the runtime of our collision attack is

d′⊥, the minimum distance of the dual shortened code. Let χ be the function
that maps h′ ∈ �r−θ

2e to the set of indices of non-zero entries in h′. Thus, χ(h′) ⊆
{1, . . . , r} and |χ(h′)| equals the Hamming weight of the codeword h′.

An easy adaptation of Proposition 1 shows that if we are given a codeword
h′ ∈ C′⊥ and an element Δ′ ∈ �(r−θ)en′

2 , then Δ′ can only be in �(C′pre)
if (ϕ̄(h′T ) ⊗ In′) · Δ′ = 0, where the only parts of Δ′ relevant for this check
are those lining up with the nonzero entries of h′. Indeed, an element Δ′h′ ∈
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Algorithm 4 (Collision Attack against MDS-based schemes).

Input: H = KPb([r, k, d]2e), an index set I0 ⊂ {1, . . . , r} with θ = |I0| = r−k
and a block size n = bn′.

Output: A colliding pair (W,W ′) ∈
(
{0, 1}ekn′)2

such that Hn(W ) =

Hn(W ′),W �= W ′, and if X = Cpre(W ) and X ′ = Cpre(W ′) then for
all i ∈ I0 it holds that xi = x′

i.

1. Initialization. Set I ← {1, . . . , r}\I0 (with |I| = k), I = Ĩ, and set
α ← k/(3k − r). Obtain C′ consisting of codewords g′ ∈ C′ that are
constructed from g ∈ C by dropping zeroes of g from all the positions
appearing in I0.

2. Query Phase. As in Algorithm 3.

3. Local Collision Detection. As in Algorithm 3.

4. Merge Phase. Find a nonzero codeword h′ ∈ C′⊥ of minimum Hamming

weight d′⊥ = 2k − r + 1. Let h′ = h′
0 + h′

1 with χ(h′
0) ∩ χ(h′

1) = ∅ and of

Hamming weights �d′⊥/2� and �d′⊥/2� respectively. Create for j = 0, 1,

L̃h′
j

=

⎧⎪⎨
⎪⎩

(
Δ′

h′
j
, Xj , X′

j , (ϕ̄(h′
j)⊗ In′ ) · (Δ′

h′
j

+ 0)

)
| (Δ′

h′
j
, Xj , X′

j) ∈
∑

i∈χ(h′
j
)

Li

⎫⎪⎬
⎪⎭

both sorted on their fourth component.

5. Join Phase. Create Lh′ consisting exactly of those elements Δ′
h′
0

+Δ′
h′
1

for which (Δ′
h′
0
, X0,X

′
0, Y0) ∈ L̃h′

0
, (Δ′

h′
1
, X1,X

′
1, Y1) ∈ L̃h′

1
and Y0 = Y1.

6. Collision Pruning. For all (Δ′
h′ ,X,X ′) ∈ Lh′ create the unique Δ′

corresponding to it and check whether it results in Δi ∈ Li for all i ∈ I(=
Ĩ). If so, keep Δ′ =

∑
i∈Ĩ Δi in LI . Formally

LI =

⎧⎨
⎩(Δ′, X̃, X̃′) = (Δ′

h′ , X, X′) ∈ Lh′ +
∑

i∈Ĩ\χ(h′)
Li|Δ′ ∈ �(C′pre

)

⎫⎬
⎭ .

7. Skip. & 8. Finalization. As in Algorithm 3.

∑
i∈χ(h′) Li can be completed to an element in the range of derived mapping

C′pre iff (ϕ̄(h′T )⊗ In′) · (Δ′h′ + 0) = 0. Efficient creation of

Lh′ =

⎧⎨
⎩(Δ′h′ , X,X ′) ∈

∑
i∈χ(h′)

Li | (ϕ̄(h′T )⊗ In′) · (Δ′h′ + 0) = 0

⎫⎬
⎭

can be done adapting standard techniques [2,13,11] by splitting the codeword
in two and looking for all collisions in respective entries. That is, assume that
h′ = h′0 + h′1 with χ(h′0) ∩ χ(h′1) = ∅, and define, for j = 0, 1

L̃h′
j

=

⎧
⎨
⎩
(
Δ′h′

j
, Xj , X

′
j, (ϕ̄(h′j

T )⊗ In′) · (Δ′h′
j
+ 0)

)
| (Δ′h′

j
, Xj , X

′
j) ∈

∑
i∈χ(h′

j)

Li

⎫
⎬
⎭
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Then Lh′ consists of those elements Δ′h′
0

+ Δ′h′
1

for which (Δ′h′
0
, X0, X

′
0, Y0) ∈

L̃h′
0
, (Δ′h′

1
, X1, X

′
1, Y1) ∈ L̃h′

1
and Y0 = Y1.

By sorting the two L̃ ’s the time complexity of creating Lh′ is then roughly
the maximum cardinality of the two sets L̃h′

0
and L̃h′

1
. Hence, the main trick to

reduce the time complexity is to minimize the Hamming weights of h′0 and h′1,
which is done by picking a codeword h′ ∈ C′⊥ of minimum distance d′⊥ and split-
ting it (almost) evenly. As a result, for the partial collision lists of (almost) same
cardinality S, Lh′ can be constructed in S	d

′⊥/2
 time using S�d
′⊥/2� memory

(ignoring inconsequential factors). We summarize our analysis in Thm. 4.

Theorem 4. Let H = KPb([r, k, d]2e) be given and C′ be a shortened [r− θ, k−
θ, d]2e code derived from C for θ = r−k. Let d′⊥ be the minimum distance of the
dual code of C′. Suppose C is MDS (so is C′ with d′⊥ = 2k− r+ 1) and consider
the collision attack described in Alg. 4 run against Hn using q = 2αn queries for
α = k/(3k − r). Then the expected number of collision outputs is equal to one
and the expectations for the internal list sizes are (for i ∈ I):

|Li| = 2(2α−1)n , |Lh′ | = 2((2α−1)d′⊥−α)n ,

|L̃h′
0
| = 2(2α−1)	 d′⊥

2 
n , |L̃h′
1
| = 2(2α−1)� d′⊥

2 �n

The average case time complexity of the algorithm is max
(
q, |L̃h′

0
|, |Lh′ |

)
with

a memory requirement of max
(
q, |L̃h′

1
|
)

(expressed in cn-bit blocks).

7 Conclusion

In this paper we provide an extensive security analysis of the Knudsen-Preneel
compression functions by focusing on their collision resistance. We present three
improved collision attacks namely the revised Watanabe, symbiotic collision and
parametrized collision attacks. Our new attacks work with the least number
of queries reported so far. Moreover, except for only one out of 16 suggested
parameters, these attacks beat the time-complexity of any prior attack we are
aware of.

Acknowledgments. We thank Joachim Rosenthal and Thomas Shrimpton for
their useful comments and suggestions.

References

1. Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based
hash-function constructions from PGV. In: Yung [15], pp. 320–335

2. Chose, P., Joux, A., Mitton, M.: Fast correlation attacks: An algorithmic point of
view. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 209–221.
Springer, Heidelberg (2002)



Collision Attacks against the Knudsen-Preneel Compression Functions 93

3. Knudsen, L., Muller, F.: Some attacks against a double length hash proposal.
In: Roy, B.K. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 462–473. Springer,
Heidelberg (2005)

4. Knudsen, L.R., Preneel, B.: Hash functions based on block ciphers and quaternary
codes. In: Kim, K., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp.
77–90. Springer, Heidelberg (1996)

5. Knudsen, L.R., Preneel, B.: Fast and secure hashing based on codes. In: Burt
Kaliski, J., Burton, S. (eds.) CRYPTO 1997. LNCS, vol. 1294, pp. 485–498.
Springer, Heidelberg (1997)

6. Knudsen, L.R., Preneel, B.: Construction of secure and fast hash functions using
nonbinary error-correcting codes. IEEE Transactions on Information Theory 48(9),
2524–2539 (2002)
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Abstract. “Generic” Unbalanced Feistel Schemes with Expanding
Functions are Unbalanced Feistel Schemes with truly random internal
round functions from n bits to (k − 1)n bits with k ≥ 3. From a practi-
cal point of view, an interesting property of these schemes is that since
n < (k− 1)n and n can be small (8 bits for example), it is often possible
to store these truly random functions in order to design efficient schemes
(example: CRUNCH cf [6]). Attacks on these generic schemes were stud-
ied in [7] and [18]. As pointed in [7] and [18], there are surprisingly
much more possibilities for these attacks than for generic balanced Feis-
tel schemes or generic unbalanced Feistel schemes with contracting func-
tions. In fact, this large number of attack possibilities makes the analysis
difficult. In this paper, we shall methodically analyze again these attacks.
We have created a computer program that systematically analyze all the
possible attacks and detect the most efficient ones. We have detected a
condition on the internal variables that was not clearly analyzed in [18],
and we have found many new improved attacks by a systematic study
of all the “rectangle attacks” when k ≤ 7, and then we have general-
ized these improved attacks for all k. Many simulations on our improved
attacks have also been done and they confirm our theoretical analysis.

Keywords: Unbalanced Feistel permutations, pseudo-random permuta-
tions, generic attacks on encryption schemes, Block ciphers.

1 Introduction

A classical way to construct permutation {0, 1}N to {0, 1}N is to use Feistel
schemes with d rounds built with round functions f1, . . . , fd. In order to get
“Random Feistel Scheme”, these round functions need to be randomly chosen.
“Generic attacks” on these schemes are attacks that are valid for most of the
round functions.

The most usual Feistel schemes are when N = 2n and the functions fi are
from {0, 1}n to {0, 1}n. Such schemes are called “balanced Feistel Schemes” and
they have been studied a lot since the famous paper by M.Luby and C.Rackoff

M. Abe (Ed.): ASIACRYPT 2010, LNCS 6477, pp. 94–111, 2010.
c© International Association for Cryptologic Research 2010
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[12]. Many results have been obtained on the security of such classical Feistel
schemes (see [13] for an overview of these results). When the number of rounds
is lower than 5, we know attacks with less than 2N (= 22n) operations: for 5
rounds, an attack in O(2n) operations is given in [16] and for 3 or 4 rounds an
attack in

√
2n is given in [1],[14]. When the functions are permutations, similar

attacks for 5 rounds are given in [8] and [10]. Therefore, for security, at least 6
rounds are recommended, i.e. each bit will be changed at least 3 times.

When N = kn and when the round functions are from (k − 1)n bits to n
bits, we obtain what is called an “Unbalanced Feistel Scheme with contracting
functions”. In [13], M.Naor and O.Reingold give security when for the first and
the last rounds pairwise independent functions are used instead of random con-
tracting functions. In [20] security proofs for these schemes are also proved. At
Asiacrypt 2006 ([17]) generic attacks on such schemes have been studied.

When N = kn and when the round functions are from n bits to (k − 1)n
bits, we obtain what is called an “Unbalanced Feistel Scheme with expanding
functions”, also called “complete target heavy unbalanced Feistel networks”(see
[19]). Generic attacks on Unbalanced Feistel Schemes with expanding functions
is the theme of this paper. One advantage of these schemes is that it requires
much less memory to store a random function of n bits to (k − 1)n bits than
a random function of (k − 1)n bits to n bits. Unbalanced Feistel Schemes with
expanding functions together with the Xor of random permutations have been
used in the construction of the hash function CRUNCH for the cryptographic
hash algorithm competition organized by NIST in 2008 (cf [6]). Our results give
a lower bound for the number of rounds used to construct this hash function.

Other kinds of Feistel Schemes are used for well known block ciphers. For ex-
ample, BEAR and LION [2] are two block ciphers which employ both expanding
and contracting unbalanced Feistel networks. The AES-candidate MARS is also
using a similar structure.

Attacks on Unbalanced Feistel Schemes with expanding functions have been
previously studied by C.S. Jutla ([7]) and improved attacks were given in [18].
However some of the attacks presented in [18] need too many conditions on
the internal variables. These attacks work, but with weak keys. In this paper, we
make a systematic study of the equations between the internal variables to avoid
unlikely collisions on the round functions. Thus we get additional conditions.
Nevertheless, with more conditions, we show that it is still possible to attack the
same number of rounds as in [18]. In Known Plaintext Attacks (KPA), we obtain
the same complexity except for d = 3k−1 where our complexity is slightly greater
than in [18] but we do not have too many conditions on the internal variables.
For Non-Adaptive Chosen Plaintext Attacks (CPA-1), we give a general method
to obtain CPA-1 from KPA. Then we get complexities that are, most of the time,
better than the ones in [18]. We also show that the best CPA-1 are not derived
from the best KPA. For k ≤ 7, we have generated all the possible attacks, thus
the attacks presented here are the best possible attacks. We believe that the
generalization of these attacks for any k still gives the best possible attacks. We
also provide simulation results for k = 3.
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The paper is organized as follows. First we introduce some notation and def-
initions. Then we give an overview of the attacks. In Section 4, we show how
we have generated all the possible attacks for k ≤ 7. In Section 5, we introduce
the different kinds of attacks we will used. These attacks named TWO, R1, R2,
R3 and R4 generalize the attacks of [18]. Then in Section 6, we present R1, R2
KPA attacks. In Section 7, we show how to get CPA-1 from KPA. In Section 8,
we study R1 and R2 CPA-1 and we give the results of our simulations. Finally,
all the results are summarized in Section 9.

2 Notation

2.1 Unbalanced Feistel Schemes Notation

We first describe Unbalanced Feistel Scheme with Expanding Functions F d
k

and introduce some useful notations. F d
k is a Feistel scheme of d rounds that

produces a permutation from kn bits to kn bits. At each round j, we de-
note by fj the round function from n bits to (k − 1)n bits. fj is defined as
fj = (f (1)

j , f
(2)
j , . . . , f

(k−1)
j ), where each function f

(i)
j is defined from {0, 1}n

to {0, 1}n. On some input [I1, I2, . . . , Ik], F d
k produces an output denoted by

[S1, S2, . . . , Sk] by going through d rounds. At round j, the first n bits of the
round entry are called Xj−1. We can notice that I1 = X0. We compute fj(Xj−1)
and obtain (k − 1)n bits. Those bits are xored to the (k − 1)n last bits of the
round entry and the result is rotated by n bits.

The first round is represented on Figure 1 below:

X0

X0

X1

I2 I3 Ik

X0

f1

n bits (k − 1)n bits

(k − 1)n bits

Fig. 1. First Round

We have

X0 = I1

X1 = I2 ⊕ f (1)
1 (I1)

X2 = I3 ⊕ f (2)
1 (I1)⊕ f (1)

2 (X1)

X3 = I4 ⊕ f (3)
1 (I1)⊕ f (2)

2 (X1)⊕ f (1)
3 (X2)
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More generally, we can express the Xj recursively:

∀ξ < k, Xξ = Iξ+1

ξ⊕
i=1

f
(ξ−i+1)
i (X i−1)

∀ξ ≥ 0, Xk+ξ = Xξ
k⊕

i=2
f

(k−i+1)
ξ+i (Xξ+i−1)

After d rounds (d ≥ k+1), the output [S1, S2, . . . , Sk] can be expressed by using
the introduced values Xj :

Sk = Xd−1

Sk−1 = Xd−2 ⊕ f (k−1)
d (Xd−1)

Sk−2 = Xd−3 ⊕ f (k−1)
d−1 (Xd−2)⊕ f (k−2)

d (Xd−1)
. . .

Sξ = Xd−1−k+ξ
d−1⊕

i=d−k+ξ
f

(ξ+d−i−1)
i+1 (X i)

. . .

S1 = Xd−k
d−1⊕

i=d−k+1
f

(d−i)
i+1 (X i)

We don’t need another notation, but for a better understanding we introduce a
notation for the intermediate values. After round p, we obtain [Mp

1 ,M
p
2 , . . . ,M

p
k ].

So we have Mp
1 = Xp, and for all i ∈ {1, 2, . . . , k} M0

i = Ii and Md
i = Si.

2.2 Differential Attack Notation

Our attacks use sets of points. A point is a plaintext/ciphertext pair. The total
number of points gives us the complexity of the attack. From the set of points
we extract all the ϕ-tuple of distinct points P (1), P (2) . . .P (ϕ), and we count
how many ϕ-tuple verify some equalities (see Figure 2 for an example).

Now, we can describe an attack with a differential path. With the path we can
explain why the number of ϕ-tuples that match the conditions is more important
for a F d

k scheme than for a random permutation. We introduce more definition.

I(1) S(1)

I(2) S(2)

I(3) S(3)

I(4) S(4)

I(5) S(5)

I(6) S(6)

Vertical

conditions

Horizontal conditions

S3(1)=S3(2)
I2(1)=I2(2)

S3(3)=S3(4)
I2(3)=I2(4)

I1(1) = I1(3) I1(3) = I1(5)

S3(5)=S3(6)
I2(5)=I2(6)

� = ϕ
2
− 1 = 2

Fig. 2. Example of equalities for ϕ = 6
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After p rounds, we define “horizontal equalities” on part Mi of the output M
as Mp

i (1) = Mp
i (3) = . . . = Mp

i (ϕ − 1) and Mp
i (2) = Mp

i (4) = . . . = Mp
i (ϕ).

Let � = ϕ
2 − 1. “Vertical equalities” on part Mi are given by ∀j, 0 ≤ j ≤

�, Mp
i (2j + 1) = Mp

i (2j + 2). We also define “differential equalities” on part Mi

by ∀j, 0 ≤ j ≤ � − 1, Mp
i (2j + 1) ⊕Mp

i (2j + 2) = Mp
i (2j + 3) ⊕Mp

i (2j + 4).
Notice that when we have the differential equalities, in order to get the horizontal
equalities, it is enough to have the first sequence of equalities, and for the vertical
equalities, it is enough to get only the first one. When we impose some equalities,
we call them conditions (they are satisfied with probability 1

2n ). This may imply
that other equalities will be satisfied with probability 1. On the input and output
variables we will always have � differential conditions and either horizontal or
vertical conditions. On the internal variables, we will get horizontal or vertical
equalities and moreover we will impose more vertical or horizontal conditions.
We need to always have differential equalities. When we impose new conditions
on the internal variables, we must check that we do not add too many of them.
We now give an example with an attack over the F 6

3 scheme. See Table 1.

Table 1. F 6
3 attack

i (round) M i
1(2j+1)⊕M i

1(2j+2) M i
2(2j+1)⊕M i

2(2j+2) M i
3(2j+1)⊕M i

3(2j+2)

0 0 0 Δ1

1 0 Δ1 0
2 •Δ1 •0 0
3 .Δ2 Δ3 .Δ1

4 0 .0 .Δ2

5 0 Δ2 0
6 Δ2 0 0

The “.” in this table means that there are horizontal equalities or conditions.
The “0” in the table means that there are vertical equalities or conditions. This
notation will be used for any attack. We can count the total number of conditions
for the different part: nI = 3� + 2 (number of input conditions), nX = 2� + 2
(number of internal conditions), nS = 3� + 2 (number of output conditions).
If a ϕ-tuple follow the path, i.e. if it satisfies both the input and the internal
conditions, then it will verify the output conditions. But there exist other ways
to verify both these output conditions and the input conditions. So, we can prove
that the number of ϕ-tuple will be greater for a F d

k permutation.

3 Example: CPA-1 Attack on F 6
3

We present here a first example where we have obtained a new and better attack
than previously known for F 6

3 . In the next sections a complete analysis will be
given for more general parameters. This attack is the one described in Table 1
with ϕ = 4 and so � = 1. Figure 3 illustrates this attack. It explains the terms
of horizontal and vertical equalities. Moreover, conditions are represented by a
solid edge and equalities that are automatically satisfied by a dotted edge.
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1

2

3

4

X2, X3

I1, I2

(Therefore X1)

X4, X5 I1, I2 X4, X5

X2, X3

Fig. 3. The F 6
3 attack

We will generate all the possible messages [I1, I2, I3] such that I1 = 0 and the
first n/2 bits of I2 are 0. So, we will generate exactly m = 23n/2 messages. How
many 4-tuple of points will verify the input conditions ? For the first message
we have m possibilities. For the second we have only 2n possibilities because I1
and I2 are imposed by the first message. For the third point we have again m
possibilities, and then we have no choice for the last point. Therefore there are
m2 × 2n = 24n 4-tuple of points that satisfy all the input conditions. For a F 6

3

scheme, each of these tuple will satisfy at random the 4 internal conditions with
a probability equal to 1/24n. So, the expected number of 4-tuples that satisfy
also the output conditions will be approximatively 1. Since there are 5 output
conditions, the expected number of 4-tuple that satisfy the input conditions and
the output conditions will be much lower for a random permutation. So, this
CPA-1 attack will succeed with a high probability. We have found here a CPA-1
attack with O(23n/2) complexity and O(23n/2) messages. This is better than the
O(25n/3) found in [18]. To find this complexity we can also use Table 3 with
r = 2, nX = 4, � = 1 and k = 3.

Moreover we have checked that all the other path conditions are verified (see
Section 4) and this attack has been simulated by computer. For example, with
n = 10 and 1000 attacks, we were able to distinguish 575 F 6

3 schemes from a
random permutation, so the percentage of success is about 57.5%.

4 Generation of All Possible Attacks for k ≤ 7

In this section we describe the way we generate all the possible attacks for k ≤ 7.
First we choose a value for k, then we increase the value of d, beginning with
d = 1, until we find no possible attacks. All the attacks (or sometimes only the
best attacks when the number is too much important) are put in a specific file
corresponding to the values of k and d.
To find an attack, we need to construct all the differential paths. There are two
constraints for this construction:

– In the same round, it’s not possible to have k vertical conditions, because it
leads to a collision between the points, i.e. P (1) = P (3) = · · · = P (ϕ − 1)
and P (2) = P (4) = · · · = P (ϕ).
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– In the same round, it’s not possible to have k horizontal conditions, because it
also lead to a collision between the points, i.e. P (1) = P (2) and P (3) = P (4)
and ... P (ϕ− 1) = P (ϕ).

When the path is constructed, we look if the attack is valid. To be valid, an
attack must overcome five constraints.

1. The complexity of the attack must be smaller than the total number of

possible messages:
nI + nX

2�+ 2
≤ k.

2. There must be less internal conditions than output conditions: nX ≤ nS .
3. If nX = nS then nS must be different from the number of final consecutive

vertical conditions in the output conditions. If not, it is easy to prove that
the output conditions are completely equivalent to the internal conditions.
So, the output conditions will not happen more often than for a random
permutation.

4. The number of equalities inside the path must be smaller than the number
of variables included in them. Moreover we do not consider equalities when
a variable occurs only once for all the equalities.
Let us take an example. The F 6

3 attack given in section 2.2. The equations
are: f (1)

3 (X2⊕Δ1)⊕f (1)
3 (X2) = Δ2, f

(2)
3 (X2⊕Δ1)⊕f (2)

3 (X2) = Δ3,f
(1)
4 (X3⊕

Δ2)⊕ f (1)
4 (X3) = Δ3, f

(2)
4 (X3 ⊕Δ2)⊕ f (2)

4 (X3) = Δ1. We have 4 equations
and 5 variables X2, Δ1, Δ2, Δ3, X3. All the variables are used at least in 2
equalities, so we cannot simplify.

5. There is no bottleneck in the equalities, i.e. any subset of equalities must
have a greater number of variables. If it is not the case, the attack will
only work with very particular functions (weak keys). This last point is very
difficult to carry out without the help of a computer.

Finally, all the possible attacks are sorted in function of their complexity (KPA
or CPA-1). For example there is 71 different attacks on the F 6

3 scheme, and 20
attacks with a CPA-1 complexity equal to 23n/2.

All possible attacks are given in an extended version of this paper. In the next
sections, we generalize for any k the best attacks (KPA and CPA-1) obtained
for k ≤ 7.

5 Different Kinds of Attacks: TWO, R1, R2, R3 and R4

5.1 TWO Attacks

The TWO attack consists in using m plaintext/ciphertexts pairs and in counting
the number NF d

k
of couples of these pairs that satisfy the relations between the

input and output variables. We then compare NF d
k

with Nperm where Nperm

is the number of couples of pairs for a random permutation instead of F d
k . The

attack is successful, i.e. we are able to distinguish F d
k from a random permutation
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if the difference |E(NF d
k
)−E(Nperm)| is much larger than the standard deviation

σperm and than the standard deviation σF d
k
, where E denotes the expectancy

function.
These attacks give the best attacks from 1 round to k + 2 rounds. They are

studied in [18]. Their complexity is summarized in Section 9.

5.2 R1 Attacks

Here we have vertical conditions on the input and output variables. These attacks
are more general than the attacks named R1 in [18] since we allow more vertical
conditions on the input and output variables. These attacks were first described
by Jutla ( [7]). With our differential notation, we have:

I1 . . . Ir Ir+1 . . . Ik S1 . . . Sk−v Sk−v+1 . . . Sk

Round 0 0 . . . 0 Δ0
r+1 . . . Δ0

k Round d Δd
1 . . . Δd

k−v 0 . . . 0

Thus, nI = k�+r , nX = t�+w , nS = k�+v. Here nI denotes the conditions on
the input variables. � = ϕ

2 − 1. The number of vertical conditions on the input
variables is r. nX denotes the number of conditions on the internal variables.
We use t for horizontal conditions and w for vertical conditions. Similarly, nS

and v denote respectively the number of conditions and the number of vertical
conditions on the output variables. Then the number of rounds is given by r +
t + w. When nX ≤ nS , we can easily obtain a sufficient condition of success
(without computing the standard deviation), since in that case we will have for
most permutation about 2 times more solutions with F d

k than with a random
permutation. Here this gives the condition: (k − t)� ≥ w − v. In order to avoid
weak keys, the number of equations with the internal variables must be smaller
than or equal to the number of internal variables. This condition was not always
satisfied in [18]. For R1 attacks, it is easy to check that the number of equations
is given by t(k− 1) and the number of variables is k(t+ 1)− r−w. Thus we get

the condition: r+w ≤ t+ k. The complexity of such an attack is 2
nI+nX

ϕ n. This
implies nI+nX

ϕ ≤ k, i.e. (k+t)�+r+w
2�+2 ≤ k.

5.3 R2 Attacks

Here we have horizontal conditions on the input variables and vertical conditions
on the output variables. Again these attacks are more general than the attacks
named R2 in [18] since we allow more horizontal conditions on the input variables
and more vertical conditions on the output variables. We have:

I1 . . . Iu Iu+1 . . . Ik S1 . . . Sk−v Sk−v+1 . . . Sk

Round 0 .Δ0
1 . . . .Δ0

u Δ
0
u+1 . . . Δ0

k Round d Δd
1 . . . Δd

k−v 0 . . . 0

Thus, nI = (k + u)�, nX = t� + w, nS = k� + v. The number of horizontal
conditions on the input variables is denoted by u. The number of rounds is
given by u + t + w. The condition nX ≤ nS is equivalent to (k − t)� ≥ w − v.
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For R2 attacks, it is easy to check that the number of equations is given by
(t + 1)(k − 1) and the number of variables is k(t + 2) − w. Thus we get the

condition: w ≤ t + k + 1. The complexity of such an attack is 2
nI+nX

ϕ n. This
implies nI+nX

ϕ ≤ k, i.e. (k+t+u)�+w
2�+2 ≤ k.

5.4 R3 and R4 Attacks

We describe briefly, R3 and R4 attacks. It is easy to get the number of rounds
and the conditions on the number of equations and variables.

For R3 attacks, we have vertical conditions on the input variables and hori-
zontal conditions on the output variables. This gives:

I1 . . . Ir Ir+1 . . . Ik S1 . . . Sk−s Sk−s+1 . . . Sk

Round 0 0 . . . 0 Δ0
r+1 . . . Δ0

k Round d Δd
1 . . . Δd

k−s .Δd
k−s+1 . . . .Δd

k

and nI = k�+ r, nX = t�+ w, nS = (k + s)�.
For R4 attacks, we have horizontal conditions on the input and output variables.
This gives:

I1 . . . Iu Iu+1 . . . Ik S1 . . . Sk−s Sk−s+1 . . . Sk

Round 0 .Δ0
1 . . . .Δ0

u Δ
0
u+1 . . . Δ0

k Round d Δd
1 . . . Δd

k−s .Δd
k−s+1 . . . .Δd

k

and nI = (k + u)�, nX = t�+ w, nS = (k + s)�.

6 Best KPA Attacks: R1, R2

In this section we describe the best attacks we have found. As mentioned before,
we know that for k ≤ 7, they are the best possible attacks. We will mostly
describe one example of R2 attacks since for any round there are many possible
R2 attacks that give the best complexity. It can be noticed that in KPA, there
is a symmetry between R2 and R3 attacks. Thus there always exist R2 and
R3 attacks with the same complexity. Sometimes, it is also possible to have R1
attacks. Most of the time, R4 attacks are worse. We give attacks from k + 3
rounds to 3k − 1 rounds since from 1 to k + 2 rounds, TWO attacks are most
of the time better and they are described in [18]. In all our attacks, it is easily
checked that the conditions given in the previous section are satisfied. Moreover,
we always look for attacks where the number of points is minimum. Our best
R2 KPA attacks are summarized in Table 2:

Remarks

1. We have the following R1 attacks:
(a) When k + 3 ≤ d ≤ 2k − 2 and d = k + 2q, we set

nI = k�+ k − 1, nX = q�+ q + 1, nS = k�+ q + 1

It is possible to choose � = 1 and the complexity is also 2
k+d
4 n
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Table 2. Best known KPA on F d
k , for any k ≥ 3

d values nI nX nS � Complexity

k + 2q ∈ [k+3, 2k−2] (2k−1)� q�+ q + 1 k�+q+1 1 2
k+d
4 n

k + 2q + 1 ∈ [k+3, 2k−2] (2k−1)� q�+ q + 2 k�+q+2 1 2
k+d
4 n

k + 2q ∈ [2k−1, 3k−2] (2k−1)� (q − � k−1
2
�)�+ q + �k+1

2
� k�+k−1 1 2

k+d
4 n

k + 2q + 1 ∈ [2k−1, 3k−2] (2k−1)� (q − � k−3
2
�)�+ q + �k+1

2
� k�+k−1 1 2

k+d
4 n

3k − 1 k�+� k�+ 2k − 1 k�+k−1 k 2(k− 1
2k+2 )n

(b) When 2k − 1 ≤ d ≤ 3k − 2 and d = k + 2q, we set

nI = k�+ 2, nX = q�+ k + q − 2, nS = k�+ k − 1

The complexity is still 2
k+d
4 n, but � is greater than 1.

2. In [7], Jutla gave a R1 attack on 3k − 3 rounds but the complexity that we
obtain with a R2 attack here is better. It is possible to perform a R1 attack
on 3k − 2 rounds just by adding a vertical condition on the input variables
to the attack on 3k − 3 rounds and the we obtain the same complexity as
the one we get with a R2 attack. Due to the conditions between the number
of equations and internal variables, it is not possible to use the same idea
for 3k − 1 rounds. In this last case, we have R2 (and of course R3) attacks.

7 Way to Transform KPA Attacks into CPA-1 Attacks

We have analyzed all the possible situations and we are now able to present
formulas that give us directly the CPA complexity depending on the initial con-
ditions. We call u the number of horizontal conditions, r the number of vertical
condition and δ = |u− r|. So we can distinguish four cases:

Case 1 u = 0: 0 0 ... 0︸ ︷︷ ︸
r“0”

Δ1 ... Δk−r

Case 2 r = 0:

u“.”︷ ︸︸ ︷
.Δ1 .Δ2 ... .Δu Δu+1... Δk−r

Case 3 u ≤ r:
u“.”︷ ︸︸ ︷

.0 .0 ... .0

δ=r−u︷ ︸︸ ︷
0 ... 0︸ ︷︷ ︸

r“0”

Δ1 ... Δk−r ,

Case 4 u ≥ r:
u“.”︷ ︸︸ ︷

.0 .0 ... .0︸ ︷︷ ︸
r“0”

. Δ1 ... .Δδ︸ ︷︷ ︸
δ=u−r

Δδ+1... Δk−r

We can notice that the best CPA-1 attacks do not always come from the
best KPA attacks. Nevertheless, if we want to express the CPA complexity
with the KPA complexity, we can use the following formula: log2n (KPA) =
r + (u+ k)�+ nX

2�+ 2
.
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Table 3. KPA to CPA

Conditions log2n (CPA)

u = 0
nX

�+ 2
≤ k − r nX

�+ 2

r vertical conditions
nX

�+ 2
> k − r nX − k + r

�+ 1

r = 0
nX

�+ 2
≤ k − u nX

�+ 2

u horizontal conditions
nX

�+ 2
> k − u nX − �(k − u)

2

(�+ 2)(k − r) > nX

nX

�+ 2
(�+ 2)(k − r) + (�+ 1)δ > nX nX − k + r

r �= 0 and u �= 0 u ≤ r and (�+ 2)(k − r) ≤ nX
�+ 1

(�+ 2)(k − r) + (�+ 1)δ ≤ nX nX − k + r − �(k − u)
u horizontal conditions (�+ 2)(k − u) > nX

nX

�+ 2
and (�+ 2)(k − u) + 2δ > nX nX − �(k − u)

r vertical conditions u > r and (�+ 2)(k − u) ≤ nX
2

(�+ 2)(k − u) + 2δ ≤ nX nX − k + r − �(k − u)

For all the CPA-1 Attacks we found, we prove that the best choice is to keep
the first bits constant and generate all the possible messages with the same first
bits.

Let’s show how we prove it for Case 1. The best way to choose messages is
to keep some of the bits constant (for example equal to zero) and consider all
the possible combination for the other bits. We call b the number of varying bits
among the first rn bits, and we call β the number of varying bits among the last
(k − r)n bits. So we have 0 ≤ b ≤ rn and 0 ≤ β ≤ (k − r)n, and this allow us
to generate 2b+β points (plaintext/cyphertext pair). Now we count how many
ϕ-tuples M0(1), . . . , M0(ϕ) of points will verify the input conditions. For M0(1)
we have 2b+β possibilities, for M0(2) only 2β − 1 ≈ 2β possibilities, because the
first rn bits are imposed by M0(1). For M0(3) we have again 2b+β − 2 ≈ 2b+β

possibilities. ForM0(4) only one possibility : M0(4) = M0(3)⊕(M0(1)⊕M0(2)).
We continue like this until we reach the last two points. For M0(ϕ− 1) we have
again almost 2b+β possibilities, and for M0(ϕ) only one possibility. So, the total
number of ϕ-tuples is

(
2b+β

)ϕ/2 × 2β = 2(b+β)(�+1)+β. The complexity of the
CPA-1 is equal to 2b+β . We want this number to be as small as possible, and
at the same time we want to generate a maximum of ϕ-tuples that satisfy the
input conditions. So, we want to have β as large as possible. Each ϕ-tuple has a
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probability equal to 1/2nX·n to satisfy the internal conditions. In order to have a
reasonable chance to realize these conditions, we must have (b+ β)(�+ 1)+ β =
nX · n. If b = 0 we get β = nX

�+2n. But this is possible only if β ≤ (k − r)n,
i.e. if nX

�+2 ≤ k − r. If we have nX

�+2 > k − r then we must take the maximum
possible value for β: β = (k − r)n and that gives us a CPA-1 complexity equal

to 2b+β = 2
nX−k+r

�+1 n.
All the cases are summarized in Table 3.

8 Best CPA-1 Attacks: R1, R2, Simulation

8.1 CPA-1 Attacks

In this section, we describe the best CPA-1 that we have obtained. Again for
k ≤ 7 we know that we have the best possible attacks. Except for 3k−1 rounds,
we obtain a better complexity than in [18]. The best CPA-1 are generally R2
attacks. Sometimes R1 attacks exist with the same complexity. It is interesting
to note that the best CPA-1 do not come from the best KPA. We will use the
study of CPA-1 made in Section 7. We will describe CPA-1 for k+3 ≤ d ≤ 3k−1
since for d ≤ k + 2, the best attacks are the TWO attacks given in [18]. Again
we will give an example of such an attack for each round. We notice that for the
same conditions on the input and output variables, we can find several attacks:
the horizontal and vertical conditions on the internal variables can be displayed
differently inside the attack, but we must respect the conditions between the
number of equations and variables at each step of the attack. An example is
given at the end of this section. Our best R2 CPA-1 attacks are summarized in
the following table:

Table 4. Best known CPA-1 on F d
k , for any k ≥ 3

d values nI nX nS � Complexity

k + 3 k�+ (k − 1)� �+ 3 k�+ 1 1 2
3n
2

k + 4 k�+ (k − 2)� 2�+ 4 k�+ 2 1 22n

k + 5 k�+ (k − 2)� 2�+ 5 k�+ 2 1 25n/2

k+2q ∈ [k+6, 3k−4] k�+ (k − q)� (q − 1)�+ 2q + 1 k�+ 1 q−1 2
q2+2
q+1 n

k+2q+1 ∈ [k+7, 3k−5] k�+ (k − q)� (q − 1)�+ 2q + 2 k�+ 1 q−1 2
q2+3
q+1 n

3k − 3 k�+ � (k − 2)�+ 2k − 2 k�+ 1 k−1 2
(k−1)k

k+1 n

3k − 2 k�+ (k − 1)� (k−� k
2
�)�+2k−� k−1

2
� k�+k−1 1 2(k−1)n

3k − 1 k�+ � (k − 1)�+ 2k − 1 k�+k−1 k 2(k− 1
2 )n

Remark. For d = k+ 3, k+ 4, k+ 5 and 3k− 2, there exist R1 attacks with the
same complexity and the same number of points.
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8.2 Overview of the R2 CPA-1 Attack on F 3k−1
k

We did a simulation of our best CPA-1 Attack. The input and output conditions
were the following:

I1 I2 . . . Ik S1 S2 . . . Sk

Round 0 .Δ0
1 Δ

0
2 . . . Δ0

k Round d Δd
1 0 . . . 0

Several different differential paths match with these input and output condi-
tions. For example let’s see all the R2 path for the F 8

3 and F 11
4 permutations. See

Table 5 and Table 9 in Appendix A.

We counted the number of paths for k ≤ 7:
k 3 4 5 6 7

# path 2 8 27 89 296
We will see

that, the greater k is, the better the attacks work.

Table 5. All the paths for the R2 attack against F 8
3 , ϕ = 8

Path 1:

0 .Δ1 Δ2 Δ3

1 0 0 .Δ1

2 0 Δ1 0
3 .Δ1 0 0
4 0 Δ4 .Δ1

5 .Δ4 Δ1 0
6 0 0 .Δ4

7 0 Δ4 0
8 Δ4 0 0

Path 2:

0 .Δ1 Δ2 Δ3

1 0 Δ4 .Δ1

2 .Δ4 Δ1 0
3 0 0 .Δ4

4 0 Δ4 0
5 .Δ4 0 0
6 0 0 .Δ4

7 0 Δ4 0
8 Δ4 0 0

Table 6. Experimental results for F 3k−1
k

n k kn % of success % of false alarm # iteration

2 3 6 29,09% 0,35% 100000

2 4 8 61,6% 0,06% 10000

2 5 10 98,37% 0% 10000

2 6 12 99,99% 0% 10000

2 7 14 100% 0% 10000

2 8 16 100% 0% 1000

2 9 18 100% 0% 500

2 10 20 100% 0% 100

4 3 12 21,15% 1,12% 10000

4 4 16 42,5% 0% 1000

4 5 20 93% 0% 100

4 6 24 100% 0% 100

6 3 18 8% 1,2% 500

8 3 24 2% 0% 100
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8.3 Experimental Results

We did simulations of these CPA-1 attacks. For each simulation, we generate a
random Feistel scheme with 20 rounds, and a F 3k−1

k scheme. For both schemes,
we compute 2(k−1/2)n ciphertext/plaintext pairs, by varying only the last (k −
1/2)n bits. After this, we extract all the couples of points that satisfy both input
and output conditions. We sort these couples of points in order to count how
many ϕ-tuples of points match the input and output condition. If we found q
couples of points that satisfy all these conditions with q ≥ ϕ/2, we count as if we
have found q!

(q−ϕ/2)! ϕ-tuples, because this is the number of ϕ-tuples we can take
out these points, by changing the position of the couple of points. Once this is
finished, we compare the number found for each permutation. Most of the time,
that enables us to distinguish between them. See Table 6.

9 Summary of the Attacks

In Tables 7 and 8, we give the complexity of the attacks we have found. For
k ≤ 7, since we have generated all the attacks, these are the best possible attacks.
Then we have generalized the results for k > 7 and we believe that the attacks
presented here are also the best possible attacks. For d ≤ k + 2, we have TWO
attacks. For d ≥ k+3, we have rectangle attacks. As mentioned before, in KPA,
there are always R2 and R3 attacks that give the best complexity sometimes
there is also a R1 attacks (for 3k − 2 rounds for example). In CPA-1, the best
complexity is given by R2 attacks, and sometimes R1 attacks.

Table 7. Best known TWO and Rectangle attacks on F d
3 . Details about the parameters

in this table: (new) means that we have found a better attack than previously known.

KPA CPA-1

F 1
3 1 1

F 2
3 2

n
2 , TWO 2

F 3
3 2n, TWO 2

F 4
3 2

3
2 n, TWO 2

n
2 , TWO

F 5
3 22n, TWO 2n, TWO

F 6
3 2

9
4 n, R2, R3 2

3
2 n, R2 (new)

F 7
3 2

5
2 n, R1, R2, R3 22n, R2

F 8
3 2

23
8 n, R2, R3 2

5
2 n, R2

In these tables,“new” means that the complexity that we obtain is better than
the complexity given in [18]. (∗) means that for 3k− 1 rounds our complexity is
worse than the complexity in [18]. This comes from the fact, as we mentioned
earlier, that the conditions between the equations and the internal variables were
not all considered in [18].
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Table 8. Best known TWO and Rectangle attacks on F d
k , for any k ≥ 3. Details about

the parameters in this table: (new) means that we have found a better attack than
previously know.

KPA CPA-1

F
1

k 1 1

F
2

k 2
n
2 , TWO 2

F 3
k 2

n
, TWO 2

F d
k , 2 ≤ d ≤ k 2

d−1

2 n,TWO 2

F k+1
k 2

k
2 n

, TWO 2
n
2 , TWO

F k+2
k 2

k+1

2 n
, TWO 2n, TWO

F k+3
k 2

2k+3

4 n
, R2, R3 23n/2, R2 (new)

F k+4
k 2

k+2
2 n, R1, R2, R3 22n, R2 (new)

F k+5
k 2

2k+5

4 n, R2, R3 25n/2, R2 (new)
...

...
...

F d
k , d= k + 2q, 3 ≤ q ≤ k − 2 2

d+k
4 n, R1, R2, R3 2

q2+2
q+1 n, R2 (new)

F d
k , d= k + 2q + 1, 3 ≤ q ≤ k − 3 2

d+k
4 n, R2, R3 2

q2+3

q+1 n
, R2 (new)

...
...

...

F 3k−3
k 2

(k− 3
4 )n

, R2, R3 2
(k−1)k

k+1 n, R2 (new)

F 3k−2
k 2

(k− 1

2 )n
, R1, R2, R3 2(k−1)n, R2 (new)

F 3k−1
k 2

(k− 1

2k+2 )n
, R2, R3, (*) 2(k− 1

2 )n, R2

10 Conclusion

In this paper we make a systematic study of rectangle generic attacks on un-
balanced Feistel schemes with expanding functions. Although these attacks were
already analyzed in [7] and [18], this paper brings many improvements. Gen-
eration of all possible rectangle attacks for k ≤ 7 was performed thanks to a
computer program and the most efficient ones were selected. Then the general-
ization for any k was possible. This gives attacks for which conditions between
equations and internal variables are satisfied. This was not detected in [18]. We
also provide a complete description of the way to obtain CPA-1 from KPA. This
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shows how to get the best CPA-1 and we improved the CPA-1 complexity of [18].
Also many simulations confirm our theoretical results.

There are still some open problems. It would be interesting to complete the
program in order to generate all the attacks for any k. This seems to be a memory
space problem. Also, in this paper, we did not study attacks with complexity
greater than kn. In that case, we need to attack permutations generators and
not only one single permutation. In [18], attacks called “multi-rectangle attacks”
were introduced, but so far no significant results have been obtained on these
attacks. It might give a new way to study generic attacks on unbalanced Feistel
schemes with expanding functions. As we mentioned in Section 3, when we have
exactly the same condition on the input and output variables, there are many
possible CPA-1 attacks (for k = 7, there exist 286 attacks on F 20

7 , with the
same conditions on the input and output variables). An estimation for any k
will strengthen the attack.
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A All the Paths for the R2 Attack against F 11
4 , ϕ = 10

Table 9. All the paths for the R2 attack against F 11
4 , ϕ = 10

0 .Δ1 Δ2 Δ3 Δ4

1 0 Δ5 Δ6 .Δ1

2 .Δ5 Δ6 Δ1 0
3 0 0 Δ7 .Δ5

4 0 Δ7 Δ5 0
5 .Δ7 Δ5 0 0
6 0 Δ8 Δ9 .Δ7

7 .Δ8 Δ9 Δ7 0
8 0 0 0 .Δ8

9 0 0 Δ8 0
10 0 Δ8 0 0
11 Δ8 0 0 0

.Δ1 Δ2 Δ3 Δ4

0 Δ5 Δ6 .Δ1

.Δ5 Δ6 Δ1 0
0 Δ7 Δ8 .Δ5

.Δ7 Δ8 Δ5 0
0 0 Δ9 .Δ7

0 Δ9 Δ7 0
.Δ9 Δ7 0 0
0 0 0 .Δ9

0 0 Δ9 0
0 Δ9 0 0
Δ9 0 0 0

.Δ1 Δ2 Δ3 Δ4

0 Δ5 Δ6 .Δ1

.Δ5 Δ6 Δ1 0
0 0 0 .Δ5

0 0 Δ5 0
0 Δ5 0 0
.Δ5 .0 0 0
.Δ7 Δ8 Δ9 .Δ5

0 0 .0 .Δ7

0 0 Δ7 0
0 Δ7 0 0
Δ7 0 0 0

.Δ1 Δ2 Δ3 Δ4

0 0 Δ5 .Δ1

0 Δ5 Δ1 0
.Δ5 Δ1 0 0
0 Δ6 Δ7 .Δ5

.Δ6 Δ7 Δ5 0
0 Δ8 Δ9 .Δ6

.Δ8 Δ9 Δ6 0
0 0 0 .Δ8

0 0 Δ8 0
0 Δ8 0 0
Δ8 0 0 0

0 .Δ1 Δ2 Δ3 Δ4

1 0 0 0 .Δ1

2 0 0 Δ1 0
3 0 Δ1 0 0
4 .Δ1 .0 0 0
5 .Δ5 Δ6 Δ7 .Δ1

6 0 Δ8 .Δ9 .Δ5

7 .Δ8 Δ9 Δ5 0
8 0 0 0 .Δ8

9 0 0 Δ8 0
10 0 Δ8 0 0
11 Δ8 0 0 0

.Δ1 Δ2 Δ3 Δ4

0 0 0 .Δ1

0 0 Δ1 0
0 Δ1 0 0
.Δ1 0 0 0
0 Δ5 Δ6 .Δ1

.Δ5 .Δ6 Δ1 0

.Δ7 Δ8 Δ9 .Δ5

0 0 .0 .Δ7

0 0 Δ7 0
0 Δ7 0 0
Δ7 0 0 0

.Δ1 Δ2 Δ3 Δ4

0 0 Δ5 .Δ1

0 Δ5 Δ1 0
.Δ5 .Δ1 0 0
.Δ6 Δ7 Δ8 .Δ5

0 0 .Δ9 .Δ6

0 Δ9 Δ6 0
.Δ9 Δ6 0 0
0 0 0 .Δ9

0 0 Δ9 0
0 Δ9 0 0
Δ9 0 0 0

.Δ1 Δ2 Δ3 Δ4

0 0 Δ5 .Δ1

0 Δ5 Δ1 0
.Δ5 Δ1 0 0
0 0 Δ6 .Δ5

0 Δ6 Δ5 0
.Δ6 .Δ5 0 0
.Δ7 Δ8 Δ9 .Δ6

0 0 .0 .Δ7

0 0 Δ7 0
0 Δ7 0 0
Δ7 0 0 0
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Abstract. In a recent work, Mangard et al. showed that under certain
assumptions, the (so-called) standard univariate side-channel attacks us-
ing a distance-of-means test, correlation analysis and Gaussian templates
are essentially equivalent. In this paper, we show that in the context
of multivariate attacks against masked implementations, this conclusion
does not hold anymore. While a single distinguisher can be used to com-
pare the susceptibility of different unprotected devices to first-order DPA,
understanding second-order attacks requires to carefully investigate the
information leakages and the adversaries exploiting these leakages, sepa-
rately. Using a framework put forward by Standaert et al. at Eurocrypt
2009, we provide the first analysis that explores these two topics in the
case of a masked implementation exhibiting a Hamming weight leakage
model. Our results lead to refined intuitions regarding the efficiency of
various practically-relevant distinguishers. Further, we also investigate
the case of second- and third-order masking (i.e. using three and four
shares to represent one value). This evaluation confirms that higher-order
masking only leads to significant security improvements if the secret shar-
ing is combined with a sufficient amount of noise. Eventually, we show
that an information theoretic analysis allows determining this necessary
noise level, for different masking schemes and target security levels, with
high accuracy and smaller data complexity than previous methods.

1 Introduction

Masking (as described, e.g. in [2,7,19]) is a very frequently considered solution
to thwart side-channel attacks. The basic idea is to randomize all the sensitive
variables during a cryptographic computation by splitting them into d shares.
The value d− 1 is usually denoted as the order of the masking scheme. As most
countermeasures against side-channel attacks, masking does not totally prevent
the leakages but it is expected to increase the difficulty of performing a success-
ful key-recovery. For example, masking can be defeated because of technological
issues such as glitches [9]. Alternatively, an adversary can always perform a
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higher-order DPA (e.g. [10,13,23]) in which he “combines” the leakages corre-
sponding to the d shares in order to extract key-dependent information. From
a performance point of view, masking a block cipher implies significant perfor-
mance overheads, because it requires to compute the encryption of the different
shares separately. As a result, an important problem is to determine the exact
security level that it provides in function of the order of the scheme d− 1.

In order to solve this problem, Prouff et al. proposed a comprehensive study
of first-order masking (i.e. second-order power analysis) in [17]. In their paper,
the two leakage samples corresponding to the different shares are first mingled
with a combination function. Next, a (key-dependent) leakage model is used to
predict the output of this function. Eventually, the combined physical leakages
are compared with the key-dependent predictions, thanks to Pearson’s correla-
tion coefficient [1]. Different combination functions are analyzed regarding the
efficiency of the resulting attacks, leading to the following conclusions:

1. For every device and combination function, an optimal prediction function
(or model) can be exhibited, that leads to the best attack efficiency.

2. Following an analysis based on Pearson’s coefficient and assuming a “Ham-
ming weight leakage model”, the “normalized product combining function”
(both to be detailed in this paper) is the best available in the literature.

The first observation is in fact quite natural. Since every device is characterized
by its leakage function, there is one optimal model to predict these leakages that
perfectly captures their probability density function (pdf for short). And for
every optimal model, there is one way to combine the leakage samples that leads
to the best possible correlation. But the idea of optimal combination function also
leads to a number of issues. On the one hand, as acknowledged by the authors of
[17], their analysis is carried out for a fixed (Hamming weight) leakage function.
Therefore, how the observations made in this context would be affected by a
different leakage function is an open question. On the other hand, their analysis
is also performed for a given statistical tool, i.e. Pearson’s correlation coefficient.
Hence, one can wonder about the extent to which this statistical tool is generic
enough for evaluating second-order DPA.

This second question is particularly interesting in view of the recent results
of [12]. This reference shows that in the context of (so-called) standard first-
order DPA and when provided with the same leakage model, the most popular
distinguishers such as using distance-of-means tests [8], correlation analysis and
Gaussian templates [3] require approximately the same number of traces to ex-
tract keys. Differences observed in practice are only due to statistical artifacts. In
addition, it is shown that the correlation coefficient can be related to the concept
of conditional entropy which has been established as a measure for side-channel
leakage in [20]. Therefore, a natural question is to ask if these observations still
hold in the second-order case. For example, can the correlation coefficient be
used to evaluate the information leakage of a masked implementation?

In this paper, we answer this question negatively. We show that second-order
DPA attacks are a typical context in which the two parts of the framework
for the analysis of side-channel key-recovery of Eurocrypt 2009 lead to different
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intuitions. First, an information theoretic analysis measures the amount of leak-
age provided by the masked implementation. It quantifies its security limits and
relates to the success rate of an adversary who can perfectly profile the leakage
pdf. Second, a security analysis measures the efficiency of one particular dis-
tinguisher. By applying this framework, we exhibit refined intuitions regarding
the behavior of different second-order DPA attacks and combination functions.
We then discuss the impact of these observations in profiled and non-profiled
attack scenarios and confirm our theoretical investigations with practical exper-
iments. We note that our results do not contradict [17] but rather emphasize that
a single distinguisher cannot capture all the specificities of a leakage function.
Eventually, we extend our analysis towards higher-order masking. This allows
us to confirm that, from an information theoretic point of view, increasing the
number of shares in a masking scheme only leads to an improved physical se-
curity if a sufficient amount of noise is limiting the quality of the adversary’s
measurements [2]. Higher-order masking also provides a case for the information
theoretic metric introduced in [20]. We show that this metric can be used to
determine the exact amount of shares and noise required to reach a certain se-
curity level (against worst-case template attacks, exploiting intensively profiled
leakage models), with smaller data complexity than previous methods.

Summarizing, first-order side-channel attacks are a quite simple context in
which (under certain conditions) most popular distinguishers behave similarly,
if they are fed with the same leakage models. As a consequence, it can be sound
to use “one distinguisher for all” in this context. By contrast, second-order (or
higher-order) DPA can be confronted with leakage probability distributions that
can take very different forms (mixtures, typically). Hence, given a certain amount
of information leaked by a masked implementation, and even if fed with the same
leakage models (and combination functions), different statistical tools will take
advantage of the key-dependencies in very different manners. In other words, de-
pending on the devices and countermeasures, one or another attack may perform
better, hence suggesting our title “the world is not enough”.

2 Boolean Masking and Second-Order Attacks

Many different masking schemes have been proposed in the literature. Although
they can result in significantly different performances, the application of second-
order attacks generally relies on the same principles, independent of the type of
masking. In the following, we decided to focus on the Generalized Look Up Table
(GLUT for short) that is described, e.g. in [16]. Such a scheme is represented
in the lower left part of Figure 1, using the key addition and S-box layer of
a block cipher as a concrete example. It can be explained as follows. For an
input plaintext xi, a random mask ai is first generated within the device. The
value xi ⊕ ai is generally denoted as the masked variable. Then, the encryption
algorithm (here, the key addition and S-box) are applied to the masked variables,
where s denotes a secret key byte (we will use the term subkey in the following).
Concurrently, some correction terms are also computed such that anytime during
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the cryptographic computation, the XOR between a masked variable and its
corresponding mask produces the original variable. In the case of the GLUT
proposal, a precomputed function Sbox’ is used for this purpose. For example in
Figure 1, the masked S-box output Sbox(xi⊕ai⊕s) can be written as Sbox(xi⊕
s)⊕ bi, where bi denotes an output mask produced by Sbox’.

In practice, the GLUT countermeasure can be implemented in different man-
ners. Mainly, the two S-box computations can be performed sequentially (as
typical for software implementations) or in parallel (as typical for hardware im-
plementations). In order to describe the second-order DPA that we investigate in
this paper, we first use the sequential approach (the parallel one will be discussed
in the next section). Also, we rely on the terminology introduced in [20]. Essen-
tially, the idea of second-order DPA is to take advantage of the joint leakage of
two intermediate computations during the encryption process (i.e. the masked
value and its mask). In the software approach, the computation of these interme-
diate variables will typically be performed in two different clock cycles. Hence,
two leakage samples l1i and l2i corresponding to these computations can be found
in the leakage traces, as in the top of Figure 1. Following the standard DPA
described in [12], the adversary will then work in three (plus one optional) steps:

1. For different plaintexts xi and subkey candidates s∗, the adversary predicts
some intermediate values in the target implementation. For example, one
could predict the S-box outputs Sbox(xi ⊕ s) in Figure 1.

2. For each of these predicted values, the adversary models the leakages. Be-
cause of the presence of a mask in the implementation, this prediction can
use a pdf (where the probability is taken over the masks and leakage noise)
or some simpler function e.g. capturing only certain moments of this pdf.

3. Optionally, the adversary combines the leakage samples into a single variable.
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4. For each subkey candidate s∗, the adversary finally compares the modeled
leakages with actual measurements, produced with the same plaintexts xi

and a secret subkey s. In a second-order DPA, each model is compared
with two samples in the traces. This comparison is independent of all other
points. Consequently, these attacks are referred to as bivariate. In practice,
this comparison is applied to many pairs of points in the leakage traces and
the subkey candidate that performs best is selected by the adversary.

As for the analysis of first-order attacks, comparing different distinguishers re-
quires to provide them with the same leakage samples. However, contrary to the
first-order case and as will be discussed in the following sections, the best pair of
leakage samples is not necessarily the same for all distinguishers. This is because
different distinguishers can take advantage of different leakage pdf with different
efficiencies in this case. In practice, this requires to test all pairs of samples in
the traces (but this means N(N − 1)/2 statistical tests to perform if the traces
have N samples). In this paper, we will generally assume that this best pair of
samples is provided to the attacks we perform (which can be done easily when
simulating experiments and requires significant - but tractable - computational
power when performing attacks based on real measurements).

Finally, we will use the following notations:

– xq = [x1, x2, . . . , xq]: a vector of plaintext bytes.
– aq = [a1, a2, . . . , aq]: a vector of random input mask bytes.
– bq = [b1, b2, . . . , bq]: a vector of random output mask bytes.
– v1

i = Sbox(xi ⊕ s)⊕ bi: an intermediate value in the encryption of xi.
– v2

i = bi: another intermediate value in the encryption of xi.
– l1q = [l11, l

1
2, . . . , l

1
q ]: a vector of leakage samples corresponding to the first

intermediate values v1
i during the encryption process.

– l2q = [l21, l22, . . . , l2q ]: a vector of leakage samples corresponding to the second
intermediate values v2

i during the encryption process.
– ms∗

q = [ms∗
1 ,m

s∗
2 , . . . ,m

s∗
q ]: a vector containing leakage models (i.e. predic-

tions) corresponding to a subkey candidate s∗ and the plaintexts xq.

In the rest of the paper, these notations (in small caps) will represent sampled
values, while their counterpart in capital letters will represent random variables.

3 Second-Order Attacks with Pearson’s Coefficient

In theory, second-order DPA is possible if the joint probability distributions
Pr[L1

q ,L
2
q|Xq, s] are different for different subkey values s. This can be illustrated,

e.g. for a Hamming weight leakage function which is frequently considered in the
practice of side-channel attacks [11] and has been the running example in [17].
It means assuming that the leakage samples l1i and l2i can be written as:

l1i = WH(v1
i ) + n1

i , (1)
l2i = WH(v2

i ) + n2
i , (2)
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where WH is the Hamming weight function and n1
i , n

2
i are normally distributed

noise values with mean 0 and standard deviation σn. In the context of an 8-bit S-
box (e.g. the AES one), it leads to 9 possible leakage distributions, corresponding
to the 9 Hamming weight values of a secret stateΣi = Sbox(xi⊕s), as observed in
[21]. The left parts of Figures 11, 12 and 13 in Appendix A show the joint leakage
distributions in this setting and clearly illustrate that they are key-dependent. As
detailed in the previous section, taking advantage of these dependencies requires
a comparison tool. In their statistical evaluation of second-order DPA, Prouff
et al. use Pearson’s correlation coefficient. In the context of first-order attacks
exploiting a single leakage sample li, it implies computing:

ρ̂(Ms∗
q ,Lq) =

Ê
((
li − Ê(Lq)

) · (ms∗
i − Ê(Ms∗

q )
))

σ̂(Lq) · σ̂(Ms∗
q )

,

where Ê and σ̂ denote the sample means and standard deviations of a random
variable, respectively. In order to extend this tool towards the second-order case,
the classical approach is to first combine the two leakage samples l1i and l2i with a
combination function C. For example, Chari et al. proposed to take the product
of two centered samples [2]: C(l1i , l

2
i ) = (l1i − Ê(L1

q)) · (l2i − Ê(L2
q)) and Messerges

used the absolute difference between them [13]: C(l1i , l
2
i ) = |l1i −l2i |. As illustrated

in the right parts of Figures 11, 12 and 13, those combining functions also lead
to key-dependencies. In addition to these standard examples, we finally plotted
the distribution of the sum combining function C(l1i , l

2
i ) = l1i + l2i because it can

be used to emulate the behavior of the GLUT masking in a hardware setting,
where the two S-boxes of Figure 1 are computed in parallel.

3.1 Choice of a Model and Leakage-Dependency of C

Given the above descriptions and assuming that the adversary knows a good
leakage model for the samples l1i and l2i , it remains to determine which model
to use when computing ρ̂(Ms∗

q ,C(L1
q ,L

2
q)). That is, we do not need to predict

the leakage samples separately, but their combination. In addition and contrary
to the first-order case, there is an additional variable (i.e. the mask) that is
unknown to the adversary. But given a model for the separate samples, it is
possible to derive one for their combination. For example, assuming a Hamming
weight model that perfectly corresponds to the leakages of Equations (1) and
(2), we can use the mean of the combination function, taken over the masks. For
each subkey candidate s∗, the model is is then given by:

ms∗
i = E

bi

(
C
(
WH(Σ∗i ⊕ bi),WH(bi)

))
.

This is in fact similar to what is proposed in [17], where the mean is addition-
ally taken over the leakage noise (which is more general, but implies additional
profiling, i.e. a sufficiently precise knowledge of the noise distribution). As an
illustration, Figure 2 shows the leakage models corresponding to the absolute
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Fig. 2. Leakage models for second-order DPA using the correlation coefficient

difference and normalized product combination functions. They again only de-
pend on the 9 Hamming weight values of the secret state, as opposed to the ones
of a sum combining function for which the mean value (over the masks) is con-
stant for all secret states. Hence, as already observed in [11], this sum combining
function will not lead to successful second-order correlation attacks.

The figure intuitively confirms the previous theoretical analysis of Prouff et
al. where it is demonstrated that the normalized product combining function
leads to the most efficient second-order side-channel attacks when using Pear-
son’s coefficient and assuming a Hamming weight leakage model for the separate
samples. Indeed, this particular setting gives rise to nicely linear dependencies
of the models ms

i in the Hamming weight of the secret states WH(Σi). Also,
and contrary to the absolute difference combining function, all the 9 possible
Hamming weights correspond to a different model ms

i in this particular case.
Interestingly, the efficiency of the normalized product combining function can

be simply explained when looking at the equations since it computes:

ρ̂(Ms∗
q ,C(L1

q,L
2
q)) =

Ê
((

C(l1i , l
2
i )− Ê(C(L1

q,L
2
q))

) · (ms∗
i − Ê(Ms∗

q )
))

σ̂(C(L1
q ,L

2
q)) · σ̂(Ms∗

q )
.

As the product is normalized, we have that Ê(C(L1
q ,L

2
q)) = 0, which leads to:

ρ̂(Ms∗
q ,C(L1

q,L
2
q)) =

Ê
((
l1i − Ê(L1

q)
) · (l2i − Ê(L2

q)
) · (ms∗

i − Ê(Ms∗
q )

))

σ̂(C(L1
q ,L

2
q)) · σ̂(Ms∗

q )
. (3)

And this formula is in fact very close to the straightforward generalization of
Pearson’s correlation coefficient to the case of three random variables:

ρ̂(Ms∗
q ,L

1
q,L

2
q) =

Ê
((
l1i − Ê(L1

q)
) · (l2i − Ê(L2

q)
) · (ms∗

i − Ê(Ms∗
q )

))

σ̂(L1
q) · σ̂(L2

q) · σ̂(Ms∗
q )

. (4)

The only difference between Equations (3) and (4) is in the leakage samples’
standard deviation terms, which are key-independent. Hence, when applied to
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the same pair of samples, attacks using Equations (3) or (4) are equivalent. Intu-
itively, these equations provide a simple explanation of the normalized product
combining function. That is, such a combining function will efficiently take ad-
vantage of pairs of leakage samples that are linearly correlated conditioned on
the key. As illustrated in Figures 11, 12 and 13, this is nicely achieved in the
case of a Hamming weight leakage function for the two samples l1i and l2i .

4 Evaluating Second-Order Leakage: IT Analysis

In general, the evaluation of second-order side-channel attacks is not straight-
forward to capture. More precisely, it is easy to see that an analysis based only
on the correlation coefficient may suffer from certain limitations. For example:

– Given Pearson’s correlation coefficient as a distinguisher and a Hamming
weight leakage function, there exist (trivial) combination functions for the
samples (e.g. the sum) that do not lead to successful key recoveries.

– Given Pearson’s coefficient as a distinguisher and the normalized product
combination function, there exist leakage functions (e.g. with no linear de-
pendencies between the samples) that don’t lead to successful key recoveries.

These observations suggest that the simple situation in the first-order context,
where the correlation coefficient could (under certain physical assumptions de-
tailed in [12]) be used both as a distinguisher and as a measure of side-channel
leakage, does not hold here. In second-order side-channel attacks, this correla-
tion is only a distinguisher. Hence, it is a typical context in which the evaluation
framework of Eurocrypt 2009 is interesting to put into practice:

1. First, an information theoretic analysis is performed, in order to evaluate the
physical leakages, independently of the adversary who exploits them. When
applied to a countermeasure (e.g. masking), this step allows to quantify how
much the security of the device has been improved against an adversary
who can perfectly profile the leakage pdf. In other words, it can be used as
an objective measure of the quality of the countermeasure, in a worst case
scenario (i.e. best adversary, large number of queries - see [20] for the details).

2. Second, a security analysis is performed, in order to evaluate how efficiently
a particular distinguisher (e.g. Pearson’s correlation coefficient with a given
combining function) can exploit the available leakage. This step is useful
to translate the previous information theoretic analysis into a “number of
measurements required to extract the key”, in a given scenario.

In this section, we tackle the first part of the analysis. For this purpose, and in
order to compare our conclusions with previous works, we use exactly the same
assumptions as [17], i.e. a Hamming weight leakage function for the two samples,
just as described in Section 3. Following the definitions in [20], we compute:

H[S|L1
1,L

2
1, X1] = −∑

s
Pr[s]

∑
x1

Pr[x1]
∫
l11

∫
l21

Pr[l11, l
2
1|s, x1] log2 Pr[s|l11, l21, x1] dl11dl21.
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Fig. 3. Information leakage for different combination functions

Since the leakage samples are assumed to be normally distributed, this can be
quite easily done in function of the noise standard deviation σn. Some simpli-
fications allow to speed up the computations, e.g. by observing that only nine
distributions are possible, corresponding to the nine Hamming weights of the
secret states Σi. Also, in order to evaluate the information loss caused by the
different combination functions, we similarly evaluated H[S|C(L1

1,L
2
1),X1]. This

implies slightly more complex integrals since, e.g. the product combining gives
rise to mixtures of normal product distributions. Figure 9 in Appendix A il-
lustrates these distributions for two secret states and two σn’s. The mutual
information values corresponding to these different information leakages (i.e.
I(S; (L1

1,L
2
1,X1)) = H[S] − H[S|L1

1,L
2
1,X1]) are then plotted in Figure 3, in

function of the noise variance σ2
n (in log scale). From this figure, we can observe:

1. All combination functions imply a loss of information that can be avoided
by dealing directly with the 2-dimensional joint leakage distribution.

2. The sum and absolute difference combining functions give rise to exactly the
same information leakage. This can be understood from the shape of their
distributions: the distribution of the absolute difference combining can be
seen as the one of the sum combining that has been folded up.

3. For small σ2
n, the normalized product is the least informative combining func-

tion. By contrast, when increasing the noise, the information leakage of the
normalized product combining gets close to the one of the joint distribution.

4. The respective efficiency of different combining functions varies with the
amount of noise. In particular, after a certain noise threshold, the product
combining carries more information on S than the sum/absolute difference.

Note that the leakage of the sum combining’s output clearly relates to the pre-
vious evaluation of [21] in which masking is analyzed in the hardware setting.
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5 Implications for Profiled Attacks: Security Analysis (I)

The previous information theoretic analysis provides a new perspective to un-
derstand the relation between a masking scheme, its physical leakages and the
exploitation of this information by a side-channel attack. For example, it ex-
hibits that the sum combining function leads to significant information leakages
(as can also be seen from the different pdf in appendix), although they cannot
be directly exploited with Pearson’s correlation coefficient. Previous works such
as the one of Waddle and Wagner [23] showed how to overcome this limitation of
the correlation coefficient, by squaring the combined samples. But our analysis
raises the question whether these information leakages can be directly exploited
(i.e. without squaring) by other distinguishers. In order to tackle this question,
we apply the second part of the framework in [20], i.e. security analysis. This
section starts with the evaluation of profiled (template) attacks, for which a
strong relation with the previous information theoretic analysis should hold.

The results of various template attacks performed against the same masked
AES S-box as in the previous sections are given in Figure 4, for two different
noise standard deviations. We mention that these attacks do not use Gaussian
templates as in [3] but the exact leakage distributions as in the previous in-
formation theoretic analysis (e.g. attacks using the joint distributions exploit
Gaussian mixtures; attacks using the normalized product combining function
exploit normal product distribution mixtures, etc. as plotted in appendix A).
The different success rates are computed over 1000 independent experiments
and nicely confirm the theoretical predictions of Theorem 2 in [20].

First, we see that the sum and absolute difference combining functions lead
to the same attack efficiency in this profiled case (since their outputs lead to the
same information leakages). Second, we see that the point in Figure 3 where the
sum / absolute difference and the normalized product curves intersect is mean-
ingful. Left of the intersection (e.g. for σn = 0.25), the sum / absolute difference
combining functions allow more efficient attacks than the normalized product
one. Right of the intersection (e.g. for σn = 0.75), the opposite conclusion holds.
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Fig. 4. Success rate of (simulated) profiled attacks against a masked AES S-box
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And as shown in Appendix A, Figure 10, these attacks have a similar efficiency
at the intersection that falls around σn = 0.4 (that is, log10(σ2

n) ≈ −0.8).
Of course, these experiments are partially artificial since in practice, an ad-

versary who can profile the leakages will generally use the templates based on
the joint distribution only. At least, this is the best strategy if the adversary
has enough data and time to profile the multivariate leakage pdf. However, our
results confirm that an information theoretic analysis provides an objective eval-
uation of the quality of a countermeasure against the “best-available” template
adversaries in the DPA setting. Hence, they emphasize that such an analysis is
an important part in the evaluation of side-channel countermeasures. Also, these
results lead to the same conclusions as [14], and show that resistance against
sufficiently profiled template attacks cannot be achieved by masking only.

6 Implications for Non-profiled Attacks: Security
Analysis (II)

The previous section showed that for carefully profiled template attacks, there is
a strong connection between the information leakage of a device and the success
rate of the adversary. By contrast, we know that in the non-profiled context of
correlation attacks, this observation does not hold in general. For example, Pear-
son’s coefficient cannot be used to exploit the leakages corresponding to the sum
combining of Section 3.1. Hence, it is natural to check whether there exist other
non-profiled distinguishers that can be successful in this case. We answer this
question positively, using the Mutual Information Analysis (MIA) introduced in
[5]. It can be seen as the counterpart of template attacks, in which the leakage
distributions are estimated “on-the-fly” rather than prior to the attacks.

The success rates of correlation and MIA attacks (here, and in the rest of the
paper, computed over 500 independent experiments), using different combining
functions, are given in Figure 5, again using the (simulated) setting described in
the previous section. In our experiments, MIA estimates the pdf using histograms
with Nb linearly-spaced bins, and Nb corresponding to the number of possible
values for the models, as proposed in [5]. That is, we use 9 bins per leakage sample
and we partition the leakage samples according to the 9 Hamming weights of
the secret state Σi. The following observations can be emphasized:

1. In the low noise scenario, MIA with the sum and absolute difference com-
bining functions works best, as similarly observed for template attacks.

2. By contrast, and contrary to template attacks, MIA without combining func-
tion (i.e. using the joint distribution directly, as in [6,18]), is not the most
efficient solution in our simulations. This is caused by the need to estimate
two-dimensional distributions, which turns out to require more data.

3. For similar reasons (i.e. also related to the different efficiency of the “on-
the-fly” pdf estimation), when increasing the noise, MIA with the sum and
absolute difference combining functions are not equivalent anymore.

4. Finally, attacks using Pearson’s correlation coefficient perform well, specially
when combined with the normalized product (which is natural since our
simulated leakages perfectly fulfill the requirements of Section 3.1).
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Fig. 5. Success rate of (simulated) non-profiled attacks - masked AES S-box

Importantly, we note that all these non-profiled distinguishers lead to signifi-
cantly lower efficiencies than the profiled ones in the previous section.

7 Experimental Results

The previous sections evaluated the impact of masking an S-box with respect
to various side-channel distinguishers, based on simulations. But as for most in-
vestigations in physically observable cryptography, it is important to verify that
our conclusions are reasonably confirmed by practical measurements performed
against a real chip. For this purpose, we also carried out a set of attacks against
a masked implementation of the DES in an 8-bit RISC microcontroller from the
Atmel AVR family. Considering the DES (rather than the AES) was motivated
by practical facilities. Since the output of the DES S-box is 4-bit wide, it allows
considering different contexts: in a first (low noise) scenario, the 4 remaining bits
on the bus are kept constant; in a second scenario, these 4 bits are used in order
to produce some additional algorithmic noise, by concatenating (secret) random
strings to the two target values of Figure 1. This is interesting since the noise
level was an important parameter, e.g. in our simulations of Figure 5. Hence,
the different scenarios can be used to adapt the noise level in our experimental
setting as well. The results in Figure 6 bring an interesting complement to our
previous simulations and lead to the following observations:

1. The excellent efficiency of template attacks1 and the good behavior of cor-
relation attacks using the normalized product combining function are again
exhibited. Interestingly, their respective efficiency gets closer when increas-
ing the amount of algorithmic noise in the measurements, as it is suggested
by the information theoretic analysis of Section 4.

2. MIA using the joint distribution is much more efficient than in the AES
case. This is in fact related to the reduced number of bins that the 4-bit
DES S-box allows in the pdf estimations (i.e. 25 rather than 81).

1 We profiled our templates as described in the template-based DPA of [14].
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Fig. 6. Success rate of various experimental attacks against a masked DES

3. The presence of algorithmic noise (in the right part of Figure 6), affects the
different distinguishers in a very different manner. To give a single example,
MIA with the absolute difference combining function is strongly affected by
this noise addition, compared to its counterpart using Pearson’s coefficient.

Summarizing, these experiments confirm the “world is not enough” nature of
second-order DPA that was already underlined in the previous simulations. The
only strong statement that can be made in this context is that an information
theoretic metric estimated with perfect templates captures the security against
the best possible profiled adversary. As for all the other distinguishers, their effi-
ciency highly depends on the actual shape of the leakage pdf and the engineering
knowledge that can be exploited when mounting an attack. And contrary to the
first-order case discussed in [12], the Gaussian assumption for the leakage sam-
ples does not hold anymore from the adversary’s point of view (e.g. masking
typically imply mixtures of Gaussians - or other - distributions).

8 Generalization to Higher-Orders

In order to improve the security of masking schemes further, one approach is
to increase their order. For this purpose, this final section analyzes the cost vs.
security tradeoff that can be obtained by generalizing the GLUT countermeasure
in such a way, and details the second- and third-order cases for illustration. That
is, rather than using one input mask per S-box, we now use two or three masks
per S-box. In terms of cost, this implies using one or two additional tables Sbox′′

and Sbox′′′, as described, e.g. in [15]. Conveniently, all the tools used in second-
order DPA can be easily generalized to these third- and fourth-order attack
cases. In particular, the information theoretic analysis of Section 4 just requires
to integrate over three or four leakage samples l1i , l

2
i , l

3
i and l4i .

The information leakage of these different masking schemes is represented in
Figure 7, in function of the noise variance. On the same plot, we represented
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Fig. 7. Information leakage and success rates for 1st, 2nd and 3rd-order masking

the average number of queries to the target device required for a perfectly pro-
filed attack (similar to the ones in Section 5) to reach a success rate of 90%.
These figures provide a quantitative insight to the observations in [2], where it is
demonstrated that, given a large enough noise variance, the data complexity of
a side-channel attack increases exponentially with the amount of shares in the
masking scheme. That is, given a noise variance σ2

n in the leakage samples and
k shares, the data complexity required to attack a masking scheme successfully
is proportional to (σ2

n)k/2. The linear regions of the (log scale) curves that are
observed in the right part of the figure suggest that this expectation is fulfilled
in our experiments. Importantly, it also shows that the impact of (higher-order)
masking can be extremely small in terms of security increases, for small σ2

n’s.
Note finally that these results give a practical counterpart to the recent the-

oretical analysis of [4], where it is shown that masking schemes based on secret
sharing techniques lead to secure implementations if the number of shares is
adjusted to be large enough with respect to the noise in the measurements.

8.1 A Case for the Information Theoretic Metric

Looking at Figure 7, the main question for a designer (or evaluation laboratory)
is to best trade the amount of shares and the amount of noise that he has to add
to his implementation, in order to reach a certain security level. This is essential
since increasing these parameters has a strong impact on the performance of the
implementation. Unfortunately, for high security levels, the proper estimation of
the number of traces required to reach a certain success rate becomes intensive
(because of statistical sampling issues). Already in simulations, running 1000
attacks, each of them using 105 queries, is time consuming. And when mov-
ing to the analysis of real traces (taking much more time to be generated and
space to be stored), this limitation becomes even more critical. Interestingly, this
is exactly the context where an information theoretic analysis becomes useful.
Given a leakage model, the mutual information I(S;L1

1,L
2
1, . . .) can be estimated

with less data than the success rate of the corresponding template attack. And
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Fig. 8. Information leakage and success rates for 1st, 2nd and 3rd-order masking

following [20], Theorem 2, it should hold that this mutual information is rea-
sonably correlated with the number of traces required to reach a certain success
rate. In order to confirm this expectation, we plotted an estimation of this num-
ber, based on the inverse of the mutual information multiplied with a constant
factor c. As illustrated in Figure 8, this approximation holds nearly perfectly,
with the same constant c for all attacks, essentially depending on the success
rate to reach (here 90%). Summarizing, these simulations confirm the relevance
of an information theoretic analysis when designing countermeasures against
side-channel attacks.

Before to conclude, we note again that such an information theoretic analysis
only captures the most powerful adversaries for which the profiling of the leakage
distributions is perfect. But in practice, the reduction of the information leakage
is not the only effect that increases the security in masked implementations.
Namely, the pdf estimation of multidimensional distributions may become too
complex for allowing the exploitation of all the information in the traces. And
the number of pairs, triples, etc. of samples to test in the attacks also increases
their time complexity considerably (up to N2, N3, etc.). However, we believe
that the formal analysis of a worst-case scenario as in this paper is an important
step towards a better understanding of the masking countermeasure.

9 Conclusions

The results in this paper provide a first complete and unifying treatment of
higher-order power analysis. They allow putting forward the strengths and weak-
nesses of various approaches to second-order DPA and provide a sound expla-
nation for them. Our analysis illustrates that in the context of cryptographic
devices protected with masking, it is not sufficient to run a single arbitrary dis-
tinguisher to quantify the security of an implementation. Evaluations should
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hold in two steps. First, an information theoretic analysis determines the actual
information leakage (i.e. the impact of the countermeasure, independently of
the adversary). Second, a security analysis determines the efficiency of various
distinguishers in exploiting this leakage. By applying such a methodology to
simulations and practical experiments, we consequently obtain a fair and com-
prehensive evaluation of the security level that a masking scheme can ensure.

While not in contradiction with previous results in the field, these investiga-
tions reshape the understanding of certain assumptions and allow refined intu-
itions. First, theoretical analysis and empirical attacks sometimes show a large
gap between the efficiency of profiled attacks that best exploit the information
from two or more leakage samples and the one of non-profiled attacks that are
most frequently used in practice. This relates to the observation that the statis-
tics in side-channel attacks are only used to discriminate secret data (while their
natural objective is to allow a good estimation). Hence, the study of advanced
pdf estimation techniques in the context of side-channel attacks is an interesting
direction for further research, as initiated with MIA in [5].

Second, the security improvement obtained when increasing the order of a mask-
ing scheme beyond one is negligible if it is not combined with a sufficient amount of
noise in the leakages. This observation relates to the generally accepted intuition
that side-channel resistance requires the combination of several countermeasures
in order to be effective. We additionally show in this paper that an information
theoretic analysis has very convenient features for evaluating this noise threshold
precisely. As a result, the best combination of masking with other countermea-
sures (e.g. dual rail logic styles, time randomization, etc.) is a second interesting
scope for further research. Finally, the relationship between the mutual informa-
tion and the success rate of a profiled attack, that is experimentally exhibited in
this paper in the context of second- (and higher-) order DPA, could be analyzed
in order to obtain a more formal justification of it, e.g. under the assumption of
Gaussian noise in the leakages.
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Fig. 9. Leakage probability distributions for the product combining function
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Fig. 10. Success rate of (simulated) profiled attacks against a masked AES S-box
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Abstract. Non-linear feedback shift registers are widely used in light-
weight cryptographic primitives. For such constructions we propose a gen-
eral analysis technique based on differential cryptanalysis. The essential
idea is to identify conditions on the internal state to obtain a determinis-
tic differential characteristic for a large number of rounds. Depending on
whether these conditions involve public variables only, or also key vari-
ables, we derive distinguishing and partial key recovery attacks. We apply
these methods to analyse the security of the eSTREAM finalist Grain v1
as well as the block cipher family KATAN/KTANTAN. This allows us to
distinguish Grain v1 reduced to 104 of its 160 rounds and to recover some
information on the key. The technique naturally extends to higher order
differentials and enables us to distinguish Grain-128 up to 215 of its 256
rounds and to recover parts of the key up to 213 rounds. All results are the
best known thus far and are achieved by experiments in practical time.

Keywords: differential cryptanalysis, NLFSR, distinguishing attack,
key recovery, Grain, KATAN/KTANTAN.

1 Introduction

For constrained environments like RFID tags or sensor networks a number of
cryptographic primitives, such as stream ciphers and lightweight block ciphers
have been developed, to provide security and privacy. Well known such crypto-
graphic algorithms are the stream ciphers Trivium [5] and Grain [12,13] that have
been selected in the eSTREAM portfolio of promising stream ciphers for small
hardware [9], and the block cipher family KATAN/KTANTAN [6]. All these
constructions build essentially on non-linear feedback shift registers (NLFSRs).
These facilitate an efficient hardware implementation and at the same time en-
able to counter algebraic attacks.

Stream ciphers and block ciphers both mix a secret key a and public param-
eter (the initial value for stream ciphers and the plaintext for block ciphers)
in an involved way to produce the keystream or the ciphertext, respectively.
In cryptanalysis, such systems are often analysed in terms of boolean functions
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that to each key k and public parameter x assign an output bit f(k, x). Several
cryptanalytic methods analyse derived functions from f . They can be roughly
divided into algebraic and statistical methods. The cube attack presented in [8]
is an algebraic method. It consists in finding many derivatives of f that are
linear in the key bits such that the key can be found by solving a system of
linear equations. The d-monomial test introduced in [10] provides a statistical
framework to analyse the distribution of degree d monomials in the algebraic
normal form of f . Another statistical approach is presented in [11,14], where the
concept of probabilistc neutral key bits is applied to derivatives of f . The notion
of cube testers introduced in [2] covers many of these methods. All of them have
in common that they interact with f mainly in a black box manner, exploiting
the structure of the underlying primitive only indirectly.

In this paper we propose a general analysis principle that we call conditional dif-
ferential cryptanalysis. It consists in analysing the output frequency of derivatives
of f on specifically chosen plaintexts (or initial values). Differential cryptanalyis,
introduced in [4] for the analysis of block ciphers, studies the propagation of an
input difference through an iterated construction and has become a common tool
in the analysis of initialization mechanisms of stream ciphers, see [3,7,18]. In the
case of NLFSR-based constructions, only few state bits are updated at each iter-
ation, and the remaining bits are merely shifted. This results in a relatively slow
diffusion. Inspired by message modification techniques introduced in [17] for hash
function cryptanalysis, we trace the differences round by round and identify con-
ditions on the internal state bits that control the propagation of the difference
through the initial iterations. From these conditions we derive plaintexts (or ini-
tial values) that follow the same characteristic at the initial rounds and allow us
to detect a bias in the output difference. In some cases the conditions also involve
specific key bits which enables us to recover these bits in a key recovery attack.

The general idea of conditional differential cryptanalysis has to be elaborated
and adapted with respect to each specific primitive. This is effected for the block
cipher family KATAN and its hardware optimized variant KTANTAN as well as
for the stream ciphers Grain v1 and Grain-128. The analysis of the block cipher
family KATAN/KTANTAN is based on first order derivatives and nicely illus-
trates our analysis principle. For a variant of KATAN32 reduced to 78 of the 254
rounds we can recover at least two key bits with probability almost one and com-
plexity 222. Comparable results are obtained for the other members of the family.
We are not aware of previous cryptanalytic results on the KATAN/KTANTAN
family. The analysis of Grain v1 is similar to that of KATAN, however the in-
volved conditions are more sophisticated. We obtain a practical distinguisher
for up to 104 of the 160 rounds. The same attack can be used to recover one
key bit and four linear relations in key bits with high probability. Grain v1 was
previously analysed in [7], where a sliding property is used to speed up exhaus-
tive search by a factor two, and in [1], where a non-randomness property for 81
rounds could be detected.

Conditional differential cryptanalysis naturally extends to higher order deriva-
tives. This is demonstrated by our analysis of Grain-128, which, compared to



132 S. Knellwolf, W. Meier, and M. Naya-Plasencia

Grain v1, is surprisingly more vulnerable to higher order derivatives. We get a
practical distinguisher for up to 215 of the 256 rounds and various partial key
recovery attacks for only slightly less rounds. For a 197 round variant we re-
cover eight key bits with probability up to 0.87, for a 213 round variant two key
bits with probability up to 0.59. The previously best known cryptanalytic result
was a theoretical key recovery attack on 180 rounds, and was able to speed up
exhaustive key search by a factor 24, but without the feasibility to predict the
value of single key bits, see [11]. Moreover, a result in [7] mentions key recovery
for up to 192 rounds and in [1] a non-randomness property was detected in a
chosen key scenario.

The paper is organised as follows. Section 2 recalls the definition of higher
order derivatives of boolean functions and discusses the application of frequency
tests to such derivatives. Section 3 provides the general idea of conditional differ-
ential cryptanalysis of NLFSR-based cryptosystems. In the Sections 4, 5 and 6
this idea is refined and adapted to a specific analysis of the KATAN/KTANTAN
family, Grain v1 and Grain-128.

2 Notation and Preliminaries

In this paper F2 denotes the binary field and F
n
2 the n-dimensional vector space

over F2. Addition in F2 is denoted by +, whereas addition in F
n
2 is denoted by ⊕

to avoid ambiguity. For 0 ≤ i ≤ n − 1 we denote ei ∈ F
n
2 the vector with a one

at position i and zero otherwise.
We now recall the definition of the i-th derivative of a boolean function in-

troduced in [15,16] and we discuss the application of a frequency test to such
derivatives.

2.1 Derivatives of Boolean Functions

Let f : F
n
2 → F2 be a boolean function. The derivative of f with respect to

a ∈ F
n
2 is defined as

Δaf(x) = f(x⊕ a) + f(x).

The derivative of f is itself a boolean function. If σ = {a1, . . . , ai} is a set of
vectors in F

n
2 , let L(σ) denote the set of all 2i linear combinations of elements

in σ. The i-th derivative of f with respect to σ is defined as

Δ(i)
σ f(x) =

∑
c∈L(σ)

f(x⊕ c).

We note that the i-th derivative of f can be evaluated by summing up 2i eval-
uations of f . We always assume that a1, . . . , ai are linearly independent, since
otherwise Δ(i)

σ f(x) = 0 trivially holds. If we consider a keyed boolean function
f(k, ·) we always assume that the differences are applied to the second argument
and not to the key.
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2.2 Random Boolean Functions and Frequency Test

Let D be a non-empty subgroup of F
n
2 . A random boolean function on D is a

function D → F2 whose output is an independent uniformly distributed random
variable. If f is a random boolean function on D, the law of large numbers says
that for sufficiently many inputs x1, . . . , xs ∈ D the value

t =
∑s

k=1 f(xk)− s/2√
s/4

approximately follows a standard normal distribution. Denoting

Φ(x) =
1√
2π

∫ x

−∞
e−

1
2 u2

du

the standard normal distribution function, a boolean function is said to pass the
frequency test on x1, . . . , xs at a significance level α if

Φ(t) < 1− α

2

A random boolean function passes the frequency test with probability 1− α. If
the frequency test is used to distinguish a keyed boolean function f(k, ·) from a
random boolean function, we denote by β the probability that f(k, ·) passes the
frequency test for a random key k. The distinguishing advantage is then given
by 1− α− β.

2.3 Frequency Test on Derivatives

If σ = {a1, . . . , ai} is a set of linearly independent differences, the i-th derivative
of a boolean random function is again a boolean random function. Its output is
the sum of 2i independent uniformly distributed random variables. But for any
two inputs x, x′ with x⊕x′ ∈ L(σ) the output values are computed by the same
sum and thus Δ(i)

σ f(x) = Δ
(i)
σ f(x′). Hence, the i-th derivative is not a random

function on D, but on the quotient group D/L(σ). A frequency test of Δ(i)
σ f on

s inputs needs s2i queries to f .

3 Conditional Differential Cryptanalysis of NLFSR

This section provides the general idea of our analysis. It is inspired by message
modification techniques as they were introduced in [17] to speed up the collision
search for hash functions. We trace differences through NLFSR-based cryptosys-
tems and exploit the non-linear update to prevent their propagation whenever
possible. This is achieved by identifying conditions on the internal state vari-
ables of the NLFSR. Depending on whether these conditions involve the public
parameter or also the secret key, they have to be treated differently in a chosen
plaintext attack scenario. The goal is to obtain many inputs that satisfy the con-
ditions, i.e. that follow the same differential characteristic at the initial rounds.
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In more abstract terms, we analyse derivatives of keyed boolean functions and
exploit that their output values are iteratively computed.

We briefly explain NLFSR-based cryptosystems and why our analysis princi-
ple applies to them. Then we define three types of conditions that control the
difference propagation in NLFSR-based cryptosystems and we explain how to
deal with each of these types in a chosen plaintext (chosen initial value) attack
scenario. The basic strategy is refined and adapted in the later sections to derive
specific attacks on KATAN/KTANTAN, Grain v1 and Grain-128.

3.1 NLFSR-Based Cryptosystems

An NLFSR of length l consists of an initial state s0, . . . , sl−1 ∈ F2 and a recursive
update formula sl+i = g(si, . . . , sl+i−1) for i ≥ 0, where g is a non-linear boolean
function. The bit sl+i is called the bit generated at round i and si, . . . , sl+i−1 is
called the state of round i−1. Our analysis principle applies to any cryptographic
construction that uses an NLFSR as a main building block. These constructions
perform a certain number of rounds, generating at each round one or more bits
that non-linearly depend on the state of the previous round. It is this non-linear
dependency that we exploit in conditional differential cryptanalysis.

Let f : F
m
2 × F

n
2 → F2 denote the keyed boolean function that to every key

k and public parameter x assigns one output bit f(k, x) of an NLFSR-based
construction. If we consider a first order derivative of the function f , we apply
a difference a ∈ F

n
2 to the public parameter. The value Δaf(k, x) then denotes

the output difference f(k, x)+ f(k, x⊕a). If si is a state bit of our construction,
we denote Δasi(k, x) the difference in this state bit for the key k, the public
parameter x and the difference a.

3.2 Conditions and Classification

We now introduce the concepts of our analysis principle. In general, the difference
of a newly generated state bit depends on the differences and the values of
previously generated state bits. Each time that Δasi(k, x) non-linearly depends
on a bit that contains a difference, we can identify conditions on previously
generated state bits that control the value of Δasi(k, x). In most cases, the
conditions are imposed to prevent the propagation of the difference to the newly
generated state bits. In particular it is important to prevent the propagation at
the initial rounds. Since we want to statistically test the frequency of Δaf(k, ·)
on inputs that satisfy the conditions, there is an important tradeoff between the
number of imposed conditions and the number of inputs that we can derive. The
conditions can not only involve bits of x, but also bits of k. We classify them
into three types:

– Type 0 conditions only involve bits of x.
– Type 1 conditions involve bits of x and bits of k.
– Type 2 conditions only involve bits of k.
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In a chosen plaintext (chosen initial value) scenario, type 0 conditions can easily
be satisfied by the attacker, whereas he cannot control type 2 conditions at all.
In most cases, type 2 conditions consist of simple equations and the probability
that they are satisfied for a uniformly random key can easily be determined.
Since we do not assume that our attacks can be repeated for more than one
key, type 2 conditions generally decrease the advantage of distinguishing attacks
and define classes of weak keys for this kind of attacks. On the other hand we
specifically exploit type 2 conditions to derive key recovery attacks based on
hypothesis tests. This is explained in Section 6 where we analyse Grain-128.

In a different way, also type 1 conditions can be used to recover parts of the
key. To deal with the type 1 conditions, we introduce the concept of free bits.
Suppose that the state bit si depends on x as well as on some bits of k, and
suppose that we want to satisfy the type 1 condition si = 0. In a chosen plaintext
scenario, we cannot control this condition in a simple way. We call those bits
of x that do not influence the value of si for any key k, the free bits for the
condition. The remaining bits of x are called non-free. Together with k the non-
free bits determine whether the condition is satisfied or not. We call x a valid
input if, for a given key k, it satisfies the imposed condition. If we define the set
ϕ as ϕ = {ei ∈ F

n
2 |xi is a free bit} then we can generate 2|ϕ| valid inputs from

a single valid input x: these are the elements of the coset x⊕ L(ϕ). In general,
more than one type 1 condition are imposed. In that case, the free bits are those
that are free for all of these conditions. In some cases it may be possible to
give a finite number of configurations for the non-free bits such that at least
one configuration determines a valid input. Otherwise, if t type 1 conditions are
imposed, we expect that about one of 2t different inputs is valid and we just
repeat the attack several times with different random inputs.

In some cases we can not obtain enough inputs only by the method of free
bits. We then try to find non-free bits that only must satisfy a given equation but
otherwise can be freely chosen. This provides us with more degrees of freedom
to generate a sample of valid inputs. We refer to the analysis of KATAN and
Grain v1 for concrete examples of this method.

3.3 Choosing the Differences

The choice of a suitable difference for conditional differential cryptanalysis is not
easy and strongly depends on the specific construction. In particular this holds
for higher order derivatives, but also for first order ones. In general, the difference
propagation should be controllable for as many rounds as possible with a small
number of conditions. In particular, there should not be too many type 1 and
type 2 conditions at the initial rounds. Differences which can be controlled by
isolated conditions of type 1 or type 2 are favorable for key recovery attacks.

The set of differences for higher order derivatives can be determined by com-
bining first order differences whose characteristics do not influence each other
at the initial rounds. In a non-conditional setting, [1] describes a genetic algo-
rithm for finding good sets of differences. This black-box approach did not yield
particularly good sets for our conditional analysis.
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4 Analysis of KATAN/KTANTAN

KATAN/KTANTAN is a family of lightweight block ciphers proposed in [6]. The
family consists of six ciphers denoted by KATANn and KTANTANn for n =
32, 48, 64 indicating the block size of the cipher. All instances accept an 80-bit
key and use the same building blocks, namely two NLFSRs and a small LFSR
acting as a counter. The only difference between KATANn and KTANTANn is
the key scheduling.

In the following we describe KATAN32 and provide the details of our analysis
for this particular instance of the family. Our analysis of the other instances is
very similar. We only sketch the differences and provide the empirical results.

We emphasize that our analysis does not reveal a weakness of any of the
original KATAN/KTANTAN ciphers. In contrary, with respect to our method,
it seems that the number of rounds is sufficiently large to provide a confident
security margin.

4.1 Description of KATAN32

The two NLFSRs of KATAN32 have length 13 and 19 and we denote their states
by li, . . . , li+12 and ri, . . . , ri+18, respectively. A 32-bit plaintext block x is loaded
to the registers by li = x31−i for 0 ≤ i ≤ 12 and ri = x18−i for 0 ≤ i ≤ 18. The
LFSR has length 8 and we denote its state by ci, . . . , ci+7. Initialization is done
by ci = 1 for 0 ≤ i ≤ 6 and c7 = 0. The full encryption process takes 254 rounds
defined by

ci+8 = ci + ci+1 + ci+3 + ci+8,

li+13 = ri + ri+11 + ri+6ri+8 + ri+10ri+15 + k2i+1,

ri+19 = li + li+5 + li+4li+7 + li+9ci + k2i,

where k0, . . . , k79 are the bits of the key and ki is recursively computed by

kj+80 = kj + kj+19 + kj+30 + kj+67

for i ≥ 80. Finally, the states of the two NLFSRs are output as the ciphertext.
If we consider a round-reduced variant of KATAN32 with r rounds, the bits lr+i

for 0 ≤ i ≤ 12 and rr+i for 0 ≤ i ≤ 18 will be the ciphertext.

4.2 Key Recovery for KATAN32 Reduced to 78 Rounds

Our analysis is based on a first order derivative and uses the concept of free
bits to satisfy type 1 conditions. Here, to obtain enough inputs, we will identify
non-free bits that only must satisfy an underdefined system of linear equations,
which gives us more freedom degrees generate the samples.

We consider a difference of weight five at the positions 1,7,12,22 and 27 of the
plaintext block. Let a = e1⊕ e7⊕ e12⊕ e22⊕ e27 denote the initial difference. At
round 0 we have

Δal13(k, x) = 1 + x10,

Δar19(k, x) = x24 + 1
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and impose the conditions x10 = 1 and x24 = 1 to prevent the difference propa-
gation. Similarly at the rounds 1, 2, 3 and 5, we impose the bits x2, x6, x5, x9, x19,
x25 to be zero. At round 7 we have

Δal20(k, x) = r22

and we impose the first type 1 condition

r22 = x28 + x23 + x21 + k6 = 0. (1)

At round 9 we impose x3 = 0. Then three additional type 1 conditions

r19 = x31 + x26 + x27 + x22 + k0 = 1, (2)
r23 = x27 + x22 + x23x20 + x18 + x7 + x12 + k1 + k8 = 0, (3)
r26 = 1 + x20(x17 + k3) + k14 = 0 (4)

are imposed at the rounds 11, 13 and 20.
The free bits for these conditions can be directly read from the equations.

They are:
x0, x4, x8, x11, x13, x14, x15, x16, x29 and x30.

So far, for any valid plaintext we can derive a sample of 210 valid plaintexts. Since,
in this case, this is not enough to perform a significant frequency test, we try to
obtain larger samples by better analysing the non-free bits. Looking at the equa-
tions (1) to (4), we note that the non-free bits x7, x12, x18, x21, x22, x26, x27, x28

and x31 only occur linearly. They can be freely chosen as long as they satisfy
the system of linear equations

⎧⎨
⎩

x28 + x21 = A
x31 + x26 + x27 + x22 = B

x27 + x22 + x18 + x7 + x12 = C

for constants A,B,C. This system has 26 different solutions that can be added to
each valid plaintext. In total this gives a sample of size 216 that we can generate
from a valid plaintext. Since we imposed 9 type 0 conditions we are left with
25 different samples of plaintexts for a given key. The conditions are satisfied
for at least one of these samples. On this sample the difference in bit 18 of
the ciphertext after 78 rounds (this is bit r78) is strongly biased. We perfom a
frequency test of Δar78(k, ·) on each of the 25 generated samples. At significance
level α = 10−4 the frequency test fails on at least one of them with probability
almost one, and if it fails, all four type 1 conditions are satisfied with probability
almost one. This allows us to recover k0, k6, the relation k1 + k8 and either k14

(if x20 = 0) or the relation k3 +k14 with high probability. The complexity of this
attack is 222.

4.3 Analysis of KATAN48 and KATAN64

All the three members of the KATAN family perform 254 rounds, they use the
same LFSR and the algebraic structure of the non-linear update functions is
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the same. The differences between the KATANn ciphers are the block size n,
the length of the NLFSRs, the tap positions for the non-linear update and the
number of times the NLFSRs are updated per round.

For KATAN48 the NLFSRs have length 19 and 29 and each register is updated
twice per round. We obtained our best result with a difference of weight four
at the positions 1, 10, 19 and 28 in the plaintext block. Imposing four type 0
conditions and two type 1 conditions we are able to derive a sample of size 231

from a valid plaintext. This allows us to recover the key bit k12 and the relation
k1 + k14 after 70 rounds (this corresponds to 140 updates of the NLFSRs) with
a complexity of 234.

For KATAN64 the NFLSRs have length 25 and 39 and each register is updated
three times per round. We obtained our best result with a difference of weight
three at the positions 0, 13 and 26. Imposing six type 0 conditions and two
type 1 conditions we are able to derive a sample of size at least 232 from a valid
plaintext. This allows us to recover k2 and k1 + k6 after 68 rounds (204 updates
of the NLFSRs) with a complexity of 235.

4.4 Analysis of the KTANTAN Family

KTANTANn is very similar to KATANn. They only differ in the key scheduling
part. In KATAN the key is loaded into a register and linearly expanded to
the round keys after round 40. Until round 40 the original key bits are used
as the round keys. In KTANTAN, from the first round, the round keys are a
linear combination of key bits (depending on the state of the counter LFSR,
which is entirely known). Hence, our analysis of KATANn directly translates
to KTANTANn, but instead of recovering a single key bit, we recover a linear
relation of key bits. For instance in KATAN32 we recover the relation k7 + k71

instead of bit k0.

5 Analysis of Grain v1

Grain v1 is a stream cipher proposed in [13] and has been selected for the final
eSTREAM portfolio [9]. It accepts an 80-bit key k and a 64-bit initial value x.
The cipher consists of three building blocks, namely an 80-bit LFSR, an 80-bit
NLFSR and a non-linear output function. The state of the LFSR is denoted
by si, . . . , si+79 and the state of the NLFSR by bi, . . . , bi+79. The registers are
initialized by bi = ki for 0 ≤ i ≤ 79, si = xi for 0 ≤ i ≤ 63 and si = 1 for
64 ≤ i ≤ 79 and updated according to

si+80 = f(si, . . . , si+79),
bi+80 = g(bi, . . . , bi+79) + si,

where f is linear and g has degree 6. The output function is taken as

zi =
∑
k∈A

bi+k + h(si+3, si+25, si+46, si+64, bi+63),
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where A = {1, 2, 4, 10, 31, 43, 56} and h is defined as

h(si+3, si+25, si+46, si+64, bi+63) = si+25 + bi+63

+ si+3si+64 + si+46si+64 + si+64bi+63

+ si+3si+25si+46 + si+3si+46si+64 + si+3si+46bi+63

+ si+25si+46bi+63 + si+46si+64bi+63

The cipher is clocked 160 times without producing any keystream. Instead the
output function is fed back to the LFSR and to the NLFSR.

If we consider round-reduced variants of Grain v1 with r initialization rounds,
the feedback of the output stops after r rounds and the first keystream bit is zr.

Our analysis is similar to the one of KATAN32, but the equations for the
conditions are more complex. We first present an attack on 97 rounds and then
extend it to 104 rounds.

5.1 Distinguishing Attack and Key Recovery for 97 Rounds

Our analysis is based on the first order derivative with respect to a single dif-
ference in bit 37 of the initial value. Let a = e37 denote the difference. The
first conditions are defined at round 12, where the difference in s37 eventually
propagates to the state bits s92 and b92 via the feedback of z12. We have

Δaz12(k, x) = 1 + x15x58 + x58k75.

We impose the type 0 condition x58 = 1 and we define the type 1 condition
x15 + k75 = 0 to prevent the propagation. The next conditions are determined
at round 34, where we have

Δaz34(k, x) = s98 + x59s80 + s80s98 + s80b97.

We define the conditions s80 = 0 and s98 = 0. Similarly we determine s86 = 0
and s92 = 0 at the rounds 40 and 46, respectively. So far, we imposed one type 0
condition at round 12 and we have five type 1 conditions at the rounds 12, 34,
40 and 46. The type 1 conditions jointly have 25 free bits:

x7, x8, x10, x11, x14, x16, x17, x20, x22, x24, x28, x30, x32, x33,

x34, x36, x39, x42, x45, x49, x54, x55, x59, x60 and x61.

In average we expect that one out of 25 randomly chosen initial values satisfies
the conditions. We define a distinguisher that chooses 25 random initial values
and for each performs a frequency test of Δaz97(k, ·) on the sample of 225 inputs
generated by the free bits. Instead of randomly choosing 25 initial values we can
choose 24 and test each of them for x15 = 0 and x15 = 1. This guarantees that
the condition from round 12 is satisfied for at least one of them. Experiments
with 210 keys at a significance level α = 0.005 show that at least one of the 25

tests fails with probability 0.99. This gives a distinguisher with complexity 231

and advantage of about 0.83 for Grain v1 reduced to 97 rounds.
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The two conditions x15+k75 = 0 and s86 = 0 are crucial to obtain a significant
bias after 97 rounds. In a key recovery scenario this reveals information about
the key. Experiments show that both conditions hold with probability almost
one if the frequency test fails. This recovers the key bit k75 and the value of
k7 + k8 + k10 + k37 + k49 + k62 + k69 (coming from s86 = 0).

5.2 Extension to 104 Rounds

Using the same conditions as before, we extend the attack to 104 rounds. We
use the same idea as for KATAN32 to increase the size of the sample that can
be generated from one initial value. We gain four additional degrees of freedom
by noting that the non-free bits x6, x19, x29, x44 and x57 influence only the
condition imposed at round 40 and must only satisfy the linear equation

x6 + x19 + x29 + x44 + x57 = A

for a constant A. In total, we can now derive a sample of size 229 from one initial
value.

The distinguisher defined above has now a complexity of 235 and advantage
of about 0.45. When the frequency test fails, the conditions x15 + k75 = 0 and
s92 = 0 are satisfied with a probability almost one, which gives us k75 and the
value of k13 + k14 + k16 + k22 + k43 + k55 + k68 (coming from s92 = 0). The
remaining three conditions are satisfied with a probability about 0.70 and give
us similar relations in the key bits.

The sample size can be further increased, because also the non-free bits
x13, x23, x38, x51 and x62 only must satisfy a linear equation. This gives a distin-
guisher with complexity 239 and advantage of about 0.58.

6 Analysis of Grain-128

Grain-128 was proposed in [12] as a bigger version of Grain v1. It accepts a
128-bit key k and a 96-bit initial value x. The general construction of the cipher
is the same as for Grain v1, but the LFSR and the NLFSR both contain 128-
bits. The content of the LFSR is denoted by si, . . . , si+127 and the content of
the NLFSR is denoted by bi, . . . , bi+127. The initialization with the key and the
initial value is analogous to Grain v1 and the update is performed according to

si+128 = f(si, . . . , si+127),
bi+128 = g(bi, . . . , bi+127) + si,

where f is linear and g has degree 2. The output function is taken as

zi =
∑
k∈A

bi+k + h(bi+12, si+8, si+13, si+20, bi+95, si+42, si+60, si+79, si+95),

where A = {2, 15, 36, 45, 64, 73, 89} and h is defined as

h(x) = bi+12si+8 + si+13si+20 + bi+95si+42 + si+60si+79 + bi+12bi+95si+95



Conditional Differential Cryptanalysis of NLFSR-Based Cryptosystems 141

The cipher is clocked 256 times without producing any keystream. Instead the
output function is fed back to the LFSR and to the NLFSR.

If we consider round-reduced variants of Grain-128 with r initialization rounds,
the feedback of the output stops after r rounds and the first keystream bit is zr.

For the analysis of Grain-128 we use higher order derivatives. The general
idea of conditional differential cryptanalysis naturally extends. As in the case of
first order derivatives we always assume that the differences are applied to the
initial value and not to the key.

6.1 Distinguishing Attack up to 215 Rounds

Our attack is based on a derivative of order thirteen with respect to the set of
differences

σ = {e0, e1, e2, e34, e35, e36, e37, e65, e66, e67, e68, e69, e95}.
These differences are chosen because they do not influence each other in the
initial rounds. As a consequence the corresponding differential characteristic (of
order thirteen) is zero for as many as 170 rounds. This can be extended to 190
rounds by imposing simple type 0 conditions that control the propagation of
each single difference. As an example we derive the conditions for the difference
e65. The first condition is derived from round 5, where we have

Δe65z5(k, x) = x84.

We impose x84 = 0. In the same way the conditions x58 = 0 and x72 = 0 prevent
difference propagation at rounds 45 and 52. At round 23 we have

Δe65z23(k, x) = k118.

As we will see below, the type 2 condition k118 = 0 determines a class of weak
keys for the distinguishing attack.

Proceeding the same way for the other differences we derive 24 type 0 con-
ditions that consist in setting the following bits to zero: x27, x28, x29, x30, x41,
x42, x43, x44, x58, x59, x60, x61, x62, x72, x73, x74, x75, x76, x77, x84, x85, x86,
x87, x88. In addition to k118 the key bits k39, k119, k120 and k122 can be identified
to define classes of weak keys.

There are 296−13−24 = 259 initial values that are different in F
n
2/L(σ) and

satisfy all type 0 conditions. We define a distinguisher that performs a frequency
test of Δ(13)

σ zr(k, ·) on 212 of these inputs. Table 1 summarizes the empirical
results obtained for 212 different keys tested at a significance level α = 0.005. The
indicated values denote the probabilty 1−β, where β denotes the probability that
Δ

(13)
σ zr(k, ·) passes the frequency test. Our distinguisher has complexity 225 and

advantage 1−α−β. The values in the first row are obtained without any condition
on the key. They show that we can distinguish Grain-128 reduced to 215 rounds
with an advantage of about 0.008. The other rows indicate the probabilities for
the classes of weak keys defined by the indicated type 2 conditions.
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Table 1. Distinguishing attack on Grain-128 reduced to r rounds: Probability 1 − β
for α = 0.005 and complexity 225. Type 2 conditions define classes of weak keys.

type 2
condition

r = 203 r = 207 r = 211 r = 213 r = 215

– 1.000 0.587 0.117 0.173 0.013
k39 = 0 1.000 0.630 0.128 0.275 0.017
k118 = 0 1.000 0.653 0.177 0.231 0.024
k119 = 0 1.000 0.732 0.151 0.267 0.025
k120 = 0 1.000 0.876 0.234 0.249 0.026
k122 = 0 1.000 0.668 0.160 0.285 0.015

6.2 Key Recovery up to 213 Rounds

In this section we specifically exploit type 2 conditions to recover single key bits
with high probability. The attack is explained by a prototypical example that
recovers three bits of Grain-128 reduced to 197 rounds with a probability up to
0.87. It is based on a derivative of order five and can easily be extended to recover
more bits by using slightly other derivatives. This is demonstrated by an attack
that recovers eight bits using two additional derivatives (both of order five). A
second attack uses the derivative of order thirteen from the previous section and
recovers three bits for Grain-128 reduced to 213 rounds with a probability up to
0.59.

Prototypical Example. We use a derivative of order five with respect to the
differences σ = {e1, e36, e66, e67, e68}. In the same way as in the distinguishing
attack, we impose conditions on the initial value to control the propagation of
each difference. Altogether we impose 12 type 0 conditions and denote by W
the set of initial values satisfying all of them. The crucial observation is the
following. The key bit k121 controls the characteristic of e68 in the very early
phase of initialization, namely at round 26. If k121 = 1 the difference propagates,
otherwise it does not. This strongly influences the frequency of Δ(5)

σ zr(k, ·) after
r = 197 rounds. Similar strong influences can be found for k40 after r = 199
rounds and for k119 after r = 200 rounds. This allows to recover these bits by a
binary hypothesis tests.

Key Recovery by Hypothesis Test. Let X be a uniformly distributed random
variable taking values in W/L(σ) and define

pr(k) = Pr[Δ(5)
σ zr(k,X) = 1].

If the key is considered as a uniformly distributed random variable K, pr(K) is
a random variable in the interval [0, 1]. Our attack is based on the observation
that the conditional distributions of pr(K) conditioned on Ki = 0 and Ki = 1,
for well chosen i, strongly differ even for a large number of rounds. This can be
exploited to perform a binary hypothesis test on the value of Ki. An attacker
can estimate a single observation p̂r of pr(K) to take her decision. Since in all
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our attacks the expectation of pr(K) conditioned on Ki = 0 is significantly
smaller than the conditional expectation conditioned on Ki = 1, we determine
a parameter π ∈ [0, 1] and take our decision according to the rule defined as

Ki =
{

0 if p̂r < π
1 otherwise.

The success probability of the attack essentially depends on the choice of π. If we
denote α = Pr[pr(K) ≥ π|Ki = 0] the probability that we falsely guess Ki = 1
and β = Pr[pr(K) < π|Ki = 1] the corresponding probability that we falsely
guess Ki = 0, then the probability of a correct decision, denoted Pc, is given as

Pc = 1− (α + β)/2.

An optimal π maximizes Pc. Since the conditional distributions of pr(K) are not
known explicitely, we empirically determine π in a precomputation phase of the
attack.

Back to the Example. The first row of Table 2 shows the precomputed pa-
rameters π and the resulting probability Pc for our prototypical example. The
precomputation of each π was done for 214 key pairs and 214 initial values for
each key. This gives an overall precomputation complexity of 6 · 233 since we
have to compute two histograms for each key bit. The attack itself consists in
estimating p̂r for r = 197, 199 and 200. Note that all three estimates can be
obtained by the same computation which has complexity 219 when estimating
over 214 initial values. The probabilities Pc are not completely independent and
the probability of correctly guessing all three bits together is about 0.463.

Recovering 8 Bits after 197 Rounds. The prototypical example can be extended
by using two other sets of differences which are obtained by shifting all differences
by one position to the left and to the right, respectively. This allows to recover five
additional bits of the key, namely k39, k40, k118, k120 and k122. The complexities
of this extended attack are 9·234 for the precomputation and 3·219 for the attack

Table 2. Key recovery for reduced Grain-128: Pc is the probability of correctly guessing
key bit ki. The attack complexity is 219 for |σ| = 5 and 225 for |σ| = 13.

Difference set ki r π Pc

σ = {e1, e36, e66, e67, e68} k40 199 0.494 0.801
k119 200 0.492 0.682
k121 197 0.486 0.867

σ = {e0, e1, e2, e34, e35, e36, e37, k39 213 0.490 0.591
e65, e66, e67, e68, e69, e95} k72 213 0.488 0.566

k119 206 0.356 0.830
k120 207 0.486 0.807
k120 211 0.484 0.592
k122 213 0.478 0.581
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itself. We recover all eight bits correctly with a probability of 0.123. This can be
improved up to 0.236 by first determining k121 and k122 and then recovering the
remaining bits conditioned on the values of k121 and k122.

Recovering Bits up to 213 Rounds. If we use the derivative of order thirteen that
we already used in the distinguishing attack, after 213 rounds we can recover two
key bits with probability of almost 0.6. The last row of Table 2 summarizes the
results. Here, the precomputation was done for 212 key pairs and 212 initial values
for each key which gives a precomputation complexity of 238. The complexity of
the attack itself is 225.

7 Conclusion

We presented a first analysis of the KATAN/KTANTAN family as well as the
best known cryptanalytic results on Grain v1 and Grain-128. This was obtained
by conditional differential cryptanalysis which also applies to other NLFSR-
based contructions and provides further hints for choosing an appropriate num-
ber of rounds with regard to the security/efficiency tradeoff in future designs of
such constructions.
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Abstract. SOSEMANUK is a software-oriented stream cipher proposed
by C. Berbain et al for the eSTREAM project and has been selected into
the final portfolio. It is noticed that most components of SOSEMANUK
can be calculated byte-oriented. Hence an attacker can observe SOSE-
MANUK from the view of byte units instead of the original 32-bit word
units. Based on the above idea, in this work we present a new byte-based
guess and determine attack on SOSEMANUK, where we view a byte as
a basic data unit and guess some certain bytes of the internal states
instead of the whole 32-bit words during the execution of the attack.
Surprisingly, our attack only needs a few words of known key stream to
recover all the internal states of SOSEMANUK, and the time complexity
can be dramatically reduced to O(2176). Since SOSEMANUK has a key
with the length varying from 128 to 256 bits, our results show that when
the length of an encryption key is larger than 176 bits, our guess and
determine attack is more efficient than an exhaustive key search.

Keywords: eSTREAM, SOSEMANUK, Guess and Determine Attack.

1 Introduction

The European eSTREAM project [1] was launched in 2004 to call for stream
ciphers and was ended in 2008. At first about 34 stream cipher candidates were
submitted to the eSTREAM project, and after the challenge of three rounds,
7 of them were selected into the final portfolio. SOSEMANUK proposed by
C. Berbain et al [2] is one of the above seven algorithms. SOSEMANUK is a
software-oriented stream cipher and has a key with the length varying from 128
to 256 bits. The design of SOSEMANUK adopted the ideas of both the stream
cipher SNOW 2.0 [3] and the block cipher SERPENT [4], and aimed at improving
SNOW 2.0 both from the security and from the efficiency points of view.

The guess and determine attack is a common attack on stream ciphers [5,6,7,8].
Its main idea is that: an attacker first guesses the values of a portion of the in-
ternal states of the target algorithm, then it takes a little cost to deduce the
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values of all the rest of the internal states of the algorithm by making use of
the values of the guessed portion of internal states and a few known key stream.
When the values of all the internal states of the algorithm are recovered, the at-
tacker tests the correctness of these values by producing a key stream using the
above recovered values and comparing it with the known key stream. If the key
streams agree, it shows that the recovered states are correct. If the key streams
don’t agree, then the attacker repeats the above process until the correct internal
states are found. As for SOSEMANUK, the designers of SOSEMANUK [2] pre-
sented a guess and determine attack method, whose time complexity is O(2256).
In 2006 H. Ahmadi et al [9] revised the attack and reduced the time complex-
ity to O(2226), and this result was further reduced to O(2224) by Y. Tsunoo et
al [10]. Recently Lin and Jie [11] gave a new result that they could recover all
internal states of SOSEMANUK with time complexity O(2192). Unfortunately,
a mistake was made in their work. In step 1 of their attack, ft−2, ft−1, ft, ft+1

and st−2, st−1, st, st+1 were used to output key words zt−2, zt−1, zt, zt+1, and in
step 14, ft, ft+1, ft+1, ft+2 and st, st+1, st+1, st+2 were used to output key words
zt, zt+1, zt+1, zt+2. However, according to the description of SOSEMANUK, the
output key words in the next pad should be zt+2, zt+3, zt+4, zt+5, which should be
produced by ft+2, ft+3, ft+4, ft+5 and st+2, st+3, st+4, st+5. Therefore the time
complexity they gave is incorrect.

It is known that most word-oriented stream ciphers make a trade-off between
security and efficiency. From the view of a designer, for pursuit of more efficient
software implementation of the algorithm, some certain operators, for example,
the exclusive OR, S-boxes, the modulo 2n addition, the multiplication or the
division by a primitive element in the finite field F2n , where n may be equal to
8, 16 or 32, are often used. We notice that most of these operations can be done
based on the smaller units, for example, 16-bit words or bytes. Therefore from
the view of an attacker, he can observe the algorithm from the viewpoints of
smaller units instead of the original word units. Based on the above idea, in this
work we present a byte-based guess and determine attack on SOSEMANUK,
where we view a byte as a basic data unit and guess some certain bytes of the
internal states instead of the whole 32-bit words during the execution of the at-
tack. Surprisingly, our attack only needs a few known key stream to recover all
the internal states of SOSEMANUK, and the time complexity can be dramat-
ically reduced to O(2176). It shows that when the length of an encryption key
is larger than 176 bits, the guess and determine attack is more efficient than an
exhaustive key search. What’s more, our results also show that during the design
of stream cipher algorithms, it is necessary to break the bound between different
operands.

The rest of this paper is organized as follows: in section 2 we recall the SOSE-
MANUK algorithm briefly, and in section 3 we give some basic properties of
SOSEMANUK. In section 4 we describe all the detail of our attack on SOSE-
MANUK. In section 5 we give a estimate on the time and data complexity of our
attack. Section 6 gives a further discussion, and Section 7 concludes the paper.
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2 Description of SOMEMANUK

In this section we recall the SOSEMANUK algorithm briefly and all the details
can be found in [2].

SOSEMANUK is a 32-bit word-oriented stream cipher, and logically com-
posed of three parts: a linear feedback shift register (LFSR), a finite state ma-
chine (FSM) and a round function Serpent1, see Figure 1.

Fig. 1. The structure of SOSEMANUK

2.1 The LFSR

The LFSR of SOSEMANUK is defined over the finite field F232 , and contains
10 of 32-bit registers si, 1 ≤ i ≤ 10. The feedback polynomial π(x) of LFSR is
defined as follows:

π(x) = αx10 + α−1x7 + x+ 1, (1)

where α is a root of the polynomial

P (x) = x4 + β23x3 + β245x2 + β48x+ β239

over the finite field F28 , and β is a root of the binary polynomial

Q(x) = x8 + x7 + x5 + x3 + 1.

Let { st }t≥1 be a sequence generated by the LFSR. Then it satisfies

st+10 = st+9 ⊕ α−1st+3 ⊕ αst, ∀ t ≥ 1. (2)

2.2 The FSM

The nonlinear filtering part of SOSEMANUK is a finite state machine (FSM),
which contains two 32-bit memory units R1 and R2. At time t, the FSM takes
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Fig. 2. The round function Serpent1 in the bit-slice mode

the values st+1, st+8 and st+9 of registers s1, s8 and s9 of the LFSR as inputs,
and outputs a 32-bit word ft. The execution of the FSM is as follows:

R1t = R2t−1 � mux(lsb(R1t−1), st+1, st+1 ⊕ st+8), (3)
R2t = Trans(R1t−1), (4)
ft = (st+9 �R1t)⊕R2t, (5)

where � is the modulo 232 addition; lsb(x) is the least significant bit of x;
mux(c, x, y) is equal to x if c = 0, or equal to y if c = 1; and the internal
transition function Trans on 32-bit integers is defined by

Trans(z) = (0x54655307 · z mod 232) ≪ 7,

where ≪ is the left cyclic shift operator on 32-bit strings.

2.3 The Round Function Serpent1

In the block cipher SERPENT a raw SERPENT round consists of, in that order:

– a subkey addition;
– S-boxes transformations;
– a linear transformation.

Here the function Serpent1 is one round of SERPENT without the subkey ad-
dition and the linear transformation. The S-box used in Serpent1 is the S-box
S2 of SERPENT and runs in the bit-slice mode. Serpent1 takes outputs ft+i of
the FSM at four successive times as inputs and outputs four 32-bit words yt+i,
where i = 0, 1, 2, 3, see Figure 2.
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2.4 Generation of Key Stream

Let st, st+1, st+2, st+3 and ft, ft+1, ft+2, ft+3 be the outputs of the LFSR and
that of the FSM respectively at the successive times starting from time t, and
zt, zt+1, zt+2, zt+3 be the key words generated by SOSEMANUK at those four
successive times. Then we have

(zt+3, zt+2, zt+1, zt) = Serpent1(ft+3, ft+2, ft+1, ft)⊕ (st+3, st+2, st+1, st). (6)

3 Some Properties of SOSEMANUK

In this section we view a byte as a basic data unit and give some basic properties
of SOSEMANUK from the view of byte units. First we introduce some notations.

Let x be a 32-bit word. We denote by x(i) the i-th byte component of x,
0 ≤ i ≤ 3, that is,

x = x(3) ‖ x(2) ‖ x(1) ‖ x(0),

where each x(i) is a byte, and ‖ is the concatenation of two bit strings. For
simplicity we write x(1) ‖ x(0) as x(0,1) and x(2) ‖ x(1) ‖ x(0) as x(0,1,2).

For any given 32-bit word x, the word x may have the different meanings in
different contexts as follows:

1. As an operand of the operator ⊕. Here x is a 32-bit string, and ⊕ is the
bitwise exclusive OR.

2. As an operand of the integer addition + or the modulo 232 addition �. Here
x denotes the integer

∑3
i=0 x

(i)(28)i.
3. As an element of the finite field F232 . Here x denotes the element x(3)α3 +
x(2)α2 + x(1)α+ x(0) in F232 , where α is defined as in equation (1).

Now we consider the SOSEMANUK algorithm from the view of byte units. First
we notice that the feedback calculation of the LFSR (see equation (2)) can be
represented in the byte form.

Lemma 1. Equation (2) can be written in the byte form as follows:

s
(0)
t+10 = s

(0)
t+9 ⊕ s(1)t+3 ⊕ β64s

(0)
t+3 ⊕ β239s

(3)
t , (2a)

s
(1)
t+10 = s

(1)
t+9 ⊕ s(2)t+3 ⊕ β6s

(0)
t+3 ⊕ β48s

(3)
t ⊕ s(0)t , (2b)

s
(2)
t+10 = s

(2)
t+9 ⊕ s(3)t+3 ⊕ β39s

(0)
t+3 ⊕ β245s

(3)
t ⊕ s(1)t , (2c)

s
(3)
t+10 = s

(3)
t+9 ⊕ β16s

(0)
t+3 ⊕ β23s

(3)
t ⊕ s(2)t . (2d)

Proof. By the definition of α, we have,

α4 + β23α3 + β245α2 + β48α+ β239 = 0.

It follows that
α−1 = β16α3 + β39α2 + β6α+ β64.
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Let st =
∑3

i=0 s
(i)
t αi and st+3 =

∑3
i=0 s

(i)
t+3α

i. Then we have

αst = s
(3)
t α4 + s

(2)
t α3 + s

(1)
t α2 + s

(0)
t α

= s
(3)
t (β23α3 + β245α2 + β48α+ β239) + s

(2)
t α3 + s

(1)
t α2 + s

(0)
t α

= (β23s
(3)
t + s

(2)
t )α3 + (β245s

(3)
t + s

(1)
t )α2 + (β48x(3) + s

(0)
t )α + β239s

(3)
t

and

α−1st+3 = s
(3)
t+3α

2 + s
(2)
t+3α

1 + s
(1)
t+3 + s

(0)
t+3α

−1

= s
(3)
t+3α

2 + s
(2)
t+3α

1 + s
(1)
t+3 + x(0)(β16α3 + β39α2 + β6α+ β64)

= β16s
(0)
t+3α

3 + (s
(3)
t+3 + β39s

(0)
t+3)α

2 + (s
(2)
t+3 + β6x(0))α+ (s

(1)
t+3 + β64s

(0)
t+3).

Combine the above equations and equation (2), and we immediately get the
desired conclusion. �

Second we observe the update of R1 and the output of the FSM and have the
following conclusions:

Lemma 2. Equations (3) and (5) also hold in the sense of modulo 2k for all
1 ≤ k < 32, that is,

R1[k]
t = R2[k]

t−1 � mux(lsb(R1t−1), s
[k]
t+1, s

[k]
t+1 ⊕ s[k]

t+8), (3′)

f
[k]
t = (s[k]

t+9 �R1[k]
t )⊕R2[k]

t , (5′)

where x[k] denotes the lowest k bits of x, and the operator � still denotes the
modulo 2k addition without confusion. In particular, the cases k = 8, 16 and 24
are considered in this paper.

Finally we observe the round function Serpent1 and have the following conclu-
sion:

Lemma 3. For any 1 ≤ k ≤ 32, if the values of the k-th bit of each st+i

(i = 0, 1, 2, 3) are known, then the values of the k-th bit of each ft+i can be
calculated by the definition of Serpent1 given some known key stream, that is,

f ′k = S−1
2 (z′k ⊕ s′k), (7)

where

f ′k = ft+3,k ‖ ft+2,k ‖ ft+1,k ‖ ft,k,

s′k = st+3,k ‖ st+2,k ‖ st+1,k ‖ st,k,

z′k = zt+3,k ‖ zt+2,k ‖ zt+1,k ‖ zt,k,

and ft+i,k, st+i,k and zt+i,k are the k-th bits of ft+i, st+i and zt+i respectively,
i = 0, 1, 2, 3. Similarly, if the i-th bytes of each st+i are known, then we can
calculate the i-th bytes of each ft+i, i = 0, 1, 2, 3.
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4 Execution of the Attack

In this section we always assume that a portion of key stream words { zt } have
been observed, where t = 1, 2, · · · , N , and N is large enough for the attack to
work. For convenience, we denote by

A (*)
=⇒ B

the deduction of B from A by equation (*).
Before the description of the attack, we make the following assumption:

Assumption 1. The least significant bit of R11 is one, that is, lsb(R11) = 1.
The whole description of the attack on SOSEMANUK can be divided into five
phases as follows.

Phase 1. We first guess the total 159-bit values of s1, s2, s3, s
(0)
4 , R2(0,1,2)

1

and the rest 31-bit values of R11.

Step 1.1 We first deduce s(0)10 , R1(0)
2 , R22, s

(0)
11 and s(1)4 as follows:

{ s(0)1 , s
(0)
2 , s

(0)
3 , s

(0)
4 }

(7)
=⇒ { f (0)

1 , f
(0)
2 , f

(0)
3 , f

(0)
4 } ,

{ f (0)
1 , R1(0)

1 , R2(0)
1 }

(5′)
=⇒ s

(0)
10 ,

{R1(0)
1 , R2(0)

1 , s
(0)
3 , s

(0)
10 }

(3′)
=⇒ R1(0)

2 ,

R11
(4)
=⇒ R22,

{ f (0)
2 , R1(0)

2 , R2(0)
2 }

(5′)
=⇒ s

(0)
11 ,

{ s(3)1 , s
(0)
4 , s

(0)
10 , s

(0)
11 }

(2a)
=⇒ s

(1)
4 .

Step 1.2 Similar to Step 1.1, we further deduce s(1)10 , R1(1)
2 , s(1)11 and s(2)4

as follows:

{ s(1)1 , s
(1)
2 , s

(1)
3 , s

(1)
4 }

(7)
=⇒ { f (1)

1 , f
(1)
2 , f

(1)
3 , f

(1)
4 } ,

{ f (0,1)
1 , R1(0,1)

1 , R2(0,1)
1 } (5′)

=⇒ s
(0,1)
10 ,

{R1(0,1)
1 , R2(0,1)

1 , s
(0,1)
3 , s

(0,1)
10 } (3′)

=⇒ R1(0,1)
2 ,

{ f (0,1)
2 , R1(0,1)

2 , R2(0,1)
2 } (5′)

=⇒ s
(0,1)
11 ,

{ s(0)1 , s
(3)
1 , s

(0)
4 , s

(1)
10 , s

(1)
11 }

(2b)
=⇒ s

(2)
4 .

Step 1.3 Similar to Step 1.2, we further deduce s(2)10 , R1(2)
2 , s(2)11 and s(3)4

as follows:

{ s(2)1 , s
(2)
2 , s

(2)
3 , s

(2)
4 }

(7)
=⇒ { f (2)

1 , f
(2)
2 , f

(2)
3 , f

(2)
4 } ,

{ f (0,1,2)
1 , R1(0,1,2)

1 , R2(0,1,2)
1 } (5′)

=⇒ s
(0,1,2)
10 ,
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{R1(0,1,2)
1 , R2(0,1,2)

1 , s
(0,1,2)
3 , s

(0,1,2)
10 } (3′)

=⇒ R1(0,1,2)
2 ,

{ f (0,1,2)
2 , R1(0,1,2)

2 , R2(0,1,2)
2 } (5′)

=⇒ s
(0,1,2)
11 ,

{ s(1)1 , s
(3)
1 , s

(0)
4 , s

(2)
10 , s

(2)
11 }

(2c)
=⇒ s

(3)
4 .

In this phase we have obtained s1, s2, s3, s4, s
(0,1,2)
10 , s(0,1,2)

11 , R11, R1(0,1,2)
2 ,

R2(0,1,2)
1 and R22.

Phase 2. Since we have obtained s(3)1 , s(3)2 , s(3)3 and s(3)4 in phase 1, thus by
equation (7), we can calculate f (3)

1 , f (3)
2 , f (3)

3 and f (3)
4 , that is,

{ s(3)1 , s
(3)
2 , s

(3)
3 , s

(3)
4 }

(7)
=⇒ { f (3)

1 , f
(3)
2 , f

(3)
3 , f

(3)
4 } .

Furthermore, by equations (5′) and (2d), we have

f
(3)
1 = (s(3)10 +R1(3)

1 + c1 mod 28)⊕R2(3)
1 , (8)

f
(3)
2 = (s(3)11 +R1(3)

2 + c2 mod 28)⊕R2(3)
2 , (9)

s
(3)
11 = s

(3)
10 ⊕ β16s

(0)
4 ⊕ β23s

(3)
1 ⊕ s(2)1 . (10)

where c1 = 1 if s(0,1,2)
10 + R1(0,1,2)

1 ≥ 224, or c1 = 0, otherwise; and c2 = 1 if
s
(0,1,2)
11 +R1(0,1,2)

2 ≥ 224, or c2 = 0, otherwise.
By the assumption lsb(R11) = 1, we have R12 = R21 � (S3 ⊕ S10). It

follows that

R1(3)
2 = R2(3)

1 + (s(3)3 ⊕ s(3)10 ) + c3 mod 28, (11)

where c3 = 1 if R2(0,1,2)
1 + (s(0,1,2)

3 ⊕ s(0,1,2)
10 ) ≥ 224, or c3 = 0, otherwise.

Combine equations (8), (9), (10) and (11), and then we have the equation
on the variable s(3)10 :

d = (s(3)10 ⊕ a) + (s(3)10 ⊕ s(3)3 ) + (f (3)
1 ⊕ (s(3)10 + b mod 28)) + c mod 28, (12)

where a = β16s
(0)
4 ⊕ β23s

(3)
1 ⊕ s(2)1 , b = R1(3)

1 + c1 mod 28, c = c2 + c3 and
d = f

(3)
2 ⊕R2(3)

2 .

In equation (12), all variables except s(3)10 are known, since s
(3)
10 occurs

three times in the above equation, it is easy to verify that equation (12)
has exactly one solution. Denote its solution by s

(3)
10 . When s

(3)
10 has been

obtained, we deduce R2(3)
1 , s(3)11 and R1(3)

2 by equations (8), (10) and (9)
respectively.

Up to now we have obtained s1, s2, s3, s4, s10, s11, R11, R21, R12 and
R22.
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Phase 3. In this phase we further deduce R13, R23, R14, R24, R15, R25,
R26, s5, s6, s12 and s13 as follows:

{R12, R22, s4, s11 } (3)
=⇒ R13,

R12
(4)
=⇒ R23,

{ f3, R13, R23 } (5)
=⇒ s12,

{ s2, s11, s12 } (2)
=⇒ s5,

{R13, R23, s5, s12 } (3)
=⇒ R14,

R13
(4)
=⇒ R24,

{ f4, R14, R24 } (5)
=⇒ s13,

{ s3, s12, s13 } (2)
=⇒ s6,

{R14, R24, s6, s13 } (3)
=⇒ R15,

R14
(4)
=⇒ R25,

R15
(4)
=⇒ R26.

Phase 4. We guess both s(0)7 and s(0)8 . The following deductions are entirely
similar to phase 1, and we can recover both s(1,2,3)

7 and s(1,2,3)
8 .

{ s(0)5 , s
(0)
6 , s

(0)
7 , s

(0)
8 }

(7)
=⇒ { f (0)

5 , f
(0)
6 , f

(0)
7 , f

(0)
8 } ,

{ f (0)
5 , R1(0)

5 , R2(0)
5 }

(5′)
=⇒ s

(0)
14 ,

{ s(3)4 , s
(0)
7 , s

(0)
13 , s

(0)
14 }

(2a)
=⇒ s

(1)
7 ,

{R1(0)
5 , R2(0)

5 , s
(0)
7 , s

(0)
14 }

(3′)
=⇒ R1(0)

6 ,

{ f (0)
6 , R1(0)

6 , R2(0)
6 }

(5′)
=⇒ s

(0)
15 ,

{ s(3)5 , s
(0)
8 , s

(0)
14 , s

(0)
15 }

(2a)
=⇒ s

(1)
8 ,

{ s(1)5 , s
(1)
6 , s

(1)
7 , s

(1)
8 }

(7)
=⇒ { f (1)

5 , f
(1)
6 , f

(1)
7 , f

(1)
8 } ,

{ f (0,1)
5 , R1(0,1)

5 , R2(0,1)
5 } (5′)

=⇒ s
(0,1)
14 ,

{ s(0)4 , s
(3)
4 , s

(0)
7 , s

(1)
13 , s

(1)
14 }

(2b)
=⇒ s

(2)
7 ,

{R1(0,1)
5 , R2(0,1)

5 , s
(0,1)
7 , s

(0,1)
14 } (3′)

=⇒ R1(0,1)
6 ,

{ f (0,1)
6 , R1(0,1)

6 , R2(0,1)
6 } (5′)

=⇒ s
(0,1)
15 ,

{ s(0)5 , s
(3)
5 , s

(0)
8 , s

(1)
14 , s

(1)
15 }

(2b)
=⇒ s

(2)
8 ,

{ s(2)5 , s
(2)
6 , s

(2)
7 , s

(2)
8 }

(7)
=⇒ { f (2)

5 , f
(2)
6 , f

(2)
7 , f

(2)
8 } ,

{ f (0,1,2)
5 , R1(0,1,2)

5 , R2(0,1,2)
5 } (5′)

=⇒ s
(0,1,2)
14 ,



A Byte-Based Guess and Determine Attack on SOSEMANUK 155

{ s(1)4 , s
(3)
4 , s

(0)
7 , s

(2)
13 , s

(2)
14 }

(2c)
=⇒ s

(3)
7 ,

{R1(0,1,2)
5 , R2(0,1,2)

5 , s
(0,1,2)
7 , s

(0,1,2)
14 } (3′)

=⇒ R1(0,1,2)
6 ,

{ f (0,1,2)
6 , R1(0,1,2)

6 , R2(0,1,2)
6 } (5′)

=⇒ s
(0,1,2)
15 ,

{ s(1)5 , s
(3)
5 , s

(0)
8 , s

(2)
14 , s

(2)
15 }

(2c)
=⇒ s

(3)
8 .

Phase 5. Finally we deduce s9 as follows:

{ s5, s6, s7, s8 } (7)
=⇒ { f5, f6, f7, f8 } ,

{ f5, R15, R25 } (5)
=⇒ s

(3)
14 ,

{R15, R25, s7, s14 } (3)
=⇒ R1(3)

6 ,

{ f6, R16, R26 } (5)
=⇒ s

(3)
15 ,

{R16, R26, s8, s15 } (3)
=⇒ R17,

R16
(4)
=⇒ R27,

{ f7, R17, R27 } (5)
=⇒ s16,

{ s6, s15, s16 } (2)
=⇒ s9.

Up to now we have recovered all internal states s1, s2, · · · , s10, R11 and R21 of
the SOSEMANUK algorithm. And then we test the correctness of those values
by producing a key stream using the above recovered values and comparing it
with the known key stream. If the key streams agree, it shows that the recovered
states are correct. If the key streams don’t agree, then we will repeat the above
process until the correct internal states are found.

The process of the above attack is demonstrated in Table 1.

5 On Time and Data Complexities of Our Attack

The execution of the above attack needs to guess a total of 175 bits of the internal
states, including 159 bits of the internal states at phase 1 and 16 bits at phase 4,
and then all the rest of the internal states can be deduced under the assumption
lsb(R11) = 1. Since the probability for lsb(R11) = 1 to hold is 1

2 , thus the time
complexity of the above attack on SOSEMANUK is O(2176). In the attack we
only make use of 8 words of the known key stream, and during the verification
we need about another 8 words of the known key stream to verify whether the
guessed internal states are correct or not. Since by shifting the keystream by 4
words we can test two cases, thus the total data complexity is about 20 words
of the known key stream.

6 Further Discussion on the Assumption lsb(R11) = 1

In the above attack, we make the assumption lsb(R11) = 1, which will guarantee
that equation (12) in phase 2 has exactly one solution. However it should be
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Table 1. The process of our attack

Assume that lsb(R11) = 1

Steps Guessed internal states Determined internal states Num. of States

Phase 1

s1, s2, s3, s
(1)
4 , R1∗

1 , R2
(0,1,2)
1 2159

Step 1.1 s
(0)
10 , R1

(0)
2 , R22, s

(0)
11 , s

(1)
4 2159

Step 1.2 s
(1)
10 , R1

(1)
2 , s

(1)
11 , s

(2)
4 2159

Step 1.3 s
(2)
10 , R1

(2)
2 , s

(2)
11 , s

(3)
4 2159

Phase 2 s
(3)
10 , R2

(3)
1 , R1

(3)
2 , s

(3)
11 2159

Phase 3
R13, R23, s12, s5, R14, R24

s13, s6, R15, R25, R26

2159

Phase 4 s
(0)
7 , s

(0)
8 R1

(0,1,2)
6 , s

(0,1,2)
14 ,s

(0,1,2)
15 ,s7, s8 2175

Phase 5 R1
(3)
6 , s

(3)
14 , s

(3)
15 , R17, R27, s16, s9 2175

Note: R1∗
1 denotes the 31 bits of R11 from the second significant bit to the most significant bit.

pointed out that this assumption is not necessary for our attack to work. In fact,
we directly guess the 160-bit values of s1, s2, s3, s

(0)
4 , R11 and R2(0,1,2)

1 in phase
1. When lsb(R11) = 0, we have R12 = R21 � s3 in phase 2. It follows that

R1(3)
2 = R2(3)

1 + s
(3)
3 + c4 mod 28, (11′)

where c4 = 1 if R2(0,1,2)
1 + s

(0,1,2)
3 ≥ 224, or c4 = 0, otherwise.

Similar to equation (12), combine equations (8), (9), (10) and (11′), and then
we have the equation on the variable s(3)10 :

d′ = (s(3)10 ⊕ a′) + (f (3)
1 ⊕ (s(3)10 + b′ mod 28)) + c′ mod 28, (12′)

where a′ = β16s
(0)
4 ⊕ β23s

(3)
1 ⊕ s(2)1 , b′ = R1(3)

1 + c1 mod 28, c′ = s
(3)
3 + c2 +

c4 mod 28 and d′ = f
(3)
2 ⊕ R2(3)

2 . Since s(3)10 occurs two times in equation (12′),
it is easy to verify that equation (12′) has either no solution, or 2k solutions for
some non-negative integer k. When equation (12′) has no solution, we will come
back to phase 1 and repeat guessing new values of those internal states. When
equation (12′) has 2k solutions for some integer k, we write down all solutions,
and then for each solution we go on the deductions according to phases 3, 4 and
5. Finally we obtain 2k different values of the internal states of SOSEMANUK
and verify their correctness respectively.

Now we estimate the time and data complexity of the above method. In phase
1 we guess total 160-bit values of the internal states instead of 159-bit values. 2159

of those values satisfy lsb(R11) = 1 and another 2159 values satisfy lsb(R11) = 0.
As for 2159 values satisfying lsb(R11) = 1, we have 2159 possible values of s1, s2,
s3, s4, s10, s11, R11, R21, R12 and R22 after phase 2. As for 2159 values satisfying
lsb(R11) = 0, since equation (12′) has the same number of solutions as that of
the possible values of the variables when all the variables except s(3)10 go through
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all possible values, thus we have also 2159 possible values of s1, s2, s3, s4, s10,
s11, R11, R21, R12 and R22 after phase 2. Therefore we have total 2160 possible
values. For each possible values, we go on deducing according to phases 3, 4 and
5, hence the total time complexity is still O(2176). But without the assumption,
the data complexity reduces to 16 words of the known key stream.

7 Conclusion

In this paper, we presented a byte-based guess and determine attack on SOSE-
MANUK, which only needs a few words of key stream to recover all internal
states of SOSEMANUK with time complexity O(2176). The results show that
when the length of an encryption key is larger than 176 bits, the guess and
determine attack is more efficient than an exhaustive key search.
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Abstract. AES is the most widely used block cipher today, and its se-
curity is one of the most important issues in cryptanalysis. After 13 years
of analysis, related-key attacks were recently found against two of its fla-
vors (AES-192 and AES-256). However, such a strong type of attack is
not universally accepted as a valid attack model, and in the more stan-
dard single-key attack model at most 8 rounds of these two versions can
be currently attacked. In the case of 8-round AES-192, the only known
attack (found 10 years ago) is extremely marginal, requiring the eval-
uation of essentially all the 2128 possible plaintext/ciphertext pairs in
order to speed up exhaustive key search by a factor of 16. In this paper
we introduce three new cryptanalytic techniques, and use them to get
the first non-marginal attack on 8-round AES-192 (making its time com-
plexity about a million times faster than exhaustive search, and reducing
its data complexity to about 1/32, 000 of the full codebook). In addition,
our new techniques can reduce the best known time complexities for all
the other combinations of 7-round and 8-round AES-192 and AES-256.

1 Introduction

The Rijndael block cipher [6] was developed in the late 1990’s by Joan Daemen
and Vincent Rijmen, and was selected as the Advanced Encryption Standard
(AES) in 2001. Over the last ten years it replaced the Data Encryption Standard
(DES) in most applications, and had become the block cipher of choice for any
new security application. It has three possible key sizes (128, 192, and 256 bits),
and in 2003 the US government had publicly announced that AES-128 can be
used to protect classified data up to the level of “secret”, and that AES-192 and
AES-256 can be used to protect classified data up to the level of “top secret”.

Due to its importance and popularity, the security of AES had attracted a
lot of attention, and is considered one of the hottest areas of research in crypt-
analysis. A major breakthrough was the recent discovery of related-key attacks
on the full versions of AES-192 and AES-256 [3,4] which are faster than exhaus-
tive search, but have impractical complexities. In another line of research [2],

� The second author was partially supported by the Koshland center for basic research.

M. Abe (Ed.): ASIACRYPT 2010, LNCS 6477, pp. 158–176, 2010.
c© International Association for Cryptologic Research 2010
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related-key attacks requiring practical time complexity of 245 were found on
AES-256 with up to 10 rounds, and related key attacks requiring semipractical
time complexity of 270 were found on AES-256 with 11 rounds.

The main weakness of AES-192 and AES-256 exploited in these attacks was
their extremely simple key schedule. In a related-key attack model, this made it
possible to cancel data differences with corresponding key differences over many
rounds of AES. This created a very high probability differential characteristic,
which led to a greatly improved time complexity. However, such attacks make a
very strong assumption that the adversary can ask the encryption box to modify
the unknown key in a known way. Some of these attacks even assume that the
adversary can obtain a large number of related keys, or that he can obtain
related intermediate subkeys — see [3] for a discussion of these possibilities.
Consequently, related-key attacks are important considerations during the design
and certification stage of new ciphers, but are not considered a realistic threat
in practical security protocols which use the block cipher in a standard way.

In this paper we consider the classical attack model of a single key and multiple
known or chosen plaintext/ciphertext pairs. In this model the adversary has to
deal with the very well designed data path of AES, and cannot directly benefit
from its weak key schedule. Consequently, there are no known attacks on the full
cipher on any one of the three flavors of AES, and the best we can do is to attack
reduced round versions of AES. In the case of AES-256, the largest number of
rounds that can be attacked is 8. In the case of AES-192 there is one attack
on 8-round AES-192 which was published in [10], it is extremely marginal: It
requires the evaluation of essentially all the possible plaintext/ciphertext pairs
under the unknown key, and even then the time required to derive the key is only
16 times faster than exhaustive search (one can argue that given the complete
codebook of size 2128, there is no need to find the actual key in order to easily
decrypt any given ciphertext . . . ). In the case of AES-128, there are no known
attacks on its 8-round version, but there are a few on 7-round variants.

In order to improve all these known attacks, and especially the marginal attack
on 8-round AES-192 which no one was able to improve upon in the last ten years,
we develop three new cryptanalytic techniques. Our starting point is the attack
on 7-round AES developed by Gilbert and Minier [11], which constructs a large
table of 272 entries, where each entry contains a sequence of 256 byte values. This
idea was extended to 8-round AES by Demirci and Selçuk [7], who constructed
an even larger table of 2192 entries (again containing sequences of 256 byte
values, which are constructed in a slightly modified way). Due to the 2200 time
required just to construct this table, this attack is worse than exhaustive search
for 8-round AES-192, and can only be applied to 8-round AES-256.

Our first new idea (called multiset tabulation) is to replace the sequence of 256-
byte values in each table entry by the multiset of its values. Even though we lose
some information, we show that it is still possible to use such a table in order to
discard with very high probability incorrect key guesses. This modification makes
it possible to reduce the number of table entries (and thus also the time required
to prepare the table) by a factor of 216. An even bigger saving (by a factor of
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257) in the size of the table is obtained by another new technique which we
call differential enumeration. It uses some truncated differential (which need not
have particularly high or low probability, as required in standard or impossible
differential attacks) in order to enumerate the entries of such a table in a much
more efficient way: Instead of directly enumerating state values, the adversary
derives them indirectly by enumerating the input and output differential values of
certain internal S-boxes. By reducing the space complexity in such a major way,
we can now trade it off with the high time complexity of the Demirci and Selçuk
attack in order to greatly improve it. Finally, we develop a new key bridging
technique which exploits the weak key schedule of AES by using the following
surprising observation: In the particular case of 8-round AES-192, it is possible to
compute one byte of the whitening subkey (used before the first round) directly
from four bytes of the last subkey (used at the end of the eighth round), despite
their distance. Since our attack requires guessing these five subkey bytes in the
first and last rounds, we get an extra savings of 28 in our time complexity.1 By
combining these three techniques, we can now break 8-round AES-192 in about
one millionth of the complexity of exhaustive search.

Our new results are summarized and compared with previously known single-
key attacks in Table 1. As can be seen, our time complexities for 8-round AES
are considerably better than the best previous results for both AES-192 and
AES-256.

This paper is organized as follows: In Section 2 we describe the AES block
cipher and introduce our notations. In Section 3 we describe the techniques used
in previous attacks, and analyze their complexity. In Section 4 we introduce our
new cryptanalytic techniques. We use them in Section 5 to improve the best
known attacks on 7-round AES, and in Section 6 to improve the best known
attacks on 8-round AES. Finally, in Section 7 we summarize our results.

2 A Short Description of AES

The advanced encryption standard (AES) [6] is an SP-network that supports key
sizes of 128, 192, and 256 bits. A 128-bit plaintext is treated as a byte matrix of
size 4x4, where each byte represents a value in GF (28). An AES round applies
four operations to the state matrix:

– SubBytes (SB) — applying the same 8-bit to 8-bit invertible S-box 16 times
in parallel on each byte of the state,

– ShiftRows (SR) — cyclically shifting the i’th row by i bytes to the left,
– MixColumns (MC) — multiplication of each column by a constant 4x4 ma-

trix over the field GF (28), and
– AddRoundKey (ARK) — XORing the state with a 128-bit subkey.

We outline an AES round in Figure 1.

1 The same idea can be used to improve the time complexity of several other attacks
such as [10,14] by the same factor of 28.
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Fig. 1. An AES round

In the first round, an additional AddRoundKey operation (using a whitening
subkey) is applied, and in the last round the MixColumns operation is omitted.
Rounds which include the MixColumns operation are called full rounds.

The number of rounds depends on the key length: 10 rounds for 128-bit keys,
12 rounds for 192-bit keys, and 14 rounds for 256-bit keys. The rounds are
numbered 0, . . . , Nr − 1, where Nr is the number of rounds. For the sake of
simplicity we shall denote AES with n-bit keys by AES-n, e.g., AES with 128-
bit keys (and thus with 10 rounds) is denoted by AES-128. We use AES to mean
all three variants of AES.

The key schedule of AES takes the user key and transforms it into Nr + 1
subkeys of 128 bits each. The subkey array is denoted by W [0, . . . , 4 · Nr + 3],
where each word of W [·] consists of 32 bits. Let the length of the key be Nk
32-bit words, then the first Nk words of W [·] are loaded with the user supplied
key. The remaining words of W [·] are updated according to the following rule:

– For i = Nk, . . . , 4 ·Nr + 3, do
• If i ≡ 0 mod Nk then W [i] = W [i − Nk] ⊕ SB(W [i − 1] ≪ 8) ⊕
RCON [i/Nk],
• else if Nk = 8 and i ≡ 4 mod 8 then W [i] = W [i− 8]⊕ SB(W [i− 1]),
• Otherwise W [i] = W [i− 1]⊕W [i−Nk],

where RCON [·] is an array of predetermined constants, and ≪ denotes rotation
of the word by 8 bits to the left.

2.1 The Notations Used in the Paper

In the sequel we use the following definitions and notations: The state matrix
at the beginning of round i is denoted by Xi, and its bytes are denoted by
0, 1, 2, . . . , 15, as described in Figure 1. Similarly, the state matrix after the
SubBytes and the ShiftRows operations of round i are denoted by Xi(SB) and
Xi(SR), respectively.

We denote the subkey of round i by ki, and the first (whitening) key by k−1,
i.e., ki = W [4 · (i + 1)]||W [4 · (i + 1) + 1]||W [4 · (i + 1) + 2]||W [4 · (i + 1) + 3].
In some cases, we are interested in interchanging the order of the MixColumns
operation and the subkey addition. As these operations are linear they can be
interchanged, by first XORing the data with an equivalent subkey and only
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then applying the MixColumns operation. We denote the equivalent subkey for
the altered version by ui, i.e., ui = MC−1(ki). The bytes of the subkeys are
numbered by 0, 1, . . . , 15, in accordance with the corresponding state bytes.

We use the following notations for intermediate encryption values: The inter-
mediate state at the beginning of round i in the encryption of P j is denoted by
Xj

i , and its bytes are denoted by Xj
i,l, for 0 ≤ l ≤ 15. Similarly, the intermediate

values after the SubBytes and the ShiftRows operations of round i are denoted
by Xj

i(SB),l and Xj
i(SR),l, respectively.

In our attacks we mostly consider the encryption of δ-sets, which are struc-
tured sets of 256 plaintexts {P 0, P 1, . . . , P 255} in which one active byte assumes
each one of the 256 possible values exactly once, and each one of the other 15
bytes is a (possibly different) constant. A state byte is called balanced if the XOR
of its 256 values during the encryption of a δ-set is zero.

In all the observations considering reduced-round versions of AES, the num-
bering of the rounds starts with round 0. When we analyze the behavior of some
consecutive inner rounds of AES, we shift the round numbering accordingly,
depending on the number of rounds we add at the beginning.

Finally, we measure the time complexity of all the attacks in units which are
equivalent to a single encryption operation of the relevant reduced round variant
of AES. We measure the space complexity in units which are equivalent to the
storage of a single plaintext (namely, 128 bits). To be completely fair, we count
all operations carried out during our attacks, and in particular we do not ignore
the time and space required to prepare the various tables we use.

3 Previous Work

The first attack developed against AES was the SQUARE attack, which was
found by its designers [5]. The SQUARE attack is based on:

Observation 1. Consider the encryption of a δ-set through three full AES rounds.
The set of 256 corresponding ciphertexts is balanced, i.e., the XOR of the 256 values
in each one of its 16 bytes is zero.

The observation follows easily from the structure of AES, as demonstrated in
Figure 2. This property is the basis of many attacks on reduced round variants
of AES. The original submission [5] offers a 6-round attack with time complexity
of 272, which was later improved in [10] using the partial sums technique to offer
the best known attack on 6-round AES (with time 242).

In [11], Gilbert and Minier proposed to refine the information on the inter-
mediate encryption values of the δ-sets exploited in the SQUARE attack. Their
attack is based on the following observation:

Observation 2. Consider the encryption of a δ-set through three full AES rounds.
For each one of the 16 bytes of the ciphertext, we can define a sequence of 256 val-
ues for this byte by ordering the plaintexts according to the value of their active
byte. Then any such sequence is fully determined by just 9 bytes, which are com-
plex functions of the constants in the δ-set and the key bytes. Consequently, for



Improved Single-Key Attacks on 8-Round AES-192 and AES-256 163

SB
SR

MC SB
SR

MC

SB
SR

MC

L

k0

L

k1

L

k2

C

C

C

A

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

C

C

C

C

C

C

C

C

C

C

C

C

A

A

A

A

C

C

C

C

C

C

C

C

C

C

C

C

A

A

A

A

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

A

C

C

C

C

A

C

C

C

C

A

C

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Fig. 2. The development of a δ-set through 3 rounds of AES, where A stands for an
active byte, B stands for a balanced byte, and C stands for a constant byte

any fixed byte position, there are at most 272 possible sequences when we consider
all the possible choices of keys and δ-sets (out of the (28)256 = 22048 of the “theo-
retically possible” 256-byte sequences, and out of the 2256+15×8 = 2376 sequences
which could be potentially defined by the choice of 15 constant bytes and 256 key
bits.)

This observation was used in [11] to mount an attack on 7-round AES-128 with
time complexity slightly smaller than that of exhaustive key search. Since the
attack algorithm is a bit complex and not used in our paper, we omit it here.

In [7], Demirci and Selçuk extended the observation of [11] by another round.
They showed the following:

Observation 3. Consider the encryption of a δ-set through four full AES rounds.
For each of the 16 bytes of the state, the ordered sequence of 256 values of that byte
in the corresponding ciphertexts is fully determined by just 25 byte parameters.
Consequently, for any fixed byte position, there are at most 2200 possible sequences
when we consider all the possible choices of keys and δ-sets.2

This observation was used in [7] to mount attacks on 7-round and 8-round vari-
ants of AES-256. The attack on 7-round AES-256 is roughly as follows:

1. Preprocessing phase: Compute all the 2192 possible values of the 255-byte
sequence given in Observation 3, and store them in a hash table.

2. Online phase:
(a) Guess the value of four bytes in the whitening key k−1 and of one byte

in k0, and for each guess, construct a δ-set from the data. (For example,
if the active byte of the δ-set is byte 0, then the guessed bytes are bytes

2 In [7] the authors note that the function fc1,...,c25(x) can be written as fc1,...,c25(x) =
gc1,...,c24(x)⊕c25, and thus one can reduce the number of possible sequences by pick-
ing some x0, and considering the augmented function f ′

c1,...,c24(x) = fc1,...,c25(x) −
fc1,...,c25(x0) = gc1,...,c24(x)−gc1,...,c24(x0). In this case, the number of parameters is
reduced to 24, the number of “interesting” entries in each sequence is reduced to 255
(as f ′(x0) = 0, independently of the choice of x0 and c1, . . . , c24), and the number
of possible sequences is reduced to 2192.
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0, 5, 10, 15 of k−1 and byte 0 of k0. Note that byte 0 of k0 is used only
to compute the order of the values in the δ-set).

(b) Guess four bytes of the equivalent subkey u6 and one byte of the equiva-
lent subkey u5 and partially decrypt the ciphertexts of the δ-set to obtain
the sequence of 256 intermediate values of one byte of the state X5. (For
example, if the byte to be checked is byte 0, then the subkey bytes the
adversary should guess are byte 0 of u5 and bytes 0, 7, 10, 13 of u6).

(c) Check whether the sequence exists in the hash table. If not, discard the
key guess.

The data complexity of the attack is 232 chosen plaintexts. The time complexity
of the online phase is relatively modest at 280, but the space complexity and the
time complexity in encryption operations required to prepare this large table
are about 2200. These complexities are worse than exhaustive search for both
AES-192 and AES-128. However, Demirci and Selçuk presented a tradeoff, which
makes it possible to decrease the memory complexity at the expense of increasing
both the data and the online time complexities. This results in an attack on 7-
round AES-192 with data complexity of 296 chosen plaintexts, and time and
space complexities of 2144.

The attack in [7] can be extended to 8-round AES-256 by guessing the full
subkey of the last round. This increases the time complexity of the online phase
from 280 to 2208 encryptions, and makes it impossible to rebalance the parame-
ters in order to attack 8-round AES-1923.

4 Our New Techniques

In this section we present three new techniques. First, we present a new variant
of Observation 3 which is stronger and simpler to analyze. Then we show how
a combination of the δ-set analysis with a 4-round differential allows to reduce
the memory complexity of the attack by a factor of 257. Finally, we show that
for AES-192 and AES-256, the time complexity of the 8-round attack can be
reduced using key schedule considerations by a factor of 232 and 28, respectively.

4.1 The Multiset Variant of the Demirci-Selçuk Observation

We start with our new variant of Observation 3.

Observation 4. Consider the encryption of a δ-set {P 0, P 1, . . . , P 255} through
four full AES rounds.

3 We note that in a more recent paper, Demirci et al. [8] claim that by optimizing
their technique they can also attack 7-round AES-128 faster than exhaustive search.
However, we note that the analysis of [8] is flawed, and the correct running time of
the attack is about 232 times more than claimed, and in particular more than the
complexity of exhaustive key search for the 128-bit key version.
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For each 0 ≤ l ≤ 15, the (un-ordered) multiset4[
X0

4,l ⊕X0
4,l, X

1
4,l ⊕X0

4,l, . . . , X
255
4,l ⊕X0

4,l

]
is fully determined by the follow-

ing 24 byte parameters:

– The full 16-byte state X0
2 .

– Four bytes of the state X0
1 . (For example, if the active byte of the δ-set is

byte 0 then these are bytes 0, 1, 2, 3).
– Four bytes of the subkey k2. (For example, if l = 0 then these are bytes

0, 5, 10, 15).

Moreover, this multiset can assume only 2184 values (out of the
(
511
256

) ≈ 2507.6

“theoretically possible” values).

Our variant has several advantages over Observation 3:

– The parameters upon which the sequence depends are specified explicitly.
This is crucial for the major reduction in the number of parameters presented
in the next section.

– The smaller number of possible configurations in our variant (2184 instead of
2192) allows to reduce the memory requirements of the attack and the time
complexity of the preprocessing phase by a factor of 28.

– Since we consider a multiset instead of an ordered sequence, the adversary
does not need to know the order of the values in the δ-set at the beginning
of the four rounds. This allows to skip the guess of one byte in the subkey
k0 (reducing the time complexity of the online phase by 28).

Proof . The proof emphasizes the meet-in-the-middle nature of the observation.
We start with the “bottom side” of the four rounds. First, we observe

that if {X0
2 , X

1
2 , . . . , X

255
2 } are known, then the knowledge of bytes 0, 5, 10, 15

of k2 yields the knowledge of the entire first column before the AddRound-
Key of round 3 in all the 256 encryptions. Since the AddRoundKey pre-
serves differences, this yields the desired values of the vector of differences(
X0

4,l ⊕X0
4,l, X

1
4,l ⊕X0

4,l, . . . , X
255
4,l ⊕X0

4,l

)
.

Secondly, to know the values {X0
2 , X

1
2 , . . . , X

255
2 }, it is sufficient to know

the value X0
2 which is given as part of the parameters, and the differences(

X0
2 ⊕X0

2 , X
1
2 ⊕X0

2 , . . . , X
255
2 ⊕X0

2

)
. Since the ShiftRows, the MixColumns and

the AddRoundKey operations are linear, it is sufficient to know the differences(
X0

1(SB) ⊕X0
1(SB), X

1
1(SB) ⊕X0

1(SB), . . . , X
255
1(SB) ⊕X0

1(SB)

)
.

Now we turn to the “top side” of the four rounds. In round 0, the differences(
X0

0(SB) ⊕X0
0(SB), X

1
0(SB) ⊕X0

0(SB), . . . , X
255
0(SB) ⊕X0

0(SB)

)
are known — these

are exactly the 256 possible differences in byte 0 (the rest of the bytes are equal).
Note that the order of the differences is not known, but this does not disturb
the adversary since in our attack she is interested only in the multiset and not

4 Unlike sets, elements canoccurmultiple times, and themultiset retains thismultiplicity
along with the values.
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in the sequence. Since the ShiftRows, the MixColumns, and the AddRound-
Key operations are linear, the differences

(
X0

1 ⊕X0
1 , X

1
1 ⊕X0

1 , . . . , X
255
1 ⊕X0

1

)
are also known. By the structure of the δ-set, these differences are active in
bytes 0, 1, 2, 3 and passive in the rest of the bytes. Since bytes 0, 1, 2, 3 of X0

1

are given as part of the parameters, bytes 0, 1, 2, 3 of the values {X1
1 , . . . , X

255
1 }

are thus also known, and so are bytes 0, 1, 2, 3 of {X0
1(SB), X

1
1(SB), . . . , X

255
1(SB)}.

Since the differences Xj
1(SB) ⊕ X0

1(SB) in all the bytes except for 0, 1, 2, 3
are zero for all j = 1, 2, . . . , 255, this implies that the full vector of differ-
ences

(
X0

1(SB) ⊕X0
1(SB), X

1
1(SB) ⊕X0

1(SB), . . . , X
255
1(SB) ⊕X0

1(SB)

)
is known, as

required above.
Finally, since the multiset depends on 24 byte parameters, it can assume at

most 2192 possible values. However, in this count, each δ-set is represented by
28 multisets, according to the 256 possible choices of P 0. We can then reduce
the number of parameters by one by choosing P 0 such that X0

1,0 = 0 (this is
possible since byte 0 in state X1 is active). This reduces the number of possible
multisets to 2184, concluding the proof. �

4.2 The Differential Enumeration Technique

Observation 4 shows that the possible multisets depend on 24 explicitly stated
parameters. In order to reduce the size of the precomputed table, we would
like to choose the δ-set such that several of these parameters will equal to pre-
determined constants. Of course, the key bytes are not known to the adversary
and thus cannot be “replaced” by such constants. At first glance, it seems that
the bytes in the intermediate states X0

1 and X0
2 also cannot be made equal to

pre-determined constants by choosing the plaintexts appropriately, since they are
separated from the plaintexts by operations involving an unknown key. However,
we show that by using an expected-probability differential (i.e., a differential
whose probability is not assumed to be especially high or especially low) for
4-round AES, the plaintext P 0 can be chosen such that the full 128-bit state
X0

2 will assume one of at most 264 particular values (which can be computed in
advance and are independent of the choice of key) instead of 2128 possible values.

Consider a truncated differential for four full AES rounds, in which both the
input and the output differences are non-zero in a single byte (e.g., byte 0 both
in the input and in the output). The probability of this differential is expected
to be about 2−120,5 and thus it is expected that 2120 randomly chosen pairs with
difference only in byte 0 would contain one pair that satisfies the differential.
Moreover, since each δ-set contains 215 pairs with difference in a single byte, a
collection of 2105 randomly chosen δ-sets in which byte 0 is active is expected to
contain a right pair with respect to the differential. For right pairs, we show the
following:
5 The probability of 2−120 is based on the assumption that 4-round AES behaves like

a random permutation with respect to this differential, and thus forcing 120 bits to
be equal has this probability. If this is not the case, it is expected that other more
powerful attacks on AES may exist.
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Fig. 3. The 4-Round Differential Characteristic Used in Our Attack

Observation 5. Let (P 1, P 2) be a right pair with respect to the differential (i.e.,
the difference P 1⊕P 2 is non-zero only in byte 0, and the difference between the
corresponding ciphertexts, C1 ⊕ C2, is also non-zero only in byte 0). Then the
intermediate state X1

2 assumes one of at most 264 prescribed values.

Proof
The proof is a meet-in-the-middle argument. We start with the “top side” of
the four rounds. Due to the structure of AES, the difference between the states
X1

1(SB) and X2
1(SB) (i.e., the intermediate values after SubBytes of round 1) is

non-zero only in bytes 0, 1, 2, 3. Thus, this difference can assume at most 232

distinct values. Since the ShiftRows, the MixColumns, and the AddRoundKey
operations are linear, this implies that the difference X1

2 ⊕ X2
2 can assume at

most 232 different values.
On the other hand, from the “bottom side” we see that the difference X1

3 ⊕
X2

3 is non-zero only in bytes 0, 5, 10, 15. Since the ShiftRows, the MixColumns,
and the AddRoundKey operations are linear, this implies that the difference
X1

2(SB) ⊕X2
2(SB) can assume at most 232 different values.

It is well-known that given the input and output differences of the SubBytes
operation, there is one possibility on average for the actual pair of input/output
values.6 Moreover, this pair of actual values does not depend on the key, and
can be easily found by precomputing the full difference distribution table of the
SubBytes operation. Since for the right pair we consider, there are at most 232 ·
232 = 264 possible pairs of input/output differences of the SubBytes operation in
round 2, there are at most 264 possible values of the full state X1

2 , as asserted.�

It follows from the observation that if we choose the δ-set such that P 0 is a
member of a right pair with respect to this expected-probability differential, we
are assured that the state X0

2 can assume at most 264 possible values. Moreover,
since these values do not depend on the key and can be computed in advance,
this allows to construct the “table of possible multisets” only for these 264 values,
which reduces the size of the table and the time complexity of the preprocessing
phase by a huge factor of 257 as shown below.

Three additional remarks are due:

– Firstly, in order to exploit the expected-probability differential we have
to consider as many as 2113 chosen plain texts, which increases the data

6 Actually, given the input/output differences, with probability of about 1/2 there are
no such pairs, with probability of about 1/2 there are two pairs, and with probability
of about 1/256 there are four pairs.
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complexity of the attack. However, the resultant tradeoff is advantageous
since the data complexity was smaller than the other complexities.

– Secondly, in order to detect the right pair with respect to the differential, the
adversary has to guess several key bytes in the rounds before and after the
differential. However, it turns out that if the differential is chosen such that
the non-zero differences are in the bytes which are active in the δ-set, these
key bytes coincide with the key bytes that should be guessed in the original
Demirci-Selçuk attack. Hence, this does not increase the time complexity of
the online phase of the attack.

– Finally, the total number of possible multisets after the combination with
the differential is not 2184 · 2−64 = 2120, but rather 2127. The reason for this
increase is that in the original attack, the number of multisets is reduced by
a factor of 28 since each δ-set corresponds to 28 different multisets, according
to the possible choices of P 0 (see proof of Observation 4). In the new version
of the attack, we are forced to choose P 0 to be one of the members of the
right pair w.r.t. the differential, and thus each δ-set corresponds to only
two “special” multisets.7 Therefore, the memory complexity and the time
complexity of the preprocessing phase are reduced by a factor of 257 rather
than 264, compared to Observation 4.

4.3 The Key Bridging Technique

In this section we show that the time complexity of the online phase in the
attacks on 8-round AES-192 and AES-256 can be reduced significantly by using
key schedule considerations. While most of these considerations are simple, one
of them is a novel observation that allows the adversary to deduce some subkey
bytes from some other subkey bytes, even though they are separated by many
key mixing steps.

We start with the attack on 8-round AES-192. Recall that in the online phase
of this attack, the adversary has to guess four bytes of the subkey k−1, one
byte of the equivalent subkey u5, four bytes of the equivalent subkey u6, and
the full k7. The exact number of bytes that should be guessed depends on the
choice of the active byte of the δ-set and of the byte in which the multiset is
constructed. It turns out that if the byte to be examined at the end of round 4
is one of the bytes 1, 6, 11, 12, then the number of guessed key bytes is reduced
by three. Indeed, by the key schedule of AES-192, the knowledge of k7 yields the
7 We note that while the table of possible multisets is constructed according to one

member of the right pair, it may occur that in the actual attack, the other member
is chosen as P 0, and thus the multiset does not match the table (even for the right
key guess). A simple solution is to repeat the attack for both members of the right
pair. A more advanced solution, which allows to save the extra factor two in the time
complexity of the attack, is to store the multisets only up to XOR with a constant
value. This can be achieved by a small modification to the preprocessing phase,
consisting of XORing each multiset with the 256 possible byte values and storing in
the table the resulting multiset which is the least in the lexicographic order amongst
the 256 possibilities.
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knowledge of the first two columns of k6 (and thus also of u6) and of the last
column of k5 (and thus also of u5).

If the byte to be checked at the end of round 4 is byte 1, then the bytes to
guess are byte 13 of u5, bytes 3, 6, 9, 12 of u6, and the full subkey k7. However,
once k7 is guessed, bytes 3, 6 of u6 and byte 13 of u5 can be computed from
the key schedule, thus reducing the time complexity of the online phase of the
attack by a factor of 224.

The complexity can be further reduced by another factor of 28 using the
following novel observation:

Observation 6. By the key schedule of AES-192, knowledge of columns 0, 1, 3
of the subkey k7 allows to deduce column 3 of the whitening key k−1 (which is
actually Column 3 of the master key).

The main novelty in this observation is that it exploits the weak key schedule of
AES-192 in order to provide a surprisingly long “bridge” between two subkeys
which are separated by 8 key mixing steps (applied in the reverse direction). In
particular, it makes it possible to compute one byte in the whitening subkey k−1

directly from four bytes in the last subkey k7,8 which saves a factor of 28 in the
time complexity of any attack which has to guess these five subkey bytes. Since
guessing key material in the first and last round is a very common in attack, this
observation can be widely applicable (e.g., it can reduce the time complexity of
the related-key attack on 8-round AES-192 presented in [14] from 2180 to 2172).

Proof . For the detailed proof and reasoning, we refer the reader to the full ver-
sion of the paper. Given W [32],W [33],W [35], it is possible to compute W [27] =
W [32]⊕W [33] and W [23] = W [33]⊕W [35]. From these two values, it is possible
to compute W [3] = W [27]⊕ SB(W [23] ≪ 8)⊕RCON [4]. �
Since in the 8-round attack, one of the subkey bytes guessed by the adversary
is included in the column W [3] (regardless of the active byte in the δ-set), this
reduces the time complexity by another factor of 28. In total, the key schedule
considerations reduce the time complexity of the online phase of the attack on
AES-192 by a factor of 232.

In the attack on 8-round AES-256, key schedule considerations can help the
adversary only a little. By the key schedule, the subkey u6 is independent of the
subkey k7, and thus the only subkey byte the adversary can retrieve is the single
byte of u5. As the novel observation does not hold for AES-256, key schedule
arguments can reduce the time complexity only by a factor of 28.

5 Our New Attack on 7-Round AES

In this section we present our new attack on 7-round AES. For the sake of sim-
plicity, we present here only the basic variant of the attack, which is used later

8 The four bytes of k7 are 0 and 4 (for obtaining byte 0 of W [27]) and bytes 7 and 15
(for obtaining byte 3 of W [23]).
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as part of the 8-round attack. In Appendix A we show how to improve the attack
using alteration of the expected-probability differential and time/memory/data
tradeoffs, such that the resulting time complexity will be lower than the com-
plexity of all previously known attacks on 7-round AES (in all its three flavors).

5.1 The Basic Attack

In this attack, the byte with non-zero difference in the expected-probability
differential is byte 0, both in the input and in the output differences. The active
byte of the δ-set and the byte that is checked in the state X5 are taken to be
byte 0 as well. The attack works similarly if these bytes are replaced by any
other pair of bytes, as long as the correspondence between the differential and
the δ-set is preserved.

The algorithm of the basic attack is as follows:

1. Preprocessing phase: Compute the 2127 possible values of the “special”
multisets defined by Observations 4 and 5, and store them in a hash table.

2. Online phase:
(a) Phase A – Detecting the right pair

i. Ask for the encryption of 281 structures of 232 plaintexts, such that
in each structure, bytes 0, 5, 10, 15 assume the 232 possible values
and the rest of the bytes are constant.

ii. For each structure, store the ciphertexts in a hash table and look for
pairs in with no difference in bytes 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15.9

Since this is a 96-bit filtering, about 248 pairs remain.
iii. For each remaining pair, guess bytes 0, 5, 10, 15 of k−1 and check

whether the difference in the state X1 is non-zero only in byte 0. For
each key guess, about 224 pairs are expected to remain.

iv. For each remaining pair, guess bytes 0, 7, 10, 13 of u6 and check
whether the difference in the state X5 is non-zero only in byte 0.
For each key guess, only one pair is expected to remain.

(b) Phase B – Checking the δ-set
i. For each guess of the eight subkey bytes made in Phase A and for

the corresponding pair, take one of the members of the pair, denote
it by P 0, and find its δ-set using the knowledge of bytes 0, 5, 10, 15
of k−1. (This is done by taking X0

1 , XORing it with the 255 possible
values which are non-zero only in byte 0, and decrypting the 255
obtained values through round 0 using the known subkey bytes. The
resulting plaintexts are the other members of the δ-set.)

ii. Guess byte 0 of u5, and using the knowledge of bytes 0, 7, 10, 13 of u6,
partially decrypt the ciphertexts of the δ-set to obtain the multiset[
X0

5,0 ⊕X0
5,0, X

1
5,0 ⊕X0

5,0, . . . , X
255
5,0 ⊕X0

5,0

]
.

9 In the description of our attack we assume that the last round does not contain
the MixColumns operation. If it does contain it, one can swap the order of the last
round’s MixColumns and AddRoundKey and apply the attack with the respective
changes.
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iii. Check whether the multiset exists in the hash table. If not, discard
the key guess (possibly using auxiliary techniques such as repetition
of the attack with a different output byte).

(c) Exhaustively search the rest of the key: For each remaining key
guess, find the remaining key bytes by exhaustive search.

It is clear that the time complexity of the online phase of the attack is domi-
nated by encrypting 2113 plaintexts, and hence, the data and time complexity
of this part of the attack is 2113. The memory complexity is 2129 128-bit blocks,
since each multiset contains about 512 bits of information and its representa-
tion can be easily compressed into 512 bits of space. The time complexity of
the preprocessing phase of the attack is approximately 2127 · 28 · 2−3 = 2132

encryptions.
In Appendix A we show that the attack can be improved by altering the

expected-probability differential, using several differentials in parallel, and ap-
plying time/memory/data tradeoffs. The resulting complexities lie on the follow-
ing tradeoff curve: Data complexity – 2103+n chosen plaintexts, Time complexity
– 2103+n encryptions, Memory requirement – 2129−n AES blocks, for any n ≥ 0.
Choosing n = 13, all the three complexities are equalized at 2116, which is lower
than the time complexities of all known attacks on 7-round AES, in all its three
flavors (see Table 1).

6 Extension to Attacks on 8-Round AES-192 and
AES-256

In this section we present the first non-marginal attack on 8-round AES-192.
The data complexity of the attack is 2113 chosen plaintexts, the memory re-
quirement is 2129 128-bit blocks, and the time complexity is 2172 encryptions. A
variant of the attack can be applied to 8-round AES-256. The data and mem-
ory requirements remain unchanged, but the time complexity is increased to
2196 encryptions. We present the attack on AES-192; the attack on AES-256 is
similar.

In the attack presented below, we choose the non-zero byte in the output
difference of the expected-probability differential to be byte 1. Accordingly, the
byte to be checked in the δ-set is also chosen as byte 1. This change is required
in order to apply the key schedule considerations presented in Section 4.3. The
only non-zero byte in the input difference of the differential and the only active
byte of the δ-set can be still chosen arbitrarily, as long as they are the same.
Without lose of generality, in the sequel we assume that this byte is byte 0.

A trivial generalization of the 7-round attack presented in Section 5 to eight
rounds is to guess the full k7, and for each guess, decrypt all the ciphertexts
through the last round and apply the 7-round attack. In our attack this approach
leads to an extremely high time complexity. Specifically, the detection of the right
pair would require 2113 · 2128 = 2241 encryptions. Instead, we use the early abort
technique that was described in [12]. We present here the technique only briefly,
and refer the reader to [12] for the full details.
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Table 1. A Comparison of Previous Results with Our New Attacks

Rounds Key Complexity Attack Type & Source
Size Data (CP) Memory Time MinMax�

7 128 2112.2 2112.2 2117.2 MA 2117.2 Impossible Differential [12]
2103+n 2129−n 2103−n 2116 Our Results (Sect. 5)

192 19 · 232 19 · 232 2155 2155 SQUARE [10]
232 280 2140 2140 Collision [11]

246+n 2192−n 294+n 2143 Meet in the Middle [7]
2113.8 2113.8 2118.8 MA 2118.8 Impossible Differential [12]
2103+n 2129−n 2103+n 2116 Our Results (Sect 5)

256 21 · 232 21 · 232 2172 2172 SQUARE [10]
232 280 2140 2140 Collision [11]

234+n 2204−n 282+n 2143 Meet in the Middle [7]
2113.8 2113.8 2118.8 MA 2118.8 Impossible Differential [12]
2103+n 2129−n 2103+n 2116 Our Results (Sect 5)

8 192 2127.997 2128 2188 2188 SQUARE [10]
2113+n 2129−n 2172+n 2172 Our Results (Sect. 6)

256 234+n 2206−n 2205.6+n 2205.8 Meet in the Middle [7]†

234+max(n−24,0) 2208−n 2206+n MA 2208 Meet in the Middle [8]‡

289.1 297 2229.7 MA 2229.7 Impossible Differential [12]
2127.997 2128 2204 2204 SQUARE [10]
2113+n 2129−n 2196+n 2196 Our Results (Sect. 6)

� — the lowest time complexity which exceeds the other complexities via the tradeoff
option (if available).
† — [7] estimates the cost of partial encryption as 2−8 of an encryption. As there are
at least six columns which take part in the partial encryption/decryption, we believe that
2−2.4 is a more accurate estimate.
‡ — The complexity is higher than claimed in [8] due to a flaw in the analysis.
Time complexity measures the time in encryption units unless mentioned otherwise.
Memory complexity is measured in AES blocks.
CP — Chosen plaintext, MA — Memory Accesses.

In the following, the adversary examines each of the 2113 · 231 = 2144 pairs
separately, and her goal is to detect the subkey candidates for which that pair
satisfies the expected-probability differential.

Note that if (P 1, P 2) is a right pair, then the corresponding intermediate states
(X1

6(SR), X
2
6(SR)) have non-zero difference only in bytes 3, 6, 9, 12. Hence, in each

column of X6(SR) there are only 28 possible differences. Since the MixColumns
and AddRoundKey operations are linear, this implies that in each column of
X7 there are only 28 possible differences, and thus only 232 · 28 = 240 possible
pairs of actual values. In the technique presented in [12], the adversary considers
these 240 pairs in advance, encrypts them through round 7, and stores the actual
values before the last AddRoundKey operation in a hash table, sorted by the
output difference. In the online phase of the attack, for each examined pair, the
adversary considers each shifted column (e.g., bytes 0, 7, 10, 13) independently,
and accesses the hash table in the row corresponding to the ciphertext difference.
It is expected that 240 · 2−32 = 28 values appear in each row. Since the table
gives the actual values before the AddRoundKey operation, and the ciphertexts
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are the values after that operation, each of the pairs in the table suggests one
value for the 32-bit subkey corresponding to that shifted column.

Therefore, for each examined pair, and for each shifted column, the adversary
obtains a list of 28 candidates for the 32-bit subkey corresponding to that column.
In a basic variant of the attack, the adversary aggregates these suggestions to 232

suggestions for the full k7, and for each suggestion, she decrypts the ciphertext
pair through round 7. Then she uses a similar precomputed table for round 6 to
get a list of 28 possible values of bytes 3, 6, 9, 12 of u6. For each such value, the
adversary checks whether the relations between bytes 3, 6 of u6 and the subkey
k7 described in Section 4.3 hold. If not, the subkey guess is discarded. Since
this is a 16-bit filtering, the adversary is left with 224 candidates for the full k7

and bytes 3, 6, 9, 12 of u6. Finally, using a precomputed table also in round 0,
the adversary obtains a list of 28 possible values of bytes 0, 5, 10, 15 of k−1. For
each such value, the adversary checks whether the relation between byte 15 of
k−1 and the subkey k7 described in Section 4.3 holds. If not, the subkey guess is
discarded. Since this is an 8-bit filtering, the adversary is left with 224 candidates
for the full k7, bytes 3, 6, 9, 12 of u6, and bytes 0, 5, 10, 15 of k−1. For each of these
candidates, (P 1, P 2) is a right pair w.r.t. the expected-probability differential,
and the second-phase of the attack can be applied.

The time complexity of this procedure is 240 simple operations for each ex-
amined pair, or 2144 · 240 · 2−8 = 2176 encryptions in total.

The time complexity can be slightly reduced by using a more sophisticated
precomputed table in order to check the consistency between bytes 3, 6 of u6

and the subkey k7. The table takes bytes 3,6 of MC−1(X6) in both pairs, along
with bytes 2,3,5,6 of u7, and returns the consistent values for bytes 3,6 of u6,
if there are any. The precomputation is done by trying all possible candidates
for the pair of bytes for MC−1(X6) along with the corresponding bytes of u6,
to see if the decrypted values satisfy the linear relation on the differences before
the SubBytes operation of round 5. If this is the case, the entry corresponding
to the MC−1(X6) values and all subkeys of u7 which satisfy the key relation is
stored with the respective u6 bytes. We note that for each key and each pair,
there is probability of 2−8 that the condition is satisfied, and thus, only 256 of
the entries in the table are nonempty.

At the second part of the online phase of the attack, performed for each of
the 2144 pairs (P 1, P 2) and each of the 224 subkeys corresponding to the pair,
the adversary constructs a δ-set and checks whether the corresponding multiset
appears in the table. Note that while in the 7-round attack this phase requires
guessing an additional subkey byte (which is byte 13 of u5), in this attack that
subkey byte can be derived from the subkey k7. The time complexity of the
second part is 2168 · 28 · 2−4 = 2172 encryptions.

Therefore, the overall memory requirement of the attack is 2129 128-bit blocks
(as in the basic version of the 7-round attack), the data complexity is 2113 chosen
plaintexts, and the time complexity is 2172 encryptions. These complexities im-
prove significantly over the only previously known attack on AES-192, which is a
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SQUARE attack [10] requiring almost the entire codebook and time complexity
of 2188 encryptions.

7 Summary

In this paper we introduced three new cryptanalytic techniques which can be
used to improve the best known complexities of all the known attacks on 7 and
8 round versions of AES, as detailed in Table 1. In particular, we describe the
first real attack on 8-round AES-192 which does not use the full codebook in
order to marginally improve the time complexity of exhaustive search. However,
all our attacks have impractical complexities, and thus they do not endanger the
security of any fielded system.
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A Improvements of the Attack on 7-Round AES

A.1 Altering the Expected-Probability Differential

Our first improvement reduces the data and time complexities of the attack by
a factor of 28 without affecting the memory requirements.

We observe that the time complexity of most components of the attack is
significantly lower than the time required to encrypt the plaintexts. Therefore, a
tradeoff that would decrease the data complexity, even at the price of increasing
the time complexity of the other parts of the attack, may reduce its overall
complexity.

Such tradeoff is achieved by slightly modifying the expected-probability differ-
ential used in the attack. Instead of requiring the input difference to be non-zero
only in byte 0, we can allow the difference to be non-zero also in one of the bytes
5, 10, 15. These bytes are chosen such that the number of possible differences in
the state X2 is not increased, and thus the memory complexity is preserved.

This change reduces the data complexity of the attack to 2105, since it allows
the adversary to use structures of size 216 that contain 231 pairs with the input
difference of the differential. On the other hand, the change requires to guess
four additional bytes of k−1 in order to detect the right pair (if the additional
byte is byte 5, then the additional guessed bytes are 3, 4, 9, 14). As a result, the
number of pairs remaining after the first filtering step of the attack is increased
to 272 (instead of 248). For each such pair, there are 224 possible values of 12
subkey bytes (8 bytes of k−1 and 4 bytes of u6) for which that pair satisfies the
expected-probability differential. As in the 8-round attack, these values can be
found with time complexity of 224 table look-ups for each pair, using the early
abort technique. Thus, the time complexity of Phase A of the modified attack
is 296 table look-ups.

In Phase B, we observe that since the value of bytes 3, 4, 9, 14 of k−1 is irrel-
evant to the examination of the δ-set, the phase has to be performed only 216

times for each of the 272 pairs (instead of 224 times). Thus, its time complexity
is 272 ·216 ·28 ·28 ·2−3 = 2101 encryptions. Therefore, the overall time complexity
of the attack is still dominated by the encryption of the plaintexts, and thus
both the data and the time complexity of the attack are reduced to 2105.

A.2 Using Several Differentials in Parallel

Our second improvement further reduces the data and time complexities by a
factor of 5 without affecting the memory requirements.
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We observe that the data complexity can be reduced by using several differen-
tials in parallel. Since there is no specialty in the choice of the active byte at the
input and the output of the original differential, there are 256 possible differen-
tials that can be used in parallel. In the basic 7-round attack this improvement
leads to a data/memory tradeoff: The attack requires the “active” bytes of the
δ-set to correspond to the non-zero difference bytes of the differential, and alter-
ing the active bytes of the δ-set requires preparing a different precomputed table
for each choice of the bytes. As a result, the data complexity can be reduced
by factor of up to 256, but the memory requirement is increased by the same
factor. Since the memory complexity is the dominant one in the 7-round attack,
this tradeoff is not profitable.

However, in the modified attack the data complexity can be reduced by a
small factor without affecting the memory complexity. We observe that since
the additional “active” byte in the expected-probability differential is not used
in the analysis of the δ-set, it can be chosen without affecting the memory
complexity. There are six possible ways to choose this byte (bytes 5, 10, 15 in the
input and bytes 1, 2, 3 in the output), and five of them can be used in parallel
with the same set of chosen plaintexts.10 This reduces the data complexity of
the attack by a factor of 5 without affecting the memory complexity. Since the
time complexity is dominated by encrypting the plaintexts, it is also reduced by
a factor of 5. Therefore, the data and time complexities of the modified attack
are smaller than 2103. In the sequel, we assume for the sake of simplicity that
these complexities are equal to 2103.

A.3 Time/Memory/Data Tradeoffs

We conclude with a fine tuning of the complexities using a simple tradeoff be-
tween data, time, and memory as proposed in [7]. In the preprocessing phase,
we precompute the table only for some of the values, and then for each key
guess, we perform the attack for several δ-sets in order to compensate for the
missing part of the table. For each n ≥ 0, this tradeoff decreases the memory
complexity and the time complexity of the preprocessing phase by a factor of 2n,
and increases the data complexity and the online time complexity by the same
factor 2n. The resulting complexities lie on the following tradeoff curve: Data
complexity – 2103+n chosen plaintexts, Time complexity – 2103+n encryptions,
Memory requirement – 2129−n AES blocks, for any n ≥ 0. Choosing n = 13,
all the three complexities are equalized at 2116, which is lower than the time
complexities of all known attacks on 7-round AES, in all its three flavors.

10 In order to do this, the adversary considers structures of size 296 plaintexts each,
in which bytes 1, 6, 11, 12 are constant and the other bytes take all the 296 possible
values. This allows to use bytes 5 and 10 as the additional active byte in the input
of the differential.
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Abstract. We introduce and formally define polynomial commitment
schemes, and provide two efficient constructions. A polynomial com-
mitment scheme allows a committer to commit to a polynomial with a
short string that can be used by a verifier to confirm claimed evaluations
of the committed polynomial. Although the homomorphic commitment
schemes in the literature can be used to achieve this goal, the sizes of
their commitments are linear in the degree of the committed polyno-
mial. On the other hand, polynomial commitments in our schemes are
of constant size (single elements). The overhead of opening a commit-
ment is also constant; even opening multiple evaluations requires only
a constant amount of communication overhead. Therefore, our schemes
are useful tools to reduce the communication cost in cryptographic pro-
tocols. On that front, we apply our polynomial commitment schemes to
four problems in cryptography: verifiable secret sharing, zero-knowledge
sets, credentials and content extraction signatures.

Keywords: Polynomial Commitments, Verifiable Secret Sharing, Zero-
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1 Introduction

Commitment schemes are fundamental components of many cryptographic pro-
tocols. A commitment scheme allows a committer to publish a value, called the
commitment, which binds her to a message (binding) without revealing it (hid-
ing). Later, she may open the commitment and reveal the committed message to
a verifier, who can check that the message is consistent with the commitment.

We review three well-known ways a committer can commit to a message. Let
g and h be two random generators of a group G of prime order p. The committer
can commit to a message m ∈R Zp simply as C〈g〉(m) = gm. This scheme is
unconditionally binding, and computationally hiding under the assumption that
the discrete logarithm (DL) problem is hard in G. The second scheme, known as
a Pedersen commitment [31], is of the form C〈g,h〉(m, r) = gmhr, where r ∈R Zp.
Pedersen commitments are unconditionally hiding, and computationally binding
� An extended version of this paper is available [24]. This research was completed at
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under the DL assumption. Third, the committer may publish H(m) or H(m||r)
for any one-way function H. In practice a collision-resistant hash function is
often used. A survey by Damg̊ard [16] covers commitment schemes in detail.

Now consider committing to a polynomial φ(x) ∈R Zp[x], a problem mo-
tivated by verifiable secret sharing. Suppose φ(x) has degree t and coefficients
φ0, . . . , φt. We could commit to the string (φ0|φ1| . . . |φt), or to some other unam-
biguous string representation of φ(x). Based on the commitment function used,
this option may have a constant size commitment which uniquely determines
φ(x). However, it limits the options for opening the commitment; opening must
reveal the entire polynomial. This is not always suitable for cryptographic appli-
cations, most notably secret sharing, that require evaluations of the polynomial
(i.e., φ(i) for i ∈ Zp) be revealed to different parties or at different points in the
protocol without revealing the entire polynomial. One solution is to commit to
the coefficients, e.g., C = (gφ0 , . . . , gφt), which allows one to easily confirm that
an opening φ(i) for index i is consistent with C. However, this has the drawback
that the size of the commitment is now t+ 1 elements of G.

Our Contributions. The main contribution of this paper is an efficient scheme
to commit to polynomials φ(x) ∈ Zp[x] over a bilinear pairing group, called
PolyCommitDL, with the following features. The size of the commitment is con-
stant, a single group element. The committer can efficiently open the commit-
ment to any correct evaluation φ(i) along with an element called the witness,
which allows a verifier to confirm that φ(i) is indeed the evaluation at i of the
polynomial φ(x). The construction is based on an algebraic property of polyno-
mials φ(x) ∈ Zp[x] that (x−i) perfectly divides the polynomial φ(x)−φ(i) for any
i ∈ Zp. The hiding property of the scheme is based on the DL assumption. The
binding property of the main scheme is proven under the SDH assumption [6].
Using a technique similar to Pedersen commitments, we also define a stronger
commitment scheme PolyCommitPed, which achieves unconditional hiding and
computational binding under the SDH assumption.

When a set of evaluations {φ(i) : i ∈ S} is opened at the same time, what
we term batch opening, the overhead still remains a single witness element. Se-
curity of batch opening assumes that the bilinear version of the SDH (BSDH)
problem [21] is hard. Further, our schemes are homomorphic and easily random-
izable. As in other work on reducing communication costs (e.g., [8]) the global
system parameters are somewhat large (O(t) in our case). Reducing communi-
cation complexity (i.e., the number of bits transferred ) is our goal, and to this
end we apply the PolyCommit schemes to the following four applications.

First we apply the PolyCommit schemes to the Feldman verifiable secret shar-
ing (VSS) protocol [18]. The new VSS protocol requires a broadcast with size
O(1) as compared to O(n) required in the best known protocols in the literature
(where n is the number of participants) [18, 31].

Second, we define and use the PolyCommit schemes to construct a relaxed
type of zero-knowledge set (ZKS) [27]. A ZKS is a commitment to a set S, such
that the committer may prove that i ∈ S, or i �∈ S without revealing additional
information about S, not even |S|. We define nearly zero-knowledge sets as ZKS
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that do not attempt to hide the size of the committed set. This is sufficient
for most applications of zero-knowledge sets, and our construction has constant
size proofs of (non)membership as compared to the best known constructions of
ZKS that require non-constant communication [12, 25]. We apply the same relax-
ation to elementary zero-knowledge databases (ZK-EDB), and achieve constant
communication there as well.

In the next application we leverage the efficiency of batch opening, by using
the PolyCommit schemes in an efficient general construction of a content ex-
traction signature (CES) scheme [35]. A CES scheme allows a signature holder
to extract signatures for subsections of the signed message. The general con-
struction, when instantiated with our commitment scheme and a general secure
signature scheme, is as efficient as the best known CES scheme, which relies on
specific properties of the RSA signature scheme.

In the special case when the CES scheme is used to authenticate a list of
attributes, the result is a digital credential with an efficient selective show op-
eration. A selective show allows the credential holder to reveal only a subset of
the attributes, with proof that the revealed attributes are signed. More precisely,
the communication cost of revealing k attributes in a credential with t attributes
is O(k), while known credential systems must communicate O(t) bits. We also
show how to efficiently prove knowledge of committed values, allowing predicates
on attributes to be proven in zero-knowledge (also with complexity O(k)).

Outline. In the rest of this section, we compare our contributions with related
work (work related to each application is included in the respective subsection).
In §2, we cover some preliminary material and describe our cryptographic as-
sumptions. §3 defines polynomial commitments and presents our constructions.
§4 is devoted to applications while §5 presents some open problems. Due to space
constraints, all security proofs are included in the extended version [24].

Related Work. Similar to our scheme, a Merkle hash tree [26] allows many
values to be committed to with a single element. Here, the leaves of a binary
tree are the messages. Each non-leaf node has the value H(L||R) where L and R
are its children, and H is a collision-resistant hash function. One can open the
commitment to an individual message by revealing the message, and a path up
the tree to the root. The opening has size O(log n) as compared to O(1) in our
scheme, where n is the total number of (leaf) elements.

Chase et al. [13] introduce mercurial commitments to construct ZKS, which
eventually led to the commitment schemes for committing to a vector of mes-
sages [12, 25]. Catalano et al. [12], and Libert and Yung [25] construct vector
commitment schemes under the name trapdoor t-mercurial commitments. The
security of both of these commitment schemes is based on SDH-like assumptions
and their system parameters have size O(t), as in our scheme. In [12], all mes-
sages must be revealed when opening, while in [25], the committer may open
a commitment to a single message. However, in [25], it is not possible to have
arbitrary indices for committed messages since each of the t committed messages
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is associated with a value in the system parameters gαj

for j ∈ [1, t]. Our scheme
have no such restriction on the domain for the indices, offering greater flexibility.

Another related primitive is an accumulator [3], which aggregates a large set
of input elements into a single element and can provide a witness as evidence that
an element is included in the accumulator. Further, it is possible to use a witness
to prove (in zero-knowledge) that the element is included in the accumulator.
Camenisch and Lysyanskaya [10] extend the concept to dynamic accumulators,
which support efficient updates. Au et al. [1] observe that a paring-based accu-
mulator by Nguyen [29] is a bounded accumulator, i.e., only a fixed number of
elements can be accumulated. They then go on to use bounded accumulators
to construct a compact e-cash scheme [2]. However, the accumulated elements
in this scheme are not ordered, which makes it inappropriate for accumulating
polynomials. While our PolyCommit schemes provide the same features as non-
dynamic accumulators, they have additional features (hiding and batch opening)
and are more general since we can commit to a polynomial instead of a set.

2 Preliminaries

In what follows, all adversaries are probabilistic polynomial time (PPT) algo-
rithms with respect to a security parameter κ expect if stated otherwise. Further,
they are static and they have to choose their nodes before protocol instances
start. A function ε(·) : N → R

+ is called negligible if for all c > 0 there exists a
k0 such that ε(k) < 1/kc for all k > k0. In the rest of the paper, ε(·) will always
denote a negligible function. We use the notation e : G × G → GT to denote a
symmetric (type 1) bilinear pairing in groups of prime order p ≥ 22κ. The choice
of type 1 pairings was made to simplify presentation, however, our constructions
can easily be modified to work with pairings of types 2 and 3 as well. For details
of bilinear pairings, see the extended version of the paper.

We use the discrete logarithm (DL) assumption [26, Chap. 3], and the t-strong
Diffie-Hellman (t-SDH) assumption [6] to prove the security of the PolyCommitDL

and PolyCommitPed schemes. Security of two additional properties of the schemes
require a generalization of the t-Diffie-Hellman inversion (t-DHI) assumption [28,
5], and the bilinear version of t-SDH, the t-BSDH assumption [21].

Definition 1. Discrete logarithm (DL) Assumption. Given a generator
g of G

∗, where G
∗ = G or GT , and a ∈R Z

∗
p, for every adversary ADL,

Pr[ADL(g, ga) = a] = ε(κ).

Mitsunari, Sakai and Kasahara [28] introduced the weak Diffie-Hellman as-
sumption, which was renamed the t-DHI assumption by Boneh and Boyen [5] as
this assumption is stronger than the Diffie-Hellman assumption, especially for
large values of t. See Cheon [14] for a security analysis.

The t-DHI problem is, on input 〈g, gα, . . . , gαt〉 ∈ G
t+1 to output g1/α, or

equivalently (see [7]), gαt+1
. In this paper, we use a generalization of the t-DHI

assumption, where A has to output a pair 〈φ(x), gφ(α)〉 ∈ Zp[x] × G such that
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2κ > deg(φ) > t. We call this assumption the t-polynomial Diffie-Hellman (t-
polyDH) assumption. This assumption was implicitly made by [1, 2] to support
their claim that the accumulator of [29] is bounded.

Definition 2. t-polynomial Diffie-Hellman (t-polyDH) Assumption. Let
α ∈R Z

∗
p. Given as input a (t+1)-tuple 〈g, gα, . . . , gαt〉 ∈ G

t+1, for every adver-
sary At-polyDH, the probability Pr[A

t-polyDH(g, gα, . . . , gαt

) = 〈φ(x), gφ(α)〉] =
ε(κ) for any freely chosen φ(x) ∈ Zp[x] such that 2κ > deg(φ) > t.

Boneh and Boyen [6] defined the t-SDH assumption that is related to but stronger
than the t-DHI assumption and has exponentially many non-trivially different
solutions, all of which are acceptable.

Definition 3. t-Strong Diffie-Hellman (t-SDH) Assumption. Let α ∈R

Z
∗
p. Given as input a (t + 1)-tuple 〈g, gα, . . . , gαt〉 ∈ G

t+1, for every adversary
At-SDH, the probability Pr[At-SDH(g, gα, . . . , gαt

) = 〈c, g 1
α+c 〉] = ε(κ) for any

value of c ∈ Zp\{−α}.

Security of the batch opening extension of our commitment schemes requires
the bilinear version of the t-SDH assumption, the t-BSDH assumption [21].

Definition 4. t-Bilinear Strong Diffie-Hellman (t-BSDH) Assumption.
Let α ∈R Z

∗
p. Given as input a (t+1)-tuple 〈g, gα, . . . , gαt〉 ∈ G

t+1, for every ad-
versary At-BSDH, the probability Pr[At-BSDH(g, gα, . . . , gαt

) = 〈c, e(g, g) 1
α+c 〉] =

ε(κ) for any value of c ∈ Zp\{−α}.

A similar assumption was also made in [22], but with a different solution:
〈c, e(g, h)1/(α+c)〉, where h ∈R G is an additional system parameter.

3 Polynomial Commitments

In this section we provide a formal definition of a polynomial commitment
scheme, followed by two constructions. In the first construction the commit-
ments are computationally hiding, while in the second they are unconditionally
hiding. We also discuss some useful features of our constructions.

3.1 Definition

A polynomial commitment scheme consists of six algorithms: Setup, Commit,
Open, VerifyPoly, CreateWitness, and VerifyEval.

Note that we bound deg(φ) by 2κ as evaluations can be found for polynomials with
higher degrees in PPT using number theoretic techniques (e.g., for φ(x) = xp−1,
gφ(α) = g for any α ∈ Z

∗
p). In practice, deg(φ)� 2κ.

1
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Setup(1κ, t) generates an appropriate algebraic structure G and a commitment
public-private key pair 〈PK,SK〉 to commit to a polynomial of degree ≤ t.
For simplicity, we add G to the public key PK. Setup is run by a trusted or
distributed authority. Note that SK is not required in the rest of the scheme.

Commit(PK, φ(x)) outputs a commitment C to a polynomial φ(x) for the public
key PK, and some associated decommitment information d. (In some con-
structions, d is null.)

Open(PK, C, φ(x), d) outputs the polynomial φ(x) used while creating the com-
mitment, with decommitment information d.

VerifyPoly(PK, C, φ(x), d) verifies that C is a commitment to φ(x), created with
decommitment information d. If so it outputs 1, otherwise it outputs 0.

CreateWitness(PK, φ(x), i, d) outputs 〈i, φ(i), wi〉, where wi is a witness for the
evaluation φ(i) of φ(x) at the index i and d is the decommitment information.

VerifyEval(PK, C, i, φ(i), wi) verifies that φ(i) is indeed the evaluation at the
index i of the polynomial committed in C. If so it outputs 1, otherwise it
outputs 0.

Note that it is possible to commit to a list of messages (m1, . . . ,mt+1) by
associating each to a unique key (index) k1, . . . , kt+1 in Zp, and interpolating to
find φ(x) ∈ Zp[x], such that deg(φ) ≤ t and φ(kj) = mj .

In terms of security, a malicious committer should not be able to convinc-
ingly present two different values as φ(i) with respect to C. Further, until more
than deg(φ) points are revealed, the polynomial should remain hidden. Next, we
formally define the security and correctness of a polynomial commitment.

Definition 5. (Setup, Commit, Open, VerifyPoly, CreateWitness, and VerifyEval)
is a secure polynomial commitment scheme if it satisfies the following properties.

Correctness. Let PK← Setup(1κ) and C ← Commit(PK, φ(x)). For a commit-
ment C output by Commit(PK, φ(x)), and all φ(x) ∈ Zp[x],
– the output of Open(PK, C, φ(x)) is successfully verified by VerifyPoly(PK, C,
φ(x)), and,

– any 〈i, φ(i), wi〉 output by CreateWitness(PK, φ(x), i) is successfully ver-
ified by VerifyEval(PK, C, i, φ(i), wi).

Polynomial Binding. For all adversaries A:

Pr

0

@
PK← Setup(1κ), (C, 〈φ(x), φ′(x)〉)← A(PK) :

VerifyPoly(PK, C, φ(x)) = 1 ∧
VerifyPoly(PK, C, φ′(x)) = 1 ∧ φ(x) �= φ′(x)

1

A = ε(κ).

Evaluation Binding. For all adversaries A:

Pr

0

@
PK← Setup(1κ), (C, 〈i, φ(i), wi〉, 〈i, φ(i)′, w′

i〉)← A(PK) :
VerifyEval(PK, C, i, φ(i), wi) = 1 ∧

VerifyEval(PK, C, i, φ(i)′, w′
i) = 1 ∧ φ(i) �= φ(i)′

1

A = ε(κ).

Hiding. Given 〈PK, C〉 and {〈ij , φ(ij), wφij
〉 : j ∈ [1,deg(φ)]} for a polynomial

φ(x) ∈R Zp[x] such that VerifyEval(PK, C, ij , φ(ij), wφij
) = 1 for each j,
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– no adversary A can determine φ(̂i) with non-negligible probability for
any unqueried index î (computational hiding) or

– no computationally unbounded adversary Â has any information about
φ(̂i) for any unqueried index î (unconditional hiding).

3.2 Construction: PolyCommitDL

We now provide an efficient construction of a polynomial commitment scheme.
PolyCommitDL is based on an algebraic property of polynomials φ(x) ∈ Zp[x]:
(x− i) perfectly divides the polynomial φ(x)− φ(i) for i ∈ Zp. In the literature,
Herzberg et al. [23] have used this technique in their share recovery scheme.

Setup(1κ, t) computes two groups G, and GT of prime order p (providing κ-bit
security) such that there exists a symmetric bilinear pairing e : G × G →
GT and for which the t-SDH assumption holds. We denote the generated
bilinear pairing group as G = 〈e,G,Gt〉. Choose a generator g ∈R G. Let
α ∈R Z

∗
p be SK, generated by a (possibly distributed) trusted authority.

Setup also generates a (t + 1)-tuple 〈g, gα, . . . , gαt〉 ∈ G
t+1 and outputs

PK = 〈G, g, gα, . . . , gαt〉. SK is not required in the rest of the construction.

Commit(PK, φ(x)) computes the commitment C = gφ(α) ∈ G for polynomial
φ(x) ∈ Zp[X] of degree t or less. For φ(x) =

∑deg(φ)
j=0 φjx

j , it outputs C =∏deg(φ)
j=0 (gαj

)φj as the commitment to φ(x).

Open(PK, C, φ(x)) outputs the committed polynomial φ(x).

VerifyPoly(PK, C, φ(x)) verifies that C ?= gφ(α). If C =
∏deg(φ)

j=0 (gαj

)φj for φ(x) =∑deg(φ)
j=0 φjx

j the algorithm outputs 1, else it outputs 0. Note that this only
works when deg(φ) ≤ t.

CreateWitness(PK, φ(x), i) computes ψi(x) = φ(x)−φ(i)
(x−i) and outputs 〈i, φ(i), wi〉,

where the witness wi = gψi(α) is computed in a manner similar to C, above.
VerifyEval(PK, C, i, φ(i), wi) verifies that φ(i) is the evaluation at the index i of

the polynomial committed to by C. If e(C, g) ?= e(wi, g
α/gi)e(g, g)φ(i), the

algorithm outputs 1, else it outputs 0.

VerifyEval is correct because

e(wi, g
α/gi)e(g, g)φ(i) = e(gψi(α), g(α−i))e(g, g)φ(i) = e(g, g)ψi(α)(α−i)+φ(i)

= e(g, g)φ(α) = e(C, g) as φ(x) = ψi(x)(x− i) + φ(i)

Theorem 1. PolyCommitDL is a secure polynomial commitment scheme (as de-
fined in Definition 5) provided the DL and t-SDH assumptions hold in G.

A proof is provided in the extended version. The proof of the binding property
uses the t-SDH assumption, while the proof of the hiding property uses the DL
assumption.
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3.3 Construction: PolyCommitPed

PolyCommitPed is also based on the same algebraic property of φ(x) ∈ Zp[x]:
(x− i) perfectly divides the polynomial φ(x)− φ(i) for i ∈ Zp; however, it uses
an additional random polynomial φ̂(x) to achieve unconditional hiding.

The PolyCommitDL scheme is homomorphic in nature. Given PolyCommitDL

commitments Cφ1 and Cφ2 associated with polynomials φ1(x) and φ2(x) re-
spectively, one can compute the commitment Cφ for φ(x) = φ1(x) + φ2(x) as
Cφ = Cφ1Cφ2 . Further, given two witness-tuples 〈i, φ1(i), wφ1 i〉 and 〈i, φ2(i), wφ2 i〉
at index i associated with polynomials φ1(x) and φ2(x) respectively, the corre-
sponding tuple for polynomial φ(x) can be given as 〈i, φ1(i) + φ2(i), wφ1 iwφ2 i〉.
The PolyCommitPed construction uses the homomorphic property to combine
two commitments (one to φ(x), one to φ̂(x)), although each commitment uses a
different generator. Next, we define our PolyCommitPed construction.
Setup(1κ, t) computes two groups G and GT of prime order p (providing κ-bit

security) such that there exists a symmetric bilinear pairing e : G×G→ GT

and for which the t-SDH assumption holds. We denote the generated bilinear
pairing group as G = 〈e,G,Gt〉. Choose two generators g, h ∈R G. Let α ∈R

Z
∗
p be SK, generated by a (possibly distributed) trusted authority. Setup also

generates a (2t+2)-tuple 〈g, gα, . . . , gαt

, h, hα, . . . , hαt〉 ∈ G
2t+2 and outputs

PK = 〈G, g, gα, . . . , gαt

, h, hα, . . . , hαt〉. Similar to PolyCommitDL, SK is not
required by the other algorithms of the commitment scheme.

Commit(PK, φ(x)) chooses φ̂(x) ∈R Zp[x] of degree t and computes the com-
mitment C = gφ(α)hφ̂(α) ∈ G for the polynomial φ(x) ∈ Zp[X] of degree

t or less. For φ(x) =
∑deg(φ)

j=0 φjx
j and φ̂(x) =

∑deg(φ̂)
j=0 φ̂jx

j , it outputs

C =
∏deg(φ)

j=0 (gαj

)φj
∏deg(φ̂)

j=0 (hαj

)φ̂j as the commitment to φ(x).
Open(PK, C, φ(x), φ̂(x)) outputs the committed polynomials φ(x) and φ̂(x).
VerifyPoly(PK, C, φ(x), φ̂(x)) verifies that C ?= gφ(α)hφ̂(α). If C =

∏deg(φ)
j=0 (gαj

)φj

∏deg(φ̂)
j=0 (hαj

)φ̂j for φ(x) =
∑deg(φ)

j=0 φjx
j and φ̂(x) =

∑deg(φ̂)
j=0 φ̂jx

j , it outputs
1, else it outputs 0. This only works when both deg(φ) and deg(φ̂) ≤ t.

CreateWitness(PK, φ(x), φ̂(x), i) calculates ψi(x) = φ(x)−φ(i)
(x−i) and ψ̂i(x) =

φ̂(x)−φ̂(i)
(x−i) , and outputs 〈i, φ(i), φ̂(i), wi〉. Here, the witness wi = gψi(α)hψ̂i(α).

VerifyEval(PK, C, i, φ(i), φ̂(i), wi) verifies that φ(i) is the evaluation at the index
i of the polynomial committed to by C. If e(C, g) ?= e(wi, g

α/gi)e(gφ(i)hφ̂(i), g),
the algorithm outputs 1, else it outputs 0.

In the extended version we show PolyCommitPed is correct and prove the
following security theorem.

Theorem 2. PolyCommitPed is a secure polynomial commitment scheme (as de-
fined in Definition 5) provided the t-SDH assumption holds in G.
The proof of the binding property is based on the t-SDH assumption, while the
hiding property is unconditional.

184 A. Kate, G.M. Zaverucha, and I. Goldberg 



3.4 Features

We next discuss some important features of PolyCommitDL and PolyCommitPed.

Homomorphism. In §3.3, we describe that the PolyCommitDL scheme is (ad-
ditive) homomorphic in nature. In the full version we show that PolyCommitPed

is also homomorphic.

Unconditional Hiding for PolyCommitDL. When t′ < deg(φ) evaluations
have been revealed, PolyCommitDL unconditionally hides any unrevealed evalu-
ation, since the t′ + 1 evaluations 〈α, φ(α)〉, 〈i1, φ(i1)〉, . . . , 〈it′ , φ(it′)〉 are insuf-
ficient to interpolate a polynomial of degree > t′. Note that the evaluation pair
〈α, φ(α)〉 is available in an exponentiated form 〈gα, gφ(α)〉.
Indistinguishability of Commitments. When a polynomial commitment
scheme is randomized, an unbounded adversary cannot distinguish commitments
to chosen sets of key-value pairs. When committing to a set of key-value pairs
(〈k1,m1〉, . . . , 〈kt+1,mt+1〉), if indistinguishable PolyCommitDL commitments are
required, it is sufficient to set one mi to a random value. On the other hand, the
PolyCommitPed scheme is inherently randomized and can be used directly.

Trapdoor Commitment. The constructions are also trapdoor commitment
schemes, where SK = α is the trapdoor. Refer to the extended version for details.

Batch Opening. In the case when multiple evaluations in a PolyCommitDL

commitment must be opened, the opening may be batched to reduce the com-
putation and the communication of both the committer and the verifier; i.e.,
opening multiple evaluations at the same time is cheaper than opening each of
those evaluations individually using CreateWitness and VerifyEval. Let B ⊂ Zp,
|B| < t be a set of indices to be opened, for a commitment C = gφ(α) cre-
ated using PolyCommitDL. The witness for the values φ(i), for all i ∈ B, is
computed as wB = gψB(α) for the polynomial ψB(x) = φ(x)−r(x)Q

i∈B(x−i) where r(x)
is the remainder of the polynomial division φ(x)/(

∏
i∈B(x − i)); i.e., φ(x) =

ψB(x)
(∏

i∈B(x− i)) + r(x) and for i ∈ B, φ(i) = r(i). We define two algo-
rithms for batch opening. The algorithm CreateWitnessBatch(PK, φ(x), B) out-
puts 〈B, r(x), wB〉 and the algorithm VerifyEvalBatch(PK, C, B, r(x), wB) out-
puts 1 if e(C, g) ?= e(g

Q
i∈B(α−i), wB)e(g, gr(α)) holds, deg r(x) = |B|, and r(i) =

φ(i) for all i ∈ B.
In terms of security, since commitments are formed in the same way as the

Commit algorithm of PolyCommitDL and CreateWitnessBatch reveals no more
information than running the CreateWitness algorithm of PolyCommitDL for all
batch elements individually, the hiding property (Theorem 1) still holds. For
binding, an adversary should not be able to open a batch B containing an index
i, in a manner that conflicts with the value φ(i) output in an individual opening
of index i. Formally, we say that batch opening is binding if the following holds:

Pr

0

@
PK← Setup(1κ, t), (C, 〈B,wB , r(x)〉, 〈i ∈ B,wi, φ(i)〉)← A(PK) :

VerifyEvalBatch(PK, C, B,wB , r(x)) = 1 ∧
VerifyEval(PK, C, i, wi, φ(i)) = 1 ∧ φ(i) �= r(i)

1

A = ε(κ).

 Constant-Size Commitments to Polynomials and Their Applications 185 



Theorem 3. The construction of CreateWitnessBatch, VerifyEvalBatch in §3.4
is binding provided the t-BSDH assumption holds in G.

This theorem is proven in the full version. The batch construction can be mod-
ified for PolyCommitPed due to homomorphic nature of PolyCommitDL. In the
full version we also compare the overhead of various commitment schemes, when
Alice commits to t values, and then must reveal k of them. Overhead excludes
the communication cost of sending the committed values. Notably, the commu-
nication overhead of PolyCommitDL is constant when batch opening is used.

Strong Correctness. VSS schemes will require an additional property of the
PolyCommit scheme: it should not be possible to commit to a polynomial of
degree greater than t. This is called the strong correctness property.

To define strong correctness for the PolyCommit schemes is not easy, e.g.,
there are many polynomials φ′ of degree greater than t such that φ(α) = z ∈R Zp

and so gz is trivially a PolyCommitDL commitment to some polynomial of degree
t′ such that 2κ > t′ > t. To avoid this triviality, we require that an adversary
A must convince a challenger B that he knows φ with the following game. A
creates a commitment to a claimed polynomial φ′ of degree t′. B challenges A
with t′ + 1 indices I ⊂ Zp. A wins if he is able to produce {〈i, φ(i), wi)〉}i∈I

accepted by VerifyEval and that the interpolation (in exponents) of any t′ + 1
witnesses generates a degree t−1 polynomial. Similarly for PolyCommitPed. Refer
to the extended version of the paper for proof of the following theorem.

Theorem 4. PolyCommitDL and PolyCommitPed have the strong correctness prop-
erty if the t-polyDH assumption holds in G.

Practicality and Efficiency Improvements. In absence of a single trusted
party, computing Setup can be distributed. Here, SK = α is computed in a
distributed form (i.e., shared by multiple parties forming a distributed authority)
using the concept of distributed key generation [31]. PK is computed using a
distributed multiplication protocol [20]. As we do not require SK during our
protocols and as anybody can verify the correctness of PK using pairings, it is
possible to consider PK as a global reusable set, shared in many systems.

Further, the exponentiations required when committing and creating wit-
nesses can be trivially parallelized. Also, since C = gφ(α) is computed as a prod-
uct of powers (sometimes called a multi-exponentiation), we suggest using fast
exponentiation techniques [32] instead of a näıve implementation. It is also pos-
sible to precompute e(C, g) and e(g, g) for use during verification.

4 Applications

In this section, we describe applications of our commitment schemes to verifiable
secret sharing (§4.1), zero-knowledge sets and elementary databases (§4.2), and
selective disclosure of signed data and credentials (§4.3).
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4.1 Verifiable Secret Sharing (VSS)

For integers n and t such that n > t ≥ 0, an (n, t)-secret sharing scheme [34, 4] is
a method used by a dealer Pd to share a secret s among a set of n participants (the
sharing Sh phase) in such a way that in the reconstruction Rec phase any subset
of t+1 or more honest participants can compute the secret s, but subsets of size
t or fewer cannot. Furthermore, in secret sharing, nodes may need a procedure to
verify the correctness of the dealt values in order to prevent malicious behaviour
by the dealer. To solve this problem, Chor et al. [15] introduced verifiability in
secret sharing, which led to the concept of verifiable secret sharing (VSS).

VSS schemes have two security requirements: secrecy and correctness.

Secrecy (VSS-S). A t-limited adversary who compromises t nodes cannot com-
pute s during the Sh phase.

Correctness (VSS-C). The reconstructed value should be equal to the shared
secret s or every honest node concludes that the dealer is malicious by out-
putting ⊥.

In the computational complexity setting, any malicious behaviour by Pd is caught
by the honest nodes in the Sh phase itself and the VSS-C property simplifies to
the following: the reconstructed value should be equal to the shared secret s.

Many VSS applications require that broadcasts from any t+ 1 honest nodes
or any 2t+1 nodes is sufficient to reconstruct s. Therefore, along with VSS-S and
VSS-C, we mandate the correctness property that we refer as the strong correct-
ness property. Further, some VSS schemes achieve a stronger secrecy guarantee.

Strong Correctness (VSS-SC). The same unique value s is reconstructed
regardless of the subset of nodes (of size greater than 2t) chosen by the
adversary in the Rec algorithm.

Strong Secrecy (VSS-SS). The adversary who compromises t nodes have no
more information about s except what is implied by the public parameters.

Feldman [18] developed the first efficient VSS protocol, which forms the
basis of all VSS schemes defined in the literature. In the literature, the dis-
crete logarithm commitment or Pedersen commitment is used in the Feldman
VSS achieve the binding (correctness) and the hiding (secrecy) properties. Both
of these commitment schemes trivially satisfy the strong correctness (VSS-SC)
property of VSS by the fact that the size of a commitment to a polynomial
φ(x) ∈ Zp[x] is equal to deg(φ) + 1, which is O(n) (since for optimal resiliency,
deg(φ) = t = �n−1

2 ). However, the commitment to a polynomial has to be
broadcast to all nodes, which results in a linear-size broadcast for Feldman VSS
and their variants and a linear complexity gap between the message and the bit
complexities. Our goal is to close this gap using any of the PolyCommit schemes.
Next, we apply PolyCommitDL to existing polynomial-based VSS schemes and
reduce the broadcast message size of VSS by a linear factor, making it equal to
the message complexity. Although PolyCommitDL can be used in any univariate
polynomial-based scheme, we choose the Feldman VSS for ease of exposition.
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Sh Phase
1. To share a secret s ∈ Z

∗
p, the dealer Pd chooses a random degree t polynomial

φ(x) =
Pt

j=0 φjx
j ∈ Zp[x] such that φ(0) = φ0 = s. It then broadcasts

C = Commit(PK, φ(x)).
2. For � ∈ [1, n], Pd computes a share s� = φ(�), a witness w� =

CreateWitness(PK, φ(x), �) and sends 〈�, φ(�), w�〉 to node P� over a secure and
authenticated channel.

3. After receiving 〈i, φ(i), wi〉 from Pd, node Pi runs VerifyEval(PK, C, i, φ(i), wi).
If the verification fails, Pi broadcasts an accusation message against Pd.

4. If more than t nodes accuse Pd, then it is clearly faulty and is disqualified. If
not, for each accusing party P�, Pd broadcasts the corresponding share and
witness 〈�, φ(�), w�〉 such that VerifyEval holds.

5. If any of the revealed shares fails VerifyEval, Pd is disqualified and the protocol
stops. If there is no disqualification, each node P� accepts s� = φ(�).

Rec Phase
Any t+ 1 or more nodes Pi publish their accepted shares and witnesses 〈i, si, wi〉.
All t + 1 (or more) nodes verify each of the broadcast shares 〈i, φ(i), wi〉 using
VerifyEval and then interpolate the pairs 〈i, φ(i)〉 to determine the secret s = φ(0).

Fig. 1. eVSS: An efficient Feldman VSS using PolyCommitDL

Our efficient Feldman VSS (eVSS) scheme runs Setup(1κ, t) of PolyCommitDL

once, which outputs PK = 〈G, g, gα, . . . , gαt〉. Further, as we are working in the
synchronous communication model, a resiliency bound of n ≥ 2t+ 1 is required
for VSS to provide correctness against a t-limited Byzantine adversary as the
n − t honest nodes available during the Sh and Rec phases should at least be
equal to t+1 (the required threshold). In Figure 1, we present eVSS that uses the
PolyCommitDL scheme in the Feldman VSS. In the Sh and the Rec phases of the
eVSS scheme, the VSS methodology remains exactly the same as that of Feldman
VSS except here t + 1 commitments of the form gφj for φ(x) =

∑t
j=0 φjx

j are
replaced by a single polynomial commitment C = gφ(α). In addition, along with
a share si, Pd now sends a witness wi to node Pi. Overall, the eVSS protocol
needs O(1) broadcast instead of O(n) required by the Feldman VSS. In case of
multiple accusations, dealer Pd can use the batch opening feature described in
§3.4 to provide a single witness for the complete batch. Furthermore, due to the
homomorphic nature of PolyCommit, the eVSS scheme can easily converted to a
distributed key generation protocol [31].

Theorem 5. The eVSS protocol implements a synchronous VSS scheme with
the VSS-S and VSS-SC properties for n ≥ 2t + 1 provided the DL, t-SDH and
t-polyDH assumptions hold in G.

We need to prove the secrecy, correctness and strong correctness properties of
a synchronous VSS scheme. Secrecy and correctness result directly from Theo-
rem 1, while Theorem 4 provides the strong correctness property. The secrecy
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provided by eVSS is computational against a t-bounded adversary, and uncon-
ditional against a t− 1 bounded adversary. Share correctness is computational.

PolyCommitDL can easily be replaced by PolyCommitPed in the above eVSS
scheme. In that case, we achieve the strong secrecy (VSS-SS) property due to
the unconditional hiding property (Theorem 2) of PolyCommitPed.

4.2 Nearly ZKSs and Nearly ZK-EDBs

Micali et al. [27] define zero-knowledge sets (ZKSs). Basically a ZKS allows a
committer to create a short commitment to a set of values S, such that he
may later efficiently prove statements of the form kj ∈ S or kj �∈ S in zero-
knowledge. No additional information about S is revealed. Perhaps the most
challenging aspect in ZKS construction is that not even an upper bound on
|S| may be revealed. The closely related notion of zero-knowledge elementary
databases (ZK-EDB) is also defined in [27]. Loosely speaking, an EDB is a list of
key-value pairs, and a ZK-EDB allows a committer to prove that a given value
is associated with a given key with respect to a short commitment.

We argue that relaxing the requirements of a ZKS is sufficient for known
applications, and show this leads to a significantly more efficient primitive. In
particular, by not hiding |S|, the size of the proof that an element is (or is not)
in a committed set is reduced by a factor of sixteen or more, when compared to
the best known ZKS construction.

Motivation. Much of the literature on ZKSs does not consider applications [12,
13, 19, 25, 33]. In the applications of ZKSs (and ZK-EDBs) suggested in [27] the
size of the set (or DB) is not crucial to the intended security or privacy of the
application. The applications given are to improve privacy and access control
when the records of an EDB contain sensitive information about people, e.g.,
medical records. In such cases, revealing a bound on the number of records in the
database clearly does not affect the privacy of an individual whose information
is kept in the database.

Another use of ZKSs and ZK-EDBs is for committed databases [30]. In this
application, a database owner commits to the database and then proves for
every query that the response is consistent with the commitment. For many
applications the contents of the committed database must be hidden, but the size
may be revealed. An example is given in Buldas et al. [9]. Here ZK-EDBs are used
to increase the accountability of a certification authority by preventing it from
providing inconsistent responses to queries about the validity of a certificate.
Clearly, keeping the number of certificates hidden is not required. Therefore, a
weaker type of ZKS primitive that does not hide the size of the set will suffice for
most practical applications of ZKSs. We call a ZKS that may leak information
about the size of the set a nearly ZKS. Similarly, a nearly ZK-EDB is a ZK-EDB
that may leak information about the number of records it contains.

Note that an accumulator also represents a set of values with proofs of mem-
bership, and some even allow proofs of non-membership (e.g., see [17]). They do
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SetupZKS(1κ, t) outputs PK = Setup(1κ, t). t is an upper bound on the size of the
set which may be committed.

CommitZKS(PK, S) requires |S| ≤ t. Define φ(x) =
Q

kj∈S(x− kj) ∈ Zp[x]. Out-

put C = Commit(PK, φ(x)). Let φ̂(x) ∈ Zp[x] be the random degree t polyno-
mial chosen in PolyCommitPed.

QueryZKS(PK, C, kj) allows the committer to create a proof that either kj ∈ S or
kj �∈ S. Compute 〈kj , φ(kj), φ̂(kj), wj〉 = CreateWitness(PK, φ(x), φ̂(x), kj).
(i) If kj ∈ S, output πSj = (kj , wj , φ̂(kj),⊥).

(ii) If kj �∈ S, create zj = gφ(kj)hφ̂(kj) and a ZK proof of knowledge of φ(kj)

and φ̂(kj) in zj = gφ(kj)hφ̂(kj). Let γj = 〈zj ,ZK proof〉. Output πSj =
(kj , wj ,⊥, γj).

VerifyZKS(PK, C, πSj) parses πSj as (kj , wj , φ̂(kj), γj).

(i) If φ̂(kj) �= ⊥, then kj ∈ S. Output 1 if VerifyEval(PK, C, kj , 0, φ̂(kj), wj) =
1.

(ii) If γj �= ⊥, then kj �∈ S. Parse γj as 〈zj ,ZK proof〉. If e(C, g) ?
=

e(wj , g
α−kj )e(zj , g), and the ZK proof of knowledge of zj is valid, out-

put 1. Output 0 if either check fails.

Fig. 2. A nearly ZKS scheme based on PolyCommitPed

not however, guarantee hiding (the ZK property), in [17] after seeing responses
to t non-membership queries we may recover the entire accumulated set.

Construction of a Nearly ZKS. This construction (Figure 2) will use
PolyCommitPed, and allows us to commit to S ⊂ Zp such that |S| ≤ t. The
basic idea is to commit to a polynomial φ, such that φ(kj) = 0 for kj ∈ S, and
φ(kj) �= 0 for kj �∈ S. Our construction relies on a ZK proof that proves φ(kj) �= 0
without revealing φ(kj) to maintain privacy for queries when kj �∈ S. Although a
construction based on PolyCommitDL is also possible, we choose PolyCommitPed

as the required ZK proof is simpler in the latter case. For convenience we describe
our protocols assuming the ZK proof is non-interactive, however, an interactive
ZK proof may be used as well.

A security definition and proof are provided in the full version. The ZK proof
of knowledge may be implemented using any secure ZK proof system allowing
proof of knowledge of a discrete logarithm (see [11] for examples).

Construction of a Nearly ZK-EDB. This construction (Figure 3) makes
use of the above nearly ZKS construction and PolyCommitDL. Let D = (K,V ) ⊂
Z

t
p × Z

t
p be a list of key-value pairs that will define the database (K and V are

ordered lists of equal length such that the value mj ∈ V corresponds to the
key kj ∈ K). The values may repeat, but the keys must be distinct. We write
D(kj) to denote the value associated to key kj (if kj �∈ K, then D(kj) = ⊥). The
underlying idea of our construction is to commit to the keys using our nearly
ZKS, and also commit to φ, such that φ(kj) = mj , using PolyCommitDL, since it
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is sufficient for security and more efficient. The reason for using the nearly ZKS is
to respond to queries when k �∈ D without revealing any additional information.



SetupEDB(1κ, t) runs SetupZKS(1κ, t), and outputs PK.
CommitEDB(PK, D = (K,V )) sets C1 = CommitZKS(PK,K). It then interpo-

lates the t (or fewer) points (kj ,mj) ∈ D, and one or more random points
(kr,mr) ∈R Zp × Zp to get a polynomial φ2(x) ∈ Zp[x], assured to be of
degree t. Set C2 = Commit(PK, φ2(x)) and output E = (C1, C2).

QueryEDB(PK, E , kj) parses E as (C1, C2).
(i) If kj ∈ K, compute πSj = QueryZKS(PK, C1, kj) to show that kj ∈ K and
〈kj ,mj , wmj 〉 = CreateWitness(PK, φ2(x), kj) to show that D(kj) = mj .
Output πDj = (πSi,mj , wmj ).

(ii) If kj �∈ K, we show that kj �∈ K, set πSj = QueryZKS(PK, C1, kj). Output
πDj = (πSj ,⊥,⊥).

VerifyEDB(PK, E , πDj) parses πDj as (πSj ,mj , wmj ) and E as (C1, C2).
(i) If mj �= ⊥, then kj ∈ K, output (kj ,mj) if VerifyZKS(PK, C1, πSj) = 1

and VerifyEval(PK, C2, kj , mj , wmj ) = 1.
(ii) If mj = ⊥, then kj �∈ K, output 1 if VerifyZKS(PK, C1, πSj) = 1.

Fig. 3. A nearly ZK-EDB scheme constructed using our nearly ZKS construction
(Figure 2) and PolyCommitDL

Efficiency of our nearly ZKS and ZK-EDBs. The size of the commitment
is a single group element for a nearly ZKS, or two elements for a nearly ZK-
EDB. Proof that kj ∈ S, consists of two group elements, while proof that kj �∈ S
consists of about five group elements (when ZK proofs are implemented using
a standard three-move ZK protocol, made non-interactive with the Fiat-Shamir
heuristic). The proof sizes for our nearly ZK-EDB construction are three and
about five group elements (respectively).

The ZK-EDB in the literature with the shortest proofs is that of Libert and
Yung [25] (based on their ZKS construction). Asymptotically, (non)membership
proofs are O(κ/ log(t)) bits, where κ is a security parameter, and t is the size of
the system parameters. For the parameter choices given [25], proof sizes range
from 80–220 group elements. The computation of their scheme and ours is nearly
equal. Therefore, using nearly ZK-EDBs in the place of ZK-EDBs reduces com-
munication costs by at least a factor of sixteen.

4.3 Credentials and Selective Disclosure of Signed Data

In this section we briefly describe two applications of the PolyCommit schemes,
and we will show how polynomial commitments can reduce communication costs.
Both applications are based on the following idea. Suppose Alice has a list of
values (m1, . . . ,mt), which will be signed by Trent. If Trent signs the concatena-
tion, then Alice must reveal all mi to allow Bob to verify the signature. However,
if Trent signs C = Commit(PK, φ(x)) where φ(i) = mi, then Alice may allow Bob
to verify that Trent has signed mi without revealing the other mj . Bob verifies
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the signature on C, and Alice produces a witness to prove that C opens to mi at
position i, allowing Alice to convince Bob that Trent signed mi.



Content Extraction Signatures. If (m1, . . . ,mt) are parts of a document,
then signing a polynomial commitment is a content extraction signature (CES)
scheme. Steinfeld et al. [35] introduce CES and give a generic construction of CES
signatures. The scheme requires a standard commitment scheme, which is then
used to commit to each of the t sub-messages (m1, . . . ,mt) individually, forming
a vector of commitments, which is signed. The scheme is secure, provided the
signature scheme is secure, and the commitment scheme is hiding and binding.

Since both PolyCommit schemes are hiding and binding, and allow a list
of messages to be committed, they can be used in the general construction of
Steinfeld et al. Along with the commitment, Trent should also sign t so that Bob
knows that only indices {1, . . . , t} correspond to valid sub-messages. The new
scheme is nearly as communication efficient as a specific scheme in [35] which
has the lowest communication cost. The latter, however, depends on specific
properties of the RSA signature scheme and is secure in the random oracle model.
Using a polynomial commitment scheme gives an efficient generic construction.
Therefore, efficient standard model CES schemes are possible by combining any
of the PolyCommit schemes with a signature scheme secure in the standard model.

Pseudonymous Credentials. If (m1, . . . ,mt) are attributes about Alice, and
Trent is an identity provider, then the signature Alice holds on C is a digital
credential that allows Alice to reveal only as much information as is necessary
to complete an online transaction. Here, we create C using PolyCommitDL, as
batched openings are efficient for PolyCommitDL. Disclosing a single mi requires
Alice to transmit (C, SignTrent(C), 〈i,mi, wi〉), the size of which is independent of
t. If Alice reveals a subset of the attributes, a single witness may be used to reduce
communication even further using batch opening (described in §3.4). Further, if
Trent signs multiple commitments to the same attributes (but includes an extra
randomized attribute), Alice may present a different commitment to the same
verifier unlinkably.

For many interesting applications of credentials, selective show is insufficient
because Alice would like to prove something about mi (e.g., mi < 1990) without
revealing mi. Alice may prove knowledge of a nonzero committed value φ(i)
without revealing it, and compose this proof with other proofs about mi using
standard ZK proof techniques for proving knowledge of, relations between or the
length of discrete logarithms [11]. Since the communication costs per attribute of
proving knowledge of a committed value are constant, if k attributes are involved
in showing a credential, the complexity of the show will be O(k). In existing
schemes the communication is O(t) where t is the total number of attributes in
the credential. Further details of this application are given in the full version of
this paper.
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5 Open Problems

Finally, we list a few open problems related to polynomial commitment schemes.
1. Is it possible to construct efficient polynomial commitment schemes under



weaker assumptions? 2. What other protocols does PolyCommit improve? (For
example, can PolyCommit reduce the communication of asynchronous VSS pro-
tocols or verifiable shuffles?) 3. We have mainly focused on the communication
costs, but our construction asks for nontrivial computation. Is it possible to
reduce computation cost as well?
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Abstract. We propose a dedicated protocol for the highly motivated
problem of secure two-party pattern matching: Alice holds a text t ∈
{0, 1}∗ of length n, while Bob has a pattern p ∈ {0, 1}∗ of length m.
The goal is for Bob to learn where his pattern occurs in Alice’s text.
Our construction guarantees full simulation in the presence of malicious,
polynomial-time adversaries (assuming that ElGamal encryption is se-
mantically secure) and exhibits computation and communication costs
of O(n+m) in a constant round complexity.

In addition to the above, we propose a collection of protocols for vari-
ations of the secure pattern matching problem: The pattern may contain
wildcards (O(nm) communication in O(1) rounds). The matches may be
approximated, i.e., Hamming distance less than some threshold (O(nm)
communication in O(1) rounds). The length, m, of Bob’s pattern is se-
cret (O(nm) communication in O(1) rounds). The length, n, of Alice’s
text is secret (O(n+m) communication in O(1) rounds).

keywords: Pattern matching, secure two-party computation, full simu-
lation, malicious adversary.

1 Introduction

In the setting of secure two-party computation, two parties with private in-
puts wish to jointly compute some function of their inputs while preserving
certain security properties like privacy, correctness and more. The standard
definition [GL91, Bea92, MR91, Can00] formalizes security by comparing the
execution of such protocol to an “ideal execution” where a trusted third party
computes the function for the parties. Specifically, in the ideal world the par-
ties just send their inputs over perfectly secure communication lines to a trusted
party, who then computes the function honestly and sends the output to the des-
ignated party. Then, a real protocol is said to be secure if no adversary can do
more harm in a real protocol execution than in an ideal one (where by definition
no harm can be done).

Secure two-party computation has been extensively studied, and it has been
demonstrated that any polynomial-time two-party computation can be generi-
cally compiled into a secure function evaluation protocol with polynomial
complexity [Yao86, GMW87, Gol04]. These results apply in various settings,
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(considering semi-honest and malicious adversaries). However, more often than
not, the resulting protocols are inefficient for practical uses (in part because they
are general and so do not utilize any specific properties of the protocol problem
at hand) and hence attention has been given to constructing efficient protocols
for specific functions. This approach has proved quite successful for the semi-
honest setting (see, e.g., [LP02, AMP04, FNP04, KS05, TPKC07]), while the
malicious setting remained impractical (a notable exception is [AMP04]).

In this paper we consider the following classic search problem: Alice holds
a text t ∈ {0, 1}∗ of length n and Bob is given a pattern (i.e., search word)
p ∈ {0, 1}∗ of length m, where the sizes of t and p are mutually known. The goal
is for Bob to learn all the locations in the text that match the pattern, while
Alice learns nothing about the pattern. This problem has been widely studied
for decades due to its potential applications for text retrieval, music retrieval,
computational biology, data mining, network security, and many more. The most
known application in the context of privacy is in compering two DNA strings;
our example is taken from [GHS10]. Consider the case of a hospital holding
a DNA database of all the participants in a research study, and a researcher
wanting to determine the frequency of the occurrence of a specific gene. This is a
classical pattern matching application, which is however complicated by privacy
considerations. The hospital may be forbidden from releasing the DNA records
to a third party. Likewise, the researcher may not want to reveal what specific
gene he is working on, nor trust the hospital to perform the search correctly.

Although most of the existing solutions are highly practical they fail to achieve
any level of security (if at all); see [Blo70, KMP77, BM77, ACR99, NM07] for just
a few examples. In this work, we focus our attention on the secure computation
of the basic pattern matching problem and several important variants of it.

Our Contribution. We achieve efficiency that is a significant improvement on
the current state of the art for the following problems:

– Secure Pattern Matching. We develop an efficient, constant rounds
protocol for this problem that requires O(n+m) exponentiations and band-
width of O(n+m) group elements. Our protocol lays the foundations for the
following constructions.

– Secure Pattern Matching with Wildcards. This problem is a known
variant of the classic problem where Bob (who holds the pattern) introduces
a new “don’t care” character to its alphabet, denoted by � (wildcard). The
goal is for Bob to learn all the locations in the text that match the pattern,
where � matches any character in the text. This problem has been widely
looked at by researchers with the aim of generalizing the basic searching
model to searching with errors. This variant is known as pattern matching
with don’t cares and can be solved in O(n +m) time [IR07]. In this paper,
we develop a protocol that computes this functionality with O (nm) costs.

– Secure Approximate Pattern Matching. In this problem the goal is
for Bob to find the locations where the Hamming distance of the (text)
substrings and the pattern is less than some threshold τ ≤ m. We design a
protocol for this problem with O(mn) costs.
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– Secure Pattern Matching where the length of the pattern or
the text remains hidden. Finally, we consider two variants with an ad-
ditional security requirement of hiding the input length. Solutions for these
problems can be achieved in O(nm) time.

Our protocols are based on ElGamal encryption and are proven secure in the
plain model under the standard DDH assumption and achieve full simulation in
the presence of malicious adversaries.

Prior Work. To the best of our knowledge, the first who considered pattern
matching in the context of secure computation were [TPKC07] who considered a
secure version of oblivious automata evaluation to achieve secure pattern match-
ing. Their protocol implements the KMP algorithm [KMP77] in the semi honest
setting. Loosely speaking, the KMP algorithm works in O(n) time and searches
for occurrences of the pattern within the text by employing the observation that
when a mismatch occurs, the pattern embodies sufficient information to determine
where the next match could begin. Their costs are linear in the input length.

This problem was also studied by Hazay and Lindell in [HL08] who used obliv-
ious pseudorandom function (PRF) evaluation. However, their protocol achieves
only a weaker notion of security called one-sided simulatability which does not
guarantee full simulation for both corruption cases. The only construction to
achieve full simulation in the malicious setting was developed by Gennaro et
al. [GHS10]. They took a different approach to implement the KMP algorithm
and described a protocol that runs in O(m) rounds and requires O(nm) expo-
nentiations and bandwidth.

Finally, a recent paper by Katz and Malka [KM10] presents a secure solution
for a generalized pattern matching problem, denoted text processing. Namely,
the party who holds the pattern has some additional information y and his
goal is to learn a function of the text and y, for the text locations where the
pattern matches. They show how to modify Yao’s garbled circuit approach to
obtain a protocol where the size of the garbled circuit is linear in the number
of occurrences of p in t (rather than linear in |t|). Their costs are dominated by
the size of the circuit times the number of occurrences u (as P1 sends u such
circuits). Nevertheless, they assume a common input of some threshold on the
number of occurrences.

To the best of our knowledge, the only work which addresses one of the above
variants is the work by Jarrous and Pinkas [JP09]. In this work, the authors solve
the hamming distance problem for two equal length strings against malicious
adversaries. Their protocol requires a committed oblivious transfer for each bit.
Moreover, the costs of their protocol are inflated by a statistical parameter s
for running a subprotocol for the oblivious polynomial evaluation functionality
(namely, the protocol requires O(d · s) exponentiations, where d is the degree
of the polynomial, i.e., the input length). Finally, their protocol utilizes the
Paillier encryption scheme and thus requires an RSA modulus with unknown
factorization. Our protocol, on the other hand, takes a different approach and
requires linear costs, for the case of equal length strings.
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Efficiency. In addition to prior work, we compare our protocols to the generic
garbling-technique by Yao (formally proved by Lindell and Pinkas) [LP07] for se-
cure computation of any functionality in the two-party setting. Recall that Yao’s
protocol uses a Boolean circuit that computes the function, and its computa-
tional complexity is linear in the size of the circuit. Note that computing the pat-
tern matching functionality would require a circuit of size O(nm), as the circuit
will compare every pattern against every text location (As noted by [GHS10],
a circuit that implements the functionality for oblivious automata evaluation
would require O(mn logm) gates, thus the KMP technique does not contribute
to efficiency here). Consequently, our protocol for the basic pattern matching
functionality is more efficient than Yao’s construction even in the presence of
semi-honest adversaries; this is also the case for other circuit based approaches.

Organization of this paper. We first present the underlying primitives in
Section 2. The following sections then contain our protocols. The basic protocol
is presented in Section 3. This is then extended, first with wildcards in the
pattern (Section 4) followed by approximate matching (Section 5). Finally, the
paper concludes with the protocols which hide the pattern and texts lengths
(Sections 6 and 7).

2 Preliminaries and Tools

Throughout the paper, we denote the security parameter by κ. A function μ(·)
is negligible in κ (or simply negligible) if for every polynomial p(·) there exists
a value K such that μ(κ) < 1

p(κ) for all κ > K; i.e., μ(κ) = κ−ω(1). Let X =
{X(κ, a)}κ∈N,a∈{0,1}∗ and Y = {Y (κ, a)}κ∈N,a∈{0,1}∗ be distribution ensembles.

We say that X and Y are computationally indistinguishable, denoted X
c≡ Y , if

for every polynomial non-uniform distinguisher D there exists a negligible μ(·)
such that for every κ ∈ N and a ∈ {0, 1}∗

∣∣∣Pr[D(X(κ, a)) = 1]− Pr[D(Y (κ, a)) = 1]
∣∣∣ < μ(κ).

2.1 The ElGamal Encryption Scheme

At the core of the proposed protocols lies the additively homomorphic variation
of ElGamal encryption – Epk (m, r) = 〈gr, hrgm〉 with distributed decryption
over a group Gq in which DDH is hard, [ElG85]. Essentially, we use the framework
of Brandt [Bra05] with minor variations. We present the computation of the
parties with respect to the ciphertext space, in particular, we write Cr meaning
〈αr, βr〉 and C/C′ meaning 〈α/α′, β/β′〉 for ciphertexts C = 〈α, β〉 and C

′ =
〈α′, β′〉, and r ∈ Zq.

2.2 Zero-knowledge Proofs for Gq and ElGamal Encryption

To prevent malicious behaviour, the parties must demonstrate that they are
well-behaved. To achieve this, our protocols utilize zero-knowledge proofs of
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knowledge. All of them are Σ-protocols (with constant communication complex-
ity) which show knowledge of a witness that some statement is true (belong to
a relation, R) about one or more elements of Gq. The Σ-protocols can be made
secure against malicious verifiers using standard techniques; we denote the asso-
ciated ideal functionalities for these protocols, FRDL

ZK , FREqDL
ZK , FRisBit

ZK , FRmult
ZK ,

FRperm
ZK , and FRnze

ZK .
πDL, due to Schnorr, allows the prover to demonstrate knowledge of the solu-

tion, x, to a discrete logarithm problem, [Sch89].

RDL = {((Gq, q, g, h), x) | h = gx}
πEqDL, due to Chaum and Pedersen, demonstrates equality of two discrete loga-
rithm problems (as well as knowledge of the solution), [CP93].

REqDL = {((Gq, q, g1, g2, h1, h2), x) | h1 = gx
1 ∧ h2 = gx

2}
Phrased differently, πEqDL demonstrates that a quadruple forms a Diffie-Hellman
tuple or, equivalently, that a ciphertext is an encryption of 0.
πisBit demonstrates that for ciphertext C, either C or C

〈
1, g−1

〉
is an encryp-

tion of 0, i.e. that it is an encryption of either 0 or 1. This can be obtained
directly from πEqDL using the compound proof of Cramer et al. [CGS97].

RisBit =
{
((Gq, q, g, h, α, β), (b, r)) | (α, β) = (gr, hr · gb) ∧ b ∈ {0, 1}}

πmult, due to Abe et al., demonstrates that a party, the prover P has performed
a multiplication under the encryption correctly [ACF02]. I.e. given ciphertext C,
P , knowing f , has computed Cf = Epk (f, rf ) and Cπ = Cf ·Epk (0, rπ); clearly
the plaintext of Cπ is the product of the other plaintexts.

Rmult =
{

((sk, C,Cf , Cπ), (f, rf , rπ)) s.t.
Cf =

〈
grf , hrf · gf

〉 ∧
Cπ = Cf · 〈grπ , hrπ〉

}

πperm allows a prover to demonstrate that a set of encryptions, {Ci}i, is a per-
mutation and rerandomization of the another, {C′i}i – i.e. that their plaintexts
are equal. Any protocol will do, Groth’s solution [Gro03] is one possibility.

Rperm =
{
((sk, {Ci}i , {C′i}i), (π, {ri}i)) s.t. 〈α′i, β′i〉 =

〈
απ(i)g

ri , βπ(i)h
ri
〉}

πnze demonstrates that the prover has obtained ciphertext C′ from C, by raising
C to a non-zero exponent and rerandomizing, i.e. C′ = CR ·Epk (0, r). The tricky
part when constructing a proof of knowledge for the relation,

Rnze =
{
((sk, α, β, α′, β′), (R, r)) s.t. 〈α′, β′〉 = 〈αRgr, βRhr

〉 ∧R �= 0
}

,

is to show that R �= 0. To do this, the prover, P , picks R′ ∈R Z
∗
q , supplies the

verifier with additional ciphertexts, CR = Epk (R, rR), CR′ = Epk (R′, rR′), and
Cπ = Epk (RR′, rπ), and executes πmult twice: on (C,CR, C

′) and (CR, CR′ , Cπ).
The prover then sends RR′ to the verifier and demonstrates it is the plaintext
of Cπ using πEqDL. Finally, the verifier checks that the RR′ is non-zero.
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The executions of πmult demonstrate that C′ has been obtained from C through
exponentiation, and that the plaintext of Cπ depends on R. πEqDL and the final
check ensures that RR′ �= 0 implying that so is R. Hence the protocol demon-
strates that C′ has been obtained correctly. Further, since the verifier receives
only ciphertexts along with RR′ – which is uniformly random due to R′ – πnze

is zero-knowledge.

2.3 Distributed ElGamal Encryption

In a distributed scheme, the parties hold shares of the secret key so that the
combined key remains a secret. In order to decrypt, each party uses its share to
generate an intermediate computation which are eventually combined into the
decryption.

Note that the Diffie-Hellman key exchange [DH76] can be used for generating
a public key and an additive sharing of the corresponding secret key [Ped91].
The parties first agree on Gq and g. Then, each party Pi picks si ∈R Zq and
sends hi = gsi to the other. Finally, the parties compute h = h1 · h2 and set
pk = 〈Gq, q, g, h〉. Clearly the secret key associated with this public key is s =
s1 + s2. In order to ensure correct behavior, the parties must prove knowledge
of their si by running πDL on (g, hi). We denote this protocol by πKeyGen which
is correlated with the functionality FKeyGen(1κ, 1κ) = ((pk, sk1), (pk, sk2)).

To decrypt a ciphertext C = 〈α, β〉, the parties raise α to the power of their
shares, send these to each other, and prove this was done correctly. Both then
output β/(α1α2). We denote this protocol by πDec. Note that this protocol allows
variation where only one party obtains the decrypted result.

Our final primitive is a variation of πDec where P1 learns whether the ciphertext
m of the input C = 〈α, β〉 is zero, but nothing more. P2 first raises C to a random,
non-zero power, rerandomizes the result, and sends it to P1. The parties then
execute πnze to let P1 verify P2’s behavior. They then decrypt the final ciphertext
towards P1, who concludes that m = 0 iff the masked plaintext was 0. Simulation
is trivial given access to FRnze

ZK . We denote this protocol πdec0 and the associated
ideal functionality Fdec0.

3 The Basic, Linear Solution

In this section we present our solution for the classic pattern matching problem.
Initially, Alice holds an n-bit string t, while Bob holds an m-bit pattern, p and
the parties wish the compute the functionality FPM defined by,

((p, n), (t,m)) 	→
{

({j | t̄j = p}n−m+1
j=1 , λ) if |p| = m and |t| = n

(λ, λ) otherwise

where λ is an empty string and t̄j is the substring of length m that begins at the
jth position in t. This problem has been widely studied for decades due to its po-
tential applications and can be solved in linear time complexity [KMP77, BM77],
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when no level of security is required. We examine a secure version for this prob-
lem where Alice does not gain any information about the pattern from the pro-
tocol execution, whereas Bob does not learn anything but the matched text
locations. In our setting, the parties share no information (except for the in-
put length), though it is assumed that they are connected by an authenticated
communication channel, and that the inputs are over the binary alphabet. Ex-
tending this to larger alphabets is discussed below. Our protocol exhibits overall
linear communication and computation costs and achieves full simulation in the
presence of malicious adversaries.

Here and below, we have the parties jointly (and securely) transform their
input from binary representation into elements of Zq (we assume thatm < log2 q;
larger pattern-lengths can be accommodated, e.g. by increasing the plaintext
space.), while exploiting the fact that every two consecutive substrings of the
text are closely related. Informally, both parties break their inputs into bits
and encrypt each bit separately. Next, the parties map every m consecutive
encryptions of bits into a single encryption that denotes anm-character for which
its binary representation is assembled from these m bits. Thus, the problem is
reduced to comparing two elements of Zm (embedded into Zq). The crux of our
protocol is to efficiently compute this mapping.

We are now ready to give a detailed description of our construction.

Protocol πPM

– Inputs: The input of Alice is a binary string t of length n and an integer m,
whereas the input of Bob is a binary string p of length m and an integer n. The
parties share a security parameter 1κ as well.

– The protocol:

1. Alice and Bob run protocol πKeyGen(1
κ, 1κ) to generate a public key pk =

〈Gq, q, g, h〉, and the respective shares sA and sB of the secret key sk of Alice
and Bob.

2. Bob sends encryptions Pi = Epk(pi; rpi), i = 1, . . . ,m, of his m-bit pattern,
p, to Alice. Further, for each encryption the parties run the zero-knowledge
proof of knowledge πisBit, allowing Alice to verify that the plaintext of Pi is
a bit known to Bob, i.e. that he has provided a bit-string of length m. Both
parties then compute an encryption of Bob’s pattern,

P ←
m∏

i=1

P 2i−1

i (1)

using the homomorphic property of ElGamal encryption.
3. Alice sends encryptions, Tj = Epk(tj ; rtj ) j = 1, . . . , n, of the bits tj of her n-

bit text, t, to Bob. Further, for each encryption the parties run πisBit, allowing
Bob to verify that the plaintext of Tj is a bit known to Alice, i.e. that she has
indeed provided the encryption of a bit-string of length n that she knows.

4. Let t̄j be the m-bit substring of Alice’s text t, starting at position j =
1, . . . , n−m+ 1. For each such string both parties compute an encryption
of that string,

T̄j ←
j+m−1∏

i=j

T 2i−j

i . (2)
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5. For every T̄j , j = 1, . . . , n−m+ 1, both parties compute

Δj ← T̄j · P−1. (3)

6. For every Δj j = 1, . . . , n−m+ 1, Alice and Bob reveal to Bob whether its
plaintext δj is zero by running πdec0. Bob then outputs j if this is the case.

Correctness of πPM. Before turning to our proof, we explain the intuition
and demonstrate that protocol πPM correctly determines which substrings of the
text t match the pattern p. Recall that the value P that is computed in Eq. (1)
(Step 2) is an encryption of Bob’s pattern, p =

∑m
i=1 2i−1pi. This follows from

the homomorphic property of ElGamal encryption,

P =
m∏

i=1

P 2i−1

i = Epk

(
m∑

i=1

2i−1pi,

m∑
i=1

2i−1rpi

)
. (4)

Note that P is obtained deterministically from the Pi, hence both Alice and Bob
hold the same fixed encryption. Similarly, in Eq. (2) computed in Step 4, the
parties compute encryptions of the substrings of length m of Alice’s text,

t̄j =
j+m−1∑

i=j

2i−jti,

see a detailed discussion in the complexity paragraph regarding the efficiency
of this step. As with P , the parties hold the same, fixed encryptions (with ran-
domness rt̄j

=
∑j+m−1

i=j 2i−jrti). The encryption Δj computed by Eq. (3) is an
encryption of δj = t̄j − p, i.e. the (Zq) difference between the substring of the
text starting at position j and the pattern.

Δj = T̄j · P−1

= Epk

(
t̄j − p, rt̄j

− rp
)

At this point, it simply remains for Bob to securely determine which of the Δj

are encryptions of zero, as
δj = 0⇔ t̄j = p.

Security of πPM. We are now ready to prove the following theorem,

Theorem 1 (linear pattern matching): Assume that πKeyGen, πdec0 and πisBit are
as described in Section 2 and that (G,E,D) is the ElGamal scheme. Then πPM

securely computes FPM in the presence of malicious adversaries.

Proof. We separately prove security in the case that Alice is corrupted and the
case that Bob is corrupted. Our proof is in a hybrid model where a trusted party
computes the ideal functionalities FKeyGen, Fdec0 and FRisBit

ZK .
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Bob is corrupted. Let A denote an adversary controlling Bob. In this case we
need to prove that Bob does not learn anything but the matching text locations.
We construct a simulator S as follows,

1. S is given a pattern p of length m, an integer n and A’s auxiliary input and
invokes A on these values.

2. S emulates the trusted party for πKeyGen as follows. It first chooses two ran-
dom elements sA, sB ∈ Gq and hands A, its share sB and the public key
〈Gq, q, g, h = gsA·sB 〉.

3. S receives from A, m encryptions and A’s input for the trusted party for
FRisBit

ZK . If the conditions for which the functionality outputs 1 are not met,
S aborts by sending ⊥ to the trusted party for FPM and outputs whatever
A outputs.

4. Otherwise, S defines P according to the witness for πisBit and sends it to its
trusted party. Let Z be the set of returned indices.

5. S defines a text t′ that is consistent with Z. That is, for every j ∈ Z, S
defines the substring t′j = p1, . . . , t

′
j+m−1 = pm. For the remaining indices S

uses the bit one. (S verifies that the only matches in t′ indeed correspond
to the indices from set Z). S completes the execution as the honest Alice
would on input t′.

6. If at any point A sends an invalid message S aborts, sending ⊥ to the trusted
party for FPM. Otherwise, it outputs whatever A does.

It is immediate to see that S runs in probabilistic polynomial time. We prove next
that the adversary’s views are computational indistinguishable via a reduction
to the security of ElGamal. Recalling that the only difference within these views
is with respect to the text locations that do not match the pattern, (as S uses the
bit one instead of the actual bit value from t) we reduce the ability to distinguish
these views to the ability to distinguish the encryptions of the real text against
the simulated one for these locations.

Assume there exists a distinguisher D for these executions, we construct a
distinguisher DE breaking the semantic security of ElGamal encryption as fol-
lows. Upon receiving a public key pk and auxiliary input t, DE engages in an
execution of πKeyGen with A and sends it (sB, pk) where sB ∈R Zq. DE continues
emulating the role of Alice as S does except for Step 3 where it needs to send
the encryptions of t1, . . . , tn. In this step DE outputs two sets of plaintexts: (i)
t1, . . . , tn and, (ii) t′1, . . . , t

′
n. We denote by T̃1, . . . , T̃n the set of encryptions it

receives back. DE hands A this set and completes the run as follows. In Step 6
DE replaces Δj with an encryption of zero if and only if j ∈ Z. Otherwise, DE

sends an encryption of a random value in Z
∗
q . Clearly, this step is computed

differently than in both the hybrid and simulated executions. Nevertheless, we
claim that the distributions on the encryptions are identical. This is due to the
fact that for every matched text location the masking result equals zero, and for
every non-matching text location the masking result equals a random element
of Z

∗
q . Hence, the adversary’s views are identical.

Finally, DE invokes D on A’s output and outputs whatever D outputs. Note
that if DE is given the encryptions of t then the adversary’s view is distributed
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as in the hybrid execution. Moreover, if it receives an encryption of t′, then the
adversary’s view is as in the simulation with S.

Alice is corrupted. Since Alice does not receive any output from the execution,
we only need to prove that privacy is preserved, and that Bob’s output cannot be
affected (except with negligible probability). The proof follows the outlines of the
former case. Therefore, due to space considerations we omit the details here.

Complexity of πPM. The round complexity is constant, as the key generation
process and the zero knowledge proofs run in constant rounds. Further, the
number of group elements exchanged is bounded by O(n + m), as there are
n−m+1 substrings of length m and each zero-knowledge proof requires constant
number of group elements.

Regarding computational complexity, it is clear that except for Step 4 at
most O(m + n) exponentiations are required. Note first that Eq. (2) can be
implemented using the square and multiply technique. Namely, for every j =
1, . . . , n−m+ 1, T̄j is computed by (. . . ((Tj)2 · Tj+1)2 · Tj+2 . . .)2 · Tj+m−1.

This requires O(m) multiplications for each text location, which amounts to
total O(nm) multiplications for the entire text. Reducing the number of multipli-
cations into O(n) (on the expense of increasing the number of exponentiations)
can be easily shown. Loosely speaking, in addition to sending an encryption of 0
or 1 for each text location, Alice sends an encryption of 0 or 2m, respectively, and
proves consistency. From practical point of view, it may be much more efficient
to compute O(m) multiplications for each location, than proving this consistency
(even though it only requires a constant number of exponentiations.)

Finally, note that our protocols utilize ElGamal encryption which can be
implemented over an elliptic curve group. This may reduce the modulus value
dramatically, as now only 160 bits are typically needed for the size of the key.

3.1 Variations

Non-binary alphabets. Alphabets of larger size, s, can be handled by encod-
ing the characters as elements of Zs and using s-ary rather than binary notation
for the T̄j and P . Proving in ZK that an encryption contains a valid character
is straightforward, e.g. it can be provided in binary (which of course requires
O(log s) encryptions).

Long patterns. When the pattern length, m, (or the alphabet size, s) is
large, requiring q > sm may not be acceptable. This can be avoided by encoding
the pattern p and substrings t̄j into multiple Zq values, {p(i)}i, {t̄(i)j }i. Having

computed encryptions {Δi}i of the differences {δi = p(i) − t̄
(i)
j }i, Alice raises

each encryption to a random, non-zero exponents ri, rerandomizes them and
sends them to Bob (and proves that everything was done correctly). The parties
then executes πdec0 on the product of these encryptions and Bob reports a match
if a 0 is found. Note that the plaintext of this product is

∑
i ri · δi. Thus, if the

pattern matches, all δi = 0 implying that this is an encryption of 0. If one or
more δi �= 0, then the probability of this being an encryption of 0 is negligible.
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Hiding match locations. It may be required that Bob only learns the number
of matches and not the actual locations of the hits. One example is determining
how frequently some gene occurs rather than where it occurs in some DNA
sequence. This is easily achieved by simply having Alice pick a uniformly random
permutation and permute (and rerandomize) the Δj of Eq. (3). The encryptions
are sent to Bob, and πperm is executed, allowing him to verify Alice’s behavior.
Finally, πdec0 is run and Bob outputs the number of encryptions of 0 received.

Correctness is immediate: An encryption of 0 still signals that a match oc-
curred. However, due to the random permutation that Alice applies, the locations
are shuffled, implying that Bob does not learn the actual matches.

4 Secure Pattern Matching with Wildcards

The first variant of the classical pattern matching problem allows Bob to place
wildcards, denoted by �, in his pattern; these should match both 0 and 1. More
formally, the parties wish the compute the functionality FPM−� defined by,

((p, n), (t,m)) 	→
{

({j | t̄j �≡ p}n−m+1
j=1 , λ) if |p| = m and |t| = n

(λ, λ) otherwise

where t̄j is the substring of length m that begins at the jth position of t and
�≡

is defined as “equal except with respect to �-positions.” This problem has been
widely looked at by researchers with the aim to generalize the basic searching
model to searching with errors. This variant is known as pattern matching with
don’t cares and can be solved in O(n+m) time [IR07]. The secure version of this
problem guarantees that Alice will not be able to trace the locations of the don’t
cares in addition to the security requirement introduced for the basic problem.

The core idea of the solution is to proceed as in the standard one with two ex-
ceptions: Bob must supply the wildcard positions in encrypted form, and the sub-
strings of Alice’s text must be modified to ensure that they will match (i.e. equal)
the pattern at those positions. Achieving correctness and ensuring correct be-
havior requires substantial modification of the protocol. Intuitively, for every
m-bit substring t̄j of t, Bob replaces Alice’s value by 0 at the wildcard positions
resulting in a string t̄′j , see Step 6 below. Similarly, a pattern p′ is obtained from
p by replacing the wildcards by 0. Clearly this ensures that the bits of t̄′j and p′

are equal at all wildcard positions. Thus, t̄′j = p′ precisely when t̄j equals p at
all non-wildcard positions.

Protocol πPM−�

– Inputs: The input of Alice is a binary string t of length n and an integer m,
whereas the input of Bob is a string p over the alphabet {0, 1, �} of length m and
an integer n. The parties share a security parameter 1κ as well.

– The protocol:

1. Alice and Bob run protocol πKeyGen(1
κ, 1κ) to generate a public key pk =

〈Gq, q, g, h〉, and the respective shares sA and sB of the secret key sk.
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2. For each position i = 1, . . . ,m, Bob first replaces � by 0

p′i ←
{

1 if pi = 1

0 otherwise
.

He then sends encryptions P ′
i = Epk(p′i; rp′

i
) for i = 1, . . . ,m to Alice, and for

each one they execute πisBit. Finally, both parties compute an encryption of
Bob’s “pattern” in binary,

P ′ ←
m∏

i=1

P ′
i
2i−1

.

3. For each position i = 1, . . . ,m of Bob’s pattern, he computes a bit denoting
the occurrences of a �,

wi ←
{

0 if pi = �

1 otherwise
.

He then encrypts these and sends the result to Alice,

Wi ← Epk (wi, rwi) ,

and the two run πisBit for each one.
4. For each i = 1, . . . ,m, Bob and Alice run πisBit on Wi/P

′
i . This demonstrates

to Alice that if p′i is set, then so is wi, i.e. that only 0’s occur at wildcard
position.

5. Alice supplies her input as in Step 3 of Protocol πPM in Section 3. She sends
encryptions, Tj = Epk(tj ; rtj ) j = 1, . . . , n, of the bits of t to Bob. Then the
parties run πisBit for each of the encryptions.

6. For every entry i = 1, . . . ,m of every m-bit substring of t starting at position
j = 1, . . . , n−m+ 1, Bob computes an encryption

T̂j,i ← (Tj+i−1)
wi ·Epk (0, rj,i) .

He sends these to Alice, and they run πmult on each triple
(
Tj+i−1,Wi, T̂j,i

)
,

allowing Alice to verify that Bob has correctly multiplied the plaintexts of the
Wi onto the Tj+i−1. Both parties then compute encryptions of the modified
substrings of Alice’s text

T̄ ′
j ←

m∏
i=1

(
T̂j,i

)2i−1

.

7. The protocol concludes as Protocol πPM does. For each of the T̄ ′
j where j =

1, . . . , n−m+ 1, the parties compute

Δj ← T̄ ′
j · P ′−1

,

and run πdec0. This reveals to Bob which of plaintexts δj are 0. For each δj = 0
he concludes that the pattern matched and outputs j.

To see that the protocol does not introduce new opportunities for malicious be-
havior, first note that Alice specification is essentially as in the basic protocol
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πPM. Regarding Bob, the proofs of correct behavior limit him to supplying an in-
put that an honest Bob could have supplied as well. Bob’s input, p′i i = 1, . . . ,m,
is first shown to be a bit string, Step 2. The invocations of πisBit of Step 3 then
ensure that so is the “wildcard string.” Finally, in Step 4 it is verified that for
each wildcard pi of p, p′i = 0. In other words, there is a valid input where the
honest Bob would send encryptions of the values that the malicious Bob can
use. The only remaining option for a malicious Bob is in Step 6, however, the
invocations of πmult ensure his correct behavior. Formal simulation is analogous
to that in Section 3. We state the following theorem:

Theorem 2 (wildcards): Assume that πKeyGen, πdec0, πisBit, and πmult are as de-
scribed in Section 2 and that (G,E,D) is the ElGamal scheme. Then πPM−�

securely computes FPM−� in the presence of malicious adversaries.

Regarding complexity, clearly the most costly part of the protocol is Step 6 which
requires Bob to sends Θ (nm) encryptions, T̂j,i to Alice, as well as an invocation
of πmult for each of them. Hence, communication and computation complexity is
increased to O (nm), while round complexity remains constant.

5 Secure Approximate Matching

The second variation considered is approximate pattern matching: Alice holds an
n-bit string t, while Bob holds an m-bit pattern p. The parties wish to determine
approximate matches – strings with Hamming distance less than some threshold
τ ≤ m. This is captured by the functionality FAPM defined by,

((p, n, τ), (t,m, τ ′)) 	→
⎧⎨
⎩

({j | δH (t̄j , p) < τ}n−m+1
j=1 , λ) if |p| = m ≥ τ = τ ′

and |t| = n
(λ, λ) otherwise

where δH denotes Hamming distance and t̄j is the substring of length m that
begins at the jth position in t. We assume that the parties share some threshold
τ ∈ N. Note that this problem is an extension of pattern matching with don’t
cares problem introduced in Section 4. Bob is able to learn all the matches within
some error bound instead of learning the matches for specified error locations.

Two of the most important applications of approximate pattern matching
are spell checking and matching DNA sequences. The most recent algorithm
for solving this problem without considering privacy is by Amir et al. [ALP00]
which introduced a solution in time O(n

√
τ log τ ). Our solution achieves O(nm)

computation and communication complexity.
The main idea behind the construction is to have the parties securely supply

their inputs in binary as above. Then, to determine the matches, the parties
first compute the (encrypted) Hamming distances hj using the homomorphic
properties of ElGamal encryption (Steps 5 and 6). They then check whether
hj = k for each k < τ . To avoid leaking information, these results are permuted
before the final decryption.
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Protocol πAPM

– Inputs: The input of Alice is a binary string t of length n, an integer m and a
threshold τ ′, whereas the input of Bob is a binary string p of length m, an integer
n and a threshold τ . The parties share a security parameter 1κ as well.

– The protocol:

1. Alice and Bob run protocol πKeyGen(1
κ, 1κ) to generate a public key pk =

〈Gq, q, g, h〉, and the respective shares sA and sB of the secret key sk.
2. Alice sends Bob τ ′ and the parties continue if τ = τ ′.
3. As in the basic solution, Bob first sends encryptions Pi = Epk(pi; rpi) i =

1, . . . ,m, of the bits of his m-bit pattern, p, to Alice. They then run πisBit for
each one.

4. Alice similarly provides encryptions, Tj = Epk(tj ; rtj ) j = 1, . . . , n of her input
as in πPM; for each one the parties execute πisBit.

5. For every entry i = 1, . . . ,m of every m-bit substring of t starting at position
j = 1, . . . , n−m+ 1, Bob computes an encryption

Πj,i ← T pi
j+i−1 ·Epk (0, rj,i) . (5)

He sends these to Alice, and for each triple (Tj+i−1, Pi,Πj,i) the parties run
πmult. This allows Alice to verify that Bob has correctly multiplied the plain-
texts of the Pi onto the Tj+i−1.

6. For every entry i = 1, . . . ,m of every m-bit substring of t starting at position
j = 1, . . . , n−m+ 1, both parties compute encryptions Xj,i,

Xj,i ← Tj+i−1 · Pi ·Π−2
j,i .

Note that as the plaintext ofΠj,i is pi·tj+i−1, the plaintext ofXj,i is pi⊕tj+i−1.
For every j = 1, . . . , n−m+ 1 – i.e. for every substring – both parties compute

Hj ←
m∏

i=1

Xj,i.

7. For every k = 0, . . . , τ − 1 (i.e. for every Hamming distance which would
be considered a match) and for every substring of length m starting at j =
1, . . . , n−m+ 1, both parties compute

Δj,k ← Hj ·
〈
1, g−k

〉
. (6)

8. For every j = 1, . . . , n−m+ 1, Alice picks a uniformly random permutation
πj : Zτ → Zτ and applies πj to the set {Δj,k}k,

(
Δ′

j,0, . . . ,Δ
′
j,τ−1

)← πj (Δj,0, . . . ,Δj,τ−1) ,

rerandomizes all encryptions,

Δ′′
j,k ← Δ′

j,k ·Epk

(
0, r′j,k

)

for j = 1, . . . , n−m+ 1 and k = 0, . . . , τ − 1, and sends the Δ′′
j,k to Bob.

For every permutation, j = 1, . . . , n−m+ 1, the parties execute πperm on(
(Δj,0, . . . ,Δj,τ−1) ,

(
Δ′′

j,0, . . . ,Δ
′′
j,τ−1

))
allowing Bob to verify that the plain-

texts of the Δ′′
j,k correspond to those of the Δj,k for all (fixed) j.
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9. Finally, Alice and Bob execute πdec0 on each Δ′′
j,k for j = 1, . . . , n−m+ 1

and k = 0, . . . , τ − 1. This reveals to Bob which plaintexts δj,k are 0. He then
outputs j iff this is the case for one of δ′′j,0, . . . , δ

′′
j,τ−1.

Correctness follows from the intuition: The plaintexts of the Hj from Equa-
tion (5) are the sum of the ones of the Xj,i i = 1, . . . ,m. I.e. it is the number
of differing bits of p and t̄j – the Hamming distance – as the plaintext of Xj,i is
tj+i−1 + pi − 2 · tj+i−1 · pi = tj+i−1 ⊕ pi.

Each threshold test is performed using τ tests of equality, one for each possible
value k < τ , where each test simply subtracts the associated k fromHj under the
encryption, Eq. (6), at which point the parties may mask and decrypt towards
Bob. Note that the standard masking combined with the permutation of Step 8
ensures that for every potential match, Bob either receives τ uniformly random
encryptions of random, non-zero values, or τ − 1 such encryptions and a single
encryption of zero. Hence we state the following theorem:

Theorem 3 (approximate): Assume that πKeyGen, πdec0 and πisBit, and πmult are
as described in Section 2 and that (G,E,D) is the ElGamal scheme. Then πAPM

securely computes FAPM in the presence of malicious adversaries.

Regarding complexity, the most expensive steps are those associated with com-
puting the Hamming distances, Steps 5 and 6, as there are Θ(nm) Πj,i and Xj,i.
The concluding steps – computing, randomizing (permuting), and decrypting the
Δj,k – require Θ(nτ) work, however, as τ ≤ m this is no more expensive. Hence
overall communication and computation is O(mn), while round complexity is
constant as in the previous solutions.

6 Hiding the Pattern Length

Here Alice is not required to know the length m of Bob’s pattern, only an upper
bound M ≥ m. Moreover, she will not learn any information about m. More
formally, the parties wish to compute the functionality FPM−hpl defined by,

((p, n), (t,M)) 	→
{

({j | t̄j = p}n−m+1
j=1 , λ) if |p| ≤M and |t| = n

(λ, λ) otherwise

where t̄j is the substring of length m that begins at the jth position in t. A pro-
tocol πPM−hpl that realizes FPM−hpl can be obtained through minor alterations of
πPM−�. Due to space constraints we only sketch these, and postpone the detailed
description and simulator proof to the full version of the paper.

The main idea is to have Bob construct a pattern p̂ of length M by padding
p with M −m wildcards. Though not completely correct, intuitively, executing
πPM−� on input ((p̂, n) , (t,M)) provides the desired result, as the wildcards en-
sure that the irrelevant postfixes of the t̄j are “ignored.” There are two reasons
why this does not suffice. Firstly, the wildcards of πPM−� mean match any char-
acter, however, matches must also be found when the wildcards occur after the
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end of the text (where there are no characters). Secondly, a malicious Bob must
not have full access to wildcard-usage – i.e. he must not be able to arbitrarily
place wildcards, they must occur only at the end of p̂.

– Matching t̄j when j > n − M + 1: The solution to the former problem
is completely straightforward: extend (pad) t with symbols that only match
wildcards. Going into more detail, first let N = n+M − 1. The parties pad
Alice’s encrypted text, T1, . . . , Tn with M − 1 default encryptions of 2,

Tn+1 = . . . = TN =
〈
1, g2

〉
.

Then, rather than use a binary representation for the encryptions P ′ and T̄ ′j
(Steps 2 and 6 of πPM−�), we use a ternary representation

P̂ ←
M∏
i=1

(P ′i )
3i−1

, T̄ ′j ←
j+M−1∏

i=j

T̂ 3i−j

j,i .

Intuitively, this works as we have simply extended our alphabet with an
additional character, 2.

– Ensuring a proper p̂: To prevent malicious behavior, Bob should demon-
strate to Alice that p̂ has been properly constructed, i.e. that all wildcards
occur at the end of the pattern. This can be done by showing that w1, . . . , wM

is monotonically non-increasing, i.e. that a 1 (non-wildcard) never follows a
0 (wildcard). Bob can demonstrate this fact by executing πisBit on Wi/Wi+1

for i = 1, . . . ,M − 1.

Complexity is equivalent to πPM−�. We conclude with the following theorem,

Theorem 4 (pattern length hiding): Assume that πKeyGen, πDec, πisBit, and πmult

are as described in Section 2 and that (G,E,D) is the ElGamal scheme. Then
πPM−hpl securely computes FPM−hpl in the presence of malicious adversaries.

7 Hiding the Text Length

The final variant does not require Bob to know the actual text length n, only an
upper boundN ≥ n. Moreover, he learns no information about n other than what
can be inferred from the output. This property is desirable in applications where
it is crucial to hide the size of the database as it gives away sensitive information.
More formally, the parties wish the compute the functionality FPM−htl,

((p,N), (t,m)) 	→
{

({j | t̄j = p}n−m+1
j=1 , λ) if |p| = m and |t| ≤ N

(λ, λ) otherwise

where t̄j is the substring of length m that begins at the jth position in t.
Due to space constraints, we only sketch the solution. The core idea is to

have Alice pad her text with N − n 2s, and then demonstrate that any 2s occur
at the end. The details of the solution are similar to those of πPM−hpl above.
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Regarding complexity, it can be shown that only O(N +m) encryptions change
hands, hence only this many zero-knowledge proofs of knowledge are needed as
well; i.e. communication and computation complexity are linear. The required
number of rounds is constant.

Theorem 5 (text length hiding): Assume that πKeyGen, πdec0 and πisBit are as
described in Section 2 and that (G,E,D) is the ElGamal scheme. Then πPM−htl

securely computes FPM−htl in the presence of malicious adversaries.
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Abstract. Private Set Intersection (PSI) protocols allow one party (“client”) to
compute an intersection of its input set with that of another party (“server”), such
that the client learns nothing other than the set intersection and the server learns
nothing beyond client input size. Prior work yielded a range of PSI protocols se-
cure under different cryptographic assumptions. Protocols operating in the semi-
honest model offer better (linear) complexity while those in the malicious model
are often significantly more costly. In this paper, we construct PSI and Authorized
PSI (APSI) protocols secure in the malicious model under standard cryptographic
assumptions, with both linear communication and computational complexities.
To the best of our knowledge, our APSI is the first solution to do so. Finally, we
show that our linear PSI is appreciably more efficient than the state-of-the-art.

1 Introduction

Private set intersection (PSI) protocols allow two parties – a server and a client – to
interact on their respective input sets, such that the client only learns the intersection
of the two sets, while the server learns nothing (beyond the client input set size). PSI
addresses several realistic privacy issues. Typical application examples include:

1. Aviation Security: The U.S. Department of Homeland Security (DHS) needs to
check whether any passenger on each flight from/to the United States must be
denied boarding or disembarkation, based on so-called Terror Watch List. Today,
airlines surrender their entire passenger manifests to DHS, together with other sen-
sitive information, such as credit card numbers. Besides privacy implications, this
modus operandi poses liability issues with regard to (for the most part) innocent
passengers’ data and concerns about potential data losses. Ideally, DHS would ob-
tain information only pertaining to passengers on the list, while not disclosing any
information to the airlines.

2. Healthcare: Insurance companies often need to obtain information about their in-
sured patients from other parties, such as other insurance carriers or hospitals. The
former cannot disclose the identity of inquired patients, whereas, the latter cannot
provide any information on other patients.

3. Law Enforcement: Investigative agencies (e.g., the FBI) need to obtain informa-
tion on suspects from other agencies, e.g., local police departments, the military,
DMV, IRS, or employers. In many cases, it is dangerous (or simply forbidden) for
the FBI to disclose subjects of investigation. For their part, other parties cannot
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disclose their entire data-sets and need the FBI to access only desired information.
Also, the FBI requests might need to be pre-authorized by some appropriate trusted
authority (e.g., a federal judge, via a warrant). This way, the FBI can only obtain
information related to legitimate requests.

1.1 Adversaries in PSI

Over the last years, PSI-related research has yielded several PSI constructs, with a
wide range of adversarial models, security assumptions, and efficiency characteristics.
One major distinguishing factor is the adversarial model which is typically either semi-
honest or malicious. (Note that, in the rest of this paper, the term adversary refers to
insiders, i.e., protocol participants. Outside adversaries are not considered, since their
actions can be mitigated via standard network security techniques.)

Following Goldreich’s definition [Gol04], protocols secure in the presence of semi-
honest adversaries (or honest-but-curious) assume that parties faithfully follow all pro-
tocol specifications and do not misrepresent any information related to their inputs, e.g.,
set size and content. However, during or after protocol execution, any party might (pas-
sively) attempt to infer additional information about the other party’s input. This model
is formalized by requiring that each party does not learn more information that it would
in an ideal implementation relying on a trusted third party (TTP).

In contrast, security in the presence of malicious parties allows arbitrary deviations
from the protocol. In general, however, it does not prevent parties from refusing to
participate in the protocol, modifying their private input sets, or prematurely aborting
the protocol. Security in the malicious model is achieved if the adversary (interacting
in the real protocol, without the TTP) can learn no more information than it could in
the ideal scenario. In other words, a secure PSI emulates (in its real execution) the ideal
execution that includes a trusted third party. This notion is formulated by requiring
the existence of adversaries in the ideal execution model that can simulate adversarial
behavior in the real execution model.

1.2 Authorized (Client) Input

Malicious parties cannot be prevented from modifying their input sets, even if a pro-
tocol is proven secure in the malicious model. Considering that the client learns the
intersection while the server learns nothing, this appears a severe threat to server’s pri-
vacy. For instance, suppose that a malicious client faithfully follows the protocol, but
populates its input set with its best guesses of the server set (especially, if the set is easy
to exhaustively enumerate). This would maximize the amount of information it learns.
In the extreme case, the client could even claim that its set contain all possible elements.
Although the server could impose a limit on this size, the client could still vary its set
over multiple protocol runs.

We claim that this issue cannot be effectively addressed without some mechanism to
authorize client inputs. Consequently, a trusted certification authority (CA) is needed to
certify input sets, as proposed in [DJKT09, CZ09]. This variant is called “Authorized
Private Set Intersection” (APSI) in [DT10]. Note that the CA is an off-line entity; it is
neither trusted, nor involved in, computing the intersection.
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As discussed above, input authorization ensures that malicious clients cannot ma-
nipulate their inputs to harm server privacy. However, this does not help at all as far
as manipulation of server inputs. One way towards security against malicious servers
would be to introduce authorization for server input, along the same lines as client input
authorization. Although this would likely yield protocols secure in the malicious model,
we choose not to pursue this direction. The main reason is that, it is more natural for
the client (who learns the intersection) to be authorized on its input, than for the server
(who learns nothing). However, though it is outside the scope of this paper, we believe
that enforcing both server and client input authorization is a subject worth investigat-
ing. Finally, we leave as an open question whether we can reduce security of PSI in the
malicious model to authorization of both client and server inputs.

1.3 Technical Roadmap and Contributions

Over the last few years, several elegant (if not always efficient) PSI and APSI proto-
cols have been proposed, that are secure in the malicious model, under standard as-
sumptions [KS05, HL08, DSMRY09, CZ09, CKRS09, HN10]. Only [JL09] presents a
linear-complexity PSI protocol secure in the malicious setting. Its proof requires that
the domain of inputs to be restricted to polynomial in the security parameter and re-
quires a Common Reference String model (CRS), where the reference string, including
a safe RSA modulus, must be generated by a mutually trusted third party. Other re-
sults (such as [DT10]) construct linear-complexity PSI and APSI protocols secure in
the semi-honest model, under assumptions of the one-more-XXX type [BNPS03], with
much lower computational and communication complexity. (Note that we overview
prior work in Section 2). As shown in [DT10], via both analysis and experiments, there
is an appreciable efficiency gap between the two “families” of PSI/APSI protocols:
those secure in the malicious and in the semi-honest models. In this paper, our main
goal is to construct efficient PSI and APSI protocols secure under standard assump-
tions, with malicious participants (both server and client).

Our starting point are the linear-complexity protocols from [DT10] (specifically,
Figure 2 and 3), which are secure only in the semi-honest model. First, we modify
the APSI construct of [DT10] and obtain APSI protocol secure in the malicious model,
under the standard RSA assumption (in ROM). Then, we modify its PSI counterpart:
while the linear-complexity PSI protocol in [DT10] is secure under the One-More-Gap-
DH assumption [BNPS03] against semi-honest parties, our modified variant is secure in
the malicious model under the standard DDH assumption (again, in ROM). We present
formal proofs for all proposed protocols.

Contributions of our work are:

1. To the best of our knowledge, our APSI protocol is the first result with linear com-
munication and computational complexity, in the malicious model. (Previous work
achieved quadratic computational complexity.)

2. Our PSI protocol also offers linear complexity. Although some prior work (i.e.,
[JL09]) also achieves the same asymptotic bound, we do not require the CRS model
and our proof does not restrict input domain size. We also show that our protocol
incurs significantly reduced constant factors.
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3. We prove security of proposed protocols, in presence of malicious adversaries, un-
der standard cryptographic (RSA and DDH) assumptions, in ROM.

Organization. Section 2 overviews previous work. Then, after some preliminaries in
Section 3, we present our constructions in Sections 4 and 5. Next, Section 6 discusses
the efficiency of our constructs and Section 7 concludes the paper.

2 Related Work

This section overviews prior work on PSI and APSI.

2.1 Prior Work on PSI

It is well known that PSI could be realized via general secure two-party computa-
tion [Yao82]. However, it is usually far more efficient to have dedicated protocols
(see [FNP04, KS05]); which is the direction we pursue in this paper. From here on,
we consider PSI as an interaction between a server S and a client C. The server set
contains w items, while the client set – v.

Freedman, et al. [FNP04] introduce the concept of PSI and presented protocols based
on Oblivious Polynomial Evaluation (OPE) [NP06]. The basic idea is to represent a set
as a polynomial, with individual elements as its roots. The construction for the semi-
honest setting incurs linear communication, and quadratic computational, complexity.
Using Horner’s rule and balanced bucket allocation, the number of modular exponen-
tiations can be reduced to O(w log log v) exponentiations for the server and O(w + v)
exponentiations for the client. [FNP04] also gives constructions for a malicious client
and semi-honest server. This protocol uses a cut-and-choose strategy, thus, the overhead
is increased by a statistical security parameter. Also presented is a protocol secure in
the presence of a malicious server and a semi-honest client in ROM.

Kissner and Song [KS05] propose OPE-based protocols for mutual PSI (as well as
for additional set operations), and may involve more than two players. Protocols are
secure in the standard model against semi-honest and also malicious adversaries. The
former incurs quadratic (O(wv)) computation (but linear communication) overhead.
The latter uses (expensive) generic zero-knowledge proofs to prevent parties from de-
viating to the protocol. Later, Dachman-Soled, et al. [DSMRY09] present an improved
PSI construction, based on [KS05]. Their construction incorporates a secret sharing of
polynomial inputs. Since Shamir’s secret sharing [Sha84] implies Reed Solomon codes,
they do not need generic zero-knowledge proofs. Complexity of their protocol amounts
to O(wk2 log2(v)) in communication and O(wvk log(v) + wk2 log2(v)) in computa-
tion, being k the security parameter.

Another family of protocols rely on so-called Oblivious Pseudo-Random Functions
(OPRF-s). An OPRF is a two-party protocol (between a sender and a receiver) that se-
curely computes a pseudorandom function fk(·) on key k contributed by the sender and
input x contributed by the receiver, such that the former learns nothing from the inter-
action, and the latter learns only the value fk(x). OPRF-based PSI-s work as follows:
Server S holds a secret random key k. Then, for each sj ∈ S, S computes uj = fk(sj),
and publishes (or sends the client) the set U = {u1, · · · , uw}. Then, C and S engage in
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an OPRF computation of fk(ci) for each ci ∈ C (of size v), such that S learns nothing
about C (except the size) and C learns fk(ci). Finally, C obtains ci ∈ C ∩ S if and
only if fk(ci) ∈ U . The idea of using OPRFs for PSI protocols is due to Hazay and
Lindell [HL08], who propose one solution with security against malicious adversaries
with one-sided simulatability, and one – against covert adversaries [AL07].

This protocol has been later improved by Jarecki and Liu [JL09], who proposed
a protocol secure in the standard model in the presence of both malicious parties,
based on the Decisional q-Diffie-Hellman Inversion assumption, in the Common Ref-
erence String (CRS) model, where a safe RSA modulus is generated by a trusted third
party. Encryption operations are performed using an additively homomorphic encryp-
tion scheme, such as Camenisch and Shoup [CS03]. As pointed out in [JL09], this ap-
proach can be further optimized, based on the concurrent work in [BCC+09]. Assuming
such improved construction, [JL09] incurs the following computational complexity: Let
m be the number of bits needed to represent each set item; the server performs at least
O(w) PRF evaluations, i.e., bothm-bit and group exponentiations, plusO(v) group ex-
ponentiations, whereas, the client at least O(v) m-bit exponentiations plus O(v) group
exponentiations. We discuss in details the complexity of this solution later in the paper.
Finally, note that the proof in [JL09] requires the ability to exhaustively search over
the input domain, i.e., the input domain size of the PRF should be polynomial in the
security parameter.

A recent result by Hazay and Nissim [HN10] presents an improved construction
of OPE-based PSI based on [FNP04], but without ROM. Specifically, it introduces
zero-knowledge proofs that allow client to demonstrate that encrypted polynomials are
correctly produced. Also, it uses a technique based on a perfectly hiding commitment
scheme with an OPRF evaluation protocol to prevent the server from deviating from
the protocol. The PSI protocol in [HN10] incurs O(v + w(log log v + m)) computa-
tional and O(v + w · m) communication complexity, where m is the number of bits
needed to represent a set item. Note that execution of the underlying OPRF in [HN10]
requires m oblivious transfer invocations, and hence O(m) modular exponentiations,
for each set item. However, such overhead can be avoided by instantiating the protocol
in ROM. This protocol can be also optimized if the size of the intersection is allowed
to be leaked to the server, in contrast to our strict privacy definitions (see Section 3.3).
Nonetheless, the resulting protocol is of sending O(v + |S ∩ C| · m) and computing
O(v + w · log log v + |S ∩ C| ·m), which is still not linear. (Also recall that it is not
clear how to enable convert the PSI construct of [HN10] into APSI.)

In another recent result, [DT10] (Fig.4) presents an adaptive PSI protocol based on
blind-RSA signatures [Cha83], secure in the semi-honest model, under the One-More-
RSA assumption [BNPS03], in ROM. Specifically, during an initialization phase, the
server generates RSA keys (N, e, d) and commits to its set, by publishing the hash of
the RSA signature of each item. During the interaction, the client obtains blind-RSA
signatures of its items from the server. Thus, the server needs to compute O(w) RSA
signatures during the initialization phase, and O(v) online. Whereas, the client (assum-
ing e = 3) only computes O(v) multiplications, thus making this construct particularly
appealing for clients running on limited-resource devices.
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[DT10] (Fig.3) includes another PSI secure in the presence of semi-honest adver-
saries, under the One-More-Gap-DH assumption, in ROM. Common inputs are primes
p, q (with q|p − 1, the order of a subgroup of Z

∗
p) and a generator of the subgroup, g.

First, the client computes the accumulator PCH =
∏v

i=1(H(ci)) and sends X =
PCH · gRc for Rc random in Z

∗
q . Also, for i = 1, . . . , v, it computes PCHi =

PCH/H(ci) and sends xi = PCHi · gRc:i for Rc:i in Z
∗
q . The server picks a ran-

dom Rs in Z
∗
q , sends Z = gRs , and, for each xi, sends back x′i = xi

Rs . Then, for
j = 1, . . . , w, it computes Ts:j = H ′((X/H(sj))Rs). Finally, the client computes
Tc:i = x′i ·ZRc ·Z−Rc:i , and learns that ci ∈ C ∩S if Tc:i = Ts:j . Computational com-
plexity of this protocol is O(w + v) and O(v) exponentiations (with short exponents)
for the server and client, respectively.

2.2 Prior Work on APSI

Authorized Private Set Intersection (APSI) is defined in [DT10] to extend PSI to support
authorization of client inputs. Each client input must be authorized (via signing) by
some trusted authority, e.g., a CA. Recall the third example in Section 1: to obtain
information on a suspect from her employer, the FBI needs to be duly authorized. APSI
represents an authorization using a digital signature. Note that authorizations obtained
from the CA are private to the client and cannot be disclosed to the server.

[DT10] shows that the PSI protocol in its Fig.3 (reviewed at the end of Section 2.1)
can be instantiated in a RSA setting, where client input is a set of RSA signatures and
the server obliviously verifies them by modifying the protocol as follows. The client C
needs to obtain from the CA signatures σi = H(ci)d (for input set C = {c1, . . . , cv}).C
computes the accumulator PCH∗ =

∏v
i=1 σi and sendsX = PCH∗ · gRc for random

Rc. Also, it computes PCH∗i = PCH∗/σi and sends xi = PCH∗i · gRc:i for random
Rc:i. The server picks a random Rs, sends Z = geRs , and, for each xi, sends back
x′i = xi

eRs . Then, for j = 1, . . . , w, it computes Ts:j = H ′((Xe/H(sj))Rs). Finally,
the client computes Tc:i = x′i · ZRc · Z−Rc:i , and learns that ci ∈ C ∩ S if Tc:i = Ts:j .
Asymptotic complexity of this solution is the same as that of the standard PSI presented
above, i.e., O(w + v) and O(v) exponentiations for the server and client, respectively.
(Although short exponents are replaced with “RSA” exponents.) The resulting protocol
is secure in the semi-honest model, under the standard RSA assumption, in ROM. Note
that the use of “authorized” client inputs seems to increase server privacy: under the
RSA assumption, the client does not learn any information about server inputs, unless
it holds a valid RSA signature. In other words, there appears to be a strong correlation
between server privacy and client’s difficulty of forging signatures.

A similar concept (adaptable to APSI) is Public-Key Encryption with Oblivious Key-
word Search in [CKRS09]. It proposes an Identity-based cryptosystem (inspired by
PEKS in [BDOP04]), where the client obtains authorized search trapdoors from a CA,
and uses them to search over data encrypted by the server. The client learns only the
information matching the authorized trapdoors, whereas, the server learns nothing. The
protocol is secure in the presence of malicious adversaries in the standard model, under
the Decision Bilinear Diffie-Hellman assumption [BF03]. It uses a modification of the
Boyen-Waters IBE [BW06]. Even without taking into account zero-knowledge proofs,
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the server would compute O(w) encryptions of [BW06] (each requiring 6 exponentia-
tions and a representation of 6 group elements). The client would need to test each of
the O(w) PEKS against its O(v) trapdoors, hence performingO(w · v) decryptions.

Finally, [CZ09] introduces another similar notion – Private Intersection of Certified
Sets. This construct allows a trusted third party to ensure that all protocol inputs are
valid and bound to each protocol participant. The proposed protocol is mutual (i.e.,
both parties receive the intersection) and builds upon oblivious polynomial evaluation
and achieves quadratic computation and communication overhead.

3 Preliminaries

In this section, we present our cryptographic assumptions and tools, as well as security
model. We introduce our notation in Table 1.

Table 1. Notation

a←r A variable a is chosen uniformly at random from setA
κ security parameter

N = pq safe RSA modulus with at least κ-bit security
e, d public and private exponents of RSA

ZN/2 1/2 of bit-size of N
H() random oracle H : {0, 1}∗ → {0, 1}κ

H1() random oracle H1 : {0, 1}∗ → G (G depends on the context)
H2() random oracle H2 : G× G × {0, 1}∗ → {0, 1}κ (G depends on the context)
C,S client and server sets, respectively
v, w sizes of C and S, respectively

i ∈ [1, v] indices of elements of C
j ∈ [1, w] indices of elements of S

ci, sj i-th and j-th elements of C and S, respectively
hci, hsj H1(ci) and H1(sj), respectively

σi H1(ci)
d, RSA-signature on client item

3.1 Cryptographic Assumptions

Definition 1. Let G be a cyclic group and let g be its generator. Assume that the bit-
length of the group size is l. The DDH problem is hard in G if for every efficient algo-
rithm A the probability:
∣∣∣Pr[x, y ←r {0, 1}l : A(g, gx, gy, gxy) = 1]− Pr[x, y, z ←r {0, 1}l : A(g, gx, gy, gz) = 1]

∣∣∣
is a negligible function of κ.

Definition 2. Let RSA-Gen(1κ) be an algorithm that outputs so-called “safe RSA in-
stances”, i.e. pairs (n, e) where n = pq, e is a small prime such that gcd(e, φ(n)) = 1,
and p, q are random κ-bit primes subject to the constraint that p = 2p′+1, q = 2q′+1
for prime p′, q′, p′ �= q′. The RSA problem is hard if, for every efficient algorithmA, the
probability:

Pr[(n, e)← RSA-Gen(1κ), z ← Z
∗
n : A(n, e, z) = y s.t. ye = z (mod n)]

is a negligible function of κ.
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3.2 Tools

In this section, we consider signature of knowledge of a discrete logarithm and equality
of two discrete logarithms in a cyclic group G = 〈g〉. In particular, we consider G

where either the order of G is known or the order of G is unknown but its bit-length
l is publicly known. Fujisaki and Okamoto [FO97] show that (under the strong RSA
assumption) standard proofs of knowledge that work in a group of known order are also
proofs of knowledge in this setting. We define discrete logarithm of y ∈ G with respect
to base g as any integer x ∈ Z such that y = gx in G. We assume a security parameter
ε > 1.

Definition 3. (ZK of DL over a known order group) Let y, g ∈ G of order q. A pair
(c, s) ∈ {0, 1}κ × Zq verifying c = H(y||g||gsyc||m) is a signature of knowledge of
the discrete logarithm of y = gx w.r.t. base g, on message m ∈ {0, 1}∗.
Definition 4. (ZK of DL over an unknown order group) Let y, g ∈ G where the group
order is unknown, but its bit-length is known as l bits. A pair (c, s) ∈ {0, 1}κ ×
±{0, 1}ε(l+κ)+1 verifying c = H(y||g||gsyc||m) is a signature of knowledge of the
discrete logarithm of y = gx w.r.t. base g, on message m ∈ {0, 1}∗.
The player in possession of the secret x = logg y can compute the signature by choosing
a random t ∈ Zq (or±{0, 1}ε(l+κ)) and then computing c and s as: c = H(y||g||gt||m)
and s = t− cx in Zq (or in Z).

Definition 5. (ZK of EDL over a known order group) Let y1, y2, g, h ∈ G of order q. A
pair (c, s) ∈ {0, 1}κ × Zq verifying c = H(y1||y2||g||h||gsyc

1||hsyc
2||m) is a signature

of knowledge of the discrete logarithm of both y1 = gx w.r.t. base g and y2 = hx w.r.t.
base h, on message m ∈ {0, 1}∗.
Definition 6. (ZK of EDL over an unknown order group) Let y1, y2, g, h ∈ G where
the group order is unknown, but its bit-length is known as l bits. A pair (c, s) ∈
{0, 1}κ × ±{0, 1}ε(l+κ)+1 verifying c = H(y1||y2||g||h||gsyc

1||hsyc
2||m) is a signa-

ture of knowledge of the discrete logarithm of both y1 = gx w.r.t. base g and y2 = hx

w.r.t. base h, on message m ∈ {0, 1}∗.
The player in possession of the secret x = logg y1 = logh y2 can compute the signature
by choosing a random t ∈ Zq (or ±{0, 1}ε(l+κ)) and then computing c and s as: c =
H(y1||y2||g||h||gt||ht||m) and s = t− cx in Zq (or in Z).

3.3 Security Model

We assume a malicious adversary that behaves arbitrarily. Informally, a protocol is se-
cure in this model if no adversary interacting in the real protocol (where no TTP exists)
can learn any more from a real execution than from an execution that takes place in the
ideal world. In other words, for any adversary that successfully attacks a real protocol,
there exists a simulator that successfully attacks the same protocol in the ideal world.

We now define ideal functionalities of PSI and APSI. In particular, in contrast to PSI,
APSI employs an (off-line) CA with algorithms (KGen, Sign, Ver). The CA generates
a key-pair (sk, pk) ← KGen, publishes its public key pk, and, on client input ci, it
issues a signature σi = Sign(sk, ci) s.t. Ver(pk, σi, ci) = 1.
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Definition 7. The ideal functionality FAPSI of an APSI protocol betw. server S on input
S = {s1, · · · , sw} and client C on input C = {(c1, σ1), · · · , (cv, σv)} is defined as:

FAPSI : (S, C)→ (⊥,S ∩ {ci | ci ∈ C ∧ Ver(pk, σi, ci) = 1})

where w, v are the public input to FAPSI.

Definition 8. The ideal functionality FPSI of a PSI between server S on input S =
{s1, · · · , sw} and client C on input C = {c1, · · · , cv} is defined as follows:

FPSI : (S, C)→ (⊥,S ∩ C)
where w, v are the public input to FPSI.

4 APSI Protocol

We now present our protocol for secure computation of authorized set intersection.
We start from the APSI protocol of [DT10] (reviewed in Section 2.2), secure in the
semi-honest model. We describe a modified version that securely implements the FAPSI

functionality in the malicious model, in ROM, under the RSA and DDH assumptions.
The CA (trusted third party that authorizes client input) is realized with the following

algorithms:

– KGen: On input of security parameter κ, this algorithm generates safe RSA mod-
ulus N = pq where p = 2p′ + 1, q = 2q′ + 1 and picks a random element g, g′ s.t.
〈−1〉× 〈g〉 ≡ 〈−1〉× 〈g′〉 ≡ Z

∗
N . RSA exponents (e, d) are chosen in the standard

way: e is a small prime and d = e−1 mod φ(N). The algorithm also fixes hash
function H1 : {0, 1}∗ → Z

∗
N and H2 : Z

∗
N × Z

∗
N × {0, 1}∗ → {0, 1}κ. The secret

key is (p, q, d) and the public parameters are: N, e, g, g′, H1(), H2().
– Sign: On input of ci, this algorithm issues an authorization σi = H1(ci)d mod N .
– Ver: On input of (σi, ci), this algorithm verifies whether σi

e = H1(ci) mod N .

The resulting protocol is presented in Figure 1.

Theorem 1. If RSA and DDH problems are hard, and π, π′ are zero-knowledge proofs,
then the protocol in Figure 1 is a secure computation of FAPSI, in ROM.

Proof. [Construction of an ideal world SIMs from a malicious real-world server S∗]

The simulator SIMs is built as follows:

– Setup: SIMs executes KGen and publishes public parameters N, e, g, g′.
– Hash queries to H1 and H2: SIMs constructs two tables T1 = (q, hq) and T2 =

((k, h′q, q
′), t) to answer, respectively, the H1 and H2 queries. Specifically:

• On query q to H1, SIMs checks if ∃(q, hq) ∈ T1: If so, it returns hq, otherwise
it responds hq ←r Z

∗
N , and stores (q, hq) to T1.

• On query (k, h′q, q′) to H2, SIMs checks if ∃((k, h′q, q′), t) ∈ T2: If so, it
returns t, otherwise it responds t ←r {0, 1}κ to H2, and stores ((k, h′q, q

′), t)
to T2.
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Common input: N, e, g, g′, H1(), H2()

Server Client
On input: S = {s1, · · · , sw} On input: C = {(c1, σ1), · · · , (cv, σv)}

For i = 1, . . . , v
Rc:i ←r ZN/2, bi, b̄i ←r {0, 1}
Mi = (−1)bi · σi · gRc:i

Ni = (−1)b̄i · hci · (g′)Rc:i

π = ZK{Rc:i, i = 1, . . . , v |
Mi

2e/N2
i = (ge/g′)2Rc:i}{Mi, Ni}, π��If π doesn’t verify, then abort

Rs ←r ZN/2

Z = g2eRs

For i = 1, . . . , v
M ′

i = (Mi)
2eRs

For j = 1, . . . , w
Ks:j = (hsj)

2Rs

Ts:j = H2(Ks:j , hsj , sj)

π′ = ZK{Rs | Z = g2eRs ,
∀i,M ′

i = (Mi)
2eRs} Z, {M ′

i}, {Ts:j}, π′
�� If π′ doesn’t verify, then abort

For i = 1, . . . , v
Kc:i = M ′

i · Z−Rc:i

Tc:i = H2(Kc:i, hci, ci)
Output
ci ∈ C ∩ S if ∃i,j s.t. Tc:i = Ts:j

All notations are from Table 1 and all computations are performed mod N .

Fig. 1. Our APSI Protocol with linear complexity secure against malicious adversaries

– Simulation of the real-world client C and the ideal-world server S:

1. SIMs picks M ′i ←r Z
∗
N , N ′i ←r Z

∗
N and computesMi = (M ′i)

2, Ni = (N ′i)
2

for each i = 1, · · · , v.
2. SIMs sends {Mi, Ni}i=1,...,v and simulates the proof π.
3. After getting (Z, {M ′i}i=1,...,v, {Ts:j}j=1,...,w), and interacting with S∗ as ver-

ifier in the proof π′, if the proof π′ verifies, SIMs runs the extractor algorithm
for Rs. Otherwise, it aborts.

(a) For each Ts:j , SIMs checks if ∃(q, hq) ∈ T1 and ∃((k, h′q, q′), t) ∈ T2, s.t.
q = q′, hq = h′q, k = (hq)2Rs and t = Ts:j . If so, add q to S; otherwise,
add a dummy item into S.

(b) Then SIMs plays the role of the ideal-world server, which uses S to re-
spond to ideal client C’s queries.

Since the distribution of {Mi, Ni}i=1,...,v sent by SIMs is identical to the distribution
produced by the real clientC and theπ proof system is zero-knowledge,S∗’s views when
interacting with the real client C and with the simulator SIMs are indistinguishable.
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[Output of (honest) real client C interacting with S∗]
Now we consider the output of the honest real client C interacting with S∗. By

soundness of proof π′, message Z and M ′i sent by S∗ is Z = geRs and M ′i = (Mi)eRs

for i = 1, · · · , v. Then, C’s final output is a set containing all ci’s, such that H2(M ′i ·
Z−Rc:i , hci, ci) ∈ {Ts:j}. In other words, for each ci, C outputs ci if ∃ j s.t. H2(M ′i ·
Z−Rc:i , hci, ci) = Ts:j . Since H2 is a random oracle, there are two possibilities:

1. S∗ computes Ts:j from H2((hsj)2Rs, hsj, sj) for sj = ci. Since SIMs described
above extracts sj = ci and adds sj in S, the ideal world C also output ci on its
input ci.

2. S∗ did not query H2 on (M ′i · Z−Rc:i, hci, ci) but H2(M ′i · Z−Rc:i, hci, ci) hap-
pens to be equal to Ts:j . This event occurs with negligible probability bounded by
v · w · 2−κ.

Therefore, with probability 1− v · w · 2−κ, the real-world client C interacting with S∗

and the ideal-world client C interacting with SIMs yield identical outputs.

[Construction of an ideal world SIMc from a malicious real-world client C∗]
The simulator SIMc is formed as follows:

– Setup and hash queries to H1 and H2: Same as Setup and H1 and H2 responses
described above in construction of SIMs.

– Authorization queries: On input m, SIMc responds with (m,σ) where σ =
(H1(m))d and stores (m,σ) to table T3.

– Simulation of real-world server S and ideal-world client C:

1. After getting {Mi, Ni}i=1,...,v, and interacting with C∗ as verifier in the proof
π, SIMc checks if proof π verifies. If not, it aborts. Otherwise, it runs the ex-
tractor algorithm for {Rc:i} and computes±(hci, σi) s.t. hci = σe.

2. For each ±(hci, σi):
- If �(q, hq) ∈ T1 s.t. hq = ±hci then add a dummy item (δ, σδ) to C where
δ and σδ are randomly selected from the respective domain.

- If ∃(q, hq) ∈ T1 s.t. hq = ±hci, but �(m,σ) ∈ T3 s.t. σ = ±σi then
output fail1 and abort.

- If ∃(q, hq) ∈ T1 s.t. hq = ±hci and ∃(m,σ) ∈ T3 s.t. σ = ±σi, then add
(q,±σ) to the set C.

3. SIMc plays the role of the client in the ideal-world. On input C = {(c1, σ1), · · · ,
(cv, σv)}, SIMc interacts with the ideal-world server S̄ through the TTP.

4. On getting intersection L = {c′1, · · · , c′|L|}, with |L| ≤ v from the ideal-world

interaction, SIMc forms S= Π
(
c′1, · · · , c′|L|, δ′1, · · · , δ′w−|L|+1

)
, where δ′’s

are dummy items and Π is a permutation function.
5. SIMc picks Rs ←r ZN/2, and computes Z = g2eRs and M ′i = (Mi)2eRs for
i = 1, ..., v.

6. For each sj ∈ S:

- If sj ∈ L, compute Ts:j = H2((hsj)2Rs , hsj, sj).
- If sj /∈ L, compute Ts:j ←r {0, 1}κ.

7. SIMc returnsZ, {M ′i}i=1,...,v, {Ts:j}j=1,...,w toC∗ and simulates the proofπ′.



224 E.D. Cristofaro, J. Kim, and G. Tsudik

Claim 1. If event fail1 occurs with non-negligible probability, then C∗ can be used to
break the RSA assumption.

We describe the reduction algorithm using a modified simulator algorithm called
Ch1 that takes an RSA challenge (N ′, e′, z) as an input and tries to output z(e′)−1

. Ch1

follows the SIMc as described above, except:

– Setup: On input (N ′, e′, z), Ch1 sets N = N ′, e = e′ and picks generator g,
g′ ←r Z

∗
N . (Note that random g in Z

∗
N matches that chosen by a real key generation

with probability about 1/2.)
– Authorization queries: On input m, Ch1 responds with (m,σ) with σ ←r Z

∗
N ,

assign H1(m) = σe, and records (m,σ) to T3.
– Hash queries to H1: On query H1 on q, if �(q, hq) ∈ T1 then Ch1 responds
hq = z(rq)e where rq ←r ZN , and stores (q, rq, hq) to T1. (Since rq is uniformly
distributed in ZN , the distribution of hq is also uniformly distributed in ZN .)

Assume that fail1 occurs on (hci, σi). Then, Ch1 extracts entry (q, rq, hq) ∈ T1 s.t.
hq = hci and outputs σi/rq , which breaks the RSA assumption.

Now unless the fail1 event occurs, the views interacting with the SIMc and with the
real protocol are different only in the computation of Ts:j for sj ∈ S but sj /∈ L. Let
fail2 be the event that C∗ queries H2 on ((hsj)2Rs , hsj , sj) for sj ∈ S and sj /∈ L.

Claim 2. If event fail2 occurs with non-negligible probability, then C∗ can be used to
break the DDH assumption.

We describe reduction algorithm Ch2 that takes a DDH challenge (N ′, f, α = fa

(mod N ′), β = f b (mod N ′), γ) as input and outputs the DDH answer usingC∗. Ch2

follows the SIMc algorithm as we describe above, except that:

– Setup: On input (N ′, f, α, β, γ), Ch2 sets N = N ′, g = f and picks generator
g′ ←r Z

∗
N and odd e←r ZN .

– Authorization queries: Same as in Ch1 simulation.
– Hash queries to H1: On query q to H1, if �(q, hq) ∈ T1 then Ch2 responds with
hq = βgrq where rq ←r ZN/2, and records (q, rq , hq) to T1. (Since rq is random
ZN/2, the distribution of hq is computationally indistinguishable from the uniform
distribution of Z

∗
N .)

– In computation for Z, {Mi}, {Ts:j}:
• Ch2 sets Z = A2e and computes M ′i = γ2(α)2rq+2eRc:i for i = 1, . . . , v

(instead of pickingRs and computing Z = g2eRs and M ′i = (Mi)2eRs ).
• For each sj ∈ S, if sj ∈ L, Ch2 computes Ts:j = H2(γ2(α)2rq , hsj , sj).

Given α = ga(= gRs) and β = gb, we replace gab by γ in the above simulation
of Mi and Ts:j . Thus, C∗’s views when interacting with the real server S and with
the simulator Ch2 are indistinguishable under that DDH assumption. Assume that fail2
occurs, i.e., C∗ makes a query to H2 on ((hsj)2Rs , hsj , sj) for sj ∈ S but sj /∈ L.
Ch2 checks if ∃(q, rq, hq) ∈ T1 and ∃((k, h′q, q′), t) ∈ T2 s.t. q = q′, hq = h′q, k =
γ2(α)2rq for each q ∈ S but q /∈ L. If so, Ch2 outputs True. Otherwise, Ch2 outputs
False. Thus, the DDH assumption is broken.

Therefore, since fail1 and fail2 events occur with negligible probability,C∗’s view in
the protocol with the real-world server S and in the interaction with SIMc is negligible.
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[The output of honest real server S interacting with C∗]
Finally, the real-world S interacting with C∗ in the real protocol outputs ⊥ and the

ideal-world S̄ interacting with SIMc gets ⊥. This ends proof of Theorem 1.
Our APSI protocol differs from the one in [DT10] in the following:

– We modify inputs to the protocol and add efficient zero-knowledge proofs to prevent
client and server from deviating from the protocol and to enable extraction of inputs.

– We multiply client inputs by −1 to a random bit to: (1) ensure that they are uni-
formly distributed in QRN , and (2) simplify reduction to the RSA problem.

– We do not use “accumulated” values, such as PCH∗i , as they are not needed either
for protocol security or for input extraction during simulation.

5 PSI Protocol

This section presents our protocol for secure computation of set intersection. It is a
modified version of the PSI protocol of [DT10] (reviewed in Section 2.1), secure in
the semi-honest model under the One-More-Gap-DH assumption (in ROM). We amend
it to obtain a protocol that securely implements FPSI in the malicious model under the
DDH assumptions (in ROM). We assume that KGen generates p, q, g, g′, g′′ where p
and q are primes, such that q|p− 1 and g, g′, g′′ are generators of Z

∗
q .

The resulting protocol is presented in Figure 2.

Theorem 2. If the DDH problem is hard and π, π′ are zero-knowledge proofs, the pro-
tocol in Figure 2 is a secure computation of FPSI, in ROM.

Proof. [Construction of an ideal world SIMs from malicious real-world server S∗]
Simulator SIMs is built as follows:

– Setup: SIMs executes KGen and publishes public parameters p, q, g, g′, g′′.
– QueriesH1 andH2: SIMs creates two tables T1 = (q, hq) and T2 = ((k, h′q, q′), t)

to answer, respectively,H1 and H2 queries. Specifically,
• On query q to H1, SIMs checks if ∃(q, hq) ∈ T1: If so, it returns hq, otherwise

it responds hq ←r Z
∗
p, and stores (q, hq) to T1.

• On query (k, h′q, q
′) to H2, SIMs checks if ∃((k, h′q, q′), t) ∈ T2: If so, it

returns t, otherwise it responds t ←r {0, 1}κ to H2, and stores ((k, h′q, q′), t)
to T2.

– Simulation of real-world client C and ideal-world server S:

1. SIMs picks X ←r Z
∗
p and {Mi, Ni |Mi ←r Z

∗
p, Ni ←r Z

∗
p} (for i =

1, . . . , v).
2. SIMs sends X, {Mi, Ni}i=1,...,v and simulates proof π.
3. After getting (Z, {M ′i}i=1,...,v, {Ts:j}j=1,...,w), and interacting with S∗ as ver-

ifier in proof π′, if π′ verifies, SIMs runs the extractor algorithm for Rs. Oth-
erwise, it aborts.

(a) For each Ts:j , SIMs checks if ∃(q, hq) ∈ T1 and ∃((k, h′q, q′), t) ∈ T2, s.t.
q = q′, hq = h′q, k = (hq)Rs and t = Ts:j . If so, add q to S; otherwise,
add a dummy item into S.

(b) Then SIMs plays the role of the ideal-world server, which uses S to
respond to ideal client C’s queries.
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Common input: p, q, g, g′, g′′, H1(), H2()

Server Client
On input: S = {s1, · · · , sw} On input: C = {c1, · · · , cv}

PCH =
Qv

i=1 hci

Rc ←r Zq

X = PCH · (g)Rc

For 1 ≤ i ≤ v
PCHi=PCH/hci

Rc:i ←r Zq

Mi = hci · (g′)Rc:i

Ni = PCHi · (g′′)Rc:i

π = ZK{Rc, Rc:i, i = 1, · · · , v |
X/(MiNi) = gRc/(g′ · g′′)Rc:i}

X, {Mi}, {Ni}, π��If π doesn’t verify, then abort
Rs ←r Zq

Z = (g′)Rs

For 1 ≤ i ≤ v
M ′

i = (Mi)
Rs

π′ = ZK{Rs|Z = (g′)Rs ,
∀i,M ′

i = (Mi)
Rs}

For 1 ≤ j ≤ w
Ks:j = (hsj)

Rs

Ts:j = H2(Ks:j , hsj , sj) Z, {M ′
i}, {Ts:j}, π′

�� If π′ doesn’t verify, then abort
For 1 ≤ i ≤ v
Kc:i = (Z)−Rc:i ·M ′

i

Tc:i = H2(Kci , hci, ci)
OUTPUT:
ci ∈ C ∩ S if ∃i,j s.t. Tc:i = Ts:j

All notations are from Table 1 and all computations are performed mod p.

Fig. 2. Our PSI Protocol with linear complexity secure against malicious adversaries

Since the distribution of X, {Mi, Ni}i=1,...,v sent by SIMs is identical to the distribu-
tion produced by the real clientC and the π proof system is zero-knowledge,S∗’s views
when interacting with real client C and with simulator SIMs are indistinguishable.
[Output of the honest real client C interacting with S∗]

Now we consider output of honest real client C interacting with S∗. By sound-
ness of π′, message Z and M ′i sent by S∗ is Z = (g′)Rs and M ′i = (Mi)Rs

for i = 1, · · · , v. Then C’s final output is a set containing all ci’s such that
H2(M ′iZ

−Rc:i , hci, ci) ∈ {Ts:j}. In other words, for each ci, C outputs ci if ∃ j s.t.
H2(M ′iZ

−Rc:i , hci, ci) = Ts:j . SinceH2 is a random oracle, there are two possibilities:
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1. S∗ computes Ts:j from H2((hsj)2Rs, hsj, sj) for sj = ci. Since SIMs described
above extracts sj = ci and adds sj in S, ideal world C also output ci on its input
ci.

2. S∗ did not query H2 on (M ′iZ
−Rc:i , hci, ci) but H2(M ′iZ

−Rc:i , hci, ci) happens
to be equal to Ts:j . This event occurs with negligible probability bounded by
v · w · 2−κ.

Therefore, with probability 1− v · w · 2−κ, real-world client C interacting with S∗ and
ideal-world client C interacting with SIMs produce identical output.

[Construction of ideal world SIMc from malicious real-world client C∗]
Simulator SIMc is formed as follows:

– Setup and hash queries to H1 and H2: Same as Setup and H1 and H2 responses
described above in construction of SIMs.

– Simulation of real-world server S and ideal-world client C:

1. After getting (X, {Mi}, {Ni}), and interacting with C∗ as verifier in proof
π, SIMc checks if π verifies. If not, it aborts. Otherwise, it runs the extractor
algorithm for Rc, {Rc:i} and computes hc1, · · · , hcv.

2. For each hci, if ∃(q, hq) ∈ T1 s.t. hq = hci then add q to the set C. Otherwise,
add a dummy item to C.

3. SIMc plays the role of the client in the ideal-world. On input C = {c1, · · · , cv},
SIMc interacts with the ideal-world server S̄ through the TTP.

4. On getting intersection L = {c′1, · · · , c′|L|}, with |L| ≤ v from the ideal-world

interaction, SIMc forms S= Π
(
c′1, · · · , c′|L|, δ′1, · · · , δ′w−|L|+1

)
, where δ′’s

are dummy items and Π is a permutation function.
5. SIMc picks Rs ←r Zq , and computes Z = gRs and M ′i = (Mi)Rs} for

i=1,...,v.
6. For each sj ∈ S:

• If sj ∈ L, compute Ts:j = H2((hsj)Rs , hsj, sj).
• If sj /∈ L, compute Ts:j ←r {0, 1}κ.

7. SIMc returns Z, {M ′i}, {Ts:j} to C∗ and simulates proof π′.

Let fail be the event that C∗ queries H2 on ((hsj)Rs , hsj, sj) for sj ∈ S and sj /∈ L.
Similar to the argument in the proof of Theorem 1, if fail event does not occur, since the
π′ is zero-knowledge, we argue that C∗’s views in the real game with real-world server
S and in the interaction with simulator SIMc constructed above are indistinguishable .

Claim. If event fail occurs with non-negligible probability, thenC∗ can be used to break
the DDH assumption.

We describe the reduction algorithm called Ch that takes a DDH problem (p′, q′, f,
α = fa (mod p′), β = f b (mod p′), γ) as an input and tries to output the answer
using C∗. Ch follows the SIMc algorithm as we describe above, except that:

– Setup: On input (p′, q′, f, α, β, γ), Ch2 sets p = p′, q = q′, g′ = f and picks
generator g, g′′ ←r Z

∗
q .

– Hash queries to H1: On query q to H1, if �(q, hq) ∈ T1 then Ch2 responds with
hq = β(g′)rq where rq ←r Zq , and records (q, rq, hq) to T1.
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– In computation for Z, {M ′i}, {Ts:j}:
• Ch2 sets Z = A and computes M ′i = C(A)rq+Rc:i .
• For each sj ∈ S, if sj ∈ L, Ch2 computes Ts:j = H2(C(A)rq , hsj , sj).

Using an argument similar to that in the proof of Theorem 1, C∗’s views, when inter-
acting with real server S and with simulator Ch2, are indistinguishable under the DDH
assumption. Assume that fail occurs, i.e.,C∗ makes a query toH2 on ((hsj)Rs , hsj , sj)
for sj ∈ S but sj /∈ L. Ch checks if ∃(q, rq , hq) ∈ T1 and ∃((k, h′q, q′), t) ∈ T2 s.t.
q = q′, hq = h′q , k = C(A)rq for each q ∈ S and q /∈ L. If so, Ch outputs True.
Otherwise, Ch2 outputs False. Thus, Ch solves the DDH problem.

Since fail occurs with negligible probability,C∗’s view in the protocol with the real-
world server S and in interaction with SIMc is negligible.

[Output of honest real server S interacting with C∗]
Finally, real-world S interacting with C∗ in the real protocol outputs ⊥ and ideal-

world S̄ interacting with SIMc gets ⊥.

6 Protocols Efficiency

In this section, we analyze the efficiency of our protocols and compare them to prior
results. We summarize different features and estimated asymptotic complexities of prior
work on Authorized Private Set Intersection and Private Set Intersection, respectively,
as well as those of our protocols, in Table 2 and 3. Recall that we use w and v to denote
the number of elements in the server and client input sets, respectively. Also, we specify
whether they can support the extension for data transfer – a PSI variant introduced
in [DT10] and discussed in details in the extended version of the paper [DKT10].

Note that our APSI protocol (in Figure 1) is, to the best of our knowledge, the only
such construct, secure in the malicious model, with linear communication and compu-
tational complexity.

Comparing our PSI [Fig. 2] to [JL09]. Our PSI protocol achieves the same (linear)
asymptotic overhead as in prior work [JL09], although, in ROM. However, the underly-
ing cryptographic operations of [JL09], hidden in the big O() notation, are much more
expensive than those in Figure 2, as we discuss below.

First, recall that, on average, each q-bit multi-exponentiation mod p involves (1.5·|q|)
multiplications of p-bit numbers. Whereas, each q-bit fixed-based exponentiation mod
p incurs only (0.5 · |q|) multiplications. From now on, we denote with m a modular
multiplication of p-bit numbers, and we assume |p| = 1024.

Observe that the PSI protocol in Figure 2, in the malicious model, incurs the total cost
of (240w+960v)m. Due to space limitation, we refer to our extended version [DKT10]
for all the details of our estimation.

In order to count the number of operations of [JL09], we use the optimized OPRF
construction due to [BCC+09] and we use standard non-interactive ZK in ROM. We
select set items to be drawn from a 40-bit domain.1 The total cost of [JL09], in the ma-
licious model, amounts to (80w+81320v)m. (Again, refer to [DKT10] for the details).

1 Recall that, in the proof of [JL09], there seems to be a trade-off between the input domain size
and security loss, as the simulator needs to exhaustively search over the input domain.
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Table 2. Comparison of Authorized Private Set Intersection protocols

Protocol Standard Malicious Assumption Communication Server Client Data
Model Model Complexity Transfer

[CKRS09] � � BDH O(w)
O(w) enc’s O(w · v) dec’s

�of [BW06] of [BW06]

[CZ09] � �
Strong

O(w + v)
O(w · v) O(w · v)

�RSA exps exps
Fig.2 of

� � RSA O(w + v)
O(w + v) O(v)

�[DT10] exps exps

Our APSI � � RSA O(w + v)
O(w + v) O(v)

�exps exps

Table 3. Comparison of Private Set Intersection protocols

Protocol Standard Malicious Assumption Communication Server Client Data
Model Model Complexity Transfer

[FNP04] � �
Homom.

O(w + v)
O(w log log v) O(w + v)

�Encr. exps exps

[KS05] � �
Homom.

O(w + v)
O(w · v) O(w · v)

�Encr. exps exps

[JL09] � �
Decisional

O(w + v)
O(w + v) O(v)

�q-DH, CRS exps exps

[HN10] � � DDH O(w + v)
O(w log log v) O(w + v)

�exps exps
Fig.3 of

� �
One-More

O(w + v)
O(w + v) O(v)

�[DT10] Gap-DH exps exps
Fig.4 of

� �
One-More

O(w + v)
O(w + v) O(v)

�[DT10] RSA exps mults

Our PSI � � DDH O(w + v)
O(w + v) O(v)

�exps exps

Selecting, for instance, w = v, protocol in Figure 2 would require as low as 1.5%
of the total modular multiplications incurred by [JL09] (even with the optimized OPRF
construction and using non-interactive ZK in ROM). Only when w/v >> 500, [JL09]
incurs lower cost. Furthermore, recall that, although secure in the standard model, the
PSI construct in [JL09], when compared to ours, has three major drawbacks: (1) The
size of set items should be polynomial in the security parameter, whereas, in our proto-
col, items can be taken from {0, 1}∗, (2) It requires Decisional q-DH assumption and
Common Reference String (CRS) model, where a safe RSA modulus must be generated
by a mutually trusted party, and (3) It is not clear how to convert it into APSI.

We conclude that, though in ROM (as opposed to [JL09]), our PSI protocol signifi-
cantly improves performance of prior PSI results, secure in the malicious model, while
avoiding several restrictions.

7 Conclusion

In this paper, we presented PSI and APSI protocols secure in the malicious model un-
der standard cryptographic assumptions, with linear communication and computational
complexities. Proposed protocols offer better efficiency that prior work. In particular,
our APSI protocol is the first technique to achieve linear computational complexity. Our
efficiency claims are supported by detailed performance comparison.
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Abstract. So far, all solutions proposed for authenticated key agreement
combine key agreement and authentication into a single cryptographic
protocol. However, in many important application scenarios, key agree-
ment and entity authentication are clearly separated protocols. This fact
enables efficient attacks on the näıve combination of these protocols.
In this paper, we propose new compilers for two-party key agreement
and authentication, which are provably secure in the standard Bellare-
Rogaway model. The constructions are generic: key agreement is exe-
cuted first and results (without intervention of the adversary) in a secret
session key on both sides. This key (or a derived key) is handed over,
together with a transcript of all key exchange messages, to the authen-
tication protocol, where it is combined with the random challenge(s)
exchanged during authentication.

Keywords: authenticated key agreement, protocol compiler, TLS.

1 Introduction

Authenticated key agreement (AKE) is a basic building block in modern cryptog-
raphy. Many secure protocols for two-party and group key agreement have been
proposed, including generic compilers that transform simple key agreement pro-
tocols into authenticated key agreement protocols, with many additional security
properties.

However, all known constructions (including e.g. the modular approach of
[1], and the Katz-Yung compiler [22]) result in a single cryptographic proto-
col, whereas many security-critical real-world applications combine two or more
clearly separated protocols:

– (Client) Authentication and SSL/TLS. The most prominent example is
SSL/TLS. Although server and browser can be authenticated in a provably
secure way [20,25] within a single cryptographic protocol (the TLS hand-
shake protocol), nearly all known web applications authenticate the client
through a different protocol on top of the TLS channel. The security of these
protocols is based on the sole assumption that the (human) user is able to
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authenticate the server on the basis of security indicators of the browser,
which was shown to be false in [17]. We do not rely on this assumption. In-
stead, we regard SSL/TLS simply as a key agreement protocol, which cannot
be changed due to the large number of implementations that are running
worldwide. We may however change the authentication protocol, since the
authentication protocol is often implemented in HTML/Javascript1.

– Browser based Single Sign-On (SSO). This scenario is perhaps the most
complex one and a formalization is out of scope of this paper. However, it
may serve as an illustration of how cryptographic protocols are combined
today to implement key exchange (KE) and authentication functionalities. In
SSO protocols, two key agreement protocols, and two different authentication
protocols are combined to achieve the desired goal. Cryptographically secure
SSO protocols have e.g. been described in [19].

In this work, we present a new compiler that handles these scenarios. Moreover,
we can use our compiler to combine existing authentication protocols in a novel
way with key exchange protocols. This includes:

– Zero-Knowledge Authentication. Zero-knowledge protocols have been
developed with the goal to authenticate entities. However, in all known com-
pilers, they cannot be combined with key agreement, except if they are trans-
formed into digital signature schemes using the Fiat-Shamir heuristic. With
our second compiler, ZK protocols can be used directly, which enables many
interesting new protocols.

– Privacy-preserving authentication. With our compiler, we can easily
combine privacy-preserving authentication protocols like Direct Anonymous
Attestation with different key agreement protocols.

Man-in-the-middle Attack. Our real world attack scenario is as follows (cf.
Figure 1): the adversary E (”Eve”) acts as an active (wo) man-in-the-middle
(MITM) between A andB during key exchange, and then acts as a passive ”wire”
during authentication. As a result, E has successfully authenticated as ”A” to-
wards B, and as ”B” towards A, and shares (different) keys with A and B.

To counter this attack, one could of course apply standard cryptographic
primitives to turn the key exchange protocol into an authenticated key exchange
protocol (AKE) [1], but this is not possible in the cases cited above, because the
implementation of the KE protocol cannot be changed, or the desired security
goals (e.g. privacy) cannot be reached with standard compilers. Our compiler
turns the combination of the two protocols into a provably secure AKE protocol.
During compilation, only the authentication protocol is changed slightly.
1 At first glance, it seems that the security of TLS as a key agreement protocol could

easily be proven in the Bellare-Rogaway model, since we only have to consider passive
adversaries, and the TLS ciphersuites includes e.g. ephemeral Diffie-Hellman key
exchange. However, there are some subtle problems with the Reveal query and the
fact that the final Finished message of the TLS handshake is already encrypted.
Therefore it is still unclear if TLS fits in our theoretical framework.
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A E B

←−
key − exchange
−−−−−−−−−−−−−→

←−
key − exchange
−−−−−−−−−−−−−→

←−−−−−−−−−authentication−−−−−−−−−−−−−−−−−−−−−→

A E B

←−−−−−−−−
key − exchange
−−−−−−−−−−−−−−−−−−−−→

←−authentication−−−−−−−−−−−−−→
←−authentication−−−−−−−−−−−−−→

Fig. 1. Attack Scenario: Real world man-in-the-middle attack (left), and unknown key
share attack (right)

Unknown Key Share (UKS) Attacks. To be able to prove the security in
the standard Bellare-Rogaway (BR) model, the resulting AKE protocol must
also be secure against unknown key share (UKS) attacks [14,13] that do not
directly lead to an attack in the real world, but invalidate security proofs in
the model. Interestingly, in our scenario this is a kind of orthogonal attack to
MITM attacks (cf. Figure 1): The adversary acts as a man-in-the-middle on
the authentication protocol. To achieve security against both (MITM and UKS)
attacks, one usually needs two compilers: One compiler who adds authenticators
to each message [1], and one compiler who includes the complete state of the
session into the computation of the session key [15]. Our compilers achieve this
in one step, because we force the adversary to prove knowledge of the session key
k through the derived key dk during authentication. Thus the adversary cannot
authenticate to A or B without knowing k, and neither A nor B will accept.

Practical AKE protocols. If the two parties accept, they share a common
state. This state consists of the secret key k, and the transcript of all messages
sent and received. This transcript plays an important role in the BR model, since
it defines the attack possibilities of the adversary. In practically relevant AKE
protocols, a hash of this transcript is included in a final message secured with a
MAC, to protect against MITM attacks.

The A&KE Compilers. To protect against MITM attacks in our generic sce-
nario, it is sufficient to simply include the transcript of the KE protocol into the
authentication protocol. (Many authentication protocols offer the possibility to
authenticate arbitrary strings chosen by A od B, e.g. authentication protocols
based on digital signatures, or the MAP2 protocol from [2].) Such a compiler
protects against MITM attacks because (a) any modification of messages in the
KE protocol automatically results in a modification of messages in the authen-
tication protocol (since the transcript is included), which results in an abort of
the authentication protocol if this protocol is secure in the BR model. Thus (b)
the adversary is restricted to a passive role when attacking the KE protocol, but
this protocol is by definition secure against passive adversaries.

Unfortunately, this simple compiler cannot be proven secure in the BR model,
because the adversary also has access to the transcript of the protocol, and
can use this in both instances of the authentication protocol (cf. right side of
Fig. 1.) To avoid this attack, a secret value only known to A and B (i.e. the
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session key k) must be used in the authentication protocol in a generic way.
There are at least two different methods (besides [15]) how to achieve this:

– An additional pair of messages can be sent after the KE and the authenti-
cation protocol. These messages contain a cryptographic checksum over the
transcripts of both protocols. This checksum is basically a MAC, computed
over the transcript of both the KE and the authentication protocol, using
a key Kmac = PRF(k, “MAC”) derived from the key k returned by the KE
protocol and some pseudo-random function PRF. The actual session key K
returned by the compiled protocol (i.e., the value returned by a Reveal or
Test query in the BR model) is also derived from k as K = PRF(k, “KE”). In
Section 3, we describe the compiler for this in detail, and prove its security
in the standard model.

– Alternatively, we can modify a value that is present in all secure authentica-
tion protocols, in such a way that it does not change the security properties
of the protocol:
In a generic authentication protocol, a random challenge rA guaranteeing the
freshness of the message(s) must be sent from the challenger A to the prover
B, which is answered with a response sB from B. Ideally, this challenge is
chosen from a large message space with uniform distribution.

We assume that rA is chosen uniformly from {0, 1}t, for some security
parameter t. The answer sB := f(skB , rA) is computed using the secret
long-lived key skB of B, and the challenge rA.

Our compiler changes the computation of sB slightly. Instead of using the
challenge rA directly, we use a derived value r′A from the same distribution:

r′A := H(Kmac, rA, transcriptKE), s′B := f(skB, r
′
A),

where H is some hash function modeled as a random oracle. Please note
that r′A is never sent (cf. Figure 3), but has to be computed by A and B.
Thus the adversary E does not learn r′A. This construction does not alter
the security properties of the authentication protocol.

In Section 4, we give a security proof for this compiler in the random
oracle model.

1.1 Related Work

In their seminal papers [2,1] on two-party authenticated key agreement, Bellare
et al. started a line of research that has expanded in two directions: group key
agreement [9], [8,22,10], and refined models to cover different types of attacks
[11,23,24]. All these models cover concurrent execution of the protocol, and at
least corruption of non-related session keys.

All models can roughly be classified in two groups: models that require a
unique session ID before the start of the protocol, and models that construct
this session ID. [11] is the prototype of the former case: proofs and definitions are
easier, but it is unclear how a session ID can be defined for practical applications.
(E.g. in case of an SSL man-in-the-middle, browser and server do not share any
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common state.) Newer models like [24] or [23] thus avoid this assumption, and
construct the session identifiers from the messages sent and received by the
intended communication partners.

Unknown key share [5] attacks do not threaten the real world security of
cryptographic protocols, but invalidate security proofs in the formal models that
follow [2]: If the adversary is able to force two protocol participants into accepting
the same session key, but without a matching conversation, a Reveal query
to one of the participants will help to win the Test game against the other
participant. Choo, Boyd and Hitchcock have shown how to invalidate security
proofs of various protocols in the different models [14,13], and how to fix the
problem by including the whole session information in the computation of the
session key [15]. They were able to compare the relative strengths of the different
models assuming that session identifiers are constructed as a concatenation of
the exchanged messages.

Canetti and Krawczyk in [12] consider a practically important protocol (IPSec
IKE), which has a structure that places authentication after key exchange. Still,
this is a single AKE protocol, and thus not comparable to our construction. In
2008 Morissey et al. studied the security of the TLS key agreement protocol
[25] and provided a modular and generic proof of security for the established
application keys.

Katz and Yung presented in [22] a first scalable compiler that transforms any
passively secure group key-exchange protocol to an actively secure AKE. Their
compiler adds one round and constant size (per user) to the original scheme, by
appending an additional signature to each message of the protocol.

1.2 Contribution

In this paper, we describe two new compilers that allow us to combine key
agreement protocols (which, in the BR model, need only be secure against passive
adversaries) with arbitrary authentication protocols to form an authenticated
key agreement (AKE) protocol in the sense of [2].

These compilers enable us to formally prove the security of real world protocols
in the BR model, which was not possible before. The most important case here
is TLS with an authentication protocol on top of the TLS channel, which can
be proven secure if the authentication protocol is secure in the BR model. This
is possible since we consider TLS only as a key agreement protocol, and not as
an AKE protocol, and it seems likely that the security of (some ciphersuites of)
TLS against passive adversaries can be proven.

Additionally, the compilers allow for a modular design of new AKE protocols,
using existing protocols (e.g. TLS, IPSec IKE) or new ones (e.g. zero-knowledge
authentication, group signatures). The formal security proof is simplified con-
siderably, since the security of key agreement and authentication protocols can
be proven separately, and our theorems yield the security of the combined
protocol.
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2 Preliminaries and Definitions

In this section, we recall the syntax and security definitions of the building blocks
for our protocol compilers.

2.1 Digital Signature Schemes

A digital signature scheme is a triple Σ = (SIG.Gen, SIG.Sign, SIG.Vfy), consist-
ing of a key generation algorithm (sk, pk) $← SIG.Gen(1κ) generating a (public)
verification key pk and a secret signing key sk on input of security parameter
κ, signing algorithm σ

$← SIG.Sign(sk,m) generating a signature for message m,
and verification algorithm SIG.Vfy(pk,m, σ) returning 1, if σ is a valid signature
for m under key pk, and 0 otherwise.

Consider the following security experiment played between a challenger C and
an adversary A.

1. The challenger generates a public/secret key pair (sk, pk) $← SIG.Gen(1κ),
the adversary receives pk as input.

2. The adversary may query arbitrary messages mi to the challenger. The chal-
lenger replies each query with a signature σi = SIG.Sign(sk,mi). Here i is
an index, ranging between 1 ≤ i ≤ q for some polynomial q = q(κ). Queries
can be made adaptively.

3. Eventually, the adversary outputs a message/signature pair (m,σ).

Definition 1. We say that Σ is secure against existential forgeries under adap-
tive chosen-message attacks (EUF-CMA), if

Pr
[
(m,σ) $← AC(1κ, pk) : SIG.Vfy(pk,m, σ) = 1 ∧m �∈ {m1, . . . ,mq}

]
≤ ε.

for all probabilistic polynomial-time (in κ) adversaries A, where ε = ε(κ) is some
negligible function in the security parameter.

2.2 Message Authentication Codes

A message authentication code is an algorithm MAC. This algorithm implements
a deterministic function w = MAC(Kmac,m), taking as input a (symmetric) key
Kmac ∈ {0, 1}κ and a message m, and returning a string w.

Consider the following security experiment played between a challenger C and
an adversary A.

1. The challenger samples Kmac
$← {0, 1}κ uniformly random.

2. The adversary may query arbitrary messages mi to the challenger. The chal-
lenger replies each query with wi = MAC(Kmac,mi). Here i is an index, rang-
ing between 1 ≤ i ≤ q for some polynomial q = q(κ). Queries can be made
adaptively.

3. Eventually, the adversary outputs a pair (m,w).
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Definition 2. We say that MAC is a secure message authentication code, if

Pr
[
(m,w) $← AC(1κ) : w = MAC(Kmac,m) ∧m �∈ {m1, . . . ,mq}

]
≤ ε

for all probabilistic polynomial-time (in κ) adversaries A, where ε = ε(κ) is some
negligible function in the security parameter.

2.3 Pseudo-random Functions

A pseudo-random function is an algorithm PRF. This algorithm implements a
deterministic function z = PRF(k, x), taking as input a key k ∈ {0, 1}κ and some
bit string x, and returning a string z ∈ {0, 1}κ.

Consider the following security experiment played between a challenger C and
an adversary A.

1. The challenger samples k $← {0, 1}κ uniformly random.
2. The adversary may query arbitrary values xi to the challenger. The chal-

lenger replies each query with zi = PRF(k, xi). Here i is an index, ranging
between 1 ≤ i ≤ q for some polynomial q = q(κ). Queries can be made
adaptively.

3. Eventually, the adversary outputs value x and a special symbol �. The
challenger sets z0 = PRF(k, x) and samples z1

$← {0, 1}κ uniformly random.
Then it tosses a coin b $← {0, 1}, and returns zb to the adversary.

4. Finally, the adversary outputs a guess b′ ∈ {0, 1}.
Definition 3. We say that PRF is a secure pseudo-random function, if

|Pr [b = b′]− 1/2| ≤ ε
for all probabilistic polynomial-time (in κ) adversaries A, where ε = ε(κ) is some
negligible function in the security parameter.

2.4 Key Exchange Protocols

A (two-party) key-exchange protocol is a protocol executed among two parties
A and B. At the end of the protocol, both A and B obtain the same key K0 as
the output of the protocol.

Definition 4. We say that a key-exchange protocol is passively-secure if for all
polynomial-time adversary holds that |Pr[b = b′] − 1/2| ≤ ε for some negligible
function ε in the following experiment.

1. A challenger generates the public parameters Λ of the protocol (e.g. a gen-
erator describing a group etc.).

2. The adversary receives Λ as input, and may query the challenger. To this
end, it submits a symbol ⊥. Then, the challenger runs a protocol instance,
and obtains the transcript T of all messages exchanged during the protocol
and a key K0. The challenger returns (T,K0).
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3. Eventually, the adversary outputs a special symbol �. Given �, the chal-
lenger runs a protocol instance, obtaining the transcript T and key K0, sam-
ples K1 uniformly at random from the key space of the protocol, and tosses
a fair coin b ∈ {0, 1}. Then it returns (T,Kb) to the adversary.

4. The adversary may continue making ⊥-queries to the challenger.
5. Finally, adversary E outputs a bit b′.

We say that the adversary wins the game, if b = b′.

Simple protocols satisfying the above definition are the Diffie-Hellman protocol
(under the DDH assumption), or key-transport using an IND-CPA secure en-
cryption scheme (i.e., party A samples a random key k, encrypts k under B’s
public key, and sends the ciphertext to B).

2.5 Secure Authenticated Key Exchange

While the security model for passively-secure key-exchange protocols is very
simple, a more complex model is required to model the capabilities of active
adversaries to define secure authenticated key-exchange. We must describe the
subtleties of executions that we expect from the implementations of the protocol,
the attacks against which our protocol should be secure, and which outcome we
expect if we run the protocol with the defined adversary. In accordance with the
line of research [5,11,24,16] initiated by Bellare and Rogaway [2], we model our
adversary by providing an “execution environment”, which emulates the real-
world capabilities of an active adversary. That is, the adversary has full control
over the communication network, thus may forward, alter, or drop any message
sent by the participants, or insert new messages.

Execution Model. Let I = I(κ) and S = S(κ) be polynomials in the security
parameter κ. Our model is characterized by a collection of oracles

{πs
i,j : i, j ∈ [I], s ∈ [S]}

An oracle πs
i,j represents an entity i running the protocol with entity j for the

s-th time. Each oracle maintains its own internal state (e.g. nonces), all oracles
representing some entity i share the same long-term secrets of entity i. Moreover,
each oracle πs

i,j maintains a variable T storing an ordered list of all messages
sent and received by πs

i,j so far.
An oracle aborts, if it receives a message which is not valid according to the

protocol specification, or terminates after it has sent or received the last protocol
message according to the protocol specification. When a process terminates, it
outputs “accept” or “reject” and (possibly) a key k.

An adversary may interact with these oracles by issuing different types of
queries. Before the first query is asked, long-term secret/public key pairs (pki, ski)
for each entity i are generated. An adversary A receives as input the long-term
public keys (pk1, . . . , pkl) of all parties, and may then ask the following query:

– Send(πs
i,j ,m): The adversary can use this query to send any messagem of his

own choice to oracle πs
i,j . The oracle will respond according to the protocol
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specification. If m = ∅, where ∅ denotes the empty string, then πs
i,j will

respond with the first protocol message.

Secure Authentication Protocols. An authentication protocol is a pro-
tocol run between two processes πs

i,j and πt
j,i of two parties Pi and Pj , where

both processes output either “accept” or “reject” at the end of the protocol. We
define correctness and security of an authentication protocol following the idea
of matching conversations, as introduced by Bellare and Rogaway [2].

In the following let Ti,s denote the transcript of all messages sent and received
by process πs

i,j . Intuitively, we would like to say that a protocol is correct, if a
process πs

i,j outputs “accept” if there exists a process πt
j,i with Ti,s = Tj,t.

Likewise, we would like to say that a protocol is secure, if a process accepts only
if there exists a process πt

j,i with Ti,s = Tj,t.
As in [2], we face a minor technical obstacle here, which is inherent to authen-

tication protocols. Suppose that Pj sends the last message of the protocol (thus,
Pi has initiated the protocol run if the number of protocol rounds is even, or Pj

has initiated the protocol if the number of rounds is odd). Party Pj does not get
any response to its last message, thus has to accept without knowing whether
Pi received the last message.2 To overcome this obstacle, we let T ′i,s be the tran-
script Ti,s truncated by the last message, and we have to define correctness and
security in a slightly more complicated way.

Definition 5. We say that two processes πs
i,j and πt

j,i have matching conversa-
tions, if either

– Pi sends the last message of the protocol according to the protocol specification
and it holds that T ′j,t = T ′i,s, or

– Pj sends the last message of the protocol according to the protocol specifica-
tion and it holds that Tj,t = Ti,s.

Definition 6. We say that an authentication protocol is correct, if for all pro-
cesses πs

i,j holds that πs
i,j “accepts” if there exists a process πt

j,i such that πs
i,j

and πt
j,i have matching conversations.

Definition 7. We say that an authentication protocol is secure in the Bellare-
Rogaway model, if for all probabilistic polynomial-time (PPT) adversaries A,
interacting with the black-box O(Π) as described above in the execution model,
holds that:

Each process πs
i,j of O(Π) “accepts” only if there exists a process πt

j,i such that
πs

i,j and πt
j,i have matching conversations, except for some negligible probability

ε = ε(κ) in the security parameter.

Secure Authenticated Key-Exchange Protocols. An authenticated key-
exchange protocol is an authentication protocol, where additionally both parties
2 In contrast, a protocol can be designed such that the party receiving the last mes-

sage accepts only if it has received this message correctly according to the protocol
specification.
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obtain a key k after accepting. Intuitively, we would like to say that a authenti-
cated key-exchange protocol is secure, if

– the protocol is a secure authentication protocol, and
– an adversary can not distinguish a key k computed in a protocol run from

a uniformly random value from the key space. This should hold even if the
adversary is able to learn the key computed in other protocol instances.

We formalize this by extending the execution model by two more type of queries,
which may be asked by the adversary.

– Test(πs
i,j): This query may only be asked once throughout the game. If pro-

cess πs
i,j has not (yet) “accepted”, the black-box returns some failure symbol

⊥. Otherwise the black-box flips a fair coin b. If b = 0, a random element
from the keyspace is returned. If b = 1 then the session key k computed in
process πs

i,j is returned.
– Reveal(πs

i,j): The adversary may learn the encryption key K computed in
process πs

i,j by asking this type of query. The adversary submits πs
i,j to the

black-box. If process πs
i,j has “accepted”, the black-box responds with the

key k in process πs
i,j . Otherwise some failure symbol ⊥ is returned.

Definition 8. Let A be a PPT adversary, interacting with the black-box O(Π)
described in the above execution model (denoted with AO(Π)).

We say that an authenticated key-exchange protocol Π is secure in the Bellare-
Rogaway model, if 1.) Π is a secure authentication protocol according to Defini-
tion 7, and 2.) ∣∣∣∣Pr[AO(Π)(1κ) = b]− 1

2

∣∣∣∣ ≤ ε

for all A.

As Shoup pointed out in [27, §15], we do not have to explicitly model a Corrupt-
query, as one can efficiently reduce the standard BR-Model to a model without
Corrupt-queries (see also [6, p. 70 ff.]).

3 Authenticated Key Exchange Compiler in the Standard
Model

Let us now describe our generic AKE compiler. The compiler takes as input the
following building blocks (which have been defined in Section 2).

– A key-exchange protocol KE,
– a digital signature scheme Σ = (SIG.Gen, SIG.Sign, SIG.Vfy),
– a message authentication code MAC,
– and a pseudorandom function PRF.

The compiled protocol between two parties A and B proceeds as follows (see
also Figure 2).
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1. A and B run the key exchange protocol. For instance, both parties may run
the well-known Diffie-Hellman protocol [18]. Throughout this protocol run,
both parties compute key k and record a transcript TA

KE and TB
KE, where TC

KE

consists of the list of all messages sent and received by party C ∈ {A,B}.
2. The key k computed by KE is used to derive two keys K = PRF(k, “KE”)

and Kmac = PRF(k, “MAC”), where “KE” and “MAC” are some arbitrary
fixed constants such that “KE” �= “MAC”.3

3. Then A samples a random nonce rA
$← {0, 1}λ and sends it to B, B samples

rB
$← {0, 1}λ and sends it to A.

4. Party A computes a signature σA
$← SIG.Sign(skA, T

A
1 ) under A’s secret key

skA, where TA
1 = (TA

KE||rA||rA
B) is the transcript of all messages sent and

received by A so far. Then B computes a signature over the transcript TB
1 =

(TB
KE||rB

A ||rB) of all messages sent and received by B. Let TA
2 = (σA||σA

B)
denote the signatures sent and received by A, and TB

2 = (σB
A ||σB) be the

signatures sent and received by B.
5. A sends a MAC tA = MAC(Kmac, T

A
2 ||0) over transcript TA

2 using the key
Kmac computed in 2. B replies with tB = MAC(Kmac, T

B
2 ||1).

6. Party A accepts, if SIG.Vfy(pkB, T
A
1 , σ

A
B) = 1 and tB = MAC(Kmac, T

A
2 ||1),

that is, if σA
B is a valid signature for TA

2 under B’s verification key pkB

and if wB is a valid MAC under key Kmac for TA
2 ||1. B accepts if it holds

that SIG.Vfy(pkA, T
B
1 , σ

B
A ) = 1 and wA = MAC(Kmac, T

B
2 ||0). Finally, if both

parties accept then the key K is returned.

Observe that the signatures and MACs are verified using the internal transcripts
of party A and B. The intention behind the idea of embedding the transcripts
in the protocol is to detect any changes that an active adversary makes to the
messages sent by A and B. Informally, in the two-layer authentication consisting
of the signature scheme and MAC, the signature is used to authenticate users
and thwart man-in-the-middle attacks on the key-exchange protocol, while the
MAC is used as an implicit “key confirmation” step to avoid unknown key-share
attacks [14,13].

This allows us to prove security requiring only pretty weak security properties
from the utilized building blocks, namely we require that KE is secure against
passive adversaries only, that the digital signatures are existential unforgeable
under (non-adaptive) chosen-message attacks, and that the MAC and PRF meet
their standard security notions.

Remark 1. The digital signatures sent in the first round after running KE are
merely a concrete instantiation of a tag-based authentication scheme as intro-
duced in [21]. It is possible to generalize the above protocol by replacing the
digital signatures with a tag-based authentication scheme, without making sub-
stantial changes to the protocol or the security proof given below.

3 Note that we assume here implicitly, that the output key space of KE matches the
input key space of PRF. This fact is not only important for correctness, but also for
the security proof.
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A B

←− KE−−−−−−−−−−−−−−→
obtain k, T A

KE obtain k, T B
KE

K := PRF(k, “KE”) K := PRF(k, “KE”)
Kmac := PRF(k, “MAC”) Kmac := PRF(k, “MAC”)

−
rA−−−−−−−−−−−−−−→

←−
rB−−−−−−−−−−−−−−

record T A
1 = (T A

KE||rA||rA
B) record T B

1 = (T B
KE||rB

A ||rB)

σA := SIG.Sign(skA, T A
1 ) σB := SIG.Sign(skB , T B

1 )

− σA−−−−−−−−−−−−−−→
←−

σB−−−−−−−−−−−−−−
record T A

2 = (σA||σA
B) record T B

2 = (σB
A ||σB)

wA := MAC(Kmac, T A
2 ||“0”) wB := MAC(Kmac, T B

2 ||“1”)
−

wA−−−−−−−−−−−−−−→
←− wB−−−−−−−−−−−−−−

accept if accept if

SIG.Vfy(pkB , T A
1 , σA

B) = 1 SIG.Vfy(pkA, T B
1 , σB

A ) = 1
and and

MAC(Kmac, T A
2 ||“1”) = wA

B MAC(Kmac, T B
2 ||“0”) = wB

A

Fig. 2. AKE Protocol

3.1 Security Analysis

Theorem 1. If the KE protocol, the signature scheme, the message authentica-
tion code and the pseudo-random function are secure with respect to the defini-
tions in Section 2, then the above protocol is a secure AKE protocol in the sense
of Definition 8.

We prove the above theorem by two lemmas. Lemma 1 states that the AKE
protocol meets property 1) of Definition 8, Lemma 2 states that it meets property
2) of Definition 8.

Lemma 1. If the key exchange protocol (KE), the signature scheme (SIG), the
message authentication code (MAC) and the pseudo-random function (PRF) are
secure with respect to the definitions in Section 2, then the above protocol holds
property 1) of Definition 8.

Proof. (Sketch) The proof proceeds in a sequence of games, following [3,28].
The first game is the real security experiment. By assumption there exists an
adversary A that breaks the security of the above protocol. We then describe
several intermediate games that step-wisely modify the original game. Next we
show that in the final security game the adversary has only negligible advantage
in breaking the security of the protocol. Finally we prove that (under the stated
security assumptions) no adversary can distinguish any of these gamesXi+1 from
its predecessor Xi. Let Xi be the event that A wins in Game i. In the following
let negl(κ) be some (unspecified) negligible function in the security parameter κ.

Game 0. This is the original security game with b = 1, that is, the adversary
receives always the “real” key. By assumption A can distinguish K from a ran-
dom key (i.e. correctly answer the Test(πs

i,j) query) when given access to the
Send(πs

i,j ,m) and Reveal(πs
i,j) oracles while A and B accept.
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Game 1. This game proceeds exactly like the previous game, except that the
simulator aborts if A or B accept and TA

1 �= TB
1 .

Claim 1. We claim that

|Pr[X1]− Pr[X0]| ≤ negl(κ)

by the EUF-CMA security of the digital signature scheme. The proof of this claim
exploits that fromA’s perspective the transcript TA

1 is unique with overwhelming
probability (due to the honest random choice of rA) and from B’s perspective
TB

1 is unique for (honestly-chosen) rB with overwhelming probability.

Game 2. This game proceeds exactly like the previous game, except that the
simulator now chooses a uniformly random key k̂ to derive Kmac and K as
Kmac = PRF(k̂, “MAC”) and K = PRF(k̂, “KE”).

Claim 2. We claim that

|Pr[X2]− Pr[X1]| ≤ negl(κ)

by the security of KE against passive adversaries. In the proof we exploit that
we must have TA

1 = TB
1 if A or B accept, as otherwise we abort due to Game 1.

Game 3. This game proceeds exactly like the previous game, except that the
simulator now chooses a uniformly random key k̃ (instead of Kmac) to compute
wA and wB as wA = MAC(k̃, T2||0) and wB = MAC(k̃, T2||1).

Claim 3. We claim that

|Pr[X3]− Pr[X2]| ≤ negl(κ)

by the security of the pseudorandom function PRF. In the proof we exploit that
we have exchanged the “real” key k computed in KE with a “random” key k̃ in
Game 2.

Observe here that, since the output key space of KE must match the input
key space of PRF, and PRF is assumed to be secure, it follows implicitly here
that the output key space of KE needs to be super-polynomially large.

Game 4. This game proceeds exactly like the previous game, except that the
simulator aborts if A or B accepts and TA

2 �= TB
2 .

Claim 4. We claim that

|Pr[X4]− Pr[X3]| ≤ negl(κ)

Recall that in Game 4 we must have TA
1 = TB

1 due to our abort condition from
Game 1, and that we have replaced the key k computed in KE with a uniformly
random key k̃ in Game 3 to compute the MACs in the considered protocol
instance. Thus, if we have TA

2 �= TB
2 , then the adversary must have forged a

MAC to make A or B accept. We can therefore use the adversary to break the
security of MAC.
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Game 5. This game proceeds exactly like the previous game except that the
simulator aborts if A or B accepts and TA

3 �= TB
3 , where TA

3 = (wA, w
A
B) consists

of the MACs sent and received by A and TB
3 = (wB

A , wB) consists of the MACs
sent and received by B.

Claim 5. We have
Pr[X5] = Pr[X4].

This follows from the fact that we have defined MAC as a deterministic function,
and we have TA

1 = TB
1 due to Game 1 and TA

2 = TB
2 due to Game 4.

Collecting probabilities from Game 0 to 5, we obtain that both A and B
accept only if they have matching conversations, except for some negligible
error probability.

Lemma 2. If KE, SIG, MAC and PRF are secure with respect to the definitions
in Section 2, then the above protocol holds property 2) of Definition 8.

Proof. (Sketch). Again we proceed in a sequence of games. The first 5 games of
the proof are identical to the sequence in the proof of Lemma 1. We merely add
one further game.

Game 6. This game proceeds exactly like the previous game except that the
simulator now chooses K uniformly at random from the keyspace.

Claim 6. We claim that

|Pr[X6]− Pr[X5]| ≤ negl(κ).

This again follows from the security of the PRF, where we use that the seed k̂ is
chosen uniformly random and independent (cf. Game 2).

In Game 6, the adversary receives a uniformly random key K. However, by
collecting probabilities from Game 0 to 6 we obtain that Game 6 is (computation-
ally) indistinguishable from Game 0, which proves indistinguishability of “real”
from “random” keys. Thus, the protocol is secure in the sense of Definition 8.

4 An Alternative AKE Compiler for Practical Protocols

Our second compiler is designed for practical applications, where we cannot
change the session key K resulting from the KE protocol [15], or where we
want to avoid an additional round of protocol messages after the authentication
protocol. In this compiler, we directly integrate the transcript of the KE protocol,
and the secret value Kmac, into the authentication protocol. To do so, we first
have to define a ”generic” scheme for an authentication protocol.

We only have minimal requirements on the authentication protocols. The
party (”challenger”) who wants to authenticate the other party (”prover”) has
to include a random value of high entropy into one of its protocol messages.
(Otherwise an adversary may just query different instances of the prover for
responses for the most probable challenges to increase her advantage.) The prover
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A B

−−rA−−−−→
←−
sB , rB−−−−−−
−−

sA−−−−→

A B

− rA−−−−−−−−−−−→
r′

A :=
H(Kmac, rA, transcriptKE)

s′
B := f(skB , r′

A)

←−
s′

B , rB
−−−−−−−−−−−

r′
B :=

H(Kmac, rB , transcriptKE)
s′

A := f(skA, r′
B)

−
s′

A−−−−−−−−−−−→

Fig. 3. Scheme of a standard mutual authentication protocol Γ (left), and the version
Γ ′ modified by our compiler (right)

must answer with a value that was computed using his long-lived key sk, and
the challenge itself.

The following protocols fulfill our requirements:

– AKEP1 and AKEP2 as defined in [2]
– Sigma- and Schnorr protocols (see [26])
– Zero-Knowledge Authentication protocols as introduced in [7]
– Zero-Knowledge Password-Proof protocols as introduced in [4].
– Signature based authentication protocols.

In this respect, our compiler may even enhance the security of the authentication
protocol. This applies to the authentication of both parties, or of one party only.

Let Γ be an authentication protocol as depicted in Fig. 3. Then we denote
by rA a value (the challenge) that is sent from A to B, and by sB = f(skB, rA)
the value (response) returned to A that allows A to check the authenticity of B.
The values rB and sA are defined analogously.

The main idea in the construction of a modified authentication protocol Γ ′

is to transmit rA and rB according to the protocol specification of Γ , but
to compute the response based on both the received challenge, the transcript
transcriptΠ of the key agreement protocol Π , and secret value Kmac. This is
done using a random oracle H. Our compiler Comp, which takes as input a key
agreement protocol Π secure against passive adversaries, and a secure authenti-
cation protocol Γ , outputs an authenticated key agreement protocolComp(Π,Γ )
which works as follows:

A&KE-2 Compiler: Let (πs
A,B , γ

s
A,B) and (πt

B,A, γ
t
B,A) be two pairs of ora-

cles for Π and Γ .

1. Π is executed by πs
A,B and πt

B,A without any change. The resulting secret
value is k = (K,Kmac) for πs

A,B , and k′ = (K ′,K ′mac) for πt
B,A . (Ideally

k = k′, but we have to take into account actions by the adversary.) The
session key K (K ′, resp.) is used for encryption and integrity protection,
and the secret value Kmac (K ′mac, resp.) is sent locally to the processes γs

A,B
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and γt
B,A , together with the local transcript of the messages of Π . (The

values K and Kmac are computed as described in Section 3.)
2. Now Γ is executed by γs

A,B and γt
B,A with the following change: In

the computation of sA and sB, the values rA and rB are replaced with
r′A := H(Kmac, rB, transcriptΠ) and r′B := H(K ′mac, rA, transcript

′
Π), and

thus we get s′A = f(skA, r
′
A) and s′B = f(skB, r

′
B), where H(·, ·, ·) is a

random oracle. If γs
A,B accepts, the local output is K, and K ′ for γt

B,A .

Lemma 3. If Π is a key agreement protocol secure against passive adversaries,
then it is impossible that three different oracles accept with the same (secret)
state (k, transcriptΠ), where k = (K,Kmac) is the secret value computed by Π,
and transcriptΠ is the transcript of all protocol messages.

Proof. If this was the case, then A, B and the (active) adversary E all would
be able to compute k, but the adversary would not have modified any message
exchanged between A and B (since the transcripts are identical). Thus E, acting
as a passive adversary, would be able to compute k, a contradiction.

Lemma 4. In Comp(Π,Γ ), any two oracles γs
A,B and γt

B,A with match-
ing conversations have access to a unique random oracle that is defined as
HAtBs(·) := H(Kmac, ·, transcriptΠ). Neither E, nor any other oracle has access
to this random oracle.

Proof. Since the pair (Kmac, transcriptΠ) is unique for any pair of oracles,
HAtBs(·) is unique, too.

Theorem 2. If Γ is a secure authentication protocol, then Γ ′ as defined in Fig.
3 also is a secure authentication protocol.

Proof. Let γ′sA,B and γ′tB,A be two process (oracle) instances of A and B in
Γ ′. It should be clear that if γ′sA,B and γ′tB,A have matching conversations,
then both oracles will accept.

We have to show that the probability that γ′sA,B or γ′tB,A accepts without
a matching conversation is negligible. Now assume on the contrary that there
is an adversary E′ that is able to make γ′sA,B or γ′tB,A accept without a
matching conversation, with non-negligible probability ε. Then we can define an
adversary E that achieves the same goal with the protocol Γ : Since E′ has no
access to the random oracle HAB, she can only try to guess the challenge r′A (r′B ,
resp.). Now E is simply ignoring the challenge rX she sees, and simply guesses a
random challenge r′′X , and tries to compute s′Y from this challenge. This strategy
succeeds with non-negligible probability ε, and we have thus contradicted our
assumption that Γ is a secure authentication protocol.

Theorem 3. If Π is a key agreement protocol secure against passive adver-
saries, and if Γ is a secure authentication protocol, then Comp(Π,Γ ) is a secure
authenticated key agreement protocol.
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Proof (Sketch). γs
A,B and γt

B,A will accept in Γ ′ if and only if they have access
to the same random oracleHAtBs(·). (Otherwise they have to guess the challenge
r′X , which succeeds only with negligible probability.) If they have access to the
same random oracle, then πs

A,B and πt
B,A completed Π with the same state

(k, transcriptΠ). If γs
A,B and γt

B,A accept, Π and Γ were both completed
by the same endpoints A and B. This excludes active attacks on Π (since the
transcript is unchanged), and UKS attacks on Γ . Thus E may only mount a
passive attack on Π , which succeeds only with negligible probability.
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Abstract. In this article, we study an interesting and very practical
key management problem. A server shares a symmetric key with a client,
whose memory is limited to R key registers. The client would like to send
private messages using each time a new key derived from the original
shared secret and identified with a public string sent together with the
message. The server can only process N computations in order to retrieve
the derived key corresponding to a given message. Finally, the algorithm
must be forward-secure on the client side: even if the entire memory of
the client has leaked, it should be impossible for an attacker to retrieve
previously used communication keys. Given N and R, the total amount
T of keys the system can handle should be as big as possible.

In practice such a forward-secure symmetric-key derivation protocol
is very relevant, in particular in the payment industry where the clients
are memory-constraint paying terminals and where distributing symmet-
ric keys on field is a costly process. At the present time, one standard
is widely deployed: the Derive Unique Key Per Transaction (DUKPT)
scheme defined in ANSI X9.24. However, this algorithm is complicated
to apprehend, not scalable and offers poor performances.

We provide here a new construction, Optimal-DUKPT (or O-DUKPT),
that is not only simpler and more scalable, but also more efficient both in
terms of client memory requirements and server computations when the
total number of keys T is fixed. Finally, we also prove that our algorithm
is optimal in regards to the client memory R / server computations N /
number of keys T the system can handle.

keywords: key management, key derivation, DUKPT, forward-security.

1 Introduction

In information security, one of the most complicated part related to practical
cryptography is the key management. Many different scenarios can exist and a
different method is often required for each of them. The banking industry is well
used to face strong constraints regarding key management. The financial trans-
actions are processed in the paying terminal that reads the user magnetic card or
chip card data. In order to validate the PIN input from the user, protocols based
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on symmetric-key cryptography [5,6] are usually implemented. Also, because of
the recent devastating attacks on back-office payment servers, the industry found
strong incentives in protecting as well the user card data that is sent to the bank.
Leading solutions [10,4], deploying format-preserving encryption, are also based
on symmetric-key cryptography.

Of course, the symmetric key shared between the terminal and the bank must
be securely distributed beforehand. In most cases, this is done by manually
injecting the terminals with the key in a secure room. Clearly, such a process is
costly for the stakeholders and can not be done frequently. For that reason, the
symmetric keys stored in the terminal are static and not often changed.

Recently, the industry has seen the rising of side-channel attacks [8,9,13],
practical and devastating methods that aims at recovering the secret key inside
cryptographic modules by analyzing unusual information channels such as com-
putation time, power consumption, electromagnetic emission, etc. As the paying
terminals environment can not be considered as secure, side-channels attacks
have to be taken in account seriously. For this reason, the banking industry
has actively promoted an improved and more secure key management protocol:
Derive Unique Key Per Transaction (DUKPT), defined in ANSI X9.24 [7].

The idea of DUKPT is to derive from the originally shared key a unique key
per transaction. This feature greatly reduces the applicability of side-channel at-
tacks, for which many measurement traces of encryption processes with the same
symmetric key must be obtained. Moreover, this method is done is a forward-
secure way on the client side (the servers are considered as located in a secure
environment): if the internal state of the client is recovered, the attacker can not
retrieve any of the transaction keys previously used. The algorithm can handle
up to one million derived keys, which seems a reasonable upper bound for the
number of transactions performed during a paying terminal life-cycle. Thus, the
costly key injection process only has to be performed once.

DUKPT is standardized and now widely deployed in a majority of payment
solutions. However, this protocol consumes a lot of memory in the devices, which
are strongly memory-constraints. This is particularly problematic when a ter-
minal has to be able to communicate with several distinct servers, and thus to
handle many DUKPT instances at the same time. Moreover, DUKPT can also
cause troubles on the server side, since it is costly in terms of computations
required to retrieve the transaction key. Of course, this issue is even worsen by
the fact that the server receives many financial transactions at the same time.

OurContribution. In this article, we propose an improvement over the DUKPT
technique described in ANSI X9.24 [7]. Our forward-secure symmetric-key deriva-
tion protocol offers scalability, simplicity and memory/computations performance
gains. Yet the problem we study here is more general than just the sole case of
paying terminals in the banking industry: memory-constraint clients that want
to share with a computation-limited server unique symmetric keys per message
sent in a forward-secure way. After having described our new proposal O-DUKPT,
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we show that it is optimal in terms of client’s memory requirements R / server
computations N / number of keys T handled by the construction. Note that we
restrict ourselves to using symmetric-key cryptography only. For forward-secure
encryption schemes using public-key, see for example [3].

2 State-of-the-Art

2.1 Goals and Constraints

Derive Unique Key Per Transaction (DUKPT, see [7]) is a symmetric-key deriva-
tion scheme that offers several nice security properties for the payment industry
scenarios (or any asymmetric situation where one server securely communicates
with many memory-constrained clients). First, the symmetric keys used for each
payment transaction are distinct. Moreover, a forward-security feature is in-
corporated: if the internal state of the paying terminal is entirely or partially
compromised by any means, no useful information on the keys derived in previ-
ously processed transactions can be retrieved thanks to this leakage. Usually, the
DUKPT scheme is utilized for the derivation of symmetric keys ciphering PIN
blocks (for user authentication), or more recently for deriving symmetric keys
that encrypts sensitive banking data such as Personal Account Number (PAN),
expiration date, etc.

In practice, we have one server S that communicates with many paying ter-
minals and each of these clients Ci must first share a symmetric key with S.
For obvious security reasons, two clients can not share the same key with the
server (except by chance). This constraint could lead to memory problems for S
if it has to deal with many clients. The issue is avoided by starting from a Base
Derivation Key (BDK), directly available to S. The k-bit key shared between
a client Ci and the server S is denoted IKi (for Initial Key) and is derived from
the BDK as follows:

IKi = F (BDK, i)

where F : {0, 1}∗ �−→ {0, 1}k is a pseudo-random function. We give in Appendix
A how F is obtained in practice. Thus, the system is initialized by giving BDK
to the server, and IKi to each client Ci. This key distribution is not in the scope of
this article, but in general it is done on the client side with manual key injection
in secure room or with remote key injection using public-key cryptography. Note
that when a transaction is sent from the client to the server, the identity of the
client Ci has to be sent as well, so the server can appropriately derive the key
originally shared IKi. The initialization process is depicted in Figure 1. The
problem studied in this paper can be directly reduced to the case of a single
client. Therefore, from now on, we will only consider two entities: a server S and
a client C that initially share a key IK.

We would like to derive the unique transaction keys in a forward-secure way,
using only the function F as a black-box. There is a very natural and inefficient
way of achieving this: the client C maintains an internal state of one key, initial-
ized with IK. The internal state after having processed the j-th transaction is
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SERVER BDK
BDK init

process

CLIENT C1IK1

IK1 = F (BDK, 1)

CLIENT C2IK2IK2 = F (BDK, 2)

CLIENT C3IK3

IK3 = F (BDK, 3)

CLIENT C4IK4

IK4 = F (BDK, 4)

Fig. 1. Server and clients initialization

denoted Sj and we have S0 = IK. Then, the key used for transaction j is sim-
ply the key stored in the internal state, Sj−1, and we update the internal state
with Sj = F (Sj−1, j). At each transaction, the client sends the value j so that
the server can understand which key is shared for this transaction. It is clear
that each key derived will be unique (except by chance) and that we have the
forward-security property: F is a non-invertible process, so one can not obtain
any information on the previous keys by recovering the internal state. However,
it is also clear that this will be very inefficient on the server side. If one would
like to handle say 1 million transactions, the server may have to go through one
million computations of F to obtain the key in the worst case.

The idea of ANSI X9.24 DUKPT is to allow for the client to store more
data than just one key, so as to lower the computation cost on the server side.
More precisely, DUKPT allows the client to store R = 21 key registers and the
server to compute F at maximum N = 10 times for one key derivation (except
IKi = F (BDK, i)). Overall, a total of T = 1048575 transactions can be handled.

In this paper we will show that DUKPT is not optimal when studying the fol-
lowing problem: given at maximum R key storage registers in one client C and N
computations of F on the server S for one key derivation, what is the maximum
number T of distinct keys the system can handle while ensuring the forward-
security property if all the secret information contained in C is compromised?
We provide an optimal algorithm, named Optimal-DUKPT (or O-DUKPT) that
can handle up to T =

(
N+R

R

)−1 derived keys. For example, with the original pa-
rameters of DUKPT, R = 21 and N = 10, we are able to generate T = 44352164
keys. Otherwise, if the goal is to be able to derive about one million keys, one can
use our solution with only R = 13 key registers. Our solution is not only more
attractive in terms of memory and computations, but it is also much simpler to
apprehend and to implement. Finally, Optimal-DUKPT is completely scalable
and depending on the expected/desired memory/computation constraints of the
system, it offers very valuable tradeoffs for practical applications.

2.2 ANSI X9.24 DUKPT Description

For completeness and future comparison, we provide in this section a descrip-
tion of the original DUKPT algorithm as defined in the ANSI X9.24-2009 docu-
ment [7]. We assume that the shared symmetric key IK has been securely given
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to the client and the server. We define hw(x) as the hamming weight of the word
x. The base 2 representation is denoted (·)2, i.e. 13 in base 2 is written (1101)2,
the most significant bit being located on the left. Also, for x �= 0, we define y = x̃
to be the value of x with the least significant “1” bit set to zero. For example,
if x = (10110)2 we have y = x̃ = (10100)2 and ỹ = (10000)2.

In order to identify the key derived, for each transaction a 21-bit counter tc
is sent from the client to the server. Then, for transaction j, the counter value
tc = j is sent and the key identified by j is used. The initial key IK is considered
as a key identified by j = 0. DUKPT intrinsically defines a hierarchy between
the keys: each key used for transaction j �= 0 is the daughter of the key identified
by j̃ (by A is the daughter of B, we mean that A is directly derived from B with
F ). For example, the key identified by j = (0...010000)2 has four daughters
identified by j1 = (0...010001)2, j2 = (0...010010)2, j3 = (0...010100)2 and
j4 = (0...011000)2, since j = j̃1 = j̃2 = j̃3 = j̃4. More precisely, we have

Kj = F (Kj̃ , j).

Before describing the process on the client and server side, one may ask why a
21-bit counter is needed (20 bits would suffice). The reason is that not all values
of the counter and the corresponding keys will be used. Indeed, only the counter
values with a non-zero hamming weight lower or equal to 10 will be considered
and one can aim for a total key amount of

T =
10∑

j=1

(
21
j

)
= 220 − 1 = 1048575.

On the Server Side. S receives the 21-bit transaction counter tc. The server
will derive the transaction key with only hw(tc) computations of F (since we
forced hw(tc) ≤ 10, we do have the property that at maximum N = 10 com-
putations of F are required). First, S deduces the bit position p1 of the most
significant “1” bit of tc and computes ctemp = 2p1 and Ktemp = F (IK, ctemp).
Then, the server deduces the bit position p2 of the second most significant “1”
bit of tc and computes ctemp = ctemp + 2p2 and Ktemp = F (Ktemp, ctemp). One
continues until all the hw(tc) “1” bits of tc have been processed. Then, the final
key stored in Ktemp is the shared key for this transaction. One can see that the
server derivation simply consists in following the key hierarchy starting from IK
and ending to Ktc. For example, if tc = (0...011010)2, the server first computes
Ktemp = F (IK, (0...010000)2), then Ktemp = F (Ktemp, (0...011000)2) and
finally Ktemp = F (Ktemp, (0...011010)2).

On the Client Side. The derivation on the client side is a little bit more
complicated. First, the client is initialized as follows: each register r is filled with
the value F (IK, 2r−1) with r ∈ {1, . . . , R}, i.e. each register r is filled with K2r−1 .
Then, IK is erased from the client’s memory. One can note that those R = 21
keys are in fact the mothers of all future keys. For the first transaction, the key
corresponding to tc = 1 is located in the first register (since the key stored in
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Table 1. Chronological accesses to the key registers on the client side for DUKPT. A
value i in a cell means that the key Ki is derived and stored in the corresponding column
register at the corresponding row iteration. An “X” means that for this transaction the
client used the key located in the corresponding register and then erased its contents.

counter tc
R21 R20 R19 R12 R11 R5 R4 R3 R2 R1

dec hex

init 220 219 218 ... 211 210 ... 16 8 4 2 1

1 1 X

2 2 X 3

3 3 X

4 4 X 6 5

5 5 X

6 6 X 7

7 7 X

8 8 X 12 10 9

9 9 X

10 A X 11

11 B X

12 C 14 13

13 D X

14 E X 15

15 F X

16 10 ... ... X 24 20 18 17

17 11 X

.

.

.

2045 7FD X

2046 7FE X

2048 800 X 3072 2064 2056 2052 2050 2049

2049 801 X

.

.

.

1047552 FFC00 X

1048576 100000 X 220 + 219 220 + 218 220 + 211 220 + 210 220 + 16 220 + 8 220 + 4 220 + 2 220 + 1

1048577 100001 X

.

.

.

2095104 1FF800 X

this register is K1 = F (IK, 1)). Once the transaction completed, the content of
this register is erased in order to preserve the forward-secrecy: only IK is the
mother of K1 and it has already been erased. Note that one can freely erase
K1 because it has no daughter, so one does not lose any important information
for later derivation. Then, when tc = 2, one uses the content from register 2
as transaction key. However, since K2 is the mother of K3, before erasing it,
one derives K3 = F (K2, 3) and stores this key in register 1. One continues this
process until all registers contain no more information.

To summarize, for a transaction j, the client picks and uses the key Kj located
in register r, where r is the bit position of the least significant “1” bit of j. Then,
before erasing Kj from its memory, the client derives and stores all the r − 1
direct daughters of Kj in the r−1 least significant registers. The forward-secrecy
is always maintained since after a transaction key have been used, it is always
ensured that this key and its mother (or (grand)∗-mothers) will no more be
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present in the client’s memory. Also, remember that all counter values with
hamming weight strictly greater than 10 are skipped. We give in Table 1 an
illustration of the chronological accesses to the key registers.

3 A New Proposal: O-DUKPT

3.1 General Idea

Our underlying idea for improving DUKPT can be understood with the following
simple observation: for the very first transaction tc = 1 of DUKPT, the key K1

located in the first register is used and directly erased. Note that this key has no
daughter in the key hierarchy and that its mother is IK (it is at distance 1 from
the IK). Said in other words, the server can retrieve K1 from IK with only one
computation of F . Instead of erasing K1 directly and since we are yet far from
reaching 10 computations of F on the server side, we could have derived another
key from K1 and placed it in this first register. Continuing this idea, we could
have generated 9 more keys only with the first register.

Now, this can be generalized to the other registers as well. Once the first
register contains a key located at a distance of 10 from the IK, we can not derive
it anymore. Then, we have to utilize the key located in the second register, but
before erasing it from the client’s memory, we can derive from it two new keys
that we will place in the first and second registers. Those two new keys are at
distance 2 from the IK. Again, we can derive many keys only using the first
register, but one less than before since we started from a key at distance 2 (and
not 1) from the IK. This idea is finally iterated to all the registers.

3.2 Description

In order to preserve the scalability of the algorithm, Optimal-DUKPT will be
defined as a family of key management schemes. Each member of the family is
identified by the amount R of key registers available on the client side and the
number N of maximum computations required to derive one key on the server
side. Moreover, we will show later that each member can handle a maximum
number of keys T =

(
R+N

N

)− 1.
As for the original DUKPT, we assume that the shared symmetric key IK

has been securely given to the client and the server. In order to identify the
key derived, for each transaction a public string st is sent from the client to the
server. This string is composed of R integers sti, with 1 ≤ sti ≤ N for 1 ≤ i ≤ R.
An integer sti represents the distance from IK of the key stored in register i of
the client’s memory before processing the transaction. For example, the string
sent for the very first transaction is 1 ... 1 1, for the second one 1 ... 1 2, etc.

On the Client Side. The client maintains two tables. First, the classical
R key registers, denoted Ri for 1 ≤ i ≤ R. They are simply initialized with
Ri = F (IK, 0R, i) and once this process is over, the IK is erased from the
client’s memory. Secondly, the client maintains a table D of R integers that
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we denote Di, where Di represents the distance from IK of the key stored in
register Ri. The content of D is exactly what is sent to the server in the string
st. Naturally, it is initialized with Di = 1 for 1 ≤ i ≤ R.

When requested to process a new transaction, the client builds st = D and
looks for the least significant register having a corresponding distance Di strictly
smaller than N + 1. This register, that we denote Rp, contains the transaction
key TK that will be used. Then, once the transaction over,

• If Dp < N (i.e. more keys can be derived from TK), the client updates the p
registers Rp, Rp−1, . . ., R1 with Ri = F (TK, D, i) and updates the distance
table with Di = Dp + 1 with 1 ≤ i ≤ p.

• Otherwise, if Dp = N (i.e. TK does not have any daughter), the client simply
erases the content of register Rp and updates Dp = Dp + 1 = N + 1.

Note that in the key derivation process, the data used as input of F is always
unique. Indeed, D will be different for each transaction. This guarantees the
security of the system. The forward-secrecy is always maintained since after
a transaction key has been used, it is always ensured that this key (and its
predecessors) will no more be present in the client’s memory. We give an example
of the clients internal state evolution in Table 2 or an alternate tree view in
Figure 2.

TK10

TK19 TK18 TK17 TK15 TK14 TK12 TK9 TK8 TK6 TK3

TK11TK13TK16 TK5 TK2

TK1TK4

TK7

IK

R1

R1

R1

R1

R1R1

R1

R1R1R1

R2

R2R2

R2 R2R2

R3

R3

R3

Fig. 2. Tree view of the client side key derivation example from Table 2, with system
parameters N = 3 and R = 3. We denote TKj the key used for the j-th iteration, and
the Ri aside the circles represent the register in which each key TKi is stored during
the process.
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Table 2. Example of key registers and distance tables evolution on the client side,
with system parameters N = 3 and R = 3. We denote TKi the key used for the i-th
iteration. An “X” in the key registers evolution columns means that the client erases
the contents from this register.

iter.
st transaction key used and key registers evolution distance table

sent key registers update R3 R2 R1 D3 D2 D1

init
R3 = F (IK, 000, 3)

TK10 TK4 TK1
in 0 0 0

R2 = F (IK, 000, 2), R1 = F (IK, 000, 1) out 1 1 1

1 111
TK1 = R1

TK2
in 1 1 1

R1 = F (TK1, 111, 1) out 1 1 2

2 112
TK2 = R1

TK3
in 1 1 2

R1 = F (TK2, 112, 1) out 1 1 3

3 113
TK3 = R1

X
in 1 1 3

erase R1 out 1 1 4

4 114
TK4 = R2

TK7 TK5
in 1 1 4

R2 = F (TK4, 114, 2), R1 = F (TK4, 114, 1) out 1 2 2

5 122
TK5 = R1

TK6
in 1 2 2

R1 = F (TK5, 122, 1) out 1 2 3

6 123
TK6 = R1

X
in 1 2 3

erase R1 out 1 2 4

7 124
TK7 = R2

TK9 TK8
in 1 2 4

R2 = F (TK7, 124, 2), R1 = F (TK7, 124, 1) out 1 3 3

8 133
TK8 = R1

X
in 1 3 3

erase R1 out 1 3 4

9 134
TK9 = R2

X
in 1 3 4

erase R2 out 1 4 4

10 144
TK10 = R3, R3 = F (TK10, 144, 3)

TK16 TK13 TK11
in 1 4 4

R2 = F (TK10, 144, 2), R1 = F (TK10, 144, 1) out 2 2 2

11 222
TK11 = R1

TK12
in 2 2 2

R1 = F (TK11, 222, 1) out 2 2 3

12 223
TK12 = R1

X
in 2 2 3

erase R1 out 2 2 4

13 224
TK13 = R2

TK15 TK14
in 2 2 4

R2 = F (TK13, 224, 2), R1 = F (TK13, 224, 1) out 2 3 3

14 233
TK14 = R1

X
in 2 3 3

erase R1 out 2 3 4

15 234
TK15 = R2

X
in 2 3 4

erase R2 out 2 4 4

16 244
TK16 = R3, R3 = F (TK16, 244, 3)

TK19 TK18 TK17
in 2 4 4

R2 = F (TK16, 244, 2), R1 = F (TK16, 244, 1) out 3 3 3

17 333
TK17 = R1

X
in 3 3 3

erase R1 out 3 3 4

18 334
TK18 = R2

X
in 3 3 4

erase R2 out 3 4 4

19 344
TK19 = R3

X
in 3 4 4

erase R3 out 4 4 4
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On the Server Side. The server receives a string st that corresponds to the
table D of the client before processing the transaction. Note that the distance
values memorized in this table are always increasing from most significant to
least significant registers. Moreover, we recall that when the client extracted a
transaction key from a register Rp, it means that the distance table was such
that Di = N + 1 for 1 ≤ i ≤ p − 1. We denote by gp,v(D) the transformation
that maps the distance table D to another distance table D′ with

⎧
⎪⎪⎨
⎪⎪⎩

D′i = N + 1, for 1 ≤ i ≤ p− 1

D′i = v, for i = p

D′i = Di, for p + 1 ≤ i ≤ R

The server first initializes a local distance value d = 1 and a register position
value p = p′, with p′ being the most significant position with Dp′ > 1. Then, he
computes K = F (IK, 0R, p′) and keeps repeating the following process:

• While d < Dp − 1, compute K = F (K, gp,d(D), p) and d = d + 1.

• If p = 1, then K = F (K, gp,d(D), p) is the key shared with the client so the
program can stop.

• The server finds the most significant position p′ such that Dp′ > Dp. If
Dp′ �= N +1, then he computes K = F (K, gp,d(D), p′) and updates the local
variables p = p′ and d = d + 1. Otherwise, K = F (K, gp,d(D), p′ + 1) is the
key shared with the client so the program can stop.

This algorithm exactly follows the implicit process performed by the client to
derive the transaction key TK from the initial key IK. For example, reusing the

Table 3. Example of key derivation on the server side, with system parameters N = 8
and R = 8 and st = 12466689. The key is derived with 8 server computations.

iter.
key local values

update d p p′

init
K = F (IK,00000000, 7) in

7
out 1 7

1
K = F (K, 11999999, 6) in 1 7

6
out 2 6

2
K = F (K, 12299999, 6) in 2 6

5
K = F (K, 12399999, 5) out 4 5

3
K = F (K, 12449999, 5) in 4 5

2
K = F (K, 12459999, 2) out 6 2

4
K = F (K, 12466669, 2) in 6 2

1
K = F (K, 12466679, 2) out
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scenario from Table 2, assume that the server receives st = 224. He will first set
d = 1, p = 3 and compute K = F (IK, 000, 3). Then, he does not enter the while
loop nor the first if. He computes p′ = 1 and since Dp′ = 4 = N + 1, the key
K = F (K, 144, 2) is the key shared with the client. We give in Table 3 a more
complicated example.

3.3 Performance Analysis

Now that we defined our construction, we would like to precisely compute its
theoretical performance. It is clear that the client only needs to maintain a table
of R registers and that the maximum number of computations required on the
server side to derive the key is at most N calls to the function F . What is
the number T of keys the system can support (note that IK is not counted
as transaction key)? Since T depends on N and R, we denote T (N, R) the
maximum number of keys that can be generated with R client’s registers and N
server computations.

One can be easily convinced that T (N, 1) = N . Indeed, with only a single
register R1, the derivation process will simply use and self-update the key stored
in R1 until it exceeds the maximal distance N . Also, we have T (1, R) = R since
with a maximal allowable distance of 1, our construction would simply fill each
of the R registers with a key directly derived from the IK and that has no
daughter.

Let t(n, r) denote the number of distinct keys stored by register r with a
distance n from IK during the entire course of the algorithm, with 1 ≤ n ≤ N
and 1 ≤ r ≤ R. Since the registers are ordered (a register r can only be updated
by a register r′ with r′ ≥ r), we deduce that t(n, R) = 1, because the most
significant register can only be updated by itself. It is also clear that t(1, r) = 1,
since the only keys at distance 1 are the very first keys stored in each register.

The only way for a register r to hold a key at distance n > 1 is to be updated
from a key at distance n − 1 stored in a register r′ ≥ r. Thus, for 2 ≤ n ≤ N
and 1 ≤ r ≤ R, we have

t(n, r) =
R∑

i=r

t(n− 1, i)

which simplifies to

t(n, r) = t(n− 1, r) +
R∑

i=r+1

t(n− 1, i) = t(n− 1, r) + t(n, r + 1).

We define the function g(n, r) =
(
n+R−r−1

R−r

)
and it is well known that

(
a

b

)
=
(

a− 1
b

)
+
(

a− 1
b− 1

)
(1)

a∑
i=b

(
i

b

)
=
(

a + 1
b + 1

)
(2)
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where (2) is derived by induction from (1). Thus, using (1) we obtain

g(n, r) =
(

n + R− r − 2
R− r

)
+
(

n + R− r − 2
R− r − 1

)
= g(n− 1, r) + g(n, r + 1).

Since we have g(n, R) = 1 and g(1, r) = 1, we conclude that t(n, r) = g(n, r) for
1 ≤ n ≤ N and 1 ≤ r ≤ R.

The total amount of key handled by the system is computed by

T (N, R) =
N∑

i=1

R∑
j=1

t(i, j) =
N∑

i=1

R∑
j=1

(
i + R− j − 1

R− j

)
=

N−1∑
i=0

R−1∑
j=0

(
i + j

j

)

Finally, using identities (1) and (2) we obtain

T (N, R) =
N−1∑
i=0

R−1∑
j=0

(
i + j

j

)
=

N−1∑
i=0

R−1∑
j=0

(
i + j

i

)
=

N−1∑
i=0

(
i + R

i + 1

)
=

N−1∑
i=0

(
i + R

R− 1

)

= −1 +
N−1∑
i=−1

(
i + R

R− 1

)
=
(

R + N

N

)
− 1 =

(
R + N

R

)
− 1

3.4 Optimality Proof

In this section we show that when N and R are fixed, the amount of keys T
handled by our algorithm is the maximal reachable value. First, note that we
do not count the initial key in this amount. Indeed, as potentially sensitive in
practice, we consider that the initial key must not be stored on the client side
after the initialization process has been performed. Of course, if needed, our
algorithm O-DUKPT can be trivially modified in order to also utilize IK as one
of the transaction keys: the initialization process only stores the IK in one of
the register, then the first transaction key is this initial key and the first registers
update simply performs the initialization process from O-DUKPT.

We assume that the server and the client can only call the non-invertible func-
tion F to derive the keys, in a black-box manner. This pseudo-random function
manipulates an input of arbitrary length and outputs a key.

After the initialization phase and during the protocol run, the client can only
store R keys in its memory. We do not count here the temporary memory required
for the key derivations. Those R registers represent the number of keys that can
be memorized in the client’s memory once the transaction is over. Once the
transaction key has been deduced by the client, he processes the transaction
with this key and sends the public data st to the server. Once st received, the
server can only use a maximum of N calls of F in order to derive the transaction
key from the initial key IK.

The key generation algorithm must be forward-secure on the client side. That
is, when a transaction has been performed, it must be impossible for an at-
tacker that just recovered the R internal registers to retrieve any transaction
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key previously utilized. We call such an algorithm a forward-secure DUKPT al-
gorithm and we denote by T the maximum number of distinct keys the system
can handle.

At each transaction i, the client can first do some computations from the R
registers contents to deduce the transaction key TKi, then he stores TKi in its
local memory in order to use it, and he finally updates its R internal registers.
Because F is as pseudo-random function, there is no need to use several keys on
its input. One can generate as many distinct outputs as needed from F with a
single key input by using distinct additional data (such as a counter for example).
Thus, when deriving keys or transaction keys with F , we can assume that only
one key is used on its input.

Now, since we would like to preserve the forward-security on its side (and since
TKi only depends on one key from the R registers), the client model can be simpli-
fied: at each transaction, he picks the transaction key TK from one of its internal
registers Ri, he stores it in its local memory and finally updates the R registers
(i.e. the computation phase can be merged with the update). Moreover, since the
forward-security forces only the TK to be erased, the client only uses this key for
derivation (there is no advantage in doing a derivation from a key that we do not
have to erase yet). Therefore, for each transaction, the client picks the transac-
tion key TK from one of its internal registers Ri, stores it in its local memory and
finally updates the R registers exclusively from it.

When studying theoretically the optimality of a DUKPT algorithm, there is
no need to consider the server behavior. Indeed, the only requirement for the
server is that it must be able to compute the transactions with at most N calls
to F . Since F is as pseudo-random function, this only depends on how the client
generated the transaction keys. This constraint is modeled on the client side
with a distance value assigned to each key, representing the number of calls to
F required to reach this key from IK. Obviously, no transaction key can have
a distance strictly greater than N (and it is useless to memorize any key with a
distance strictly greater than N).

Theorem 1. A forward-secure DUKPT algorithm with R client registers and
N maximal server computations can derive at most T distinct keys, with

T =
(

R + N

N

)
− 1 =

(
R + N

R

)
− 1.

Let A be an optimal algorithm, i.e. reaching the maximum value T of keys
handled. We prove this theorem with several very simple lemmas concerning A.

Lemma 1. After the initialization process of A, the R registers of the client are
filled with R new distinct keys.

Proof. It is clear that not filling all R registers during the initialization phase is
not an optimal method. Let B be such a forward-secure DUKPT algorithm. We
can trivially build another forward-secure DUKPT algorithm B′ that generates
strictly more keys than B: during the initialization phase, B′ memorizes one more
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key derived from IK in one of the registers left blank by B. It uses this key for
the very first transaction and erases the contents of the corresponding register.
Once this key used and erased from the client’s memory, B′ behaves identically
as B. Overall, one more key has been generated in the process. �	
Lemma 2. When A derives keys on the client side during the registers update,
it only memorizes newly derived keys in empty registers.

Proof. Indeed, let B be a forward-secure DUKPT algorithm that memorizes a
newly derived key in a non empty register during one transaction. We can triv-
ially build another forward-secure DUKPT algorithm B′ that generates strictly
more keys than B: B′ behaves identically as B, but instead of directly erasing
this particular register, it first uses the key stored in it and erases the register
contents once the transaction is over. Overall, one more key has been generated
in the process. �	
Lemma 3. When A derives keys on the client side during the registers update,
all previously empty registers are filled at the end of the process.

Proof. Let B be a forward-secure DUKPT algorithm that does not fill all empty
registers when deriving new keys during one transaction. We can trivially build
another forward-secure DUKPT algorithm B′ that generates strictly more keys
than B: B′ behaves identically as B, but instead fills one of the empty register
that B left blank with a new distinct key K (this is possible since we already
assumed that B possess some key content to derive from at this moment). Then,
during the next transaction, B′ will use K, erase it and finally continue as B′
in the previous transaction. Overall, one more key has been generated in the
process. �	
The direct corollary of the two last lemmas is that the update derives keys in
every empty register only.

Lemma 4. The transaction key chosen by A is always one of the keys at the
maximal available distance from IK (different from N + 1).

Proof. Let B be a forward-secure DUKPT algorithm that extracts a transaction
key TK from a register Ri containing a key at distance d < dmax from the IK,
where dmax denotes the maximal distance available among the R registers. From
previous lemmas we know that, after erasure of Ri, all empty registers must be
filled with keys derived from TK. We can trivially build another forward-secure
DUKPT algorithm B′ that generates strictly more keys than B: B′ behaves iden-
tically as B, but instead does one more transaction. First B′ extracts a trans-
action key TK+ among the set of registers containing keys located at distance
dmax from IK. We denote by R+ this register. Then, the update simply consists
in erasing R+. For the next iteration, B′ extracts the transaction key TK from
Ri and performs the update exactly as B. The only difference for B′ is that R+

will be updated as well, because it is now empty. The update is done with TK,
located at distance d < dmax: we make (dmax − d) calls to F to perform the
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derivation, so that R+ finally contains a key at distance dmax. Thus, at this
point, B′ generated one more key (i.e. TK+) than B, while reaching the same
distance table situation (since R+ has distance dmax for both B and B′). �	
We showed than an optimal algorithm A must fulfill several properties stated
in the previous lemmas. Namely, the initialization phase must fill all the R
client’s registers. Then, for each transaction, the client must use (and erase) one
of the keys stored with the maximal distance from IK and derive exclusively
from it distinct keys that will be stored in each and every empty register only.
This already almost completely specifies what is an optimal algorithm. The
only freedom remaining concerns which key is picked when several have the
same maximal distance from IK and this has absolutely no incidence on the
maximum number T of keys one can generate. Thus, all algorithms verifying the
lemmas are equivalent and optimal. Since our proposal O-DUKPT does fulfill
those conditions, we can conclude that we reach the optimal value of T :

T =
(

R + N

N

)
− 1 =

(
R + N

R

)
− 1.

4 Discussions

Knowing the maximum number of computations N on the server is a good guar-
antee of minimal performance (note that the maximal number of computations
on the client side is equivalent for both algorithms: R− 1 for DUKPT and R for
O-DUKPT.). However, one could also estimate the average number of compu-
tations and for this we need to know the relative amount of keys at distance i
from the IK. Let A(i) represent the number of keys at distance i. Of course, we
have T =

∑N
i=1 A(i). The more keys we have at a large distance, the bigger will

be the average number of computations per key on the server side. The average
number of computations on the server side is

CS =

(
N∑

i=1

i.A(i)

)
/ T

and on the client side it is

CC =

(
N∑

i=1

A(i)

)
/ T = 1.

In the case of O-DUKPT, we have

A(i) =
R∑

j=1

t(i, j) =
R∑

j=1

(
i + R +−j − 1

R− j

)
=
(

R + i− 1
i

)

and for classical DUKPT, we have A(i) =
(
21
i

)
, with i ≤ 10.
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Table 4. Performance comparison between DUKPT (parameters R = 21/N = 10) and
O-DUKPT (for parameters R = 21/N = 7, R = 13/N = 10 and R = 17/N = 8)

DUKPT O-DUKPT O-DUKPT O-DUKPT

(R = 21, N = 10) (R = 21, N = 7) (R = 13, N = 10) (R = 17, N = 8)

T 1048575 1184039 1144065 1081574

A(1)/T 2−15.6 2−15.8 2−16.4 2−16.0

A(2)/T 2−12.3 2−12.3 2−13.6 2−12.8

A(3)/T 2−9.6 2−9.4 2−11.3 2−10.1

A(4)/T 2−7.4 2−6.8 2−9.3 2−7.8

A(5)/T 2−5.7 2−4.5 2−7.5 2−5.7

A(6)/T 2−4.3 2−2.4 2−5.9 2−3.9

A(7)/T 2−3.2 2−0.4 2−4.5 2−2.1

A(8)/T 2−2.4 2−3.2 2−0.6

A(9)/T 2−1.8 2−2.0

A(10)/T 2−1.6 2−0.8

CS 8.65 6.68 9.28 7.56

As a comparison with classical DUKPT, if we use the same amount of registers
R = 21 for O-DUKPT, we only need to do at maximum N = 7 computations
to handle an equivalent number of keys:

(
21+7
21

) − 1 = 1184039. If we allow
the same amount of maximum computations N = 10 for O-DUKPT, then we
only need to maintain R = 13 key registers to handle an equivalent number of
keys:

(
13+10

13

) − 1 = 1144065. The Table 4 gives the numerical application for
Ai, CS and CC . Thus, the performance improvement is twofold: for T and R
fixed, not only O-DUKPT has a lower maximum number of computations on
server side, but the average number of computations is also lower. Finally, we
give an example for which O-DUKPT provides better results in regards to every
performance aspects (R = 17 and N = 8 gives T = 1081574 and CS = 7.56).

Variants. We proved in a previous section the optimality of our algorithm. How-
ever, one may derive variants concerning its implementation and most specifically
concerning how the client communicates the identity of the key to the server and
how the server processes its corresponding key derivation.

Our O-DUKPT implementation proposed requires the client to send a string
st of R integers in [1, . . . , N ]. This could be coded on log2((N − 1)R) bits. The
algorithm is simple to understand and implement, but it is not optimal in terms
of message size since T < (N − 1)R. For example, classical DUKPT requires
to send a 21-bit counter, while O-DUKPT (with parameters R = 17, N = 8)
requires 48 bits.

One can think of several variants if message size is an issue in practice. For
example, a very easy way to lower the message size is to leverage the memory
available at the server side. For example, instead of sending the D table before
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processing the transaction, the client could simply send the transaction counter
(thus coded on log2(T ) bits, the smallest possible message size). The server
would have to recover the corresponding table D from the transaction counter
received. This could be done very simply by a table lookup. This table, filled
during initialization of the system, would require T.log2((N − 1)R) bits (roughly
5MB for O-DUKPT with parameters R = 17 and N = 8).
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Appendix A: How to Instantiate F in Practice?

In ANSI X9.24, the DUKPT implementation described is intended to derive 112-
bit TDES keys [12] (128-bit keys with 8 bits of parity checks). The F function
is therefore itself based on TDES. A 128-bit incoming key K (the first input) is
divided into two 64-bit parts KL and KR, and the new key K ′ = K ′L||K ′R is
derived with

K ′L = TDESKL(C ⊕KR)⊕KR

K ′R = TDESKL(C′ ⊕ C ⊕KR)⊕KR

where C is a known value depending on the counter (the second input), and C′ is
a fixed constant. The parity bits of K ′L and K ′R are then appropriately adjusted.

As F function, we advice to use commonly deployed MAC algorithms such
as CBC-MAC [2] or HMAC [11,1] with the incoming key as MAC key and
transaction related input as MAC message input.
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Abstract. We study security amplification for commitment schemes
and improve the efficiency of black-box security amplification in the com-
putational setting, where the security holds against PPT active adver-
saries. We show that ω(log s) black-box calls to a weak bit-commitment
scheme with constant security is sufficient to construct a commitment
scheme with standard negligible security, where s denotes the security
parameter and ω(log s) denotes any super-logarithmic function of s. Fur-
thermore, the resulting scheme is a string commitment scheme that
can commit to O(log s)-bit strings. This improves on previous work of
Damg̊ard et al. [DKS99] and Halevi and Rabin [HR08], whose transfor-
mations require ω(log2 s) black-box calls to commit a single bit.

As a byproduct of our analysis, we also improve the efficiency of se-
curity amplification for message authentication codes, digital signatures,
and pseudorandom functions studied in [DIJK09]. This is from an im-
provement of the “Chernoff-type Theorems” of dynamic weakly-verifiable
puzzles of [DIJK09].

1 Introduction

1.1 Security Amplification for Commitment Schemes

Security amplification for weak cryptographic primitives is a basic question that
has been studied since the seminal work of Yao [Yao82]. This question has been
extensively studied in recent years for a variety of primitives in various settings.
To name a few, amplification has been studied for encryption schemes [DNR04,
HR05], commitment schemes [DKS99, Wul07, HR08], oblivious transfer [DKS99,
Wul07], message authentication codes (MACs), digital signatures, and pseudo-
random functions (PRFs) [DIJK09]. Some of these works consider information-
theoretic security (e.g., [DKS99]), and others consider computational security. The
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various security properties of primitives present different interactive settings, for
example, commitment schemes are more interactive than encryption schemes, and
the chosen-message-attack for MACs introduces a different type of interaction.
Proving amplification results tend to be more challenging in an interactive and
computational setting.

In this paper, we continue the study of security amplification for commitment
schemes, which was previously studied in [DKS99, Wul07, HR08]. We focus on
black-box security amplification in the computational setting, where the security
holds against probabilistic polynomial time (PPT) active adversaries. Namely,
the starting point is a (weak) bit-commitment scheme Com0 that is p-hiding in
the sense that no PPT adversarial receiver, who may deviate from the prescribed
protocol arbitrarily, can guess the committed bit correctly with probability bet-
ter than (1 + p)/2, and q-binding in the sense that no PPT adversarial sender
can open in two ways with probability better than q, and the goal is to transform
Com0 to a secure commitment scheme Com that makes black-box calls to Com0

and achieves negligible security for both properties.
Previous works focus on feasibility results. Namely, for what values of p and q is

the security amplification achievable. In the information-theoretic setting (i.e., the
security holds for unbounded adversaries), Damg̊ard, Kilian and Salvail [DKS99]
showed that a black-box transformation is possible if and only if p + q ≤ 1 −
1/poly(s), where s is the security parameter. Halevi and Rabin [HR08] analyzed
the transformation of [DKS99] in the computational setting and proved that a
black-box transformation is possible whenever p+ q ≤ 1−1/polylog(s). Recently
and independent of our work, Holenstein and Schoenebeck [HS10] improved the
result to optimal. They showed that in the computational setting, black-box se-
curity amplification is achievable if and only if p+ q ≤ 1− 1/poly(s).

However, the existing transformations are not very efficient. To measure the ef-
ficiency, let us consider the number of black-box calls to Com0 that Com makes
when p and q are constants with p + q < 1. Note that the number of black-box
calls affects not only the communication complexity, but also the round complex-
ity of the resulting protocol, because in the computational setting, each black-
box call needs to be done sequentially.1 All existing solutions requires ω(log2 s)
black-box calls to securely commit a single bit. At a high level, the reason is that
they amplify the hiding and binding property separately. Amplifying each prop-
erty from constant to negligible seems to require ω(log s) black-box calls, which is
the case of the existing constructions and results in ω(log2 s) black-box calls in to-
tal. On the other hand, the existing constructions give bit commitment schemes,
but there are applications that require string commitment schemes. Since it re-
quires ω(log s) black-box calls to amplify the security anyway, perhaps we can ob-
tain a string commitment scheme instead of just committing to a single bit, which

1 In general, the commit stage of can consist of multiple rounds. If the black-box calls
are done in parallel, one can show by modifying the counter example of Bellare, Im-
pagliazzo, and Naor [BIN97] for interactive arguments that the security may not be
amplified at all.
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also improves efficiency in terms of the rate, i.e., the number of black-box calls per
committed bit. These motivate us to ask the following question.

Main question: How many black-box calls does it require to amplify a
(weak) bit commitment scheme with constant security to one with negli-
gible security? What is the length of the string that the resulting Com can
commit to, and what is the achievable rate?

Our Results. We give a transformation that amplify a (weak) bit commitment
schemewithconstantsecuritytoaO(logs)-bit stringcommitmentschemewithneg-
ligible security using only ω(log s) black-box calls, whereO(log s) (resp., ω(log s))
denotes anyO(log s) (resp.,ω(log s)) function of the security parameter s. In terms
of rate, we achieveω(1) black-box calls per committed bit. A summary of our result
and existing results can be found in Figure 1.

Efficiency (constants p, q) Feasibility

Work Number of Length of Rate Applicable range
black-box calls committed string of parameters

[HR08] ω(log2 s) 1 ω(log2 s) p+ q < 1− 1/poly log(s)

[HS10] ω(log2 s) 1 ω(log2 s) p+ q < 1− 1/poly(s)

Ours ω(log s) O(log s) ω(1) p+ q < 1− 1/poly log(s)

Ours + [HS10] ω(log s) O(log s) ω(1) p+ q < 1− 1/poly(s)

Fig. 1. Summary of results on security amplification for commitment schemes in the
computational setting. Efficiency measures the cost of amplifying commitment schemes
from constant security to negligible security. Feasibility refers to the parameter range
that security amplification is possible.

To bypass the ω(log2 s) barrier of the previous transformations, we use error-
correcting codes and randomness extractors to amplify both hiding and binding
properties simultaneously. To analyze our construction, we model the security of
commitment schemes as (the hardness of) solving “two-phase” (interactive) puz-
zle systems, and study the hardness of solving at least r out of n puzzles. Our result
on puzzle systems also applies to the dynamic weakly-verifiable puzzle systems of
[DIJK09], and hence improves the efficiency of security amplification for MACs,
digital signatures, and PRFs.

Due to the space limit, we focus on presenting our results on security ampli-
fication of commitment schemes. We discuss our results of puzzle systems in the
following section, and defer the detailed definitions and proofs to the full version
of this paper.

1.2 Puzzle Systems and Security Amplification for Other Primitives

Informally, in a puzzle system, there is a puzzle generator generates a puzzle and
there is a solver trying to solve the puzzle. At a high level, puzzle systems provide
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a nice way to abstract the security property of cryptographic protocols – the hard-
ness of solving a puzzle models the hardness for an adversary to break the security.
Previously, Canetti, Halevi, and Steiner [CHS05] define weakly-verifierable puz-
zle systems to capture the CAPTCHA scenario, and Dodis, Impagliazzo, Jaiswal,
and Kabanets [DIJK09] generalized the model to dynamic weakly-verifiable puz-
zle systems to capture the security of MACs, digital signatures, and PRFs. In this
paper, we introduce two-phase puzzle systems, which also generalize the model of
[CHS05], to capture both hiding and binding properties of commitment schemes.

One natural way to achieve hardness/security amplification is via repetition.
Suppose solving a puzzle is δ-hard in the sense that no efficient solver S can suc-
cessfully solve a puzzle with probability higher than δ. If successfully solving dif-
ferent puzzles were independent events, then successfully solving n puzzles should
be δn-hard. However, since a solver can correlate his answers to different puzzles,
the events are not independent and the hardness bound may not hold. In the lit-
erature, there are various (parallel) repetition theorems for aforementioned puzzle
systems saying that the hardness bounds match that of independent events and/or
that the hardness is amplified in an exponential rate, which are useful to deduce
security amplification results [CHS05, IJK07, DIJK09, Jut10]. In general, hard-
ness amplification results for one puzzle systems do not imply the same results
for another puzzle systems. Furthermore, for general interactive protocols, which
can be viewed as “interactive puzzle systems,” there are counter examples (under
reasonable assumptions) showing that the hardness may not be amplified at all
under parallel repetition [BIN97, PW07].

Previous Results. For weakly-verifiable puzzle systems, Canetti, Halevi, and
Steiner [CHS05] prove a tight Direct Product Theorem, saying that solving n puz-
zles is δn-hard2 if solving a single puzzle is δ-hard, and Impagliazzo, Jaiswal, and
Kabanets [IJK07] prove a more general Chernoff-type Theorem, saying that solv-
ing at least (1.1) · δ ·n out of n puzzles is 2−Ω(δ·n)-hard if solving a single puzzle is
δ-hard. The bound of [IJK07] was recently improved by Jutla [Jut10] to nearly op-
timal. Dodis, Impagliazzo, Jaiswal, and Kabanets [DIJK09] extend the Chernoff-
type Theorem to dynamic weakly-verifiable puzzle systems, and use it to achieve
security amplification for MACs, digital signatures, and PRFs. However, the proof
techniques of [IJK07, DIJK09, Jut10] seem not applicable to the two-phase puzzle
systems.

To analyze their transformations for security amplification for commitment
schemes, Halevi and Rabin [HR08] prove a Hardness Degradation Theorem for
two-phase puzzle systems (without formally defining the model), saying that solv-
ing at least one out of n puzzles is (1− (1− δ)n)-hard if solving a single puzzle is
δ-hard (matching the bound for independent events).

Our Results. We show that the three types of hardness results (Direct Product,
Chernoff-type, Hardness Degradation) actually hold for the three aforementioned
puzzle systems (weakly-verifiable puzzles, dynamic weakly-verifiable puzzles, and

2 We omit the negligible slackness in this informal discussion.
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two-phase puzzles.) We establish a Full-Spectrum Amplification Theorem, which
essentially says that the hardness of solving at least r puzzles out of n puzzles
matches the bound of independent events if solving a single puzzle is δ-hard for
some constant δ. Note that such a bound is optimal, since a solver can always solve
each puzzle independently. A summary of our results and previous results can be
found in Figure 2.

Weakly Verifiable Dynamic Weakly Verifiable Two-Phase

Direct Product [CHS05] [DIJK09], Ours [HR08]

Chernoff-type [IJK07, Jut10], Ours [DIJK09], Ours Ours, [HS10]

Hardness Degradation [HR08] Ours∗ [HR08]

Full-Spectrum Ours, [HS10] Ours∗ Ours, [HS10]

Fig. 2. Summary of results on different types of puzzle systems. “Ours” means that
either we obtain new results or we improve bounds over previous ones. The work of
[HS10] and our work are independent works. (∗): Our hardness degradation and full-
spectrum results only hold for a variant of the dynamic weakly verifiable puzzle systems
(see the full version of this paper for details).

We prove the Full-Spectrum Amplification Theorem by a single reduction algo-
rithm that is applicable to all three puzzle systems. The reduction algorithm can
be viewed as a generalization of the reduction algorithm of Canetti, Halevi, and
Steiner [CHS05].

As a consequence, our improvement on the Chernoff-type Theorem for dynamic
weakly verifiable puzzle systems of Dodis et al. [DIJK09] implies improvement on
the efficiency of security amplification for MACs, digital signatures, and PRFs.

Historical Notes. The work of Holenstein and Schoenebeck [HS10] and our work
were done independently, but have significant overlap. We briefly compare the
results and make some historical notes as follows. For security amplification for
commitment schemes, both works improve the result of Halevi and Rabin [HR08],
but in complementary ways. Holenstein and Schoenebeck shows a feasibility result
saying that security amplification is possible if and only if p+q ≤ 1−1/poly(s). We
improve the efficiency of the transformation, saying that only ω(log s) black-box
calls is sufficient to amplify security from constant to negligible and the result-
ing commitment scheme can commit to a O(log s)-bit string. The constructions
in both work are very different. As shown in the figure 1, the two results can be
combined to obtain both improvements simultaneously.

For puzzle systems, Holenstein and Schoenebeck [HS10] present essentially the
same idea and reduction algorithm as in our work. However, they have a cleaner
way to deal with the parameters, and hence their result holds for every δ as op-
posed to constant δ in our result. Also, they consider more general “monotone
combining functions” in addition to the threshold functions considered in our work.
On the other hand, the application to efficiency improvement of security amplifi-
cation for MACs, digital signatures, and PRFs was pointed out by us.
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2 Preliminaries

All log’s are base 2. s is the security parameter, and ngl = ngl(s) denotes a negligi-
ble function of the security parameter, i.e. s− log(s). We use Un to denote uniform
distribution over n-bit strings. We identify {0, 1} with F2, the finite field of size
2. If x, y ∈ {0, 1}n are vectors in F

n
2 , then x⊕ y ∈ {0, 1}n denotes their sum, (i.e.

bit-wise xor) and x · y def=
∑

i xiyi ∈ {0, 1} denotes their inner product.
We review the facts we need about error-correcting codes. The lemma below

says that a short random linear code has good minimum distance with overwhelm-
ing probability. It can be proved by standard probabilistic methods, and we omit
the proof. The constants in the lemma are actually small.

Definition 1. The Hamming distance of two strings x and y is the number of
coordinates i such that xi �= yi. Let C : {0, 1}n → {0, 1}n′

be a code. The minimum
distance of C is the minimum Hamming distance over all parts of codewords C(x)
and C(y) such that x �= y.

Lemma 1. There exist universal constants d0, d1 such that the following holds. Let
k be a positive integer, and γ, δ ∈ [0, 1] be numbers such that γ > d0 · δ log(1/δ).
Let n be an integer such that n > d1 · k/δ. Let C : {0, 1}n → {0, 1}(1+γ)n be
a random linear code defined by C(m) = (m,Am), where A ∈ {0, 1}γn×n is a
random 0-1 matrix. Then C has minimum distance at least δ ·n with probability at
least 1− 2−k/2.

3 Definitions and Main Theorems

3.1 Commitment Schemes

In this section, we formally define commitment schemes and present our main the-
orem. We consider a standard model where the communication is over the classical
noiseless channel and the decommitment is non-interactive [Gol01, HR08].

Definition 2 (Commitment Scheme). A commitment scheme is an inter-
active protocol Com = (S,R) with the following properties:

1. Scheme Com consists of two stages: a commit stage and a reveal stage. In
both stages, the sender S and the receiver R receive a security parameter 1s

as common input.
2. At the beginning of the commit stage, sender S receives a private input v ∈
{0, 1}t, which denotes the string to which S is supposed to commit. The com-
mitment stage results in a joint output, which we call the commitment x =
output((S(v), R)(1s)), and a private output for S, which we call the decom-
mitment string d = outputS((S(v), R)(1s)). Without loss of generality, x can
be taken to be the full transcript of the interaction between S and R, and d to
be the private coin tosses of S.

3. In the reveal stage, sender S sends the pair (v, d), where d is the decommitment
string for string v. Receiver R accepts or rejects based on v, d, x.
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4. Both sender S and receiver R are efficient, i.e., both run in probabilistic poly-
nomial time in the security parameter s.

5. R will always accept with probability 1−ngl if both the sender S and the receiver
R follow their prescribed strategy. If R accepts with probability 1, we say Com
has perfect correctness.

6. When the commit string v is just a bit in {0, 1}, we callComabit-commitment
scheme. Otherwise, we call Com a t-bit string-commitment scheme.

Remark 1. The assumption of non-interactive reveal stage is essential in both our
work and the previous work [HR08]. This assumption can be made without loss of
generality as long as no additional property (e.g., if the sender wants to decommit
in a zero-knowledge manner) is required, because in the reveal stage, the sender
S can send his coin tosses to the receiver R, who can check the consistency and
simulate the protocol. On the other hand, the assumption of perfect correctness
can be relaxed to (1 − ngl)-correctness in both works.

We proceed to define the hiding and binding properties of commitment schemes.
To facilitate the presentation of our results and analysis, we are precise about the
adversary’s running time in the definition and define the binding property in terms
of binding games.

Definition 3 (p-hiding against time T ). A commitment scheme Com = (S,R)
is p-hiding against uniform time T if for every probabilistic time T cheating receiver
R∗, the distributions (viewR∗(S(Ut), R∗), Ut) and (viewR∗(S(Ut), R∗), U ′t) are p-
indistinguishable for time T , where U ′t is an i.i.d. copy of Ut. That is, for every
probabilistic time T distinguisher D,

|Pr[D(viewR∗(S(Ut), R∗), Ut) = 1]− Pr[D(viewR∗(S(Ut), R∗), U ′t) = 1]| ≤ p/2

We say Com is p-hiding if Com(1s) is p-hiding against time sc for every constant
c, and sufficiently large security parameter s.

We remark that the hiding property above is defined as the indistinguishability for
random values, which does not generally imply the standard semantic security for
the hiding property. Nevertheless, it is easy to transform a commitment scheme
Com with the above hiding property to one with standard semantic security – one
can use Com to commit to a random string r ∈R {0, 1}t, and use r as a one-time
pad to hide the actual string v that the sender wants to commit to.

Remark 2. For bit-commitment schemes, p-hiding is equivalent to saying that the
receiver can guess the committed bit with probability at most 1/2+p/2. Formally,
for every time T predictor P ,

Pr[P (viewR∗(S(U1), R∗)) = U1)] ≤ 1/2 + p/2.

Definition 4 (Binding Game). The binding game for a commitment scheme
Com = (S,R) is played between a honest receiverR, and (S∗, F ), a cheating sender
S∗ with a decommitment finder F . The game consists of two stages:



Efficient String-Commitment from Weak Bit-Commitment 275

1. In the commit stage, S∗ interacts with R to produce a view viewS∗(S∗, R).
2. In the decommitment finding stage, F gets the view viewS∗(S∗, R), and pro-

duces two decommitment strings (s, d) and (s′, d′).

(S∗, F ) succeeds if in the reveal stage,R accepts both decommitment strings (s, d)
and (s′, d′).

Definition 5 (q-binding against time T ). A commitment scheme Com =
(S,R) is q-binding against time T , if in the binding game, for every time T pair
(S∗, F ), the success probability of (S∗, F ) is at most q. We say Com is q-binding
if Com(1s) is q-binding against time sc for every constant c, and sufficiently large
security parameter s.

Definition 6 (security of commitment schemes). A commitment scheme
Com is (p, q)-secure (against time T ) if Com is p-hiding and q-binding (against
time T ). Com is secure if Com(1s) is (s−c, s−c)-secure for every constant c, and
sufficiently large security parameter s.

We proceed to state our main result on efficient security amplification for commit-
ment schemes. The following theorem says that we can securely commit aO(log s)-
bit string using only ω(log s) black-box call to a weak commitment scheme Com0

with constant hiding and binding properties.

Theorem 1. Let p, q ∈ (0, 1) be constants with p+ q < 1. Suppose there exists a
(p, q)-secure bit commitment scheme Com0. Then for every t(s) = O(log s), n(s) =
ω(t + log s) where s is the security parameter, there exists a secure t-bit string-
commitment scheme Com that makes only n black-box call to Com0.

4 Efficient Security Amplification for Commitment
Schemes

In this section, we present our result on efficient black-box security amplification
for commitment schemes in the computational setting, where the security holds
against PPT active adversaries. We start by reviewing the previous construction
of Halevi and Rabin [HR08], and then discuss its limitation and our improvement.
The construction in [HR08] uses the following two transformations, each of which
improves one property significantly without hurting the other property too much.

– Secret-sharing transformation. Let Com0 be a bit commitment scheme,
andn ∈ N be a parameter. The transformation gives a bit commitment scheme
Com = (S,R) as follows. To commit a bit b ∈ {0, 1} toR, S generates random
b1, b2, . . . bn ∈ {0, 1} such that

⊕
i∈[n] bi = b, i.e. a secret sharing of b, and then

uses Com0 to sequentially commit to each bi to R.
Intuitively, this transformation improves the hiding property, since an ad-

versarial R∗ needs to learn all bits b1, . . . , bn to recover b, but hurts the bind-
ing property, since an adversarial S∗ only needs to cheat on any single bit bi
to decommit in two ways. Indeed, Halevi and Rabin proved that if Com0 is
(p, q)-secure, then Com is (pn, 1− (1− q)n)-secure.3

3 We omit the negligible slackness in the informal discussion.
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– Repetition transformation. Let Com0 be a bit commitment scheme, and
n ∈ N be a parameter. The transformation gives a bit commitment scheme
Com = (S,R) as follows. To commit a bit b ∈ {0, 1} to R, S sequentially uses
Com0 n times to commit to the same bit b to R.

Intuitively, this transformation improves the binding property, since an
adversarial S∗ needs to cheat on all copies of Com0 to decommit in two ways,
but hurts the hiding property, since an adversarialR∗ can learn the bit b from
any copy of the commitments. Indeed, Halevi and Rabin proved that if Com0

is (p, q)-secure, then Com is (1− (1 − p)n, qn)-secure.

Halevi and Rabin showed that, as long as p and q satisfy p+ q ≤ 1−1/polylog(s),
then given a (p, q)-secure (weak) bit commitment scheme Com0, one can apply the
above two transformations alternately to obtain a secure bit commitment scheme
Com. To measure the efficiency, consider the case where both p and q are constants
with p+q < 1. Since improving either hiding or binding property from constant to
negligible requires ω(log s) invocations to Com0, and the above transformations
improve two properties separately, the construction of Halevi and Rabin requires
at least ω(log2 s) black-box calls to Com0.

Remark 3. Independent of our work, Holenstein and Schoenebeck [HS10] present
a different construction that improves the result of Halevi and Rabin in the fol-
lowing sense.For any (p, q)-secure bit commitment scheme Com0 with p + q ≤
1−1/poly(s), their construction gives a secure bit commitment scheme Com using
poly(s) black-box calls to Com0. Their construction uses Valiant’s monotone for-
mula for majority [Val84] to improve both properties. However, a closer inspection
shows that their construction is equivalent to applying the secret sharing trans-
formation and a variant of repetition transformation (with the same effect on the
parameters) alternately. Hence, in terms of the efficiency, their construction also
requires at least ω(log2 s) black-box calls to amplify a (p, q)-secure weak commit-
ment scheme with constant p and q to a secure one.

To bypass the ω(log2 s) barrier of the existing constructions, our main idea is to
use error-correcting codes and randomness extractors to amplify both hiding and
binding properties simultaneously. For intuition, we give an informal description
of our transformation first. Let us informally use Com0(b) to denote a commitment
of a bit b, and letC : {0, 1}n → {0, 1}n′

be an error-correcting code with minimum
distance at least δ · n′, and Ext : {0, 1}n× {0, 1}d→ {0, 1}t a strong randomness
extractor. Our transformation uses Com0, C and Ext to commit to a string v ∈
{0, 1}t as follows (recall that we obtain string commitment schemes as opposed to
bit commitment schemes of other existing constructions).

– Commit Stage: the sender S samples a message m ∈R {0, 1}n uni-
formly at random, and sequentially commits to each bit of the code-
word C(m) using Com0, which generates commitments Com0(C(m)) def=
(Com0(C(m)1), . . . ,Com0(C(m)n′ )). Then S samples a uniform seed z ∈R

{0, 1}d, and sends the seed z with v⊕Ext(m, z) to the receiverR. In sum, the
commitment is Com(v) = (Com0(C(m)), z, v ⊕ Ext(m, z)).
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– Reveal Stage: the sender S sends the value v, the messagem and reveals each
committed bit of C(m) to R, who checks consistency and accepts or rejects
accordingly.

Intuitively, the binding property is improved because for an adversarial sender S∗

to cheat, S∗ needs to decommit C(m) into two valid codewords. Since the code
C has good minimum distance, S∗ needs to successfully cheat on at least δ · n′
committed bits out of n′ commit bits. The q-binding property of Com0 says that,
for each committed bit, S∗ can cheat with probability at most q. Thus, in expec-
tation, S∗ can cheat on only q · n′ commit bits. If q < (0.9)δ, the Chernoff bound
suggests that S∗ should be able to cheat on at least δ · n′ commit bits with only
exponentially small probability in n′. On the other hand, the hiding property is im-
proved because after seeing the commitments of C(m), an adversarial receiverR∗

has only partial information aboutm by the p-hiding property of Com0. Thus, Ext
extracts the remaining (computational) entropy fromm, which is used to hide the
value v. Ideally, when both p and q are constants, we can set both n, n′ = ω(log s)
and commit to Ω(n)-bit string.

In sum, our efficient security amplification for commitment schemes consists
of three steps: given a (p, q)-secure bit commitment scheme Com0 with constants
p + q < 1, (1) we first apply the transformations of Halevi and Rabin to obtain
a (p′, q′)-secure bit commitment scheme Com1 with sufficiently small constants
p′, q′, which costs a constant number of black box calls, (2) we apply the above
construction to obtain a (s−c, s−c)-secureO(log s)-bit string commitment scheme
Com2, which costs O(log s) black box calls, and (3) we apply a string version of
the transformations of Halevi and Rabin [HR08] to obtain a secure O(log s)-bit
string commitment scheme Com3, which costs ω(1) black box calls. The number
of black-box calls multiply over steps, and hence the resulting Com3 uses ω(log s)
black-box calls to Com0.

We proceed to give a formal description of the above construction and its anal-
ysis in Section 4.1, and present a string version of the transformations of Halevi
and Rabin used in the third step in Section 4.2.

4.1 Efficient Security Amplification in the Known-Security Setting

In this section, we present a transformation that converts a (p, q)-secure bit com-
mitment scheme Com0 to a (s−c, s−c)-secure O(log s)-bit string commitment
scheme Com using O(log s) black-box calls to Com0, where c is an arbitrary con-
stant. Our transformation uses error-correcting codes and randomness extractors
to amplify both hiding and binding properties simultaneously. The transformation
requires to use a systematic code with good distance and the “Goldreich-Levin”
extractor. We will discuss the reason when we prove the security below. A formal
description of our transformation can be found in Figure 3.

We will show that if Com0 is a (p, q)-secure bit commitment scheme for small
constants p, q, then by setting n, �, t = O(log s), the resulting string commitment
scheme is (s−c, s−c)-secure for some constant c. Note that both parties in Com
run in time polynomial in n, �, t, and the running time of Com0, which is efficient.
Formally, we prove the following theorem.
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Transformation T (Com0, n, �, t):

– Inputs. A bit commitment scheme Com0, and parameters n, �, t ∈ N.
– Outputs. A t-bit string-commitment scheme Com = (S,R) defined as follows.
– Commit Stage. Let v ∈ {0, 1}t be the string to which S is committing to.

1. R samples a uniformly random matrix A← {0, 1}�×n, and sends A to S.

/* i.e., R selects a random systematic linear code C(m)
def
= (m,Am). */

2. S samples the following uniformly at random: a message m ← {0, 1}n and a
matrix Z ← {0, 1}t×n.

/* Z is a random seed for a (strong) randomness extractor Ext(m,Z)
def
=Zm.*/

3. S uses Com0 to commit to each bit of m and each bit of Am to R sequentially.
Let x = (x1, . . . , xn) and y = (y1, . . . , y�) denote the commitment of each bit
respectively.
/* i.e., S commits to each bit of the codeword C(m). */

4. S sends (Z, v ⊕ Zm) to R, where v ⊕ Zm is the bit-wise xor of v and Zm.
/* i.e., S uses Ext(m,Z) as a one-time pad to hide the commit string v. */

In sum, the commitment of v is (A,x,y, Z, v ⊕ Zm).
– Reveal Stage. S sends v and its coin tosses r to R, and R checks that v and r

are consistent with the honest sender’s algorithm.

Fig. 3. Our black-box transformation T (Com0, n, �, t)

Theorem 2. The following holds for all sufficiently small constants p, q ∈ (0, 1),
and k = O(log s): Suppose there exists a (p, q)-secure (weak) bit commit-
ment scheme Com0, then there exists a (2−k, 2−k)-secure t = Ω(k)-bit string-
commitment scheme Com that makes O(k) black-box calls to Com0. Specifically,
Com = T (Com0, n, �, t) for appropriate n, � = O(k), and t = Ω(k).

We formalize the aforementioned intuition to analyze the hiding and binding prop-
erties in the below subsections.

Analysis of the Binding Property. In this section, we analyze the binding
property of our transformation T (Com0, n, �, t). We first recall the intuition of
why the binding property is improved. Recall that in the construction, the sender
S is supposed to commit to each bit of a valid codeword C(m) = (m,Am) using
Com0, where C is a random linear code chosen by the receiver R. By Lemma 1,
C has good min-distance δ · n with overwhelming probability. For an adversarial
sender S∗ to cheat, S∗ needs to decommit the n + � commitments into two valid
codewords C(m1), C(m2), which means that S∗ needs to successfully cheat on at
least δ · n commitments out of n+ � commitments. Intuitively, suppose breaking
the binding property of each commitment were independent events with success
probability at most q, and if δ · n ≥ (1.1) · q · (n + �), then by Chernoff bounds,
the success probability of S∗ should be exponentially small in n.

Of course, the events are not independent since S∗ has chance to correlate his
strategy for different instances. However, breaking the binding property of sequen-
tially committed bits can be modeled as repetition of two-phase puzzle systems,
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and hence the above intuition can be formalized using the Full-Spectrum Amplifi-
cation Theorem (appeared in the full version of this paper), which says the success
probability of S∗ behaves the same as the case of independent events.

Formally, we prove the following lemma, which essentially says that when q is
sufficiently smaller than the min-distance of the code, the binding property is am-
plified in an exponential rate. We formulate the lemma in concrete parameters for
preciseness. For intuition, think of n, � = Θ(k), k = O(log s), T0 = poly(s), and
T = sω(1).

Lemma 2 (Binding). Let d0 be the universal constant in Lemma 1. There exist
universal constants c1 such that the following holds. For any q ∈ (0, 1), n, k, �, t, T0,
T ∈ N satisfying (i) d0 · (3q) · log(1/3q) < 1, (ii) 2c1 · k/q ≥ n ≥ c1 · k/q, (iii)
n > � ≥ d0 · (3q) · log(1/3q) · n, if a bit-commitment scheme Com0 = (S0, R0)
with runtime T0 is q-binding against time T , then Com = T (Com0, n, �, t) is 2−k-
binding against time T ′ = T/poly(2k, T0, t).

Analysis of the Hiding Property. In this section, we analyze the hiding prop-
erty of our transformation T (Com0, n, �, t). We first recall the intuitive entropy
argument of why the hiding property is improved. Recall that in the construc-
tion, the sender S samples a random n-bit message m, which contains n bits of
entropy. Then S commits to each bit of the codeword C(m) = (m,Am), each of
which leaks information aboutm. Intuitively, if we set the parameters so that there
are entropy left inm, S can use randomness extractor to extract a string Ext(x, Z)
that is (pseudo-)random from an adversarial receiver R∗’s point of view, and use
it as one-time-pad to hide the commit value v.

We argue that it is very hard for R∗ to predict the whole message m after he
sees the n+� commitments, and hence one can apply the Goldreich-Levin theorem
to extract pseudo-random bits. This is why our transformation requires to use the
Goldreich-Levin extractor. To argue that m is hard to predict from the commit-
ments (x,y), we first argue thatm is hard to predict from x. We can view predict-
ing n sequentially committed message bits ofm from the commitments x as n-fold
direct product of a two-phase puzzle system. By Direct Product Theorem of Halevi
and Rabin [HR08], the success probability of R∗ is at most ((1 + p)/2)n (up to a
negligible factor). Observing that y contains at most � bits of information about
m, the success probability ofR∗ to predictm from (x,y) is at most 2� ·((1+p)/2)n.
Hence, by the Goldreich-Levin theorem, we can extract Ω(log(2� · ((1 + p)/2)n))
pseudorandom bits.

Formally, we prove the following lemma, which essentially says that we can ex-
tractΩ(log(2� ·((1+p)/2)n)) pseudorandom bits. Again, we formulate the lemma
in concrete parameters for preciseness, and we use parameter α = 1−p for clarity.
For intuition, think of n, � = Θ(k), k = O(log s), T0 = poly(s), and T = sω(1).

Lemma 3 (Hiding). There exist universal constants c2 such that the following
holds. For every α ∈ (0, 1), n, k, �, t, T0, T ∈ N satisfying (i) 2c2 · k/α ≥ n ≥
c2 · k/α, (ii) �, t ≤ αn/12, if Com0 = (S0, R0) with runtime T0 is a (1 − α)-
hiding against time T , then Com = T (Com0, n, �, t) is 2−k-hiding against time
T ′ = T/poly(2k, T0).
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We leave the proofs of Lemma 2 and 3 in the full version of this paper.

Proof of Theorem 2. Theorem 2 follows by applying Lemma 2 and 3 with prop-
erly chosen parameters.

Proof. (of Theorem 2) We set the parameters n, k, � as follows: n =
max{ c1k

q , c2k
1−p} = Θ(k), � = d0(3q) log(3q) · n, and t = (1−p)n

12 = Ω(k), where
c1, c2, d0 are the constants in the Lemma 1, 2, and 3. The theorem follows directly
from Lemma 2 and 3.

4.2 Security Amplification for String Commitment Schemes

In this section, we generalize the transformations of Halevi and Rabin [HR08] to
the case of string commitment schemes, with the goal of amplifying the (s−c, s−c)-
secure string commitment scheme obtained from our transformation to achieve
negligible security. This is a simpler task, and can be done by applying a secret-
sharing transformation first and then a repetition transformation. A formal de-
scription of the transformations can be found in Figure 4.

Secret-sharing SS(Com0, u). Let Com0 be a t-bit string commitment scheme, and
u ∈ N be a parameter. The transformation gives a t-bit string commitment scheme
Com = (S,R) as follows. To commit a value v ∈ {0, 1}t to R, S generates random
v1, v2, . . . vn ∈ {0, 1}t such that v1 ⊕ v2 ⊕ · · · ⊕ vu = v, where ⊕ denotes the bit-wise
xor of vi’s (i.e. a secret sharing of v), and then uses Com0 to sequentially commit to
each vi to R.

Repetition R(Com0, u). Let Com0 be a t-bit string commitment scheme, and u ∈ N

be a parameter. The transformation gives a t-bit string commitment scheme Com =
(S,R) as follows. To commit a value v ∈ {0, 1}t to R, S sequentially uses Com0 u times
to commit to the same value v to R.

Fig. 4. Secret-sharing and repetition transformation for string commitment schemes

We proceed to analyze the binding and hiding properties of the resulting com-
mitment schemes of the two transformations. For the binding property, the anal-
ysis is essentially the same as in [HR08]: for repetition, it requires to break all u
commitments of Com0, and for secret-sharing, it requires to break only 1 out of
u commitments of Com0, which can be modeled as solving corresponding repeti-
tion of two-phase puzzles. The Direct Product Theorem and Hardness Degrada-
tion Theorem of Halevi and Rabin [HR08] (or our Full-Spectrum Amplification
Theorem) imply the following lemma.

Lemma 4 ([HR08]).Let Com0 be a t-bit string-commitment scheme, u = u(s) ≤
poly(s) a efficiently computable function, and q ∈ (0, 1) a constant. Suppose Com0

is q-binding, then R(Com0, u) is (qu + ngl)-binding, and SS(Com0, u) is (1− (1−
q)u + ngl)-binding.
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On the other hand, analyzing the hiding property is tricker. For the secret-sharing
transformation, we need a string version of XOR Lemma to show that the hiding
property is amplified. Maurer and Tessaro [MT09] proved a more general result
(Theorem 2 of [MT09]) in the context of system composition, which implies the
following lemma.

Lemma 5 ([MT09]).Let Com0 be a t-bit string-commitment scheme, andCom =
SS(Com0, u) with efficiently computable u = u(s) ≤ poly(s). If Com0 is p-hiding,
then Com is (pu + ngl)-binding.

We next show that repetition transformation preserves the (negligible) hiding
property. This is sufficient for our purpose since we will apply the secret-sharing
transformation to amplify the hiding property to negligible before applying the
repetition transformation.

Lemma 6. Let Com0 = (S0, R0) be a t-bit string-commitment scheme, andCom =
R(Com0, u) with efficiently computable u = u(s) ≤ poly(s). If Com0 is ngl-hiding,
so does Com.

We leave the proof in the full version of this paper.

4.3 Put Things Together

We are ready to present a formal description of our efficient security amplification
for commitment schemes (in Figure 5) and prove Theorem 1.

Final Construction.

– Inputs. A (p, q)-secure bit commitment scheme Com0 with p+ q < 1.
– Outputs. A secure t-bit string-commitment scheme Com with t = O(log s).

1. Apply the transformations of Halevi and Rabin alternately to obtain a (p′, q′)-
secure bit commitment scheme Com1 with sufficiently small constants p′, q′.

2. Apply our transformations T (Com1, n, �, t) to obtain a (s−c, s−c)-secure t-bit
string commitment scheme Com2, where n, � = O(log s), and c is some constant.

3. Let a be an arbitrary ω(1) function. Apply SS(Com2, a) to obtain a (ngl, a ·s−c +
ngl)-secure t-bit string commitment scheme Com3.

4. Apply R(Com3, a) to obtain a secure t-bit string commitment scheme Com.

Fig. 5. Efficient security amplification of commitment schemes

Proof (of Theorem 1). The fact that Com is a secure string commitment scheme
follows straightforwardly from Theorem 2 and Lemma 4, 5, 6. Observing the Com1

makes O(1) black-box calls to Com0, Com2 makes O(log s) black-box calls to
Com1, Com3 makes ω(1) black-box calls to Com2, and finally Com makes ω(1)
black-box calls to Com3, the total number of black-box calls that Com makes to
Com0 is ω(log s), as desired.
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Abstract. We show that for any elliptic curve E(Fqn), if an adversary
has access to a Static Diffie-Hellman Problem (Static DHP) oracle, then

by making O(q1−
1

n+1 ) Static DHP oracle queries during an initial learn-
ing phase, for fixed n > 1 and q →∞ the adversary can solve any further

instance of the Static DHP in heuristic time Õ(q1−
1

n+1 ). Our proposal
also solves the Delayed Target DHP as defined by Freeman, and naturally
extends to provide algorithms for solving the Delayed Target DLP, the
One-More DHP and One-More DLP, as studied by Koblitz and Menezes
in the context of Jacobians of hyperelliptic curves of small genus. We
also argue that for any group in which index calculus can be effectively
applied, the above problems have a natural relationship, and will always
be easier than the DLP. While practical only for very small n, our al-
gorithm reduces the security provided by the elliptic curves defined over
Fp2 and Fp4 proposed by Galbraith, Lin and Scott at EUROCRYPT
2009, should they be used in any protocol where a user can be made to
act as a proxy Static DHP oracle, or if used in protocols whose security
is related to any of the above problems.

1 Introduction

In recent years, there has been a steadily growing appreciation of the existence of
an apparent separation, in some cases, between the hardness of breaking discrete
logarithms in a particular group, and the hardness of solving in that group
certain problems to which the security of a cryptosystem is provably related.
This situation can arise when auxiliary information is provided to an attacker in
the form of limited access to a particular oracle, either within the game played
by the attacker in the security proof, or in practice when a user can be made to
act as a proxy oracle by virtue of the nature of the protocol itself.

For example, in 2004 Brown and Gallant studied the Static Diffie-Hellman
Problem (Static DHP), in which a party reuses the same Diffie-Hellman secret
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for multiple Diffie-Hellman key agreements [6]. The authors proved that if the
associated DLP for the static secret is hard, then so is the Static DHP. However,
their reduction naturally becomes an algorithm for solving the DLP if an attacker
has access to a Static DHP oracle. In the protocols [15,17] and [7] for instance,
a user can indeed be made to act as a proxy Static DHP oracle, thus rendering
such systems vulnerable to this attack. In the best case (from an attacker’s
perspective), one can compute a static Diffie-Hellman secret in a group of order
r with only O(r1/3) Static DHP oracle queries and O(r1/3) group operations [6].
For cryptographically interesting elliptic curves, i.e., those for which generic
attacks are the best known, this result is in stark contrast to the time required
to compute discrete logarithms, namely O(r1/2). So while solving the Static
DHP in this case may still be hard, it has lower complexity than the best DLP
algorithms.

Koblitz and Menezes have shown that several other problems exhibit a similar
apparant hardness separation1 from the DLP, in the context of Jacobians of hy-
perelliptic curves of small genus [38]; namely the Delayed Target DHP [18], the
Delayed Target DLP [38], the One-More DHP [3] and the One-More DLP [1,2].
For each of these problems, it is the use of oracle queries that creates these sepa-
rations. For instance, for the Delayed Target DHP, the Brown-Gallant algorithm
can be applied immediately, since the game played by the attacker gives him
initial access to a Static DHP oracle.

In 2006 Cheon rediscovered the Brown-Gallant algorithm when the requi-
site information is provided in the guise of the Strong Diffie-Hellman Problem
(Strong DHP) [8]. Cheon also extended the attack to utilise divisors of r + 1 as
well as of r−1, as with the Brown-Gallant algorithm; indeed both algorithms can
be regarded as instances of the well-known reduction from the DLP to the DHP
due to den Boer, Maurer, Wolf et al., (see [42] for a survey), but with restricted
access to a DHP oracle. Incidently, Cheon’s break of the Strong DHP does not in
itself reveal any weakness in the protocols that depend upon it, since reductions
given in security proofs until that time were in the wrong direction, i.e., they
showed that breaking the system enables one to solve the Strong DHP, but not
the other way around. Hence, if an algorithm that efficiently solves the Strong
DHP is found, then while all security proofs that assume its hardness would no
longer provide any security assurance, no actual break of the associated systems
would result. In the case of Boneh-Boyen signatures [4], which relies on the Strong
DHP in the above manner, Jao and Yoshida have given a reduction in the reverse
direction, thus strengthening the proof of security for these signatures, and at
the same time providing an attack on the scheme with complexity O(r2/5+ε),
if O(r1/5+ε) signature queries are permitted to be performed [32]. This result
suggests that if one can establish an equivalence between a given protocol and
a problem that exhibits an apparent hardness separation from the DLP, then
in some attack models the security assurances provided by these arguments will
likely be lower than that provided by the DLP.

1 We use the prefix apparent, since these separations exist only relative to the current
understanding of the respective problems, which could of course change.
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Similarly, for the RSA problem, in 2007 Joux, Naccache and Thomé showed
that with initial subexponential access to an e-th root oracle an attacker can later
compute the e-th root of any element with complexity lower than that required
to factor the modulus [36]. This algorithm was then adapted to solve the oracle-
assisted Static DHP in finite fields [34], with similar efficiency improvements,
demonstrating an apparent hardness separation in this case also.

It is therefore natural to ask whether initial access to a Static DHP oracle
can aid in solving later Static DHP instances faster than solving the DLP, in the
context of elliptic curves? As previously mentioned, in the best case the Brown-
Gallant-Cheon algorithm requires O(r1/3) oracle queries and group operations.
However, for elliptic curves defined over extension fields Fqn , we present an
algorithm which for fixed n > 1 and q → ∞ requires O(q1−

1
n+1 ) oracle queries

and has heuristic time complexity Õ(q1−
1

n+1 ). This should be compared with the
best known DLP algorithm for these curves which has complexity Õ(q2−2/n) [24],
hence our proposal approaches being a square-root faster than the DLP with
increasing n. Note that for n = 2 our complexity is the same as the best-case
Brown-Gallant-Cheon complexity, but applies to all elliptic curves over Fq2 and
not just those with appropriate divisors of r ± 1, while for n > 2 our result is
superior. We also present an heuristic subexponential oracle-assisted Static DHP
algorithm for elliptic curves over a special family of extension fields.

Our proposal also naturally extends to provide algorithms for solving the four
problems studied by Koblitz and Menezes in [38]. In this work it was found
that the relationships between the hardness of these problems do not appear to
behave as one might expect (cf. [39,40]). We correct a minor oversight in the
analysis and argue that in the context of any group in which index calculus is
effective, i.e., one in which index calculus provides the best known algorithm to
solve the given problems — which includes Jacobians of hyperelliptic curves and
elliptic curves over extension fields — the aforementioned problems do indeed
have natural relationships, and are always easier than the DLP (this statement
naturally only applies with respect to the state of the art in index calculus
algorithms). However a central conclusion of [38], namely that it is difficult to
assess what security assurances are provided by security proofs when the games
played are interactive or have complicated inputs, still holds.

Due to the fact that the implicit constant in the complexity of our algorithm
grows very quickly with n, it is practical only for small values of n, namely
n = 2, 3 or 4 (and whenever n is divisible by 2, 3 or 4). However, based on the
results of timing estimates arising from an implementation of the components
of the attack, the security provided by the elliptic curves defined over Fp2 and
Fp4 proposed by Galbraith, Lin and Scott at EUROCRYPT 2009, would be
significantly reduced, should these curves be used in any protocol where a user
can be made to act as a proxy Static DHP oracle, or if used in protocols whose
security is related to any of the problems studied in [38].

Independently of this work, Joux and Vitse [37] have proposed the same basic
algorithm as the one presented here for the oracle-assisted Static DHP, namely
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Heuristic Result 1. Although Joux and Vitse did not consider our factor base
reduction method that leads to Heuristic Result 2, their main idea improves
upon Gaudry’s relation finding technique — which is used in the present work
— enabling one to find relations for elliptic curves over degree five extension
fields, which is currently impractical with Gaudry’s method.

One goal of the present work was to assess the impact the algorithms pre-
sented herein had upon the oracle-assisted Static DHP on the Oakley Well-
known Groups 3 and 4, which form part of the IPSEC set of protocols [31]
(see §4 and §5), and which are defined over degree five extension fields in char-
acteristic two. Noting from our results how much easier it is to find relations in
characteristic two than for large prime characteristic, the author contacted the
authors of [37] in order to apply their idea to these curves. Using the results
of this paper and [37], we recently announced the experimental verification of
the feasibility of solving the oracle-assisted Static DHP on the 152-bit Group 3
curve [28] over F2155 , which has long been suspected of weakness, but had until
now resisted many attacks [49,25,22,44].

The sequel is organised as follows. In §2 we recall the Static DHP. In §3 we
motivate our main idea, present our basic algorithm, and analyse asymptotic
variants of it. Then in §4 we detail curves in the literature that are vulnerable
to our attack. In §5 we give a full account of our experimental implementation
at the 128-bit security level for extension degrees n = 2, 3, 4 and 5, over large
prime and characteristic two fields, assess their impact on the above curves and
report on the Oakley Group 3 curve. In §6 we present algorithms for three other
problems which arise in cryptographic protocols and analyse their impact, and
make some concluding remarks.

2 The Static Diffie-Hellman Problem

Let G be a cyclic group of prime order r, and let g be a fixed generator of G.
The classical Diffie-Hellman problem in G can be stated as follows [12]:

Problem 1. (DHP): Given g and random gx and gy, find gxy.

In Diffie-Hellman (DH) key agreement between two parties, Alice chooses a ran-
dom secret x ∈ Z/rZ and computes gx, while Bob chooses a random secret
y ∈ Z/rZ and computes gy, which are then exchanged. Upon receipt each party
computes the shared secret gxy by exponentiating the other party’s group ele-
ment by their own secret. A fundamental security requirement of DH key agree-
ment is that the DHP should be hard.

Should Alice for any reason repeatedly reuse the same secret, x = d say, then
the resulting set of DHP problem instances forms a tiny subset of all problem
instances featured in the DHP, and it is thus not a priori clear that these in-
stances should be hard, even if the DHP is hard. This problem is referred to as
the Static DHPd, which we state as follows:
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Problem 2. (Static DHPd): Given fixed g and gd, and random gy, find gdy.

Observe that this situation need not just arise as an efficiency measure during
multiple DH key agreements — Alice need only compute gd once and reuse
this value for multiple key agreements — but also arises in text-book El-Gamal
encryption [15], Ford-Kaliski key retrieval [17] and Chaum-Van Antwerpen’s
undeniable signatures [7]. As mentioned in §1, Brown and Gallant have shown
that if the associated DLP is hard, then so is the Static DHPd [6]. However,
in the above three protocols, one of the system entities acts as a Static DHPd

oracle, thus turning the Brown-Gallant reduction into an attack.
As in [6] we define an oracle for solving the Static DHPd as follows:

Definition 1. (Static DHPd Oracle). Let G be a cyclic group of prime order r,
written additively. For a fixed base element P ∈ G and a fixed element Q ∈ G

let d ∈ Z/rZ be such that Q = dP . Then a Static DHPd oracle (with respect to
G) computes the function δ : G→ G defined by:

δ(X) = dX.

Likewise a Static DHPd algorithm is said to be oracle-assisted if during an initial
learning phase, it can make a number of Static DHPd queries, after which, given
a previously unseen challenge element X , it outputs dX . We now consider how
to solve the oracle-assisted Static DHP when G = E(Fqn).

3 An Oracle-Assisted Static DHP Algorithm for E(Fqn)

In this section we motivate and present our algorithm for solving the oracle-
assisted Static DHPd in the present context.

The key observation in [36] is that if one is able to define a suitable ‘factor
base’ in the group under consideration, i.e., a relatively small subset of group
elements over which a non-negligible proportion of all group elements can be
‘factored’ via the group operation, then it is possible to solve the Static DHPd

with input an arbitrary group element, given knowledge of the action of the
Static DHPd oracle on the factor base elements alone. This follows from the
simple fact that if in an additively written group G we have R = P1 + · · ·+ Pn,
with Pi in some factor base F , then

δ(R) = dR = dP1 + · · ·+ dPn = δ(P1) + · · ·+ δ(Pn).

Note that if an arbitrary group element R is not expressible over the factor base,
then by adding a random element Q ∈ F (or any linear combination thereof) to
R and testing expressibility, one can produce an element R + Q which factors
over F , thus permitting the Static DHPd to be solved as before. Therefore a
good factor base over which a non-negligible proportion of elements may be
expressed, combined with randomisation, enables one to solve the Static DHPd

for arbitrary group elements.
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Observe that for the oracle-assisted Static DHPd, one does not ever need to
know d in order to compute the action of multiplication by d on an arbitrary
element of G, i.e., one can solve the Static DHPd without solving the DLP. This
is because implicit information is ‘leaked’ via the Static DHPd oracle queries
which enables one to solve the Static DHPd using the above observations, more
readily than one is able to solve the DLP, for which there is no such information.
This idea is central to both [34] and [38].

When G is the multiplicative group of a finite field, the problem of how best to
construct a factor base, and how to express arbitrary elements over such a factor
base is well studied [35,33,34]. For finite fields there exists a natural notion of size
for elements, or equivalently a norm function, given by either the absolute value
of an element for prime fields, or the degree of an element for extension fields,
or a combination of both depending on the algorithm being used to generate
multiplicative relations. A norm function imbues a notion of smoothness for a
group and those elements of small norm generate more group elements than
those elements of larger norm, hence the best choice for a factor base is those
elements of norm up to some bound.

In the context of elliptic curves over prime fields, there does not appear to
be a utilisable notion of norm that enables the selection of a factor base that
generates a higher proportion of group elements than any other, nor a means
by which to factor elements over one should one be chosen. It is precisely this
issue that has so far precluded the discovery of a successful native index calculus
algorithm for computing discrete logarithms on such curves2, which is why they
are so attractive from a security perspective.

For elliptic curves over extension fields, the story is very different. While the
‘Weil descent’ methodology [19,25,30] has proven successful for solving or weak-
ening the DLP in some cases, this involves mapping to a generally larger group,
which although possessing a natural factor base, does not allow the requisite
Static DHP oracle queries to be made on the preimages of the factor base ele-
ments, since in general such preimages will not exist. There does however exist
a notion of smoothness for such elliptic curves, as remarkably discovered by
Gaudry [24].

3.1 Gaudry’s Insight

Developing upon an intriguing idea due to Semaev [47], in 20043 Gaudry showed
how to define a useful factor base for E(Fqn), over which elements can be ‘fac-
tored’, or more properly, decomposed, which leads to an index calculus algorithm
for computing logarithms over these curves [24]. For fixed n > 1 and q → ∞,

2 There are of course attacks that apply to a very small minority of elliptic
curves [43,20,48,46,45], though these are well understood and are easily avoided,
or in the case of pairing-based cryptography, which relies on curves which are sus-
ceptible to [43,20], are employed.

3 Gaudry’s algorithm was initially posted to the IACR preprint server in 2004 (paper
number 2004/073), but was not published until 2009, in [24].
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the algorithm has heuristic complexity Õ(q2−
2
n ), which is much faster than the

Pollard rho complexity Õ(qn/2).
We begin by recalling Semaev’s Summation Polynomials [47].

Definition 2. For char(Fq) > 3 let E be an elliptic curve defined over Fqn

by the equation y2 = x3 + ax + b. The summation polynomials fn of E are
defined by the following recurrence, with initial values for n = 2 and 3 given by
f2(X1, X2) = X1 −X2, and

f3(X1, X2, X3) = (X1 −X2)2X2
3 − 2((X1 +X2)(X1X2 + a) + 2b)X3

+((X1X2 − a)2 − 4b(X1 +X2)),

and for n ≥ 4 and 1 ≤ k ≤ n− 3,

fn(X1, . . . , Xn) = ResX(fn−k(X1, . . . , Xn−k−1, X), fk+2(Xn−k, . . . , Xn, X)).

While this definition may appear rather mysterious, Semaev derived the above
formulae by insisting that fn satisfies the following property, which relates fn to
the addition law on E.

Theorem 1. (Semaev [47]). Let E be an elliptic curve over a field k, n ≥ 2 and
fn its n-th summation polynomial. Let x1, . . . , xn be n elements of an algebraic
closure k of k. Then fn(x1, . . . , xn) = 0 iff there exists an n-tuple (y1, . . . , yn) of
elements in k such that for all i, Pi = (xi, yi) is a point on E and

P1 + · · ·+ Pn = O.
One can therefore see immediately that fn provides an encoding for all sets of
n points on a given curve whose sum is the identity element. For an elliptic
curve E over a prime field Fp, Semaev proposed setting the factor base to be the
set be all points on E whose abscissa have magnitude less than p1/n. Then one
computes random multiples of some base point P , say Ri = riP , and attempts
to write each such Ri as a sum of n points in the factor base. To do this one
need only solve

fn+1(x1, . . . , xn, xRi) = 0. (1)

By symmetry, one heuristically expects this to be possible for a proportion 1/n!
of points Ri, and when O(p1/n) points that decompose have been found (the
approximate size of the factor base) one can obtain their logarithms with respect
to P via a sparse linear algebra elimination, which has complexity Õ(p2/n).
Finding the logarithm of an arbitrary group element is then easy. Therefore, if
finding small roots of (1) were possible, for fixed n ≥ 5 and p→∞ this algorithm
would be faster than Pollard rho.

Unfortunately, finding such small roots, at least for more than two vari-
ables [9], appears hard. Gaudry’s insight was to observe that for elliptic curves
over Fqn , if one uses a factor base consisting of points with abscissae in the base
field Fq, then assuming the field of definition of the curve is Fqn , the Weil re-
striction of scalars of equation (1) from Fqn to Fq forms an algebraic system of n
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equations in n indeterminates over Fq, which is nearly always zero-dimensional
and which can be solved via elimination theory [24]. Note that the above as-
sumption crucially also ensures that the factor base elements do not form a
subgroup. Using a ‘double large prime variation’ [26] this leads to a DLP algo-
rithm with complexity Õ(q2−

2
n ). We are now ready to present the basic version

of our algorithm, in which we detail how this Weil restriction approach works.

3.2 Basic Oracle-Assisted Static DHP Algorithm

Let E be an elliptic curve whose field of definition is Fqn . We define a factor
base F à la Gaudry [24] as follows:

F = {P = (x, y) ∈ E(Fqn) | x ∈ Fq}.
On heuristic grounds, one expects |F| ≈ q, see [24]. For each P ∈ F we make an
oracle call to the Static DHP oracle, to give δ(P ) = dP .

For an arbitrary point R ∈ E(Fqn), the goal is to find dR. We attempt write
R as a sum of n elements of F , i.e.,

R = P1 + · · ·+ Pn.

By symmetry, one heuristically expects the proportion of elements expressible
in such a way to be approximately 1/n!. To perform this decomposition one uses
Semaev’s summation polynomial fn+1, and attempts to solve

fn+1(x1, . . . , xn, xR) = 0 ∈ Fqn . (2)

Note that the expression on the left of equation (2) involves the defining co-
efficients of the curve E, and the abscissa xR, all of which are in Fqn . Fix a
polynomial basis {1, t, . . . , tn−1} for the extension Fqn/Fq. Then each one of the
n coefficients of powers of t must be zero. Since each of the n abscissae xi are in
Fq, equation (2) defines a variety with n equations in n indeterminates over Fq,
which one solves via a Grobner basis computation, see §3.3.

If there is a solution (x1, . . . , xn) to the system (2), then one needs to compute
all 2n possible combinations ±P1 ± · · · ± Pn for the corresponding ordinates in
order to find the correct combination which sums to R. Then the solution to the
Static DHP for R is immediate:

δ(R) = dR = dP1 + · · ·+ dPn,

where all the terms on the right hand side are already known, due to the oracle
queries on F .

As already discussed, if a solution does not exist, then one adds to R a random
element Q ∈ F (or any linear combination thereof) and attempts to decompose
this point once again. One expects this to succeed after approximately n! at-
tempts. When it does we have the following equation:

R+Q = P1 + · · ·+ Pn,
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which implies that

δ(R) = dR = dP1 + · · ·+ dPn − dQ,
where again all the terms on the right hand side are already known. Hence our
Static DHPd instance is solved.

3.3 Discussion

Our first observation is that the above algorithm and this discussion of it are
entirely heuristic; however we believe that the algorithm and its complexity can
be made completely rigorous using the results of Diem [10,11], should one choose
to do so, see §3.4.

Our second observation — which is fundamental to the complexity of the
algorithm — is that in contrast to the DLP, there is no linear algebra elimination,
since only a single relation is sought. So once the initial oracle querying phase
is complete, the complexity of the algorithm depends only on the problem of
computing one relation. We therefore analyse this cost now.

For n ≥ 3, Semaev’s summation polynomials {fn} are symmetric and are of
degree 2n−2 in each variable. Hence equation (2) is of degree 2n−1 each variable.
In order to simplify the system greatly, it pays to express fn+1 in terms of the
elementary symmetric functions e1, . . . , en in the variables x1, . . . , xn. We then
have a system of n equations in the n indeterminates e1, . . . , en each of which
again has degree bounded by 2n−1 in each variable. In order to solve this system,
we perform a Gröbner basis computation.

In practice our experiments (see §5) showed that the Gröbner basis w.r.t the
lexicographic ordering always satisfies the so-called shape lemma [27,41], i.e., it
is of the following form:

e1 − g1(en), e2 − g2(en), . . . , en−1 − gn−1(en), gn(en), (3)

where gi(en) is a univariate polynomial in en for each i. In general the degree of
the univariate polynomial in en that we obtain will be 2n(n−1) and indeed in our
experiments this is borne out. The complexity of Faugère’s algorithm F4 [16] to
compute this basis is therefore at least

Õ(Poly(2n(n−1))).

Since this is doubly exponential in n, this makes the algorithm practical only
for very small values of n. However for fixed n and q →∞, this is polynomial in
log q.

To find whether or not the system has roots e1, . . . , en ∈ Fq, one extracts the
linear factors of the univariate polynomial gn(en) using a gcd computation with
eq

n−en followed by Cantor-Zassenhaus and then substitutes each Fq root en into
gi(en) to find en−1, . . . , e1. For each such vector of Fq roots (e1, . . . , en) one tests
whether the polynomial

p(x) = xn − e1xn−1 + e2x
n−2 − · · · − (−1)nen (4)
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splits over Fq. If it does then these roots are the abscissae of points in E(Fq),
and there exists a linear combination

ε1P1 + · · ·+ εnPn (5)

with εi ∈ {−1, 1} which sums to R. This step is also polynomial in log q.
On average one expects to have to perform n! such decompositions in order to

find a relation. Therefore the complexity of the our basic Static DHP algorithm
for fixed n > 1 and q → ∞ is polynomial in log q. This gives the following
heuristic result.

Heuristic Result 1. For any elliptic curve E(Fqn), by making O(q) queries
to a Static DHPd oracle during an initial learning phase, for fixed n > 1 and
q →∞, an adversary can solve any further instance of the Static DHPd in time
Poly(log q).

Note that prior to the learning phase, the adversary needs to construct the factor
base by testing whether a given abscissa x ∈ Fq gives a point lying on E or not.
We incorporate this computation into the learning phase, since it has the same
complexity of Õ(q). It is of course possible to balance the cost of the learning
and relation-finding phases, which we now consider.

3.4 Balancing the Setup and Relation-Finding Costs

To balance the cost of the oracle querying phase and the relation finding phase,
one needs to reduce the size of the factor base by some proportion. To this end,
Let |F| = qα, with 0 < α ≤ 1. Then given the decomposition of a random point
R ∈ E as a sum of points whose abscissa are in Fq, the probability that a single
abscissa is in F is qα−1. Assuming these events are independent, the probability
that all n abscissae are in F is qn(α−1). Hence in order to obtain one relation,
one expects to have to perform 1/qn(α−1) = qn(1−α) successful decompositions.

Asymptotically for fixed n > 1 and q → ∞ one can regard the cost of a
decomposition as unital (modulo some log factors) and hence to balance the two
stages α must satisfy:

qα = qn(1−α),

and so α = n/(n + 1) = 1 − 1
n+1 . This gives the following heuristic result as

stated in the abstract.

Heuristic Result 2. For any elliptic curve E(Fqn), by making O(q1−
1

n+1 )
queries to a Static DHPd oracle during an initial learning phase, for fixed n > 1
and q →∞, an adversary can solve any further instance of the Static DHPd in
time Õ(q1−

1
n+1 ).

Observe that there is no possibility (nor necessity) for considering so-called large
primes, i.e., those with absicissa in Fq but not lying in F , since there is no linear
algebra elimination step on the single relation. If we compare the above com-
plexity to that obtained by Gaudry for the DLP, namely Õ(q2−

2
n ), which uses a
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double large-prime variant, we see that our algorithm for solving the Static DHP
approaches being a square root faster for increasing n. Intuitively this difference
in complexity arises from there not being a linear algebra step in the solution of
the Static DHPd.

We note that Diem has given a rigorous algorithm that is essentially equivalent
to Gaudry’s DLP algorithm above [10], which for fixed n ≥ 2 solves the DLP
on any elliptic curve over Fqn in proven expected time q2−2/n(log q)O(1). We
believe his treatment can be adapted mutatis mutandis to transform the above
two heuristic results into theorems, though since it is not the primary focus of
this paper, we have not verified this here.

Observe that in practice the limiting factor is not the decompositions, but
the oracle queries, since these would typically be performed on a single server,
whereas the former can be easily distributed. One can therefore reduce the num-
ber of such queries below the above threshold, at the expense of needing to
perform more decompositions. Such a trade-off is easily optimised, based on the
amount of computing power available, but will nevertheless require an exponen-
tial number of oracle queries, for fixed n and q →∞. We now consider how and
when the number of oracle queries may be made subexponential in the size of
the group.

3.5 Subexponential Oracle-Assisted Static DHP Algorithm

Diem has also proven the following remarkable result [11]. For n → ∞ and
assuming n = O(

√
log q), the DLP over any elliptic curve E(Fqn) can be solved

in expected time qO(1) = eO(log (qn)2/3). Thus for a family of finite fields, any
elliptic curve DLP can be solved using a native subexponential index calculus
algorithm.

While Diem is not precise in his analysis of the exponents in the complexity of
the constituent parts of the algorithm, it is clear that since for the oracle-assisted
Static DHPd there is no linear algebra step, one expects a similar improvement
over the DLP algorithm in this context to the fixed n case, i.e., nearly square
root, and that this also can be rigorously proven. This therefore provides an
oracle-assisted Static DHPd algorithm that requires a subexponential number of
oracle queries. We leave it as an open problem to find the precise complexity of
Diem’s algorithm, and the resulting complexity of our algorithm in this context.

4 Potentially Vulnerable Curves

At EUROCRYPT 2009, Galbraith, Lin and Scott proposed the use of special
elliptic curves over Fp2 and Fp4 [21], which possess efficiently computable ho-
momorphisms that permit a particularly efficient version of Gallant-Lambert-
Vanstone point multiplciation method [23]. As well as the single bit speed-up of
Pollard rho available on these curves, both the GHS attack [25] and Gaudry’s
attack [24] are considered, and appropriate recommendations are made in light
of these. In particular, for curves over Fp2 , neither of these attacks is faster than
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Pollard rho, and so these curves were believed to attain the desired security level.
For curves over Fp4 , in light of the latter attack the authors recommend that
primes of length 80 bits should be used to achieve 128-bit security, rather than
of length 64 bits, although it is stated that this is a very conservative choice,
since Gaudry’s algorithm requires expensive computations, and so potentially
smaller primes could be used. Similarly Hankerson, Karabina and Menezes have
considered the GLS point multiplication method over binary fields of the form
Fq2 [29].

Prior to our attack, the only potential weakness of cryptographically inter-
esting curves over Fp2 would be due to the Brown-Gallant-Cheon attack. In
the best case (from an adversary’s perspective), should the group order ±1 be
divisible by an integer of size O(p2/3), then the Static DHPd secret d can be
computed in time Õ(p2/3). Such a condition can be easily avoided should this
attack be a concern. For the curves considered in [29], the Weil descent method
is analysed and it is shown that the proportion of susceptible curves is negligible
and can be provably avoided with a feasible computation. However, regardless
of the divisibility properties of the group order ±1, the balanced oracle-assisted
Static DHPd algorithm from §3.4 achieves a complexity of Õ(p2/3) (and similarly
for the binary curves). Assuming that point decompositions over the factor base
can be computed efficiently, this attack therefore poses a real threat.

For curves over Fp4 , our attack has complexity Õ(p4/5), which is much faster
than Gaudry’s attack on the DLP, which has complexity Õ(p3/2). Again assum-
ing that point decompositions can be performed efficiently, curves over degree 4
extensions are also vulnerable.

Also of interest are the legacy curves which until recently formed part of
the Oakley Key Determination Protocol, a part of IPSEC. These are the ‘Well
Known Groups’ 3 and 4 [31] which are elliptic curves defined over the fields F2155

and F2185 , and which have been the target of numerous attempted attacks via
the Weil descent method [49,25,22,44], since their inception.

5 Experimental Results

We implementated our oracle-assisted Static DHPd algorithm using the compu-
tational algebra system MAGMA [5] (V2.16-5), which was run on an Intel Xeon
running at 3.16GHz with 32G of memory. We considered two sets of curves. The
first set consisted of four randomly selected curves of prime order, each of which
were 256 bits in length, for fields of the form Fp2 , Fp3 , Fp4 and Fp5 , see §5.1 and
§5.2. These curves were chosen in order to measure how vulnerable the curves
proposed in [21] are to our algorithm. We also provide estimates for solving the
DLP on these curves via Pollard rho and the state of the art index calculus
algorithms. The second set consisted of four randomly selected curves of order
4 · p with p of bitlength 256 over the binary fields F2ln , for n = 2, 3, 4 and 5, so
that ln was as close to 256 as possible. The reason for implementing the attack
on these curves was twofold: firstly to assess the security of the curves proposed
in [29]; and secondly to compare the efficiency of the attack with the prime
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field case, with a view to assessing the difficulty of breaking the oracle-assisted
Static DHPd on the Oakley curves, which we report in §5.3.

While our implementations in MAGMA are clearly sub-optimal, our goal was
to provide a proof-of-concept implementation, and to give a reasonable indica-
tion of what can be achieved in practice. Indeed our results provide an upper
bound for the time required to solve the oracle-assisted Static DHPd in each
case. With a tailored and optimised low-level implementation our attack times
can be improved significantly, as exemplified by the result reported in [28].

5.1 Large Prime Characteristic

For each of n = 2, 3, 4 and 5 we used curves of the form

E(Fpn) : y2 = x3 + ax+ b,

for a and b randomly chosen elements of Fpn , such that #E(Fpn) was a prime
of bitlength 256.

For n = 2, 3 and 4 we computed the symmetrised summation polynomials
f3, f4 and f5 respectively, and all experiments were completed within two hours.
For the computation of f6, we surprisingly ran out of memory, and so instead
independently symmetrised the two f4 polynomials used in the resultant com-
putation to reduce the number of terms, and substituted xR into this partially
symmmetrised version of f6. One can extract the elementary symmetric polyno-
mials from these two independent sets by appropriately recombining them. How-
ever the resulting Gröbner basis computation eventually exhausted the available
memory and so the n = 5 experiments were unable to be completed. Without
an accurate idea of how long the Gröbner basis computation might take were we
to have sufficient available memory, we consider finding relations for curves over
these fields to be impractical given our resources at the present time. Note how-
ever that for prime base fields, we know of no proposals in the literature for the
use of degree five extension fields for elliptic curve cryptography. We therefore
include results only for n = 2, 3 and 4, in Table 1.

The column titles in the table denote respectively: the degree of the extension
field; the size of the prime base field in bits; the number of monomials in fn+1;
the number of monomials in fn+1 once symmetrised; the average time required
to perform a Gröbner basis computation; and the average time required to find
the points that sum to the point being decomposed respectively.

Table 1. Data for testing and decomposing points for elliptic curves over extension
fields. Times are in seconds.

n log p #fn+1 # symfn+1 T (GB) T (roots)

2 128 13 5 0.001 0.009
3 85.3 439 43 0.029 0.027
4 64 54777 1100 5363 3.68
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As per §3.3 the last of these consists of the extraction of the degree one fac-
tors of the polynomial gn(en) and then substitutes the roots into the remaining
polynomials gi(en) in equation (3). This is followed by the desymmetrisation fac-
torisation (equation (4)) and then computation of the correct linear combination
of factor base elements that sum to P (equation (5)).

As one can see, symmetrisation reduces the size of the system greatly. Note
that the only setup cost comes from computing fn+1 and its symmetrisation; the
final two columns give the average decomposition cost per input point, which
for n = 2 and 3 is over 1000 inputs includes both those that do decompose over
F , as well as those that do not.

For n = 4, since the computation is significantly more costly, we report the
time for one input point only; note that the input system for the Gröbner basis
computation always has the same form but with different coefficients, and hence
one expects this part of the computation to be very consistent. With regards
to the root finding time, the three stages described above took 3.68s, 0.00s and
0.04s respectively, and so the dominant cost is the initial factorisation, which
is necessary whether an input point decomposes or not. Hence we estimate the
average time over uniformly chosen input points to be ≈ 3.68+ 0.04/4! ≈ 3.68s,
since a point decomposes with probability 1/4!.

5.2 Upper Bounds on Attack Times

From the data in Table 1 and the time required to compute a scalar multipli-
cation, one can compute an upper bound on the time required to carry out the
attack in §3.4. Setting |F| = pα, a minimising α balances the two stages of the
attack, namely the oracle calls, and the relation finding stage. We ignore the
cost of constructing the factor base since this only involves a handful of field
operations and a Legendre symbol computation. A more careful version of the
argument of §3.4 leads to the following equation:

pn(1−α) · n! · (T (GB) + T (roots)) = pα · T (scalar),

where T (scalar) denotes the average cost of a scalar multiplication. With our
implementation the latter costs approximately 0.008s, 0.011s and 0.012s on the
curves defined over Fp2 , Fp3 and Fp4 respectively.

Table 2 details the resulting values of alpha for n = 2, 3, 4 and the corre-
sponding estimated attack times. As stated in §3.4, these estimates assume that
each set of qα factor base elements has the same probability of expressing the
decomposition a random decomposable point as a linear sum of elements from
that set.

The Pollard rho attack times have been estimated as
√
π · 2256/2 group opera-

tions, where the cost of a group operation has been estimated using the T (scalar)
times above, assuming use of the double and add algorithm. We have incorpo-
rated the speed-up afforded by performing random walks on equivalence classes
of points [14,51] when the set of points {±ψi(P ) : 0 ≤ i < m} for a given point
P are deemed to be equivalent, where ψ is the homomorphism from [21]. This
results in the three curves have virtually identical security.
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Table 2. Attack time estimates for our implementation. Times are in seconds.

n α Attack time Pollard rho

2 0.6701 (2/3) 279.8 2111.3

3 0.7645 (3/4) 259.7 2111.4

4 0.8730 (4/5) 250.5 2111.4

Pollard rho however is not the fastest asymptotic DLP algorithm in this con-
text. In the basic index calculus one finds O(p) relations with a linear algebra cost
of O(p2). Assuming the decomposition cost is sufficiently small, one can reduce
the size of the factor base to balance the cost of the two stages, to O(p2− 2

n+1 ),
which is originally due to Harley. In addition, one can also use single and dou-
ble large prime variations [50,26], resulting in complexities of O(p2− 2

n+1/2 ) and
O(p2− 2

n ) respectively.
Our implementation allows one to give upper bounds for the attack times

for each of these approaches, and consequently provides information regarding
what size of p should be chosen to provide 128 bit security, for each n, subject
to our attack implementation. This security level is the length of time required
to compute 2128 basic group operations. Note that in the double large prime
variation, for the most interesting case n = 4 the number of relations required
is O(p3/2). With our decomposition implementation, the time for the relation
generation stage is p3/2 · 4! · 5366.68s ≈ 2113.0s, which is comparable to Pollard
rho. Hence for this security level, p of length 64 bits would appear to be secure.
However, in an optimised implementation the decomposition time could clearly
be improved, necessitating increasing p accordingly to compensate. Furthermore,
since the relation generation stage is more costly than the linear algebra, to
balance the two stages of the algorithm one would need to increase the factor
base size marginally. These intricacies mean that although our implementation
provides an upper bound for the attack time, how to select an appropriate size p
to ensure security for elliptic curves over these extension fields remains an open
issue.

5.3 Characteristic Two

For each of n = 2, 3, 4 and 5 we used curves of the form

E(F2ln) : y2 + xy = x3 + b, (6)

for b a randomly chosen element of F2ln , such that #E(F2ln) was a four times a
prime of bitlength 256. Note that (6) is the form of the Oakley curves [31]. Also
note that the base fields F2l in each case are not necessarily of prime extension
degree over F2. Since our focus was to compare the effect of characteristic for
fields of a given size with particular small extension degrees, we disregard any
possible DLP weaknesses due to Weil descent for these example curves.

For these curves the summation polynomials are surprisingly simple, and very
sparse, making their computation easy, in contrast to the prime base field case.
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Observe that as a result the size of the fi and their symmetrisation is much smaller
than before, faciliting a much faster Gröbner basis computation for n = 4.

As was the case for prime base fields, for n = 5 we also had insufficient
memory to complete a decomposition using Gaudry’s method. However, as stated
in §1 and announced in [28], by attempting to write a random point on the
curve as a sum of four factor base elements as in [37] one is able to find such a
decomposition, at the expense of reducing the probability from 1/5! to 1/(2l ·
4!). As with Gaudry’s decomposition method, this method is much faster in
characteristic two than in large prime characteristic. Thus for the Oakley Group
3 curve, the oracle-assisted Static DHPd problem is practical. Whether this can
be extended to the Oakley Group 4 curve is worthy of further investigation.

For n = 2, 3 and 4 the time for a scalar multiplication is 0.014s. Table 3 details
the results using Gaudry’s decomposition technique, with the final row detailing
the results from the announcement [28] on the Oakley Group 3 curve.

Table 3. Data for testing and decomposing points for elliptic curves over binary ex-
tension fields and attack time estimates. Times are in seconds.

n l #fn+1 # symfn+1 Time GB Time roots α Attack time

2 129 5 3 0.000 0.008 0.6672 (2/3) 280.9

3 86 24 6 0.005 0.008 0.7572 (3/4) 260.0

4 65 729 39 247 0.88 0.8575 (4/5) 250.6

5 52 148300 638 N/A N/A N/A N/A

5 31 729 39 0.021 (total time) 30/31 230.0

Note that despite the α values being smaller for binary fields — due to faster
decompositions — the attack times are slightly higher, because the fields are 258
and 260 bits in size, as opposed to 256 bits. Due to the scalar multiplication time
being very similar to the prime field case (with our implementation), the Pollard
rho times are similar and hence the curves in [29] should also be considered
vulnerable to our attack.

6 Other Cryptographically Relevant Assumptions

Our proposed oracle-assisted Static DHPd algorithm also solves the Delayed Tar-
get DHP, as defined by Freeman [18], which may be phrased as follows: A solver
is given initial access to a Static DHPd oracle for the element Q = dP ∈ G;
when the Static DHPd oracle is removed, the solver is given a random element
X ∈ G and must solve the DHP for input (Q,X), namely, output dX .

Koblitz and Menezes studied this problem in the context of Jacobians of hy-
perelliptic curves of small genus [38], along with several other problems, includ-
ing the Delayed Target DLP, the One-More DHP and the One-More DLP. In
the Delayed Target DLP, rather than given access to a Static DHPd oracle, the
solver is given access to a discrete logarithm oracle but the problem is otherwise
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identical to the Delayed Target DHP. In the One-More DHP and One-More DLP
the solver is supplied with a challenge oracle that outputs random elements of
the group, as well as a Static DHPd oracle or a DLP oracle respectively. This
time however the solver chooses an integer t and must solve t instances of the
Static DHPd or the DLP, but is only allowed to use the Static DHPd or the DLP
oracle at most t− 1 times.

The One-More DHP was first formulated in [3] while the One-More DLP was
first formulated in [1] and [2]. Using Jacobians of hyperelliptic curves of small
genus as example groups, Koblitz and Menezes argue that the constituents of
each of the two pairs of similar problems — the Delayed Target DHP and De-
layed Target DLP, and the One-More DHP and One-More DLP — should each
be incomparable to one another. In particular there very probably does not exist
a reduction between the Delayed Target DHP and the Delayed Target DLP, since
in some groups the former appears to be easier than the latter, while in others
the converse is true, and similarly for the One-More problems. However, their
analysis of the Delayed Target DHP and One-More DHP contains a minor over-
sight, since it only considers the impact of the Brown-Gallant-Cheon algorithm
and not the index calculus methods they used for studying the corresponding
DLP versions. Doing so for Jacobians of hyperelliptic curves of genus ≥ 3, one
sees that the complexities for the Delayed Target problems are identical, and
similarly for the One-More problem variants.

Indeed, taking the basic Static DHPd algorithm presented in §3.2, one sees
that by changing the Static DHPd oracle calls to DLP oracle calls, one obtains
an otherwise unaltered algorithm and hence the complexities of the two delayed
target problems are the same. Similarly any variation in factor base size will
give rise to algorithms of the same complexity; the oracle calls themselves are
not relevant to the structure of the algorithm, so it should be clear that for any
group in which one can identify and use a factor base to generate relations, the
Delayed Target DHP and Delayed Target DLP will have identical complexities,
whenever this method provides the most effective means to solve both problems.
Exceptions to this condition arise, for instance, when a faster algorithm applies
to just one problem, as with the Brown-Gallant-Cheon algorithm for the Delayed
Target DHP, for an elliptic curve over Fp whose group order ±1 is divisible by
an integer of size ≈ p1/3.

For the One-More problem variants, in our context we have the following
simple algorithm. We choose the same factor base as in §3.2, and perform |F|
Static DHPd oracle calls on its elements. Then for each of the |F|+ 1 challenge
elements, we solve the appropriate problem exactly as before. The only difference
between the one-more and the delayed target problems is that for the one-more
variants we must solve |F|+ 1 such challenges, and not just one. If we perform
the analysis of §3.4 once more we find that the optimal size of F is given by
α = 1, exactly as in §4.5 of [38]. As before either oracle can be applied to a
given relation and so the One-More DHP and One-More DLP have the same
complexity, and again will do so in any group for which this method provides the
most effective means to solve both problems.
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Interestingly this means that even when one can not find a natural reduction
between two problems, the presence of an effective index calculus ensures that in
some circumstances the problems have the same complexity. Furthermore the two
pairs of problems considered above (as well as oracle-assisted Static DHPd) are
easier to solve than the DLP, for elliptic curves over extension fields, Jacobians
of hyperelliptic curves of genus ≥ 3, and indeed for any group for which index
calculus provides the best means to solve each of these problems.
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Fig. 1. Relations between the proposed models and example results. A “public” inter-
face indicates that reduction B can see all queries of adversary A, whereas “set $” de-
notes that B can re-assign random values to R, and Rρ denotes a weakly-programmable
RO. The “example: xxx” labels indicate a scheme xxx that enjoys a proof of security
in the model above it, but for which we show black-box separation results implying the
difficulty of proving its security in models to the right.

often viewed as the idealization of a cryptographic hash function, and security
proofs in the ROM provide heuristic support for actual security when real hash
functions are used instead. The ROM enables proofs of security for a multitude
of important schemes because reductions may exploit various properties of a RO
that can be realized only to a limited extent (if at all) in the standard model.

One such property is programmability. Loosely speaking, a random oracle can
be “implemented” by dynamically selecting return values, and so long as the
distribution of outputs is correct (uniform on the specified range), any method
for selecting these values is permitted. The technique of programming RO output
values in a security reduction seems crucial in countless positive results, e.g. [1,
3–5,7]. However, no standard model function is known to provide the completely
arbitrary and adaptive programmability provided by a RO, making it natural
to wonder: which (if any) of these results could have been established without
exploiting the full programmability of the ROM?

In this paper we formally explore models in which programmability of the
random oracle in reductions is restricted. For this, we propose a form of limited
programmability that is between full and no programmability. We provide two
different but, surprisingly, equivalent characterizations of this limited form of
programmability. We use them to show that: (1) one can prove (using a new
variant of the Hsiao-Reyzin two-oracle separation technique [11]) the inabil-
ity to give a programming-limited black-box reduction for the FDH signature
scheme [1] and (2) that Shoup’s trapdoor-permutation-based key encapsulation
scheme (TDP-KEM) [15] is provably CCA secure given only limited programma-
bility, while no black-box reduction works when programming is forbidden. For
a diagrammatic summary of our main results, see Figure 1.

Modeling (Non-)Programmability in Reductions. Nielsen [13] was the
first to formally investigate the role of programmability in security results. He
showed that there is no way to realize a natural cryptographic functionality
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(non-committing non-interactive encryption) in a ROM-like model that strictly
prohibits programming of RO outputs. His result, and a more recent one by
Wee [17] in the context of zero-knowledge, apply to simulation-based notions
of security, and in particular restrict the ability of the simulator in these to
program the RO. Unfortunately, these approaches are not sufficient to reason
about the majority of ROM security proofs, which exploit programmability in
security reductions, for example to embed an instance of a hard problem into
RO outputs.

Our work considers this complementary direction, by investigating security
reductions in models equipped with random oracles, but in which the ability
of the reduction to program the random oracle is constrained. Along the lines
of Nielsen’s approach [13] in the simulation-based setting, our first contribu-
tion is to formalize non-programming reductions in the black-box (BB) setting
(i.e. reductions only have oracle access to adversaries) by making the reduction
work relative to an external RO (to which the adversary also has access).1 We
then propose a natural relaxation called randomly-programming reductions. In-
tuitively, the external random oracle is realized by a message-indexed table of
randomly-chosen points, and while the reduction does not get to pick the range
points, it can pick the order they appear in the table. As we shall see, this lim-
itation on programming realizes an interesting middle point between full and
no programming, and one that captures the provability of important schemes.
Finally, a fully-programming reduction allows the reduction to arbitrarily choose
output range values, as in traditional ROM proofs.

The Weakly-Programmable Random Oracle Model. A limitation of the
above reduction-centric approach is the restriction to BB reductions. Indeed, as
observed by Nielsen [13], providing models in which one can argue about limita-
tions on programmability in non-BB reductions is challenging. This is because,
in a non-BB setting, the reduction directly simulates all oracle queries made by
an adversary and so there is no way to force the reduction to work relative to
an external RO. We resolve this difficulty for the case of randomly-programming
reductions by proposing a new variant of the ROM.

A Weakly-Programmable Random Oracle (WPRO) works as follows to form
an idealized model of a hash function. Let ρ be an arbitrary function (whose
range matches that of the hash function). For each distinct input x, the WPRO
chooses its output to be ρ(r) for a random coin-string r. Additionally, the WPRO
allows only adversaries to obtain the coins r used to generate any output. Then
in the WPRO model (WPROM) all parties have access to a WPRO that uses
a regular, one-way function ρ. The requirements on ρ ensure that the WPROM
limits programmability. For example, attempting to program an output of the
oracle to a given value y requires computing ρ−1(y) and refuting one-wayness;
regularity implies that the output of ρ is uniform, as usually required for random
oracles.

1 The reduction does see the queries made by the adversary and the oracle’s replies.
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The WPRO model appears to have little to do with randomly-programming
reductions. Nevertheless, we prove that the two characterizations of limited
programming are strongly related. Namely, Proposition 3 states that any BB
reduction in the WPROM implies a randomly-programming reduction, while
Proposition 4 states that any randomly-programming reduction implies a reduc-
tion in the WPROM. Besides being convenient in proving results (the WPROM
typically being easier to work with), the equivalence provides some evidence
that this formulation of limited programmability is well-founded. The results
discussed next point to this as well.

Implications for Practical Schemes. We put these new tools to use by
reconsidering security proofs of various important schemes. These schemes can
be viewed as initial and interesting case studies; we expect that one can use
our techniques readily to analyze the need for programmability in many further
schemes.

A first example is FDH signatures. The only known security proofs [1, 7]
use reductions that embed a challenge range point for the underlying trapdoor
permutation in one (or more) of the hash query responses. It may be, though,
that a clever reduction exists that does not rely on programming. We give formal
evidence that this is unlikely: Theorem 4 states that no BB reduction exists
that shows FDH is secure in the WPROM, even for a very weak definition of
unforgeability. Even if the intuition is clear that programming plays a significant
role in existing reductions, we emphasize that proving the inability to give a
reduction here is technically involved. Previous negative results use inherently
asymptotic methods to achieve black-box separations in the uniform setting.
Instead, our proof of Theorem 4 makes use of a novel approach that is non-
asymptotic in nature. This result is complementary to existing negative results
about FDH, e.g. [8]. (See the full version for additional discussion.)

A more involved example is Shoup’s TDP-KEM [15]. Shoup’s (IND-CCA) se-
curity proof does not involve embedding a challenge in the output of the RO, but
rather programming is used to ensure consistency between simulation of a de-
capsulation oracle and simulation of the RO. We show the following surprising
result: Shoup’s TDP-KEM is CCA-secure in the WPROM (Theorem 2), but no
non-programming BB reduction exists for showing CCA-security (Theorem 3).
The negative result is even more complex than in the FDH case, involving several
interesting technical hurdles (e.g. dealing with the fact that reductions can rewind
adversaries, explicitly allowed in our non-programming reduction framework).

We also observe that OAEP [2] is an example of a scheme whose proof requires
no programming whatsoever. This is actually evident by inspection of the proof
given in [9]. We give the details in the full version, where all proofs omitted due
to space constraints can also be found.

Discussion. Note that proving security with limited or no programming (still)
only provides heuristic evidence for security. That said, it could be the case that
proofs in the WPROM or that use a non-programming reduction provide a better
heuristic than the ROM. While this would hold for any weakening of the ROM,
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we feel that programmability is a particularly interesting case due to its apparent
artificiality. Note, for example, that one can actually run a non-programming
RO reduction when a concrete hash function (e.g. SHA-256) is used to realize
the RO. This is not true for fully or randomly-programming reductions.

Further Related Work. Hofheinz and Kiltz [10] offer some insights on pro-
grammability from a completely different angle. Generalizing a technique due
to Waters [16], they built standard-model hash functions that provide a limited
form of programmability. Unfortunately, their hash functions are not sufficiently
programmable to admit the techniques used in security arguments for ROM
schemes like FDH and Fiat-Shamir. Nonetheless, their work indicates that a
better understanding of programmability could lead to more broadly applicable
standard-model solutions.

2 Reduction-Centric Models

In this section, we first formalize at an abstract level the general concept of a
black-box reduction in the random oracle model. Furthermore, we present two
variations of the black-box reduction notion where the reduction’s capabilities
in programming the random oracle are restricted.

2.1 Preliminaries

We begin by establishing notation and execution semantics for algorithms and
oracles.

Oracle Access to Adversaries. We model all algorithms (e.g. adversaries
and reductions) and ideal primitives (e.g. random oracles) as interactive Turing
machines (ITM). In particular these machines can be probabilistic and can keep
state. Each machine may have several communication tapes, which we usually
call interfaces, that connect different machines to each other. We write A(·) to
denote an ITM A with an interface that expects oracle (i.e. black-box) access to
some other ITM. A reduction B with oracle access to adversary A(·) (denoted
as BA

(·)
) is allowed to do the following:

At any time, B can start a copy of the algorithm A(·) on (chosen) random-
ness and input, where the random coins are those used to compute the first
output (or oracle query).
Once such a copy is started, B obtains each value output by A and must
provide both the corresponding answer and the random coins needed for
the execution of A to continue to its next output. (This includes queries to
the given oracles.)
At any point in time, B may halt the execution of the current copy of A.

Note that the model is general enough so that B can, for example, “rewind” the
adversary A to an arbitrary output by running a new copy of A with previously
given coins.
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We stress that if we write that B is given oracle access to AO for a particular
oracle O (as opposed to A(·)), then B does not get to answer A’s queries to O.
Queries are sent directly to, and answered directly by O itself. We write (for
example) A(·,O) when we wish to be explicit that queries to the first oracle are
controlled by B, and the second are not. Sometimes we will simply omit some of
the oracles which are controlled by B: the understanding is that any oracle which
is not explicitly given to A in our notation can be controlled by the reduction.

Finally, we write AOpub to mean the following: when A queries x to O, x is
forwarded to B, which can then perform some computations, call other oracles,
and only after this triggers delivery of O(x) to A. The answer is however given
by O directly (but visible to B) and there is no way for B to influence it directly.2

This construct will be useful in a number of contexts.

Security Properties. It is convenient to consider generic security properties
Π for cryptographic primitives defined in terms of games involving a candidate f
(called a Π-candidate) and an adversaryA (called a Π-adversary). In particular,
with each triple f ,A andΠ we associate an advantage AdvΠ

f (A), and f is said to
be Π-secure if AdvΠ

f (A) is small for all efficient adversaries A. It is convenient
to assume that the advantage satisfies the following linearity condition: if an
oracle O behaves as O1 with probability p and as O2 with probability 1 − p,
then AdvΠ

fO(AO) = p ·AdvΠ
fO1 (AO1)+(1−p) ·AdvΠ

fO2 (AO2) for every (oracle)
primitive f and all adversaries A. Despite there being a few advantage notions
that do not satisfy this property (e.g. distinguishing advantage with absolute
values), an equivalent notion satisfying this property can typically be given (e.g.
dispense with the absolute values).

2.2 Black-Box Reductions in the ROM

When we talk about black-box reductions, we mean fully black-box security re-
ductions as defined by Reingold et al. [14]. Those reductions are paramount
in cryptography, especially for random-oracle based schemes with practical effi-
ciency as a design goal.

We present in Definition 1 below our formalization of fully-black-box reduc-
tions in the ROM, as well as our two variants with limited and no programma-
bility of the random oracle, which we first introduce in detail.

Fully-Programming Reductions (FPRed). The first notion formalizes the
standard concept of black-box reductions in the ROM. As they support the
common strategy of programming the ROM without any restriction, we refer
to such reductions as fully-programming reductions.

Non-programming Reductions (NPRed). The first (stronger) new notion
that we introduce captures the fact that the reduction has no control at all
on the answers of random oracle queries. Namely, the queries are answered
by a random oracle which is chosen once, independently from the reduction

2 But the answer may be influenced through queries to related oracles.
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B and its input(s), and remains the same for every execution of an adver-
sary A initiated by B. While the reduction B can learn all of the RO-queries
issued by A, there is no way for B to influence their distribution. Intuitively,
this models the fact that the reduction can be run with an external random
oracle.

Randomly-Programming Reductions (RPRed). Our second variant only
allows the reduction B to program the RO with random instead of arbi-
trary values, and is hence somewhat between fully- and non-programming
reductions, To this end, we first introduce a randomly-programmable ran-
dom oracle (RPRO) which is an idealized object that exposes three inter-
faces: Reval , Rrand , Rprog (a conventional RO can be seen as having a single
interface to callers). If called via the evaluation interface Reval , it behaves
as a conventional random oracle mapping Dom → Rng . A second random
interface Rrand implements a random mapping {0, 1}∗ → Rng . Finally, the
programming interface Rprog takes X ∈ Dom and Y ∈ {0, 1}∗ as input, and
sets Reval(X) to be the same as Rrand (Y ).

As A’s queries to the evaluation interface of Reval are public, the reduc-
tion B is allowed, on query X by A, to perform a number of Rrand calls
followed by a suitable Rprog(X,Y ) invocation in order to let the output of
A’s query satisfy a certain property before the query is actually answered to
A. This allows a minimal amount of programmability, for instance a constant
number of output bits can be forced to take some input-dependent value.
We note that these interfaces allow to “reprogram” the random oracle. This
supports, among other things, the ability to rewind the adversary and run it
on “another”, partly consistent random oracle, but where the reduction does
not need to choose the actual values. Note that non-programming reductions
prevent such forking techniques.

In the following, let S = SR[f ] be a cryptographic scheme relying on a primitive
f and a random oracle R : Dom → Rng . Let Π and Π ′ be security properties
which can possibly be satisfied by S and f , respectively.

Definition 1 (FPRed, NPRed, RPRed). Let X ∈ {fully-programming,
non-programming, randomly-programming}. A (Π → Π ′, δ, t, qO, qA)-fully-BB
X ROM security reduction for S is an oracle machine B(·,·) with the property
that for all3 Π-adversaries A(·) and all Π ′-candidates f , if

AdvΠ
SR[f ](AR) > ε

for a random oracle R : Dom→ Rng and ε > 0, then

AdvΠ′
f (BO1,AO2 ) > δ(ε, q, �),

where q is the total number of queries A makes and � is the overall length of these
queries. Furthermore, B runs in time t, makes qO queries to the given oracle(s)
3 In particular, including those which are not efficiently implementable.
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O1 and runs qA instantiations of AO2 , where all three quantities are functions
of ε, q, and �. Moreover, when:

X = fully-programming, then O1 = f , O2 = (·), and qO = qF

X = non-programming, then O1 = (f,R), O2 = Rpub, and qO = (qF , qR)
X = randomly-programming, then O1 = (f,R′eval , R

′
prog , R

′
rand),

O2 = R′eval,pub, and qO = (qF , qev, qpr, qra),

where R′ = (R′eval , R
′
prog , R

′
rand ) is a RPRO.

2.3 Black-Box Separations

This paper uses a novel approach in order to obtain black-box separations in
the concrete setting. The approach applies to all notions of reductions defined
in this paper, but we illustrate it in the context of FPRed reductions. In order
to disprove the existence of a fully-BB reduction within a certain class of re-
ductions, for every reduction B of interest, we have to prove the existence of a
Π ′-candidate f and an adversary A such that AdvΠ

SR[f ](AR) is large, but the

advantage AdvΠ′
f (Bf,A(·)

) is small. We will achieve this by first showing the
existence of a randomized Π ′-candidate F and an adversary AP with private
random coins P (i.e. not controllable by B) such that AdvΠ

SR[F ](Af,R
p ) is large

for all values p of the random coins P and for all (fixed) primitives f obtained
by fixing the coins of F , but AdvΠ′

F (BF,A(F,·)
P ) is small for all reductions B of

interest. Because of the linearity of the advantage measures, we have

AdvΠ′
F (BF,A(F,·)

P ) = Ep,f

[
AdvΠ′

f (Bf,A(f,·)
p )

]
,

where the expected value is taken over the choice of the private coins p and
the primitive f realized by F (with the corresponding probability distributions,
which may in the general case even be correlated). Therefore, for all reductions B

of interest, there must exist some particular f and some adversary A′(·) := A(f,·)
p

without private coins such that AdvΠ′
f (Bf,A′(·)

) ≤ AdvΠ′
F (BF,A(F,·)

P ) is small, too.
Hence, such a statement (for randomized primitives) also implies the inexistence
of a reduction working universally for all primitives: in particular, there is no
need to apply well-known classical asymptotic (and uniform) de-randomization
techniques based on the Borel-Cantelli lemma. To the best of our knowledge,
this approach is novel to this paper.

3 The Weakly Programmable ROM

In the previous section programmability (or the lack thereof) is captured by
considering a restricted set of reductions; from the point of view of the adversary
being employed by the reduction, nothing has changed. In this section we take an
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subroutine Rρ
hon(X):

if T[X ] �= ⊥ then ret T[X ]
r←$ Coins ; z ← ρ(r)
T[X ]← z ; R[X ]← r

ret T[X ]

subroutine Rρ
adv(X):

if T[X ] �= ⊥ then ret T[X ], R[X ]
r←$ Coins ; z ← ρ(r)
T[X ]← z ; R[X ]← r

ret T[X ], R[X ]

Fig. 2. The weakly-programmable random oracle ideal primitive Rρ for ρ : Coins →
Rng. Initially T[X] = ⊥ for all X.

alternative approach, modifying the random oracle itself rather than restricting
the reduction.

Consider a random oracle as a mapping from Dom to Rng , where Rng is
finite and non-empty. Since we model ideal primitives by stateful and proba-
bilistic interactive Turing machines we can imagine the random oracle as be-
ing implemented via so-called lazy sampling: whenever a new query X ∈ Dom
appears, the random oracle returns a random value z←$ Rng and stores the
pair (X, z) for further use. We now restrict the way the random oracle’s an-
swers z are determined. Namely, we parameterize the random oracle by a func-
tion ρ : Coins → Rng for a finite, non-empty set Coins. Each time the random
oracle receives a new queryX it picks r←$ Coins at random and returns z = ρ(r)
and stores X together with r.

Now, recall that an ideal primitive can have multiple interfaces. In what fol-
lows, we consider two: an honest interface for use by honest parties and protocols;
and an adversarial interface. Loosely, the latter will give the adversary an ability
to “validate” that the random oracle is behaving properly. Formally, we give the
following definition of a (ρ-restricted) weakly programmable random oracle.

Definition 2 (WPRO). For a function ρ : Coins → Rng the ideal primitive
Rρ = (Rρ

hon, R
ρ
adv) described in Figure 2 is called a ρ-WPRO (or simply WPRO

if ρ is implicitly clear).

Notice that the honest interface of this object returns the range point z associ-
ated with the queried input. The adversarial interface returns both that range
point and the random value r used to generate z.

At this point we have not imposed any restriction on ρ. For example, if ρ
is the identity function (and Rng = Coins) then the resulting ideal primitive is
equivalent to a normal random oracle. On the other end of the spectrum, if ρ is a
constant function then it is clear that Rρ would not model an ideal cryptographic
hash function. Thus we establish what it means for a function ρ to be good.

Definition 3 (Good ρ). A function ρ : Coins → Rng is called good for Rng
if and only if: (1) Coins is finite, (2) |Rng | divides |Coins| and (3) ρ is regular,
i.e. for all y ∈ Rng we have

|{r ∈ Coins : ρ(r) = y}| = |Coins|
|Rng | .
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Clearly any good ρ is such that, when evaluated on a uniformly chosen domain
point, one gets a uniform range point. (And conversely, if a uniform distribution
on the domain of ρ induces a uniform distribution on the range, ρ is good.) Said
another way, a random oracle R : Dom→ Rng and WPRO Rρ

hon (with matching
domain and range) are information-theoretically indistinguishable if and only if
ρ is good for Rng .

It is easy to see that various kinds of functions ρ will limit a reduction’s ability
to program. For the scenarios we consider, the crucial property of ρ that make the
reductions—the proof of security—fail, is one-wayness of ρ (but stated in the non-
asymptotic setting via an upper bound on an algorithm’s inversion probability).
For any function ρ and owf-adversaryA we define the owf advantage as

Advowf
ρ (A) = Pr [ ρ(r) = ρ(r′) : r←$ Coins ; r′←$A(ρ(r)) ]

where a owf-adversary A is a probabilistic algorithm that takes as input a point
y ∈ Rng and outputs a domain point x ∈ Coins.

One-wayness of ρ ensures non-programmability in the following sense: Con-
sider for example a security reduction like the traditional one for FDH. This
reduction receives a random image y under a trapdoor permutation and, at
some point, injects this value as the hash value in a black-box simulation for
an allegedly successful adversary. But since the adversary can access the Rρ

adv

interface, the reduction would also need to provide a preimage of y under ρ,
violating the one-wayness of ρ.

Reductions in the WPRO Model. One can straightforwardly define a WPRO
model (WPROM) by analogy to the ROM (all honest parties have access to Rhon,
adversarial parties have access to Radv), and the notion of a black-box reduction
naturally extends to this model. In particular, we consider a strong notion of
reduction that allows any good function ρ, regardless of whether ρ is efficiently
computable or not.

Definition 4 (WPROM Reduction). A (Π → Π ′, δ, t, qρ, qF , qA)-fully-BB
WPROM security reduction for S is an oracle machine B(·,·,·) with the prop-
erty that for all Π-adversaries A(·), all good functions ρ for Rng, and all Π ′-
candidates f , if

AdvΠ

SR
ρ
hon [f ]

(ARρ
adv ) > ε

for a ρ-WPRO Rρ = (Rρ
hon, R

ρ
adv) with range Rng and ε > 0, then

AdvΠ′
f (Bρ,f,A(·)

) > δ(ε, q, �),

where q is the total number of queries A makes and � is the overall length of
these queries. Furthermore, B runs in time t, makes qρ and qF queries to the
given ρ and f , respectively, and runs qA instantiations of A(·), where all three
quantities are functions of ε, q, and �.

Since the reduction notion quantifies over all good ρ, a reduction must work for
one-way ρ. Indeed, it must also work for a ρ chosen randomly from the set of
all functions Coins → Rng . In this way reductions must avoid making use of
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FDH-style programming: a reduction cannot inject a specific range point into
one of WPRO’s responses. As we will see in the next section, however, one can
take advantage of more limited programming techniques in the WPRO model.

Although all the WPROM reductions given in this paper are fully black-box as
per the definition above, we emphasize that the WPRO model is distinct from the
formulations in Section 2 in that one can give non-black-box reductions in it.

4 Relationships among Types of Reductions

Having specified our reduction settings, we now establish the relationships among
them. We begin by stating the intuitive implications: a non-programming BB
reduction implies a randomly programming one, which in turn implies a fully
programmable reduction. The straightforward proofs are omitted. Let S = Sf,R

be a scheme relying on a cryptographic primitive f and a random oracle R :
Dom→ Rng . LetΠ andΠ ′ be security properties which can possibly be satisfied
by S and f , respectively.

Proposition 1 (NPRed⇒ RPRed). If there exists a non-programming
(Π → Π ′, δ, t, qF , qR, qA)-fully-BB ROM security reduction for S, then there
exists a randomly-programming (Π → Π ′, δ, t, qF , qR, 0, 0, qA)-fully-BB ROM
security reduction for S.

Proposition 2 (RPRed ⇒ FPRed). If there exists randomly-programming
(Π → Π ′, δ, t, qF , qev, qpr, qra, qA)-fully-BB ROM security reduction for S, then
there exists a fully-programming (Π → Π ′, δ, t′, qF , qA)-fully-BB ROM security
reduction for S, where4 t′ = t+O(q log q) for q = q · qA + qev + qpr + qra.

Next we show that schemes are secure in the WPRO model via a black-box
reduction if and only if there is a randomly-programming reduction. Hence,
restricting the random oracle in the WPRO sense, and restricting the reduction’s
abilities to program a full-fledged random oracle, are equivalent in a black-box
sense. The first result, in particular, exploits the fact that a fully-BB reduction
in the WPROM must also work for a randomly chosen (regular) function ρ.

Proposition 3 (WPROM Red ⇒ RPRed). If a (Π → Π ′, δ, t, qρ, qF , qA)-
fully-BB WPROM security reduction for S exists, then a randomly-programming
(Π → Π ′, δ′, t′, qF , q · qA, q · qA, qρ + q · qA, qA)-fully-BB ROM security reduction
for S exists, where δ′ = δ − (qA·q+qρ)2

2|Dom| and t′ = t+O(q · �).

Proposition 4 (RPRed⇒WPROM Red). If there exists a randomly-
programming (Π → Π ′, δ, t, qF , qev, qpr, qra, qA)-fully-BB ROM security reduc-
tion for S, then a (Π → Π ′, δ, t′, qF , q′ρ, qA)-fully-BB WPROM security reduction
for S exists with t′ = t+O((q · qA · log(q · qA) · �) and q′ρ = q · qA + qev + qpr + qA.

4 The extra overhead O(q log q) is due to the simulation of the RPRO in the reduction.
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WPROs are not ROs, but WPROM and ROM are equivalent. Below
we will confirm the expected implication that being a WPRO is actually a weaker
requirement than being a full-fledged RO. Yet existentially WPROs and ROs are
equivalent, i.e. we can efficiently construct a RO out of a WPRO.

For these comparisons we adopt the indifferentiability framework of Maurer,
Renner and Holenstein [12] to reason about primitives being close to random
oracles. We denote by Advind-R

C,H,S(D) the advantage any distinguisher D has
in distinguishing between a construction C with component H , and an ideal
primitive “R” (with an intermediary simulator S). We denote by the superscripts
“RO” and “WPRO” in the advantage the fact that the ideal primitive “R” is a
random oracle or a WPRO.

First, we derive a WPRO that is not a RO, i.e. it is easily differentiable
from a random oracle. This serves to show that in general WPROs and ROs
are separated. Consider the composition CH

ρ (x) = ρ(H(x)) of a random oracle
H : Dom → Coins and a regular one-way function ρ : Coins → Rng . In this
case, any simulator S would have to invert ρ for a sound simulation.

Proposition 5 (WPRO �⇒ RO). For any function ρ that is good for Rng, for
the construction CH

ρ (x) = ρ(H(x)) there exists a simulator SWPRO
ρ such that

Advind-WPRO,ρ
Cρ,H,SWPRO(D) = 0

for any distinguisher D, but where there exists a distinguisher DRO such that for
any simulator S,

Advind-RO
Cρ,H,S(DRO) ≥ 1−Advowf

ρ (S).

Despite this generic separation, it is possible to build a (fully programmable)
random oracle out of a WPRO, essentially building RO outputs one bit at a
time. Specifically, for x ∈ {0, 1}∗ let x|i denote the ith bit of x. Given a function
H : {0, 1}∗ → {0, 1}� for some � > 1 we consider the construction CH : {0, 1}∗ →
{0, 1}m such that

CH(x) = H(x‖〈1〉)|1 ‖ H(x‖〈2〉)|1 ‖ · · · ‖ H(x‖〈m〉)|1,

where ‖ denotes concatenation of strings and 〈i〉 is the (suffix-free) binary en-
coding of an integer i. Note that the construction calls H altogether m times
to achieve output length m; one can improve the efficiency by outputting more
bits in each iteration at the cost of tightness in the reduction. Furthermore, due
to the suffix-freeness of 〈·〉 one can always decide if a given string is of the form
x‖〈i〉 for some i ∈ N.

Theorem 1 (WPROM⇔ ROM). For all good functions ρ, all integers τ >
0, and a WPRO Rρ = (Rρ

adv , R
ρ
hon) : {0, 1}∗ → {0, 1}� there exists a simulator

Sρ,τ such that for all distinguishers D issuing at most q queries to each oracle
we have

Advind-RO
C,Rρ,Sρ,τ

(D) ≤ q · 2−τ
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where the simulator Sρ,τ invokes R at most once on each query and has running
time O(τ · (Timeρ +TimeCoins)), where Timeρ and TimeCoins are the times needed
to compute ρ and to sample a random element from Coins, respectively.

5 Trapdoor-Permutation-Based Key-Encapsulation

5.1 TDP-KEM Security in the WPROM

A key-encapsulation mechanism (KEM) is a triple of algorithms denoted KEM =
(Key,Encap,Decap) that operate as follows. The probabilistic key-generation al-
gorithm returns a key-pair (pk, sk); we write (pk, sk)←$ Key. The (key) encap-
sulation algorithm Encap is a probabilistic algorithm that takes pk as input and
returns a key-ciphertext pair (K,C) where K ∈ K for some non-empty set K.
The (key) decapsulation algorithm takes as input a pair (sk, C) and determinis-
tically outputs a key K ∈ K or the distinguished symbol ⊥ to denote invalidity
of (sk, C). For proper operation, we require that for all pairs (pk, sk) generated
by Key, if (K,C)←$ Encap(pk) then K ← Decap(sk, C).

Let KEM = (Key,Encap,Decap) be a KEM, K be a non-empty set, and A be
a KEM adversary. The security of KEM, in the WPRO model of hash function R
with underlying function ρ, against an adversary A is defined by the following
experiment:

Expkem-cca
KEM,R,ρ(A)

(pk, sk)←$ Key; b←$ {0, 1};
b′←$ADecap(sk,·),Rρ

adv(·),Encap(pk,b,·)(pk)
if b′ = b then return 1 else 0

The Decap(sk, ·) oracle performs the decapsulation algorithm upon its
input and returns the result. The Encap(pk, b, ·) oracle takes as input a dis-
tinguished symbol Run, picks K0←$K, runs the encapsulation algorithm to
produce (K1, C)←$ Encap(pk), and returns the challenge (Kb, C). The encap-
sulation oracle can be queried only once by the adversary. We then define the
KEM-CCA advantage of adversaryA in breaking the KEM scheme via a chosen-
ciphertext attack as Advkem-cca

KEM,R,ρ(A) = Pr[Expkem-cca
KEM,R,ρ(A) = 1]− 1/2, where A

is forbidden to ask the challenge ciphertext C to its decapsulation oracle.

TDP-based KEMs in the WPRO Model. We recall that a trapdoor permu-
tation with domain Dom is a triple T P = (G,F, F ) of efficient algorithms such
that G returns a pair (pk, td), consisting of the public key and the trapdoor,
with the property that F (pk, ·) implements a permutation fpk : Dom → Dom,
whereas F (td, ·) implements its inverse f−1

pk (·). Consider key encapsulation mech-
anism TDP-KEMR[T P ] = (Key,Encap,Decap) based on a TDP T P = (G,F, F )
with domain Dom and a WPRO Rρ : Dom→ K for some underlying good func-
tion ρ mapping Coins to K, where K is some non-empty set. The key generation
algorithm is defined by Key = G, so it returns a pair (pk, td). The encapsulation
algorithm on input pk samples x←$ Dom, sets K ← Rρ

hon(x) and C ← F (pk, x),



316 M. Fischlin et al.

and returns (K,C). The decapsulation algorithm on input (td, C) computes
x← F (td, C), sets K←$ Rρ

hon(x) and returns K.
The KEM-CCA security of this scheme is tightly bound to the OWF security

of the underlying TDP. Our proof largely mirrors the one given by Shoup [15]
for RSA-KEM in the ROM.

Theorem 2 (WPROM Reduction for TDP-KEM). Let T P = (G,F, F ) be
a trapdoor permutation with domain Dom. Let TDP-KEMR[T P ] = (Key,Encap,
Decap) be the TDP-based KEM described above. Let ρ be good for the non-empty
set K and let A be an adversary suitable for Expkem-cca

TDP-KEM,R,ρ(A) asking qD
queries to its decapsulation oracle, qR queries to the WPRO and running in
time t. Then there exists an adversary B = Bρ,F,A(·) such that

Advkem-cca
TDP-KEM,R,ρ(A) ≤ 2 ·Advowf

T P(B) +
qD
|Dom|

where B uses a single instantiation of A(·), runs in time at most t + q log q ·
(TimeF + Timeρ + TimeCoins + TimeK) for q = qD + qR + 1 and TimeX denotes
the time to execute algorithm X or to sample from set X.

Here we give a very brief overview of the proof. The reduction is required to invert
the TDP on some challenge range point C∗, and it will embed this challenge
along with a random key K as the response (K,C∗) to the KEM-adversary’s
encapsulation query. Despite not having access to the trapdoor information, the
reduction can answer decapsulation queries by (randomly) programming the
WPRO to ρ(r), where r is uniform. This simulation is correct, and can easily be
made consistent with WPRO queries, except in the case that Decap is queried on
the TDP challenge point C∗. This case accounts for the qD/|Dom| term in the
bound. Barring that case, the KEM-adversary wins its game only by querying
the WPRO on the preimage of C∗, in which case the reduction succeeds to invert
its challenge.

5.2 TDP-KEM Is Not Provable under Non-programming Reductions

In the proof of Theorem 2, a weak form of programmability is needed to allow
for consistent simulation of the decapsulation oracle. Namely, the reduction may
need to return a random key K ∈ K for a decapsulation query C, because it
does not know the associated preimage r of C under F (pk, ·). Consequently, if
the adversary queries the random oracle with input r at a later point in time, its
output is programmed to K. This fact makes TDP-KEM amenable to an attempt
to entirely avoid programmability, e.g., by means of rewinding techniques. Yet,
any such approach is doomed to fail: we prove that TDP-KEM cannot be proven
secure with respect to non-programming fully-BB reductions, hence showing that
TDP-KEM is a scheme which necessarily requires a mild type of programmability.

This is summarized by the following theorem. Note that the result requires
qA ≤ 2q−1: For a small number of adversarial queries q a reduction may indeed
be feasible (e.g. using rewinding). Yet, for acceptable values of q the value 2q−1 is
too large for an efficient reduction to be allowed to issue more than 2q−1 queries.
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Theorem 3 (Non-programming Irreducibility for TDP-KEM).
Let TDP-KEMR[T P] = (Key,Encap,Decap) be the TDP-KEM scheme with key
space K, relying on a trapdoor permutation T P = (G,F, F ) with domain Dom
and public-key/trapdoor space {0, 1}k, as well as on a random oracle R : Dom→
K. Then, for all t, q > 0, all ε ≤ 1

2− 1
|K| , and all (kem-cca→ owp, δ, t, (qG, qF , qF ),

qR, qA)-fully-BB non-programming reductions B for TDP-KEM, we have

δ(ε, q, q · log |Dom|) ≤ (qAq + 1) · (2qAq + qF + qR + 1)
|Dom| +

qAq
|K| +

qG + qF
2k

where qG, qF , qF , and qR are the number of queries of B to the respective oracles,
and qA ≤ 2q−1 is the number of adversarial instances run by B.

We provide a high-level description of the proof. We rely on an ideal trap-
door permutation T P = T PF = (G,F, F ) defined using the oracles F =
(Fτ ,FE ,FE−1): The oracle F initially chooses a keyed family of random per-
mutations E : {0, 1}k × Dom → Dom (in other words, E(pk, ·) is a random
permutation for all k-bit pk), as well as a random permutation τ that asso-
ciates to each k-bit trapdoor td a corresponding public key pk = τ(td). The
oracles Fτ and FE allow direct evaluation of τ and E, whereas the oracle FE−1 ,
on input (td, y) computes E−1(τ(td), y). The associated trapdoor permutation
T PF = (G,F, F ) is such that the generation algorithm GF chooses a random
uniform trapdoor td←$ {0, 1}k, and sets the public key pk ← τ(td). Further-
more, the algorithms FF and F

F
simply call FE and FE−1 , respectively, with

their inputs, and return the corresponding output. Note that, even given the
public key pk, in order to be able to use FE−1 for inversion of F (pk, ·) we are
required to guess τ−1(pk) given only access to τ , which is of course infeasible
(at least without an extra oracle).

We show that there exists a deterministic adversary A making q queries from
Dom (and hence of length log |Dom| bits each) and accessing an oracle O :
{0, 1}∗ → Dom such that Advkem-cca

TDP-KEMR[T P],R(AO,T P,R) ≥ 1 − 1
|K| for all T P

and O, but whenever O is a random oracle and T P = T PF , then

Advowf
T P(BT P,R,AO,T P,Rpub ) ≤ (qAq + 1) · (2qAq + qF + qR + 1)

|Dom| +
qAq
|K| +

qG + qF
2k

for all reductions B as in the statement of the theorem, where in particular B can
run qA instances of A answering both its encapsulation and the decapsulation
queries. The statement of the theorem is obtained by derandomizing F and O
as described in Section 2.3.

Adversary Description. Ideally, we would like the (inefficient) adversary A
to be capable of determining whether it is being run in the actual kem-cca-
game, or whether it is being used by the reduction B in order to break the one-
wayness of the underlying trapdoor permutation T P . A naive approach consists
of letting A, on input the public key pk, choose a random r←$ Dom and compute
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C ← F (pk, r); the adversary subsequently asks C to the decapsulation oracle,
obtaining a value K. Finally, it issues a query r to the random oracle R, and
checks whether R(r) = K. In the affirmative case, it assumes that it is being
used in the actual kem-cca-game, and proceeds in breaking the scheme, e.g., by
inverting F (pk, ·) on the challenge ciphertext and guessing the bit b by making
an additional random oracle query. Otherwise, A just outputs a random guess.
Intuitively, since B is efficient, it cannot retrieve r given only C, and thus must
give some independent answer K ′ back to A’s decapsulation query, such that
A’s check will then fail.

This argument, however, has two major fallacies. First, the randomness ofA is
determined by B, and thus r is chosen (and known) by B. Second, even provided
a way for A to issue a decapsulation query for a ciphertext C with preimage r
unknown to B, the reduction B can still first run A by giving a random answer
to the decapsulation query, up to the point where the random-oracle check fails,
and hence finding out r (as it is queried to Rpub). It subsequently rewinds A so
that the same query C is issued, for which now B knows the right answer R(r).
This allows B to invert the underlying T P, by just giving the challenge output
y as the challenge ciphertext to A’s encapsulation query.

We overcome both these problems by using a random oracle O : {0, 1}∗ →
Dom and considering the following adversary A: On input the public key pk, it
asks a sequence of decapsulation queries C1, C2, . . . , C� (for � = q − 1), where
Ci is computed by applying the random oracle to pk, to C1, . . . , Ci−1, and to
the answers of the previous queries. (We assume that such inputs can injectively
be mapped into bit strings.) Then, it checks the correctness of the answers
K�,K�−1, . . . in reverse order (as above, it checks whetherKi = R(F−1(pk, Ci))),
but stops checking as soon as the first inconsistency is found. (This is crucial for
the analysis to go through.) Finally, it behaves as above depending on whether
all checks have been successful or not.

The main idea is that rewinding does not help when O is a random oracle,
since (provided some unlikely events do not occur) the best strategy for B to
build a run of an instance of A where the correctness check is always satisfied
requires exponentially many (in �) executions of A. This is proven by showing
an interesting connection to a tree-based, purely combinatorial, game. This ap-
proach is similar to the schedule used by Canetti et al. [6] to prove a lower bound
on the round complexity of black-box concurrent zero-knowledge proofs.

6 FDH Is Not Provably Secure in the WPRO Model

In this section we consider the traditional full-domain hash signature scheme and
show that one cannot prove it secure under randomly-programming reductions
only.5 Hence, a stronger version of programmability is required. We carry out
our proof in the WPRO model and the result follows for randomly-programming
reductions by the equivalence.
5 In fact, we prove the slightly stronger statement that not even a ρ-dependent black-

box reduction in the WPRO model exists for any one-way good function ρ.
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Full-Domain Hash. We briefly recall the FDH-signature scheme. The scheme
FDHH [T P ] = (Kg, Sign,Ver) is based on a trapdoor permutation T P = (G,F, F ).
To sign a message M ∈Msg one computes σ ← F (sk, H(M)) for hash function
H : Msg → Sig , and to verify one checks that F (pk, σ) = H(M), where (pk, sk)
are the keys generated through Kg. Below we consider a very weak unforgeability
notion for FDH (called wsig), where the adversary has to forge a signature for
a random message in a key-only attack. This strengthens our result as we show
that even WPROM reductions from wsig to the one-wayness of the trapdoor
permutation (owp) perform badly.

FDH Cannot be Secure in the WPROM. We have the following result,
which states that FDH cannot be proven secure (by a black-box security analysis)
in the WPROM.

Theorem 4 (WPROM Irreducibility of FDH). Let FDHR[T P ] = (Kg, Sign,
Ver) be the FDH scheme with message space Msg and signature space Sig, re-
lying on a trapdoor permutation T P = (G,F, F ) with domain Sig and public-
key/trapdoor space {0, 1}k, as well as on a random oracle R : Msg → Sig. Then,
for all t > 0, all ε ≤ 1, and all (wsig → owp, δ, t, (qG, qF , qF ), qρ, qA)-fully-BB
WPROM security reductions B for FDH we have6

δ(ε) ≤ qG + qF
2k

+
qF + 2qA + qρ + 2

|Sig | ,

where qG, qF , qF , and qρ are the number of queries of B to G,F, F , and ρ, re-
spectively, whereas qA is the number of adversarial instances run by B.

The proof adopts a variant of the two-oracle separation technique by Hsiao
and Reyzin [11]. For F and the ideal (i.e. random) trapdoor permutation T PF =
(G,F, F ) defined as in the proof of Theorem 3, we define for all functions ρ, an
oracle B = BT PF

ρ such that T PF is one way relative to B as long as ρ is one
way, yet there exists an adversary AFDH forging an FDH-signature given ac-
cess to B on any given message, i.e. it breaks FDH in the strongest possible
sense.

Roughly speaking, the oracle B allows inversion of F (pk, ·) on each out-
put y′ whenever a preimage r′ of y′ under ρ is exhibited: This allows inver-
sion of F (pk, ·) for any output of Rρ

adv , and hence arbitrary forgeries in the
WPROM. Yet, in the task of inverting F (pk, ·) on a random y, coming up with
a valid preimage of y under ρ is as hard as inverting ρ, and thus infeasible if
ρ is one way. Therefore, the oracle B is only used to invert F (pk, ·) for out-
puts other than the random challenge, which does not help it to win the OWF
game.

6 We remark that wsig adversaries are only permitted to output one forgery, and
perform no queries: the function δ hence only depends on ε without loss of generality.



320 M. Fischlin et al.

References

1. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Proceedings of the Annual Conference on Computer and
Communications Security (CCS). ACM Press, New York (1993)

2. Bellare, M., Rogaway, P.: Optimal asymmetric encryption — how to encrypt with
RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111.
Springer, Heidelberg (1995)

3. Bellare, M., Rogaway, P.: The exact security of digital signatures — how to sign
with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 399–416. Springer, Heidelberg (1996)

4. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

5. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Journal
of Cryptology 17(4), 297–319 (2004)

6. Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-box concurrent zero-
knowledge requires Ω̃(log n) rounds. In: Proceedings of the Annual Symposium
on the Theory of Computing, STOC 2001. pp. 570–579. ACM Press, New York
(2001)

7. Coron, J.S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000)

8. Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full domain
hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer,
Heidelberg (2005)

9. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under
the RSA assumption. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 260.
Springer, Heidelberg (2001)

10. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg
(2008)

11. Hsiao, C.Y., Reyzin, L.: Finding collisions on a public road, or do secure hash
functions need secret coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 92–105. Springer, Heidelberg (2004)

12. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

13. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

14. Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between crypto-
graphic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004)

15. Shoup, V.: A proposal for an ISO standard for public key encryption (version 2.1).
No. 2001/112 in Cryptology eprint archive (2001), eprint.iacr.org

16. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

17. Wee, H.: Zero knowledge in the random oracle model, revisited. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 417–434. Springer, Heidelberg (2009)



Short Pairing-Based Non-interactive

Zero-Knowledge Arguments
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Abstract. We construct non-interactive zero-knowledge arguments for
circuit satisfiability with perfect completeness, perfect zero-knowledge
and computational soundness. The non-interactive zero-knowledge argu-
ments have sub-linear size and very efficient public verification. The size
of the non-interactive zero-knowledge arguments can even be reduced to
a constant number of group elements if we allow the common reference
string to be large. Our constructions rely on groups with pairings and
security is based on two new cryptographic assumptions; we do not use
the Fiat-Shamir heuristic or random oracles.

Keywords: Sub-linear size non-interactive zero-knowledge arguments,
pairing-based cryptography, power knowledge of exponent assumption,
computational power Diffie-Hellman assumption.

1 Introduction

Zero-knowledge proofs introduced by Goldwasser, Micali and Rackoff [24] are
fundamental building blocks in cryptography that are used in numerous proto-
cols. Zero-knowledge proofs enable a prover to convince a verifier of the truth of
a statement without leaking any other information. The central properties are
captured in the notions of completeness, soundness and zero-knowledge.

Completeness: The prover can convince the verifier if the prover knows a
witness testifying to the truth of the statement.

Soundness: A malicious prover cannot convince the verifier if the statement is
false. We distinguish between computational soundness that protects against
polynomial time cheating provers and statistical or perfect soundness where
even an unbounded prover cannot convince the verifier of a false statement.
We will call computationally sound proofs for arguments.

Zero-knowledge: A malicious verifier learns nothing except that the state-
ment is true. We distinguish between computational zero-knowledge, where
a polynomial time verifier learns nothing from the proof and statistical or
perfect zero-knowledge, where even a verifier with unlimited resources learns
nothing from the proof.
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The first zero-knowledge proofs relied on interaction between the prover and
the verifier. Many cryptographic tasks are carried out off-line though; for in-
stance signing or encrypting messages. For these tasks it is desirable to have
non-interactive zero-knowledge (NIZK) proofs, where there is no interaction
and a proof just consists of a single message from the prover to the verifier.
Unfortunately, only languages in BPP have NIZK proofs in the plain model
without any setup [22,21]. However, Blum, Feldman and Micali [6] introduced
NIZK proofs in the common reference string model, where both the prover and
verifier have access to a common reference string generated in a trusted way.
Such NIZK proofs have many applications, ranging from early chosen cipher-
text attack secure public-key cryptosystems [17,38] to recent advanced signature
schemes [11,7]. For this reason there has been a lot of research into the underly-
ing assumptions [19,2,28], the efficiency [13,15,33,27], and the security guarantees
offered by NIZK proofs [16,38,14].

NIZK proofs based on standard cryptographic assumptions used to be inef-
ficient and not useful in practice. To get around this inefficiency, applied cryp-
tographers have relied on the so-called Fiat-Shamir heuristic for transforming
public-coin interactive zero-knowledge proofs into NIZK arguments by using
a cryptographic hash-function to compute the verifier’s challenges. The Fiat-
Shamir heuristic can give very efficient NIZK arguments that are secure in the
random oracle model [5], where the cryptographic hash-function is modeled as
a random function. It is for instance possible to use the Fiat-Shamir heuristic
to transform sub-linear size interactive public-coin zero-knowledge arguments
[32] into sub-linear size non-interactive zero-knowledge arguments [35]. Unfor-
tunately, there are several examples of protocols that are secure in the ran-
dom oracle model, but do not have any secure standard model instantiation no
matter which hash-function is used [9,10,34,3,37]. Particularly relevant here is
Goldwasser and Kalai’s [23] demonstration of a signature scheme built from a
public-coin identification scheme that is secure in the random oracle model but
insecure in real life.

Recent works on NIZK proofs has used bilinear groups to improve efficiency.
Groth, Ostrovsky and Sahai [30,29] gave NIZK proofs for circuit satisfiability
where the proof consists of O(|C|) group elements, with |C| being the number of
gates in the circuit. Their NIZK proofs have the property that they can be set
up to give either perfect soundness and computational zero-knowledge, or alter-
natively computational soundness and perfect zero-knowledge. Works by Boyen,
Waters, Groth and Sahai [7,8,25,31] have explored how to build efficient NIZK
proofs that are directly applicable in bilinear groups instead of going through
circuit satisfiability. In some special cases, for instance in the ring signature of
Chandran, Groth and Sahai [11], these techniques lead to sub-linear size NIZK
proofs but in general the number of group elements in an NIZK proof grows
linearly in the size of the statement. Abe and Fehr [1] gave a construction based
on commitments instead of encryptions, but since there is a commitment for
each wire they also get a linear growth in the size of the circuit.
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Looking at the NP-complete problem of circuit satisfiability, the reason the
NIZK proofs grow linearly in the circuit size is that they encrypt the value of
each wire in the circuit. Gentry’s new fully homomorphic cryptosystem [20] can
reduce the NIZK proof to being linear in the size of the witness: The prover
encrypts the inputs to the circuit and uses the homomorphic properties of the
cryptosystem to compute the output of the circuit. The prover then gives NIZK
proofs for the input ciphertexts being valid and the output ciphertext containing
1. Fully homomorphic encryption only helps when the circuit has a small witness
though; if the circuit has a linear number of input wires the resulting NIZK proof
will also be linear in the circuit size.

1.1 Our Contribution

Micali’s CS proofs [35] indicated the possibility of sub-linear size NIZK argu-
ments, but despite more than a decade of research the Fiat-Shamir heuristic is
the only known strategy for constructing sub-linear size NIZK arguments. Our
goal is to introduce a new type of sub-linear size NIZK arguments where security
does not rely on the random oracle model.

We construct NIZK arguments for circuit satisfiability with perfect complete-
ness, computational soundness and perfect zero-knowledge (see Section 2 for
definitions). The NIZK arguments are short and very efficient to verify, but the
prover uses a super-linear number of group operations. We first give an NIZK
argument consisting of a constant number of group elements but having a long
common reference string. We then show that it is possible to reduce the size
of the common reference string at the cost of increasing the size of the NIZK
argument making them simultaneously sub-linear in the circuit size.

The soundness of our NIZK argument relies on the q-computational power
Diffie-Hellman and the q-power knowledge of exponent assumptions (see Section
3). The q-CPDH assumption is a normal computational intractability assump-
tion but the q-PKE is a so-called knowledge of exponent assumption. Knowledge
of exponent assumptions have been criticized for being unfalsifiable [36] but the
use of a non-standard assumption may be unavoidable since Abe and Fehr [1]
have demonstrated that no statistical zero-knowledge NIZK argument for an
NP-complete language has a “direct black-box” reduction to a standard crypto-
graphic assumption unless NP ⊆ P/poly.12

1 Abe and Fehr do not rule out the existence of statistical NIZK arguments with non-
adaptive soundness, where the adversary chooses the statement oblivously of the
common reference string. Since the common reference string is public it is more nat-
ural to define soundness adaptively though; indeed we do not know of any practical
applications of NIZK arguments with non-adaptive soundness.

2 The very assumption that an NIZK argument is sound seems to be unfalsifiable as
well since even if an adversary outputs a false statement and a convincing NIZK
argument it may be hard to verify that the statement is false. Groth, Ostrovsky
and Sahai [30] circumvented this problem by defining co-soundness for languages
in NP ∩ coNP, which is falsifiable since the adversary can produce a coNP-witness
certifying that the statement is false.
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Table 1. Comparison of NIZK proofs and arguments

CRS size Proof size Prov. comp. Ver. comp. Assumption

Groth [27] Õ(|C|) G Õ(|C|) G Õ(|C|) E Õ(|C|) M trapdoor perm.

Groth [27] Õ(|C|) bits Õ(|C|) bits Õ(|C|) M Õ(|C|) M Naccache-Stern

Gentry [20] O(1) G |w|kO(1) G |C|kO(1) M |C|kO(1) M lattice-based
G-Ostrovsky-Sahai O(1) G O(|C|) G O(|C|) E O(|C|) P pairing-
[30,29] O(1) G O(|C|) G O(|C|) E O(|C|) E based
Abe-Fehr [1] O(1) G O(|C|) G O(|C|) E O(|C|) E knowledge of expo.

Groth [26] O(|C| 12 ) G O(|C| 12 ) G O(|C|) M O(|C|) M random oracle

This paper O(|C|2) G O(1) G O(|C|2) M O(|C|) M PKE and CDHP

This paper O(|C| 23 ) G O(|C| 23 ) G O(|C| 43 ) M O(|C|) M PKE and CDHP

Table 1 gives a comparison to other NIZK proofs and arguments for circuit
satisfiability, where k is a security parameter, G stands for the size of a group ele-
ment, M and E are the costs of respectively multiplications and exponentiations,
and P is the cost of a pairing in a bilinear group (see Section 3).

Compared to other pairing-based NIZK arguments, our arguments are smaller
and faster to verify. The prover uses a super-linear number of multiplications and
the computational cost may grow beyond a linear number of exponentiations.
The public verifiability means that the NIZK arguments are transferable though;
they can be copied and distributed to many different entities that can do their
own independent verification. The prover only pays a one-time cost for comput-
ing the NIZK argument, while all verifiers enjoy the benefits of low transmission
bandwidth and efficient verification.
Perfect Zaps. The common reference string model assumes a trusted setup for
generating common reference strings and making them available to the prover
and verifier. In case no such setup is available3 we can still get a sub-linear size 2-
move publicly verifiable witness-indistinguishable argument where the verifiers
first message can be reused many times, a so-called Zap [18], as follows: The
verifier generates a common reference string. The prover verifies that the common
reference string is well-formed (our common reference string is not a random bit-
string, but it does have a certain structure that makes it possible to verify that it
is well-formed) and can now make arbitrarily many Zaps using the verifier initial
message as the common reference string. Since our NIZK argument is perfectly
zero-knowledge, the Zaps will be perfectly witness-indistinguishable.

1.2 Outline of Our NIZK Argument

We will construct NIZK arguments for the existence of an input to a binary
circuit C making it output 1. At a loss of a constant factor, we may assume C
consists of NAND-gates. Furthermore, if we label the output wire a we may add
3 We remark that even if the common reference string is adversarially chosen the sub-

linearity of our NIZK arguments impose an information theoretic upper bound on
how much information can be leaked.
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a self-loop to the circuit consisting of a NAND-gate a = ¬(a∧ b) forcing a to be
1. This reduces the challenge to prove that there is an assignment of truth-values
to the wires that respect all the N = |C| NAND-gates in the circuit.

The NIZK argument relies on length-reducing commitments where we commit
to n values in a finite field Zp using only a constant number of group elements.
We will also use non-interactive arguments consisting of a constant number of
group elements for proving the following properties about committed values:

Entry-wise product: Commitments c, d, v contain values a1, . . . , an, b1, . . . , bn
and u1, . . . , un that satisfy ui = aibi for all i.

Permutation: Commitments c, d contain values a1, . . . , an and b1, . . . , bn that
satisfy bi = aρ(i) for all i, where ρ is a publicly known permutation of n
elements.

Let us sketch how commitments combined with these two types of non-interactive
arguments give us a constant size NIZK argument for circuit satisfiability when
n = 2N . The prover gets as a witness for the satisfiability of the circuit a1, . . . , aN

and b1, . . . , bN such that ai, bi are the inputs to gate i and all the values are
consistent with the wires and respect the NAND-gates. We use the convention
that −1 corresponds to false and +1 corresponds to true, so if ui is the output
of gate i we have ui = −aibi.

The prover makes commitments to the 2N -tuples

(a1, . . . , aN , b1, . . . , bN) (b1, . . . , bN , 0, . . . , 0) (−u1, . . . ,−uN , 0, . . . , 0).

The prover gives an entry-wise product argument on the commitment to
(a1, . . . , aN , b1, . . . , bN) with itself to show a2

i = 1 and b2i = 1 for all i. This
shows that a1, . . . , aN , b1, . . . , bN ∈ {−1, 1} are appropriate truth values.

An output of one NAND-gate may be the input of other NAND-gates, which
means the corresponding values ai1 , . . . , ai�

, bj1 , . . . , bjm have to have the same
assignment. The prover picks a permutation ρ that contains cycles i1 → i2 →
. . .→ i� → j1+N → j2+N → . . .→ jm +N → i1 for all such sets of values that
have to be consistent and gives a permutation argument on the commitment to
(a1, . . . , aN , b1, . . . , bN). This shows for each set of values corresponding to the
same output wire that ai2 = ai1 , . . . , bj1 = ai�

, . . . , bjm = bjm−1 so the values
(a1, . . . , aN , b1, . . . , bN) are consistent with the wiring of the circuit.

The prover uses additional commitments, entry-wise product and permutation
arguments to show that the other committed values (b1, . . . , bN , 0, . . . , 0) and
(−u1, . . . ,−uN , 0, . . . , 0) are consistent with the wiring of the circuit and the
values (a1, . . . , aN , b1, . . . , bN ), we refer to Section 8 for the details.

Finally, the prover uses the entry-wise product argument to show that
the entry-wise product of (a1, . . . , aN , b1, . . . , bN ) and (b1, . . . , bN , 0, . . . , 0) is
(−u1, . . . ,−uN , 0, . . . , 0) so all the values respect the NAND gates.

This outline shows how to get a constant size NIZK argument for circuit sat-
isfiability, but to enable the entry-wise product arguments and the permutation
arguments the common reference string has size O(N2) group elements. In Sec-
tion 9 we reduce the common reference string size by using commitments to n
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elements where n < N . With n smaller than 2N we need to give permutation
arguments that span accross multiple commitments though. Using permutation
network techniques [12] we manage to build such large permutations from many
smaller permutations.

The technical contribution of this paper is the construction of an appropriate
commitment scheme with corresponding non-interactive entry-wise product and
permutation arguments. The commitment scheme is a variant of the Pedersen
commitment scheme, where the commitment key is of the form (g, gx, . . . , gxq

). A
commitment to a1, . . . , aq is a single group element computed as gr

∏q
i=1(g

xi

)ai .
The nice thing about such a commitment is that the discrete logarithm is a

polynomial r +
∑q

i=1 aix
i. When we pair two commitments with each other we

get a product of two polynomials in the exponent. By taking appropriate linear
combinations over products of polynomials, we can express entry-wise products
and permutations as equations over the coefficients of these polynomials. The
q-CPDH assumption then allows us to conclude that these coefficients are iden-
tical and therefore the committed values satisfy an entry-wise multiplication
relationship or a permutation relationship to each other.

When pairing commitments (equivalent to multiplying polynomials in the
exponent) there will be various cross-terms. The role of the non-interactive ar-
guments will be to cancel out these terms. Usually, a single group element paired
with g suffices to cancel out all the cross-terms, so the non-interactive arguments
for entry-wise products and permutations are highly efficient themselves.

To prove that our NIZK argument is sound, we need to reason about the
coefficient of these polynomials. However, a cheating prover might create a com-
mitment without knowing an opening of it. This is where the q-PKE assumption
comes in handy: the prover gives non-interactive arguments demonstrating that
it “knows” the openings of the commitments. By this we mean that there is an
extractor that given the same input as the prover can reconstruct the commit-
ments together with the openings of the commitments.

2 Definitions

Let R be an efficiently computable binary relation. For pairs (C,w) ∈ R we call
C the statement and w the witness. Let L be the NP-language consisting of
statements with witnesses in R. When we restrict ourselves to statements of size
N , we write respectively LN and RN .

A non-interactive argument for a relation R consists of a common reference
string generator algorithm K, a prover algorithm P and a verifier algorithm V
that run in probabilistic polynomial time. The common reference string genera-
tor takes as input a security parameter k and the statement size N and produces
a common reference string σ. The prover on input (σ,C,w) produces an argu-
ment π. The verifier on input (σ,C, π) outputs 1 if the argument is acceptable
and 0 if rejecting the argument. We call (K,P, V ) an argument for R if it has
the completeness and soundness property described below.
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Perfect completeness. Completeness captures the notion that an honest
prover should be able to convince an honest verifier if the statement is true. For
N = kO(1) and all adversaries A outputting (C,w) ∈ RN :

Pr
[
σ ← K(1k, N); (C,w)← A(σ);π ← P (σ,C,w) : V (σ,C, π) = 1

]
= 1.

Computational soundness. Soundness captures the notion that it should be
infeasible for an adversary to come up with an accepting argument for a false
statement. For N = kO(1) and all non-uniform polynomial time adversaries A:

Pr
[
σ ← K(1k, N); (C, π)← A(σ) : C /∈ L and V (σ,C, π) = 1

]
≈ 0.

Perfect witness-indistinguishability. We say a non-interactive argument
(K,P, V ) is perfectly witness-indistinguishable if it is impossible to tell which
witness the prover when there are many possible witnesses. For N = kO(1) and
all stateful interactive adversaries A outputting (C,w0), (C,w1) ∈ RN :

Pr
[
σ ← K(1k, N); (C,w0, w1)← A(σ);π ← P (σ,C,w0) : A(π) = 1

]

= Pr
[
σ ← K(1k, N); (C,w0, w1)← A(σ);π ← P (σ,C,w1) : A(π) = 1

]
.

Perfect zero-knowledge. An argument is zero-knowledge if it does not leak
any information besides the truth of the statement. We say a non-interactive
argument (K,P, V ) is perfect zero-knowledge if there exists a polynomial time
simulator S = (S1, S2) with the following zero-knowledge property. S1 outputs
a simulated common reference string and a simulation trapdoor. S2 takes the
common reference string, the simulation trapdoor and a statement as input
and produces a simulated argument. For N = kO(1) and all stateful interactive
adversaries A outputting (C,w) ∈ RN :

Pr
[
σ ← K(1k, N); (C,w)← A(σ);π ← P (σ,C,w) : A(π) = 1

]

= Pr
[
(σ, τ)← S1(1k, N); (C,w)← A(σ);π ← S2(σ, τ, C) : A(π) = 1

]
.

3 Bilinear Groups

Notation. Given two functions f, g : N → [0, 1] we write f(k) ≈ g(k) when
|f(k) − g(k)| = O(k−c) for every constant c > 0. We say that f is negligible
when f(k) ≈ 0 and that it is overwhelming when f(k) ≈ 1.

We write y = A(x; r) when the algorithm A on input x and randomness
r, outputs y. We write y ← A(x) for the process of picking randomness r at
random and setting y = A(x; r). We also write y ← S for sampling y uniformly
at random from the set S. We will assume it is possible to sample uniformly at
random from sets such as Zp. We define [n] to be the set {1, 2, . . . , n}.
Bilinear groups. Let G take a security parameter k written in unary as input
and output a description of a bilinear group (p,G,GT , e)← G(1k) such that



328 J. Groth

1. p is a k-bit prime.
2. G,GT are cyclic groups of order p.
3. e : G×G is a bilinear map (pairing) such that ∀a, b : e(ga, gb) = e(g, g)ab.
4. If g generates G then e(g, g) generates GT .
5. Membership in G,GT can be efficiently decided, group operations and the

pairing e are efficiently computable, generators are efficiently sampleable,
and the descriptions of the groups and group elements each have size O(k)
bits.

The security of our NIZK arguments will be based on two new assumptions,
which we call respectively the q-power knowledge of exponent assumption and
the q-computational power Diffie-Hellman assumption.
The q-power knowledge of exponent assumption. The knowledge of ex-
ponent (KEA) assumption says that given g, gα it is infeasible to create c, ĉ so
ĉ = cα without knowing a so c = ga and ĉ = (gα)a. Bellare and Palacio [4]
extended this to the KEA3 assumption, which says that given g, gx, gα, gαx it is
infeasible to create c, ĉ so ĉ = cα without knowing a0, a1 so c = ga0(gx)a1 and
ĉ = (gα)a0(gαx)a1 .

The q-power knowledge of exponent assumption is a generalization of KEA
and KEA3. It says that given (g, gx, . . . , gxq

, gα, gαx, . . . , gαxq

) it is infeasible
to create c, ĉ so ĉ = cα without knowing a0, . . . , aq so c =

∏q
i=0(g

xi

)ai and
ĉ =

∏q
i=0(g

αxi

)ai .
We will now give the formal definition of the q-power knowledge of exponent

assumption. Following Abe and Fehr [1] we write (y; z)← (A ‖ XA)(x) when A
on input x outputs y and XA on the same input (including the random tape of
A) outputs z.

Definition 1 (q-PKE). The q(k)-power knowledge of exponent assumption
holds for G if for every non-uniform probabilistic polynomial time adversary A
there exists a non-uniform probabilistic polynomial time extractor XA so

Pr
[
(p,G,GT , e)← G(1k) ; g ← G \ {1} ; α, x← Z

∗
p ;

σ = (p,G,GT , e, g, g
x, . . . , gxq

, gα, gαx, . . . , gαxq

) ;

(c, ĉ ; a0, . . . , aq)← (A ‖ XA)(σ) : ĉ = cα ∧ c 
=
n∏

i=0

gaix
i
]
≈ 0.

The q-computational power Diffie-Hellman assumption. The com-
putational Diffie-Hellman (CDH) assumption says that given g, gβ, gx it
is infeasible to compute gβx. The q-computational power Diffie-Hellman
assumption is a generalization of the CDH assumption that says given
(g, gx, . . . , gxq

, gβ, gβx, . . . , gβxq

) except for one missing elements gβxj

, it is hard
to compute the missing element.

Definition 2 (q-CPDH). The q(k)-computational power Diffie-Hellman as-
sumption holds for G if for all j ∈ {0, . . . , q} and all non-uniform probabilistic
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polynomial time adversaries A we have

Pr
[
(p,G,GT , e)← G(1k) ; g ← G \ {1} ; β, x← Z

∗
p ;

y ← (A,XA)(p,G,GT , e, g, g
x, . . . , gxq

, gβ, gβx, . . . ,

gβxj−1
, gβxj+1

, . . . , gβxq

) : y = gβxj
]
≈ 0.

In the full paper we give heuristic arguments for believing in the q-PKE and
q-CPDH assumptions by proving that they hold in the generic group model.

4 Knowledge Commitment

We will use a variant of the Pedersen commitment scheme in our NIZK proof
where we commit to a1, . . . , aq as c = gr

∏
i∈[q] g

ai

i . In the security proof of
our NIZK argument for 3SAT we will need to extract the committed values
a1, . . . , aq; but the commitment scheme itself is perfectly hiding and does not
reveal the committed values. For this reason, we will require the prover to create
a related commitment ĉ = ĝ

∏
i∈[q] ĝ

ai

i and will rely on the q-PKE assumption for
extracting the committed values. We call (c, ĉ) a knowledge commitment, since
the prover cannot make a valid commitment without “knowing” the committed
values.

Key generation: Pick gk = (p,G,GT , e) ← G(1k) g ← G \ {1} ; x, α ←
Z
∗
p. The commitment key is ck = (gk, g, g1, . . . , gq, ĝ, ĝ1 . . . , ĝq) =

(gk, g, gx, . . . , gxq

, gα, gαx, . . . , gαxq

) and the trapdoor key is tk = x.
Commitment: To commit to a1, . . . , aq pick r ← Zp and compute the knowl-

edge commitment (c, ĉ) as

c = gr
∏
i∈[q]

gai

i ĉ = ĝr
∏
i∈[q]

ĝai

i .

Given (c, ĉ) ∈ G2 we can verify that it is well-formed by checking e(g, ĉ) =
e(c, ĝ).

Trapdoor commitment: To make a trapdoor commitment sample trapdoor
randomness t ← Zp and compute the knowledge commitment (c, ĉ) as c =
gt ; ĉ = ĝt.

Trapdoor opening: The trapdoor opening algorithm on messages a1, . . . , aq ∈
Zp returns the randomizer r = t−∑i∈[q] aix

i. The trapdoor opening satisfies
c = gr

∏
i∈[q] g

ai

i and ĉ = ĝr
∏

i∈[q] ĝ
ai

i .

The commitment scheme has properties similar to those of standard Pedersen
commitments as the following theorem shows. We refer to the full paper for the
proof of the following theorem.

Theorem 1. The commitment scheme is perfectly trapdoor and computation-
ally binding. Assuming the q-PKE assumption holds, there exists for any non-
uniform probabilistic polynomial time committer A a non-uniform probabilistic
polynomial time extractor XA that computes the contents of the commitment
when given the input of A (including any random coins).
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4.1 Restriction Argument

Consider a subset S ⊂ [q] and a commitment c. We will need an argument for the
opening r, a1, . . . , aq being such that the indices of non-zero values are restricted
to S. In other words, we need an argument for the commitment being of the
form c = gr

∏
i∈S g

ai

i . The argument will take the form π = hr
∏

i∈S h
ai

i , which
intuitively corresponds to an additional argument of knowledge with respect to
a small base (h, {hi}i∈S).

Setup: gk← G(1k) ; ck ← Kcommit(gk).
Common reference string: Given (ck, S) as input pick at random β ←

Z
∗
p and compute the common reference string as σ = (h, {hi}i∈S) =

(gβ , {gβ
i }i∈S).

Statement: A valid knowledge commitment (c, ĉ).
Prover’s witness: Opening r, {ai}i∈S so c = gr

∏
i∈S g

ai

i and ĉ = ĝr
∏

i∈S ĝ
ai

i .
Argument: Compute the argument as π = hr

∏
i∈S h

ai

i .
Verification: Output 1 if and only if e(c, h) = e(g, π).

Theorem 2. The restriction argument is perfectly complete and perfectly
witness-indistinguishable. If the q-CPDH assumption holds, all non-uniform
probabilistic polynomial time adversaries have negligible probability of outputting
(r, a1, . . . , aq, π) so ai 
= 0 for some i /∈ S and π is an acceptable restriction
argument for the commitment corresponding to the opening.

We refer to the full paper for the proof. Observe that we phrase the soundness of
the restriction argument as the inability to find an opening of the commitment
that violates the restriction. Since the commitment scheme is perfectly hiding we
cannot exclude the existence of openings that violate the restriction. However, if
it holds that it is a knowledge commitment (Theorem 1) we see that the opening
we extract from the committer must respect the restriction.

5 Common Reference String

We will now describe how to generate the common reference string for our NIZK
argument. The common reference string will consist of a knowledge commitment
key ck for q = n2 + 3n− 2 values together with three common reference strings
for restriction to the sets

S̃ = {1, . . . , n} , S̄ = {(n+ 1), . . . , n(n+ 1)} , Ṡ = {� ∈ [q] | � 
= 0 mod n+ 2}.
The zero-knowledge simulation of the argument will use the same type of com-
mon reference string, and the simulation trapdoor for our NIZK argument will
be the trapdoor for the knowledge commitment.

Common Reference String Generation:
On input 1k and n do
1. Generate (p,G,GT , e)← G(1k) and set gk = (p,G,GT , e).
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2. Pick g ← G \ {1} ; x, α← Z
∗
p and compute

ck = (gk, g, . . . , gq, ĝ, . . . , ĝq) = (gk, g, . . . , gxn2+3n−2
, gα, . . . , gαxn2+3n−2

).

3. Generate σ̃ ← Krestrict(ck, S̃) where S̃ = {1, 2, . . . , n}.
4. Generate σ̄ ← Krestrict(ck, S̄) where S̄ = {(n+1), 2(n+1), . . . , n(n+1)}.
5. Generate σ̇ ← Krestrict(ck, Ṡ) where Ṡ = {� ∈ [q] | � 
= 0 mod n+ 2}.

The common reference string is σ = (ck, σ̃, σ̄, σ̇) and the simulation trapdoor
is tk = x.

Given a common reference string, it is hard to find a non-trivial linear combina-
tion of 1, x, . . . , xq because we could run a polynomial factorization algorithm in
Zp[X ] to compute the root x. We will repeatedly use this fact, so we prove the
following Lemma in the full paper.

Lemma 1. If the q-CPDH assumption holds for G with q = n2 +3n− 2, a non-
uniform probabilistic polynomial time adversary has negligible chance of finding
a non-trivial linear combination (a0, . . . , aq) such that

∑q
i=0 aix

i = 0 given a
random common reference string σ.

6 Product Argument

Consider three commitments

c = gr
∏

i∈[n]

gai

i d = gs
∏

j∈[n]

g
bj

j(n+1) v = gt
∏

i∈[n]

gui

i ∀i ∈ [n] : ui = aibi.

With the corresponding restriction arguments, ĉ, c̃, d̂, d̄, v̂, ṽ we can assume the
committer knows openings to values a1, . . . , an, b1, . . . , bn and u1, . . . , un. We will
give an argument (π, π̂, π̇) consisting of three group elements for the committed
values satisfying u1 = a1b1, . . . , un = anbn.

In order to explain the intuition in the argument, let us consider the following
toy example c =

∏
i∈[n] g

ai

i and d =
∏

j∈[n] g
bj

j(n+1), where we want to show
a1b1 = 0, . . . , anbn = 0. The discrete logarithms of the two commitments are∑

i∈[n] aix
i and

∑
j∈[n] bjx

j(n+1) and the discrete logarithm of e(c, d) is

⎛
⎝∑

i∈[n]

aix
i

⎞
⎠ ·

⎛
⎝∑

j∈[n]

bjx
j(n+1)

⎞
⎠ =

∑
i∈[n]

aibix
i(n+2) +

∑
i∈[n]

∑
j∈[n]\{i}

aibjx
j(n+1)+i.

In the final sum, the left term contains the coefficients a1b1, . . . , anbn that are
supposed to be 0, however, the right term complicates matters. The argument
π will be constructed such that it can be used to cancel out the latter term.

Notice that the left term isolates the coefficients of xn+2, . . . , xn(n+2), while
the right term does not contain any such coefficients. By giving an appropriate
restriction argument, the prover can guarantee that she only cancels out the
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right term without interfering with the left term containing xn+2, . . . , xn(n+2).
The prover computes π =

∏
i∈[n]

∏
j∈[n]\{i} g

aibj

j(n+1)+i and gives corresponding
π̂, π̇ values demonstrating that it knows an opening (z, {z�}�∈Ṡ) of π restricted
to Ṡ. The verifier will check

e(c, d) = e(g, π).

Let us now argue that we have soundness: given π, π̂, π̇ such that e(c, d) =
e(g, π) the verifier can be assured that a1b1 = 0, . . . , anbn = 0. Taking discrete
logarithms, the verification equation tells us that

∑
i∈[n]

aibix
i(n+2) +

∑
i∈[n]

∑
j∈[n]\{i}

aibjx
j(n+1)+i = z +

∑

�∈Ṡ

z�x
�.

Recall, Ṡ = {� ∈ [n2 + 3n − 2] | � 
= 0 mod n + 2} so the argument π will not
contain any coefficients of the form xn+2, . . . , xn(n+2). This means the coefficients
of xn+2, . . . , xn(n+2) are a1b1, . . . , anbn. If there is an i such that aibi 
= 0, then
we have a non-trivial polynomial equation in x. By Lemma 1 this would allow
us to recover x and breaking the q-PKE assumption.

In the general case we want to give an argument for aibi = ui instead of just
aibi = 0. However, if we evaluate e(v,

∏
j∈[n] gj(n+1)) we can view the latter as a

commitment to (1, 1, . . . , 1) and we will get their products u1 ·1, . . . , un ·1 as coef-
ficients of xn+2, . . . , xn(n+2). If u1 = a1b1, . . . , un = anbn the two pairings e(c, d)
and e(v,

∏
j∈[n] gj(n+1)) therefore have the same coefficients of xn+2, . . . , xn(n+2)

and otherwise the coefficients are different. As in the toy example above, we may
choose π such that it cancels out all the other terms. Due to the restriction to
Ṡ the argument will not have any xn+2, . . . , xn(n+2) terms and we therefore get
soundness. In the general case, the commitments also have randomizers and we
will choose π such that it also cancels out these terms.

Statement: Commitments c, d, v ∈ G.
Prover’s witness: Openings r, a1, . . . , an and s, b1, . . . , bn and t, u1, . . . , un so

c = gr
∏

i∈[n]

gai

i , d = gs
∏

j∈[n]

g
bj

j(n+1) , v = gt
∏

i∈[n]

gui

i , ∀i ∈ [n] : ui = aibi.

Argument: Compute the argument (π, π̂, π̇) as

π = grs
∏

i∈[n]

gais
i

∏
j∈[n]

g
bjr−t

j(n+1)

∏
i∈[n]

∏
j∈[n]\{i}

g
aibj−ui

j(n+1)+i

π̂ = ĝrs
∏

i∈[n]

ĝais
i

∏
j∈[n]

ĝ
bjr−t

j(n+1)

∏
i∈[n]

∏
j∈[n]\{i}

ĝ
aibj−ui

j(n+1)+i

π̇ = ḣrs
∏

i∈[n]

ḣais
i

∏
j∈[n]

ḣ
bjr−t

j(n+1)

∏
i∈[n]

∏
j∈[n]\{i}

ḣ
aibj−ui

j(n+1)+i
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Verification: Output 1 if and only if

e(g, π̂) = e(π, ĝ) ∧ e(g, π̇) = e(π, ḣ) ∧ e(c, d) = e(v,
∏

j∈[n]

gj(n+1))e(g, π).

Theorem 3. The product argument has perfect completeness and perfect
witness-indistinguishability. If the q-CPDH assumption holds, then a non-
uniform probabilistic polynomial time adversary has negligible chance of out-
putting commitments (c, d, v) and an accepting argument π with corresponding
openings of the commitments and the argument such that for some i ∈ [n] we
have aibi 
= ui.

The proof can be found in the full paper.
The product argument has two commitments with restriction to S̃ and one

commitment restricted to S̄. It is quite easy to translate commitments back and
forth between S̃ and S̄ though. If we have two commitments v and d restricted
to respectively S̃ and S̄, we can give a product argument for the values in v
being the product of the values in c =

∏
i∈[n] gi and d. Since c is a commitment

to (1, . . . , 1) this proves that v and d contain the same values.
The product argument makes it possible to prove that the committed values

in a commitment c are bits encoded as ±1. If we give a product argument for∏
i∈[n] gi (a commitment to (1, . . . , 1)) being the product of the values in c and

in d, where d contains the same values as c, then we have that the values satisfy
a2

i = 1, which implies ai = ±1.

7 Permutation Argument

Consider two commitments and a permutation

c = gr
∏

i∈[n]

gai

i d = gs
∏

i∈[n]

gbi

i ρ ∈ Sn ∀i ∈ [n] : bi = aρ(i).

We will now give an argument for the committed values satisfying bi = aρ(i),
where ρ ∈ Sn is a publicly known permutation.

The idea behind the permutation argument is to show
∑
i∈[n]

aix
i(n+2) =

∑
i∈[n]

bix
ρ(i)(n+2).

By Lemma 1 this implies bi = aρ(i) for all i ∈ [n].
To get the desired linear combination we compute e(c,

∏
j∈[n] gj(n+1)) and

e(d,
∏

j∈[n] gρ(j)(n+2)−j). They have discrete logarithms

r
∑
j∈[n]

xj(n+1) +
∑
i∈[n]

aix
i(n+2) +

∑
i∈[n]

∑
j∈[n]\{i}

aix
j(n+1)+i

s
∑
j∈[n]

xρ(j)(n+2)−j +
∑
i∈[n]

bix
ρ(i)(n+2) +

∑
i∈[n]

∑
j∈[n]\{i}

bix
ρ(j)(n+2)+i−j
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We have the desired sums
∑

i∈[n] aix
i(n+2) and

∑
i∈[n] bix

ρ(i)(n+2) but due to the
extra terms it is not the case that e(c,

∏
j∈[n] gj(n+1)) = e(d,

∏
j∈[n] gρ(j)(n+2)−j).

The prover will construct an argument π that cancels out the extra terms and
the verifier will check that

e(c,
∏

j∈[n]

gj(n+1)) = e(d,
∏

j∈[n]

gρ(j)(n+2)−j)e(g, π).

The prover also gives a restriction argument π̂, π̇ such that the verifier is guaran-
teed that π does not contain any xn+2, . . . , xn(n+2) terms. Soundness now follows
from the verification equation giving us

∑
i∈[n] aix

i(n+2) =
∑

i∈[n] bix
ρ(i)(n+2)

when π is free of xn+2, . . . , xn(n+2) terms.

Statement: Commitments c, d ∈ G and permutation ρ ∈ Sn.
Prover’s witness: Openings r, a1, . . . , an ∈ Zp and s, b1, . . . , bn ∈ Zp so

c = gr
∏

i∈[n]

gai

i and d = gs
∏

i∈[n]

gbi

i and ∀i ∈ [n] : bi = aρ(i).

Argument: Compute the argument as

π =
∏

j∈[n]

gr
j(n+1)g

−s
ρ(j)(n+2)−j

∏
i∈[n]

∏
j∈[n]\{i}

gai

j(n+1)+ig
−bi

ρ(j)(n+2)+i−j

π̂ =
∏

j∈[n]

ĝr
j(n+1)ĝ

−s
ρ(j)(n+2)−j

∏
i∈[n]

∏
j∈[n]\{i}

ĝai

j(n+1)+iĝ
−bi

ρ(j)(n+2)+i−j

π̇ =
∏

j∈[n]

ḣr
j(n+1)ḣ

−s
ρ(j)(n+2)−j

∏
i∈[n]

∏
j∈[n]\{i}

ḣai

j(n+1)+iḣ
−bi

ρ(j)(n+2)+i−j

Verification: Output 1 if and only if e(g, π̂) = e(π, ĝ) , e(g, π̇) = e(π, ḣ) and
e(c,

∏
j∈[n] gj(n+1)) = e(d,

∏
j∈[n] gρ(j)(n+2)−j)e(g, π).

Theorem 4. The permutation argument has perfect completeness and perfect
witness-indistinguishability. If the q-CPDH assumption holds, a non-uniform
probabilistic polynomial time adversary has negligible chance of outputting a per-
mutation ρ, commitments (c, d) and an acceptable argument (π, π̂, π̇) with cor-
responding openings of the commitments and the argument such that for some
i ∈ [n] we have bi 
= aρ(i).

The proof can be found in the full paper.

8 Constant Size NIZK Argument for Circuit Satisfiability

We will now give an NIZK argument for the satisfiability of a NAND-gate circuit
C, which consists of a constant number of group elements but has a large com-
mon reference string. Let a be the output wire of the circuit and add an extra
self-looping NAND gate a = ¬(a ∧ b) to force a to be true. This reduces the
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satisfiability problem to demonstrating that there is a truth-value assignment to
the wires such that C is internally consistent with all the NAND-gates. In the
following let the value −1 correspond to false and +1 correspond to true. We
now give the full NIZK argument outlined in the introduction.

CRS: Generate common reference string σ = (ck, σ̃, σ̄, σ̇) with n = 2N .
Statement: A circuit C with N NAND-gates, where we want to prove the wires

can be assigned values such that the circuit is internally consistent.
Witness: 2N input values a1, . . . , aN , b1, . . . , bN ∈ {−1, 1} for the N gates that

are consistent with the wires in the circuit and respect the NAND-gates.
Define u1, . . . , uN to be values of the output wires and let r1, . . . , rN be the
remaining values in (a1, . . . , aN , b1, . . . , bN ) (either inputs to the circuit or
duplicates of NAND-gate output wires appearing multiple times as inputs
to other NAND-gates).

Argument:
1. Make restricted commitment (ca‖b, ĉa‖b, c̃a‖b) to (a1, . . . , aN , b1, . . . , bN).
2. Make restricted commitment (da‖b, d̂a‖b, d̄a‖b) to (a1, . . . , aN , b1, . . . , bN).
3. Make restricted commitment (cb‖a, ĉb‖a, c̃b‖a) to (b1, . . . , bN , a1, . . . , aN).
4. Make restricted commitment (cb‖0, ĉb‖0, c̃b‖0) to (b1, . . . , bN , 0, . . . , 0).
5. Make restricted commitment (cu‖r, ĉu‖r, c̃u‖r) to (u1, . . . , uN , r1, . . . , rN ).
6. Make restricted comm. (c−u‖0, ĉ−u‖0, c̃−u‖0) to (−u1, . . . ,−uN , 0, . . . , 0).
7. Show that ca‖b and da‖b contain the same values by giving a product

argument for ca‖b containing the entry-wise product of the values in∏2N
i=1 gi (a commitment to (1, . . . , 1, 1, . . . , 1)) and da‖b.

8. Show that a1, . . . , aN , b1, . . . , bN ∈ {−1, 1} by giving a product argument
for
∏2N

i=1 gi (a commitment to (1, . . . , 1, 1, . . . , 1)) containing the entry-
wise product of the values in ca‖b and da‖b.

9. Show that the values are internally consistent with the wires. The values
ai1 , . . . , ai�

, bj1 , . . . , bjm may for instance all correspond to the same wire.
Pick a permutation ρ ∈ S2N such that it contains cycles of the form
i1 → i2 → . . . → i� → j1 + N → j2 + N → . . . → jm + N → i1
for all sets of values corresponding to the same wire. Give a permutation
argument for ca‖b containing the ρ-permutation of the values in ca‖b. For
each set corresponding to the same wire, this shows ai2 = ai1 , . . . , bj1 =
ai�
, . . . , bjm = bjm−1 so the values must be the same.

10. Give a permutation argument for cu‖r and ca‖b showing that the
outputs values (u1, . . . , un) are consistent with the input values
(a1, . . . , aN , b1, . . . , bN ). (The (r1, . . . , rN ) values are the remaining N
values in (a1, . . . , aN , b1, . . . , bN) that correspond to duplicates of an out-
put wire or input wires to the circuit.

11. Give a permutation argument for cb‖a containing the swap of the values
in ca‖b.

12. Give a product argument for cb‖0 containing the entry-wise product of
the values in cb‖a and

∏N
j=1 gj(n+1) (contains (1, . . . , 1, 0, . . . , 0)).

13. Give a product argument for c−u‖0 containing the entry-wise product of
the values in cu‖r and

∏N
j=1 g

−1
j(n+1) (contains (−1, . . . ,−1, 0, . . . , 0)).
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14. Show the NAND-gates are respected by giving a product argument for
c−u‖0 containing the entry-wise product of the values in cb‖0 and da‖b.

The argument consists of the 6 knowledge commitments with correspond-
ing restriction arguments, the 5 product arguments and the 3 permutation
arguments given above. The total size is 42 group elements.

Verification: Accept the argument if and only if the 6 knowledge commitments
are well-formed, their corresponding restriction arguments are acceptable,
the 5 product arguments are acceptable and the 3 permutation arguments
are acceptable.

Theorem 5. The NIZK argument for circuit satisfiability is perfectly complete
and perfectly zero-knowledge. If the q-PKE and q-CPDH assumptions hold with
q = (4N2 + 6N − 2), then the NIZK argument is computationally sound.

The proof can be found in the full paper.
Arithmetic circuits. It is possible to adjust our NIZK argument to handle
arithmetic circuits consisting of addition and multiplications gates over Zp. The
commitment scheme is homomorphic so if we multiply two commitments we get
the sum of their values, which can be used to handle the addition gates. The
multiplication gates can be handled with our product arguments.

9 Reducing the Common Reference String

In the last section, we constructed constant size NIZK arguments. The common
reference string, however, grows quadratically in the size of the circuit. If the
NIZK argument is only used a few times the cost of setting up the common
reference string may be prohibitive. In this section, we will outline how to reduce
the size of the common reference string in return for increasing the size of the
argument. If the circuit has 2N = nd wires for some constant d ≥ 1 we get
a common reference string with O(n2) group elements and an NIZK argument
with O(nd−1) group elements. If we choose d = 3, the combined size of the CRS
and the NIZK argument is O(N2/3) group elements making both components
sub-linear in the circuit size.

The idea is to reduce the common reference string and let each commitment
hold fewer values. If we have a circuit with nd wires and a common reference
string of size q = n2 + 3n− 2 = O(n2), the set S̃ will permit the commitment of
n elements at a time. Each commitment is a constant number of group elements,
but now we use nd−1 commitments to commit to all the 2N = nd input values to
the gates. The product and permutation arguments are also of constant size, but
they only work on commitments to n values. If we look at our NIZK argument,
the product argument can be used on each of the nd−1 triples of commitments
containing n values each so there is no problem here. The permutation argument
is not useful though, because we need to permute 2N = nd committed values
spread across nd−1 commitments. The goal in this section is to build a permuta-
tion argument for two nd−1-tuples of commitments to a total of 2N = nd values
each. The permutation argument consists of O(nd−1) group elements and uses
the existing CRS consisting of O(n2) group elements.
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9.1 Permutation Argument Spanning Multiple Commitments

Consider two sets of n commitments c1, . . . , cn, d1, . . . , dn to values a11, . . . , ann

and b11, . . . , bnn. We will use a Clos-network [12] to give an argument for the two
sets of committed values being permutations of each other for a publicly known
permutation ρ ∈ Sn2 . The idea in a Clos network is to build large permutations
from smaller permutations. Consider a permutation ρ ∈ Sn2 . First we divide
the elements into n blocks of n elements and permute the elements within each
block. Next, we distribute the elements in each block evenly on n other blocks
giving us a new set of n blocks each containing one element from each of the
previous blocks. We permute the elements in each block again. Once again, we
distribute the elements in each block evenly on n new blocks. Finally, we permute
the elements within the last blocks to get the elements permuted in the desired
order. The permutations in the Clos network vary depending on ρ, whereas the
distributions between blocks are fixed and independent of ρ.

To give a permutation argument for {ci}i∈[n], {d}i∈[n] containing the same
values permuted according to ρ ∈ Sn2 the prover builds a Clos-network
for the permutation ρ. She constructs 4 sets of n intermediate commitments
{c′i}i∈[n], {vi}i∈[n], {v′i}i∈[n], {d′i}i∈[n] together with arguments of knowledge and
restriction arguments. Each commitment contains a block of n values in the mid-
dle stages of the Clos network. She uses the permutation argument from Section
7 to show that for all i ∈ [n] the pairs of commitments (ci, c′i), (di, d

′
i) and (vi, v

′
i)

contain the same elements in permuted order as dictated by ρ ∈ Sn2 . The re-
maining problem is to give an argument for having dispersed the values between
{c′i}i∈[n] and {vj}j∈[n] such that for each c′i the values have been dispersed to n
different vj ’s and to give a dispersion argument for having spread the values in
{v′i}i∈[n] to {d′j}j∈[n] such that for each v′i the n committed values have been dis-
persed to n different d′js. We present a dispersion argument in Section 9.2, which
uses the existing CRS consisting of O(n2) group elements and has an argument
size of O(n) group elements. Counting the cost of commitments, within-block
permutation arguments and the dispersion arguments, we get a total size of O(n)
group elements for proving that two sets of n commitments to n values each are
related by a publicly known permutation ρ ∈ Sn2 .

Once we have a permutation argument for n2 values spread over n commit-
ments, we can recursively get permutation arguments for larger permutations.
The cost for a permutation of nd elements spread over two sets of nd−1 commit-
ments is O(nd−1) group elements for any constant d.

9.2 Dispersion Argument

Consider a matrix of n2 values a11, . . . , ann. We can view commitments c1, . . . , cn
given by cj = grj

∏
i∈[n] g

aij

i as commitments to the columns of the matrix.
Similarly, we can view d1, . . . , dn given by di = gsi

∏
i∈[n] g

aij

j(n+1) as commitments
to the rows of the matrix. We give an argument for demonstrating that c1, . . . , cn
and d1, . . . , dn contain respectively the columns and the rows of the same n× n
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matrix. This means that for each cj the n committed values have been distributed
to n different commitments d1, . . . , dn.

To get some intuition for the construction consider first the simple case where
all the randomizers are 0. We then have

∏
j∈[n]

e(cj , gj(n+1)) =
∏

i∈[n]

(gi, di).

Taking discrete logarithms on both sides of the equation we get
∑
j∈[n]

∑
i∈[n]

aijx
j(n+1)+i =

∑
i∈[n]

∑
j∈[n]

bijx
j(n+1)+i,

which by Lemma 1 implies aij = bij for all i, j ∈ [n]. Due to the randomizers
this verification equation will not hold in general though. The prover therefore
constructs an argument (πL, πR, π̂L, π̂R, π̄L, π̃R) consisting of six group elements
such that the cross-terms arising from the randomizers cancel out.

Statement: Commitments c1, . . . , cn, d1, . . . , dn ∈ G.
Prover’s witness: Openings r1, . . . , rn, a11, . . . , ann, s1, . . . , sn, b11, . . . , bnn

∀i, j ∈ [n] : cj = grj

∏
i∈[n]

g
aij

i di = gsi

∏
j∈[n]

g
bij

j(n+1) aij = bij .

Argument: Pick t ← Zp at random and compute the argument
(πL, πR, π̂L, π̂R, π̄L, π̃R) as

πL = gt
∏

j∈[n]

g
−rj

j(n+1) πR = gt
∏

i∈[n]

g−si

i

π̂L = ĝt
∏

j∈[n]

ĝ
−rj

j(n+1) π̂R = ĝt
∏

i∈[n]

ĝ−si

i

π̄L = h̄t
∏

j∈[n]

h̄
−rj

j(n+1) π̃R = h̃t
∏

i∈[n]

h̃−si

i

Verification: Output 1 if and only if

e(g, π̂R) = e(πR, ĝ) e(g, π̃R) = e(πR, h̃) e(g, π̂L) = e(πL, ĝ)

e(g, π̄L) = e(πL, h̄) e(g, πL)
∏

j∈[n]

e(cj , gj(n+1)) = e(g, πR)
∏

i∈[n]

e(gi, di).

Theorem 6. The dispersion argument is perfectly complete and perfectly
witness-indistinguishable. If the q-CPDH assumption holds, a non-uniform prob-
abilistic polynomial time adversary has negligible chance of producing commit-
ments c1, . . . , cn, d1, . . . , dn and an accepting argument (πL, πR, π̂L, π̂R, π̄L, π̃R)
with corresponding openings of the commitments and the argument such that
c1, . . . , cn and d1, . . . , dn are commitments to two different matrices.

We refer to the full paper for the proof.
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Abstract. We show that probabilistically checkable proofs can be used
to shorten non-interactive zero-knowledge proofs. We obtain publicly ver-
ifiable non-interactive zero-knowledge proofs for circuit satisfiability with
adaptive and unconditional soundness where the size grows quasi-linearly
in the number of gates. The zero-knowledge property relies on the exis-
tence of trapdoor permutations, or it can be based on a specific number
theoretic assumption related to factoring to get better efficiency. As an
example of the latter, we suggest a non-interactive zero-knowledge proof
for circuit satisfiability based on the Naccache-Stern cryptosystem con-
sisting of a quasi-linear number of bits. This yields the shortest known
non-interactive zero-knowledge proof for circuit satisfiability.

Keywords: Non-interactive zero-knowledge proofs, adaptive soundness,
probabilistically checkable proofs, Naccache-Stern encryption.

1 Introduction

Zero-knowledge proofs introduced by Goldwasser, Micali and Rackoff [GMR89]
are interactive protocols that enable a prover to convince a verifier about the
truth of a statement without leaking any information but the fact that the
statement is true. Blum, Feldman and Micali [BFM88] followed up by introducing
non-interactive zero-knowledge (NIZK) proofs where the prover outputs just
one message called a proof, which convinces the verifier of the truth of the
statement. The central properties of zero-knowledge proofs and non-interactive
zero-knowledge proofs are completeness, soundness and zero-knowledge.

Completeness: If the statement is true, the prover should be able to convince
the verifier.

Soundness: A malicious prover should not be able to convince the verifier if
the statement is false.

Zero-knowledge: A malicious verifier learns nothing except that the statement
is true.

In this paper, we focus on the NP-complete language of circuit satisfiability,
which is the most widely studied language in the context of non-interactive zero-
knowledge proofs. The statement is a binary circuit C and a claim that there
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exists an input, a witness w, such that the circuit outputs 1 when evaluated on
w. The prover has the witness w as a private input, while the statement C is
public and known both to the prover and the verifier.

Only languages in BPP have non-interactive zero-knowledge proofs in the
plain model without any setup [Ore87, GO94, GK96]. Blum, Feldman and Mi-
cali [BFM88] therefore suggested the common reference string model, where the
prover and the verifier have access to a trusted bit-string. The common reference
string can for instance be generated by a trusted third party or by a set of parties
executing a multi-party computation protocol. Groth and Ostrovsky [GO07] has
as an alternative suggested NIZK proofs in the multi-string model, where many
parties generate a random string and the security of the NIZK proof relies on a
majority of the strings being honestly generated. In this paper, we work in the
common random string model, where the common reference string is a trusted
uniformly random bit-string.

NIZK proofs have many applications, ranging from early chosen-ciphertext
secure public-key cryptosystems [DDN00, Sah01] to recent advanced signature
schemes [BW06, CGS07]. They have therefore been studied carefully in the lit-
erature. Blum, Feldman and Micali [BFM88] proposed an NIZK proof for all of
NP based on a number theoretic assumption related to factoring. Feige, Lapidot
and Shamir [FLS99] gave an NIZK proof for all of NP based on the existence
of trapdoor permutations. While these results established the existence of NIZK
proofs based on general assumptions, other works [Dam92, DDP02, KP98] have
aimed at reducing the complexity of NIZK proofs. Gentry’s fully homomorphic
cryptosystem based on lattices can reduce the complexity of an NIZK to grow
linearly in the witness size as opposed to the circuit size [Gen09]. Groth, Os-
trovsky and Sahai [GOS06b, GOS06a, Gro06, GS08] have constructed highly
efficient NIZK proofs using techniques from pairing-based cryptography.

1.1 Our Contribution

We construct NIZK proofs for circuit satisfiability with a size that grows quasi-
linearly in the size of the circuit. Our NIZK proofs have perfect completeness,
statistical soundness, and computational zero-knowledge. The zero-knowledge
property of the NIZK proofs can be based on trapdoor permutations or for
higher efficiency on the semantic security of the Naccache-Stern cryptosystem
based on higher residues [NS98].

The Naccache-Stern cryptosystem is based on a decisional assumption in RSA-
type groups, which predates but is otherwise incomparable to the decisional
assumptions used in pairing-based NIZK proofs. Surprisingly, the construction
based on the Naccache-Stern cryptosystem has better asymptotic efficiency than
the recent pairing-based NIZK proofs for circuit satisfiability [GOS06b, GOS06a,
GS08] (although pairing-based NIZK proofs remain more efficient for practical
purposes due to the large constants involved in our construction). With pairing
group elements of size kG and a circuit size that is polynomial in the security
parameter k we get an asymptotic improvement over pairing-based NIZK proofs
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Table 1. Comparison of NIZK proofs for security parameter k, circuit size |C| =
kO(1), witness size |w|, trapdoor permutations over {0, 1}kT , and pairing group size kG

(usually kG ≈ k3 for 2−k security [GPS08])

CRS size Proof size Assumption

Kilian-Petrank [KP98] ω(|C|kT k log k) ω(|C|kT k log k) trapdoor perm.
This work |C|kT logc(k) + poly(k) |C|kT logc(k) + poly(k) trapdoor perm.

Gentry [Gen09] poly(k) |w|poly(k) lattice-based
GOS [GOS06b] Θ(kG) Θ(|C|kG) pairing-based
This work |C| logc(k) + poly(k) |C| logc(k) + poly(k) Naccache-Stern

of a multiplicative factor kG

polylog(k) . This brings the NIZK proof size within a
polylog(k) factor of the size of the circuit itself.

In Table 1, we compare our NIZK proofs with the current state of the art
NIZK proofs for circuit satisfiability based on respectively trapdoor permutations
[KP98] and specific number theoretic assumptions [GOS06b, GOS06a]. All of
these NIZK proofs have an efficient (probabilistic polynomial time) prover and
they are all publicly verifiable.

Soundness and zero-knowledge can be adaptive or non-adaptive. In non-
adaptive soundness and zero-knowledge, the statement to be proven is chosen
independently of the common reference string. Usually, NIZK proofs are used in
a context where the common reference string is publicly available though, and it
is therefore unreasonable to assume the statement is independent of the common
reference string.1 Adaptive soundness and adaptive zero-knowledge refers to the
more realistic setting, where NIZK proofs need to be sound and zero-knowledge
even when the common reference string is publicly available and the statement
may depend on the common reference string. Our NIZK proofs are both adap-
tively sound and adaptively zero-knowledge, and in Table 1 we have compared
the schemes in the efficient prover, adaptive soundness setting.

1.2 New Techniques

PCPs in NIZK. Probabilistically checkable proofs (PCPs) [AS98, ALM+98,
Din07] are proofs for a statement that can be verified by reading a few bits in the
proof instead of reading the whole proof. A PCP for a circuit being satisfiable will
be larger thanthecircuit itself; however, oneonlyneeds to reada fewbits of theproof
to getmore than 50% chance of detecting an attempt to prove a false statement. By
reading more bits, we can get exponentially small risk of wrongly being convinced
by the PCP.

PCPs have been very useful in the context of zero-knowledge arguments. Kil-
ian [Kil92] for instance suggested a sub-linear size zero-knowledge argument,
where the prover commits to the bits of a PCP and the verifier asks the prover
to reveal the content of a few of these commitments.
1 We have a hard time thinking of any applications where non-adaptive soundness

suffices, while non-adaptive zero-knowledge sometimes may be useful.
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We use PCPs in a different way. In our NIZK proofs the prover will prove
that all queries to the PCP have satisfactory answers. At first sight this may
seem counterintuitive; the PCP will be larger than the statement itself and it is
odd that increasing the statement size would help us in shortening the size of
the NIZK proofs. Using a PCP for the statement, however, has the advantage
that the verifier can grant the malicious prover a non-trivial chance of falsely
answering some of the queries, as long as there are other queries where he will
detect the attempt to cheat. This stands in contrast to traditional NIZK proofs,
where the verifier needs high certainty for every single part of the statement
being correct.

To illustrate our technique, consider an NIZK proof such as Kilian-Petrank
[KP98]. They first reduce circuit satisfiability to 3SAT5; where each clause has
three variables and each variable appears in at most 5 clauses. By choosing
a trapdoor permutation and revealing hard-core bits related to the common
reference string, the prover can demonstrate that each clause is satisfied. There
is a risk of error though, and the prover therefore needs to repeat the proof many
times for each clause to increase the soundness guarantee.

Our idea is to use a PCP in a pre-processing step before applying the tech-
niques of Kilian and Petrank. The effect of the PCP (see Section 3) is to increase
the gap between satisfiable and unsatisfiable statements. In a standard 3SAT5
statement there are unsatisfiable statements where all but one clause can be
satisfied. With the PCP, however, we can ensure that either all clauses can be
satisfied or alternatively a constant fraction of the clauses are unsatisfied. The
advantage over Kilian and Petrank’s NIZK proof is that now we have resilience
towards errors in individual clauses. Even if a malicious prover succeeds in falsely
creating NIZK proofs for some of the clauses being satisfied, we still get sound-
ness as long as this only happens for a small constant fraction of clauses. We
can therefore avoid the repetition of proofs that Kilian and Petrank needed.

Implementing a Hidden Random String. We construct our NIZK proofs
in two steps. We use cryptographic techniques to convert the common reference
string into a hidden string of random bits, where the prover may selectively
disclose some of the bits and keep other bits secret. We then construct NIZK
proofs that assume the existence of a string of hidden bits, where the prover may
keep some of them secret and reveal others to the verifier.

Feige, Lapidot and Shamir [FLS99] suggested the following way of implement-
ing the hidden bits model. When working with trapdoor permutations, we can
interpret the common reference string as a string of images of the trapdoor
permutation. The hidden random bits are hardcore bits of the pre-images. The
prover may with the knowledge of the trapdoor learn all the hidden random bits.
By revealing a pre-image to the trapdoor permutation, she can disclose the value
of a particular hidden random bit. This is a costly approach, however, since we
only get one hidden random bit per trapdoor permutation image. In general, the
common reference string has to be a factor kT larger than the hidden random
string, where kT is the size a trapdoor permutation value.
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The second contribution of this paper is using the Naccache-Stern cryptosys-
tem [NS98] to reduce the cost of implementing the hidden bits model. We in-
terpret the common reference string as a series of ciphertexts, but with the
Naccache-Stern cryptosystem each ciphertext may hold many hardcore bits. The
message space is of the form ZP , where P =

∏n
i=1 pi is a product of small primes

of size log k. We will show that with the Naccache-Stern cryptosystem, it is possi-
ble to disclose the plaintext modulo pi without revealing the rest of the plaintext.
This means that we can have Ω( kG

log k ) hidden random bits in each ciphertext,
giving a common reference string that is only a factor O(log k) larger than the
hidden random string.

Combining PCPs and the Naccache-Stern cryptosystem, we get the asymp-
totically shortest known NIZK proofs for circuit satisfiability consisting of a
quasi-linear number of bits.

1.3 Overview

We construct NIZK proofs for circuit satisfiability in three steps. In Section 3 we
describe how a PCP can be used to convert the circuit into a Gap-3SAT5 formula,
where either all clauses are satisfiable or alternatively there are at least a constant
fraction of unsatisfiable formulae. In Section 4 we construct an NIZK proof in the
hidden bits model, where it is assumed that the prover has access to a string of
uniformly random bits and may reveal an arbitrary subset of these bits and their
positions to the verifier. Finally, in Sections 5 and 6 we show how to implement
the hidden bits model under the general assumption of the existence of trapdoor
permutations and more efficiently under a concrete number theoretic assumption
related to factoring. The two main contributions of the paper are the conceptual
idea of using PCPs in a preprocessing step as described in Section 3 and the intro-
duction of a new technique for efficiently implementing the hidden random bits
model using the Naccache-Stern cryptosystem described in Section 6.

2 Preliminaries

Notation. Given two functions f, g : N → [0, 1] we write f(k) ≈ g(k) when
|f(k) − g(k)| = O(k−c) for every constant c > 0. We say that f is negligible if
f(k) ≈ 0 and that f is overwhelming if f(k) ≈ 1.

We write y = A(x; r) when the algorithm A on input x and randomness
r, outputs y. We write y ← A(x) for the process of picking randomness r at
random and setting y = A(x; r). We also write y ← S for sampling y uniformly
at random from the set S. We will for convenience assume uniform random
sampling from various types of sets is possible; there are easy ways to amend
our protocols to the case where the sets are only sampleable with a distribution
that is statistically close to uniform.
NIZK proofs. Let R be a polynomial time computable binary relation. For
pairs (C,w) ∈ R we call C the statement and w the witness. Let L be the NP-
language consisting of statements with witnesses in R. In this paper, we will
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focus on the case where the statements are circuits and L is the language of
satisfiable circuits, i.e., where there exists an input w so C(w) = 1. The size of
the NIZK proofs will depend on the size of the statement. We will write Ln for
the language of satisfiable circuit consisting of n binary gates and write Rn for
the corresponding relation.

An efficient-prover non-interactive proof for the relation R consists of three
probabilistic polynomial time algorithms (K,P, V ). K is the common reference
string generator that takes the security parameter written in unary 1k and an
intended statement size n as input and outputs a common reference string σ of
length Ω(k). P is the prover algorithm that takes as input the common reference
string σ, a statement C and a witness w so (x,w) ∈ R and outputs a proof π. V
is the verifier algorithm that on a common reference string σ, a statement C and
a proof π outputs 0 or 1. We interpret a verifier output of 0 as a rejection of the
proof and a verifier output of 1 as an acceptance of the proof. We call (K,P, V ) a
non-interactive proof system for R it is complete and sound as described below.

Perfect completeness. Completeness means that a prover with a witness
can convince the verifier. For all adversaries A and n = kO(1) we have

Pr
[
σ ← K(1k, n); (C,w)← A(σ);π ← P (σ,C,w) : V (σ, C, π) = 1 if (C,w) ∈ Rn

]
= 1.

Statistical soundness. Soundness means that it is impossible to convince the
verifier of a false statement. For all non-uniform polynomial time adversaries A
and n = kO(1) we have

Pr
[
σ ← K(1k, n); (C, π)← A(σ) : C /∈ Ln and V (σ,C, π) = 1

]
≈ 0.

Computational zero-knowledge. A non-interactive argument (K,P, V ) is
computationally zero-knowledge if it is possible to simulate the proof of a true
statement without knowing the witness. Formally, we require the existence of
a probabilistic polynomial time simulator S = (S1, S2). S1 outputs a simulated
common reference string σ and a simulation trapdoor τ . S2 takes the simulation
trapdoor and a statement as input and produces a simulated proof π. We require
for all non-uniform polynomial time stateful interactive adversaries A and n =
kO(1) that

Pr
[
σ ← K(1k, n); (C,w)← A(σ);π ← P (σ,C,w) : (C,w) ∈ Rn and A(π) = 1

]

≈ Pr
[
(σ, τ )← S1(1

k, n); (C,w)← A(σ);π ← S2(τ, C) : (C,w) ∈ Rn and A(π) = 1
]
.

3 Preprocessing with Probabilistically Checkable Proofs

We start by giving a polynomial time reduction f from circuit satisfiability to
Gap-3SAT5. The reduction f takes as its input a circuit with n binary gates
and outputs a 3SAT formula with N = n polylog n variables and 5

3N clauses.
The 3SAT formula, will be such that each variable appears exactly 3 times as a
positive literal and 2 times as a negative literal. If the input of f is a satisfiable
circuit C, it will output a satisfiable 3SAT5 formula φ = f(C). If the circuit
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C is unsatisfiable, the reduction f will output a formula φ = f(C) such that
all assignments have at least αN unsatisfied clauses for some constant α > 0.
We also need a polynomial time witness-reduction fw, which on input C,w such
that C(w) = 1 outputs a satisfying assignment fw(C,w) for the 3SAT5 formula
φ = f(C).

The first step in our reduction is to map the circuit C to a constraint graph
G(C) with the following properties. The vertices of the constraint graph G may
be assigned values from a constant size alphabetΣ, but each edge between two ver-
tices describes a constraint on the values that they may be assigned. When start-
ing with a satisfiable circuit, the output is a satisfiable constraint graph. However,
on an unsatisfiable circuit the output is an unsatisfiable constraint graph where
any assignment violates at least a α0-fraction of the constraints for some constant
α0 > 0. The polynomial time assignment tester [DR04] given by Dinur [Din07] in
her proof of the PCP theorem has the properties described above. Moreover, given
a witness for the satisfiability of the circuit C, we may in polynomial time com-
pute a satisfying assignment for the constraint graphG(C). Dinur’s most efficient
assignment tester building on work by Ben-Sasson and Sudan [BSS08] outputs a
constraint graph G(C) with n polylog n vertices and edges.

Given a constraint graph G over a constant size alphabet Σ, we assign a
constant number of binary variables to each vertex such that it is possible to
represent any element from the alphabetΣ. Each constraint between two vertices
is of constant sizeΣ2 and we can therefore write out a constant size 3SAT formula
describing the constraint. Taking the conjunction of all these 3SAT formulas, we
reduce the constraint graph to a 3SAT formula with n polylog n variables and
clauses. A satisfying assignment for the constraint graph gives us a satisfying
assignment to the 3SAT formula. Since each vertex has a constant number of
variables associated with it, and each constraint has a constant number of clauses
associated with it, a constraint graph with a constant fraction α0 of unsatisfiable
constraints reduces to a 3SAT formula with a α1 fraction of unsatisfiable clauses
for some constant α1 > 0.

Finally, we reduce the 3SAT formula to a 3SAT5 formula where each variable
appears in the clauses as exactly 5 literals and each clause has exactly 3 literals.
First we copy clauses and variables so each clause has exactly 3 literals and each
variable appears at least 3 times. Then the 	 appearances of a variable as a pos-
itive literal xi or a negative literal ¬xi are replaced with copies xi1, . . . , xi�. For
each copy we add 4 clauses for consistency in the truth value assignment with
the predecessor xi,j−1 mod � and the successor xi,j+1 mod � according to whether
the original variable appeared as a positive or negative literal. In these consis-
tency clauses the copy appears twice as a negative literal and twice as a positive
literal, so all copies appear as exactly 3 positive literals and 2 negative literals in
the resulting 3SAT5 formula. This is a linear size reduction, so we end up with
n polylog n variables and clauses. A satisfying assignment for the 3SAT formula
gives us a satisfying assignment for the resulting 3SAT5 formula. A 3SAT for-
mula with a constant fraction α1 of unsatisfiable clauses, gives a 3SAT5 formula
with a α fraction of unsatisfiable clauses for some constant α > 0.
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In summary, there is a pair of polynomial time algorithms (f, fw) and a con-
stant α > 0 so:

Reduction: f takes input a circuit C with n gates and outputs a 3SAT5 formula
f(C) with N = n poly log n variables. Each variable appears as 3 positive
literals and 2 negative literals, and each clause has exactly 3 literals. If C is
satisfiable, then f(C) is satisfiable. If C is unsatisfiable, then all assignments
to the variables of f(C) leave at least αN clauses unsatisfied.

Witness-preservation: fw takes as input a circuit C with n gates and a wit-
ness for C being satisfiable and outputs a truth value assignment satisfying
the 3SAT5 formula f(C).

4 NIZK Proofs in the Hidden Bits Model

We will now give an NIZK proof in the hidden-bits model for Gap-3SAT5-
satisfiability. The ideas in this section are quite similar to Kilian and Petrank
[KP98], although our setting allows us to simplify their scheme.

Let LN be the language of satisfiable 3SAT5 formulae with N variables and
5
3N clauses, where each variable appears as 3 positive literals and 2 negative
literals. Let RN be the corresponding relation of formulae and satisfying as-
signments. Further, define Lα

N as the language of formulae in LN that have a
truth-value assignment to the variables that leaves at most αN clauses unsatis-
fied. We will be interested in a hidden-bits NIZK proof (	H(N), PH , VH) for R
with perfect completeness, (α, εH(N))-soundness, and perfect zero-knowledge as
described below.

Perfect completeness. For all N ∈ 3N and all (φ,w) ∈ RN we have

Pr
[
ρ← {0, 1}�H (N); (i1, . . . , it)← PH(ρ, φ,w) : VH(φ, i1, ρi1 , . . . , it, ρit) = 1

]
= 1.

Statistical soundness. For all N ∈ 3N and all adversaries A

Pr
[
ρ← {0, 1}�H(N); (φ, i1, . . . , it)← A(ρ) :

φ /∈ Lα
N and VH(φ, i1, ρi1 , . . . , it, ρit) = 1

]
≤ εH(N).

Perfect zero-knowledge. There exists a probabilistic polynomial time sim-
ulator SH such that for all N ∈ 3N and all (φ,w) ∈ RN the distribution

{ρ← {0, 1}�H(N); (i1, . . . , it)← PH(ρ, φ, w) : (i1, ρi1 , . . . , it, ρit)}

is identical to the distribution

{(i1, ρi1 , . . . , it, ρit)← SH(φ) : (i1, ρi1 , . . . , it, ρit)}.
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4.1 Hidden-Bits NIZK Proof for Gap-3SAT5

Let φ be a 3SAT5 formula with N variables and 5
3N clauses, where each variable

appears exactly thrice as a positive literal xi and twice as a negative literal ¬xi

in the clauses. The verifier has the promise that either there is an assignment to
the variables so all clauses are satisfied, or all assignments of truth values to the
variables lead to more than αN unsatisfied clauses. The prover has a satisfying
assignment and wants to give an NIZK proof in the hidden bits model for φ
being satisfiable.

We first sketch the NIZK proof and then afterwards explain the main ideas
in the construction. There is some freedom in the choice of parameters; for
concreteness we suggest a = � 8

α�, b = �logN�, Δ = � N
log N �.

Statement: A 3SAT5 formula φ ∈ LN .
Prover’s input: A string ρ of 6a26a(bN + Δ) hidden bits. A truth-value as-

signment to the variables x1, . . . , xN so φ(x1, . . . , xN ) = 1.
Proof:

1. Interpret the hidden bits as 6a26a−1(bN +Δ) consecutive pairs of bits.
Each pair of bits is interpreted as one of three possible characters ac-
cording to the following scheme

00 = 0 01 = W 10 = W 11 = 1.

Later the prover may reveal one of the bits in a character. In a wildcard
character W the prover can reveal either 0 or 1, whereas 0 can only be
revealed as 0 and 1 can only be revealed as 1.

2. Interpret the characters as 26a−1(bN + Δ) consecutive 6a-character
blocks. Call a block good if it has exactly 3a W-characters and they
are either all in the first half of the block or all in the second half of the
block. Otherwise, call the block bad.

3. A block has 21−6a chance of being good, so we expect on average (bN +
Δ) good blocks. If the number of good blocks is outside the interval
[bN ; bN + 2Δ] reveal all hidden bits and halt.

4. Reveal to the verifier all the hidden bits associated with bad blocks.
5. Assign the first b good blocks to the first variable, etc., so each variable

has b blocks assigned to it. The remaining good blocks will not be used.
6. Interpret each good block as a set of 6 consecutive a-character strings

(see examples in Figure 1). Assign in the order of appearance, 5 of these
a-character strings to the 5 appearances of their variable xi in the clauses
as follows. If the witness has xi = 1, assign the 3 wildcard strings to the
3 appearances of xi, and the first 2 0/1-strings to the 2 appearances of
¬xi. If the witness has xi = 0, assign the first 2 wildcard strings to the
2 appearances of ¬xi and the 3 0/1-strings to the 3 appearances of xi.
Taking all good blocks into account, each appearance of xi or ¬xi has b
a-character strings assigned to it.

7. Each clause has 3 literals, and each literal has a corresponding tuple
of b a-character strings. Pick at random a literal for which the b a-
character strings only contain wildcard characters. Such a literal must
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exist since the clause is satisfied by the truth-value assignment. For the
other two literals reveal a random bit in each character’s bit pair, thereby
revealing two ab-bit strings. In the remaining wildcard literal, reveal in
each wildcard character one of the bits, such that the revealed ab-bit
string is the exclusive-or of the two other ab-bit strings.

8. The proof consists of the revealed bits. If the number of good blocks is
outside the interval [bN ; bN+2Δ] the proof reveals all hidden bits. Else,
the proof reveals the hidden bits of the bad blocks and a 5

12 -fraction of
the hidden bits in the first bN good blocks.

Verification:
1. If the proof reveals all hidden bits, return 1 if the number of good blocks

is outside the range [bN ; bN + 2Δ] and else return 0.
2. Verify that there are no good blocks among the blocks where all bits

have been revealed.
3. Verify that there are at most bN + 2Δ blocks where some of the bits

remain hidden. Associate the first bN blocks with the variables in the
order of appearance.

4. Verify that in each of the bN blocks corresponding to variables, exactly
5 of the 6 a-character strings have one revealed bit in each character.
Verify also that in each block either the last a-character string in the
first half of the block, or the last a-character string in the second half of
the block has no revealed bits. Based on this, each revealed a-bit string
can be uniquely associated with a corresponding literal in a clause.

5. For each clause, verify that the exclusive-or of the two first ab-bit strings
corresponding to the first 2 literals equals the ab-bit string corresponding
to the third literal.

6. Return 1 if all verifications passed, else return 0.

In the first step, note that there is 50% chance that a character is a wildcard
and 50% chance that it is a 0 or a 1. Later, the prover will open some of the
characters by revealing one of the bits. Wildcards can be opened as 0 or 1,
whereas 0 can only be opened as 0 and 1 can only be opened as 1. The prover
sets up the strings so wildcards correspond to true literals and non-wildcards
correspond to false literals. In satisfied clauses there is a true literal, which can
be opened at will. This is what gives the prover with a satisfying assignment the
power to convince the verifier. On the other hand, in an unsatisfied clause there
will only be non-wildcard characters associated with the false literals, which will
reduce the power of the prover and make it hard to convince the verifier of a
false statement. Finally, for zero-knowledge we can set more of the characters to
be wildcard characters. This will make it possible to simulate a proof without
knowing a satisfying truth assignment for the statement.

We interpret the string of characters as blocks of 6a characters. There will be
an expected number of bN +Δ good blocks. We can use Chernoff-bounds to see
that there is high probability that most of the hidden blocks that have not been
revealed are indeed good blocks. The point of sampling good blocks is that they
represent a consistent view of a variable. All true literals are assigned wildcard
strings, all false literals are assigned non-wildcard string.
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010 . . . 101 100 . . . 011 010 . . . 110 WW . . .W WW . . .W WW . . .W

WW . . .W WW . . .W WW . . .W 010 . . . 110 000 . . . 111 100 . . . 101

Fig. 1. Two examples of good blocks

The important thing to note is that with wildcard string, the prover may open
the true literals to any a-bit string. For the false literals, however, the prover
is bound to a particular a-bit string. We require that in each clause, the prover
should open 3 a-bit strings, such that they exclusive-or to 0. In clauses with a true
literal this is easy to accomplish, since the prover may open the corresponding
wildcard string to any a-bit string. This gives us completeness. In unsatisfied
clauses, however, the prover has 3 fixed a-bit strings and the probability of their
exclusive-or being 0 is 2−a. For each unsatisfied clause, we therefore get a good
chance of catching a cheating prover.

We have now described the main idea in the construction. The prover has
some degrees of freedom in choosing the statement, taking advantage of a few
bad blocks that may be camouflaged as good blocks, etc. However, by repeating
the proof b times in parallel and using the fact that for unsatisfiable statement
there is actually a constant fraction of unsatisfied clauses no matter what the
truth assignment is, we can ensure that a cheating prover still has very small
chance of convincing the verifier on a false statement.

Theorem 1. For sufficiently large N the protocol given above is a hidden-bits
NIZK proof for 3SAT5 with perfect completeness, (α, 2−

N
6 log3 N )-soundness and

perfect zero-knowledge with a hidden string of size 	H(N) = O(N logN).

We refer to the full paper for a proof.

5 Implementing the Hidden Bits Proof with Trapdoor
Permutations

Trapdoor permutations. We will now implement the hidden bits NIZK
proof using trapdoor permutations. A trapdoor permutation is a triple of al-
gorithms (KT, F, F

−1). KT generates a public key pk, which we for convenience
will assume has k bits, and a secret key sk for the trapdoor permutation. Fpk

and F−1
sk are efficiently computable permutations of k-bit strings, such that

Fpk(F−1
sk (y)) = y. We will assume it is hard to compute F−1

sk without knowl-
edge of sk. All trapdoor permutations can easily be converted into trapdoor
permutations with a hardcore predicate [GL89] so we will assume the existence
of a hardcore predicate B for the trapdoor permutation. If y ← {0, 1}k is chosen
uniformly at random then B(F−1

sk (y)) is uniformly random in {0, 1} and given
only (pk, y) it is computationally hard to decide B(F−1

sk (y)).
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Implementing the hidden bit string. To implement a hidden bit string
with N ′ random bits, we generate a common reference string σ consisting of
k(4N ′ + 4Δ′) uniformly random bits. There is a range of choices of Δ′, for
the sake of concreteness let us say Δ′ = �(N ′) 3

4 �. The prover picks a trapdoor
permutation and interprets σ as 4N ′+4Δ′ images of the trapdoor permutation.
This gives the prover 4N ′+ 4Δ′ secret hardcore bits. The prover can selectively
open some of the hardcore bits by computing the corresponding preimages and
giving them to the verifier. This idea first described in [FLS99] indicates how we
can generate hidden random bits that the prover can see and selectively disclose
to the verifier.

Our hidden bits proof has perfect zero-knowledge if the simulator can choose
the hidden bits itself. Once a trapdoor permutation has been chosen we cannot
alter the preimages though so we have not yet implemented the hidden bits
model in the adaptive zero-knowledge sense. The problem is that the common
reference string is chosen before the adversary picks the statement and therefore
the simulator needs to get hidden bits out of the simulated common reference
string that can be revealed as both 0 and 1 depending on what is needed in the
simulation. Our solution is to interpret pairs of hardcore bits as hidden bits as
follows:

00 = 0 01 = S 10 = S 11 = 1.

The prover reveals a hidden bit by revealing one of the two preimages associated
with it. This means it is bound to open 0 as 0 and open 1 as 1, but it can open
a soft bit S as either 0 or 1. In the zero-knowledge simulation, we will set up the
common reference string such that all hidden bits are soft. When all hidden bits
are soft, the zero-knowledge simulator can open them as it likes and simulate
the hidden bits proof.

When half the hidden bits are soft we have to be careful to preserve soundness
though. We therefore require that the prover reveals the preimages corresponding
to soft hidden bits. On average the prover should reveal N ′+Δ′ soft hidden bits;
and the verifier checks that at last N ′ soft hidden bits are revealed. This leaves
the prover with approximately N ′ hidden bits, which mostly will be hard hidden
bits which can only be opened as 0 or only be opened as 1. Soundness will now
follow from the fact that most of the remaining hidden bits are uniformly random
hard bits.

NIZK proof. We will now give the full NIZK proof for circuit satisfiability.
The statement will be a circuit C and the prover will have a satisfying witness
w so C(w) = 1. We have to be careful that the prover chooses a well-formed
public key for the trapdoor permutation and will therefore use an NIZK proof
(	well, Pwell, Vwell) for well-formedness. This NIZK proof could for instance be
Kilian and Petrank’s original NIZK proof [KP98], which would have a cost of
poly(k) bits. Alternatively, we could assume the existence of certifiable trapdoor
permutations where the well-formedness of the public key is directly verifiable.
Or we could use Bellare and Yung’s [BY92] method of sampling preimages to
show that the public key describes a function close to a trapdoor permutation and
then give a more careful probability analysis that deals with the small statistical
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bias this might introduce in the hidden bits. We will in the following let N ′ =
O(N logN) = n polylog(n) be the number of bits needed in the hidden bits
model for circuits with n gates.

CRS: σ = (σ1,1, . . . , σ2N ′+2Δ′,2, σwell)← {0, 1}k(4N ′+4Δ′)+�well(k).
Proof:

1. Generate keys for the trapdoor permutation (pk, sk)← KT(1k).
2. Compute an NIZK proof πwell for pk being a valid public trapdoor per-

mutation key.
3. Compute the hardcore bits h1,1, h1,2, . . . , h2N ′+2Δ′,1, h2N ′+2Δ′,2 as hi,j =
B(F−1

sk (σi,j)).
4. If there are less than N ′ pairs or more than N ′+ 2Δ′ pairs where hi,1 =
hi,2 return the proof (pk, πwell, F

−1
sk (σ1,1), . . . , F−1

sk (σ2N ′+2Δ′,2) and halt.
5. For each pair hi,1 	= hi,2 include preimages πi,1 = F−1

sk (σi,1) and πi,2 =
F−1

sk (σi,2) in the proof.
6. Let ρ = (ρ1, . . . , ρN ′) be the values of the first N ′ remaining pairs of

hardcore bits.
7. Run the hidden bit string proof on ρ to get πH ← PH(ρ, f(C), fw(w)).
8. For all revealed bits ρi in the hidden bits proof πH corresponding to

hardcore bits hj,1 = hj,2 choose at random to include either πj,1 =
F−1

sk (σj,1) or πj,2 = F−1
sk (σj,2) in the proof.

The proof is of the form (pk, πwell, πi1,j1 , . . . , πit,jt).
Verification:

1. Verify the NIZK proof πwell for pk being a correctly generated public
trapdoor permutation key.

2. Verify the correctness of all the preimages σi,j = Fpk(πi,j).
3. Compute the corresponding hardcore bits hi,j = B(πi,j).
4. If all hardcore bits have been revealed, verify that there are less than N ′

or more than N ′ + 2Δ′ pairs hi,1 = hi,2 and accept if all verifications
have succeeded.

5. Verify that all revealed pairs of hardcore bits have hi,1 	= hi,2 and that
there are between N ′ and N ′ + 2Δ′ pairs left in which at most one
hardcore bit has been revealed.

6. Interpret the remaining hardcore bits as indices and revealed bits as a
hidden bits proof (i1, ρi1 , . . . , it, ρit) and accept if all verifications have
succeeded and VH(f(C), i1, ρi1 , . . . , it, ρit) = 1.

The construction leads to the following theorem that we prove in the full paper.

Theorem 2. Assuming the existence of trapdoor permutations on {0, 1}k with
k-bit keys there is an NIZK proof for circuit satisfiability with perfect complete-
ness, statistical soundness and computational zero-knowledge. The size of the
common reference string and the NIZK proof is |C| polylog |C| ·k+poly(k) bits.
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6 Implementing the Hidden Bits Proof with
Naccache-Stern Encryption

Naccache-Stern encryption. The Naccache-Stern cryptosystem based on
higher residues [NS98] has message space ZP where P is a product of small
primes. We will show how to reveal the plaintext modulo a small prime factor pi

without revealing the rest of the plaintext. Interpreting even numbers as 0, odd
numbers as 1, and pi−1 as “ignore” we get a uniform distribution of hardcore bits
modulo pi assuming the Naccache-Stern encryption is semantically secure. With
Naccache-Stern’s cryptosystem having constant expansion rate and each prime
factor of the message space being of logarithmic size in the security parameter
we can construct a hidden random bits implementation that is quasi-linear in
the number of hidden bits.

In the Naccache-Stern cryptosystem the public key is of the form pk =
(M,P, g), where M is a k-bit RSA modulus, P is a product of small odd
primes p1, . . . , pd so gcd(8P 2, ϕ(M)) = 4P , and g ∈ Z

∗
M is a group element with

ord(g) = ϕ(M)
4 . The secret key is sk = ϕ(M). Encrypting a message m ∈ ZP

with randomness r ← Z
∗
M yields the ciphertext

c = gmrP mod M.

To decrypt a ciphertext c, compute c
ϕ(M)

P = (g
ϕ(M)

P )m and use the Pohlig-
Hellman algorithm for finding discrete logarithms in groups with a smooth order
to compute m mod P .

The cryptographic assumption underlying our NIZK proof is that there is a
probabilistic polynomial time key generator KNS for generating Naccache-Stern
keys (pk, sk) such that the cryptosystem is IND-CPA secure and the number
of small prime factors in P is larger than β k

log k for some constant β > 0. We
refer to Naccache and Stern [NS98] for concrete key generator suggestions and a
proof that the resulting cryptosystem is IND-CPA secure under a computational
intractability assumption related to higher residues.

Opening and simulating openings of hardcore bits. In the implemen-
tation of the Naccache-Stern cryptosystem, the prover will generate Naccache-
Stern keys pk = (M,P, g) and sk = ϕ(M). The random string is interpreted
as a series of k-bit integers where those outside Z

∗
M are ignored. An integer

in Z
∗
M can be interpreted as a ciphertext encrypting some message m mod P

where P =
∏t

i=1 pi. Since there are d = � βk
log k � prime factors in P , this gives the

prover d residues {m mod pi}di=1, each of which is translated into a hardcore bit.
The prover will use the first N ′ hardcore bits as the hidden bit string and since
she gets Θ( k

log k ) bits per element in Z
∗
M she only looses a logarithmic factor in

implementing the hidden bit string.
The key observation needed for using Naccache-Stern encryption in this way

is that the prover may verifiably disclose mi = m mod pi without revealing the
other parts of the message. Consider a particular k-bit block c ∈ Z

∗
M , which the

prover can decrypt to get the plaintext m ∈ ZP . All c ∈ Z
∗
M are valid cipher-

texts but there are P different r ∈ Z
∗
M so c = rP gm so we will for notational
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convenience fix an arbitrary such r in the following. To prove mi = m mod pi is
indeed part of the plaintext the prover gives a proof π satisfying

πP = (cg−mi)
P
pi .

Raising both sides to the power φ(M)
P shows

1 = (πP )
φ(M)

P = (rP gm−mi)
P
pi

φ(M)
P = (g

φ(M)
pi )m−mi

telling the verifier that mi = m mod pi since P |ord(g). The prover with the
secret key φ(M) can compute a random π satisfying the equation by choosing
s ∈ Z

∗
M at random and setting

π = (cg−mi)(P
−1 mod ϕ(M)

P ) P
pi s

φ(M)
P .

In the NIZK proof, we will generalize this idea to verifiably disclose m mod PI

for arbitrary PI =
∏

i∈I pi. This makes it possible for the prover to reveal many
values {m mod pi}i∈I simultaneously.

There is a little variation in how many hardcore bits the prover gets out of
a common reference string since not all k-bit integers will belong to Z

∗
M and

some hardcore bits are ignored but we can use Chernoff bounds to get a good
estimate of how many hardcore bits the prover can extract and tune the proof
accordingly. Since the verifier obtains proofs π for the correctness of the opened
hardcore bits the soundness of the hidden bit proof system implies soundness of
the full NIZK proof for circuit satisfiability.

The zero-knowledge property will come from using a different type of public
key. Instead of using g that has order φ(M)

4 the simulator will pick g with order
φ(M)
4P . As we shall see in the security proof, the semantic security of the Naccache-

Stern cryptosystem implies that the two types of public keys are computationally
indistinguishable. With the latter choice of public key ord(g) = φ(M)

4P we can
write g = (g′)P and now a ciphertext is no longer binding since c = rP gm =
rP (g′)mP = (r(g′)m−m′

)P gm′
is at the same time an “encryption” of m and m′.

The simulator sets up the common reference string so it contains ciphertexts that
can be opened to any hardcore bits it chooses thereby allowing it to simulate
the hidden bits proof.

NIZK proof based on Naccache-Stern encryption. We will now give the
full NIZK proof for circuit satisfiability. The statement is a circuit C and the
prover will have a satisfying witness w so C(w) = 1. Naccache-Stern keys are not
directly verifiable, so we let (	well, Pwell, Vwell) be an NIZK proof system for well-
formedness of a Naccache-Stern public key. This NIZK proof could for instance
be Kilian and Petrank’s original NIZK proof [KP98], which would have a cost of
poly(k) bits. We will in the following let N ′ = O(N logN) = n polylog(n) be the
number of bits needed in the hidden bits model for circuits with n gates and let
Δ′ = Θ((N ′)

3
4 ). For notational simplicity, we will assume d|N ′ and N ′+Δ′

δ ∈ Z,
where d = � βk

log k � for a constant β > 0 and δ is defined in the protocol.
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Common reference string: σ = (σ1, . . . , σ 3N′
d
, σwell)← {0, 1}k 3N′

d +�well(k).
Proof:

1. Generate Naccache-Stern keys (pk, sk) = ((M,P, g), φ(M)) ← KNS(1k)
with P =

∏d
i=1 pi.

2. Compute an NIZK proof πwell for the well-formedness of pk = (M,P, g).
3. Define δ = d − ∑d

i=1
1
pi

and let c1, . . . , cN′+Δ′
δ

be the first N ′+Δ′
δ of

σ1, . . . , σ 3N′
d
∈ Z

∗
M .2 If there are less than N ′+Δ′

δ of them return the
proof π = (pk, sk).

4. Decrypt c1, . . . , cN′+Δ′
δ

to get plaintexts m1, . . . ,mN′+Δ′
δ

. Define mi,j =
mj mod pi.

5. Define h1,1, . . . , hd, N′+Δ′
δ

as hi,j = ⊥ if mi,j = −1 and otherwise hi,j = 0
if mi,j is even and hi,j = 1 if mi,j is odd. If there are less than N ′ or more
than N ′ + 2Δ′ hardcore bits hi,j ∈ {0, 1} return the proof π = (pk, sk).

6. Define ρ = (ρ1, . . . , ρN ′) as the first N ′ hardcore bits hi,j .
7. Run the hidden bit string proof on ρ to get πH ← PH(ρ, f(C), fw(w)).
8. Define mi,j as revealed if the hardcore bit hi,j is revealed in πH or
hi,j = ⊥.

9. Let for all j the set Ij ⊂ {1, . . . , d} be the indices i for which mi,j is
revealed. Define mIj = mj mod PIj where PIj =

∏
i∈Ij

pi. Compute

πj = (cg−mIj )
(P−1 mod φ(M)

P ) P
PIj s

φ(M)
P

j for a randomly chosen sj ← Z
∗
M .

The proof is either π = (pk, sk) or
π = (pk, πwell, I1,mI1 , π1, . . . , IN′+Δ′

δ

,mI N′+Δ′
δ

, πN′+Δ′
δ

).

Verification:
1. If the proof is of the form π = (pk, sk) accept it if and only if the key is

well-formed (the secret key can be of a form so this can be verified) and
there are less than N ′+Δ′

δ values in Z
∗
M or the number of valid hardcore

bits hi,j ∈ {0, 1} is less than N ′ or higher than N ′ + 2Δ′.
2. Verify the NIZK proof πwell for pk = (M,P, g) being a correctly gener-

ated public Naccache-Stern key with d small odd primes p1, . . . , pd.
3. Identify the first N ′+Δ′

δ values c1, . . . , cN′+Δ′
δ

∈ Z
∗
M . Reject if there are

less than N ′+Δ′
δ of them.

4. Verify the proofs πP
j = (cg−mIj )

P
PIj mod M and compute the hardcore

bits hi,j ∈ {0, 1} corresponding to mI1 , . . . ,mI N′+Δ′
δ

. Reject if the num-

ber of unopened hardcore bits plus opened valid hardcore bits hi,j is less
than N ′ or more than N ′ + 2Δ′.

5. Interpret the hi,j ∈ {0, 1} as a hidden bits proof (i1, ρi1 , . . . , it, ρit).
Accept if the verifications succeed and VH(f(C), i1, ρi1 , . . . , it, ρit) = 1.

The construction gives us the following theorem that we prove in the full paper.

2 We represent elements of Z
∗
M as integers in the range {1, . . . ,M − 1}.
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Theorem 3. Assuming the Naccache-Stern cryptosystem is IND-CPA secure,
there is an NIZK proof for circuit satisfiability with perfect completeness, sta-
tistical soundness and computational zero-knowledge. The size of the common
random string and the proof is |C| polylog |C|+ poly(k) bits.

7 Conclusion

We have suggested the shortest known NIZK proofs based on standard in-
tractability assumptions. Based on trapdoor permutations we get an NIZK
proof and common reference string of size |C|k polylogk bits (where we use
that polylog|C| = polylogk). This is a factor k

polylogk improvement over Kilian
and Petrank’s construction [KP98].

Based on a specific number-theoretic assumption related to factoring, we get
a very efficient implementation of a hidden bit string and an even shorter NIZK
proof with a complexity of |C| polylogk bits. This is asymptotically a factor

k3

polylogk more efficient than the pairing-based constructions by Groth, Ostrovsky

and Sahai [GOS06b, GOS06a] (assuming the group elements have size k3

polylogk )
although it remains an open problem to reduce the polylogarithmic factor to
make our construction practical.
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Abstract. We design cryptographic protocols that recognize best case (optimistic)
situations and exploit them. As a case study, we present a new concurrent zero-
knowledge protocol that is expected to require only a small constant number of
rounds in practice. To prove that our protocol is secure, we identify a weak prop-
erty of concurrent schedules—called footer-freeness—that suffices for efficient
simulation.
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1 Introduction

Cryptographic protocols anticipate worst-case behavior and therefore often contain
complicated provisions that are meant solely to handle them. Such provisions can be
expensive and counter-intuitive.

To circumvent these side-effects but still construct protocols that are secure against
worst-case behavior, this paper proposes to use an optimistic technique for building
protocols that is inspired by work on Byzantine agreement. The aim is to design proto-
cols that can recognize the best cases and optimize for them, even in the midst of the
protocol execution.

Optimism has been employed by researchers in distributed computing (e.g. the (Fast)
Paxos algorithm [Lam05]) and fair exchange [ASW98]; the novelty of this work is to
exploit optimism for the problem of concurrent zero-knowledge. Optimistic protocols
make no attempt to improve worse-case performance. In fact doing so would require
overcoming a lower bound argument in the case of zero-knowledge. Nonetheless, the
optimistic cases that we exploit are common and meaningful to discuss.

1.1 Concurrent Zero-Knowledge

When many instances of a stand-alone zero-knowledge protocol are executed at the
same time, the combination of all runs may leak information about the theorem. The
standard methodology for arguing that a protocol transcript “does not leak informa-
tion” is to exhibit a simulator algorithm that is able to produce transcripts that are
indistinguishable from actual transcripts of protocol executions. Dwork, Naor and Sa-
hai [DNS98] observed that in a concurrent zero-knowledge setting, a malicious verifier
who controls the schedule of protocol messages can induce a schedule for which a
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Fig. 1. Illustration of an ”average-case” schedule, and an adversarial one

“naive” simulation algorithm will require exponential time (and thus the execution may
leak information). An example of such a scheduling of messages is given in 1. In the
bottom (red) schedule, the verifier has “nested” many executions of the zero-knowledge
protocol. This type of scheduling is a concurrency attack on the zero-knowledge prop-
erty of the original protocol and it captures the fundamental problem with designing
efficient concurrently secure zero-knowledge protocols.

To address the concurrency attack, Dwork, Naor and Sahai [DNS98] proposed a
timing model assumption and a protocol that limits the amount of nesting that can
occur in an adversarial scheduling. Their protocol was an argument system; Goldre-
ich [Gol02] later showed that proof systems can also be constructed in such a model.
Pass, Tseng, and Venkitasubramaniam [PTV10] present an eye-for-an-eye solution in
the timing model that reduces the overall delay of the protocol. Other protocols that
handle concurrency attacks have been obtained by introducing different setup assump-
tions [DS98, Dam99, CGGM00] such as a common reference string or a PKI.

Richardson and Kilian [RK99] constructed the first concurrent zero-knowledge
argument system in the standard model without extra setup assumptions. Kilian and
Petrank [KP01] introduced a simulation technique which led to simpler and cleaner
analysis and fewer rounds. Finally, the work of Prabhakaran, Rosen and Sahai [PRS02]
(PRS) further simplified and improved the analysis of the Kilian and Petrank protocol to
obtain a protocol with ω(logn) rounds. This round complexity is close to optimal in the
standard model because without any set-up assumptions, Canetti, Kilian, Petrank and
Rosen [CKPR01, CKPR02] show that concurrent zero-knowledge argument systems for
non-trivial languages using a “black-box” simulator require at leastΩ(logn/ log logn)
number of communication rounds. In order to show this lower bound, they rely on a
framework proposed by Kilian, Petrank and Rackoff [KPR98], with further improve-
ments from Rosen [Ros00], and present a specific malicious verifier and a particularly
difficult schedule of messages. Recently, Pandey et al. [PPS+08] have proposed new
precise concurrent zero-knowledge proofs with similar round complexity.

It has been a long-standing open problem to build communication-efficient con-
current zero-knowledge protocols. To circumvent the lower bound on the round com-
plexity from [CKPR01, CKPR02], prior work (1) introduces additional trust assump-
tions [DNS98, DS98, Dam99, CGGM00], (2) relaxes the definition of security to allow
quasi-polynomial time simulation [Pas03, PS04, PV08], or (3) employs a more com-
plicated and powerful non-black-box simulation technique [Bar01] and restricted the
number of concurrent sessions. The latter technique also relies on complex tools and
techniques that require NP-reductions.
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Overview of slots. Before detailing our approach, let us review the idea employed by
the protocols from [RK99, KP01, PRS02, PTV10] to defend against concurrent attacks.
In the first phase of the protocol, the verifier creates an irrelevant secret (such as a com-
mitment to a string) and then (repeatedly) proves in zero-knowledge to the prover that
it knows the secret. Each block of protocol messages during which the verifier proves
knowledge of this secret is called a “slot.” In the second phase, the Prover proves that
it either knows the witness to the original theorem or that it knows the verifier’s secret
using a witness indistinguishable protocol. Prior work [RK99, KP01, PRS02, Ros06]
proves that if the first phase has enough slots, then a simulation strategy can be
devised such that for any schedule of messages, the simulator can successfully ex-
tract a witness from the verifier’s proof and then use that witness in the second
phase.

Optimistic Defense. We propose an optimistic defense against concurrency attacks in
which we relax the requirements from prior work and specifically [CKPR01] that (1)
each protocol session involves an independent prover who does not know anything about
the other protocol instances and (2) each protocol execution has exactly the same (fixed)
number of rounds. Doing so allows us to build protocols that optimistically avoid the
worst-case schedules used in the lower bounds.

When one server handles many concurrent requests, the server knows the exact
schedule of messages. The work of Persiano and Visconti [PV05] also exploits this
relaxation by using a Prover who counts the total number of bytes sent in all
sessions1.

We believe this to be a reasonable and practical relaxation. In many applications of
zero-knowledge proofs, for example, the prover will be the same party (some server),
and it will have the opportunity to share state between protocol sessions. In particular,
servers on the internet routinely keep track of the various protocol session statistics such
as the total number of protocol executions that run at a given time. Operating systems
which make quality of service guarantees also inspect different protocol instances in
order to throttle connections. While the original motivation of the concurrent session
model in which the Prover instances run independently of one another was to sim-
plify implementation of systems, there is no fundamental implementation reason that
prevents sharing the global scheduling information among the Prover algorithms in dif-
ferent protocol sessions. (Of course, requiring the Verifiers to coordinate their sessions
would be unrealistic, since the Verifiers may be separate parties.)

In our model, each session of the protocol may require a different number of com-
munication rounds. This relaxation allows us to instruct the prover to handle schedules
which are easier to simulate differently than schedules which are more difficult. In
contrast, in typical cryptographic protocols, each execution of the protocol has a fixed
number of messages and each successful invocation usually requires exactly the same
number.

Our protocol can “short circuit” the normal protocol when it is clear that such a
shortcut preserves the security properties. To the best of our knowledge, this idea has
not been applied in the context of a security guarantee such as zero-knowledge.

1 In contrast to this work, their solution uses non-blackbox simulation techniques.
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1.2 Our Protocol

The idea behind our fast track protocol is to discourage the verifier V ∗ from nesting
sessions within the slots of other sessions by penalizing a verifier whose slots have
nested sessions. The penalty will be to gradually add more slots to the protocol until
either enough slots with no (or few) nestings occur, or a pre-specified bound on the
number of rounds is reached.

The basis for our protocol is the cZK protocol by Prabhakharan, Rosen and Sa-
hai [PRS02] which uses statistically hiding commitments [NY89, DPP93] and Blum’s
3-message protocol for Hamiltonicity [Blu86]. The only difference between our proto-
col and the PRS protocol is that it contains a special provision for exiting the “pream-
ble” stage. Early exits are “approved” by the prover, provided that there is a slot in the
current session that does not have any other session footers within it. Assuming that
verifiers answer quickly, it is expected that the number of nested sessions within slots
is generally small, optimistically resulting in an empty slot and thus in straightforward
simulation.

Verifiers have incentive to answer fast since the longer they delay their answer, the
more likely they are to have nested sessions (from some other verifier) within the slot
that they are currently executing. Once the slot has a nested session within it, early exit
is postponed to future rounds, and another slot is added to the protocol’s execution.
This process continues until k = ω(logn) slots have been performed, in which case the
Hamiltonicity proof takes place and the protocol terminates.

At the expense of a more involved analysis, one should be able to replace the PRS
protocol with any other instantiation of a cZK protocol that follows the RK “multi
slot” paradigm, and obtain analogous results. One attractive instantiation would be the
DDH-based cZK protocols of Micciancio and Petrank [MP03]. These protocols admit
fairly efficient implementations, and are thus a good match for our optimistic approach,
whose primary objective is increased efficiency.

But worst-case schedules still require many rounds! Note that worse-case sched-
ules still require the same number of rounds as PRS. Such an argument applies to any
optimistic protocol, such as the Fast Paxos or Fair exchange protocols as well. The
worst-case schedule, however, may be rare and avoidable by incentivized verifiers.

Comparison with Other Proposals. In Appendix A, we compare our approach to
other simple proposals and to the timing model proposed by [DNS98].

2 Optimistic Rational Concurrency

Let 〈P, V 〉 be an interactive proof (resp. argument) for a languageL, and consider a sin-
gle concurrent adversary (verifier) V ∗ that, given input x∈L, interacts an unbounded
number of times with P (each with common input x) without any restrictions over the
scheduling of its messages.

Formally, use the standard model for concurrency in the timing model put forth
by Dwork, Naor, and Sahai [DNS98]. The adversary V ∗ takes as input the prover’s
partial conversation transcript that includes the times on the provers local clock when
each message was sent or received by the prover. The adversary’s output is either a
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tuple (recv, V, α, t), indicating that P receives message α from V at local time t or
(send, V, t), indicating that P must send the next message to V at time t on P ’s lo-
cal clock. In both cases, the time t that adversary chooses must be greater than all the
times given in the input transcript (i.e., the adversary cannot rewind P ), the session
with V must be well-formed, and αmust be in the protocol’s “message space” (i.e. stan-
dard well-formedness conditions apply). If these conditions are not met, the transcript is
discarded.

The transcript of a concurrent interaction consists of the common input x, followed
by the sequence of prover and verifier messages exchanged during the interaction. We
denote by viewP

V ∗(x) a random variable describing the content of the random tape of
V ∗ and the conversation transcript between P and V ∗ as described above.

Definition 1 (Concurrent Zero-Knowledge). Let 〈P, V 〉 be an interactive proof
system for a language L. We say that 〈P, V 〉 is concurrent zero-knowledge, if for ev-
ery probabilistic strict polynomial-time concurrent adversary V ∗ there exists a proba-
bilistic polynomial-time algorithm SV ∗ such that the ensembles {viewP

V ∗(x)}x∈L and
{SV ∗(x)}x∈L are computationally indistinguishable.

Discussion. There may be other verifiers that are also interacting with P at the same
time as V ∗. In prior work, these sessions are ignored because either the monolithic
adversary V ∗ can incorporate these sessions if they can be used to cheat, or because
these extra sessions are completely independent of V ∗’s view.

In our case, however, these extra sessions by honest verifiers are not completely
independent of V ∗’s view.2 In the protocol we suggest, for example, a verifier will learn
when one of its slot is not footer-free, and therefore it will learn the presence of another
session. This is not necessarily the case with other concurrent ZK protocols such as
PRS because the number of rounds in those protocols are not related to the schedule of
messages. However, the aim for a zero-knowledge protocol in a networked setting is to
ensure that no information about the witnessw for instance x is leaked; we feel that it is
reasonable for a protocol to leak network timing information because such information
is typically leaked by the underlying network (or by timing or side channels).

To model this, we give V ∗ full control over the timing of all network messages
including the Prover’s messages and the timing of the messages from the honest verifier
sessions that are not controlled by V ∗. Although this is syntactically the same formal
model with a single V ∗ as in prior work, there is a subtle difference. Our protocol and its
simulator essentially guarantees that “a verifier V ′ who controls a subset of the sessions
learns no more through interaction with P than a malicious verifier V ∗ who controls all
network traffic, and such a verifier learns no more than the polynomial time simulator
who does not have the witness.”

Notation. We use the symbols (V0), (P1), (V1), . . . , (Pj), (Vj) to denote the mes-
sages in the preamble; these messages are completely independent of the common input
and they serve to enable a successful simulation in the concurrent setting.

Every round (slot) in the preamble (i.e., every (Pj), (Vj) pair) is viewed as a
“rewinding opportunity.” Successfully rewinding even one slot in the preamble is suf-

2 We thank the anonymous reviewer for pointing out this subtle distinction.
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P V(V0) ⇐=

(P1) =⇒
(V1) ⇐=
(P2) =⇒
(V2) ⇐=...
(Pk) =⇒
(Vk) ⇐=

(p1) =⇒
(v1) ⇐=
(p2) =⇒

Fig. 2. A k-round preamble

ficient in order to cheat arbitrarily in the actual proof (messages (p1), (v1), (v2)) and
thus complete the simulation.

One problem faced by a cZK simulator is that rewinding a specific session may
result in loss of work done for other sessions, and therefore require the simulator to do
the same amount of work again. This will happen whenever the rewound slot contains
other sessions “nested” within it.

For example, if a slot of session B contains the (V0) message of session A within
it, rewinding this slot will cause all simulation work done for session A to be lost. This
is because the simulation of a session A hinges on the simulator “extracting” specific
values that have been committed to by the verifier in message (V0) of this session.
Rewinding past the (V0) message of A could alter the history of interaction up to this
message and may result in a modification of its contents (rendering the extracted values
irrelevant).

The simulator must invest work in session A whenever session A’s preamble com-
pletes before the end of the slot of sessionB. In such a case, reaching the end of session
A’s preamble without having extracted the value committed to in message (V0) of ses-
sion A may prevent the simulator to proceed beyond the end of this preamble (since
the malicious verifier may refuse to continue if is not convinced in the validity of the
statement being proved in session A). Failure to proceed beyond the end of the session
A preamble translates directly to failure to rewind the session B slot within which this
preamble is nested.

Definition 2 (Nested Footer). Slot j of session B is said to have a nested footer of
session A within it if session A’s (Vk) message occurs between messages (Pj), (Vj)
of session B. A slot is said to be footer free if it has no nested footer.

Avoiding nested footers enables the completion of the slot between messages (Pj) and
(Vj) of sessionB without having to first invest work in simulating sessionA (implying
that there is no risk to lose and thus redo this work as a result of rewinding). This
observation will be crucial to the analysis of the footer-free version of our protocol.

Two simulation strategies. Currently, there are two known approaches for concurrent
simulation. The first simulation strategy adaptively looks for slots that do not have
many sessions with nested headers within them, and this is where it focuses its attempts
to rewind the interaction with the verifier [RK99]. The second simulation strategy is
different in that it performs a sequence of rewinds obliviously of the actual scheduling
of the messages [KP01, PRS02].
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The main advantage of the second approach over the first one is that it is known
to guarantee correct “worst case” simulation using fewer slots (Õ(logn) vs. O(nε)
for every ε > 0). However, being oblivious to the actual schedule, it does not seem
suitable for taking advantage of lack of nested headers and/or footers within a slot.
As we demonstrate in this paper, by adaptively identifying good places for multiple
rewindings, the second approach can be tailored to work in our optimistic setting.

To the best of our knowledge, the idea of taking advantage of the lack of nested
footers for the sake of improved concurrent simulation is new. As we argue in the paper,
lack of nested footers within one slot is a fairly weak constraint on the schedule, and
may be enforced using a variety of realistic mechanisms.

The protocol. Our protocol will have the prover monitor the scheduling of messages,
and identify footer-free slots on the fly; once such a slot is identified, there is no need
to keep adding slots to the execution of that specific session, so the protocol moves on
to the execution of the actual constant-roundZK protocol.

Common Input: x ∈ {0, 1}n , security param n, max. # rounds param k = ω(log n).
Prover’s Input: a witness w such that RL(x,w) = 1
Stage 1:

P → V (P0): Send first message of perfectly hiding commitment Com.
V → P (V0): Using the commitment Com, commit to random σ, {σ0

i,j}ki,j=1,
{σ1

i,j}ki,j=1 such that σ0
ij ⊕ σ1

ij = σ for all i, j.

Slot j:
P → V (Pj): Send a random challenge ri = r1,j , . . . , rk,j

V → P (Vj): Upon receiving a message ri, decommit to σ
r1,j

1,j , . . . , σ
rk,j

k,j

P → V : If any of the decommitments fails verification, abort.
If slot j is footer free or j = k move to stage 2.
If slot j is not footer free and j ≤ k move to slot j + 1.

Stage 2: P and V engage in Blum’s 3-round Hamiltonicity protocol using challenge σ:
1. P → V (p1): Use witness to produce first message of Ham protocol

2. V → P (v1): Decommit to σ and to {σ1−ri,j

ij }ki,j=1.

3. P → V (p2): If decommitments are valid and σ0
i,j ⊕ σ1

i,j = σ for all i, j, answer
σ with third message of Ham protocol. Otherwise abort.

Fig. 3. Fast-track concurrency

Completeness and soundness of Protocol 3 are inherited from the PRS protocol, and
in particular follow from Proposition 4.3.2 in [Ros06]. We now turn to demonstrating
the cZK property.

2.1 The Simulator

We exhibit the cZK property using a black-box simulator S. Let V ∗ be a concurrent
adversary verifier. S will rewind the interaction with V ∗ and examine its input/output
behavior. The rewinding strategy of the simulator is specified by a SOLVE procedure
whose goal is to supply the simulator with V ∗’s “challenges” before reaching stage
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2 in the protocol. This is done by rewinding the interaction with V ∗ while trying to
achieve two “different” answers to some (Pj) message. We refrain from specifying the
way stage 2 messages are handled and focus only on stage 1 messages. For standard
details on how to handle stage 2 messages see [Ros06].

The timing of the rewinds performed by the SOLVE procedure depends on the number
of stage 1 verifier messages received so far and on the size of the schedule. However,
whenever it encounters a situation in which a slot of a given session is footer-free, the
SOLVE procedure (adaptively) assumes that this is its only chance to solve that session
and performs (an expected polynomial number of) extra rewinds in order to make sure
that the slot is successfully rewound. The number of extra rewinds is not determined in
advance, and is induced by the analysis of a constant round ZK protocol for NP by
Rosen [Ros04].

At a high level, the SOLVE procedure splits the first stage messages it is about to
explore into two halves and invokes itself recursively twice for each half (completing
the two runs of the first half before proceeding to the two runs of the second half). At the
top level of the recursion, the messages that are about to be explored consist of the entire
schedule, whereas at the bottom level the procedure explores only a single message
(and as we said may do so multiple times, depending on whether the recursive call
corresponds to a message-free slot). The solve procedure always outputs the sequence
of “first explored” messages.

The input to the SOLVE procedure consists of a triplet (�, hist, T ). The parameter
� corresponds to the total number of verifier messages, the string hist consists of the
messages in the “first visited” history of interaction, and T is a table containing the
contents of all the messages explored so far. The messages stored in T are used in order
to determine σ according to answers (Vj) to different (Pj). They are kept relevant by
constantly keeping track of the sessions that are rewound past their initial commitment.
That is, whenever the SOLVE procedure rewinds past the (V0) message of a session, all
messages belonging to this session are deleted from T .

The analysis takes advantage of the fact that no rewound slot contains a footer, build-
ing on the assumption that footer-freeness is an event of non-negligible probability (as
otherwise it is assumed not to have occurred to begin with). By repeatedly rewind-
ing, the simulator is likely to run into a footer-free situation again, which means that
it will not get stuck on that rewinding. This will enable it to successfully complete the
rewinding attempt, and to solve the corresponding session (thus avoiding getting stuck
on sessions that have strictly less than k slots).

2.2 Analysis of the Simulator

To show that the simulator S succeeds we will need to argue that: (1) S runs in poly-
nomial time, (2) conditioned on the success of the SOLVE procedure, the output of S
is indistinguishable from a concurrent interaction between P and V ∗, and (3) for every
session i ∈ {1, . . . ,m}, whenever session i reaches the second stage in the protocol,
the simulator will have obtained the value of σ in this session if required (i.e. did not get
stuck) with overwhelming probability. Once (3) is established, we may apply a union
bound over the i’s and conclude that SOLVE fails with only negligible probability. We
focus on (1) and (3).
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Procedure SOLVE(�, hist, T ):
Bottom level (� = 1):

1. For each s ∈ {1, . . . ,m}, if the initial commitment, (V0), of session s does not appear in
hist, delete all session s messages from T .

2. Run β ← V ∗(hist,p). If β is of the form (recv, V, α, t), the continue to the next step.
Else if it is (send, V, t), then uniformly choose a first stage prover message p, append it to
the transcript at time t, and repeat this step. If t or α are invalid, then halt the simulation
and output the current transcript.

3. Let
– (p1, v1, . . . , pt, vt) = (hist,p, v)
– i be the session number to which v corresponds,

4. If there exists a pair of indices (a, b) such that a ∈ [t] and b = t for which:
– vb �= ABORT,
– both vb and pa belong to session i.
– the slot between messages pa and vb is footer-free.

then pick one such (a, b) and rewind interaction to message pa until
– vb �= ABORT,
– both vb and pa belong to session i.
– the slot between messages pa and vb is footer-free.

5. Store the messages gathered in the rewindings along with p, v in T
6. output T , (p,v).

Recursive step (� > 1):

1. Set T1, (p1, v1, . . . , p�/2, v�/2)←SOLVE(�/2, hist, T ).
2. Set T2, (p̃1, ṽ1, . . . , p̃�/2, ṽ�/2)← SOLVE(�/2, hist, T1).
3. Set T3, (p�/2+1, v�/2+1, . . . , p�, v�)←SOLVE(�/2, (hist,p1, v1, . . . , p�/2, v�/2), T2).
4. Set T4, (p̃�/2+1, ṽ�/2+1, . . . , p̃�, ṽ�)←SOLVE(�/2, (hist,p1, v1, . . . , p�/2, v�/2), T3).
5. Output T4, (p1, v1, . . . , p�, v�).

Fig. 4. The SOLVE procedure

Lemma 1. For every m=poly(n), Sm runs in (expected) polynomial-time in n.

Proof. We analyze the work invested at any given invocation of level � = 1. For any
G ∈ HC, for any choice of hist, p, and of a, b ∈ {1, . . . , t} where a ≤ b, let ζa,b =
ζa,b(G, hist, p, v) denote the probability that: (1) the verifier V ∗ does not send ABORT
in message vb, (2) both vb and pa belong to session i, (3) the slot between pa and vb is
footer-free, (4) none of the vj ’s correspond to message (V0) of session i, and (5) none
of the pj’s correspond to message (p1) of session i. Let ζ′a,b denote the probability that
(1), (2) and (3) occur. The probabilities ζa,b and ζ′a,b are taken over the random choices
of the invocations of the SOLVE procedure. It can be seen that ζ′a,b ≥ ζa,b.

Using this notation, a pair (a, b) satisfying conditions (1)-(5) occurs with probabil-
ity ζa,b and the SOLVE procedure is expected to repeat the loop in step 4 for at most
1/ζ′a,b times (since the condition in Step 4 is satisfied in each one of the rewinds with
probability ζ′a,b, independently of other rewinds). For i ∈ {1, 2, 3, 4, 5, 6}, let pi(·) be
a polynomial bound on the work required in order to perform Step i in level � = 1 of
the recursion (where in step 4, p4(·) = p4,a,b(·) counts the number of steps required to



368 A. Rosen and a. shelat

perform one rewinding). By linearity of expectation, and because the total number t of
pairs of messages (and hence pairs (a, b) ∈ R) in the history of level � = 1 is at most
m · (k+1) (recall that k is the maximal number of rounds in the protocol), the expected
time required to execute level � = 1 of the recursion is upper bounded by:

p1(n) + p2(n) + p3(n) +
∑

(a,b):a≤b

ζa,b · 1
ζ′a,b

· p4(n) + p5(n) + p6(n)

≤ p1(n) + p2(n) + p3(n) +m · (k + 1) · p4(n) + p5(n) + p6(n)
= poly(n)

Since each invocation of the SOLVE procedure with parameter � > 1 involves four
recursive invocations of the SOLVE procedure with parameter �/2, we have that the
expected work W (�), that is invested by the SOLVE procedure in order to handle � (first
stage) verifier messages satisfies:

W (�) ≤
{

poly(n) If � = 1
4 ·W (�/2) If � > 1

(1)

Since the total number of first stage verifier messages in them sessions of the concurrent
schedule equals m · (k + 1), the total expected running time of the simulation process
(which consists of a single invocation of the SOLVE procedure with parameterm · (k+
1)) equals W (m · (k + 1)). By linearity of expectation we get that the expected value
of W (m · (k + 1)) is upper bounded by:

4log2(m·(k+1))−log2 c · poly(n) =
(
m · (k + 1)

c

)2

· poly(n) = poly(n)

We now turn to show that for everyG ∈ HC, the simulator’s output distribution is com-
putationally indistinguishable from V ∗’s view of interactions with the honest prover P .
Specifically,

Lemma 2. The ensemble {SV ∗
m (G)}G∈HC is computationally indistinguishable from

the ensemble {viewP

V ∗(G)}G∈HC .

Indistinguishability of the simulator’s output from V ∗’s view (of m = poly(n) con-
current interactions with P ) is shown assuming that the simulator does not get “stuck”
during its execution. Since the simulator S will get “stuck” only with negligible proba-
bility (see Lemma 3 below), indistinguishability will immediately follow.

The proof actually considers a “hybrid” simulator that on input G = (V,E) ∈ HC
obtains a directed Hamiltonian Cycle C ⊂ E in G (as auxiliary input) and uses it
in order to produce real prover messages whenever it reaches the second stage of the
protocol. Specifically, whenever it reaches the second stage of session s ∈ {1, . . . ,m},
the hybrid simulator inspects the T table and checks whether it has managed to solve
session s (thus being able to convince V ∗ in the section stage of session s). If it has not
managed to solve session s, the hybrid simulator outputs ⊥ and halts. Otherwise, the
hybrid simulator follows the prescribed prover strategy and generates prover messages
for the second stage of the session (by using the cycle C it possesses). The key for
proving the above lies in the following two properties:
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– First stage messages output by S are (almost) identically distributed to first stage
messages sent by P . This property is proved based on the definition of the simula-
tor’s actions.

– Second stage messages output by S are computationally indistinguishable from
second stage messages sent by P . This property is proved based on the special
zero-knowledge property of Blum’s Hamiltonicity protocol.

We now turn to argue that the hybrid simulator does not get stuck.

Lemma 3. Let α : N → N be any super-constant function, let k(n) = α(n) · logn,
and consider any instantiation of Protocol 3 with parameter k = k(n). Then for any
i ∈ {1, . . . ,m} the probability of the hybrid simulator getting “stuck” on session i
during the simulation is negligible.

Proof. The SOLVE procedure is said to get stuck on session i if it reaches the second
stage of session i and the following events occur: (1) the history of the interaction so
far does not contain an ABORT message in session i, and (2) the table T does not
contain two verifier messages (Vj) and (Vj)′ that are replies to two different prover
messages (Pj) and (Pj)′. Note that if the history of the interaction does contain an
ABORT message in session i then it is not necessary to obtain σ.

Consider any event in which the SOLVE procedure reaches the second stage of ses-
sion i, and let hist denote the history of the interaction with which the second stage is
reached. By definition of the solve procedure hist contains the messages first visited by
the SOLVE procedure.

As before, we divide the analysis into two cases. In the first case, the number of slots
in session i as they appear in hist is precisely k. The key for analyzing this case lies the
fact that the SOLVE procedure as defined in this paper behaves identically to the SOLVE

procedure described in [PRS02], except that in the bottom levels of the recursion the
former may potentially perform more rewindings than the latter (but never less). This
means that whenever the PRS variant of the SOLVE procedure manages to obtain the
relevant value of σ then so does our variant. By the [PRS02] analysis, we know that
as long as the number, k, of slots is super logarithmic, the PRS variant of the SOLVE

procedure fails to obtain σ with negligible probability. Thus, the probability of getting
stuck on session i in our case is negligible as well.

In the second case, the number of slots in session i as they appear in hist is strictly
less than k. By definition of our protocol, this can happen only if there exists a slot in
the history of the interaction that is footer-free.

Claim: Suppose that the number of slots in session i is strictly less than k. Then, the
schedule of messages as it appears in hist contains a slot in the history of the interaction
that is footer free.

Consider now any invocation of a bottom level of the recursion in which a footer
free slot j of session i appears amongst messages (p1, v1, . . . ,pt, vt) = (hist, p, v).
Let pa = (Pj), vb = (Vj) be those messages. By definition of the SOLVE procedure,
the first messages generated in the visit will appear in hist. Let p = (Pj), v = (Vj)
be those messages. The simulator will get stuck if and only if: (1) hist does not contain
an ABORT message in session i (and in particular if vb 
= ABORT), and (2) the table T
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does not contain two verifier messages vb = (Vj) and vb′ = (Vj)′ that are replies to
two different prover messages pa = (Pj) and pa′ = (Pj)′. Since pa and vb belong
to the same session, then if condition (1) is satisfied we have that the following three
rewinding conditions hold:

– vb 
= ABORT,
– both vb and pa belong to session i, and
– the slot between messages pa and vb is footer-free,

This in particular means that the SOLVE procedure will rewind the interaction in Step 4,
sending random p’s until it finds another pair p′a = (Pj)′, v′ = (Vj)′ in session i so
that pa 
= p′a.

We next show that the probability of getting stuck (over random choices of p′a = r ∈
{0, 1}k in the visit to the bottom level of the recursion) is precisely 1/2k. Since k is
super-logarithmic it will immediately follow that the probability that the simulator gets
stuck is negligible.

The key observation for the analysis is that, in the event that the slot between mes-
sages pa and vb is footer free, it will ultimately be possible to successfully perform the
rewinding and reach some v′ = (Vj)′ message, without having to “re-solve” a differ-
ent session that is nested within the jth slot of session i. In other words, conditioned on
the event of slot j being “footer-free” again (and (Vj)′ not being equal to ABORT), the
rewinding will go through smoothly (since the simulation cannot get stuck on another
session during that specific rewinding attempt).

For any G ∈ HC, and for any choice of hist, let ζi,a,b = ζi,a,b(G, hist) denote
the probability that: (1) message vb corresponds to a (Vj) message that is not equal
to ABORT, (2) both vb and pa belong to session i, and (3) the slot between mes-
sages pa and vb is footer-free. The probability ζi,a,b is taken over the random choices
of pa. Using this notation, the SOLVE procedure proceeds to Step 4 with probability
ζi,a,b (note that the condition in Step 4 is satisfied in each one of the rewinds with
probability ζi,a,b, independently of other rewinds). We would like to bound the proba-
bility that S gets stuck (we denote the event of the simulation getting stuck by having
S output⊥).

Let SA denote the simulator’s execution with black box access to a machine A, let
Ṽ ∗ = Ṽ ∗(p1, v1, . . . ,pa−1, va−1) denote the “residual” strategy of V ∗ when messages

〈p1, v1, . . . ,pa〉 are fixed (i.e., Ṽ ∗(G, r) def= V ∗(G, r; p1, v1, . . . ,pa−1, va−1)), let the
phrase “S rewinds in Step (4)” represent the event in which the three rewinding con-
ditions from above hold, and let ζi,a,b be as above (in other words, the probability with
which the “S rewinds in Step (4)” event holds). We then have:

Pr
r

[
SṼ ∗

(G,C) = ⊥
]

= Pr
r

[
SṼ ∗

(G,C) = ⊥ | S rewinds in Step (4)
]
· Pr

r

[
S rewinds in Step (4)

]
(2)

= Pr
r

[
SṼ ∗

(G,C) = ⊥ | S rewinds in Step (4)
]
· ζi,a,b

= Pr
r

[
p = pt

]
· ζi,a,b (3)
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Now, since pa and p′a are uniformly and independently chosen in {0, 1}k, and since the
number of r ∈ {0, 1}k for which Ṽ ∗(G, r) is not equal to ABORT is precisely 2k · ζi,a,b,
then it holds that Pr[pa = p′a] = 1/(2k · ζi,a,b). Using Eq. 3 we infer that:

Pr
r

[
SṼ ∗

(G,C) = ⊥
]

=
1

2k · ζi,a,b
· ζi,a,b =

1
2k

as required.

Empirical Study. Here we provide some cursory evidence that the type of adversarial
nesting which causes problems with concurrent simulation do not generally occur when
verifiers are independently sending their protocol messages without delaying.

We performed a cursory empirical study of the webserver traffic at our University
webserver. We analyzed roughly 122681 TCP sessions (syn-to-fin flows) served by our
department webserver over a period of 16 hours; each session consisted of a SYN from
a to our webserver, a SYN from the webserver to a, a FIN from a to the webserver, and
a final FIN from the webserver to a such that the entire flow corresponded to a request
and an error message response served by the webserver. We considered error messages
because they are not input/output bound and therefore require roughly the same server
processing time. The (4-flow) message pattern corresponds to a 1-slot preamble for our
ZK protocol. From this experiment, we counted 26579 nested sessions. In other words,
roughly 79% of the sessions were message-free, and would therefore only require 1
slot in our simplest optimistic protocol. (Of the remaining 21%, we cannot determine
whether they would have required a second slot given the data set.) Moreover, this
small data set reflected a high level of concurrency: there were 57161 instances when
one session overlapped another session.

Acknowledgements. We thank the anonymous reviewers and Vinod Vaikuntanathan
for helpful comments concerning our definition of security, and in particular about the
possibility of our protocols leaking information about the presence of other concurrent
sessions (as discussed in the beginning of Section 2).
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A Comparison with Other Approaches

Consider an alternative Prover strategy that we denote reset-on-nesting:

For some fixed constant C, send a “reset” message to any protocol sessions
that have more than C nested sessions that begin and end within a slot. When
a slot is reset, the verifier starts the protocol from the beginning.

The security proof for schedules with an upper-bounded number of nestings is straight-
forward. Moreover, only one slot is needed in this “reset-on-nesting” strategy for the
security proof. Unfortunately, the reset-on-nesting idea has two major problems. First
is an issue of completeness: it is possible for an honest Prover, and an honest but very
slow Verifier to repeatedly fail in successfully completing a protocol.

Definition 3 (Completeness). A concurrent protocol Π = (P1, . . . , Pn) is complete,
when for any schedule of concurrently executing sessions, and for every execution be-
tween honest parties P1, . . . , Pn, every Pi eventually HALTs and outputs (1, z) (to in-
dicate success).

A second more troubling problem is one of intentional starvation: a malicious Prover
may indefinitely postpone a proof by claiming the session has become too nested. An
honest verifier has no way to audit the schedule of messages received by the Prover, and
thus no recourse but to restart the protocol (which may fail again for the same reason).
Even with auditing, the malicious prover may create a fictitious verifier instance and
intentionally schedule this verifier so as to create nested sessions in the the honest veri-
fier’s slots. Thus, even an “honestly recorded” transcript of all of the Prover’s messages
could be justifiably used to starve the honest verifier.

Accountable Aborting versus fail. To be sure, a malicious prover may ABORT a pro-
tocol for many reasons; but this event is fundamentally different than the postponement
attack discussed above: An ABORT is an admission of guilt by the malicious prover; a
postponement attack is an accusation by the Prover of malice on the part of the Verifier!

Borrowing terminology from the distributed algorithms community, we state the con-
cept of starvation-free protocols below. As mentioned, the solution in this paper is a
starvation-free protocol, while the reset-on-nesting protocol is not.

Definition 4 (Starvation-Free Protocol). A starvation-free concurrent protocol Π =
(P1, . . . , Pn) is one that guarantees that for any adversary P ∗i , and for any schedule of
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messages of concurrently executing sessions, every honest party Pj , j 
= i interacting
with P ∗i eventually HALTs with output (1, z) or ABORTs with output (0, z).

(Note, that the z is arbitrary protocol-specific output, i.e., it could be f(x, y) in the
case of two-party secure function evaluation.)

A reset-on-nesting protocol cannot be both complete and starvation-free. Either the
protocol requires the Verifier to tolerate an infinite number of resets (in order to satisfy
completeness)—in which case it is not starvation free—or it requires the Verifier to
upper-bound the number of messages it tolerates before ABORT and output 0 (in order
to satisfy starvation free-ness)—in which case it is not complete.

For this reason, we prefer our optimistic model to the reset-on-nesting protocol.

A.1 Comparison with the Timing Model

The timing model adds a notion of time on the standard communication model by (a)
giving each party a local clock, (b) having all parties share a global bound ρ ≥ 1 on
the relative rates of the different clocks (i.e., clock drift), and (c) having all parties
share a global bound Δ on the message-delivery time (which includes the time for
local computation to receive and prepare messages). Protocols in the timing model can
TIMEOUT messages that have not arrived in time Δ, and DELAY outgoing messages by
a delay period that is also at least as big as Δ.

Prior work [DNS98, Gol02, PTV10] in this model employ the TIMEOUT and DE-
LAY operations. Protocols in this model have two disadvantages: first, every protocol
execution is forced to run for worst-case time c ·Δ even if the parties involved can com-
municate quickly. Transmission delays to some parts of the internet can be measured
in fractions of a day, and so for completeness, Δ would have to be reasonably large.
Whereas our protocol allows fast participants to complete interactions “as fast as the
network allows,” the timing protocols of [DNS98, Gol02] require all sessions to run
in time related to worst-case network delays. Conceptually, our protocol handles more
diverse schedules, whereas the timing model protocols use timing to ensure “roughly
parallel” composition.

The work of [PTV10] reduces the required delay so some small constant c < 1.
This protocol is major practical improvement to the timing model; however, it too must
delay the verifier by some multiplicative penalty of the time it takes for the verifier to
respond, and it requires 3 slots. For example, every session must run at least twice as
slow (their penalty function is a parameter and can be ω(1) in some cases also) “as
the network allows” and each verifier must still complete multiple slots (whereas in
optimistic cases, only 1 slot is required).

New problems of Accountability. Unfortunately, any setting of Δ introduces the sec-
ond more subtle problem with TIMEOUT: much like intentional starvation discussed
above, a malicious Prover can send a TIMEOUT to a Verifier to avoid having to abort a
session that it cannot complete. The verifier has no way to “contest” this timeout. As
we will argue, such a use of TIMEOUTs introduces a new way for a malicious prover to
cheat that is not possible in the standard model.

The basis for this problem is that clocks in the timing model must be local and unau-
thenticatable to allow the simulator to rewinding the verifier (or prover in the case of a
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proof of knowledge). If a local clock can be authenticated, then a malicious verifier V ∗

algorithm could refuse to answer any message that is too old according to its clock and
this would eliminate the possibility of rewinding. As a result, local clock timestamps
that appear in transcripts or communication tapes can be forged by any party; it is not
possible for a third party to verify such a timestamp.

This leads to the problem that transcripts that arise from the following two cases are
indistinguishable which removes any accountability for aborting:

1. A malicious Prover algorithm receives a message from an honest Verifier, waits for
time Δ+ ε, and then sends TIMEOUT.

2. A malicious Verifier algorithm delays sending a message for time Δ + ε, and then
sends its message. The honest Prover, consequently sends a TIMEOUT messsage.

Let us compare this situation to the standard model in which—say—messages can be
authenticated. (Notice that messages can be authenticated and still allow rewinding.)
Of course, a malicious prover can always abort a protocol by either sending an incor-
rect message or refusing to send any message. Both cases, however, are fundamentally
different then the ability for a malicious prover to send a TIMEOUT.

When the Prover sends a bogus message, the verifier has proof (via the authenticated
message) that the Prover cannot supply a proof of the statement, and the prover is
therefore accountable for the abort. In fact, the second case is the same. As described
by Canetti [Can06], “not sending a message” in the standard model is handled by an
explicit halt which is proof that the Prover has failed.

Protocol participants are modeled as strict polynomial-time interactive Turing
machines; one machine sends a message to another by writing on the recip-
ient’s “communication tape.” Message delivery is not guaranteed. However,
when one machine executes a HALT operation, the other party in a protocol
execution is informed of the HALT via this communication tape. This modeling
guarantees that one party is not inadvertently left waiting for a message that
will never arrive.3 It is important to note that the standard model does not have
any notion of “time” except for steps of computation.

Thus, the standard model makes it possible to determine which of the two parties
cheated in an interaction. In contrast, the timing model with TIMEOUTS allows a ma-
licious Prover to be unaccountable for its cheating. While we acknowledge that such a
difference may be purely theoretical, it is nonetheless conceptually troubling.

Comparison with Responsive Round Complexity. Cohen, Kilian and Petrank pro-
pose the notion of responsive round complexity [CKP01]. A protocol is said to have
responsive round complexity m with party A if it can guarantee that if A responds to
every message of the protocol in at most time t, then the overall communication de-
lay of the protocol execution is m · t. The idea behind the protocol in that paper is the
following:

3 In particular, this mechanism is how a malicious party that does not send a message is
modeled—since the party must be strict polynomial-time, if it refuses to send a message, we
assume it runs a computation, eventually HALTS and then the recipient learns that the other
party has aborted.
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Every verifier is assigned a time bin T . If a verifier V delays a message by time
t < T , then the prover delays the response to V by time 2T . If a verifier delays
a message by time t > T , then the verifier is moved into time bin 2T , and the
verifier must restart the protocol from the beginning.

Slow verifiers are penalized. In particular, this Prover strategy clumps verifiers into
“time buckets” such that all verifiers in the same bucket act in a roughly parallel manner.
The analysis then used in the timing model work can be applied.

Overall, the goal of this notion is to assure that a party that always responds quickly
has a stronger guarantee on the communication time of the overall protocol. Similarly,
our work also attempts to improve the communication time for Verifiers that respond
quickly. However, the protocols in [CKP01] still have at least ω(logn) slots in the
best case when the verifiers respond quickly. (In other words, their protocol guarantees
response round complexity of O(log n) whereas our protocol can use only 1 slot when
the Verifier responds quickly.)

Buffering Sessions. Another idea is for the Prover to buffer sessions so that each one
starts only after the previous session finishes. Buffering sessions, i.e. serializing them,
eliminates the benefits of having multiple sessions run safely at the same time.

Denial of Service. A malicious verifier can “force” the protocol to require just as many
rounds as the current best fixed-round cZK protocol. This is not a denial-of-service
attack because the malicious verifier can only force the same round complexity that
the best current protocols achieve—thus, the optimistic approach is never worse than
PRS. Moreover, in every additional round forced by a bad schedule, V ∗ is required to
communicate and compute more than the Prover.

Handling Server Farms. Our optimistic approach requires the Prover to know the
global schedule of Verifier messages. Very large systems, however, are usually built on
clusters of servers instead of a single machine. Our optimistic approach can be made to
work on clusters using a consensus protocol to share schedules among the servers. Since
all servers belong to the same entity and are connected through internal fast links, the
consensus protocol would work “in the best case” (as opposed to the Byzantine case) for
most sessions. In other words, our protocol is viable even after counting the overhead
to make all prover machines agree on a schedule of verifier requests. To be sure, many
very large systems in existence today require even more complicated consensus on the
order of requests that they serve. For example, consider distributed database systems
(sometimes distributed over tens of thousands of machines), social network sites, and
some distributed file systems that are implemented across thousands of machines.
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Abstract. We describe two improvements to Gentry’s fully homomor-
phic scheme based on ideal lattices and its analysis: we provide a more
aggressive analysis of one of the hardness assumptions (the one related
to the Sparse Subset Sum Problem) and we introduce a probabilistic de-
cryption algorithm that can be implemented with an algebraic circuit of
low multiplicative degree. Combined together, these improvements lead
to a faster fully homomorphic scheme, with a Õ(λ3.5) bit complexity
per elementary binary add/mult gate, where λ is the security parame-
ter. These improvements also apply to the fully homomorphic schemes of
Smart and Vercauteren [PKC’2010] and van Dijk et al. [Eurocrypt’2010].

Keywords: fully homomorphic encryption, ideal lattices, SSSP.

1 Introduction

A homomorphic encryption scheme allows any party to publicly transform a col-
lection of ciphertexts for some plaintexts π1, . . . , πn into a ciphertext for some
function/circuit f(π1, . . . , πn) of the plaintexts, without the party knowing the
plaintexts themselves. Such schemes are well known to be useful for construct-
ing privacy-preserving protocols, for example as required in ‘cloud computing’
applications: a user can store encrypted data on a server, and allow the server to
process the encrypted data without revealing the data to the server. For over 30
years, all known homomorphic encryption schemes supported only a limited set
of functions f , which restricted their applicability. The theoretical problem of
constructing a fully homomorphic encryption scheme supporting arbitrary func-
tions f , was only recently solved by the breakthrough work of Gentry [9]. More
recently, two further fully homomorphic schemes were presented [26,5], follow-
ing Gentry’s framework. The underlying tool behind all these schemes is the use
of Euclidean lattices, which have previously proved powerful for devising many
cryptographic primitives (see, e.g., [21] for a recent survey).

A central aspect of Gentry’s fully homomorphic scheme (and the subsequent
schemes) is the ciphertext refreshing Recrypt operation. The ciphertexts in

M. Abe (Ed.): ASIACRYPT 2010, LNCS 6477, pp. 377–394, 2010.
c© International Association for Cryptologic Research 2010
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Gentry’s scheme contain a random ‘noise’ component that grows in size as the ci-
phertext is processed to homomorphically evaluate a function f on its plaintext.
Once the noise size in the ciphertext exceeds a certain threshold, the ciphertext
can no longer be decrypted correctly. This limits the number of homomorphic
operations that can be performed. To get around this limitation, the Recrypt
operation allows to ‘refresh’ a ciphertext, i.e., given a ciphertext ψ for some
plaintext π, to compute a new ciphertext ψ′ for π (possibly for a different key),
but such that the size of the noise in ψ′ is smaller than the size of the noise in ψ.
By periodically refreshing the ciphertext (e.g., after computing each gate in f),
one can then evaluate arbitrarily large circuits f .

The Recrypt operation is implemented by evaluating the decryption circuit of
the encryption scheme homomorphically, given ‘fresh’ (low noise) ciphertexts for
the bits of the ciphertext to be refreshed and the scheme’s secret key. This homo-
morphic computation of the decryption circuit must of course be possible without
any ciphertext refreshing, a condition referred to as bootstrappability. Thus, the
complexity (in particular circuit depth, or multiplicative degree) of the scheme’s
decryption circuit is of fundamental importance to the feasibility and complexity
of the fully homomorphic scheme. Unfortunately, the relatively high complexity
of the decryption circuit in the schemes [9,26,5], together with the tension be-
tween the bootstrappability condition and the security of the underlying hard
problems, implies the need for large parameters and leads to resulting encryption
schemes of high bit-complexity.

Our Contributions. We present improvements to Gentry’s fully homomorphic
scheme [9] and its analysis, that reduce its complexity. Overall, letting λ be the
security parameter (i.e., all known attacks against the scheme take time≥ 2λ), we
obtain a Õ(λ3.5) bit complexity for refreshing a ciphertext corresponding to a 1-bit
plaintext. This is the cost per gate of the fully homomorphic scheme. To compare
with, Gentry [8, Ch. 12] claims a Õ(λ6) bound, although the proof is incomplete1.

The improved complexity stems from two sources. First, we give a more ag-
gressive security analysis of the Sparse Subset Sum Problem (SSSP) against
lattice attacks, compared to the analysis given in [9]. The SSSP, along with
the Ideal lattice Bounded Distance Decoding (BDD) problem, are the two hard
problems underlying the security of Gentry’s fully homomorphic scheme. In his
security analysis of BDD, Gentry uses the best known complexity bound for the
approximate shortest vector problem (SVP) in lattices, but in analyzing SSSP,
Gentry assumes the availability of an exact SVP oracle. Our new finer analy-
sis of SSSP takes into account the complexity of approximate SVP, making it
more consistent with the assumption underlying the analysis of the BDD prob-
lem, and leads to smaller parameter choices. Second, we relax the definition of
fully homomorphic encryption to allow for a negligible but non-zero probability
1 This bound is claimed to hold for the scheme after Optimizations 1 and 2 of [8,

Se. 12.3], but the analysis does not include the cost of the ciphertext expansion nor
details which decryption circuit is applied homomorphically. For instance, the decryp-
tion circuit from [5, Le. 6.3] is too costly to derive the bound. These gaps can be filled
using Section 6.2 of the present article, and the bound Õ(λ6) indeed holds.
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of decryption error. We then show that, thanks to the randomness underlying
Gentry’s ‘SplitKey’ key generation for his squashed decryption algorithm (i.e.,
the decryption algorithm of the bootstrappable scheme), if one allows a negligible
decryption error probability, then the rounding precision used in representing the
ciphertext components can be roughly halved, compared to the precision in [9]
which guarantees zero error probability. The reduced ciphertext precision allows
us to decrease the degree of the decryption circuit. We concentrate on Gen-
try’s scheme [9], but our improvements apply equally well to the other related
schemes [26,5].

Notation. Vectors will be denoted in bold. If x ∈ R
n, then ‖x‖ denotes the Eu-

clidean norm of x. We make use of the Landau notations O(·), Õ(·), ω(·), Ω(·),
Ω̃(·), Θ(·), Θ̃(·). If n grows to infinity, we say that a function f(n) is negligible if it
is asymptotically≤ n−c for any c > 0. IfX is a random variable, E[X ] denotes its
mean and Pr[X = x] denotes the probability of the event “X = x”. We say that a
sequence of eventsEn holds with overwhelming probability if Pr[¬En] ≤ f(n) for a
negligible function f . We will use the following variant of the Hoeffding bound [13].

Lemma 1.1. Let X1, . . . , Xt denote independent random variables with mean μ,
where Xi ∈ [ai, bi] for some a, b ∈ R

t. Let X =
∑

iXi. Then:

∀k ≥ 0 : Pr [|X − tμ| ≥ k] ≤ 2 · exp(−2k2/‖b− a‖2).
Remark. Due to space limitations, some contents of the article are only given in
the appendices of the full version, which is available on the authors’ webpages.
These include: a sketch of Gentry’s bootstrapping transformation [9], adapted
to handle decryption errors; a proof that an ideal sampled from Gentry’s dis-
tribution [11] is of prime determinant with overwhelming probability, when the
considered ring is Z[x]/(x2k

+ 1); the proofs of Lemmata 3.2 and 3.3; and the
application of our improvements to other fully homomorphic encryption schemes.

2 Reminders

For a detailed introduction to the computational aspects of lattices, we refer
to [20]. The article [10] provides an intuitive description of Gentry’s fully homo-
morphic scheme.

2.1 Euclidean Lattices

An n-dimensional lattice L is the set of all integer linear combinations of some
linearly independent vectors b1, . . . , bn ∈ Z

n, i.e., L =
∑

Zbi. The bi’s are called
a basis of L. A basis B = (b1, . . . , bn) ∈ Z

n×n is said to be in Hermite Normal
Form (HNF) if bi,j = 0 for i > j and 0 ≤ bi,j < bi,i otherwise. The HNF of a
lattice is unique and can be computed in polynomial time given any basis, which
arguably makes it a worst-case basis [19]. To a basis B = (b1, . . . , bn) ∈ Z

n×n for
lattice L, we associate the fundamental parallelepiped P(B) = {v =

∑
i yi · bi :
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yi ∈ (−1/2, 1/2]}. For a vector v ∈ R
n, we denote by v mod B the unique

vector v′ ∈ P(B) such that v− v′ ∈ L. Note that v′ = v−B�B−1v�, where �·�
rounds the coefficients to the nearest integers (upwards in case of a real that is
equally distant to two consecutive integers).

The minimum λ1(L) is the norm of any shortest non-zero vector in L. More
generally, the ith minimum λi(L) is the radius of the smallest ball containing i
linearly independent lattice vectors. We define the lattice amplitude as the ratio
λn(L)/λ1(L). We now define two parametrized families of algorithmic problems
that are central for Euclidean lattices. Let γ ≥ 1 be a function of the dimension.
The γ-SVP (for Shortest Vector Problem) computational problem consists in
finding a vector b ∈ L such that 0 < ‖b‖ ≤ γλ1(L), given as input an arbi-
trary basis for L. The γ-BDD (for Bounded Distance Decoding) computational
problem consists in finding a vector b ∈ L closest to t given as inputs an ar-
bitrary basis for L and a target vector t whose distance to L is ≤ γ−1λ1(L).
Solving γ-SVP and γ-BDD are in general computationally hard problems. The
best algorithms for solving them for γ = 1 ([14,22]) run in time exponential with
respect to the dimension. On the other hand, the smallest γ one can achieve in
polynomial time is exponential, up to poly-logarithmic factors in the exponent
([17,24,1]). For intermediate γ, the best strategy is the hierarchical reduction
of [24], and leads to the following conjecture.

Lattice ‘Rule of Thumb’ Conjecture. There exist absolute constants c1, c2 >
1 such that for any λ and any dimension n, for any n-dimensional lattice with am-
plitude ≤ γ/c2, one cannot solve γ-SVP (resp. γ-BDD) in time smaller than 2λ,
with γ = c

n/λ
1 .

Let us discuss the conjecture. One often considers the lattice gap λ2
λ1

. If λ2
λ1
>

γ, then γ-SVP is equivalent to γ′-SVP for any γ′ < λ2
λ1

: a γ′-SVP solver is
guaranteed to output a multiple of a shortest vector, from which solving SVP
is easy. Similarly, if λ2

λ1
= O(1) but λ3

λ2
> γ, then lattice reduction will return

a basis whose first two vectors span a sublattice containing vectors reaching λ1

and λ2: SVP can then be solved by 2-dimensional reduction. This explains why
we consider λn

λ1
rather than the more standard λ2

λ1
. Note that for most common

lattices, there is no a priori reason to expect λn to be significantly larger than λ2.
Finally, when λn

λ1
≤ γ, the complexity of γ-SVP does not seem to depend on λn

λ1
.

The experimental results in [7] seem to be consistent with this conjecture.
Algorithmic improvements have been proposed (e.g., [6,16]), but they have

only led to better constants, without changing the overall framework. The con-
jecture seems to hold even if one considers quantum computers [18]. We will
consider it for two families of lattices: no algorithm is known to perform non-
negligibly better for them than for general lattices.

For a lattice L, we define detL as | detB| for any basisB. Minkowski’s theorem
provides a link between the minimum and the determinant.

Theorem 2.1 ([4, III.2.2]). Let L be an n-dimensional lattice and V be a com-
pact convex set that is symmetric about the origin. Letm ≥ 1 be an integer. If vol(V )
≥ m2n det(L), then V contains at least m non-zero pairs of points ±b of L.
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2.2 Ideal Lattices

Let f ∈ Z[x] a monic degree n irreducible polynomial. Let R denote the polyno-
mial ring Z[x]/f . Let I be an (integral) ideal of R, i.e., a subset of R that is closed
under addition, and multiplication by arbitrary elements of R. By mapping poly-
nomials to the vectors of their coefficients, we see that the ideal I corresponds
to a sublattice of Z

n: we can thus view I as both a lattice and an ideal. An ideal
lattice for f is a sublattice of Z

n that corresponds to an ideal I ⊆ Z[x]/f . In the
following, an ideal lattice will implicitly refer to an f -ideal lattice. For v ∈ R
we denote by ‖v‖ its Euclidean norm (as a vector). We define a multiplicative
expansion factor γ×(R) for the ring R by γ×(R) = maxu,v∈R

‖u×v‖
‖u‖·‖v‖ . A typical

choice is f = xn + 1 with n a power of 2, for which γ×(R) =
√
n (see [9, Th. 9]).

Two ideals I and J of R are said coprime if I + J = R, where I + J = {i+ j :
i ∈ I, j ∈ J}. An ideal I is said prime of degree 1 if det(I) is prime. For an
ideal J of R, we define J−1 = {v ∈ Q[x]/f : ∀u ∈ J,u × v ∈ R}. This is a
fractional ideal of R, and J−1 ⊆ 1

det JR (since (detJ) · R ⊆ J). If f = xn + 1
with n a power of 2, then R is the ring of integers of the (2n)th cyclotomic
field and J−1 × J = R for any integral ideal J (the product of two ideals I1
and I2 being the ideal generated by all products i1 · i2 with i1 ∈ I1 and i2 ∈ I2).
An ideal I is said principal if it is generated by a single element r ∈ I, and
then we write I = (r). We define rotf (r) ∈ Q

n×n as the basis of I consisting of
the xkr(x) mod f ’s, for k ∈ [0, n− 1].

If I is an ideal lattice for f = xn + 1, then we have λ1(I) ≥ det(I)1/n:
an easy way to prove it is to notice that the rotations xkv of any shortest
non-zero vector v form a basis of a full-rank sublattice of I, and to use the
inequalities λ1(I)n =

∏
k ‖xkv‖ ≥ det((v)) ≥ det I.

2.3 Homomorphic Encryption

In this section, we review definitions related to homomorphic encryption. Our
definitions are based on [9,8], but we slightly relax the definition of decryption
correctness, to allow a negligible probability of error. This is crucial for our
probabilistic improvement to Gentry’s Recrypt algorithm.

Definition 2.1. A homomorphic encryption scheme Hom consists of four
algorithms:

• KeyGen: Given security parameter λ, returns a secret key sk and a public
key pk.
• Enc: Given plaintext π ∈ {0, 1} and public key pk, returns ciphertext ψ.
• Dec: Given ciphertext ψ and secret key sk, returns plaintext π.
• Eval: Given public key pk, a t-input circuit C (consisting of addition and

multiplication gates modulo 2), and a tuple of ciphertexts (ψ1, . . . , ψt) (cor-
responding to the t input bits of C), returns a ciphertext ψ (corresponding
to the output bit of C).
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Hom is said correct for a family C of circuits with ≤ t = Poly(λ) input bits
if for any C ∈ C and input bits (πi)i≤t, the following holds with overwhelming
probability over the randomness of KeyGen and Enc:

Dec(sk,Eval(pk, C, (ψ1, . . . , ψt))) = C(π1, . . . , πt),

where (sk, pk) = KeyGen(λ) and ψi = Enc(pk, πi) for i = 1, . . . , t.
Hom is said compact if for any circuit C with ≤ t = Poly(λ) input bits, the

bit-size of the ciphertext Eval(pk, C, (ψ1, . . . , ψt)) is bounded by a fixed polyno-
mial b(λ).

Gentry [9] defined the powerful notion of a bootstrappable homomorphic en-
cryption scheme: one that can homomorphically evaluate a decryption of two
ciphertexts followed by one gate applied to the decrypted values. We also relax
this notion to allow decryption errors.

Definition 2.2. Let Hom = (KeyGen,Enc,Dec,Eval) denote a homomorphic en-
cryption scheme. We define two circuits:

• Dec-Add: Takes as inputs a secret key sk and two ciphertexts ψ1, ψ2, and
computes Dec(sk, ψ1) + Dec(sk, ψ2) mod 2.
• Dec-Mult: Takes as inputs a secret key sk and two ciphertexts ψ1, ψ2, and

computes Dec(sk, ψ1)× Dec(sk, ψ2) mod 2.

Hom is said bootstrappable if it is correct for Dec-Add and Dec-Mult.

Gentry discovered that a bootstrappable homomorphic encryption can be used
to homomorphically evaluate arbitrary circuits. More precisely, he proved the
following result (adapted to allow for decryption error). The construction is
sketched in the full version.

Theorem 2.2 ([9, Se. 2]). Given a bootstrappable homomorphic encryption
scheme Hom, and parameter d = Poly(λ), it is possible to construct another
homomorphic encryption scheme Hom(d) that is compact and correct for all cir-
cuits of size Poly(λ). Furthermore, if the scheme Hom is semantically secure,
then so is the scheme Hom(d).

3 Summary of Gentry’s Fully Homomorphic Scheme

We now review Gentry’s fully homomorphic encryption scheme [9,8].

3.1 The Somewhat Homomorphic Scheme

We first recall Gentry’s somewhat homomorphic encryption scheme (see [8,
Se. 5.2 and Ch. 7]) which supports a limited number of multiplications. It is the
basis for the bootstrappable scheme presented in Subsection 3.3. The scheme,
described in Figure 1, produces ciphertexts in the ring R = Z[x]/f for a suitable
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irreducible degree nmonic polynomial f . In this paper, we will assume f = xn+1
with n a power of 2. Here n is a function of the security parameter λ.

The key generation procedure generates two coprime ideals I and J of R. The
ideal I has basis BI . To simplify the scheme (and optimize its efficiency), a con-
venient choice, which we assume in this paper, is to take I = (2): Reduction of v
modulo I corresponds to reducing the coefficients of the vector/polynomial v
modulo 2. The ideal J is generated by an algorithm IdealGen, that given (λ, n),
generates a ‘good’ secret basis Bsk

J (consisting of short, nearly orthogonal vec-
tors) and computes its HNF to obtain a ‘bad’ public basis Bpk

J . Suggestions for
concrete implementations of IdealGen are given in [8, Se. 7.6], [11] and [26]. To
obtain the Õ(λ3.5) bit complexity bound, we will assume that J is a degree 1
prime ideal, which is the case with the implementation of [26] and is also the case
with probability exponentially close to 1 for the distribution considered in [11]
(see full version). Associated with IdealGen is a parameter rDec, which is a lower
bound on the radius of the largest origin-centered ball which is contained in-
side P(Bsk

J ). In all cases we have rDec ≥ λ1(J)/Poly(n) (see, e.g., [8, Le. 7.6.2]).
Using Babai’s rounding-off algorithm [1] with Bsk

J , the decryptor can recover
the point of J closest to any target vector within distance rDec of J (see [8,
Le. 7.6.1]).

• KeyGen(λ): Run IdealGen(λ,n) to generate secret/public bases (Bsk
J , Bpk

J ) for
ideal J such that P(Bsk

J ) contains an origin-centered ball of radius rDec ≈ λ1(J).
Return public key pk = Bpk

J and secret key sk = Bsk
J .

• Enc(pk, π): Given plaintext π ∈ {0, 1} and public key pk, run Samp(I, π) to get
π′ ∈ π + I with ‖π′‖ ≤ rEnc. Return ciphertext ψ = π′ mod Bpk

J .
• Dec(sk, ψ): Given ciphertext ψ and secret key sk, returns π=(ψ modBsk

J )mod I .
• Eval(pk,C, (ψ1, . . . , ψt)): Given public key pk, circuit C and ciphertexts ψ1, . . . , ψt,

for each add or multiply gate in C, perform a + or × operation in R mod Bpk
J ,

respectively, on the corresponding ciphertexts. Return the ciphertext ψ correspond-
ing to the output of C.

Fig. 1. Gentry’s Somewhat Homomorphic Encryption Scheme SomHom

The plaintext space is a subset of P(I), that we assume to be {0, 1}. The
encryption algorithm uses a sampling algorithm Samp, which given (BI ,x) for
a vector x ∈ R, samples a ‘short’ vector in the coset x + I. Concrete imple-
mentations of Samp are given in [8, Se. 7.5 and 14.1]. Associated with Samp
is a parameter rEnc, which is a (possibly probabilistic) bound on the norms of
vectors output by Samp. For both implementations, one can set rEnc = Poly(n).
To encrypt a message π, a sample π+i from the coset π+I is generated, and the
result is reduced modulo the public basis Bpk

J : ψ = π+ i mod Bpk
J . It is assumed

that rEnc < rDec. Therefore, by reducing ψ modulo the secret basis Bsk
J one can

recover π + i, and then plaintext π can be recovered by reducing modulo BI .
Homomorphic addition and multiplication of the encrypted plaintexts π1, π2

modulo BI are supported by performing addition and multiplication respec-
tively in the ring R on the corresponding ciphertexts modulo Bpk

J . Namely,
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for ψ1 = π1 + i1 mod Bpk
J , ψ2 = π2 + i2 mod Bpk

J with i1, i2 ∈ I, we have
ψ1 +ψ2 mod Bpk

J ∈ (π1 +π2)+ I and ψ1×ψ2 mod Bpk
J ∈ (π1×π2)+ I mod Bpk

J .
However, for ensuring correct decryption of these new ciphertexts, we need that
‖(π1 + i1) + (π2 + i2)‖, ‖(π1 + i1) × (π2 + i2)‖ ≤ rDec. This limits the degree
of polynomials that can be evaluated homomorphically. Note that our choice
for J implies that a ciphertext reduced modulo Bpk

J is simply an integer mod-
ulo det(J) and thus homomorphic evaluations modulo Bpk

J reduce to integer
arithmetic modulo det(J) (such as in [26]).

3.2 A Tweaked Somewhat Homomorphic Scheme

Gentry [8, Ch. 8] introduced tweaks to SomHom to simplify the decryption algo-
rithm towards constructing a fully homomorphic scheme. The tweaked scheme
SomHom′ differs from the original scheme in the key generation and decryption
algorithm, as detailed in Figure 2.

• KeyGen′(λ): Run KeyGen(λ) to obtain (Bsk
J , Bpk

J ). From Bsk
J , compute a vector

vsk
J ∈ J−1 such that P(rotf (vsk

J )−1) contains a ball of radius r′Dec = rDec

8
√

2n2.5

(see [8, Le. 8.3.1]). Return public key pk = Bpk
J and secret key sk = Bsk

J .
• Dec′(sk, ψ): Given ciphertext ψ and secret key sk, return π = ψ−�vsk

J ×ψ� mod I .

Fig. 2. Algorithms of the Tweaked Somewhat Homomorphic Encryption Scheme
SomHom′ that differ from those of SomHom

Gentry showed the following on the correctness of Dec′.

Lemma 3.1 (Adapted from [8, Le. 8.3.1 and 8.4.2]). A ciphertext ψ =
π+ i mod Bpk

J with ‖π+ i‖ ≤ r′Dec is correctly decrypted to π by Dec′. Moreover,
if ‖π + i‖ ≤ r′Dec, then each coefficient of vsk

J × ψ is within 1/8 of an integer.

Let C be a mod 2 circuit consisting of add and multiply gates with two inputs and
one output. We let g(C) denote the generalized circuit obtained from C by replac-
ing the add and multiply gates mod 2 by the + and × operations of the ring R,
respectively. We say that circuit C is permitted, if for any set of inputs x1, . . . ,xt

to g(C) with ‖xk‖ ≤ rEnc for k = 1, . . . , t, we have ‖g(C)(x1, . . . ,xt)‖ ≤ r′Dec.
A permitted circuit which is evaluated homomorphically on encryptions of plain-
texts π1, . . . , πt will yield a ciphertext ψ = g(C)(π1 + i1, . . . , πt + it) mod Bpk

J

that correctly decrypts to C(π1, . . . , πt), and such that the coefficients of vsk
J ×ψ

are within 1/8 of an integer. As in [5, Le 3.4], we characterize the permitted cir-
cuits by the maximal degree of the polynomial evaluated by the circuit. Note
that Gentry [9,8] considers the circuit depth, which is less flexible.

Lemma 3.2. Let C be a mod 2 circuit, and g(C) denote the corresponding gen-
eralized circuit over R, evaluating h ∈ Z[x1, . . . , xt] of (total) degree d. The
circuit C is permitted if γd−1

× ‖h‖1rd
Enc ≤ r′Dec. In particular, assuming that h

has coefficients in {0, 1}, the circuit C is permitted if d satisfies
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d ≤ log r′Dec

log(rEnc · γ× · (t+ 1))
.

Remark. The polynomial h referred to above is the one evaluated by the gener-
alized circuit g(C). For arbitrary circuits C mod 2, the polynomial h may differ
from the polynomial h′ evaluated by the circuit C mod 2; in particular, the poly-
nomial h may have non-binary integer coefficients, and some may be multiples
of 2. However, for circuits C for which h has binary coefficients (the condition
in the lemma), we have h = h′ (this condition on h is also needed, but is not
explicitly stated in [5]).

3.3 Gentry’s Squashed Bootstrappable Scheme

To make it bootstrappable, Gentry [8, Ch. 10] modified SomHom′ by ‘squashing’
the decryption circuit. He moved some of the decryption computation to the
encryption stage, by providing additional information in the public key. This
results in the bootstrappable scheme SqHom described in Figure 3. The scheme
introduces three new integer parameters (p, γset, γsub). Note that we incorporated
Optimization 2 from [8, Ch. 12], which is made possible thanks to the choice
I = (2).

– KeyGen′′(λ):
• Run KeyGen′ to get Bpk

J and vsk
J .

• Generate a uniform γset-bit vector s = (s1, . . . , sγset) with Hamming
weight γsub and sγset = 1.

• Generate t1, . . . , tγset−1 uniformly and independently from J−1 mod BI . Com-
pute tγset = vsk

J −
∑

k<γset
sktk.

• Return sk = s and pk = (Bpk
J ; t1, . . . , tγset).

– Enc′′(pk, π): Run Enc of SomHom′ to generate ciphertext ψ. For k = 1, . . . , γset,
compute ck on p + 1 bits (1 bit before the binary point, and p bits after) such
that |ck − [tk × ψ]0 mod 2| ≤ 2−p, where [g]0 denotes the constant coefficient of
the polynomial g ∈ R. Return ciphertext (ψ; c1, . . . , cγset ).

– Dec′′(sk, (ψ; c1, . . . , cγset)): Given expanded ciphertext (ψ; c1, . . . , cγset) and secret
key sk, return π = [ψ]0 − �∑k skck� mod 2.

– Eval′′: Same as for SomHom′ (while recomputing the ck’s, like in algorithm Enc′′).

Fig. 3. Algorithms of the Squashed Scheme SqHom

Note that
∑

k skck ≈
∑

k sk[tk×ψ]0 = ([(
∑

k sktk)×ψ]0) = [vsk
J ×ψ]0, mod-

ulo 2. Hence, in terms of decryption correctness, SqHom differs from SomHom′

only due to the rounding errors. The following lemma provides a sufficient pre-
cision p (see also [5, Le. 6.1]). In Section 5, we will show that p can be almost
halved, using a probabilistic error analysis.

Lemma 3.3. If p ≥ 3 + log2 γsub, a ciphertext (ψ; c1, . . . , cγset) of SqHom with
ψ = π + i mod Bpk

J and ‖π + i‖ ≤ r′Dec is correctly decrypted by the decryption
algorithm Dec′′, and

∑
k skck is within 1/4 of an integer.
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For bootstrappability, we need to be able to implement the augmented decryp-
tion circuits Dec-Add and Dec-Mult with circuit degrees smaller than the degree
capacity of the scheme. This is summarized in the following, in terms of the
size γsub of the hidden subset in the secret key.

Theorem 3.1 (Adapted from [5, Th. 6.2]). Assuming that
∑

k skck is
within 1/4 of an integer, the augmented decryption circuits Dec-Add and Dec-
Mult for scheme SqHom with precision parameter p can be evaluated by circuits
of degrees ≤ γsub · 29p1.71.

Proof. To decrypt ψ, we have to compute π = [ψ]0 − �
∑

k skck� mod 2. We
proceed as follows:

1- Compute ak = sk · ck for k = 1, . . . , γset.
2- Let ak,0.ak,1 . . . ak,p be the bit representation of ak. To sum the ak’s:

2.1- For j = 0, . . . , p, compute Wj , the Hamming weight of the bit vector
(a0,j , . . . , aγset,j).

2.2- Compute π = [ψ]0 −
∑

j≤p Wj · 2−j mod 2.

Note that because only γsub of the ak’s are non-zero, each Hamming weight Wj

is at most γsub and hence its binary representation has at most �log2(γsub + 1)�
bits. Step 1 requires a single multiplication mod 2 for each output bit, hence has
degree 2. For Step 2.1, we use the following.

Lemma 3.4 (Adapted from [5, Le. 6.3]). Let (σ1, . . . , σt) be a binary vector,
and W = Wn . . .W0 be the binary representation of its Hamming weight. Then
for any k, the bit Wk can be expressed as a the evaluation in the σj’s of an
integer polynomial of degree exactly 2k.

We conclude that Step 2.1 can be computed by a circuit of degree 2�log2(γsub+1)� ≤
2γsub. Using the ‘3-for-2’ trick [15], van Dijk et al. [5] show that Step 2.2 can be
done with a circuit of degree ≤ 2�log3/2(p+1)�+4 ≤ 26p1.71. The total degree of the
decryption circuit is thus ≤ γsub · 28p1.71, and hence that of Dec-Add (resp. Dec-
Mult) is ≤ γsub · 29p1.71. �
Combining Theorem 3.1 with Lemmata 3.2 and 3.3, we get:

Corollary 3.1. The scheme SqHom is bootstrappable as long as

γsub · 29 log1.71(γsub + 4) ≤ log r′Dec

log(rEnc · γ× · (t+ 1))
.

4 A Less Pessimistic Hardness Analysis of the SSSP

The semantic security of Gentry’s schemes SomHom and SomHom′ relies on the
hardness of a bounded distance decoding problem. As explained in Section 2,
this hardness assumption is asymptotically well understood (with the lattice
reduction ‘rule of thumb’ conjecture). When converted into the bootstrappable
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scheme SqHom, another hardness assumption is added, namely that of the
so-called SplitKey distinguishing problem. To be precise, a semantic attack
against SqHom either leads to an efficient ideal lattice BDD algorithm or to an
efficient algorithm for the SplitKey distinguishing problem (see [9, Th. 10]).
In [9, Th. 11.1.3], the following Sparse Vector Subset Sum Problem (SVSSP) is
shown to reduce to the SplitKey distinguishing problem.

Definition 4.1 (SVSSPγsub,γset). Let γsub and γset be functions of the hard-
ness parameter λ. Let J be as generated by KeyGen, and BIJ be the HNF of
ideal IJ . The decisional SVSSP is as follows: Distinguish between (a1, . . . ,aγset)
chosen uniformly in R ∩ P(BIJ) and the same but conditioned on the existence
of a vector s ∈ {0, 1}γset of Hamming weight γsub with

∑
k skak = 0 mod IJ .

For our choice I = (2), we have BIJ = 2Bpk
J , where Bpk

J is the HNF of J . In the
following, we use q = det(BIJ) = 2n det(J). A simple birthday paradox attack
runs in time ≈ (γset

γsub

)1/2. To achieve 2λ hardness, we require that γsub = Ω(λ)
and γset ≥ 2γsub. We now analyze another attack, based on lattice reduction.
Consider the lattice

L =

⎧
⎨
⎩x ∈ Z

γset :
∑

k≤γset

xk · ak = 0 mod IJ

⎫
⎬
⎭ .

Since qZγset ⊆ L, we have dimL = γset. Furthermore, we have detL =
|Zγset/L| = |φ(Zγset)| ≤ det(BIJ) = q, where φ : Z

γset → Z
n/IJ is the map

x �→ ∑
k xkak mod IJ . Also, the existence of the solution vector s implies

that 1 ≤ λ1(L) ≤ √γsub.
Suppose we are limited to a computational power of 2λ. The lattice reduction

‘rule of thumb’ conjecture suggests that we cannot find vectors in L of norms ≤
U := c

γset
λ

1 , assuming that λγset (L)

λ1(L) ≤ U/c2. Apart from the unusual smallness
of the lattice minimum, there is no reason to expect the remaining λi(L)’s to
vary significantly: the lattice gap λ2(L)

λ1(L) and the lattice amplitude λγset (L)

λ1(L) should
be similar. Now, there are ≤ m := U

√
γsub pairs of non-zero multiples ±k · s

with norm ≤ U · λ1(L) ≤ U
√
γsub. At the same time, Minkowski’s theorem

(Theorem 2.1) asserts that there are far more lattice vectors of norm ≤ U/c2.

Lemma 4.1. Assuming that π
γset

2

Γ( γset+2
2 ) · (U/c2)

γset ≥ (2λm) · 2γset · q, we have

|L ∩ B(0, U/c2)| ≥ 2λm.

Note that if the condition in Lemma 4.1 holds, then for any λ ≥ 1, the ball of
radius Uλ1(L) ≥ U/c2 contains more than m pairs of non-zero points of L, so
the lattice gap λ2(L)

λ1(L) must be ≤ U/c2.
It seems reasonable to assume that the lattice points that are not multiples of s

do not provide information towards solving SVSSP. Also, we heuristically expect
lattice reduction to return one of these relevant vectors with probability ≈ 2−λ

if they constitute a fraction 2−λ of the total number of lattice vectors of norm
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≤ U . Under these assumptions, if the computational effort of lattice reduction is
limited to 2λ and if we wish to bound the likelihood of finding a relevant vector
by 2−λ, it seems sufficient to set the parameters so that:

c
γ2

set
λ

1 ≥ 2λ · γΩ(γset)
set · q.

As γset = Ω̃(λ), the above is implied by γ2
set

λ = Ω̃(log q). Note that this
condition is less restrictive than the corresponding one used in [9,26,5] (i.e.,
γset = Ω(log q)).

Remark. In algorithm KeyGen′′, the SVSSP instances satisfy sγset = 1. This
does not result in any security reduction, as an attacker can guess an i such
that si = 1 and then permute indices i and γset.
Remark. Our analysis differs in two ways from the one from [9] relying on [23]:
for consistency with the hardness analysis of the ideal BDD, we consider an
approximate SVP solver rather than an exact SVP solver; secondly, we do not
consider the ‘replay’ attack from [23] (which would lead to larger involved con-
stants), as contrarily to the case of server-aided RSA, only one instance of the
SSSP is given.

5 Improved Ciphertext Refreshing Algorithm

As explained in the proof of Theorem 3.1, the main component in the degree
of the decryption algorithm comes from the addition of the rationals skck =
[sktk × ψ]0 mod 2. This accounts for degree γsub, and all other components of
degree are negligible compared to this one.

Recall that t1, . . . , tγset−1, and hence also [t1 × ψ]0 mod 2, . . . , [tγset−1 ×
ψ]0 mod 2’s are chosen independently with identical distribution (iid), and
that tγset = vsk

J −
∑

k<γset
sktk mod 2. We are to exploit the iid-ness of the

first ti’s to obtain a sufficient precision p that is essentially half of that of Sec-
tion 3.3. This will have the effect of taking the square root of the decryption
circuit degree.

5.1 Using Less Precision

We first sum the sk[tk × ψ]0’s for k < γset, since they are iid, and then we add
the remaining cγset . The first sum will be represented on 6 bits (1 bit before the
point and 5 bits after) and we will ensure that it is within 1/16 of

∑
k<γset

sk[tk×
ψ]0 mod 2, with high probability. We take cγset within distance 1/16 of [tγset−1×
ψ]0 mod 2 and represent it on 6 bits. The last sum will provide a result within
distance 1/8 of

∑
k≤γset

sk[tk × ψ]0 mod 2, and can be done with a circuit of
constant degree. Using Lemma 3.1, we obtain that the result is within 1/4 of an
integer.

We now concentrate on the first sum. Let the ck’s be fixed-point approxima-
tions to the [tk × ψ]0’s, with some precision p. We have εk ≤ 2−p with εk =
ck − [tk × ψ]0. As the ck’s for k < γset are iid, so are the εk’s, k < γset. Also,
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we will ensure that E[εk] = 0 for any k < γset. The following lemma leads to a
probabilistic error bound for the sum of the ck’s.

Lemma 5.1. Let ε1, . . . , εt be iid variables with values in [−ε, ε] and such
that E[εk] = 0 for all k. Then |∑k≤t εk| >

√
tε · ω(

√
logλ) with probability

negligibly small with respect to λ.

Proof. We apply Hoeffding’s inequality to the εk’s. We have Pr[|∑ εk| ≥ x] ≤
exp(−x2/(2tε2)), for any x > 0. We take x =

√
tε · ω(

√
logλ). �

We use this lemma with ε = 2−p and t = γsub − 1 (i.e., the number of
non-zero skεk’s for k < γsub). It indicates that taking p = 1

2 log2 γsub +
ω(log logλ) suffices to ensure that with probability negligibly close to 1 we
have |∑k<γset

sk(ck − [tk × ψ]0) mod 2| ≤ 1/32. Truncating the result to 5
bits after the binary point cannot add more than an error of 1/32.

5.2 Expliciting the Computation of the ck’s in Enc′′

In order to be able to apply Lemma 5.1, we have to ensure that E[εk] = 0 for
any k < γset. To guarantee the latter and that this computation enjoys a limited
complexity bound, the ck’s need to be computed carefully.

We are given tk and ψ, and wish to compute a (1 + p)-bit approximation ck
to [tk ×ψ]0 mod 2. As J is a degree 1 prime ideal, vector ψ is in fact an integer
modulo det(J). We are thus interested in computing [tk]0 · ψ modulo 2. We
explicit this computation in Figure 4.

Inputs: Vectors tk and ψ, and precision p.
Output: A precision (1 + p) real ck ∈ [−1, 1] with |ck − ([tk ×ψ]0 mod 2)| ≤ 2−p.
1. p′ := log2 det(J) + p+ 1;
2. Compute the closest precision (1 + p′) number t̄k ∈ [−1, 1] to [tk]0.
3. Compute c′k := t̄kψ exactly.
4. Reduce c′k modulo 2, while preserving its sign (the result belongs to [−1, 1]).
5. Round c′k to the closest precision (1 + p) number ck ∈ [−1, 1].

Fig. 4. Computing coefficient ck for algorithm Enc′′

Lemma 5.2. The algorithm of Figure 4 is correct. Furthermore, if the vector tk

is chosen uniformly in J−1 mod 2 with uniformly random choice of sign when
a coordinate of tk belongs to {−1, 1}, then E[εk] = 0, where εk = ck − ([tk ×
ψ]0 mod 2).

Proof. At Step 2 of the algorithm, we have |t̄k − [tk]0| ≤ 2−p′−1. As ψ is exact
and belongs to [0, detJ), we have |t̄kψ− [tk]0ψ| ≤ 2−p′−1 det(J) ≤ 2−p−1. Thus,
at Step 3, we have |c′k − [tk × ψ]0| ≤ 2−p−1. The rounding of Step 5 leads
to |ck − ([tk ×ψ]0 mod 2)| ≤ 2−p−1 + 2−p−1 = 2−p.
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To prove the second statement, we use the symmetry of the distribution of tk.
It implies that E[[tk × ψ]0 mod 2] = 0. We now use the same property to show
that E[ck] = 0. At Step 2, changing tk into −tk has the effect of changing t̄k
into −t̄k. This implies that at Step 3, changing tk into −tk has the effect of
changing c′k into −c′k. Due to the symmetry of the rounding to nearest, this
carries over to ck and εk at Step 5. �
Note that the choice of rounding to nearest is not benign: the above proof
strongly relies on the symmetry of the rounding with respect to 0.

5.3 Decreasing the Decryption Circuit Depth

We now want to compute
∑

k<γset
skck mod 2, where the ck’s are fixed-point

reals with precision p = 1
2 log2 γsub + ω(log logλ). Instead of computing the

Hamming weights Wj for j ∈ {0, . . . , p} as in the proof of Theorem 3.1, we
compute only the bits Wj,� (for 0 ≤ � ≤ �log2 γsub�) that are going to contribute
to
∑

k<γset
skck mod 2: the most significant bits are rendered useless by the

reduction modulo 2. Most interestingly, these unnecessary most significant bits
were the ones requiring the higher degree circuits to evaluate. More precisely, we
have:

∑
k<γset

skck =
p∑

j=0

�log2 γsub�∑
�=0

Wj,�2−j+� =
p∑

j=0

j+1∑
�=0

Wj,�2−j+� mod 2.

Lemma 3.4 now implies that the desired sum mod 2 can be computed cor-
rectly with probability negligibly close to 1 with respect to λ, by evaluating an
arithmetic circuit of size Poly(γsub) corresponding to a polynomial of degree
exactly 2p+1 =

√
γsub · ω(

√
logλ). Overall, we get:

Theorem 5.1. The scheme SqHom is bootstrappable as long as

√
γsub · ω(

√
logλ) ≤ log r′Dec

log(rEnc · γ× · (t+ 1))
.

6 Asymptotic Efficiency

We now use the improvements described in the two previous sections to derive
bounds for the complexity of Gentry’s fully homomorphic scheme.

6.1 Optimizing the Parameters in Gentry’s Scheme

The table below summarizes and compares the conditions for Gentry’s scheme
to be 2λ-secure and correct. The semantic security of SomHom′ is related to the
hardness of γ-BDD for γ = r′Dec/rEnc. Recall that r′Dec = λ1(J)/Poly(n). Recall
also that J is an ideal lattice, and thus we have λ1(J) ≥ det(J)1/n = q1/n/2
(where q is the SVSSP determinant of Section 4). As a consequence, it suffices
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to ensure that γ-BDD is hard to solve for γ = q1/n/(rEncPoly(n)). We use the
lattice reduction ‘rule of thumb’ to derive a sufficient condition. As the encryptor
is limited to polynomial-time algorithms, we can safely assume that n = Poly(λ).
Also, since f = xn + 1, we have γ× =

√
n. Finally, by choosing rEnc = Poly(λ),

the ciphertexts have sufficient entropy to prevent any exhaustive search.

Condition [9] This article
BDD resistant to lattice attacks q1/n

Poly(λ)
≤ cn/λ

1

SSSP resistant to birthday paradox
(

γset
γsub

)1/2 ≥ 2λ

SSSP resistant to lattice attacks γset = Ω̃(log q)
γ2

set
λ

= Ω̃(log q)

Bootstrappability achieved γsub ≤ log(q1/n)
Θ(log λ)

√
γsub ≤ log(q1/n)

Poly(log λ)

To fulfill these conditions, we set γsub = Θ(λ), n = Θ̃(λ1.5), log q = Θ̃(λ2)
and γset = Θ(λ1.5). In [8, Ch. 12], these values were γsub ≈ λ, n ≈ λ2, log q ≈ λ3

and γset ≈ λ3 respectively.

6.2 Bit Complexity

The Recrypt procedure consists in expanding the ciphertext ψ as described in
algorithm Enc′′ of SqHom, encrypting the bits of the expanded ciphertext with the
new public key pk2, and then applying algorithmDec′′ homomorphically, using the
encrypted ciphertext bits and the encrypted secret key sk1 (under pk2). We also
consider the cost of homomorphically evaluating an elementary add/mult gate.

Let us first bound the cost of computing the ck’s in Enc′′, calling γset times
the algorithm from Figure 4. First, note that Steps 1 and 2 should not be done
within Enc′′, but at the key generation time, i.e., in KeyGen′′. Note that during
the third step of KeyGen′′, one should also pay attention to perform the reduction
modulo (2) such that the assumption of Lemma 5.2 holds. The quantity c′k ob-
tained at Step 3 of the algorithm from Figure 4 is encoded on O(log q) bits, and
its computation can be performed in Õ(log q) bit operations, using fast integer
arithmetic [25]. The costs of Steps 4 and 5 are negligible. Overall, the computa-
tion of the ck’s in Enc′′ can be done in Õ(γset log q) = Õ(λ3.5) bit operations.

The secret key is made of γset = Θ(λ1.5) bits. The bit-length of the encrypted
secret key is γset log q = Õ(λ3.5). To encrypt the bits of the ck’s under pk2, we
use Samp = 0, as explained in [8, Re. 4.1.1], i.e., we consider as encrypted values
the bits themselves.

Let us now explain how algorithm Dec′′ is implemented. We concentrate on
the most expensive part, i.e., the (homomorphic) computations of O(log γsub) =
Õ(1) Hamming weights of vectors in {0, 1}γset. Let (α1, . . . , αγset) be such a vector.
As explained in [9, Le. 5] (which relies on [2, Le. 11]), it suffices to compute the
developed form of the polynomial

∏
k≤γset

(x − αk). Recall that in Section 5 we
showed that we are interested in only a few coefficients of the result, corresponding
to monomials of degrees Õ(

√
γsub). For the sake of simplicity (and with a negligible

cost increase), we compute the full developed form anyway, and then throw away
the spurious coefficients. Our circuit here differs from those of [26,5] and [8, Ch. 9]
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as we use fast polynomial multiplications and a tree-based construction instead of
school-book multiplications and Horner’s method, to lower the overall asymptotic
complexity. Note that the circuit is over the integers, and evaluates an integer
polynomial whose coefficients of interest have small multiplicative degrees in the
inputs. We compute the developed form of

∏
k≤γset

(x− αk) with a binary tree:
• At level 0, we have the linear factors (x− αk).
• At level i, we have γset/2i polynomials of degree 2i that are the products of

the linear factors corresponding to their binary subtrees.
• A father of two nodes is obtained by multiplying his two sons, with a quasi-

linear time multiplication for polynomials over rings that uses only ring
operations [3].

The size of each circuit that allows to move from sons at level i − 1 to
father at level i is Õ(2i). The overall number of add/mult integer gates is there-
fore Õ(γset). While evaluating this circuit homomorphically, each gate corre-
sponds to an add/mult modulo Bpk

J , i.e., thanks to our choice for J , to an
add/mult of two integers modulo det(J), whose bit-length is O(log q). The over-
all complexity of Dec′′ is Õ(γset log q) = Õ(λ3.5).

To summarize, Recrypt for 1 plaintext bit costs Õ(λ3.5) bit operations (com-
pared to the bound Õ(λ6) claimed in [8, Ch. 12]). And the cost of homomor-
phically evaluating an elementary add/mult gate is also Õ(λ3.5). The secret s

and the public key (Bpk
J ; t̄1, . . . , t̄γset) are respectively encoded on γset = Θ(λ1.5)

and Õ(n log q + γset log q) = Õ(λ3.5) bits.

7 Open Problems

It would be interesting to relax our assumptions f = xn + 1 and I = (2), in
case other choices prove interesting (see the full version for I = (2, x + 1)). An
important question is to assess the practical impact of our results (see [26,12]
for implementations of Gentry’s scheme). At the end of [8, Se. 12.3], Gentry
suggests using non-independent SplitKey vectors ti to lower the costs. The idea
is to encode n vectors ti,j = xjti mod xn +1 using only ti. This leads to a faster
amortized cost per plaintext bit using the plaintext domain Z2[x]/f(x). However,
it is not clear how to homomorphically decrypt with such a variant, as one is
now restricted to more complex circuit gates than addition and multiplication
modulo 2.
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A Smaller Keys

In [8, Se. 4.3], Gentry suggests to re-use the same key-pair for all levels of the fully
homomorphic scheme derived from Theorem 2.2. This allows one to significantly
decrease the key-sizes of the boostrapped fully homomorphic scheme. This strat-
egy can be proved secure if the underlying bootstrappable homomorphic encryp-
tion scheme is assumedor known to beKDM-secure [8,Th. 4.3.2].Our lower-degree
decryption may fail with non-negligible probability after the first refreshing of a
ciphertext, as our technique does not handle the non-independence of the cipher-
text and the secret key. To circumvent this issue, we randomize the ciphertext to
waive its possible non-independence with the secret key. Note that this technique
is similar in flavor to Gentry’s modified scheme providing circuit privacy [9, Se. 7].

Consider algorithm Enc′′ of SqHom. The condition required for the proba-
bilistic technique described in Section 5 to work is that the ciphertext ψ =
π + r mod Bpk

J (where r ∈ (2) and ‖r‖ ≤ r′Dec) is independent of the ti’s.
This fact, together with the iid-ness of the ti’s, implies that the rounding er-
rors εi in computing the ci’s, are iid, as required to apply Hoeffding’s bound.
In the key-reuse application, the internal randomness r of ψ may depend on
the ti’s (due to a previous refreshing). To circumvent this, we randomize the
ciphertext ψ = π + r mod Bpk

J into another ciphertext ψ′ = π + r′ mod Bpk
J

for the same message π but with internal randomness r′ ∈ (2) which is almost
independent of the ti’s. More precisely, given the ti’s, the distribution of r′ is
within negligible statistical distance from the (ti-independent) distribution 2U ,
where U is the uniform distribution on the origin-centered ball of radius r′Dec/ρ

with ρ any negligible function of λ such that log ρ = Õ(1) (e.g., ρ = λ− log λ).
We compute ψ′ by adding to ψ an encryption of 0 with sufficiently large ran-

domness compared to the randomness in ψ, i.e., we set ψ′ = ψ+ζ mod Bpk
J , where

ζ is sampled from 2U . If we replace the decryption radius r′Dec by r′′Dec = r′
Dec

1+2/ρ

in Lemma 3.2, then the correctness of the scheme is preserved, as ψ and ψ′ both
decode to the same plaintext via algorithm Dec′. This has a negligible effect for
the asymptotic efficiency (see Section 6.1). Assume that ψ = π + r mod Bpk

J

with ‖r‖ ≤ r′Dec. Let us consider the statistical distance between the distribu-
tions r + 2U and 2U . As a ball of radius r′Dec/ρ− r′Dec is contained in the inter-
section of the two balls of radius r′Dec/ρ corresponding to U and r +U , we obtain
that the statistical distance under scope is at most n · ρ, and hence negligible.
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Abstract. Group signature schemes allow users to sign messages on
behalf of a group while (1) maintaining anonymity (within that group)
with respect to an outside observer, yet (2) ensuring traceability of a
signer (by the group manager) when needed. In this work we give the
first construction of a group signature scheme based on lattices (more
precisely, the learning with errors assumption), in the random oracle
model. Towards our goal, we construct a new algorithm for sampling a
basis for an orthogonal lattice, together with a trapdoor, that may be of
independent interest.

1 Introduction

Group signature schemes [16] allow users to sign messages on behalf of a group
administered by some manager. The group is initialized by having the group
manager generate master public and secret keys; upon admission to the group, a
user is given a personal secret key that is derived from the master secret key by
the manager. A member of the group can sign a message using their personal se-
cret key, enabling anyone who knows the master public key to verify that some
group member signed the message. Roughly, group signatures are required to
satisfy two seemingly contradictory requirements: given some legitimate group
signature σ, the group manager should be able to determine which member of the
group issued σ (traceability), but no one other than the group manager should be
able to determine any information about the signer (anonymity). Group signa-
tures have proven to be a popular primitive, and since their introduction several
constructions have been proposed both with random oracles [5,6,13,10,14,22] and
without [8,9,4,11,12,21].

While there exist constructions of group signature schemes based on trapdoor
permutations [8,9], such schemes serve only as proofs of feasibility and are far from
practical. On the other hand, practical schemes are based on a relatively small set
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sumptions related to groups having an associated bilinear map [10,14,4,11,12,21].
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In this work we show the first construction of a group signature scheme from
assumptions related to lattices. The use of lattice-based assumptions in cryp-
tography has seen a flurry of activity in recent years. In part, this is due to a
general desire to expand the set of assumptions on which cryptosystems can be
based (i.e., beyond the standard set of assumptions related to the hardness of
factoring and solving the discrete logarithm problem). Relying on lattice-based
assumptions offers several concrete advantages as well: such assumptions are
appealing because of the known worst-case/average-case connections between
lattice problems, and also because lattice problems are currently immune to
quantum attacks. Even restricting to classical attacks, the best-known algorithms
for solving several lattice problems require exponential time (in contrast to the
sub-exponential algorithms known, e.g., for factoring). Finally, relying on lattices
can potentially yield efficient constructions because the basic lattice operations
manipulate relatively small numbers and are inherently parallelizable.

While our resulting construction is less efficient than existing schemes based
on number-theoretic assumptions, our construction is significantly more efficient
than the generic approaches of [8,9] that rely on NIZK proofs based on a Karp
reduction to some NP-complete language. (Peikert and Vaikuntanathan [26] con-
struct NIZK proofs for specific lattice problems, however their results are not
directly applicable to our work.)

1.1 Our Techniques

Our construction combines ideas from several different works, tying these to-
gether using a new technical tool described below. At a high level, our group
signature scheme follows a template similar (but not identical) to that of Bel-
lare et al. [8]. The master public key in our scheme includes a public key pkE

for a public-key encryption scheme, along with n signature verification keys
pk1, . . . , pkN . The personal secret key given to the ith group member is ski,
the signing key corresponding to pki. To sign a message M , the group member
(1) signs M using ski; (2) encrypts the resulting signature using pkE ; and then
(3) provides a NIZK proof of well-formedness (namely, that the given ciphertext
encrypts a signature on M relative to one of the pki). This implies anonymity
(since no one other than the group manager knows the decryption key skE cor-
responding to pkE), yet ensures traceability because the group manager can
decrypt the ciphertext that is included as part of any valid group signature.

To instantiate this approach using lattice-based assumptions, we need to iden-
tify candidate signature and encryption schemes along with an appropriate NIZK
proof system. While constructions of the former based on lattices are known, we
do not currently have constructions of NIZK for all of NP from lattice-based
assumptions and we will therefore have to tailor our scheme so that it can rely
on (efficient) NIZK proofs for some specific language. This is explained in more
detail in what follows.

For the underlying signature scheme we use the GPV signature scheme [19]
that works roughly as follows. The public key is a basis A ∈ Z

n×m
q for a random

lattice. To sign a messageM , the signer uses a trapdoor T to find a “short” vector
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e ∈ Z
m with Ae = H(M) (where H is a hash function modeled as a random

oracle). Under suitable assumptions, finding such a short vector e without the
trapdoor is hard.

We encrypt the resulting signature using what can be viewed as a non-
standard variant of the Regev encryption scheme [27]. Given a matrix B ∈ Z

n×m
q

(viewed as a public key), we encrypt e ∈ Z
m by choosing a random vector s ∈ Z

n
q

and outputting the ciphertext z = BT s + e. Effectively, e here is being used as
the noise in an instance of the “learning with errors” (LWE) problem [27]. Before
going further, we stress that this “encryption scheme” is not semantically secure.
However, it turns out that we need something much weaker than semantic se-
curity in order to prove anonymity of our scheme; roughly, all we need is that
the encryption of a uniformly random e ∈ Z

m
q is computationally indistinguish-

able from the encryption of a vector e chosen from a certain discrete Gaussian
distribution. We defer further discussion to Section 3.

As described thus far, our group signature scheme would have a master public
key consisting of verification keys A1, . . . ,AN along with an encryption key B;
a signature would include z = BT s + e, where e is such that Aie = H(M) for
some i, along with a proof of well-formedness of the ciphertext z. Constructing
the proof of well-formedness turns out to be the most difficult aspect of our
work, and it will be useful to modify our scheme a bit in order to help con-
struct this proof. (In doing so, we also rely on specific properties of the GPV
signature scheme.) We change our scheme as follows: Now, the master public
key contains N verification keys A1, . . . ,AN (as before) and also N encryption
keys B1, . . . ,BN . To sign a message M , user i computes a real signature ei (us-
ing the trapdoor associated with Ai) and “pseudo-signatures” ej for all j �= i.
Each “pseudo-signature” ej has the property that Aj ej = H(M), however ej

is not short (and thus not a valid signature). All the {ej}Nj=1 are then encrypted
as before, with each ej being encrypted using Bj to give a ciphertext zj . We
then have the signer provide a proof that (1) each zj encrypts a correct pseudo-
signature with respect to Aj , and (2) at least one of these pseudo-signatures is
in fact short (and hence a valid signature). Further details are given next.

To provide a way for the signer to prove that every ciphertext zj encrypts
a pseudo-signature, we develop a new technical tool that we believe to be of
independent interest: a way to sample a basis for an orthogonal lattice with its
associated trapdoor.1 Specifically, we show a technique that, given a matrix B,
generates (A,T) such that ABT = 0 (mod q) and T is still a “good trapdoor”
(in the sense required for GPV signatures) for A. If we use matrices {Ai} gen-
erated in this way as verification keys in the group signature scheme described
earlier, then it is possible to verify that a given ciphertext zj encrypts a pseudo-

signature with respect to Aj by checking whether Ajzj
?= H(M). This works

because
Ajzj = Aj ·

(
BT

j sj + ej

)
= Ajej = H(M)

by construction.

1 For our definition of an orthogonal lattice, see Section 2.
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The only thing that remains is to provide a proof that at least one of the zj

encrypts a vector ej that is also short. This translates to proving that at least one
of the vectors zj = BT

j sj + ej is “close to” the lattice generated by the columns
of BT

j . This can be done using the (statistical) zero-knowledge protocol demon-
strated by Micciancio and Vadhan [23], coupled with standard techniques [17,18]
for making the proof witness indistinguishable and noninteractive in the random
oracle model.

In essence, we obtain our efficiency gain by coupling together the encryption
and the signature components so that the NIZK proof system we need to use is
for a very simple language.

1.2 Outline of the Paper

We introduce some notation and review the necessary background on lattices in
Section 2. For the reader who is already familiar with lattices, we highlight the
following aspects of our treatment that are new to this work:

– In Section 2.2 (cf. Lemma 1) and in the rest of the paper, we consider the
LWE problem under a non-standard error distribution. Fortunately, a recent
result of Peikert [25] demonstrates that the hardness of the LWE problem
under this distribution is implied by standard hardness results.

– In Section 2.4 we describe a technique for sampling a basis for an orthogonal
lattice and its associated trapdoor.

We turn to group signatures in Section 3. We review the standard definitions of
security for group signature schemes in Section 3.1, describe our construction in
Section 3.2, and prove anonymity and traceability in Sections 3.3 and 3.4.

2 Preliminaries on Lattices

Throughout, we use n for the security parameter; other parameters are taken to
be functions of n. When we say “statistically close” we mean “within statistical
difference negligible in n.”

We review some basic properties of lattices as used in prior work. This section
is included mainly to fix notation and ideas, and we refer to the original papers
(cited below) for further exposition.

We use bold lower-case letters (e.g., x) to denote vectors, and bold upper-
case letters (e.g., B) to denote matrices. (Our vectors are always column vec-
tors.) We let ||x|| denote the Euclidean (i.e., �2) norm of the vector x, and let
||B|| denote the maximum of the Euclidean norms of the columns of B; i.e., if
B = (b1| · · · |bn) then ||B|| def= maxi ||bi||. We let B̃ = (b̃1| · · · |b̃n) denote the
Gram-Schmidt orthogonalization of B, defined iteratively in the following way:
b̃1 = b1, and for each i = 2, . . . , n, s̃i is the component of si orthogonal to
span(s1, . . . , si−1). If x ∈ R, then �x� denotes the rounding of x to the nearest
integer.
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For q an integer, Zq denotes the standard group of integers modulo q. We
will extend modular arithmetic to the reals in the obvious way: for example, for
q ∈ Z

+ and x ∈ R we use x mod q to represent the unique real number y ∈ [0, q)
such that x−y is an integer multiple of q. Finally, we define a notion of distance
between elements in Zq in the natural way: given x, y ∈ Zq, their distance is
defined by mapping (x−y) mod q to the set of integers {−�q/2�, . . . , �q/2�} and
then taking the absolute value of the result.

Fixing q and given a matrix B ∈ Z
n×m
q , we define the m-dimensional lattice

L(BT ) as L(BT ) def=
{
y ∈ Z

m | y ≡ BT s mod q for some s ∈ Z
n
}
. We define the

orthogonal lattice Λ⊥(B) as Λ⊥(B) def= {w ∈ Z
m | B ·w = 0 mod q}. (Note that

the notion of an orthogonal lattice is defined differently in some previous work.)
Finally, for a vector z ∈ Z

m
q we define

dist(L(BT ), z) def= mins∈Zn
q
||BT s− z||.

In other words, dist(L(BT ), z) is the distance of z from the lattice spanned by
the columns of BT .

2.1 Gaussian Error Distributions

The one-dimensional (continuous) Gaussian distribution over R, parameterized
by s ∈ R

+, is defined by the density function

∀x ∈ R : Ds(x) = 1/s · exp(−π(x/s)2).

In this work we always use a truncated Gaussian, i.e., the Gaussian distri-
bution Ds whose support is restricted to numbers x ∈ R such that |x| <
s · ω(

√
logn). The truncated and non-truncated distributions are statistically

close, and we drop the word “truncated” from now on. The m-dimensional
continuous Gaussian distribution is defined in a similar way, by the density
function Ds(x) = 1/sm · exp(−π(||x||/s)2). Finally, we denote by Ds,c the m-
dimensional continuous Gaussian distribution centered at the point c ∈ R

m. i.e.,
Ds,c(x) = 1/sm · exp(−π(||x− c||/s)2).

Let Λ ⊆ Z
m be a lattice. The discrete Gaussian distribution DΛ,s,c is the

m-dimensional Gaussian distribution centered at c, but with support restricted
to the lattice Λ. (We write DΛ,s as shorthand for DΛ,s,0.) Formally, the density
function of the discrete Gaussian distribution is defined as

∀x ∈ Λ : DΛ,s,c(x) =
Ds,c(x)∑

y∈ΛDs,c(y)
.

Gentry et al. [19] show that given a basis B for Λ, this distribution can be sam-
pled efficiently (to within negligible statistical distance) for s ≥ ||B|| ·ω(

√
logn).

2.2 The Learning with Errors Problem

The “learning with errors” (LWE) problem was introduced by Regev [27] as
a generalization of the “learning parity with noise” problem. We describe the
problem in a form suitable for our applications in this paper.
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Fix a positive integer n, integers m ≥ n and q ≥ 2, a vector s ∈ Z
n
q , and

a probability distribution χ on the interval [0, q)m. Define the following two
distributions over Z

n×m
q × [0, q)m:

– LWEm,q,χ(s) is the distribution obtained by choosing uniform A ∈ Z
n×m
q ,

sampling e← χ, and outputting (A,AT s + e mod q).
– Um,q is the distribution obtained by choosing uniform A ∈ Z

n×m
q and uni-

form y ∈ [0, q)m, and outputting (A,y).

The decisional variant of the LWE problem (relative to the distribution χ) can be
stated informally as the problem of distinguishing between Um,q and LWEm,q,χ(s)
for a uniform s. Formally, for m, q, and χ that may depend on n (viewed now
as a security parameter) we say the LWEm,q,χ problem is hard if the following is
negligible for any probabilistic polynomial-time algorithm D:

∣∣Pr[s← Z
n
q ; (A,y)← LWEm,q,χ(s) : D(A,y) = 1]

− Pr[(A,y)← Um,q : D(A,y) = 1]| .
A standard setting for the LWE problem considers the error distribution Ψm

α over
[0, q)m defined as follows: Sample m numbers η1, . . . , ηm ← Dα, let ei := q · ηi

(mod q), and output e := (e1, . . . , em)T . We write LWEm,q,α(s) as an abbrevia-
tion for LWEm,q,Ψm

α
(s).

Evidence for the hardness of the LWEm,q,α problem comes from a result of
Regev [27], who gave a quantum reduction from approximating certain lattice
problems to within a factor of Õ(n/α) on n-dimensional lattices in the worst
case to solving LWEm,q,α, subject to the condition that α · q > 2

√
n. Recently,

Peikert [24] gave a classical reduction for similar parameters. For our purposes,
we note that the LWEm,q,α problem is believed to be hard — given the state-
of-the-art in lattice algorithms — for any m, q = poly(n) and α = 1/poly(n)
(subject to the above condition).

A second error distribution for the LWE problem2 — and one that we will
use in this paper — is the discrete Gaussian distribution DZm,s (mod q). Al-
though this distribution may seem similar to a discretized (rounded) version of
Ψm

α , these distributions are statistically far from each other and thus we cannot
immediately conclude anything about the hardness of the LWE problem with
respect to one distribution from hardness of the LWE problem with respect to
the other. Fortunately, a recent result of Peikert [25] can be used to show that
hardness of the LWE problem with respect to error distribution D

Zm,α·q·√2 is
implied by hardness of the LWE problem with respect to error distribution Ψm

α .
We write L̂WEm,q,αq

√
2 as an abbreviation for LWEm,q,D

Zm,αq
√

2

Lemma 1. For any α, hardness of the LWEm,q,α problem implies hardness of
the L̂WEm,q,αq

√
2 problem.

2 When using a discrete error distribution χ over Z
m
q (rather than a continuous distri-

bution over [0, q)m), the LWE problem is to distinguish LWEm,q,χ from the uniform
distribution over Z

n×m
q × Z

m
q (rather than Z

n×m
q × [0, q)m).
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Proof. We show an efficient transformation T that takes as input (A,y) ∈
Z

n×m
q × [0, q)m and has the following properties:

– If (A,y) is uniform over Z
n×m
q × [0, q)m then the output T (A,y) is uniform

over Z
n×m
q × Z

m
q .

– If (A,y) is distributed according to LWEm,q,α(s) then T (A,y) is distributed
according to L̂WEm,q,αq

√
2(s).

The lemma follows immediately from these two properties.
The transformation T works as follows. Given (A,y), it samples a vector

w← DZm−y,αq and outputs the pair (A,y + w (mod q)).
First, say (A,y) is distributed uniformly over Z

n×m
q × [0, q)m. Note that y+w

is always an integer, and the distribution w ← DZm−y,αq depends only on the
fractional part of each entry in y. It follows that (A,y+w (mod q)) is distributed
uniformly over Z

n×m
q × Z

m
q .

On the other hand, say y = AT s + e (mod q) where e ∼ Ψm
α . Since we

have AT s ∈ Z
m, sampling w ∼ DZm−y,αq (mod q) is equivalent to sampling

w ∼ DZm−e,αq (mod q). A recent theorem of Peikert [25, Theorem 3.1] shows
that the following two processes produce statistically close distributions:

– Sampling e ∼ Ψm
α and then setting e′ = e +DZm−e,αq (mod q);

– Sampling e′ ∼ D
Zm,αq

√
2 (mod q).

We conclude that the output T (A,y) =
(
A,AT s + (e + w) (mod q)

)
is dis-

tributed according to L̂WEm,q,αq
√

2(s).

2.3 Trapdoor Functions and the GPV Signature Scheme

Ajtai [2] and Alwen and Peikert [3] show algorithms that generate an almost uni-
form matrix A ∈ Z

n×m
q together with a “trapdoor” matrix T ∈ Z

m×m satisfying
the following conditions:

Lemma 2 ([3]). There is a probabilistic polynomial-time algorithm TrapSamp
that, on input 1n, 1m, q with q ≥ 2 and m ≥ 8n log q, outputs matrices A ∈ Z

n×m
q

and T ∈ Z
m×m such that:

– The distribution on A as output by TrapSamp is statistically close to uniform
over Z

n×m
q ,

– the columns of T form a basis of the lattice Λ⊥(A), implying in particular
A ·T = 0 (mod q),

– ‖T‖ = O(n log q) and ‖T̃‖ ≤ C ·√n log q, for some absolute constant C < 40.

Given an “LWE instance” (A,y = AT s + e) for a “short” vector e, knowledge
of T can be used to recover s. Specifically, if ||T|| < L and e is drawn from Ψm

α

for α ≤ 1/(L · ω(
√

logn)), then s can be easily recovered. This is done by first
computing

TT y (mod q) = TT (AT s + e) (mod q) = (AT)T s + TT e (mod q)
= TT e (mod q).
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Since both T and e contain only “small” entries, each entry of the vector TT e
is smaller than q and thus TT e (mod q) is equal to TT e (over the integers).
Multiplying by (TT )−1 thus gives e, after which it is easy to recover s.

The GPV signature scheme. Gentry, Peikert, and Vaikuntanathan [19] showed
how to use the trapdoor sampling procedure described above to construct a
one-way preimage-sampleable function. This can then be turned into a digital
signature scheme using an “FDH-like” construction [7]. (See [19] for a formal
definition of preimage-sampleable functions and the construction of the signature
scheme.) Here, we describe how the preimage-sampleable function works.

Take q = poly(n), m ≥ 8n log q, and s ≥ C · √n log q · ω(
√

logn) (where the
constant C is from Lemma 2). The one-way preimage-sampleable function is
defined by the following algorithms:

– GPVGen(1n) runs TrapSamp(1n, 1m, q) to obtain (A,T). The matrix A
(and q) defines the function fA(e) = Ae (mod q), with domain {e ∈ Z

m :
||e|| ≤ s

√
m} and range Z

n
q . Hardness of inversion is with respect to the

distribution DZm,s over the domain.
– The trapdoor inversion algorithm GPVInvert(A,T, s,u) samples from f−1

A (u)
as follows: first, it computes (using standard linear algebra) an arbitrary
t ∈ Z

m such that At = u (mod q) (except for a negligible fraction of A,
such a t always exists). Then it samples and outputs e← DΛ⊥(A)+t,s.

The above function is one-way if GapSVPγ is hard on the worst-case for polyno-
mial approximation factor γ [1].

2.4 Sampling an Orthogonal Lattice with Trapdoor

We show a variant of the trapdoor sampling algorithm described in Lemma 2.
In our variant, the algorithm is additionally given a matrix B ∈ Z

n×m
q and

(informally) should output a matrix A ∈ Z
n×m
q with an associated trapdoor

T ∈ Z
m×m with the additional requirement that the rows of A are orthogonal

(over Zq) to the rows of B. In other words, we require that ABT = 0 (mod q).

Overview of the construction. The basic idea is as follows. Write B as

BT =
(

B1

B2

)
,

with B2 a square, invertible matrix of dimension n × n. We then generate an
orthogonal matrix A = [A1 | A2] in two steps. We generate the first component
A1 using the TrapSamp protocol. Recall, this returns a matrix that is statistically
close to uniform, along with an associated trapdoor T1. Once we have chosen
A1 the second component A2 is constrained to a fixed value by the requirement
that ABT = 0 (mod q); we thus generate A2 by solving the linear equations
that define this constraint.

All that remains is to find a trapdoor T such that the columns of T are short
and A ·T = 0. Here we rely on the recent basis delegation techniques of Cash
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et al. [15], which allows us to “extend” the basis T1 into a larger basis T for
Λ⊥(A) as desired. The details follow.

Lemma 3. There is a probabilistic polynomial-time algorithm OrthoSamp that
on input 1n, 1m, q (with q ≥ 2 and m ≥ n + 8n log q) and a matrix B ∈ Z

n×m
q

whose columns span Z
n
q , outputs matrices A ∈ Z

n×m
q and T ∈ Z

m×m such that:

– ABT = 0 (mod q). Moreover, the distribution on A is statistically close to
uniform over Z

n×m
q , subject to this condition,

– the columns of T form a basis of the lattice Λ⊥(A), implying in particular
A ·T = 0 (mod q),

– Furthermore, each column ti of T is distributed (independently) according
to DΛ⊥(A),s, where s = C · √n log q · ω(

√
logm) and C is the constant from

Lemma 2.

Proof. Let m1 = 8n log q and m2 = n. Write

BT =
(

B1

B2

)
,

where B1 ∈ Z
m1×n
q and B2 ∈ Z

m2×n
q . Furthermore, we require that the square

matrix B2 has full-rank, i.e., its rows span Z
n
q (such a decomposition of B into

B1 and B2 can always be found since the rows of BT span Z
n
q ).

The algorithm OrthoSamp works as follows:

1. Compute (A1,T1)← TrapSamp(1n, 1m1 , q). Let A2 ∈ Z
n×m2
q be a uniformly

random matrix satisfying

A2B2 = −A1B1 (mod q)

Since B2 is invertible over Zq by construction, A2 can be computed as
−A1B1B−1

2 (mod q). If the columns of A1 do not span Z
n
q , output ⊥. This

occurs only with negligible probability.
2. Extend the basis T1 into basis T′ ∈ Z

m×m
q for Λ⊥(A) using the technique

of Cash et al. [15, Lemma 3.2]. We present their technique for completeness.
Let T′ be of the form

T′ =
(

T1 W
0 I

)

where W ∈ Z
m1×m2
q is an arbitrary matrix satisfying A1W = −A2, and

I ∈ Z
m2×m2
q is the identity matrix. (Note that W exists by the assumption

that the columns of A1 span Z
n
q .)

3. Randomize the basis T′ into a “random basis” T. This is done by running
the RandBasis algorithm of [15, Lemma 3.3] on T′ using parameter s =
||T̃′|| · ω(

√
logm). Output A = [A1 | A2] and T.
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We now verify that this algorithm satisfies the required properties. First observe
that

ABT = A1B1 + A2B2 = A1B1 −A1B1 = 0 (mod q).

The claim regarding the distribution of A follows directly from the construction.
We also have

A ·T′ = [A1|A2] ·
(

T1 W
0 I

)
= [A1T1 + A20 | A1W + A2 ] = 0 (mod q),

where the final equality holds because A1T1 = 0 by the properties of TrapSamp,
and A1W = −A2 by construction. Thus, T′ is a basis for Λ⊥(A). Finally, since
T is the result of running RandBasis on T′, T is also a basis for Λ⊥(A).

Finally, from the work of Cash et al. [15], we know that ||T̃′|| ≤ ||T̃1|| =
O(
√
n log q). Thus, by the property of the RandBasis algorithm from [15], each

column of T is independently distributed according to DΛ⊥(A),s where s =
C · √n log q · ω(

√
logm).

The following corollary follows from the above construction, and will be used in
the security proof of our signature scheme.

Corollary 1. The distributions
{
B← Z

n×m
q ; (A,T)← OrthoSamp(1n, 1m, q,B) : (A,T,B)

}

and
{(A,T′)← TrapSamp(1n, 1m, q);T← RandBasis(T′);

(B,S)← OrthoSamp(1n, 1m, q,A) : (A,T,B)}
are statistically close.

2.5 Efficient NIWI Proofs for Lattice Problems

Let B1, . . . ,BN ∈ Z
n×m
q and z1, . . . , zN ∈ Z

m
q . In this section we briefly describe

how it is possible to construct a noninteractive witness-indistinguishable (NIWI)
proof (in the random oracle model) for the gap language Ls,γ = (LY ES , LNO)
defined by:

LY ES =
{(

B1, . . . ,BN

z1, . . . , zN

) ∣∣∣∣ ∃s ∈ Z
n
q and i ∈ [N ] : ||zi −BT

i s|| ≤ s√m
}

LNO =
{(

B1, . . . ,BN

z1, . . . , zN

) ∣∣∣∣ ∀s ∈ Z
n
q and i ∈ [N ] : ||zi −BT

i s|| > γ · s√m
}
.

Here, LY ES is a collection of N points at least one of which is close to the
corresponding lattice, and LNO is a collection of N points all of which are far
from the corresponding lattices.
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Our starting point is an (interactive) witness-indistinguishable (WI) proof
system for the gap version of the closest vector problem, i.e., for the language
L′γ = {L′Y ES , L

′
NO} [20,23]:

L′Y ES =
{
(B, z, t) | ∃s : ||z−BT s|| ≤ t} .

L′NO =
{
(B, z, t) | ∀s : ||z−BT s|| > γ · t} .

Our language Ls,γ can be described as the OR of several instance of L′γ ; that is,
(

B1, . . . ,BN

z1, . . . , zN

)
∈ LY ES ⇔

∨
i

(
(Bi, zi, s

√
m) ∈ L′Y ES

)
.

(
B1, . . . ,BN

z1, . . . , zN

)
∈ LNO ⇔

∧
i

(
(Bi, zi, s

√
m) ∈ L′NO

)
.

We can thus use the techniques of Cramer, Damg̊ard, and Schoenmakers [17] to
obtain an interactive WI proof for Ls,γ with negligible soundness error. Using
the Fiat-Shamir transformation [18], the resulting protocol can be made non-
interactive in the random oracle model.

We remark that for our application we only require soundness (and do not
require the proof system to be a proof of knowledge) and witness indistinguisha-
bility (rather than zero knowledge). The observations in this section are sum-
marized in the following lemma.

Lemma 4. Let γ ≥ O(
√
m/ logm). Then there is a noninteractive witness-

indistinguishable proof system for the language Ls,γ in the random oracle model,
where the length of the proof is O(mnN log q) bits.

3 A Group Signature Scheme Based on Lattices

3.1 Definitions

We adopt the definition of group signature schemes from the work of Bellare,
Micciancio, and Warinschi [8], with the relaxation suggested by Boneh, Boyen,
and Shacham [10] (and considered also in, e.g., [11]). Formally, a group sig-
nature scheme GS = (G.KeyGen,G.Sign,G.Vrfy,G.Open) is a collection of four
polynomial-time algorithms defined as follows.

– The group key-generation algorithm G.KeyGen(1n, 1N) is a randomized algo-
rithm that takes a security parameter 1n and the group size 1N as input, and
outputs (PK,TK, gsk), where PK is the group public key, TK is the group
manager’s tracing key, and gsk is a vector of N signing keys with gsk[i] being
the signing key given to the ith group member.

– The group signature algorithm G.Sign(gsk[i],M) is a randomized algorithm
that takes as input a secret signing key gsk[i] and a message M , and outputs
a signature σ.
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– The group signature verification algorithm G.Vrfy(PK,M, σ) is a determin-
istic algorithm that takes as input the group public key PK, a message M ,
and a signature σ, and outputs either 1 or 0 (signifying accept or reject,
respectively).

– The opening algorithm G.Open(TK,M, σ) is a deterministic algorithm that
takes as input the tracing key TK, a message M , and a signature σ, and
outputs an identity i ∈ [N ].

The basic consistency requirements of a group signature scheme are that an
honest signature generated by a group member should be accepted as correct,
and must be traceable to the group member who issued it. That is, for any
(PK,TK, gsk) output by G.KeyGen(1n, 1N), any M , and any i ∈ [N ], if σ ←
G.Sign(gsk[i],M) then

G.Vrfy(PK,M, σ) = 1 and G.Open(TK,M, σ) = i,

except with negligible probability over the entire experiment.
Group signature schemes are also required to satisfy two basic security prop-

erties: anonymity and traceability. Anonymity means that without the tracing
key it should be infeasible to determine which group member issued a particular
signature (even given all the signing keys). Bellare et al. [8] defined a “CCA-
version” of this notion, where the adversary is given access to a tracing oracle.
Following [10] we use a “CPA-version” of anonymity where such oracle access is
not given.

Definition 1. A group signature scheme GS = (G.KeyGen,G.Sign,G.Vrfy,
G.Open) is anonymous if for all polynomials N(·) and all probabilistic polynomial-
time adversaries A, the advantage of A in the following experiment is negligible
in n:

1. Compute (PK,TK, gsk)← G.KeyGen(1n, 1N) and give (PK, gsk) to A.
2. A outputs two identities i0, i1 ∈ [N ], along with a message M . A random bit

b is chosen, and A is given G.Sign(gsk[ib],M). Finally, A outputs a bit b′.

A succeeds (denoted Succ) if b′ = b, and the advantage of A is
∣∣Pr[Succ]− 1

2

∣∣.
Traceability means that it should be infeasible for an adversary who corrupts
some set of users C to output a valid signature that cannot be traced to some
member of C.
Definition 2. A group signature scheme GS = (G.KeyGen,G.Sign,G.Vrfy,
G.Open) is traceable if for all polynomials N(·) and all probabilistic polynomial-
time adversaries A, the success probability of A in the following experiment is
negligible in n:

1. Compute (PK,TK, gsk)← G.KeyGen(1n, 1N) and give PK and TK to A.
2. A may query the following oracles adaptively and in any order:

– A Corrupt oracle that on input i ∈ [N ] returns gsk[i].
– A Sign oracle that on input i,M outputs G.Sign(gsk[i],M).
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Let C be the set of identities queried to Corrupt.
3. At some point, A outputs a message M and a signature σ.

A succeeds if (1) G.Vrfy(PK,M, σ) = 1 and (2) Sign(i,M) was never queried for
i �∈ C, yet (3) G.Open(TK,M, σ) �∈ C.

3.2 Our Construction

We let n be the security parameter, q = poly(n),m ≥ 8n log q and s ≥ C√n log q ·
ω(
√

logm) be parameters of the system. We let H : {0, 1}∗ → Z
n
q be a hash

function, to be modeled as a random oracle.

G.KeyGen(1n, 1N): First compute (B1,S1), . . . , (BN ,SN ) ←
TrapSamp(1n, 1m, q) and then, for 1 ≤ i ≤ N , compute (Ai,Ti) ←
OrthoSamp(1n, 1m, q,Bi). Output PK =

(
(Ai,Bi)

N
i=1

)
as the public key,

TK =
(
Si

)N

i=1
as the tracing key, and gsk = (Ti)N

i=1 as the users’ signing
keys.

G.Sign(gsk[j],M): To sign message M using secret key gsk[j] = Tj , choose
random r ← {0, 1}n, set M̄ = M‖r, and then compute hi = H(M̄‖i) for
1 ≤ i ≤ N . Then:
– Compute ej ← GPVInvert(Aj ,Tj , s,hj).
– For i �= j, choose ei ∈ Z

m
q uniformly subject to the condition that

Aiei = hi (mod q).
For all i, sample si ← Z

n
q and compute zi = BT

i si + ei (mod q) ∈ Z
m
q .

Finally, construct an NIWI proof π for the gap language Ls,γ as dis-
cussed in Section 2.5 (and using the witness (si, i)). Output the signature
(r, z1, . . . , zN , π).

G.Vrfy(PK,M, σ): Parse the signature as (r, z1, . . . , zN , π) and set M̄ = M‖r.
Output 1 iff the proof π is correct, and Aizi = H(M̄‖i) (mod q) for all i.

G.Open(TK,M, σ): Parse the signature as (r, z1, . . . , zN , π). Using the {Si},
output the smallest index i for which3 dist(L(BT

i ), zi) ≤ s√m.

We first check correctness. Let (r, z1, . . . , zN , π) be a signature produced by an
honest signer. It is clear that π is a valid proof. Moreover, for any i we have

Aizi = Ai(BT
i si + ei) = Aiei = H(M̄‖i) (mod q),

and so verification succeeds. Correctness of the opening algorithm follows easily.

Theorem 1. Let m, q, and s be as described above. If LWEm,q,α is hard for
α = s/(q

√
2), and the proof system used is witness indistinguishable, then the

group signature scheme described above is anonymous. If GapSVPγ is hard for
γ = O(n log4 n), then the group signature scheme described above is traceable.

3 Soundness of the proof system ensures that if σ is valid, then some such i exists
except with negligible probability.
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We note that for values of s as described above, the hardness of LWEm,q,α

is implied by the difficulty of finding a quantum algorithm for approximating
GapSVPγ̂ for γ̂ = Õ(n/α) [27], so our entire scheme can be based on the diffi-
culty of finding a quantum algorithm for GapSVP.

We prove anonymity in Section 3.3 and traceability in Section 3.4.

3.3 Anonymity

Fix N = poly(n) and let A be a ppt adversary attacking the group signature
scheme in the sense of Definition 1. Let G0 denote the experiment of Definition 1
with b = 0, and let G1 be the same experiment with b = 1. We consider a sequence
of experiments G0,G

′
0,G
′
1,G1 and show that each experiment is indistinguishable

from the one preceding it. This implies anonymity.
We review G0 as applied to our group signature scheme. First, the key-

generation algorithm G.KeyGen(1n, 1N ) is run and A is given the public key
PK =

(
(Ai,Bi)

N
i=1

)
and the users’ secret keys gsk = (Ti)N

i=1, where each Bi

is statistically close to uniform and (Ai,Ti) ← OrthoSamp(1n, 1m, q,Bi). (The
tracing key TK is irrelevant in the CPA-version of the anonymity experiment that
we are considering.) Next, A outputs i0, i1,M , and is given a signature of user i0
on M , computed as follows. Let hi = H(M‖r‖i), for a random r ∈ {0, 1}n. Then
ei0 is computed as ei0 ← GPVInvert(Ai0 ,Ti0 , s,hi0), whereas ei (for i �= i0) is
chosen uniformly subject to the condition that Aiei = hi (mod q). Then, for
all i ∈ [N ], choose random si ← Z

n
q and compute zi = BT

i si + ei. Finally, a
proof π is generated and A is given the signature (r, z1, . . . , zN , π).

In G′0 we introduce the following modification with respect to G0: when gen-
erating the signature, we now compute ei0 ← GPVInvert(Ai0 ,Ti0 , s,hi0) and
ei1 ← GPVInvert(Ai1 ,Ti1 , s,hi1). (For j �∈ {i0, i1}, the value ej is computed as
before.)

Claim. If the LWEm,q,α problem is hard, then G0 and G′0 are computationally
indistinguishable.

Proof. Recall (cf. Lemma 1) that hardness of the LWEm,q,α problem implies
hardness of the L̂WEm,q,αq

√
2 problem. We use A to construct a ppt algorithm

D for the L̂WEm,q,αq
√

2 problem. D is given as input (B,y) ∈ Z
n×m
q ×Z

m
q , where

B is uniform and y is either uniform or equal to BT s + e for e ∼ D
Zm,αq

√
2.

D first chooses a random index i∗ ← [N ] and sets Bi∗ = B. For all i �= i∗, it
chooses Bi uniformly at random. Then, for 1 ≤ i ≤ N algorithm D computes
(Ai,Ti) ← OrthoSamp(1n, 1m, q,Bi). It gives PK =

(
(Ai,Bi)

N
i=1

)
and gsk =

(Ti)N
i=1 to A. All H-queries of A are answered with random elements from the

appropriate domain.
Eventually A outputs two identities i0, i1 ∈ [N ] along with a message M . If

i∗ �= i1 then D outputs a random bit and aborts. Otherwise,D creates a signature
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by choosing random r ∈ {0, 1}n and fixing4 hi1
def= H(M‖r‖i1) = Ai1y. (The

value hi = H(M‖r‖i) for i �= i1 is chosen uniformly.) Then D computes ei0 ←
GPVInvert(Ai0 ,Ti0 , s,hi0) and, for i �∈ {i0, i1}, chooses ei uniformly subject to
the condition that Aiei = hi (mod q). (D does not explicitly compute any value
ei1 .) For i �= i1, the ciphertext zi is computed as in G0 and G′0. However, D sets
zi1 = y.

Let Drand denote the above experiment when D’s input y is uniformly dis-
tributed. We claim that A’s view in Drand is statistically close to its view in G0.
Indeed:
– In G0 we have hi1 chosen uniformly in Z

n
q ; then ei1 is chosen uniformly

subject to Ai1ei1 = hi1 ; and finally zi1 = BT
i1
si1 + ei1 .

– In Drand we have zi1 = y = BT
i1
si1 + ei1 for ei1 chosen uniformly in Z

m
q ;

then hi1 = Ai1ei1 .
To see that these are statistically close, we demonstrate that the choice of ei1

in G0 is statistically close to uniform over Z
m
q . We view A as a function from

Z
m
q → Z

n
q , and note that this function is regular. Furthermore, since the columns

of A generate all of Z
n
q with all but negligible probability (over the choice of A),

our randomly chosen h is uniform over the image of A. For a regular function,
choosing a uniform element from the image, followed by a uniform element from
its pre-image, is equivalent to choosing a uniform element from the domain, as
is done in Drand.

On the other hand, let DLWE denote the above experiment when D’s input y
is distributed according to y = BT s + e for e ∼ D

Zm,αq
√

2. We claim that A’s
view in DLWE is statistically close to its view in G′0. Indeed:
– In experiment G′0 we have hi1 chosen uniformly in Z

n
q . Next, we compute

ei1 ← GPVInvert(Ai1 ,Ti1 , s,hi1); and finally zi1 = BT
i1
si1 + ei1 .

– In DLWE we have zi1 = y = BT
i1
si1 + ei1 for ei1 ∼ D

Zm,α·q·√2; then hi1 =
Ai1ei1 .

The above are easily seen to be statistically close for our choice of parameters,
again using the results of [19]. Since the probability that D does not abort is 1/N ,
and its decision to abort is independent of A’s success, the proof is complete.

The rest of the proof of anonymity is straightforward, and so we merely pro-
vide a sketch. Experiment G′1 is identical to G′0 with the exception that the proof
π is now computed using the witness (si1 , i1) rather than (si0 , i0). Witness indis-
tinguishability of the proof system implies that G′1 and G′0 are computationally
indistinguishable.

Computational indistinguishability of G′1 and G1 (the experiment from Defi-
nition 1 with b = 1) can be proved exactly as in the proof o the previous claim.

3.4 Traceability

Fix N = poly(n) and let A be a ppt adversary attacking the group signature
scheme in the sense of Definition 2. We construct a ppt forger F for the GPV
4 Note that, except with negligible probability, H(M‖r‖i1) has not been queried thus

far.
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signature scheme [19] (in the random oracle model) whose success probability
is polynomially related to that of A. Since the GPV signature scheme is secure
assuming hardness of the GapSVPγ problem, this completes the proof.

We first observe that we may, without loss of generality, assume that A never
corrupts all users in [N ] because A can succeed with only negligible probability
in this case. (Given a valid signature (r, z1, . . . , zN , π), soundness of the proof
system implies that G.Open outputs some i ∈ [N ] except with negligible proba-
bility.) We will assume this in what follows.
F is given a public key A for the GPV signature scheme, and begins by

choosing a random index i∗ ∈ [N ] and setting Ai∗ = A. Next, it computes
the values (Bi∗ ,Si∗) ← OrthoSamp(1n, 1m, q,Ai∗). For all the remaining in-
dices i �= i∗, the forger computes the values (Bi,Si)← TrapSamp(1n, 1m, q) and
(Ai,Ti)← OrthoSamp(1n, 1m, q,Bi) exactly as in the legitimate key-generation
algorithm. After this, F gives PK = (Ai,Bi)

N
i=1 and TK = (Si)

N
i=1 to A. We

note that by Corollary 1, the distribution of these keys is statistically close to
the distribution that is expected by the adversary.
F answers random oracle queries of A by simply passing these queries to its

own random oracle. F responds to the other queries of A as follows:

– Corrupt(i): if i �= i∗ then F gives Ti to A, while if i = i∗ then F aborts.
– Sign(i,M): If i �= i∗ then F computes the signature using Ti and the honest

signing algorithm. If i = i∗, then:
1. F chooses random r ∈ {0, 1}n and queries its own signing oracle on the

message M‖r‖i∗. It receives in return a signature ei∗ .
2. The remainder of the signature is computed using the honest signing

algorithm. (Note that computation of ei∗ the only aspect of signing that
relies on the secret key of user i∗.)

Let C denote the set of identities that A has queried to Corrupt. (Recall that
if F has not aborted, then i∗ �∈ C.) At some point A outputs a message M
and signature σ = (r, z1, . . . , zN , π). Assume G.Vrfy(PK,M, σ) = 1, and that
Sign(i,M) was never queried for i �∈ C. Since F has the tracing key TK, it can
compute j ← G.Open(TK,M, σ). If j �= i∗ then F aborts. Otherwise, F does:

1. Use Si∗ to recover ei∗ such that
– ||ei∗ ||∞ ≤ s√m, and
– zi∗ − ei∗ ∈ L(BT

i∗).
2. Output the forgery (M‖r‖i∗, ei∗).

Let ε denote the probability with which A succeeds in the experiment of Defi-
nition 2. It is easy to see that F aborts with probability at most5 (N − 1)/N
and, conditioned on not aborting, the view of A when run as a sub-routine
by F is statistically close to its view in the experiment described in Defini-
tion 2. Thus, with probability at least ε/N it holds that A outputs (M,σ) with
5 Actually, F aborts with probability at most (N−1)/N+negl(n), where the negligible

term arises from the possibility that A violates soundness of the proof system. We
ignore this for simplicity.
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G.Vrfy(PK,M, σ) = 1 and G.Open(TK,M, σ) = i∗, and where A never queried
Sign(i∗,M). We show that whenever this occurs, then F outputs a valid forgery
(except with negligible probability).

Fix (M,σ) such that the above hold, and let σ = (r, z1, . . . , zN , π). Since
G.Open(TK,M, σ) = i∗, this implies that F will indeed be able to recover ei∗

such that (1) ||ei∗ ||∞ ≤ s
√
m and (2) zi∗ − ei∗ ∈ L(BT

i∗). Moreover, since
G.Vrfy(PK,M, σ) = 1 we have Ai∗zi∗ = H(M‖r‖i∗); since Ai∗ (zi∗ − ei∗) = 0
this means Ai∗ei∗ = H(M‖r‖i∗). Thus ei∗ is a valid GPV signature on the
message M‖r‖i∗. Since A never queried Sign(i∗,M), we know that F never
queried its own signing oracle for a signature on M‖r‖i∗. It follows that the
output of F is indeed a valid forgery.
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Abstract. Blind signatures (BS), introduced by Chaum, have become
a cornerstone in privacy-oriented cryptography. Using hard lattice prob-
lems, such as the shortest vector problem, as the basis of security has
advantages over using the factoring or discrete logarithm problems. For
instance, lattice operations are more efficient than modular exponentia-
tion and lattice problems remain hard for quantum and subexponential-
time adversaries. Generally speaking, BS allow a signer to sign a message
without seeing it, while retaining a certain amount of control over the
process. In particular, the signer can control the number of issued sig-
natures. For the receiver of the signature, this process provides perfect
anonymity, e.g., his spendings remain anonymous when using BS for
electronic money.

We provide a positive answer to the question of whether it is possible
to implement BS based on lattice problems. More precisely, we show how
to turn Lyubashevsky’s identification scheme into a BS scheme, which
has almost the same efficiency and security in the random oracle model.
In particular, it offers quasi-linear complexity, statistical blindness, and
its unforgeability is based on the hardness of worst-case lattice problems
with an approximation factor of Õ(n5) in dimension n. Moreover, it is the
first blind signature scheme that supports leakage-resilience, tolerating
leakage of a (1−o(1)) fraction of the secret key in a model that is inspired
by Katz and Vaikuntanathan.

Keywords: Blind signatures, post-quantum, lattices, provable security,
leakage resilience.

1 Introduction

Since Chaum proposed his idea of blind signatures [Cha82], it has become an im-
portant primitive for anonymous Internet banking, e-voting (e.g., [RHOAGZ07]),
as well as for oblivious transfer [CNS07]. These applications will retain their im-
portance in both, near and far future. As for the near future, we are convinced
that current factoring and discrete logarithm based instantiations are efficient
and secure. But for how long?

Today, when building provably secure cryptographic schemes, one also has to
anticipate emerging technologies that may lead to new attacks. This is why we
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typically try to use the mildest possible assumptions. Let us consider the example
of quantum computers as a metaphor for these future developments. In the
quantum-age, the cryptographic assumptions change with the leap in computing
power that quantum computers will provide. There are only a few cryptographic
assumptions that are conjectured to be post-quantum, i.e., they are considered to
withstand quantum computer attacks. One of those assumptions is the hardness
of finding short vectors in a lattice. Even for today, there are benefits when
building cryptography upon hard lattice problems because, unlike factoring, they
withstand subexponential attacks and the best known algorithms, e.g., [AKS01],
have an exponential complexity in the lattice dimension. Furthermore, lattice
problems typically allow a worst-case to average-case reduction that goes back
to Ajtai [Ajt96]. It states that a randomly chosen instance of a certain lattice
problem is at least as hard as the worst-case instance of a related lattice problem.
Thus, choosing secure keys is easy. This reduction was later on adapted to work
with ideal lattices by Lyubashevsky and Micciancio [LM06] because ideal lattices
offer a compact public-key representation and very efficient operations at the
expense of a slightly stronger assumption.

The security model, mainly influenced by Juels, Luby, and Ostrovsky [JLO97]
as well as Pointcheval and Stern [PS00], requires blind signature schemes to sat-
isfy blindness and one-more unforgeability. Blindness states that the signer must
not obtain any information on the signed messages and one-more unforgeability
means that an adversary cannot obtain more signatures than there were inter-
actions with the signer.

Our Contribution. We construct the first lattice-based blind signature scheme.
It is inspired by Lyubashevsky’s ID scheme [Lyu08] in combination with the
Fiat-Shamir paradigm [FS86]. It is unconditionally blind, selective-failure blind
[CNS07], and one-more unforgeable in the random oracle model [BR93] if stan-
dard lattice problems in ideal lattices [LM06] are hard in the worst-case. With
its four moves it is quite efficient. All operations have quasi-linear complexity and
all keys and signatures require a quasi-linear amount of storage bits, with respect
to the main parameter n. Moreover, it is leakage resilient according to a model
inspired by Katz and Vaikuntanathan [KV09]. Let L be the bit-length of the
secret key. Our scheme remains secure, even if the adversary obtains L(1− o(1))
bits of the secret key via arbitrary side channels. This brings the security model
closer to reality, where the adversary may obtain information about the secret
key, e.g, via (remote) timing attacks or by having physical access to the signing
device. When applied in e-voting or e-cash schemes, such a resilience also helps
against insider attacks and may improve the trust that we are willing to grant
these schemes. Another application of our construction is identity-based blind
signatures, when combined with [Rüc10].

Our scheme is also the first leakage resilient blind signature scheme and our
results in this respect are applicable to Lyubashevsky’s ID and signature schemes
[Lyu08, Lyu09]. It may be possible to use an analogue of Pointcheval and Stern’s
approach [PS00] to turn the leakage resilient variants [KV09, ADW09] of the
Okamoto-Schnorr signature scheme [Sch91, Oka92] into blind signature schemes.
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Table 1. Comparison of RSA, Okamoto-Schnorr, and our blind signature scheme

Scheme Secure until Security (bits) Moves KeyGen Sign Verify

RSA-1229 2012 Current (76) 2 95 ms 16 ms 5 ms

RSA-3313 2050 Medium (102) 2 1250 ms 46 ms 6 ms

RSA-15424 2282 Future (256) 2 251849 ms 2134 ms 20 ms

OS-1229 2012 Current (76) 3 16 ms 64 ms 24 ms

OS-3313 2050 Medium (102) 3 46 ms 184 ms 69 ms

OS-15424 2282 Future (256) 3 2134 ms 8536 ms 3201 ms

Section 3 (n = 1024) 2012 Current (76) 4 37 ms 220 ms 33 ms

Section 3 (n = 2048) 2050 Medium (102) 4 52 ms 283 ms 57 ms

Section 3 (n = 8192) 2282 Future (256) 4 305 ms 1175 ms 320 ms

The table compares our scheme with RSA and Okamoto-Schnorr for various moduli
according to [Len05] (Current, Medium) and [ECR10] (Future). The bitlengths can be
computed on www.keylength.com. For our blind signature scheme, we propose three
optimized parameter sets for the same security levels based on [RS10], which provides
a framework for choosing secure parameters for lattice-based cryptography. Note that
the parameters for RSA and OS do not take potential quantum-computer attacks into
account. All timings are averaged over 1000 random instances.

However, it is unclear whether this will actually work and whether it will be
efficient.

Table 1 compares RSA and Okamoto-Schnorr (OS) blind signatures with our
construction in terms of computational cost. For all schemes, we propose param-
eter sets for current, medium, and future security levels. We believe that RSA
is a good basis for comparison because it is easy to understand and very effi-
cient as signing only involves two modular exponentiations and verification can
be done in a single one (small exponent). We do not count multiplications. As
observed in [BNPS03], the security of the RSA blind signature scheme is based
on a specially tailored interactive assumption that is stronger than the original
RSA assumption [BMV08]. Taking all this into account, the timings observed for
RSA provide an optimistic lower bound for current practical and secure schemes.
The timings for OS are expected timings based on the number of modular expo-
nentiations, not counting multiplications. We include OS because it follows the
typical 3-move structure and is based on a standard assumption. It is therefore
closer to our protocol. The timings were obtained on an AMD Opteron CPU,
running at 2.3 GHz. For RSA and OS, we have used OpenSSL 0.9.8g, which is
supposed to be very efficient. For our blind signature schemes, we did a straight-
forward implementation, which certainly leaves room for improvements. Here,
the timings reflect the full scheme.

From Table 1, we clearly see that our scheme benefits from its quasi-linear
complexity, especially in higher levels of security. In addition, for our scheme, we

www.keylength.com
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can have various trade-offs between signature size and speed. For more details,
refer to the full version [Rüc08]. There, we also show how to optimize the key
and signature sizes, which are typically large in lattice-based constructions.

We believe that our work is an important contribution because the previous
efficient constructions, such as [Cha82, PS97, PS00, Abe01, BNPS03, CKW04,
Oka06], have one thing in common: they are built upon classic number theoretic
assumptions, like the hardness of factoring large integers or computing discrete
logarithms. The more recent approaches, e.g., by Boldyreva [Bol03] or Okamoto
[Oka06], tend to use pairings that yield very elegant constructions. They, how-
ever, are again based on the discrete logarithm problem in this specific setting.
None of the above schemes remains secure in the presence of reasonably large
quantum computers, where both factoring and computing discrete logarithms
become easy due to the seminal work of Shor [Sho97].

Main Obstacles. For every blind signature scheme, one has to overcome three
basic obstacles. The scheme needs to be blind, one-more unforgeable, and at the
same time complete. Blindness and unforgeability are already somewhat orthog-
onal because granting the user too much power to ensure blindness harms un-
forgeability and vice-versa. Since working with lattices, we do not have access to
a cyclic group structure as in schemes that are based on the DDH or DL assump-
tions. There, blindness is typically easier to achieve by multiplying the message
with a random group element. The result is again a random group element.

In lattices, we need to emulate this over an infinite structure via a filter-
ing technique that is inspired by [Lyu08]. However, this technique introduces a
completeness defect that even affects the interaction of an honest user with an
honest signer. Thus, the protocol may need to be restarted. We show how this
technique can be refined to allow a time-memory trade-off, reducing the num-
ber of expected restarts at the expense of only slightly larger signatures. When
addressing this defect, we need additional means to ensure blindness over repe-
titions of the protocol. Our solution involves a statistically hiding commitment.

Similarly, the completeness defect has implications with respect to unforge-
ability as the user may claim that the protocol has failed, whereas it was indeed
successful. Here, we extend the typical three-move structure to a four-move struc-
ture where the user needs to demonstrate that he or she could not obtain a valid
signature. Such a last move, from user to signer, is highly unusual for blind sig-
nature schemes. We solve this issue by designing a special proof of failure and
by employing a computationally binding commitment scheme.

All these issues, and the additional leakage resilience, need to be addressed
simultaneously as they are interconnected. This leads to an intricate process of
correctly setting up the numerous parameters and sets for our scheme in Table 2.

RSA-style Blind Signatures. One might think that RSA-style (hash→ blind
→ invert → unblind) lattice-based blind signatures can be implemented using
the preimage sampleable trapdoor function f : D ⊂ Z

m → Z
n
q from [GPV08].

If certain lattice problems are hard, it is hard to sample preimages from D
(small norm) unless one knows short vectors x such that f(x) = 0. The user
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would hash the message M using a full-domain hash h← H(M) and blind using
M∗ ← h+f(β) for β ∈ D. The signer would sample from f−1(M∗)∩D and return
the result σ∗. The function is compressing, so there are no unique preimages.
Using β and the fact that f is linear, the user can compute σ ← σ∗ − β, which
passes verification: f(σ) = f(σ∗)− f(β) = H(M∗). For the proof, one would rely
on an interactive “one-more“ trapdoor inversion assumption akin to [BNPS03].
However, the adversary must never obtain a non-zero x ∈ D such that f(x) = 0
because this would imply learning a piece of the secret key. Unfortunately, such
an attack is easy: take u ∈ D and send M∗ = f(u) to the signer, who returns
σ∗. Now, x = u − σ∗ is small and f(x) = 0. Also, x �= 0 with high probability
because there are many preimages of f(u).

Organization. After a brief preliminaries section, we propose our blind signa-
ture scheme in Section 3. There, we also provide a detailed analysis, including
completeness, blindness, one-more unforgeability, and leakage resilience. The full
version of the paper is [Rüc08]. There, we discuss how to choose practical pa-
rameters and prove all supporting lemmas for the theorems in Section 3.

2 Preliminaries

With n, we always denote the security parameter. The joint execution of two
algorithms A and B in an interactive protocol with private inputs x to A and y
to B is written as (a, b)← 〈A(x),B(y)〉. The private outputs are a for A and b for
B. Accordingly, 〈A(x),B(y)〉k means that the interaction can take place up to k
times. The statement x←$X means that x is chosen uniformly at random from
the finite set X . Recall that the statistical distance of two random variables X,Y
over a discrete domain D is defined as Δ(X,Y ) = 1/2

∑
a∈D |Prob[X = a] −

Prob[Y = a] |. A function is negligible if it vanishes faster than 1/p(n) for any
polynomial p. All logarithms are base 2 and we identify {1, . . . , k} with [k].

We recall the definitions of blind signatures and commitments. Afterwards,
we briefly recall some facts from lattice theory.

2.1 Blind Signatures

A blind signature scheme BS consists of three algorithms (Kg, Sign,Vf), where
Sign is an interactive protocol between a signer S and a user U . The specification
is as follows.
Key Generation. Kg(1n) outputs a private signing key sk and a public verifi-

cation key pk.
Signature Protocol. Sign(sk,M) describes the joint execution of S and U . The

private output of S is a view V and the private output of U is a signature
s on the message M ∈ M with message space M under sk. Thus, we write
(V , s)← 〈S(sk),U(pk,M)〉.

Signature Verification. The algorithm Vf(pk, s,M) outputs 1 if s is a valid
signature on M under pk and otherwise 0.
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Completeness is defined as with digital signature schemes, i.e., every honestly
created signature for honestly created keys and for any messages M ∈ M has
to be valid under this key. Views are interpreted as random variables, whose
output is generated by subsequent executions of the respective protocol. Two
views V1 and V2 are considered equal if they cannot be distinguished by any
computationally unbounded algorithm with noticeable probability.

As for security, blind signatures have to satisfy two properties: blindness and
one-more unforgeability [JLO97, PS00]. The notion of blindness is defined in an
experiment Expblind

S∗,BS, where the adversarial signer S∗ works in three modes. In
mode find, it chooses two messages M0,M1 and interacts with two users in mode
issue. Depending on a coin flip b, the first (second) user obtains a blind signature
for Mb (M1−b). After seeing the unblinded signatures in the original order, with
respect to M0,M1, the signer has to guess the bit b in mode guess. If either of the
user algorithms fails in outputting a valid signature, the signer is merely notified
of the failure and does not get any signature. Below, we deal with aborts as an
extension. Also note that we allow the adversary to keep a state that is fed back
in subsequent calls. A scheme BS is (t, δ)-blind, if there is no adversary S∗,
running in time at most t, that wins the above experiment with advantage at least
δ, where the advantage is defined as Advblind

S∗,BS =
∣∣∣Prob

[
Expblind
S∗,BS(n) = 1

]
− 1

2

∣∣∣.
A scheme is statistically blind if the it is (∞, δ)-blind for a negligible δ. The
second security property, one-more unforgeability, ensures that each completed
interaction between signer and user yields at most one signature. It is formalized
in the experiment Expomf

U∗,BS, where an adversarial user tries to output j valid
signatures after � < j completed interactions with an honest signer. H is a
family of random oracles.

A signature scheme BS is (t, qSign, qH, δ)-one-more unforgeable if there is no ad-
versary A, running in time at most t, making at most qSign signature queries and
at most qH hash oracle queries, that wins the above experiment with probability
at least δ.

2.2 Extensions

We consider three extensions to the above security model for blind signatures:
one deals with user aborts, the second with dishonestly chosen keys, and the
third with leakage resilience.

Security Under Aborts. Blindness in the previous subsection does not cover
the case where the protocol is aborted prematurely. There is the strengthened
notion of selective failure blindness [CNS07], where the malicious signer may
choose either M0 or M1 according to some secret distribution that makes the
protocol fail. Preventing this generically is easy as was shown by Fischlin and
Schröder in [FS09]. In the course of the discussion of our construction, we argue
that it already is blind in this sense.

Adversely-chosen Keys. Consider the blindness experiment in [ANN06]. In-
stead of having the experiment select pk, sk, we can let the signer output pk.
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Blindness may be harder to achieve in this setting. However, our construction
remains blind in this stronger model as the proof does not exploit specifics about
the key.

Leakage Resilience. Resilience to key leakage is a way to ensure security
against side-channel attacks. In [KV09], Katz and Vaikuntanathan give a nice
overview of past developments and the evolution of leakage resilience for au-
thenticity and secrecy. Obviously, we are interested in authenticity in the special
case of blind signatures. We model key leakage in the unforgeability experiment
by adding a leakage oracle Leak(·) to Expomf

U∗,BS. The adversary can adaptively
query Leak with a series of functions fi, i ∈ {1, . . . , κ}, and receives fi(sk).
The only restriction is that

∑n
i=1 |fi(sk)| < λ(|sk|), where the function λ de-

termines the amount of leakage that we are willing to tolerate. Notice that the
signer’s key does not have to evolve over time and its secret state consists of
the secret key only. Furthermore, observe that this extension is only sensible
as long as λ(|sk|) < min{|sk|, |s|}, where | · | denotes bit-length and s is a sig-
nature. Otherwise, the adversary could easily obtain the entire secret key or
a signature of its choice. See the full version [Rüc08] for the experiment. To
demonstrate leakage resilience, one has to show that the conditional min-entropy
H∞(sk|Leak(sk)) = minsk′{− log(Prob

[
sk = sk′|Leak(sk)

]
)} of the secret key is

still sufficiently large to prove security.

2.3 Commitments

Commitments typically work in two phases. First, one party publishes a com-
mitment C = com(M ; r) ∈ {0, 1}n, r←${0, 1}n, to a message M ∈ {0, 1}∗
without revealing any information about it. This is the “hiding” property of the
commitment scheme. In the second phase, the party can prove that C actually
corresponds to M by revealing r. It is important that no algorithm can find a
second messageM ′ and randomness r′ such that C = com(M ′; r′), i.e., break the
“binding” property. As usual, these properties are defined for families of such
commitment functions. A scheme is (t, δ)-hiding (-binding) if there is no algo-
rithm running in time at most t that can break the hiding (binding) property
with probability at least δ. Both properties can be satisfied computationally
or unconditionally but there is no scheme that is unconditionally hiding and
unconditionally binding [Gol04].

For our scheme, we assume a statistically δ
(h)
com-hiding and computationally

(tcom, δ
(b)
com)-binding commitment scheme. As we are interested in fully lattice-

based schemes, we would like to point out that such commitment schemes can
be built upon hard lattice problems [KTX08] but in practice, one rather uses
cryptographic hash functions as a message authentication code. For example,
using a lattice-based hash function [ADL+08].

2.4 Lattices

A lattice in R
n is a discrete set Λ = {∑d

i=1 xi bi |xi ∈ Z}, where b1, . . . ,bd

are linearly independent over R. The matrix B = [b1, . . . ,bd] is a basis of the
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lattice Λ and we write Λ = Λ(B). The dimension of the lattice is d. The main
computational problem in lattices is the shortest vector problem (SVP), where
an algorithm is given a description, a basis, of a lattice Λ and is supposed to
find the shortest vector v ∈ Λ \ {0} with respect to a certain �p norm (up to
an approximation factor). More precisely, find a vector v ∈ Λ \ {0}, such that
‖v‖p ≤ γ ‖w‖p for all w ∈ Λ \ {0} for a fixed approximation factor γ ≥ 1.

In this work, we are interested in a special family of lattices related to ideals in
the ring R = Zq[X ]/〈g〉, where q is prime and Zq = {−(q− 1)/2, . . . , (q− 1)/2}.
We focus on g = Xn + 1 and n = “power of two” for efficiency reasons but it
may be replaced by any irreducible polynomial over Z. Then, our scheme and
the analysis become only slightly more involved. We identify f ∈ R with its
coefficient vector f = (f0, . . . , fn−1) ∈ Z

n
q . Furthermore, we denote elements of

the R-module Rm with â = (a0, . . . ,am−1) or directly with (a0, . . . , amn−1) ∈
Z

mn
q . Consequently, we define ‖f‖∞ = ‖(f0, . . . , fn−1)‖∞. The norm on R is a

slight abuse of notation, but it will only be used if f has small coefficients over
Z. A lattice corresponds to an ideal I ⊂ R if and only if every lattice vector is
the coefficient vector of a polynomial in I. The SVP problem easily translates to
ideal lattices, where we call it ideal-SVP (ISVP).

The average-case hardness assumption for our construction relies on the prob-
lem of finding short vectors in the kernel of the family H(R,m) of module ho-
momorphisms hâ∈Rm : Rm → R, x̂ �→ â � x̂ =

∑m−1
i=0 aixi, when restricting the

domain to D′ ⊂ R, i.e., restricting the coefficients in the input to [−2d, 2d]∩ Z.
This problem can be stated as the following collision problem [LM06].

Definition 1 (Collision Problem). The collision problem Col(H(R,m), D)
asks to find a distinct pair (x̂, x̂′) ∈ Dm × Dm such that h(x̂) = h(x̂′) for
h←$H(R,m).

Obviously, the function is linear over Rm, i.e., h(a(x̂ + ŷ)) = a(h(x̂) + h(ŷ))
for all a ∈ R, x̂, ŷ ∈ Rm. In addition, solving Col(H(R,m), D) implies being
able to solve ISVP∞ in every lattice that corresponds to an ideal in R by the
following theorem.

Theorem 1 (Worst-case to Average-case, Theorem 2 in [LM06]). Let
D = {f ∈ R : ‖f‖∞ ≤ d}, m > log(q)/ log(2d), and q ≥ 4dmn

√
n log(n).

An adversary C that solves the Col(h,D) problem, i.e., finds distinct preimages
x̂, ŷ ∈ Dm such that h(x̂) = h(ŷ), can be used to solve ISVP∞ with approximation
factors γ ≥ 16dmn log2(n) in the worst case.

3 Blind Signatures from Ideal Lattices

We construct a lattice-based blind signature scheme. It is secure in the random
oracle model under a worst-case assumption in ideal lattices and its time and
space complexity is quasi-optimal, Õ(n).

The road map for this section is as follows: We describe the 4-move blind
signature scheme BS. Then, we prove completeness, blindness, and one-more
unforgeability. Proving completeness is non-trivial as we need to address an
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Table 2. Parameters for the security parameter n

Parameter Value Asymptotics Usage

n power of 2 - main security parameter

ds positive integer constant < q/(4n) O(1) secret key size, unforgeability
Ds {f ∈ R : ‖f‖∞ ≤ ds} set of secret keys

cm > 1/ log(2ds) Õ(1) witness indistinguishability, leakage resilience

m �cm log(q)�+ 1 Ω(log(n)) worst-case to average-case reduction

Dε {f ∈ R : ‖f‖∞ ≤ 1 =: dε} O(1) hash output size

φ,ψ positive integer constant ≥ 1 O(1) completeness, speed

Dα {f ∈ R : ‖f‖∞ ≤ ψndε =: dα} O(n) blindness

Dε∗ {f ∈ R : ‖f‖∞ ≤ dα − dε =: dε∗} O(n) blindness

Dy {f ∈ R : ‖f‖∞ ≤ φmn2dsdε∗ =: dy} Õ(n3) witness indistinguishability

G∗ {f ∈ R : ‖f‖∞ ≤ dy − ndsdε∗ =: dG∗} Õ(n3) witness indistinguishability, completeness defect

Dβ {f ∈ R : ‖f‖∞ ≤ φmndG∗ =: dβ} Õ(n4) blindness

G {f ∈ R : ‖f‖∞ ≤ dβ − dG∗ =: dG} Õ(n4) blindness, completeness defect

D {f ∈ R : ‖f‖∞ ≤ dG∗ + dβ + ndsdε =: dD} Õ(n4) collisions under h

q ≥ 4mn
√
n log(n)dD, prime Θ̃(n5√n) worst-case to average-case reduction

The table defines all parameters and sets for our scheme. The sets are defined via a
norm bound, for which we also state the asymptotic growth with respect to the security
parameter n. The last column states the main usage for the individual parameter or
set. Some sets introduce a completeness error to the scheme that can be reduced by
increasing φ. Reducing this defect also significantly improves performance. All sets are
subsets of the ring R = Zq[X]/(Xn + 1).

inevitable completeness defect. In the course of the discussion we show that it
neither harms security nor efficiency. Afterwards, we prove that the scheme is
statistically blind and that it is one-more unforgeable unless the collision problem
Col(H(R,m), D) is easy. In consequence, one-more unforgeability can be based
on the worst-case hardness of the ISVP. After the main analysis, we prove that
our scheme also supports leakage resilience.

Observe that the scheme requires lots of parameters that need to be carefully
worked out. Their definition in Table 2 will be justified later in the analysis. We
chose not to “unwind” the parameters ds, dε, etc. because we need their relative
size in the various lemmas below, making the proofs easier to understand. The
asymptotics in the third column should help estimating their magnitude. The
parameter dε is a constant 1 here but it can be increased if it is necessary to sign
hash values of bit length > n log2(3). The “usage” hint in the table points at the
section, where they are most influential. As for selecting practical parameters, we
refer the reader to the full version [Rüc08]. There, we propose secure parameter
sets based on the analysis in [RS10]. The full version also includes a discussion
on possible trade-offs for efficiency.

3.1 Our Construction

We construct our blind signature scheme BS = (Kg, Sign,Vf) as follows.
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Signer S(ŝ) User U(S,M)

1 ŷ←$D
m
y

Y−−−−−−−−−−−→ r←${0, 1}n
Y ← h(ŷ) C ← com(M ; r)

α←$Dα

β̂←$D
m
β

2 ε← H(Y − Sα− h(β̂), C)
ε∗ ← ε− α
If ε∗ �∈ Dε∗

Start over with a fresh α

3 ẑ∗ ← ŝε∗ + ŷ
ε∗←−−−−−−−−−−−

If ẑ∗ �∈ Gm
∗

Trigger restart

4
ẑ∗

−−−−−−−−−−−→ ẑ← ẑ∗ − β̂
If ẑ �∈ Gm

result← (C,α, β̂, ε)
Else

result← ok

5 If result �= ok
result←−−−−−−−−−−−

Parse result = (C,α, β̂, ε)

If (ε∗ + α = ε = H(Y − Sα− h(β̂), C)

and H(h(ẑ∗ − β̂)− Sε, C) = ε

and ẑ∗ − β̂ �∈ Gm)
Trigger restart

Output V ← (ŷ,Y, ε∗, ẑ∗) Output (M, (r, ẑ, ε)) or ⊥ when result �= ok

Fig. 1. Issue protocol of the blind signature scheme BS. All parameters and sets are
defined in Table 2. Note that the signer implicitly verifies that the user’s protocol
messages come from the correct domains.

Key Generation. BS.Kg(1n) selects a secret key ŝ←$D
m
s , and a compres-

sion function h←$H(R,m). Let C(1n) be a commitment scheme, mapping
{0, 1}∗ × {0, 1}n → {0, 1}n. The algorithm chooses a function com←$C(1n)
and, in addition, selects H←$H(1n) mapping {0, 1}∗ → Dε ⊂ D.

Then, it computes the public key S ← h(ŝ) and outputs (ŝ,S). For
simplicity, we treat h, com, H, and the parameters in Table 2 as globally
known and implicit inputs to all algorithms. However, each signer may choose
them individually and include them in the public key.

Signature Protocol. The signature issue protocol for messages M ∈ {0, 1}∗
is depicted in Figure 1. Eventually, the user outputs a message M and a
signature (r, ẑ, ε).

Notes: Upon a restart after Step 2, the user only selects a fresh α←$Dα

and repeats the operations that involve α. Whenever the signer triggers a
restart, the user chooses a fresh r in order to make the protocol execution
independent of the previous ones. Therefore, we omit values from previous
runs in the signer’s view. During Step 5, the signer can detect a cheating
user that tries to trigger a restart, despite having received a valid signature.
In this case, the signer can stop the protocol and assume that the user has
obtained a valid signature.

Verification. BS.Vf(S, (r, ẑ, ε),M) outputs 1 iff ẑ ∈ Gm and H(h(ẑ) − Sε,
com(M ; r)) = ε.
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3.2 Analysis and Security

In this section, we analyze our blind signature scheme with regard to complete-
ness, blindness, one-more unforgeability, and leakage resilience. For each aspect,
we prove a main theorem. Supporting lemmas are stated before the theorems
and proven in the full version [Rüc08].

Completeness. Completeness of BS is a non-trivial issue due to the eventual
restarts and the many parameters involved. The next lemma ensures that the
number of restarts is small, effectively constant.

Lemma 1. Let k = Ω(n), a,b ∈ Z
k with arbitrary a ∈ {v ∈ Z

k : ‖v‖∞ ≤ A}
and random b←${v ∈ Z

k : ‖v‖∞ ≤ B}. Given B ≥ φkA for φ ∈ N>0, we have
Prob

b
[‖a− b‖∞ ≤ B −A] > 1

e1/φ − o(1).

Theorem 2 (Completeness). Let g(n) = ω(log2(n)). The scheme BS is com-
plete after at most g(n) (or, an expected number of e2/φ) repetitions.

See the full version [Rüc08] for the proof. There, we also argue that φ = 4 is
good choice to make the protocol more efficient in practice. Observe that in any
case, all operations (including eventual restarts) in BS have Õ(n) complexity
and that private keys, public keys, and signatures have size Õ(n).

Blindness. We prove that BS is statistically blind based on the observation that
the signer only sees values that are independent of the message being signed.
More precisely, the views generated by two different messages are indistinguish-
able. For this argument to work, we require a statistically hiding commitment
scheme and carefully selected sets Dα, Dβ , Dε∗ , and G. The following proba-
bilistic lemma is crucial as it guarantees that the user’s message after Step 2
and the final output are independent of the message. In the context of Expblind

S∗,BS,
this establishes a form of witness indistinguishability w.r.t. the messages that
are chosen by the malicious signer.

Lemma 2. Let k ∈ N, a,a′,b ∈ Z
k with arbitrary a,a′ ∈ {v ∈ Z

k : ‖v‖∞ ≤
A}, a random b←${v ∈ Z

k : ‖v‖∞ ≤ B} for B > A. We define the random
variables c ← a − b and c′ ← a′ − b if max{‖a− b‖∞ , ‖a′ − b‖∞} ≤ B − A,
otherwise, we resample b. Then, Δ(c, c′) = 0.

The role of com is to ensure that the signer can only obtain negligible information
from restarts. Notice that BS is perfectly blind ((∞, 0)-blind) if the commitment
scheme is perfect (0-hiding).

Theorem 3 (Blindness). BS is (∞, δ(h)
com)-blind if com is δ(h)

com- hiding.

Proof. As per experiment Expblind
S∗,BS, the adversarial signer outputs two messages

M0,M1 and interacts with two users U(S,Mb), U(S,M1−b) after a secret coin
flip b ← {0, 1}. We show that these users do not leak any information about
their respective message.
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Technically, we establish that all protocol messages and the output, when
interpreted as random variables, are distributed independently of the message
being signed. This involves an analysis of ε∗, ẑ, and eventual restarts. As for ε
and r we need not worry. They are chosen uniformly at random.

Distribution of ε∗. Let ε∗b , ε
∗
1−b be the first protocol messages of U(pk,Mb)

resp. U(pk,M1−b). They are in Dε∗ and they are both of the form ε−α with
ε ∈ Dε and α←$Dα. The statistical distance Δ(ε∗b , ε

∗
1−b) is 0 by Lemma 2

(k = n,A = ds, B = dα) because the coefficients in Dε∗ are bounded by
B −A = dα − ds.

Distribution of ẑ. Let ẑ0, ẑ1 be part of the final output ofU(pk,M0) resp. U(pk,

M1). Both are of the form ẑ∗ − β̂ for ẑ∗ ∈ Gm∗ and β̂←$D
m
β . Furthermore, ẑ0

and ẑ1 are forced to be inGm, having coefficients bounded by dβ−dG∗ . Hence,
the statistical distance Δ(ẑ0, ẑ1) is 0 because of Lemma 2 (k = mn,A =
dG∗ , B = dβ).

Restarts. Observe that each protocol run is statistically independent of the
previous runs by the statistical hiding property of the commitment com and
because the user selects fresh r, α, β̂ after every restart. This is the reason why
we inherit the statistical δ(h)

com-hiding property to obtain (∞, δ(h)
com)-blindness

instead of perfect blindness. Finally, we need to argue about the restart
after Step 4. The user sends (C,α, β̂, ε) to the signer. These information
allow the verification of the signature with respect to C. The message is still
statistically hidden by the hiding property of com because the user never
reveals the decommitment r.

Hence, the protocol hides the to-be-signed message and subsequent runs of the
protocol for the same message are statistically independent. ��

Furthermore, our scheme already supports selective failure blindness as shown in
[FS09] because we are signing commitments instead of the adversely chosen mes-
sages. Even the fourth move does not reveal any information about the message
due to the hiding property of the commitment.

One-more Unforgeability. In this section, we show that BS is one-more un-
forgeable, provided that the collision problem Col(H(R,m), D) is hard and the
commitment scheme is binding. The main tool in the reduction is the Forking
Lemma [PS00, BN06]. To simulate the environment, especially blind signature
queries, for the attackerA in the unforgeability experiment, we require that there
are at least two possible secret keys for each public key S (Lemma 3). Moreover,
we need the signature protocol to be witness indistinguishable to prevent the
attacker from learning the secret key (Lemma 4). The binding property of com
is necessary to prevent an attacker from obtaining one signature that works for
two messages by changing the message under the commitment. All other at-
tackers output at least one signature that does not correspond to a completed
interaction. Here, we apply the Forking Lemma to extract knowledge about the
secret key that was used to compute the forgery. Using this knowledge the reduc-
tion can solve the collision problem. Finally, we need to deal with Step 5 in the
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protocol. The adversary proves that it was unable to obtain a valid signature.
We show that this is sufficient if Col is hard.

Since the function family H(R,m) compresses the domain Dm
s , it is easy to

show that all secret keys collide with at least one other secret key.

Lemma 3. Let h ∈ H(R,m). For every secret key ŝ←$D
m
s , there is a second

ŝ′ ∈ Dm
s \ {ŝ} with h(ŝ) = h(ŝ′) (with overwhelming probability).

The next lemma establishes witness indistinguishability of the protocol. Wit-
ness indistinguishability ensures that the malicious verifier cannot distinguish
whether the prover uses one of two possible secret keys ŝ, ŝ′ ∈ h−1(S) ∩ Dm

s .
Basically, it can be interpreted as an application of Lemma 2 to ẑ∗ = (ŝε∗)+ ŷ ∈
Gm∗ with some further observations. The choice of ŷ←$Dy and the restriction
“∈ Gm

∗ ” hide the first summand.

Lemma 4. Let h ∈ H(R,m) and S ∈ R. For any message M and any two secret
keys ŝ, ŝ′ ∈ Dm

s with h(ŝ) = S = h(ŝ′), the resulting protocol views (Y, ε∗, ẑ∗)
and (Y′, ε∗′, ẑ∗′) are indistinguishable.

Using lemmas 3 and 4, we can exploit witness indistinguishability to simulate
all blind signature oracle queries with a secret key ŝ and at the same time ex-
pect the adversary to output a forgery that corresponds to a different secret
key ŝ′ with non-negligible probability or break the binding property of the com-
mitment scheme. We apply the Forking Lemma to extract a solution to the
Col(H(R,m), D).

Theorem 4 (One-more unforgeability). Let Sig be the signature oracle. Let
TSig and TH be the cost functions for simulating the oracles Sig and H, and let
c < 1 be the probability for a restart in the protocol. BS is (t, qSign, qH, δ)-one-more
unforgeable if com is (t′, δ/2)-binding and Col(H(R,m), D) is (t′, δ′/2)-hard with
t′ = t+ q

qSig

H (qSignTSig + qHTH) and non-negligible δ′ if δ is non-negligible.

The probability δ′ depends on the number of issued signatures. It can be found
at the end of the proof.

Proof. Towards contradiction, we assume that there exists a successful forger A
against one-more unforgeability of BS with non-negligible probability δ. Using
A, we construct an algorithm B, such that it either solves the collision problem
or breaks the binding property of com.
Setup. B flips a coin b←${0, 1}. For b = 0, it selects h←$H(R,m). For b = 1,

it gets the description of h as input. B initializes a list LH ← ∅ of query-hash
pairs (R×{0, 1}∗, Dε). It chooses ŝ←$D

m
s and sets S← h(ŝ). Furthermore, it

randomly pre-selects random oracle answers h1, . . . ,hqH
←$Dε and a random

tape ρ. It runs A(S; ρ) in a black-box simulation.
Random Oracle Queries. On input (u, C), B looks up (u, C) in LH. If it finds

corresponding hash value ε then it returns ε. Otherwise, B selects the first
unused ε from the list h1, . . . ,hqH

, stores ((u, C), ε) in LH, and returns ε.
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Blind Signature Queries. B acts according to the protocol in Figure 1.
Output. Eventually,A stops and outputs (M1, (r1, ẑ1, ε1)), . . . , (Mj, (rj, ẑj, εj)),

qSign +1 = j, for distinct messages. If b = 0, the reduction looks for two pairs
(M∗1 , (r

∗
1 , ẑ
∗, ε∗)) and (M∗2 �= M∗1 , (r

∗
2 , ẑ
∗, ε∗)) and outputs (M∗1 , r

∗
1), (M

∗
2 , r
∗
2)

to break the binding property of com. If there is no such collision, B aborts.
If b = 1, the simulator B guesses an index k←$[j] such that hı = εk for some
ı ∈ [qH]. Then, B starts over, running A(S; ρ) with random oracle answers
h1, . . . ,hı−1,h′ı, . . . ,h

′
qH

for a fresh set h′ı, . . . ,hqH
←$Dε. Both A and B are

run with the same random tape as in the first run. Among other values, A
outputs (M ′k, (r

′
k, ẑ
′
k, ε
′
k)) and B returns (ẑk − ŝεk, ẑ′k − ŝε′k) if ε′k = εk in an

attempt to solve Col(H(R,m), D). If ε′k �= εk, the reduction retries at most
qj
H times with a different random tape and random oracle.

Analysis. A’s environment is perfectly simulated. Especially, restarts happen
with the same probability as in the original protocol. For b = 0, B (t′, δ/2)-breaks
the binding property of com if A breaks the binding property of com to break
one-more unforgeability.

For b = 1, we assume thatA breaks one-more unforgeability without attacking
com. So, at least one of the output signatures is not obtained via an interaction.
The probability that B guesses the index k of this signature correctly is at least
1/(qSign + 1). Observe that εk is a random oracle answer but with probability
1/|Dε|. Furthermore, notice that with probability 1/2, at least one of the re-runs
of A yields the same map {(ı, k) : hı = εk} as in the first run of A. Thus, we
consider the indices in both “interesting” replays to be constant.

Applying the Forking Lemma, we know that with probability δfrk ≥ (1−c)(δ−
1/|Dε|)((δ−1/|Dε|)/qH−1/|Dε|), A is again successful in the one-more unforge-
ability experiment and outputs (M ′k, (r

′
k, ẑ
′
k, ε
′
k)) using the same random oracle

query as in the first run. The additional (1−c) factor takes a potential abort dur-
ing the second run into account, which happen with probability at most c. There-
fore, we know that (h(ẑk − Sεk), com(Mk; rk)) = (h(ẑ′k − Sε′k), com(M ′k; r′k)).

Now, we turn to solving the collision problem. We have to show that ẑk−ŝεk �=
ẑ′k − ŝε′k and h(ẑk − ŝεk) = h(ẑ′k − ŝε′k). The second requirement follows directly
from the previous paragraph. The first is more involved. Here, it is important
that the protocol is witness indistinguishable (Lemma 4), i.e., the adversary does
not recognize whether we have used one of at least two possible ŝ, ŝ′ (Lemma 3
with probability greater than 1/2. Thus, with probability at least 1/2 its output
corresponds to ŝ′. We show that either ẑk− ŝεk �= ẑ′k− ŝε′k or ẑk− ŝ′εk �= ẑ′k− ŝ′ε′k.
Assuming both are equal, we subtract the equations and obtain (εk − ε′k)(ŝ′ −
ŝ) = 0. We know that εk − ε′k �= 0. Now, ‖(εk − ε′k)(ŝ′ − ŝ)‖∞ ≤ 2dsn < q/2
because ‖εk − ε′k‖∞ ≤ 2 and ‖ŝ′ − ŝ‖∞ ≤ 2ds. Thus, (εk − ε′k)(ŝ′ − ŝ) = 0 over
Z[X ]/〈Xn+1〉, which is an integral domain. So, we have the contradiction ŝ′ = ŝ
and a collision (ẑk − ŝεk, ẑ′k − ŝε′k) ∈ D ×D. The success probability is at least
δcol ≥ 1/4 δfrk/(qSign + 1), which is non-negligible if δ is non-negligible.

Concerning restarts, we argue that the user cannot obtain a valid signature
out of an aborted interaction without solving the collision problem. In order to
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trigger an abort after Step 4, it outputs result = (C,α, β̂, ε) which, together
with ẑ∗, ŷ, ε∗, satisfies all abort criteria:

ε∗ + α = ε = H(Y − Sα− h(β̂), C) (1)

ε = H(h(ẑ∗ − β̂)− Sε, C) (2)

ẑ∗ − β̂ �∈ Gm (3)

Assume that it also obtains a valid signature (r′, ẑ′, ε′) from this interaction. If
ε = ε′, then h(ẑ∗−β̂∗−ŝε) = h(ẑ′−ŝε) by (2). If the arguments under h are equal,
we have ẑ∗ − β̂ ∈ Gm — a contradiction with (3). If the arguments are distinct,
we have a collision in D because ‖ẑ′ − ŝε‖∞ ≤ dG < dD and

∥∥∥ẑ∗ − β̂∗ − ŝε
∥∥∥
∞
≤

dG∗ + dβ + ndsdε = dD.
The adversary may succeed by hiding ε′ �= ε in ε∗. But then, we necessarily

have ε∗ = ε−α = ε′−α′ by (1) for an α �= α′ and we know that α = ε− ε′+α′.
So, the adversary had to be able to predict the output of H to compute α.

To conclude, the probability that we can extract a collision from a cheating
user during an abort is at least δabort ≥ δ (1− 1/|Dε|), which is non-negligible
if δ is non-negligible. Thus, the overall success probability of the reduction is
δ′ ≥ min(δcol, δabort) if the guess b = 1 was correct. ��
Hence, we require that qSig = o(n) to be able to rely on the subexponential
hardness of lattice problems. This constraint is an artifact of the proof tech-
nique as discussed in [PS00] and it is not at all unusual for efficient blind sig-
nature schemes. There, it was even required that qSig ≤ (log(n))O(1) because
they needed a polynomial-time reduction. In consequence, in our reduction, we
greatly benefit from the subexponential hardness of the underlying lattice prob-
lem. Alternatively, we believe that the running time of the reduction can be
significantly reduced to being polynomial in qSig by using techniques due to
Pointcheval [Poi98].

By Theorem 1, we get the following strong worst-case security guarantees.

Corollary 1. BS is one-more unforgeable if solving ISVP∞ is hard in the worst
case for approximation factors γ ≥ 16dDmn log2(n) = Õ(n5) in lattices that
correspond to ideals in R.

Leakage Resilience. Using an additional restriction for one of the parameters,
we can safely leak a (1 − o(1)) fraction of the secret key in the unforgeability
experiment according to the definition in the full version [Rüc08]. Recall that
m = �cm log(q)� + 1 for some cm = Õ(1). Thus, it is possible to choose cm,
say log(n), without loosing the scheme’s quasi-optimal efficiency. The following
theorem states that such a choice is sufficient to provide strong leakage resilience.
The proof can be found in the full version [Rüc08].

Theorem 5 (Leakage Resilience). Let cm = ω(1) and let L := log(|Dm
s |) =

mn log(2ds +1) be the length of the secret key. The conditional min-entropy H∞
of ŝ, conditioned on S = h(ŝ) and a total secret-key leakage f(ŝ) of λ = δL =
(1− o(1))L bits, is positive with overwhelming probability.
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4 Conclusions

We have shown how to construct an efficient and provably secure blind signature
scheme based on the hardness of worst-case lattice problems. Our scheme has
four moves, offers quasi-optimal performance, and it is leakage resilient in an
almost optimal sense. Therefore, we expect our construction to withstand even
subexponential-time and quantum computer attacks, as well as limited side-
channel attacks against the secret key.
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Abstract. We consider the round complexity of a basic cryptographic
task: verifiable secret sharing (VSS). This well-studied primitive provides
a good “test case” for our understanding of round complexity in general;
moreover, VSS is important in its own right as a central building block
for, e.g., Byzantine agreement and secure multi-party computation.

The round complexity of perfect VSS was settled by Gennaro et al.
(STOC 2001) and Fitzi et al. (TCC 2006). In a surprising result, Patra
et al. (Crypto 2009) recently showed that if a negligible probability of
error is allowed, the previous bounds no longer apply. We settle the
key questions left open by their work, and in particular determine the
exact round complexity of statistical VSS with optimal threshold. Let n
denote the number of parties, at most t of whom are malicious. Their
work showed that 2-round statistical VSS is impossible for t ≥ n/3. We
show that 3-round statistical VSS is possible iff t < n/2. We also give an
efficient 4-round protocol for t < n/2.

1 Introduction

The round complexity of cryptographic protocols is a central measure of their
efficiency, and has been the subject of intense study. In this work, we are inter-
ested in understanding the round complexity of verifiable secret sharing (VSS)
[2]. Here, there is a dealer who shares a secret among a group of n parties, at
most t of whom (possibly including the dealer) may be malicious. The require-
ments (roughly speaking) are that if the dealer is honest, then no information
about the dealer’s secret is revealed to the t malicious parties by the end of the
sharing phase; nevertheless, by the end of the sharing phase even a dishonest
dealer is irrevocably committed to some value that will be recovered by the hon-
est parties in the reconstruction phase. Furthermore, if the dealer is honest then
this committed value must be identical to the dealer’s initial input.

We focus on information-theoretic VSS, where the security requirements are
required to hold even when the malicious parties have unbounded computational
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power. Here, two different possibilities can be considered: either the security re-
quirements hold perfectly (i.e., always), or the security requirements hold sta-
tistically but can possibly be violated with negligible probability. Assuming a
broadcast channel, perfect VSS is possible if and only if t < n/3 [1,4], while
statistical VSS is possible up to threshold t < n/2 [11].

The round complexity of perfect VSS has been extensively studied. For the
case of optimal threshold (i.e., t < n/3), Gennaro et al. [6] showed that 3 rounds1

are necessary and sufficient for perfect VSS, and gave an efficient 4-round proto-
col for the task. The 3-round VSS protocol by Gennaro et al. requires communi-
cation exponential in the number of players, but Fitzi et al. [5] later demonstrated
that an efficient 3-round protocol is possible. Katz et al. [7] showed that perfect
VSS could be achieved with optimal round complexity and, at the same time,
optimal use of the broadcast channel.

The 3-round lower bound of Gennaro et al. was generally believed to apply also
to the case of statistical VSS. It was therefore relatively surprising when Patra
et al. [8] showed recently that statistical VSS could be realized in two rounds
for t < n/3. The protocol of Patra et al. does not apply when n/3 ≤ t < n/2,
and finding a minimal-round protocol for the optimal security threshold was left
open by their work. On the other hand, the work of Patra et al. proves that
2-round statistical VSS is impossible for t ≥ n/3, which obviously applies to our
setting as well.

Our results and organization of the paper. In this work we resolve the
round complexity of statistical VSS with optimal threshold t < n/2. We show
that 3-round statistical VSS is possible for any t < n/2. We also give an efficient
4-round protocol for t < n/2.

2 Model and Definitions

We consider the standard communication model where parties communicate in
synchronous rounds using pairwise private and authenticated channels. We also
assume a broadcast channel. (VSS is impossible for t ≥ n/3 unless broadcast
is assumed.) A broadcast channel allows any party to send the same message
to all other parties — and all parties to be assured they have received identical
messages — in a single round.

When we say a protocol tolerates t malicious parties, we always mean that
it is secure against an adversary who may adaptively corrupt up to t parties
during an execution of the protocol and coordinate the actions of these parties
as they deviate from the protocol in an arbitrary manner. Parties not corrupted
by the adversary are called honest. We always assume a rushing adversary; i.e.,
in any round the malicious parties receive the messages (including the broadcast
messages) sent by the honest parties before deciding on their own messages.

1 Following the accepted convention, the round complexity of VSS refers to that of
the sharing phase.



The Round Complexity of Verifiable Secret Sharing: The Statistical Case 433

In our protocol descriptions we assume without loss of generality that parties
send properly formatted messages, as we may interpret an improper or missing
message as some default message.

We let F denote a finite field and set κ = log |F|. We require the dealer’s
secret to lie in F. In the case of statistical VSS, we allow error with probability
at most ε = 2−Θ(κ) and so κ can be treated as a security parameter. Note that
the dealer’s secret can be padded to lie in a larger field, if desired, to reduce the
probability of error.

Definition 1. A two-phase protocol for parties P = {P1, . . . , Pn}, where a dis-
tinguished dealer D ∈ P holds initial input s ∈ F, is a (1 − ε)-statistical VSS
protocol tolerating t malicious parties if the following conditions hold for any
adversary controlling at most t parties:

Privacy: If the dealer is honest at the end of the first phase (the sharing phase),
then at the end of this phase the joint view of the malicious parties is inde-
pendent of the dealer’s input s.

Correctness/Commitment: Each honest party Pi outputs a value si at the
end of the second phase (the reconstruction phase). Except with probability
at most ε, the following hold:
1. At the end of the sharing phase, the joint view of the honest parties

defines a value s′ such that si = s′ for every honest Pi.
2. If the dealer is honest throughout the execution, then s′ = s. ♦

Remark: Our definition of statistical VSS relaxes the correctness/commitment
requirement, but not the secrecy requirement. This is the definition that has been
considered previously in the literature, and is the definition that our protocols
achieve.

3 A Multiple-Verifier Information Checking Protocol

Our protocols rely on what is known as an information checking (sub)protocol
(ICP), a notion first introduced by Rabin and Ben-Or [11]. The traditional def-
inition of an ICP [11,3] involves the dealer D, an intermediary INT , and a
verifier V . In an initial phase, the dealer gives a secret value s ∈ F to INT and
some verification information (that reveals nothing about s) to V . Later, INT
gives s to V along with a “proof” that s is indeed the value that INT received
initially from D.

The basic definition of ICP involves only a single verifier; Patra et al. [10,9],
extend this definition to allow every party in the network to act as a verifier.
Defining ICP in this way (i.e., enabling multiple verifiers) will be helpful when
we use it as a black box in our VSS protocols. Formally, an information checking
protocol (ICP) consists of three stages Distr, AuthVal, and RevealVal:

– Distr(D, INT , s) is initiated by D, using as input some value s. The algo-
rithm generates some authentication information (which includes s itself)
that is given to INT , as well as some verification information that is given
to each of the verifiers.
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– AuthVal(D, INT , s) is initiated by INT after receiving the authentication
information from D. The information held by INT after this stage is called
D’s IC-signature and is denoted by ICSIG(D, INT , s).

– RevealVal(D, INT , s) is a sub-protocol in which all messages are broadcast.
Based on the broadcast messages, either ICSIG(D, INT , s) is accepted or
rejected by all honest verifiers (with high probability).

We require ICP to satisfy the following properties:

1. Correctness 1 : IfD and INT are honest, then every honest verifier accepts
ICSIG(D, INT , s) during RevealVal.

2. Correctness 2 : If INT is honest then at the end of AuthVal, INT possesses
an ICSIG(D, INT , s), which will be accepted in RevealVal by each honest
verifier, except with probability 2−Ω(κ).

3. Correctness 3 : If D is honest then during RevealVal, with probability at
least 1− 2−Ω(κ), ICSIG(D, INT , s) revealed as some s′ �= s by a corrupted
INT will be rejected by each honest verifier.

4. Secrecy: If D and INT are honest, then till the end of AuthVal, the adver-
sary has no information about s.

3.1 An ICP Protocol

Here we reproduce a simplified version of the ICP protocol (from Patra et al.,
[10,9]) tolerating t < n/2 malicious parties, such that Distr requires one round
and AuthVal and RevealVal require two rounds each. We omit the proofs due to
space limitations.
Distr(D, INT , s) :
Round 1:

1. D sends the following to INT :
(a) A random degree-t polynomial F (x) over F, with F (0) = s. Let INT

receive F ′(x) as the polynomial with F ′(0) = s′. 2

(b) A random degree-t polynomial R(x) over F. Let INT receive R(x) as a
t-degree polynomial R′(x).

2. D privately sends the following to each verifier Pi:
(a) (αi, vi, ri), where αi ∈ F\{0} is random (all αi’s are distinct), vi = F (αi)

and ri = R(αi).

AuthVal(D, INT , s):
Round 1: INT chooses a random d ∈ F \ {0} and broadcasts (d,B(x)) where
B(x) = dF ′(x) +R′(x).
Round 2:D checks dvi+ri

?= B(αi) for i = 1, . . . , n. IfD finds any inconsistency,
he broadcasts sD = s.

The polynomial F ′(x) (when D does not broadcast sD in round 2 of AuthVal)
or sD (broadcast by D in round 2 of AuthVal) as held by INT is denoted by
ICSIG(D, INT , s).
2 If INT is honest, then F ′(x) = F (x).
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RevealVal(D, INT , s):
Round 1: INT broadcasts ICSIG(D, INT , s) (i.e., he reveals D’s secret con-
tained in ICSIG(D, INT , s) as s′ = sD or as s′ = F ′(0)).
Round 2: Verifier Pi broadcasts Accept if one of the following conditions holds.
(Otherwise, Pi broadcasts Reject.)
1. ICSIG(D, INT , s) = s′, and s′ = sD.
2. ICSIG(D, INT , s) = F ′(x), and one of the following holds.

1. C1 : vi = F ′(αi); OR
2. C2 : B(αi) �= dvi + ri (B(x) was broadcasted by INT during AuthVal).

Local Computation (By Every Verifier): If at least t + 1 verifiers have
broadcasted Accept during round 2 of RevealVal then accept ICSIG(D, INT , s)
and output s′ or F ′(0) (depending on whether ICSIG(D, INT , s) is s′ or F ′(x)).
Else reject ICSIG(D, INT , s).

In our protocols, we use AuthVal(1), AuthVal(2) to denote the first round and
second round of AuthVal respectively. Similarly RevealVal(1), RevealVal(2) are
used for RevealVal. By ICPsh(X,Y, s), we mean an execution Distr(X,Y, s) fol-
lowed by AuthVal(X,Y, s). In order to make the presentation clearer, we some-
times use ICPrec(X,Y, s) in place of RevealVal(X,Y, s). Also, in an execution
ICPsh(X,Y, s), we say that X conflicts with Y , if X had to broadcast correc-
tional information in AuthVal(2)(X,Y, s). Lastly we say that “(F (x), d, B(x)) is
consistent with (α, v, r)” if at least one of the following holds:

1. F (α) = v.
2. B(α) �= dv + r.

4 3-Round Statistical VSS with Optimal Resilience

In this section, we present a 3-round statistical VSS protocol with optimal re-
silience. Although the complexity of the protocol is exponential in terms of the
number of parties, the protocol proves optimality of the lower bound from [8].
We also show an efficient 4-round statistical VSS protocol in Section 5.

In our 3-round VSS protocol, the dealer additively shares the secret s into(
n−1

t

)
shares. Loosely speaking, each of the

(
n−1

t

)
shares correspond to a t-sized

subset in P − {D}. Then the dealer runs a “VSS-like” subprotocol to share sm

amongst the players in the t-sized subset Sm ⊆ P − {D}. In the reconstruction
phase, the shares corresponding to each subset are reconstructed first. These
shares, in turn, are used to reconstruct the original secret s.

We begin by describing a subroutine that we call U-VSS.

4.1 U-VSS

The goal of the U-VSS sub-routine, is to achieve VSS-like functionality for a
subset U (with |U | = t) of the player set P . In particular, we want correctness
and commitment property to hold as in the definition of VSS. However, the
privacy requirement needs to met only when all players in U ∪ {D} are honest.

Informally, the 3 rounds of the U -VSS protocol can be described as follows:
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– In Round 1, D sends the secret s to all players in U . Players in U exchange
random pads with each other.

– In Round 2, each player in U authenticates his share (via AuthVal). In addi-
tion he also broadcasts the secret masked with random pads received from
other players in U . Players in U also authenticate random pads received from
each other.

– In Round 3, D resolves conflicting broadcasts (if necessary, by broadcasting
s to all players). Players finish authenticating their shares with D and their
random pads with one another.

Unfortunately the U -VSS protocol described above does not guarantee commit-
ment as such because players in U might (pretend to) have conflicts over random
pads, thereby having an option to reveal different random pads in the reconstruc-
tion phase. To see this, consider the case when n = 5 and t = 2. Without loss of
generality, let U = {P2, P3}. In round 3, P2 might (or pretend to) be unhappy
(i.e., the AuthVal(2) check fails) with P3’s authentication of random pad r23 (sent
by P2 to P3). This would result in P2 broadcasting F (2)(x) and r23. Similarly P3

might (or pretend to) be unhappy with P2 over r32. Note that other players have
no information about r23 and r32. In this case, players in P − (U ∪ {D}) cannot
distinguish (by the end of the sharing phase) between the following 3 cases:

1. (D and P2 are dishonest.) P2 broadcasted incorrect authentication infor-
mation for r32 (thereby making P3 unhappy over r32) and pretends to be
unhappy over P3’s broadcast related to r23.

2. (D and P3 are dishonest.) P3 broadcasted incorrect authentication infor-
mation for r23 (thereby making P2 unhappy over r23) and pretends to be
unhappy over P2’s broadcast related to r32.

3. (P2 and P3 are dishonest.) Both pretend to be unhappy over each other’s
broadcast related to random pads r23 and r32.

Note that in Case (3), an honest D cannot detect any foul play by end of the
2nd round. 3 If we are in Cases (1) or (2), then we have dishonest majority in
U ∪ {D}. Thus a dishonest D could take sides with either P2’s reveal or with
P3’s reveal in the reconstruction phase. Depending on which player he supports,
different secrets could be reconstructed. Note that the players in P − (U ∪ {D})
may not be able to tell whether P2 or P3 is honest and whose version of the
secret they need to output.

However, in executions where there are no unresolved mutual conflicts, U -VSS
does achieve the desired VSS properties. Looking back at the n = 5, t = 2 case,
we motivate our definition of mutual conflict in the general case:

Definition 2. A mutual conflict is said to exist in an execution of U-VSS if

1. Some Pi broadcasted rij , F (i)(x) for some Pj ; and

3 If we allowed one more round, then Case (3) can be resolved in the following way.
When any player broadcasts a “correction” value on a random pad, D will broadcast
the secret s in the fourth round. With this modification, commitment can be achieved
easily.



The Round Complexity of Verifiable Secret Sharing: The Statistical Case 437

2. Pj also broadcasted rji, F
(j)(x); and

3. D did not broadcast s in round 3 of the sharing phase. ♦
To begin with, we want our U-VSS protocol to satisfy the following weak prop-
erty: If there is no mutual conflict in an execution of U-VSS, then:

– If all players in U ∪ {D} are honest, then no information about s is revealed
to players in P − (U ∪ {D}) at the end of the sharing phase.

– If D is honest, then D is not discarded in the sharing phase. Also, if there
is no mutual conflict then the value shared by D is reconstructed with high
probability.

– There exists a value s′, such that D is committed to s′ at the end of the
sharing phase. This s′ is reconstructed in the reconstruction phase.

4.2 A Protocol for U-VSS

We present a protocol for U -VSS protocol which satisfies the above requirements.
Inputs: Let P = {P1, . . . , Pn} denote the set of players and let D = P1 be the
dealer with input s. Let U ⊂ P be the target subset with |U | = t.
Sharing Phase:
Round 1:

1. Execute ICPsh(D,Pi, s). for every party Pi in the subset U . Let Pi receive
s from D as s(i). Denote the polynomials used in Distr(D,Pi, s) by F (i)(x),
R(i)(x) (both are random t-degree polynomials with F (i)(0) = s(i)).

2. For each pair (Pi, Pj) from subset U , party Pi picks a random value rij and
executes ICPsh(Pi, Pj , rij) for every Pj ∈ U ∪ {D}. Let Pj receive rij from
Pi as r′ij .

Round 2: Each Pi ∈ U ∪ {D} broadcasts aij := s(i) + rij and bij := s(i) + r′ji

for every Pj ∈ U ∪ {D}.
Round 3:

1. If for some Pi, Pj ∈ U ∪ {D}, aij �= bji or aji �= bij , then D broadcasts s.
2. If Pi conflicts with Pj , then he broadcasts rij , F (i)(x).

Local Computation: D is discarded if for some Pi, Pj ∈ U ∪ {D}, aij �= bji

or aji �= bij , and D did not broadcast s.
Reconstruction Phase: If D broadcasted s in round 3 of the sharing phase,
then each player Pi sets s(i) := s and outputs s and terminates.

If there is a mutual conflict then each player (in P) outputs ⊥ and the recon-
struction phase terminates. Else,

1. Each Pi ∈ U executes ICPrec(D,Pi, s) and each Pj ∈ U ∪ {D} executes
ICPrec(Pi, Pj , rij).

2. D broadcasts the secret s.

Local Computation: Construct GOOD in the following way: For Pi ∈ U ,
include Pi in GOOD if
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1. Pi is successful in revealing s(i).
2. For each Pj that did not conflict with Pi, Pi is successful in revealing r′ji.
3. For every r′ji revealed by Pi in the previous step, aji = s(i) + r′ji holds.
4. If r′ij was successfully revealed by any Pj , aij = s(i) + r′ij holds.

Compute s′ as follows:
1. If GOOD is empty, then s′ := s, where s is D’s broadcast in Step 2.
2. Else pick any Pi ∈ GOOD and assign s′ := s(i).

Output s′.

4.3 Proofs

We show that the U-VSS protocol presented above satisfies the necessary re-
quirements through a series of claims.

The following claim is proved by means of a standard argument. We omit the
proof due to space limitations.

Claim 1. If all players in U ∪ {D} are honest, then no information about s is
revealed to players in P − (U ∪ {D}) at the end of the sharing phase.

It is easy to see that an honest D is never discarded in the sharing phase.

Claim 2. If there is no mutual conflict then the value shared by honest D, say
s, is reconstructed with high probability.

Proof. Since only the values held by Pi ∈ GOOD are reconstructed, we need to
argue that a dishonest Pi is contained in GOOD only if he reveals s(i) = s. This is
easily shown since when D is honest, by Correctness 3, every successful reveal
is equal to s.

Claim 3. If D is not discarded, then for all honest Pi, s(i) = s′ for some s′.

Proof. Assume that honest players Pi, Pj ∈ U received shares s(i), s(j), with
s(i) �= s(j). Then in round 2, aij is not equal to bji. Therefore,D has to broadcast
s, otherwise he is discarded. Consequently every Pi sets s(i) := s′ (see Local
Computation).

The following claim can be easily verified.

Claim 4. If D is not discarded, and does not broadcast s in the sharing phase,
then with high probability, all honest players in U are contained in GOOD.

Claim 5. If there is no mutual conflict, then there exists a value s′ such that D
is committed to s′ at the end of the sharing phase. This s′ is reconstructed in
the reconstruction phase.

Proof. WhenD is honest, the claim follows from Claim 2. AssumeD is dishonest.
If D is discarded in the sharing phase, then the claim trivially holds. In the
following, we assume that D is not discarded. Since D is dishonest and U ∪{D}
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contains (t+ 1) players, there exists an honest Pj ∈ U . From Claim 3, we have
that all honest players received the same share s′ = s(j) (Pj ’s share) from D.
We now show that if there is no mutual conflict, then s′ is reconstructed.

The idea is to show that any Pi ∈ U is contained in GOOD only if he reveals s(i)

as s′. This would prove the claim, since all honest players are already contained
in GOOD (follows from Claim 4).

For the sake of reaching a contradiction, assume that Pi ∈ U successfully
reveals s(i) �= s′. We consider two cases:

Case 1: Pj did not conflict with Pi.
By Correctness 3, with high probability, Pi can successfully reveal r′ji only as
rji. Since Pj used rji to compute aji, it holds that aji �= s(i) + r′ji for s(i) �= s′.
Hence in this case, Pi will not be included in GOOD.

Case 2: Pi did not conflict with Pi.
By Correctness 2, with very high probability, it holds that Pj successfully
revealed r′ij that he received. Since D is not discarded, aij = bji = s′ + r′ij .
Observe that the condition “aij = s(i) + r′ij” will not be satisfied for s(i) �= s′.
Hence in this case, Pi will not be included in GOOD.

The cases discussed above are sufficient since there are no mutually conflicting
parties in U , i.e., we do not have to consider the case when both Pi and Pj

broadcast the random pads which they had used.

4.4 Building Statistical VSS for t < n/2 from U-VSS

In the previous section we saw how U -VSS gives us the desired VSS properties
when there is no mutual conflict. In this section, we’ll develop techniques to
cope up with executions in which there is mutual conflict. Let’s first look at the
n = 5, t = 2 case. There’s a small trick that we can use to achieve commitment:
First observe that a mutual conflict arises when at least 2 parties in U ∪ {D}
are corrupted. Since U = {P2, P3} and t = 2, all players in P − (U ∪ {D}) are
honest. (For higher n, this is not the case, and hence the difficulty is amplified.)
Since conflicting P2, P3 would have revealed their polynomials F (2)(x), F (3)(x)
(with F (2)(0) �= F (3)(0)) respectively, the reveals for the set U is fixed. Since
P4 and P5 are honest, the “check points” are also fixed! The key observation is
that for an honest D (Case (3)), dishonest P2, P3 will not be able to guess the
honest “check points” correctly. If D is honest then at least one of the revealed
polynomials is not consistent with any of the honest “check points” except with
negligible probability. So one of P2, P3’s reveal will not be Accepted.

For general t, n, when we encounter a mutual conflict in an U -VSS execution,
all players in P − (U ∪ {D}) are not necessarily honest. So instead of assigning
a “check point” to each player, we assign a “check point” to each t-sized subset
via an U -VSS protocol. In addition, to avoid the problems caused by mutual
conflicts, only those U-VSS executions in which is no mutual conflict are used to
generate the verification points in the reconstruction phase. The reason behind
using U-VSS to share the “check points” is that now checking for Consistency is
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made public (i.e., dishonest players can no longer arbitrarily broadcast Accept or
Reject to force a favorable outcome). U-VSS executions with no mutual conflict,
guarantee agreement over the revealed check points. This results in an agreement
over which of the revealed polynomials are actually consistent. There might be
two conflicting polynomials both of which satisfy all the check points. However at
the end of the sharing phase, the outcome of the check for Consistency is fixed! If
two conflicting polynomials do pass the Consistency test, then ⊥ is reconstructed.
Note that this does not violate the commitment property of VSS since whether
⊥ is reconstructed is fixed at the end of the sharing phase. (We assume that ⊥
represents a default element in F). Also, dishonest players could possibly reveal
incorrect polynomials in the reconstruction phase. We prove that our statistical
VSS protocol is robust against such adversarial behavior.

4.5 A 3-Round Protocol for VSS

Inputs: Let P = {P1, . . . , Pn} denote the set of players and let D = P1 be the
dealer with input s. Let T def= 2t − 1.
Sharing Phase: D additively shares s into s1, . . . , sK where s1, . . . , sK are
random subject to s = s1 + s2 + . . .+ sK . The following U-VSS executions are
run in parallel.

1. Iterate over all t-sized subsets Sm: Execute U-VSS(D,Sm, sm).
2. For each player subset Sk of size t, D picks “check points” (α(m,i)

k , v(m,i)
k =

Fm(α(m,i)
k ), r(m,i)

k = Rm,i(α
(m,i)
k )) and sends it to Sk (to check for the polyno-

mials revealedby eachPi ∈ Sm).ExecuteU-VSS(D,Sk, (α
(m,i)
k , v

(m,i)
k , r

(m,i)
k ))

for all Pi ∈ Sm, and for every t-sized subset Sm.

Local Computation: D is discarded if at least one of the following hold:

1. D is discarded in some execution of U-VSS(D,Sk, (α
(m,i)
k , v

(m,i)
k , r

(m,i)
k )).

2. D is discarded in some execution of U-VSS(D,Sm, sm).

Reconstruction Phase: Let B def= {Sm | D broadcasted sm}. Let

Am,i
def= {Sk | There are no mutual conflicts in an execution of

U-VSS(D,Sk, (α
(m,i)
k , v

(m,i)
k , r

(m,i)
k ))}

Reconstruction phase consists of the following 2 rounds:
Round 1: Iterate over all Sm, and every Pi ∈ Sm: Execute reconstruction
phase of U-VSS(D,Sm, sm), and U-VSS(D,Sk, (α

(m,i)
k , v

(m,i)
k , r

(m,i)
k )) (for each

Sk ∈ Am,i).
Round 2: Reveals started in round 1 are completed in this round. Also D
broadcasts sm for each Sm.
Local Computation: Let

Cm def= {F (i)
m (x) | Pi ∈ Sm broadcasted F (i)

m (x) and mutually conflicted
with some Pj ∈ Sm in the sharing phase}
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All players reconstruct ⊥ if for any Sm:

1. There is a player Pi ∈ Sm with F
(i)
m (x) ∈ Cm and (F (i)

m (x), d(i)
m , B

(i)
m (x))

consistent with (α(m,i)
k , v

(m,i)
k , r

(m,i)
k ), for all Sk ∈ Am,i; AND

2. There is a player Pj (�= Pi) ∈ Sm with F
(j)
m (x) ∈ Cm, F (i)

m (0) �= F
(j)
m (0)

and (F (j)
m (x), d(j)

m , B
(j)
m (x)) consistent with (α(m,j)

k , v
(m,j)
k , r

(m,j)
k ) for all Sk ∈

Am,j .
If⊥ is not reconstructed, then for each Sm �∈ B construct GOODm in the following
way: Include Pi ∈ Sm in GOODm if

1. Pi is contained in GOOD corresponding to the execution U-VSS(D,Sm, sm).
2. (F (i)

m (x), d(i)
m , B

(i)
m (x)) is consistent with (α(m,i)

k , v
(m,i)
k , r

(m,i)
k ) for all Sk ∈

Am,i (where F (i)
m (x), d(i)

m , B
(i)
m (x) are internal variables in ICPsh(D,Pi, sm)

corresponding to U-VSS(D,Sm, sm) with Pi ∈ Sm). Let s(i)m = F
(i)
m (0).

Compute s′m (which is D’s commitment to Sm) as follows:
1. For Sm ∈ B, set s′m to be the one broadcasted by D during round 3 of the

sharing phase.
2. For Sm �∈ B, pick any Pi ∈ GOODm and set s′m = s

(i)
m . If GOODm is empty,

then s′m = sm, where sm is D’s broadcast in round 2 of reconstruction phase.

Reconstruct D’s secret as s′ =
∑K

m=1 s
′
m.

4.6 Proof of Correctness for 3-Round-VSS

We now prove that 3-Round-VSS satisfies all the properties required of a statis-
tical VSS protocol. Let T def= 2t − 1.

The following lemma is proved by means of a standard argument. We omit
the proof due to space limitations.

Lemma 1. (Secrecy) Protocol 3-round-VSS satisfies perfect secrecy.

Lemma 2. (Correctness) Protocol 3-Round-VSS satisfies (1 − ε)-correctness
property.

Proof. It is easy to see that an honest D is never discarded in the sharing phase.
We now show that with high probability, ⊥ is not reconstructed whenever D is
honest.

The only possibility of⊥ getting reconstructed is when there exist two mutually
conflicting players Pi, Pj ∈ Sm (with Sm �∈ B) such that (F (i)

m (x), d(i)
m , B

(i)
m (x)),

(F (j)
m (x), d(j)

m , B
(j)
m (x)) are consistent with (α(m,i)

k , v
(m,i)
k , r

(m,i)
k ), (α(m,j)

l , v
(m,j)
l ,

r
(m,j)
l ) (respectively) for all Sk ∈ Am,i and Sl ∈ Am,j . Since D is honest, at least

one of Pi, Pj has to be dishonest (otherwise they wouldn’t conflict on random pads
and broadcast their polynomials).

The key point is that there is at least one set, say Sl(�= Sm) which contains
only honest players. Since all the players are honest, there is no mutually con-
flicting pair in Sl. As a result, Sl ∈ Am,i ∩ Am,j . By Claim 1, no information
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is revealed about (α(m,i)
l , v

(m,i)
l , r

(m,i)
l ), (α(m,j)

l , v
(m,j)
l , r

(m,j)
l ). Also the correct

values (α(m,i)
l , v

(m,i)
l , r

(m,i)
l ), (α(m,j)

l , v
(m,j)
l , r

(m,j)
l ), as shared by D, are revealed

in the reconstruction phase of the corresponding U-VSS protocols (follows from
Claim 2). So if a dishonest player, say Pi is able to discard an honest D by
revealing F (i)

m (x) �= Fm(x), then he must have guessed α
(m,i)
l (follows from the

proof of Correctness 3). This happens with negligible probability.
Given that ⊥ is not reconstructed, a dishonest Pi revealing F (i)

m (x) �= Fm(x)
can be in GOODm only if he guessed α(m,i)

l where Sl is the set of honest players (as
described above). Again, this happens with negligible probability. Correctness
follows immediately.

Claim 6. If a corrupted D is not discarded, then for every Sm, at least one
honest player is contained in GOODm with very high probability.

Proof. First, let us fix an Sm. By Claim 5 (commitment property for U-VSS),
we have that for every tuple (α(m,i)

k , v
(m,i)
k , r

(m,i)
k ) ∈ Cm, the exact tuple was

held by (all) the honest player(s) in Sk. This essentially makes every verification
“check point” behave as if it were possessed by an honest player. Now, from the
proof of Correctness 2 for ICP 4 , each honest player in Sm is consistent with
“check points” in Cm with high probability (1− 1

|F|−1).
Suppose there are k honest players in Sm. By the above argument, the claim

can fail for a given Sm, only if it fails for each honest player in Sm. This hap-
pens with probability at most 1

(|F|−1)k
5. Since there are

(
t+1
k

)(
t−1
t−k

)
such Sm,

the probability that the claim fails for any one such Sm is bounded by t2k

|F|k .
Summing over all k, we see that D can cause the claim to fail for any one Sm

with probability at most 2t2

|F| = 2−Θ(κ). Hence the claim holds.

Lemma 3. (Commitment) Protocol 3-Round-VSS satisfies (1−ε)-commitment
property.

Proof. For an honest D, the lemma follows from Lemma 2. In the following,
we assume that D is dishonest. First we show that whether or not, ⊥ is recon-
structed, is fixed at the end of the sharing phase. Note that the polynomials in
Cm are taken from the sharing phase. Also, the “check points” for these polyno-
mials are fixed at the end of the sharing phase (by the commitment property of
U-VSS proved in Claim 5). Therefore, the decision of whether ⊥ is reconstructed,
is fixed at the end of the sharing phase. Since ⊥∈ F (by our assumption), we
achieve commitment even when ⊥ is reconstructed.
4 The proof is identical since in both cases we are dealing with a dishonest D

and an honest intermediary. In both cases, the dealer wasn’t unhappy with
AuthVal(1)(D, Pi, s), where s is the dealer’s secret.

5 We have used the fact that a corrupt D’s ability to cause failure for a particular
honest player is independent of his ability to cause failure for a different honest
player. This is true because D can cause failure for an honest Pi ∈ Sm, only by
guessing d

(i)
m (follows from the proof of Correctness 2). A different honest player

Pj ∈ Sm, chooses d
(j)
m independent of d

(i)
m . Hence our argument is justified.
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We prove commitment in the case when ⊥ is not reconstructed. By Claim 6,
we now need to prove that for each Sm �∈ B, the share held by honest player(s),
say s′m = s

(j)
m for some honest Pj , will be reconstructed with high probability

(Recall that, by Claim 3, all honest players in U = Sm(�∈ B) have the same
share).

Let us assume (for the sake of reaching a contradiction) that some dishonest
Pi ∈ Sm successfully reveals some s(i)m �= s

(j)
m . Let am

ij , b
m
ij , r

m
ij be the internal

variables used in U-VSS(D,Sm, sm) with Pi, Pj ∈ Sm. We consider two cases:

Case 1: Pj did not broadcast rm
ji in round 3 of the sharing phase.

By Correctness 3, with very high probability, Pi can successfully reveal rm′
ji

only as rm
ji . Since Pj computed am

ji := s
(j)
m + rm

ji , it holds (with high probability)

that am
ji �= s

(i)
m + rm′

ij for s(i)m �= s
(j)
m . Hence in this case, Pi will not be included

in GOODm.

Case 2: Pi did not broadcast rm
ij in round 3 of the sharing phase.

By Correctness 2, with very high probability, it holds that Pj revealed rm′
ij as

the random pad that he used in computing bmji := s
(j)
m + rm′

ij . Since Sm �∈ B,
and since D is not discarded, we have am

ij = bmji . Therefore, the condition “am
ij =

s
(i)
m + rm′

ij ” will not be satisfied for any s(i)m �= s
(j)
m . Hence in this case, Pi will not

be included in GOODm.
We do not have to consider the case when both Pi, Pj broadcasted the random

pads which they had used (in round 3). This is because if some Pi revealed
F

(i)
m (x) (with F (i)

m (0) �= s′m) consistent with the all the revealed “check points”,
then ⊥ will be reconstructed. Hence an honest Pj ’s share (i.e., s(j)m = s′m) is
reconstructed always. Given this, commitment follows immediately.

The theorem follows from Lemmas 1, 2 and 3.

Theorem 1. There exists a 3-round statistical VSS protocol tolerating t < n/2
malicious parties.

5 Efficient 4-Round Statistical VSS with Optimal
Resilience

We now design a 4-round sharing, 2-round reconstruction (2t + 1, t) statistical
VSS with polynomial communication complexity. In the protocol, D selects a
random symmetric bivariate polynomial F (x, y) such that F (0, 0) = s and sends
fi(x) to Pi. At the end of the sharing phase, if D is not discarded then every
honest Pi holds a degree t polynomial fi(x) such that for every pair of honest
parties (Pi, Pj), fi(j) = fj(i). This implies that if D is not discarded, then the
fi(x) polynomials of the honest parties define a symmetric bivariate polynomial
FH(x, y). Moreover in the protocol, it is ensured by using the properties of ICSig
that no corrupted Pi will be able to disclose f ′i(x) �= fi(x) in the reconstruction
phase. Hence irrespective of whether D is honest or corrupted, reconstruction of
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s = FH(0, 0) is enforced. To achieve all the properties of VSS, D gives ICSig
to individual parties, and concurrently every individual party gives ICSig to
every other party. The protocol is somewhat inspired by the VSS protocol of [3].
As the ICP proposed in [3] takes one round in Distr, 3 rounds in AuthVal and 2
rounds in RevealVal, the VSS of [3] takes at most eleven rounds in the sharing
phase.

5.1 The Protocol

Inputs: The dealer has a secret s. Let D be the dealer and let F (x, y) be a
symmetric bivariate polynomial of degree t in each variable. Let F (0, 0) = s.
Sharing Phase
Round 1: Let fi(x) be defined as F (i, x). Let rij ∈R F for each Pi, Pj . Execute
ICPsh(D,Pi, fi(j)), ICPsh(Pi, Pj , rij) and ICPsh(Pi, D, rij). Let the corresponding
values received be f ′i(j), r

′
ij and rD

ij .
Round 2:

1. Pi broadcasts aij = f ′i(j) + rij and bij = f ′i(j) + r′ji.
2. D broadcasts aD

ij = fi(j) + rD
ij and bDij = fi(j) + rD

ji .
3. If Pi received f ′i(x) which is not a polynomial of degree t, then Pi executes

ICPrec(D,Pi, f
′
i(j) for all j.

Round 3:

1. If D conflicts with Pi or aij �= aD
ij or aij =⊥, then D broadcasts fD

i (x) =
fi(x) and executes ICPrec(Pi, D, r

D
ik) and ICPrec(Pk, D, r

D
ki) for all k.

2. If Pi conflicts with Pj or aij �= bji or aji �= bij or aij �= aD
ij or bij �= bDij , then

Pi executes ICPrec(D,Pi, f
′
i(j)) and ICPrec(Pj , Pi, r

′
ji).

3. If Pi conflicts with D, then he executes ICPrec(D,Pi, f
′
i(k)), for all k.

Round 4: Corresponding ICPrec executions are completed in this round.
Local Computation: D is discarded if for some Pi, Pj , at least one of the
following does not hold:
1. {f ′i(k)}k lie on a t-degree polynomial.
2. fD

i (j) = fD
j (i) = f ′i(j) = f ′j(i).

3. aD
ij = bDji = fD

j (i) + rD
ij .

4. All ICPrec(D,Pi, r
D
ij ) reveals were successful (i.e., at least t+ 1 accepts were

broadcasted).
Reconstruction Phase: Every Pi executes (if they haven’t already) ICPrec(D,
Pi, fi(j)), ICPrec(Pj , Pi, rji) for all Pj .
Local Computation: Let Pi ∈ U if D broadcasted fD

i (x). Construct Rec in
the following way:
1. Pi ∈ Rec if Pi ∈ U. In this case, define f ′i(x) = fD

i (x).
2. Pi ∈ Rec if he successfully executed ICPrec(D,Pi, fi(j)) for all j, and they lie

on a t-degree polynomial.
Delete Pi �∈ U from Rec if
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1. Pi successfully revealed f ′i(j) and f ′i(j) �= fD
j (i) for some Pj ∈ U.

2. Pj successfully revealed r′ij and f ′i(j) + r′ij �= aij .
3. If for some Pj , Pj did not conflict with Pi and bij − r′ji �= f ′i(j).

Reconstruct a symmetric bivariate polynomial F ′(x, y) of degree t from
{f ′i(x)}Pi∈Rec. Output s′ = F ′(0, 0).

5.2 Proofs

Note that in our 4-Round-VSS protocol, ICP properties Correctness 1, Cor-
rectness 2, Correctness 3 hold for concurrent executions of ICP(Pi, Pj , rij)
and ICP(Pi, D, rij). Also when D is honest, Secrecy holds for concurrent exe-
cutions of ICP(Pi, Pj , rij) and ICP(Pi, D, rij).

The following lemma is proved by means of a standard argument.

Lemma 4. (Secrecy) Protocol 4-round-VSS satisfies perfect secrecy.

Claim 7. If D is not discarded and Pi is honest, then for every Pj ∈ U, f ′i(j) =
fD

j (i).

Proof. If Pi ∈ U, then f ′i(x) = fD
i (x), and since D is not discarded, the claim

holds. Now let Pi �∈ U. Recall that Pj ∈ U because D conflicted with Pj (over
some value fj(k)) OR because ajk �= aD

jk OR ajk =⊥. As a result D reveals
rij (Round 3 Step 1). Recall that Pi �∈ U. Therefore, w.h.p, his reveals are
successful. Now there are two cases to consider. First, if Pi conflicts with D, then
he reveals f ′i(k) as well (Round 3 Step 3). If f ′i(j) �= fD

j (i), then D is discarded
(see Local Computation). On the other hand, if Pi did not conflict with D,
then D has to reveal the correct value of rij (follows from Correctness 3), i.e.
rD
ij = rij . Since Pi �∈ U, we have aD

ij = aij . Therefore, for an honest Pi, we have
aD

ij − rD
ij = aij − rij = f ′i(j). If aD

ij − rD
ij �= fD

j (i), then D is discarded (see Local
Computation). Therefore, f ′i(j) = fD

j (i).

Claim 8. If D is not discarded and Pi is honest, then Pi ∈ Rec.

Proof. If Pi ∈ U, then Pi ∈ Rec by construction. Honest Pi �∈ U successfully
reveals f ′i(j)) for all j. We now show that none of rules that delete Pi from Rec
apply to an honest Pi.

1. By Claim 7, we have that for each Pj ∈ U, f ′i(j) = fD
j (i).

2. Since revealed r′ij is equal to rij w.h.p (by Correctness 3), aij = f ′i(j)+r
′
ij .

3. If Pj did not conflict with Pi, then an honest Pi will be successful in revealing
the pad r′ji (by Correctness 2). Hence bij − r′ji = f ′i(j).

Claim 9. If D is not discarded, then f ′i(j) = f ′j(i) for every honest Pi, Pj .

Proof. Recall that when Pi ∈ U, f ′i(x) = fD
i (x). When both Pi and Pj are in

U, then the claim follows directly. Now suppose Pi, Pj �∈ U. For honest Pi, Pj

, if f ′i(j) �= f ′j(i), then aij �= bji and aji �= bij . Consequently, Pi, Pj would
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have successfully revealed f ′i(j), f
′
j(i) respectively (by Correctness 2). Since

we assume that D is not discarded, the claim follows in this case too.
Lastly, consider the case when exactly one of Pi, Pj is contained in U. W.l.o.g,

let Pi �∈ U,Pj ∈ U. If f ′i(j) �= fD
j (i), then Pi would have been deleted from Rec.

But by Claim 8, we have honest Pi ∈ Rec. Therefore, the claim must hold.

Recall that there are at least t+1 honest players, and by Claim 8 all of them are
contained in Rec. By Claim 9, the shares of these honest players are consistent.
The following claim is now easy to see:

Claim 10. If D is not discarded then all honest parties are consistent with an
unique t-degree symmetric bivariate polynomial, say FH(x, y).

Claim 11. If D is not discarded and Pi ∈ Rec, then f ′i(x) is consistent with
FH(x, y).

Proof. By Claim 7, for every Pi ∈ U, fD
i (x) is consistent with all the honest

players’ shares. This implies that f ′i(x) is consistent with FH(x, y).
Now let Pi �∈ U. Since Pi ∈ Rec, we have f ′i(j) = fD

j (i) for every Pj ∈
U (otherwise, Pi is deleted from Rec). Therefore, if f ′i(x) is inconsistent with
FH(x, y), then f ′i(j) �= f ′j(i) must hold for some honest Pj �∈ U. If aij �= bji

or aji �= bij , then Pi, Pj would reveal f ′i(j), f
′
j(i) respectively. Since D was not

discarded, we have f ′i(j) = f ′j(i). For the rest of the proof, we assume aij = bji

and aji = bij .
If Pi had a conflict with Pj , then Pi reveals f ′i(j). If Pj also had a conflict

with Pi, then Pj would have revealed f ′j(i). Since D was not discarded, we have
f ′i(j) = f ′j(i). On the other hand, if Pj did not have a conflict with Pi, then Pi

would have to reveal r′ji = rji (follows from Correctness 3) Since Pj is honest,
bij − rji = f ′j(i). If Pi ∈ Rec, then bij − r′ji = f ′i(j). Since r′ji = rji, this shows
that f ′i(j) = f ′j(i). Hence f ′i(x) is consistent with FH(x, y).

On the other hand if Pi did not have a conflict with Pj , an honest Pj would
successfully reveal r′ij . Since aij = bji = f ′j(i) + r′ij , Pi would have to reveal
f ′i(x) such that f ′i(j) = f ′j(i), otherwise aij �= f ′i(j) + r′ij , and Pi will be deleted
from Rec.

Since FH(x, y) can be computed from the joint view of the honest parties at the
end of the sharing phase, the following claim holds.

Claim 12. If D is not discarded, then FH(x, y) will be reconstructed in the
reconstruction phase. Moreover, this FH(x, y) is fixed at the end of the sharing
phase.

It is easy to see that an honest D is never disqualified. Given this, the next two
lemmas follow directly from Claim 12, and the theorem follows from Lemmas 4,
5 and 6.

Lemma 5. (Correctness) Protocol 4-Round-VSS satisfies (1 − ε)-correctness
property.
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Lemma 6. (Strong Commitment) Protocol 4-Round-VSS satisfies (1 − ε)-
strong commitment property.

Theorem 2. There exists an efficient 4-round sharing, 2-round reconstruction
(2t+ 1, t) statistical VSS protocol.
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Abstract. We study perfectly secure message transmission (PSMT)
from a sender S to a receiver R in the general adversary model. In this
model, instead of being bounded by a threshold, the Byzantine adversary
in a network is characterized by an adversary structure. By regarding
monotone general access structures as linear codes, we introduce some
new properties that allow us to design efficient PSMT protocols. We give
a number of efficient PSMT protocols in both undirected and directed
network graphs. These protocols comprehensively improve the transmis-
sion complexity of some previous results in this area. More significantly,
as all of our protocols are executed in either 3 or 2 rounds, our result
is the first, in the context of PSMT in the general adversary model, to
have constant round complexity when using interaction.

Keywords: perfectly secure message transmission, adversary structure,
linear codes, transmission complexity, round complexity.

1 Introduction

In most of the communication networks, a sender S and a receiver R are con-
nected by unreliable and distrusted channels. The distrust of the channels is
because of the assumption that there exists a Byzantine adversary who, with
unbounded computational power, can control some nodes on these channels. The
aim of perfect secure message transmission (PSMT) is to enable a secret message
to be transmitted from S to R with perfect privacy and reliability. That is, the
adversary should learn no information about the message, and the receiver R
can output the message correctly.

Initial study by Dolev et al. [9] shows that PSMT is possible by applying
secure transmission protocols. It assumes a threshold adversary who can control
up to t nodes, and hence can control up to t channels. Extensive studies on the
threshold model have been carried out ever since (e.g., [7,22,2,15]).

There are many other studies on a more general adversary model, which allow
an adversary to control nodes in a less symmetric way. In many cases, using a
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Table 1. PSMT in the general adversary model

Network graph RC TC over 1 TC over �

Kumar et al. [14] undirected O(n) O(hn2) –

Desmedt et al. [8] directed-1 1 O(|A|n) –

Yang-Desmedt [24] directed-2 expo. in |A| expo. in |A| –

Our result
undirected

3 (Section 4.1) O(hn2) O(h�)
2 (Section 4.2) O(hn2) O(hn�)

directed-2
3 (Section 5.1) O(h2n2) O(hn�)
2 (Section 5.2) O(h) O(h�)

* RC denotes round complexity and TC denotes transmission complexity.
“TC over 1” is the TC of the PSMT protocol that transmits a single
message and “TC over �” is the TC of the protocol that transmits
multiple (�) messages, where each message is a field element.
“directed-1” are the directed graphs without feedback, and “directed-
2” are those with feedback. h is the length of a codeword and n is the
number of critical paths (see Section 3).

threshold to model an adversary makes little sense. Indeed, certain platforms
are more vulnerable than the others. Also, more hierarchical structures cannot
be described by a single adversary. The general adversary model assumes that
the adversary is characterized by an adversary structure [11], which consists of
a number of subsets of nodes, and the adversary is able to control one of these
subsets, instead of any t nodes.

Notable studies on PSMT tolerating adversary structures have been done by
Kumar et al. [14] on bi-direction channels, by Desmedt et al. [8] on one-way
forward channels, and by both Patra et al. [19] and Yang and Desmedt [24]
on mixed forward and feedback channels. However, due to the generality of the
adversary structure, the protocols in the previous studies are, in many cases,
inefficient in terms of the number of execution rounds1 (round complexity) and
the number of field elements transmitted (transmission complexity). Also some
previous results are yet to be further characterized. We shall describe these issues
in more detail in Section 3.

Our contributions. In this paper we show how linear secret sharing schemes
(LSSS) and linear codes can be used to design efficient PSMT protocols in the
general adversary model. Before we do that, we first show a basic construction
of an LSSS and discuss its properties (see Section 2.1). Then we propose a
new generalized linear code (see Section 2.2) for the purpose of error-correcting,
and also for the purpose of defining pseudo-basis and pseudo-dimension (see
Section 2.3). This follows the idea of Kurosawa and Suzuki [15]. Our study on
LSSS and linear codes is shown in Section 2.

Next, in Section 3, we show a further characterization on the problem of PSMT
in the general adversary model. We observe that the transmission complexity of
most previous PSMT protocols is determined by the number of the critical paths.

1 A round is a transmission from S to R or vice versa.
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Thus we shall describe the properties of the critical paths that are effectively used
(see Section 3.1). Also in this section, we show how our protocols improve the
previous results in terms of round complexity (RC) and transmission complexity
(TC) (see Table 1, which we discuss in detail in Section 3.2). Indeed, not only do
we significantly improve the TC of some previous PSMT protocols, but we are
also the first to give interactive protocols that have constant RC in the studies of
the general adversary model. Furthermore, we are also the first to study PSMT
over multiple messages in this context.

Section 4 and 5 give our constant round and communication efficient protocols
in different network settings. These protocols show comprehensive improvements
to the previous results in this area, as shown in Table 1.

2 LSSS and Linear Codes

Secret sharing schemes are key tools in the study of PSMT. Given a set of n
participants P = {1, . . . , n}, the extensively studied threshold schemes (e.g.,
Shamir’s scheme [20]) allow any subset of t+ 1 participants to learn a secret s,
but do not reveal any information of s to any subset of at most t participants.
General non-threshold schemes, which realize secret sharing among general ac-
cess structures, are also presented in literature (e.g., Ito et al. [12] and Benaloh
and Leichter [3]). A monotone access structure Γ is a family of the subsets of P
such that for any set A ⊆ P , if A ∈ Γ and A ⊆ A′, then A′ ∈ Γ . Without loss
of generality, we assume that Γ �= ∅. An adversary structure can be defined as
A = 2P \ Γ . Thus for any set A ⊆ P , if A ∈ A and A ⊇ A′, then A′ ∈ A. It has
been shown that LSSS’s can be designed for any monotone access structures, so
that any set of participants that is in Γ can learn a secret s but any set in A
cannot. Next we show the construction and the properties of such an LSSS.

2.1 Constructing an LSSS

First, it is well-known that monotone span programs are essentially equivalent
to LSSS’s [13] (see also [5]).

Definition 1. [13] A monotone span program is a triple (F,M, ψ), where F is a
finite field, M is an h × d matrix (h ≥ d), and ψ : {1, . . . , h} → {1, . . . , n} is a
surjective function that assigns a number of rows in M to each participant in P .

For later use, we only allow each row of M to be assigned to a unique participant;
i.e., if ψ(i) = j, then ψ(i) �= j′ for any j′ �= j. This is easy to achieve by making
duplicates of the rows that are assigned to multiple participants. Thus h can
indicate the total number of shares distributed.

As Shamir’s scheme, our construction assumes that F is sufficiently large. We
also assume a message space M ⊆ F, from which the secret is drawn with respect
to a certain probability distribution. Now with (F,M, ψ), one can share a secret
using an LSSS.
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Definition 2. Given a monotone span program (F,M, ψ), a secret s ∈ M and
a random vector r ∈ F

d−1. We regard LS : (M,Fd−1) → F
h as a function such

that (T denotes transpose)

LS(s, r) = M × (s, r)T = (s1, . . . , sh)T ,

where s1, . . . , sh are the h shares generated by the LSSS, and they are assigned
to the n participants by ψ. For any 1 ≤ t ≤ h shares si1 , . . . , sit (1 ≤ i1 <
. . . < it ≤ h), let ψ(i1, . . . , it) be the set of participants to whom these shares are
assigned and s0 ∈ M be any possible secret, the LSSS must satisfy the following
conditions:

Secrecy: Pr[s = s0|si1 , . . . , sit ] = Pr[s = s0] if ψ(i1, . . . , it) ∈ A;
Reconstruction: Pr[s = s0|si1 , . . . , sit ] = 0 or 1 if ψ(i1, . . . , it) ∈ Γ .

Apparently, if ψ(i1, . . . , it) ∈ Γ , then in the linear span of the i1, . . . , it-th rows
of M , there must exist the target vector tar = (1, 0, . . . , 0) [13]. This is to satisfy
the reconstruction condition.

In the context of the information rate, the size of the secret shares has been
studied in literature (e.g., [6,23,4]). However, to the best of our knowledge, there
is no results regarding the tight upper bound on the total size of the shares, which
is h in our LSSS. In fact, we do not know whether for any access structure, there
exists an LSSS with size h polynomial in n. However we can have an exponential
size LSSS, which we call the worst case LSSS, as follows. The worst case LSSS
is defined by a monotone span program (F,Mh×d, ψ) such that d = |A| and
h = O(dn). h is thus exponential in n because in general |A| = O(2n). This
construction somehow follows [10] (based on [21]).

The worst case LSSS

Given a set of n participants P and an adversary structure A on P . Let
Δ = {P \A|A ∈ A} and d = |Δ| = |A|. Construct a d×d matrix MV , which
is an identity matrix except all entries in the first row are changed to 1.
Let Δ = {D1, ..., Dd}, then for each 1 ≤ i ≤ d, construct a |Di| × d matrix
Mi such that each row of Mi is a duplication of the i-th row of MV . Let
h =

∑d
i=1 |Di|, construct an h × d matrix M that is filled by M1, . . . ,Md

from top to bottom.
The function ψ assigns the rows in M to each participant in such a manner
that if a participant is in Di ∈ Δ (1 ≤ i ≤ d), then ψ assigns a row of Mi to
this participant. End.

See the proof of the secrecy and reconstruction properties of the worst case LSSS
in the full version of this paper [1].

2.2 Linear Codes

Given an LSSS defined by (F,Mh×d, ψ). We denote k as the rank of M , thus
k ≤ d. In the rest of the paper, we let the first k rows of M be linearly inde-
pendent. Thus ψ(1, . . . , k) ∈ Γ . Indeed, because otherwise ψ(1, . . . , k) ∈ A and
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the participants in ψ(1, . . . , k) can then recover all the other shares using linear
combinations. This contradicts the secrecy condition of Definition 2.

Definition 3. A linear code C is defined by a k × h generating matrix G in
standard form G = (Ik|A) [16], where Ik denotes the k × k identity matrix and
A is a k × (h− k) matrix.

The codewords of code C are determined by an encode function EC : F
k → F

h

such that given a k-vector r ∈ F
k,

EC(r) = r×G = c,

where c is an h-vector, as a codeword of C, and denoted c ∈ C.

Evidently code C has |F|k codewords.
We link an LSSS with a linear code as follows. In the rest of this section, we

let Mk be a k×d matrix that consists of the first k rows of M , so the rank of Mk

is k. We construct G in such a manner that the i-th column of G, which we call
coli, has the following property: (coli)T ×Mk = rowi, where rowi is the i-th row
of M . This is possible because the rank of M is k, thus rowi is in the linear span
of the first k rows of M (Mk). Therefore, the set {LS(s, r)|s ∈ M, r = F

d−1} is
a subset of a linear code, because for any s ∈M, r ∈ F

d−1, we have

LS(s, r) = (s1, . . . , sh) = EC(s1, . . . , sk) ∈ C.

Definition 4. Let k be a k-vector such that k×Mk = tar, where
tar = (1, 0, . . . , 0) ∈ F

d is the target vector2. Let r ∈ F
k. We define a decode

function DC : F
k → F such that DC(r) = r × kT . We denote the output of the

function, r = DC(r), as the information of the codeword c = EC(r).

Theorem 1. Given any codeword c = (c1, . . . , ch) = EC(r) ∈ C. One can
decode the information of c with t entries ci1 , . . . , cit (1 ≤ i1 < . . . < it ≤ h) of
c if and only if ψ(i1, . . . , it) ∈ Γ .

Proof. Let k be a k vector such that the information of c is r = DC(r) = r×kT .
Remark that C is defined by G, which is derived from M of the LSSS. Let Λ be
a k × t matrix such that for each 1 ≤ j ≤ t, the j-th column of Λ is the ij-th
column of G, then we have

⎡
⎢⎣
rowi1

...
rowit

⎤
⎥⎦ = ΛT ×Mk, (1)

where for each 1 ≤ j ≤ t, rowij is the ij-th row of M .
First we show that if ψ(i1, . . . , it) ∈ A, then one cannot decode r with

ci1 , . . . , cit . Assume the opposite, i.e., r can be decoded with ci1 , . . . , cit . Since
r = r × kT , the possibility that r can be decoded by (ci1 , . . . , cit) means that

2 Because ψ(1, . . . , k) ∈ Γ as we showed before, k must exist.
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the column vector kT is in the linear span of the columns of Λ. That is, there
exists a tT such that kT = Λ× tT so that

r = r× kT = r× Λ× tT = (ci1 , . . . , cit)× tT .

Since kT = Λ × tT ⇒ k = t × ΛT , by multiplying t by both sides of Eq. 1, we
have

t×

⎡
⎢⎣
rowi1

...
rowit

⎤
⎥⎦ = t× ΛT ×Mk = k×Mk = tar.

This means that the target vector tar is in the linear span of the rows assigned
to the participants ψ(i1, . . . , it) ∈ A, which is not allowed in our LSSS due to
the secrecy condition.

Next if ψ(i1, . . . , it) ∈ Γ , then by the reverse of the above proof and the
reconstruction condition of the LSSS, we can easily prove that one can decode
r with ci1 , . . . , cit . ��

Given that c = (c1, . . . , ch) is a codeword at the encoding end, andx = (x1, . . . , xh)
is the input at the decoding end, because of the channel noise, it is possible that
x �= c. We let e = (e1, . . . , eh) be an error vector such that e = x − c. Normally
we have the following assumption: let E = {i|ei �= 0} be an error locator, we al-
ways have ψ(E) ∈ A. That is, the errors in a codeword are caused by a set in the
adversary structure. With this assumption, it is well-known that

– the decoder can detect that x is not a codeword if and only if P /∈ 2A (i.e.,
P /∈ {A1 ∪A2|A1, A2 ∈ A}), where P is the set of all participants, and

– the decoder can decode the information of c from x if and only if P /∈ 3A
(i.e., P /∈ {A1 ∪A2 ∪A3|A1, A2, A3 ∈ A}).

See a proof of this result in the full version of this paper [1].

2.3 Pseudo-basis and Pseudo-dimension

In Eurocrypt ’08, Kurosawa and Suzuki initiated the idea of pseudo-basis and
pseudo-dimension in the threshold model with multiple codewords [15]. A gener-
alization of the pseudo-basis and pseudo-dimension is possible if P /∈ 2A (corre-
sponding to n ≥ 2t+ 1 in the threshold model), thus we assume that P /∈ 2A in
this section. Next, we let ψ−1 : {1, . . . , n} → {1, . . . , h} be the inverse function
of ψ. That is, let A ⊆ P , then ψ−1(A) returns all the locations in a codeword
that are assigned to the participants in A by ψ.

Definition 5. Let A ⊆ P , we define |A| as the size of A and |ψ−1(A)| as the
weight of A. We denote

szA = max{size of A|A ∈ A} and wtA = max{weight of A|A ∈ A}.
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Evidently szA = O(n) and wtA = O(h). The idea of the generalization is as
follows. The encoder sends m codewords c1, . . . , cm, and the decoder receives
m h-vectors x1, . . . ,xm such that for each 1 ≤ i ≤ m, xi = ci + ei where
ei = (ei1, . . . , eih) is an error vector. For each ei, let Ei = {j|eij �= 0} be an
error locator, then Ei has the following two properties: (1) |Ei| ≤ wtA and
(2) ψ(Ei) ∈ A and hence |ψ(Ei)| ≤ szA. We assume that

⋃m
i=1 Ei ∈ A, i.e., the

errors in all the codewords are caused by the same set in A. Now we give our
pseudo-basis construction scheme as follows.

Pseudo-basis construction scheme

Set B := ∅. For each 1 ≤ i ≤ m, distinguish the following two cases:
1. B = ∅: if xi ∈ C, then do nothing, otherwise, then add xi in B.
2. Otherwise: let B = {xg1 , . . . ,xgb

} where 1 ≤ g1 < . . . < gb < i, if there
exist (a1, . . . , ab) ∈ F

b such that xi + a1xg1 + . . . + abxgb
∈ C, then do

nothing, otherwise, add xi in B.
Let B be the pseudo-basis. Thus |B| is the pseudo-dimension. End.

It is trivial that the pseudo-dimension of our scheme is at most wtA = O(h),
because there are at most wtA non-zero entries in each error vector. Thus the
pseudo-basis has O(h2) field elements.

Lemma 1. For any codeword c = (c1, . . . , ch) ∈ C, let D = {i|ci �= 0}. If
P /∈ 2A and ψ(D) ∈ A, then the information of c is 0.

Proof. Let O = {i|ci = 0}. From P /∈ 2A and ψ(D) ∈ A, we can have ψ(O) ∈ Γ .
According to Theorem 1, the information of c can be decoded with all the entries
ci such that i ∈ O. Since all these entries are 0’s, the information of c is 0. ��
Given a codeword c ∈ C and a vector x, and let e = x − c be an error vector
such that ψ(E) ∈ A. If e ∈ C, then x ∈ C. Due to Lemma 1, the information
of e is 0, so the information of x equals to the information of c. That is, the
error vector e does not actually cause errors, and we call this kind of error vector
invalid. Evidently, the vector 0 ∈ F

h is an invalid error vector.
Let B = {xg1 , . . . ,xgb

} be a pseudo-basis, where 1 ≤ g1 < . . . < gb ≤ m, and
Eg1 , . . . , Egb

be the respective error locators. we denote F =
⋃b

i=1Egi as the
final error locator of B.

Theorem 2. If the final error locator of a pseudo-basis is known, then the de-
coder can decode the information of all the codewords.

Proof. Given the final error locator F of a pseudo-basis B = {xg1 , . . . ,xgb
}, a

decoding scheme is as simple as the following:

Decoding scheme from the pseudo-basis

For each 1 ≤ i ≤ m, decode the information ri of ci from xi such that if
j ∈ F , then the j-th entry of xi is not used for decoding. End.



General Perfectly Secure Message Transmission Using Linear Codes 455

It is straightforward that if i ∈ {g1, . . . , gb}, then the decoded information ri is
correct. Indeed, P /∈ 2A and ψ(F ) ∈ A imply that ψ({1, . . . , h} \ F ) ∈ Γ . Thus
according to Theorem 1, the entries not indicated by F can be used to decode
ri. Since F contains all the error locations of xi, all the entries that are used to
decode ri are correct.

Next, if i ∈ {1, . . . ,m} \ {g1, . . . , gb}, then because of the existence of non-
zero invalid error vectors, it is possible that Ei � F . That is, errors may exist
in the entries used to decode ri. Since xi /∈ B, there exist (a1, . . . , ab) ∈ F

b

such that xi + a1xg1 + . . . + abxgb
∈ C. Thus ei + a1eg1 + . . . + abegb

∈ C. Let
e′i = ei +a1eg1 + . . .+abegb

, we have that e′i is an invalid error vector. Thus one
can decode the information ri of ci correctly from the vector x′i = ci + e′i. Since
xi = ci + ei, it is clear that excluding the entries indicated by F , the remaining
entries of xi are the same as those of x′i. That is, even though errors may exist
in the remaining entries, one can decode the information ri of ci correctly from
these entries. ��

3 PSMT Preliminaries

We abstract away the concrete network structure and model a network by a
graphG(V,E), whose nodes are the parties in the network and edges are point-to-
point secure communication channels. We consider two kinds of network graphs
in this paper:

1. Undirected graphs - in which all the edges are undirected, and allow two-way
communication;

2. Directed graphs - in which all the edges are one-way directed or bi-directed,
and allow mixed communication.

Given an adversary structure A on the nodes of a graph, we say the sender S
and the receiver R are dA-separated if there exist d sets A1, . . . , Ad ∈ A such
that all paths between S and R pass through some nodes in

⋃d
i=1 Ai; otherwise

we say they are dA-connected.
In the context of PSMT, perfect security requires the achievement of perfect

privacy (i.e., zero probability that the adversary learns the message from the
information he gets) and perfect reliability (i.e., zero probability that R fails to
recover the message correctly). The necessary and sufficient conditions (N&S)
for PSMT on different network graphs have been given in previous results:

N&S-undirected: in undirected graphs, S and R are 2A-connected [14];
N&S-directed-1: in directed graphs without feedback paths, S and R are 3A-

connected [8];
N&S-directed-2: in directed graphs with feedback paths, S and R are 2A-

connected with the forward paths from S to R, and if S and R are 3A-
separated, then for any three sets A1, A2, A3 ∈ A such that A1 ∪ A2 ∪ A3

separates S and R, at most one of these three sets separates S and R on the
feedback paths from R to S [19,24].
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It can be seen that the paths between S andR play an important role in the study
of PSMT. Next we show how a characterization of the critical paths determines
the PSTM protocols and their transmission complexity (TC).

3.1 Critical Paths

Unlike those in the threshold model, the N&S conditions for PSMT in the general
adversary model do not require node-disjoint paths. This rises the question of
how to transmit messages in a general network graph. The straightforward solu-
tion (though somehow less efficient) is to characterize the graph into all possible
paths between S and R. To this end, the idea of critical paths was introduced by
Kumar et al. [14] in their initial study. We extend their study, by firstly giving
a formal definition as follows.

Definition 6. Given a graph G(V,E), in which S and R are dA-connected. A
set of paths W is called critical, if S and R are dA-connected with all paths in
W , but are dA-separated with all paths in any W ′ � W . Let W be the set of all
critical sets of paths, we define a minimal critical set W ∗ such that W ∗ ∈ W
and |W ∗| = min{|W | : W ∈ W}.
Without loss of generality, we assume that there does not exist a trusted path
between S and R; i.e., |W ∗| > 1.

Observation 1. With any graph in which S and R are dA-connected, |W ∗| can
be as small as d+ 1 or as large as exponential in the size of the graph.

We give two examples in Fig. 1. In the examples we assume that S and R are
2A-connected. First suppose a graph G1 is as shown in Fig. 1(a), in which there
are only 3 paths between S and R. The adversary structure A has the following
property: all nodes in any set A ∈ A are on the same path. Thus it is clear that
in G1, S and R are 2A-connected, and all the 3 paths are in W ∗.

Next suppose a graph G2 is as shown in Fig. 1(b). We assume that except S
and R, there are 3τ nodes in G2. We can view S and R as they are connected
by τ levels L1, . . . , Lτ , where each level Li (1 ≤ i ≤ τ) is a set of 3 nodes, and
there is an edge between each node in Li and each node in Li+1. The adversary
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(b) G2: |W ∗| is exponential in n.

Fig. 1. 2A-connectivity in different graphs
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structure A has the following property: for each set A ∈ 2P , if there exist two
nodes v1, v2 ∈ A such that v1, v2 ∈ Li (1 ≤ i ≤ τ), then A /∈ A; otherwise A ∈ A.
In other words, the adversary E can control at most 1 node of each level.

Obviously S and R are 2A-connected in G2, but if we remove any edge from
the graph, then they are 2A-separated. Also straightforwardly |W ∗| = 3τ , be-
cause the critical paths are all the paths with exactly one node of each level on
them. Thus we have that |W ∗| is exponential in the size of the network, which
is 9τ − 3.

Of course our examples can easily be adapted to other connectivity, e.g., 3A-
connectivity.

Therefore, if a PSMT protocol is executed via the paths in the graphs, then it
is impossible to determine its TC in the size of the network, because the number
of paths varies remarkably in different graphs with the same connectivity (e.g.,
G1 and G2). Thus we determine TC in the number of critical paths. For this
purpose, a re-characterization of the adversary structure is needed.

In general, the participants in an adversary structure are considered to be the
nodes in the network graph. We denote this adversary structure as AV . Given
a critical set of paths W , we define a new adversary structure AW such that
|AW | = |AV |, and for each set AV ∈ AV , there is a corresponding set AW ∈ AW

such that AW consists of all the paths in W that pass through nodes in AV .
It is clear that if S and R are dAV -connected, then they are dAW -connected

with W . In the rest of the paper, we use AW as the considered adversary struc-
ture. Thus we let A = AW and the participants of the adversary structure are
the critical paths of the network graph.

3.2 Improvements to the Previous Results

In the rest of the paper, we let n = |W | be the number of critical paths, and A
be an adversary structure over the n paths.

Because the previous protocols use different characterizations for PSMT, it
is not straightforward to compare their TC with our result. In fact, we need
to compare the three parameters (n, |A|, h) 3 that determine the TC of the
protocols. First we do not know the tight upper bound on h, but our worst
case LSSS achieves h ≤ O(|A|n), so h should not be larger. In general |A| is
exponential in n, but due to the way that the critical paths are selected, n
can be polynomial in |A| in some network graph [14]. Either way, our results
significantly improve the previous results in terms of round complexity (RC)
and transmission complexity (TC) over a single message. We also present some
efficient protocols to transmit � > 1 messages. The problem of multiple message
transmission has not been studied before in the general adversary model.

A summary of the results are shown in Table 1 in Section 1. Note that
Desmedt et al.’s protocol [8] is executed in directed graphs without feedback,
which means that the receiver R cannot send messages to the sender S. Thus

3 As shown in the previous section, h is the size of the LSSS as well as the length of
the codewords.
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the protocols in this graph must be non-interactive and can only have 1-round.
Their protocol is actually an alternative use of the worst case LSSS that we
showed before. Thus the protocol can easily be reformed into a 1-round protocol
with TC O(h). The protocol by Yang and Desmedt [24] uses the settings in [19],
which require both the RC and TC to be exponential in |A|. As we discussed
before, both h and n are at most polynomial in |A|, so our improvements are
obvious. We also remark that in the studies of the general adversary model, our
results are the first to have constant RC in undirected and directed-2 graphs.

3.3 Other Preliminaries

We assume that each message s is drawn from the message space M ⊆ F with
respect to a certain probability distribution. Since two different type of graphs
are considered, we have the following: in an undirected graph, we denote W =
{w1, . . . , wn} as a critical set of undirected paths; in a directed graph, we denote
W = {w1, . . . , wn} as a critical set of the forward paths and Q = {q1, . . . , qu} as
a critical set of the feedback paths, where u = O(n).

Given that S and R are 2A-connected with W , if S sends the same message
via all paths in W , then R is able to receive the message perfectly reliably [14].
In our protocols we say “S broadcasts a message via W” to indicate this kind of
transmission. Thus the TC of the broadcast of 1 field element is O(n).

Note that the linear code is constructed considering the critical paths as the
participants. When S sends a codeword c = (c1, . . . , ch) in such a manner that
for each 1 ≤ j ≤ h, if ψ(j) = wi for some 1 ≤ i ≤ n, then S sends cj via wi, we
say “S sends c via W with respect to ψ” to indicate this kind of transmission.
Thus the TC of the transmission of 1 codeword is O(h).

In our protocols, we omit some indices for the communication. For example,
if S sends a pseudo-basis to R, then generally S should attach a index in the
transmission to indicate exactly which codeword each vector in the pseudo-basis
corresponds to. Indexing is very cheap in terms of TC. Thus in our protocols,
we omit some indices to make the protocols easier to read.

4 PSMT in Undirected Graphs

In this section we show our PSMT protocols in undirected graphs. According
to N&S-undirected, S and R must be 2A-connected in an undirected graph.
We first give 3-round protocols in Section 4.1 for the transmissions of a single
message and multiple messages, and then give 2-round protocols in Section 4.2.
The protocols given in this section are along the lines of the results in [15].

4.1 3-Round Undirected Protocols

We omit the 3-round protocols in this section due to lack of space, and also
because they are relatively simple. However, the TC of our 3-round protocol over
a single message is O(hn2), and the TC of our 3-round protocol over multiple
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(�) messages is O(h�) where � = wtAh. Thus the TC of both protocols are about
optimal in the context of PSMT in the general adversary model. For the details
of the 3-round undirected protocols, see the full version of this paper [1].

4.2 2-Round Undirected Protocols

First we give a 2-round protocol to transmit a single message.

2-round undirected protocol for a single message s

Round 1 - R to S:
1. R chooses n random k-vectors r1, . . . , rn ∈ F

k, and for each 1 ≤ i ≤ n,
R encodes ri to get codeword ci = EC(ri) = (ci1, . . . , cih).

2. For each 1 ≤ i ≤ n, R sends vector ri via path wi, and sends codeword
ci via W with respect to ψ.

Round 2 - S to R:
1. S receives n k-vectors r′1, . . . , r′n and n h-vectors x1, . . . ,xn from W . For

each 1 ≤ i ≤ n, let xi = (xi1, . . . , xih).
2. For each 1 ≤ i ≤ n, S encodes r′i to get codeword c′i = EC(r′i) =

(c′i1, . . . , c
′
ih). S then constructs a set Di such that for each 1 ≤ j ≤ h,

iff xij �= c′ij , then (xij , j) ∈ Di.
3. S finds a k-vector rS such that s = DC(rS), and then encodes cS =
EC(rS) = (cS1 , . . . , cSh). For each 1 ≤ j ≤ h, if ψ(j) = wi, then S
computes zj = cSj + c′ij . Finally S sets z = (z1, . . . , zh).

4. S broadcasts z and D1, . . . , Dn via W .
Recovery Phase

1. R receives z and D1, . . . , Dn from W .
2. R sets F := ∅. For each 1 ≤ i ≤ n, if there exists a pair (xij , j) ∈ Di

such that xij = cij , then R sets F := F ∪ {i}.
3. For each 1 ≤ j ≤ h, if ψ(j) = wi, then R computes cRj = zj − cij . R then

decodes s′ as the information of (cR1 , . . . , c
R
h ) such that for any ψ(j) = wi

where i ∈ F , the entry cRj is not used for decoding. End.

Proof of perfect security. Omitted. See the full version of this paper [1].

TC of the protocol. Let TC(i) be the TC of Round i for 1 ≤ i ≤ 3. In this
protocol:

TC(1) = hn+ kn = O(hn)
TC(2) = O(n(h + 2hn)) = O(hn2)

We have that the total TC is O(hn2) field elements.
Next, before we show our 2-round PSMT protocol that transmits multiple

messages, we employ a well-known technique in this context: the randomness
extractor [22,2,15]. Suppose that the adversary has no knowledge on � out of m
random elements r1, . . . , rm ∈ F. Let f(x) be a polynomial of degree deg f(x) ≤
m − 1 such that f(i) = ri for each 1 ≤ i ≤ m, then the adversary has no
knowledge on zj = f(m + j) for each 1 ≤ j ≤ �. We denote a function RE :
F

m → F
� as a randomness extractor such that RE(r1, . . . , rm) = (z1, . . . , z�).

This function will be used in the following 2-round PSMT protocol.
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2-round undirected protocol for � = wtA(n− szA− 1) messages s1, . . . , s�

Round 1 - R to S:
1. R chooses wtAn random k-vectors r1, . . . , rwtAn ∈ F

k, and for each 1 ≤
i ≤ wtAn, S encodes ri to get codeword ci = EC(ri) = (ci1, . . . , cih).

2. For each 1 ≤ i ≤ n, R sends vectors ri+0·wtA , ri+1·wtA , . . . , ri+(wtA−1)wtA

via path wi. R also sends codewords c1, . . . , cwtAn via W with respect
to ψ.

Round 2 - S to R:
1. S receives wtA k-vectors r′i+0·wtA , r

′
i+1·wtA , . . . , r

′
i+(wtA−1)wtA on each

path wi (1 ≤ i ≤ n), and also receives wtAn h-vectors x1, . . . ,xwtAn

from W . For each 1 ≤ i ≤ wtAn, let xi = (xi1, . . . , xih).
2. For each 1 ≤ i ≤ wtAn, S uses the pseudo-basis construction scheme

to construct a pseudo-basis B from x1, . . . ,xwtAn. Let b be the pseudo-
dimension of B, then b ≤ wtA.

3. For each 1 ≤ i ≤ wtAn, S encodes r′i to get codeword c′i = EC(r′i) =
(c′i1, . . . , c

′
ih). S then constructs a set Di such that for each 1 ≤ j ≤ h,

iff xij �= c′ij , then (c′ij , j) ∈ Di.
4. For each 1 ≤ i ≤ wtAn, S decodes r′i = DC(r′i). S then constructs a set T

such that iff |Di| ≤ wtA, then r′i ∈ T . S uses the randomness extractor to
get (z1, . . . , z�) = RE(T ), and for each 1 ≤ i ≤ �, S computes σi = si+zi.

5. S broadcasts the pseudo-basis B and σ1, . . . , σ�. For each 1 ≤ i ≤ wtAn,
if |Di| > wtA, then S broadcasts “ignore i”; else, then S broadcasts Di.

Recovery Phase
1. R finds the final error locator F from B.
2. For each Di that R receives on W , R constructs an h-vector c′′i =

(c′′i1, . . . , c
′′
ih) such that for each 1 ≤ j ≤ h, if (c′ij , j) ∈ Di, then c′′ij = c′ij ;

else, then c′′ij = cij . R then decodes the information r′′i of c′′i such that
for any j ∈ F , c′′ij is not used for decoding. R puts r′′i in a set T ′.

3. R uses the randomness extractor to get (z′1, . . . , z′�) = RE(T ′), and for
each 1 ≤ i ≤ �, R computes s′i = σi − z′i. End.

Proof of perfect security. Omitted. See the full version of this paper [1].

TC of the protocol. In this protocol:

TC(1) = (k + h)wtAn = O(h�)
TC(2) = O(n(wtAh+ �+ wtAn · 2h)) = O(h2n2) = O(hn�)

We have that the total TC is O(hn�) field elements.

5 PSMT in Directed Graphs

In this section we show our PSMT protocols in directed graphs. We let W =
{w1, . . . , wn} be the critical set of forward paths and Q = {q1, . . . , qu} be the
critical set of feedback paths.
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In a directed graph without feedback (Q = ∅), S only needs to send a codeword
c, of which the information is the message s, to R via W with respect to ψ. Due
to N&S-directed-1, S and R are 3A-connected, R can decode the information of
c by correcting errors. Thus the protocol is perfectly secure and the TC is O(h).
We remark that Desmedt et al.’s protocol [8] is actually an alternative use of
the worst case LSSS.

Next we consider a directed graph with feedback (Q �= ∅). We give our 3-round
protocols under the condition of N&S-directed-2 in Section 5.1. In Section 5.2,
we show that N&S-directed-2 is not sufficient for 2-round PSMT protocols, and
hence we give a new N&S condition and propose our protocols under this con-
dition. The protocols given in this section are along the lines of the results
in [18,17].

5.1 3-Round Directed Protocols

Before we show our 3-round protocols, we notice that the adversary structure A
is over all paths in W ∪Q. However, in our 3-round protocols, we do not need
to assign shares (or entries) to the paths in Q. Thus we denote an adversary
structure A′ over the paths in W only, i.e., for any set A ∈ A, there is a corre-
sponding set A′ ∈ A′ such that A′ = A ∩W . Thus S and R are 2A′-connected
with the paths in W . Note that in this section, the linear codes in our protocols
are constructed with respect to A′.

3-round directed protocol for a single message s

Round 1 - S to R:
1. S chooses wtA(u + 1) + 1 random k-vectors r1, . . . , rwtA(u+1)+1 ∈ F

k,
and for each 1 ≤ i ≤ wtA(u + 1) + 1, S encodes ri to get codeword
ci = EC(ri) = (ci1, . . . , cih).

2. For each 1 ≤ i ≤ wtA(u+ 1) + 1, S sends ci via W with respect to ψ.
Round 2 - R to S:

1. R receives wtA(u+1)+1 h-vectors x1, . . . ,xwtA(u+1)+1 from W . R uses
the pseudo-basis construction scheme (see Section 2.3) to construct a
pseudo-basis B from x1, . . . ,xwtA(u+1)+1, and then broadcasts B via all
paths q1, . . . , qu ∈ Q.

Round 3 - S to R:
1. For each 1 ≤ v ≤ u, let Bv be the pseudo-basis that S receives on path
qv, and let bv be the pseudo-dimension of Bv.

2. For each 1 ≤ v ≤ u, if bv > wtA, then S broadcasts “ignore v” via W ;
else then S finds the final error locator Fv from Bv. If |Fv| > wtA, then
S broadcasts “ignore v” via W ; else then S broadcasts Bv and Fv via
W .

3. S sets U := ∅ and T := ∅. For each 1 ≤ v ≤ u such that bv ≤ wtA, S adds
all the actual codewords (ci’s) that correspond to the h-vectors in Bv to
U . Thus at last, |U | ≤ wtAu. For each ri such that EC(ri) = ci /∈ U ,
if i /∈ T and |T | < wtA + 1, then S sets T := T ∪ {i}. Thus at last,
|T | = wtA + 1. For each i ∈ T , S decodes ri = DC(ri). S computes
σ = s+

∑
i∈T ri, and broadcasts σ and T via W .
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Recovery Phase
Let v := 1, while v ≤ u:
1. if R receives “ignore v” from W , then R sets v := v + 1;
2. else if R receives Bv and Fv from W , then

(a) if Bv �= B, then R sets v := v + 1;
(b) else, then with Fv, σ and T , R uses the decoding scheme from

pseudo-basis (see Section 2.3) to get the information ri of ci for
each i ∈ T . R then recovers s = σ −∑i∈T ri, and terminates the
protocol.

If v > u, then R knows that S did not receive the correct pseudo-basis
B, so all paths q1, . . . , qu ∈ Q are corrupted. For each i ∈ T , R finds a
set A ∈ A such that Q ⊆ A, and if A’s entries in xi are removed, all the
remaining entries are a part of a codeword c′i ∈ C, then R decodes r′i as the
information of c′i. R recovers s′ = σ −∑i∈T r

′
i. End.

Proof of perfect security. Omitted. See the full version of this paper [1].

TC of the protocol. In this protocol:

TC(1) = h(wtA(u+ 1) + 1) = O(h2n)
TC(2) = O(u(wtAh)) = O(h2n)
TC(3) = O(n(wtAhu+ wtAu+ 1 + wtA + 1)) = O(h2n2)

We have that the total TC is O(h2n2) field elements.
Our 3-round protocol that transmits multiple messages is a generalization of

the above protocol for a single message transmission. Thus we only show their
differences as follows.

3-round directed protocol for � = wtAu message s1, . . . , s�

Round 1 - S to R: S does the same only for wtA(u+1)+ � random k-vectors.
Round 2 - R to S: R does the same.
Round 3 - S to R: S does the same until step 3.

3. S sets U := ∅. For each 1 ≤ v ≤ u such that bv ≤ wtA, S adds all
the actual codewords (ci’s) that correspond to the h-vectors in Bv to U .
Thus at last, |U | ≤ wtAu.

4. S sets T1, . . . , T� := ∅. For each ri such that EC(ri) = ci /∈ U , for each
1 ≤ j ≤ �, if i /∈ Tj and |Tj| < wtA, then S sets Tj := Tj ∪ {i}. Thus
at last, all T1, . . . , T� are the same and |Tj | = wtA. There are at least �
vectors ri such that EC(ri) = ci /∈ U and i /∈ Tj

4. Let ri1 , . . . , ri�
be

� such vectors, then for each 1 ≤ j ≤ �, S sets Tj := Tj ∪ {ij}. Thus
|Tj | = wtA + 1, and all T1, . . . , T� are different. For each 1 ≤ j ≤ �
and i ∈ Tj , S decodes ri = DC(ri), computes σj = sj +

∑
i∈Tj

ri, and
broadcasts σj and Tj via W .

Recovery Phase For each 1 ≤ j ≤ �, R does the same to recover sj. End.

4 This is because |U | ≤ wtAu, |Tj | = wtA and the total number of vectors ri is
wtA(u+ 1) + �.
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Proof of perfect security. Omitted. See the full version of this paper [1].

TC of the protocol. In this protocol:

TC(1) = h(wtA(u+ 1) + wtAu) = O(h�)
TC(2) = O(u(wtAh)) = O(h�)
TC(3) = O(n(wtAhu+ wtAu+ wtAu(1 + wtA + 1))) = O(hn�)

We have that the total TC is O(hn�) field elements.

5.2 2-Round Directed Protocols

In [18], Patra et al. showed that in the threshold model, the minimal connectivity
for PSMT in directed graph is not sufficient for a 2-round protocol. Here we do
the similar. That is, we prove that in the general adversary model, N&S-directed-
2 is not sufficient for a 2-round protocol. Note that the general assumption is
that the feedback channels are not reliable (i.e., not 2A-connected).

Theorem 3. Given a directed graph G(V,E) and an adversary structure A, 2-
round PSMT is possible if and only if S and R are 2A-connected with the forward
paths and 3A-connected in G.

Proof. First we prove the necessity of the condition. 2A-connectivity with the
forward paths is obviously necessary. Now assume that S and R are 3A-separated
in G and there is a 2-round PSMT protocolΠ . Let viewS and viewR be the views
of S and R respectively. In Round 1 of Π , viewS and viewR can be different
if the adversary corrupts some feedback paths. Since the feedback paths are
not reliable, S cannot detect the differences. Thus after Round 2, because Π
is perfectly private, with respect to A, we regard viewS as a codeword whose
information is the message. Thus viewR is viewS plus an error vector caused by
a set A ∈ A. Since S and R are 3A-separated, R cannot correct the errors and
decode the message. Thus Π is not perfectly reliable. We have a contradiction.

Next we show a 2-round PSMT protocol under this condition. We let A′ =
A ∪ {Q} (if Q ∈ A, then A′ = A). Since S and R are 2A-connected with the
forward paths, they are 3A′-connected in G. The linear code in this protocol is
constructed with respect to A′.

2-round directed protocol for a single message s

Round 1 - R to S: R chooses a random k-vector r, and encodes it to get the
codeword c = EC(r) = (c1, . . . , ch). Suppose that c1, . . . , ct are the entries
in c such that ψ(c1, . . . , ct) = Q, the linear code allows all these entries to
be independent5. R then sends the entries c1, . . . , ct via Q with respect to ψ.

Round 2 - S to R: Upon the entries c′1, . . . , c
′
t that S receives on Q, S con-

structs a k-vector r′ such that c′1, . . . , c
′
t are in the codeword c′ = EC(r′) =

(c′1, . . . , c′h). S decodes r′ = DC(r′). S then sends c′t+1, . . . , c
′
h via W with

respect to ψ and broadcasts σ = s+ r′.
5 This is possible. See the full version of this paper [1] for more details.
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Recovery Phase R receives c′′t+1, . . . , c
′′
h and σ on W . R constructs an h-vector

x = (c1, . . . , ct, c′′t+1, . . . , c
′′
h). Thus x = c′ + e where e is an error vector

caused by a set A ∈ A′. Due to the 3A′-connectivity, R can decode the
information r′ of c′ from x and recover s = σ − r′. End.

Proof of perfect security is omitted. See the full version of this paper [1].
Clearly the TC of this protocol is O(h), and the protocol can transmit �

messages with a TC of O(h�). ��

6 Conclusion and Open Problems

In this paper, we regarded general access structures as a special linear code
and exploited its properties to design PSMT protocols in the general adversary
model. The construction of our protocols is based on the idea of defining adver-
sary structure over critical paths. We are the first to study interactive PSMT
with a constant round complexity. Moreover, the transmission complexity of our
protocols is similar to the best protocols that use non-constant rounds, which
is quite unexpected. Also our study on PSMT over multiple messages is new in
this context.

Evidently, there are still many unknown properties of the linear codes we
proposed. The most obvious one is the tight upper bound on h, which is open
for decades. Another interesting problem is whether in the presence of non zero
invalid error-vectors, it is possible to have a pseudo-dimension that is smaller
than O(h).

The TC of our 2-round undirected and 3-round directed protocols for multi-
ple message transmission is O(hn�). In [22,2,15], the authors used a technique
called generalized broadcast to reduce the TC by O(n). We wonder if generalized
broadcast can further reduce the TC of our protocols to O(h�).

Acknowledgment. We would like to thank the anonymous referees for their
helpful comments on the earlier version of the paper.
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Abstract. Secure multiparty computation (MPC) is one of the most
general and well studied problems in cryptography. We focus on MPC
protocols that are required to be secure even when the adversary can
adaptively corrupt parties during the protocol, and under the assumption
that honest parties cannot reliably erase their secrets prior to corruption.

Previous feasibility results for adaptively secure MPC in this setting
applied either to deterministic functionalities or to randomized func-
tionalities which satisfy a certain technical requirement. The question
whether adaptive security is possible for all functionalities was left open.

We provide the first convincing evidence that the answer to this ques-
tion is negative, namely that some (randomized) functionalities cannot
be realized with adaptive security.

We obtain this result by studying the following related invertible sam-
pling problem: given an efficient sampling algorithm A, obtain another
sampling algorithm B such that the output of B is computationally in-
distinguishable from the output of A, but B can be efficiently inverted
(even if A cannot). This invertible sampling problem is independently
motivated by other cryptographic applications. We show, under strong
but well studied assumptions, that there exist efficient sampling algo-
rithms A for which invertible sampling as above is impossible. At the
same time, we show that a general feasibility result for adaptively secure
MPC implies that invertible sampling is possible for every A, thereby
reaching a contradiction and establishing our main negative result.

1 Introduction

Secure multiparty computation (MPC) is one of the most fundamental problems
in cryptography. The goal of MPC is to allow two or more parties to compute
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some functionality (a deterministic or randomized mapping from inputs to out-
puts) while emulating an ideal evaluation of the functionality in which a trusted
trusted party receives all inputs and delivers all outputs. This is formally cap-
tured by simulation-based security definitions, which (roughly speaking) require
that whatever an adversary can achieve by attacking the real execution of the
protocol can also be achieved by a simulator which attacks the above ideal eval-
uation process.

Since the introduction of MPC in the 1980s [42,28,5,15], many security defini-
tions have been proposed and feasibility results shown. In particular, significant
research efforts have been invested in realizing adaptively secure MPC proto-
cols, whose security is required to hold in the presence of an adversary that
can corrupt parties adaptively at any point during the protocol. When consider-
ing adaptive security, it is typically assumed that honest parties cannot reliably
erase their secrets. This is an assumption we make throughout this work. The
main challenge in proving the security of cryptographic protocols in this setting
is that when a new party is corrupted, the simulator needs to provide an expla-
nation of the internal randomness for this party that has to be consistent with
the simulated view so far and with the party’s input.

Adaptively secure protocols in this setting were first constructed by Canetti,
Feige, Goldreich and Naor [13] in a standalone model and then by Canetti, Lin-
dell, Ostrovsky and Sahai [14] in the universal composability (UC) model [9].
These protocols applied to all deterministic functionalities, but in the case of ran-
domized functionalities they were restricted to so called adaptively well-formed
functionalities [14]. Intuitively, randomized functionalities can present the follow-
ing problem: when the adversary corrupts all the parties in the real execution1,
he learns the private randomness of all parties. However in the ideal world, if the
ideal functionality tosses some coins that are kept private and used during the
computation, the ideal adversary (the simulator) will never learn these private
coins, even after corrupting every party. The presence of private randomness
in the ideal world makes it problematic to realize randomized functionalities
in which the randomness cannot be efficiently computed from the inputs and
outputs. The “adaptively well formed” functionalities satisfy the syntactic re-
quirement that they reveal all their internal randomness when all parties are
corrupted. (In other words, securely realizing such functionalities does not pose
the challenge of hiding the internal randomness of the functionality from the
adversary.) The question for general functionalities was left open.

In this paper we show that, under strong but well studied computational
assumptions, there exist functionalities which cannot be realized with adaptive

1 At first glance, it may seem strange to require any security when all parties involved
in a protocol are eventually corrupted. However, this is important when protocols
are meant to be composed (even sequentially). For instance, a sub-protocol of a
larger protocol may involve only a small subset S of the participants of the larger
protocol. In such a situation, guaranteeing security of the larger protocol when
(only) the players in S are corrupted would require analyzing the security of the
sub-protocol when all the participants of the sub-protocol are corrupted.
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security. Concretely, our main negative result relies on the following two assump-
tions: (1) the existence of so-called extractable one-way functions [10,11,18] (this
is a common generalization of several “knowledge-of-exponent” style assump-
tions from the literature [19,31,4,39]), and (2) the existence of non-interactive
zero-knowledge (NIZK) proofs for NP [6,7].

Our negative result applies to almost every model of adaptively secure compu-
tation without erasures from the literature. This includes stand-alone security in
the semi-honest and malicious models (under the definition of [8]), UC-security
in the CRS model (under the definition of [14]) or even to security in the OT-
hybrid model, where every functionality can be unconditionally realized with
non-adaptive UC-security [35,34]. Our negative result does not apply to the
case where only a strict subset of the parties can be corrupted (in particular,
to MPC with an honest majority). The existence of uncorrupted parties allows
the simulator to avoid the need for “explaining” the output of the functionality
by providing its internal randomness. Our negative result also does not apply to
adaptive security in the standalone model without post-execution corruption [8];
this (nonstandard) notion of adaptive security does not support even sequential
composition. See Section 1.2 below.

Invertible sampling. A key concept which we use to obtain our negative result
and is of independent interest is that of invertible sampling (Definition 1 of [20]).
Suppose we are given an efficient sampling algorithm A. Can we always obtain
an alternative efficient sampling algorithm B such that the output of B is indis-
tinguishable from the output of A, but B can be efficiently inverted in the sense
that its randomness can be efficiently computed based on its output? Here we
refer to a distributional notion of inversion, namely an inversion algorithm B−1

is successful if the pair (r′,B(r′)) is computationally indistinguishable from the
pair (B−1(B(r′)),B(r′)) where r′ is a uniform random input for B. We refer to the
hypothesis that every efficient A admits an efficient B as above as the invertible
sampling hypothesis (ISH). While our study of ISH is primarily motivated by its
relevance to adaptive security, this question is independently motivated by other
cryptographic applications (such as settling the relation between public-key en-
cryption and oblivious transfer); see Section 6 for details.

The ISH may seem easy to refute under standard assumptions. Indeed, if we
require the outputs of A and B to be identically distributed, then ISH could be
refuted based on the existence of any pseudorandom generator G: Let A output
G(r). The existence of B as above would allow one to distinguish between G(r)
(for which B−1 will find an inverse under B with overwhelming probability)
and a uniformly random string of the same length (which with overwhelming
probability has no inverse under B). However, the case where the outputs of B
and A should only be computationally indistinguishable appears to be much more
challenging. In particular, note that a pseudorandom distribution does admit an
invertible alternative sampler: the sampler B just outputs a uniformly random
string. Since this output is computationally indistinguishable from the actual
distribution, it is consistent with the above formulation of ISH.
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We show, under the assumptions described above, that there exist efficient
sampling algorithms A for which the ISH fails. At the same time, we show that a
general feasibility result for adaptively secure MPC implies that invertible sam-
pling is possible for every A, thereby reaching a contradiction and establishing
our main negative result.

More precisely, we show that general adaptively secure computation implies
(and in fact, is equivalent to) a stronger version of ISH in which the sam-
pling algorithms A,B are given an input x in addition to their random input,
and where the inversion algorithm B−1 should be successful on every input x.
This stronger flavor of ISH is ruled out by the assumptions mentioned above,
namely the existence of extractable one-way functions and NIZK proof systems
for NP. To rule out the weaker variant of ISH (with no input x) we need to
use somewhat stronger assumptions: a non-standard (but still plausible) vari-
ant of an extractable one-way function, and the existence of non-interactive
witness-indistinguishable (NIWI) protocols for NP without a common reference
string [22,1,29,30].

1.1 Our Techniques

We now give some intuition on our construction of an efficient sampling algorithm
A for which ISH does not hold. For this purpose, it is convenient to first describe
a relativized world (defined via a randomized oracle) in which such A provably
exists. As a first attempt, suppose that we have an oracle computing a random
function f : {0, 1}n → {0, 1}2n. Now, consider the efficient sampling algorithm
A which outputs a random image of f , namely A(r) = f(r). (Note that A is
efficient given oracle access to f .) Similarly to the previous PRG example, such
an algorithm is not enough to refute the computational version of ISH: indeed,
the alternative sampler B can simply output a uniformly random string of length
2n. The high level idea for ruling out such an alternative sampler is to make the
outputs of f efficiently verifiable. Formally, we add to f an additional oracle g
which decides whether a given string y ∈ {0, 1}2n is in the image of f . (A similar
oracle was used by Wee [41] in the seemingly unrelated context of separating
two notions of computational entropy.)

We now informally argue that ISH is false relative to the randomized oracle
(f, g). Let A(r) = f(r) as before. Assume towards a contradiction that an alter-
native sampling algorithm B(r′) as required by ISH exists. We argue that B can
be used to efficiently invert f on a random output y = f(x), which remains hard
even when given the decision oracle g. By the computational indistinguishability
requirement, it suffices (in order to reach a contradiction) to successfully invert f
on a random output y′ sampled by B. Moreover, since indistinguishability holds
relative to the verification oracle g we are guaranteed that (with overwhelming
probability) y′ as above will be in the image of f .

The inversion algorithm for f , when given y′ sampled by B, uses the inversion
algorithm B−1 guaranteed by ISH to obtain a preimage r′ of y′ under B. Since
f is a random function, it is impossible to efficiently find an image y′ of f
without querying f on the corresponding pre-image. (Jumping ahead, this is
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the step where our explicit non-relativized construction will rely on a knowledge
assumption.) Thus, the inversion algorithm can use r′ to extract a preimage x of
y′ under f by running B on r′ until it queries f on a point x such that f(x) = y.

To obtain an explicit version of the above A we use extractable one-way func-
tions to implement f and a NIZK proof for proving range membership to emulate
the role of g (the latter is similar to the use of NIZK proofs in [37,32]; see Sec-
tion 1.2). For technical reasons that have to do with the common reference string
required by the NIZK proof system, we cannot use this approach to refute the
basic version of ISH described above. For this, we need to employ a somewhat
more complicated proof strategy and apply NIWI proofs instead of NIZK proofs.
See Section 4 for details.

1.2 Related Work

Adaptively secure MPC (without erasures) was first realized in [13] for the stand-
alone case. In [8], a variant of the notion of adaptive security that guarantees
sequential composition was introduced: we refer to the variant from [8] which
requires security against post execution corruption (PEC). Namely, after the sim-
ulation is complete, the environment can ask the adversary to corrupt additional
parties and simulate their views. This variant is used in [8] to prove sequential
composition. In fact, a separation between adaptive security with PEC and with-
out it has been shown in [12]. We stress that the negative results from [12] apply
to specific protocols rather than functionalities. That is, [12] builds protocols
which are shown to be adaptively secure in one setting but not adaptively se-
cure in another setting, but does not show any functionality which cannot be
realized with adaptive security, as opposed to our impossibility result.

In the UC security framework [9] the main feasibility result for securely realiz-
ing adaptively well-formed functionalities against an adaptive adversary was ob-
tained in [14] (see also [17,25]). This work also suggested the following plausible
candidate for a randomized functionality which cannot be realized with adaptive
security: on input a security parameter k, output the product of two random k-
bit primes. However, we do not know how to relate the possibility of realizing this
functionality with adaptive security to any well-studied assumption.

If one is willing to assume that honest parties can reliably erase their data,
security against adaptive adversaries becomes a much easier task. Our negative
results do not apply to this alternative model, and general feasibility results in
this model were obtained in [3,36].

The Invertible Sampling Hypothesis is related to questions of oblivious sam-
pling that have been studied in other cryptographic contexts. For instance, the
question of generating a public key for an encryption scheme without learning
how to decrypt is related to the goal of constructing an oblivious transfer proto-
col from a public-key encryption scheme [23,26]; virtually any non-committing
encryption scheme [2,20,25,16] requires some form of oblivious sampling of public
keys; in a recent result [21] the question of whether ISH holds has been infor-
mally asked, in the context of turning UC-secure protocols in the common refer-
ence string model into semi-honest secure stand-alone protocols. If the common
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reference string is a random string, the problem trivially reduces to having one
party publish a random string. If the CRS instead is sampled using some generic
distribution, is not clear whether a semi-honest party can sample the common
reference string without learning the trapdoor. See Section 6 for a further dis-
cussion of these additional connections of ISH with cryptography.

The knowledge of exponent assumption was introduced in [19], and since then
other specific knowledge of exponent assumptions have been proposed [4,39],
until in some recent work [11,10,18] the abstract notion of extractable functions
has been introduced. Our impossibility results rely on assumptions of this type.
The use of knowledge assumptions in security proofs has received criticism in
the cryptographic community, especially because such assumptions seem hard
to disprove [38] (even though in [4] a “wrong” knowledge assumption from [31]
has been disproved). As far as we know, our work is the first to apply such
assumptions towards negative results in cryptography.

Finally, our use of NIZK and NIWI proofs for NP was inspired by the use
of NIZK in [37] to construct a class of distributions where efficient learning
with an evaluator is possible but coming up with a generator that approximates
the given distribution is infeasible, and by [41,32] in the context of separating
conditional HILL and Yao entropies. Note, however, that none of these works
made use of knowledge assumptions; such assumptions appear to be crucial to
our techniques.

2 Preliminaries

Notation. We use n as a length parameter; all probability distributions we con-
sider in this work will be over strings of length polynomial in n. We let Un denote
the uniform distribution over {0, 1}n. We use x ← X to denote the process of
sampling x from the distribution X . If X is a set, x ← X denotes a uniform
choice of x from X . For any distribution X and algorithm A, we denote by A(X)
the probability distribution on the outputs of A taken over the coin tosses (if
any) of A and an independent random choice of the input x from X .

We use the standard notation {C1;C2; . . . ;Cm : D} to denote the distribu-
tion of D obtained as a result of the sampling process defined by the sequence
of instructions C1, . . . , Cm. For example, {a← X ; b← A(a) : (a, b)} denotes the
distribution of pairs (a, b) obtained by first picking a from X and then obtaining
b by running A on a. Similarly, we use Pr[C1;C2; . . . ;Cm : E] to denote the
probability of event E in the probability space defined by the sequence of in-
structions C1, . . . , Cm. For instance, Pr[a← X ; b← Y : a �= b] is the probability
that when a is chosen according to X and b is independently chosen according
to Y , a and b are not equal.

We assume that the reader is familiar with the concepts of negligible function,
one-way function, pseudorandom generator, and non-interactive zero-knowledge
proof system. Suitable definitions can be found in the full version or in [27].

By default we assume efficient algorithms to be uniform and efficient distin-
guishers to be nonuniform. We will use ε(·) to denote an unspecified negligible
function.
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Let I ⊆ {0, 1}∗ be an arbitrary infinite index set. We say that two distribution
ensembles {Xw}w∈I and {Yw}w∈I are computationally indistinguishable if for
every polynomial-size circuit family Cn there exists a negligible function ε such
that for every w ∈ I,

|Pr[C|w|(Xw) = 1]− Pr[C|w|(Yw) = 1]| ≤ ε(|w|).

Sampling algorithms. We will view any probabilistic polynomial time (PPT)
algorithm A as defining an efficient sampling algorithm (or sampler for short).
We let A(w) denote the output distribution of A on input w and A(w; rA) denote
the output when the random input (i.e., sequence of coin-tosses) is given by rA.
Without loss of generality, we can associate with every efficient A a polynomial
�(·) such that rA is a random input of length �(|w|). Under this convention, A(w)
is distributed identically to A(w;U�(|w|)). We will use this convention throughout
the paper. Finally, we will sometimes be interested in the special case of samplers
over a unary input alphabet; in this case A defines a sequence of distributions
{A(1n)}n∈N.

We say that a sampling algorithm A is inverse-samplable if there exists a PPT
inversion algorithm which, given an input w and a sample y from the output
A(w), outputs a random input r for A which is consistent with w, y. Moreover, the
choice of r should be “correctly distributed” in the sense that (w, y, r) should be
computationally indistinguishable from (w,A(rA), rA) where rA ← U�(|w|). (Such
a distributional inversion requirement is similar in spirit to the definition of a
distributionally one-way function [33].)

Definition 1 (Inverse-Samplable Algorithm). We say that an efficient sam-
pling algorithm A is inverse-samplable if there exists a PPT inverter algorithm A−1

such that the distribution ensembles {rA ← U�(|w|) : (rA,A(w; rA))}w∈{0,1}∗ and
{rA ← U�(|w|) : (A−1(w,A(w; rA)),A(w; rA))}w∈{0,1}∗ are computationally indis-
tinguishable.

3 Invertible Sampling Hypothesis

The Invertible Sampling Hypothesis (ISH) is concerned with the possibility of
inverse-sampling arbitrary efficiently samplable distributions. It is easy to see
that if one-way functions exist, then there are efficient sampling algorithms which
are not inverse-samplable. Thus, we settle for the hope that for every efficient
sampling algorithm A there exists an efficient and inverse-samplable algorithm
B whose output is computationally indistinguishable from that of A. The ISH
captures the above hope. We will also consider a weaker variant of ISH, referred
to as weak ISH, which restricts the sampler A to have a unary input alphabet.
This is formalized below.

Hypothesis 1 (Invertible Sampling Hypothesis: ISH). For every efficient
sampling algorithm A there exists an efficient sampling algorithm B satisfying
the following two requirements.
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1. Closeness: The distribution ensembles {A(w)}w∈{0,1}∗ and {B(w)}w∈{0,1}∗
are computationally indistinguishable.

2. Invertibility: B is inverse-samplable (see Definition 1).

Hypothesis 2 (Weak ISH). The weak ISH is defined exactly as ISH above,
except that the inputs w for A and B are restricted to be unary (i.e., are of the
form 1n).

Clearly, ISH implies Weak ISH. The weaker flavor of ISH is somewhat more
natural in that it refers to the traditional notion of a sampling algorithm (defining
a single probability distribution for each length parameter n) as opposed to the
more general notion of a probabilistic algorithm. Moreover, the weak ISH suffices
for the motivating applications discussed in Section 6. However, it turns out that
the stronger flavor can be refuted under more standard assumptions and that
ruling out this flavor suffices for obtaining our main negative result on adaptively
secure MPC. Thus, in the following we will consider both variants of ISH.

We will start (in Section 4) by refuting the weak ISH assuming the existence of
a strong variant of extractable one-way functions as well as NIWI proof systems
for NP. We will then (Section 5) refute the original and stronger variant of
ISH under the weaker assumptions that standard extractable one-way functions
(generalizing various “knowledge-of-exponent assumptions” from the literature)
exist, as well as NIZK protocols for NP in the CRS model. At a high level,
refuting the stronger flavor of ISH is easier because the additional “external”
input allows us to introduce randomness over which the alternative sampler B
has no control. This randomness can be used for choosing the CRS for a NIZK
proof or random parameters for a family of extractable one-way functions.

4 Conditional Refutation of Weak ISH

As already discussed in the introduction, any pseudorandom generator G :
{0, 1}n → {0, 1}2n provides a nontrivial example of a sampling algorithm for
which weak ISH holds. Indeed, if A(1n) outputs G(rA) where rA ← Un, then
B(1n) can simply output rB where rB ← U2n.

This example suggests that in order to provide a counterexample for the
(weak) ISH, it does not suffice for the computation performed by the sampler to
be one-way and for its output support to be sparse, but its output should also be
verifiable (a feature missing in the aforementioned example). Jumping ahead, ver-
ifiability will be achieved via variants of non-interactive zero-knowledge. It turns
out that even the “sparseness” requirement needs to be significantly strengthened
in order to rule out the possibility of directly sampling an output without know-
ing a corresponding input. Classes of sparse one-way functions with a similar
property were studied in [19,4,39] under the umbrella of “knowledge assump-
tions.” Crudely speaking, a knowledge assumption for a function f states that
if any efficient algorithm A outputs a point in image(f), then the only way A
could have computed this image is by choosing an x and computing f(x) (here
it is necessary that image(f) be sparse). Thus the algorithm “knows” x. This is



474 Y. Ishai et al.

formally captured by requiring the existence of an efficient algorithm that can
extract x from A’s input and randomness.

A brief outline of our refutation of weak ISH is as follows. Suppose a function
f is both “extractable” and one-way. Given an algorithm which produces valid
points in image(f), if we can obtain the randomness that it used, then we can use
f ’s “knowledge extractor” to find pre-images and thus break the one-wayness
of f . However to obtain this randomness, we need the algorithm to be inverse-
samplable. Since weak ISH hypothesizes the existence of such an algorithm we
can invert f and contradict its one-wayness.

Next, we formally prove that weak ISH is false assuming the existence of a
strong notion of an Extractable One-Way Function (EOWF) and the assumption
that Non-Interactive Witness Indistinguishable Proofs (NIWI) exist for all of NP.

We start by defining the two primitives we rely on. An extractable one-way
function is a one-way function f with the following extraction property: for any
efficient A which, on random input rA, attempts to output an element y in the
image of f , there is an efficient extractor KA which given the random input rA
of A succeeds in finding a preimage x ∈ f−1(y) with roughly the same success
probability. Formally:

Definition 2 (Extractable One-Way Function (EOWF)). Let f be a one-
way function. We say that f is an extractable one-way function if for every PPT
algorithm A with running time �(n) there is a PPT extractor algorithm KA such
that for every n:

Pr[rA ← U�(n); y = A(1n; rA);x← KA(1n, rA) :
(f(x) = y) ∨ (∀x′, f(x′) �= y)] ≥ 1− ε(n)

for some negligible function ε.

We note that the above definition appears stronger than similar definitions from
the literature in that it requires f to be a single, explicit one-way function, as
opposed to a keyed collection of functions. In particular, EOWF as above can not
be instantiated using concrete knowledge assumptions from the literature such
as the ones in [19,4,39]. However, it still seems plausible that (length-flexible
versions of) practical cryptographic functions satisfy the above definition. In
Section 5 we will rely on a more standard notion of EOWF (which allows f to
depend on a random key and captures previous assumptions from the literature)
in order to refute the strong variant of ISH.

Next we need the notion of non-interactive witness indistinguishable (NIWI)
proof systems [1,29,30]. A NIWI proof is used to efficiently prove that an input
x is in some NP-language L without allowing the verifier to distinguish between
any two possible witnesses. While the latter witness indistinguishability property
is weaker than the zero-knowledge property of NIZKs, it turns out that it is
sufficient for our purposes. The important advantage of NIWI proofs is that they
can be implemented (under stronger assumptions) without a trusted common
reference string, which is inherently required for NIZK proofs.
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Definition 3 (Non-Interactive Witness Indistinguishable Proof Sys-
tem [22,1,29]). Let L be any NP language, and RL a fixed witness relation
for L. Then P = (P, V ) is called a non-interactive witness indistinguishable
(NIWI) proof system for RL if P and V are PPT algorithms and the following
conditions hold for some negligible function ε:

1. Completeness. For all (x,w) ∈ RL

Pr[π ← P (x,w); b← V (x, π) : b = 1] ≥ 1− ε(|x|).

2. Soundness. For all x �∈ L, for all proof strings π∗

Pr[V (x, π∗) = 1] ≤ ε(|x|).

3. Witness Indistinguishability (WI). For every polynomial-size circuit family
Cn, and every x,w0, w1 such that (x,w0) ∈ RL and (x,w1) ∈ RL,

|Pr[C|x|(P (x,w0)) = 1]− Pr[C|x|(P (x,w1)) = 1]| ≤ ε(|x|).

NIWI proofs exist for all of NP under well-studied assumptions [22,1,29].

We now use the above two primitives to establish the main result of this
section.

Theorem 1. If EOWF exists and NIWI proofs exist for NP, then Weak ISH is
false.

Proof (sketch): Let f be an EOWF. We first define an efficient sampling algo-
rithm A, which outputs two random points in image(f) and also a NIWI proof
that at least one of the points was correctly computed. That is, the sampling
algorithm picks random x0, x1 ← {0, 1}n and outputs (f(x0), f(x1), π), where π
is a NIWI proof that either f(x0) or f(x1) is in the image of f . More concretely,
π is obtained by running a NIWI prover for the NP relation defined by

RL((y0, y1), w) = 1 iff f(w) = y0 ∨ f(w) = y1

on input (f(x0), f(x1)) and witness x0. From Weak ISH, we obtain A’s invertible
alternate sampling algorithm B and its inverter B−1. By the soundness property
of the NIWI proof, we are (essentially) ensured that the alternate sampler B
outputs at least one valid point in the image of f . But then we can construct a
new algorithm X that runs B and outputs at random one of the two images yb.

Now X is an algorithm that outputs (with significant probability) valid points
in the image of f . Given that f is an EOWF, there must exist also an extractor
KX that given the random input of X outputs xb such that yb = f(xb). Using B−1

to inverse-sample the random input of X and feeding it to KX we can efficiently
invert f , contradicting its one-wayness. See the full version for more details. �
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5 Conditional Refutation of ISH

In this section we refute the main (strong) variant of ISH under weaker and more
standard assumptions than those used to refute Weak ISH.

We start by defining a relaxed notion of extractable one-way function which is
similar to the notion of (non-interactively) extractable function family ensemble
put forward by Canetti and Dakdouk [10,11,18]. In contrast to the previous no-
tion from Definition 2, the relaxed notion follows from previous concrete knowl-
edge assumptions in the literature such as Damg̊ard’s knowledge of exponent
assumption [19].

Definition 4 (Function Family Ensemble). A function family, indexed by
a key space K, is a set of functions F = {fk}k∈K in which each function has the
same domain and range. A function family ensemble, F = {Fn}n∈N, is defined
as an ensemble of function families Fn with key spaces {Kn}n∈N.

Definition 5 (One-Way Function Family Ensemble). A function family
ensemble is one-way if:

– fk can be evaluated (given 1n, k ∈ Kn, and x ∈ domain(fk)) in time poly-
nomial in n, and

– for every polynomial-size circuit family Cn there is a negligible function ε
such that for every n,

Pr[k← Kn;x← domain(fk);x′ = Cn(1n, k, fk(x)) : fk(x′) = fk(x)] ≤ ε(n).

Definition 6 (Non-Interactively Extractable One-Way Function
Family Ensembles [18]). We say that an one-way function family ensemble is
non-interactively extractable (without auxiliary information) if for any efficient
sampling algorithm A running in time �(n) (with random input rA ∈ U�(n)),
there exists a PPT algorithm KA and a negligible function ε such that for all n:

Pr[k ← Kn; rA ← U�(n); y = A(1n, k; rA);x← KA(1n, k, rA) :
(fk(x) = y) ∨ (∀x′, fk(x′) �= y)] ≥ 1− ε(n).

The difference between the above notion of extractable one-way function family
ensembles and the notion of EOWF from Definition 2 is that extraction is not
guaranteed for all functions in the function family but only for a randomly chosen
function (concretely, the first step k ← Kn chooses a random function). Further-
more, the process of picking the random function may use private randomness
that is not available to the algorithm A.

The above difference makes it possible to derive extractable one-way function
family ensembles from existing knowledge assumptions in literature [19,31,4,39].
As an example, the Knowledge of Exponent (KEA) Assumption [19] informally
states that there exists an ensemble of groups {Gn}n∈N where the discrete log-
arithm problem is hard to solve and any PPT adversary A that on input g, w
can compute a pair of the form (gr, wr) must know r, in the sense that there
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exists an efficient extractor KA which given the random input of A can compute
r. Mapping this example to Definition 6, the key space is Kn = Gn × Gn and
the function fk with k = (w, g) is defined by fk(r) = (wr , gr).

Next, we replace the previous NIWI primitive with non-interactive zero knowl-
edge (NIZK) proofs in the common reference string (CRS) model [6,40]. We
omit the (standard) definition of NIZK, but note that the assumptions on which
NIZK proof systems for NP can be based are significantly more general than
the corresponding assumptions for NIWI, and include the existence of trapdoor
permutations [24].

We are now ready to state the main theorem of this section.

Theorem 2. If non-interactively extractable one-way function family ensembles
exist and NIZK proof systems exist for NP, then ISH is false.

Proof (sketch): The proof follows the same outline as the one from Theorem 1,
but the use of NIZK instead of NIWI allows it to take a somewhat simpler form.
Let F be a non-interactively extractable one-way function family ensemble. We
first define an efficient sampling algorithm A whose inputs are pairs of strings
(k, σ): k is a key from the key space of F and σ is a uniformly random string to
be used as a CRS for a NIZK proof system. A outputs a random image of fk and
a NIZK proof (under σ) that the output is valid. Let B be the alternate invertible
sampler hypothesized by ISH. Due to the soundness of the NIZK proof system,
B outputs valid images of fk when σ is chosen uniformly at random. Since F
is extractable, we can use B, its extractor KB and its inverter B−1 to construct
an efficient inversion algorithm for the family ensemble F , contradicting its one-
wayness property. See the full version for details. �

6 Applications of ISH

While our main motivation for studying ISH is its relevance to adaptively secure
MPC (discussed later in Section 7) we start by presenting two other consequences
of (weak) ISH. In order to avoid any confusion, we remind the reader that in
the previous sections we disproved ISH under some specific computational as-
sumptions. However, as we couldn’t disprove ISH unconditionally (or even under
standard cryptographic assumptions), it is still interesting to investigate the con-
sequences of ISH in order to put ISH in the proper cryptographic context and
to further motivate our study.

PKE and OT: As a first consequence, we note that if ISH holds, this would
settle the question of the relationship between public key encryption (PKE) and
oblivious transfer (OT), as studied in [26].

Theorem 3. If ISH holds, then the existence of semantic secure PKE implies
the existence of an oblivious transfer protocol.
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Proof (sketch): The proof follows by considering a protocol for 1
2 -OT similar

in spirit to the EGL protocol [23], where the receiver samples one public key
with the key generation algorithm (thus learning the secret key), and the other
using the alternate inverse-samplable algorithm, as described in ISH. Receiver’s
security loosely follows from the closeness property of ISH, while sender security
can be deduced by the semantic security of the PKE scheme. See the full version
for details. �

Assumptions for UC-secure computation: A systematic study of the minimal
setup and computational assumptions for UC-secure computation has been re-
cently undertaken in [21]. A question that the authors left open is whether the
existence of stand-alone oblivious transfer (SA-OT) is a necessary assumption
for UC-secure oblivious transfer (UC-OT) in the common reference string (CRS)
model, where the string is sampled from an arbitrary distribution. If ISH holds,
one could answer this question affirmatively. To show that SA-OT is necessary
for UC-OT we will show how to construct a protocol for SA-OT assuming that
UC-OT in the CRS model exists. Intuitively we need to generate a CRS to make
the protocol work, but we don’t want any party to learn the corresponding trap-
door. Unfortunately, we cannot let the parties use MPC in order to generate this
CRS, since unconditional MPC is impossible, and we cannot assume that OT
exists (or any equivalent computational assumption). But if ISH holds, there is a
way of sampling any CRS without learning the trapdoor by using the invertible
sampler, after which parties can run the UC-OT with respect to this CRS. Also
note that we don’t need this fake CRS to be distributed exactly as the real CRS,
but just computationally close: if the UC-OT protocol works with the real CRS
but not with the fake CRS, it could be used as a distinguisher, thus violating
ISH. Standard compilation techniques can be used to turn this protocol into a
protocol secure against a malicious adversary.

7 Adaptive Security and ISH

In this section we show that our strong variant of ISH (Hypothesis 1) is closely
related to secure multi-party computation with security against adaptive adver-
saries (adaptive MPC or AMPC for short). We first show that if all randomized
functionalities admit AMPC protocols, then ISH is true. Combined with The-
orem 2, this gives the first strong evidence that general AMPC is impossible.
Then, we proceed to show that if ISH is true and all the parties are mutually
connected with OT-channels,2 then general AMPC is possible – thus showing
that ISH is essentially equivalent to general AMPC.

As discussed in the introduction, our results apply to a wide range of AMPC
models from the literature. For convenience, we will refer to the two-party semi-
honest model, under the definition of [8] which requires security against post
execution corruption (PEC). The latter means that after the execution is com-
plete, the environment can ask the adversary to corrupt additional parties. The
2 Our use of ideal OT can be replaced by any adaptively secure OT protocol, which

can be based on standard cryptographic assumptions.
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PEC requirement is needed to prove sequential composition of adaptively secure
protocols, and is implied by most other definitions of adaptive security from the
literature (such as adaptive UC-security). Our negative result does not hold for
adaptively secure protocols without PEC (since in the semi-honest two-party
case, security in this model is equivalent to non-adaptive security [12]).

Brief Preliminaries. This section is an informal introduction to (adaptively se-
cure) MPC protocols. In an MPC protocol, adaptive security implies that an
adversarial entity can adaptively choose the parties he wants to corrupt at any
point in the protocol. An adversary is semi-honest if the parties that he corrupts
always follow the prescribed protocol. His goal is to try and obtain as much in-
formation as possible under this constraint. Security against such adversaries is a
basic requirement for any cryptographic protocol. An ideal model of security for
MPC protocols is one in which there exists a trusted third party who (via secure
private channels) receives all the inputs from the participants of the protocol
and sends back their respective outputs. Semi-honest adversaries in this model
can only learn the input and output of the parties that he corrupts. Considering
this as a basis for security, in the ideal-real model of [8], a real world protocol
for MPC is secure if for every adversary A in the real execution, there exists an
ideal world adversary S (also known as the simulator), such that the outputs of
A and S are computationally indistinguishable. We refer the reader to [8,36] for
a more precise definition of this notion.

7.1 Adaptively Secure MPC Implies ISH

First we show that if AMPC protocols exist for every functionality F , then ISH
(Hypothesis 1) is true.

Theorem 4. If for every PPT functionality F there exists a protocol Π that
securely realizes F against an adaptive semi-honest adversary (with PEC), then
ISH is true.

Proof (sketch): Consider a two-party randomized functionality F that takes
input from both parties and uses some internal coins and compute some function
A. Now if there exist a protocol π between P1, P2 that securely implements F ,
in particular the following two conditions will be satisfied: 1) The output of
the protocol π and the functionality F are computationally close (because the
protocol is correct); 2) There exist a simulator S that can explain the randomness
used by P1, P2 in π to produce the output z, without access to the functionality
random tape rF . Therefore we can use the protocol and the simulator (π, S) as
a foundation to build the inverse-samplable algorithm B,B−1 that satisfy the
requirement of ISH. The inverse-samplable algorithm B can be constructed by
simulating a run of the protocol π between P1 and P2 “in the head”, while the
inverter B−1 will run the simulator S as a subroutine. See the full version for
more details. �
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7.2 ISH Implies Adaptively Secure MPC

In the previous section we showed that AMPC implies ISH. Now we show that
the converse is true too.

To make the result stronger, we will show that ISH implies the strongest
variant of MPC i.e., multiparty computation secure against an active, adaptive
adversary in the universally composable security framework (UC-AMPC). Given
that UC computation is impossible in plain model, we look at the OT-hybrid
model where it is possible to evaluate adaptively well-formed functionalities [14],
and we show how ISH would allow us to extend this result to all functionalities.
We refer the reader to [9] for the definition of UC-AMPC. We look at adaptive
security, where the adversary A can corrupt any of the two parties P1, P2 at any
point during the protocol π.

Theorem 5. If ISH holds, then active secure UC-AMPC is possible for any
functionality in the UC-OT hybrid model.

Proof (sketch): It is known that any deterministic functionality can be securely
implemented in the OT-hybrid model[35,34]. Using the UC composition theorem
and ISH we extend the result for randomized functionalities.

Consider a general randomized functionality (z1, z2) ← F(x, y; ρ), where ρ
is the private randomness of F , (x, z1) the input/output of P1, and (y, z2) the
input/output of P2. Let zi = fi(x, y; ρ). Then from Strong ISH we know that
there exist f ′i , f

−1
i , the alternative sampler and the inverter.

Now define a new, deterministic functionality G as (z1, z2) = G((x, ρ1), (y, ρ2)),
where zi = f ′i(x, y; ρ

i
1⊕ρi

2), and where f ′i is the alternative sampler for fi. Being
a deterministic functionality, G can be securely realized with adaptive security
in the OT-hybrid model.

Now the protocol to implement F in the G-hybrid model proceeds as follows.
Party Pi picks ρi at random, feeds it into G together with its input, and waits to
receive the output. Note that the protocol does not exactly compute the required
functionality f , but f ′. The indistinguishability requirements of ISH imply that
the output of f and of f ′ are indistinguishable too, and that suffices for UC-
computation. This protocol can be shown to be UC-secure, see the full version
for more details. �
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Abstract. Bit-decomposition, which is proposed by Damg̊ard et al., is
a powerful tool for multi-party computation (MPC). Given a sharing of
secret a, it allows the parties to compute the sharings of the bits of a
in constant rounds. With the help of bit-decomposition, constant-rounds
protocols for various MPC problems can be constructed. However, bit-
decomposition is relatively expensive, so constructing protocols for MPC
problems without relying on bit-decomposition is a meaningful work.
In multi-party computation, it remains an open problem whether the
modulo reduction problem can be solved in constant rounds without bit-
decomposition.

In this paper, we propose a protocol for (public) modulo reduction
without relying on bit-decomposition. This protocol achieves constant
round complexity and linear communication complexity. Moreover, we
show a generalized bit-decomposition protocol which can, in constant
rounds, convert the sharing of secret a into the sharings of the digits of
a, along with the sharings of the bits of every digit. The digits can be
base-m for any m ≥ 2.

Keywords: Multiparty Computation, Constant-Rounds, Modulo Re-
duction, Generalization to Bit-Decomposition.

1 Introduction

Secure multi-party computation (MPC) allows the computation of a function f
when the inputs to f are secret values held by distinct parties. After running the
MPC protocol, the parties obtains only the predefined outputs but nothing else,
and the privacy of their inputs are guaranteed. Although generic solutions for
MPC already exist [2,10], the efficiency of these protocols tends to be low. So
we focus on constructing efficient protocols for specific functions. More exactly,
we are interested in integer arithmetic in the information theory setting [12].
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A proper choice of representation of the inputs can have great influence on the
efficiency of the computation [7,18]. For example, when we want to compute the
sum or the product of some private integer values, we’d better represent these
integers as elements of a prime field Zp and perform the computations using an
arithmetic circuit as additions and multiplications are trivial operations in the
field. If we use the binary representation of the integers and a Boolean circuit to
compute the expected result, then we will get a highly inefficient protocol as the
bitwise addition and multiplication are very expensive [4,5]. On the other hand,
if we want to compare some (private) integer values, the binary representation
will be of great advantage as comparison is a bit-oriented operation. In this case,
the arithmetic circuit over Zp will be a bad choice.

To bridge the gap between the arithmetic circuits and the Boolean circuits,
Damg̊ard et al. [7] proposed a novel protocol, called bit-decomposition, to con-
vert a sharing of secret a into the sharings of the bits of a. This protocol is very
useful both in theory and application. However, the bit-decomposition protocol
is relatively expensive in terms of round and communication complexities. So the
work on constructing (constant-rounds) protocols for MPC problems without re-
lying on bit-decomposition is not only interesting but also meaningful. Recently,
in [12], Nishide et al. constructed more efficient protocols for comparison, interval
test and equality test of shared secrets without relying on the bit-decomposition
protocol. However, it remains an open problem whether the modulo reduction
problem can be solved in constant rounds without bit-decomposition [17]. In
this paper, we show a linear protocol for the (public) modulo reduction prob-
lem without relying on bit-decomposition. What’s more, the bit-decomposition
protocol of [7] can only de-composite the sharing of secret a into the sharings of
the bits of a. However, especially in practice, we may often need the sharings of
the digits of a. Here the digits can be base-m for any m ≥ 2. For example, in
real life, integers are (almost always) represented as base-10 digits. Then, MPC
protocols for practical use may often require the base-10 digits of the secret
shared integers. Another example is as follows. If the integers are about time
and date, then base-24, base-30, base-60, or base-365 digits may be required. So,
to meet these requirements, we propose a generalization to bit-decomposition in
this paper.

1.1 Our Contributions

First we introduce some necessary notations. We focus mainly on the multi-party
computation based on linear secret sharing schemes. Assume that the underlying
secret sharing scheme is built in field Zp where p is a prime with bit-length l (i.e.
l = �log p�). For secret a ∈ Zp, we use [a]p to denote the secret sharing of a, and

[a]B to denote the sharings of the bits of a, i.e. [a]B =
(
[al−1]p, ..., [a1]p, [a0]p

)
.

The public modulo reduction problem can be formalized as follows:
[x mod m]p ←Modulo−Reduction([x]p,m)

where x ∈ Zp and m ∈ {2, 3, ..., p− 1}.
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In existing public modulo reduction protocols [7,17], the bit-decomposition
is involved, incurring O(l log l) communication complexity. What’s more, in the
worst case, the communication complexity of this protocol may go up to Θ(l2).
Specifically, the existing modulo reduction protocol uses the bit-decomposition
protocol to reduce the “size” of the problem, and then uses up to l compar-
isons, which is non-trivial, to determine the final result. This is essentially an
“exhaustive search”. If the bit-length of the inputs to the comparison protocol
is relatively long, e.g. Θ(l) which is often the case, the overall complexity will go
up to Θ(l2). So, the efficiency of the protocol may be very poor. To solve this
problem, we propose a protocol, which achieves constant round complexity and
linear communication complexity, for public modulo reduction without relying
on bit-decomposition. Besides this, we also propose an enhanced protocol that
can output the sharings of the bits of x mod m, i.e. [x mod m]B.

Moreover, we also construct a generalized bit-decomposition protocol which
can, in constant rounds, convert the sharing of secret a into the sharings of
the digits of a, along with the sharings of the bits of every digit. The digits
can be base-m for any m ≥ 2. We name this protocol the Base-m Digit-Bit-
Decomposition Protocol. The asymptotic communication complexity of this pro-
tocol is O(l log l). Obviously, when m is a power of 2, this protocol degenerates
to the bit-decomposition protocol.

For illustration, we will show an example here. Pick a binary number
a = (11111001)2 = 249.

If [a]p is given to the bit-decomposition protocol as input, it outputs
[a]B = ([1]p, [1]p, [1]p, [1]p, [1]p, [0]p, [0]p, [1]p);

if [a]p and m = 2 (or m = 4, 8, 16, 32, ...) are given to our Base-m Digit-Bit-
Decomposition protocol as inputs, it will output the same result with the bit-
decomposition protocol above; however, when [a]p and m = 10 are given to our
Base-m Digit-Bit-Decomposition protocol, it will output
([2]B, [4]B, [9]B) =

(
([0]p, [0]p, [1]p, [0]p), ([0]p, [1]p, [0]p, [0]p), ([1]p, [0]p, [0]p, [1]p)

)

which is significantly different from the output of bit-decomposition.
We also propose a simplified version of the protocol, called Base-m Digit-

Decomposition Protocol, which outputs
(
[2]p, [4]p, [9]p

)
when given [a]p and m =

10 as inputs.
Finally, we strongly recommend the interested readers to read [13] which is

the full version of this paper. Many of the details are omitted in the present
paper due to space constraints.

1.2 Related Work

The problem of bit-decomposition is a basic problem in MPC and was partially
solved by Algesheimer et al. in [1]. However, their solution is not constant-rounds
and can only handle values that are noticeably smaller than p. Damg̊ard et al.
proposed the first constant-rounds (full) solution to the problem of
bit-decomposition in [7]. This ice-break work is based on linear secret sharing
schemes [2,11]. Independently, Shoenmakers and Tuyls [16] solved the problem
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of bit-decomposition for multiparty computation based on (Paillier) threshold
homomorphic cryptosystems [3,8]. Somewhat surprisingly, Nishide and Ohta pro-
posed solutions for comparison, interval test and equality test of shared secrets
without relying on bit-decomposition [12]. Their techniques are novel, and have
enlightened us a lot. Recently, Toft showed a novel technique that can reduce the
communication complexity of bit-decomposition to almost linear [18]. Although
we do not focus on the “almost linear” property of protocols, some techniques
proposed in their paper are so inspiring and enlightening to us. In a followup
work, Reistad and Toft proposed a linear bit-decomposition protocol [14]. How-
ever, the security of their protocol is non-perfect.

As for the problem of modulo reduction (without bit-decomposition), Guajardo
et al. proposed a partial solution to this problem in the threshold homomorphic
setting [9]. In [6], Catrina et al. dealt with the non-constant-rounds private mod-
ulo reduction protocol with the incomplete accuracy and statistical privacy in the
setting where shared secrets are represented as fixed-point numbers.

2 Preliminaries

In this section we introduce some important notations and some known primi-
tives which will be frequently mentioned in the rest of the paper.

2.1 Notations and Conventions

The multiparty computation considered in this paper is based on linear secret
sharing schemes, such as Shamir’s [15]. As mentioned above, we denote the
underlying field as Zp where p is a prime with binary length l.

As in previous works, such as [7] and [12], we assume that the underlying secret
sharing scheme allows to compute [a+ b mod p]p from [a]p and [b]p without
communication, and that it allows to compute [ab mod p]p from (public) a ∈
Zp and [b]p without communication. We also assume that the secret sharing
scheme allows to compute [ab mod p]p from [a]p and [b]p through communication
among the parties. We call this procedure the multiplication protocol. Obviously,
for multiparty computation, the multiplication protocol is a dominant factor of
complexity as it involves communication. So, as in previous works, the round
complexity of the protocols is measured by the number of rounds of parallel
invocations of the multiplication protocol, and the communication complexity
is measured by the number of invocations of the multiplication protocol. For
example, if a protocol involves a multiplications in parallel and then another b
multiplications in parallel, then we can say that the round complexity is 2 and
the communication complexity is a+ b multiplications. We have to say that the
complexity analysis made in this paper is somewhat rough for we focus mainly
on the ideas of the solution, but not on the details of the implementation.

As in [12], when we write [C]p, where C is a Boolean test, it means that

C ∈ {0, 1} and C = 1 iff C is true. For example, we use [x
?
<y]p to denote the

output of the comparison protocol, i.e. (x
?
<y) = 1 iff x < y holds.
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For the base m ∈ {2, 3, ..., p−1}, define L(m) = �logm�. It is easy to see that
we should use L(m) bits to represent a base-m digit. For example, when m = 10,
we have L(m) = �log 10� = 4, this means we must use 4 bits to represent a base-
10 digit. Notice that we have 2L(m)−1 < m ≤ 2L(m) and m = 2L(m) holds iff m
is a power of 2. Moreover, we have L(m) ≤ l as m ≤ p− 1.

Define l(m) = �logmp�. Obviously, l(m) is the length of p when p is coded
base-m. Note that l(m) = �logmp� =

⌈
log p
log m

⌉
=

⌈
l

log m

⌉
≤ l as m ≥ 2.

For any a ∈ Zp, the secret sharing of a is denoted by [a]p. We use [a]B to
denote the bitwise sharing of a.

We use [a]mD =
(
[al(m)−1]mp , ..., [a1]mp , [a0]mp

)
to denote the digit-wise sharing

of a. For i ∈ {0, 1, ..., l(m)−1}, [ai]mp denotes the sharing of the i′th base-m digit
of a with 0 ≤ ai ≤ (m− 1).

The digit-bit-wise sharing of a, which is denoted by [a]mD,B, is defined as below:

[a]mD,B =
(
[al(m)−1]mB , ..., [a1]mB , [a0]mB

)
,

in which [ai]mB =
(
[aL(m)−1

i ]p, ..., [a
1
i ]p, [a

0
i ]p

)
(i ∈ {0, 1, ..., l(m)− 1}) denotes the

bitwise sharing of the i′th base-m digit of a. Note that [ai]mB has L(m) bits.
Sometimes, if m can be inferred from the context, we may write [ai]mp (or

[ai]mB ) as [ai]p (or [ai]B) for simplicity.
In this paper, we often need to get the digit-wise representation or the digit-

bit-wise representation of some public value c, i.e. [c]mD or [c]mD,B. This can be
done freely as c is public.

It’s easy to see that if we have obtained [x]B, then [x]p can be freely obtained
by a linear combination. We can think of this as [x]B contains “more information”
than [x]p. For example, if we get [a]mD,B =

(
[al(m)−1]mB , ..., [a1]mB , [a0]mB

)
, then

[a]mD =
(
[al(m)−1]mp , ..., [a1]mp , [a0]mp

)
is implicitly obtained. In protocols that can

output both [x]B and [x]p, which is often the case in this paper, we always omit
[x]p for simplicity.

Given [c]p, we need a protocol to reveal c, which is denoted by c← reveal([c]p).
When we write command C ← b?A : B, where A,B,C ∈ Zp and b ∈ {0, 1},

it means the following:

if b = 1, then C is set to A; otherwise, C is set to B.

We call this command the conditional selection command. When all the variables
in this command are public, this “selection” can of course be done. When the
variables are shared or even bitwise shared, this can also be done. Specifically,
the command

[C]p ← [b]p?[A]p : [B]p
can be realized by setting

[C]p ← [b]p([A]p − [B]p) + [B]p
which costs 1 round and 1 multiplication; the command

[C]
B
← [b]p?[A]

B
: [B]

B
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can be realized by the following procedure:

For i = 0, 1, ..., l− 1 in parallel: [Ci]p ← [b]p([Ai]p − [Bi]p) + [Bi]p
[C]B ←

(
[Cl−1]p, ..., [C1]p, [C0]p

)
�|A| = |B| = |C| = l

Note that the above procedure costs 1 round, l invocations of multiplication.
Other cases, such as [C]mD ← [b]p?[A]mD : [B]mD and [C]mD,B ← [b]p?[A]mD,B :

[B]mD,B can be realized similarly. We will frequently use this conditional selection
command in our protocols.

2.2 Known Primitives

We will now simply introduce some existing primitives which are important
building blocks of this paper. All these primitives are proposed in [7].
�Random-Bit. The Random-Bit protocol is the most basic primitive which
can generate a shared uniformly random bit unknown to all parties. In the linear
secret sharing setting, which is the case in this paper, it takes only 2 rounds and
2 multiplications.
�Bitwise-LessThan. Given twobitwise shared inputs [x]B and [y]B, theBitwise-

LessThan protocol can compute a shared bit [x
?
<y]p. We note that using the

method of [18], this protocol can be realized in 6 rounds and 13l + 6
√
l multipli-

cations. Notice that 13l + 6
√
l ≤ 14l holds for l ≥ 36 which is often the case in

practice. So, for simplicity, we refer to the complexity of this protocol as 6 rounds
and 14l multiplications.
�Bitwise-Addition. Given two bitwise shared inputs, [x]B and [y]B, the Bitwise-
Addition protocol outputs [x+ y]B. An important point of this protocol is that
d = x + y holds over the integers, not (only) mod p. This protocol, which costs
15 rounds and 47l log l multiplications, is the most expensive primitive of the bit-
decomposition protocol of [7]. We will not use this primitive in this paper, but use
Bitwise-Subtraction instead. However, the asymptotic complexity of our Bitwise-
Subtraction protocol is the same with that of the Bitwise-Addition since they both
involve a generic prefix protocol which costs O(l log l) multiplications. We will in-
troduce our Bitwise-Subtraction protocol later.

3 A Simple Introduction to Our New Primitives

In this section, we will simply introduce the new primitives proposed in this
paper. We will only describe the inputs and the outputs of the protocols, along
with some simple comments. All these new primitives will be described in detail
in Section 6.

•Bitwise-Subtraction. The Bitwise-Subtraction protocol accepts two bitwise
shared values [x]B and [y]B and outputs [x− y]B. This protocol is in fact first
proposed in [18] and is re-described (in a widely different form) in this paper. In
our protocols, we only need a restricted version (of Bitwise-Subtraction) which
requires x ≥ y. A run of this restricted protocol is denoted by
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[x− y]B ← Bitwise− Subtraction∗([x]B , [y]B).
It costs 15 rounds and 47l log l multiplications.

•BORROWS. This protocol is used as a sub-protocol in the Bitwise-Subtraction
protocol above to compute the borrow bits (as well as in the Bitwise-Subtraction∗

protocol). Given two bitwise sharings [x]B and [y]B, this protocol outputs
([bl−1]p, ..., [b1]p, [b0]p)← BORROWS([x]B , [y]B)

where [bi]p is the sharing of the borrow bit at bit-position i ∈ {0, 1, ..., l− 1}.
•Random-Digit-Bit. Given m ∈ {2, 3, ..., p− 1} as input, the Random-Digit-
Bit protocol outputs

[d]mB =
(
[dL(m)−1]p, ..., [d

1]p, [d
0]p

)
← Random−Digit−Bit(m)

where d ∈ {0, 1, ...,m−1} represents a base-m digit. Notice that [d]mp is implicitly
obtained. The complexity of this protocol is 8 rounds and 16L(m) multiplica-
tions.

•Digit-Bit-wise-LessThan. The Digit-Bit-wise-LessThan protocol accepts two
digit-bit-wise shared values [x]mD,B and [y]mD,B and outputs

[x
?
<y]p ← Digit−Bit− wise− LessThan([x]mD,B, [y]

m
D,B).

The complexity of this protocol is 6 rounds and 14l multiplications.

•Random-Solved-Digits-Bits.Using the above two primitives as sub-protocols,
we can construct the Random-Solved-Digits-Bits protocol which, when givenm ∈
{2, 3, ..., p− 1} as input, outputs a digit-bit-wise shared random value [r]mD,B sat-
isfying r < p. We denote a run of this protocol by

[r]mD,B ← Random− Solved−Digits−Bits(m).
This protocol takes 14 rounds and 312l multiplications.

•Digit-Bit-wise-Subtraction. This protocol is a novel generalization to the
bitwise subtraction protocol and is very important to this paper. It accepts two
digit-bit-wise shared values [x]mD,B and [y]mD,B and outputs [x− y]mD,B. Again, in
this paper, we need only a restricted version which requires x ≥ y. A run of this
restricted protocol is denoted by

[x− y]mD,B ← Digit−Bit− wise− Subtraction∗([x]mD,B , [y]
m
D,B).

This restricted protocol costs 30 rounds and 47l log l+47l log (L(m)) multiplica-
tions. What’s more, if we don’t need [x−y]mD,B but (only) need [x−y]mD instead,
then this restricted protocol can be (further) simplified. We denote a run of this
(further) simplified protocol by

[x− y]mD ← Digit−Bit− wise− Subtraction∗−([x]mD,B , [y]
m
D,B).

The complexity of this protocol goes down to 21 rounds and 16l+47l(m) log
(
l(m)

)
multiplications.

With the above primitives, we can construct our Modulo-Reduction protocol
and Base-m Digit-Bit-Decomposition protocol, which will be described in detail
separately in Section 4 and Section 5.
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4 Multiparty Computation for Modulo Reduction
without Bit-Decomposition

In this section, we give out our (public) Modulo-Reduction protocol which is real-
ized without relying on bit-decomposition. This protocol is constant-rounds and
involves only O(l) multiplications. Informally speaking, our Modulo-Reduction
protocol is essentially the Least Significant Digit Protocol and is a natural gen-
eralization to the Least Significant Bit Protocol (i.e. the LSB protocol) in [12].
Recall that for an integer a, the sharing of the least significant base-m digit of a
is denoted by [a0]mp , and the bitwise sharing of the least significant base-m digit
of a is denoted by [a0]mB . The protocol is described in detail in Protocol 1.

Protocol 1. The modulo reduction protocol, Modulo−Reduction(·), for com-
puting the residue of a shared integer modulo a public integer.

Input: [x]p with x ∈ Zp and m ∈ {2, 3, ..., p− 1}.
Output: [x mod m]p.
Process:
[r]mD,B ← Random− Solved−Digits−Bits(m)
c← reveal([x]p + [r]mD,B) �Note that [r]mD,B implies [r]mp . (1.a)
[X1]mp ← [c0]mp − [r0]mB � [r0]mB implies [r0]mp .
[X2]mp ← [c0]mp − [r0]mB +m
[s]p ← Bitwise− LessThan([c0]mB , [r0]

m
B ) (1.b)

[X ]mp ← [s]p?[X2]mp : [X1]mp �A conditional selection command.

c′ ← c+ p �Addition over the integers.
[X ′1]

m
p ← [c′0]

m
p − [r0]mB

[X ′2]mp ← [c′0]mp − [r0]mB +m
[s′]p ← Bitwise− LessThan([c′0]

m
B , [r0]

m
B ) (1.c)

[X ′]mp ← [s′]p?[X ′2]
m
p : [X ′1]

m
p

[t]p ← Digit−Bit− wise− LessThan([c]mD,B, [r]
m
D,B) (1.d)

[x mod m]p = [x0]mp ← [t]p?[X ′]mp : [X ]mp
Return [x mod m]p

Correctness: By simulating a base-m addition process, the protocol extracts
[x0]mp which is just [x mod m]p. See [13] for the details.

Privacy: The only possible information leakage takes place in line (1.a), where
a reveal command is involved. However, the revealed value, i.e. c, is uniformly
random, so it leaks no information about the secret x. So the privacy is guaranteed.

Complexity: Complexity comes mainly from the invocations of sub-protocols.
Note that the two invocations of Bitwise-LessThan and the invocation of Digit-
Bit-wise-LessThan can be scheduled in parallel. In all it will cost 22 rounds and

312l+ 14L(m) + 1 + 14L(m) + 1 + 14l+ 1 = 326l+ 28L(m) + 3
multiplications. Recall that L(m) ≤ l, so the communication complexity is upper
bounded by 354l+ 3 multiplications.
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The original modulo reduction problem does not require the sharings of the
bits of the residue, i.e. [x mod m]B. So in the above protocol, [x mod m]B is
not computed. However, if we want, we can get [x mod m]B using an enhanced
version of the above Modulo-Reduction protocol. This enhanced protocol will be
denoted by Modulo− Reduction+(·). The construction is seen as Protocol 2.

Protocol 2. The enhanced modulo reduction protocol,Modulo−Reduction+(·),
for computing the bitwise shared residue of a shared integer modulo a public
integer.

Input: [x]p with x ∈ Zp and m ∈ {2, 3, ..., p− 1}.
Output: [x mod m]B.
Process:
[r]mD,B ← Random− Solved−Digits−Bits(m)
c← reveal([x]p + [r]mD,B)
[M̄1]mB ← [c0]mB [S̄1]mB ← [r0]mB
[M̄2]mB ← [c0 +m]mB [S̄2]mB ← [r0]mB �Addition over the integers.
[s]p ← Bitwise− LessThan([c0]mB , [r0]

m
B )

[M̄ ]mB ← [s]p?[M̄2]mB : [M̄1]mB �Involving L(m) multiplications.
[S̄]mB ← [s]p?[S̄2]mB : [S̄1]mB

c′ ← c+ p
[M̄ ′1]

m
B ← [c′0]

m
B [S̄′1]

m
B ← [r0]mB

[M̄ ′2]mB ← [c′0 +m]mB [S̄′2]mB ← [r0]mB
[s′]p ← Bitwise− LessThan([c′0]

m
B , [r0]

m
B )

[M̄ ′]mB ← [s′]p?[M̄ ′2]
m
B : [M̄ ′1]

m
B

[S̄′]mB ← [s′]p?[S̄′2]
m
B : [S̄′1]

m
B

[t]p ← Digit−Bit− wise− LessThan(c, [r]mD,B)
[M ]mB ← [t]p?[M̄ ′]mB : [M̄ ]mB �M is the minuend.
[S]mB ← [t]p?[S̄′]mB : [S̄]mB �S is the subtrahend.

[x mod m]B = [x0]mB ← Bitwise− Subtraction∗([M ]mB , [S]mB )
Return [x mod m]B

The correctness and privacy of this protocol can be proved similarly to the
Modulo-Reduction protocol above. By carefully selecting the Minuend and the
Subtrahend, we can get the expected result by using only one invocation of
the Bitwise-Subtraction∗ protocol. The overall complexity of this protocol is 37
rounds and
326l+28L(m)+47L(m) log(L(m))+6 L(m) = 326l+34L(m)+47L(m) log(L(m))

multiplications.

5 A Generalization to Bit-Decomposition

In this section, we will propose our generalization to bit-decomposition, i.e.
the Base-m Digit-Bit-Decomposition protocol. The details of this protocol are
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presented in Protocol 3. The main framework of this protocol is similar to the
bit-decomposition protocol of [18].

Protocol 3. The Base-m Digit-Bit-Decomposition protocol,
Digit− Bit −Decomposition(·,m), for converting the sharing of secret x into
the digit-bit-wise sharing of x.

Input: [x]p with x ∈ Zp and the base m ∈ {2, 3, ..., p− 1}.
Output: [x]mD,B

Process:
[r]mD,B ← Random− Solved−Digits−Bits(m)
c← reveal([x]p + [r]mD,B) (3.a)
c′ ← c+ p
[t]p ← Digit−Bit− wise− LessThan([c]mD,B, [r]

m
D,B) (3.b)

[c̃]mD,B = [t]p?[c′]mD,B : [c]mD,B �Note that c̃ = x+ r
[x]mD,B ← Digit−Bit− wise− Subtraction∗([c̃]mD,B, [r]

m
D,B) (3.c)

Return [x]mD,B

Correctness is described in detail in [13]. Privacy is straightforward. The over-
all complexity of this protocol is 14 + 6 + 30 = 50 rounds and

312l+ 14l+ (47l log l + 47l log (L(m))) = 326l+ 47l log l+ 47l log (L(m))
multiplications. The communication complexity is upper bounded by 326l +
94l log l multiplications as L(m) ≤ l.

If we do not need [x]mD,B but (only) need [x]mD instead, then the above proto-
col can be simplified. The method is to replace the Digit-Bit-wise-Subtraction∗

protocol with the Digit-Bit-wise-Subtraction∗− protocol. We call this simplified
protocol the Base-m Digit-Decomposition Protocol, a run of which is denoted by
Digit−Decomposition(·,m). The correctness and privacy of this protocol can
be similarly proved. The complexity goes down to 14 + 6 + 21 = 41 rounds and

312l+ 14l+
(
16l+ 47l(m) log

(
l(m)

))
= 342l+ 47l(m) log

(
l(m)

)
multiplications. Recall that l(m) = �logmp� ≤ l, so the communication complex-
ity is upper bounded by 342l+ 47l log l multiplications.

6 Realizing the Primitives

In this section, we will describe in detail the (new) primitives which are essential
for the protocols of our paper. Informally, most of the protocols in this section
are generalized version of the protocols of [7] from base-2 to base-m for any
m ≥ 2. It will be seen that, when m is a power of 2, some of our primitives
degenerate to the existing primitives in [7]. So, in the complexity analysis, we
focus on the case where m is not a power of 2, i.e. m < 2L(m).

6.1 Bitwise-Subtraction

We describe the Bitwise-Subtraction protocol here. In fact, this protocol is al-
ready proposed in [18]. They reduced the problem of bitwise-subtraction to
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the Post-fix Comparison problem. Here, we re-consider the problem of bitwise-
subtraction and solve it in a (highly) similar manner to the Bitwise-Addition
protocol of [7].

As is mentioned in Section 3, we will first propose a restricted (bitwise-
subtraction) protocol, Bitwise-Subtraction∗, which requires that the minuend
is not less than the subtrahend. We will only use this restricted version in this
paper. The general version without the above restriction can be realized with
the help of the Bitwise-LessThan protocol. See [13] for the details. Given a
BORROWS protocol that can compute the sharings of the borrow bits, the
Bitwise-Subtraction∗ protocol can be realized as in Protocol 4.

Protocol 4. The restricted bitwise-subtraction protocol,
Bitwise − Subtraction∗(·), for computing the bitwise sharing of the difference
between two bitwise shared values. This protocol requires that the minuend is
not less than the subtrahend.

Input: [x]B = ([xl−1]p, ..., [x1]p, [x0]p) and [y]B = ([yl−1]p, ..., [y1]p, [y0]p) satis-
fying x ≥ y.
Output: [x− y]B = [d]B = ([dl−1]p, ..., [d1]p, [d0]p).
Process:
([bl−1]p, ..., [b1]p, [b0]p)← BORROWS([x]B , [y]B)
[d0]p ← [x0]p − [y0]p + 2[b0]p
For i = 1, 2, ..., l− 1 in parallel: [di]p ← [xi]p − [yi]p + 2[bi]p − [bi−1]p
[x− y]B = [d]B ← ([dl−1]p, ..., [d1]p, [d0]p)
Return [x− y]B

Note that the output of this protocol, i.e. [x− y]B, is of bit length l, not l+1.
This is because x ≥ y holds and thus we do not need a sign bit. Correctness
and privacy is straightforward. The complexity of this protocol is 15 rounds and
47l log l multiplications.

6.2 Computing the Borrow Bits

We now describe the BORROWS protocol which can compute the sharings of the
borrow bits. In fact our BORROWS protocol is highly similar to the CARRIES
protocol in [7]. So only the difference is sketched here. As in [7], we use an
operator ◦ :

∑×∑→∑
, where

∑
= {S, P,K}, which is defined by S ◦ x = S

for all x ∈ ∑
, K ◦ x = K for all x ∈ ∑

, P ◦ x = x for all x ∈ ∑
. Here,

◦ represents the borrow-propagation operator, whereas in [7] it represents the
carry-propagation operator. When computing [x− y]B (where x ≥ y holds) with
two bitwise shared inputs

[x]B = ([xl−1]p, ..., [x1]p, [x0]p) and [y]B = ([yl−1]p, ..., [y1]p, [y0]p),
for bit-position i ∈ {0, 1, . . . , l−1}, let ei = S iff a borrow is set at position i (i.e.
xi < yi); ei = P iff a borrow would be propagated at position i (i.e. xi = yi);
ei = K iff a borrow would be killed at position i (i.e. xi > yi). It can be easily
verified that bi = 1 (i.e. the i′th borrow bit is set, which means the i′th bit needs
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to borrow a “1” from the (i + 1)′th bit) iff ei ◦ ei−1 ◦ · · · ◦ e0 = S. It can be
seen that in the case where ◦ represents the borrow-propagation operator and in
the case where ◦ represents the carry-propagation operator, the rules for ◦ (i.e.
S ◦ x = S, K ◦ x = K and P ◦ x = x for all x ∈ ∑

) are completely the same.
This means that when computing the borrow bits, once all the ei

′s are obtained,
the residue procedure of our BORROWS protocol will be (completely) the same
with that of the CARRIES protocol (in [7]). So, the only difference lies in the
procedure of computing the ei

′s, which will be sketched below.
As in [7], we represent S, P and K with bit vectors

(1, 0, 0), (0, 1, 0), (0, 0, 1) ∈ {0, 1}3.
Then, for every bit-position i ∈ {0, 1, ..., l− 1}, [ei]B = ([si]p, [pi]p, [ki]p) can be
obtained as follows: [si]p = [yi]p − [xi]p[yi]p; [pi]p = 1− [xi]p− [yi]p + 2[xi]p[yi]p;
[ki]p = [xi]p−[xi]p[yi]p, which in fact need only one multiplication (i.e. [xi]p[yi]p).
Correctness follows readily from the above arguments. Privacy is straightforward.
The complexity of the protocol is 15 rounds and 47l log l multiplications.

6.3 Random-Digit-Bit

We will now introduce the Random-Digit-Bit protocol for generating a random
bitwise shared base-m digit, which is denoted by d here. In fact, d is a random
integer satisfying 0 ≤ d ≤ m− 1. The details are presented in Protocol 5.

Protocol 5. The Random-Digit-Bit protocol, Random − Digit − Bit(·), for
generating the bitwise sharing of a random digit. The digit is base-m for any
m ≥ 2.

Input: The base m satisfying 2 ≤ m ≤ p− 1.
Output: [d]mB = ([dL(m)−1]p, ..., [d1]p, [d0]p) with 0 ≤ d ≤ m− 1.
Process:
For i = 0, 1, . . . , L (m)− 1 in parallel: [di]p ← Random−Bit().
[d]mB ← ([dL(m)−1]p, ..., [d1]p, [d0]p)
If m = 2L(m), then Return [d]mB . Otherwise proceed as below.
[r]p ← Bitwise− LessThan([d]mB ,m)
r ← reveal([r]p)
If r = 0, then abort. Otherwise Return [d]mB .

See [13] for the correctness. As for the privacy, when this protocol does not
abort, the only information leaked is that d < m, which is an a priori fact. As
for the complexity, when m is not a power of 2, the total complexity of one run of
this protocol is 8 rounds and 16L(m) multiplications. As in [7], using a Chernoff
bound, it can be seen that if this protocol has to be repeated in parallel to get a
lower abort probability, then the round complexity is still 8, and the amortized
communication complexity goes up to 4× 16L(m) = 64L(m) multiplications.
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6.4 Digit-Bit-Wise-LessThan

The Digit-Bit-wise-LessThan protocol proposed here is a natural generalization
to the Bitwise-LessThan protocol. Recall that when we write [C]p, where C is
a Boolean test, it means that C ∈ {0, 1} and C = 1 iff C is true. The details of
the protocol are presented in Protocol 6.

Protocol 6. The Digit-Bit-wise-LessThan protocol,
Digit−Bit−wise−LessThan(·), for comparing two digit-bit-wise shared values.

Input: Two digit-bit-wise shared values [x]mD,B = ([xl(m)−1]mB , ..., [x1]mB , [x0]mB )
and [y]mD,B = ([yl(m)−1]mB , ..., [y1]

m
B , [y0]

m
B ).

Output: [(x
?
<y)]p, where (x

?
<y) = 1 iff x < y holds.

Process:
[X ]B ← ([xL(m)−1

l(m)−1
]p, ..., [x1

l(m)−1
]p, [x0

l(m)−1
]p,

...

...

...

[xL(m)−1
1 ]p, ..., [x1

1]p, [x
0
1]p,

[xL(m)−1
0 ]p, ..., [x1

0]p, [x0
0]p)

[Y ]B ← ([yL(m)−1

l(m)−1
]p, ..., [y1

l(m)−1
]p, [y0

l(m)−1
]p,

...

...

...

[yL(m)−1
1 ]p, ..., [y1

1 ]p, [y
0
1 ]p,

[yL(m)−1
0 ]p, ..., [y1

0 ]p, [y
0
0 ]p)

[(x
?
<y)]p = [(X

?
<Y )]p ← Bitwise− LessThan([X ]B, [Y ]B)

Return [(x
?
<y)]p

Correctness is presented in [13]. Privacy follows readily from only using pri-
vate sub-protocols. The complexity of the protocol is 6 rounds and (about) 14l
multiplications.

6.5 Random-Solved-Digits-Bits

The Random-Solved-Digits-Bits protocol is an important primitive which can
generate a digit-bit-wise shared random value unknown to all parties. It is a
natural generalization to the Random-Solved-Bits protocol in [7]. The details
are presented in Protocol 7.

Recall that the bitwise representation of the most significant base-m digit of
p is [pl(m)−1]mB =

(
p

L(m)−1

l(m)−1
, ..., p1

l(m)−1
, p0

l(m)−1

)
. Suppose pj

l(m)−1
(j ∈ {0, 1, ...,
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L(m)−1}) is the left-most “1” in [pl(m)−1]mB . Then, in order to get an acceptable
abort probability, the bit-length of the most significant base-m digit of r should
be j + 1 because an acceptable r must be less than p. In this protocol, for
simplicity, we assume that pL(m)−1

l(m)−1
= 1. Under this assumption, we can generate

[rl(m)−1]mB using the Random-Digit-Bit protocol. If pL(m)−1

l(m)−1
= 0, then [rl(m)−1]mB

can be generated by using the Random-Bit protocol directly.

Protocol 7. The Random-Solved-Digits-Bits protocol,
Random−Solved−Digits−Bits(·), for jointly generating a digit-bit-wise shared
value which is uniformly random from Zp.

Input: m, i.e. the expected base of the digits.
Output: [r]mD,B , in which r is a uniformly random value satisfying r < p.
Process:
For i = 0, 1, ..., l(m) − 1 in parallel: [ri]mB ← Random−Digit−Bit(m).
[r]mD,B ← ([rl(m)−1]mB , ..., [r1]

m
B , [r0]

m
B )

[c]p ← Digit−Bit− wise− LessThan([r]mD,B, [p]
m
D,B)

c← reveal([c]p)
If c = 0, then abort. Otherwise Return [r]mD,B .

The correctness and the privacy is straightforward. The amortized
complexity of this protocol is 8+6=14 rounds and

(
l(m) · 64L(m) + 14l

)∗4 = 312l
multiplications.

6.6 Digit-Bit-Wise-Subtraction

In this section, we will describe in detail the restricted version, Digit-Bit-wise-
Subtraction∗, which requires that the minuend is not less than the subtrahend.
The general version, which can be realized using the techniques in the Bitwise-
Subtraction protocol and which is not used in the paper, is omitted for simplicity.
•The Restricted Digit-Bit-Wise-Subtraction. We will now describe in

detail the Digit-Bit-wise-Subtraction∗ protocol. This protocol is novel and is the
most important primitive in our Base-m Digit-Bit-Decomposition protocol. The
details are presented in Protocol 8.

Protocol 8. The restricted Digit-Bit-wise-Subtraction protocol,
Digit− Bit − wise − Subtraction∗(·), for computing the digit-bit-wise sharing
of the difference between two digit-bit-wise shared values with the minuend not
less than the subtrahend.

Input: [x]mD,B = ([xl(m)−1]mB , ..., [x1]mB , [x0]mB ) and
[y]mD,B = ([yl(m)−1]mB , ..., [y1]

m
B , [y0]

m
B ) satisfying x ≥ y.

Output: [x− y]mD,B = [d]mD,B = ([dl(m)−1]mB , ..., [d1]mB , [d0]mB ).
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Process:

[X ]B ← ([xL(m)−1

l(m)−1
]p, ..., [x1

l(m)−1
]p, [x0

l(m)−1
]p,

...

...

...

[xL(m)−1
1 ]p, ..., [x1

1]p, [x0
1]p,

[xL(m)−1
0 ]p, ..., [x1

0]p, [x
0
0]p)

[Y ]B ← ([yL(m)−1

l(m)−1
]p, ..., [y1

l(m)−1
]p, [y0

l(m)−1
]p,

...

...

...

[yL(m)−1
1 ]p, ..., [y1

1 ]p, [y
0
1 ]p,

[yL(m)−1
0 ]p, ..., [y1

0 ]p, [y0
0 ]p)

([bL(m)−1

l(m)−1
]p, ..., [b1l(m)−1

]p, [b0l(m)−1
]p,

...

...

...

[bL(m)−1
1 ]p, ..., [b11]p, [b01]p,

[bL(m)−1
0 ]p, ..., [b10]p, [b

0
0]p)← BORROWS([X ]B, [Y ]B)

(8.a)

[t00]p = [x0
0]p − [y0

0 ]p + 2[b00]p (8.b)
For j = 1, ..., L(m)− 1, in parallel: [tj0]p = [xj

0]p − [yj
0]p + 2[bj0]p − [bj−1

0 ]p.
For i = 1, ..., l(m) − 1 do

[t0i ]p = [x0
i ]p − [y0

i ]p + 2[b0i ]p − [bL(m)−1
i−1 ]p

For j = 1, ..., L(m)− 1, in parallel: [tji ]p = [xj
i ]p − [yj

i ]p + 2[bji ]p − [bj−1
i ]p.

End for (8.c)

C ← 2L(m) −m � Note that C is public. (8.d)

For i = 0, 1, ..., l(m) − 1 do
[ti]mB ← ([tL(m)−1

i ]p, ..., [t1i ]p, [t
0
i ]p)

If m < 2L(m) then �Recall that m < 2L(m) means m is not a power of 2.
[di]mB ← Bitwise− Subtraction∗

(
[ti]mB ,

(
[bL(m)−1

i ]p?C : 0
))

(8.e)
Else

[di]mB ← [ti]mB
End if

End for (8.f)

[x− y]mD,B = [d]mD,B ← ([dl(m)−1]mB , ..., [d1]mB , [d0]mB )
Return [x− y]mD,B

Correctness is described in detail in [13]. Privacy follows readily from the
fact that we only call private sub-protocols. The complexity of this protocol
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is 30 rounds and 47l log l + 47l log (L(m)) multiplications. The communication
complexity is upper bounded by 94l log l multiplications since L(m) ≤ l.
•A Simplified Version. If we do not need [x−y]mD,B but (only) need [x−y]mD

instead, a simplified version of the above protocol, Digit-Bit-wise-Subtraction∗−,
can be obtained by simply replacing all the statements after statement (8.a) with
the following.

[d0]mp = [x0]mp − [y0]mp +m[bL(m)−1
0 ]p

For i = 1, ..., l(m)−1 in parallel: [di]mp = [xi]mp − [yi]mp +m[bL(m)−1
i ]p− [bL(m)−1

i−1 ]p
[x− y]mD = [d]mD ← ([dl(m)−1]mp , ..., [d1]mp , [d0]mp )
Return [x− y]mD

Note that the above process is free. Correctness and privacy is straightfor-
ward. The complexity of this protocol goes down to 15 rounds and 47l log l
multiplications as the expensive Bitwise-Subtraction∗ protocol is omitted.

If this (simplified) protocol is constructed from scratch, then, for relatively
large m, the borrow bits for every digit-position, i.e. [bL(m)−1

i ]p for i ∈ {0, 1, ...,
l(m) − 1}, can be obtained with a lower cost. For every digit-position i ∈
{0, 1, ..., l(m) − 1}, ei ∈ {S, P,K} can be obtained by calling the linear prim-
itive Bitwise-LessThan. Specifically, we have
ei = S ⇔ [xi]mB < [yi]mB ; ei = P ⇔ [xi]mB = [yi]mB ; ei = K ⇔ [xi]mB > [yi]mB .

So, using the Bitwise-LessThan protocol in both ways, which costs l+
√
l more

multiplications and no more rounds than one single invocation [18], we can get
all the ei

′s. Then as in the BORROWS protocol (or the CARRIES protocol), the
target borrow bits (for every digit-position) can be obtained by using a generic
prefix protocol which costs 15 rounds and 47l(m) log l(m) multiplications. So the
Digit-Bit-wise-Subtraction∗− protocol can be realized in 6+15=21 rounds and
(less than) 16l + 47l(m) log

(
l(m)

)
multiplications. Recall that l(m) = �logmp�.

Then for relatively large m, e.g. m ≈ p
1
10 where l(m) = 10, the communication

complexity may be very low.

7 Comments

As in [12], although we describe all our protocols in the secret sharing setting,
our techniques are also applicable to the threshold homomorphic setting. All the
protocols in our paper can be similarly realized in this setting. However, some
of the protocols in this setting may be less efficient than their counterpart in
the secret sharing setting because the Random-Bit protocol, which is a basic
building block, is more expensive in the threshold homomorphic setting.

It is easy to see that using our Base-m Digit-Decomposition protocol which
extracts all the base-m digits of the shared input, we can also solve the mod-
ulo reduction problem (which requires only the least significant base-m digit).
However, our Modulo-Reduction protocol is meaningful because it achieves linear
communication complexity and thus is much more efficient.
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Obviously, we can say that the bit-decomposition protocol (of [7]) is a special
case of our Base-m Digit-Bit-Decomposition protocol when m is a power of 2.
In fact, we can also view the bit-decomposition protocol as a special case of our
enhanced Modulo-Reduction protocol when the modulus m is just p, i.e. we have

[x]B = Bit−Decomposition([x]p) = Modulo−Reduction+([x]p, p)
for any x ∈ Zp. Our enhanced Modulo-Reduction protocol can handle not only
the special case where m = p but also the general case where m ∈ {2, 3, ..., p−1},
so it can also be viewed as a generalization to bit-decomposition.

We note that, in [18], a novel technique is proposed which can reduce the com-
munication complexity of the bit-decomposition protocol to almost linear. We ar-
gue that their technique can also be used in our Base-m Digit-Bit-Decomposition
protocol (as well as our Base-m Digit-Decomposition protocol) to reduce the
(communication) complexity to almost linear, because their technique is in fact
applicable to any PreF ix−◦ (or PostF ix−◦) protocol (which is a dominant fac-
tor of the communication complexity) assuming a linear protocol for computing
the UnboundedFanIn− ◦ exists, which is just the case in our protocols.

8 Applications and Future Work

In [13], we will show some applications of our new protocols, such as efficient
Integer Division protocol, Divisibility Test protocol, Conversion of Integer Rep-
resentation between Number Systems, etc.

Although we are successful in providing an (efficient) solution to the public
modulo reduction problem, we fail in solving the private modulo reduction prob-
lem where the modulus is (also) secret shared. The absence of the knowledge of
the exact value of m makes our techniques useless. We leave it an open problem
to construct efficient protocols for private modulo reduction without relying on
bit-decomposition.

Acknowledgments. We would like to thank the anonymous reviewers for their
careful work and helpful comments.
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Abstract. In this work, we take a closer look at anonymity and robust-
ness in encryption schemes. Roughly speaking, an anonymous encryption
scheme hides the identity of the secret-key holder, while a robust encryp-
tion scheme guarantees that every ciphertext can only be decrypted to
a valid plaintext under the intended recipient’s secret key.

In case of anonymous encryption, we show that if an anonymous PKE
or IBE scheme (in presence of CCA attacks) is used in a hybrid encryp-
tion, all bets regarding the anonymity of the resulting encryption are
off. We show that this is the case even if the symmetric-key component
is anonymous. On the positive side, however, we prove that if the key-
encapsulation method is, additionally weakly robust the resulting hybrid
encryption remains anonymous. Some of the existing anonymous encryp-
tion schemes are known to be weakly robust which makes them more
desirable in practice.

In case of robust encryption, we design several efficient constructions
for transforming any PKE/IBE scheme into weakly and strongly robust
ones. Our constructions only add a minor computational overhead to the
original schemes, while achieving better ciphertext sizes compared to the
previous constructions. An important property of our transformations is
that they are non-keyed and do not require any modifications to the
public parameters of the original schemes.

We also introduce a relaxation of the notion of robustness we call
collision-freeness. We primarily use collision-freeness as an intermediate
notion by showing a more efficient construction for transforming any
collision-free encryption scheme into a strongly robust one. We believe
that this simple notion can be a plausible replacement for robustness in
some scenarios in practice. The advantage is that most existing schemes
seem to satisfy collision-freeness without any modifications.

1 Introduction

The classical definitions of security for encryption schemes are mainly concerned
with the secrecy of encrypted data. Particularly, the widely accepted notions of
indistinguishability and non-malleability under chosen plaintext and ciphertext
attacks [15,19,12], are all directed at capturing various aspects of data-secrecy in
encryption schemes. However, since encryption schemes are employed in a wide
range of applications, one often requires them to satisfy additional properties.

M. Abe (Ed.): ASIACRYPT 2010, LNCS 6477, pp. 501–518, 2010.
c© International Association for Cryptologic Research 2010
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Two such properties, which have been the subject of formal studies in the cryp-
tographic literature, are anonymity [5,2] and robustness [3]. Anonymity helps
keep the identity of the key-holders in an encryption scheme private, while ro-
bustness provides a layer of protection against misuse or error by ensuring that
a single ciphertext can only be decrypted by the intended user. In this paper we
study several aspects of anonymity and robustness in public-key and identity-
based encryption schemes.

1.1 Anonymity of Hybrid Encryption Schemes

The concept of anonymity for encryption schemes has been around for sometime
but was first formalized in the context of symmetric-key encryption [1,11,14] and
was later extended to the case of public-key encryption (PKE) and identity-based
encryption (IBE) [5,2]. Several PKE and IBE schemes in the literature such as
the Cramer-Shoup [10], and the Boyen-Waters [9] in the standard model, and
DHIES [4] and Boneh-Franklin [8] in the random oracle model are shown to be
anonymous.

However, in most cases, PKE and IBE schemes are used as key encapsulation
methods (KEM) to encrypt a random key which is then used by a symmetric-key
data encapsulation method (DEM) to encrypt the message itself. It is well known
that if the KEM component is IND-CCA secure and the DEM component is (one-
time) IND-CCA, the resulting hybrid encryption is also IND-CCA secure (e.g.
see [10]).1 From a practical point of view, it is important to determine whether
similar statements can be made when considering anonymity.

A negative result. At first glance, it seems that the symmetric-key compo-
nent is harmless as far as anonymity is concerned since it only encrypts a mes-
sage using a random secret key, which is unlikely to reveal additional information
about the public key or the identity (this is in fact the case for CPA attacks). How-
ever, somewhat surprisingly, we show that this intuition is wrong in presence of
chosen ciphertext attacks. Particularly, we show a counterexample by building an
anonymous-CCA (ANON-CCA) secure PKE/IBE scheme and a symmetric-key
IND-CCA encryption, where it is easy to break the anonymity of the resulting hy-
brid construction. The negative result extends to the case when the symmetric-key
component is also anonymous. An important implication is that:

Designing ANON-CCA PKE or IBE schemes is not sufficient for providing
anonymity in practice where, more often than not, encryption schemes are used
in hybrid constructions.

A positive result. On the positive side, we show that if one further assumes
that the KEM component is weakly-robust (see Section 2 for the definition), the
resulting hybrid encryption is in fact ANON-CCA. This implies that despite our
negative result, for most ANON-CCA schemes we know of such as the Boneh-
Franklin IBE, the Cramer-Shoup PKE, and the DHIES PKE all of which are
1 Note that the KEM/DEM framework is more general than hybrid encryption but

here we are focus on the KEM/DEM framework in the context of hybrid encryption
schemes.
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known to be weakly-robust [3] (in the appropriate model), using them as part of
a hybrid construction preserves their anonymity. The same is however not true
for the Boyen-Waters anonymous IBE scheme which is shown not to be weakly
robust.

This result reemphasizes the close connection between anonymity and robust-
ness and provides additional motivation to study the robustness property when
designing anonymous encryption schemes.

1.2 Robustness

Informally speaking, weak robustness requires that a ciphertext does not decrypt
to a valid plaintext under distinct secret keys for two different identities. A
stronger version of robustness requires this to be the case even for adversarially
chosen ciphertexts. The concept of robustness was studied in one way or another
in [18] and [17], but was only recently formalized by Abdalla et al. [3].

It is not hard to see that robustness can be trivially achieved by appending
the encryption key to the ciphertext and checking for it upon decryption. The
main drawback is that the resulting scheme is no longer anonymous. In fact, as
discussed in [3] and further motivated by our results on anonymity of hybrid
encryptions, it is exactly for anonymous schemes that robustness is important.
In [3], the authors study the robustness properties for several existing anony-
mous encryption schemes, and design general constructions for transforming any
IBE/PKE scheme into robust ones.

A transformation is keyed if an additional string needs to be added to the set
of public parameters for the original scheme, and is called non-keyed, otherwise.
An important advantage of non-keyed constructions over keyed ones is that the
robustness property can be added to the encryption scheme without having to
notify a third party such as a PKI in advance. Consequently, users of a system
can add robustness to the scheme after it is deployed.

Non-keyed transformations for robustness. In the standard model, we
design a non-keyed construction for transforming any anonymous IBE/PKE
scheme into a weakly robust one in presence of CPA attacks. In the random
oracle model, we design a non-keyed transformation that provides strong ro-
bustness in presence of CCA attacks. In both cases, the computational overhead
is very small (it involves one to three invocations of a hash function), and de-
spite being non-keyed the ciphertext sizes we achieve are better than those of
the previous work. A curious open question is whether we can achieve the latter
transformation in the standard model.

Collision-freeness. We also study the notion of collision-freeness, a natural
relaxation of robustness. Roughly speaking, an encryption scheme is collision-
free if a ciphertext does not decrypt to the same message under two different
decryption keys. Collision-freeness can be a sufficient property in some scenar-
ios in practice. For example, if the receiver expects to see a specific message as
part of the protocol but after decrypting using his secret key recovers a different
one, he can detect an error and stop the communication. Interestingly, we show
that schemes such as the El Gamal PKE scheme [13] and the Boyen-Waters
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IBE scheme [9] are strongly collision-free even though they are known not to be
weakly robust. Hence, collision-freeness seems to be a less restrictive assump-
tion on an encryption scheme and one that most encryption schemes seem to
satisfy without any modifications. More importantly, we design a more efficient
construction for transforming any collision-free encryption scheme to a strongly
robust one.

2 Preliminaries

One-way functions. Roughly speaking, a function is one-way if it is hard to
invert on a random input. More formally, we say that a function f over {0, 1}k
is one-way if

Advowf
f,A (k) = Pr

[
x $← {0, 1}k ; y ← f(x) ; x′ $← A(f, y) : x = x′

]

is negligible for every PPT inverter A.

general encryption schemes. Abdalla et al. [3] introduced and used the no-
tion of general encryption schemes which encompass both PKE and IBE schemes.
Similar to their work we will use this notion, since all our transformations are
applicable to both PKE and IBE schemes.

A general encryption (GE) scheme consists of a tuple GE = (Pg,Kg,Enc,Dec)
of algorithms. The parameters generation algorithm Pg takes no input and returns
common parameters pars and a master secret key msk. On input pars,msk, id,
the key generation algorithmKg produces an encryption key ek and the decryption
key dk. On inputs pars, ek,M the encryption algorithm Enc produces a ciphertext
C encrypting plaintextM . On input pars, ek, dk, C, the deterministic decryption
algorithm Dec returns either a plaintext M or ⊥ to indicate that it rejects. GE
is a PKE scheme if msk = ε and Kg ignores its id input. GE is an IBE scheme
if ek = id, meaning the encryption key generated by Kg on inputs pars,msk, id
is always id. Finally, we point out that the notion of general encryption contains
PKE schemes, IBE schemes and more. In other words, there are general encryption
schemes that are neither PKE nor IBE schemes.

AI-{CPA,CCA} security. Traditionally, the definitions of privacy [15,19,12]
and anonymity [5,2] for encryption schemes are introduced separately. However,
when considering robustness, it makes sense to consider both notions simulta-
neously. Hence we follow the definition of [3] who combine the two into a single
game. We define the AI-{CPA,CCA} security (AI = ANON + IND) of a general
encryption scheme GE = (Pg,Kg,Enc,Dec) via a security game between the
adversary and the challenger.

– Setup: Challenger runs (pars,msk)← Pg(1k); b $←{0, 1}; S, T, U, V ← ∅.
– Queries:

• Public key query id. Challenger lets U ← U ∪ {id};
(Ek[id], Dk[id]) $← Kg(pars,msk, id) and returns Ek[id].
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• Decryption-key query id. If id /∈ U or id ∈ S return ⊥. Else V ← V ∪{id}
and return Dk[id].
• Decryption query (C, id). If id /∈ U or (id, C) ∈ T return ⊥. Else let
M ← Dec(pars, Ek[id], Dk[id], C), and return M .
• Challenge query (id∗0, id

∗
1,M

∗
0 ,M

∗
1 ). If id∗0 /∈ U or id∗1 /∈ U or id∗0 ∈ V ,

or id∗1 ∈ V return ⊥. Else let C∗ $← Enc(pars, Ek[idb],M∗b ); S ← S ∪
{id∗0, id∗1};T ← T ∪ {(id∗0, C∗), (id∗1, C∗)} and return C∗.

– Adversary’s guess. Adversary returns a bit b′.

Note that there is only one challenge query. In case of CPA attacks, no decryption
queries are allowed. Adversary A’s advantage in the AI-{CPA,CCA} game is:

Advai-{cpa,cca}
GE (A) = Pr[b′ = b]− 1/2

In some cases however, we consider the security notions for anonymity (ANON-
{CPA,CCA}) and indistinguishability (IND-{CPA,CCA}), individually. The
challenge query in the above security game can be modified in the obvious way
to capture each of these definitions separately. We point out that similar defini-
tions can also be adapted for the case of symmetric-key encryption.

Robustness. Following [3], we consider two definitions of robustness for a gen-
eral encryption scheme, namely weak robustness (WROB) and strong robustness
(SROB). The following game defines both notions. As noted below the only dif-
ference is in the final message sent by the adversary to the challenger:

– Setup: Challenger runs (pars,msk)← Pg(1k); b $←{0, 1}; U, V ← ∅.
– Queries:
• Public key query id. Challenger lets U ← U ∪ {id};

(Ek[id], Dk[id]) $← Kg(pars,msk, id) and returns Ek[id].
• Decryption-key query id. If id /∈ U or id ∈ S return ⊥. Else V ← V ∪{id}

and return Dk[id].
• Decryption query (C, id). If id /∈ U return ⊥. Else let M ←

Dec(pars, Ek[id], Dk[id], C), and return M .
• Final message (id∗0, id∗1,M) (for WROB). If id0 = id1 or id∗0 /∈ U or id∗1 /∈
U or id∗0 ∈ V , or id∗1 ∈ V return 0. Else let C∗ $← Enc(pars, Ek[id0],M);
M ′ ← Dec(pars, Ek[id1], Dk[id1], C∗); if M ′ �= ⊥ return 1, else return 0.
• Final message (id∗0, id

∗
1, C) (for SROB). If id0 = id1 or id∗0 /∈ U

or id∗1 /∈ U or id∗0 ∈ V , or id∗1 ∈ V return 0. Else let M0 ←
Dec(pars, Ek[id0], Dk[id0], C); M1 ← Dec(pars, Ek[id1], Dk[id1], C); if
M0 �= ⊥ and M1 �= ⊥ return 1, else return 0.

Similar to above, in case of CPA attacks, no decryption queries are allowed.
Adversary A’s advantage in the {WROB,SROB}-{CPA,CCA} game is:

Adv{wrob,srob}-{cpa,cca}
GE (A) = Pr[GA → 1]

In the WROB game the adversary produces a message M , and C is its encryp-
tion under the encryption key of one of the given identities, while in the SROB
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game adversary produces C directly, and may not obtain it as an honest encryp-
tion. Note that in case of PKE schemes, the adversary does not get to choose
the encryption keys of the identities it is targeting. Those are honestly and inde-
pendently chosen by the identities themselves in real life and and by the games
in the above formalizations.

3 Anonymous-CCA Hybrid Encryption

In this section we take a closer look at anonymous encryption schemes in presence
of chosen ciphertext attacks (ANON-CCA) as defined in Section 2. Previous
works on anonymous public-key and identity-based encryption [5,2] have studied
this security notion and provided constructions satisfying it.

However, in most scenarios in practice, PKE and IBE schemes are used in
the KEM/DEM paradigm. It is known that if the KEM component is IND-CCA
secure and the DEM component is (one-time) IND-CCA, the resulting hybrid en-
cryption is also IND-CCA secure. For practical reasons, it is crucial to determine
whether we can make similar statements when considering the anonymity of the
resulting hybrid construction. More specifically, we try to answer the following
question:

Given an ANON-CCA PKE or IBE scheme and an (ANON-CCA + IND-
CCA) symmetric-key encryption scheme, is the resulting hybrid encryption
scheme ANON-CCA?

3.1 A Negative Result

Somewhat surprisingly, we answer the above question in the negative. First we
show a counterexample by building an ANON-CCA secure PKE/IBE scheme and
a symmetric-key IND-CCA encryption, where it is easy to break the anonymity
of the resulting hybrid construction. The negative result easily extends to the
case when the symmetric-key component is also ANON-CCA. An important im-
plication is that designing ANON-CCA PKE or IBE schemes is not sufficient for
providing anonymity in practice where, more often than not, encryption schemes
are used in hybrid constructions.

Claim 3.1. There exist an ANON-CCA PKE/IBE scheme and a symmetric-
key authenticated encryption scheme (assuming there are secure schemes at all)
such that the resulting hybrid encryption is not ANON-CCA.

The intuition behind the counterexample is that since the adversary has access
to a decryption oracle, he can take advantage of the fact that decrypting one
ciphertext under two different secret keys can result in different answers. Partic-
ularly, these different answers can be used by the adversary to compromise the
anonymity of the scheme.

Proof. We describe the proof for the case of a PKE scheme, but an identical proof
works for IBE schemes as well. Let PKE1 = (Kg1,Enc1,Dec1) be an (ANON-
CCA + WROB-CCA) PKE encryption scheme. The Cramer-Shoup encryption
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scheme or any of the constructions in this paper will do. We build the encryption
scheme PKE2 = (Kg2,Enc2,Dec2) by letting the key-generation and encryption
algorithms be identical to those of PKE1, and modifying the decryption algorithm
such that whenever the Dec1 algorithm returns the symbol ⊥, the decryption
algorithm Dec2 returns 0n instead, and otherwise works similar to Dec1. It is
easy to verify that after this simple modification, PKE2 remains ANON-CCA.
PKE2 will be the key encapsulation method in our counterexample.

For the DEM component we use an IND-CCA encryption scheme that is also
key-binding, a notion introduced in [14].

Definition 1. A symmetric-key encryption scheme E = (SK,SE ,SD) is called
key-binding if for any key k generated by SK, any message m, and randomness
r, there does not exist a key k′ such that k′ �= k and SDk′ (SEk(m, r)) �= ⊥.

The key-binding property guarantees that a ciphertext created using one secret
key, does not decrypt correctly under any other secret key. Fischlin [14] showed
simple constructions of such encryption schemes from any PRF. For the purpose
of our counterexample it suffices to know that an IND-CCA encryption scheme
E with such a property exists.

Now, we show that combining PKE2 and E into a hybrid encryption is not
ANON-CCA. Particularly, an attacker with the following simple strategy can
break the anonymity of the scheme.

Recall the ANON-CCA security game. Attacker A initially sends a message
m as his challenge in the ANON-CCA game and receives the ciphertext C =
(c1, c2) = (Enc(pkidb

, k),SEk(m)) for a random bit b ∈ {0, 1} and a random key
k ∈ {0, 1}n. Then, A makes a decryption query for the ciphertext (c1,SE0n(m′))
under public key pkid0 , for an arbitrary messagem′. If the answer is ⊥, A outputs
0 and else outputs 1.

To see why A breaks the ANON-CCA security of the encryption scheme
note that if b = 1 then k′ = Dec2(skid1 ,Enc2(pkid0 , k)) = 0n given the way
we have defined PKE2. Hence, we have that SD0n(SE0n(m′)) = m′ �= ⊥. On
the other hand if b = 0 then k′ = Dec2(skid0 ,Enc2(pkid0 , k)) = k. Hence we
have SDk(SE0n(m′)) = ⊥ due to the key-binding property of E and the fact
that k �= 0n with all but negligible probability. Therefore, A guesses the bit b
correctly with high probability.

A closer look at the above attack strategy reveals that a much weaker property
than that of definition 1 for the symmetric-key scheme suffices for our argument
to go through. In particular, we only need the key binding property to hold for
a fixed message and a fixed secret key (m′ and 0n, respectively).

Strengthening the DEM component? One potential solution is to use a
symmetric-key encryption scheme that possesses some additional properties. Par-
ticularly, onenatural question iswhether using ananonymous-CCAsymmetric-key
encryption as the DEM component would yield an anonymous hybrid construc-
tion. Unfortunately, the answer to this question is also negative. It is easy to verify
that the above negative result extends to work for any security notion considered
for symmetric-key encryption, as long as that security notion can be achieved in
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conjunction with the key-binding property. In all such cases, the proof given above
works without any significant changes.

Anonymity of symmetric-key encryption schemes has been studied under
the name key-hiding in [14] where the authors also design IND-CCA secure
symmetric-key encryption schemes that are simultaneously key-hiding and key-
binding. This leads to the following claim:

Claim 3.2. There exist an ANON-CCA PKE/IBE scheme and an (ANON-
CCA + IND-CCA) symmetric-key encryption scheme such that the resulting
hybrid encryption is not ANON-CCA.

3.2 A Positive Result

In light of the above negative results, it is natural to ask what additional property
the KEM component should have in order to preserve its ANON-CCA security
in a hybrid construction. We show that if one further assumes that the KEM
component is weakly-robust, the resulting hybrid encryption is in fact ANON-
CCA. This implies that despite the negative results we gave above, for most
ANON-CCA schemes we know such as the Boneh-Franklin IBE, the Cramer-
Shoup PKE, and the DHIES PKE all of which are known to be weakly-robust [3],
using them as part of a hybrid construction is safe. The intuition behind the
proof is that weak robustness ensures that the decryption algorithm behaves in
a predictable way, when decrypting a ciphertext under two different secret keys,
and this predictable behavior combines quite nicely with the security properties
of an authenticated symmetric encryption scheme, namely, IND-CCA security
and the ciphertext integrity (CTXT-INT).

In the following claim we prove a stronger result than what we need here by
considering the notion of AI-CCA security which combines ANON-CCA security
and IND-CCA security into one definition. The main reason is that we need this
stronger claim in a following section. The proof for the case when one is only
interested in ANON-CCA secure hybrid schemes is identical.

Claim 3.3. If the KEM component PKE of a hybrid construction is an (AI-
CCA + WROB-CCA) general encryption, and E is a one-time authenticated
symmetric encryption, then the resulting hybrid encryption PKE′ is also an AI-
CCA general encryption scheme.

Proof. We prove the above claim via a sequence of games.

Game 0. Game 0 is simply the AI-CCA game. Denote by b the random bit
generated by the challenger, by C∗ the challenge ciphertext C∗ = (c∗1, c

∗
2) where

c∗1 is the KEM component and c∗2 is the DEM component, and by k∗ the secret
key used for the DEM component.

Game 1. Game 1 is similar to game 0, except that for any decryption queries
of the form (c1, c2) for pkidb

where c1 = c∗1 and c2 �= c∗2, challenger uses k∗ to
decrypt c2 and recover the message ( as opposed to decrypting c1).



A Closer Look at Anonymity and Robustness in Encryption Schemes 509

It is easy to see that the difference between the advantage of any adversary in
these two games is bounded by the decryption error. For simplicity we assume
that there is no decryption error and therefore

AdvG0(A) = AdvG1(A)

Game 2. Similar to game 1 except that for any decryption queries of the
form (c1, c2) for pkid1−b

where c1 = c∗1 and c2 �= c∗2), challenger returns ⊥.
Note that games 1 and 2 are different only when c∗1 which is the encryption of

messagemb under pkidb
, also decrypts correctly under the pkid1−b

. This probabil-
ity is bounded by the advantage of an adversary B in winning the WROB-CCA
game and hence:

AdvG2(A)−AdvG1(A) ≤ Advwrob−cca
PKE (B)

Game 3. Similar to game 2 except that the challenger generates and uses
a random key k′ (instead of k∗) when encrypting the private-key component of
the ciphertext for the challenge query.

The difference between the advantages of an adversary in games 2 and 3 is
bounded by the AI-CCA security of the PKE scheme:

AdvG3(A)−AdvG2(A) ≤ Advai−cca
PKE (B′)

Game 4. We modify game 3 in two ways. First, for the challenge query,
instead of encrypting the message mb, the challenger encrypts the constant mes-
sage 0k. Second, for decryption queries (c1, c2) under pkidb

where c1 = c1∗ the
challenger returns ⊥.

The probability of distinguishing the first change is bounded by the IND-CCA
advantage of an adversary against the E scheme, while for second change, the
probability is bounded by the advantage of an adversary playing the ciphertext
integrity (CTXT-INT) game with E . Both the IND-CCA security and the CTXT-
INT security are properties that are possessed by any authenticated encryption
scheme.

AdvG4(A)−AdvG3(A) ≤ Advind−cca
E (B′′) + Advctxt−int

E (B′′′)

Finally, it is easy to see that the adversary’s view in game 4 is independent of
the bit b and hence adversary’s advantage in guessing b is exactly 1/2. Putting
things together we have:

Advai−cca
PKE′ (A) ≤ Advwrob−cca

PKE (B)+Advai−cca
PKE (B′)+Advind−cca

E (B′′)+Advctxt−int
E (B′′′)

4 Non-keyed Transformations for Robustness

Having further motivated the study of robust encryption schemes, we next focus
on efficient ways of transforming general encryption schemes into robust ones.
As mentioned earlier, such a transformation is called a keyed transformation if
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an additional string is added to the original set of public parameters, and is
called non-keyed otherwise.

In Section 4.1, we design an efficient and non-keyed transformation for weak-
robustness, in presence of CPA attacks (in the standard model). In Section 4.2,
we design a non-keyed transformation for strong-robustness in presence of CCA
attacks (in the random oracle model). Despite being non-keyed, our transforma-
tions have better ciphertext sizes compared to previous work. In other words,
not adding an extra string to the public parameters does translate to larger
ciphertexts (see the efficiency comparison sections).

4.1 A Transformation for AI-CPA Schemes

The following non-keyed construction takes any AI-CPA encryption scheme, and
transforms it to a (AI-CPA + WROB-CPA) scheme.

Construction 4.1. Let PKE = (Pg,Kg,Enc,Dec) be a AI-CPA general encryp-
tion scheme, and let f be a one-way function over {0, 1}k. We construct the
general encryption scheme PKE′ = (Pg′,Kg′,Enc′,Dec′):

• Parameter Generation(Pg′): On input 1k return (pars,msk) $← Pg(1k).
• Key Generation(Kg′): On input pars,msk, id, return

(pkid, skid) $← Kg(pars,msk, id).
• Encryption(Enc′): On input pars, pkid,m, generate a random r ∈ {0, 1}k

and return (Enc(pars, pkid,m||r), f(r)).
• Decryption(Dec′): On inputs pars, pkid, skid, (c1, c2), compute

m′||r′ $←Dec(pars, pkid, skid, c1). If r′ �= ⊥ and f(r′) = c2 return m′;
else return ⊥.

Note that in construction 4.1, instead of a one-way function, we can also use a
target collision-resistant (TCR) hash function (a universal one-way hash func-
tion). Particularly, it is easy to show that any TCR function that is sufficiently
compressing is a good one-way function.

We will shortly prove the security of the above scheme, but first lets briefly
study its efficiency.

Efficiency comparison. To implement our scheme one can use a fixed-length
cryptographic hash function h with output length of 128 bits (e.g. constructed by
suitably modifying the output length of a hash function from the SHA family).
The reason that we only need 128 bits of output is that we only require the
hash function to be one-way as opposed to collision-resistant. Furthermore, it is
sufficient for us to let k = 256 where r is chosen from {0, 1}k.2 This means that
the PKE scheme has to encrypt a message that is only 256 bits longer than the
original message and the ciphertext is at most expanded by an additive factor
of 384 bits as opposed to 768 bits in construction of Abdalla et al. [3].
2 When computing hash of r, we can pad r with enough 0’s in order to match the

input block-size requirement for the hash function. Note that this does not effect the
efficiency of the encryption or the size of ciphertext in any way.
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Theorem 1. Let PKE be a AI-CPA secure general encryption scheme and f be
a one-way function. Then, the PKE′ scheme of construction 4.1 is both AI-CPA
secure and WROB-CPA secure.

Proof. We prove the theorem in two separate claims. Claim 4.2 ensures that
the above transformation preserves the AI-CPA security of the original scheme.
Claim 4.3 states that the resulting scheme PKE′ is also weakly robust.

Claim 4.2. For any PPT adversary A against PKE′, there exist a PPT adver-
sary B against PKE such that:

Advai-cpa
PKE′ (A) = Advai-cpa

PKE (B)

Proof. B runs A. When A sends its challenge request (id0, id1,M0,M1), B gener-
ates a random value r ∈ {0, 1}k and sends (id0, id1,M0||r,M1||r) to its own chal-
lenger in the AI-CPA game for PKE. B receives back c∗ = Enc(pars, idb, pkidb

,
Mb||r) and sends (c∗, f(r)) to A. The decryption-key queries made by A are for-
warded to the corresponding oracle in B’s game. Since we only consider CPA
attacks, no decryption queries on id0 or id1 are allowed. Eventually, A outputs a
bit b′. B also outputs b′ and halts. It is straightforward to see that the advantage
of B against the PKE is the same as A’s advantage against the PKE′ scheme.

Claim 4.3. For any PPT adversary A against the PKE′ in the WROB-CPA
game, there exist PPT adversaries B1 against the PKE in the AI-CPA game and
B2 against f in the one-wayness game such that:

Advwrob-cpa
PKE′ (A) = 2Advind-cpa

PKE (B1) + Advowf
f (B2)

Proof. We prove this claim in a sequence of two games.
Game 0. Game 0 is the WROB-CPA game against the PKE′ scheme as de-

fined earlier. More specifically, adversary sends the tuple (id0, id1,M) to the chal-
lenger. Challenger computes C0 = Enc′(pars, id0, pkid0 ,M) = (Enc(pars, pkid0 ,
M ||r), f(r)) for random r ∈ {0, 1}k. He then computes M1 = Dec′(pars, pkid1 ,
skid1 , C0). If M1 �= ⊥, the challenger outputs 1. Else it outputs 0.

Game 1. Game 1 is similar to game 0, except that C0 is computed in the
following way:

C0 = (Enc(pars, pkid0 ,M ||0k), f(r))

The rest of the game stays the same.
First we show that there exist an adversary B1 such that Advind-cpa

PKE (B1) =
1/2(Pr[GA

1 → 1] − Pr[GA
0 → 1]). B1 runs A and receives the tuple (id0, id1,M)

from her. B1 queries the key oracle for (pkid1 , skid1). He then generates a random
r ∈ {0, 1}k and sends (id0,m

′
0 = M ||r,m′1 = M ||0k) to the challenger in the IND-

CPA game against PKE and receives C0 = Enc(pars, id0, pkid0 ,m
′
b) for a random

bit b. B1 then decrypts (C0, f(r)) using the Dec′ algorithm and the secret key
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skid1 . If the result of decryption is not ⊥, B1 lets b′ = 1 and else b′ = 0. Then
we have

Advind-cpa
PKE (B1) = Pr[b′ = b]− 1/2 =

Pr[b = 1] · Pr[Bind-cpa
1 → 1|b = 1] + Pr[b = 0] · Pr[Bind-cpa

1 → 0|b = 0] =

1/2 Pr[Bind-cpa
1 → 1|b = 1] + 1/2 Pr[Bind-cpa

1 → 0|b = 0]− 1/2 =

1/2 Pr[GA
1 → 1] + 1/2(1− Pr[GA

0 → 1])− 1/2 =

1/2(Pr[GA
1 → 1]− Pr[GA

0 → 1])

(1)

We now show that there exist an adversary B2 such that Pr[GA
1 → 1] =

Advowf
f (B2). B2 generates the (pars,msk) for the general encryption, and runs

A. When B2 receives the tuple (id0, id1,M) he computes (pkid0 , skid0), (pkid1 ,
skid1) and C0 = Enc(pars, pkid0 ,M0||0k). He then requests his challenge for the
one-wayness game and receives f(r) for a random r. B2 then decrypts using
(C0, f(r)) using the Dec′ algorithm and the secret key skid1 . If the result is ⊥
it outputs fail and halts. Else, it parses the decrypted plaintext into M ′||r′ and
returns r′ to his own challenger.

B2 wins the one-wayness game if f(r′) = f(r). Note that according to the
definition of Dec′, whenever the decryption algorithm does not output ⊥ we
have f(r′) = f(r). Hence

Advowf
f (B2) = 1− Pr[Bowf

2f → fail] = 1− Pr[G1
A → 0] = Pr[G1

A → 1]

Putting things together we have:

Advwrob-cpa
PKE′ (A) = Pr[GA

0 → 1] =

Pr[GA
0 → 1]− Pr[GA

1 → 1] + Pr[GA
1 → 1] =

2Advind-cpa
PKE (B1) + Advowf

f (B2)

4.2 A Transformation for AI-CCA Schemes

Unfortunately, the transformation we gave above does not work in case of AI-
CCA encryption schemes. Nevertheless, we are able to design an efficient and
non-keyed transformation for any AI-CCA encryption scheme, in the random
oracle model. The construction follows:

Construction 4.4. Let PKE = (Pg,Kg,Enc,Dec) be an AI-CCA general en-
cryption scheme, and let G,H,H ′ : {0, 1}∗ → {0, 1}k be three hash functions.
We construct the general encryption scheme PKE′ = (Pg′,Kg′,Enc′,Dec′):

• Parameter Generation(Pg′): On input 1k return (pars,msk) $← Pg(1k).

• Key Generation(Kg′): On input pars,msk, id, return
(pkid, skid) $← Kg(pars,msk, id).
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• Encryption(Enc′):
On input pars, pkid,m, generate a random r ∈ {0, 1}k and return
(Enc(pars, pkid, r;H(r)), G(r) ⊕m,H ′(pk, r,m)).

• Decryption(Dec′): On inputs pars, pkid, skid, (c1, c2, c3), compute
r′ $← Dec(pars, pkid, skid, c1). If r′ = ⊥ or Enc(pars, pkid, r

′;H(r′)) �= c1,
return ⊥, else compute m ← c2 ⊕G(r); if H ′(pk, r,m) = c3 return m, else
return ⊥.

The above construction is an adaptation of an earlier version of the OAEP
scheme (see [6]) based on any one-way trapdoor function (TDF). The two main
differences are that (i) we are transforming a randomized encryption scheme
instead of a one-way TDF which is why we use H(r) to generate the randomness
for the encryption algorithm, and (ii) since our goal is to also achieve robustness,
the third component of the ciphertext hashes the public key along with the
message and randomness.

It is also interesting to note that unlike the optimized OAEP scheme [7] which
encrypts c2||c3 as part of the message (in order to obtain shorter ciphertexts),
due to the impossibility result of [3] who rule out non-keyed redundancy codes,
there is no hope of doing the same in our case.

efficiency comparison. The overhead for the ciphertext size is two hash val-
ues each of which leads to 512 bits of overhead. The alternative existing solution
would be to combine a weakly robust encryption scheme with the weak-to-strong
transformation of [3]. This leads to 768 + x bits where the x is the ciphertext
overhead of the weak-to-strong transformation which can be quite large itself
(depending on the commitment scheme used).

Theorem 2. Let PKE be an AI-CCA secure general encryption scheme and
H,G, and H ′ be random oracles. Then, the PKE′ scheme of construction 4.4 is
both AI-CCA secure and SROB-CCA secure.

We prove the above theorem via two separate claims. Claim 4.5 ensures that
the above transformation preserves the AI-CCA security of the original scheme.
Claim 4.6 states that the resulting scheme PKE′ is also weakly robust.

Claim 4.5. For any PPT adversary A against PKE′, there exist a PPT adver-
sary B against PKE such that:

Advai-cca
PKE′ (A) < qD/2k + qHAdvai-cca

PKE (B)

Proof. We prove this claim in a sequence of games.
Game 0. In this game the adversary plays the AI-CCA game with the chal-

lenger using the construction above. The challenger initializes three empty lists
Hlist, Glist, and H ′list. For any oracle query q made to H (G, or H ′), if a tu-
ple of the form (q, a) for any a is present in Hlist (Glist or H ′list) returns a
as the answer. Else, challenger generates a random a ∈ {0, 1}k, adds (q, a)
to the Hlist (Glist or H ′list) and returns a to the adversary. Denote the ad-
versary’s challenge query by (m0,m1, id0, id1), and the response ciphertext by
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c∗ = (c∗1, c
∗
2, c
∗
3) = (Enc(pars, pkidb

, r;H(r)), G(r) ⊕ mb, H
′(pkidb

, r,mb)) for a
random bit b ∈ {0, 1} and r ∈ {0, 1}k. Decryption queries are answered by the
challenger using the decryption algorithm described above. Adversary eventually
outputs the bit b′ and wins if b′ = b. For any PPT adversary A we have

Advai-cca
PKE′ (A) = AdvG0(A) − 1/2

Game 1. Similar to game 0, except that on decryption queries of the form
c = (c1, c2, c3) where c1 = c∗1, if there exist a tuple of the form (q, c3) ∈ H ′list,
challenger parses (pk, r,m)← q, and recomputes the first two components of the
ciphertext using these values. If they match c1 and c2 sent by the adversary, it
returns m. If the values do not match or the tuple of the form (q, c3) does not
exist, challenger returns ⊥.

A’s view in the two games is different only in the case that he has not queried
q to the list but is able to guess c3 = H ′(q). This only happens with probability
1/2k for every decryption query. Hence

AdvG0(A) −AdvG1(A) ≤ qD/2k

Game 2. This game is identical to game 1 except that if A makes an oracle
query for H or G on input r where r is the random message encrypted in the
challenge ciphertext, the challenger outputs fail and ends the game.

Based on the fundamental lemma game playing we have

AdvG1(A)−AdvG2(A) ≤ Pr[GA
1 → fail]

Next we will bound the probability of outputting fail, by the advantage of
an adversary B who the one-way-CCA game against the PKE scheme. We show
that for any adversary A winning the game G2, there exist a PPT adversary B
winning the one-way-CCA game against the original scheme PKE.

B generates a random index i ∈ [1..qH ]. B then runs A. When A makes his
challenge query (m0,m1, id0, id1), B generates a random bit b, and asks for his
challenge ciphertext under idb to receive c∗1 = Enc(pkidb

, r) for a random message
r. B computes c∗2 and c∗3 on his own and replies to A with (c∗1, c

∗
2, c
∗
3).

On an oracle query a (for any of the three oracles), if this is the ith oracle
query, B outputs a to his own challenger and halts. Else, if a was queried before,
he returns the same answer, and if not, he generates a random answer and adds
the tuple to the corresponding list.

On a decryption query (c1, c2, c3) where c1 �= c∗1, B uses his own decryption
oracle for Dec and performs the Dec′ decryption algorithm. Here, it is critical
for the randomness used in the encryption algorithm to be derivable from the
decrypted message, and this is why H(·) is used as the randomness (or else B
would not be able to perform the verification component of Dec′). For any de-
cryption query (c1, c2, c3) where c1 = c∗1, B performs exactly what the challenger
in game 1 does. It is easy to see that

Pr[GA
2 → fail] ≤ qHAdvow−cca

PKE (B) ≤ qHAdvai-cca
PKE (B).
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For any adversary A who makes an oracle query for the challenge random
message, there is an adversary B′ who does not make such a query and has a
better advantage (since such a query does not help the adversary win)

AdvG2(A) ≤ AdvG2(B
′)

Finally, given that B′ does not query r to the oracle, the challenge ciphertext
is completely independent of the challenge bit b and hence

AdvG2(B
′) = 1/2

Putting everything together we have:

Advai-cca
PKE′ (A) < qD/2k + qHAdvai-cca

PKE (B)

Claim 4.6. For any adversary A against PKE′ we have Advsrob-cca
PKE′ (A) ≤ 1/2k.

Proof. The proof of the above claim is simple. The main observation is that a
ciphertext c1, c2, c3 is valid under two different public keys only if H ′(pk, ·, ·) =
H ′(pk′, ·, ·) where pk �= pk′. But this only happens with probability 1/2k due to
the fact that H ′ is a random oracle.

5 Collision-Free Encryption and Robustness

In this section we introduce the notion of collision-freeness, a natural relaxation
of the notion of robustness for general encryption schemes. Intuitively, collision-
freeness requires that a ciphertext decrypts to two different plaintexts when
decrypted using distinct secret keys. Our main motivation is to use collision-
freeness as a stepping stone for designing robust encryption schemes. Partic-
ularly, we design a more efficient construction for transforming collision-free
encryption schemes to strongly robust ones. However, we also believe that
collision-freeness is a sufficient property in some scenarios in practice.

Similar to the notion of robustness, we consider weak and strong collision-
freeness (WCFR and SCFR). Interestingly, we show that schemes such as the
El Gamal PKE scheme [13] and the Boyen-Waters IBE scheme [9] are strongly
collision-free even though they are known not to be even weakly robust. Hence,
collision-freeness seems to be a less restrictive assumption on an encryption
scheme and one that most encryption schemes seem to satisfy without any mod-
ifications. The following security game defines the two variants:

– Setup: Challenger runs (pars,msk)← Pg(1k); b $←{0, 1}; U, V ← ∅.
– Queries:
• Public key query id. Challenger lets U ← U ∪ {id};

(Ek[id], Dk[id]) $← Kg(pars,msk, id) and returns Ek[id].
• Decryption-key query id. If id /∈ U or id ∈ S return ⊥. Else V ← V ∪{id}

and return Dk[id].
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• Decryption query (C, id). If id /∈ U return ⊥. Else let M ←
Dec(pars, Ek[id], Dk[id], C), and return M .
• Final message (id∗0, id∗1,M) (for WCFR). If id0 = id1 or id∗0 /∈ U or id∗1 /∈
U or id∗0 ∈ V , or id∗1 ∈ V return 0. Else let C∗ $← Enc(pars, Ek[id0],M);
M ′ ← Dec(pars, Ek[id1], Dk[id1], C∗); ifM ′ = M return 1, else return 0.
• Final message (id∗0, id

∗
1, C) (for SCFR). If id0 = id1 or id∗0 /∈ U

or id∗1 /∈ U or id∗0 ∈ V , or id∗1 ∈ V return 0. Else let M0 ←
Dec(pars, Ek[id0], Dk[id0], C); M1 ← Dec(pars, Ek[id1], Dk[id1], C); if
M0 = M1 return 1, else return 0.

In case of CPA attacks, no decryption queries are allowed. Adversary A’s advan-
tage in the {WCFR,SCFR}-{CPA,CCA} game is:

Adv{wcfr,scfr}−{cpa,cca}
GE (A) = Pr[GA → 1]

Collision-freeness of an encryption scheme can be a sufficient requirement in
some scenarios in practice. For example, if the receiver expects to see a spe-
cific message as part of the protocol but after decrypting using his secret key
recovers a different one, he can detect an error and stop the communication.
This makes collision-freeness a particularly attractive definition, since most of
the existing anonymous encryption schemes, already satisfy this property with-
out any additional modifications. The following claim mentions two well-known
encryption schemes both of which are known not to be weakly-robust but which
are collision-free.

Claim 5.1. The El Gamal PKE scheme and the Boyen-Waters anonymous IBE
scheme are SCFR-CPA scheme.

The proof of the above claim quite simple but is omitted due to lack of space.
Next we give a construction for transforming any strongly collision-free AI-CPA
scheme into a strongly robust one. First we use the collision-free encryption
scheme PKE to encrypt a random message r. Then, we hash the random message
using a compressing collision resistant hash function h. We then use a strong
extractor (e.g. a universal hash function) to extract the remaining randomness
in r and use it as the key to a one-time symmetric-key encryption scheme.

The intuition is that (1) the collision-freeness of the PKE and the collision-
resistance of the hash function h combined imply the strong robustness of the
resulting scheme. More specifically, it is not hard to show that given any adver-
sary that breaks the strong robustness of PKE′, there exist an adversary that
finds a collision for h: The collision-finding adversary decrypts the same cipher-
text using the secret keys for two different public keys (identities) and outputs
the two plaintexts as his collision for the hash function. The collision-freeness
of the PKE ensures that the two plaintexts are different with high probability.
(2) Given that r is chosen uniformly at random, PKE is IND-CPA secure, and
h(r) only leaks a fraction of bits of r, we can use the leftover hash lemma [16]
to extract most of the remaining randomness and use it as the secret key to the
symmetric-key encryption scheme.
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Construction 5.2. Let PKE = (Pg,Kg,Enc,Dec) be a (SCFR-CPA + AI-CPA)
general encryption scheme; h : {0, 1}�1 → {0, 1}�2 be a collision-resistant hash
function; Ext : {0, 1}k ×{0, 1}�1 → {0, 1}�3 be a family of pairwise independent
hash functions, where �3 ≈ �1 − �2; and E = (SK,SE ,SD) be a one-time IND-
CPA symmetric-key encryption scheme. We construct the general encryption
scheme PKE′ = (Pg′,Kg′,Enc′,Dec′):

• Parameter Generation: On input 1k return (pars,msk) $← Pg(1k).
• Key Generation: On input pars,msk, id, return

(pkid, skid) $← Kg(pars,msk, id).
• Encryption: On input pars, pkid,m, generate a random r ∈ {0, 1}�1 and

K ∈ {0, 1}k and return (Enc(pars, pkid, r), h(r), K,SE(Ext(K, r),m)).
• Decryption: On inputs pars, pkid, skid, (c1, c2, c3), compute

r′ $← Dec(pars, pkid, skid, c1). If h(r′) = c2 return m′ ← SD(Ext(K, r′), c3),
else return ⊥.

The following theorem summarizes the result. Due to lack of space, we defer the
proof to the full version of the paper.

Theorem 3. Let PKE be a (AI-CPA + SCFR-CPA) secure general encryption
scheme, h be a CRHF, Ext be a pairwise independent hash function and E be a
one-time IND-CPA symmetric-key encryption scheme. Then, the PKE′ scheme
of construction 5.2 is both AI-CPA secure and SROB-CPA secure.

Efficiency and Comparison. The computational overhead for the transfor-
mation is negligible as it includes one invocation of a collision-resistant hash
function and a pairwise-independent hash function. As an alternative to the
above construction, one could also combine the construction 4.1, which leads
to a weakly robust encryption, with the weak-to-strong-robustness transforma-
tions of [3] to achieve the same goal. However, the resulting transformations are
less efficient than the above transformation since we also took advantage of the
collision-freeness of the encryption scheme. Furthermore, since all the encryption
schemes we know of seem to possess the collision-freeness property, the improved
efficiency comes for “free”.
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Abstract. Beginning with the work of Groth and Sahai, there has been
much interest in transforming pairing-based schemes in composite-order
groups to equivalent ones in prime-order groups. A method for achieving
such transformations has recently been proposed by Freeman, who iden-
tified two properties of pairings using composite-order groups—“can-
celling” and “projecting” —on which many schemes rely, and showed
how either of these properties can be obtained using prime-order groups.

In this paper, we give evidence for the existence of limits to such trans-
formations. Specifically, we show that a pairing generated in a natural
way from the Decision Linear assumption in prime-order groups can be
simultaneously cancelling and projecting only with negligible probability.

As evidence that these properties can be helpful together as well as
individually, we present a cryptosystem whose proof of security makes
use of a pairing that is both cancelling and projecting. Our example
cryptosystem is a simple round-optimal blind signature scheme that is
secure in the common reference string model, without random oracles,
and based on mild assumptions; it is of independent interest.

1 Introduction

Composite-order groups were introduced for pairing-based cryptography in 2005
by Boneh, Goh, and Nissim [12] and have since been used to realize a large number
of cryptographic systems (see, e.g., the schemes surveyed by Freeman [24]). At
the same time, the limited number of elliptic curve families on which composite-
order groups can be instantiated and the larger parameter sizes associated with
composite-order groups (cf. [23,13]) has motivated research on translating these
schemes to or obtaining similar ones in the prime-order setting.

In one of the first papers to unify the composite- and prime-order settings,
Groth and Sahai [31] developed non-interactive zero-knowledge schemes that
not only can be instantiated either in composite- or prime-order groups, but are
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in fact described identically in either instantiation. What facilitates this flexi-
bility is a new abstraction for pairing-based cryptography in terms of modules
over finite commutative rings with an associated bilinear map; this abstraction
allows for the simultaneous treatment of three different cryptographic assump-
tions: the Subgroup Hiding (SGH) assumption of Boneh, Goh, and Nissim [12]
in composite-order groups; the Decision Linear (DLIN) assumption of Boneh,
Boyen, and Shacham [11], and its k-Linear family of generalizations [45,33],1

in prime-order groups; and the so-called Symmetric External Diffie-Hellman as-
sumption [7], also in prime-order groups.

More recently, Freeman [24] and Garg, Sahai, and Waters [27] have proposed
methods for transforming schemes secure in the composite-order setting into ones
secure (under different but analogous assumptions) in the prime-order setting.
Freeman, in particular, identifies two properties of pairings on composite-order
groups, projecting and cancelling, and shows how either can be obtained in prime-
order groups. He then demonstrates how to transform several known cryptosys-
tems that rely on one of these properties from composite- to prime-order groups.

Our contribution: limits on transformations from composite to prime order. In
this paper, we show limits to the feasibility of composite-to-prime transforma-
tions such as those mentioned above, suggesting that some schemes cannot be
transformed mechanically from one setting to the other. In our main theorem,
Theorem 6.5, we show that no pairing over prime-order groups can —except in
a negligible fraction of cases— be both projecting and cancelling when subgroup
indistinguishability relies in a natural way on k-Linear, where “natural” simply
means that we follow the definition of the assumption as closely as possible.

If no cryptosystem required a pairing that is both projecting and cancelling,
however, our Theorem 6.5 would not be particularly interesting. As such, we
present a new cryptosystem— a natural pairing-based blind signature scheme
that is of independent interest, and discussed below— whose proof of security
calls for a pairing that is both projecting and cancelling.2

Blind signatures were introduced by Chaum in 1982 [17]. In a blind signature
scheme, a user interacts in a protocol with a signer to obtain a signature on a
message of the user’s choice. When the protocol execution ends, the user obtains
the signature but the signer learns nothing about the message that was signed.
Blind signatures have been used as a building block in a variety of applications,
including electronic cash [20] and electronic voting [19].

One useful feature of a blind signature scheme is concurrency. For example, if
a blind signature used to build an electronic cash system does not retain its secu-
rity even when the signer engages in multiple protocol executions concurrently, it
leaves the issuing bank susceptible to denial-of-service attacks. Concurrency turns
out to be as difficult to achieve for blind signatures as it is for other cryptographic

1 A family of progressively strictly weaker decisional assumptions, where 1-Linear is
DDH and 2-Linear is DLIN.

2 We emphasize that it is the security proof, not the statement of the scheme, that uses
the two pairing properties. We thus do not rule out the possibility that a different
proof strategy will show our scheme secure in prime-order groups.
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protocols. While many blind signature schemes have proofs of security only for
sequential executions of the protocol, the problem is not merely with proofs. In
one example, Martinet, Poupard, and Sola [38] show that signatures in a partially
blind signature scheme of Cao, Lin and Xue [16] are forgeable if the signer interacts
with two users concurrently.

Our contribution: a round-optimal blind signature scheme. As mentioned above,
we present a new pairing-based blind signature scheme. Our blind signing pro-
tocol is round-optimal: it consists of only two moves (a request and a response),
which implies that it is secure even in the presence of concurrent signing proto-
col executions. Our scheme is practical, has a proof of security (without random
oracles) in the common reference string model, and relies for its security on
falsifiable and non-interactive assumptions: computational Diffie-Hellman and
Subgroup Hiding. These assumptions are milder than those used in any previ-
ous practical concurrently secure blind signature, including those in the random
oracle model. (“Practical” in this sense means not relying on general NIZKs for
NP as a building block.) Our scheme extends in a natural way to give a partially
blind signature scheme [3] with the same properties.

Our blind signatures combine the Waters signature scheme [46] with non-
interactive witness-indistinguishable proofs developed in a line of papers by
Groth, Ostrovsky, and Sahai [30,29,31]. In this structure our scheme is related to
the group signature scheme of Boyen and Waters [15]. The primary disadvantage
of our scheme, as with the Boyen-Waters group signature, is its bit-at-a-time na-
ture, which makes the user’s blind signing request large: some 40 kilobytes at
the 1024-bit security level. The signer’s response and the resulting signatures,
however, are short.

Related work. The blind signature literature is extensive and varied. Below, we
briefly survey the most closely related schemes with concurrent security; see [5,4]
for more complete recent treatments.

In the random oracle model, there exist elegant round-optimal blind signa-
tures, due to Chaum [18] and Boldyreva [10], that feature short public keys,
short signatures, and an efficient blind signing protocol. Unfortunately the se-
curity proofs for these schemes rely on strong interactive assumptions: the RSA
known-target inversion assumption [9] and the chosen-target CDH assumption
(by contrast, the underlying ordinary signatures can be shown secure using RSA
and CDH, respectively).

In the common reference string model, several practical concurrently secure
blind signature schemes have been proposed. Unlike our scheme, these schemes
rely on assumptions that are interactive or whose statement size grows with
the number of queries in the reduction (i.e., “q-type”). Kiayias and Zhou [35]
give four-move blind and partially-blind signature schemes secure under the
(interactive) LRSW assumption [37], the Paillier assumption [42], and DLIN.
Okamoto [40] gives four-move blind and partially blind signature schemes based
on the (q-type) Two-Variable Strong Diffie-Hellman assumption and Paillier.
Fuchsbauer [25] gives two-move blind signature schemes based on the (q-type)
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Asymmetric Double Hidden Strong Diffie-Hellman assumption, the Asymmet-
ric Weak Flexible CDH assumption, and DLIN. Finally, Abe, Haralambiev, and
Ohkubo [4] give two-move blind signature schemes based on the (q-type) Simul-
taneous Flexible Pairing assumption and DLIN. (The last two papers appeared
together as [2].)

Also in the common reference string model, blind signatures that use general
NIZKs for NP (and are therefore not practical) were given by Juels, Luby, and
Ostrovsky [34], Fischlin [22], and Abe and Ohkubo [5]. The Fischlin and Abe-
Ohkubo schemes are round-optimal.

Okamoto [40] first observed that the Waters signature can be combined with
witness-indistinguishable proofs for a simple NP language to yield blind and
partially blind signatures. Our scheme could be viewed as an instantiation of
Okamoto’s framework (though we blind the message differently) where we take
advantage of Groth-Ostrovsky-Sahai proofs to eliminate a round of interaction.

Until recently, no concurrently secure blind signature schemes were known in
the plain public-key model. The first such scheme was given by Hazay et al. [32];
it relies on general NIZKs, and its round complexity is poly-logarithmic in the
number of concurrent executions for which security must be guaranteed.

Applications and extensions. Finally, as an application of our techniques, we
show (in the full version of our paper [39]) how our blind signatures may be used
within the Waters IBE system [46] to yield a blind IBE scheme, as introduced
by Green and Hohenberger [28]. Compared to Green and Hohenberger’s blind
extraction protocol, our protocol achieves concurrent security but adds a com-
mon reference string and a reliance on the SGH assumption.3 Furthermore, the
Waters signature naturally extends into a hierarchical identity-based signature
(cf. [43]); applying our construction at level 2 of the resulting signature gives
an identity-based blind signature [47] concurrently secure in the common refer-
ence string model.4 Alternatively, using the Boyen-Waters group signature [15]
at level 1 of the hierarchy and our blind signature at level 2 gives a group blind
signature [36] concurrently secure in the common reference string model.

2 Mathematical Background

In this paper, we work with bilinear groups, which are cyclic groups G of some fi-
nite order that admit a nondegenerate bilinear map e : G×G→ GT . Because we
generalize the concept of a group and work with modules, we are able to describe

3 The efficient range proofs due to Boudot [14] rely on the Strong RSA assumption
(due to Baric and Pfitzmann [8]) and require a common reference string. If the
scheme of Green and Hohenberger is instantiated with these range proofs then its
assumptions and setup model are comparable to those of our scheme, but without
providing concurrent security.

4 One could also obtain an identity-based blind signature through generic composition
of our blind signature and an ordinary signature [26].
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our scheme without relying on any particular properties of the underlying group
(with the caveat, as mentioned above, that the scheme is provably secure only
for composite-order groups).

2.1 Modules

We first recall the definition of a module; this serves as the foundation for our
blind signature scheme, and more specifically for the Groth-Sahai commitments
used in our scheme. (See [21, Ch. 10] for further background on modules.)

Definition 2.1. Let (R,+, ·, 0, 1) be a finite commutative ring. An R-module A
is an abelian group (A,+, 0) such that there exists an operator (namely, scalar
multiplication) R×A→ A, denoted by (r, x) �→ rx, satisfying the following four
properties for all r, s ∈ R and x, y ∈ A:

– (r + s)x = rx + sx.
– r(x + y) = rx+ ry.
– r(sx) = (rs)x.
– 1x = x.

When A is written multiplicatively our operator becomes exponentiation and
the requirements are written as xr+s = xr · xs, (x · y)r = xr · yr, (xr)s = xrs,
and x1 = x for all r, s ∈ R and x, y ∈ A.

The concept of a module generalizes that of a vector space: when R is a field,
the definitions of an R-module and an R-vector space coincide. The concept
of a module also generalizes the concept of an abelian group, as any abelian
group can be viewed as a Z-module. If A is isomorphic to Rr as abelian groups,
then r is the rank of A. When R is a field, module rank is the same as vector
space dimension. In cryptography, we are most used to working with Z/nZ- and
Fp-modules; for example, any finite group of exponent p can be viewed as a
Fp-module.

2.2 Groth-Sahai Commitments

Groth and Sahai [31] devise two types of commitments: commitments to elements
in anR-module A, and commitments to elements in the ringR. For our purposes,
we will need only commitments to bits; we can simplify things even further by
always setting A = G for our bilinear group G.

To form commitments to module elements, Groth and Sahai define an R-
module B and two homomorphisms τ : A→ B and ρ : B → A.5 These maps are
defined such that, for some elements h1, . . . , hm in B, ρ(hi) = 1 for all i and ρ is
non-trivial for all x that are not contained in B1 := 〈h1, . . . , hm〉. A commitment
to x ∈ A is then defined as c(x) = τ(x)

∏m
i=1 h

ri

i for random values r1, . . . , rm ←
R. This means that the hi elements act as keys for the commitment scheme,
and that the common reference string is (R, A,B, τ, ρ, h1, . . . , hm). There are
two cases:
5 Our notation differs from that of Groth and Sahai, but the ideas are the same.
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– Hiding keys: in this case, the hi elements generate the whole module B; in
other words, B1 = 〈h1, . . . , hm〉 = B. This implies that τ(A) ⊆ B1, which
means that c(x) will be perfectly hiding (as each commitment will be a
random element of B).

– Binding keys: in this case, B1 	= B and ρ(c) = ρ(τ(x)hr) = ρ ◦ τ(x) for some
restricted space of inputs x. To determine what this restricted space is, we
see that c will generally reveal the coset of B1 where τ(x) lives. Thus in
order for the commitment to be perfectly binding we must restrict the space
of inputs x to be the inverse image of B2 � B/B1; because we know that
B1 	= B, both B2 and τ−1(B2) are non-trivial and so this domain restriction
is actually meaningful. (Since B is an abelian group, the quotient module is
always well-defined.)

It is clear from these definitions that a set of keys cannot be both hiding and
binding, as the settings require very different properties of the commitment
keys h1, . . . , hm. To get any meaningful blindness properties, however, we need
these two settings to be indistinguishable. We therefore require an assumption
that implies this indistinguishability; the choice of assumption depends on the
instantiation being used.

3 Security Notions for Blind Signatures

We define a blind or partially blind signature scheme in the common reference
string (CRS) model to be a collection of four protocols: a Setup(1k) algorithm
that outputs the CRS σCRS , a KeyGen(σCRS ) algorithm that outputs the signing
key pair (pk, sk), a BlindSign protocol, which consists of an interaction of the
form User(σCRS , pk,M)↔ Signer(σCRS , sk) (in which the signer outputs success
if the protocol is successful, and the user outputs success and the unblinded sig-
nature σ), and finally a Verify(σCRS , pk,M, σ) algorithm that outputs accept if
the signature is valid and fail if not.

In general, there are two properties that blind and partially blind signatures
must satisfy: blindness and one-more unforgeability. Informally, the blindess re-
quirement says that in the process of signing a user’s message, the signer does
not learn anything abut the message he is signing. The one-more unforgeability
requirement says that if the user interacts with the signer � times, then he should
be able to produce � signatures and no more (so in particular, he cannot produce
�+ 1). We now describe these properties more formally.

3.1 Blind Signatures

Formal definitions of blind signatures were introduced by Juels, Luby, and Ostro-
vsky [34], although both properties were considered informally in Chaum’s origi-
nal paper on the subject [17], and one-more unforgeability was considered formally
in Pointcheval and Stern’s work on security arguments for signatures [44].
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In the Juels-Luby-Ostrovsky formalization, the blindness property is defined
as follows: the adversary is given a public-private key pair and outputs two mes-
sages M0 and M1. He then engages in two signing protocols with honest users:
the first user requests a signature on message Mb and the second on message
M1−b, where b is a random bit unknown to the adversary. The adversary is then
given the resulting signatures σ0 and σ1, but only if both interactions are suc-
cessful, and his goal is to guess the bit b (given the messages, the corresponding
signatures, and the signing protocol transcripts).

In this paper, we use a stronger version of the blindness property which allows
the adversary to generate the signing key pair himself, possibly in a malicious
manner. This strengthening was proposed independently in several recent pa-
pers [1,41,35].

The one-more unforgeability property can be defined as follows: the adversary
is given a public key and engages in multiple executions of the blind signing
protocol with a signer; the adversary is able to choose how to interleave the
executions. At the end, the adversary is considered successful if he is able to
output � + 1 distinct message-signature pairs (M1, σ1), . . . , (M�+1, σ�+1), where
� is the number of executions in which the signer outputs success.

In this definition, two message-signature pairs (Mi, σi) and (Mj , σj) are con-
sidered distinct even if Mi = Mj (so if σi and σj are just two different signatures
on the same message) for i 	= j. Unfortunately, this means that any signature
scheme in which signatures can be re-randomized (like our signature scheme, as
we will see in Section 4) will automatically be unable to satisfy one-more un-
forgeability. We therefore weaken the property by requiring that the adversary
be unable to output �+ 1 message-signature pairs in which the messages are all
distinct.6 This modified definition was also considered recently by Okamoto [41].

We put all this information together and give a formal definition of security
for blind signature schemes in the full version of this paper [39].

3.2 Partially Blind Signatures

The security properties of blind signatures can also be extended to partially blind
signatures; these formalizations are due to Abe and Okamoto [6]. For partially
blind signatures, the adversary outputs two info strings info(0) and info(1) in
addition to its messages M0 and M1. It then interacts with two separate users in
the same manner as before, except this time the first user requests a signature on
Mb using info(0) and the second requests a signature on M1−b with info info(1).
The adversary is given the resulting signatures σ0 and σ1 if both interactions
were successful and if info(0) = info(1). As before, his goal is to guess the bit b.

The one-more unforgeability property is also quite similar to the property for
blind signatures; here, the adversary is allowed to choose the info string for each
interaction with the signer. The goal is then for the adversary to output an info

6 We observe that blind signatures satisfying this weakened unforgeability property
are still sufficient for e-cash and other standard applications of blind signatures.
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string info∗ as well as �+ 1 message-signature pairs (M1, σ1), . . . , (M�+1, σ�+1),
where � represents the number of interactions in which the signer output success
while using the info string info∗.

4 Underlying Signature Scheme

As our underlying signature scheme we use a slightly modified version of the
Waters signature scheme [46]. Essentially, we just need to generalize the Waters
signature scheme by bringing it into the language of modules so that we can use
it in combination with Groth-Sahai commitments to create our blind signature
scheme.

4.1 CRS Setup

For the Waters signature, the required elements for the common reference string
are a bilinear groupG, the target groupGT and the bilinear map e : G×G→ GT ,
as well as generators g, u′, u1, . . . , uk for G, where k denotes the length of the
messages to be signed. We now add in the elements discussed in Section 2.2:
we start with a ring R such that G can be interpreted as an R-module. We
then add in an R-module B, a map τ : G → B, a map ρ : B → G, and
a bilinear map E : B × B → BT , which also requires us to specify a target
module BT and the resulting τT and ρT maps. This means that the CRS will
be σsig = (R, G,GT , B,BT , e, E, τ, τT , ρ, ρT , g, u

′, u1, . . . , uk). The relations be-
tween all these maps are summarized in the following figure:

Fig. 1. Commutative diagram for our modules

4.2 Signing Protocol

In our generalized Waters signature, the size of the message space will be {0, 1}k
for some value k (for example, to use hash-and-sign with SHA-1 as the hash
function we would set k = 160). As noted above, the CRS, which is shared
between the user and the signer, will contain k + 1 random generators of G.

– Setup(1k) : Output a tuple σsig that has been computed as described in the
previous section.

– KeyGen(σsig ): Pick a random value α←R and set A = E(τ(g), τ(g))α. The
public key will be pk = A and the secret key will be sk = α (actually, τ(g)α

will suffice).
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– Sign(σsig , sk,M): Write the message out bitwise as M = b1 . . . bk, and write
sk = τ(g)α. Pick a random r ←R and compute

S1 = τ(g)α
(
τ(u′)

k∏
i=1

τ(ui)bi

)r

and S2 = τ(g)−r.

Output the signature σ = (S1, S2).
– Verify(σsig , pk,M, σ): Again, write the message out bitwise as M = b1 . . . bk;

also write the signature as σ = (S1, S2) and the public key as pk = A. Check
that these values satisfy the following equation:

E(S1, τ(g)) · E
(
S2, τ(u′)

k∏
i=1

τ(ui)bi

)
= A. (1)

If they do, output accept; else, output fail.

One nice property of the Waters signature (and our extended Waters signa-
ture) is that anyone can re-randomize a signature by choosing s←R and com-
puting S′1 = S1 ·

(
τ(u′)

∏
i τ(ui)bi

)s and S′2 = S2 · τ(g)−s. Since this results
in S′1 = τ(g)α

(
τ(u′)

∏
i τ(ui)bi

)r+s and S′2 = τ(g)−(r+s), the re-randomization
process really does give us a valid signature. In particular, the randomness in the
resulting signature (S′1, S

′
2) will be information-theoretically independent from

the randomness r chosen by the signer in the signature (S1, S2).
We recall the computational Diffie-Hellman (CDH) assumption used for the

Waters signature:

Assumption 4.1. Let G be an algorithm that outputs a tuple (q,G, g), where
G is a group of order q (not necessarily prime) and g is a generator of g. We
say that G satisfies the computational Diffie-Hellman assumption if it is com-
putationally infeasible to compute the value gab given the tuple (g, ga, gb). More
formally, for all PPT adversaries A there exists a negligible function ν(·) and a
security parameter k0 such that the following holds for all k > k0:

Pr
[
(q,G, g)← G(1k); a, b← Zq : A(g, ga, gb) = gab

]
= ν(k).

The Waters signature scheme is existentially unforgeable if G satisfies the CDH
assumption. In our extended version, the signature scheme will be existentially
unforgeable if B satisfies the CDH assumption. As the proof is a trivial extension
of Waters’ proof, we will not include it here.

5 Our Blind Signature Scheme

In this section we describe our blind signature scheme. Although we describe
only the partially blind setting, our description also encapsulates the fully blind
setting, which corresponds to the case k0 = 0.
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5.1 CRS Setup

In our CRS we must include all the necessary elements for Groth-Sahai commit-
ments as well as values in the tuple σsig of Section 4.1. This means our CRS will
be σCRS = (σsig , h1, . . . , hm), where the hi elements are binding keys for Groth-
Sahai commitments. Specifically, the elements hi generate a proper submodule
B1 of the module B used in the Waters signature scheme.

5.2 The Partially Blind Protocol

In the following protocol, the user and signer both have access to an info string
info. At the end of the protocol, the user obtains a signature on info||M for a
message M , while the signer learns nothing beyond the fact that the message M
followed the guidelines laid out in info. In addition, the user and the signer will
have agreed upon the length of the info string; call it k0 for 0 ≤ k0 ≤ k. Setting
k0 = 0 corresponds to a fully blind signature, while setting k0 = k corresponds
to an ordinary run of the (generalized) Waters signature scheme.

– Setup(1k): Output σCRS as described in the previous section (Section 5.1).
– KeyGen(σCRS ): Same as KeyGen from Section 4.2.
– User(σCRS , pk, info,M): First write the info string out bitwise, as info =
b1 . . . bk0 , and similarly write the message as M = bk0+1 . . . bk. Now, for each
i such that k0 < i ≤ k, pick random values ti1, . . . , tim ←R and compute

ci = τ(ui)bi ·
m∏

j=1

h
tij

j and πij =
(
τ(ui)2bi−1 ·

m∏
j=1

h
tij

j

)tij

,

where ci acts as a GS commitment to the bit bi and 	πi = {πij}mj=1 acts as
a proof that the value contained in ci is in fact a 0 or a 1. Send the tuple
req = (ck0+1, 	πk0+1, . . . , ck, 	πk) as a request to the issuer (and save some
state information state).

– Signer(σCRS , sk, info, req): First, write info = b1 . . . bk0 and sk = τ(g)α.
Upon receiving the request, check that each ci is indeed a commitment to a
0 or 1 by checking that

E
(
ci, τ(ui)−1ci

)
=
∏m

j=1 E(hj , πij) (2)

for each k0 < i ≤ k. If this equation fails to hold for any value of i, abort
the protocol and output ⊥. Otherwise, compute the value

c = τ(u′)
( k0∏

i=1

τ(ui)bi

)( k∏
i=k0+1

ci

)
.

Finally, pick a random value r ←R and compute

K1 = τ(g)α · cr, K2 = τ(g)−r , and K3j = h−r
j for 1 ≤ j ≤ m.

Set 	K3 = {K3j}mj=1, send the tuple (K1,K2, 	K3) back to the user, and output
success and info.



Limitations on Transformations from Composite- to Prime-Order Groups 529

– User(state, (K1,K2, 	K3)): First, check that K2 and 	K3 were formed properly
by checking satisfiability of

E
(
K3j, τ(g)

)
= E(K2, hj) (3)

for each 1 ≤ j ≤ m. If this equation does not verify for some j, abort and
output ⊥. Otherwise, unblind the signature by computing

S1 = K1

k∏
i=k0+1

m∏
j=1

K
tij

3j and S2 = K2. (4)

Next verify that this is a valid signature on info||M by running Verify(σCRS ,
pk, info||M, (S1, S2)). If this step outputs fail, abort the protocol and output
⊥. If it outputs accept, however, re-randomize the signature by choosing a
random value s←R and computing

S′1 = S1

(
τ(u′)

k∏
i=1

τ(ui)bi

)s

and S′2 = S2 · τ(g)−s.

The final signature is σ = (S′1, S
′
2); output σ as well as info and success.

– Verify(σCRS , pk,M, σ): Same as Verify from Section 4.2.

Theorem 5.1. The blind signature scheme outlined above is correct and par-
tially blind, under the assumption that the hi values in the hiding and binding
settings are indistinguishable.

The proof of Theorem 5.1 appears in the full version of this paper [39]. The
theorem demonstrates correctness and (partial) blindness, but it does not show
one-more unforgeability. In order to prove this last property, we need to define
two properties of pairings, adapted from Freeman [24, §3] for our purposes:

Definition 5.2. A pairing E : B × B → BT is cancelling if there exists a de-
composition B = B1 ×B2 such that E(b1, b2) = 1 for all b1 ∈ B1, b2 ∈ B2.

Definition 5.3. A pairing E : B×B → BT is projecting if there exists a decom-
position B = B1 ×B2, a submodule B′T ⊂ BT , and homomorphisms π : B → B
and πT : BT → BT , such that B1 ⊆ ker(π), π(x) = x for x ∈ B2, B′T ⊆ ker(πT ),
and πT (E(x, y)) = E(π(x), π(y)) for all x, y ∈ B.

As we will see below, the pairing E has both of these properties (with respect
to the same decomposition B = B1 × B2) when instantiated using composite-
order groups under the Subgroup Hiding (SGH) assumption. Because SGH also
provides the necessary indistinguishability properties, we obtain the following
theorem, a proof of which can be found in the full version of this paper [39]:

Theorem 5.4. The blind signature scheme outlined above is one-more unforge-
able under the SGH assumption and the assumption that the modified Waters sig-
nature scheme in Section 4 is existentially unforgeable on the submodule B2 ⊆ B.
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5.3 Instantiation under the SGH Assumption

We first recall the Subgroup Hiding (SGH) assumption:

Assumption 5.5 ([12]). Let G be an algorithm that outputs a tuple (p, q,G,
GT , e) such that G and GT are both groups of order n = pq and e : G×G→ GT

is a nondegenerate bilinear map. We say that G satisfies the Subgroup Hiding
assumption if it is computationally infeasible to distinguish between an element of
G and an element of Gq. More formally, for all PPT adversaries A there exists
a negligible function ν(·) and a security parameter k0 such that the following
holds for all k > k0:

∣∣∣Pr
[
(p, q,G,GT , e)← G(1k);n = pq;x← G : A(n,G,GT , e, x) = 0

]

− Pr
[
(p, q,G,GT , e)← G(1k);n = pq;x← G : A(n,G,GT , e, x

p) = 0
]∣∣∣ < ν(k).

To instantiate our blind signature scheme under this assumption, we use a group
G of order n = pq with p, q prime. We define B = G and τ to be the identity
map; this means that we can use E = e. We need only one hi element, namely an
h1 such that h1 generates Gq in the binding setting and h1 generates the whole
group G in the hiding setting. The SGH assumption tells us that these choices of
h1 are indistinguishable. We can also describe our ρ map as ρ(ci) = cqi = (uq

i )
bi

since h1 has order q. Because the ui are all generators for G and therefore uq
i 	= 1,

we see that the ρ map will indeed reveal the bit bi.
Because h1 will generate either G or Gq, we have B = Gp ×Gq, which means

(looking back at the statement of Theorem 5.4) that we assume for the secu-
rity of our blind signature that CDH is hard in Gp. To see that the pairing
e is cancelling, note that every element of Gp can be written as a = gαq for
some α ∈ Fp and every element of Gq can be written as as b = gβp for some
β ∈ Fq. Then e(a, b) = e(gαq, gβp) = e(gαβpq, g) = e

(
(gn)αβ , g

)
= 1 because G

has order n. To see that e is projecting, note that there exists a λ ∈ Zn such
that λ ≡ 1 mod p and λ ≡ 0 mod q, and that furthermore this value is efficiently
computable (given the factorization of n) using the Chinese Remainder Theo-
rem. Thus exponentiating by λ cancels out the Gq component of a group element
while leaving the Gp component unchanged. This allows us to define π(z) = zλ

for z ∈ G and πT (zT ) = (zT )λ for zT ∈ GT . These maps are easily seen to satisfy
the projecting properties.

Finally, to compute the value h1 we can set h1 = g in the hiding setting
and h1 = gp in the binding setting. This means that, as with the map ρ, the
factorization of n will be required as a trapdoor to compute h1.

The obvious downside of using our scheme under the SGH assumption is the
use of a composite-order group, which necessitates a common reference string
generated by a trusted third party.7 The upside, on the other hand, is that the

7 It is an open problem to replace the trusted third party with an efficient secure
multiparty computation protocol for computing the CRS.
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scheme is as efficient as possible under this assumption, as each part of the
signature involves only one group element.8

6 Converting to a Prime-Order Setting

In this section we argue that our scheme cannot be instantiated securely under a
natural usage of the k-Linear family of assumptions in prime-order groups. The
k-Linear family generalizes the Decision Diffie-Hellman and Decision Linear [11]
assumptions (which can be recovered by setting k = 1 or 2, respectively) and is
defined as follows:

Assumption 6.1 ([45,33]). Let G be a generation algorithm that outputs a tu-
ple (p,G, g) such that p is prime, G is a group of order p, and g is a generator of
G. We say that G satisfies the k-Linear assumption if it is computationally infea-
sible to distinguish between tuples of the form (gα1 , . . . , gαk+1 , gα1r1 , . . . , gαkrk ,

gαk+1
∑k

i=1 ri) and tuples of the form (gα1 , . . . , gαk+1 , gα1r1 , . . . , gαk+1rk+1) for
random αi, ri ← Fp. More formally, for all PPT adversaries A there exists
a negligible function ν(·) and a security parameter k0 such that the following
holds for all k > k0:
∣∣∣∣∣∣
Pr

⎡
⎣

(p,G,g)←G(1k)

α1,...,αk+1
R←Fp

r1,...,rk
R←Fp

: A(gα1 , . . . , gαk+1 , gα1r1 , . . . , gαk+1
∑k

i=1 ri) = 0

⎤
⎦

−Pr

⎡
⎣

(p,G,g)←G(1k)

α1,...,αk+1
R←Fp

r1,...,rk+1
R←Fp

: A(gα1 , . . . , gαk+1 , gα1r1 , . . . , gαk+1rk+1) = 0

⎤
⎦
∣∣∣∣∣∣
< ν(k),

Let G be a bilinear group of prime order p with a pairing e : G × G → GT .
When we refer to a “natural” use of the k-Linear assumption, we mean that
we define the module B to be Gk+1 and the module B1 to be generated by k
elements of B that span a rank-k submodule. Indeed, one way to interpret the
k-Linear assumption is that a random element in the submodule B1 of Gk+1

generated by elements of the form (1, . . . , 1, gαi , 1, . . . , 1, g) for i = 1, . . . , k is
indistinguishable from a random element of Gk+1. Our use of the assumption
generalizes this interpretation only slightly, by randomizing the generators of
B1. Note that in our setup the quotient module B2 = B/B1 has Fp-rank 1.

Following Freeman [24, §2], we define a (symmetric) pairing on B by setting
BT = (GT )m for some integer m and choosing (k + 1) × (k + 1) (symmetric)
matrices E(�) over Fp for � = 1, . . . ,m. We then set the �th component of the
pairing to be

E
(
(g1, . . . , gk+1), (h1, . . . , hk+1)

)(�)

:=
k+1∏
i,j=1

e(gi, hj)e
(�)
ij , (5)

8 Of course, the number of bits taken to represent the composite-order group element,
approximately 1024, is much larger than it would be for a prime-order group element,
which can be as small as 160 bits (at the 80-bit security level).



532 S. Meiklejohn, H. Shacham, and D.M. Freeman

where e(�)ij denotes the (i, j)-th entry of E(�). The connection between this setup
and the k-Linear assumption is given by the following theorem:

Theorem 6.2 ([24, Theorem 2.5]). Let G,B,B1, BT be as described above,
with B1 a uniformly random rank-k submodule of B. If G satisfies the k-Linear
assumption, then a random element of B1 is computationally indistinguishable
from a random element in B.

While any scheme based on Groth-Sahai proofs requires the projecting property
of Definition 5.3 and the indistinguishability of elements in B1 and B (i.e.,
the indistinguishability of hiding and binding commitment keys), our scheme
also requires the cancelling property of Definition 5.2. In the remainder of this
section, we show that for any k, the three properties (projecting, cancelling,
and key indistinguishability) cannot simultaneously be obtained in prime-order
groups using the k-Linear assumption as described above, except with negligible
probability (over the choice of the module B1).

We start by showing that the image of a symmetric pairing on a group G of
prime order p must also have order p. In what follows, we denote by E(B,B)
the submodule of BT generated by all elements of the form E(x, y) for x, y ∈ B.

Lemma 6.3. If G is a group of prime order p and e : G×G→ GT is a nonde-
generate symmetric bilinear map, then the order of e(G,G) is p.

Proof. We first observe that e(G,G) has exponent p; to see this, note that since
G has order p, we have e(x, y)p = e(xp, y) = e(1, y) = 1 for any x, y ∈ G.
Since e(G,G) has exponent p, any element is of the form z =

∏
i e(xi, yi)ci for

xi, yi ∈ G and ci ∈ Fp. Since G is cyclic, we can write xi = gai and yi =
gbi for a generator g and unique ai, bi ∈ Fp. By bilinearity, we can write z =
e(g, g)

∑
i aibici , and therefore e(G,G) is a cyclic group generated by e(g, g); the

nondegeneracy of e implies that e(g, g) has order p. ��
Lemma 6.3 shows that by replacing GT with e(G,G), we may assume without
loss of generality that GT has order p. We make this assumption in the remainder
of the section. We will also assume that the values used to define the pairing
E on the module B are independent of the submodules B1 and B2; if they are
not independent, then the fact that they are related to the (publicly known)
generators of B1 gives an adversary information about B1 that could be used
to break the indistinguishability assumption. Similarly, if the pairing depends
on B2, then the adversary may be able to use this information to compute an
element y ∈ B2; then given an element x in either B1 or B, he could compute
E(x, y) and conclude that x ∈ B1 if and only if the resulting value is 1.

We can now show that in the prime-order setting our indistinguishability
restrictions on B and its submodules will, with high probability, yield a pairing
E that can be either projecting or cancelling, but not both at the same time.
Our approach is to construct a cancelling pairing and then show that it implies
that the image of the pairing E is of order p. We will then show that this implies
that the pairing cannot satisfy the projecting property.
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In general, there are two methods in the literature for cancelling paired group
elements. As seen in Section 5.3, the cancelling in the composite setting is fairly
straightforward: it follows from the fact that the orders of the Gp and Gq sub-
groups are relatively prime. In a prime-order setting this is not an option, as
every component (i.e., G, GT , B, B1, B2, BT ) has exponent p. We therefore
need to use linear combinations of exponents in order to successfully cancel ele-
ments. Our next result can be interpreted as showing that forming these linear
combinations requires us to combine elements in the pairing and thus shrink
the size of the pairing’s image. To simplify notation, we state the proposition
relative to the (k − 1)-Linear assumption.

Proposition 6.4. Let G be a bilinear group of prime order p with pairing e : G×
G→ GT . Let B be the rank-k G-module Gk, let BT = (GT )m for some positive
integer m, and let E : B×B → BT be a nondegenerate pairing defined as in (5).
If B1 is a uniformly random rank-(k − 1) submodule of B and E is a cancelling
pairing that is independent of the decomposition B = B1×B2, then e(B,B) has
order p with overwhelming probability.

Proof. To start, we write elements in B as either a = (a1, . . . , ak) or b =
(b1, . . . , bk) with ai, bi ∈ G. Equivalently, we can fix a generator g of G and
write a = (gα1 , . . . , gαk) and b = (gβ1 , . . . , gβk) for exponents αi, βi ∈ Fp. As we
saw in (5) above, the element E(a,b) ∈ BT is a tuple of elements of GT , in which
each entry is of the form T =

∏
i,j e(ai, bj)eij . By assumption, the coefficients

eij ∈ Fp are independent of the αi and βi values.
Suppose that a ∈ B1 and b ∈ B2; let us see what we require in order to

have T = 1. Let a1, . . . ,ak−1 be a set of generators of B1, and write au =
(gαu1 , . . . , gαu,k−1) for u = 1, . . . , k − 1. Then a general element of B1 is given
by a = ar1 · · ·ark−1 for arbitrary r1, . . . , rk−1 ∈ Fp. Since B1 has rank k − 1,
the submodule B2 has rank 1 and a general element of B2 is given by b =
(gβ1t, . . . , gβkt) for some fixed β1, . . . , βk ∈ Fp and arbitrary t ∈ Fp. Looking
back at how our element T is computed in (5), we can see that the condition
T = 1 is equivalent to

∑
u

ru

(∑
i

αui

(∑
j

eijβjt

))
= 0

In matrix notation, this is 	r·A·E·	b·t = 0, where 	r is the row vector (r1, . . . , rk−1),
E = [eij ] is the k × k matrix specifying the pairing coefficients (denoted E(�) in
(5)), A = [αui] is the (k−1)×k matrix whose rows are the vectors corresponding
to the generators of B1, and 	b is the column vector (β1, . . . , βk). Because this
requirement must hold for all values of 	r and t, we can further reduce the equation
to A · E ·	b = 0. We now consider two different cases: when E is invertible and
when E is singular.

We first consider the case whereE is singular. The cancelling property requires
that A ·E ·	b = 0. If E ·	b = 0, then the pairing is degenerate in this component,
as any element paired with 	b will be 1. Therefore, this cannot be the only type
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of element in the pairing tuple, or else the entire pairing would be degenerate.
On the other hand, if E ·	b 	= 0, then since A · E ·	b = 0, we see that E ·	b is a
nonzero vector in both the image of E and the kernel of A.

Next we consider the case where E is invertible, and consider not only the
element T but also another element T ′ in the target tuple. The element T ′

will have its own associated coefficient matrix E′, with the requirement that
A · E′ ·	b = 0. Then we have A · E ·	b = A · E′ ·	b = 0, which implies that 	b is
contained in both the kernel of A ·E and the kernel of A ·E′. Since A has rank
k − 1 and we are assuming E to be invertible, we know that the dimension of
ker(A ·E) is 1. Furthermore, since E is invertible we can write

A ·E′ ·	b = A · (E ·E−1) · E′ ·	b = A · E · (E−1 ·E′ ·	b) = 0,

which implies that E−1E′ · 	b is also contained in the kernel of A · E. Since
this kernel is one-dimensional, E−1E′ ·	b must be a constant multiple of 	b; i.e.,
E−1E′ ·	b = λ ·	b for some λ ∈ Fp and 	b is an eigenvector of E−1E′.

We now observe that because A has rank k − 1, its kernel has rank one;
furthermore, choosing a rank-(k − 1) submodule B1 is equivalent to choosing
the one-dimensional subspace ker(A). Since E is invertible and independent of
B1, this is equivalent to choosing the one-dimensional subspace ker(A · E). Let
	u be any vector in ker(A · E). Then 	u = γ ·	b for some γ ∈ Fp, and our analysis
above shows that 	u is an eigenvector of E−1E. Since ker(A · E) can contain
any nonzero vector 	u, this implies that every vector is an eigenvector of E−1E.
Therefore E−1E′ must be a diagonal matrix with the same value in each diagonal
entry; in other words, we have E−1E′ = cI for some constant c ∈ Fp. Thus we
have E′ = cI ·E = c · E, and so T ′ = T c.

It remains only to put everything together. Let E(�) be the coefficient matrix
from (5) used to compute the �th component of the pairing. Our argument above
shows that if one of the matrices E(�) is invertible, then all matrices E(�′) are
constant multiples of E(�), and therefore the order of e(B,B) is the same as
the order of e(G,G) = GT , which is p. Thus if the pairing E is cancelling and
the order of e(B,B) is greater than p, then none of the matrices E(�) can be
invertible.

Now suppose all of the E(�) are singular. Our consideration of this case above
shows that if the pairing E is cancelling, then there must be some matrix E(�)

with ker(A)∩im(E(�)) 	= {0}. As noted above, choosing the module B1 is equiva-
lent to choosing the one-dimensional subspace kerA. Since E(�) is not invertible,
we have dim(im(E(�))) ≤ k − 1. Thus the number of one-dimensional subspaces
in im(E(�)) is at most (pk−1 − 1)/(p− 1), while the number of one-dimensional
subspaces in F

k
p is (pk−1)/(p−1). We conclude that the probability (taken over a

uniformly random choice of ker(A) and thus also of A) that ker(A) has nontrivial
intersection with the image of E(�) is at most (pk−1− 1)/(pk− 1) < 2/p. Taking
a union bound, we conclude that the probability that ker(A) ∩ im(E(�)) 	= 0 for
some � is at most 2m/p, which is negligible. ��

Putting all this together, we can prove our main theorem:
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Theorem 6.5. Let G be a bilinear group of prime order p with pairing e : G×
G→ GT . Let B be the rank-k G-module Gk, let BT = (GT )m for some positive
integer m, and let E : B × B → BT be a nondegenerate pairing defined as in
(5). If B1 is a uniformly random rank-(k − 1) submodule of B and E is a can-
celling pairing that is independent of the decomposition B = B1 ×B2, then with
overwhelming probability the pairing E cannot be projecting (with respect to the
same decomposition B = B1 ×B2).

Proof. By Proposition 6.4, we know that if E is cancelling, then E(B,B) has
order p with overwhelming probability. This means that E(B,B) is cyclic and
any nonzero element is a generator.

Suppose E is projecting and choose some x ∈ B1. Since E is nondegenerate,
there is some y ∈ B such that E(x, y) 	= 1. Now the projecting property implies
that πT (E(x, y)) = E(π(x), π(y)) = E(1, π(y)) = 1. Since E(x, y) generates
E(B,B), we conclude that πT (E(B,B)) = {1}.

On the other hand, now choose some x′ ∈ B2. Then there is some y′ ∈
B such that E(x′, y′) 	= 1. Furthermore, the cancelling property implies that
without loss of generality we can assume y′ ∈ B2. The projecting property now
implies that πT (E(x′, y′)) = E(π(x′), π(y′)) = E(x′, y′) 	= 1, so we conclude that
πT (E(B,B)) = E(B,B), contradicting our conclusion above. ��

7 Conclusions and Open Problems

In this paper we have shown that there are limitations on transformations of
pairing-based cryptosystems from composite- to prime-order groups. In partic-
ular, we have given evidence that two properties of composite-order pairings
identified by Freeman— cancelling and projecting— cannot be simultaneously
obtained in prime-order groups.

Specifically, we have shown that a pairing defined in a natural way with sub-
group hiding provided by the Decision Linear assumption can be both cancelling
and projecting with only negligible probability. As evidence that both properties
are sometimes called for simultaneously, we have presented a natural crypto-
graphic scheme whose proof of security calls for a pairing that is both cancelling
and projecting. This scheme is a practical round-optimal blind (and partially
blind) signature secure in the common reference string model, under mild as-
sumptions and without random oracles.

Many open questions remain. First, we would like either to generalize our
result so it applies to a wider class of pairings constructed from prime order
groups (possibly including asymmetric pairings), or instead to show that no such
generalization is possible by exhibiting a pairing in prime-order groups that is
simultaneously projecting and cancelling. Second, we have given evidence that
our specific proof strategy for our blind signature scheme is unlikely to generalize
to prime-order groups, but have not settled the question of whether our scheme
when instantiated in prime-order groups is in fact provably secure (by means of a
different, ad-hoc proof) or insecure (i.e., actually susceptible to attack). Finally,
it is interesting to consider whether a more general procedure (not relying on



536 S. Meiklejohn, H. Shacham, and D.M. Freeman

Freeman’s properties) can be used to transform every composite-order scheme to
a prime-order one, or whether some schemes provably cannot be so transformed.
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Abstract. In pairing-based cryptography the Generic Group Model (GGM) is
used frequently to provide evidence towards newly introduced hardness assump-
tions. Unfortunately, the GGM does not reflect many known properties of bilinear
group settings and thus hardness results in this model are of limited significance.
This paper proposes a novel computational model for pairing-based cryptogra-
phy, called the Semi-Generic Group Model (SGGM), that is closer to the standard
model and allows to make more meaningful security guarantees. In fact, the best
algorithms currently known for solving pairing-based problems are semi-generic
in nature. We demonstrate the usefulness of our new model by applying it to study
several important assumptions (BDDH, Co-DH). Furthermore, we develop mas-
ter theorems facilitating an easy analysis of other (future) assumptions. These
master theorems imply that (unless there are better algorithms than the semi-
generic ones) great parts of the zoo of novel assumptions over bilinear groups
are reducible to just two (more or less) standard assumptions over finite fields.
Finally, we examine the appropriateness of the SGGM as a tool for analyzing the
security of practical cryptosystems without random oracles by applying it to the
BLS signature scheme.

Keywords: Restricted models of computation, generic groups, semi-generic group
model, cryptographic assumptions, master theorems, provable security, pairing-
based cryptography.

1 Introduction

Assuming that certain computational problems, mostly from algebra, number theory,
and coding theory, are intractable builds the foundation of public-key cryptography.
However, proving the validity of these assumptions in the standard model of computa-
tion seems to be impossible with currently available techniques.

Why do we believe in such hardness assumptions, though they are not provable in
general? For classic number-theoretic problems, such as integer factorization (IF) or
the discrete logarithm (DL) problem, this is certainly due to the absence of efficient
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algorithms in spite of intensive long-term research by many brilliant people. However,
besides such well-known assumptions, there frequently appear new assumptions build-
ing the basis for novel cryptosystems with original properties. What can be done to
provide evidence for these assumptions apart from trying to find efficient algorithms
over decades? Clearly, we should try to underpin the belief in novel assumptions by
searching for reductions to a more mature assumption; but unfortunately finding such a
reduction often fails.

An important approach to (nevertheless) gain immediate evidence towards hardness
assumptions is to prove them with respect to a restricted but still meaningful class of
algorithms. This is the motivation behind the invention of black-box models for alge-
braic structures like groups, fields, and rings, where algorithms are limited to perform
only operations “commonly” available over these structures. Probably, the most famous
of these models is the generic group model (GGM) introduced by Shoup in his semi-
nal paper [34] from 1997, and refined by Maurer in [28]. In this model one considers
algorithms – so-called generic group algorithms – that, given a group G as black-box,
may only perform a set of basic operations on the elements of G such as applying the
group law, inversion of group elements and equality testing. Since the group is treated
as a black-box, the algorithms cannot exploit any special properties of a concrete group
representation. As a consequence, such algorithms are generic in the sense that they can
be applied to any concrete instantiation of a group (e.g., Z

∗
p or E(Fp)) in order so solve

a problem. Natural examples of this class of algorithms are the Pohlig-Hellman [30]
and Pollard’s Rho [31] algorithm for computing discrete logarithms.

It should be noted that one has to take care when interpreting results in the GGM
like intractability results as evidence in practice, since this model abstracts away from
potentially many properties an algorithm might be able to exploit in the real world [15].
On the one hand, there exist cryptographic groups (such as certain elliptic curve groups)
for which not many properties beyond the axioms of an algebraic group are known.
Hence, modeling such groups as generic can be seen as a reasonable abstraction. On
the other hand, there are groups, also used in cryptography, featuring many further
properties, which clearly makes the generic model an inappropriate reflection for them.
A prime example are multiplicative groups of finite fields or rings. These structures offer
many well-understood properties beyond the group axioms, such as additional efficient
algebraic operations (e.g., addition in the field or ring), and other properties of the group
representation (e.g., the notion of prime integers and irreducible polynomials), that are
simply ignored by the generic group model, but give rise to more efficient algorithms for
certain problems (e.g., index calculus algorithms for computing discrete logarithms).

But should a minimal requirement on such an idealized model of computation not
be that at least all currently known algorithms are captured? There exist some first
approaches in the cryptographic literature to tackle this issue: The pseudo-free group
model proposed by Hohenberger [19] and Rivest [32] does not treat a group as a black-
box. Unfortunately, the definition of pseudo-freeness is very restrictive in the sense
that a number of important groups (like all known-order groups) are immediately ex-
cluded and important problems, such as Diffie-Hellman-type problems, seem not to
be covered. Other approaches due to Leander and Rupp [27] and Aggarwal and Mau-
rer [1] take into account that the RSA group Z

∗
n is embedded in the ring Zn. They use
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a generic ring model, where algorithms may perform both multiplication and addition
operations on Zn to show that breaking RSA is equivalent to factoring. Unfortunately,
recent work [21] shows that even computing the Jacobi symbol is equivalent to factoring
in this model. So this approach has not led to a satisfying abstraction of Z

∗
n yet.

Over the last decade a considerable number of innovative cryptosystems, such as
identity-based encryption [7] or short digital signatures with strong security [9,10],
have been proposed over bilinear groups. A bilinear group setting consists of groups
G1, G2, and G3, with a bilinear map e : G1 × G2 → G3, called a pairing. Along
with these cryptosystems also many new assumptions have been introduced, e.g., Bilin-
ear Diffie-Hellman (BDH) [23,24], q-Strong Diffie-Hellman [4,14,22], Decision Linear
Diffie-Hellman (DLIN) [6], Co-Diffie-Hellman (Co-DH) [9,8], and many more. Unfor-
tunately, for virtually all of them no reduction to a well-analyzed assumption like DL is
known. In fact, finding such reductions seems to be a difficult task, since the algebraic
settings underlying classic problems (e.g., a single cyclic group for DL) significantly
differ from bilinear settings. Hence, given an instance of a classic problem, it appears
to be hard to transform this instance to one of the bilinear problem in order to leverage
an algorithm for the latter.

Consequently, the only way to provide some immediate evidence for such novel as-
sumptions consists in proofs in restricted models of computation. So far, the only such
model for bilinear settings is a straightforward extension of the generic group model,
where all three groups G1, G2, and G3 are modeled as generic groups [33,11,25]. In all
known instances of bilinear settings the groups G1 and G2 are elliptic curve groups, thus
modeling these groups as generic may be considered as a reasonable abstraction. How-
ever, in contrast to that, the group G3 is usually a subgroup of the multiplicative group of
a finite field. So there definitely exist non-generic algorithms for cryptographic problems
like BDH, Co-DH, etc. featuring a running time which is at most sub-exponential: these
sub-exponential algorithms map the inputs over G1 and G2 (given as part of a problem
instance) to G3 using the bilinear mapping (MOV reduction [29]) and determine the dis-
crete logarithms of these elements over G3 using index calculus. Knowledge of these
discrete logarithms allows to compute the solution to the problem instance using a few
exponentiations. Note that there might be even more efficient algorithms especially for
potentially easier problems like decisional or gap problems. Hence, modeling bilinear
settings in this way is clearly inappropriate.

OUR CONTRIBUTION. We propose the Semi-Generic Group Model (SGGM) which
leverages this observation as follows: The elliptic curve groups G1 and G2 are modeled
as generic groups, while G3 is given in the standard model, i.e., algorithms may perform
any computation over G3 that is possible in the subgroup of a finite field. The SGGM
is thus closer to the standard model than the GGM and can provide stronger evidence
towards hardness assumptions in pairing-based cryptography. In fact, to the best of
our knowledge all algorithms currently known for solving pairing-based problems are
semi-generic in nature. In particular, the sub-exponential algorithms applying a MOV
reduction described above are covered by the SGGM.

We analyzed some of the most important computational and decisional assumptions
of pairing-based cryptography in our new model. In this extended abstract we restrict
to consider Co-DH and decisional BDH. The full version of the paper [20] covers



542 T. Jager and A. Rupp

additional problems, including q-strong DH and DLIN. We are able to reduce the con-
sidered assumptions (with respect to semi-generic algorithms) to fairly standard as-
sumptions over finite fields like Square DH and a slight variation of DL. That means,
the bilinear assumptions are at least as hard as certain more standard assumption over
G3 provided that there are no non-semi-generic algorithms. Furthermore, we developed
master theorems ensuring the hardness of broad classes of computational and decisional
problems in the SGGM. Studying such generalizations is not only important in order to
structure and facilitate the analysis of the rapidly growing set of cryptographic assump-
tions as motivated in [3], but improves our understanding of the properties which need
to be satisfied by a problem to be intractable. Results like [12,33,11] are in this vein.
Boyen [11] (see also [5]) developed master theorems for the hardness of some general
classes of decisional problems in the generic group model for bilinear settings. Rupp et
al. [33] provide hardness conditions for even broader classes of computational problems
and algebraic settings, but still in the GGM. Bresson et al. [12] study a general class
of decisional assumptions over a single group in the standard model and show that this
class can be reduced to DDH (under certain restrictions). In the scope of the proof of
our master theorem for decisional problems we enhance Bresson et al.’s results for the
standard model and apply them to the SGGM.

The security of public-key cryptosystems, especially of practical cryptosystems, can
often only be proven in an idealized model, such as the random oracle model (ROM) [2].
An issue with the ROM is that it idealizes a hash function in a way such that it has
all properties of a “perfect” hash function (collision resistance, (second) preimage re-
sistance, random output, ...) at the same time. When the cryptosystem (and thus the
random oracle) is implemented in practice, one has to choose an adequate hash func-
tion instantiating the random oracle. An important question is whether providing all
properties of the random oracle at the same time is really necessary to provide security.

We examine the useability of the SGGM as a tool complementing the ROM. We are
able to prove the security of the Boneh-Lynn-Shacham (BLS) short signature scheme
[9,10] against semi-generic adversaries without random oracles, however, requiring
non-standard properties for the employed hash function. It is left as an interesting open
problem to study whether these requirements can actually be satisfied by a reasonably
efficient practical hash function.

2 The Semi-Generic Group Model

Let G1, G2, and G3 be groups of prime order p and g1 ∈ G1, g2 ∈ G2 be corre-
sponding generators. For the sake of simplicity of the subsequent formalizations we use
multiplicative notation for all groups.

Definition 1. A pairing is a map e : G1 ×G2 → G3 with the following properties:

1. Bilinearity: ∀(a, b) ∈ G1 ×G2 and x1, x2 ∈ Zp holds that e(ax1 , bx2) = e(a, b)x1x2 .
2. Non-degeneracy: g3 := e(g1, g2) is a generator of G3, i.e., g3 �= 1.
3. e is efficiently computable.
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Following [17], we distinguish three different types of bilinear group settings:

– Type 1: G1 = G2. We will call this the setting with symmetric bilinear map.
– Type 2: G1 �= G2, there is an efficiently computable isomorphism ψ : G1 → G2.
– Type 3: G1 �= G2, there is no efficiently computable isomorphism ψ : G1 → G2.

FORMAL DEFINITION OF THE SGGM. We base our formal description of the SGGM
for bilinear settings on the generic group model introduced by Maurer [28], though our
proofs can be adapted to Shoup’s GGM [34] as well. The main difference between Mau-
rer’s and Shoup’s formalization is that in the first model group elements are encoded
deterministically whereas in the second model encodings are random.

An algorithm A in the SGGM interacts with a semi-generic group oracle O, which
computes the group operations and evaluates the pairing and isomorphism on behalf of
A. O receives as input two vectors of group elements (the problem instance)

I1 = (a1,1, . . . , a1,k1) ∈ G
k1
1 and I2 = (a2,1, . . . , a2,k2) ∈ G

k2
2 .

It maintains two lists E1 ⊆ G1 and E2 ⊆ G2, with Ei,j denoting the j-th entry of
list Ei, which are initialized such that Ei,j := ai,j for all possible (i, j). We denote
with [a]i the smallest index j (also called encoding) such that Ei,j = a. Index [a]i is
undefined, if a �∈ Ei. We may always assume that semi-generic algorithms only provide
defined indices as input to the oracle. During initialization of the lists E1 and E2, the
corresponding indices pointing to the contained elements are sent to the algorithm.

The oracle implements the following public procedures, which may be called by A:

– GroupOp([a]i, [b]i, i): This procedure takes as input two indices [a]i, [b]i and a list
index i. It determines the group elements a, b ∈ Gi by list lookup, computes c =
a · b ∈ Gi, appends c to Ei, and returns [c]i.

– BilinearMap([a]1, [b]2): This procedure takes as input two indices [a]1, [b]2. It
determines the corresponding group elements a ∈ G1, b ∈ G2 by list lookup and
returns e(a, b) in the standard representation of G3 (i.e., as finite field element).

When considering Type 2 settings the algorithm may also query to apply the isomor-
phism ψ to an element of G1:

– Isomorphism([a]1): This procedure takes as input an index [a]1, determines the
element a ∈ G1, computes b = ψ(a), appends b to E2 and returns [b]2.

Note that a random group element can be efficiently sampled by a semi-generic algo-
rithm by using GroupOp(·) to raise the generator (which is always part of a problem
instance) to some r

$← Zp.

2.1 Essential Ingredients for Proofs in the SGGM

This section describes a few general observations that will turn out to be the essential
ingredients for proofs in the semi-generic model.

Observation 1: Components inside oracle are exchangeable. Semi-generic algo-
rithms due to its nature are “blind” with respect to the internal details of the groups
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G1 and G2 as well as the pairing e and the isomorphism ψ. These components are hid-
den within a black-box. Hence, we can plug-in “something else” for these components
as long as these replacements behave like cyclic groups with a bilinear map and an
isomorphism. We will utilize this observation in a novel way to map inputs given over
G3 back to G1 and G2 by setting G1 := G2 := G3 internally and simulating a virtual
bilinear map e : G3 ×G3 → G3 and isomorphism ψ : G3 → G3.

Observation 2: Computed elements over G1 and G2 are linear polynomials in ini-
tial inputs. Let I1 ∈ G

m
1 and I2 ∈ G

n
2 be inputs given to the semi-generic oracle (as

part of a problem instance). We have I2 = I1 in the case of a Type 1 setting. In the
following, we always assume that at least the generators g1 and g2 are given (as the
first components of these input tuples). So we can write I1 = (g1, gx2

1 , . . . , gxm
1 ) and

I2 = (g2, g
y2
2 , . . . , g

yn

2 ) for some unknown xj , yk ∈ Zp (no assumptions about their
distribution are made here) and ψ(g1) = g2 in the case of a Type 2 setting. Then we
define the tuple I ′1 := I1 and the tuple I ′2 := I2 in the case of a Type 1 and Type 3
setting or I ′2 := (g2, gx2

2 , . . . , gxm
2 , gy2

2 , . . . , g
yn

2 ) for a Type 2 setting. These tuples are
called the initial inputs to semi-generic algorithms. Using this notation, we can describe
the following observation: Over G1 and G2 a semi-generic algorithm can only perform
the group law on the initial inputs. Thus, any element a ∈ Gi (i ∈ {1, 2}) computed
by a semi-generic algorithm is a product of the elements in I ′i . Hence we can represent

such an element as a = g
P (x2,...,xm,y2,...,yn)
i for some linear multivariate polynomial

P = α1 +
∑m

j=2 αjXj +
∑n

j=2 βjYj , where the βj are zero in the case i = 1 or
if we consider a Type 1 setting. It is important to observe that all coefficients of this
polynomial are known to the oracle.

Observation 3: Pairing is simulatable knowing images of initial inputs. Let a ∈ G1

and b ∈ G2 be two elements computed by a semi-generic algorithm. Then by using the
above observation and setting x1 := 1 it is easy to see that

e(a, b) = e(g
∑m

i=1 αixi

1 , g
∑m

j=1 α′
jxj+

∑n
k=2 β′

kyk

2 )

=
m∏

i=1

m∏
j=1

e(gxi
1 , g

xj

2 )αiα
′
j ·

m∏
i=1

n∏
k=2

e(gxi
1 , g

yk

2 )αiβ
′
k

From this equation it follows that by knowing the images of the initial inputs under the
pairing, one can compute the output of e on arbitrary inputs provided by a semi-generic
algorithm without actually evaluating the pairing explicitly. In other words, an oracle
equipped with a table containing e(a, b) for all combinations of a in I ′1 and b in I ′2
would be able to handle all BilinearMap queries.

3 Analysis of Selected Problems in the Semi-Generic Model

In this section we exemplarily analyze the hardness of the computational Co-DH and
the decisional BDH problem. Certainly, the list of problems we are considering here is
by no means complete. Our main purpose is to give concrete analyses of some important
problems of bilinear cryptography, thereby illustrating the basic ideas and techniques
underlying proofs in this model, before dealing with the more intricate case of general
classes of problems in Section 4.
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3.1 Reducing 2-DL to Co-DH

The Co-DH problem has been used in [9,8] for the construction of short and aggregate
signatures over bilinear groups. Over a Type 2 setting it can be defined as follows: Given
(g1, gx0

1 , g2, g
x1
2 , g3), where (x0, x1)

$← Z
2
p are secret random choices, output gx0x1

2 .
It is easy to see that in order to prove something about the hardness of Co-DH, we

definitely need to make the assumption that the discrete logarithm problem over G3 is
intractable. But is this enough? Our answer is “not quite”: We are going to relate the
hardness of Co-DH to the 2-DL problem over G3, a slightly easier variant of DL. The
q-DL problem can be defined as follows: Given (g3, gx1

3 , . . . , gxq

3 ), where x
$← Zp is a

secret random value, output x. The additional input gx2

3 (in comparison to standard DL)
is needed in order to be able to simulate the pairing when running the Co-DH algorithm.

Theorem 1. Suppose there exists a semi-generic group algorithm A solving Co-DH
over a Type 2 bilinear group setting in time t with success probability ε. Then there
exists an algorithm B solving the 2-DL problem over G3 in time t′ ≈ t with success
probability ε′ ≥ 1

2ε.

Proof. Given an instance of the 2-DL problem, B sets up an instance of the Co-DH
problem in the semi-generic model in a way that it can leverage a solution to Co-DH
computed by A to solve the 2-DL instance. In particular, B will play the role of the
semi-generic oracle. We exploit Observation 1 from Section 2.1 to setup such an useful
instance: Since A is “blind” with respect to the internal details of G1, G2, e, and ψ, we
set G1 := G2 := G3 and try to simulate a virtual bilinear map e : G3 ×G3 → G3.

We are now ready to describe our reduction algorithm B. B takes as input an instance
a0 := g3, a1 := gx

3 , a3 := gx2

3 of the 2-DL problem over G3. Then it chooses i∗ $←
{0, 1}, x1−i∗

$← Zp and sets a2 := g
x1−i∗
3 . The wanted discrete logarithm x is now

embedded as the implicit secret choice xi∗ in an instance of the Co-DH problem. More
precisely, B sets up a problem instance and simulates the oracleO as follows:

– The lists E1 and E2 are initialized with g3, g
x0
3 and g3, g

x1
3 , respectively, where gxi∗

3

is set to be a1. The indices [g3]1, [gx0
3 ]1, [g3]2, [gx1

3 ]2, and g3 are sent out to A.
– GroupOp can be simulated since B knows how to perform the group law over G3.
– Isomorphism([a]1) can be simulated by looking up a in E1, appending it to E2,

and then determining the index [a]2.
– Using Observation 3 from Section 2.1, we can easily see that BilinearMap can be

simulated: Let [b]1, [c]2 be the two indices given as input to the procedure by A.
Then we can write

e(b, c) = e(g
∑0

j=−1 zjxj

3 , g
∑1

k=−1 z′
kxk

3 ) =
0∏

j=−1

1∏
k=−1

(gxjxk

3 )zjz′
k

where x−1 := 1 and zj and z′k are known to B. Since B is given a0, . . . , a3 and

knows i∗, x1−i∗ , it can compute the required elements g3, g
x0
3 , gx1

3 , g
x2
0

3 , gx0x1
3 to

simulate the pairing: g3 = a0, gxi∗
3 = a1, g

x1−i∗
3 = a2, gx2

0
3 = a3 if i∗ = 0 and

g
x2
0

3 = ax0
2 else, gx0x1

3 = a
x1−i∗
1 .
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Given some instance of Co-DH, algorithm A eventually outputs some valid index [c]2.

The corresponding element c ∈ G2 can be written as c = g
P (x0,x1)
2 for some known

polynomial P = z0 + z1X0 + z2X1 ∈ Zp[X0, X1] (Observation 2, Section 2.1). So
alternatively we can say that A wins if (P −X0X1)(x0, x1) ≡ 0 mod p. This success
event can be split up into the following disjoint events:

– Event S1: The univariate polynomial (P − X0X1)(x0), i.e., the polynomial P −
X0X1 where we only evaluate the variable X0 with x0, is zero modulo p. Let the
probability of this event be denoted by α1.

– Event S2: The univariate polynomial (P − X0X1)(x0) is not zero modulo p but
(P −X0X1)(x0, x1) is. Let the probability of this event be denoted by α2.

Clearly, we have ε = α1 + α2.
Let us consider the events S1 and S2 when B runs A for certain choices of i∗. Note

that B knows the coefficients of P since it responded to A’s queries. With probability
1
2α1, we have i∗ = 0 and S1. This means z0 + z1x + z2X1 − xX1 ≡ 0. But in this
case z2 needs to be equal to x. So B wins by simply returning the known coefficient z2.
Furthermore, with probability 1

2α2, we have i∗ = 1 and S2. Hence, the wanted DL is
the root of the uni-variate non-zero polynomial z0 + z1x0 + z2X1− x0X1 known to B.
It can thus be determined as x ≡ (z0 + z1x0)(x0 − z2)−1 mod p. It is easy to verify
that the inverse (x0 − z2)−1 always exists.

To summarize, if i∗ happens to be zero, B outputs z2, otherwise it outputs (z0 +
z1x0)(x0 − z2)−1. In this way, its success probability is at least 1

2α1 + 1
2α2 = 1

2ε. 
�

3.2 Reducing SqDDH to BDDH

The bilinear decisional Diffie-Hellman problem (BDDH) is certainly among the most
well-known problems over bilinear groups. It has originally been introduced in a sem-
inal paper by Joux [23] and, e.g., further been used by Boneh and Franklin [7] to con-
struct an identity based encryption scheme. Let us consider BDDH over a Type 1 setting
where it can be defined as follows: Given (g1, gx1

1 , gx2
1 , gx3

1 , grb
3 ), where (x1, x2, x3)

$←
Z

3
p, b

$← {0, 1}, r1 = x1x2x3, and r0
$← Zp are secret choices, output b.

We relate the hardness of BDDH with respect to semi-generic algorithms to the hard-
ness of the well-known decisional Diffie-Hellman (DDH) problem and the square deci-
sional Diffie-Hellman (SqDDH) problem over G3. SqDDH is a potentially easier variant
of DDH: Given (g3, gx

3 , g
rb
3 ), where x

$← Zp, b
$← {0, 1}, r1 = x2, and r0

$← Zp are
secret choices, output b. Our result is formalized in Theorem 2. It is worth mentioning
that in contrast to computational problems (like Co-DH) for decisional problems usu-
ally multiple reduction steps are required. In the proof we apply the idea of DDH-steps
[12] to the bilinear setting and introduce the new concept of SqDDH-steps. Since the
DDH assumption reduces to the SqDDH assumption [38] the hardness of BDDH can
be formulated with respect to SqDDH only (Corollary 1).

Theorem 2. Suppose there exists a semi-generic group algorithm A solving BDDH
over a Type 1 setting in time t with advantage ε. Then there exists an algorithm BSqDDH

solving SqDDH over G3 in time tSqDDH ≈ t with advantage εSqDDH and an algorithm
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Table 1. Transforming a semi-generic oracle for real BDDH into one for random BDDH using
SqDDH and DDH steps

Game
G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

g
rb
3 g

x1x2x3
3 g

x1x2x3
3 g

x1x2x3
3 g

x1x2x3
3 g

x7x3
3 g

x8
3 g

x8
3 g

x8
3 g

x8
3 g

x8
3

e(g1, g1) g3 g3 g3 g3 g3 g3 g3 g3 g3 g3

e(g1, g
x1
1 ) g

x1
3 g

x1
3 g

x1
3 g

x1
3 g

x1
3 g

x1
3 g

x1
3 g

x1
3 g

x1
3 g

x1
3

e(g1, g
x2
1 ) g

x2
3 g

x2
3 g

x2
3 g

x2
3 g

x2
3 g

x2
3 g

x2
3 g

x2
3 g

x2
3 g

x2
3

e(g1, g
x3
1 ) g

x3
3 g

x3
3 g

x3
3 g

x3
3 g

x3
3 g

x3
3 g

x3
3 g

x3
3 g

x3
3 g

x3
3

e(g
x1
1 , g

x1
1 ) g

x2
1

3 g
x4
3 g

x4
3 g

x4
3 g

x4
3 g

x4
3 g

x4
3 g

x4
3 g

x4
3 g

x2
1

3

e(g
x2
1 , g

x2
1 ) g

x2
2

3 g
x2
2

3 g
x5
3 g

x5
3 g

x5
3 g

x5
3 g

x5
3 g

x5
3 g

x2
2

3 g
x2
2

3

e(g
x3
1 , g

x3
1 ) g

x2
3

3 g
x2
3

3 g
x2
3

3 g
x6
3 g

x6
3 g

x6
3 g

x6
3 g

x2
3

3 g
x2
3

3 g
x2
3

3

e(g
x1
1 , g

x2
1 ) g

x1x2
3 g

x1x2
3 g

x1x2
3 g

x1x2
3 g

x7
3 g

x7
3 g

x1x2
3 g

x1x2
3 g

x1x2
3 g

x1x2
3

e(g
x1
1 , g

x3
1 ) g

x1x3
3 g

x1x3
3 g

x1x3
3 g

x1x3
3 g

x1x3
3 g

x1x3
3 g

x1x3
3 g

x1x3
3 g

x1x3
3 g

x1x3
3

e(g
x2
1 , g

x3
1 ) g

x2x3
3 g

x2x3
3 g

x2x3
3 g

x2x3
3 g

x2x3
3 g

x2x3
3 g

x2x3
3 g

x2x3
3 g

x2x3
3 g

x2x3
3

SqDDH SqDDH SqDDH DDH DDH DDH SqDDH SqDDH SqDDH
Justification

BDDH solving DDH over G3 in time tDDH ≈ t with advantage εDDH such that ε ≤
3εDDH + 6εSqDDH.

Corollary 1. If SqDDH is (ε, t)-hard over G3, then BDDH is (9ε, t)-hard for semi-
generic algorithms.

Proof (Theorem 2). In the following we show that a for a semi-generic algorithm a
“real” BDDH tuple (g1, gx1

1 , gx2
1 , gx3

1 , gr1
3 = gx1x2x3

3 ) is computationally indistinguish-
able from a “random” tuple (g1, gx1

1 , gx2
1 , gx3

1 , gr0
3 ), unless SqDDH or DDH are easy

over G3. We do this by considering a series of games played between a semi-generic
algorithmA and an oracleO. We start withA given oracle access to a real BDDH tuple.
We then gradually transform this tuple as well as the output of the oracle until we end
up with a random tuple. One can show that if A can distinguish two consecutive games
Gi−1 and Gi then it can be used to build an algorithm solving SqDDH or DDH.

The games are described by Table 1. Each of the columns labeled with Gi specifies
the (direct) input over G3 (see Row 1) or the output of BilinearMap in game Gi for
all possible inputs over G1. Bold-printed parts of a value highlight the actual changes
in comparison to the previous game. The entry in the last row of a columnGi indicates
which assumption (SqDDH or DDH) justifies the indistinguishability of the Games
Gi−1 and Gi. If a new xj (j > 3) appears in a column, this means that this value has
been added to the corresponding game and the oracle chooses xj uniformly from Zp.

As one can see from the table, by means of the Games G2 to G4 we remove all
squares x2

i (1 ≤ i ≤ 3) from the output of the pairing oracle. We do this simply
by replacing each square with a new value xj (4 ≤ j ≤ 6). These transformations
are called (bilinear) SqDDH steps and are prerequisites for the subsequent DDH steps
performed in Games G5 to G6. During these DDH steps we selectively remove all
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products xixj that involve variables being part of the challenge. Again, this is done by
replacing the products by fresh uniformly chosen values xj (j ∈ {7, 8}). In Game G6

the challenge grb
3 = gx8

3 is finally independent of the input since x8 does not appear
anywhere else. After that, in Games G7 to G10 we reverse the changes we did to the
input and BilinearMap during G2 to G6 in reverse order. More, precisely in G6+j we
reverse the changes we did in G6−j for 1 ≤ j ≤ 4. Finally, in G10 we have reversed
all changes (except for the one in G6). This last game corresponds to the situation
whereA is given oracle access to a random BDDH tuple. If all intermediate games have
been computationally indistinguishable (under the SqDDH and DDH assumption) then
certainly also a real BDDH tuple is computationally indistinguishable from a random
tuple, with respect to semi-generic algorithms.

For the sake of clarity, let us consider the transition from G1 to G2 (SqDDH Step)
and G4 to G5 (DDH Step) in some more detail and quantify the involved reductions.
The oracleOG1 in GameG1 corresponds to the original semi-generic oracle for BDDH
providing access to a real BDDH tuple. The oracle inOG2 inG2 is equal toOG1 except

for the following changes: OG2 additionally chooses x4
$← Zp and uses a slightly

modified table for computing pairing outputs as specified in Table 1. Let us assume A
distinguishes the two games in time t with advantage

ε1 = AdvG1,G2
A =

∣∣Pr[1← AOG1 ]− Pr[1← AOG2 ]
∣∣ .

Then from A we can build an algorithm B for SqDDH. Again, we make use of the
observation that semi-generic algorithms are blind with respect to G1 and e and set
G1 := G3 and e : G3 ×G3 → G3. Now let an instance

g3, g
x1
3 , g

r′
b′

3 =

{
g

x2
1

3 , b′ = 1
gx4
3 , b′ = 0

of the SqDDH problem over G3 be given. B chooses x2, x3
$← Zp. Then it simulates

OG1 andOG2 as follows (we indicate below how group elements are computed though
x1, x

2
1, x4, and b′ are unknown to B):

– The list E1 is initialized with g3, g
x1
3 , gx2

3 , gx3
3 . Over G3 A is given g3, (gx1

3 )x2x3 .
– For simulating BilinearMap, we use the fact that we only need to know the pairing

output for all possible initial inputs. These elements can be computed as described
by the following table:

a g3 g3 g3 g3 gx1
3 gx2

3 gx3
3 gx1

3 gx1
3 gx2

3

b g3 g
x1
3 gx2

3 gx3
3 gx1

3 gx2
3 gx3

3 gx2
3 gx3

3 gx3
3

e(a, b) g3 gx1
3 gx2

3 gx3
3 g

r′
b′

3 g
x2
2

3 g
x2
3

3 (gx1
3 )x2 (gx1

3 )x3 gx2x3
3

It is easy to see that if b′ = 1, algorithm B exactly simulates OG1 and OG2 otherwise.
Thus, by simply forwarding the output of A, B solves the SqDDH problem instance
with the same advantage ε1.

Let us now consider the transition from G4 to G5. The oracle OG5 in G5 coincides

with OG4 except for the following changes: OG5 additionally chooses x7
$← Zp and
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uses a modified table for computing pairing outputs as specified in Table 1. Assume A
distinguishes the two games in time t with advantage ε4 = AdvG4,G5

A . Then we can use
A to build an algorithm B for DDH. Given an instance

g3, g
x1
3 , gx2

3 , g
r′

b′
3 =

{
gx1x2
3 , b′ = 1
gx7
3 , b′ = 0

of DDH over G3, B chooses x3, x4, x5, x6
$← Zp and simulatesOG5 and OG6 :

– The list E1 is initialized with g3, g
x1
3 , gx2

3 , gx3
3 . Over G3 A is given g3, (g

r′
b′

3 )x3 .
– For simulating BilinearMap we use the following table of pairing outputs:

a g3 g3 g3 g3 gx1
3 gx2

3 gx3
3 gx1

3 gx1
3 gx2

3

b g3 g
x1
3 gx2

3 gx3
3 gx1

3 gx2
3 gx3

3 gx2
3 gx3

3 gx3
3

e(a, b) g3 gx1
3 gx2

3 gx3
3 gx4

3 gx5
3 gx6

3 g
r′

b′
3 (gx1

3 )x3 (gx2
3 )x3

If b′ = 1, B behaves like OG4 whereas it behaves like OG5 if b′ = 0. By simply
forwarding the output of A, B solves the DDH problem instance with advantage ε4.

The bound on ε follows now from ε ≤∑9
i=1 εi, where εi = Adv

Gi,Gi+1
A , and setting

εSqDDH = maxi∈{1,2,3,7,8,9}(εi), εDDH = maxi∈{4,5,6}(εi). 
�

4 Analysis of General Problem Classes

Analyzing general problem classes instead of individual problems is important for at
least two reasons: First, it improves our understanding of the properties that need to be
satisfied by a problem to be intractable with respect to semi-generic algorithms. Second,
master theorems for these classes alleviate the burden of analyzing future problems.

Generalized Pairing-Based Problems. Let a Type 1, 2, or 3 setting according to
Definition 1 be given. Furthermore, let � ∈ N, d ∈ {1, 2, 3} be positive integers,
I1, I2, I3 ⊂ Zp[X1, . . . , X�] be finite sets of (publicly known) polynomials (called
input polynomials) and Q ∈ Zp[X1, . . . , X�] be a single (publicly known) polynomial
(called challenge polynomial). Then we define a (I1, I2, I3, Q)-BDHGd

problem as:
Given

((gR(x)
1 )R∈I1 , (g

R(x)
2 )R∈I2 , (g

R(x)
3 )R∈I3),

where x $← Z
�
p are secret random values, output gQ(x)

d . A decisional variant of such
problems can be defined analogously. In the following we always assume that the poly-
nomial 1 is contained in each Ii which corresponds to the natural assumption that for
each group a generator is given.

Informally speaking, a (I1, I2, I3, Q)-BDHGd
problem is non-trivial if there is no

way to compute Q using only the input polynomials and the operations on them which
are implicitly given by the underlying bilinear setting. Let us restrict here to consider
the case d ∈ {1, 2}. Let I1 = {R1, . . . , Rt} and I2 = {S1, . . . , St′}. Then using
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Observation 2 (Section 2.1), one can see that the output [c]d of a semi-generic algorithm

for the considered problem can be written as gP (x)
d for some P of the form

P =

⎧
⎪⎨
⎪⎩

∑t
j=1 zjRj , d = 1∑t′

j=1 z
′
jSj , d = 2 and Type 3 setting∑t

j=1 zjRj +
∑t′

j=1 z
′
jSj , d = 2 and Type 2 setting

(1)

We call a (I1, I2, I3, Q)-BDHGd
non-trivial if there is no P of the above form such that

g
P (x)
d = g

Q(x)
d for all x ∈ Z

�
p, i.e., if P �= Q ∈ Zp[X1, . . . , X�]. More formal and

general definitions can be found in the full version of this paper [20].

Reductions for Generalized Problems. Theorem 3 extends the reduction we have
seen for Co-DH in Section 3.1 to the more general class of (I1, I2, I3, Q)-BDHGd

prob-
lems. The crucial difference and novelty lies in the technique for extracting the wanted
discrete logarithm given the output of the semi-generic algorithm.

Theorem 3. Let d ∈ {1, 2} and (I1, I2, I3, Q)-BDHGd
be a non-trivial problem with

challenge and input polynomials in Zp[X1, . . . , X�]. Let k = maxi(degXi
(I1 ∪ I2 ∪

I3)). Suppose there is a semi-generic algorithm A solving (I1, I2, I3, Q)-BDHGd
in

time t with success probability ε. Then there is an algorithm B solving 2k-DL in G3 in
time t′ ≈ t+ Õ(k′ log p), where k′ = max(k, deg(Q)), with probability ε′ ≥ ε

� .

Proof. Let k1 = 2k. B takes as input a k1-DL challenge a0 = g3, a1 = gx1

3 , . . . , ak1 =
gxk1

3 . It then chooses i∗ $← {1, . . . , �} and x1, . . . , xi∗−1, xi∗+1, . . . , x�
$← Zp. The

unknown x is treated as the secret choice xi∗ in the context of a (I1, I2, I3, Q)-BDHGd

instance. We only sketch important points in the simulation of the semi-generic oracle:
Each internal list Ej is initialized with the elements (gP (x)

3 )P∈Ij where for a polynomial

P =
∑

e=(e1,...,e�)∈E beX
e1
1 · · ·Xe�

� , E ⊂ Z
�
p, the element gP (x)

3 can be computed

as gP (x)
3 =

∏
e a

be

∏
s �=i∗ xes

s
ei∗ using the given instance of the k1-DL problem. This is

possible because the degree in Xi∗ of the polynomials in each set Ij is upper bounded
by k1. Similarly, the table for simulating BilinearMap can be created since for each
entry gP (x)

3 in this table, P is again of degree at most k1 in Xi∗ .
Given an (I1, I2, I3, Q)-BDHGd

instance, A eventually outputs an index [c]d. Then

c can be written as gP (x)
3 for some known polynomial P as described in Equation 1.

Thus, A wins if Q(x) ≡ P (x) mod p. Since Z := Q − P is not zero modulo p (the
problem is non-trivial) this success event can be split into disjoint events S1, . . . ,S�,
where Sj is defined as:

Z(X1 = x1, . . . , Xj−1 = xj−1) �≡ 0 and Z(X1 = x1, . . . , Xj = xj) ≡ 0 (2)

Denoting the probability of event Sj by αj we obtain ε = α1 + · · ·+ α�.
Now assume that event Si∗ occurs, which happens with probability ε/�. Consider

the polynomial Zi∗ = Z(X1 = x1, . . . , Xi∗−1 = xi∗−1) mod p ∈ Zp[Xi∗ , . . . , X�].
This polynomial is of the form Zi∗ =

∑
e=(ei∗ ,...,e�)∈E beX

ei∗
i∗ · · ·Xe�

� , for some E ⊂
Z

�−i∗+1
p , where in at least one monomial the variable Xi∗ appears with a non-zero
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exponent ei∗ . Let M = b′eX
e′

i∗
i∗ · · ·Xe′

�

� be one of these monomials. Then consider
the polynomial Z ′i∗ we obtain by summing up all monomials of Zi∗ containing the

submonomialX
e′

i∗+1
i∗+1 · · ·Xe′

�

� :

Z ′i∗ =
∑

e=(ei∗ ,...,e�)∈E
ei∗+1=e′

i∗+1,...,e�=e′
�

beX
ei∗
i∗ X

e′
i∗

i∗ · · ·Xe′
�

�

Clearly, we have Z ′i∗ �≡ 0 mod p and since Zi∗(Xi∗ = xi∗) ≡ 0 mod p it also holds
that Z ′i∗(Xi∗ = xi∗) ≡ 0 mod p. Hence, xi∗ = x is a root of the non-zero uni-variate
polynomial

Z ′′i∗ =
∑

e=(ei∗ ,...,e�)∈E
ei∗+1=e′

i∗+1,...,e�=e′
�

beX
ei∗
i∗

Note that Algorithm B can easily construct the polynomial Z ′′i∗ by picking an arbi-
trary monomial from Zi∗ for which Xi∗ appears with non-zero exponent. The co-
efficients be can also be easily computed since the coefficients of Z are known and
x1, . . . , xi∗−1 have been chosen by B. So by applying an efficient standard algorithm
for computing roots of polynomials over Zp, such as [36, Algorithm 14.15], B can find
the wanted DL xi∗ = x by computing all roots of the polynomial Z ′′i∗ . These at most
k′ = max(k, deg(Q)) different roots can be computed in time Õ(k′ log p) [36, Corol-

lary 14.16]. Whether a root x′ equals x can be tested by verifying gx′ ?= a1. 
�
We have also been able to find a reduction for a general class of decisional problems
which is efficient for virtually all problems of this class considered in practice. Essen-
tially, our reduction from the SqDDH problem over G3 works for all (I1, I2, I3, Q)-
BDDHG3 problems where variables in I1 ∪ I2 and I3 ∪ {Q} appear with at most linear
and quadratic exponents, respectively. Our approach for this general reduction differs
from the one for BDDH we have seen in Section 3.2 in the following way: The BDDH
reduction is direct in the sense that all reduction steps take place directly in the semi-
generic model. As an alternative, one could also first “project” BDDH to the group G3

by finding an “appropriate” problem which reduces in a single step to BDDH (with
respect to semi-generic algorithms) and then apply all DDH and SqDDH reduction
steps to this problem in the standard model. We follow this latter approach in our proof
for general bilinear decisional problems since it has the advantage that we can resort
to Bresson et al.’s results for generalized DDH problems [12] in the standard model.
However, this is not straightforward. Since their results are quite restricted we need
to enhance them to more general problem classes. For more details on our result for
bilinear decisional problems we refer to the full version [20].

5 Analyzing Cryptosystems in the Semi-Generic Model

Besides for studying cryptographic hardness assumptions, it would also be interesting
to use the SGGM as a tool to analyze the security of practical pairing-based cryptosys-
tems. Similar analyzes have been made in the classical GGM [35,13]. In this section



552 T. Jager and A. Rupp

we consider the Boneh-Lynn-Shacham (BLS) signature scheme [9,10] in the SGGM.
It turns out that it is possible to prove security of this scheme under the semi-generic
groups heuristic, by requiring concrete (but non-standard) properties of the hash
function.

The BLS signature scheme over a Type 1 bilinear setting is defined as follows. Let
H1 be a hash functionH1 : {0, 1}� → G1.

– Gen samples a random generator g of G1, s
$← Zp, and sets pk = (g, gs), sk = s.

– Sign(sk,m) computes H1(m) and returns σ = H1(m)s.
– Verify(pk,m, σ) returns 1, if e(H1(m), pk) = e(σ, g), and 0 otherwise.

Let us now describe the EUF-CMA security experiment for the BLS signature scheme
in the SGGM. Here we are facing a technical problem: the BLS scheme utilizes a hash
function H1 : {0, 1}� → G1, that is, the output of this map is a group element in some
given representation. However, in the SGGM we want to consider algorithms which
are independent of a particular representation of elements of G1. Since in our model
elements of G1 are given as list indices, we have no representation of group elements
that we could use as the range of the hash function.

One possible solution would be to fall back on the formalization of a generic group
by Shoup [34]. In this model, group elements are represented by unique random bit
strings. Thus, we could use a hash function that maps to bit strings of appropriate size.
However, the fact that group elements are encoded as random strings has been subject to
much criticism [16,26,15]. For instance, the Shoup model can be misused to implement
a random oracle, which is of no avail since we want to avoid random oracles in our
security proof. Therefore we follow a different approach. We implementH1 as a generic
group hash function.

Definition 2. A group hash function is a pair of algorithms H = (GHGen,GHEval).

– GHGen takes as input a generator g of G1, and returns A = (a1, . . . , aδ) ∈ G
δ
1.

Vector A specifies a function H1 : {0, 1}�→ G1.
– Algorithm GHEval takes as input a vector A ∈ G

δ
1 and a string m ∈ {0, 1}�, and

returns H1(m) ∈ G1.

We say that a group hash function is generic, if GHGen and GHEval perform only group
operations on elements of A.

Examples of generic group hash functions are the hash function used in Water’s IBE
scheme [37] and the programmable hash functions of Hofheinz and Kiltz [18].

Generic group hash functions have the useful property that there exist “trapdoor”
set-up and evaluation algorithms (TrapGen,TrapEval) with the following properties.

– TrapGen takes as input a generator g ∈ G1. It returns a vector A ∈ G
δ
1, distributed

identically to the output of GHGen for all g, and some trapdoor information td.
– Algorithm TrapEval takes as input a vector A ∈ G

δ
1 and a string m ∈ {0, 1}�, and

returns h such that gh = H1(m).

For the security proof we need to demand a strong form of collision resistance.
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Definition 3. A group hash function is (ε, t, q)-algebraic collision resistant, if

Pr

⎡
⎣A(A) = (m0, ...,mq, i0, ..., iq) : H1(m0) = gi0

q∏
j=1

(H1(mj))ij

⎤
⎦ ≤ ε

for all algorithmsA running in time t.

By employing techniques from [18] it is possible to construct hash functions satis-
fying this property under weak assumptions, like the hardness of computing discrete
logarithms in G1, for any constant q. A major drawback is, however, that for these con-
structions the size δ of vector A grows at least linearly with q. We leave it as an open
problem to study whether there exists a (possibly probabilistic) trapdoor group hash
function such that δ is constant and q = q(κ) is a polynomial.

We formalize the EUF-CMA experiment in the SGGM as follows. At the beginning
of the game, the challenger samples a random generator g and a secret key x. Then it
runs (a1, . . . , aδ)

$← GHGen(g), sets I1 := (g, gx, a1, . . . , aδ), and implements a semi-
generic oracle with input I1 as described in Section 2. This provides the adversary with
the public key, and the ability to perform group operations on elements of G1.

When the adversary queries a signature for some chosen messagemi, the challenger
computes H(mi)x and appends it to the list E1.

We say that the adversary wins the game, if it outputs a message m and index [s]1
such that s = H(m)x, that is, the adversary has computed a valid signature for m. We
say that a semi-generic adversaryA (ε, t)-breaks the EUF-CMA security of a signature
scheme if A runs in time t and Pr[A wins] ≥ ε.
Theorem 4. Suppose there exists an adversary A (ε, t)-breaking the EUF-CMA se-
curity of the BLS signature scheme in the semi-generic model by making q chosen-
message signature queries. Then there exists an algorithm Bcoll (εdl, tdl, q)-breaking the
algebraic collision resistance of H1 and an algorithm Bdl (εdl, tdl)-solving the discrete
logarithm problem in G1, such that t ≈ tcoll ≈ tdl and ε ≤ εcoll + εdl.

Proof. Suppose there exists an adversaryA that outputs a message m and an index [s]1
such that s = H(m)x. In the SGGM, an adversary has to compute a group element of
G1 by applying a sequence of group operations to the initial values (g, gx, a1, . . . , aδ)
stored in E1 and to group elements added to the list by the challenger oracle in response
to chosen-message signature queries. Thus, when A outputs (m, [s]1) such that s =
H(m)x, then the oracle obtains an equation

H(m)x = gα1 · (gx)α2 ·
δ∏

i=1

aβi

i ·
q∏

i=1

(H(mi)x)γi , (3)

or equivalently x ·(logg H(m)−∑q
i=1 γi logg H(mi)− α2

)
= α1 +

∑δ
i=1 βi logg ai,

for integers αi, βi, γi known to the oracle. We consider two types of forgers:

1. A Type-A forger performs a sequence of operations such that

logg H(m)−
q∑

i=1

γi logg H(mi)− α2 ≡ 0 mod p. (4)
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2. A Type-B forger performs a sequence of operations such that

logg H(m)−
q∑

i=1

γi logg H(mi)− α2 �≡ 0 mod p. (5)

Lemma 1. Suppose there exists a Type-A forger A (ε, t)-breaking the EUF-CMA se-
curity of the BLS signature scheme by making at most q chosen-message queries. Then
there exists an algorithm Bcoll (εdl, tdl, q)-breaking the algebraic collision resistance of
(GHGen,GHEval) in time t′ ≈ t with success probability εcoll ≥ ε.

PROOF. Algorithm Bcoll receives as input a vector A′ = (g′, a′1, . . . , a
′
δ). It proceeds

exactly like the semi-generic EUF-CMA challenger, except that it sets g := g′ and
ai := a′i instead of sampling g at random and generating A by running GHGen(g).
Thus, in particular Bcoll chooses the secret key x

$← Zp and thus is able to simulate the
original challenger perfectly.

When A outputs (m, [s]1) such that s = H(m)x, then Bcoll computes and returns
integers (α2, γ1, . . . , γq) as in Equation 4. Observe that if Equation 4 is satisfied, then
we have H(m) = gα2 ·∏q

i=1H(mi)γi . �

Lemma 2. Suppose there exists a Type-B forgerA (ε, t)-breaking the EUF-CMA secu-
rity of the BLS signature scheme. Then there exists an algorithm Bdl solving the discrete
logarithm problem in G1 in time tdl ≈ t with success probability εdl ≥ ε.

PROOF. Algorithm Bdl receives as input a tuple (g′, y). It sets g := g′, gx := y, and

runs (A, td) $← TrapGen(g) to generate the public parameters of the hash function.
Recall that A is distributed identically to some A′ generated by GHGen. It sets I1 :=
(g, gx, a1, . . . , aδ), and implements a semi-generic oracle with initial list state I1.

Since Bdl does not know the secret-key exponent x, it answers chosen-message sig-
nature queries of A differently. Bdl makes use of the trapdoor information td gener-
ated along with A. Whenever A submits a chosen-message mi, Bdl computes hi =
TrapEval(mi) and appends yhi to E1. Note that yhi = gx logg H(mi) = H(mi)x, thus
this is a valid signature.

When A outputs (m, [s]1) such that s = H(m)x, then Bdl computes integers (αi,
βi, γi) as in Equation 3, and returns

x = logg′ y =
α1 +

∑δ
i=1 βi logg ai

logg H(m)−∑q
i=1 γi logg H(mi)− α2

mod p,

which is possible since logg H(m)−∑q
i=1 γi logg H(mi)− α2 �= 0 mod p. �
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Abstract. HFE is a public key scheme introduced by Patarin in 1996.
An HFE public key is a large system of polynomials in many variables
over a small finite field. This system results from some secret compo-
sition, based on which the owner can solve it to any arbitrary vector.
While the security of the cryptosystem relies on the difficulty of solving
the public system without the trapdoor information, in 2002 Faugère
found experimentally that Gröbner basis computations perform much
better on certain HFE instances than on random systems. More specifi-
cally, Faugère observed that the regular behaviour of the Gröbner basis
computation collapses at a much lower degree than expected for random
systems, letting the computation finish much earlier. Accounting for this
distinctive property, Faugère and Joux showed in 2003 that mapping
HFE systems to some other multivariate ring exhibits the particular al-
gebraic structure of these systems. Nevertheless, they did not offer the
actual computation of the degree of regularity of HFE systems. Later, in
2006, Granboulan, Joux and Stern showed an asymptotic upper bound
on the degree of regularity of HFE systems over GF (2) using indepen-
dent results on overdetermined systems of equations. The case of larger
ground fields has remained however completely unsolved. In this paper,
we exhibit an additional property of HFE systems that is increasingly
significant as the size of the ground field grows. Using this property with
a standard combinatorial calculation yields an arguably tight numerical
bound on the degree of regularity of HFE systems for any parameters.

Keywords: multivariate polynomials, HFE, algebraic cryptanalysis.

1 Introduction

Solving large systems of multivariate equations over a finite field is one of the
most recurrent problems in computer science. Although achieving this task seems
very hard in general and can only be tackled for small sizes by current best algo-
rithms, sparse classes of systems exist that can be solved efficiently. In the last
fifteen years, attempts have been made at exploiting this gap to build asymmet-
ric cryptographic primitives. In a nutshell, the issue has been to find secure ways
of masking structured systems of polynomials.
� This paper is an extended abstract. The full version is available from the authors.

M. Abe (Ed.): ASIACRYPT 2010, LNCS 6477, pp. 557–576, 2010.
c© International Association for Cryptologic Research 2010
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The HFE Cryptosystem. One of the most prominent proposals in this
area has been the Hidden Field Equation cryptosystem, introduced by Patarin
in 1996. HFE is based on an elegant idea introduced by Matsumoto and Imai in
1988 of deriving a set of multivariate equations from a single variable equation
over a large extension field; this makes use of the vector space structure of this
extension field. When the single variable equation can be solved efficiently the
same holds for the multivariate system, and access to the large field equation is
restricted by applying secret linear bijections on the variables and equations.

More formally, let Fq denote the finite field with q elements and let φ be
some linear bijection from Fqn , the degree n extension of Fq, to (Fq)n. Such a
linear bijection is defined by a choice of a linear basis of Fqn . To any polynomial
function P (X) on Fqn , one associates the function φ ◦ P ◦ φ−1 on (Fq)n. In
HFE, polynomials P have a small degree to ensure efficient root finding. Also,
they have a special shape which ensures that φ ◦ P ◦ φ−1 is quadratic. This
function is then composed with secret linear bijections S, T : (Fq)n → (Fq)n,
T ◦ (φ ◦ P ◦ φ−1) ◦ S and the result is released as the public function. HFE can
be used as a signature scheme and also, with some minor arrangements, as an
encryption scheme [16]. Many variations exist and offer potential enhancements.

The Security of HFE. The fundamental issue is whether the public function
is a one-way function. Finding a preimage by the public function is the same as
finding a solution to the corresponding system of quadratic equations. Denote
by MQ(q, n) the set of systems of n quadratic equations in n variables over
Fq, and by HFE(q, n,D) the subset of HFE systems where D is the parameter
that controls the degree of the internal polynomial P . Two lines of work have
so far been able to distinguish HFE systems from random MQ systems. One
line of work, proposed in [8], targets so called differential properties of HFE
functions and was able to produce a distinguisher with proven complexity for
all parameters (q, n,D). The other line of work, proposed in [4,9,15], directly
targets the difficulty of the preimage problem on HFE systems. It produced
experimental evidence that for some parameters the preimage problem is much
easier on HFE systems than on random MQ instances [12]. Since the difficulty
of the preimage problem on HFE systems is ultimately the issue, one wishes to
clarify what property is disclosed by the methods used in the second line of work
and how this property depends on the parameters (q, n,D). So far, the available
information has been the following.

1. The experimental evidence has been obtained by using algorithms for com-
puting Gröbner bases [12,17]. These algorithms proceed through combina-
tions with polynomial coefficients of a given set of polynomials and generate
additional polynomials that can be used to solve the system.

2. The attacks have only concerned systems over F2. Experiments for various
values of n and D evidenced that the degree of combinations needed to
compute a Gröbner basis (for a graded ordering of terms) on HFE systems
only depends on D for large enough n [12]. Unfortunately, no extension of
this property to larger values of q has been reported. In fact, some authors [7]
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argued that the size of the field should have a strong negative impact the
computation and observed it on experiments using the Magma package [18].

3. On the theoretical side, a qualitative account was given in [9] on how the
combinations performed on the public polynomials correspond to related
operations on the internal polynomial. Although this clearly initiated a way
of investigating HFE systems, it has not been followed with the computation
of theoretical complexity bounds. Nevertheless, the authors in [15] showed
that when q = 2, complexity bounds can be heuristically derived from results
on overdetermined MQ systems.

We note that quantitative information has only been obtained from experiments
and on systems over F2. The theoretical connections have not permitted to derive
quantitative information beyond practical reach. Notably, how the phenomenon
that is observed experimentally varies as q increases has remained unknown. The
gain of potential enhancements also has, incidentally, remained unclear.

Our contribution. Recent studies on the complexity of Gröbner basis algo-
rithms focus on the notion of degree of regularity of a system of polynomials [2,1].
Roughly speaking, the degree of regularity is the smallest degree at which a non-
trivial degree fall among algebraic combinations of the input polynomials occurs.
The degree of regularity of HFE systems over F2 was experimentally found within
some parameter range in [9] and asymptotically upper bounded in [15] using the
results of [2,1]. In this paper, we give a way to compute a numerical bound on
the degree of regularity of HFE systems over any field and for any parameters.
This is achieved by using previous ideas and methods present in [9,15,1,6] in
combination with an apparently unnoticed additional property of HFE systems
which is increasingly significant as the size of the ground field grows.

Organization of the paper. In Section 2, we define the degree of regular-
ity of a system of polynomials and relate this notion to the computation of a
Gröbner basis. In Section 3, we define HFE systems in greater detail and set
a few notations. In Section 4, we map the problem of computing the degree of
regularity to some other multivariate ring where the algebraic structure of HFE
systems is apparent. This is only a more precise statement of a property used in
[9,15] and our upper bound derives from the same observation that the degree
of regularity is upper bounded by the degree of regularity of any subsystem. In
Section 5, we show how to compute the degrees of regularity of these subsystems
by using classical methods such as used in [1,6] but with the specific properties
of the polynomials at hand. We deduce numerical bounds for many parameters.
In Section 6, we derive estimates on the complexity of algebraic attacks on HFE.

2 Algebraic Properties of a System of Polynomials

We first give an informal presentation of the notions that will be used in the
sequel and then give precise definitions and statements for our particular setting.
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2.1 Solving a System of Multivariate Equations

Suppose we face the problem of finding the common roots of a system of poly-
nomials p1, . . . , pk in a multivariate ring R over a field. Would this system be in
few enough variables to be tried by hand, one would probably try to combine
the given polynomials to derive “simpler” ones, that is, that make it easier to
discover the space of solutions. For instance, one may try to obtain a polyno-
mial in fewer variables, or with a smaller total degree. In any case, combining
the given polynomials always comes down to consider polynomials of the shape
m1p1 + · · ·+mkpk for some polynomial multiples m1, . . . ,mk. Hence, these poly-
nomials are linear combinations of p1, . . . , pk with coefficients in R. And the goal
is then to find such a linear combination within some target subspace of R.

To do this mechanically, one may consider two main strategies. Either one
chooses a priori search spaces for the mi (for instance, polynomials with degree
under some bound) and one performs linear algebra on their coefficients. (This is
the basic idea of XL algorithms [5,19].) Or one defines a priority list among terms
to be eliminated (called an ordering) and one performs systematic leading term
reductions on polynomials p1, . . . , pk and the new polynomials that are generated
by this process, until it can be predicted that any further combination will
reduce to zero. (This is the basic idea of Gröbner bases algorithms [3,14,10,11].)
These two strategies are not as different as it could seem. Indeed, to reduce the
head terms of polynomials p1, . . . , pk the ones by the others, one determines the
respective sets of multipliers {m1}, . . . , {mk} that are needed to do so. Then
it remains to perform linear algebra on the resulting combinations and iterate
with polynomials with new head terms that may be found in this process. Both
strategies therefore have a clear intersection although Gröbner bases algorithms
are natively more careful with the number of combinations to be dealt with.

In any case, it is convenient to arrange the available combinations with respect
to their total degree. For any integer d ≥ 1, let Vd denote the set of combinations
of degree d multiples of p1, . . . , pk. It is a linear subspace of all polynomials of
degree at most d. This paper focuses on an intrinsic parameter of polynomials,
which we call degree of regularity. This parameter was introduced in [2,1]. It
is commonly considered as the main complexity parameter for the following in-
tuitive reasons. Let A be an algorithm that computes such combinations, and
indexing its execution steps by t, one may consider the subspace Vd[A(t)] of
combinations of degree d multiples that are computed through A up to t. Obvi-
ously, Vd[A(t)] ⊆ Vd ⊆ R≤d. Now, choose a target subspace Wd ⊆ R≤d. There
exists an element of Wd among combinations in degree d when the intersection
of Vd and Wd is not zero and such a combination is found by the algorithm A
before step t if Vd[A(t)]∩Wd �= {0}. When the polynomials p1, . . . , pk are not too
specific, the intersection of Vd and Wd is expected to be non-zero only when the
sum of their respective dimensions exceeds the dimension of R≤d itself. In this
case, any algorithm A can just consider combinations in degree d to find a non-
zero element of Wd. It is assured to find one at step t if Vd[A(t)] = Vd. On the
other hand, should the intersection of Vd and Wd be non-zero at a significantly
lower degree than expected for a random subspace Vd would suggest that the
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polynomials p1, . . . , pk are not random. Interesting choices of a target subspace
Wd are polynomials of low degree. For instance, one may consider whether there
exists a non-zero polynomial of degree strictly lower than d among combinations
in degree d. Such a combination is called a degree fall and the smallest degree
at which such a degree fall occurs is essentially the degree of regularity. A pre-
cise definition will be given in the sequel. An algorithm A finds the degree of
regularity when at some step t its subspace of combinations in degree d contains
a degree fall. At this point, it is worth noting that when using a Gröbner basis
algorithm it is best to use an ordering that refines the degree. Indeed in this case
new head terms are confined among the smallest degree monomials.

The degree of regularity permits to distinguish a system of polynomials from
random. Furthermore, any degree fall can give a new whole set of multiples
in degree d or even below, which can be further combined with the existing
combinations. Moreover, the dimension of V Ad usually takes large steps as one
increments d and then, many degree falls appear at once. These degree falls in
turn help the appearance of new degree falls in lower degrees. Either these degree
falls are low enough to solve the system (e.g. linear polynomials) or one pushes
the computation until obtaining a complete Gröbner basis.

2.2 Systems with Field Equations over a Finite Field

In the setting of cryptographic schemes, the coefficient field is a finite field Fq

(with q elements) and the solutions are searched with coordinates in this finite
field. Let x1, . . . , xn denote the variables of R. Then one actually searches for
the solutions of the system {p1 = 0, . . . , pk = 0} with the additional equations
{xq

1 − x1 = 0, . . . , xq
n − xn = 0}. Equivalently, since the xi describe values in Fq,

all monomials in R can be reduced according to the rules xq
i = xi, i = 1, . . . , n.

Then, all combinations of the polynomials p1, . . . , pk can be considered in the
reduced ring Rq = Fq[x1, . . . , xn]/{xq

1 − x1, . . . , x
q
n − xn}.

While in the sequel we compute the degree of regularity of underdetermined
systems (k ≤ n) in a reduced ring, it serves in upperbounding the degree of
regularity of a public HFE system with exactly n polynomials. In this case, the
expected number N of solutions is hardly more than one and it can be shown
that any Gröbner basis for any ordering that refines the degree contains at least
n − N linearly independent degree-1 polynomials (cf full version). Hence, our
setting makes it particularly easy to derive the solutions from a Gröbner basis.

Since in the sequel we only encounter systems of quadratic polynomials, for
convenience sake we specialize the following definitions to this case. Let p1, . . . , pk

be a system of quadratic polynomials in Rq. For any integer d ≥ 2, consider the
subspace of combinations m1p1 + · · ·+mkpk where the mi have degree at most
d− 2 in Rq. By definition, it is the image space of the map

σd(p1, . . . , pk) : (m1, . . . ,mk) ∈ ((Rq)≤d−2)k 
−→ m1p1 + · · ·+mkpk.

An important observation is that the kernel of σd(p1, . . . , pk) always contains pre-
dictible non-zero tuples called trivial syzygies. Examples of trivial syzygies are
the combinations over Rq of the k-tuples with mi = pj, mj = −pi for some i, j
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and 0 otherwise. A formal definition of trivial syzygies is the following. For in-
determinates y1, . . . , yk, let Tq(y1, . . . , yk) denote the set of k-tuples (m1, . . . ,mk)
over Rq[y1, . . . , yk]/{yq

1 − y1, . . . , yq
k − yk} such that m1y1 + · · ·+mkyk = 0. For

any polynomials p1, . . . , pk over Rq, we call trivial syzygies of p1, . . . , pk the
evaluations of the k-tuples in Tq(y1, . . . , yk) at (p1, . . . , pk) .

When searching for degree falls, we are only interested in the subspace Vd

spanned by the highest degree homogeneous part of the image of σd(p1, . . . , pk).
This subspace is spanned by the degree d homogeneous parts of the combinations
m1p1 + · · · + mkpk where m1, . . . ,mk are homogeneous polynomials of degree
d−2. We define a degree fall in degree d of p1, . . . , pk as a k-tuple (m1, . . . ,mk)
of degree d − 2 homogeneous polynomials such that the degree d homogeneous
part of m1p1 + · · · + mkpk is zero. The degree d − 2 homogeneous parts of the
trivial syzygies of p1, . . . , pk in degree d− 2 are trivially degree falls and we call
them trivial degree falls. We call the degree of regularity of p1, . . . , pk the
smallest d such that a non trivial degree fall of p1, . . . , pk exists in degree d.

3 Definition of HFE Systems

The construction of HFE systems is based on the linear isomorphism between
(Fq)n and Fqn over Fq. Recall that Fqn is a degree n polynomial extension over
Fq and as a consequence is an n dimensional vector space over Fq. Any choice
of a basis of Fqn defines a linear bijection S from (Fq)n to Fqn , and extends to
a linear bijection ψS from functions on Fqn to functions on (Fq)n by:

ψS : P 
→ S−1 ◦ P ◦ S

Recall that functions on (Fq)n are uniquely represented by n-tuples of polynomi-
als in Rq = Fq[x1, . . . , xn]/{xq

1− x1, . . . , x
q
n − xn} and that functions on Fqn are

uniquely represented by polynomials in Fqn [X ]/{Xqn − X}. This gives an ex-
pression of ψS on polynomials: ψS : Fqn [X ]/{Xqn −X} −→ (Rq)n. Also recall
that raising to a power of q is linear over Fq and that the n distinct q-powerings
on Fqn are called the Frobenius maps. More generally, for any power function
Xa in Fqn [X ]/{Xqn − X}, we call q-degree of Xa the sum a0 + · · · + an−1,
where (a0, a1, . . . , an−1) is the decomposition of a in base q. In particular, con-
stants have q-degree 0 and Frobenius maps have q-degree 1. Since any function
in Fqn [X ]/{Xqn − X} is a linear combination of power functions, we define q-
degree as the maximal q-degree of its terms. The following proposition ensures
that ψS maps q-degree in Fqn [X ]/{Xqn −X} to degree in (Rq)n.

Proposition 1. Let S be an arbitrary linear bijection from (Fq)n to Fqn . For
any integer d ≥ 0, ψS defines a bijection from polynomials in Fqn [X ]/{Xqn−X}
with q-degree d to n-tuples over Rq with degree d.

Please refer to the full version for a proof. We are now ready to define HFE
systems. Recall from the introduction that an HFE public key is the data of the
n coordinate polynomials of a composition T ◦P ◦S where S is a linear bijection



The Degree of Regularity of HFE Systems 563

from (Fq)n to Fqn , T is a linear bijection from Fqn to (Fq)n and P is a function
on Fqn which as a polynomial in Fqn [X ]/{Xqn −X} has the shape

P (X) =
∑

i,j≤D pijX
qi+qj

+
∑

k≤D λkX
qk

+ c

where D is a parameter of the scheme. For any linear bijection S, we call HFE
systems the systems in (Rq)n which are the images by ψS of the polynomials
P (X) of the above shape. We see from the above proposition that HFE systems
are quadratic and that their only particularity in this class is to correspond to a
polynomial P (X) of degree upper bounded by 2qD. Since T is a linear bijection,
an HFE public key has all the algebraic properties of an HFE system.

4 Combinations of HFE Polynomials

In this section, we map combinations of HFE systems to related operations on the
defining polynomial in Fqn [X ]/(Xqn−X). This mapping was outlined in [9] and is
made precise here. Incidentally, it is independent of the particular shape of HFE
defining polynomials and hence is valid for any cryptosystem following a similar
construction. To lighten the notation, we now denote Rqn = Fqn [X ]/(Xqn −X).
This section is a chain of technical points which are necessary to make the
mapping complete. For a quick reading, one may jump directly to subsection 4.4.

4.1 From Combinations in Rq to Combinations in Rqn

Let P be any polynomial in Rqn and (p1, . . . , pn) = ψS(P ). We have defined
combinations of p1, . . . , pn as linear combinations of p1, . . . , pn with coefficients
in Rq. Hence, n-tuples of linear combinations over Rq are products by n × n
matrices over Rq. Proposition 1 implies that ψ−1

S is a linear bijection from linear
maps on (Fq)n to linear combinations over Fqn of the Frobenius maps. We extend
this result when coefficients are in Rq and Rqn instead of Fq and Fqn .

Proposition 2. Let S be an arbitrary linear bijection from (Fq)n to Fqn . There
exists an Fq-linear bijection ψ∗S from (Rqn)n to n × n matrices over Rq, such
that for any M0, . . . ,Mn−1 and P in Rqn ,

ψ∗S(M0, . . . ,Mn−1)ψS(P ) = ψS(M0P
q0

+ · · ·+Mn−1P
qn−1

). (1)

Proof. We simply construct ψ∗S by hand by considering the above identity over
the set of constant functions P = a with a in Fqn . Since ψS is linear we only need
to consider P = a for a over a basis of Fqn . For any i = 1, . . . , n, let ei ∈ Fqn de-
note the image by S of the i-th canonical vector of (Fq)n. For any M0, . . . ,Mn−1,
ψ∗S(M0, . . . ,Mn−1)ψS(ei) is the i-th column of ψ∗S(M0, . . . ,Mn−1) and must
be set to ψS(

∑n−1
k=0 Mk(ei)qk

). ψ∗S is linear by the linearity of ψS . Consider
(M0, . . . ,Mn−1) whose image by ψ∗S is zero. Then, ψS being a linear bijection,
for any i = 1, . . . , n, we have

∑n−1
k=0 (ei)qk

.Mk = 0. The only solution to this
invertible system is M0 = · · · = Mn−1 = 0, which proves that ψ∗S is injective.
Surjectivity follows ψ∗S mapping subspaces of identical dimension over Fq. ��
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Equation (1) over the constants ei also shows that the q-degree of
(M0, . . . ,Mn−1) equals the degree of ψ∗S(M0, . . . ,Mn−1). In particular, for any
P of q-degree 2 and d ≥ 2, we define

U≤d(P ) =
{
M0P

q0
+ · · ·+Mn−1P

qn−1 | q-deg(Mi) ≤ d− 2, i = 0, . . . , n− 1
}

and on the other hand, for (p1, . . . , pn) = ψS(P ),

V≤d(p1, . . . , pn) = {m1p1 + · · ·+mnpn | deg(mi) ≤ d− 2, i = 1, . . . , n} .

Property 1. For any d ≥ 2, ψS is a bijection from U≤d(P ) to (V≤d(p1, . . . , pn))n.

Proof. ψ∗S transforms n-tuples of q-degree ≤ d − 2 to n × n matrices of degree
≤ d − 2. Both spans have the same dimension over Fq by Proposition 1, hence
ψ∗S is a bijection from the one to the other. Finally, the property holds by the
identity satisfied by ψ∗S and evaluated at the particular P . ��
Since the dimension of (V≤d)n is n times the dimension of V≤d and the dimension
of U≤d over Fq is n times its dimension over Fqn , the property implies

dimFq (V≤d(p1, . . . , pn)) = dimFqn (U≤d(P )) .

4.2 From Degree Falls in Rq to q-Degree Falls in Rqn

When considering degree falls, one is really interested in the subspace spanned
by the highest degree homogeneous part of a bounded degree combination space.
For any quadratic polynomials p1, . . . , pn in Rq and any integer d ≥ 2, let
V h

d (p1, . . . , pn) denote the subspace generated by the degree d homogeneous parts
of polynomials in V≤d(p1, . . . , pn). Similarly, for any polynomial P of q-degree
2 in Rqn and any integer d ≥ 2, let Uh

d (P ) denote the subspace of q-degree d
homogeneous parts of polynomials in U≤d(P ). Quite expectably, we have:

Property 2. Let P in Rqn and (p1, . . . , pn) = ψS(P ). Then, for any d ≥ 2, there
exists an Fq-linear bijection from Uh

d (P ) to (V h
d (p1, . . . , pn))n.

Proof. The highest degree homogeneous part of a polynomial p in Rq with degree
d ≥ 2 is its class mod (Rq)≤d−1. Hence, V h

d (p1, . . . , pn) is V≤d(p1, . . . , pn) mod
(Rq)≤d−1. Similarly Uh

d (P ) is U≤d(P ) mod (Rqn)≤d−1. LetQ andQ′ be arbitrary
polynomials inRqn such that Q = Q′ mod (Rqn)≤d−1. Then, Q−Q′ has q-degree
at most d − 1. Since ψS preserves the degree, ψS(Q − Q′) has degree at most
d−1. Hence, since ψS is linear, ψS(Q) = ψS(Q′) mod ((Rq)≤d−1)n. Therefore, ψS

induces an Fq-linear map from Rqn mod (Rqn)≤d−1 to (Rq)n mod ((Rq)≤d−1)n.
Since ψS is a bijection from U≤d(P ) to (V≤d(p1, . . . , pn))n, the induced map is
a bijection from Uh

d (P ) to (V h
d (p1, . . . , pn))n. ��

Let Rh
q denote the set of homogeneous polynomials of Rq. For any polynomial p

in Rq and any integer d ≥ 0, let [p]d denote the degree d homogeneous part of
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p. For any system p1, . . . , pn of quadratic polynomials in Rq and any d ≥ 2, the
degree falls of p1, . . . , pn in degree d are the kernel of the map

σh
d (p1, . . . , pn) : (m1, . . . ,mn) ∈ ((Rh

q )d−2)n 
−→ [m1p1 + · · ·+mnpn]d.

With completely transposed notations, for any P of q-degree 2 in Rqn and any
d ≥ 2, we define the q-degree falls of P in degree d as the kernel of the map

Σh
d (P ) : (M0, . . . ,Mn−1) ∈ ((Rh

qn)d−2)n 
→ [M0P +M1P
q + · · ·+Mn−1P

qn−1
]d

The image spaces σh
d (p1, . . . , pn) and Σh

d (P ) respectively are V h
d (p1, . . . , pn) and

Uh
d (P ). Property 2 ensures that when (p1, . . . , pn) = ψS(P ) the image spaces of

(σh
d (p1, . . . , pn))n and Σh

d (P ) have the same cardinality. Besides, Proposition 1
ensures that the same holds for their input spaces. Therefore, the kernels of
(σh

d (p1, . . . , pn))n and Σh
d (P ) have the same cardinality. Finally,

dimFq(kerσh
d (p1, . . . , pn)) = dimFqn (kerΣh

d (P )). (2)

4.3 Trivial Syzygies and Trivial Degree Falls

Trivial syzygies of p1, . . . , pn are n-tuples overRq such thatm1p1+· · ·+mnpn = 0
even when p1, . . . , pn are indeterminates. They are precisely defined the following
way. Let R̄q denote the extension of Rq with additional variables y1, . . . , yn,
R̄q = Rq[y1, . . . , yn]/{yq

1 − y1, . . . , y
q
n − yn}. Let Tq(y1, . . . , yn) denote the set

of n-tuples (m1, . . . ,mn) over R̄q such that m1y1 + · · · + mnyn = 0. For any
polynomials p1, . . . , pn in Rq, we define its trivial syzygies as the evaluations of
the n-tuples in Tq(y1, . . . , yn) at (p1, . . . , pn). As a shorthand, let Tq(p1, . . . , pn)
denote the set of trivial syzygies of p1, . . . , pn.

Elements of R̄q are polynomials in both x1, . . . , xn and y1, . . . , yn. For any
monomial in R̄q, let dx, dy denote its degrees in x1, . . . , xn and in y1, . . . , yn

respectively. Since variables y1, . . . , yn are intended to be specialized at quadratic
polynomials p1, . . . , pn in Rq, we define the (1, 2)-degree of a monomial in R̄q

as dx + 2dy, and the (1, 2)-degree of a polynomial in R̄q as the maximum of the
(1, 2)-degree of its monomials. Hence, any element of Tq(y1, . . . , yn) with (1, 2)-
degree d yields an element of Tq(p1, . . . , pn) with degree ≤ d. We call trivial
syzygies of p1, . . . , pn with designed degree d the elements of Tq(p1, . . . , pn) whose
corresponding element of Tq(y1, . . . , yn) has (1, 2)-degree d. The trivial syzygies
with designed degree ≤ d are denoted by Tq(p1, . . . , pn)�d. On the other hand,
one may analogously consider the extension of Rqn with additional variable Y ,
R̄qn = Rqn [Y ]/(Y qn − Y ), and define Tqn(Y ) as the n-tuples (M0, . . . ,Mn−1)
over R̄qn such that M0Y + M1Y

q + · · · + Mn−1Y
qn−1

= 0. For any P in Rqn ,
let Tqn(P ) denote the evaluations of the n-tuples in Tqn(Y ) at P . Finally, for
any P of q-degree 2 and any d ≥ 0, we let Tqn(P )�d denote the elements whose
corresponding elements in Tqn(Y ) have (1, 2)-q-degree d. By a series of simple
extensions of the previous results, we can show (cf full version)

Property 3. Let P in Rqn of q-degree 2 and (p1, . . . , pn) = ψS(P ). For any d ≥ 0,

dimFq(Tq(p1, . . . , pn)�d) = dimFqn (Tqn(P )�d).
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The polynomials p1, . . . , pn being quadratic, for any d ≥ 2, we call trivial degree
falls of p1, . . . , pn in degree d the homogeneous parts of (actual) degree d − 2
of the elements in Tq(p1, . . . , pn)�d−2 and denote them (with a slight abuse of
notation) by Tq(p1, . . . , pn)h

d−2. Similarly, for P of q-degree 2, we call trivial q-
degree falls of P in q-degree d the homogeneous parts of q-degree d − 2 of the
elements in Tq(P )�d−2 and denote them by Tq(P )h

d−2. We have (cf full version)

Property 4. Let P in Rqn of q-degree 2 and (p1, . . . , pn) = ψS(P ). For any d ≥ 2,

dimFq(Tq(p1, . . . , pn)h
d−2) = dimFqn (Tqn(P )h

d−2).

4.4 Mapping the Degree of Regularity from Rq to Rqn

Recall that the degree of regularity of a system of quadratic polynomials
p1, . . . , pn is the smallest integer d such that a non-trivial degree fall exists in de-
gree d. With the previous notation, this is the smallest d such that the kernel of
σh

d (p1, . . . , pn) is strictly larger than Tq(p1, . . . , pn)h
d−2. Now, let S be an arbitrary

linear bijection from (Fq)n to Fqn and P in Rqn such that ψS(P ) = (p1, . . . , pn).
Then, P has q-degree 2 and, by Equality 2 and Property 3,

Property 5. the degree of regularity of p1, . . . , pn is the smallest d such that the
kernel of Σh

d (P ) is strictly larger than Tqn(P )h
d−2.

Hence, we obtain an equivalent characterization of the degree of regularity of
p1, . . . , pn in term of the associated polynomial P in Rqn . In the remainder
of this section, we slightly modify the above characterization to make it more
conveniently usable in the analysis of the next section.

Multivariate representation of Rqn. Our first step is a simple alterna-
tive notation for the elements Rqn . This notation was proposed in [9]. As
already seen, we can split any power of X according to the decomposition
in base q of the exponent. Now simply introduce a distinct notation for the
Frobenius of X : for i = 0, . . . , n − 1, let Xi denote Xqi

. Observe that for any
i = 0, . . . , n − 1, Xq

i − Xi+1 = 0 where the indices are taken modulo n. Using
these relations, any power of X corresponds to a unique multivariate mono-
mial in X0, . . . , Xn−1. It extends trivially to all polynomials in Rqn . Addition
and multiplication are compatible with this notation. Therefore, Rqn identifies
as a ring with Fqn [X0, . . . , Xn−1]/{Xq

0 − X1, . . . , X
q
n−1 − X0}. Along with this

identification, q-degree becomes degree in the multivariate ring. Also, for any
polynomial P in Rqn , let P0, . . . , Pn−1 denote its successsive Frobenius. For any
i = 0, . . . , n−1, P q

i −Pi+1 = 0 where indices are modulo n. When P has q-degree
2, its Frobenius are multivariate quadratic polynomials. Since the P -termed sets
really express in terms of the Frobenius of P , they are conveniently rewritten
with the above notation. Hence, Σh

d (P ) rewrites to

Σh
d (P0, . . . , Pn−1) : (M0, . . . ,Mn−1) ∈ (Rh

qn)d−2 
→ [M0P0 + · · ·+Mn−1Pn−1]d.
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The ring R̄qn = Rqn [Y ]/(Y qn − Y ) rewrites to Rqn [Y0, . . . , Yn−1]/{Y q
0 −

Y1, . . . , Y
q
n−1 − Y0}. The set Tqn(Y ) rewrites to Tqn(Y0, . . . , Yn−1), the n-tuples

(M0, . . . ,Mn−1) over R̄qn such that M0Y0 + · · ·+Mn−1Yn−1 = 0. Hence, Tqn(P )
identifies with Tqn(P0, . . . , Pn−1). And the elements of Tqn(P0, . . . , Pn−1)h

d are
the degree d homogeneous parts of the elements of Tqn(P0, . . . , Pn−1)�d. Finally,
our characterization (Property 5) rewrites to, when (p1, . . . , pn) = ψS(P ),

Property 6. the degree of regularity of p1, . . . , pn equals the degree of regularity
of P0, . . . , Pn−1, the n Frobenius of P in the multivariate representation of Rqn .

At this point, our task is reduced to studying the degree of regularity of the
quadratic polynomials P0, . . . , Pn−1 in Rqn , and we do not need to address the
polynomials p1, . . . , pn any further. The next paragraph is devoted to refining
the characterization of the degree of regularity of P0, . . . , Pn−1.

Characterizing the Degree of Regularity of Systems of Rqn . Our first
observation is a simple one: the highest degree terms of combinations in degree
d of P0, . . . , Pn−1 only depends on their highest degree terms P̂0, . . . , P̂n−1.

Property 7. The degree of regularity of quadratic polynomials in Rqn equals the
degree of regularity of their degree 2 homogeneous parts.

Proof. For any degree d− 2 homogeneous polynomials M0, . . . ,Mn−1, the asso-
ciated combinations of P0, . . . , Pn−1 and P̂0, . . . , P̂n−1 have the same degree d
homogeneous part. Hence, degree falls in degree d are the same for both systems
of polynomials. On the other hand, the trivial syzygies of P0, . . . , Pn−1 of de-
signed degree d− 2 have the same degree d− 2 homogeneous parts as the trivial
syzygies of P̂0, . . . , P̂n−1 of designed degree d− 2. The property follows. ��
Our second observation is more subtle: when considering combinations of the
quadratic homogeneous polynomials P̂0, . . . , P̂n−1 with degree d−2 homogeneous
coefficients, terms of degree smaller than d can only appear with reductions mod-
ulo the polynomials Xq

i − Xi+1, i = 0, . . . , n − 1. Since all terms with degree
smaller than d are discarded, the same result is obtained as when performing
combinations in the ring Rqn = Fqn [X0, . . . , Xn−1]/{Xq

0 , . . . , X
q
n−1}. Consider-

ing combinations in Rqn rather than in Rqn , the map Σh
d (P̂0, . . . , P̂n−1) simply

rewrites to Σh
d (P̂0, . . . , P̂n−1):

(M0, . . . ,Mn−1) ∈ ((Rh
qn)d−2)n 
→M0P̂0 +M1P̂1 + · · ·+Mn−1P̂n−1.

Furthermore, we can equivalently characterize the trivial degree falls using the
ring structure of Rqn . Consider R̄qn = Rqn [Y0, . . . , Yn−1]/{Y q

0 , . . . , Y
q
n−1} and

the associated set T qn(Y0, . . . , Yn−1). For any d ≥ 0, we can define the sets
T qn(P̂0, . . . , P̂n−1)�d and T qn(P̂0, . . . , P̂n−1)h

d , exactly as before.

Property 8. For any d ≥ 0, the sets Tqn(P̂0, . . . , P̂n−1)h
d and T qn(P̂0, . . . , P̂n−1)h

d

are identical. Therefore, for any d ≥ 2, the trivial degree falls of P̂0, . . . , P̂n−1 in
degree d are the elements of T qn(P̂0, . . . , P̂n−1)h

d−2.
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Proof. For any (M0, . . . ,Mn−1) in T qn(Y0, . . . , Yn−1), let Q denote the combi-
nation M0Y0 + · · · + Mn−1Yn−1 in Rqn [Y0, . . . , Yn−1]. Since Q is zero modulo
Y q

0 , . . . , Y
q
n−1, any of its term is divisible by at least one of Y q

0 , . . . , Y
q
n−1. Since

M0, . . . ,Mn−1 have degree at most q−1 in any Yi, any term of Q can have degree
q in only one single indeterminate and at most q−1 in all the others. Therefore,
any term of Q exactly has degree q is one indeterminate and at most q− 1 in all
the others. Hence, Q admits a unique decomposition A0Y

q
0 + · · · + An−1Y

q
n−1.

Using the unique polynomials A0, . . . , An−1 associated to (M0, . . . ,Mn−1), we
construct an element (M ′0, . . . ,M

′
n−1) of Tqn(Y0, . . . , Yn−1) by setting for all

i = 0, . . . , n − 1, M ′i = Mi − Ai−1 (indices are modulo n). Now, observe that
the terms of A0, . . . , An−1 consist of terms of M0, . . . ,Mn−1 divided by one in-
determinate to the power of q − 1. As a consequence, each of them has a total
degree in the Yi variables smaller (by q − 1) than the one it originates from. In
particular, when M0, . . . ,Mn−1 have (1, 2)-degree at most d, M ′0, . . . ,M ′n−1 re-
spectively have the same terms of (1, 2)-degree d as M0, . . . ,Mn−1 because they
differ by terms of strictly smaller (1, 2)-degree. ��
Hence, we end up with the following characterization which we use in the sequel.

Property 9. Let P̂0, . . . , P̂n−1 be homogeneous quadratic polynomials in Rqn .
The degree of regularity of P̂0, . . . , P̂n−1 can be computed in Rqn as the smallest
d ≥ 2 such that degree d − 2 homogeneous n-tuples (M0, . . . ,Mn−1) satisfying
M0P̂0 + · · ·+Mn−1P̂n−1 = 0 exist besides the elements of T qn(P̂0, . . . , P̂n−1)h

d .

5 Bounding the Degree of Regularity of HFE Systems

We first describe the proof principle of our upper bound and then perform the
combinatorial computations that convey the result.

5.1 Upper Bounding the Degree of Regularity

First consider arbitrary homogeneous quadratic polynomials P̂0, . . . , P̂k−1 in
Rqn where k ≤ n. The dimensions of the kernel and the image of the map

Σh
d (P̂0, . . . , P̂k−1) : ((Rqn)h

d−2)
k −→ (Rqn)h

d

(M0, . . . ,Mk−1) 
−→M0P̂0 +M1P̂1 + · · ·+Mk−1P̂k−1

relate to each other by

k dim(Rqn)h
d−2 − dim kerΣh

d (P̂0, . . . , P̂k−1) = dim Im(Σh
d (P̂0, . . . , P̂k−1)).

Not knowing what the degree of regularity of the system is, one can assume
that it is not reached while incrementing d. In this case, the kernel is assumed
to contain only the trivial elements of T qn(P̂0, . . . , P̂k−1)h

d−2. Since the image is
confined in (Rqn)h

d , a contradiction to this assumption appears as soon as

k dim(Rqn)h
d−2 − dimT qn(P̂0, . . . , P̂k−1)h

d−2 > dim(Rqn)h
d
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and then we know that the degree of regularity was reached before. The smallest d
satisfying this “saturation” condition is therefore an upper bound on the degree
of regularity of P̂0, . . . , P̂k−1. Since it is valid for any homogeneous quadratic
polynomials, we refer to it as the MQ bound.

We now show how in the case of HFE systems better bounds can be obtained.

5.2 The Case of HFE Systems

It was noted in [15] that when P̂0, . . . , P̂n−1 are obtained from the Frobenius
of an HFE polynomial P , they express over small shifted sets of consecutive
variables: P̂0 expresses over X0 to XD, P̂1 expresses over X1 to XD+1, . . . ,
P̂n−1 expresses over Xn−1 to XD−1 (indices are modulo n). Then, the authors
noted that a consequence of this property is that small subsystems of consecutive
polynomials only involve a small subset of the available variables. Consecutive
subsystems of a prescribed size being all equivalent up to a cyclic shift, we focus
on the n subsystems Sk = {P̂0, . . . , P̂k−1} for k = 1, . . . , n. The subsystem Sk

expresses over the first mk variables, where mk = D + k for all k ≤ n−D and
mk = n beyond. The degree of regularity of P̂0, . . . , P̂n−1 is upper bounded by
the respective degrees of regularity dk of the subsystems Sk for all k = 1, . . . , n.
Indeed the degree falls of Sk identify with the degree falls of P̂0, . . . , P̂n−1 with
zero on the last n−k coordinates. On the other hand we will show in Section 5.3
(Property 11) that whenever a degree fall is non-trivial for Sk, its completion
with zero on the last n − k coordinates is non-trivial for P̂0, . . . , P̂n−1. At this
point, the authors of [15] estimated the degree of regularity of any subsystem Sk

by using an asymptotic formula from [2]. This needed restricting to q = 2 and
assuming that the quadratic polynomials P̂0, . . . , P̂k−1, X

2
0 , . . . , X

2
mk−1 satisfy

the condition for which the formula holds. Instead, we use the previous saturation
bound: we upper bound the degree of regularity of Sk by applying the MQ bound
to P̂0, . . . , P̂k−1. Hence it is upper bounded by the smallest d such that

k dim(Rqn|mk
)h
d−2 − dimT qn|mk

(P̂0, . . . , P̂k−1)h
d−2 > dim(Rqn|mk

)h
d (3)

where Rqn|mk
denotes the restriction of Rqn to the first mk variables. Since this

upper bound uses a property showed in [15], we refer to it as the GJS bound.
We now observe an additional property of HFE systems. Since polynomials

P̂0, . . . , P̂n−1 write over monomials XiXi+� with � ≤ D, combinations of these
polynomials necessarily write over the monomials which are divisible by XiXi+�

for some i and � ≤ D. Let MD
q denote the subspace spanned by such monomials.

For any subsystem Sk, we improve the GJS bound by the smallest d such that

k dim(Rqn|mk
)h
d−2 − dimT qn|mk

(P̂0, . . . , P̂k−1)h
d−2 > dim(MD

q |mk)h
d (4)

where (MD
q |mk)h

d denotes the subspace spanned by degree d monomials of MD
q

in the first mk variables. The distinction between MD
q and Rh

qn is increasingly
significant as q grows. Indeed, at fixed n and d, the average Hamming weight of
multidegrees in degree d decreases as q grows. Then, the proportion of monomials
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containing two variables distant by at most D indices (mod n) grows thiner. We
call HFE bound the upper bound on the degree of regularity of P̂0, . . . , P̂n−1

obtained from the latter improvement.
We now compute for any d ≥ 2 and any k = 1, . . . , n, the above dimensions

by means of induction formulae and deduce the related numerical upper bound.

5.3 Induction Formulae for Computing Our Upper Bound

We show how to compute the dimensions of (Rqn|m)h
d , (MD

q |m)h
d and

T qn|m(P̂0, . . . , P̂k−1)h
d , for any m, k = 1, . . . , n.

The dimension H(m, d) of (Rqn|m)h
d is simply the number of homogeneous

monomials of degree d in m variables, where all exponents are bounded between
0 and q − 1. Obviously, it equals H(m, d) = 0 for d < 0, or d > 0 and m ≤ 0,
we have H(m, 0) = 1 for all m, and when d > 0,m > 0 it satisfies the induction
H(m, d) =

∑q−1
α=0H(m− 1, d− α) . Equivalently, H(m, d) is the d-th term of the

series ((1 − zq)/(1− z))u of term z. In particular, for q = 2, H(u, d) =
(
u
d

)
.

The Number of Monomials Arising in Combinations of HFE. For any
d ≥ 0, and u = 1, . . . , n, let C(u, d) denote the dimension the complement of
(MD

q |u)h
d in (Rqn|u)h

d . This is the number of monomials of degree d in u consecu-
tive variables, with exponents modulo q, such that all variables with non-zero ex-
ponents have indices (modulo n) distant by at least D+1 positions. First, ignore
that distance between indices is taken modulo n, and that we allow for instance
X0 andXu−1 to have both a non-zero power. Then, C′(u, d) is given by the simple
“Pascal’s triangle” formula C′(u, d) = C′(u − 1, d) +

∑q−1
α=1 C

′(u−D − 1, d− α)
for any u = 1, . . . , n, where C(u, 0) = 1 and C(u, d) = 0 whenever d < 0 or u ≤ 0.
When u is lower than n−D, then the requested dimension C(u, d) is there equal
to C′(u, d) since the last D variables have zero exponents. Otherwise, when u >
n−D, the distance must be taken modulo n, so we deduce all values of C(n, d) by
considering the partitions defined by monomials containing X0, plus monomials
containingX1, . . . , plus monomials containingXD−1, plus monomials containing
none of them. Hence, C(u, d) = C′(u−D, d) +D

∑q−1
α=1 C

′(n− 1− 2D, d− α) .
Finally, dim(MD

q |u)h
d = H(u, d)− C(u, d).

The Dimension of Trivial Syzygies in Degree d. Simply denote Rqn|m by
Rm. Our first step is to exhibit generators for the module T m(Y0, . . . , Yk−1).

Property 10. An n-tuple (M0, . . . ,Mk−1) is an element of T m(Y0, . . . , Yk−1) if
and only if it is a combination with polynomial coefficients of the n-tuples
{
Γij = (0, . . . , 0,Mi = Yj , 0, . . . , 0,Mj = −Yi, 0, . . . , 0), i, j = 0, . . . , k − 1,
Φi = (0, . . . , 0,Mi = Y q−1

i , 0, . . . , 0), i = 0, . . . , k − 1.

Proof. For any n-tuple (M0, . . . ,Mk), decompose Mi into M̄iY
q−1
i +M ′i . An n-

tuple (M0, . . . ,Mk) is an element of T qn(Y0, . . . , Yk) if and only if M0Y0 + · · ·+
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MkYk is zero modulo Y q
0 , . . . , Y

q
k . This is equivalent to M ′0Y0 + · · ·+M ′kYk = 0

(without modulo). We prove that this latter equality implies that (M ′0, . . . ,M
′
k)

is a combination of (Γij). We do this through induction on k. If k = 1 then, if M ′0
or M ′1 is zero they are both zero, otherwise M ′0 = M ′′Y1 and M ′1 = −M ′′Y0 and
(M ′0,M

′
1) = M ′′(Y1,−Y0). Assume the property holds up to k − 1. Then, if M ′k

is zero, we fall on the property at k − 1, otherwise all M ′i , i = 0, . . . , k − 1 must
contain Yk and denoting by M ′′i the quotient, we have M ′k = −(M ′′0 Y0 + · · · +
M ′′k−1Yk−1), from which we get (M ′0, . . . ,M ′k) = M ′′0 Γ0,k + · · · + M ′′k−1Γk−1,k.
Coming back to the main proof, we get(M0, . . . ,Mk) = M̄0Φ0 + · · · + M̄kΦk +
(M ′0, . . . ,M

′
k)where the last n-tuple decomposes over (Γij)’s. ��

Since Γij ’s and Φi’s are homogeneous in the variables Y0, . . . , Yk−1, the (1, 2)-
degree d parts of the elements of T m(Y0, . . . , Yk−1) themselves decompose over
these generators. Replacing variables Y0, . . . , Yk−1 respectively by P̂0, . . . , P̂k−1,
trivial syzygies in degree d of P̂0, . . . , P̂k−1 write

T m(P̂0, . . . , P̂k−1)h
d = (Rm)h

d−2{Γij}0≤i<j≤k−1 + (Rm)h
d−2(q−1){Φi}0≤i≤k−1,

where we again denote by Γij ’s and Φi’s their specializations at (P̂0, . . . , P̂k−1).
Unfortunately, decomposition over the above generators is not unique. Therefore,
the dimension of T m(P̂0, . . . , P̂k−1)h

d can not be directly read from the above
formula. However, we see that this dimension follows a simple induction.

Let ∂Γd,k denote the subspace spanned by Γi,k, i = 0, . . . , k − 1 (k ≥ 1) and
∂Φd,k denote the subspace spanned by Φk. Then, for k ≥ 1,

T m(P̂0, . . . , P̂k)h
d = T m(P̂0, . . . , P̂k−1)h

d + (∂Γd,k + ∂Φd,k). (5)

For k = 1, we simply have T m(P̂0)h
d = ∂Φ1

d. For all k ≥ 1, the increase of
dimension when adding ∂Γd,k + ∂Φd,k is the dimension of the quotient space
(∂Γd,k + ∂Φd,k) mod T m(P̂0, . . . , P̂k−1)h

d . Now we use the following property.

Property 11. For d up to the degree of regularity of P̂0, . . . , P̂k,

T m(P̂0, . . . , P̂k)h
d ∩ {(∗, . . . , ∗, 0)}d = T m(P̂0, . . . , P̂k−1)h

d .

(Hence, the degree of regularity of P̂0, . . . , P̂k is upper-bounded by the degree of
regularity of P̂0, . . . , P̂k−1 because a cancellation of P̂0, . . . , P̂k−1 which is non-
trivial in the sense of P̂0, . . . , P̂k−1 is non-trivial in the sense of P̂0, . . . , P̂k.)

Proof. First recall that Γij ’s have degree 2 and φi’s have degree 2(q − 1) ≥ 2.
As a consequence T m(P̂0, . . . , P̂k−1) has no element in degree 0 or 1.

For any 1 ≤ α ≤ q and d ≥ 0, define the set

T ∗αm (P̂0, . . . , P̂k)h
d =

{
(M0, . . . ,Mk−1, 0)

∣∣∣∣∣
∃M (α)

k , (M0, . . . ,Mk−1,M
(α)
k P q−α

k )
∈ T m(P̂0, . . . , P̂k)h

d

}

Observe that for α = 1, this set is exactly T m(P̂0, . . . , P̂k)h
d ∩ {(∗, . . . , ∗, 0)}d.

We show that for d up to the degree of regularity of P̂0, . . . , P̂k, and α ≤ q − 1,

T ∗αm (P̂0, . . . , P̂k)h
d ⊆ T m(P̂0, . . . , P̂k−1)h

d + PkT ∗(α+1)
m (P̂0, . . . , P̂k)h

d−2. (6)
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Indeed, let (M0, . . . ,Mk−1, 0) belong to the left handside. By definition,
there exists Mα

k such that (M0, . . . ,Mk−1,M
α
k P

α
k ) is in T m(P̂0, . . . , P̂k)h

d .
Refer to the decomposition 5 of this set. Hence there exists an element
Tk of T m(P̂0, . . . , P̂k−1)h

d (with its last coordinate to zero) and coefficients
μ0, . . . , μk−1, νk such that (M0, . . . ,Mk−1,M

α
k P

α
k ) = Tk + μ0Γ0k + · · · +

μk−1Γk−1,k + νkφk. Coordinate-wise identity writes
{

(M0, . . . ,Mk−1, 0) = Tk + Pk(μ0, . . . , μk−1, 0),
−Mα

k P
α
k = μ0P0 + · · ·+ μk−1Pk−1 − νkP

q−1
k .

The second equation implies that (μ0, . . . , μk−1,M
α
k P

α−1
k − νkP

q−2
k ) lies in

T m(P̂0, . . . , P̂k)h
d−2, which shows (6). Now by using (6), from 1 to α ≤ q − 1,

T ∗1m (P̂0, . . . , P̂k)h
d ⊆ T m(P̂0, . . . , P̂k−1)h

d + Pα
k T ∗(α+1)

m (P̂0, . . . , P̂k)h
d−2α.

The second summand is zero as soon as d− 2α ≤ 1. As α increases to q− 1, one
either encounters this case or ends up with P q−1

k T ∗qm (P̂0, . . . , P̂k)h
d−2(q−1). But

again any (M0, . . . ,Mk−1, 0) of the set in factor writes Tk +Pk(μ0, . . . , μk−1, 0).
In the product set, the second summand vanishes by P q

k = 0. ��

By Property 11, two n-tuples of T m(P̂0, . . . , P̂k)h
d are equivalent modulo

T m(P̂0, . . . , P̂k−1)h
d if and only if they have the same (k + 1)-th coordinate.

Hence, the marginal dimension of the second summand in 5 is the dimension of
(Rm)h

d−2{P̂i}0≤i≤k−1 + (Rm)h
d−2(q−1)P̂

q−1
k . Let τk,d = dimT m(P̂0, . . . , P̂k−1)h

d

and let δq−1
k+1,d be the dimension of the above. So far, τk+1,d = τk,d + δq−1

k+1,d.
Furthermore, iterating this process, we can show (cf full version for a proof)

Lemma 1. For any 1 ≤ α ≤ q − 1, let δα
k+1,d denote the dimension of

(Rm)h
d−2{P̂i}0≤i≤k−1 + (Rm)h

d−2αP̂
α
k . For d up to the degree of regularity of

P̂0, . . . , P̂k, this dimension follows the induction

δα
k+1,d = k dim(Rm)h

d−2 − τk+1,d−2 + δα−1
k+1,d−2,

for any α ≥ 2, and δ1k+1,d = (k + 1) dim(Rm)h
d−2 − τk+1,d−2.

Using this lemma we finally find the induction defining τk,d for any k ≤ n and d
up to the degree of regularity of P̂0, . . . , P̂n−1,

τk+1,d = τk,d +
∑q−1

i=1

(
k dim(Rm)h

d−2i − τk+1,d−2i

)
+ dim(Rm)h

d−2(q−1) . (7)

5.4 Numerical Computation of the Upper Bounds

We numerically computed the above induction formulas using a dynamic pro-
gramming approach. A simple complexity analysis can be found in the full ver-
sion. Figure 1 below represents the upper bounds on the degree of regularity of
HFE systems for many parameters q, n. The corresponding value of D was set



The Degree of Regularity of HFE Systems 573

MQ Bound
GJS Bound (with qD = n log2(q))

New HFE bound (with qD = n log2(q))

0
5

10
15

20
25

30
q

0 20 40 60 80 100 120 140

n

0
10
20
30
40
50
60
70
80

de
gr

ee

Fig. 1. Overview of the three upper bounds for many HFE parameters: MQ, GJS, HFE
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Fig. 2. Comparing the two upper bounds specific to HFE: GJS, HFE bounds

to satisfy qD = n log2 q, that is, the degree of the internal HFE polynomial is
indexed on the block size. This choice lets schemes operating on the same block
size have comparable complexity of the secret operations (roughly (log2 q)3n5

using the algorithms suggested in [16]). One can note that the surface rendering
the GJS bound initially coincides with the MQ surface while our bound ensures
a much smaller degree of regularity. Figure 2 below renders (cf full version for
colorful figures) the improvement of the HFE bound over the GJS bound as q
grows. One can perceive the significance of this improvement from the curves
being massively pulled down. This is especially true for small blocksizes where
the GJS bound is lower bounded by q while the corresponding value of the HFE
bound is roughly independent of the value of q.

6 Application to the Security of HFE

The previous discussion has led to the ability to compute an upper bound on
the degree of regularity of HFE systems for any parameters. In this section, we
describe applications of this parameter to the security of HFE.
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6.1 Computing the Degree of Regularity in Practice

We consider a simple algorithm which given the n quadratic polynomials and a
prescribed degree d ≥ 2 computes a generator basis of combinations in degree d
of these polynomials (given by monomial multiples of each polynomial) and puts
them in row echelon form (any ordering of terms can be used). It is then trivial
to obtain the dimension spanned by these combinations. As a consequence, using
this algorithm with d incrementing from 2, one can compare the experimental
dimension of combinations with the one predicted until the degree of regularity is
found. As soon as these dimensions disagree, current d is the degree of regularity
of the system. Hence, this simple procedure allows to compute the degree of
regularity is practice. Denote by Mq(n, d) the number of monomials of degree
d in n variables with exponents modulo q. In degree d, the canonical generator
basis has size Mq(n, d − 2)n. Each such vector has at most n(n + 1)/2 non-
zero coefficients. Computing a row echelon form of these vectors therefore has
time complexity about Mq(n, d−2)2n4 and space complexity at most Sq(n, d) =
Mq(n, d − 2)2n2. When making d range from 2 to some prescribed dmax, the
complexity of the iteration is dominated by the complexity at d = dmax because
Mq(n, d−2) grows exponentially with d. In particular, for HFE(q, n,D) systems,
the complexity of computing the degree of regularity is upper bounded by the
latter complexity at d set to the HFE bound δ(q, n,D) computed previously.
Since the degree of regularity of random MQ systems is expected very closely
tied to the MQ bound (which is much higher for practical parameters), the
degree of regularity provides a way to algorithmically distinguish HFE systems
from random MQ instances. This distinguisher was already addressed in [4,9,15]
and we refer to it as the algebraic distinguisher. Our result makes it possible
to compute its complexity for any parameters. Comparing this complexity with
the complexity of the differential distinguisher presented in [8], it turns out the
latter is almost always far more efficient (cf full version of the paper).

6.2 Estimated Upper Bound for Solving HFE Systems

A more critical application uses the heuristic that the degree of regularity orig-
inates from the saturation of a subspace of combinations, yielding many degree
falls at once. These degree falls in turn contribute to further saturations and
further degree falls in smaller degree. When computing a Gröbner basis with
a graded ordering, this initiates a process of new head terms appearing with
decreasing degree and precipitates the end of the computation. Due to these
heuristics, it is commonly taken that the degree of regularity estimates the max-
imal degree needed in the computation of a Gröbner basis for a graded ordering.
In our case, this heuristic is supported by our upper bound on the degree of
regularity of HFE closely matching the experimental maximal degree given for
q = 2 in [12]. As to the complexity of the Gröbner basis computation, it is also
commonly estimated as the cost of row echelon form on the combinations ma-
trix at the maximal degree. Although, some algorithms offer improvements to
reduce the combinations matrix by removing trivial syzygies [11,13], we keep on
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the simple analysis of the precedent paragragh. When a more detailed analysis
is available for a particular algorithm our upper bound on the degree of regu-
larity can be readily plugged into it to obtain tighter complexity upper bounds.
Figure 3 below represents the obtained upper bound for many HFE parameters,
where the degree of the internal parameter is again indexed on the block size by
qD = n log2 q. Within the limits of the above heuristics, parameters that do not
emerge from the 80-bits security level should not be considered secure.
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Fig. 3. Estimated Upper Bounds on the Complexity of Algebraic Attacks on HFE

7 Conclusion

In this paper, we provide a rigourous analysis of the degree of regularity of
HFE systems. Under commonly used heuristics, this analysis allows to derive
estimates for the complexity of algebraic attacks on the public key. In particular,
using these estimates, hardly any HFE cryptosystem with block size 80 bits can
achieve 80 bits security. HFE over GF (2) with blocksize 128 does not achieve 80
bits security. On the other hand, our work can not be used to infer the security
of HFE parameters, because our estimates are only complexity upper bounds
and focus on a particular type of attack. Finally, we point out that the first
part of our work – shifting the analysis to the internal polynomial – can be used
for any cryptosystem following a similar construction to HFE. In particular, it
potentially offers a useful framework to the analysis of variations of HFE.
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Abstract. We consider the problem of encrypting structured data (e.g.,
a web graph or a social network) in such a way that it can be efficiently
and privately queried. For this purpose, we introduce the notion of struc-
tured encryption which generalizes previous work on symmetric search-
able encryption (SSE) to the setting of arbitrarily-structured data.

We present a model for structured encryption, a formal security defini-
tion and several efficient constructions. We present schemes for performing
queries on two simple types of structured data, specifically lookup queries
on matrix-structured data, and search queries on labeled data. We then
show how these can be used to construct efficient schemes for encrypting
graph data while allowing for efficient neighbor and adjacency queries.

Finally, we consider data that exhibits a more complex structure such
as labeled graph data (e.g., web graphs). We show how to encrypt this
type of data in order to perform focused subgraph queries, which are
used in several web search algorithms. Our construction is based on our
labeled data and basic graph encryption schemes and provides insight
into how several simpler algorithms can be combined to generate an
efficient scheme for more complex queries.

1 Introduction

The most common use of encryption is to provide confidentiality by hiding all
useful information about the plaintext. Encryption, however, often renders data
useless in the sense that one loses the ability to operate on it. In certain settings
this is undesirable and one would prefer encryption schemes that allow for some
form of computation over encrypted data.

One example is in the context of remote data storage, or so-called “cloud stor-
age”, where a data owner wishes to store structured data (e.g., a collection of web
pages) on an untrusted server and only retain a constant amount of information
locally. To guarantee confidentiality, the owner could encrypt the data before send-
ing it to the server but this approach is unsatisfactory because the data loses its
structure and, in turn, the owner loses the ability to query it efficiently.

To address this problem we introduce the notion of structured encryption. A
structured encryption scheme encrypts structured data in such a way that it can
be queried through the use of a query-specific token that can only be generated
with knowledge of the secret key. In addition, the query process reveals no useful

M. Abe (Ed.): ASIACRYPT 2010, LNCS 6477, pp. 577–594, 2010.
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information about either the query or the data. An important consideration in
this context is the efficiency of the query operation on the server side. In fact, in
the context of cloud storage, where one often works with massive datasets, even
linear time operations can be infeasible.

Roughly speaking, we view structured data as a combination of a data struc-
ture δ and a sequence of data items m = (m1, . . . ,mn) such that δ encodes
the data’s structure and m represents the actual data. For example, in the case
of graph-structured data such as a social network, δ is a graph with n nodes
and the ith element of m is the data associated with node i. To query the data
efficiently, one queries δ to recover a set of pointers I ⊆ [1, n] and then retrieves
the items in m indexed by I.

At a high level, a structured encryption scheme takes as input structured data
(δ,m) and outputs an encrypted data structure γ and a sequence of ciphertexts
c = (c1, . . . , cn). Using the private key, a token τ can be constructed for any
query such that pointers to the encryptions of (mi)i∈I can be recovered from γ
and τ . Furthermore, given the private key, one can decrypt any ciphertext ci.

A certain class of symmetric searchable encryption (SSE) schemes [18,11,15]
can be viewed as structured encryption schemes for the special purpose of private
keyword search over encrypted document collections. Of course, the functionality
provided by structured encryption can be achieved using general techniques like
oblivious RAMs [20], secure two-party computation [36] and fully-homomorphic
encryption (FHE) [17]. In our context, however, we are interested in solutions
that are non-interactive and, at worst, linear in the number of data items as
opposed to linear in the length of the data. All the schemes described in this
work are non-interactive and optimal in that the query time is linear in the
number of data items to be returned.

Informally, a basic notion of security for structured encryption guarantees
that (1) an encrypted data structure γ and a sequence of ciphertexts c reveal no
partial information about the data m; and that (2) given, in addition, a sequence
of tokens (τ1, . . . , τt) for queries q = (q1, . . . , qt) no information is leaked about
either m or q beyond what can be inferred from some limited leakage which is
a function of δ, m and q. A stronger notion, introduced in [15], guarantees that
(2) holds even when the queries are generated adaptively.

All known constructions that can be considered efficient structured encryp-
tion schemes (i.e., the index-based SSE schemes [18,11,15]) reveal some limited
information about the data items and queries. In particular, for any query they
reveal at least (1) the access pattern, which consists of the pointers I; and (2)
the query pattern, which reveals whether two tokens were for the same query1.

1.1 Applications of Structured Encryption

Private queries on encrypted data. The most immediate application of structured
encryption is for performing private queries on encrypted data. In this setting,

1 While the public-key encryption scheme with keyword search of [7] yields a SSE
scheme that hides the access and query patterns, it is interactive.
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a client encrypts its (structured) data (δ,m) resulting in an encrypted data
structure γ and a sequence of ciphertexts c. It then sends (γ, c) to the server.
Whenever the client wishes to query the data, it sends a token τ to the server
which the latter uses to recover pointers J to the appropriate ciphertexts. Using
a structured encryption scheme in this manner enables the client to store its data
remotely while simultaneously guaranteeing confidentiality against the server (in
the sense outlined above) and efficient querying and retrieval. While this problem
has received considerable attention for the special case of document collections
[33,18,5,35,11,1,15,3,31,7], as far as we know, it has never been considered for
other kinds of data.

Controlled disclosure for local algorithms. While the original motivation for
structured encryption was to perform private queries on encrypted data (or
more precisely, private searches on encrypted data), we introduce here a new
application which we refer to as controlled disclosure.

In this setting, the client not only wants to store its data remotely but expects
the server (or some third party) to perform some computation over the data.
In particular, while the client is willing to reveal the information necessary for
the server to perform its task, the client does not want to reveal anything else.
Consider, e.g., a client that stores a large-scale social network remotely and that,
at some point, needs the server to analyze a small subset of the network. If the
social network were encrypted using a classical encryption scheme the client
would have to reveal the entire network, leaking extra information to the server.
Ideally, what we want in this setting is a mechanism that allows the client to
encrypt the data and later disclose the “pieces” of it that are necessary for the
server to perform its task.

Another application of controlled disclosure is to the emerging area of (cloud-
based) data brokerage services, such as Microsoft’s Dallas [14] and Infochimps
[23]. Here, the cloud provider acts as a broker between a data provider that
wishes to sell access to a massive dataset and a data consumer that needs access
to the data. The data is stored “in the cloud” and the cloud operator manages
the consumer’s access to the provider’s data. Using controlled disclosure, the
provider could encrypt its data before storing it in the cloud and release tokens
to the consumer as appropriate. Such an approach would have several advantages
including (1) enabling the producer to get an accurate measure of the consumer’s
use of the data; and (2) ensuring the producer that the consumer can only access
the authorized segments of data, even if the consumer and the cloud operator
collude.

Clearly, if the algorithm executed by the server (or the data consumer) is
“global”, in the sense that it needs to read all the data, then controlled disclo-
sure provides no security. On the other hand, if the algorithm is “local”, in that it
only needs to read part of the data, then controlled disclosure preserves the con-
fidentiality of the remaining data. There are numerous algorithms that exhibit
this kind of local behavior and they are used extensively in practice to solve a
variety of problems. For example, many optimization problems like the traveling
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salesman problem or vertex cover are handled in practice using local search al-
gorithms (e.g., hill climbing, genetic algorithms or simulated annealing). Several
link-analysis algorithms for web search such as Kleinberg’s seminal HITS algo-
rithm [26] (and the related SALSA [27] algorithm) are local. Finally, the recent
work of Brautbar and Kearns on “jump and crawl” algorithms [10] motivates
and proposes several local algorithms for social network analysis, including for
finding vertices with high-degree and high clustering coefficient.

Controlled disclosure can be viewed as a compromise between full security on
the one hand and efficiency and functionality on the other. In settings where
computation needs to be performed on massive datasets and “fully secure” solu-
tions like multi-party computation [36,19,13] and fully-homomorphic encryption
[17] are prohibitively expensive, controlled disclosure provides a practical solu-
tion without completely compromising security.

1.2 Our Results

Performing private queries on encrypted data is an important goal that is well
motivated by the recent trend towards cloud storage. Giving clients the means
to encrypt their data without losing the ability to efficiently query and retrieve
it provides obvious benefits to the client but also frees the cloud provider from
many legal exposures (see [2,24,32] for discussion of these issues). It additionally
provides a mechanism by which clients from regulated industries can make use
of cloud storage (e.g., to store medical records or financial documents) while
remaining compliant.

While the recent work on searchable encryption constitutes an important step
towards this goal, we note that a noticeable fraction of the data generated to-
day is not text data. Indeed, many large-scale datasets (e.g., image collections,
social network data, maps or location information) exhibit a different and some-
times more complex structure that cannot be handled properly using searchable
encryption. To address this, we:

1. introduce the notion of structured encryption, which generalizes index-based
symmetric searchable encryption [18,11,15] to arbitrarily-structured data
and propose a novel application of structured encryption (and therefore of
SSE) to the problem of controlled disclosure.

2. extend the adaptive security definition of [15] to the setting of structured
encryption,

3. give constructions of adaptively-secure structured encryption schemes for a
variety of structures and queries including:
(a) (lookup queries on matrix-structured data) given a matrix and pair (i, j),

return the value stored at row i and column j. This captures, e.g., lookup
queries on digital images or retrieval of maps.

(b) (search queries on labeled data) given a set of labeled items and keyword
w, return the items labeled with w. This captures the familiar setting
of searchable encryption. We briefly note that our construction exhibits
a combination of useful properties that, as far as we know, no previous
scheme achieves.
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(c) (neighbor queries on graph-structured data) given a graph and a node i,
return all the nodes adjacent to i. This captures, e.g., retrieving a user’s
“friend list” in a social network.

(d) (adjacency queries on graph-structured data) given a graph and two
nodes i and j, return 1 if they are adjacent and return 0 otherwise.
This captures, e.g., testing whether two users are “friends” in a social
network.

While the previous constructions are useful in their own right, an important
goal with respect to structured encryption is to construct schemes that are able
to encrypt complex structures and to handle expressive queries that take full
advantage of the complexity of the data’s structure. As an example, consider
the case of web graphs (i.e., subgraphs of the Web) which are composed of pages
with both text and hyperlinks. Encrypting the pages of a web graph using a
searchable encryption scheme will only enable keyword search over the encrypted
pages. Web graphs, however, exhibit a much richer structure and we typically
want to perform more complex queries on them. Towards this goal, our final
contribution is to show how to encrypt web graphs and, more generally, what
we refer to as labeled graph data. In particular, we:

4. give a structured encryption scheme for labeled graphs that handles focused
subgraph queries. Roughly speaking, for a given search keywork, a focused
subgraph query on a web graph returns a subgraph that encodes enough
information about it to yield a good ranking of the pages for that search.
These queries are an essential part of Kleinberg’s seminal HITS algorithm
[26] (and its many successors).

Our construction uses as building blocks some of the schemes mentioned
above. We stress, however, that it is not sufficient to use the schemes “as-is”
and we show a novel way of combining structured encryption schemes for
simple structures in order to build schemes that handle more complex data
and more expressive queries. The approach is general and can be adapted to
other complex data types.

2 Related Work

We already mentioned work on oblivious RAMs, secure two-party computation
and FHE so we restrict the following discussion to searchable and functional
encryption.

Searchable encryption. As mentioned above, structured encryption is a gen-
eralization of the notion of a secure index first proposed by Goh [18] for the
purpose of building symmetric searchable encryption schemes [33]. In [18], Goh
gives a formal security definition for secure indexes and a construction based
on Bloom filters. This was followed by [11] and [15], the latter of which gave
stronger security definitions and more efficient constructions. Our security def-
initions for structured encryption in section 4 generalize the ones in [15] to
arbitrarily-structured data. Searchable encryption has also been considered in
the public-key setting [5,35,1,9,7,8].
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Functional encryption. Functional encryption [34] is a recent paradigm that
generalizes work on a variety of problems including identity-based encryption
[29,6], attribute-based encryption [28,22,4], and predicate encryption [25,30].

Roughly speaking, a structured encryption scheme can be viewed as a func-
tional encryption scheme for which a token can only be used on a single cipher-
text. We provide a more detailed comparison between the two approaches in the
full version [12].

3 Notation and Preliminaries

Notation. Given a sequence v of n elements, we refer to its ith element as vi. If
f is a function with domain U and S ⊆ U , then f [S] refers to the image of S
under f . The set of all λ1 × λ2 matrices over a set S is denoted Sλ1×λ2 . Gn and
Gn are the sets of all undirected and directed graphs of size n, respectively. An
undirected graph G = (V,E) consists of a set of vertices V and a set of edges
E = {(i, j)} where i, j ∈ V . We denote by deg(i) the degree of node i. If G is
directed, then the pairs (i, j) are ordered and we refer to i as the tail and to j as
the head of the edge. In addition, we denote i’s in and out degrees by deg−(i)
and deg+(i), respectively.

Data types. An abstract data type is a collection of objects together with a set of
operations defined on those objects. For simplicity and visual clarity we define
data types as having a single operation but this can be extended to model data
types with multiple operations in the natural way. Formally, a data type T is
defined by a universe U = {Uk}k∈N and an operation Query : U × Q → R,
where Q = {Qk}k∈N is the operation’s query space and R = {Rk}k∈N is its
response space. The universe, query and response spaces are ensembles of finite
sets indexed by the security parameter k. In this work, we assume the universe
is a totally ordered set, and that the response space includes a special element
⊥ denoting failure.

4 Definitions

In this section we formalize structured encryption schemes and present our main
security definition. Before doing so, however, we make explicit two properties of
structured encryption which we will make use of throughout this work.

Induced permutation. Unlike previous work on searchable encryption we choose
to include the data items (i.e., the documents in the case of searchable encryp-
tion) and their encryptions in our definitions. We prefer this approach because
explicitly capturing each component of the system can bring to light subtle in-
teractions between them. As an example, consider the correlation between the
location of the data items in the sequence m and the locations of their corre-
sponding ciphertexts in c. More precisely, let π be the permutation over [n] such
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that for all i ∈ [n], mi := DecK(cπ(i)). We refer to π as the permutation induced
by m and c.

The reason most SSE constructions (with the exception of oblvious RAMs)
leak the access pattern is because π is the identity function. This means that in
order to (efficiently) retrieve items {mi : i ∈ I} the server must know I. Our
constructions hide part of the access pattern essentially because they break this
correlation by inducing a (pseudo-)random permutation between m and c.

Associativity. We also make explicit a property possessed by some constructions
(e.g., the non-adaptively secure SSE construction of [15]) that we refer to as
associativity. Intuitively, a scheme is associative if one can associate an item vi

with data item mi in such a way that a query operation returns, in addition to
the pointers J , the strings (vi)i∈I . We capture this by re-defining the message
space of our encryption algorithms to take, in addition to a data structure δ,
a sequence M = ((m1, v1), . . . , (mn, vn)) of pairs that consist of a private data
item mi and a semi-private2 item vi . We sometimes refer to the sequences
(m1, . . . ,mn) and (v1, . . . , vn) as m and v, respectively.

Associativity is useful for several reasons. The most direct application is to
provide the client the ability to associate some meta-data with the ciphertexts
that may be useful to the server (e.g., file name or size). In situations where the
client wishes to grant the server access to the data, the semi-private items could
even be decryption keys for the associated ciphertexts. As we will see in Section 6,
however, associativity can also be used to “chain” structured encryption schemes
together in order to construct complex schemes from for simpler ones.

Definition 1 (Private-key structured encryption). Let T be an abstract
data type supporting operation Query : U × Q → R where R = [n] for n ∈ N.
An associative private-key structured encryption scheme for T is a tuple of five
polynomial-time algorithms Π = (Gen,Enc,Token,Querye,Dec) such that:

K ← Gen(1k): is a probabilistic algorithm that takes as input a security
parameter k and outputs a private key K.
(γ, c)← Enc(K, δ,M): is a probabilistic algorithm that takes as input a pri-
vate key K, a data structure δ of type T , and a sequences of private and
semi-private data M. It outputs an encrypted data structure γ and a sequence
of ciphertexts c. We sometimes write this as (γ, c)← EncK(δ,M).
τ ← Token(K, q): is a (possibly probabilistic) algorithm that takes as input
a private key K and a query q ∈ Q and outputs a token τ . We sometimes
write this as τ ← TokenK(q).
(J,vI) := Querye(γ, τ): is a deterministic algorithm that takes as input an
encrypted data structure γ and a token τ . It outputs a set of pointers J ⊆ [n]
and a sequence of semi-private data vI = (vi)i∈I , where I = π−1[J ].
mj := Dec(K, cj): is a deterministic algorithm that takes as input a secret
key K and a ciphertext cj and outputs a message mj.

2 We refer to the items (v1, . . . , vn) as semi-private since, unlike (m1, . . . ,mn), they
can be recovered given an appropriate token.
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We say that Π is correct if for all k ∈ N, for all K output by Gen(1k), for all
δ ∈ Uk, for all M, for all (γ, c) output by Enc(K, δ,M), for all q ∈ Qk, for all τ
output by Token(K, q), for (J,vI) output by Querye(γ, τ),

J = π [Query(δ, q)]
∧

DecK(cj) = mj for all j ∈ [n],

where π is the permutation induced by m and c.

The intuitive security guarantee we seek is that (1) given an encrypted data
structure γ and a sequence of ciphertexts c, no adversary can learn any partial
information about m; and that (2) given, in addition, a sequence of tokens
τ = (τ1, . . . , τt) for an adaptively generated sequence of queries q = (q1, . . . , qt),
no adversary can learn any partial information about either m or q beyond what
is revealed by the semi-private data (vI1 , . . . ,vIt).

This exact intuition can be difficult to achieve and in some settings is un-
necessarily strong. Consider, e.g., the fact that the number of data items n is
immediately revealed to the adversary since it receives the ciphertexts c. Another
example is in the setting of SSE where, as discussed earlier, all known efficient
and non-interactive schemes [18,11,15] reveal the access and query patterns. We
would therefore like to weaken the definition appropriately by allowing some lim-
ited information about the messages and the queries to be revealed. On the other
hand, it is not clear that such leakage is always necessary in order to achieve
efficiency (e.g., the number of data items can be easily hidden by padding) so
we prefer not to “hardcode” this leakage in our definition. To formalize this we
parameterize the definition with two leakage functions L1 and L2 that capture
precisely what is being leaked by the ciphertext and the tokens.

We now present our security definition for adaptive adversaries which is a
generalization of the definition of [16]. Intuitively, we require that the view of an
adversary (i.e., the encrypted data structure, the sequence of ciphertexts, and the
sequence of tokens) generated from any adaptive query strategy be simulatable
given the leakage information and the semi-private data.

Definition 2 (CQA2-security). Let Σ = (Gen,Enc,Token,Querye,Dec) be an
associative private-key structured encryption scheme for data of type T support-
ing operation Query : U × Q → [n], for some n ∈ N, and consider the following
probabilistic experiments where A is an adversary, S is a simulator and L1 and
L2 are (stateful) leakage algorithms:

RealΣ,A(k): the challenger begins by running Gen(1k) to generate a key K. A
outputs a pair (δ,M) and receives (γ, c)← EncK(δ,M) from the challenger.
The adversary makes a polynomial number of adaptive queries and, for each
query q, receives a token τ ← TokenK(q) from the challenger. Finally, A
returns a bit b that is output by the experiment.

IdealΣ,A,S(k): A outputs a tuple (δ,M). Given L1(δ,M), S generates and
sends a pair (γ, c) to A. The adversary makes a polynomial number of adap-
tive queries and for each query q the simulator is given (L2(δ, q),vI), where
I := Query(δ, q). The simulator returns a token τ . Finally, A returns a bit b
that is output by the experiment.
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We say that Σ is (L1,L2)-secure against adaptive chosen-query attacks if for all
ppt adversaries A, there exists a ppt simulator S such that

|Pr [RealΣ,A(k) = 1 ]− Pr [ IdealΣ,A,S(k) = 1 ]| ≤ negl(k).

As previously discussed, the L2 leakage of our constructions mainly consists of
the query and intersection patterns. Intuitively, the query pattern reveals when
a query is repeated while the intersection pattern reveals when the same items are
accessed. The intersection pattern reveals when the same items are accessed but
not which items are accessed (i.e., their locations in m). The latter is hidden in our
definition below by applying a random permutation to the item’s locations in m.

Definition 3 (Query and intersection patterns). Let q be a non-empty
sequence of queries. For any qt ∈ q, the query pattern qp(qt) is a binary vector
of length t with a 1 at location i if qt = qi and a 0 otherwise. The intersection
pattern ip(qt) is a sequence of length t with f [I] at location t, where f is a fixed
random permutation over [n] and I := Query(δ, qt).

5 Structured Encryption for Basic Structures

In this Section we present constructions of structured encryption schemes for
data with simple structures. In Section 6 we will use some of these as building
blocks to design schemes for data that exhibits a more complex structure. We
stress, however, that the constructions presented here are of independent interest.

5.1 Lookup Queries on Matrices

We describe a structured encryption scheme for matrix-structured data which
consists of an λ1 × λ2 matrix M of pointers into a sequence of n data items
m. Here, the matrix type has universe U = [n]λ1×λ2 and supports the lookup
operation Lkp : [n]λ1×λ2 × [λ1]× [λ2]→ [n] that takes as input a matrix M and
a pair (α, β) and returns M [α, β].

Matrix-structured data is ubiquitous and includes any kind of two-dimensional
data. Consider, e.g., the case of digital images which can be viewed as a pair
(M,m), where M is a matrix such that the cell at location (α, β) points to some
mi that encodes the color of the pixel at location (α, β) in the image.

Our construction, described in Figure 1 below, is associative. At a high level,
encryption is done by (1) padding the data items to be of the same length; (2)
randomly permuting the location of the data items, (3) randomly permuting the lo-
cation of the matrix cells using a PRP; and (4) encrypting the contents of
the cells (and the semi-private data) using the output of a PRF. The purpose of
the last two steps are immediate. Steps (1) and (2) are what allow us hide part
of the access pattern by inducing a pseudo-random permutation between m and c.

Lookup queries are handled by sending the permuted location of a cell (which
can be recovered by the client since it stores the key to the PRP) and the output
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Let F : {0, 1}k × {0, 1}∗ → {0, 1}∗ be a pseudo-random function, P :
{0, 1}k × [λ1]× [λ2]→ [λ1]× [λ2] be pseudo-random permutation and Π =
(Gen,Enc,Dec) be a private-key encryption scheme. Our encryption scheme
Matrix = (Gen,Enc,Token, Lkpe,Dec) is defined as follows:

– Gen(1k): generate two random k-bit strings K1, K2 and a key K3 ←
Π.Gen(1k). Set K := (K1,K2, K3).

– Enc(K,M,M): construct a λ1 × λ2 matrix C as follows:
1. parse M as m and v
2. choose a pseudo-random permutation G : {0, 1}k × [n]→ [n]
3. sample a k-bit string K4 uniformly at random
4. for all (α, β) ∈ [λ1]× [λ2],

store 〈GK4(i), vi〉 ⊕ FK1(α, β) where i := M [α, β], at location
(α′, β′) := PK2(α, β) in C.

If M [α, β] = ⊥, then 〈GK4(i), vi〉 above is replaced with a random
string of appropriate length.

Let m∗ be the sequence that results from padding the elements of m
so that they are of the same length and permuting them according to
GK4 . For 1 ≤ j ≤ n, let cj ← Π.EncK3(m∗

j ). Output γ := C and
c = (c1, . . . , cn).

– Token(K,α, β): output τ := (s, α′, β′), where s := FK1(α, β) and
(α′, β′) := PK2(α, β).

– Lkpe(γ, t): parse τ as (s, α′, β′); compute and output (j, v) := s ⊕
C[α′, β′].

– Dec(K, cj): return mj := Π.DecK3(cj).

Fig. 1. An associative structured encryption scheme for matrices

of the PRF used to encrypt the contents (which can also be recovered since the
client stores the key to the PRF).

In Theorem 1 below we show that the construction above is secure against
adaptive chosen-query attacks.

Theorem 1. If F , P and G are pseudo-random and if Π is CPA-secure then
Matrix is (L1,L2)-secure against adaptive chosen-query attacks, where L1(M,M)
= (λ1, λ2, n, �) and L2(M,α, β) = (qp(α, β), ip(α, β)).

The proof is omitted due to lack of space but appears in [12].

5.2 Search Queries on Labeled Data

We now present a structured encryption scheme for labeled data which consists
of a “labeling” L and a sequence of data items m. Informally, a labeling just
associates a set of keywords to each data item. More formally, the labeling data
type has as universe U the set of all binary relations between [n] andW , whereW
is a set of keywords. In addition, it supports the operation Search : U×W → 2[n]

that takes as input a labeling and a keyword w and returns the set L(w) = {i ∈
[n] : (i, w) ∈ L}.
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Let F : {0, 1}k × W → {0, 1}∗ and P : {0, 1}k × W → {0, 1}k be pseudo-
random functions and Π = (Gen,Enc,Dec) be a private-key encryption
scheme. Our scheme Label = (Gen,Enc,Token, Searche,Dec) is defined as
follows:

– Gen(1k): sample two random k-bit keys K1,K2, and generate a key
K3 ← Π.Gen(1k). Set K := (K1,K2,K3).

– Enc(K,L,M): construct a dictionary T as follows:
1. parse M as m and v.
2. choose a pseudo-random permutation G : {0, 1}k × [n] → [n]
3. sample a k-bit string K4 uniformly at random
4. for each w ∈ W such that L(w) �= ∅, let κw := PK2(w) and

store 〈(GK4(i), vi)i∈L(w)〉 ⊕ FK1(w) in T with search key κw.
Use padding to ensure that the strings 〈(GK4(i), vi)i∈L(w)〉 are all
of the same length.

Let m∗ be the sequence that results from padding the elements of m
so that they are of the same length and permuting them according to
GK4 . For 1 ≤ j ≤ n, let cj ← Π.EncK3(m

∗
j ). Output γ := T and

c = (c1, . . . , cn).
– Token(K,w): output τ := (FK1(w), PK2(w)).
– Searche(γ, τ): parse τ as (α, β) and compute s := T (β)⊕α, where T (β)

refers to the value stored in T with search key β. If β is not in T then
output J = ∅ and vI = ⊥. Otherwise parse s as 〈(j1, vi1), . . . , (jt, vit)〉
and output J = (j1, . . . , jt) and vI = (vi1 , . . . , vit).

– Dec(K, cj): output mj := Π.DecK3(cj).

Fig. 2. An associative structured encryption scheme for labeled data

Our construction, described in Figure 2, is efficient, associative and adaptively
secure and, as far as we know, is the first scheme to achieve all three properties.
It is based on the first scheme of [15] (SSE-1) which is efficient and associative
but not adaptively secure3. The second scheme of [15], on the other hand, is
adaptively secure but is inefficient and not associative.

Our construction makes use of a dictionary which is a data structure that
stores pairs (a, b) such that given a, the corresponding value b can be recovered
efficiently. We refer to a as the “search key” and to b as the value. Dictionaries can
be implemented in a variety of ways, including using search trees or hash tables.
Intuitively, encryption proceeds as follows in our scheme. As in our previous
construction, we pad and permute the data items with a PRP G. For each
keyword w an array is constructed where each cell stores (1) a pointer j from
the set L∗(w) = GK [L(w)] and (2) the corresponding semi-private item vi. The
array is then padded up to a standard length, and encrypted using the output
of a PRF and is stored in a dictionary using as search key the output of another
PRF on the keyword. Search queries are handled by sending the search key

3 While our scheme achieves the same efficiency as SSE-1 with respect to search time,
SSE-1 is more efficient with respect to storage.
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(which can be recovered by the client using the key to the second PRF) and the
output of the PRF used to encrypt the array (which can be recovered using the
key to the first PRF). The efficiency of our search operation depends on how
the underlying dictionary is implemented but in this context any solution based
on hash tables is appropriate and will give search time that is O(|I|), which is
optimal.

Theorem 2. If F , P and G are pseudo-random and if Π is CPA-secure then
Label is (L1,L2)-secure against adaptive chosen-query attacks, where L1(L,M)
= (|W |, n, �) and L2(L,w) = (|I|,qp(w), ip(w)).

The proof is omitted due to lack of space but appears in [12].

5.3 Neighbor Queries on Graphs

We now consider encryption of graph-structured data and, in particular, of
graphs that support neighbor queries. Formally, the graph type we consider
has universe U = Gn and supports the neighbor operation Neigh : Gn× [n]→ 2[n]

that takes as input an undirected graph G with n nodes and a node i and returns
the nodes adjacent to i.

Our approach here is to encode the graph as a labeling and to apply a struc-
tured encryption scheme for labeled data (such as the one described in the pre-
vious Section). Given some graph-structured data (G,m), where G = (V,E), we
construct the labeled data (L,m) such that L assigns to each data item mi a
label set corresponding to the set of nodes adjacent to the ith node. Neighbor
queries are handled by sending a token for “keyword” i ∈ V which allows the
server to recover pointers to all the data items associated with i by the labeling.
Our construction is described in detail in Figure 3 below.

Let Label = (Gen,Enc,Token, Searche,Dec) be an associative struc-
tured encryption scheme for labeled data. Our scheme Graph =
(Gen,Enc,Token,Neighe,Dec) is defined as follows:

– Gen(1k): generate and output K ← Label.Gen(1k).
– Enc(K,G,M): parse M as m and v and construct a labeling L that

associates to each mi the set {j ∈ [n] : (i, j) ∈ E}, where E is the set
of edges in G. Output (γ, c) ← Label.EncK(L,M).

– Token(K, i): compute and output τ ← Label.TokenK(i).
– Neighe(γ, τ): output J := Label.Search(γ, τ).
– Dec(K, cj): output mj := Label.DecK(cj).

Fig. 3. A structured encryption scheme for graphs supporting neighbor queries

Theorem 3. If Label is (L1,L2)-secure against adaptive chosen-query attacks,
then Graph is (L1,L2)-secure against adaptive chosen-query attacks as well.
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The theorem follows by construction. Note that if Label is instantiated with the
scheme from Section 5.2, then L1 leaks the size of the graph, the number of data
items and the length of the largest data item while L2 leaks the degree of the
node and the query and intersection patterns.

We now discuss a slight variation of this construction to handle incoming and
outgoing neighbor queries on directed graphs. This will be useful as a building
block for the construction we describe in Section 6. An incoming neighbor query
is: given a node i return all the nodes that point to it; and an outgoing neighbor
query is: given a node i return all the nodes that it points to. We stress that the
changes we describe do not affect security in any way.

Consider the scheme Graph+ = (Gen,Enc,Token,Neighe,Dec) defined exactly
as Graph except that the Enc algorithm constructs the labeling in the following
manner: instead of associating a data item mi to the set of nodes adjacent to
node i, associate mi to the nodes that are pointed to by node i. Similarly, a
scheme Graph− can be constructed by associating to data item mi the set of
nodes that point to node i.

5.4 Adjacency Queries on Graphs

In this Section we give a simple scheme to encrypt graphs supporting adjacency
queries based on any matrix encryption scheme. The approach is straightforward
and, at a high level, consists of encrypting the graph’s adjacency matrix. Given
data (G,m), whereG = (V,E) is a directed graph of size n and each data itemmi

is assigned to some edge in E, encryption proceeds as follows. We create a matrix
M that holds at location (α, β) a pointer to the data item associated with edge
(α, β) ∈ V (or ⊥ when there is no such edge). We then use the matrix encryption
scheme on (M,m). Our construction is described in detail in Figure 4.

Let Matrix = (Gen,Enc,Token, Lkpe,Dec) be an associative en-
cryption scheme for matrix-structured data. Our scheme Graph =
(Gen,Enc,Token,Adje,Dec) is defined as follows:

– Gen(1k): generate and output K ← Matrix.Gen(1k).
– Enc(K,G,M): construct a matrix M as follows: if (α, β) ∈ V , then

M [α, β] stores a pointer to the item assigned to edge (α, β); if (α, β) �∈ V
then M [α, β] = ⊥ . Output (γ, c) ← Matrix.EncK(M,M).

– Token(K, i, j): compute and output τ ← Matrix.TokenK(i, j).
– Adje(γ, τ): output J := Matrix.Lkpe(γ, τ).
– Dec(K, cj): output mj := Matrix.DecK(cj).

Fig. 4. A structured encryption scheme for graphs supporting adjacency queries

Theorem 4. If Matrix is (L1,L2)-secure against adaptive chosen-query attacks,
then so is Graph.
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Again, the theorem follows by construction. If Matrix is instantiated with the
construction from Section 5.1, then L1 leaks the size of the graph, the number
of edges4 the number of data items and the length of the largest data item. L2

leaks the query and intersection patterns.

6 Structured Encryption for Labeled Graphs

In this Section we describe an adaptively secure structured encryption scheme for
data that is both labeled and associated with a graph-structure. As an example,
consider a web graph where each page is labeled with a set of keywords (which
could be the set of all the words in the page) and points to a set of other pages.
Another example is social network data which consists of user profiles (with
some associated meta-data) that link to other users.

While the constructions from the previous Section can be used to encrypt
this type of data, the queries they support (i.e., keyword search, adjacency, and
neighbor queries) are limited in this setting since they are only relevant to part of
the data’s structure. Indeed, if we were to encrypt a web graph using a scheme
for labeled data, then we could only perform keyword search. Similarly, if we
were to use a graph encryption scheme that supports only neighbor queries then
we could only retrieve pages that are linked from a particular page. But web
graphs, and labeled graph data in general, exhibit a much richer structure and
ideally we would like to design schemes that support more complex queries that
take advantage of this structure.

Focused subgraph queries. One example of complex queries on web graphs are
focused subgraph queries. These queries are an essential part of a certain class
of search engine algorithms which includes Kleinberg’s seminal HITS algorithm
[26] and the SALSA algorithm [27]. At a high level, they work as follows. Given
a keyword w a keyword search is performed over the web pages. This results in
a subset of pages called the root graph. A focused subgraph is then constructed
by adding all the pages that either link to pages in the root graph or are linked
from pages in the root graph. An iterative algorithm is then applied to the fo-
cused subgraph which returns, for each page, a score that quantifies its relevance
with respect to keyword w. The key property of these “link-analysis” algorithms
(and the reason for their success) is that they take advantage not only of the
information provided by the keywords associated with the pages, but also of the
implicit information embedded in the graph structure (i.e., the links) of the web
graph.

Our approach. At a high level, our approach is to decompose the complex struc-
ture into simpler structures (e.g., in the case of a web graph into its graph and
its labeling) and then use different structured encryption schemes to handle each
“sub-structure”. We note, however, that the sub-structures cannot be handled
4 The number of edges can be hidden by padding m with n2 − |E| random strings

whose lengths are distributed similarly to real data items.
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in isolation. In particular, for this approach to work the individual schemes have
to be combined in a particular way. This is where we make essential use of asso-
ciativity, which will allow us to “chain” the schemes together in order to obtain
the functionality we want (this technique will be illustrated in our discussion
below).

Our construction. We now illustrate our second approach for the case of web
graphs but note that our construction applies to any labeled graph data. A
detailed description of our construction is given in Figure 5. We note that it is
not associative. A web graph will be viewed as a tuple (G,L,m), which consists
of a directed graph G ∈ Gn of size n, a labeling L over a keyword space W , and
text pages m. The graph G encodes the link structure of the web graph and
the labeling assigns keywords to each page5. The focused subgraph operation
Subgraph : Gn ×W → G≤n takes as input a directed graph G of size n and a
keyword w and returns the subgraph G(w) that consists of (1) the nodes i in
L(w); (2) any node that links to the nodes in L(w); and (3) any node that is
linked from the nodes in L(w).

Our construction makes use of three structured encryption schemes: Label
that supports search over labeled data, Graph− that supports incoming neighbor
queries over graph-structured data, and Graph+ that supports outgoing neighbor
queries over graph-structured data. We stress that Label must be associative.
Given a web graph (G,L,m) we encrypt (G,m) using both Graph+ and Graph−,
resulting in ciphertexts c+ and c−. Now, for each node i in G, we generate a pair
of tokens (τ+

i , τ
−
i ). We then use Label to encrypt (L,m) using the token pairs

(τ+
i , τ

−
i ) as semi-private data (recall that Label is associative). We then output

the encryption cl of (L,m).
A focused subgraph query on keyword w is handled as follows. A token τ l ←

Label.TokenK(w) is generated and sent to the server. When used with the cipher-
text cl, this token will reveal to the server (1) pointers to all the (encrypted) web
pages labeled with keyword w; and (2) for each of these encrypted pages cj , the
semi-private information which consists of tokens (τ+

j , τ
−
j ). For each encrypted

page, the server can then use the token pairs with ciphertexts c+
j and c−j to re-

cover pointers to any incoming and outgoing neighbors of page cj .

Theorem 5. If Label, Graph+ and Graph− are respectively (stateless) (Ll
1,Ll

2)-
secure, (L+

1 ,L+
2 )-secure and (L−1 ,L−2 )-secure against adaptive chosen query

attacks, then the scheme described above is (L1,L2)-secure against adaptive
chosen-query attacks, where

L1(G,L,m) = (Ll
1(L,m),L+

1 (G,m),L−2 (G,m))
and

L2(G,L,w) =
(
Ll

2(L,w),
(L+

2 (G, i)
)
i∈|R(w)| ,

(L−2 (G, i)
)
i∈|R(w)|

)
.

The proof is omitted due to lack of space but appears in [12].
5 If we wish to perform full-text search then the labeling can simply assign a page to

all of its words.
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Let Label = (Gen,Enc,Token,Searche,Dec) be an encryption scheme for
labeled data, Graph+ = (Gen,Enc,Token,Neighe,Dec) and Graph− =
(Gen,Enc,Token,Neighe,Dec) be graph encryption schemes that support
neighbor queries. Our scheme LabGraph = (Gen,Enc,Token,Subgraphe,Dec)
is defined as follows:

– Gen(1k): generate three keys K1 ← Graph+.Gen(1k), K2 ←
Graph−.Gen(1k) and K3 ← Label.Gen(1k). Let K = (K1,K2,K3).

– Enc(K,G,m):
1. compute (γ+, c+)← Graph+.EncK1(G,m),
2. compute (γ−, c−)← Graph−.EncK2(G,m),
3. for 1 ≤ i ≤ n,

(a) compute τ+
i ← Graph+.TokenK1(i),

(b) compute τ−i ← Graph−.TokenK2(i),
4. let L be the labeling generated from all the words in m (i.e., each

mi is labeled with the words it contains) and let v = {(t+i , t−i )i},
5. compute (γ l, cl)← Label.EncK3(L,M), where M is composed of m

and v,
6. output γ = (γ+, γ−, γ l) and c = (c+, c−, cl).

– Token(K,w): output τ ← Label.TokenK3(w).
– Subgraphe(γ, τ ):

1. compute (J l,vI) := Label.Search(γ l, τ )
2. for all j ∈ J l,

(a) compute J+
j := Graph+.Neigh(γ+, τ+

j ),

(b) compute J−
j := Graph−.Neigh(γ−, τ−j ),

3. output J =
(
J l,

(
J+

j , J
−
j

)
j∈J l

)
.

– Dec(K, cj): return mj := Π.DecK3(cj).

Fig. 5. A structured encryption scheme for web graphs supporting focused subgraph
queries

7 Conclusions and Future Directions

Several interesting future directions are suggested by this work. The most im-
mediate is whether efficient and non-interactive structured encryption can be
achieved while leaking less than the query and intersection pattern. The con-
struction of efficient dynamic structured encryption schemes (i.e., that allow
for updates to the encrypted data) is another direction left open by this work.
Of course, the construction of schemes that handle other types of structured
data and more complex queries on the data types considered here would also be
interesting.
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Abstract. Blinding is a popular and well-known countermeasure to
protect public-key cryptosystems against side-channel attacks. The high
level idea is to randomize an exponentiation in order to prevent multiple
measurements of the same operation on different data, as such measure-
ments might allow the adversary to learn the secret exponent. Several
variants of blinding have been proposed in the literature, using additive
or multiplicative secret-sharing to blind either the base or the exponent.
These countermeasures usually aim at preventing particular side-channel
attacks (mostly power analysis) and come without any formal security
guarantee.

In this work we investigate to which extend blinding can provide prov-
able security against a general class of side-channel attacks. Surprisingly,
it turns out that in the context of public-key encryption some blinding
techniques are more suited than others. In particular, we consider a mul-
tiplicatively blinded version of ElGamal public-key encryption where

– we prove that the scheme, instantiated over bilinear groups of prime
order p (where p−1 is not smooth) is leakage resilient in the generic-
group model. Here we consider the model of chosen-ciphertext secu-
rity in the presence of continuous leakage, i.e., the scheme remains
chosen-ciphertext secure even if with every decryption query the
adversary can learn a bounded amount (roughly log(p)/2 bits) of
arbitrary, adversarially chosen information about the computation.

– we conjecture that the scheme, instantiated over arbitrary groups of
prime order p (where p− 1 is not smooth) is leakage resilient.

Previous to this work no encryption scheme secure against continuous
leakage was known. Constructing a scheme that can be proven secure in
the standard model remains an interesting open problem.

1 Introduction

Side-channel attacks are cryptanalytic attacks against physical implementations
of cryptosystems that exploit some kind of information leakage from the cryptode-
vice during execution. Traditional security notions (such as chosen-ciphertext se-
curity for encryption schemes) do not provide any security guarantee against such
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attacks, and many implementations of provably secure cryptosystems were broken
by side-channel attacks exploiting side-channels such as running-time [36], elec-
tromagnetic radiation [45,26], power consumption [38], fault detection [8,6] and
many more (see, e.g., [46,43]).

Countermeasures against side channel attacks can either be algorithmic, or
on the hardware level. In the latter case, one generally tries to build hardware
that leaks as few information as possible (e.g., by shielding electromagnetic ra-
diation.) Algorithmic countermeasures means that one designs algorithms, such
that their mere description already provides security against side channel at-
tacks. (E.g., one can protect against timing attacks by making sure that the
running time of the algorithm is independent of the secret.) Traditionally, such
algorithmic countermeasures (such as masking or blinding, cf. [43] for a list of
relevant papers) are mostly ad-hoc in the sense that they defend against some
specific and known attacks.

Leakage Resilient Cryptography. Recently, formal models were proposed
where one does not assume any particular side-channel against which to pro-
tect, but only requires that potential side-channels are in some sense ”resource
bounded.” In the model of leakage resilience [23], one considers adversaries
which, on each invocation of the cryptographic primitive, can learn a bounded
amount of arbitrary information about the secret internal state that was accessed
during invocation. Since the overall amount of leaked information is unbounded
(and may be much larger than the size of the secret state), this model is also of-
ten referred to as continuous leakage (e.g., [15,9]). As we will discuss below, this
is in sharp contrast to the model of “memory leakage” (e.g., [2,41,4,3,16]) which
has the inherent limitation that the amount of leaked information is a-priory
bounded and therefore cannot exceed the size of the secret state.)

An implementation of a leakage resilient primitive will then be secure against
every side-channel attack that fits our general model, i.e., as long as the amount
of information that is leaked on each invocation is sufficiently bounded, and
moreover the device adheres the “only computation leaks information” axiom
from [40], which states that memory content that is not accessed during an invo-
cation, does not leak. Security in this bounded leakage model hence means that
the hardware implementation of the cryptosystem only has to be protected to fit
the above model; once that is done, the proof provides security of the scheme. Us-
ing bounded leakage is inspired by the bounded retrieval model [13,20,19,10,22,4]
which in turn was inspired by the bounded-storage model [39,21,53,30].

So far most theoretical research has focused on preventing memory leakage
[13,20,19,10,22,4] and the only known leakage resilient primitives (in our sense of
security against continuous leakage) are stream-ciphers [23,44], digital signatures
[25] and — in a weaker “non-adaptive” model — pseudorandom functions and
permutations [18]. Recently, general compilers have been proposed which turn
any circuit into a leakage-resilient one [28,33]. Currently, these general compilers
are just a proof of concept and too inefficient to be used in practice, relying on
fully homomorphic encryption [33] or requiring one full encryption per gate [28].
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In this paper, we address the problem of leakage resilient public-key encryption
(PKE). The standard security notion for PKE is indistinguishability under a
chosen plaintext attack (IND-CPA) or the stronger notion of indistinguishability
under a chosen ciphertext attack (IND-CCA).1

Modelling Leakage Resilience. Consider some cryptosystem CS, let S0

denote its initial internal state and Si its state after the ith invocation. On the
ith invocation of CS, the adversary chooses some input Xi and gets Yi where
(Si+1, Yi)← CS(Si, Xi).

In the original definition of leakage resilience [23], the adversary gets the
additional power to choose, besides the regular input Xi, some leakage function
fi whose range is bounded to some fixed λ ∈ N bits with every query. After
the ith invocation she not only gets the regular output Yi, but additionally
the leakage Λi ← fi(S+

i , R) where R is the randomness that CS used during
its computation, and S+

i is the subset of the state Si that was accessed (i.e.,
read and/or written) during computation. Note that to be leakage resilient, a
primitive must be stateful (i.e. Si �= Si−1), as otherwise one can just leak the
state λ bits at a time.

In this paper we will use a more fine-grained notion of leakage resilience, where
an invocation of CS (which will be a decryption query) is split in two phases,
and those two phases leak individually. More precisely, the computation of a
decryption can syntactically be split into two phases Dec1∗ and Dec2∗, which
are executed in a sequential order to decrypt the message. As in a CCA attack,
the adversary can make decryption queries with respect to a ciphertext C, and
can furthermore specify two (efficiently computable) leakage functions, f and g,
whose range is bounded by λ bits. (λ is the leakage parameter.) In addition to
the decryption of C the adversary also obtains the output of f and g applied to
all the inputs of Dec1∗ and Dec2∗, respectively, including the algorithm’s internal
random coin tosses.

On Bounded Range and Domain. Summing up, leakage resilience considers
attackers who, with every invocation, can adaptively choose a leakage function
f and then get the output of f applied to the internal secret state (if the system
is probabilistic also all internal coin tosses) of the cryptosystem. The function f
can be arbitrary, but is restricted in its input domain and range:

Bounded range: The range of f is {0, 1}λ for some parameter λ ∈ N.
Bounded domain: f gets as input only the secret state that is actually ac-

cessed during this invocation.

A mathematical model of side-channel leakage is only useful if it captures (and
thus implies security against) leakage that occurs in practice. As f gets the

1 In a CPA the adversary only gets the public-key and then has to distinguish the
encryptions of two different messages. In a CCA [47] the adversary can also ask
for decryptions of ciphertexts of her choice. We distinguish between CCA1 and the
stronger CCA2 security, in the latter the adversary can make decryption queries also
after she got the challenge ciphertext.
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same input as the cryptosystem CS, it can simulate the computation of CS on
any conceivable hardware (e.g., all the values carried by wires on a computing
circuit), and thus also compute any kind of leakage that might occur. Though,
the restriction on bounded range might not allow f to actually output the en-
tire leakage, and the restriction on bounded domain might make it impossible
to simulate leakage that depends on earlier invocations, we discuss this points
below.

Bounded range. In practice, it seems hard to quantify how much informa-
tion actual hardware (like a smart-card) actually leaks. In most side-channel
attacks the adversary measures large amounts of data, e.g., an entire power-
consumption curve. So at a glance this assumption might seem unreasonable,
but this is a bit overly pessimistic.
Even though side-channel leakage may contain lots of data, only a small
fraction can actually be exploited in each measurement. The model of leakage
resilience allows only for the leakage of a small number λ of bits, but this
leakage is “worst case” in the sense that the adversary may choose the leakage
function which outputs the most useful information. Below we outline two
ways in which this observation can be made precise. The first shows that
side-channel attacks used in practice are captured by leakage resilience as
they only exploit few bits of information from each actual measurement. The
second is a relaxation of bounded leakage which can reasonably be assumed
to be satisfied in practice.
Side-Channel Attacks Exploit Few Bits. Many side-channel attacks first mea-
sure large amounts of leakage Λ1, Λ2, . . . from every invocation, like a power
consumption curve. Then, in a first step, each leakage Λi is preprocessed in
order to extract some “useful” information Λ′i (this Λ′i could, e.g., be a list
of the most likely sub-keys.) The attack then proceeds by trying to recover
the secret key from Λ′1, Λ′2, . . .. Such attacks are covered by leakage resilience
whenever the amount of extracted data |Λ′i| is at most the amount of leakage
λ allowed per invocation.
Relaxing Bounded Range. By inspecting the proofs of our constructions (as
well as the ones from [23,44,25]), one sees that a restriction on the leakage
functions is required which is considerably weaker than restricting the range
to λ bits: it is only required that the leakage f(S+) does not decrease the
HILL-pseudoentropy [31,5]2 the adversary has about the active state S+

by more than λ bits. (More details will be given in the full version.) Thus,
although it may be unreasonable to assume that no more than λ bits leak
per invocation of a smart-card, assuming that this leakage will only degrade
the HILL-pseudoentropy by λ bits seems much more realistic in practice.

Bounded domain. The bounded domain restriction is a very mild restriction.
Unlike for bounded range, it is non-trivial to even imagine a remotely realistic
side-channel attack which would break a scheme by not adhering to it. This

2 HILL-pseudoentropy is a computational analogue of min-entropy. As for min-
entropy, λ bits of information cannot decrease it (in expectation) by more than
λ bits.
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restriction (on how leakage functions are mathematically modeled) is implied
by the “only computation leaks information” axiom (which states something
about physical properties of devices) of [40]. But it also covers other practical
attacks which do not satisfy this axiom. For example note that an adversary
can learn any linear function f(S) of the entire state S (which is split in,
say, two parts S1, S2 that are accessed individually) by specifying leakage
functions f1, f2 such that f1(a) + f2(b) = f(a, b) (the adversary can ask to
learn f1(S1) and f2(S2) as S1 and S2 are accessed respectively, and then
compute f(S) locally.) This simple observation already shows that claims
made in the literature arguing that the bounded range & domain restric-
tions do not cover attacks like “cold-boot attacks” [29] or static leakage (as
claimed in [51]) are not well-founded.3 As argued by Dziembowski,4 this re-
striction not only covers all linear function f(a, b) = f1(a) + f2(b), but in
fact any function f(a, b) which has a communication complexity of at most
λ. A good candidate for an actual leakage function that does invalidate this
assumption5 is the inner product f(a, b) =

∑
i ai · bi mod 2 which has linear

communication complexity.

1.1 ElGamal Encryption

The ElGamal encryption scheme [24] over a cyclic group G of prime order p
works as follows. The public key consists of a generator g of G and X = gx,
where x ∈ Zp is the secret key. Encryption defines the ciphertext as C = gr and
uses the symmetric key K = Xr to blind the message. Decryption reconstructs
the key by computing K = Cx. In its hybrid version, ElGamal encryption is
contained in many standard bodies (e.g., [48,32,50]) and it is (using the name
Elliptic Curve Integrated Encryption System, “ECIES”) commonly considered
to be the standard method to encrypt over elliptic curves. At this point it may
be instructive to see why the ElGamal encryption scheme is not leakage resilient.
An adversary, in the ith decryption query, can specify a leakage function that
outputs the i-th bit of the secret key x. Therefore, after q = |x| queries to
the leakage oracle the entire secret key can be reconstructed. As we already
pointed out, the inherent reason why the above attack works is that decryption
is stateless.

Let’s first look at a straight forward (but unsuccessful) attempt to make the
ElGamal scheme leakage resilient. To this end we make decryption stateful and
3 In the above argument we implicitly assumed that ultimately the entire secret state

will be touched, although this seems obvious (after all, why would one save a secret
state if it’s not supposed to be ever read), the tokens used in the construction of one-
time programs [27] are an example where exactly this happens. For such primitives
obeying the “only computation leaks information” axiom in its original physical
sense is necessary.

4 At the workshop “Provable security against physical attacks”, February 2010, Leiden.
5 And thus might be used to construct an actual real world counterexample where the

security of an implementation gets broken because the bounded domain restriction
is invalidated.
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split it into two parts Dec1∗ and Dec2∗. The secret key is additively shared into
x = σ0 + σ′0 by setting σ0 = x − r0 and σ′0 = x + r0. Decryption works as
follows. The first part Dec1∗ computes σi = σi−1 + ri mod p, K ′ = Cσi and
passes K ′ as input to the second part. Dec2∗ computes σ′i = σ′i−1 − ri mod p
and then K = K ′ · Cσ′

i . Note that the state information is randomly re-shared
subject to σi + σ′i = x. However, this scheme is not leakage resilient since an
attacker can adaptively learn certain bits of σi = x+Ri and σ′i = x−Ri (where
Ri =

∑i
j=0 rj) that enable him to fully reconstruct the secret key x.6

1.2 Our Results

Conjectured leakage resilient ElGamal encryption. We consider a
practical randomization method to make the ElGamal PKE scheme (or one if
its standardized hybrid variants) leakage resilient under chosen-ciphertext at-
tacks in the above sense. In the context of leakage resilience this method (or
variants thereof) were already proposed in [12,37,52]. The central idea is to
use multiplicative secret sharing to share the secret key x, i.e., x is shared as
σi = xR−1

i mod p and σ′i = Ri mod p, for some random Ri ∈ Z
∗
p. More precisely,

the first part of decryption computes σi = σi−1r
−1
i mod p and K ′ = Cσi . The

second part computes σ′i = σ′i−1ri mod p and then K = K ′σ
′
i . Again note that

the state information is randomly reshared subject to σi ·σ′i = x. We remark that
our method does not modify ElGamal’s encryption algorithm, it only modifies
the way ciphertexts are decrypted. In particular, public-keys and ciphertexts are
the same as in ElGamal encryption and therefore our method offers an attrac-
tive way to update existing ElGamal-based systems with algorithmic security
against side-channel attacks. Unfortunately, we are not able to prove that the
above method is provable leakage resilient and therefore we can only state the
scheme’s security as a conjecture.

Provable leakage resilient ElGamal encryption. We also propose to
apply multiplicative secret sharing to the ElGamal encryption scheme instanti-
ated over bilinear groups. Our main theorem (Theorem 1) states that this scheme
is leakage resilient against CCA1 attack in the generic group model. The key ob-
servation is that the secret key is a group element X and decryption performs
a pairing operation with X as one fixed base. This allows us to multiplicatively
share the secret key as a group element, i.e., X = σi · σ′i ∈ G. Intuitively, we use
the fact that in the generic group model some bits of the representation of σi and
σ′i essentially look random and therefore are useless to the leakage adversary. To
formally prove this intuition, however, turns out to be surprisingly difficult.

We also mention that a proof in the generic group model has its obvious
weaknesses. (See, e.g., [35].) In particular in connection with side channel attacks

6 Since x = σi + σ′
i mod p, the first t ≈ λ least significant bits of x can be computed

as (σi mod 2t)+(σ′
i mod 2t) mod 2t, minus an additive factor p mod 2t in case there

is an overflow modp. (The latter can be checked from the high order bits of σi and
σ′

i.) This process can be iterated to learn the entire secret key.
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the generic group model may “abstract away” too much important information
an adversary may obtain in a real implementation of the scheme. This should be
taken into account when interpreting our formal security statement. However,
our result seems to be the first PKE scheme that is provably leakage resilient.
Furthermore, the scheme is very practical. Another possible interpretation of
our result is that when protecting the exponentiation function against (a large
class of) side-channel attacks, multiplicative secret sharing techniques seem more
suitable than additive ones.

Leakage Resilient Exponentiation and Pairing Operation. Speaking
more generally, our above mentioned methods how to secure ElGamal against
side-channel attacks show that one can possibly make discrete exponentiation
and a pairing operation leakage resilient. Let G be a group of prime order p
and g be a generator of G. In discrete exponentiation one wants to take public
group elements Yi to some fixed secret power x (which is only leaked through
gx). We propose to share x as x = x′ ·x′′ mod p and compute the values Ki = Y x

i

in two iterative steps as K ′i = Y x′
i followed by Ki = (K ′i)

x′′
. After each such

computation x′ and x′′ get randomly reshared subject to x = x′ · x′′ mod p. In
a pairing operation one is given public group elements Yi and want to compute
e(Yi, X), for some fixed secret group element X (which is only leaked though
e(g,X)). Here e : G ×G→ GT is a bilinear pairing. Again we propose to share
X as X = X ′ ·X ′′ ∈ G and compute the values Ki = e(Yi, X) in three iterative
steps as K ′i = e(Yi, X

′), K ′′i = e(Yi, X
′′), and Ki = K ′i ·K ′′i ∈ GT , followed by

a resharing of X = X ′ ·X ′′ ∈ G. Our main result (Theorem 1) shows that our
method to perform a pairing operation is provable leakage resilient in the generic
group model.

Difficulty to prove leakage resilience against CCA2 attacks. It is
well known that the ElGamal encryption scheme, where the key K is hashed and
the one-time pad is replaced with a chosen-ciphertext secure symmetric cipher,
is secure against CCA2 attacks [1]. We remark that this scheme is not leakage
resilient against CCA2 attack since an adversary can adaptively obtain some bits
about the unhashed symmetric key of the challenge ciphertext. Indeed, building
a PKE scheme that is (provably) leakage resilient against CCA2 attacks remains
a challenging open problem.

1.3 Related Work

In the hardware community the usefulness of secret-sharing in the context of side-
channel countermeasures is well known. In particular, secret-sharing has been
proposed as a countermeasure against “differential power analysis attacks” for
exponentiation algorithms in [11,12,12,37,52], but without any formal analysis.

Most works on side-channel countermeasures, including the ones just men-
tioned, consider countermeasures against particular side-channel attacks. Micali
and Reyzin [40] in their work on “physically observable cryptography” proposed
an influential theoretical framework to capture side-channel attacks on a more
general level.
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Besides leakage resilience, there are several other models that consider cryp-
tosystems which remain secure even if a function f(sk) (chosen by the adversary
from a very broad class of functions) of the secret key sk is leaked. We shortly
mention these models below. The main difference to leakage resilience is that
those models consider stateless cryptosystems, and thus cannot tolerate any
kind of “continuous” leakage (an exception is the very recent work on “continu-
ous memory attacks.”) On the other hand, the leakage function in those works
gets the entire state as input, and not just the part of the state that was accessed.

Memory Attacks. Akavia et al. [2] introduce the model of “security against
memory attacks,” where one requires that the scheme remains secure even if
a function f(sk) of the secret sk is leaked once, where the only restriction on
f(·) one makes is its bounded output length. (Clearly the bound must satisfy
|f(sk)| � |sk |. This model is a restricted version of the BRM model discussed
below.) [2,41] construct public-key encryption schemes in this model, Katz and
Vaikuntanathan [34] constructs digital signatures.

Bounded Retrieval Model. The bounded retrieval model (BRM)
[13,19,20,10,22,4] is a generalization of the previous model, where one requires
that the secret key can be made huge, while the scheme still remains efficient.
Such schemes can provide security against malware like viruses or Trojans, which
temporarily take control over a computer, but do not have enough “bandwidth”
to leak the entire artificially huge key. Most works on intrusion resilient crypto
consider symmetric primitives, but after the first success in constructing public-
key cryptosystems secure againstmemory attacks (mentioned above), Alwen et al.
achieved public-key crypto also in the BRM model. In particular authentication
and signature schemes [4] and public-key encryption [3].

Auxiliary Input. Dodis et al. construct symmetric [17] and public-key [14] en-
cryption schemes in a model where the range of f(·) may be unbounded, but one
only requires that it is hard to recover sk from f(sk). (i.e. any polynomial time
adversary should output sk with exponentially small probability.)

Continuous Memory Attacks. Very recently, Dodis, Haralambiev, Lopez-Alt,
and Wichs [15] and Brakerski, Kalai, Katz and Vaikuntanathan [9] introduce the
model of “continuousmemory attacks.” This model generalizes the notion of mem-
ory attacks. Also here the adversary can learn a bounded amount, λ bits say, of
leakage about the (entire) secret key. But now there’s an additional “refresh” pro-
cedure which takes the secret key sk and outputs a new secret key sk ′. The adver-
sary can learn λ bits (where λ is c|sk | for some constant c > 0) in-between any two
refresh phases, but the refreshing itself has to be completely leak-free [15] or leak
at most a logarithmic number of bits [9]. Remarkably, in this model [15] construct
authentication and signature schemes, [9] obtain get public-key encryption. Both
papers work in the standard model, the underlying assumption in both papers is
the linear assumption over bilinear groups. The models of leakage resilience and
continuous memory attacks are incomparable: leakage resilience assumes “only
computation leaks” whereas continuous memory attacks need an (almost) leak-
free refresh phase. As mentioned, the constructions [15,9] are proven secure in the
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standard model, whereas we use a strong idealized model. On the positive side,
our scheme is very efficient (only about two times slower than standard ElGamal)
whereas, e.g., [9] needs a constant number of pairings to encrypt a single bit.

2 Definitions

If A is a deterministic algorithm we write y ← A(x) to denote that A outputs y on
input x. If A is randomized we write y ∗← A(x) or, y r← A(x) if we want to make
the randomness r used by the algorithm explicit (for future reference).

Key Encapsulation Mechanisms. A key encapsulation mechanism (KEM) is
defined similarly to a public-key encryption scheme, except that the encryption
algorithm (called encapsulation) does not take any input, but rather outputs the
encryption of a random key K, which then can be used with as a key in any sym-
metric encryption scheme to encrypt the actual message.

Formally, a key-encapsulation mechanism KEM consists of three algorithms
KG,Enc,Dec. KG : {0, 1}∗ → PK × SK is the probabilistic key-generation al-
gorithm, which on input a security parameter κ outputs a public/secret-key pair.
The probabilistic encapsulation algorithm Enc : PK → K × C and decapsulation
algorithm Dec : SK × C → K ∪ ⊥ satisfy the following correctness property for
all κ

Pr[K = K ′ | (pk , sk) ∗← KG(κ); (C,K) ∗← Enc(pk ); K ′ ← Dec(sk , C)] = 1

TheCCA1 security (aka. security against lunchtimeattacks) of a key-encapsulation
mechanism KEM is defined by the following experiment.

Experiment Expcca1
KEM(F , κ)

(pk , sk) ∗← KG(κ)
w
∗← FOsk (·)(pk )

b
∗← {0, 1}

(C∗,K0)
∗← Enc(pk )

K1
∗← K

b′ ∗← F(w,C∗,Kb)

Oracle Occa1
sk (C)

K ← Dec(sk , C)
Return K

Let μ denote the probability that b = b′ in the above experiment, then we define
the advantage of F as Advcca1

KEM(F , κ) = 2|1/2− μ|. In CCA2 security, the adver-
sary is additionally allowed to query the decryption oracle in its second (guess)
stage.

Stateful key encapsulation and leakage resilience. To formally define our
notion of leakage resilience we consider stateful key encapsulation mechanisms
KEM∗ = (KG∗,Enc∗,Dec1∗,Dec2∗) in which decapsulation is stateful and can for-
mally split into two sequential stages Dec = (Dec1∗,Dec2∗). The input/output
behavior will stay exactly the same as in a standard KEM.
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More formally, the key generation algorithm KG∗(κ) generates a public key and
and two initial states, σ0 and σ′0. Intuitively, the states shares the secret key of the
scheme and will be used by the stateful decapsulation algorithms Dec1∗,Dec2∗.

On the ith invocation of decapsulation, the decapsulated key Ki is computed
as follows

(σi, wi)
ri← Dec1∗(σi−1, Ci) ; (σ′i,Ki)

r′
i← Dec2∗(σ′i−1, wi) (1)

Here ri and r′i is the explicit randomness of the two randomized algorithms, σi

and σ′i are the updated states and wi is some state information that is passed from
Dec1∗ to Dec2∗.

We now define leakage resilience. Let λ ∈ N be some leakage parameter. We
will consider attacks, where the adversary can not only query its oracle for the de-
capsulated values Ki = Dec(sk , Ci), but additionally gets leakage from the com-
putation of those values. That is, in the security experiment the adversary can,
additionally to the input Ci, specify two efficiently computable leakage functions
fi, gi with bounded range {0, 1}λ, and additionally to the regular output Ki also
gets Λi, Λ

′
i computed as

Λi = fi(σi−1, ri) ; Λ′i = gi(σ′i−1, wi, r
′
i) ,

where the notation is as in (1). So the functions fi, gi get as input exactly the same
data as Dec1∗/Dec2∗.7 We define the CCLA1 (chosen ciphertext with leakage at-
tack) security of KEM by the experiment below. (Note that now we not only have
to specify the security parameter k, but also a leakage bound λ.)

Experiment Expccla
KEM(F , κ, λ)

(pk , σ0, σ
′
0)
∗← KG(κ)

w
∗← FOccla1(·)(pk )

b
∗← {0, 1}

(C∗,K0)
∗← Enc(pk )

K1
∗← K

i← 0
b′ ∗← F(w,C∗,Kb)

Oracle Occla1(C, f, g)
If range of f or g is �= {0, 1}λ return ⊥
i← i+ 1
(σi, wi)

ri← Dec1∗(σi−1, C)

(σ′i,Ki)
r′

i← Dec2∗(σ′i−1, wi)
Λi ← fi(σi−1, ri)
Λ′i ← gi(σ′i−1, wi, r

′
i)

Return (Ki, Λi, Λ
′
i)

Let μ denote the probability that b = b′ in the above experiment, then we define
the advantage of F as Advccla

KEM(F , κ, λ) = 2|1/2− μ|.
It is well-known that a CCA1 secure KEM plus a one-time secure symmetric

cipher (such as a one-time pad) yields a CCA1-secure PKE scheme. For trivial
reasons the same statement is also true for CCLA1 secure KEMs so for our purpose
it is sufficient to build a CCLA1 secure KEM. On the other hand we remark that
the respective composition theorem is wrong in general for CCLA2 secure KEMs.

7 Note that Ci need not be explicitly given to fi as the adversary chooses fi and Ci

together, and thus can “hard-code” Ci into fi.
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That is, a CCLA2 secure KEM and a CCA secure DEM will in general not yield
a CCLA2 secure PKE scheme.8

Bilinear Groups. We assume the existence of a bilinear group generator BGen
which is a randomized algorithm that outputs a bilinear group PG = (G,GT , g,
e, p) such that the following properties hold.

1. G and GT are (multiplicative) cyclic groups of prime order p.
2. g is a generator of G.
3. e is a bilinear map e : G×G→ GT which is

(a) bilinear: for all u, v ∈ G and a, b ∈ Z, e(ua, vb) = e(u, v)ab.
(b) non-degenerate: e(g, g) �= 1.

We say that G is a bilinear group if there exists a group GT and a bilinear map
e : G × G → GT as above, where e and the group action in G and GT can be
computed efficiently. We will use ◦ and � for the group operation in G and GT

respectively.

Generic Bilinear Groups. In the generic group model [42,49] one encodes the
group elements by unique, randomly chosen strings. This enforces that the only
property which can be tested by an adversary is equality.

In the generic bilinear model (GBG ) [7] the encoding is given by randomly cho-
sen injective functions ξ : Zp → Ξ and ξT : Zp → ΞT which give the represen-
tations of the elements in the base and target group respectively (w.l.o.g. we will
assume thatΞ∩ΞT = ∅). The group operation and the bilinear map are performed
by three public oracles O,OT ,Oe, where for any a, b ∈ Zp

– O(ξ(a), ξ(b))→ ξ(a+ b mod p) (group operation on base group).
– OT (ξT (a), ξT (b))→ ξT (a+ b mod p) (group operation on target group).
– Oe(ξ(a), ξ(b))→ ξT (a · b mod p) (bilinear map).

All oracles output⊥ when queried on an input outside of their domain. For a fixed
generator g of G and gT

def= e(g, g), one can think of ξ(a) as an encoding of ga,
ξT (a) as an encoding of ga

T and ξe(a, b) as an encoding of ga·b
T = e(ga, gb). Of

course one also must provide some means of computing the group representation
ξ(a) or ξT (a) for any a ∈ Zp, say by providing oracles to do so. We can get away
without additional oracles, by providing ξ(1) and observing that then ξ(a) can
be computed making ≤ 2 log p queries to O (by square and multiply). ξT (1) (and
thus any ξT (a)) can be computed by ξT (1)← Oe(ξ(1), ξ(1)).

3 Leakage Resilient ElGamal Encryption

In this section we present a general method to secure ElGamal encryption against
leakage attacks. First, we present a modification of the standard ElGamal cryp-
tosystem over any cyclic group of prime order. Unfortunately, we are not able to

8 An attacker may make a number of decryption queries only modifying the symmetric
part of the challenge ciphertext. The decryption algorithm (internally) uses the chal-
lenge symmetric key that can be learned (bit-by-bit) through the leakage function.
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formally prove the leakage resilience of this scheme so we state its security as a
conjecture. Next, we move to the ElGamal scheme over Bilinear Groups. Here we
are able to prove that our method leads to a leakage resilient public-key encryption
scheme (in the sense of CCLA1) in the generic group model.

3.1 ElGamal Key Encapsulation

Let Gen be a randomized algorithm that outputs a cyclic group G of order p where
p is a strong prime. The ElGamal key-encapsulation mechanism EG = (KGEG,
EncEG,DecEG) is defined as follows.

– KGEG(κ): Compute (G, p) ∗← Gen(κ) and choose random g
∗← G and random

x
∗← Zp. Set X = gx. The public key is pk = (G, p,X) and the secret key is

sk = x.
– EncEG(pk ): choose random r

∗← Zp. Set C ← gr ∈ G and K ← Xr ∈ G. The
ciphertext is C and the key is K.

– DecEG(sk , C): Compute the key as K = Cx ∈ G.

As mentioned in the introduction, EG (or any other stateless scheme) cannot be
leakage resilient since in the CCLA1 experiment an adversary can simply obtain
the successive bits of the secret key x.

We will now describe a leakage resilient stateful key encapsulation mechanism
EG∗ = (KG∗EG,Enc∗EG,Dec1∗EG,Dec2∗EG), which is derived from EG. As described in
Section 2, the decapsulation algorithm is stateful and split in two parts.

– KG∗EG(κ): Run (sk , pk) ∗← KGEG(κ). (Recall that sk = x and pk = (G, p,X =
gx).) Choose random σ0

∗← Z
∗
p and set σ′0 = xσ−1

0 mod p. The public key is
pk and the two secret states are σ0 and σ′0.

– Enc∗EG(pk ): the same as EncEG(pk).
– Dec1∗EG(σi−1, C): choose random ri

∗← Z
∗
p, set σi = σi−1r

−1
i mod p,K ′ = Cσi

and return (ri,K ′).
– Dec2∗EG(σ′i−1, (ri,K

′)): set σ′i = σ′i−1r
−1
i mod p, and K = K ′σ

′
i . The symmet-

ric key is K and the updated state information is σi and σ′i.

We cannot formally prove CCLA1 security of the scheme so we have to resort to
the following conjecture.

Conjecture 1. EG∗ is CCLA1 secure if p−1 has a large prime factor (say, p−1 = 2p′

for a prime p′).9

9 The reason we require p to be not smooth is to prevent the leakage functions to possi-
bly compute discrete logarithms in Zp−1, as otherwise the multiplicative sharing σ, σ′

(where σ · σ′ = x) can be efficiently turned into an additive sharing (of the discrete

log of the secret key) σ = hΣ ,σ′ = hΣ′
where x = hX and X = Σ+Σ′. As described

in Section 1.1, an additive sharing cannot give a leakage resilient scheme. The above
also hints the inherent difficulty of proving this conjecture. Let us mention that al-
ready in [37] it is suggested to use a prime p where (p-1)/2 is prime in a very similar
context. Our result can be seen as a formal justification for this choice.
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One can furthermore make ElGamal key-encapsulation CCA2 secure (without
leakage) under the strong Diffie-Hellman assumption in the random oracle model
by hashing the symmetric key symmetric keyK [1]. This Hashed ElGamal scheme
is contained in many standard bodies, e.g. [48,32,50]. Hashing the symmetric key
clearly does not affect its CCLA1 security and therefore Hashed ElGamal is
CCLA1 and CCA2 secure.

However, as we will explain now, in our leakage resilience setting hashing K
will not make the scheme CCLA2 secure. The (unhashed) EG scheme is not CCA2
secure since it is malleable. (An adversary, given the challenge ciphertext C (en-
ciphering a key K), can ask for a decryption of C2 �= C to obtain K2 from which
it can reconstructK.) Without considering leakage, hashing the key prevents this
attack as now the adversary only sees a hashed key H(K2). Unfortunately, in the
leakage setting hashing will not help at all because the adversary can specify a
leakage function which outputs λ bits of the unhashed key K2. By asking for the
decryption of the same ciphertext C2 several times, leaking λ different bits of K2

on each invocation, will ultimately reveal the entire K2.

3.2 Bilinear ElGamal Key Encapsulation

The Bilinear ElGamal key-encapsulation mechanism
BEG = (KGBEG,EncBEG,DecBEG) is defined as follows.

– KGBEG(κ): Compute PG = (G,GT , p, e)
∗← BGen(κ) and choose random g

∗←
G and random x

∗← Zp. Set X = gx and XT = e(g, g)x. The public key is
pk = (PG, g,XT ) and the secret key is sk = X .

– EncBEG(pk ): choose random r
∗← Zp. Set C ← gr ∈ G and K ← Xr

T ∈ GT .
The ciphertext is C and the key is K.

– DecBEG(sk , C): Compute the key as K = e(C,X) ∈ GT .

Note that correctness follows from the bilinear property Xr
T = e(g, g)xr =

e(gr, gx) = e(gr, X).
We will now describe a leakage resilient key encapsulation

BEG∗ = (KG∗BEG,Enc∗BEG,Dec1∗BEG,Dec2∗BEG), which is derived from BEG.

– KG∗BEG(κ): Run (sk , pk) ∗← KGBEG(κ). (Recall that sk = X = gx and pk =
(PG, g,XT = e(g, g)x.) Choose random r0

∗← Z
∗
p and set σ0 ← gr0 , σ′0 ←

gx−r0. The public key is pk and the secret states are σ0, σ
′
0.

– Enc∗BEG(pk ): the same as EncBEG(pk ).
– Dec1∗BEG(σi−1, C): choose random ri

∗← Zp, set σi ← σi−1◦gri ,K ′ ← e(σi, C)
and return (ri,K ′).

– Dec2∗BEG(σ′i−1, (ri,K
′)): set σ′i ← σ′i−1 ◦ g−ri and K ′′ ← e(σ′i, C). The sym-

metric key is K ← K ′ � K ′′ ∈ GT .

Note that for every i, Ri
def=

∑i
j=0 rj , we have σi ◦ σ′i = gRi ◦ gx−Ri = gx, so the

σi, σ
′
i are a secret sharing of the secret key.
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Theorem 1. In the bilinear generic group model the scheme BEG∗ is CCLA1 se-
cure: the advantage of a q-query adversary who gets λ bits of leakage per invocation
of Dec1∗BEG and Dec2∗BEG, respectively, is at most 22λ+1·q3

p .

Thus, for a statistical security parameter n, we can tolerate λ = log(p)/2 − 3
log(q)−n/2 bits of leakage. For space reasons, here we only can give a proof outline.
The complete proof appears in the full version of this paper.

Proof Outline. For technical reasons, we will consider a setting where the
generic bilinear group is extended with an additional oracle ODL : Ξ ∪ ΞT →
Zp ∪ ⊥, we will call this the extended generic bilinear group model. Intuitively,
ODL is an oracle for the discrete log problem, but only works on inputs that have
not yet appeared since the oracles O,Oe,OT have been initialized.

The proof outline is as follows. We will first show that the discrete logarithm
problem (DL) is hard in the (base group of the) extended GBG model. We then
give a reduction which shows how any adversary that can break the CCA1 secu-
rity (without leakage) of BEG∗ in the (normal) GBG model, can solve the discrete
log problem in the extended GBG model. Next, we extend this proof to get our
main result, namely a reduction of the CCLA1 security of BEG∗ to the discrete
log problem.

CCA1 security of BEG∗. Let F be an adversary that can break the CCA1 se-
curity of BEG∗. We construct an adversary G for DL (using F as a black-box) by
letting G simulate the Expcca1

BEG∗(F , p) experiment, where in this experiment G uses
its DL challenge ξ(y) as either the secret key ξ(x) or the challenge encapsulated
key ξ(s) with probability 1/2 respectively.

During the CCA1 experiment, F (which initially gets ξT (x), and after the last
decapsulation query gets ξ(s)) will learn the representation of elements ξT (e1),
ξT (e2), . . . from the target group. One can show that just from observingF ’s oracle
queries, G can assign to each ei an equation ei = ai + bi · x + ci · s + di · s2
where it knows the coefficients ai, bi, ci, di ∈ Zp. Similarly, for representations
ξ(e1), ξ(e2), . . . of elements in the base group that F learns, G can extract ai, bi
such that ei = ai + bi · s. To get an idea why this is the case, consider, e.g., the
case where F makes a query ξT (v · w) ← Oe(ξ(v), ξ(w)). If ξ(v) (same for ξ(w))
was never seen before, G first calls ODL(ξ(v)) to learn v. (Recall that G is in the
extended GBG model.) Now G knows a, b, a′, b′ s.t. v = a+ b ·s and w = a′+ b′ ·s,
which implies v · w = a′′ + b′′ · x + c′′ · s+ d′′ · s2 with a′′ = a+ a′, b′′ = 0, c′′ =
a · b′ + a′ · b, d′′ = b · b′.

Recall that F ’s goal is to distinguish the decapsulated key ξT (x · s) from a ran-
dom element. If F has advantage ε in doing so, it actually must compute the ele-
ment ξT (x · s) with probability ε. Which means we learn a, b, c, d such that

x · s = a+ b · x+ c · s+ d · s2, (2)

this can be solved for s or x (or both). Thus G will learn the discrete log of ξ(y)
with probability at least ε/2 (as we initially randomly set ξ(y) = s or ξ(y) = x).

CCLA1 security of BEG∗. The proof in the case of leakage attacks is more del-
icate. In a CCLA1 attack, with the ith decapsulation query, the adversary F also
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learns the output of the leakage functions fi, gi. If we had no upper bound on the
output length of those functions, then fi and gi could just leak ξ(Ri) and ξ(x−Ri)
respectively, from which F then could first compute the secret key ξ(x) and then
ξT (x·s). In this case, the reduction G does not learn an equation of the form eq.(2),
but only the trivial equality x · s = x · s. We will prove that if the leakage bound
λ � log p/2, then the leakage functions will not leak any representation of an
element to F that F could not efficiently compute itself.

To see this, let us first make the simplifying assumption that the leakage func-
tions fi, gi are not given access to the group oraclesO,Oe,OT . Then all the leakage
functions can try to do, is to leak some element they get as input. Consider any
such element, say ξ(Ri). As ξ(Ri) is only given as input to fi−1 and fi, at most 2λ
bits about this element can leak. If 2λ� log p, then F will have high min-entropy
about ξ(Ri) even given this 2λ bits of leakage. Thus it is very unlikely that it can
guess ξ(Ri).

Now consider the general case, where the leakage functions can use the group
oracles. Now the leakage functions can trivially leak the representation of some
group element, say f1, f2, . . . all use O to compute ξ(z) for some fixed z and each
leaks λ bit of ξ(z) until F learns the entire ξ(a). Now F does get the representa-
tion of an element ξ(a) without receiving it from the group oracles, but that is no
problem, as G will know an a, b such that a+ b · s = z (namely a = z and b = 0),
and that’s all we care about.

Now the fi leakage function (similarly for gi) can use their input ξ(Ri−1) to
compute elements ξ(z) where G only knows a, b (where b �= 0) such that z =
a + b · r0. We call such a representation “bound” (as opposed to “free” repre-
sentations ξ(z) where G trivially learns z by just observing fi’s oracle queries). It
would be a problem if a bound representation could leak to F . As said before, the
fi’s can trivially leak 2λ bits about a bound element, as, e.g., fi−1 and fi have ac-
cess to ξ(Ri) (recall that Ri =

∑i
j=0 rj where each rj is uniformly random). But

it is not clear how any other leakage function fj (j �∈ {i − 1, i}) would compute
the element ξ(Ri) or any other element derived from it; since the sharings are ran-
domized during each invocation, the values ξ(Rj−1), rj that fj has are completely
independent of Ri (and thus ξ(Ri)). In fact, we show that if F manages to choose
leakage functions such that the same bound element is computed by fi and fj

(where j > i+1) with probability ε, then F can be used to solve the discrete log-
arithm problem with probability ε/22λq. The idea is to use the discrete logarithm
challenge ξ(y) as ξ(rj) for a random j. Note that to simulate the experiment, G
only needs ξ(rj) not rj , except to compute the 2λ bits of leakage from the jth de-
capsulation query. (As here the leakage functions fj , gj expect rj as input.) We
let G randomly guess this leakage, which will be correct with probability 2−2λ.
Now assume we have two identical bound elements ξ(z) computed by fi′ and fi′′

where i′′ > i′+1. As this query was made by fi′ , and up to this point G only used
r0, . . . , ri′ that it sampled himself, he will know z. As this query was also made by
i′′, G learns a, b �= 0 such that z = a + b · rj , and thus can solve this equality to
get rj .
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Abstract. We study the design of cryptographic primitives resistant to a large
class of side-channel attacks, called “memory attacks”, where an attacker can
repeatedly and adaptively learn information about the secret key, subject only to
the constraint that the overall amount of such information is bounded by some
parameter �. Although the study of such primitives was initiated only recently
by Akavia et al. [2], subsequent work already produced many such “leakage-
resilient” primitives [48,4,42], including signature, encryption, identification (ID)
and authenticated key agreement (AKA) schemes. Unfortunately, every existing
scheme, — for any of the four fundamental primitives above, — fails to satisfy at
least one of the following desirable properties:

– Efficiency. While the construction may be generic, it should have some effi-
cient instantiations, based on standard cryptographic assumptions, and with-
out relying on random oracles.

– Strong Security. The construction should satisfy the strongest possible defi-
nition of security (even in the presence of leakage). For example, encryption
schemes should be secure against chosen ciphertext attack (CCA), while sig-
natures should be existentially unforgeable.

– Leakage Flexibility. It should be possible to set the scheme parameters so
that the leakage bound � can come arbitrarily close to the secret-key size.

In this work we design the first signature, encryption, ID and AKA schemes
which overcome these limitations, and satisfy all the properties above. Moreover,
all our constructions are generic, in several cases elegantly simplifying and gen-
eralizing the prior constructions (which did not have any efficient instantiations).
We also introduce several tools of independent interest, such as the abstraction
(and constructions) of true-simulation extractable NIZK arguments, and a new
deniable DH-based AKA protocol based on any CCA-secure encryption.

1 Introduction

Traditionally, the security of cryptographic schemes has been analyzed in an idealized
setting, where an adversary only sees the specified “input/output behavior” of a scheme,
but has no other access to its internal secret state. Unfortunately, in the real world,
an adversary may often learn some partial information about secret state via various
key leakage attacks. Such attacks come in a large variety and include side-channel at-
tacks [43,10,7,44,54,27], where the physical realization of a cryptographic primitive
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can leak additional information, such as the computation-time, power-consumption, ra-
diation/noise/heat emission etc. The cold-boot attack of Halderman et al. [34] is another
example of a key-leakage attack, where an adversary can learn (imperfect) information
about memory contents of a machine, even after the machine is powered down. Schemes
that are proven secure in an idealized setting, without key leakage, may become com-
pletely insecure if the adversary learns even a small amount of information about the
secret key. Indeed, even very limited leakage attacks have been shown to have devastat-
ing consequences for the security of many natural schemes.

Unfortunately, it is unrealistic to assume that we can foresee, let alone block, all of
the possible means through which key leakage can occur in real-world implementations
of cryptographic schemes. Therefore, the cryptographic community has recently ini-
tiated the investigation of increasingly general (formally modeled) classes of leakage
attacks, with the aim of constructing leakage-resilient cryptographic schemes that re-
main provably secure even in the presence of such attacks. Of course, if an adversary
can get unrestricted information about the secret key, then she can learn the key in its
entirety and the security of the system is necessarily compromised. Therefore, we must
first place some “upper bound” on the type or amount of information that the adversary
can learn. The nature of such bounds varies in the literature, as we survey later. For this
work, we only restrict the amount, but not the type, of information that an adversary can
learn through a key-leakage attack. In particular, we will assume that the attacker can
learn any efficiently computable function of the secret key sk, subject only to the con-
straint that the total amount of information learned (i.e. the output size of the leakage
function) is bounded by � bits, where � is called the “leakage parameter” of the system.1

Clearly, at this level of generality, the secret-key size s must be strictly greater than the
leakage-parameter �.2 Therefore, the quantity �/s can be thought as the relative leakage
of the system, with the obvious goal to make it as close to 1 as possible.

Our model of leakage-resilience was recently introduced by Akavia et al. [2], but
already attracted a lot of attention from the cryptographic community [48,4,42,3]. In
particular, as we survey later, we already know many “leakage-resilient” primitives, in-
cluding such fundamental primitives as signature schemes, encryption schemes,
identification (ID) schemes and authenticated key agreement (AKA) protocols. Unfor-
tunately, we observe that every existing scheme, — for any of the four fundamental
primitives above, — fails to satisfy at least one of the following desirable properties:

– Efficiency. While the proposed construction may be based on some generic cryp-
tographic primitives, — which is in fact preferable for modular design, — it should
have some efficient instantiations, based on standard cryptographic assumptions,
and without relying on random oracles. We view this property as the main property
we will strive to achieve.

1 More formally, we allow adaptive measurements, as long as the sum of leaked outputs is
bounded by �.

2 In fact, our actual constructions easily extend to the more general “noisy leakage” model of
Naor and Segev [48], where the outputs can be longer than s, as long as the “average min-
entropy” of sk drops by at most � bits. However, we do not pursue this generalization, in order
to keep our notation simple.
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– Strong Security. The construction should satisfy the strongest possible definition
of security (even in the presence of leakage). For example, encryption schemes
should be secure against chosen ciphertext attack (CCA), while signatures should
be existentially unforgeable, etc.

– Leakage Flexibility. It should be possible to set the parameters of the schemes so
that the relative leakage �/s is arbitrarily close to 1. We call such schemes leakage-
flexible.

1.1 Our Results

In this work we design the first signature, encryption, ID and AKA schemes which
simultaneously satisfy the efficiency, strong security and leakage flexibility properties
mentioned above. Moreover, all our constructions are generic. This means that the ac-
tual construction is modularly defined and explained using natural simpler blocks, and
its security against key leakage is also proven no matter how these simpler blocks are
(securely) implemented. However, unlike the prior generic constructions, which did not
have any known efficient instantiations (at least, with the desired security and flexibil-
ity we seek), ours are yet more general, which will allow us to obtain several efficient
instantiations. Given this fact, it is not surprising that our contributions can be roughly
split into two categories: “conceptual” contributions, allowing us to obtain more general
(and, yet, conceptually simpler) leakage-resilient constructions, and “concrete” contri-
butions, allowing us to instantiate our general schemes efficiently.

CONCEPTUAL CONTRIBUTIONS. As we will see, existing schemes (e.g., signature
and CCA-encryption) could be largely divided into two categories: potentially efficient
schemes, with some inherent limitation not allowing them to achieve relative leakage
approaching 1 (which also prevents us from using these ideas for our purposes), and
more theoretical schemes [48,42], achieving good relative leakage, but relying on the
notion of simulation-sound non-interactive zero-knowledge (ss-NIZK) [56]. Informally,
ss-NIZK proofs remain sound even if the attacker can see simulated proofs of arbitrary
(even false) statements. Unfortunately, it appears that the existing cryptographic ma-
chinery does not allow us to instantiate non-trivial ss-NIZK proofs efficiently.3 On the
other hand, a recent breakthrough result of Groth-Sahai [33] showed that one can obtain
efficient non-simulation-sound NIZK proofs for a non-trivial class of languages. While
the techniques of [31] could be applied to Groth-Sahai proofs to achiehve ss-NIZKs,
it is a non-trivial “exercise” and the resulting proofs are significantly less efficient, as
the construction involves OR-proofs for Groth-Sahai languages. Therefore, our first
idea was to try to generalize the existing constructions sufficiently, making them rely
only on regular NIZKs, in the hope that such NIZKs can then be instantiated using the
powerful Groth-Sahai techniques.

In the end, this is indeed what we realized. However, in the process we also ab-
stracted away an elegant notion of independent interest: true-simulation extractable
(tSE) NIZKs. While similar to the notion of simulation-sound extractable NIZKs [31],

3 The work of [31] constructs ss-NIZK proofs for practical languages and uses them to construct
group signatures, but the resulting scheme has signature size of “thousands or perhaps even
millions of group elements” [32] despite being constant.



616 Y. Dodis et al.

it involves a subtle but rather important difference: whether the adversary has ora-
cle access to simulated proofs for arbitrary (even false) statements or only true ones.
Intuitively, both the Naor-Segev’s leakage-resilient CCA encryption [48] and Katz-
Vaikuntanathan’s leakage-resilient signature scheme [42] used the technique of encrypt-
ing a witness x for some relation R, and then providing a ss-NIZK proof ϕ that the
ciphertext c indeed contains the encryption of a valid witness x. The main reason for
using this technique is to allow the reduction to extract a valid witness from any “new”
valid pair (c∗, ϕ∗) produced by the attacker A (who saw many such valid pairs ear-
lier). In this paper, we will abstract this property into the tSE notion mentioned above
(of which the above mentioned technique is a specific example, where the pair (c, ϕ)
together makes up a single tSE-NIZK proof). Moreover, we show that true-simulation
extractability, as we abstract it, is precisely the right notion for generalizing and proving
the security of the previous constructions. This has two positive effects. First, it makes
the generic constructions of CCA-encryption and signatures somewhat more intuitive,
both for proving and understanding. For example, the traditional “double-encryption”
paradigm of Naor-Yung [49] for designing CCA-secure schemes from chosen-plaintext
secure (CPA-secure) schemes, also used by [48] in the context of key leakage, can be
stated as “CPA-encrypting message m under two keys and proving plaintext equal-
ity”. Using our more general “simulation-extractability view”, it is now stated as “CPA-
encrypting m and proving that one knows the plaintext”. We believe that the latter
view is not only more general, but also more intuitive as a way of explaining “CPA-
to-CCA” transformation. It also follows the original intuition of Rackoff and Simon
[55], who combine CPA-encryption with NIZK-POK to achieve CCA-encryption, but
in the model where the sender also has a secret key. A similar discussion is true for our
signature constructions.

Second, we show a generic way to build tSE-NIZKs which avoids using (expen-
sive) ss-NIZKs. Instead, our method uses regular NIZKs and any CCA-secure encryp-
tion scheme.4 Perhaps surprisingly, given the current state-of-the-art NIZK and CCA
schemes, the combination “CCA + NIZK” appears to be much more efficient in practice
than the combination “CPA + ss-NIZK”.5 As a result, we were able to provide a general
framework for building leakage-flexible signature and CCA-encryption schemes, even-
tually allowing us to efficiently instantiate our schemes (by avoiding using ss-NIZKs).
We summarize our results for signature and CCA-encryption schemes in Tables 1 and 2,
also comparing them to the best prior constructions. In all the tables, the “sub-optimal”
entries (for efficiency, security, model or relative leakage of prior constructions) are
written in italics, and most prior rows are also explained in the related work Section 1.2.
For signatures, we stress that no efficient construction in the standard model was known
prior to our work, for any non-trivial relative leakage fraction (let alone 1).

Once we have efficient leakage-flexible signature schemes, we can obtain ID and
AKA schemes with the same properties. The signature-based AKA protocol is not de-
niable. However, we also construct a deniable AKA protocol based on our construction

4 This is OK for the signature application, but might appear strange for our CCA-encryption
application, as we need “CCA to get CCA”. However, as a building block for tSE-NIZKs, we
only need standard CCA schemes and as a result obtain leakage-resilient CCA schemes.

5 Indirectly, the same realization was made by Groth [32] and Camenisch et al. [11].
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Table 1. Previous work on leakage-resilient signatures and results of this work

Reference Unforgeability Model Leakage Efficient?

[4] Existential Random Oracle 1/2 Yes
[4] Entropic Random Oracle 1 Yes

[42] Existential Standard 1 No
This Work Existential Standard 1 Yes

Table 2. Previous work on leakage-resilient encryption and results of this work

Reference Attack Model Leakage Efficient?

[2,48] CPA Standard 1 Yes
[48] CCA Standard 1/6 Yes
[48] CCA Standard 1 No

This Work CCA Standard 1 Yes

Table 3. Previous work on leakage-resilient identification schemes and results of this work

Reference Security Model Leakage Efficient?

[4] Pre-Impersonation Standard 1 Yes
[4] Anytime Standard 1/2 Yes

[42] (implicit) Anytime Standard 1 No
This Work Anytime Standard 1 Yes

Table 4. Previous work on leakage-resilient AKA and results of this work

Reference Model Leakage Deniable? Efficient?

[4] Random Oracle 1 No Yes
[4,42] Standard 1 No No

This Work Standard 1 No/Yes∗ Yes
∗ Our first AKA protocol is not deniable; our second — is.

of leakage-flexible CCA-secure encryption. We summarize our results for ID schemes
in Table 3 and for AKA protocols in Table 4. See Section 6 for details.

CONCRETE CONTRIBUTIONS. As we explained above, we generically reduce the
question of building efficient leakage-flexible ID schemes and AKA protocol to the
question of efficiently instantiating our leakage-flexible signature and/or encryption
schemes. Such instantiations are given in Section 5. We also explained how the lat-
ter instantiations became possible in our work, since we gave generic constructions of
both primitives based on the new notion of tSE-NIZK, and then showed that satisfying
this notion may be possible using ordinary NIZKs for appropriate languages, without
relying on the expensive simulation-sound NIZKs. Unfortunately, efficient construc-
tion of (even ordinary) NIZKs, due to Groth and Sahai [33], are only known for a pretty
restrictive class or languages in bilinear groups. Thus, obtaining a concrete efficient
instantiation still requires quite a substantial effort.
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Specifically, all the building blocks have to be instantiated efficiently, and expressed
in a form such that the resulting NP relation satisfies the severe limitations imposed by
the Groth-Sahai NIZKs. For example, to build leakage-resilient CCA-encryption, we
need to have an efficient leakage-flexible CPA scheme, a CCA scheme supporting la-
bels and a one-time signature scheme, all connected together by an efficient NIZK for
a complicated “plaintext equality” relation. Similarly, for leakage-resilient signature
schemes, we need an efficient second-preimage resistant (SPR; see Definition 1) rela-
tion and a CCA scheme supporting labels, once again connected by an efficient NIZK
for a complex relation. Not surprisingly, such tasks cannot typically be done by simply
combining “off-the-shelf” schemes from the literature. At best, it requires very careful
selection of parameters to make everything “match”, followed by a round of further ef-
ficiency optimizations. Usually, though, it requires the design of new primitives, which
work well with other known primitives, to enable efficient NIZK. For example, in this
work, we designed two new SPR relations (see Section 5), since prior SPR relations
did not appear to mesh well with our CCA encryption scheme. To emphasize the im-
portance of the new SPR relations, we point out that combining previous constructions
with Groth-Sahai proofs would require committing to the witness bit-by-bit in order to
achieve full extractability.

Overall, we get two different efficient instantiations of both leakage-resilient signa-
ture and CCA encryption schemes in the standard model, based on standard (static and
“fixed-length”) assumptions in bilinear groups, called external Diffie-Hellman (SXDH)
and Decision Linear (DLIN). The high-level idea of these schemes, as well as their effi-
ciency, is described in Section 5. The actual low-level details of how to put “everything
together” in the most efficient manner, is described in the full version [18].

1.2 Related Work

LEAKAGE-RESILIENCE AND MEMORY ATTACKS. Our model of leakage, sometimes
called memory-attacks, was first proposed by Akavia et al. [2], who also constructed
CPA secure PKE and IBE schemes in this model under the learning with errors (LWE)
assumption. Later Naor and Segev [48] generalized the main ideas behind these con-
structions to show that all schemes based on hash proof systems (see [15]) are leakage-
resilient. In particular, this resulted in efficient constructions based on the DDH and
K-Linear assumptions, where the relative leakage on the secret key could be made to
approach 1. Moreover, [48] showed how to also achieve CCA security in this model
by either: (1) relying on the generic (and inefficient) Naor-Yung paradigm where the
leakage-rate can be made to approach 1 or (2) using efficient hash proof systems with
leakage-rate only approaching 1/6. Unfortunately, it seems that the hash proof system
approach to building CCA encryption is inherently limited to leakage-rates below 1/2:
this is because the secret-key consists of two components (one for verifying that the
ciphertext is well-formed and one for decrypting it) and the proofs break down if ei-
ther of the components is individually leaked in its entirety. The work of [3] generalizes
[48] still further by showing how to construct leakage-resilient IBE schemes generically
based on identity-based hash proof systems, with several instantiations.

Leakage-resilient signature schemes in the model of memory attacks were constructed
in the random-oracle model by [4,42], and in the standard model by [42]. The
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random-oracle schemes are highly-efficient but suffer from two limitations. Firstly they
rely on the Fiat-Shamir [25] transform which is only known to be secure in the Random
Oracle model and is not sound in general [30]. Secondly, the schemes can only tolerate
leakage which approaches 1/2 of the secret key. On the other hand, the standard-model
schemes allow for relative-leakage approaching 1, but are based on generic simulation-
sound NIZKs and do not come with an efficient instantiation.

The work of [4] also constructs ID schemes and AKA protocols. For ID schemes, two
notions of security were considered: a weaker notion called pre-impersonation leakage-
resilience and a stronger notion called anytime leakage-resilience. Although efficient
schemes in the standard model were given for both notions, the leakage resilience could
be made to approach 1 only for pre-impersonation leakage while, for anytime leakage,
the given schemes can only tolerate a leakage-rate below 1/2. For AKA schemes, a
construction was given based on leakage-resilient signatures (only requiring a weak-
ened notion of security called entropic-unforgeability). Using the appropriate signature
schemes, this yielded two types of constructions: efficient constructions in the random-
oracle model and generic but inefficient constructions in the standard model (both of
which have leakage-rates approaching 1).

OTHER MODELS OF LEAKAGE-RESILIENCE. Several other models of leakage-resilience
have appeared in the literature. They differ from the model we described in that they
restrict the type, as well as amount, of information that the adversary can learn. For ex-
ample, exposure resilient cryptography [12,20,41] studies the case where an adversary
can only learn some small subset of the physical bits of the secret key. Similarly, [38]
studies how to implement arbitrary computation in the setting where an adversary can
observe a small subset o the physical wires of a circuit. Most recently, [24] study a sim-
ilar problem, where the adversary can observe a low-complexity (e.g. AC0) function
of the wires. Unfortunately, these models fail to capture many meaningful side-channel
attacks, such as learning the hamming-weight of the bits or their parity.

In their seminal work, Micali and Reyzin [46] initiated the formal modeling of side-
channel attacks under the axiom that “only computation leaks information” (OCLI),
where each invocation of a cryptographic primitive leaks a function of only the bits ac-
cessed during that invocation. Several primitives have been constructed in this setting
including stream ciphers [22,53] and signatures [23]. More recently, [40] construct a
general compiler that can secure all primitives in this setting assuming the use of some
limited leak-free components and the existence of fully homomorphic encryption. On
the positive side, the OCLI model only imposes a bound on the amount of information
learned during each invocation of a primitive, but not on the overall amount of infor-
mation that the attacker can get throughout the lifetime of the system. On the negative
side, this model fails to capture many leakage-attacks, such as the cold-boot attack of
[34], where all memory contents leak information, even if they were never accessed.

Lastly, we mention models of leakage-resilience which are strictly stronger than the
memory-attacks model. Firstly, the Bounded-Retrieval Model [16,21,4,3] imposes an
additional requirement on leakage-resilient schemes, by insisting that they provide a
way to “grow” the secret-key (possibly to many Gigabytes) so as to proportionally
increase the amount of tolerated leakage, but without increasing the size of the public-
key, the computational or communication efficiency of the scheme, or the lengths of the
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ciphertexts or signatures. The work of [4] constructs “entropic” signatures, ID schemes
and AKA protocols in this setting, while the work of [3] constructs PKE and IBE
schemes in this model. A different strengthening is the auxiliary input model [19,17]
where the leakage is not necessarily bounded in length, but it is (only) assumed to be
computationally hard to recover the secret-key from the leakage. The work of [19] con-
structs symmetric-key encryption in this model, under a strengthening of the learning
parity with noise (LPN) assumption, while [17] constructs public-key encryption un-
der the DDH and LWE assumptions. Yet another strengthening of the memory-attacks
model, proposed by [29], is to require that there is a single scheme (parameterized only
by the security parameter) which can tolerate essentially any amount of relative-leakage
where the exact-security of the scheme degrades smoothly as the relative-leakage in-
creases. In this model, [29] construct a symmetric-key encryption scheme.

2 Definitions of Leakage-Resilient Primitives

We model leakage attacks by giving the adversary access to a leakage oracle, which
he can adaptively access to learn leakage on the secret key. A leakage oracle Oλ,�

sk (·) is
parametrized by a secret key sk, a leakage parameter �, and a security parameter λ. A
query to the leakage oracle consists of a function hi : {0, 1}∗ → {0, 1}αi, to which the
oracle answers with yi = hi(sk). We only require that the functions hi be efficiently
computable, and the total number of bits leaked is

∑
i αi ≤ �.

Definition 1 (Leakage Resilient Hard Relation). A relation R with a randomized
PPT sampling algorithm KeyGen is an �-leakage resilient hard relation if:

– For any (sk, pk)← KeyGen(1λ), we have (sk, pk) ∈ R.
– There is a poly-time algorithm that decides if (sk, pk) ∈ R.
– For all PPT adversaries AOλ,�

sk (·) with access to the leakage oracleOλ,�
sk (·):

Pr
[
R(sk∗, pk) = 1 | (pk, sk)← KeyGen(1λ) , sk∗ ← AOλ,�

sk
(·)(pk)

]
≤ negl(λ)

Notice that without loss of generality, we can assume that A queries Oλ,�
sk (·) only

once with a function h whose output is � bits.

Definition 2 (Leakage Resilient Signatures). A signature scheme S=(KeyGen, Sign,
SigVer) is �-leakage resilient if ∀ PPT A we have Pr[A wins] ≤ negl(λ) in the fol-
lowing game:

1. Key Generation: The challenger runs (vk, sk)← KeyGen(1λ) and gives vk toA.
2. Signing and leakage queries: AOλ,�

sk (·),Ssk(·) is given access to the leakage oracle
Oλ,�

sk (·) and the signing oracle Ssk(·). A query to the signing oracle Ssk(·) consists
of a message m, to which the oracle responds with σ = Signsk(m).

3. A outputs (m∗, σ∗) and wins if SigVervk(m∗, σ∗) = 1 and m∗ was not given to
Ssk(·) as a signing query.

Definition 3 (Leakage Resilient CCA-Secure Encryption). We say that an encryp-
tion scheme E = (KeyGen, Enc, Dec) is �-leakage resilient CCA-secure if ∀ PPT A we
have Pr[A wins] ≤ 1

2 + negl(λ) in the following game:
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1. Key Generation: The challenger runs (pk, sk)← KeyGen(1λ) and gives pk to A.
2. Decryption and leakage queries: AOλ,�

sk (·),Dsk(·) is given access to the leakage
oracle Oλ,�

sk (·) and the decryption oracle Dsk(·). A query to the decryption oracle
Dsk(·) consists of a ciphertext c, to which the oracle responds with m = Decsk(c).

3. Challenge generation: A sends plaintexts m0,m1 to the challenger. The chal-

lenger chooses b
$←− {0, 1}, and sends c∗ ← Encpk(mb) to A.

4. Decryption queries: ADsk(·) is given access to the decryption oracle Dsk(·) with
the restriction thatA cannot send c∗ as a decryption query. Notice also thatADsk(·)

is not given access to the leakage oracleOλ,�
sk (·).

5. A outputs b′, and wins if b = b′.
We refer to a 0-leakage-resilient CCA-secure as simply CCA-secure.

Recall that we can define labeled CCA encryption in which a message is encrypted
and decrypted according to a public labelL. If an encryption scheme E=(KeyGen, Enc,
Dec) supports labels, we use the syntax EncL(m) to denote the encryption of message
m under label L. Similarly, we use DecL(c) to denote the decryption of ciphertext c
under the label L. In this case, we extend the correctness of encryption/decryption to
requiring that DecL(EncL(m)) = m. The security definition described in Definition 3
can also be easily modified as follows. A query to the decryption oracle now consists
of a ciphertext c and a label L, to which the oracle responds with m = DecL

sk(c). In
the challenge generation stage, A submits a label L∗ as well as messages m0,m1 and

the challenger computes c∗ ← EncL∗
pk (mb) for b

$←− {0, 1}. Finally, in the second stage
of decryption queries we require that the adversary is allowed to ask for decryptions of
any ciphertext c under label L only subject to (L, c) �= (L∗, c∗).

Definition 4 (Leakage Resilient CPA-Secure Encryption). We say that an encryption
scheme E = (KeyGen, Enc, Dec) is �-leakage resilient CPA-secure if ∀ PPTA we have
Pr[A wins] ≤ 1

2 + negl(λ) in the game described above with the modification that
A does not have access to the decryption oracle Dsk(·). If an encryption scheme is
0-leakage-resilient CPA-secure we simply refer to it as being CPA secure.

3 Simulation Extractability

We start by briefly recalling the notion of non-interactive zero-knowledge (NIZK) [8].
For our purposes, it will be slightly more convenient to use the notion of (same-string)
NIZK argument from [57]. Note, however, that the definitions and constructions given
in this section can be extended to the case of NIZK proofs.

Let R be an NP relation on pairs (x, y) with corresponding languageLR = {y | ∃x
s.t. (x, y) ∈ R}. A non-interactive zero-knowledge (NIZK) argument for a relation R

consists of three algorithms (Setup, Prove, Verify) with syntax:

– (CRS, TK)← Setup(1λ): Creates a common reference string (CRS) and a trapdoor
key to the CRS.

– π ← ProveCRS(x, y): Creates an argument that R(x, y) = 1.
– 0/1← VerifyCRS(y, π): Verifies whether or not the argument π is correct.

For the sake of clarity, we write Prove, Verify without the CRS in the subscript when
the CRS can be inferred from the context. We require that the following properties hold:
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Completeness: For any (x, y) ∈ R, if (CRS, TK) ← Setup(1λ) , π ← Prove(x, y),
then Verify(y, π) = 1.

Soundness: For any PPT adversaryA, Pr[Verify(y, π∗) = 1 ∧ y �∈ LR] ≤ negl(λ),
where the probability is taken over (CRS, TK)← Setup(1λ), (y, π∗)← A(CRS).

Composable Zero-Knowledge: There exists PPT simulator Sim such that, for any
PPT adversaryA we have

∣∣Pr[A wins ]− 1
2

∣∣ ≤ negl(λ) in the following game:
– The challenger samples (CRS, TK)← Setup(1λ) and gives (CRS, TK) to A.
– A chooses (x, y) ∈ R and gives these to the challenger.
– The challenger samples π0 ← Prove(x, y), π1 ← Sim(y, TK), b← {0, 1} and

gives πb to A.
– A outputs a bit b̃ and wins if b̃ = b.

We revisit the notion of simulation extractable NIZK arguments [58,13,50,51,31], and
define a new primitive called true-simulation extractable NIZK arguments. Apart from
satisfying the properties described above, an NIZK argument is simulation extractable
if there exists a PPT extractor Ext which given an additional trapdoor to the CRS, ex-
tracts a witness x′ from any proof π produced by a malicious prover P ∗, even if P ∗

has previously seen some simulated proofs for other statements. We make an impor-
tant distinction between our new definition of true-simulation extractability, where all
simulated proofs seen by P ∗ are only of true statements, and the stronger notion of any-
simulation extractability, where P ∗ can also see proofs of false statements. As we will
see, the former notion is often simpler to construct and sufficient in our applications.

We extend our definition to f -extractability, where Ext only needs to output some
function f(x′) of a valid witness x′. We further extend this definition to support la-
bels, so that the Prove, Verify, Sim, and Ext algorithms also take a public label L as
input, and the correctness, soundness, and zero-knowlegde properties are updated ac-
cordingly. If Π = (Setup, Prove, Verify) is an NIZK argument with simulator Sim
and extractor Ext, we write ProveL, VerifyL, SimL, ExtL to denote proof, verifica-
tion, simulation, and extraction under label L, respectively.

We start by defining a simulation oracle SIMTK(·). A query to the simulation oracle
consists of a pair (x, y) and a label L. The oracle checks if (x, y) ∈ R. If true, it ignores
x and outputs a simulated argument SimL(TK, y), and otherwise outputs ⊥. We now
give a formal definition of true-simulation extractability.

Definition 5 (True-Simulation f -Extractability). Let f be a fixed efficiently com-
putable function and let Π = (Setup, Prove, Verify) be an NIZK argument for a re-
lation R, satisfying the completeness, soundness and zero-knowledge properties above.
We say that Π is true-simulation f -extractable (f -tSE) with labels if:

– Apart from outputting a CRS and a trapdoor key, Setup also outputs an extraction
key: (CRS, TK, EK)← Setup(1λ).

– There exists a PPT algorithm Ext(y, ϕ, EK) such that for all P ∗, Pr[P ∗ wins] ≤
negl(λ) in the following game:
1. Key Generation: The challenger runs (CRS, TK, EK)← Setup(1λ) and gives

CRS to P ∗.
2. Simulation queries: P ∗SIMTK(·) is given access to the simulation oracle
SIMTK(·), which it can adaptively access.
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3. Adversary Output: P ∗ outputs a tuple (y∗, L∗, ϕ∗).
4. Extraction: The challenger runs z∗ ← ExtL∗

(y∗, ϕ∗, EK).
5. P ∗ wins if (a) the pair (y∗, L∗) was not part of a simulator query, (b)

VerifyL∗
(y∗, ϕ∗) = 1, and (c) for all x′ such that f(x′) = z∗ we have

R(x′, y∗) = 0.6

In the case when f is the identity function, we simply say that Π is true-simulation
extractable (tSE).

We give several variations of this new primitive. First, we define one-time simulation
extractability, in which the adversary P ∗ is only given a single query to the simula-
tion oracle SIMTK(·). Second, we define the notion of strong simulation extractability
by changing the winning condition so that P ∗ is now required to output a new state-
ment/argument pair instead of a new statement. More formally, condition 5a becomes:
the tuple (y∗, L∗, ϕ∗) is new, that is, either (y∗, L∗) was not part of a simulator query, or
if it was, the argumentϕ∗ is different from the one(s) given to P ∗ by SIMTK(·). We ob-
serve that we can generically construct strong f -tSE NIZK arguments from (standard)
f -tSE NIZK arguments if we additionally use a strongly-secure one-time signature. In
particular, the prover now computes the standard f -tSE argument, signs it, and attaches
the verification key vk to the public label. To verify, we first check that the signature is
valid and then verify the f -tSE argument.

Finally, we say that an NIZK argument Π is any-simultation f -extractable (f -aSE)
(similar to the notion of simulation-sound extractability of [31]) if the adversary P ∗

instead has access to a modified simulation oracle S̃IMTK(·) that responds to all simu-
lation queries without checking that R(x, y) = 1 (and hence might also give simulated
arguments of false statements). In this work we do not make use of this variation, but
state it here because as we will see, this notion has been implicitly used in prior works.
However, f -aSE is a stronger notion than f -tSE and is not needed, as we will show that
f -tSE is sufficient in constructing leakage-resilient signatures and CCA-encryption.

4 Generic Constructions

In this section we give generic constructions of leakage-resilient hard relations, signa-
tures, and CCA-secure encryption. In the latter two we use the f -tSE NIZK primitive
that we defined in Section 3. Finally, we give a construction of f -tSE NIZK arguments.

LEAKAGE-RESILIENT HARD RELATIONS. We begin by showing how to generically
construct leakage-resilient hard relations from SPR relations. Informally, we say that a
relationR is second-preimage resistant (SPR) if given a random (x, y) ∈ R it is difficult
to find x′ �= x such that (x′, y) ∈ R. We formalize this in the following definition.

Definition 6 (Second-Preimage Resistant (SPR) Relation). A relation R with a ran-
domized PPT sampling algorithm KeyGen is second-preimage resistant if:

– For any (x, y)← KeyGen(1λ), we have (x, y) ∈ R.
– There is a poly-time algorithm that decides if (x, y) ∈ R.

6 In other words, the adversary wins if the extractor fails to extract a good value z∗ which
corresponds to at least one valid witness x′; i.e. f(x′) = z∗. For the identity function, f(x) =
x, this corresponds to the statement: R(z∗, y) = 0.
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– For any PPT algorithm A, Pr[(x′, y) ∈ R ∧ x′ �= x] ≤ negl(λ), where the proba-
bility is taken over (x, y)← KeyGen(1λ), x′ ← A(x, y).

We define the average-case pre-image entropy of the SPR relation to be Havg(R) =
H̃∞(X | Y ) , where random variables (X,Y ) are distributed according to KeyGen(1λ).
(We refer the reader to the full version [18] for the definition of H̃∞(X | Y ).)

Theorem 1. If R(x, y) is an SPR relation, then it is also an �-leakage resilient hard
relation for � = Havg(R)− ω(logλ), where λ is the security parameter.

LEAKAGE-RESILIENT SIGNATURES. We give a generic construction of leakage-
resilient signatures based on leakage-resilient hard relations and tSE-NIZK arguments.
Let R(x, y) be an �-leakage resilient hard relation with sampling algorithm
KeyGenR(1λ). Let Π = (Setup, Prove, Verify) be a tSE-NIZK argument for rela-
tion R supporting labels. Consider the following signature scheme:

– KeyGen(1λ) : Output sk = x and vk = (CRS, y) where
(x, y)← KeyGenR(1λ) , (CRS, TK, EK)← Setup(1λ).

– Signsk(m) : Output σ = ϕ where ϕ← Provem(x, y). (Note that m is the label.)
– SigVervk(m,σ): Output Verifym(y, σ).

Theorem 2. If R(x, y) is an �-leakage resilient hard relation and Π is a labeled tSE-
NIZK argument forR, then the above scheme is an �-leakage resilient signature scheme.

LEAKAGE-RESILIENT CCA-SECURE ENCRYPTION. We give a generic construction
of leakage-resilient CCA-secure encryption from leakage-resilient CPA-secure encryp-
tion and strong f -tSE NIZK arguments. Let E = (KeyGen, Enc, Dec) be an �-LR-CPA
secure encryption scheme and let Π = (Setup, Prove, Verify) be a one-time strong
f -tSE NIZK argument for the relationRenc = {( (m, r), (pk, c) ) | c = Encpk(m; r)}.
where f(m, r) = m (i.e. the extractor only needs to extract the message m, but not the
randomness r of encryption). We show how to use E , Π to construct an �-LR-CCA
encryption scheme E∗. Define E∗ = (KeyGen∗, Enc∗, Dec∗) by:

– KeyGen∗(1λ): Output pk = (pk0, CRS), sk = sk0 where
(pk0, sk0)← KeyGen(1λ) , (CRS, TK, EK)← Setup(1λ).

– Enc∗pk(m; r): Output C = (c, π) where
c← Encpk0(m; r) , π ← ProveCRS((pk0, c), (m, r)).

– Dec∗sk(C): Parse C = (c, π). If π verifies output Decsk(c), else output⊥.

Theorem 3. Assume that E is �-LR-CPA secure, and Π is a strong one-time f -tSE
NIZK argument for the relationRenc where, for any witness (m, r), we define f(m, r)=
m. Then the scheme E∗ defined above is �-LR-CCA secure.

We note that if the tSE NIZK construction allows labels, then we can naturally extend
our construction above to yield a �-LR-CCA encryption with labels, by simply putting
the encryption labels into the NIZK proofs (and using them to verify the proofs).

TRUE-SIMULATION f -EXTRACTABLE (f -TSE) NIZK. Let f be any efficiently com-
putable function, and letR(x, y) be an NP relation. We show how to construct an f -tSE
NIZK argument Ψ from any labeled CCA-secure encryption scheme, and (standard)
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NIZK arguments. Let E = (KeyGen, Enc, Dec) be a CCA-secure encryption scheme
supporting labels, and let Π = (SetupΠ , ProveΠ , VerifyΠ) be an NIZK argument
for the relation RΠ = {( (x, r), (y, c, pk, L) ) | R(x, y) = 1 ∧ c = EncL

pk(f(x); r)}.
We define f -tSE NIZK argument Ψ (supporting labels) as follows:

– Setup(1λ) : Output CRS = (CRSΠ , pk), TK = TKΠ , EK = sk where
(pk, sk)← KeyGen(1λ) , (CRSΠ , TKΠ)← SetupΠ(1λ).

– ProveL(x, y; r): Output ϕ = (c, π) where
c← EncL

pk(f(x); r) , π ← ProveΠ((x, r), (y, c, pk, L)).
– VerifyL(y, ϕ): Parse ϕ = (c, π) and run VerifyΠ((y, c, pk, L), π).

Theorem 4. If E is a labeled CCA-secure encryption scheme and Π is an NIZK argu-
ment for relation RΠ , then Ψ is a f -tSE NIZK argument for relation R.

COMPARISON OF OUR GENERIC CONSTRUCTIONS TO PRIOR WORK. The idea of
using an SPR relation to construct leakage-resilient hard relations was implicit in [4,42],
and explicitly described in [5] for the case of leakage-resilient one-way functions.

Our constructions of leakage-resilient CCA encryption and signatures from tSE
NIZKs bear significant resemblance to prior constructions. In particular, we observe that
an alternate construction of tSE NIZK could be achieved by using a CPA-encryption
scheme instead of a CCA one, and a ss-NIZK argument system [56] instead of a stan-
dard one. In fact, the resulting construction would yield an any-simulation extractable
(aSE) NIZK argument. This instantiation of aSE NIZKs is implicitly used by [42] in
their construction of leakage-resilient signatures. It is also used implicitly in the Naor-
Yung “double-decryption” paradigm [49,55,56,45] for CCA security, which was later
used in [48] to construct leakage-resilient CCA-encryption. However, as we have seen,
tSE is sufficient for constructing both leakage-resilient signatures and CCA-encryption
and thus, the stronger notion of aSE is not needed. Furthermore, given the current state
of efficient encryption schemes and NIZK, the difference in efficiency between ss-NIZK
and standard NIZK is significantly greater than the difference between CCA and CPA-
secure encryption7, thus making tSE superior in both simplicity and efficiency.

We note that our construction of tSE NIZKs (based on CCA-encryption and stan-
dard NIZKs) was implicitly used by [31] to construct signatures of group elements,
and by [11] to construct efficient CCA-encryption with key-dependent message (KDM)
security from KDM-secure CPA-encryption. Still, the abstraction of tSE has not been
explicitly defined in prior work despite its apparent usefulness.

5 Instantiations

ASSUMPTIONS. We review several standard hardness assumptions on which we will
base our constructions.

Decisional Diffie-Hellman (DDH). Let G be a group of prime order q. Let g1, g2
$←− G

and r, r1, r2
$←− Zq . The decisional Diffie-Hellman (DDH) assumption states that the

7 Informally, the difference between CCA and CPA-secure encryption is only 2 group elements,
whereas the size of a ss-NIZK proof is more than twice the size of a standard NIZK proof.
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following two distributions are computationally indistinguishable: (G, g1, g2, gr1
1 , g

r2
2 )

and (G, g1, g2, gr
1, g

r
2).

Let G1,G2,GT be groups of prime order q and let e : G1 × G2 → GT be a non-
degenerate efficiently computable bilinear map.

Symmetric External Diffie-Hellman (SXDH) [59,9,6,26,61]. The symmetric external
Diffie-Hellman assumption (SXDH) is that the DDH problem is hard in both G1 and
G2. The assumption is clearly invalid for symmetric pairings (when G1 = G2), but is
believed to hold when there is no efficiently computable mapping between G1 and G2.

K-Linear [37,60] and DLIN [9]. Let G be a group of primer order q and let K ≥ 1 be

constant. Let g0, g1, . . . , gK
$←− G and x0, x2, . . . , xK

$←− Zq . The K-Linear assump-
tion states that the following two distributions are computationally indistinguishable:
(G, g0, g1, . . . , gK , g

x1
1 , . . . , gxK

K , gx0
0 ), and (G, g0, g1, . . . , gK , g

x1
1 , . . ., gxK

K , gX
0 ), with

X =
∑K

i=1 xi. Note that for K = 1, theK-Linear is the same as DDH, and that it does
not hold when working with symmetric pairings. In that setting, the 2-Linear assump-
tion is usually assumed to hold, and is often referred to as the Decisional Linear (DLIN)
assumption. Throughout this paper we assume the K-Linear assumption holds in both
G1 and G2, which is the case when working with symmetric pairings, and slightly abuse
notation when K = 1 and assume SXDH holds in that case.

OUR INSTANTIATIONS. We show efficient instantiations of the leakage-resilient signa-
ture and CCA-secure encryption constructions described in Section 4. For each scheme,
we give two instantiations based on bilinear maps: one secure under the SXDH as-
sumption, and a second, secure under the DLIN assumption. The first can be used with
asymmetric pairings, while the second applies to the case of symmetric pairings. We
give details of all instantiations in the full version [18] but give a high-level idea below.

Signatures. Recall that to instantiate the signature scheme from Section 4, we need a
leakage-resilient hard relationR (which we will derive from an SPR relation) and a true-
simulation extractable (tSE) NIZK argument, which we build from CCA-secure encryp-
tion and a standard NIZK argument for the relation {((x, r), (y, c, pk, L)) |R(x, y) = 1
∧ c = EncL

pk(f(x); r)}. We show our choice of instantiations for these components:

– CCA-Secure Encryption: Under both the SXDH and DLIN assumptions, we use
efficient encryption schemes in the style of Cramer-Shoup [14,60].

– NIZK Argument: We use the Groth-Sahai proof system [33], which can be instan-
tiated both under SXDH and DLIN.

– SPR Relation: Previous constructions of leakage-resilient primitives use the SPR
function gx1

1 gx2
2 . . . gxn

n . However, this function has the problem that the witness
lies in the exponent. This means that we cannot combine it with an encryption
scheme for elements in G (unless each witness component is committed bit by bit
which, among other things, results in proofs growing linearly with the security pa-
rameter), and unfortunately encryption schemes for messages in Zq cannot be com-
bined with the Groth-Sahai system. We therefore construct two new SPR relations
based on pairing-product equations. For our SXDH instantiation, we use the rela-
tion e(h1, x1) e(h2, x2) . . . e(hn, xn) = e(y, g̃), where g̃ is a generator of G2. We
prove that this relation is SPR under the SXDH assumption. In the DLIN case, we
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use the relation: e(h1, x1) e(h2, x2) . . . e(hn, xn) = e(y1, g) , e(�1, x1) e(�2, x2)
. . . e(�n, xn) = e(y2, g), where g is a generator of G. We prove that this relation is
SPR under the DLIN assumption. To achieve a (1 − ε) leakage ratio, we let n (the
number of witness components) in the SPR relation be inversely proportional to ε.

Theorem 5. Let G1,G2 be groups of primer order q. For any ε > 0, there exists a
(1 − ε)|sk|-leakage resilient signature scheme, secure under the SXDH assumption,
using signatures consisting of (9/ε)(1 + ω(logλ)/ log q) + 24 group elements and 2
elements in Zq . Similarly, for any ε > 0, there exists a (1 − ε)|sk|-leakage resilient
signature scheme, secure under the DLIN assumption, using signatures consisting of
(19/ε)(2 + ω(logλ)/ log q) + 70 group elements and 6 elements in Zq .

CCA-Secure Encryption. Recall that for leakage-resilient encryption, we need leakage-
resilient CPA-secure encryption, standard CCA-secure encryption and strong tSE
NIZK, which we can get from combining regular tSE NIZK with a strong one-time
signature. We build regular tSE NIZK from CCA-secure encryption and regular NIZK.
We describe our choices for each of these below.

– LR-CPA-Secure Encryption: We construct a new leakage-resilient CPA-secure en-
cryption scheme for our purpose in the style of ElGamal (similar to ones used in
[48,11] but making it more efficient). The leakage that our new CCA-secure en-
cryption tolerates is the same as the leakage tolerated by the CPA-secure scheme.
Informally, we achieve a (1−ε) leakage ratio in the CPA-secure scheme by increas-
ing the number of generators used in the public key and ciphertext. This number
will be inversely proportional to ε.

– CCA-Secure Encryption: Under both the SXDH and DLIN assumptions, we use
efficient encryption schemes in the style of Cramer-Shoup [14,60].

– NIZK Argument: We use the Groth-Sahai proof system [33], which can be instan-
tiated both under SXDH and DLIN.

– One-Time Signature: We observe that any strong one-time signature secure under
these assumptions can be used. Here, we opt for the scheme of [31], secure un-
der the Discrete Log assumption (implied by both SDXH and DLIN), because its
signature size is small, namely 2 elements in Zq .

Theorem 6. Let G1,G2 be groups of primer order q. For any ε > 0, there exists a
(1 − ε)|sk|-leakage resilient encryption scheme, secure under the SXDH assumption,
using ciphertexts consisting of (2/ε)(2+λ/ log q) +15 group elements and 2 elements
in Zq . Similarly, for any ε > 0, there exists a (1 − ε)|sk|-leakage resilient encryption
scheme, secure under the DLIN assumption, using ciphertexts consisting of (3/ε)(3 +
λ/ log q) + 34 group elements and 2 elements in Zq .

6 Other Applications

Once we have efficient leakage-flexible signature schemes, we observe that the standard
signature-based ID scheme, where the verifier asks the prover to sign a random message,
easily extends to the leakage setting. Moreover, the resulting actively secure ID scheme
inherits its relative leakage from the corresponding signature scheme, and satisfies the



628 Y. Dodis et al.

strongest notion of “anytime-leakage” [4], where the leakage can occur even during
the impersonation attack. Although our method is pretty simple, we notice that the
other two popular methods of building ID schemes — the use of Σ-protocols for hard
relations analyzed in [4] (see first two rows of Tables 3), and the use of CCA-secure
encryption (where the prover decrypts a random challenge ciphertext) — inherently do
not allow us to obtain optimal results, even when instantiated with leakage-flexible hard
relations or CCA-encryption schemes.

Finally, we obtain two efficient leakage-flexible AKA protocols. First, similarly to
the case of ID schemes, we can obtain leakage-resilient AKA schemes from any leakage-
resilient signature scheme, as formally explained in [4]. The idea is to essentially sign
every flow of a standard Diffie-Hellman-based protocol, but with a leakage-resilient sig-
nature scheme. We notice, though, that the resulting protocol is not deniable. Namely,
the transcript of the protocol leaves irrefutable evidence that the protocol took place.
Motivated by this deficiency, we design another general AKA protocol based on CCA-
encryption. The details are given in the full version [18], but, intuitively, the parties
encrypt the flows of the standard Diffie-Hellman-based protocol, effectively proving
their identities by successfully re-encrypting the appropriate flows. Although we do not
formalize this, this protocols is “deniable”, because the transcript of the protocol can be
simulated without the knowledge of parties’ secret keys. To the best of our knowledge,
this protocol was not suggested and analyzed even in the leakage-free setting, where it
appears interesting already. Here we actually show that our (new) deniable AKA proto-
col works even in the presence of leakage.
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