

Lecture Notes in Computer Science 6470
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Services Science

Subline of Lectures Notes in Computer Science

Subline Editors-in-Chief

Robert J.T. Morris, IBM Research, USA

Michael P. Papazoglou, University of Tilburg, The Netherlands

Darrell Williamson, CSIRO, Sydney, Australia

Subline Editorial Board

Boualem Bentallah, Australia

Athman Bouguettaya, Australia

Murthy Devarakonda, USA

Carlo Ghezzi, Italy

Chi-Hung Chi, China

Hani Jamjoom, USA

Paul Klingt, The Netherlands

Ingolf Krueger, USA

Paul Maglio, USA

Christos Nikolaou, Greece

Klaus Pohl, Germany

Stefan Tai, Germany

Yuzuru Tanaka, Japan

Christopher Ward, USA

Paul P. Maglio Mathias Weske Jian Yang
Marcelo Fantinato (Eds.)

Service-Oriented
Computing

8th International Conference, ICSOC 2010
San Francisco, CA, USA, December 7-10, 2010
Proceedings

13

Volume Editors

Paul P. Maglio
IBM Almaden Research Center
San Jose, CA, USA
E-mail: pmaglio@almaden.ibm.com

Mathias Weske
University of Potsdam
Potsdam, Germany
E-mail: mathias.weske@hpi.uni-potsdam.de

Jian Yang
Macquarie University
Sydney, Australia
E-mail: jian@ics.mq.edu.au

Marcelo Fantinato
University of São Paulo
São Paulo, Brazil
E-mail: m.fantinato@usp.br

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.2, C.2, H.4, H.3, H.5, J.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-17357-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-17357-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

Welcome to the 8th International Conference on Service Oriented Computing
(ICSOC 2010), held in San Francisco, December 2010. These proceedings repre-
sent high-quality research and industry papers, tutorials, demos, and posters
that showcase new developments in service oriented computing and related
fields.

Since the first meeting in beautiful Trento in 2003, ICSOC has become the
premier conference in the rapidly evolving areas of service research. While keep-
ing its roots in scientific excellence and technical depth of service technology,
ICSOC 2010 aimed to combine technical aspects of service computing with ap-
plication and business-oriented aspects of service design, following the recent
emergence of service science as an interdisciplinary foundation for understand-
ing and integrating service systems. Located in the center of technology innova-
tion, the San Francisco Bay Area, this year’s ICSOC, through its Local Advisory
Board, reached out to local industry and academia for keynotes and panels on
current topics and to connect technical invention with commercial innovation.

The Program Committee faced some tough decisions this year. We received
238 submissions, signalling a growing community of researchers and practitioners
working in this multidisciplinary field. All papers were considered carefully by
the Program Committee in originality, novelty, rigor, and relevance. In the end,
33 full research papers and three full industry papers were selected, resulting
in an acceptance rate of 15%. An additional 18 submissions were accepted as
short papers. There were also three PhD symposium posters and four regular
posters accepted. Paper and poster presentations were complemented by tutorial
and demo programs. All represented the state of the art in service oriented
computing.

We were fortunate to work with some 100 Program Committee members on
paper selection. Without their expertise and dedication, these proceedings—and
this conference—would not have been possible. The high-quality papers resulted
from the joint effort of these researchers, who each carefully read, commented
on, and corresponded over many submissions. We thank them for their hard
work.

We were privileged to work with many talented and dedicated colleagues on
the Organizing Committee and the Local Advisory Board, particularly Bernd
Kraemer, Registration Co-chair, Marcelo Fantinato, Publications Chair, Matthias
Weidlich, Publicity Chair, and Maja Vukovic, Web Chair. We apologize that we
cannot list all who helped. Please find the complete list in the proceedings.

VI Preface

A special thanks goes to the authors, keynote speakers, panelists, and tutorial
speakers, who together made the conference happen. And of course, our biggest
thanks goes to the participants, who make the conference worthwhile. It is our
great pleasure and privilege to present these proceedings. We hope you find the
volume inspiring for years to come.

December 2010 Heiko Ludwig
Fu-ren Lin

Paul P. Maglio
Mathias Weske

Jian Yang

Organization

Honorary General Chair

Jim Spohrer IBM, USA

General Chairs

Heiko Ludwig IBM Research, USA
Fu-Ren Lin National Tsing Hua University, Taiwan

Program Committee Chairs

Mathias Weske Univ. Potsdam, Germany
Jian Yang Mcquarry University, Australia
Paul Maglio IBM Research, USA

Advisory Board

Avi Borthakur Oracle, USA
Claudio Bartolini HP Labs, USA
Christoph Bussler Saba Software, USA
Axel Hochstein Stanford University, USA
Ramesh Jakka 360 Fresh and Carnegie Mellon Silicon Valley, USA
Yuecel Karabulut SAP, USA
Michael Maximilien IBM Research, USA

Workshop Chairs

Gustavo Rossi UNLP, Argentina
Soe-Tsyr Yuan National Chengchi University, Taiwan
Michel Maximilien IBM Research, USA

Tutorial Chairs

Thomas Sandholm HP Labs, USA
Jyoti Bhat Infosys, India
Haluk Demirkan Arizona State University, USA

VIII Organization

Demonstration Chairs

Florian Daniel University of Trento, Italy
Christian Zirpins Karlsruhe Institute of Technology, Germany

Poster Chairs

Andreas Wombacher University of Twente, The Netherlands

Finance/Registration Chairs

Bernd J. Kraemer Fernuni Hagen, Germany
Christian Zirpins Karlsruhe Institute of Technology, Germany

PhD Symposium Chairs

Eleni Stroulia University of Alberta, Canada
Boualem Benatallah University of New South Wales, Australia
Jianwen Su University of California at Santa Barbara, USA

Web Chair

Maja Vukovic IBM Research, USA

Publications Chair

Marcelo Fantinato University of São Paulo, Brazil

Publicity Chair

Matthias Weidlich University of Potsdam, Germany

Conference Operations Management

Beatriz Raggio Xparency, USA

Organization IX

Program Committee

Marco Aiello University of Groningen, The Netherlands
Rama Akkiraju IBM Research, USA
Alvaro Arenas STFC Rutherford Appleton Laboratory, USA
Karim Baina Mohammed V-Souissi University, Morocco
Luciano Baresi Politecnico di Milano, Italy
Claudio Bartolini HP Labs, USA
Samik Basu Iowa State University, USA
Boualem Benatallah University of New South Wales, Australia
Salima Benbernou University of Paris, France
Antonia Bertolino ISTI-CNR, Italy
Walter Binder University of Lugano, Switzerland
Athman Bouguettaya CSIRO, Australia
Christoph Bussler BEA, USA
Manuel Carro Universidad Politécnica de Madrid, Spain
Shiping Chen CSIRO ICT, Australia
Lawrence Chung University of Texas at Dallas, USA
Emmanuel Coquery Université Claude Bernard Lyon 1, France
Francisco Curbera IBM Research, USA
Vincenzo D’Andrea University of Trento, Italy
Florian Daniel University of Trento, Italy
Joseph Davis University of Sydney, Australia
Mark Davis Bentley University, USA
Flavio De Paoli Universita di Milano, Italy
Haluk Demirkan Arizona State University, USA
Frederic Desprez INRIA, France
Khalil Drira LAAS Toulouse, France
Marlon Dumas University of Tartu, Estonia
Schahram Dustdar University of Technology Vienna, Austria
Markus Endler PUC-Rio de Janeiro, Brazil
Gregor Engels University of Paderborn, Germany
Rik Eshuis Eindhoven University of Technology,

The Netherlands
Ioannis Fikouras Ericsson, Sweden
Howard Foster City University London, UK
Andreas Friesen SAP, USA
Hiroaki Fukuda Keio University, Japan
Dragan Gasevic Athabasca University, Canada
Paolo Giorgini University of Trento, Italy
Carlo Ghezzi Politecnico di Milano, Italy
Sven Graupner HP Labs, Palo Alto, USA
Jeff Gray University of Alabama at Birmingham, USA
Paul Grefen Eindhoven University of Technology,

The Netherlands

X Organization

Peng Han Chongqing Academy of Science and Tech., China
Alan Hartman IBM Research, India
Manfred Hauswirth DERI Galway, Ireland
W.J.A.M. van den Heuvel University of Tilburg, The Netherlands
Valerie Issarny INRIA Paris-Rocquencourt, France
Hans-Arno Jacobsen University of Toronto, Canada
Eser Kandogan IBM Research, USA
Yuecel Karabulut SAP, USA
Kamal Karlapalem IIIT-H, India
Dimka Karastoyanova University of Stuttgart, Germany
Rania Khalaf IBM T.J. Watson Research Center, USA
Markus Kirchberg Agency for Science, Tech. and Research, Singapore
Jana Khler IBM Zurich Research Lab, Switzerland
Bernd Kraemer Fernuni Hagen, Germany
Jeff Kreulen IBM Almaden Research Center, USA
Steve Kwan San Jose State University, USA
Patricia Lago Free University Amsterdam, The Netherlands
Winfried Lamersdorf University of Hamburg, Germany
Frank Leymann University of Stuttgart, Germany
Fu-Ren Lin National Tsing Hua University, Taiwan
Lin Liu Tsing Hua University, China
Xumin Liu Rochester Institute of Technology, USA
Bertram Ludaescher University of California at Davis, USA
Zaki Malik Wayne State University, USA
Esperanza Marcos Universidad Rey Juan Carlos, Spain
Michael Maximilien IBM Research, USA
Massimo Mecella Universita di Roma, Italy
Nikolay Mehandjiev University of Manchester, UK
Hamid Motahari-Nezhad HP Lab, USA
Michael Mrissa University of Lyon, France
Surya Nepal CSIRO, Australia
Christos Nikolaou University of Crete, Greece
Olga Ormandjieva Concordia University, Canada
Guadalupe Ortiz University of Extremadura, Spain
Caesare Pautasso University of Lugano, Switzerland
Klaus Pohl Duisburg-Essen University, Germany
Frank Puhlmann inubit AG, Germany
Mu Qiao Pennsylvania State University, USA
Robin Qiu Pennsylvania State University, USA
Omer Rana University of Cardiff, UK
Manfred Reichert University of Ulm, Germany
Wolfgang Reisig Humboldt University, Germany

Organization XI

Colette Roland University of Paris, France
Florian Rosenberg ICT CSIRO, Australia
Gustavo Rossi UNLP, Argentina
Masoud Sadjadi Florida International University, USA
Mohand-Said Hacid University of Lyon, France
Jorge Sanz IBM Almaden Research Center, USA
Regis Saint-Paul CREATE-NET International Research Center, Italy
Ramesh Jakka 360 Fresh and Carnegie Mellon Silicon Valley, USA
Daniel Schwabe PUC-Rio de Janeiro, Brazil
Michael J. Shaw University of Illinois, Urbana Champaign, USA
Jane Siegel Carnegie Mellon Silicon Valley, USA
Munindar P. Singh North Carolina State University, USA
Ignacio Silva-Lepe IBM T.J. Watson Research Center, USA
George Spanoudakis City University London, UK
Bruce Spencer NRC, Canada
Jianwen Su UC Santa Barbara, USA
York Sure GESIS Inst. and University of Koblenz-Landau,

Germany
Jun Suzuki University of Massachusetts, Boston, USA
Stefan Tai University of Karlsruhe, Germany
Wang-Chiew Tan IBM Research, USA
Zahir Tari RMIT University, Australia
M. Beatriz F. Toledo Unicamp, Brazil
Farouk Toumani Blaise Pascal University, France
Peter Troeger HI, University of Potsdam, Germany
Jos van Hillegersberg University of Twente, The Netherlands
Changzhou Wang The Boeing Company, USA
Yan Wang Macquarie University, Australia
Bruno Wassermann University College London, UK
Michael Weiss Carleton University, Canada
Karsten Wolf University of Rostock, Germany
Andreas Wombacher University of Twente, The Netherlands
Lai Xu Bournemouth University, UK
Ramin Yahyapour TU Dortmund University, Germany
Yelena Yesha University of Maryland, USA
Hossein Zadeh RMIT, Australia
Konstantinos Zachos City University London, UK
Weiliang Zhao Macquarie University, Australia
Andrea Zisman City University London, UK
Yan Zheng Nokia Research Center Helsinki, Finland

Table of Contents

Research Papers

Service and Business Process Modeling (1)

Business Process Model Abstraction Based on Behavioral Profiles 1
Sergey Smirnov, Matthias Weidlich, and Jan Mendling

Root-Cause Analysis of Design-Time Compliance Violations on the
Basis of Property Patterns . 17

Amal Elgammal, Oktay Turetken, Willem-Jan van den Heuvel, and
Mike Papazoglou

Artifact-Centric Choreographies . 32
Niels Lohmann and Karsten Wolf

Service and Business Process Modeling (2)

Resolving Business Process Interference via Dynamic Reconfiguration . . . 47
Nick R.T.P. van Beest, Pavel Bulanov, Hans Wortmann, and
Alexander Lazovik

Linked Data and Service Orientation . 61
Erik Wilde

Risk Sensitive Value of Changed Information for Selective Querying of
Web Services . 77

John Harney and Prashant Doshi

Service Management (1)

Adaptive Service Composition Based on Reinforcement Learning 92
Hongbing Wang, Xuan Zhou, Xiang Zhou, Weihong Liu,
Wenya Li, and Athman Bouguettaya

A Service Execution Control Framework for Policy Enforcement 108
Masahiro Tanaka, Yohei Murakami, and Donghui Lin

An Integrated Solution for Runtime Compliance Governance in SOA . . . 122
Aliaksandr Birukou, Vincenzo D’Andrea, Frank Leymann,
Jacek Serafinski, Patricia Silveira, Steve Strauch, and Marek Tluczek

XIV Table of Contents

Service Management (2)

A Differentiation-Aware Fault-Tolerant Framework for Web Services 137
Gerald Kotonya and Stephen Hall

Repair vs. Recomposition for Broken Service Compositions 152
Yuhong Yan, Pascal Poizat, and Ludeng Zhao

Interoperation, Composition and Simulation of Services at Home 167
Eirini Kaldeli, Ehsan Ullah Warriach, Jaap Bresser,
Alexander Lazovik, and Marco Aiello

Quality of Service

Efficient QoS-Aware Service Composition with a Probabilistic Service
Selection Policy . 182

Adrian Klein, Fuyuki Ishikawa, and Shinichi Honiden

Using Real-Time Scheduling Principles in Web Service Clusters to
Achieve Predictability of Service Execution . 197

Vidura Gamini Abhaya, Zahir Tari, and Peter Bertok

Aggregate Quality of Service Computation for Composite Services 213
Marlon Dumas, Luciano Garćıa-Bañuelos, Artem Polyvyanyy,
Yong Yang, and Liang Zhang

Service Science and Design

Creating Context-Adaptive Business Processes . 228
Gabriel Hermosillo, Lionel Seinturier, and Laurence Duchien

Statistical Quality Control for Human-Based Electronic Services 243
Robert Kern, Hans Thies, and Gerhard Satzger

A Requirement-Centric Approach to Web Service Modeling, Discovery,
and Selection . 258

Maha Driss, Naouel Moha, Yassine Jamoussi,
Jean-Marc Jézéquel, and Henda Hajjami Ben Ghézala

Service Development and Run-Time Management

Spreadsheet as a Generic Purpose Mashup Development
Environment . 273

Dat Dac Hoang, Hye-Young Paik, and Anne H.H. Ngu

Table of Contents XV

Combining Enforcement Strategies in Service Oriented Architectures . . . 288
Gabriela Gheorghe, Bruno Crispo, Daniel Schleicher,
Tobias Anstett, Frank Leymann, Ralph Mietzner, and
Ganna Monakova

Fault Handling in the Web Service Stack . 303
Oliver Kopp, Frank Leymann, and Daniel Wutke

High-Level Description Languages

Conjunctive Artifact-Centric Services . 318
Piero Cangialosi, Giuseppe De Giacomo, Riccardo De Masellis, and
Riccardo Rosati

Diagnosis of Service Failures by Trace Analysis with Partial
Knowledge . 334

Wolfgang Mayer, Gerhard Friedrich, and Markus Stumptner

Automatic Fragment Identification in Workflows Based on Sharing
Analysis . 350

Dragan Ivanović, Manuel Carro, and Manuel Hermenegildo

Service Level Agreements

Preventing SLA Violations in Service Compositions Using Aspect-Based
Fragment Substitution . 365

Philipp Leitner, Branimir Wetzstein, Dimka Karastoyanova,
Waldemar Hummer, Schahram Dustdar, and Frank Leymann

Adaptive Management of Composite Services under Percentile-Based
Service Level Agreements . 381

Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, and
Francesco Lo Presti

BPMN Modelling of Services with Dynamically Reconfigurable
Transactions . 396

Laura Bocchi, Roberto Guanciale, Daniele Strollo, and Emilio Tuosto

Service Engineering Methodologies

Programmable Fault Injection Testbeds for Complex SOA 411
Lukasz Juszczyk and Schahram Dustdar

Abstracting and Applying Business Modeling Patterns from
RosettaNet . 426

Pankaj R. Telang and Munindar P. Singh

XVI Table of Contents

Heuristic Approaches for QoS-Based Service Selection 441
Diana Comes, Harun Baraki, Roland Reichle, Michael Zapf, and
Kurt Geihs

Service Security, Privacy, and Trust

From Quality to Utility: Adaptive Service Selection Framework 456
Chung-Wei Hang and Munindar P. Singh

Trust Assessment for Web Services under Uncertainty 471
Zaki Malik and Brahim Medjahed

Incorporating Expectations as a Basis for Business Service Selection 486
Adel M. ElMessiry, Xibin Gao, and Munindar P. Singh

Industry Papers

Enhancing Collaboration with IBM’s Rational Jazztm 501
Laura Anderson, Bala Jegadeesan, Kenneth Johns, Mario Lichtsinn,
Priti Mullan, James Rhodes, Akhilesh Sharma, Ray Strong, and
Ruoyi Zhou

Discovering Business Process Similarities: An Empirical Study with
SAP Best Practice Business Processes . 515

Rama Akkiraju and Anca Ivan

A Scalable and Highly Available Brokering Service for SLA-Based
Composite Services . 527

Alessandro Bellucci, Valeria Cardellini, Valerio Di Valerio, and
Stefano Iannucci

Short Papers

Business Service Modeling

Business Artifacts Discovery and Modeling . 542
Zakaria Maamar, Youakim Badr, and Nanjangud C. Narendra

Carbon-Aware Business Process Design in Abnoba 551
Konstantin Hoesch-Klohe and Aditya Ghose

On Predicting Impacts of Customizations to Standard Business
Processes . 557

Pietro Mazzoleni, Aubrey Rembert, Rama Akkiraju, and
Rong (Emily) Liu

Table of Contents XVII

Extended WS-Agreement Protocol to Support Multi-round Negotiations
and Renegotiations . 563

Christoph Langguth and Heiko Schuldt

Run-Time Service Management

Event-Driven Virtual Machine for Business Integration Middleware 571
Joachim H. Frank, Liangzhao Zeng, and Henry Chang

Consistent Integration of Selection and Replacement Methods
under Different Expectations in Service Composition and Partner
Management Life-Cycle . 579

Fuyuki Ishikawa

Optimizing the Configuration of Web Service Monitors 587
Garth Heward, Jun Han, Ingo Müller, Jean-Guy Schneider, and
Steve Versteeg

Formal Methods

A Soft Constraint-Based Approach to QoS-Aware Service Selection 596
Mohamed Anis Zemni, Salima Benbernou, and Manuel Carro

Timed Conversational Protocol Based Approach for Web Services
Analysis . 603

Nawal Guermouche and Claude Godart

Service Discovery Using Communication Fingerprints 612
Olivia Oanea, Jan Sürmeli, and Karsten Wolf

Quantifying Service Compatibility: A Step beyond the Boolean
Approaches . 619

Meriem Ouederni, Gwen Salaün, and Ernesto Pimentel

Quality of Service

Consistency Benchmarking: Evaluating the Consistency Behavior of
Middleware Services in the Cloud . 627

Markus Klems, Michael Menzel, and Robin Fischer

Service Composition with Pareto-Optimality of Time-Dependent QoS
Attributes . 635

Benjamin Klöpper, Fuyuki Ishikawa, and Shinichi Honiden

QoS-Based Optimization of Service Compositions for Complex
Workflows . 641

Dieter Schuller, André Miede, Julian Eckert, Ulrich Lampe,
Apostolos Papageorgiou, and Ralf Steinmetz

XVIII Table of Contents

Privacy-Aware Device Identifier through a Trusted Web Service 649
Marcelo da Cruz Pinto, Ricardo Morin, Maria Emilia Torino, and
Danny Varner

Service Applications

Towards Mitigating Human Errors in IT Change Management
Process . 657

Venkateswara R. Madduri, Manish Gupta, Pradipta De, and
Vishal Anand

A Service-Based Architecture for Multi-domain Search on the Web 663
Alessandro Bozzon, Marco Brambilla, Francesco Corcoglioniti, and
Salvatore Vadacca

Natural Language Service Composition with Request Disambiguation . . . 670
Florin-Claudiu Pop, Marcel Cremene, Mircea Vaida, and
Michel Riveill

Posters

Families of SOA Migration . 678
Maryam Razavian and Patricia Lago

An Ontology Based Approach for Cloud Services Catalog
Management . 680

Yu Deng, Michael R. Head, Andrzej Kochut, Jonathan Munson,
Anca Sailer, and Hidayatullah Shaikh

A Scalable Cloud-Based Queueing Service with Improved Consistency
Levels . 682

Han Chen, Fan Ye, Minkyong Kim, and Hui Lei

Exploring Simulation-Based Configuration Decisions 684
Michael Smit and Eleni Stroulia

PhD Symposium Posters

Efficient, Failure-Resilient Semantic Web Service Planning 686
Florian Wagner (Advisors: Fuyuki Ishikawa and Shinichi Honiden)

Integrated Service Process Adaptation . 690
Zhe Shan (Advisor: Dr. Akhil Kumar)

Contract Based, Non-invasive, Black-Box Testing of Web Services 695
Michael Averstegge (Advisor: Bernd J. Kraemer)

Table of Contents XIX

Demonstration Papers

Managing Process Model Collections with AProMoRe 699
M.C. Fauvet, M. La Rosa, M. Sadegh, A. Alshareef, R.M. Dijkman,
Luciano Garćıa-Bañuelos, H.A. Reijers, W.M.P. van der Aalst,
Marlon Dumas, and Jan Mendling

Managing Long-Tail Processes Using FormSys . 702
Ingo Weber, Hye-Young Paik, Boualem Benatallah,
Corren Vorwerk, Zifei Gong, Liangliang Zheng, and
Sung Wook Kim

Managing Web Services: An Application in Bioinformatics 704
Athman Bouguettaya, Shiping Chen, Lily Li, Dongxi Liu, Qing Liu,
Surya Nepal, Wanita Sherchan, Jemma Wu, and Xuan Zhou

An Integrated Solution for Runtime Compliance Governance in SOA . . . 706
Aliaksandr Birukou, Agnieszka Betkowska Cavalcante, Fabio Casati,
Soudip Roy Chowdhury, Vincenzo D’Andrea, Frank Leymann,
Ernst Oberortner, Jacek Serafinski, Patricia Silveira,
Steve Strauch, and Marek Tluczek

Event-Driven Privacy Aware Infrastructure for Social and Health
Systems Interoperability: CSS Platform . 708

Giampaolo Armellin, Dario Betti, Fabio Casati,
Annamaria Chiasera, Gloria Martinez, Jovan Stevovic, and
Tefo James Toai

Mashups with Mashlight . 711
Luciano Baresi and Sam Guinea

A Service Mashup Tool for Open Document Collaboration 713
Nelly Schuster, Raffael Stein, Christian Zirpins, and Stefan Tai

Panta Rhei: Optimized and Ranked Data Processing over Heterogeneous
Sources . 715

Daniele Braga, Francesco Corcoglioniti, Michael Grossniklaus, and
Salvatore Vadacca

RnR: A System for Extracting Rationale from Online Reviews and
Ratings . 717

Dwi A.P. Rahayu, Shonali Krishnaswamy, Cyril Labbe, and
Oshadi Alhakoon

Liquid Course Artifacts Software Platform . 719
Marcos Baez, Boualem Benatallah, Fabio Casati, Van M. Chhieng,
Alejandro Mussi, and Qamal Kosim Satyaputra

A Programmble Fault Injection Testbed Generator for SOA 722
Lukasz Juszczyk and Schahram Dustdar

XX Table of Contents

BPEL’n’Aspects&Compensation: Adapted Service Orchestration Logic
and Its Compensation Using Aspects . 724

Mirko Sonntag and Dimka Karastoyanova

A Tool for Integrating Pervasive Services and Simulating Their
Composition . 726

Ehsan Ullah Warriach, Eirini Kaldeli, Jaap Bresser,
Alexander Lazovik, and Marco Aiello

BPEL4Pegasus: Combining Business and Scientific Workflows 728
Mirko Sonntag, Dimka Karastoyanova, and Ewa Deelman

Tutorial Abstracts

Multidisciplinary Views of Business Contracts . 730
Munindar P. Singh and Nirmit Desai

Quantitative Service Analysis . 731
Naveen Kulkarni, Deepti Parachuri, and Shashank Trivedi

Scalable Services: Understanding Architecture Trade-off 732
Markus Klems and Stefan Tai

Crowd-Driven Processes: State of the Art and Research Challenges 733
Maja Vukovic and Claudio Bartolini

Author Index . 735

Business Process Model Abstraction Based on

Behavioral Profiles

Sergey Smirnov1, Matthias Weidlich1, and Jan Mendling2

1 Hasso Plattner Institute, Potsdam, Germany
{sergey.smirnov,matthias.weidlich}@hpi.uni-potsdam.de

2 Humboldt-Universität zu Berlin, Germany
jan.mendling@wiwi.hu-berlin.de

Abstract. A variety of drivers for process modeling efforts, from low-
level service orchestration to high-level decision support, results in many
process models describing one business process. Depending on the mod-
eling purpose, these models differ with respect to the model granularity.
Business process model abstraction (BPMA) emerged as a technique
that given a process model delivers a high-level process representation
containing more coarse-grained activities and overall ordering constraints
between them. Thereby, BPMA reduces the number of models capturing
the same business process on different abstraction levels. In this paper, we
present an abstraction approach that derives control flow dependencies
for activities of an abstract model, once the groups of related activities
are selected for aggregation. In contrast to the existing work, we allow
for arbitrary activity groupings. To this end, we employ the behavioral
profile notion that captures behavioral characteristics of a process model.
Based on the original model and the activity grouping, we compute a new
behavioral profile used for synthesis of the abstract process model.

1 Introduction

Business process management is a methodology that allows companies to stay
competitive and shorten the time to market periods of their products and ser-
vices [14]. Typically, each product or service is supported by a series of opera-
tional business processes. Companies that adopt business process management
use models to explicitly capture the knowledge about their processes. In large
companies such initiatives often yield several thousand models. Not only the
number is a challenge to maintenance of these models, but also the fact that of-
ten several models relate to the same process. This is, for instance, the case when
there exists a BPEL model capturing the service orchestration, a detailed con-
ceptual model describing the work steps, and an overview model for senior man-
agement. In this context, business process model abstraction (BPMA) emerged
as a technique that works on the most detailed model. It preserves essential
process properties leaving out insignificant details. In this way, maintenance can
be centered around the most fine-grained model from which the more abstract
models are generated.

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 1–16, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 S. Smirnov, M. Weidlich, and J. Mendling

BPMA is related to different use cases. These include, for instance, discover-
ing the perspective of a particular collaboration partner or filtering out activities
of minor interest. A user study with industry has revealed that getting a quick
overview of a detailed process is urgently required in practice [26]. Technically, a
more high-level process model has to be derived with more coarse-grained activ-
ities and their control flow relations. A corresponding BPMA technique has to
tackle two questions. First, which activities should be grouped into more coarse-
grained ones? Second, what are the control flow relations between them? Most of
the existing work has made structural assumptions regarding the first question,
such that the second question becomes trivial, cf. [6,12,16,21]. Meanwhile, these
restrictions are often not realistic given the requirements in practice [22,29].

In this paper, we address the abstraction problem, assuming that arbitrary
activity groupings are specified. Our contribution is a technique for discovering
control flow relations of an abstract model given an unrestricted grouping of
activities in the initial model. Our novel approach builds on behavioral profiles,
a mechanism that captures control relations between each pair of activities in
terms of strict order, exclusiveness, or interleaving. Furthermore, we develop
an approach for the synthesis of a process model from a behavioral profile. The
synthesis builds on the newly defined notion of consistency for behavioral profiles.

The rest of the paper is structured accordingly. Section 2 motivates the prob-
lem and introduces the basic notations. Section 3 presents the developed BPMA
technique including the derivation of an abstract profile and the synthesis of
the model. Section 4 discusses the related work. Finally, Section 5 concludes the
paper and provides an outline on the future work.

2 Background

This section discusses BPMA and explains the limitations of the existing ap-
proaches supporting the argumentation with an example. Once the motivation
is provided, we introduce the formalism further used in the paper.

2.1 Business Process Model Abstraction

In essence, business process model abstraction is an operation on a model which
preserves essential properties by leaving out insignificant details in order to retain
information relevant for a particular purpose. BPMA is realized by means of two
basic abstraction operations: elimination and aggregation (respectively, inverse
of the extension and refinement operations for behavior inheritance [24]). While
elimination omits insignificant activities, aggregation groups several semantically
related activities into one high-level activity. As the question of which activities
shall be aggregated has been partially answered by prior research, e.g., cf. [25],
we focus on how the ordering relations between high-level activities are derived.

Existing approaches restrict the choice of activities to be aggregated and
derive the ordering relations between high-level activities analyzing the initial
model control flow, cf. [6,16,21]. In these works each coarse-grained activity is

Business Process Model Abstraction Based on Behavioral Profiles 3

Receive forecast
request

Collect
data

Perform
analysis

Perform
simulation Generate

forecast report

Perform full
analysis

Perform quick
analysis

Handle
data

?? ? ?

F2F1

Perform quick
data analysis

Receive forecast
request

Consolidate
results

Generate
forecast report?

Prepare data for
quick analysis

Prepare data for
full analysis

abstract model, PMa

initial model, PM

Fig. 1. Motivating example: initial model and activity grouping

mapped to a process model fragment. The fragments are either explicitly given by
patterns or specified through properties. The latter enables aggregation of frag-
ments with an arbitrary inner structure and rests upon model decomposition
techniques [21]. However, the direct analysis of the control flow has limitations.
In practice, semantically related activities can be allocated in the original model
independently of the control flow structure, while one activity may belong to sev-
eral semantically related activity sets [22,29]. Consider the example model PM
in Fig. 1. The model describes a business process, where a forecast request is pro-
cessed. Once a forecast request is received, the required data is collected. Then,
there are two options: either to perform a full data analysis, or its short version.
The process concludes with a forecast report creation. Model PM contains sev-
eral semantically related activities that can be aggregated together into more
coarse-grained ones. In model PM related activities are marked by the same
background color, for instance, {Prepare data for quick analysis, Perform quick
data analysis}. Each activity set corresponds to a respective high-level activity in
the abstract model PMa, e.g., Perform quick analysis. Activities Receive forecast
request and Generate forecast report are not aggregated and, hence, appear in
the abstract model as is. The abstraction techniques proposed in prior research
allow to aggregate activities that belong, for instance, to fragment F1 or F2.
However, none of the existing approaches is capable of suggesting the ordering
constraints between activities Handle data, Perform full analysis, and Perform
quick analysis in the abstract model. In this paper, we define a more flexible
approach to determine the control structure. We utilize behavioral profiles [30]
as the underlying formalism. Behavioral profiles capture the essential behavior
of a process model in terms of strict order, exclusiveness, and interleaving order
relations for each activity pair.

Further, addressing the user demand revealed in [26], our BPMA technique
comprises a slider control that manages the ordering constraints loss. The slider
allows the user to select an appropriate model from a spectrum of models: from
the model with an arbitrary execution of high-level activities to the model where
the ordering constraints of PM are best-effort preserved.

4 S. Smirnov, M. Weidlich, and J. Mendling

2.2 Preliminaries

For our discussion, we use a formal notion of a process model. It captures the
commonalities of process modeling languages, such as BPMN or EPCs.

Definition 1 (Process Model). A tuple PM = (A,G, F, s, e, t) is a process
model , where:
– A is a finite nonempty set of activities;
– G is a finite set of gateways;
– N = A ∪G is a finite set of nodes with A ∩G = ∅;
– F ⊆ N ×N is the flow relation, such that (N,F) is a connected graph;
– •n = {n′ ∈ N |(n′, n) ∈ F} and n• = {n′ ∈ N |(n, n′) ∈ F} denote, respec-

tively, the direct predecessors and successors of a node n ∈ N ;
– ∀ a ∈ A : | • a| ≤ 1 ∧ |a • | ≤ 1
– s ∈ A is the only start activity, such that •s = ∅;
– e ∈ A is the only end activity, such that e• = ∅;
– t : G→ {and, xor} is a mapping that associates each gateway with a type.

The execution semantics of such a process model is given by a translation into a
Petri net following on common formalizations, cf., [1,10]. As our notion of a pro-
cess model comprises a dedicated start activity and a dedicated end activity, the
resulting Petri net is a workflow net (WF-net) [1]. All gateways are of type and
or xor, such that the WF-net is free-choice [1]. In order to arrive at a behavioral
profile, we consider the set of all complete traces (or execution sequences) from
start s to end e. The set of complete process traces TPM for a process model
PM contains lists of the form s · A∗ · e such that a list comprises the execution
order of activities. We use a ∈ σ with σ ∈ TPM to denote that an activity a
is a part of a complete process trace. The behavioral profile is grounded on the
notion of weak order between activities within this set of traces. Two activities
of a process model are in weak order, if there exists a trace in which one activity
occurs after the other. This relation requires the existence of such a trace and
does not have to hold for all traces of the model.

Definition 2 (Weak Order Relation). Let PM = (A,G, F, s, e, t) be a pro-
cess model, and TPM —its set of traces. The weak order relation �PM ⊆ (A×A)
contains all pairs (x, y), such that there is a trace σ = n1, . . . , nm in TPM with
j ∈ {1, . . . ,m− 1} and j < k ≤ m for which holds nj = x and nk = y.

Depending on how two activities of a process model are related by weak order,
we define three relations forming the behavioral profile.

Definition 3 (Behavioral Profile). Let PM = (A,G, F, s, e, t) be a process
model. A pair (x, y) ∈ (A×A) is in one of the following relations:
– strict order relation �PM , if x �PM y and y ��PM x;
– exclusiveness relation +PM , if x ��PM y and y ��PM x;
– interleaving order relation ||PM , if x �PM y and y �PM x.

The set of all three relations is the behavioral profile of PM .

The relations of the behavioral profile, along with the inverse strict order �−1=
{(x, y) ∈ (A×A) | (y, x) ∈ �}, partition the Cartesian product of activities.

Business Process Model Abstraction Based on Behavioral Profiles 5

-1
+

||

Fig. 2. Behavioral
relation hierarchy

The behavioral profile relations allow different levels of
freedom for activities. While interleaving order relation al-
lows the activities to appear in an arbitrary order, (inverse)
strict order specifies a particular execution order, and exclu-
siveness prohibits appearance of two activities in one trace.
Thus, we organize the relations into a hierarchy presented
in Fig. 2. At the top of the hierarchy the “strictest” relation
appears, while at the bottom—the least restrictive.

3 Abstract Model Synthesis

In this section, we describe the developed abstraction technique. We realize the
technique in the following steps.
Step 1 derive the behavioral profile BPPM for model PM
Step 2 construct the behavioral profile BPPMa for model PMa

Step 3 if a model consistent with profile BPPMa exists
Step 4 then create PMa, else report an inconsistency.
The remainder of this section is structured according to the above mentioned
steps: each subsection discusses one step.

3.1 Deriving Behavioral Relations from a Process Model

Derivation of the behavioral profile of a process model can be done efficiently
under the assumption of soundness. Soundness is a correctness criteria often used
for process models that guarantees the absence of behavioral anomalies, such
as deadlocks or livelocks [2]. It has been defined for WF-nets. As discussed in
Section 2.2, semantics for our notion of a process model is given by a translation
into free-choice WF-nets. Hence, the soundness criterion can be directly applied
to a process model. Moreover, we are able to reuse techniques for the derivation
of behavioral profiles that have been introduced for sound free-choice WF-nets
in [30]. Based thereon, behavioral profiles can be derived in O(n3) time with
n as the number of nodes of the respective WF-net. In essence, this approach
establishes a relation between the structure of a net and the relations of its
behavioral profile.

3.2 Abstract Model Behavioral Profile Construction

We assume that each high-level activity in PMa = (Aa, Ga, Fa, sa, ea, ta) is the
result of aggregation of several activities in PM = (A,G, F, s, e, t). Then, the
construction of coarse-grained activities is formalized by a function aggregate:

Definition 4 (Function Aggregate). Let PM = (A,G, F, s, e, t) be a process
model and PMa = (Aa, Ga, Fa, sa, ea, ta)—its abstract counterpart. Function
aggregate : Aa → P(A) specifies a correspondence between one activity in PMa

and the set of activities in PM .

6 S. Smirnov, M. Weidlich, and J. Mendling

Algorithm 1. Derivation of a behavioral relation for an activity pair
1: deriveBehavioralRelation(Activity x, Activity y, Double wt)
2: w(x �P Ma y) = |{∀(a, b) ∈ aggregate(x) × aggregate(y) : a �P M b ∨ a||PM b}|
3: w(y �PMa x) = |{∀(a, b) ∈ aggregate(x) × aggregate(y) : a �−1

P M b ∨ a||PM b}|
4: w(x 	�P Ma y) = |{∀(a, b) ∈ aggregate(x) × aggregate(y) : a �−1

P M b ∨ a +P M b}|
5: w(y 	�PMa x) = |{∀(a, b) ∈ aggregate(x) × aggregate(y) : a �P M b ∨ a +P M b}|
6: wprod = |aggregate(x)| · |aggregate(y)|
7: w(x +PMa y) =

min(w(x ��P Ma
y),w(y ��P Ma

x))
wprod

8: w(x �P Ma y) =
min(w(x�P Ma

y),w(y ��P Ma
x))

wprod

9: w(x �−1
P Ma

y) =
min(w(y�P Ma

x),w(x ��P Ma
y))

wprod

10: w(x||PMa y) =
min(w(x�P Ma

y),w(y�P Ma
x))

wprod

11: if w(x +PMa y) > wt then
12: return x +P Ma y
13: if w(x �PMa y) > wt then

14: if w(x �−1
PMa

y) > w(x �PMa y) then

15: return x �−1
P Ma

y

16: else
17: return x �P Ma y

18: if w(x �−1
PMa

y) > wt then

19: return x �−1
P Ma

y

20: return x||PMa y

Considering the example in Fig. 1, for instance, it holds aggregate(Perform
quick analysis) = {Prepare data for quick analysis, Perform quick data anal-
ysis} and aggregate(Handle data)={Collect data, Prepare data for full analy-
sis, Prepare data for quick analysis}. The behavioral profile of model PMa

defines the relations between each pair of activities in PMa. To discover the
behavioral profile for PMa we analyze the relations among activities in PM
and consider the function aggregate. For each pair of coarse-grained activi-
ties x, y, where x, y ∈ Aa, we study the relations between a and b, where
a ∈ aggregate(x), b ∈ aggregate(y). This study reveals a dominating behav-
ioral relation between elements of aggregate(x) and aggregate(y). We assume
that the behavioral relations between activity pairs of PMa can be discov-
ered independently from each other, i.e., the relation between x and y, where
x, y ∈ Aa depends on the relations between activities in aggregate(x) and
aggregate(y), but does not depend on the relations between aggregate(x) and
aggregate(z), ∀z ∈ Aa.

Algorithm 1 formalizes the derivation of behavioral relations. The input of
the algorithm is a pair of activities, x and y, and wt—the user-specified thresh-
old telling significant relation weights from the rest and, hence, managing the
ordering constraints loss. The output of the algorithm is the relation between
x and y. Algorithm 1 derives behavioral profile relations between x and y from
the observable frequencies of relations between activities (a, b), where (a, b) ∈
aggregate(x) × aggregate(y). According to Definition 3 each of the behavioral
profile relations is specified by the corresponding weak order relations. Thereby,
to conclude about the behavioral profile relation between x and y we first
evaluate the frequencies of weak order relations for x and y. The latter are

Business Process Model Abstraction Based on Behavioral Profiles 7

found in the assumption that each weak order relation holding for (a, b) ∈
aggregate(x) × aggregate(y), contributes to the weak order relation between
x and y. This rationale allows to find the weight for each weak order relation
between x and y (lines 2–5). The overall number of relations is stored in variable
wprod (line 6). Algorithm 1 continues finding the relative weight for each behav-
ioral profile relation (lines 7–10). The relative weights of behavioral relations
together with the relation hierarchy are used to choose the dominating relation
(lines 11–20). The behavioral relations are ranked according to their relative
weights. Threshold wt selects significant relations, omitting those which relative
weights are less than wt. Finally, the relation hierarchy allows to choose the
strictest relation among the significant ones. Notice that the input parameter wt

implements the slider concept: by means of wt the user expresses the preferred
ordering constraint loss level and obtains the corresponding behavioral relations
for model PMa.

0 10
+ ||

0.5
→

w(x→y)w(x+y)
w(x||y), w(x→-1y)

Fig. 3. Slider example

To illustrate Algorithm 1 we refer to the moti-
vating example and derive the behavioral relation
between activities Handle data (HD) and Perform
quick analysis (PQA) given the threshold wt =
0.5. Following Algorithm 1, w(HD�PMaPQA) =
4, w(PQA�PMaHD) = 1, w(HD ��PMaPQA) = 2,
w(PQA ��PMaHD) = 5, and wprod = 6. Then,
w(HD+PMaPQA) = 2/6, w(HD�PMaPQA) = 4/6, w(HD�−1

PMa
PQA) = 1/6,

and w(HD�−1
PMa

PQA) = 1/6. The constellation of behavioral relation weights
is shown in Fig. 3. Each relation weight wr defines a segment [0, wr], where the
respective behavioral relation r is valid. If the maximum weight of the relations
wmax is less than 1, we claim that the interleaving order relation is valid in seg-
ment [wmax, 1] (it provides most freedom in execution of two activities). While
the resulting segments overlap, the relation hierarchy defines the dominating re-
lation in a particular point of [0, 1]. For only w(HD�PMaPQA) > 0.5, we state
Handle data �PMa Perform quick analysis.

3.3 Behavioral Profile Consistency Validation

The creation of the behavioral profile for the abstract model as introduced above
might yield an inconsistent profile. Hence, this section first introduces a notion of
consistency for behavioral profiles and then elaborates on how it can be decided.

... ...

(a)

... ...

(b)

Fig. 4. Exemplary model
fragments

Consistent Behavioral Profiles. A behavioral pro-
file is inconsistent, if there exists no process model
that satisfies all the constraints of the behavioral pro-
file. Whether such a process model exists depends
on the applied notion of a process model and the
intended structural and behavioral characteristics of
the synthesized model. For instance, the strict order
relation might define a cyclic dependency between
three activities x, y, and z: x � y, y � z, and z � x.

8 S. Smirnov, M. Weidlich, and J. Mendling

The process model fragment in Fig. 4(a) satisfies these behavioral constraints at
the expense of duplicating activities. However, the result is clearly inappropri-
ate against the background of our use case: an abstract model should provide a
concise and compact view on the process. Hence, extensive activity duplication
should be avoided. For our notion of a process model, the aforementioned be-
havioral constraints cannot be satisfied as exemplified by the model in Fig. 4(b),
where constraint z � x is violated. Moreover, structural and behavioral proper-
ties of a process model, e.g., the absence of deadlocks, impact on the existence
of a process model for a given behavioral profile.

Our notion of behavioral profile consistency is motivated by the goal of de-
riving a sound process model. That is, the resulting model should be free of
behavioral anomalies, cf., Section 2.2.

Definition 5 (Consistent Behavioral Profile). Let PM = (A,G, F, s, e, t)
be a process model with the behavioral profile BP = {�PM ,+PM , ||PM}. R ⊆
(A×A) is a dependency relation derived from the behavioral profile with:
– (x, y) /∈ R and (y, x) /∈ R, if x+PM y.
– (x, y) ∈ R and (y, x) /∈ R, if x �PM y.
– either (x, y), (y, x) ∈ R or (x, y), (y, x) /∈ R, if x||PMy.

Then, BP is consistent, iff R is a transitive relation.

For the aforementioned example of three activities x, y, and z with x � y, y � z,
and z � x the profile is inconsistent: x � y and y � z induce x R y and y R z,
whereas x��R z is derived from z � x.

In order to prove that consistency of a behavioral profile coincides with the
existence of a sound process model that shows this profile, we need auxiliary
results on the relation between behavioral and structural dependencies.

Proposition 1. Let PM = (A,G, F, s, e, t) be a sound process model and BP =
{�PM ,+PM , ||PM}—its behavioral profile. Then, for x, y ∈ A it holds:
S1 there is no path between them, x��F+y and y��F+x, if x+PM y.
S2 there is a path between them, xF+y and y��F+x, if x �PM y.
S3 there is either no path between them or they are a part of a control flow

cycle, (x��F+y) ∧ (y��F+x) or (xF+y) ∧ (yF+x), if x||PMy.
S4 they are exclusive or in interleaving order, x+PM y or x||PMy, if x��F+y and

y��F+x.
S5 they are in strict order, x �PM y, if xF+y and y��F+x.
S6 they are in interleaving order, x||PMy, if xF+y and yF+x.

Proof. We have already mentioned that any sound process model can be trans-
formed into a corresponding sound free-choice WF-net. Hence, we reuse the
results that have been proven for this class of nets in [30].

S1 Follows from Lemma 3 in [30], stating that activities that cannot be enabled
concurrently are exclusive if and only if there is no path between them.

S2 Follows from the proof of Theorem 1 in [30], which includes the statement
that for activities that cannot be enabled concurrently, the path relations xF+y
and y�F+x coincide with strict order x � y.

Business Process Model Abstraction Based on Behavioral Profiles 9

S3 According to Lemma 2 in [30], activities that cannot be enabled concur-
rently are in interleaving order, if and only if they are a part of a common control
flow cycle. It remains to show that potential concurrent enabling of activities x
and y implies that there is either no path between them, x��F+y and y��F+x, or
they belong to a common control flow cycle, xF+y and yF+x. Assume that x
and y can be enabled concurrently and that xF+y and y��F+x hold. The path
xF+y induces a sequence of activities that can be executed starting with x and
leading to a state in which y is enabled (this property has been shown for sound
free-choice WF-nets in [15]). Due to y��F+x, any token enabling y in the first
state cannot impact on the execution of this activity sequence. Thereby, a state
in which y is enabled concurrently to itself is reached. This contradicts the pro-
cess model soundness property. Again, that follows from transferring the results
shown for free-choice sound WF-nets to our setting. In [2] such nets are shown
to be safe, so that no activity can be enabled concurrently to itself.

S4 Follows directly from Lemma 1 in [30] and Lemma 3 in [30], cf. also S1.
S5 Follows from the proof of Theorem 1 in [30], cf. also S2.
S6 Follows directly from Lemma 2 in [30]. �

The requirements imposed by Definition 5 for relation R coincide with the prop-
erties of the flow relation in sound process models, cf., Proposition 1. In other
words, Definition 5 ensures that the structural requirements induced by the be-
havioral profile are satisfiable. We see that every sound process model shows a
consistent behavioral profile.

Lemma 1. The behavioral profile of a sound process model is consistent.

Proof. Let PM = (A,G, F, s, e, t) be a sound process model with the behavioral
profile BP = {�PM ,+PM , ||PM} and assume that BP is not consistent. Accord-
ing to Proposition 1 S1, S2, and S3, the transitive closure of the flow relation F
of PM qualifies for being a dependency relation as defined in Definition 5. How-
ever, the flow relation F is transitive by definition, which yields a contradiction
with our assumption of BP being inconsistent. �

Deciding Behavioral Profile Consistency. According to Lemma 1, consis-
tency of the behavioral profile is a necessary condition for the existence of a
sound process model. Hence, we have to clarify how to decide consistency for a
given behavioral profile.

In the general case the consistency check for a behavioral profile cannot be
done efficiently: interleaving order between two activities stems either from the
potential concurrent enabling, or from the existence of a control flow cycle span-
ning both activities. Hence, to decide whether there exists a transitive relation
R according to Definition 5, both possibilities have to be explored for each pair
of activities in interleaving order. Analysis of alternatives yields an exponential
time complexity of any algorithm for checking consistency.

Still, consistency can be decided efficiently under certain assumptions. Con-
sistency of a behavioral profile comprising solely strict order and exclusiveness
relations can be decided in polynomial time. In addition, two stricter notions of

10 S. Smirnov, M. Weidlich, and J. Mendling

consistency can be applied. First, all pairs of activities x and y with x||y may
be required to be in the dependency relation, i.e., (x, y), (y, x) ∈ R. In this case,
the existence of a transitive relation R indicates the existence of a sound process
model for the profile that does not show any concurrency of activities. That
is due to the fact that interleaving order between activities stems solely from
control flow cycles. We refer to this consistency as non-concurrent consistency.
Second, all pairs of activities x and y with x||y may be required not to be in the
dependency relation, i.e., (x, y), (y, x) /∈ R. Then, interleaving order is expected
to stem solely from concurrent enabling of activities. This consistency, referred
to as acyclic consistency, hints at the existence of a sound process model for
the profile that is acyclic. As both notions avoid to check two possibilities for
interleaving pairs of activities, they can be decided in polynomial time.

Corollary 1. The following problems can be decided in O(n3) time with n as
the number of activities of a behavioral profile.
1. Given a behavioral profile, to decide consistency in the absence of activities

in interleaving order.
2. Given a behavioral profile, to decide non-concurrent consistency.
3. Given a behavioral profile, to decide acyclic consistency.

Proof. According to Definition 5, a dependency relation is built from the behav-
ioral profile. In all three cases, the derivation is straight-forward as for every pair
of activities it is defined whether or not it is part of the dependency relation.
Hence, building the dependency relations takes O(n2) time with n as the number
of activities. Then, the dependency relations is checked for transitivity, which
takes O(n3) time with n as the number of activities of the process model. �

3.4 Abstract Model Synthesis from a Consistent Behavioral Profile

Once consistency of a behavioral profile is validated, we derive the abstract
model structure from the behavioral profile. Due to consistency and according
to Definition 5 there is a transitive dependency relation between the activities.
This dependency relation induces the abstract process model flow relation. Still,
to arrive at a well-structured process model in which every activity has at most
one predecessor and successor, several additional steps have to be done. We
outline these steps in Algorithm 2 and explain them in detail in the following
paragraphs.

First, the dependency relationR between activities is determined. Then, a tran-
sitive reduction is performed onR yielding the relationR′. Intuitively, the depen-
dency relation corresponds to the transitive closure of the flow relation. Thereby,
it is reduced by all activity pairs that can be derived through transitivity of two
other activity pairs. In the case of cyclic dependencies, there are different options
to remove activity pairs during transitive reduction. We can choose one pair arbi-
trarily, since the activity order inside a control flow cycle does not impact on the
relations of the behavioral profile between these activities.

Business Process Model Abstraction Based on Behavioral Profiles 11

Algorithm 2. Deriving a process model from a consistent behavioral profile
1: deriveProcessModelFromBehavioralProfile(BP)
2: R := determineDependencyRelation(BP)
3: R′ := doTransitiveReduction(R)
4: A :=extractOneDomainOfRelation(BR)
5: G := ∅
6: s := determineOrCreateStartActivity(R′)
7: e := determineOrCreateEndActivity(R′)
8: A := A ∪ {s, e}
9: R′ := updateRelationBasedOnStartAndEndActivities(s,e,R′)

10: F := R′

11: t := ∅
12: for all a ∈ A with more than one successor in R′ do
13: Ga := createSplitGatewaysBetweenActivityAndSuccessors(a,R′)
14: t := t ∪ determineGatewayTypes(a,Ga,R′)
15: F := updateRelationForGatewaysAfterActivity(G,a, F)
16: G := G ∪Ga

17: for all a ∈ A with more than one predecessor in R′ do
18: Ga := createJoinGatewaysBetweenActivityAndSuccessors(a,R′)
19: t := t ∪ determineGatewayTypes(a,Ga,R′)
20: F := updateRelationForGatewaysAfterActivity(G,a, F)
21: G := G ∪Ga

22: return PM = (A, G, F, s, e, t)

Second, we extract the set of activities of the process model, which corresponds
to one of the domains of the behavioral profile relations. Further, we determine
a start and an end activity as follows. If there is exactly one activity that has no
predecessor in the reduced dependency relationR′, this activity is selected as the
start activity s. When there are multiple start activity candidates, an auxiliary
activity is created and added to the set of activities. Relation R′ is updated,
so that there is an entry between the auxiliary activity and all start activity
candidates. In the same vein, an end activity is selected or created, respectively.

Third, the abstract model flow relation is defined as the reduced dependency
relation R′. Then, the result is a process model consisting of activities and flow
arcs with dedicated start and end activities. However, activities might show
multiple incoming or outgoing flow arcs. In a post-processing step, we introduce
gateways to realize the splitting and joining of control flow. For an activity with
multiple outgoing arcs split gateways are applied. Notice that more than one
gateway might be introduced to implement the behavioral relations between
succeeding activities correctly. Thus, there might be a sequence of gateways,
inserted between the activity and its successors, such that the flow relation and
the relation that types gateways have to be updated accordingly. For an activity
a the sequence of succeeding split gateways is created as follows.
1. All successors of a, for which there is a path to a, are connected to a new xor
split gateway. Note that these successors are part of one control flow cycle.
2. All successors of a are grouped iteratively, so that each group has the same
behavioral relations to the other successors of a (or groups of successors). All
these groups are either exclusive to each other, or in interleaving order.
3. All successors of a in a dedicated group are connected to a new split gateway.
The gateway type is defined by the behavioral relation between the group mem-
bers: exclusiveness yields a xor gateway, interleaving order—an and gateway.

12 S. Smirnov, M. Weidlich, and J. Mendling

4. The gateways created for all groups are chained according to the order of
activity grouping. Any xor gateway for the activities in a control flow cycle is
added as the last gateway.

... a

...

...

...

...

...

...

...

...

...

...

...

b

c

d

e

f

a

b

c

d

e

f

Fig. 5. Post-processing of activities
with multiple outgoing flow arcs

We illustrate these steps by the model
fragment depicted in the left part of Fig. 5.
Assume there is a path from b to a and
from c to a, whereas there is no path from
activities d, e, and f to a. Thus, activities
b and c are grouped and connected to an
xor split. Assume that activities d and e
are exclusive, while both of them are in
interleaving order with activity f . Then,
d and e are grouped first and connected
to an xor split. Taking both activities as a single fragment, the second group
consists of this fragment and activity f . Due to interleaving order, both are
connected to an and split. Finally, the group containing the activities in a control
flow cycle, i.e., b and c, is connected. The right part of Fig. 5 depicts the post-
processing result for activity a. The approach described for activities with more
than one outgoing flow arc is mirrored for activities with more than one incoming
flow arc in order to introduce the respective join gateways.

After the activities with multiple incoming or outgoing flow arcs have been
post-processed, the complete abstract model derived from the consistent behav-
ioral profile is returned by the algorithm.

Lemma 2. Given a consistent behavioral profile, the process model derived by
Algorithm 2 shows the same behavioral profile.

Proof. Let BP = {�,+, ||} be a consistent behavioral profile and PM = (A,G,
F, s, e, t) the derived process model with the behavioral profile BP ′ = {�PM

,+PM , ||PM}. The algorithm translates the transitive dependency relation into
the transitive closure of the flow relation F . Therefore, x � y implies xF+y
and y��F+x. According to Proposition 1 S5, x �PM y holds. The same argument
holds for interleaving activities x||y that translate to xF+y and yF+x, yielding
x||PMy by Proposition 1 S6. For activities x and y with x��F+y and y��F+x, it holds
either x||y or x+ y. It remains to show that in both cases the same relation can
be observed in the derived process model. As the process model is a connected
graph, there must be a node n for which we have a path to x and a path to y,
while for two successors of n, n1, n2 ∈ n•, it holds n1F

+x, n1��F+y, n2��F+x, and
n2F

+y. As n has more than one successor, it is a gateway. The type of gateway n,
and or xor, determines whether it holds n1 +PM n2 or n1||PMn2 and, therefore,
x+PM y or x||PMy. As this gateway type is selected by our algorithm based on
the behavioral relation between x and y in the original profile BP = {�,+, ||},
the relations of both profiles BP and BP ′ coincide for activities x and y. �

After we studied the relation between consistency of a behavioral profile and the
existence of a sound process models in both directions, we conclude the following.

Business Process Model Abstraction Based on Behavioral Profiles 13

Theorem 1. There is a sound process model, if and only if, the behavioral profile
is consistent.

Proof. The ⇒ direction follows from Lemma 1, the ⇐ direction from Lemma 2.
�

Perform full
analysis

Perform quick
analysis

Handle
data

?Receive
forecast request

Generate
forecast report

Fig. 6. Abstract model for the initial ex-
ample in Fig. 1

We conclude this section returning
to the motivating example presented
in Section 2. Fig. 6 illustrates the
complete abstract model derived from
the initial model according to the
developed abstraction technique. We
see that the activities aggregated into
Handle data are in strict order with
most of the other activities to aggre-
gate. Hence, the strict order relation holds also between the aggregated activi-
ties in the abstract model. For the other two aggregated activities, exclusiveness
turns out to be the dominating behavioral relation.

4 Related Work

The work presented in this paper complements two research areas: business pro-
cess model abstraction and process model synthesis. The former studies methods
of process model transformation and criteria of model element abstraction.

The related process model transformation techniques constitute two groups.
The first group builds on an explicit definition of a fragment to be transformed.
Here, Petri net reduction rules preserving certain behavioral properties play an
important role [19]. Such rules have also been defined for workflow graphs [23],
EPCs [11,18], and YAWL [31]. The second group of transformation techniques
hierarchically decomposes a model into fragments, e.g., cf. [28]. The reduced
process model can be regarded as a view in terms of [20] and typically preserves
properties of behavior inheritance [3]. Unfortunately, such hierarchical decom-
position is not sufficient in many scenarios, cf. [29]. The technique developed in
this paper shows how the abstract model control flow can be discovered even for
non-hierarchical abstractions. Model element abstraction criteria, for instance,
execution cost, duration, and path frequency, have been studied in a number
of works [12,13,26]. These works have in common that their major focus is on
identifying abstraction candidates. The current paper complements this stream
of research demonstrating how abstracted process models can be constructed
even if aggregated activities are not structurally close to each other. There is a
series of works that address the requirements of business process model abstrac-
tion. The approaches of [6,7,16] build on an explicit definition of a fragment that
can be abstracted to provide a process overview. In [5,21,27] such fragments are
discovered without user specification according to the model structure.

The developed method for the construction of an abstract process model from
the behavioral profile extends the family of process model synthesis techniques.

14 S. Smirnov, M. Weidlich, and J. Mendling

In process mining the alpha algorithm is used for the construction of a process
model from event logs [4]. The mining relations used by the alpha algorithm differ
to ours as they are only partially transitive. In this paper, we use the behavioral
profile relations, which permit the reconstruction of the process model if the
profile is consistent. There are further approaches to synthesis that take the
state space as an input to generate process models including [8,9,17], which all
build on Petri net formalism.

5 Conclusion and Future Work

In this paper, we have presented a novel approach to process model abstrac-
tion that addresses existing industry demand. Given a process model and sets
of related activities in it, we are capable to deliver a high-level process model
preserving the overall properties of the initial model or tell the user that such a
model cannot be created. The suggested abstraction approach bases on an aggre-
gation of the initial model elements and, in contrast to the available techniques,
is capable of non-hierarchical aggregation. To synthesize a high-level process
model we leverage behavioral profiles. Once a profile for the initial model is cre-
ated, we propose how to abstract it and synthesize a high-level model out of it.
Notice that in the synthesis step we assume the resulting model to be a sound
process model—a reasonable assumption in practice.

This paper motivates several directions of the future work. In the context of
BPMA, it is imperative to investigate criteria and methods allowing to learn
which activities in the initial model are related. A corresponding solution would
complement the approach developed in this paper and their combination may
support the user with an automated BPMA solution. Another direction of the
future work is the further research on model synthesis out of behavioral profiles.
In particular, it is interesting to broaden the class of synthesized models.

References

1. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
JCSC 8(1), 21–66 (1998)

2. van der Aalst, W.M.P.: Workflow Verification: Finding Control-Flow Errors Us-
ing Petri-Net-Based Techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis,
A. (eds.) Business Process Management. LNCS, vol. 1806, pp. 161–183. Springer,
Heidelberg (2000)

3. van der Aalst, W.M.P., Basten, T.: Life-Cycle Inheritance: A Petri-Net-Based Ap-
proach. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 62–81.
Springer, Heidelberg (1997)

4. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Dis-
covering Process Models from Event Logs. IEEE TKDE 16(9), 1128–1142 (2004)

5. Basu, A., Blanning, R.W.: Synthesis and Decomposition of Processes in Organiza-
tions. ISR 14(4), 337–355 (2003)

6. Bobrik, R., Reichert, M., Bauer, T.: View-Based Process Visualization. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 88–95.
Springer, Heidelberg (2007)

Business Process Model Abstraction Based on Behavioral Profiles 15

7. Cardoso, J., Miller, J., Sheth, A., Arnold, J.: Modeling Quality of Service for Work-
flows and Web Service Processes. Technical report, University of Georgia, Web
Services (2002)

8. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri Nets
from Finite Transition Systems. IEEE TC 47(8), 859–882 (1998)

9. Dehnert, J., van der Aalst, W.M.P.: Bridging The Gap Between Business Models
And Workflow Specifications. IJCIS 13(3), 289–332 (2004)

10. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and Analysis of Business Pro-
cess Models in BPMN. IST 50(12), 1281–1294 (2008)

11. van Dongen, B., Jansen-Vullers, M., Verbeek, H., van der Aalst, W.M.P.: Verifi-
cation of the SAP Reference Models Using EPC Reduction, State-space Analysis,
and Invariants. CAIE 58(6), 578–601 (2007)

12. Eshuis, R., Grefen, P.: Constructing Customized Process Views. DKE 64(2), 419–
438 (2008)

13. Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining Adaptive Process Simplifi-
cation Based on Multiperspective Metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)

14. Hammer, M., Champy, J.: Reengineering the Corporation: A Manifesto for Business
Revolution. HarperBusiness (April 1994)

15. Kiepuszewski, B., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Fundamentals of
Control Flow in Workflows. Acta Informatica 39(3), 143–209 (2003)

16. Liu, D., Shen, M.: Workflow Modeling for Virtual Processes: an Order-preserving
Process-view Approach. ISJ 28(6), 505–532 (2003)

17. Massuthe, P., Serebrenik, A., Sidorova, N., Wolf, K.: Can I Find a Partner? Unde-
cidability of Partner Existence for Open Nets. IPL 108(6), 374–378 (2008)

18. Mendling, J., van der Aalst, W.M.P.: Formalization and Verification of EPCs with
OR-Joins Based on State and Context. In: Krogstie, J., Opdahl, A.L., Sindre,
G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 439–453. Springer,
Heidelberg (2007)

19. Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

20. Pankratius, V., Stucky, W.: A Formal Foundation for Workflow Composition,
Workflow View Definition, and Workflow Normalization based on Petri Nets. In:
APCCM 2005, pp. 79–88. ACS, Inc, Darlinghurst (2005)

21. Polyvyanyy, A., Smirnov, S., Weske, M.: The Triconnected Abstraction of Process
Models. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) Business Process
Management. LNCS, vol. 5701, pp. 229–244. Springer, Heidelberg (2009)

22. Reijers, H.A., Mendling, J., Dijkman, R.M.: On the Usefulness of Subprocesses in
Business Process Models. BPM Center Report BPM-10-03, BPMcenter.org (2010)

23. Sadiq, W., Orlowska, M.E.: Analyzing Process Models Using Graph Reduction
Techniques. ISJ 25(2), 117–134 (2000)

24. Schrefl, M., Stumptner, M.: Behavior-Consistent Specialization of Object Life Cy-
cles. ACM TOSEM 11(1), 92–148 (2002)

25. Smirnov, S., Dijkman, R., Mendling, J., Weske, M.: Meronymy-based Aggregation
of Activities in Business Process Models. In: ER 2010. LNCS, Springer, Heidelberg
(2010)

26. Smirnov, S., Reijers, H., Nugteren, T., Weske, M.: Business Process Model
Abstraction: Theory and Practice. Technical report, Hasso Plattner In-
stitute (2010), http://bpt.hpi.uni-potsdam.de/pub/Public/SergeySmirnov/

abstractionUseCases.pdf

http://bpt.hpi.uni-potsdam.de/pub/Public/SergeySmirnov/abstractionUseCases.pdf
http://bpt.hpi.uni-potsdam.de/pub/Public/SergeySmirnov/abstractionUseCases.pdf

16 S. Smirnov, M. Weidlich, and J. Mendling

27. Streit, A., Pham, B., Brown, R.: Visualization Support for Managing Large Busi-
ness Process Specifications. In: van der Aalst, W.M.P., Benatallah, B., Casati, F.,
Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 205–219. Springer, Heidelberg
(2005)

28. Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. In:
Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp.
100–115. Springer, Heidelberg (2008)

29. Weidlich, M., Barros, A., Mendling, J., Weske, M.: Vertical Alignment of Process
Models - How Can We Get There? In:BPMDS 2009 LNBIP, vol. 29, pp. 71–84.
Springer, Heidelberg (1975)

30. Weidlich, M., Mendling, J., Weske, M.: Efficient Consistency Measurement based
on Behavioural Profiles of Process Models. In: IEEE TSE (to appear 2010)

31. Wynn, M.T., Verbeek, H.M.W., van der Aalst, W.M.P., ter Hofstede, A.H.M.,
Edmond, D.: Reduction Rules for YAWL Workflows with Cancellation Regions
and OR joins. IST 51(6), 1010–1020 (2009)

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 17–31, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Root-Cause Analysis of Design-Time Compliance
Violations on the Basis of Property Patterns

Amal Elgammal*, Oktay Turetken, Willem-Jan van den Heuvel,
and Mike Papazoglou

European Research Institute in Service Science (ERISS), Tilburg University,
Tilburg, The Netherlands

{a.f.s.a.elgammal,o.turetken,w.j.a.m.vdnheuvel,
m.p.papazoglou}@uvt.nl

Abstract. Today’s business environment demands a high degree of compliance
of business processes with business rules, policies, regulations and laws.
Compliance regulations, such Sarbanes-Oxley force enterprises to continuously
review their business processes and service-enabled applications and ensure that
they satisfy the set of relevant compliance constraints. Compliance management
should be considered from the very early stages of the business process design.
In this paper, a taxonomy of compliance constraints for business processes is
introduced based on property specification patterns, where patterns can be used
to facilitate the formal specification of compliance constraints. This taxonomy
serves as the backbone of the root-cause analysis, which is conducted to reason
about and eventually resolve design-time compliance violations. Based on the
root-cause analysis, appropriate guidelines and instructions can be provided as
remedies to alleviate design-time compliance deviations in service-enabled
business processes.

Keywords: Regulatory compliance, Compliance constraint detection and
prevention, Design-time compliance management, Formal compliance model,
Compliance patterns, root-cause analysis.

1 Introduction

SOA is an integration framework for connecting loosely coupled software modules
into on-demand business processes. Business processes form the foundation for SOAs
and require that multiple steps occur between physically independent yet logically
dependent software services [1]. Where business processes stretch across many
cooperating and coordinated systems, possibly crossing organizational boundaries,
technologies like XML and Web services are making system-to-system interactions
commonplace.

Business processes form the foundation for all organizations, and as such, are
impacted by industry regulations. Without explicit business process definitions,

* This work is a part of the research project “COMPAS: Compliance-driven Models, Languages

and Architectures for Services”, which is funded by the European commission, funding
reference FP7-215175.

18 A. Elgammal et al.

flexible rule frameworks, and audit trails that provide for non-repudiation,
organizations face litigation risks and even criminal penalties. Compliance
regulations, such as HIPAA, Basel II, Sarbanes-Oxley (SOX) and others require all
organizations to review their business processes and ensure that they meet the
compliance standards set forth in the legislation. In all cases, these new control and
disclosure requirements create auditing demands for SOAs.

SOAs should play a crucial role in compliance, allowing management to ascertain
that internal control measures that govern their key business processes can be
checked, tested, and potentially certified with their underlying web-services.

Compliance is about ensuring that business processes, operations and practices are
in accordance with a prescribed and/or agreed on set of norms [2] . A compliance
constraint (requirement) refers to any explicitly stated rule or regulation that
prescribes any aspect of an internal or cross-organizational business process.
Compliance constraints may emerge from different sources and can take various
forms. They may originate from legislation and regulatory bodies (such as Sarbanes-
Oxley and Basel II), standards and code of practices (such as: ISO 9001) and/or
business partner contracts.

Not only the large and ever-increasing number of compliance constraints but also
the diversity and complexity of these constraints, complicate the compliance
management process [3]. Consequently, a comprehensive compliance management
solution is of utmost importance to support compliance throughout all the stages of
the complete business process lifecycle. A major requirement of a generic
compliance management approach is that it should be sustainable [2]. A preventive
focus is fundamentally required in order to achieve the sustainability requirement.
Compliance should be considered at the very early stages of business process design,
thus enforcing compliance by design.

Compliance constraints should be based on a formal foundation of a logical
language to facilitate the application of future automatic reasoning techniques for
verifying and ensuring business process compliance. However, formal specifications
in general are difficult to write and understand by users. The notion of property
specification patterns (Dwyer’s property patterns) was introduced in [4] as high-level
abstractions of frequently used logical formulas. Property patterns assist users in
understanding and defining formal specifications, which significantly facilitates the
work of the user, as she doesn’t need to go into the lower-level and complex details of
the adapted formal language.

By applying the automated verification tools that are associated with the utilized
logical language (e.g. NuSMV2 model-checker [5]), compliance between
specifications and the applicable set of compliance constraints can be automatically
checked. However, the verification results are usually a list of which compliance rules
have been violated and which have been satisfied. Clearly, existing practices and
approaches are by far insufficient to effectively assist business process/service
designers in resolving potential conflicts or violations between service-enabled
processes and associated rules, laws and regulations. A structured approach is critical
to allow designers –many of which are non-experts in formal languages- to formally
capture compliance rules and policies, and then semi-automatically detect the root-
cause of compliance anomalies and provide heuristics to create corrective actions to

 Root-Cause Analysis of Design-Time Compliance Violations 19

resolve them. The main focus of this paper is on design-time compliance management
and analysis.

In this paper, we use Dwyer’s property specification patterns [4] and Linear
Temporal Logic (LTL) [6] to formally represent compliance constraints. Furthermore,
we present pattern extensions and we introduce new patterns that are frequently used
to specify compliance constraints. Then, a compliance constraint taxonomy is built up
on top of these patterns, which represents the backbone of the root-cause analysis
conducted in this paper. Finally, the root-cause analysis approach is presented to
reason about design-time compliance violations. The Current Reality Tree (CRT) of
Goldratt’s Theory of Constraints (TOC) [7], [8] is adapted as the root-cause analysis
technique. By traversing the CRTs, appropriate remedies are provided as
guidelines/suggestions that help the user/expert to resolve the compliance deviations.

The rest of this paper is organized as follows: a design-time compliance
management approach is briefly discussed in Section 2. Section 3 presents a scenario
used as the running example throughout this paper. Section 4 presents the proposed
root-cause analysis approach to reason about design-time compliance violations.
Related work is summarized in Section 5. Finally, conclusions and outlook are
highlighted in Section 6.

2 Design-Time Compliance Management

To provide a brief overview of the compliance management approach maintained in
this paper, this section briefly discusses important aspects of a comprehensive
compliance management framework, underlining the features that deal with managing
compliance during the design-time. Fig. 1 depicts an overview of the key practices
and components of this approach, and highlights the parts that outline the scope of
this paper. There are two primary roles involved in this approach: (i) a business
expert, who is responsible for defining and managing service-enabled business
processes in an organization while taking compliance constraints into account, and (ii)
a compliance expert, who is responsible for the internalization, specification and
management of compliance requirements stemming from external and internal
sources in close collaboration with the business expert.

The approach encompasses two logical repositories; the business process
repository and the compliance requirements repository, which are semantically
aligned and may reside in a shared environment. Process models including service
descriptions are defined and maintained in the business process repository, while the
compliance requirements and all relevant concepts are defined, maintained and
organized in the compliance requirements repository. These repositories foster the
reusability of business and compliance specifications. We assume that these two
specifications (business processes and compliance requirements) use the same
constructs through the usage of a shared domain-specific ontology.

The approach assumes the overall process to start either from the business process
side (the right-hand side of Fig. 1) or from the compliance requirements side (left part
of Fig. 1). Process models can be specified in Business Process Execution Language

20 A. Elgammal et al.

(BPEL 1) de facto standard; However, as BPEL is not grounded on a formal model,
any BPEL specification should be transformed into a formal representation (e.g. a
finite state automaton, such as Buchi automata [9]) to enable the verification of these
formal definitions against formally specified compliance rules.

On the other hand, the internalization of compliance constraints originating from
regulations, policies, standards and other compliance sources into a set of
organization-specific compliance requirements involves not only compliance but also
business process domain knowledge. It may require compliance expert to work in
collaboration with the business expert to define and iterate an effective set of
requirements to address these constraints.

Design-time Compliance Management

End-to-end BP
Models

Formal
Representation of
the BP Models (in

FSA)

Business
Process

Repository

Compliance
Requirements

Repository

Define/Modify
Business

Process Models

Analyzing design-
time compliance

violations and root
causes

Automatic generation
of formally

represented BP
models (from BPEL

to FSA)
Automatic generation
of Compliance Rules
(from pattern-based
expressions to LTL

formulas)

Specify
Compliance

Requirements as
patterns

Pattern-based
representation
of compliance
requirements

Automatic
Verification of BP
models against

formally specified
Compliance Rules

Formally specified
Compliance Rules
(as LTL Formulas)

Internalize abstract
compliance

constraints originating
from laws,

regulations, etc.

Verified
BP models

Business
Execution

Internalized
compliance

requirements

Verification results
(of compliance

checking)

Compliance
Expert

Root-causes of
design-time
compliance
violations

Business
Expert

Compliance
Sources

(Regulations, laws,
standards, etc.)

Scope of this paper

Fig. 1. Design-time compliance management approach

A compliance expert may apply patterns to render compliance constraints, which
represents an intermediate step between internalized compliance requirements and
formal statements (as LTL formulas for our case). These pattern-based expressions
are then automatically transformed into LTL formulas, based on the mapping rules
between patterns and LTL. As shown in Fig. 1, the inputs to the ‘automatic
verification’ component of the approach are; the formally specified end-to-end
business process models; and the LTL rules capturing compliance requirements.
Then, automatic verification is supported by ‘model-checkers’ [10].

Analysis of the verification results and their root-causes should be assisted by a
component of the approach, which also directs the business expert in modifying the
business process model so she may resolve any compliance violation. The counter-
example tracing facility, typically provided by the model-checkers, can also aid user
by highlighting the fragments in the business process model that are the sources of
non-compliance. The business process models are updated based on the compliance
verification and analysis results and re-mapped to their formal forms and re-verified
against the set of applicable compliance requirements. This process iterates until no
violations are detected.

1 BPEL: Business Process Execution Language, http://en.wikipedia.org/wiki/BPEL

 Root-Cause Analysis of Design-Time Compliance Violations 21

This paper focuses on the parts in Fig. 1 that are enclosed (with dotted lines),
which are: the pattern-based specification of compliance requirements and analyses of
design-time violations and root-causes. Our work on the other components of the
approach are kept outside the scope of this paper.

3 Running Scenario

The Internet reseller scenario, which is used as the running example throughout this
paper, is one of the industry scenarios explored within the EU funded COMPAS
research project [12]. The scenario is set in an e-business application domain, and
more particularly, online product selling systems.

The scenario starts with the customer checking product information on a website.
Next, if the customer chooses a specific item, she submits an order along with her
customer data. Next, the sales department validates the order by contacting the credit
bureau to check the credit worthiness of the customer. Afterwards, the financial
department creates the invoice and checks for payments. Finally, a delivery request is
sent to the supplier.

Table 1 shows excerpts of the compliance requirements relevant to this scenario.
Each compliance requirement is described in terms of: (i) an ID (ii) internalized
compliance requirement (iii) its representation as patterns (as discussed in Section 2),
and (iv) an explanation of its pattern representation.

Table 1. An excerpt of the relevant compliance requirements

ID Compliance Requirement Pattern Representation Description
R1 Computer-generated sales order

confirmations or cancelations are
sent to customers after validating
the order.

ValidateOrder(x,y) LeadsTo
(SendConfirm(x)
MutexChoice SendCancel(x))

ValidateOrder for sales order y
and customer x is followed by
either sending a confirmation or
cancelation to customer x.

R2 Sales orders over a set threshold
require approval by management
before acceptance by the system.

(SalesOrder(y,threshold)
exists) Imply (Approve(y,
manager) Precedes
Accept(y))

If there is a salesOrder y that
exceeds a threshold threshold then
Approve action performed by
manager should precedes Accept
of order y.

R3 Appropriate segregation of duties
is maintained between credit
checking and cashing functions.

CreditChecking(x)
SegregatedFrom Cashing(x)

CreditChecking function for
customer x should be segregated
from the Cashing function for the
same customer

4 Compliance Patterns and Compliance Constraints Taxonomy

This section presents a taxonomy of pattern-based compliance constraints for business
processes. As shown in Fig. 2, the compliance pattern is the core element of the
taxonomy, and each pattern is a sub-type of it. The compliance pattern is sub-divided
in two main classes of patterns; namely atomic and composite. The lower part of
Fig. 2 presents the atomic patterns, which are adapted from Dwyer’s property
specification pattern system [4].

22 A. Elgammal et al.

Fig. 2. Compliance constraints taxonomy based on patterns

Atomic patterns introduce two main sub-classes: Occurrence and Order pattern
classes. Their properties can be described as follows:
Occurrence patterns are:

• Absent: Indicates that a given state2 P does not occur within the system.
• Universal: Indicates that P occurs throughout the system.
• Exists: Indicates that P must occur within the system.
• Bounded exists: Indicates that P must occur at least/exactly/at most k times

within the system.

Order patterns are:

• Precedes: A given state P must always be preceded by a given state Q.
• LeadsTo: P must always be followed by Q.
• Chain precedes: A sequence of states P1, … Pn must always be preceded by a

sequence of states Q1, … Qm.
• ChainLeadsTo: A sequence of states P1, … Pn must always be followed by a

sequence of states Q1, … Qm.

As shown in the upper part of Fig. 2, compliance patterns can be nested using
Boolean logic operators including Not, And, Or, Xor and Imply to help the definition
of complex requirements in terms of other compliance patterns (composite patterns).
For instance, the PLeadsTo pattern introduced in [11] is an ‘And’ composition of the
two atomic patterns (P Precedes Q) And (P LeadsTo Q).

In addition to the patterns described above, this paper introduces seven new
compliance patterns, namely: Exclusive, Substitute, Corequiste, Inclusive,
Prerequiste, MutexChoice, and SegregatedFrom. Although these patterns commonly

2 State represents a node in finite state automata (used for formal representation of a BP model

as discussed in Section 2). In our context, it indicates a certain BP activity or a condition on
any related artifact. ‘ValidateOrder’ activity and ‘OrderAmount > 500’ branching condition
are examples of states.

 Root-Cause Analysis of Design-Time Compliance Violations 23

occur within the domain of business process compliance, they are also applicable for
the specification of properties in different domains and context.

The SegregatedFrom pattern captures the typical separation-of-duties security
principle, which mandates that two specific activities should be performed by two
different roles. Table 2 presents the mapping from the newly introduced compliance
patterns to atomic patterns together with their meaning and their formal representation
as LTL formulae

Table 2. Mapping of new compliance patterns

Composite
Compliance

Pattern

Description Atomic Pattern
Equivalence

LTL Representation

P Segregated-
From Q

(Activities) P and Q should
be assigned to different
roles

(P PLeads Q) Λ (P.Role1) ≠
(Q.Role2)

G(¬ Q W P)) Λ G(P
F(Q)) Λ G((P.Role(Role1)

G(¬(Q.Role(Role1))
P Inclusive Q The presence of P

mandates that Q is also
present

(P exists) (Q exists) =
¬ (P exists) ∨ (Q exists)

¬ F(P) ∨F(Q)

P Prerequisite Q The absence of P mandates
that Q is also absent

(P isabsent) (Q isabsent)
= ¬ (Pisabsent) ∨ (Q
isabsent)

¬ G (¬P) ∨G (¬(Q))

P Exclusive Q The presence of P
mandates the absence of
Q. And presence of Q
mandates the absence of P

 (¬(P exists) ∨ (Q isabsent)

Λ (¬(Q exists) ∨ (P
isabsent)

(¬ (F(P)) ∨ G(¬Q)) Λ (¬

(F(Q)) ∨ G (¬P))

Q Substitute P Q substitutes the absence
of P

(P isabsent) (Q exists) =
¬(P isabsent) ∨ (Q exists)

¬ G(¬(P)) ∨ F(Q)

P Corequisite Q Either activities P and Q
should exist together or to
be absent together

(P exists) iff (Q exists) =
((P exists) Λ (Q exists)) ∨
((P isabsent) Λ (Q isabsent))

(F(P) Λ F(Q)) ∨ (G(¬P) Λ
G(¬Q))

P MutexChoice Q Either P or Q exists but not
any of them or both of
them

(P exists) Xor (Q exists) =
((P exists) Λ (Q isabsent)) ∨
((Q exists) Λ (P isabsent))

(F(P) Λ G(¬(Q))) ∨ (F(Q)
Λ G(¬(P)))

In LTL [6], [10]; G, F and U correspond to the temporal operators ‘always’,
‘eventually’ and ‘until’ respectively. ‘G’ denotes that formula f must be true in all the
states of the business process model. ‘F’ indicates that formula f will be true at some
state in the future. ‘U’ means that if at some state in the future the second formula g
will be true, then, the first formula f must be true in all the subsequent states.

5 Root-Cause Analysis of Design-Time Compliance Violations

A compliance violation in a business process definition may occur due to a variety of
reasons and it is of upmost importance to provide the compliance expert intelligent
feedback that reveals the root-causes of these violations and aids their resolution. This
feedback should contain a set of rationale explaining the underlying reasons why the
violation occurred and what strategies can be used as remedies. Based on the
compliance constraint taxonomy proposed in Section 2, we have further analyzed and

24 A. Elgammal et al.

formalized root-causes for each pattern in the taxonomy. Particularly, we investigated
and reported all possible causes of a violation of a compliance constraint represented
by a specific pattern. However, based on the root-cause analysis, only the exact
deduced cause(s) of the violation(s) is communicated to the user (as explained in
Section 5.5).

For this purpose, we have adapted the Current Reality Tree (CRT) technique from
Goldratt’s Theory of Constraints (TOC) [7]. A current reality tree is a statement of a
core problem and the symptoms that arise from it. It maps a sequence of causes and
effects from the core problem to the symptoms arising from one core problem or a
core conflict. If the core problem is removed, each of the symptoms may be removed.
Operationally the process works backwards from the apparent undesirable effects or
symptoms to uncover or discover the underlying core causes [7]. The CRT has been
chosen due to its simplicity and the visual representation of the causes and effects.

A CRT usually starts with a list of problems called Undesirable Effects (UDEs),
which represent negative or bad conditions. They are also ‘effects’ because for most
part they are caused by something else [8]. The key question begins with ‘why a
violation occurs?’ (the root of the tree). The answer to this question will generate
child-(eren) of the UDE under consideration. For each child, which might be a UDE,
the same “why” question is applied, and the answer is depicted as a deeper level in the
tree. This process continues iteratively until the UDE under consideration is the root-
cause(s) of the problem (in the leaf level of the tree). Incoming connections to an
UDE from its children are connected via logical ‘or’ operator; unless otherwise
specified. Due to space limitation, we do not present all the current reality trees
corresponding to each pattern given in the taxonomy (in Fig. 2).

5.1 Current Reality Trees for Atomic Patterns

One of the main advantages of using the Current Reality Tree technique (CRT) is that
it is self-explanatory. Fig. 3 presents the CRTs for Exists, Precedes, LeadsTo,
PleadsTo, Absence and Universal patterns. The root of each CRT represents an
undesirable effect (UDEs). For our purpose, an UDE is a violation of a specific
pattern. Hence, the root of each tree represents a violation to a specific pattern. For
example, as shown in Fig. 3, the violation to ‘(P Precedes Q) pattern’ is considered as
the UDE of the Precedes CRT.

Deeper levels in the tree are guided by answering the same ‘why’ question. For
example, the question that should be addressed here is: why (P Precedes Q) is
violated. The answer to this question is: because (Q Exists is satisfied) and (P exists is
violated) before it. This is depicted as the second level of the tree. The same ‘why’
question is applied to the UDE under consideration and analysis continues until the
root-causes of the problem, i.e. the leaves of the tree are reached. For each leaf, the
user is provided with guidelines as remedies to compliance violations. These
guidelines are depicted in the CRTs as squared brackets linked to the leaves, e.g.
‘Swap the occurrence of P and Q’, where P and Q are business process activities that
will be parameterized with the actual activity names. In case the leaf is a composite
pattern, it will be replaced by its corresponding CRT. This process iterates
continuously until all the leaves of the tree are atomic patterns.

 Root-Cause Analysis of Design-Time Compliance Violations 25

(P Precedes Q) is
violated

(Q Exists is
satisfied) and (P

Exists is
violated) before it

(P exists is
violated)

(P Exists) is
violated

(P LeadsTo Q) is
violated

(P Exists is
satisfied) and (Q

Exists is
violated) after it

Q appears
first then P

Q appears
first then P

(Q exists is
violated)

(P PLeadsTo Q)
is violated

Swap the
occurrence
of P and Q

Swap the
occurrence
of P and Q

Else, Add
activity P

to the
model

Else, Add
activity Q

to the
model

If composite,
Replace with
corresponding
CRT

If composite,
Replace with
corresponding
CRT

(P Isabsent) is
violated

(P IsTrue) is
violated

(P exists) is
violated in one or

more states.

(P exists) is
violated in
state S1

If composite,
Replace with
correspondi
ng CRT

Else,
remove

activity Q to
the model

(P exists) is
violated in

state S2

(P exists) is
violated in
states Sn

...

Else, Add
activity P to

state S1

If composite,
Replace with

corresponding
CRT

Else, Add
activity P to

state S1

If composite,
Replace with

corresponding
CRT

Else, Add
activity P to

state S1

If composite,
Replace with

corresponding
CRT

Fig. 3. CRT for Exists, Precedes, LeadsTo and PLeadsTo patterns

5.2 Current Reality Trees for Composite Patterns

Fig. 4 presents the CRTs for the composite patterns that comprise one or more
compliance patterns connected with a Boolean operator. An example output from the
analysis process could be the UDE ‘(PropertyPattern1 and PropertyPattern2) is
violated’. Let this UDE be UDE1. According to the truth table of the ‘and’ operator,
the ‘and’ statement is only true if its two operands are evaluated to true, otherwise the
statement is evaluated to false. By applying the same ‘Why’ question to UDE1, the
answer is either:

i. UDE1.2: PropertyPattern1 is violated, or
ii. UDE1.2: PropertyPattern2 is violated, or

iii. UDE1.3: PropertyPattern1 is violated and PropertyPattern2 is violated.

UDE1.1, UDE1.2 and UDE1.3 correspond to the violation of other compliance
patterns. Hence, each UDE corresponds to a compliance pattern will be replaced with
its corresponding CRT.

Fig. 4. CRT for composite patterns

26 A. Elgammal et al.

Notably, for the negation operator, ‘(Not PropertyPattern1) is violated’, the
undesirable effect in this case is ‘(PropertyPattern1) is satisfied’, which semantically
represents the opposite of the CRTs analyzed above. For this purpose, each compliance
pattern is re-analyzed the same way, with the undesirable effect (UDE) being ‘property
pattern is satisfied’ (e.g. the lower levels of MutexChoice CRT in Fig. 5).

5.3 Current Reality Trees for the New Compliance Patterns

The CRTs of the newly introduced compliance patterns (e.g. SegregatedFrom,
Inclusive, etc.) are instances from the CRTs of composite patterns given in Fig. 4.
Two examples of the CRTs of these compliance patterns are presented in Fig. 5;
namely: Exclusive and Mutexchoice.

Fig. 5. CRTs for Exclusive and MutexChoice Composite Patterns

As shown in Fig. 5, the MutexChoice composite pattern is an ‘Xor’ composition
between two atomic patterns: (P Exists) and (Q Exists). Hence, for the MutexChoice
composite pattern, the CRT of the ‘Xor’ composite pattern is instantiated. The
instantiation process starts from the outermost pattern to the innermost pattern.
Similarly, the CRT of the Exclusive pattern is built based on the CRTs of ‘And’,
‘Imply’ composite patterns and isabsent atomic pattern.

5.4 Current Reality Trees of the Internet Reseller Scenario

This section presents briefly due to space limitations the application of the pattern
based representation approach and relevant CRTs of the second and third compliance
constraints (R2 & R3) given in Table 1 from the Internet reseller scenario.

In case violations are detected to R2 and R3 (e.g. the model-checker detects the
violations), the CRTs to reason about violations are automatically constructed and

 Root-Cause Analysis of Design-Time Compliance Violations 27

traversed. Fig. 6 presents the CRTs of the violations to R2 and R3. The CRT of the
violation to R2 is an ‘Imply’ composition between two atomic patterns; exists and
precedes. The CRT of the violation to the segregation-of-duty compliance constraints
(R3) is shown in the right-hand side of Fig. 6.

Fig. 6. CRTs for the violation to R2 and R3

5.5 Implementation of the Root Cause Analysis Approach

An effective and scalable implementation of the concepts discussed above is a
challenging yet necessary step to help to ascertain the soundness of the approach
proposed in this paper. We are currently implementing an environment as a part of a
comprehensive tool-suite for business process compliance management, based on the
concepts described in above sections. The prototype is a web-based environment3,
which also incorporates standalone tools for building graphical representation of
requirements using patterns. The web-based environment is implemented using
‘PHP’4 as the main scripting language and Oracle database (ver.8i)5 as the repository
for compliance data and meta-data. The integration with Reo toolkit [13], which is
used for process verification, is ongoing. The integration is achieved through a group
of asynchronous web services, which mainly forwards BPEL representation and

3 http://eriss.uvt.nl/compas
4 http://en.wikipedia.org/wiki/PHP
5 http://en.wikipedia.org/wiki/Oracle_Database

28 A. Elgammal et al.

relevant formal compliance rules specified in LTL as input to Reo toolkit and retrieve
back the verification result listing the rules that have been checked and whether they
are satisfied or not.

Fig. 7 presents one of the user interfaces from the implementation reflecting how
the results of the root cause analysis are communicated to experts. Only relevant
remedies extracted from traversing the appropriate CRTs are displayed in the last
column of the table in the user interface (‘Result Description/Remedy’ column). The
user interface exemplifies the case of Internet reseller scenario, where R1 is satisfied,
while, R2 and R3 are violated.

Fig. 7. A user interface implementation for the running scenario

6 Related Work

Deontic logic and temporal logic families have been successfully utilized in the
literature as the formal foundation of compliance constraints. Key work examples
utilizing languages based on Deontic logic are: [2], [14], [15], [16], [17], [18], [19]
and [20]. On the other hand, major works built on top of temporal logic are: [5], [11],
[21], [22], [23], [24], and [25]. Due to space limitation, we are listing here key works
grounded on temporal logic.

Authors in [5] proposed a static-compliance checking framework that includes
various model transformations. Compliance constraints are modeled using the
graphical Business Property Specification Language (BPSL) tool. Next, NuSMV2
model checker is used to check the compliance. The study in [21] utilized π-Logic to
formally represent compliance constraints. On the other hand, business process
models are abstractly represented using BP-Calculus. Using HAL toolkit, a BPEL
program equivalent to the abstract representation can be automatically generated if the
two specifications are compliant. The study in [23] utilized past LTL (PLTL), where
properties about the past can be represented. However sequential compliance
constraints are just considered. On the other hand, the study in [24] utilizes the

 Root-Cause Analysis of Design-Time Compliance Violations 29

original pattern-based system, however, it considers aspects relevant to monitoring
compliance during runtime. Furthermore, authors in [25] have extended Dwyer’s
property pattern to capture time-related property specifications. E.g. activity A must
always be followed by activity B within k time units. Integrating real-time dimension
to the proposed approach entails an ongoing research direction. The study in [11] has
utilized Dwyer’s patterns for the verification of service compositions. In [22], real-
time temporal object logic was proposed for the formal specification of compliance
requirements based on a pre-defined domain ontology. Real-time temporal object
logic is an expressive logic, however it is excessively difficult to be used.

Assisting the user to resolve non-compliance during design-time has been
addressed in [26], [27] and [23]. The notion of proximity relation has been introduced
in [26] that quantitatively compare how much a modified business process model
deviated from the original one. The goal is to resolve non-compliance violations by
identifying minimally different process models. They also introduced heuristic
guidance for detecting and resolving compliance violations. A major distinction to our
work is that we provide concrete guidelines and our work is based on a compliance
constraint taxonomy based on extended patterns. The notion of compliance distance
has been introduced in [20, 27], as a quantification of the effort required to transform
a non-compliant business process model to a compliant one, which can take the
values between 0 and 1. A visualization of compliance violations has been introduced
in [23] by utilizing Temporal Logic Querying (TLQ). To the best of our knowledge,
this is the first study that considers an exhaustive analysis of root-causes of
compliance violations, and providing the user with only relevant guidelines/
suggestions as remedies to resolve the compliance deviations based on high-level
patterns.

7 Conclusions and Outlook

Business processes –many of which are implemented as a SOA these days - form the
foundation for all organizations, and as such, are impacted by laws, policies and
industry regulations. Without an explicit auditing SOA framework to ensure
compliance of service-enabled processes, organizations face litigation risks and even
criminal penalties. One of the significant provisions towards business process
compliance is a framework that would enable service engineers to define compliance
constraints and weave them into service-enabled processes. Compliance management
should be considered from the very early stages of the business process design, such
that compliance constraints are designed into service-enabled processes. To enable
automatic reasoning techniques for verifying and ensuring compliance, these
compliance constraints should be grounded on a formal language. Using property
specification patterns to specify compliance constraints and automatically generate
formal specifications significantly facilitate the work of the compliance expert.

Moreover, recovering from compliance violations in service-enabled processes is
an important issue that has not paid much attention by the research community. The
compliance expert should be provided with intelligent feedback that reveals the root-
causes of these violations and aids their resolution; not merely an indication whether
the constraint is violated. To address this problem, we have proposed a taxonomy of

30 A. Elgammal et al.

compliance constraints based on Dwyer’s property patterns and extended this
taxonomy with patterns that are frequently used to specify compliance constraints.
Next, we have introduced a root-cause analysis approach to automatically reason
about design-time compliance violations rooted on the proposed taxonomy. Based on
the root-cause analysis, the compliance expert is provided with only relevant
guidelines/suggestions.

The root-cause analysis approach including its compliance constraint taxonomy is
validated in three ways. Firstly, the internal and construct validity are verified by
formalizing the taxonomy, and particularly, the atomic and composite patterns in
LTL. Secondly, the implementability of our approach is ascertained with an
experimental prototype. Lastly, we have explored and tested our approach with
several case studies drawn from industrial partners in the COMPAS EU project in
which we participate. Furthermore, the validation of the proposed approach will
further be intensified by its application on various empirical experiments and/or case
studies on prospective users of the developed prototype toolset.

Design-time and runtime compliance management are complementary and
indispensable phases for ensuring and enforcing the compliance. The main focus of
this work is on design-time verification and analysis. Addressing compliance
verification and analysis during runtime, based on the proposed compliance pattern
taxonomy, and integrating it to the proposed design-time verification and analysis
approach entails another important ongoing research direction. This course of
research will pave the way for a comprehensive compliance management solution that
verifies, analyses and ensures the compliance of business processes on both design-
time and runtime dimensions. Future work will concentrate on extending the
compliance constraints taxonomy with additional domain-specific compliance
patterns. This requires intensive involvement in the specification of various industrial
large-scale use case scenarios.

References

1. Papazoglou, M., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing:
State of the Art and Research Challenges. Computer 40, 38–45 (2007)

2. Sadiq, S., Governatori, G., Naimiri, K.: Modeling Control Objectives for Business Process
Compliance. In: 10th International Conference on BPM, Australia, pp. 149–164 (2007)

3. ITIL: Information Technology Infrastructure Library (2010)
4. Dwyer, M., Avrunin, G., Corbett, J.: Property Specification Patterns for Finite-State

Verification. In: Workshop on Formal Methods on Software Practice, USA, pp. 7–15 (1998)
5. Liu, Y., Muller, S., Xu, K.: A Static Compliance-Checking Framework for Business

Process Models. IBM Systems Journal 46 (2007)
6. Pnueli, A.: The Temporal Logic of Programs. In: 18th IEEE Symposium on Foundations

of Computer Science, pp. 46–57 (1977)
7. Dettmer, H.: Goldratt’s Theory of Constraints: a systems approach to continuous

improvement, pp. 62–119. ASQC Quality Press (1997)
8. Mosely, H.: Current Reality Trees: An Action Learning Tool for Root Cause Analysis

(2006),
http://www.jhuccp.org/training/scope/starguide/toc/rootcause
analysis.ppt

 Root-Cause Analysis of Design-Time Compliance Violations 31

9. Buchi, K.: On a Decision Method in Restricted Second Order Arithmetic. In: International
Congress on Logic, Method, Philosophy of Science, Stanford, pp. 1–11 (1960)

10. Clarke, E., Grumberg, J., Peled, D.: Model Checking. MIT Press, Cambridge (2000)
11. Yu, J., Manh, T., Han, J., Jin, Y.: Pattern-Based Property Specification and Verification for

Service Composition. In: Aberer, K., Peng, Z., Rundensteiner, E.A., Zhang, Y., Li, X.
(eds.) WISE 2006. LNCS, vol. 4255, pp. 156–168. Springer, Heidelberg (2006)

12. COMPAS official web site – Project description, http://www.compas-ict.eu/project.php
13. Arbab, F., Kokash, N., Meng, S.: Towards Using Reo for Compliance-Aware Business

Process Modeling. In: ISOLA 2008, Greece, pp. 108–123 (2008)
14. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance Checking Between Business

Processes and Business Contracts. In: EDOC 2006, Hong Kong, pp. 221–232 (2006)
15. Governatori, G., Milosevic, Z.: Dealing with Contract Violations: Formalism and Domain-

Specific Language. In: EDOC 2005, pp. 46–57 (2005)
16. Goedertier, S., Vanthienen, J.: Designing Compliant Business Processes with Obligations

and Permissions. In: The International BPM Workshops, Austria, pp. 5–14 (2006)
17. Governatori, G., Rotolo, A.: Logic of Violations: A Gentzen System for Reasoning with

Contrary-to-duty Obligations. Australasian Journal of Logic (2006)
18. Governatori, G.: Representing Business Contracts in RuleML. International Journal of

Cooperative Information Systems (2005)
19. Milosevic, Z., Sadiq, S., Orlowska, M.: Translating business contract into compliant

business processes. In: EDOC 2006, pp. 211–220 (2006)
20. Lu, R., Sadiq, S., Governatori, G.: Compliance Aware Business Process Design. In: ter

Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS,
vol. 4928, pp. 120–131. Springer, Heidelberg (2008)

21. Abouzaid, F., Mullins, J.: A Calculus for Generation, Verification, and Refinement of
BPEL Specifications. In: WWV 2007, pp. 43–68 (2007)

22. Giblin, C., Liu, A., Muller, S.: Regulations Expressed As Logical Models. In: 18th
Conference of Legal Knowledge and Information Systems, Belgium, pp. 37–48 (2005)

23. Awad, A., Weidlich, M., Weske, M.: Specification, Verification and Explanation of
Violation for Data Aware Compliance Rules. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.)
ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 500–515. Springer, Heidelberg (2009)

24. Namiri, K., Stojanovic, N.: Pattern-based Design and Validation of Business Process
Compliance. LNCS, pp. 59–76 (2007)

25. Gruhn, V., Laue, R.: Specification Patterns for Time-Related Properties. In: 12th Int’l
Symposium on Temporal Representation and Reasoning, pp. 191–198 (2005)

26. Ghose, A., Koliadis, G.: Auditing Business Process Compliance. In: Krämer, B.J., Lin, K.-
J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 169–180. Springer,
Heidelberg (2007)

27. Lu, R., Sadiq, S., Governatori, G.: Measurement of Compliance Distance in Business
Processes. Information Systems Management 25, 344–355 (2008)

Artifact-Centric Choreographies

Niels Lohmann and Karsten Wolf

Universität Rostock, Institut für Informatik, 18051 Rostock, Germany
{niels.lohmann,karsten.wolf}@uni-rostock.de

Abstract. Classical notations for service collaborations focus either on the con-
trol flow of participating services (interacting models) or the order in which
messages are exchanged (interaction models). None of these approaches empha-
sizes the evolution of data involved in the collaboration. In contrast, artifact-
centric models pursue the converse strategy and begin with a specification of data
objects.

This paper extends existing concepts for artifact-centric business process mod-
els with the concepts of agents and locations. By making explicit who is accessing
an artifact and where the artifact is located, we are able to automatically generate
an interaction model that can serve as a contract between the agents and by con-
struction makes sure that specified global goal states on the involved artifacts are
reached.

1 Introduction

During the last few years, artifact-centric modeling of business processes received more
and more attention [21,14,8,10,13,15]. In essence, this paradigm is about modeling the
main data objects and then to derive a process which manipulates these data objects for
achieving a given business goal. Some authors propose to mirror this paradigm in the
implementation of business process engines by proposing an artifact hub which drives
the actual business process [15]. Artifact-centric approaches have also been proposed
in a service-oriented setting [10,13]. Here, services are discovered and employed for
performing actions which manipulate artifacts. Although different in many details, this
approach has a bit of an orchestration flavor.

In this paper, we study the use of artifacts in a more choreography-like setting. That
is, we abandon the concept of having a single artifact hub. Instead, we introduce the
idea of having several agents each of which operates only on some of the artifacts in the
overall system. We believe that this setting is more appropriate for interorganizational
business collaborations than the idea of central artifact hubs.

We observe that some artifacts can move between agents and that their actual location
may matter for the executability of actions performed on them. That is, we extend the
idea of “moving data throughout a process” [8] by the idea of “moving artifacts between
agents”. In consequence, we contribute

– a systematic approach for modeling artifact location and its impact on the accessi-
bility of actions, and

– an approach to automatically derive an interaction model between the agents which
may serve as a contract between them.

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 32–46, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Artifact-Centric Choreographies 33

The derivation of the interaction model is solely based on existing methods and tools
[18,24,20,19]. Local policies of the involved agents can easily be incorporated.

Models using a single artifact hub appear as a special case in our approach where
there is only a single agent. In a setting with more than one agent, however, our approach
reaches beyond the single agent setting: We derive not only the actions that need to be
performed on the artifacts for reaching a goal but also the messages that need to be
exchanged between agents for this purpose.

The paper is organized as follows. The next section briefly describes how artifacts
can be modeled with Petri nets. Section 3 introduces location-aware extensions and their
impact to artifact models. Section 4 provides a categorization of location information
which may serve as suggestion for a high-level language for location-aware artifacts.
The construction of an interaction model out of location-aware artifacts is described
in Sect. 5. Section 6 shows our approach in the context of related work before Sect. 7
concludes and discusses several possible extensions to the work of this paper.

2 Modeling Artifacts

Being concerned with an interorganizational setting, we assume that there is a set A of
agents (or roles, organizations, locations, etc.). In our approach, agents are principals
in the role-based access control for artifacts. Additionally, agents may (permanently or
temporarily) posses artifacts, so they play the role of locations that messages containing
artifacts may be sent to.

Informally, an artifact consists of data fields that can be manipulated (changed) by
agents. Thereby, the change of data is constrained by the role-based access control.
Hence, we model an artifact as a state machine. States represent the possible valuations
of the data fields whereas transitions are the potential atomic changes that can happen to
the data fields. In this paper, we use Petri nets for implicitly representing state machines.
When data fields in an artifact evolve independently of each other, the size of a Petri net
grows much slower than the number of represented states.

Definition 1 (Petri net). A Petri net N = [P, T, F,m0] consists of two finite and dis-
joint sets P (places) and T (transitions), a flow relation F ⊆ (P × T) ∪ (T × P), and
an initial marking m0. A marking m : P → IN represents a state of the Petri net and is
visualized as a distribution of tokens on the places. Transition t is enabled in marking
m iff, for all [p, t] ∈ F , m(p) > 0. An enabled transition t can fire, transforming m
into the new state m′ with m′(p) = m(p)−W (p, t) +W (t, p) where W ([x, y]) = 1 if
[x, y] ∈ F , and W ([x, y]) = 0, otherwise.

Transitions are triggered by actions. The available actions form the interface to the
artifact. For modeling role based access control, each action is associated to an agent,
meaning that this agent is permitted to perform that action.

In Fig. 1(a), we show an example of an artifact model for a direct debit authorization
(automated clearing house). Data fields of such an artifact include an amount authorized,
account information, and Booleans showing whether it has been signed, respectively
whether it has been validated. In the state machine model, we abstract away the amount
and account information fields. These fields do not influence the control flow in our

34 N. Lohmann and K. Wolf

debitempty

fill

filled

process

processed

use

used Ω = {[used]}

buyer

shipper

shipper

(a) debit artifact

debitempty

fill

filled

process

processed

use

used

@buyer

@shipper

inTransitToShipperinTransitToBuyer

sendToShipper

receiveFromBuyer

receiveFromShipper

sendToBuyer

Ω = {[used,@buyer], [used,@shipper]}

buyer

shipper

shipper

buyerbuyer

shipper shipper

(b) location-aware debit artifact

Fig. 1. Direct debit authorization artifact (a) with location information (b)

example. We silently assume that each artifact has finitely many states which typically
can be achieved by a suitable abstraction.

Throughout this paper fix a set L of action labels and a mapping c : L → A repre-
senting the access control. In figures, the access control is written as additional transi-
tion labels, for instance buyer and shipper in Fig. 1(a).

Definition 2 (Artifact). An artifact A = [N, �,Ω] consists of

– A Petri net N = [P, T, F,m0];
– a transition labeling � : T → L associating actions with Petri net transitions;
– a set Ω of markings of N representing endpoints in the life cycle of the artifact.

Action x ∈ L is enabled in marking m iff some transition t ∈ T with l(t) = x is en-
abled in m. Executing the enabled action x amounts to firing any (nondeterministically
chosen) such transition.

Nondeterminism in an artifact may sound unusual at first glance but may occur due to
prior abstraction. The final marking of the debit artifact (cf. Fig. 1(a)) consists of the
marking [used] modeling successful debit authorization.

3 Location-Aware Artifacts

If we want to derive a protocol from a set of given artifacts, we have to understand the
reasons for which messages are sent around in an artifact context. It turns out that there
exist different shapes of artifacts which cause message transfer for different reasons.
We give a few examples.

Consider first an artifact that is materialized as, say, a physical form. Actions in this
artifact correspond to filling in fields in this form. Still, some actions may be bound

Artifact-Centric Choreographies 35

order

shipper buyer buyer
orderBeer orderWine

unpaid

paid

pay

undecided

wineOrderedbeerOrdered

Ω = {[paid,beerOrdered], [paid,wineOrdered]}

(a) location-aware order artifact

cargo

@buyer

@shipper

inTransitToShipper inTransitToBuyer

sendToShipper

receiveFromBuyer

receiveFromShipper

sendToBuyer

shipper

buyerbuyer

shipper shipper

loadBeer

loadWine

wineLoadedbeerLoaded

shipper

Ω = {[beerLoaded,@shipper], [beerLoaded,@buyer],
wineLoaded,@shipper], [wineLoaded,@buyer]}

unloaded

(b) location-aware cargo artifact

Fig. 2. Online order artifact (a) and cargo artifact (b)

to particular agents (e.g., signatures), so the artifact itself must be passed to that agent.
Passing the artifact corresponds to sending a message. The act of sending would, at
the same time, disable any actions by the sending agent. In another scenario, an artifact
manifests itself as a database record. In this case, the artifact is not passed, but a message
may be required to announce the existence of the artifact and to transmit some kind of
access link which then enables the other agent to perform actions on the artifact by
remote access to the data base.

Taking the artifact-centric approach seriously, we propose to include the acts of send-
ing a message, receiving a message, and synchronous communication steps as specific
actions of the artifact. Likewise, the actual location of the artifact (at an agent or “in
transit”) becomes an additional data field. The additional data field can be used for
modeling the actual effect of the messaging activity such as enabling or disabling other
actions. In the example, remote access to the artifact is ruled out. Figure 1(b) shows the
augmented model for the direct debit authorization from Fig. 1(a). It expresses the fact
that transition “fill” can only be executed when the artifact resides at the buyer, whereas
the other actions can only be performed when the artifact is at the shipper. Note that the
augmented model is required to leave “in transit” states to reach a final marking.

As a second example, consider an online order artifact. Figure 2(a) shows the
functional part of such an artifact which happens to be identical to its location-aware

36 N. Lohmann and K. Wolf

extension. This reflects the idea that the artifact can be remotely accessed at any time.
The artifact cargo (cf. Fig. 2(b)) is similar to the debit artifact and models the fact that
the cargo can only be loaded to the shipper.

We see that the extension to the functional artifact model may vary a lot. Hence, it
is reasonable to provide this information as part of the artifact. One possible approach
is to make the modeler fully responsible for modeling location-specific information
about the artifact. Another option would be to automatically generate an extension of
the model from a more high level specification. The latter approach has the advantage
that the added information is consistent (e.g., a message can only be received after it
has been sent). However, our subsequent treatment of location-aware artifacts does not
depend on the way they have been obtained.

For the sake of automatically generating location information, we observe that the
necessary extension to an artifact model can be reduced to applying a reasonably sized
set of recurring patterns. In consequence, we suppose that it is possible to automatically
derive the extension from a few general categories. In the next section, we make a
preliminary proposal for such a categorization.

4 Categorization of Location Information

In this section, we propose a two-dimensional categorization of artifacts and discuss the
consequences on the derivation of a location-aware extension of an artifact. The first
dimension is concerned with the possible changes of ownership and remote visibility of
the artifact. The second dimension deals with remote accessibility to actions.

In the first dimension, we distinguish mobile, persistent, and transient artifacts.
A mobile artifact may change its location over time. A typical example is a physical

form that is exchanged between agents, for instance for collecting information or just
signatures from different agents. The direct debit authorization discussed in previous
sections is a particular instance of a mobile artifact. Messages caused by a mobile ar-
tifact typically correspond to a change of location of the artifact. This can be modeled
using an additional data element that records the location which may be at a particu-
lar agent or “in transit” between two agents. Actions correspond to sending an artifact
(move the location field from “at X” to “in transit from X to Y ” and receiving an ar-
tifact (move the location field from “in transit from X to Y ” to “at Y ”). The location
field may then be used for constraining remote access as discussed later in this section.

Persistent and transient artifacts are both immobile; that is, their location does not
change over time. The difference between these two categories concerns the visibility
of the artifact to other agents. An example for a persistent artifact could be a commonly
known Web front-end such as a popular book-ordering platform. Access to actions on
the artifact, including creation of an order (an actual instance of the artifact) can happen
at any time from any agent. In contrast, consider a journal reviewing record as an exam-
ple for a transient artifact. This artifact resides in the editorial office at all time — like
the ordering artifact resides with the seller. However, the reviewer cannot access the
artifact from the beginning as he or she simply does not know of its existence. Only
after having been invited to review the paper, the reviewer can start to act on the artifact
(including downloading the paper and filling in the fields in the recommendation form).

Artifact-Centric Choreographies 37

send link
accessible

...

owner
remote access
agent B

state 1

state 2

Fig. 3. Excerpt of a transient artifact whose owner needs to send a link prior to remote access of
agent B

In essence, the reviewer invitation contains a link to the artifact, possibly in the form
of login information thus announcing the existence to the artifact. This link message
makes the artifact remotely accessible. For a persistent artifact, no such information
is required. At least, passing the link to the artifact to the remote (customer) agent, is
typically not part of the interorganizational business process model for book selling.

Persistent artifacts basically do not require any location-specific extension (such as
the order example). It is just necessary to be aware of the particular location for the
purpose of distinguishing remote from local access to the artifact. For a transient model,
we propose to add a place for each agent that is marked as soon as the artifact is visible
to that agent. An action “send link” marks that place thus modeling the fact that the
artifact can be accessed after having received the link (or login) information. Once a
place is marked, the artifact can be accessed indefinitely by the respective agent. See
Fig. 3 for an example.

The second dimension determines, whether and how an artifact can be accessed by
remote agents. For a mobile artifact, an agent is remote if it is not currently owning the
artifact. For a persistent or transient artifact, all agents are remote, except the one that
currently possesses it. Remote accessibility may differ between actions, so we suggest
to specify this information for each action separately.

We distinguish three options for remote accessibility of an action: none, synchronous,
and asynchronous. For a real paper form, the standard option would be none. The form
is not remote accessible. Performing an action requires physical presence of the artifact.
An exception may be a situation where two agents are actually present in a single lo-
cation such as in the case of a contract that is signed by a customer directly at a desk
which does not require passing the contract from the clerk to the customer. Synchronous
transfer is an obvious option for artifacts with interactive Web forms as front-end. An
example for an asynchronously accessible artifact can be found in the once popular
tool Majordomo1 for managing electronic mailing lists. Participants could manipulate
their recorded data (like subscription and unsubscription) by writing e-mails containing
specific commands to a particular e-mail address.

Although there is a certain correlation between the dimensions, we can think of ex-
amples for all possible combinations of values for the two discussed dimensions. Even
for a mobile artifact, asynchronous remote access may be reasonable. Think of a prod-
uct that is about to be assembled where the delivery and mounting of a part from a

1 http://www.greatcircle.com/majordomo/

http://www.greatcircle.com/majordomo/

38 N. Lohmann and K. Wolf

Table 1. Dimensions of location information with examples

synchronous asynchronous
no remote access remote access remote access

mobile artifact physical form insurance claim with delegation
persistent artifact — database majordomo
transient artifact — online survey review form

supplier may be modeled as an asynchronous access to the artifact. Thus, there is a
need to explicitly state the remote accessibility scheme for each action.

We do not claim that the above categorization (see Table 1 for an overview) is com-
plete. However, we argue that this categorization provides enough evidence to support
the claim that location-based information about artifacts can be systematically specified
and then transformed into an extended artifact model. Potential refinements include, for
example, restrictions concerning the set of agents to which the artifact may be passed
or made visible. However, it is safe to assume for the remainder of this paper that a
location-aware artifact model be given.

5 Choreography Construction

With location-aware artifacts, we can model the evolution (life cycle) of distributed data
objects. As these life cycles evolve independently, several problems may arise:

1. Each artifact may reach a local final state, but the respective global state might
model an unreasonable combination of final states. For instance, a beer order to-
gether with a wine-loaded cargo is reachable in the running example.

2. Even worse, undesired situations such as deadlocks (nonfinal markings without
successors) or livelocks (infinite runs without reachable final marking) might be
reachable.

3. Furthermore, not every reachable behavior is actually permitted: Policies may addi-
tionally restrict the order of actions that reaches a final state. For instance, a shipper
must not load the cargo before the ordered goods have been paid.

In the course of this section, we address these three problems as follows. With goal
states, we restrict the set of all possible final states to a subset of desired global final
states. This addresses the first problem. To avoid deadlocks and livelocks, the artifacts’
actions need to be controlled by the environment, resulting in an interaction model (i.e.,
a choreography) which may serve as a contract between the agents. This interaction
model provides the necessary coordination to deal with the second problem. Finally,
we introduce policies to further refine the interdependencies between artifacts. This
tackles the third problem. Figure 4 provides an overview.

5.1 Goal States and Controller Synthesis

To simplify subsequent definitions, we first unite the artifacts. The union of a set of
artifacts is again an artifact.

Artifact-Centric Choreographies 39

A3
A2

A1

Γ

artifact com
position

artifacts

policies

controller synthesis

goal states

choreography

P3
P2

P1

Fig. 4. Overview: Artifact composition and controller synthesis (Sect. 5.1) and policies (Sect. 5.2)
yield a choreography

Definition 3 (Artifact union). Let A1, . . . , An be artifacts with pairwise disjoint Petri
nets N1, . . . , Nn. Define the artifact union

⋃n
i=1 Ai = [N, �,Ω] to be the artifact con-

sisting of

– N = [
⋃n

i=1 Pi,
⋃n

i=1 Ti,
⋃n

i=1 Fi,m01 ⊕ · · · ⊕m0n],
– �(t) = �i(t) iff t ∈ Ti (i ∈ {1, . . . , n}), and
– Ω = {m1 ⊕ · · · ⊕mn | mi ∈ Ωi ∧ 1 ≤ i ≤ n}

Thereby, ⊕ denotes the composition of markings: (m1 ⊕ · · · ⊕ mn)(p) = mi(p) iff
p ∈ Pi.

The previous definition is of rather technical nature. The only noteworthy property is
that the set of final markings of the union consists of all combinations of final markings
of the respective artifacts. We shall later restrict this set of final markings to a subset of
goal states.

The next definition captures the interplay between two artifacts A1 and A2 and uses
their interfaces (i.e., the labels associated to artifact transitions) to synchronize artifacts.
In the resulting composition, each pair of transitions t1 and t2 of artifact A1 and A2,
respectively, with the same label (i.e., �1(t1) = �2(t2)) is replaced by a new transition
[t1, t2] which models synchronous firing of t1 and t2. Consequently, the composition of
two artifacts restricts their behavior by synchronization.

Definition 4 (Artifact composition). Let A1 and A2 be artifacts. Define their shared
labels as S = {l | ∃t1 ∈ T1, ∃t2 ∈ T2 : �(t1) = �(t2) = l}. The composition of A1 and
A2 is the artifact A1 ⊕A2 = [N, �,Ω] consisting of:

– N = [P, T, F,m01 ⊕m02] with
• P = P1 ∪ P2;
• T =

(
T1 ∪ T2 ∪ {[t1, t2] ∈ T1 × T2 | �(t1) = �(t2)}

)
\

(
{t ∈ T1 | �1(t) ∈

S} ∪ {t ∈ T2 | �2(t) ∈ S}
)
,

• F = ((F1∪F2)∩ ((P ×T)∪ (T ×P)))∪{[[t1, t2], p] | [t1, p] ∈ F1∨ [t2, p] ∈
F2} ∪ {[p, [t1, t2]] | [p, t1] ∈ F1 ∨ [p, t2] ∈ F2},

– for all t ∈ T ∩ T1: �(t) = �1(t), for all t ∈ T ∩ T2: �(t) = �2(t), and for all
[t1, t2] ∈ T ∩ (T1 × T2): �([t1, t2]) = �1(t1), and

40 N. Lohmann and K. Wolf

A

Ω = {[final1], [final2]}

B

final

Ω = {[final]}

A⊕B

final

Ω = {[final1,final], [final2,final]}

⊕ =
a b b ba

final1 final2 final1 final2

Fig. 5. Example for the composition of two artifacts

– Ω = {m1 ⊕m2 | m1 ∈ Ω1 ∧m2 ∈ Ω2}.

The composition A1 ⊕A2 is complete if for all t1 ∈ T1 and t2 ∈ T2 holds: �1(t1) ∈ S
and �2(t2) ∈ S.

Figure 5 depicts an example for the composition of two artifacts. Final markings of the
composition are built just like in the union. We call a composition complete if for each
transition in one artifact exists a transition in the other artifact that carries the same label.
Intuitively, a complete composition does not contain “unsynchronized” transitions. To
avoid undesired behavior, a complete composition plays an important role.

Given an artifact A and a set Γ ⊆ Ω of goal states ofA, we call another artifactA′ a
controller forA iff (1) their compositionA⊕A′ is complete and (2) for each reachable
markings of the composition, a marking m⊕m′ is reachable such that m ∈ Γ and m′

is a final marking ofA′. Intuitively, this controller synchronizes with A such that a goal
state m ∈ Γ of A always remains reachable.

The existence of controllers (also called controllability [24]) is a fundamental cor-
rectness criterion for communicating systems such as services. It can be decided con-
structively [24]: If a controller for an artifact exists, it can be constructed automatically.

With the concept of controller synthesis, we are now able to reason about artifacts.
Given a set of artifacts and a set of goal states, we can synthesize a controller which
rules out any behavior that makes the goal states unreachable. At the same time, the
controller provides a global model which specifies the order in which the agents may
perform actions on the artifacts. Furthermore, we can derive communication actions
from the labels that were introduced in the location-aware versions.

For the three artifacts of the running example and the set of goal states

Γ = {[used,debit@shipper, paid, beerOrdered, beerLoaded, cargo@buyer],
[used,debit@shipper, paid,wineOrdered,wineLoaded, cargo@buyer]}

expressing successful purchase of beer or wine, respectively, the synthesized controller
has 1120 states and is too large to be shown here. Although free of deadlocks and
livelocks, it still contains undesired behavior which we rule out with policies in the next
subsection.

5.2 Policies

Artifact-centric approaches follow a declarative modeling style. The same holds for
artifact-centric choreographies: instead of explicitly modeling global state changes, we

Artifact-Centric Choreographies 41

Table 2. Required policies to rule out unintended behavior

policy description artifacts

P1 only load cargo after buyer has paid order, cargo
P2 only pay when filled debit form is at shipper order, debit
P3 do not send unloaded cargo to buyer cargo
P4 only send debit form if it is filled and at the buyer debit

only modeled the local object life cycle of every artifact. Consequently, the order of
actions in the generated choreography is only constrained to avoid deadlocks and live-
locks with respect to goal states. As a downside of this approach, a lot of unreasonable
behavior is exposed. For instance, sending of unloaded cargo or even sending without
prior payment is possible.

To rule out this undesired behavior, we employ policies (also called behavioral con-
straints [18]). In the setting of this paper, we also model policies with artifacts; that is,
labeled Petri nets with a set of final markings. These artifacts have no counterpart in
reality and are only used to model dependencies between actions of different artifacts.
The application of policies then boils down to the composition of the artifacts with these
policies. In principal, goal states can be expressed by policies as well. We still decided
to split these concepts, because the former express liveness properties whereas the latter
express safety properties.

For the running example, we used four policies, listed in Table 2. To avoid, for in-
stance, loading the cargo without payment (P1), the order and cargo artifacts need to
be constrained. Specifically, the cargo’s transitions with label “loadBeer” and “load-
Wine” must not fire before order’s transition “pay” has fired. Such a dependency can be
straightforwardly expressed by Petri nets, for instance by the constraint net in Fig. 6(a).
Figure 6(b) depicts the similar constraint net for policy P3. Their composition with the
order and cargo artifacts is shown in Fig. 6(c).

By applying more and more policies to the artifacts, we exclude more and more
unintended behavior. This effect can be observed in the number of states of the choreog-
raphy. Without any constraints, the choreography has 1120 states. After the application
of policy P1, this number is reduced to 736. With more policies, this number is quickly
reduced to 216 (P1, P2), 60 (P1, P2, P3), and finally 30 states with all four policies.

Figure 7 depicts the Petri net representing this final choreography. Each transition
is labeled with an action (what is done), an artifact (which data are accessed), and an
agent (who performs the action). This Petri net model exposes the concurrency between
the handling of the direct debit authorization and the buyer’s order choice. This chore-
ography has been calculated by Wendy [19] as an automaton model which then was
transformed into a Petri net model using the tool Genet [11]. With a preprocessing tool
to compose artifacts and policies, Wendy as controller synthesis tool, and Genet as Petri
net transformation, we have a continuous tool chain for location-aware artifact-centric
choreographies available. Although the running example is rather trivial, case studies
with Wendy [19] show that it is able to cope with input models with millions of states.

42 N. Lohmann and K. Wolf

shipper
pay

shipper
loadBeer loadWine

shipper

(a) policy P1

shipper
loadBeer loadWine

shipper

sendToBuyer
shipper

(b) policy P3

order

shipper buyer buyer
orderBeer orderWine

unpaid

pay

undecided

wineOrderedbeerOrdered

cargo

@buyer

@shipper

inTransitToShipper inTransitToBuyer

sendToShipper

receiveFromBuyer

receiveFromShipper

sendToBuyer

shipper

buyerbuyer

shipper shipper

loadBeer

wineLoadedbeerLoaded

paid

unloaded

shipper
loadWine

(c) policy P1 and P3 applied to artifacts order and cargo.

Fig. 6. Application of policies to artifacts

6 Related Work

There exists a variety of approaches dealing with artifact-centric modeling of business
processes.

Workflow construction. Küster et al. [17] study the interplay between control flow
models and object life cycles. Beside an extended soundness notion which also respects
object life cycles, the authors present an algorithm to automatically derive a sound
process model from given object life cycles. Compared to our approach, this workflow
model is not aware of artifact locations and hence plays an orchestrating role.

Object life cycle inheritance. Aalst and Basten [2,3] model object life cycles as la-
beled Petri nets and investigate the relationships between different versions of object
life cycles. These inheritance notions may complement our work and can, for instance,
be used in our context to compare artifacts and choreographies. Such an application to
contracts is described by Aalst et al. [4].

Artifact-Centric Choreographies 43

loadWine
shipper

fill

process

use

buyer

shipper

shipper

sendToShipper

receiveFromBuyer

buyer

shipper

buyer buyer
orderBeerorderWine

shipper
pay

shipper
loadBeer

receiveFromShipper

sendToBuyer

buyer

shipper

orderorder

cargo cargo

cargo

cargo

order

debit

debit

debit

debit

debit

final Ω = {[final]}

Fig. 7. Resulting choreography between buyer and shipper

Artifacts and service orientation. The idea of encapsulating functionality as services
also influenced artifact-centric approaches. Several authors investigated how services can
be used to manipulate the state of artifacts. Keeping a declarative modeling style, services
are described by preconditions and postconditions formulated in different logics.

Bhattacharya et al. [8] study several questions related to artifacts and services, in-
cluding reachability of goal states, absence of deadlocks, and redundancy of data. Their
employed logics is similar to OWL-S. Similar settings are investigated by Calvanese et
al. [10] and Fritz et al. [13] for first order logics. Gerede and Su [14] language based
on CTL to specify artifact behaviors in artifact-centric process models. Each paper pro-
vides complexity and decidability results for the respective problems.

These approaches share the idea of using service calls to manipulate artifacts. The
artifact itself, however, is assumed to be immobile, resulting in orchestrating workflows
rather than our choreography-like setting.

Artifact hosting. Hull et al. [15] introduce artifact-centric hubs as central infrastruc-
ture hosting data that can be read and written by participants. The authors motivate that,
compared to autonomous settings such as choreographies, the centralized storage of
data has the advantage of providing a conceptual rendezvous point to exchange status in-
formation. This centralized approach can be mimicked by our location-aware approach
by remotely accessible immobile artifacts.

Proclets. Aalst et al. [1,5] introduce proclets to specify business processes in which
object life cycles can be modeled in different levels of granularity and cardinality. Con-
sequently, proclets are well-suited to deal with settings in which several instances of
data objects are involved. Being introduced as workflow models, proclets have no con-
cept of locations.

44 N. Lohmann and K. Wolf

loadWine
shipper

process

use

shipper

shipper

receiveFromBuyer
shipper

shipper
pay

shipper
loadBeer

sendToBuyer
shipper

cargo cargo

cargoorder

debit

debit

debit
final

Ω = {[final]}

fill
buyer

sendToShipper
buyer

buyer buyer
orderBeerorderWine

receiveFromShipper
buyer

orderorder

cargodebit

debit

final1 final2

Ω = {[final1,final2]}

Fig. 8. Local models for the buyer (left) and the shipper (right)

To the best of our knowledge, this is the first approach to explicitly add information
on agents and locations to artifact models. As a result, we can naturally reason about
sending and receiving of artifacts resulting in a choreography of agents. Consequently,
our approach is a first step toward artifact-based interorganizational business processes.

7 Conclusion

We extended the idea of artifact-centric process design to a choreography setting where
artifacts are not necessarily gathered in artifact hubs. We observed that in such a setting
the actual location of the artifact has a significant impact on executability of actions
and on the message flow that is required to transform artifacts into desired goal states.
We propose to enhance artifacts with explicit information on location and its impact
on remote access to actions. This information can be modeled manually or derived
systematically from a high level description. We suggest a principal two-dimensional
categorization into mobile, persistent, and transient artifacts on one hand, and no, syn-
chronous, or asynchronous remote access to actions on the other as an initial proposal
for a high level description. From location-aware artifacts and goal states for the arti-
facts, we can derive a global interaction model that may serve as a contract between
the involved agents. The interaction model can be derived in such a way that it respects
specified policies of the involved agents. The whole approach relies on only one simple
formalism. Petri nets express the functional part of an artifacts, location information,
as well as policies. This way, it is possible to employ existing tools for the automated
construction of a choreography and the invocation of policies. These tools have already
proven their capability to cope with nontrivial problem instances.

In our modeling approach to artifacts, we did not include mechanisms for creating
new artifact instances. If the overall number of artifacts in the system is bounded, this
is not a serious problem since the creation of a new artifact instance can be modeled by
a transition from a state “not existing” to the actual initial state of the artifact. This ap-
proach does not work in the case of an unbounded number of artifacts. Similar problems
are known in the area of verification of parameterized programs where parts of the pro-
gram may spawn a finite but not a priori bounded number of threads which run identical

Artifact-Centric Choreographies 45

programs. There exist ways to finitely model such systems and several verification prob-
lems turn out to be decidable [12,6]. Future research is required to find out whether the
methodology used there extends to the problems and solutions proposed in this paper.

Another interesting issue is the further transformation of the choreography derived
in this paper into local processes for the agents. We see two potential directions which
need to be further explored. First, we could exploit existing research on accordance
(e.g., [7,9,23]). In [4], we showed that it is possible for each agent to replace its part of
a contract by an accordant private process. Relying on the accordance criterion, sound-
ness of the original interaction model is inherited by the collaboration of private pro-
cesses. The approach requires a suitable decision procedure for checking accordance
[23,22] or powerful transformation rules which preserve accordance [16]. Both appear
to be more advanced for establishing deadlock freedom than for livelock freedom, so
more progress needs to be made there.

A second opportunity for deriving local processes is to use the realizability approach
proposed in [20]. There, local processes are constructed from a choreography for the
sake of proving that the choreography can be implemented (realized). To this end, the
choreography is transformed into a service where the local processes are computed as
correctly interacting partners, cf. Fig. 8. Adding results from [24] to this approach, we
can even compute a finite representation of a set of processes for each agent such that
each combination of one process per agent yields a correct set of realizing partners
for the choreography. The concept was called autonomous controllability in [24]. In
the artifact setting, such a finite representation of a set of processes could be used to
derive, at least to some degree, a local process that not only respects the artifacts and
policies known to all involved agents, but also artifacts and policies that are hidden from
the other agents. Again, past research focused on deadlock freedom, so further work is
required to make that technology available in the context of this paper. Nevertheless, the
discussion suggests that the chosen approach connects artifact centric choreographies
to promising methods for further tool support.

We believe that we can further exploit ideas for bridging the gap between the global
interaction model and the local processes of the agents. It is also worth to explore ideas
known from program verification for the purpose of supporting unbounded creation of
artifact instances.

References

1. van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., Wainer, J.: Proclets: A framework for
lightweight interacting workflow processes. Int. J. Cooperative Inf. Syst. 10(4), 443–481
(2001)

2. van der Aalst, W.M.P., Basten, T.: Life-cycle inheritance: A Petri-net-based approach. In:
Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 62–81. Springer, Heidelberg
(1997)

3. van der Aalst, W.M.P., Basten, T.: Identifying commonalities and differences in object life cy-
cles using behavioral inheritance. In: Colom, J.-M., Koutny, M. (eds.) ICATPN 2001. LNCS,
vol. 2075, pp. 32–52. Springer, Heidelberg (2001)

4. van der Aalst, W.M.P., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: Multiparty contracts:
Agreeing and implementing interorganizational processes. Comput. J. 53(1), 90–106 (2010)

46 N. Lohmann and K. Wolf

5. van der Aalst, W.M.P., Mans, R.S., Russell, N.C.: Workflow support using proclets: Divide,
interact, and conquer. IEEE Data Eng. Bull. 32(3), 16–22 (2009)

6. Ball, T., Chaki, S., Rajamani, S.K.: Parameterized verification of multithreaded software li-
braries. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 158–173. Springer,
Heidelberg (2001)

7. Benatallah, B., Casati, F., Toumani, F.: Representing, analysing and managing Web service
protocols. Data Knowl. Eng. 58(3), 327–357 (2006)

8. Bhattacharya, K., Gerede, C.E., Hull, R., Liu, R., Su, J.: Towards formal analysis of artifact-
centric business process models. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)

9. Bravetti, M., Zavattaro, G.: Contract based multi-party service composition. In: Arbab, F.,
Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 207–222. Springer, Heidelberg (2007)

10. Calvanese, D., Giacomo, G.D., Hull, R., Su, J.: Artifact-centric workflow dominance. In:
Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp.
130–143. Springer, Heidelberg (2009)

11. Carmona, J., Cortadella, J., Kishinevsky, M.: Genet: A tool for the synthesis and mining of
petri nets. In: ACSD 2009, pp. 181–185. IEEE Computer Society Press, Los Alamitos (2009)

12. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few. In: McAllester,
D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 236–254. Springer, Heidelberg (2000)

13. Fritz, C., Hull, R., Su, J.: Automatic construction of simple artifact-based business processes.
In: ICDT 2009. International Conference Proceeding Series, vol. 361, pp. 225–238. ACM
Press, New York (2009)

14. Gerede, C.E., Su, J.: Specification and verfication of artifact behaviors in business process
models. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749,
pp. 181–192. Springer, Heidelberg (2007)

15. Hull, R., Narendra, N.C., Nigam, A.: Facilitating workflow interoperation using artifact-
centric hubs. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS,
vol. 5900, pp. 1–18. Springer, Heidelberg (2009)

16. König, D., Lohmann, N., Moser, S., Stahl, C., Wolf, K.: Extending the compatibility notion for
abstract WS-BPEL processes. In: WWW 2008, pp. 785–794. ACM, New York (April 2008)

17. Küster, J.M., Ryndina, K., Gall, H.: Generation of business process models for object life
cycle compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 165–181. Springer, Heidelberg (2007)

18. Lohmann, N., Massuthe, P., Wolf, K.: Behavioral constraints for services. In: Alonso, G.,
Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 271–287. Springer,
Heidelberg (2007)

19. Lohmann, N., Weinberg, D.: Wendy: A tool to synthesize partners for services. In: Lilius, J.,
Penczek, W. (eds.) Applications and Theory of Petri Nets. LNCS, vol. 6128, pp. 297–307.
Springer, Heidelberg (2010)

20. Lohmann, N., Wolf, K.: Realizability is controllability. In: Laneve, C., Su, J. (eds.) Web
Services and Formal Methods. LNCS, vol. 6194, pp. 110–127. Springer, Heidelberg (2010)

21. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Systems Journal 42(3) (2003)

22. Stahl, C.: Service Substitution - A Behavioral Approach Based on Petri Nets. Ph.D. the-
sis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II; Eind-
hoven University of Technology (2009)

23. Stahl, C., Massuthe, P., Bretschneider, J.: Deciding substitutability of services with operating
guidelines. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets. LNCS,
vol. 5460, pp. 172–191. Springer, Heidelberg (2009)

24. Wolf, K.: Does my service have partners? In: Jensen, K., van der Aalst, W.M.P. (eds.) Trans-
actions on Petri Nets. LNCS, vol. 5460, pp. 152–171. Springer, Heidelberg (2009)

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 47–60, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Resolving Business Process Interference via Dynamic
Reconfiguration∗

Nick R.T.P. van Beest1, Pavel Bulanov2, Hans Wortmann1, and Alexander Lazovik2

1 Department of Business & ICT, Faculty of Economics and Business,
University of Groningen, Nettelbosje 2, 9747 AE Groningen, The Netherlands

2 Johann Bernoulli Institute for Mathematics and Computer Science, Faculty of Mathematics
and Natural Sciences, University of Groningen, Nijenborgh 9,

9747 AG Groningen, The Netherlands
{n.r.t.p.van.beest,p.bulanov,j.c.wortmann,a.lazovik}@rug.nl

Abstract. For business processes supported by service-oriented information
systems, concurrent execution of business processes still may yield undesired
business outcomes as a result of process interference. For instance, concurrent
processes may partially depend on a semantically identical process variable,
causing inconsistencies during process execution. Current design-time verifica-
tion of service-based processes is not always sufficient to identify these issues.
To identify and resolve potentially erroneous situations, run-time handling of
interference is required. In this paper, dependency scopes are defined to repre-
sent the dependencies between processes and data sources. In addition,
intervention patterns are developed to repair inconsistencies using dynamic re-
configuration during execution of the pro-cess. These concepts are implemented
on top of a BPMS platform and tested on a real case study, based on the imple-
mentation of a Dutch Law in e-Government.

Keywords: business process, configuration, variability, concurrency.

1 Introduction

Concurrent execution of business processes, supported by distributed or service-
oriented information systems, may result in an unexpected behavior due to process
interference. Different concurrent processes may partially depend on the same re-
source. Data, modified by an external process, may cause inconsistencies during
process execution, resulting in the aforementioned undesired business outcomes. Such
business processes are designed with an inherent assumption of independence of
processes. Consequently, if business processes are executed concurrently, it is implic-
itly assumed that they cannot affect each other. For many business processes it is not
always feasible to foresee all interdepen-dencies. Assuming independent execution of
the processes, current design-time verifica-tion of process models is insufficient to
identify all conflicts and, more importantly, resolve these issues during run-time [8].

∗ The research is supported by the NWO SaS-LeG project, http://www.sas-leg.net, contract No.

638.000.000.07N07.

48 N.R.T.P. van Beest et al.

Traditionally, locking mechanisms are used to resolve the issues with concurrent
access to shared data. Unfortunately, in practice it is not possible to lock data for a
long period of time, which is quite typical for long-term business processes. Consider,
for example, a business process for issuing a wheelchair for disabled people in the
Netherlands. It takes up to 6 weeks from sending the initial request to receiving an
actual wheel chair. What if in the meantime the person, which requested the wheel
chair, has moved to a different place, e.g., to a care home with a nursing support? The
original process has to be adjusted, either by forwarding the wheel chair to a new
place, or by cancelling the request (whatever is more suitable in a concrete situation).
To resolve this issue by locking, one would "force" the person not to change his ad-
dress until the first process is finished, which is unfeasible in real life.

In this paper, process interference is prevented by awareness of process dependen-
cies and automatic execution of compensation activities. Dependency scopes are
introduced to represent the dependencies between processes and data sources. In addi-
tion, intervention patterns are developed to repair inconsistencies during execution of
the process. These modeling concepts can be seamlessly integrated in existing Busi-
ness Process Modeling platforms. The Cordys Business Operations Platform is used
as a basis for the implemen-tation of the proposed concepts. The implemented solu-
tion is demonstrated and tested on a real case study from e-Government that concerns
the Dutch WMO law business process.

The remainder of the paper is organized as follows. Section 2 provides a background
showing the current methods for dealing with the problem of concurrent process execu-
tion. A detailed description of the problem and the research methodology are both pre-
sented in Section 3. The developed modeling concepts are presented in Section 4. The
introduced approach is applied to the WMO law case study in Section 5. In Section 6,
an overview of the implementation of the dependency scopes and intervention patterns
is presented. Finally, the paper is concluded in Section 7.

2 Related Work

Much work has been done on verification of workflow and data specifications, e.g.
[14]. However, workflow verification as presented in [14] assumes that the analysis is
performed in the context of a single party, who has full access to the processes and
data involved. However, many business processes are designed in a distributed man-
ner, and their execution is spread among several parties. Often, such business proc-
esses are supported by, for instance, various autonomous Web services environments
[9]. Work-flow and data verification, as described by e.g. [14], cannot be applied to
interference resolution due to absence of a single ownership over the business proc-
esses involved in the execution. The parts of the business process owned by other
partners are not specified in detail, as the implementation details are typically only
known to the external party.

[18] propose an approach that deals with failing processes as the point of failure for
the analysis of data dependencies and process interference. Similarly, compensation ac-
tivities have been introduced to restore consistency in e.g. aborted long-lived transactions

 Resolving Business Process Interference via Dynamic Reconfiguration 49

[7]. In practice, however, interfering processes do not necessarily fail. More often, they
execute without any noticeable problems from inside the organization, as no error mes-
sage is signaled. In contrast, the problem is primarily noticed by the external stakeholders
(mostly customers) as the final result is undesirable to them [16].

The handling of the process interference at run-time is desirable by identifying and
resolving erroneous situations. This may, for example, be realized by a run-time re-
confi-guration of the business process to repair it and bring it back to a consistent
state. Such a concept has been proposed in [15], but the solution emphasizes on re-
solving design-time modeling contradictions in business process specifications rather
than run-time ones. Unfortunately the interference issues at run-time cannot be identi-
fied as a contradicting specification, as each business process runs without any inter-
ference in isolation. As a result, abnormal run-time interference situations are not
covered by this technique.

In general, the idea to deal with run-time business process reconfiguration is not
new. The most notable examples of handling run-time reconfiguration are the ADEPT
project [6], the DECLARE framework [10], and more general techniques like ad-hoc
sub-processes [5] and run-time case handling [2]. A more detailed overview of vari-
ous dynamic business process reconfiguration techniques can be found in [11], while
detailed requirements for such systems are overviewed in [4].

The ADEPT project is designed to support the synchronization between several run-
ning instances of the same process. The idea is to catch any changes made by the user
and incorporate those changes into all of the running instances without interrupting their
execution. The DECLARE framework utilizes the idea of a declarative process speci-
fica-tion [13] in order to attain flexible process execution. As a result, the process de-
fined inside this framework is not a strictly written sequence of actions, but rather a set
of rules, which guide the user through the process execution in an interactive manner.

The primary aim of both case handling and ad-hoc sub-processes is to enhance the
specification of a business process with conditions, which are left undecided until run-
time. At run-time, users can choose whether a part of the process should be included
or not, based on their own experience. In the same way, parts of business processes
may be left undefined in order to be specified at run-time, using the so-called late
binding technique. This technique is supported by the YAWL workflow language [3]
and also adopted in a form of reconfigurable sub-processes by [12].

The frameworks and techniques listed above focus on supporting run-time process
specification, which provides a design-time defined execution flexibility to the user.
However, ad-hoc compensation to prevent inconsistent process execution requires an
automated mechanism to determine which activities need to be executed. In this paper,
design-time modeling concepts are developed to manage run-time discovered interfer-
ence and provide automatic execution of compensation activities to restore consistency.

3 A Case Study: Business Process for the Dutch WMO Law

To demonstrate the proposed solution, and also to evaluate and to show feasibility of
the approach, a business process supporting the Dutch Law for Societal Support

50 N.R.T.P. van Beest et al.

(known as the WMO1 law) is examined. The purpose of this law is to enable people
with a chronic disease, a disability or physical decline due to aging to live in their
own homes and take part in society for as long as possible. Facilities are provided to
offer support to such citizens by means of, for example, domestic care, transportation,
a wheelchair or a home modification. Both the responsibility and the execution of the
business process are located at the municipalities. The business process under investi-
gation concerns the handling of the requests from citizens at one of the 430 munici-
palities in the Netherlands.

Fig. 1 shows a business process representing the request for a facility taken from
one of the municipalities in the Netherlands. The business process consists of
activities, which are provided by various services. First, the citizen contacts the mu-
nicipality and submits an application for a provision. Such a provision may concern,
for example, a wheelchair, domestic help, or a home modification. Based on that ap-
plication, it is decided whether a home visit is necessary, to have a better understand-
ing of the situation. Then, it might be necessary to ask for additional information, by
means of a medical advice. This information will finally result in an indication and
decision made by the municipality. If the decision is unsatisfactory for the citizen,
there is a possibility for appeal.

Depending on the requested service, the citizen can choose between a Personal
Budget and Care in Kind. Very often, this choice is already made in the initial appli-
cation. In case of a Personal Budget, the citizen periodically receives a certain amount
of money for the granted provision(s). If Care in Kind is chosen, suppliers are con-
tacted, which will eventually supply the citizen with the granted provisions. The proc-
ess ends with the payment of the invoices received from the suppliers.

Concurrently executed processes may constitute a potential risk of erroneous work-
flow execution. That is, although the process does finish regularly without any system
errors, the final result may be undesirable from a business perspective. Activity
branches with a rather long execution time that strongly depend on the consistency of
certain process variables are the most vulnerable to inconsistencies caused by concur-
rent processes.

In Fig. 1, the four distinct activity branches following “Designation and report”
(Domestic help, Transportation, Wheelchair and Major home modification) may po-
tentially suffer from process interference. The throughput time for both the wheel-
chair provisioning and major home modification may take up to 6 weeks, whereas
they strongly depend on the address of the citizen and the content of the designation.
This implies that a change in either of these process variables (e.g. address) may have
strong consequences for the consistency of the business process.

For instance, assume that the tender for major home modification will be approved
and the order will be sent to the supplier. If the citizen moves from a regular house to
a nursing home during or right after “Check tender with designation”, the home modi-
fication will not be necessary anymore. However, in the process above, the supplier or
the municipality are not notified of the address change and the request for home
modification is not cancelled.

1 http://nl.wikipedia.org/wiki/Wet_maatschappelijke_ondersteuning

 Resolving Business Process Interference via Dynamic Reconfiguration 51

Home visit
[Home visit]

Designation and
report

[No home visit]

Medical advice[Medical
advice]

[No
medical advice]

[Approve]

Intake and
application

[Appeal]

[Affirm decision]

[Remand decision]

[No appeal]

[Reject]

Check invoice with
contract and
designation

Receive invoice

[Invoice
correct]

Send invoice back
to the supplier

[Invoice not correct]

Payment

[Personal budget]
Payment

[Care in kind]

[Domestic help]

[Wheelchair] Send order to
supplier

[Major
home

Modification] Tenderprocedure
(By citizen)

Advice and
information

provision about
suppliers

Delivery (by
external party)

Check tender with
designation

[Tender not ok]

[Tender ok]

Acquire detailed
requirements

[Transportation / Minor home modification]

Fig. 1. Process model of the request for a provision at a municipality in the Netherlands

A similar situation occurs in case of a request for a wheelchair. The requirements
(and constraints) of a wheelchair may depend on certain architectural characteristics
of the citizen’s home. Therefore, an address change between “acquire detailed
requirements” and delivery might result in a wheelchair that does not fit the actual
requirements.

4 Dependency Scopes and Intervention Patterns

The situations described in Section 3 may occur when several concurrent processes,
that are wrongly assumed to be independent, use the same data at a particular point in
time or within a certain timeframe. As a result, this may affect the data used in subse-
quent activities or even the sub-processes that follow an evaluation of a condition.

In order to analyze this situation, let us formalize the concept of a business process.

52 N.R.T.P. van Beest et al.

Definition 1. A business process is a set of linked activities, constructors and process
variables that collectively realize a business objective or a policy goal, where:

• Each activity is an atomic piece of work representing an interaction with some
service.

• Constructors represent the flow of execution, e.g. sequence, choice, parallelism,
join synchronization. These constructors have well-defined semantics, e.g. de-
fined in [1].

• A process variable is a variable over arbitrary domain, and is typically mapped
into input/output parameters of activities (services).

In this paper, we do not distinguish between the business process and the business
process model, assuming that the business process engine is able to execute the pro-
vided business process model. Consequently, the difference between a business proc-
ess and its modeling representation is irrelevant in the context of this paper.

Definition 2. A sub-process is a business process that is enacted or called from an-
other (initiating) business process (or sub-process), and which forms part of the over-
all (initiating) business process [17].

The process definitions presented above are not new. They have been implemented in
different workflow and business process management systems, e.g. using BPMN, or
BPEL notation.

In Fig. 2, two processes are presented. The decision made in Process 1 is based on
the value of process variable D. That specific decision determines whether activities
A1 and A2 are executed or rather A3 and A4. If D is changed by another process (e.g.
Process 2) during execution of A2, this may have consequences for the decision
made. That is, as a result of the data change, currently the wrong branch of activities
is being executed. In such a situation, the execution of A2 needs to be cancelled and
followed by compensating activities to compensate A2 and A1. Subsequently, the
process should continue at A3. Therefore, it is desirable to know what activities are
implicitly relying on that process variable (D). Furthermore, these activities should be
notified if that data has changed, even if those changes happened externally to the
process being currently executed.

Fig. 2. Two business processes with concurrent data modification

 Resolving Business Process Interference via Dynamic Reconfiguration 53

To identify the specific part of the process that depends on certain process variable,
we introduce a notion of dependency-scope. A dependency-scope (DS) is defined as a
structurally correct subset of the business process, in which the activities are implic-
itly or explicitly relying on the accuracy of a volatile process variable accessed in the
first activity of that set. This implies that the process variable is assumed to remain
unchanged (or within a certain range of values) by an external process during the exe-
cution of the entire DS. Note that this definition implies that an update of this process
variable by the process will end the DS of that particular process variable, whereas it
may start a new DS. In Fig. 3, Process 1 is represented with a corresponding depend-
ency scope.

At an instance level, a DS can be active or inactive. It is activated when the first
activity is started, which is part of the set that defines the DS. It is active as long as an
activity is executed that belongs to the DS. If the last activity of the set of consecutive
activities is finished, the DS switches to be inactive.

Definition 3. A volatile process variable is a process variable that can be changed
externally during execution of the process.

A change of a volatile process variable can have various origins. That is, it can be
changed by another process in the same organization or it can be changed externally
to the organization that is executing the business process.

Definition 4. A dependency-scope (DS) is a part of the business process with a set of
volatile process variables D, where:

• The activities of the dependency scope are relying on the correct value of D.
• There exists only one start activity (first activity in the dependency scope).
• The dependency scope is activated when its first activity starts.

Fig. 3. Business process with a dependency scope definition

Consider an example shown in Fig. 2: even if dependencies are identified, as
shown in Fig. 3, an intervention may happen in any part of the dependency scope,
both after A1 and A2. More specifically, if A2 is notified that B2 of Process 2 has just
changed the variable D, A1 has already executed. In order to resolve the conflict, the
process should restart again from the decision point prior to activity A1, which re-
quires both A1 and A2 to be rolled back to the initial state.

54 N.R.T.P. van Beest et al.

This rollback may in some cases be prevented by a number of alternative activities
to be executed before starting A3, in order to regain consistency. For example, the
state of process 1 is undesirable from a business perspective, due to the incorrect deci-
sions made as a result of the data mutation. A repairing activity should be interposed
between A2 and A3, to recover process 1 to a consistent state that corresponds to
reality again.

Definition 5. An intervention pattern is a sub-process that is linked to a DS, compris-
ing a set of compensation activities, which together restore the consistent state of a
business process. An intervention pattern has the following properties:

• A condition over the set D of the DS determines when the set of compensation
activities needs to be executed.

• If the condition is true then the currently executed activity in the DS is stopped
and the compensation process is executed.

• The last activity provides a re-entry point in the business process.

Note that intervention patterns are not expected to contain dependency scopes by them-
selves. They are considered to be relatively simple repairing activities. Fig. 4 shows a
sequence of compensation activities, which is defined as an intervention pattern.

Fig. 4. Specification of intervention activities

The activities required to restore consistency may vary, even concerning the same
volatile process variable. A DS can comprise several intervention patterns. Depending
on the condition, the corresponding intervention pattern is executed. However, if
more intervention patterns are connected to one DS, then the conditions should be
mutually exclusive. In addition, the activities required to restore consistency may vary
between processes. In most cases, it may be sufficient to update the process variables
in the currently executed activity and proceed, whereas in a more severe case the ac-
tivity needs to be cancelled and the process should be resumed with another activity.

An example of the process including both a DS and an inserted intervention pattern
is shown in Fig. 5. This solution allows for execution without manual process recon-
figuration. As a result of the firing of the trigger on DS1, the activity currently being
executed (A2) is halted. Next, the process is continued at the ‘Continue’ mark, where
the execution of the intervention activities starts. After the intervention activities have
been finished, the process proceeds with the correct activity in the regular process
flow (A3).

The concepts described above prevent the process designer from being forced to
check the value of the condition after every activity within the DS. That is, in order to
predefine the error-handling in case of process interference without the presented
concepts, for every activity the values of volatile process variables have to be tested.
A (simplified) example of such an undesirable situation is represented in Fig. 6.

 Resolving Business Process Interference via Dynamic Reconfiguration 55

Fig. 5. Business process with dependency scope and connected intervention activities

Fig. 6. Alternate solution to resolve dependencies

Fig. 7. Dependency scope for the case study

In more complex business processes, this would require a high amount of checks pre-
defined in the business process. It is to be expected that this way of overcoming inter-
dependency issues will strongly increase the complexity of each process model and,
accordingly, result in a cascading change after the model is to be updated.

56 N.R.T.P. van Beest et al.

5 Case Study: Repairing the WMO Process

In Fig. 1, the four distinct activity branches following “Designation and report” (Do-
mestic help, Transportation, Wheelchair and Major home modification) may poten-
tially suffer from the process interference. In this section, we enrich two of them
([Wheelchair] and [Major home modification]) with dependency scopes that are refer-
ring to the variable {Address}. Each dependency scope has a trigger on the corre-
sponding process variable {Address}. As shown in Fig. 7, both DS1 and DS2 start at
the first activity in the branch and end after the final delivery, when the process vari-
able {Address} is no longer required to remain unchanged.

If the trigger of one of the dependency scopes fires, the main process is halted, and
corresponding compensation activities are executed. These activities are defined
within the intervention patterns. In Fig. 8, the intervention pattern on [Wheelchair]
(DS1) is shown. The intervention pattern on [Major home modification] (DS2) is
shown in Fig. 9.

The decision concerning which intervention activity is to be executed first for each
intervention pattern depends on the cancelled activity in the main process. For in-
stance, if the order for home modification is already sent to the supplier, it must be
cancelled first. If the order is not sent yet, it will suffice to start with a home visit.

Fig. 8. Intervention pattern on [Wheelchair]

Fig. 9. Intervention pattern on [Major home modification]

 Resolving Business Process Interference via Dynamic Reconfiguration 57

6 Implementation

To show the feasibility of the approach, a prototype has been implemented on top of
the Cordys Business Operations Platform2. Cordys is a business process management
platform, which also adheres to modern variability management techniques, such as
case handling and process inheritance, thus providing run-time reconfiguration abili-
ties. This prototype adds dependency scopes over existing business process models,
and maps each of the defined dependency scopes to an appropriate trigger.

U
se

r I
nt

er
fa

ce

Fig. 10. Architectural overview of the prototype

Fig. 10 depicts the architectural overview, where the left box represents the simpli-
fied Cordys architecture, while the right box represents the structure of the prototype
itself. In the Cordys box, the major parts are Business Process Designer and Business
Process Engine. The former provides visual process design facilities, whereas the
latter provides the business process lifecycle support (i.e. process execution and moni-
toring). Connectors at the bottom of the Cordys box provide communication with
external data, e.g. databases, or data provided by external services. Finally, the user
interface provides means for interacting with users, and is usually represented by a
web-based application.

In the prototype box, the BPMN Extender parses the BPMN process specification
in order to extract dependency scopes. Such dependency scopes can be designed
using standard Cordys process design facilities, and the information about depend-
ency scopes is saved along with a process’s BPMN specification in the internal proc-
ess repository. After that, the process specification can be retrieved via the Cordys
public API.

2 http://www.cordys.com

58 N.R.T.P. van Beest et al.

When the data modification occurs, a trigger is fired, which passes the correspond-
ing information to the Process Lifecycle Monitor (PLM). This monitor has access to
the information about existing business processes and their dependency scopes, which
is provided by BPMN Extender. Based on the information about the processes being
currently executed by the Cordys platform, PLM makes the decision whether or not to
stop process(es) and fire appropriate intervention pattern(s). In order to support deci-
sion making, additional information must be associated with every dependency scope,
such as a table in the database, the criteria to find a row in the table, and the criteria to
identify which changes in the data are significant.

In Fig. 11, the business process from Fig. 7 is modeled using Cordys process de-
signer with BPMN Extender on top of it. Two overlapping dependency scopes
([Wheelchair] and [Major home modification]) are designed. Both dependency scopes
are assigned to one variable {Address}. Both dependency scopes are associated with
the table “Citizens” in the underlying database and, whenever the {Address} is
changed, the corresponding intervention pattern is executed.

Fig. 11. Screenshot of dependency scope implementation within Cordys platform

For example, imagine the situation in which some process instance went on the
“Wheelchair” path, i.e., after the decision steps “Acquire detailed requirements” and
“Send order to supplier” were executed, and the step “Delivery” is about to be executed.
Now, suppose that the customer’s address is changed due to the moving to another city.
Since the process is now within DS1, the intervention actions must be undertaken.

The sequence of actions in this case is the following:

• The Process Lifecycle Monitor is called with the information that a row is modi-
fied in the “Citizens” table.

 Resolving Business Process Interference via Dynamic Reconfiguration 59

• The dependency scopes associated with the “Citizens” table (which are DS1 and
DS2) are identified.

• The currently running process instances that are now inside one of those scopes
(there is one running process instance, and activated dependency scope is DS1)
are fetched.

• Check if data modification is significant for those process instances (since the
address has been changed, then the modification is significant.

When all conditions are met, the intervention pattern is automatically executed as
follows:

• The original process is stopped.
• The compensation process assigned to DS1 is executed, as shown in Fig. 8.

7 Conclusion

In this paper, intervention patterns are used for repairing inconsistencies in process
execution as a result of process and data interference. The main advantage of inter-
vention patterns is that continuity of the process can be ensured in a predefined way.
We have shown that both dependency scopes and intervention patterns can easily be
integrated within an existing BPMS platform. Furthermore, the problem of business
process interference can be resolved using the concepts introduced in the paper,
namely, dependency scopes and intervention patterns. A real case scenario (Dutch
WMO law) is implemented and is planned to be integrated into the implementation of
the law in one of the Dutch municipalities.

A situation might occur that does require intervention, but the predefined interven-
tion patterns attached to the dependency scope do not apply for this particular situa-
tion. In these cases, two possible solutions can be suggested. First, the process can be
paused and require a human decision on how to proceed. Second, a rollback can be
executed. This is, however, the least desirable solution, especially in processes with a
long lead time. Furthermore, it is important that intervention patterns are defined as
generic as possible, in order to make sure they cover potential inconsistency cases that
might occur within a dependency scope.

Currently, intervention patterns are built manually by a domain expert and specific
to a certain dependency scope. More complex interacting processes require the num-
ber of intervention patterns as well. For future work, we plan to generalize the inter-
vention concept, to allow for automatic DS and intervention pattern generation. This
way, it can be ensured that all cases of interference are covered, potentially without
the need for human intervention.

References

1. van der Aalst, W.M.P., Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow Pat-
terns. Distributed and Parallel Databases 14(1), 5–51 (2003)

2. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: a new paradigm for
business process support. Data and Knowledge Engineering 53(2), 129–162 (2005)

60 N.R.T.P. van Beest et al.

3. van der Aalst, W.M.P., Hofstede, ter, A.H.M.: Yet Another Workflow Language. Informa-
tion Systems 30(4), 245–275 (2005)

4. Aiello, M., Bulanov, P., Groefsema, H.: Requirements and Tools for Variability Manage-
ment. In: IEEE workshop on Requirements Engineering for Services at IEEE COMPSAC
(2010) (to appear)

5. OMG: Business Process Model and Notation (BPMN) 2.0, Request For Proposal. OMG
Document: BMI/2007-06-05 (2007)

6. Dadam, P., Reichert, M.: The ADEPT project: a decade of research and development for
robust and flexible process support. Computer Science - R&D 23(2), 81–97 (2009)

7. Garcia-Molina, H., Salem, K.: Sagas. In: Proc. of the ACM SIGMOD Int. Conf. on Man-
agement of Data, pp. 249–259 (1987)

8. Klai, K., Tata, S., Desel, J.: Symbolic Abstraction and Deadlock-Freeness Verification of
Inter-enterprise Processes. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) Business
Process Management. LNCS, vol. 5701, pp. 294–309. Springer, Heidelberg (2009)

9. Li, Q., Zhou, J., Peng, Q.R., Li, C.Q., Wang, C., Wu, J., Shao, B.E.: Business processes
oriented heterogeneous systems integration platform for networked enterprises. Computers
In Industry 61(2), 127–144 (2010)

10. Pesic, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P.: Constraint-Based
Workflow Models: Change Made Easy. In: OTM Conferences, vol. (1), pp. 77–94 (2007)

11. Rinderle, S., Reichert, M., Dadam, P.: Correctness Criteria for Dynamic Changes in Work-
flow Systems – A Survey. Data and Knowledge Engineering 50(1), 9–34 (2004)

12. Sadiq, S., Sadiq, W., Orlowska, M.: Pockets of Flexibility in Workflow Specifications. In:
Kunii, H.S., Jajodia, S., Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, pp. 513–526.
Springer, Heidelberg (2001)

13. Schonenberg, M.H., Mans, R., Russell, N., Mulyar, N., van der Aalst, W.M.P.: Process
Flexibility: A Survey of Contemporary Approaches. In: CIAO! / EOMAS, LNBIP, vol. 10,
pp. 13–16. Springer, Heidelberg (2008)

14. Trčka, N., van der Aalst, W.M.P., Sidorova, N.: Data-Flow Anti-Patterns: Discovering
Data-Flow Errors in Workflows. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE
2009. LNCS, vol. 5565, pp. 425–439. Springer, Heidelberg (2009)

15. Van Beest, N.R.T.P., Szirbik, N.B., Wortmann, J.C.: A Vision for Agile Model-driven En-
terprise Information Systems. In: Proc. of the 11th Int. Conf. on EIS, Inf. Syst. Analysis
and Specification, pp. 94–188 (2009)

16. Van Beest, N.R.T.P., Szirbik, N.B., Wortmann, J.C.: Assessing The Interference In Con-
current Business Processes. In: Proc. of the 12th Int. Conf. on EIS, Inf. Syst. Analysis and
Specification (2010)

17. WfMC: The Workflow Management Coalition Specification, Terminology & Glossary.
Document Number WFMC-TC-1011 (1999)

18. Xiao, Y., Urban, S.D.: Using Data Dependencies to Support the Recovery of Concurrent
Processes in a Service Composition Environment. In: Proc. of Coop. Inf. Syst. Monterrey,
Mexico (2008)

Linked Data and Service Orientation

Erik Wilde

School of Information
UC Berkeley

Abstract. Linked Data has become a popular term and method of how
to expose structured data on the Web. There currently are two school
of thought when it comes to defining what Linked Data actually is, with
one school of thought defining it more narrowly as a set of principles
describing of how to publish data based on Semantic Web technologies,
whereas the other school more generally defines it as any form of prop-
erly linked data that follows the Representational State Transfer (REST)
architectural style of the Web. In this paper, we describe and compare
these two schools of thoughts with a particular emphasis on how well
they support principles of service orientation.

1 Introduction

In the recent past, the term of Linked Data has become a popular meme for refer-
ring to approaches which are publishing structured data on the Web. However,
the exact meaning of that term has been contentious, which is not an unusual
thing to happen to terms which attract a certain attention and are not rigidly
defined by any specific standard or product. This paper is an attempt to explore,
explain, and clarify the major world views in this area, and more importantly,
to investigate how well they work under the perspective of service orientation.

Unfortunately, the term service orientation itself is not all that well-defined,
which means that it takes a little bit of explanation in itself. For the purpose
of this paper, we refer to service orientation as an approach which allows the
providers or information-intensive services to expose services which can be eas-
ily used, reused, and recombined using Web technologies. One of the main goals
of service orientation should be to achieve loose coupling [24] between services,
and between service providers and service consumers, so that the service land-
scape exposed by service providers, and the service landscape used by service
consumers, are as agile and as easy to repurpose as possible.

For the purpose of this paper, the main property of service orientation is
that it is on a higher level of abstraction and functionality than structured
data. In order to implement service-oriented architectures, it is necessary to have
some representation for the data that is exchanged between service providers
and consumers, but the exact nature of that data, in particular the specific
structured data standard used to represent that data, is secondary. Of course,
in order to make services easily usable and easily mashable it is advantageous
to use standardized and well-established structured data standards, but this is

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 61–76, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

62 E. Wilde

only one of the facets of service orientation. Another important facet is that the
exact patterns in which data is exchanged is essential to service design as well,
and there are several popular design patterns such as downloads, incremental
data transfers, pull-based data feeds, and push-based architectures with various
subscription and notification mechanisms using light or fat ping approaches.

The goal of this paper is to provide an overview and a qualitative comparison
between the two dominant “world views” of linked data that are currently in use.
One of the world views is a more constrained one which is based on Semantic
Web technologies and architecture, and this approach is described in Section 2.
The other world view is less constrained in terms of technologies and is based
on Web technologies and architecture, this approach is described in Section 3.
Recently, a third world view has been proposed, seeking the middle ground by not
rigidly prescribing the RDF metamodel1 of the Semantic Web world view, but
still mandating that the metamodel used for structured data should be based on
triples. This third world view so far has not gained a lot of momentum, though,
probably caused by a lack of available candidates for a metamodel which is not
RDF, but still based on triples.

The main reason for comparing the different approaches for linked data is
that in the end, they are just implementation variants to achieve non-technical
goals, which in many cases revolve around ideas of accessibility and usability (of
data, and not of user interfaces), openness (non-proprietary ways of accessing
and representing data), extensibility (the ability of the environment to adapt to
unforeseen needs and use cases), and transparency (giving users the ability to
understand where data originates, and easier ways to interact with a larger set
of back-end data and service providers). Looking at service orientation is one
way of comparing different approaches, so that from the business perspective it
becomes easier to decide which technical approach best fits the requirements of
the business goals.

2 Narrow Linked Data World View

The Narrow Linked Data World View is based on the approach of the Seman-
tic Web [6], most importantly mandating the used of Semantic Web standards
for structured data models and access. The most important standards in this
space are the Resource Description Framework (RDF) [19] as the metamodel for
any data being published on the Semantic Web, and SPARQL [27] as the query
language for extracting subgraphs from large RDF graphs. While the original Se-
mantic Web approach focused mainly on the core technologies, the term “linked
data” emerged in conjunction with usage patterns around those technologies,

1 In this paper, the term metamodel refers to the model of a model language, i.e. it
is the foundation that is provided by a modeling language for building application-
specific models. For example, the RDF metamodel is defined by RDF Concepts and
Abstract Syntax [19], whereas the (most popular) XML metamodel is defined by the
XQuery 1.0 and XPath 2.0 Data Model (XDM) [4].

Linked Data and Service Orientation 63

and one of the important sources being cited frequently in this context is the
Linked Data design note,2 which defines the following rules:

1. Use URIs as names for things.
2. Use HTTP URIs so that people can look up those names.
3. When someone looks up a URI, provide useful information, using the stan-

dards (RDF, SPARQL).
4. Include links to other URIs, so that they can discover more things.

This set of rules can be regarded as repeating the pattern that has made the
HTML Web successful: Use URIs for Web pages, use HTTP URIs so that people
can point their browser at Web pages, make information available in HTML so
that a standard browser can render the Web page, and include links to more
pages so that people can click on links and follow them to retrieve even more Web
pages. Because this approach focuses on the utility of a single metamodel that is
consistently used by all information providers, and the utility of a standardized
query language for providers of large datasets, for the remainder of this paper
we refer to this approach as Homogeneous Linked Data (HoLD).

The most important implications of the HoLD approach are that it fixes two
design options that are left open by the Web itself: It mandates the use of HTTP
URIs so that the identities of anything identified can also be used as a way to
access it, and it mandates the use of RDF as the metamodel so any structured
information made available at those HTTP URIs can be expected to be in a
format that is prescribed in advance, instead of being discovered at runtime.

One of the important value propositions of HoLD is that data harvesting
and/or aggregation becomes relatively easy because the two most important
tasks (how to get access to data about an identified entity, and what to expect
when accessing that data) are backed by the constraints defined by this approach.
Since RDF is a metamodel with a small unit of atomicity (everything is based
on triples, and there is no bigger unit of granularity, such as a concept of a
“document,” in RDF’s metamodel), there is little built-in “bias” in RDF when it
comes to mapping existing non-RDF data models to RDF. As discussed in more
detail in Section 4, this can be a boon or a bane, depending on the data models
in question and the requirements of data publishers and users, but regardless of
these individual “data model usability” issues, the overall integrative qualities
of the HoLD approach are largely undisputed.

3 Wide Linked Data World View

The Wide Linked Data World View is based on general principles of the Ar-
chitecture of the World Wilde Web [18], and more specifically, on the Repre-
sentational State Transfer (REST) [13] architectural style underlying the Web.
Whereas HoLD is promoting a specific set of technology choices, this second
view is more agnostic in terms of technologies and is operating on the layer of
2 http://www.w3.org/DesignIssues/LinkedData.html

http://www.w3.org/DesignIssues/LinkedData.html

64 E. Wilde

architectural styles, which are design patterns for architectures. In this wider
view, the main constraints are derived from the REST architectural style, which
underlies the Web and more specifically, the core Web technologies. The REST
constraints can be summarized as follows:

1. Resource Identification: Anything that should be available for interactions
should have an identifier.

2. Uniform Interface: Interactions with identified things should be based on a
uniform interface, so that anything that is identified is readily available for
interactions. Different identification schemes can have different interfaces,
and not all identified things have to respond to all interactions defined by
their uniform interface.

3. Self-Describing Messages: Interactions should be based on exchanges of mes-
sages (or documents) which are labeled with their type.3

4. Hypermedia Driving Application State: Messages should be based on data
formats that may contain links (in most cases these are typed links), and
interactions with RESTful services essentially means following those links
according to the goals of the service consumer, and the semantics of the link
types.

5. Stateless Interactions: The uniform interface should be usable in a way that
interactions are independent of each other and only rely on either client state
or resource state. This decouples interactions and allows clients and servers
to be more independent of each other (servers do not need to remember
clients, and clients can take advantage of scalability optimizations such as
caching and replication).

Whereas HoLD to a large part reflects the specific technologies of the human-
oriented Web, the wide view reflects the architectural style of the Web and its
openness to new technologies, where identification is done by Uniform Resource
Identifier (URI) [5] but allows a multitude of identification schemes to co-exist
and new ones to be invented, where most of the interactions are based on the uni-
form interface of Hypertext Transfer Protocol (HTTP) [12], but other protocols
can be used as well, and where structured data standards such as HTML [28],
XML [7] or JSON [11] can be used, but new ones can be invented, as long
as they are registered and subsequently identified according to the constraint
of self-describing messages. Since this wider view thus allows a more open and
evolving universe of concrete technologies, it will be referred to as Heterogeneous
Linked Data (HeLD) for the rest of this paper.

In the same sense as HoLD is established as a set of constraints and patterns
for publishing linked data using the Semantic Web’s set of technologies, it is

3 For clarification: REST uses the term “self-describing” in a considerably weaker form
than this term is being used in more semantics-oriented research communities. “Self-
describing” simply means that the type of the message can be inferred by looking at
the message; it does not mean that any higher-level semantics are necessarily made
available through advanced semantic descriptions.

Linked Data and Service Orientation 65

possible to come up with some patterns and established best practices for pub-
lishing linked data according to HeLD approach. Since this approach is based
in Web architecture itself, it can been dubbed the Plain Web [31], which is a
general attempt to use established Web technologies instead of building entirely
new stacks of technology on top of the Web, essentially treating the Web as a
transport infrastructure instead of the information system it is.

Plain Web principles and HeLD results in approaches which can also be called
Lightweight Linked Data [32], using established core Web technologies such as
Atom [22] and the Atom Publishing Protocol (AtomPub) [15]. One of the main
motivations of this approach is that HeLD data can be processed using basic Web
technology toolsets (instead of the new toolset required for handling HoLD).

While the basic approach of using Atom and XML for exposing services and
representing data might seem limiting, it is important to notice that because of
the reliance of established and widely-used Web technologies, HoLD can benefit
from developments in that rapidly developing space. One example is PubSub-
Hubbub (PuSH), a protocol that is based on Atom’s model of exposing services
via feeds, but that extends Atom’s pull mechanics with a Publish/Subscribe
(Pub/Sub) mechanism that can be used to implement push mechanics (this is
described in more detail in Section 5).

4 Data Model Issues

One of the most striking differences between the two approaches is the fact that
HoLD has a fixed metamodel, whereas in HeLD there is no fixed metamodel, and
as long as the representation is properly labeled with its type (self-describing)
and contains links (hypermedia), it can be used in a HeLD scenario. From the
service point of view, this can be both good and bad. It can be good because
it allows services to expose linked data in metamodels that fit their needs, and
may be a good fit for the data model they are using (Section 4.1 contains a more
in-depth discussion). It can be bad, because it means that service consumers
may have to deal with a variety of metamodels, and this requires a variety of
toolsets and may make it hard to combine data from different sources.

One of the interesting observations in this area is that the degree of free-
dom allowed by HeLD allows an “evolution” of metamodels used by services. As
a popular example, for a while many Web-based services published structured
data in XML, which was the first established Web-wide metamodel for struc-
tured data, and was reasonably easy to process in many client-side environments.
However, because the majority of service consumers were using JavaScript (and
processing XML in JavaScript involved some extra steps and created somehow
awkward data structures), many services started providing the data in JSON,
an alternative representation. JSON is a bit more limited than XML in its meta-
model, but most XML models can be mapped to JSON in a fairly straightforward
way. Because many developers preferred JSON’s more straightforward mapping
of data structures into programming language abstractions, JSON has now re-
placed XML in popularity for many Web-based services. This evolution has not

66 E. Wilde

changed anything about the data being exchanged and the way how it is linked
and used, but it has allowed developers to move to a metamodel that better fits
their needs.

4.1 Metamodel Bias

The example of XML and JSON highlights the fact that in many cases (at least
in reasonably simple cases), data models can be mapped between metamodels.
However, there are also many examples where data models, and especially more
sophisticated data models, gain a lot of their expressiveness and convenience
from the underlying metamodel. A good example for this are markup languages
such as SGML or XML, which are metamodels specifically designed for rep-
resenting human-readable documents. Many document types can be expressed
rather conveniently in these metamodels, because of the specific design bias of
the metamodel.

Metamodel bias is important in many scenarios where the data is non-trivial
in its internal structure, and where there’s a certain “natural order” to data, such
as in documents which often are quite naturally a sequence of a variety of content
objects. Metamodel bias has two main impacts: If there is a good match between
a metamodel and a data model, then defining the model and representing and
managing data with it are made easier by the metamodel’s properties, and maybe
the technologies and toolsets that have evolved around that metamodel. If there
is a bad match between a metamodel and a data model, then defining the model
becomes awkward, and representing and managing data with it become tasks
where technologies and tools often feel like they work against the developer.

Metamodels can be roughly classified into three classes (without making any
attempt to create a precise classification scheme), which at least for the purpose
of a rough classification are sufficient:

– Hierarchical: In this case, models are always a Directed Acyclic Graph (DAG),
and sometimes they may be trees (having only one root node), sometimes
they are allowed to have multiple root nodes. Another possible distinction is
whether models can use a built-in ordering, or wether there is no ordering of
nodes in the graph. Examples for hierarchical models are IBM’s Information
Management System (IMS) for a rather old model, and more recently the
Extensible Markup Language (XML).

– Linked Tables: Instead of having the inherently hierarchical structure of trees
or other kinds of DAGs, the model of linked tables (as formalized by rela-
tional algebra) is less concerned with one predefined structure for a model
instance, and instead is based on relations and operators on those relations.
The most prominent example of this metamodel is the relational model in-
troduced by Codd [10], which nowadays has its most popular representation
in the Structured Query Language (SQL).

– Generalized Graphs: The two previously discussed metamodels have a struc-
tural bias, for the hierarchical model this is some variation of DAG, and
for the linked table model the bias are relations (i.e., connected n-tuples).

Linked Data and Service Orientation 67

The third approach to metamodel structure is to try to avoid as much bias
as possible, and just use generalized graphs. RDF can be seen as such a
metamodel, where each triple represents an edge (the predicate) connecting
two nodes (the subject and the object).

This categorization of metamodel structures is rough and only an approxima-
tion, but it does illustrate that various modeling languages may be based on
different classes of metamodel structures, and based on this bias (and on the un-
derlying use cases and derived technologies and tools), they provide differently
specialized environments for certain classes of applications. The most important
thing to realize is that this specialization is both a constraint in terms of these
environment working better for some classes of problems than for others, and an
opportunity for optimization, because it is possible to develop more effective and
more efficient solutions for those problems that do fit the environments’ bias.

As an example, while an ordered tree model (a DAG-based model with ad-
ditional constraints) such as XML can feel like a good fit and almost natural
for scenarios involving structured text, its built-in bias can become inconvenient
and hard to adjust to when the scenarios become more advanced and include
concepts such as overlapping or concurrent markup, which cannot be easily rep-
resented in XML-based data models. However, for the majority of document
processing environments, tree-based models have proven to be the most con-
venient foundations, and metamodels such as SGML and XML and associated
processing technologies and tools have produced an environment with a good
mix of built-in bias, and freedom for customization and specialization.

In terms of comparing the two linked data approaches, HeLD allows data to
use any media type as long as it is properly declared, and thus services are free
to use models that fit their needs. HoLD, on the other hand, prescribes RDF’s
generalized graph as the only acceptable metamodel and thus does not introduce
any particular structural bias (DAGs and relations have considerably more of
a structural bias to them), but on the other hand also does not allow services
to use the more biased metamodels if they would fit their needs. Many popular
services prefer exposing XML or JSON over exposing RDF, because the installed
base of both tools and developers is much bigger.

As a side note, it is interesting to see that recently, the W3C has started work
on a standardized mapping of relational models to RDF models [26], recognizing
the fact that a lot of data today is managed in relational systems. However, since
this mapping is intended to be generic (i.e., it maps any relational model to an
RDF model), it is likely that working with the RDF “view” of the relational
data will be rather awkward, and figuring out the SPARQL queries to retrieve
model-level data, and making sure that they can run with similar efficiency than
in a fine-tuned RDBMS will likely be a challenge.

4.2 Data Granularity

One of the issues not discussed in the previous discussion of metamodel bias is
that of data granularity. From the service perspective, in many cases data has a

68 E. Wilde

certain natural granularity in the sense that some data only makes sense as a unit,
whereas other data is more loosely linked and can exist even if some of the linked
resources cease to exist. This idea of data granularity is addressed in document
engineering [14], and many frameworks have constructs to deal with it.

One example is the Unified Modeling Language (UML) [17], which supports
various level of how tightly coupled data is. Association, aggregation, and compo-
sition are the different levels which are supported, and while the exact difference
between these constructs is out of the scope of this paper, it is important to re-
alize that these concepts were deemed important enough to be hardcoded into
the metamodel.

The Extensible Markup Language (XML) and the JavaScript Object Notation
(JSON) are two other examples where there is a level of granularity between
a model’s “atoms” (elements/attributes in XML and fields in JSON) and the
global view of all data available. Data granularity is important for issues such
as provenance, versioning, and security, where the “natural unit” of the data
model (for example an XML document or a JSON object) makes it easier to
express document-level semantics such as the origin, a version number, or a
digital signature.

RDF does not have the concept of documents in the metamodel, there is
no granularity concept beyond the triple. This has been noticed by the HoLD
community as a problem, because reification as one way to solve this problem
has the unfortunate side-effect of increasing data size several-fold, and named
graphs [8] as the other way to solve this problem are not a part of RDF itself,
but have been introduced by SPARQL. This means that as long as all data in
a HoLD scenario is treated as merging seamlessly into one graph (an approach
which for a while was dubbed the giant global graph), RDF works well and
provides a good fit for processing this accumulation of all data into one big
graph. However, when document boundaries become important because of the
provenance, versioning, and security issues mentioned above, there is no support
in the metamodel for modeling this, and applications have to come up with their
own ways of introducing such an intermediate level of granularity between the
“atom” and the “universe” as a whole.

4.3 Data Processing

Maybe the biggest difference between the two linked data approaches are in how
data processing is supposed to work. Data processing can be considered on at
least two different levels: One is the level of metamodels, where the question
is which metamodel processed data is based on, and thus which technologies
and tools are required to be able to process this data. The other level is that
of understanding the meaning of the data, and being able to relate it to other
models or other data. Unsurprisingly, the HoLD approach makes processing and
understanding/combining data simpler, because it is based on a single meta-
model, whereas the HeLD approach allows data to be more diverse, which has
both positive and negative implications.

Linked Data and Service Orientation 69

Processing Mechanics. Because HoLD is based on a single metamodel, pro-
cessing can be reliably based on technologies and tools supporting this meta-
model, and then by definition all structured data can be reliably processed.4

HeLD mandates that structured data must be labeled with its format (self-
describing), but if a client encounters data using a metamodel that it does not
support, then it cannot process this data. This allows for new metamodels to be
introduced and gain in popularity (such as the XML/JSON example mentioned
earlier), but it does introduce an element of uncertainty in terms of what clients
can encounter when following links.

Semantics and Mashups. The main difference between the basic Semantic
Web and Linked Data (the HoLD variety) is that the latter establishes a set
of patterns and best practices that are intended to actually link data, either
because entities have well-known URIs, or because data and data models are
created using existing data models, allowing data and data models from various
sources to be joined. Again, the mandated use of a single metamodel not only
make processing of individual resource representations easier as discussed above,
they also provide a unified framework within which clients can infer the “mean-
ing” of data (because concepts in RDF are identified by URI), and a simple way
to “mash up” all data, because all data uses the same metamodel. This ability
to combine data from any source is the biggest strength of HoLD, and is much
harder to accomplish in HeLD. HeLD allows different metamodels to co-exist,
and has no unified way of representing structured data, or identifying concepts.
HeLD clients thus have to deal with heterogeneity on two different levels: mod-
els may be hard to relate because there is no standardized way of identifying
concepts, and data can hard to combine because it may be based on different
metamodels.

5 Service Orientation

When looking at data processing as discussed in the previous section, it becomes
apparent that HoLD’s approach allows users to deal with a more unified envi-
ronment, whereas HeLD may require users to deal with various metamodels, and
even for environments where all data is using the same metamodel (for example,
XML), each model has its “private” semantics and there is no established way in
which different models can be related or mapped [30]. This makes it easier to use
data in HoLD, but HeLD does have the advantage of allowing services to use the
metamodel that has the bias that makes most sense for their scenario. However,
this is still looking at the data model level alone, and the next interesting area to
look at is service orientation. How well can services be represented and exposed
in these two approaches, and how do they compare?

4 This is not entirely true because RDF supports various representations and the only
standardized one, RDF/XML [3], has been on a steady decline in popularity, whereas
alternative but not yet standardized syntaxes have become more popular.

70 E. Wilde

On a very abstract level, a service can be defined as a well-defined unit of
functionality that is accessible through some well-defined interface.5 While this
definition is probably general enough to not conflict with any other definition
of services, it is also too wide to serve as a starting point for deciding on how
good or bad specific services are exposed, or even more importantly, for deciding
how well a certain architecture is suited for exposing services, and for allowing
service innovation.

HeLD allows for service innovation in a variety of places, and most importantly,
in the architecture itself. It is possible to introduce new identification methods,
new interfaces, and new metamodels, and while this flexibility makes it necessary
for clients to cope with the potential of new things being invented, it allows the
service ecosystem to evolve over time and to adjust to the varied and unforesee-
able needs and evolution of service providers and consumers. One good example
on the human Web is Flash: Regardless of its merits as a well-designed or not-
so-well-designed container for multimedia content, the open architecture of the
Web allowed this new media type to flourish and succeed. All it needed was the
application/x-shockwave-flash media type to be supported by a substantial
share of clients, and to be provided by an increasing share of services. With the re-
cent advances in HTML5 and the problematic support for Flash on mobile devices,
combined with the rise of the mobile Web, it may happen that multimedia content
will increasingly use HTML again, and move away from Flash. For many content
producers, this is not even a major issue, because they produce their content with
tools which increasingly will be able to export Flash or HTML5 representations
of multimedia content. The important observation is that in this scenario, the ser-
vice is to provide a multimedia representation of some content at some URI, and
whether this is done in Flash or HTML5 is an implementation question that has
no “correct” answer, but only a “best” answer given the constraints of content
production tools and support for specific media types on the client side.

From this point of view, the “service” in HeLD is on a more abstract level
than it is in HoLD, and spelling out the specific “service” definition implicitly
asserted by these two approaches is crucial for understanding the differences
between them:

– Service as defined by HoLD: Homogeneity is a top concern in HoLD, because
it allows the seamless joining of both data and models across services. For
this reason, a service in HoLD in required to only use RDF’s metamodel.
HoLD also encourages service providers to reuse existing identifiers, so that
data retrieved from a variety of sources is more likely to be joinable on the
data and/or the model level. From the interaction perspective, the services
currently supported by HoLD are simple resource retrieval (HTTP GET of a
URI), or SPARQL queries at an endpoint that exposes the SPARQL protocol
via HTTP [9].

5 For comparison, this is the definition of a service as given by the OASIS SOA ref-
erence model [20]: “A service is a mechanism to enable access to one or more ca-
pabilities, where the access is provided using a prescribed interface and is exercised
consistent with constraints and policies as specified by the service description.”

Linked Data and Service Orientation 71

– Service as defined by HeLD: Heterogeneity is the biggest differentiating fac-
tor of HeLD, and it starts with identification, which can use a variety of
schemes. Most schemes have well-defined interactions, and the uniform in-
terface constraint of REST should allow clients to interact with a service if
it supports the scheme linking to that service. REST’s self-description con-
straint allows the service to consume and/or provide whatever metamodel it
wants to, as long as the media type is exposed in the interactions.6 The se-
mantics of interactions often may be described or at least constrained by the
interaction protocol associated with the URI scheme (for example, HTTP’s
methods describe basic safe/unsafe and idempotent/non-idempotent seman-
tics for the HTTP methods), but this is not required by HeLD itself.

When contrasting these two approaches on how to define services, the differences
between the approaches become strikingly apparent: HoLD’s homogeneous ap-
proach defines an architecture where everything is predictable: data is always
based on the same metamodel, and services always expose the same function-
ality. Because of this homogeneity, HoLD makes it possible basically ignore the
underlying machinery of HTTP for resource retrieval and SPARQL for remote
query execution: the virtual world view provided by HoLD is that of a seamlessly
interconnected graph of data across all HoLD providers.

HeLD’s world view is less homogeneous and thus supports a less virtualized
world view. In HeLD, clients have to be prepared for heterogeneity on a variety
of levels, which means that by definition they can never have a complete and
definitive view across all HeLD providers, because that would require global
knowledge across an unrealistic set of variables:

– Identification: Identification can use a variety of schemes and new schemes
can be introduced at runtime.

– Interaction: Schemes in most cases imply interaction through a uniform in-
terface, and this uniform interface must be implemented when interaction
with a resource using that scheme is required.

– Representation: There is no fixed metamodel and services are free to con-
sume and provide their preferred metamodel. Discovery of metamodels is
done through registration and runtime labeling of representations with the
metamodel they are based on, but new metamodels can be introduced at
runtime.

– Interpretation: Even if a metamodel is supported, most metamodels do not
have an overarching concept of how models encode and reuse semantics.
Thus, often it is necessary to specifically support the interpretation of mod-
els, which thus must be detectable in representations.7

6 HTTP’s content negotiation adds a dynamic and negotiable pattern to this basic
setup, but we will not discuss the specifics of HTTP here.

7 In XML, for example, this is traditionally done with DTD declarations, XML names-
paces, or XSD-specific attributes, but a recent W3C specification [16] proposes to
use a unified syntax (based on processing instructions) for all these association
mechanisms.

72 E. Wilde

Thus, when comparing HoLD and HeLD, the trade-offs between the approaches
become probably best visible on the service level: HoLD standardizes all services
into RDF producers (static RDF or SPARQL endpoints), whereas HeLD pro-
vides an environment which is open and extensible on a variety of levels. Since
HoLD standardizes a lot of this (thus making things more interoperable), exten-
sions to this picture have to published as additional standards. One example is
SPARQL Update [29], which extends the currently read-only nature of SPARQL
to support create, update, and delete operations as well.

Since HeLD is more open, evolution and development can happen in a more
informal way. One good example for this is in the area of feeds. Feeds have
become the de-facto standard for lightweight data distribution on the Web, either
using one of the various RSS formats, or the more recent Atom [22]. Feeds are a
good example for HeLD because they provide an evidently working framework for
implementing large scale data distribution and aggregation, but they also allow
publishers to decide on the actual contents of the feed. Podcasts, for example, are
just feeds which happen to carry audio or video content instead of more static
media types. The big disadvantage of feeds has always been their pull model,
which has been a great advantage for achieving loose coupling and scalability, but
also produces a lot of polling in time-critical scenarios. Recently, PubSubHubbub
(PuSH) has achieved some success by layering a push-oriented overlay on top
of the pull model of feeds. PuSH allows clients to register callbacks with “hubs”
(layered designs of multiple hubs are supported), and whenever a feed is updated,
the clients will be notified via their callbacks. The basic information flow remains
unaltered (services produce entries which are exposed via feeds), but the reversed
control flow allows to eliminate polling. From the HeLD perspective, this was a
straightforward innovation, with the only difference being that the media types
involved in the scenario now are reversed in the HTTP interactions (the service
provider or the hub acting on behalf of it acts as an HTTP client pushing the
entry, and the service consumer accepts the entry by running a server at the
callback URI).

Interestingly, recent work on combining SPARQL and PuSH in sparqlPuSH [23]
has replicated this behavior in HoLD, adding a new service to the HoLD picture.
How this new capability (which introduces something that could be described as
“SPARQL triggers” and uses PuSH feeds carrying RDF as the notification mech-
anism) fits into the existing picture of HoLD services remains to be seen, but it
fits well into the general direction of the HoLD and Semantic Web research com-
munity, where there is an increasingly strong push to move past the currently es-
tablished model of “all RDF data accessible via one SPARQL endpoint,” and is
moving towards a more distributed scenario, including issues such as provenance
and versioning.

The first draft of SPARQL 1.1 Federation Extensions [25] is looking at the
fact that the current view of a service in HoLD is limited, because it is ei-
ther retrieval of a fixed resource from a URI, or submitting a SPARQL query
to an endpoint which then returns a subset of the RDF data managed behind

Linked Data and Service Orientation 73

that endpoint. SPARQL federation is supposed to work across a variety of RDF-
oriented data sources, and introduces the SERVICE keyword. Because of the more
constrained view of what a service is, this keyword allows a query to contain a
query to another SPARQL endpoint, and the results of this query will then
become available in the context of the “outer” query. While SPARQL federation
will allow interesting new patterns of how to combine multiple RDF stores, it
does not move outside of the basic assumption that services always consume and
produce RDF, and that the only interactions possible with a service are retrieval
and SPARQL-based querying.

6 Which One Is Better?

To a certain extent, research communities both from the HoLD and the HeLD
side picture these two approaches as competing. This does not necessarily have to
be the case. It also is misleading to picture the HoLD approach (or the Semantic
Web in general) as the “next step in Web evolution.” It is much more helpful
to think of both approaches as being complementary, and of having different
strengths and weaknesses.

HoLD shines when it comes to providing an abstraction layer that essentially
makes the Web go away, and allows information to be viewed as the prover-
bial giant global graph. This capability can be very valuable when it comes to
making sense of a large dataset, but it also comes at the price of having to do
the homogenization of all data and services. Often, many of the most expen-
sive tasks for producing good linked data in HoLD are non-technical, such as
when data is aggregated from a wide variety of sources and entity resolution
becomes a cumbersome process made expensive by data quality and a lack of
transparency [33].

HeLD allows a more heterogeneous perspective on linked data and thus al-
lows a greater variety of data sources and services to be used and possibly com-
bined [2]. One possible use for this available data and the combination of available
data sources is to map it to a HoLD view of these sources [1], available in some
RDF mapping of the underlying sources and a SPARQL endpoint for using this
mapped data.

It is probably unrealistic to assume that all data and service providers will
subscribe to the HoLD set of technologies. Thus, it is likely that both approaches
will co-exist for the foreseeable future, and both will have application areas where
they are good fits, or not so good fits. In the HoLD world, the most exiting
development for the near future is probably the inclusion of write features into
the general architecture, and a more decentralized view of how HoLD data can
be used. In the HeLD world, it is necessary to continuously improve the ways in
which fundamental pieces of the infrastructure can use agreed-upon semantics,
such as will be made possible for link relations [21] with a new registry of link
types on the Web.

One way of benefiting from the differences in approach and strengths in both
HoLD and HeLD can be to encourage the use of the less harmonized but still

74 E. Wilde

useful and accessible HeLD style in scenarios where the added expense of harmo-
nizing models and metamodels is not justified, and to layer the more harmonized
HoLD style on top of those HeLD services, if a more harmonized view is required,
and the expenses for it are justified. Converting a set of HeLD services into a
HoLD service (or, more accurately speaking, providing a HoLD perspective of a
set of HeLD services) can be a value-added service in itself, but it also can be a
costly service to implement. In many cases, most of the costs of this service will
be caused by the expensive and often manual or semi-automatic tasks of data
cleansing and entity resolution.

7 Conclusions

The goal of this paper is to compare the two approaches to Linked Data that are
currently under discussion in the research and developer communities. For the
purpose of this paper, we refer to the approach based on Semantic Web tech-
nologies as Homogeneous Linked Data (HoLD), and to the approach based on
Web architecture and REST as Heterogeneous Linked Data (HeLD). The main
goal of the comparison is to understand how well these approaches work in the
context of service-orientation, and how open they are to service innovation on a
variety of levels. The goal of this paper is a qualitative comparison, pointing out
the strengths and weaknesses of both approaches. The service level turns out
to be a very good comparison between those two approaches, because HoLD’s
more homogenous approach allows clients to work in a very predictable land-
scape of data and services, whereas HeLD’s heterogeneous approach requires
clients to deal with heterogeneity on at least four different levels (identification,
interaction, representation, and interpretation).

In summary, HoLD can be described as defining more constraints, thus pro-
viding a more predictable environment, but also providing less potential for in-
novation, whereas HeLD with its more open approach has less constraints, thus
provides a less predictable environment, but on the other hand has more poten-
tial for innovation. We don’t think that these two approaches have to be mutually
exclusive. In tightly coupled and cooperating environments, the HoLD approach
has obvious benefits by providing a more integrated view of the available data
and services, and allowing developers to better abstract from the underlying
fabric of the Web. In loosely coupled and decentralized environments, the HeLD
approach provides a more flexible and open solution that still establishes pat-
terns and practices for data and services to be linked, but allows a more open
ecosystem that can change over time, introducing new tools and technologies as
service providers and consumers as well as their needs evolve.

References

1. Alarcòn, R., Wilde, E.: From RESTful Services to RDF: Connecting the Web
and the Semantic Web. Tech. Rep. 2010-041, School of Information, UC Berkeley,
Berkeley, California (June 2010)

Linked Data and Service Orientation 75

2. Alarcón, R., Wilde, E.: Linking Data from RESTful Services. In: Third Workshop
on Linked Data on the Web, Raleigh, North Carolina (April 2010)

3. Beckett, D.: RDF/XML Syntax Specification (Revised). World Wide Web Consor-
tium, Recommendation REC-rdf-syntax-grammar-20040210 (February 2004)

4. Berglund, A., Fernández, M.F., Malhotra, A., Marsh, J., Nagy, M., Walsh, N.:
XQuery 1.0 and XPath 2.0 Data Model (X DM) (2 eds.) World Wide Web Consor-
tium, Proposed Edited Recommendation PER-xpath-datamodel-20090421 April
2009)

5. Berners-Lee, T., Fielding, R.T., Masinter, L.: Uniform Resource Identifier (URI):
Generic Syntax. Internet RFC 3986 (January 2005)

6. Berners-Lee, T., Hendler, J.A., Lassila, O.: The SemanticWeb. Scientific Ameri-
can 284(5), 34–43 (2001)

7. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible
Markup Language (XML) 1.0 (Fifth Edition). World Wide Web Consortium, Rec-
ommendation REC-xml- 20081126 (November 2008)

8. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named Graphs, Provenance and
Trust. In: Ellis, A., Hagino, T. (eds.) 14th International World Wide Web Confer-
ence, pp. 613–622. ACM Press, Chiba (May2005)

9. Clark, K.G., Feigenbaum, L., Torres, E.: SPARQL Protocol for RDF. World Wide
Web Consortium, Recommendation REC-rdf-sparql-protocol-20080115 (January
2008)

10. Codd, E.F.: A Relational Model of Data for Large Shared Data Banks. Communi-
cations of the ACM 13(6), 377–387 (1970)

11. Crockford, D.: The application/json Media Type for JavaScript Object Notation
(JSON). Internet RFC 4627 (July 2006)

12. Fielding, R.T., Gettys, J., Mogul, J.C., Frystyk Nielsen, H., Masinter, L., Leach,
P.J., Berners- Lee, T.: Hypertext Transfer Protocol | HTTP/1.1. Internet RFC
2616 (June 1999)

13. Fielding, R.T., Taylor, R.N.: Principled Design of the Modern Web Architecture.
ACM Transactions on Internet Technology 2(2), 115–150 (2002)

14. Glushko, R.J., McGrath, T.: Document Engineering, The MIT Press, Cambridge
(August 2005)

15. Gregorio, J., de Hóra, B.: The Atom Publishing Protocol. Internet RFC 5023 (Oc-
tober 2007)

16. Grosso, P., Kosek, J.: Associating Schemas with XML documents 1.0 (1eds.) World
Wide Web Consortium, Note NOTE-xml-model-20100415 (April 2010)

17. International Organization for Standardization: Information Technology– Open
Distributed Processing – Unified Modeling Language (UML) Version 1.4.2.
ISO/IEC 19501 (April 2005)

18. Jacobs, I., Walsh, N.: Architecture of the World Wide Web, Volume One.
World Wide Web Consortium, Recommendation REC-webarch-20041215 (Decem-
ber 2004)

19. Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts and
Abstract Syntax. World Wide Web Consortium, Recommendation REC-rdf-
concepts-20040210 (February 2004)

20. MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F., Metz, R.: Reference Model
for Service Oriented Architecture 1.0. Organization for the Advancement of Struc-
tured Information Standards, OASIS Standard (October 2006)

21. Nottingham, M.: Web Linking. Internet Draft draft-nottingham-http-link-header-
10 (May 2010)

76 E. Wilde

22. Nottingham, M., Sayre, R.: The Atom Syndication Format. Internet RFC 4287
(December 2005)

23. Passant, A., Mendes, P.N.: sparqlPuSH: Proactive notification of data updates in
RDF stores using PubSubHubbub. In: 6th Workshop on Scripting and Development
for the Semantic Web, Crete, Greece (May 2010)

24. Pautasso, C., Wilde, E.: Why is the Web Loosely Coupled? A Multi-Faceted Metric
for Service Design. In: Quemada, J., León, G., Maarek, Y.S., Nejdl, W. (eds.)
18th International World Wide Web Conference, pp. 911–920. ACM Press, Madrid
(April 2009)

25. Prud’hommeaux, E.: SPARQL 1.1 Federation Extensions. World Wide Web Con-
sortium, Working Draft WD-sparql11-federated-query-20100601 (June 2010)

26. Prud’hommeaux, E., Hausenblas, M.: Use Cases and Requirements for Mapping
Relational Databases to RDF. World Wide Web Consortium, Working Draft WD-
rdb2rdf-ucr-20100608 (June 2010)

27. Prud’Hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. World
Wide Web Consortium, Recommendation REC-rdf-sparql-query-20080115 (Jan-
uary 2008)

28. Raggett, D., Le Hors, A., Jacobs, I.: HTML 4.01 Speci cation. World Wide Web
Consortium, Recommendation REC-html401-19991224 (December 1999)

29. Schenk, S., Gearon, P., Passant, A.: SPARQL 1.1 Update. World Wide Web Con-
sortium, Working Draft WD-sparql11-update-20100601 (June 2010)

30. Wilde, E.: Model Mapping in XML-Oriented Environments. Tech. Rep. TIK Re-
port 257, Co mputer Engineering and Networks Laboratory, ETH Zürich, Zürich,
Switzerland (July 2006)

31. Schenk, S., Gearon, P., Passant, A.: SPARQL 1.1 Update. World Wide Web Con-
sortium, Working Draft WD-sparql11-update-20100601 (June 2010)

32. Wilde, E., Liu, Y.: Lightweight Linked Data. In: 2008 IEEE International Confer-
ence on Information Reuse and Integration, Las Vegas, Nevada (July 2008)

33. Yee, R., Kansa, E.C., Wilde, E.: Improving Federal Spending Transparency:
Lessons Drawn from Recovery.gov. Tech. Rep. 2010-040, School of Information,
UC Berkeley, Berkeley, California (May 2010)

Risk Sensitive Value of Changed Information for
Selective Querying of Web Services

John Harney and Prashant Doshi

THINC Lab, Dept. of Computer Science,
University of Georgia, Athens, GA 30602

{jfh,pdoshi}@cs.uga.edu

Abstract. A key challenge associated with compositions is that they must often
function in volatile environments, where the parameters of the component Web
services may change during execution. Failure to adapt to such changes may re-
sult in sub-optimal compositions. Value of changed information (VOC) offers a
principled and recognized approach for selectively querying component services
for their revised information. It does so in a rational (risk neutral) way. However,
risk preferences often constitute an important part of the organization’s decision
analysis cycle and determine its desired business goals. We show how VOC may
be generalized to consider preferences such as risk seeking and aversion using
a utility based approach. Importantly, considerations of risk preferences lead to
different services being used in the compositions and selected for querying for
revised information. This is intuitive and provides evidence toward the validity of
our approach for modeling risk preferences in VOC.

1 Introduction

A key benefit of Web services (WS) is the potential for automatically and flexibly for-
mulating compositions of services resulting in integrated software processes. Many of
the proposed approaches for optimally composing WSs utilize fixed information about
the component WSs available at design time [1,18,21,24]. A notable exception is [14]
where parameters of WSs are obtained again just before execution. However, the ap-
proaches predominantly result in compositions that may soon become suboptimal if the
environment is volatile. For example, a product may go out of stock affecting the useful-
ness of the corresponding WS, the network bandwidth may fluctuate affecting the WS
response time, or costs of using a service may increase. Such changes may negatively
impact the performance of the composition, making it critical that the compositions
identify and adapt to changes appropriately to maintain optimality.

This is not a new problem and several adaptation techniques have been proposed
[4,7,9,17] to improve composition performance in the presence of volatile informa-
tion. They seek to maintain an updated model of the composition environment, some
of them by querying for revised information [9,17]. One such approach uses the value
of changed information (VOC) to decide which WS to query for its revised parame-
ters [8,9]. VOC is a principled and recognized way for selectively querying WSs par-
ticipating in a composition. Recently, He et al. [10] expanded the applicability of VOC
to multiple different workflow patterns. Experimental results reveal that VOC based

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 77–91, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

78 J. Harney and P. Doshi

querying leads to adaptive compositions that perform better than those that do not adapt,
in simulations.

Approaches such as VOC aim to adapt compositions in a rational – risk neutral –
manner. However, risk preferences often strongly influence a modern organization’s
decision analysis cycle and play a pivotal role in determining the goals of its many
different business processes. This was demonstrated in a recent survey conducted by
Corner and Corner [6], which found that more than a quarter of all business processes
show some sensitivity to risk. For example, an organization may be conservative by
nature, willing to sacrifice some cost in exchange for more stability and reduced risk
of incurring greater costs in the future. In contrast to such risk aversion, risk-seeking
behavior involves making decisions that could yield large gains at the risk of incurring
heavier losses.

Clearly, a comprehensive approach to composition and adaptation should allow for
considerations of risk preferences. This is because distinct preferences toward risk could
significantly affect which WSs are selected in the composition and how the composi-
tion is adapted. In this paper, we generalize VOC toward modeling risk preferences in
deciding which WS to query for revised information. Although we focus on VOC, our
general approach toward considering risk is applicable to other adaptation techniques
as well. We model risk preferences using utility functions [22] – a well-known way of
modeling different attitudes toward risk. However, its principled integration within the
traditional VOC is not trivial.

We show that considerations of risk preferences affect which WSs are included for
participation in compositions, and which WSs are selected for querying of revised infor-
mation. This in turn affects how compositions are adapted. We experimentally demon-
strate that while the rational costs of the adapted compositions may be high, its utility
to the risk-sensitive designer is optimal. This conforms to the intuition generally held
about risk and its role in automation. It also provides evidence about the validity of our
risk-sensitive model. The outcome is a novel approach for guiding the querying of WSs
in volatile environments that models and acts on risk preferences as well.

The remainder of this paper is organized as follows. Section 2 presents a composi-
tion problem that is simple to understand yet demonstrative of the impact of considering
risk preferences. Section 3 gives a brief overview of a specific composition technique
and VOC. Section 4 shows how we may extend these models to include risk prefer-
ences. In Section 5, we present our experimental results that demonstrate the validity of
our approach. Section 6 gives a concise summary of research related to this paper. We
conclude with Section 7 which gives a brief summary and ideas for future work.

2 Scenario: Risk Sensitive Supply Chain

In order to demonstrate our approach, we present a manufacturer’s supply chain process
designed according to the supply-chain operations reference (SCOR) [25] model. We
assume that the component activities are all available as WSs. As the SCOR model is
highly complex, we focus on the subtask of parts procurement and assembly, where
the manufacturer must obtain a specific part to finish assembling a larger product for
delivery.

Risk Sensitive Value of Changed Information 79

We illustrate the activities involved in parts procurement in Fig. 1. The manufacturer
must optimally decide between three different service providers from whom to obtain
specific parts. The first option is to obtain the parts from its own inventory (shown as In-
ventory in Fig. 1), an inexpensive option that would allow the manufacturer to acquire
the part quickly and cheaply. The manufacturer has limited storage available, however,
making this method of obtaining the part unreliable. The manufacturer may also choose
to obtain the parts directly from its preferred supplier. The part is more expensive to
obtain from the supplier, but its availability is significantly better than from the inven-
tory. Finally, the manufacturer may rely on the spot market, which almost certainly
guarantees that the part will be obtained, but is more expensive than the previous two
options. For the sake of simplicity, we assume that the manufacturer may invoke a sin-
gle WS only. If the manufacturer is unable to complete the parts procurement task (i.e.,
a service is used that is not able to satisfy the order for the parts), a penalty is incurred in
addition to the cost of invoking the WS. This penalty is representative of the recovery
costs needed to heal the process (manufacturing halts, process rollbacks, compensa-
tions, etc.). In Fig. 1, we also indicate example QoS properties of each of the available
services.

A rational (risk neutral) manufacturer would optimize the composition by selecting
the WS that maximizes the mathematical expectation of total cost given the probability
of obtaining the parts using the WS. For the quality of service (QoS) parameters given
in Fig. 1, a rational manufacturer would elect to use the preferred supplier. However,
pragmatic manufacturers are not always rational. A manufacturer that is averse to risk

Risk neutral
manufacturer

Receive

Check Pref Supplier Avail
and Order Part
Reply = yes with prob .75
Cost = - 5.5
μ = -6.5, σ = 1

Check Inventory and Order Part
Reply = yes with prob .35
Cost = -3
μ = -3.75, σ = 1.5

Check Spot Market Avail
and Order Part
Reply = yes with prob .95
Cost = -8
μ = -8.5, σ = .5

Inventory

Reply

Preferred
Supplier Spot Market

Penalty for not
obtaining part: -10

Risk seeking
manufacturer

Risk averse
manufacturer

Part obtained

Fig. 1. Parts procurement in a manufacturer’s supply chain. The manufacturer may choose be-
tween obtaining parts from its own inventory WS, a preferred supplier service or the spot
market service. The inventory supplies parts cheaply but is less available in general, while the
spot market provides parts reliably but expensively. The preferred supplier has intermediate
cost and availability of parts. A penalty is incurred if the process does not complete.

80 J. Harney and P. Doshi

would opt for a more sure bet – a reliable service whose probability of meeting the order
is thought to be high – despite the potentially higher cost. For our scenario, it seems
intuitive that a risk-averse manufacturer would likely select the spot market due to
almost guaranteed availability of the parts. On the other hand, a risk seeker would likely
bet on a WS that is least expensive despite its lower reliability, such as the inventory.
Subsequently, although our scenario is simple, it is appropriate for demonstrating the
impact that distinct risk preferences may have.

An adaptive manufacturer would seek to modify its choice based on the updated
information about the component WSs. In this regard, we indicate the mean (μ) and
standard deviation (σ) that guides the Gaussian distribution of the volatile cost of each
participating service, in Fig. 1. While we restrict our analysis to Gaussian distributions,
it applies to other distributions as well. Per domain knowledge, we expect inventory to
be most volatile (high standard deviation) while the spot market to be least volatile.

3 Background: Web Service Composition and VOC

We briefly describe a framework for WS composition that provides a guarantee of ex-
pected cost based optimality. Consequently, we model both the cost and availability
of the services that may participate in the composition. We then describe the value of
changed information and how it may be used to pick a WS to query for revised in-
formation. While we show its usage in the context of the previous WS composition
framework, Chafle et al. [5] demonstrate that VOC may be coupled with other WS
composition frameworks as well. We refer the reader to [7] and [9] for more details
about the WS composition framework and VOC, respectively.

3.1 WS Composition Using Markov Decision Processes

We model the problem of WS composition as a Markov decision process (MDP) [19]
using the sextuplet:

WP = (S,A, T,R,H, s0)

where S = Πn
i=1X

i, S is the set of all possible states of the composition factored
into a set, X , of n variables, X = {X1, X2, . . . , Xn}; A is the set of all possible
actions ie. WS invocations; T is the transition function, T : S × A → Δ(S), which
specifies the probability distribution over the next states of the composition given the
current state and action. T models the uncertain availability of the WS itself and the
service it provides; R is a reward function, R : S × A × S → R, which specifies the
reward obtained (or cost) for performing each transition that has a non-zero probability.
R models the summation of the cost of invoking a WS and the cost of consuming the
service it provides, and is thus often independent of the source and resulting states. For
our example, the reward depends only on the action; H is the period of consideration
over which the composition must be optimal, also known as the horizon. While 1 ≤
H ≤ ∞, for the sake of understanding we use a horizon of 1 (greedy actions) in this
paper. Our approach is applicable to longer horizons in a straightforward manner; and
s0 is the starting state of the composition.

Risk Sensitive Value of Changed Information 81

In order to gain insight into the use of the above framework for WS composition, let
us model the parts procurement problem of Section 2. The state of the corresponding
WS composition is captured by the random variables – Inventory available, Preferred-
Supplier available, SpotMarket available – and is a conjunction of assignments of
either Yes, No, or Unknown to each variable. As we mentioned, actions are WS in-
vocations: A={Inventory, PreferredSupplier, SpotMarket}. The transition function,
T , models the nondeterministic effect of a WS invocation. For example, invoking the
PreferredSupplier WS causes PreferredSupplier available to be assigned Yes with
a probability of T (PreferredSupplier available=Yes|PreferredSupplier, Preferred-
Supplier available=Unknown) = 0.75. The reward function, R, models the cost of us-
ing a service. We model this cost as a combination (e.g., a sum) of the cost of invoking
the WS and the cost of the parts the service offers. For example, the cost of using the
inventory is R(Inventory).

Given that the manufacturer has modeled its WS composition problem in the above
framework, it may apply standard MDP solution techniques to arrive at an optimal com-
position. Here, optimality is with respect to the expected cost summed over the horizon.
These solution techniques use stochastic dynamic programming [19] for calculation of
the optimal policy using value iteration:

V n(s) =

{
0 s ∈ G

max
a∈A

∑

s′∈S

T (s′|a, s)[R(s, a, s′) + V n−1(s′)] s /∈ G (1)

where V n(s) quantifies the maximum long-term expected reward of reaching each state
s with n actions remaining to be performed, and could be written concisely as V n(s) =
maxa∈AE

s,a
s′ [r0 + V n−1(s′)]; G represents the set of goal states, indicating that the

composition has completed successfully. As we employ a one step approach, n = 1 for
our analysis. Here, V 0(s′) = 0, ∀ s ∈ G, and V 0(s′) ≤ 0, ∀ s /∈ G.

Because the reward is negative (cost), Eq. 1 implies that the expected value of a non-
goal state is less than or equal to the expected value of a goal state. In our example,
V 0(s′) ≤ 0 for non-goal states represents the penalty of not procuring the desired parts
from the selected supplier.

Once we know the expected reward (or cost) associated with each state, the optimal
action for each state is the one which results in the maximum expected reward.

π∗(s) = argmax
a∈A

∑

s′∈S

T (s′|a, s)[R(s, a, s′) + V 0(s′)] (2)

In Eq. 2, π∗ is the optimal policy which is a mapping from states to action(s), π∗ : S →
Δ(A). The WS composition is obtained by performing the WS invocation prescribed by
the policy given the state of the composition and observing the result of the invocation
in order to obtain the next state. Doshi et al. [7] details this procedure and provides an
algorithm for translating the policy to a WS composition.

3.2 VOC for Selective Querying

The parameters of the participating services may change during the lifetime of a WS
composition. For example, the cost of the parts from the preferred supplier service

82 J. Harney and P. Doshi

may increase (requiring an update of R) or the probability with which the preferred
supplier satisfies an order for parts may reduce (requiring an update of T). In order to
remain optimal in such volatile environments, one approach we may adopt is to query
the component WSs for their revised parameters [17]. However, queries may be costly
or tedious to perform. We must therefore manage them carefully.

Harney and Doshi [9] introduced the value of changed information (VOC) that in-
telligently selects which service to query for its revised information. VOC employs
a myopic approach to information revision, in which we query a single provider at a
time for new information. For example, the manufacturer may query for revised infor-
mation about the cost of using the inventory thereby updating the reward function to
R′(Inventory).

Let Vπ∗(s|R′) denote the expected reward of following the optimal policy, π∗, from
the state s given updated costs, R′. Let Vπ(s|R′) be the expected reward of following
the original policy, π, from state s in the context of the revised costs. The policy, π, is
optimal in the absence of revised information. Since the updated costs are not known
unless we query the service provider, we average over all possible values of the revised
costs, using our subjective belief distribution over the values. We formulate the VOC
pertaining to the revised costs at some state, s, as:

V OCR′ (s) =
∫

r

Pr(R′(s, a, s′) = r)[Vπ∗(s|R′)− Vπ(s|R′)]dr (3)

where R′(s, a, s′) denotes the cost that may be queried and subsequently may get re-
vised, Pr(·) is our belief over the possible costs of WS a. As we mentioned previously,
the cost may be independent of s and s′.

The subscript to V OC, R′, denotes the revised information inducing the change.
Intuitively, Eq. 3 represents how badly, on average, the original policy, π, performs in
the changed environment as formalized by the MDP model with the revised R′. We
may model our beliefs over the possible cost of a WS, Pr(R′(s, a, s′) = r) in Eq. 3,
using density functions, which could be obtained from the service provider initially
in the service-level agreement or may be learnt from previous interactions. We let the
densities for the WSs take the form of Gaussian density functions1.

Of all the participating WSs in the composition, we select the one whose possible
new cost is expected to bring about the most change in the WS composition, and this
change exceeds the cost of querying that provider. We first select the service provider
associated with the WS for whom the VOC is maximum:

a = argmax
a∈A

[V OCR′ (s)] (4)

Let V OC∗(s) represent the corresponding maximum VOC at state s. We query for new
information only if the VOC due to the revised information in that state is greater than
the query cost: V OC∗(s) > QueryCost(R′(a)). This revised parameter information
is integrated into the MDP model, and the optimal policy, π∗, is regenerated. The WS
composition resumes execution using an updated policy. Harney and Doshi [9] provide
further details about the algorithm that integrates VOC within WS composition.

1 Note that that these densities are marginalizations of the more complex ones that would ac-
count for all the factors that may influence the cost of the WS.

Risk Sensitive Value of Changed Information 83

4 Risk Sensitive VOC

The traditional business analysis cycle views risk preferences as an important criteria
for designing business processes [11]. Although rational process design stipulates risk
indifference (often called risk neutrality), pragmatic composition design often involves
either implicit or explicit considerations of risk preferences. For example, surveys [6]
have found that 27% of all business processes are designed with some sensitivity to
risk. Typically, risk considerations are predominant in processes involving high-stakes
decisions, or those involving large sums of money or resources, in order to either avoid
disastrous consequences or obtain huge financial gains [15]. A process designer may be
risk averse – it is willing to incur some cost in exchange for more reliability and reduced
risk of incurring greater costs in future. Some designers may have opposite preferences
and are risk seeking – they make decisions that could yield large possible gains, at the
risk of sustaining heavy losses.

A known way of modeling risk preferences is by adjusting the utility function that
maps the actual expected reward to the subject’s utility [20,22]. Risk aversion is associ-
ated with a large drop in utility for low reward (high cost) while risk-seeking behavior is
thought to associate a large increase in utility for positive expected reward. On the other
hand, risk neutrality involves considering the expected reward as is. We show example
utility functions for the three distinct risk preferences in Fig. 2.

-10

-5

 0

 5

 10

-8 -6 -4 -2 0 2 4 6 8

U
til

ity
 (

U
(V

))

Expected Reward (V)

Risk-seeking
Risk-averse
Risk-neutral

Fig. 2. Utility functions for different risk preferences. Risk aversion is modeled using a concave
function while risk seeking is represented by a convex utility function. The utility function for
risk neutrality is linear.

Typically, utility functions that model risk assume an exponential form. Consequently,
we model risk-averse utility as, Un(s) = maxa∈AE

s,a
s′ [−γr0+V n−1(s′)], where γ is

between 0 and 1 not inclusive, and n ≥ 1. Parameter γ is often called the risk factor and
decides the degree of risk. Smaller values of γ signify greater aversion. Risk-seeking
utility is modeled as, Un(s) = maxa∈AE

s,a
s′ [γr0+V n−1(s′)], where γ is greater than 1.

Analogously, larger values of γ signify greater risk. If γ = 1 we get the risk-neutral
utility and Un(s) = maxa∈AE

s,a
s′ [r0 + V n−1(s′)]. In Fig. 2, γ = 1.5 for the risk-

seeking function while it is 0.75 for the risk-averse utility function.

84 J. Harney and P. Doshi

As previously shown by Avila-Godoy [2], we may incorporate the utility functions in
the solution of an MDP. Because the utility is an expectation of the exponential function
of the value, we may rewrite Eq. 1 with n = 1 as:

U1(s) =

{
ι s ∈ G

max
a∈A

[
∑

s′∈S

γR(s,a,s′)T (s′|a, s)U0(s′)] s /∈ G (5)

Here, ι = sgn(ln γ); in other words, ι is 1 is γ > 1 and -1 if 0 < γ < 1. Notice that
ι is obtained by applying the appropriate utility function to the corresponding V 0(s)
for goal states, G, in Eq. 1. In case of risk aversion, U0(s) = −γV 0(s) = −γ0 = −1.
For risk-seeking, U0(s) = γV 0(s) = γ0 = 1. U0(s′) is the appropriate utility function
applied to V 0(s′) for any state, s′. Thus, U0(s′) = ι for all goal states and U0(s′) ≤ ι
for all non-goal states. Note that the utility of non-goal states continues to be less than
that of goal states.

We note that considerations of risk could impact the utility of the different states of
the WS composition to the designer, and potentially which WS invocations are optimal
at different states. This implies that the optimal policy, π∗, may be different as well
leading to possibly distinct WS compositions for different utility functions.

Given the risk-sensitive composition using utility functions, we may generalize VOC
to include considerations of risk preferences. In order to do this, Eq. 3 may be rewritten
as:

VOCR′(s) =
∫

r

Pr(R′(s, a, s′) = r)[Uπ∗(s|R′)− Uπ(s|R′)]dr (6)

where VOC denotes the generalized version of the traditional VOC, Uπ∗(s|R′) denotes
the risk-sensitive utility of the state s given the optimal policy in the context of revised
information andUπ(s|R′) denotes the risk-sensitive utility of s given the original policy
in the context of revised information. The utility function, U , is as defined in Eq. 5.

Subsequently, we select the WS to query which has the maximum VOC, analogously
to Section 3.2. However, the query is issued only if the VOC∗ is greater than the utility
of the query cost to the designer. Formally, if VOC∗(s) > U(QueryCost), then the
query is issued to the provider whose service led to the maximum expected change.

Observe that considerations of risk preferences may alter which WS is selected for
querying in comparison to risk neutrality. In our example, the composition of a risk-
averse manufacturer may be more sensitive to changes in the parameters of the spot
market. This is because the risk-averse manufacturer could be relying on the spot
market to satisfy its parts order. This is in contrast to a risk-neutral manufacturer whose
composition is expected to be most affected by changes in the parameters of the pre-
ferred supplier.

5 Experiments

We evaluate the performance of our risk-sensitive VOC and subsequent adaptation of
the compositions in the context of our example problem domain of Section 2. Our
service-oriented architecture involving VOC is identical to the one used previously by
Harney and Doshi [9]. In particular, VOC computations are performed within internal

Risk Sensitive Value of Changed Information 85

WSDL WSs. The benefit of using VOC for selectively querying services for revised
information and adapting compositions using the updated information has been demon-
strated previously [8,9,10]. Specifically, compositions adapted using VOC lead to sig-
nificantly better performance in volatile environments compared to compositions that
are not adapted and to those that are adapted using adhoc techniques. Hence, we will
not demonstrate the benefits of VOC here; rather we will focus on illustrating the in-
fluence of risk preferences on composition and adaptation, and thereby demonstrate the
intuitive validity of our general approach.

5.1 Impact of Risk Preferences on Composition

Columns 1-3 of Table 1 summarize the cost and availability parameters of the partici-
pating supplier WSs that the manufacturer could use for procuring parts. Although the
inventory is least costly, its likelihood of satisfying the order is the lowest. On the other
hand, the spot market is most expensive but almost guaranteed to satisfy the manufac-
turer’s order.

Table 1. Parameters of the participating WSs in our parts procurement problem domain. Existing
rewards are slightly away from the means to facilitate potential querying.

WS Reward Availability Volatility
Mean Std. dev.

Inventory -3 0.35 -3.75 1.5
Preferred Supplier -5.5 0.75 -6.5 1

Spot Market -8 0.95 -8.5 0.5

A rational, risk-neutral manufacturer should choose the preferred supplier for plac-
ing its order. This is because the expected reward of using it (see Eq. 5 with γ = 1
which becomes identical to Eq. 1) is the largest (lowest expected cost) among all three
suppliers. However, let us consider the case where the manufacturer is risk seeking with
γ = 1.5. The utility of the inventory for a risk-seeking manufacturer is the highest
(U1(s0) = 0.11) compared to that of the inventory and the spot market. This is in-
tuitive because the inventory is a risky bet with the potential for a large reward (low
cost of using it successfully) but also low chances of winning it (low availability). In
contrast, both preferred supplier and spot market represent less attractive bets (action
utility of 0.08 and 0.04, respectively) for the risk seeker. On the other hand, a risk-averse
manufacturer with γ = 0.75 opts for the spot market because it represents a safe bet –
its order would almost certainly be met although the cost is high (U1(s0) = −18.36).

These outcomes demonstrate the impact of risk preferences while formulating com-
positions. Differing compositions also influence how they get adapted using VOC; we
investigate this next.

5.2 Impact of Risk Preferences on Adaptation

As we mentioned previously, in the absence of risk preferences a rational manufac-
turer would choose the preferred supplier’s WS to order parts. Given the volatility in

86 J. Harney and P. Doshi

the environment (see columns 4 and 5 of Table 1), let the manufacturer use a VOC-
driven approach toward querying service providers for revised information. If the up-
dated information leads to a change in the optimal policy, the composition is adapted. In
this context, we show the performance of the risk-neutral manufacturer’s compositions
in Fig. 3. We show the average reward obtained by three distinct adaptive composi-
tions that invoke the inventory, preferred supplier and spot market WSs, respec-
tively. Here, each data point is the average of 500 executions of the composition in
1,000 simulations of our problem domain. The simulations are constructed by sampling
the Gaussian distributions of parameters of the participating volatile WSs. Each of the
three different compositions experienced identical simulations in order to facilitate a
valid comparison. A possible VOC-driven query is issued at the starting state of the
composition.

-14

-12

-10

-8

-6

-4

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 R
ew

ar
d

Query Cost

Invoke Preferred Supplier WS
Invoke Spot Market WS

Invoke Inventory WS

Fig. 3. Performance of the VOC-driven adaptive compositions for a risk-neutral manufacturer.
We compare between policies prescribing the three different WSs. Higher average reward indi-
cates better performance. The vertical bars represent the standard deviations. Large deviations are
mainly due to the high penalty when the composition does not procure the parts.

We first observe that all three compositions show a drop in expected reward as the
query cost increases. This is typical of VOC-driven adaptations. While adaptations are
frequent when the query cost is low, they occur less as querying becomes more expen-
sive. Notice that the composition prescribing the invocation of the preferred supplier
continues to do the best. This implies that for low query costs, possible adaptations con-
tinue to outperform those in compositions that prescribed invoking other WSs. Further-
more, the risk-neutral manufacturer queried the preferred supplier the most because
the associated VOC was often the largest. For large query costs, there is no adaptation
and it is rational to choose the preferred supplier.

In Fig. 4, we demonstrate how the adaptive compositions of a risk-seeking manu-
facturer would perform when using VOC-driven selective querying. Our methodology
for generating the data is same as before except for γ which is 1.5 and we show the
utility of the reward obtained by the compositions. Risk-sensitive VOC was computed
according to Eq. 6. As we mentioned previously, a risk-seeking manufacturer opts to

Risk Sensitive Value of Changed Information 87

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

U
til

ity
 o

f A
ve

ra
ge

 R
ew

ar
d

Query Cost

Invoke Preferred Supplier WS
Invoke Inventory WS

Fig. 4. Utility of VOC-driven adaptive compositions for a risk-seeking manufacturer (γ = 1.5).
We compare between policies that recommend preferred supplier and inventory WSs. Higher
utility indicates better performance.

invoke the inventory in comparison to a rational manufacturer who chooses the pre-
ferred supplier. Fig. 4 demonstrates that possible adaptations of this composition have
a larger utility to the risk-seeking manufacturer than the adaptive preferred supplier
based WS composition, which is the choice of a rational manufacturer. Thus, although
the composition that prescribes the inventory performs worst in the absence of risk
preferences, it becomes the optimal choice for a risk seeker.

We observed that for low query costs, the risk-seeking manufacturer queried the
inventory the largest number of times indicating that its VOC was the largest. This is
because of the high standard deviation of its cost coupled with its importance in the
composition of the manufacturer. About a fraction of one-tenth of these queries led to
adaptations where the preferred supplier was selected.

Finally, in Fig. 5 we demonstrate the utility to a risk-averse manufacturer of the
performance of adaptive compositions. We use γ = 0.75 (recall that risk aversion is
modeled using γ < 1) and each data point is generated as before. In comparison to a
risk seeker, our risk-averse manufacturer continues to find the adaptive composition that
recommends invoking the spot market most preferable. Its utility remains consistently
high compared to that of the adaptive composition that involves the preferred supplier
which is the choice of a rational manufacturer. Furthermore, the risk-averse manufac-
turer queried the preferred supplier most number of times. This is intuitive because
while the spot market is important its deviation is very low. Significant changes in
preferred supplier’s costs could make it the WS of choice for the risk-averse man-
ufacturer. Despite the querying the number of times that adaptations do occur is low
because of the significant value of the spot market to the risk-averse manufacturer.
About one-fifth of these queries led to adaptations.

In summary, risk-sensitive VOC leads to different services being selected for query-
ing based on the risk preferences, in comparison to queries in the absence of risk. This
is in part due to the varying compositions induced by different risk preferences.

88 J. Harney and P. Doshi

-40

-35

-30

-25

-20

-15

-10

-5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

U
til

ity
 o

f A
ve

ra
ge

 R
ew

ar
d

Query Cost

Invoke Preferred Supplier WS
Invoke Spot Market WS

Fig. 5. Utility of VOC-driven adaptive compositions for a risk-averse manufacturer (γ = 0.75).
We compare between policies that select preferred supplier and spot market WSs. Higher
average utility indicates better performance.

6 Related Work

Our paper borrows, in large part, from recent work in quantitative risk analysis. This
line of research uses modern decision-theoretic planning and von-Neuman-Morgenstern
utility theory concepts [22] that exist in the artificial intelligence [20] and decision
analysis [12] literature. Avila-Godoy [2] derived straightforward methods to compute
value functions for process designers that utilize exponential utility functions to model
their risk attitudes. Liu [15] extended this line of work so that value functions may
be computed using more general (i.e. non-exponential) risk-sensitive utility functions.
While their focus was strictly on MDPs, these methods provide a means to include risk
preferences in process creation.

Other lines of work have attempted to represent risk attitude in different ways. Kokash
and D’Andrea [13] use traditional risk management strategies to derive contingency
plans (such as quality of service re-negotiation or adopting other component services)
when the risk of using a composition is found to be high. They operate with the no-
tions of threats (danger sources), probabilities of threats, and their quantifiable impact
on the provider of the composition (monetary losses, time losses and breach of reputa-
tion). These threats are juxtaposed against the possible gains of the composition. De-
cisions are made whether to utilize a contingency plan of composition based on these
comparisons. Wiesemann et al. [23] incorporate the average value at risk (AVaR) mea-
sure, widely used in economic studies, into the decision making of a WS composition.
They introduce risk-preferences using the β-AVaR metric, which is defined as the mean
value of the (1-β) worst losses sustained by making a particular decision. Parameter
β ∈ [0, 1] represents the degree to which a decision maker considers the worst case loss
of a particular decision. When β is 0, the decision maker is risk-neutral. As β increases
it becomes more pessimistic, and thus, risk-averse. The β-AVaR metric is introduced
in their value maximization equations and decisions are based on the modified equa-
tions. Although both approaches apply quantitative methods, they quantify the risks in

Risk Sensitive Value of Changed Information 89

different ways, and neither handle run-time adaptation of WS compositions in the pres-
ence of risk preferences as we do in this paper.

Finally, risk management in processes has long received attention in economic and
business enterprise research communities. Traditionally, this line of research has adopted
an orthogonal and external perspective to risk by seeking to identify the risks posed to
business processes and outlining options that process managers may undertake to deal
with the risks [16]. Unlike the formal concepts discussed in this paper, their strategies
implement qualitative approaches to risk management. Human specialists oversee the
processes and identify potential hazards that could upset its functionality. After the risks
are identified, they are addressed in a systematic manner.

7 Discussion and Future Work

Real world environments in which WS compositions must function are seldom static.
Parameters of WSs and the of service it provides such as the cost and availability are
volatile. In this context, compositions must adapt to remain optimal. A crucial step
in adaptation is finding out the updated information about the component WSs. VOC
offers a principled and recognized approach for deciding which WS to query for revised
information.

Although designers are often advised to be rational and objective while designing
processes, risk preferences invariably play a role in the composition. Therefore, we pre-
sented an approach for considering risk preferences while composing and querying,
leading to the risk sensitive VOC. We used utility functions to model risk preferences
and showed how these may be integrated with the traditional VOC. Our experimental
results on a simulated parts procurement domain confirmed our intuition about the im-
pact of risk – its consideration leads to changes in how we compose and issue queries
compared to rational behavior.

While we experimented with a simple scenario in order to promote clarity, we think
that our results are indicative of more complex scenarios as well. In particular, the risk-
sensitive utility as defined in Eq. 5 may be generalized straightforwardly to multiple
steps and the corresponding computation of the risk-sensitive VOC continues to proceed
as shown in Eq. 6.

Although we used particular exponential utility functions, other forms of exponen-
tial utility functions could be used as well such as those often utilized in economics
and those which allow a switch in risk preference depending on the accumulated re-
ward [15]. We speculate that our analysis would hold for these forms of utility func-
tions as well. Finally, it would be interesting to demonstrate the beneficial role of risk
in real-world compositions. In this regard, we are seeking a case study.

Acknowledgment

We would like to thank Bob Bostrom, professor in the business school of the University
of Georgia for useful discussions related to this work.

90 J. Harney and P. Doshi

References

1. Agarwal, V., Chafle, G., Dasgupta, K., Karnik, N., Kumar, A., Mittal, S., Srivastava, B.:
Synthy: A system for end to end composition of web services. Journal of Web Semantics 3,
311–339 (2005)

2. Avila-Godoy, M.: Controlled Markov Chains with Exponential Risk-Sensitive Criteria: Mod-
ularity, Structured Policies and Applications. Ph.D. thesis, Department of Mathematics, Uni-
versity of Arizona (1999)

3. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne, J.,
Rofrano, J., Tuecke, S., Xu, M.: WS-Agreement Specification (2005)

4. Chafle, G., Dasgupta, K., Kumar, A., Mittal, S., Srivastava, B.: Adaptation in web service
composition and execution. In: International Conference on Web Services (ICWS), Industry
Track, pp. 549–557 (2006)

5. Chafle, G., Doshi, P., Harney, J., Mittal, S., Srivastava, B.: Improved Adaptation of Web
Service Compositions Using Value of Changed Information. In: International Conference on
Web Services (ICWS), Industry Track, pp. 784–791 (2007)

6. Corner, J., Corner, P.: Characteristics of decisions in decision analysis practice. The Journal
of Operational Research Society 46, 304–314 (2006)

7. Doshi, P., Goodwin, R., Akkiraju, R., Verma, K.: Dynamic workflow composition using
markov decision processes. Journal of Web Services Research 2(1), 1–17 (2005)

8. Harney, J., Doshi, P.: Adaptive Web Processes Using the Value of Changed Information.
In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 179–190. Springer,
Heidelberg (2006)

9. Harney, J., Doshi, P.: Selective querying for adapting web service compositions using the
value of changed information. In: IEEE Transactions on Services Computing (2008) (in
press)

10. He, Q., Yan, J., Jin, H., Yang, Y.: Adaptation of Web Service Composition Based on Work-
flow Patterns. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS,
vol. 5364, pp. 22–37. Springer, Heidelberg (2008)

11. Holtzman, S.: Intelligent Decision Systems. Addison-Wesley, Reading (1989)
12. Kirkwood, C.: Approximating Risk Aversion in Decision Analysis Applications. Decision

Analysis, 55–72 (2004)
13. Kokash, N., D’Andrea, V.: Evaluating Quality of Web Services: A Risk-Driven Approach.

Business Information Systems, 180–194 (2007)
14. Kuter, U., Sirin, E., Nau, D.S., Parsia, B., Hendler, J.A.: Information gathering during plan-

ning for web serivce composition. Journal of Web Semantics 3(2-3), 183–205 (2005)
15. Liu, Y.: Decision-Theoretic Planning Under Risk-Sensitive Planning Objectives. Ph.D. the-

sis, College of Computing, Georgia Institute of Technology (2005)
16. zur Muehlen, M., Ho, D.: Risk Management in the BPM Lifecycle. In: Bussler, C.J., Haller,

A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 454–466. Springer, Heidelberg (2006)
17. Au, T.C., Kuter, U., Nau, D.: Web service composition with volatile information. In: Gil, Y.,

Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 52–66.
Springer, Heidelberg (2005)

18. Pathak, J., Basu, S., Honavar, V.: Moscoe: A specification-driven framework for modeling
web services using abstraction, composition and reformulation. In: Ph.D. Symposium, Inter-
national Conference on Services-Oriented Computing (ICSOC), pp. 1–6 (2007)

19. Puterman, M.L.: Markov Decision Processes:Discrete Stochastic Dynamic Programming.
Wiley series in probability and mathematical statistics. Wiley-Interscience, Hoboken (1994)

20. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice-Hall,
Englewood Cliffs (2003)

Risk Sensitive Value of Changed Information 91

21. Sirin, E., Parsia, B., Wu, D., Hendler, J.A., Nau, D.S.: Htn planning for web service compo-
sition using shop2. Journal of Web Semantics 1(4), 377–396 (2004)

22. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton
University Press, Princeton (1944)

23. Wiesemann, W., Hochreiter, R., Kuhn, D.: A Stochastic Programming Approach for QoS-
Aware Service Composition In. IEEE International Symposium on Cluster Computing and
the Grid (CCGrid 2008), pp. 226–233 (2008)

24. Zhao, H., Doshi, P.: Haley: An end-to-end scalable web service composition tool. In: Devel-
opers Track, World Wide Web, (WWW 2008)

25. The Supply-Chain Council, http://archive.supply-chain.org/cs/root/
scor_tools_resources/scor_model/scor_model (last accessed June 14, 2010)

http://archive.supply-chain.org/cs/root/scor_tools_resources/scor_model/scor_model
http://archive.supply-chain.org/cs/root/scor_tools_resources/scor_model/scor_model

Adaptive Service Composition Based

on Reinforcement Learning�

Hongbing Wang1, Xuan Zhou2, Xiang Zhou1, Weihong Liu1,
Wenya Li1, and Athman Bouguettaya2

1 School of Computer Science and Engineering,
Southeast University, China
{hbw,szs,chw}@seu.edu.cn

2 CSIRO ICT Centre, Australia
{xuan.zhou,athman.bouguettaya}@csiro.au

Abstract. The services on the Internet are evolving. The various prop-
erties of the services, such as their prices and performance, keep changing.
To ensure user satisfaction in the long run, it is desirable that a service
composition can automatically adapt to these changes. To this end, we
propose a mechanism for adaptive service composition. The mechanism
requires no prior knowledge about services’ quality, while being able to
achieve the optimal composition solution by leveraging the technology of
reinforcement learning. In addition, it allows a composite service to dy-
namically adjust itself to fit a varying environment, where the properties
of the component services continue changing. We present the design of
our mechanism, and demonstrate its effectiveness through an extensive
experimental evaluation.

1 Introduction

In the emerging paradigm of Service Oriented Computing (SOC), data, soft-
ware and hardware can all be encapsulated as services shared on the Internet.
Applications would no longer be built from scratch, but as compositions of the
available services. In this way, application builders can focus on business logics,
without overly spending time and efforts on infrastructures. To realize SOC,
a variety of technologies have been proposed. They include the stack of Web
Service technologies, e.g. SOAP and BPEL, and a variety of mashup tools, e.g.
Yahoo Pipe and Google Mashup Editor. Most of these technologies aim to help
engineers / users create service compositions efficiently.

The services on the Internet keep evolving. Some services may stop function-
ing, once their providers go out of business. Some may keep upgrading them-
selves, to achieve improved Quality of Service (QoS). For instance, Amazon EC2
has decreased its prices for several times (the latest one was a 15% cut in Nov
2009), but continually improve its architecture to achieve better performance.

� This work is partially supported by the NSFC project No. 60673175 and the Jiangsu
NSF project titled “Cloud-Service Oriented Autonomic Software Development”.

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 92–107, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Adaptive Service Composition Based on Reinforcement Learning 93

For those services that do not evolve, their quality may change with the vary-
ing environment. For instance, the growth of customers will usually increase the
response time of a service. Due to the evolvement of services and the dynam-
icity of the environment, a service composition has to be continually adjusted,
to keep functioning in a cost-effective manner. This imposes intensive workload
to engineers in monitoring, tuning and re-engineering service compositions. It is
desirable that a service composition can be self-adaptive in a dynamic environ-
ment, so that it will incur less maintenance cost.

In recent years, extensive research efforts have been spent on the development
and the optimization of service compositions [13,19]. However, most of the ex-
isting approaches assume a static environment. As a common practice [19,1,18],
an abstract service composition is firstly created to meet users’ requirements on
functionality. Then, concrete services are selected based on their non-functional
properties to create a concrete service composition of the best possible quality.
A service composition created out of this approach runs in a static workflow and
is not self-adaptive. When its environment or its component services change, the
composition has to be manually adjusted to adapt to the changes.

In this paper, we present a novel mechanism to enable a service composition to
adapt to its environment autonomously. Our mechanism achieves self-adaptivity
by utilizing Reinforcement Learning, a typical technology used for planning and
optimization in dynamic environments. We model a service composition as a
Markov Decision Process (MDP), so that multiple alternative services and work-
flows can be incorporated into a single service composition. The optimization of
the composition is conducted at runtime (when users consume the services),
through reinforcement learning. The learning aims to obtain the optimal pol-
icy of the Markov decision process that delivers the best quality of service. In
contrast to the existing approaches of service composition and optimization, our
mechanism requires no prior knowledge of services’ non-functional properties,
which are anyway uncertain in most real world circumstances. Instead, it learns
these properties by actually executing the services. As the learning process con-
tinues throughout the life-cycle of a service composition, the composition can
automatically adapt to the change of the environment and the evolvement of its
component services. We have conducted extensive experiments to evaluate our
approach and observed a number of its merits.

The remainder of this paper is organized as follows. Section 2 defines our
model of service composition. Section 3 shows how reinforcement learning can
be conducted to run the service compositions. Section 4 presents the results
of our experimental evaluation. Section 5 compares our approach against some
related work. Finally, Section 6 provides a conclusion.

2 A MDP Model for Service Composition

Some recent approaches [5,6] to automatic service composition have used Markov
Decision Process (MDP) to model service compositions. We use this model too,
as it allows us to apply reinforcement learning to dynamically optimize the qual-
ity of a service composition.

94 H. Wang et al.

We first define the key concepts of the model.

Definition 1 (Web Service). A Web service is modeled as a tuple WS =<
ID,QoS >, where
– ID is the identifier of the Web service.
– QoS is a n-tuple < att1; att2; ...; attn >, where each atti denotes a QoS

attribute of WS. �
Example 1: Some example Web services are defined as follows:
ID: StorkID
QoS: <price:free, response time:1ms, availability:99%>
ID: StorkPrice
QoS: <price:free, response time:1ms, availability:99%>
ID: StrokInfo1
QoS: <price:$1, response time:200ms, availability:80%>
ID: StockInfo2
QoS: <price:$2, response time:1ms, availability:99%>
ID: Transaction
QoS: <price:$1, response time:200ms, availability:99%>
We use these services as walk-through examples to illustrate our approach.
Among these services, StockID allows a user to know the identification code
of a stock. StockPrice allows a user to check the current price of a stock. Stock-
Info1 and StockInfo2 are two alternative services for providing user with more
information about stocks. They charge different fees and offer different QoS. Fi-
nally, Transaction allows a user to buy or sell stock. In our example, we use only
three typical QoS attributes. �

As we use Markov Decision Process (MDP) to model service composition, we
first define MDP. In [8], a MDP is defined as:

Definition 2 (Markov Decision Process (MDP)). A MDP is a 4-tuple
M =< S,A(.), P,R >, where
– S: a finite set of states of the world. When an agent arrives at a state, the

agent can observe the complete state of the world.
– A(s): a finite set of actions. The set of available actions depends on the

current state s ∈ S.
– P : when an action a ∈ A is performed, the world makes a probabilistic

transition from its current state s to a resulting state s′ according to a
probability distribution P (s′|s, a).

– R: Similarly, when action a is performed and the world makes its transition
from s to s′ , the agent receives a real-valued (possibly stochastic) reward r,
whose expected value is r = R(s′|s, a). �

A MDP involves multiple actions and paths for a agent to choose. By using it to
model service compositions, we are able to integrated multiple alternative work-
flows and services into a single composition. We call our model of service composi-
tion WSC-MDP, which simply replaces the actions in a MDP with Web services.

Adaptive Service Composition Based on Reinforcement Learning 95

Fig. 1. The WSC-MDP of a Composite Service for Stock Transaction

Definition 3 (Web Service Composition MDP (WSC-MDP)). A Web
service composition MDP is 6-tuple WSC-MDP=< S, s0, Sr, A(.), P,R > , where

– S: a finite set of states of the world.
– s0 ∈ Sis the initial state. An execution of the service composition starts from

this state.
– Sr ⊂ S is the set of terminal states. Upon arriving at one of the states, an

execution of the service composition terminates.
– A(s) represents the set of Web services that can be executed in state s ∈ S .

A service ws belongs to A(s), only if the precondition wsP is satisfied by s.
– P : When a Web service ws ∈ A(s) is invoked , the world makes a transition

from its current state s to a resulting state s′, where the effect of ws is
satisfied. For each s, the transition occurs with a probability P (s′|s, ws).

– R: When a Web service ws ∈ A(s) is invoked, the environment makes a
transition from s to s′, and the service consumer receives an immediate
reward r, whose expected value is R(s′|s, ws). �

A WSC-MDP can be visualized as a transition graph [15]. As illustrated by
Fig. 1, the graph contains two kinds of nodes, i.e., state nodes and service nodes,
which are represented by open circles and solid circles respectively. s0 represents
the initial state node. The terminal states nodes are those with double circles. A
state node can be followed by a number of service nodes, representing the possible
services that can be invoked in the state. There is at least one arrow pointing
from a service node to the next state node. Each arrow is labeled with a transition
probability P (s′|s, ws), and the expected reward for that transition R(s′|s, ws),
which are determined by the P and R in the WSC-MDP. (For simplicity, we
omit the labels in Fig. 1.) The transition probabilities on the arrows rooted at
a single action node always sum to one.

96 H. Wang et al.

Fig. 2. Three Workflows contained by the WSC-MDP in Fig. 1

Example 2: The services introduced in Example 1 can be composed into a
integrated service for stock transaction. We model it as a WSC-MDP transition
graph in Fig. 1. (For simplicity, we assume only two resulting states for each
service. If the service is invoked successfully, the world changes to the next state
predicated by the service’s post-condition. Otherwise, the world remains in the
current state.) This service composition provides multiple workflows for users to
purchase or sell stocks. When executing the composition, the system can choose
the workflow that offers the best results. �
As shown in the related work [5,6], WSC-MDP is expressive enough to describe
the control flows of a general business process. In addition, WSC-MDP can ex-
press a super service composition composed of multiple alternative workflows.
Each of the workflows corresponds to a service composition constructed by tra-
ditional approaches, such as BPEL.

Definition 4 (Service Workflow). Let wf be a subgraph of a WSC-MDP.
wf is a service workflow if and only if there is at most one service that can be
invoked at each state wf . In other words, ∀s ∈ wf, |A(s) ∩wf | ≤ 1. �
A service workflow is actually analogous to a deterministic state machine. A
tradition service composition usually corresponds a single workflow. In contrast,
a WSC-MDP based composition can consist of multiple workflows.

Example 3: The WSC-MDP in Example 2 consists of multiple service work-
flows. Fig. 2 shows three of them. Which workflow will be executed by the service
composition is determined the policy of the Markov decision process. �

We define a policy (or execution policy) of a WSC-MDP as follows.

Definition 5 (Policy). A policy π is a mapping from state s ∈ S to a service
ws ∈ A, which tells which service ws = π(s) to execute when the world is in
state s. �

Adaptive Service Composition Based on Reinforcement Learning 97

Example 4: A policy for the WSC-MDP in Example 2 can be expressed as π
= {s0 : StockID, s1 : StockInfo1, s2 : StockPrice, s4 : Transaction}. It tells
our system to execute the service composition using Workflow 1 in Fig. 2(a). �

Each policy can uniquely determine a workflow of a WSC-MDP. By executing a
workflow, the service customer is supposed to receive a certain amount of reward,
which is equivalent to the cumulative reward of all the executed services. Given a
WSC-MDP, the task of our service composition system is to identify the optimal
policy or workflow that offers the best cumulative reward. As the environment of
a service composition keep changing, the transition function P and the reward
function R of a WSC-MDP changes too. As a result, the optimal policy changes
with time. If our system is able to identify the optimal policy at any given time,
the service composition will be highly adaptive to the environment.

It worth noting that this paper only deals with how to model a service compo-
sition using WSC-MDP. Regarding the design and construction of WSC-MDP,
we schedule it in our future work. In practice, a WSC-MDP can either be created
manually by engineers or using some automatic composition approaches, such
as an AI planner [11,14].

3 Reinforcement Learning for Service Composition

The MDP model introduced previously allows service engineers to integrate mul-
tiple alternative workflows and services into a single service composition. During
the execution of a service composition, the system can dynamically choose the
optimal policy / workflow that would give the best possible reward to the users.
When the complete WSC-MDP is known, the theoretically optimal policy can
always be calculated. However, this is not true in practice. Firstly, we may not
have complete knowledge about the state transition functions of the WSC-MDP,
as the results of a service are not always predicable. Secondly, we may not have
sufficient knowledge about the reward functions of the WSC-MDP. Especially for
human oriented services, the user experience of a service composition is rarely
predicable, until it has been tried out. Moreover, as the environment of a service
composition keep changing, both the state transition functions and the reward
functions change with time.

Due to the above issues, we choose to learn the optimal policy of a WSC-
MDP at runtime. In this section, we introduce a reinforcement learning scheme to
orchestrate WSC-MDP based service compositions. We first give a brief overview
of a reinforcement learning algorithm called Q-Learning. Following that, we show
how to apply reinforcement learning to WSC-MDP.

3.1 Q-Learning

In reinforcement learning, the task of the learner or decision-maker is to learn a
policy of the MDP that maximizes the expected sum of reward. As there is no
initial and terminal states in a generic MDP (Definition 2), an agent is supposed

98 H. Wang et al.

to live in the MDP forever. Therefore, the cumulative reward of starting from
an arbitrary state st and following a policy π is defined as:

V π(st) = rt + γrt+1 + γ2rt+2 + ... =
∞∑

i=0

γirt+i (1)

where rt+i is the expected reward received in each step, and γ is a discount
factor.

Based on Equation 1, the optimal policy is the policy that maximizes V π(st)
for all st. Let π∗ denote the optimal policy. Therefore,

π∗ = argmaxπV
π(st), (∀st ∈ S) (2)

We use V ∗(.) to represent the cumulative reward of the optimal policy π∗.
As mentioned earlier, the state transition function and reward function of a

MDP may not be known. Thus, π∗ cannot be calculated directly. It has to be
learned through a trial-and-error process.

To facilitate the learning process, Q-Learning [17] uses a Q function to simu-
late the cumulative reward. Let s be the current state of the agent. Let a be the
action taken by the agent. Let s′ be the resulting state of action a. Then, the Q
function of taking action a at state s is

Q(s, a) =
∑

s′
P (s′|s, a)[R(s′|s, a) + γV ∗(s′)] (3)

The Q function represents the best possible cumulative reward of taking action
a at state s.

Based on Equation 3, we obtain the optimal policy for each single state s.

π∗(s) = argmaxaQ(s, a), (∀a ∈ A(s)) (4)

Applying Equation 4 to resolve the V ∗(s′) in Equation 3, we obtain a recursive
definition of Q(s, a).

Q(s, a) =
∑

s′
P (s′|s, a)[R(s′|s, a) + γmaxa′Q(s′, a′)] (5)

This recursive definition of Q forms the basis of the Q-Learning algorithm [17]. Q-
learning starts with some initial values ofQ(s, a), and updates Q(s, a) recursively
using the actual reward received by the agent in a trial-and-error process. The
complete learning process is depicted in the algorithm in Fig. 3.

In this algorithm, we assume that there is a single initial state, i.e. s0, and a set
of terminal states, i.e. Sr, in a given MDP. In the beginning, Q(s, a) is initialized.
For instance, Q(s, a) can be set to 0 for all s and a. Then, the learning process
is performed recursively. In each episode (round), the learner starts from the
initial state s0, and takes a sequence of actions by following the ε-greedy policy
(which is introduced subsequently). The episode ends when the agent reaches a

Adaptive Service Composition Based on Reinforcement Learning 99

Initialize Q(s, a);
for each episode do

s ← s0;
for s /∈ Sr do

Choose a ∈ A(s) based on ε-greedy policy;
Execute a, observe reward r and new state s′;
Q(s, a) ← Q(s, a) + α[r + γmaxa′Q(s′, a′) − Q(s, a)];
s ← s′;

end for
end for

Fig. 3. The Q-Learning Algorithm

terminal state s ∈ Sr. After executing each action, the learner updates Q(s, a)
using the following equation.

Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)] (6)

On the right side of Equation 6, r+γmaxa′Q(s′, a′) represents the newly observed
reward (see Equation 5), and Q(s, a) represents the previously observed reward.
We can see that the function does not intend to use the newly observed value
to completely replace the old Q(s, a) value. Instead, it only updates a certain
portion of the Q(s, a) value, which is quantified by α(0 ≤ α ≤ 1). α is called
learning ratio, which is an important tuning factor in Q-Learning. Intuitively,
the higher the learning ratio, the faster the learner will find the optimal policy.
However, the higher the learning ratio, it is more likely that the learner be locked
in a local optimal region.

The ε-greedy policy is used by the learner for executing the MDP during the
learning. ε(ε < 1) is the deterministic parameter of this policy. Given a state
s, based on the current Q(s, a) function, the ε-greedy policy chooses to execute
the optimal action (i.e. argmaxaQ(s, a)) with a probability of 1 − ε. With a
probability ε, the policy chooses a random action to execute. On the one hand,
the ε-greedy policy ensures that Q(s, a) is being optimized continuously. On the
other hand, it guarantees that all the available actions are given chances to be
tried out by the learner.

3.2 Applying Q-Learning to WSC-MDP

Our mechanism applies the Q-Learning algorithm to a WSC-MDP based service
composition to determine the optimal or near-optimal policy at runtime. Rather
than treating the Q-Learner as a learning system, our framework uses it directly
as the execution engine of service compositions. Upon receiving a user request’s,
the system starts an execution of the service composition. It applies the ε-greedy
policy of the Q-Learner to pick a service workflow to execute. This execution is
in turn treated as an episode of the learning process. The ε-greedy policy and
the Q-functions are updated afterwards, based on the newly observed reward.

100 H. Wang et al.

By combining execution and learning, our framework achieves self-adaptivity
automatically. When the environment changes, a service composition will change
its policy accordingly, based on its new observation of reward. It does not require
prior knowledge about the QoS attributes of the component services, but is able
to achieve the optimal execution policy through learning.

Reward Assessment
To apply Q-Learning to a WSC-MDP, an important issue is to define the reward
of the learning process. As the ultimate objective of our mechanism is to maxi-
mize user satisfaction. The reward should be a certain measure of user satisfac-
tion. Information about user satisfaction can be obtained through two channels
in a service composition system. This first channel is the QoS attributes that can
be measured after the execution of each service. These QoS attributes include
service fee, response time, availability, etc.. Our framework uses the following
function to aggregate the various QoS attributes into a single reward value:

R(s) =
∑

wi ×
Attsi −Attmin

i

Attmax
i −Attmin

i

(7)

where Attsi represent the observed value of the ith attribute of service s, and
Attmax

i and Attmin
i represent the maximum and minimum values of Atti for all

services. wi is the weighting factor of Atti. wi is positive if users prefer Atti to be
high (e.g. availability). wi is negative if users prefer Atti to be low (e.g. service
fee and response time).

The second channel to assess user satisfaction is user feedback. A service com-
position system can allow a user to rate the composite service after each trans-
action. The rating is a kind of direct measure of the final reward received by the
user. User feedback allow the learner to capture some properties that cannot be
directly quantified. A typical property of such kind is user experience. Different
from the QoS based reward, which can be measured at each learning step, users’
feedback can only be measured at the final step of a episode. Fortunately, the
Q-Learning approach is able to propagate the influence of the final reward to
the intermediate services of the composition. Even when QoS attributes are not
used, user feedbacks can still allow the learner to obtain a near-optimal policy.

Q-Function Initialization
Using Q-Learning, our framework does not need to know the QoS attributes of
services to obtain the optimal execution policy. However, knowledge about QoS
is still beneficial, as it allows the learner to obtain the optimal policy quickly.
To incorporate the known QoS information into the learning process, we use
this information to initialize the Q-Functions, i.e., Q(s, a). In other words, for
a service s whose QoS attributes are known, we calculate its initial Q(s, a) by
applying Equation 7 to its QoS attributes directly. For a service s whose QoS
attributes are unknown, we approximate its initial QoS attributes by averaging
the QoS values of other services, and apply Equation 7 to the approximated val-
ues to calculate Q(s, a). As shown in our experiments, this initialization method
is able to remarkably accelerate the learning process.

Adaptive Service Composition Based on Reinforcement Learning 101

4 Experimental Evaluation

We conducted simulation to evaluate the properties of our service composition
mechanism. This section presents some of the results.

4.1 Simulation Setup

We randomly generated WSC-MDP transition graphs to simulate service com-
positions. Each simulated WSC-MDP had a single initial state and two terminal
states. The number of state nodes and the number of service nodes in a WSC-
MDP graph ranged between 1,000 – 10,000 and 1,000 – 40,000 respectively. Each
service node in a simulated WSC-MDP graph had at least one out-edge. The
average number of out-edges per service node was set to 2.

We considered two QoS attributes of services. They were service fee and exe-
cution time. We assigned each service node in a simulated WSC-MDP graph with
random QoS values. The values followed normal distribution. To simulate the
dynamic environment, we periodically varied the QoS values of existing services
based on a certain frequency.

We applied the Q-Learner introduced in Section 4 to execute the simulated
service compositions. The reward function used by the learner were solely based
on the two QoS attributes. We did not consider the reward information obtained
from user feedback, as a simulation of user feedback may not reflect the reality.
However, we believe that reward based on QoS can provide an adequate view of
how a service composition can adapt to the environment through reinforcement
learning. In the experiment results, without special announcement, the discount
factor γ of the Q-Learner is set to 0.9, the learning rate α is set to 0.2 and the
ε is set to 0.6.

Our experiments were performed on a 2.13GHz Intel Core2 PC with 2GB of
RAM.

4.2 Efficiency of Learning

In the first stage of the evaluation, we studied how efficiently reinforcement
learning would enable our service compositions to achieve the optimal execution
policy. We assumed that the service composition system has zero knowledge
about the QoS of the component services, and let the Q-Learner guide the service
compositions to gradually reach the optimal policy. We conducted three sets of
experiments to evaluate the efficiency.

In the first set of experiments, we fixed the number of states of the simulated
WSC-MDP to 1,000 and the number of services for each state to 4. We varied
the learning rate α from 0.1 to 0.6. For each α, we executed the service compo-
sition for 400 times. In other words, the learning was performed for 400 episodes
for each α. We plot the cumulative reward of each episode in Fig. 4. As the fig-
ure shows, for all α, the cumulative rewards started converging before the 400th
episodes. We can see that a higher learning rate can accelerate the learning pro-
cess, whereas a smaller learning rate is helpful to avoid local optimality. As shown

102 H. Wang et al.

Fig. 4. Efficiency of Learning with Different Learning Rates

in Fig. 4, when α=0.6, although the cumulative reward increases very fast, the ser-
vice composition failed to find the optimal policy. When α=0.1, the cumulative
reward increases slowly, while it guarantee to achieve the optimal policy. When
α=0.2, the learner seemed to achieve a good tradeoff between speed and effective-
ness. Hence, we set α to 0.2 in the rest of our experiments. Fig. 4 also shows that
the improvement made by the learning in the early stage is usually much higher
than that in the late stage. This implies that a near-optimal policy can usually be
identified much more quickly than the final optimal policy.

In the second set of experiments, we fixed the learning rate α to 0.2, but
varied the parameter of the ε-greedy policy from 0.2 to 0.8. We studied how fast
the cumulative reward converged to the optimal value during the learning. The
cumulative reward is regarded to converge if the difference between its values in
previous 10 consecutive episodes is below 1%. As shown in Fig. 5, the convergence
time varies with ε. When ε = 0.6, the convergence speed is the fastest. Hence,
we set ε to 0.6 in the rest of our experiments.

Our third set of experiments aimed to analyze the relationship between the
learning speed and the size of service composition.

Firstly, we fixed the number of services of each state to 4 and varied the
number of states in a WSC-MDP graph from 1,000 to 10,000. We observed

Fig. 5. Learning Speed vs ε

Adaptive Service Composition Based on Reinforcement Learning 103

(a) Convergence Time vs # of States (b) Convergence Time vs # of Services

Fig. 6. Influence of Service Composition Size on Learning Speed

how fast the cumulative reward converged to optimal value during the learning.
The results are shown in Fig. 6(a). As expected, the convergence time increases
polynomially with the number of states. This is because the number of alterna-
tive workflows in a service composition usually increase exponentially with the
number of states. Because of the efficiency of Q-Learning, the convergence time
actually increases much slower than the number of workflows.

Secondly, we fixed the number of states to 1,000, and varied the number of
alternative services in each state from 1 to 4. The results are shown in Fig. 6(b).
The convergence time increases almost linearly with the number of services. This
also shows the efficiency of Q-Learning, as the number of alternative workflows
in a composition increases polynomially with the number of services.

A WSC-MDP graph with 10,000 states and 40,000 services seems to represent
a fairly complex service composition. By using Q-Learning, our framework is able
to identify the optimal execution policy with 6,000 episodes. In other words, once
the composition has been executed for 6,000 times, it will reach the optimal
status. As indicated by Fig. 4, a composition can reach a near-optimal status
with a even faster speed.

4.3 Adaptivity to Changes

In the second stage of our evaluation, we studied how well our service composi-
tions adapt to the changes of the environment.

In the first set of experiments, we simulated the changes of the environment
by changing the QoS attributes of the services periodically. We assumed that the
system have no knowledge about the services’ QoS attributes, and let it rely on
Q-Learning to learn the optimal execution policy. During the learning process, we
changed the QoS attributes of the service in three kinds of frequencies. Namely,
for every 100 episodes of learning, we varied 1%, 5% and 10% of the service’s
QoS attributes respectively. We observed how these changes would influence the
effectiveness of learning.

Fig. 7 shows the growth of the cumulative reward during the learning process.
We can see that by increasing the change rate we can delay a service composition
to reach its optimal execution policy. However, the changes do not stop the
optimization process. The execution policy is still being continually optimized
when the learning goes on. When the turnover is as high as 10% per 100 episodes,

104 H. Wang et al.

Fig. 7. Influence of Changes on Learning

Fig. 8. Influence of Initial Knowledge

the service composition can still eventually reach a near optimal policy and stick
to it afterwards.

In the final set of experiments, we studied how initial knowledge of services’
QoS attributes can accelerate the learning process. We investigated in three
cases. In the first case, all services’ QoS attributes were known. In the second
case, 50% of services’ QoS attributes were known. In the last case, no QoS
information is known. We applied the approach introduced in Section 4.2 to
initialize the Q-function of the Q-Learner. The resulting learning processes are
plotted in Fig. 8. The results show that the learning speed can be significantly
improved by exploring the prior knowledge about services.

Adaptive Service Composition Based on Reinforcement Learning 105

5 Related Work

The existing technologies for service composition mainly aim to achieve two
objectives [19,1,18]. On the one hand, a service composition should provide the
functionalities required by customers. On the other hand, the quality of a service
composition should be optimized. Most of the previous approaches address the
two issues in two separate phases.

In the first phase, a set of tools are used to create an abstract workflow of a
service composition, which aims to satisfy users’ requirements on functionality
[13]. The applied techniques include AI planning [11,14], π-Calculus [16], Petri
Nets [7], Model Checking [12], Finite State Machines [3], as well as Markov
Decision Process (MDP) [5,6,4].

In the second phase, an optimal set of concrete services are selected to instan-
tiate the abstract workflow. It generates a concrete service composition with the
optimal Quality of Service (QoS). This phase is also known as service optimiza-
tion. In [19], Zeng et al proposed a service quality model based on non-functional
attributes, which has been widely used by the others [2,20,18] to perform service
optimization. While the non-functional attributes of component services can re-
flect the quality of a service composition. However, they do not capture all the
features of a composition. For example, user experience usually cannot be di-
rectly assessed using these attributes. In contrast, our learning based approach
is able to take some implicit features into account. For instance, user feedbacks
can be used by the learner to optimize the composition.

Recently, there have been a number of proposals for performing service op-
timization at runtime. An example is the work of Mei et al [9]. They applied
social network analysis to rank services. Based on the ranking, their approach
automatically selects the best service to run a workflow. Similarly, in [10], a
tree-based algorithm was used to conduct runtime service selection. In theory,
these two approaches are able to cope with evolving service quality. However, as
they assume that information about QoS is known and up to date, they cannot
deal with the real world cases where such information is unknown. Furthermore,
they all assume a static workflow.

A fundamental difference between our approach and the previous approaches
is that our service composition does not rely on an static workflow. By contrast,
a service composition in our framework is able to integrate multiple alternative
workflows and services. When executing the composition, our system decides
which workflow and services to execute using its real-time knowledge. In addi-
tion, our system do not need to know the non-functional properties of services
a-priori. Instead, it applies reinforcement learning to obtain the optimal solu-
tion by directly studying the results of execution. Therefore, our mechanism of
service composition can be highly adaptive to a dynamic environment.

6 Conclusion

This paper introduces a novel framework for service composition. In contrast
to most of the previous approaches, which develop service compositions upon

106 H. Wang et al.

static workflow, our framework integrates multiple workflows and alternative
services into a single composition. The concrete workflows and services used for
execution are determined at runtime, based on the environment and the sta-
tus of component services. By applying reinforcement learning, our framework
is able to obtain the optimal execution policies of service compositions at run-
time. Our experimental results show that our service compositions can obtain
(near-)optimal execution policies efficiently, and they are highly adaptive to the
changes of the component services.

References

1. Agarwal, V., Dasgupta, K., Karnik, N.M., Kumar, A., Kundu, A., Mittal, S.,
Srivastava, B.: A service creation environment based on end to end composition of
web services. In: WWW, pp. 128–137 (2005)

2. Ardagna, D., Pernici, B.: Global and local qos guarantee in web service selection.
In: Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 32–46. Springer,
Heidelberg (2006)

3. Berardi, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Mecella, M.: Auto-
matic service composition based on behavioral descriptions. Int. J. Cooperative
Inf. Syst. 14(4), 333–376 (2005)

4. Chen, K., Xu, J., Reiff-Marganiec, S.: Markov-htn planning approach to enhance
flexibility of automatic web service composition. In: ICWS, pp. 9–16 (2009)

5. Doshi, P., Goodwin, R., Akkiraju, R., Verma, K.: Dynamic workflow composition:
Using markov decision processes. Int. J. Web Service Res. 2(1), 1–17 (2005)

6. Gao, A., Yang, D., Tang, S., Zhang, M.: Web service composition using markov de-
cision processes. In: Fan, W., Wu, Z., Yang, J. (eds.) WAIM 2005. LNCS, vol. 3739,
pp. 308–319. Springer, Heidelberg (2005)

7. Hamadi, R., Benatallah, B.: A petri net-based model for web service composition.
In: ADC, pp. 191–200 (2003)

8. Kaelbling, L.P., Littman, M.L., Moore, A.P.: Reinforcement learning: A survey. J.
Artif. Intell. Res (JAIR) 4, 237–285 (1996)

9. Mei, L., Chan, W.K., Tse, T.H.: An adaptive service selection approach to service
composition. In: ICWS, pp. 70–77 (2008)

10. Oh, M., Baik, J., Kang, S., Choi, H.-J.: An efficient approach for qos aware service
selection based on a tree-based algorithm. In: ACIS-ICIS, pp. 605–610 (2008)

11. Oh, S.-C., Lee, D., Kumara, S.R.T.: Effective web service composition in diverse
and large-scale service networks. IEEE TSC 1(1), 15–32 (2008)

12. Rao, J., Küngas, P., Matskin, M.: Composition of semantic web services using
linear logic theorem proving. Inf. Syst. 31(4-5), 340–360 (2006)

13. Rao, J., Su, X.: A survey of automated web service composition methods. In:
Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54.
Springer, Heidelberg (2005)

14. Shin, D.-H., Lee, K.-H., Suda, T.: Automated generation of composite web services
based on functional semantics. J. Web Sem. 7(4), 332–343 (2009)

15. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT
Press, Cambridge (1998)

16. Wang, Y.-L., Yu, X.-L.: Formalization and verification of automatic composition
based on pi-calculus for semantic web service, December 1-30, vol. 1, pp. 103–106
(2009)

Adaptive Service Composition Based on Reinforcement Learning 107

17. Watkins, C.J.C.H.: Learning from Delayed Rewards. PhD thesis, Kings College,
Oxford (1989)

18. Yu, Q., Bouguettaya, A.: Framework for web service query algebra and optimiza-
tion. TWEB 2(1) (2008)

19. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang,
H.: Qos-aware middleware for web services composition. IEEE Trans. Softw.
Eng. 30(5), 311–327 (2004)

20. Zeng, L., Ngu, A., Benatallah, B., Podorozhny, R., Lei, H.: Dynamic composition
and optimization of web services. Distributed and Parallel Databases 24(1), 45–72
(2008)

A Service Execution Control Framework for

Policy Enforcement

Masahiro Tanaka, Yohei Murakami, and Donghui Lin

Language Grid Project, National Institute of Information and Communications
Technology (NICT),

3-5 Hikaridai, Seika-cho, Kyoto, Japan
{mtnk,yohei,lindh}@nict.go.jp

Abstract. Service-oriented collective intelligence, which creates new
value by combining various programs and data as services, requires many
participants. Therefore it is crucial for an infrastructure for service-
oriented collective intelligence to satisfy various policies of service
providers. Some previous works have proposed methods for service se-
lection and adaptation which are required to satisfy service providers’
policies. However, they do not show how to check if the selected services
and adaptation processes certainly satisfy service providers’ policies. In
this paper, we propose an execution control framework which realizes
service selection and adaptation in order to satisfy service providers’
policies. On the framework, the behaviors of composite services are veri-
fied against service providers’ policies based on model checking. We also
formally defined the effect of the proposed execution control APIs. This
enabled us to update models for verification at runtime and reduce the
search space for verification.

1 Introduction

Services computing technologies had initially aimed to realize flexible develop-
ment and management of information system of enterprises. However, services
computing are now applied to service-oriented collective intelligence, which cre-
ates new values by combining a wide variety of programs and contents provided
by various providers.

For example, the Language Grid[1] is one of the infrastructures for service-
oriented collective intelligence and has achieved interoperability of language re-
sources such as machine translators and dictionaries by wrapping them as Web
services with standardized interfaces. More than 120 organizations have joined
the Language Grid and 90 language services are available on the infrastructure.

It is crucial to have many service providers join in order to realize for service-
oriented collective intelligence. Service providers usually have their own policies
about use of their service including limitation of transferred data, constraints
on combinations of services and so on. Therefore an infrastructure for service-
oriented collective intelligence must be capable of satisfying their policies. From
this aspect, service-oriented collective intelligence is quite different with tradi-
tional collective knowledge which relies on single license e.g. Wikipedia. As for

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 108–121, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Service Execution Control Framework for Policy Enforcement 109

the Language Grid, it allows service providers to set permission to use their
service for each user and limit amount of transferred data.

One of the major advantages of services computing is a flexibility of devel-
opment and management. This is the reason why a composite service is usually
defined as a workflow. Users can select services which are assigned to tasks in the
workflow at runtime according to his/her requirements. On the other hand, in
the context of service-oriented collective intelligence, the combination of selected
services must satisfy service providers’ policy. Otherwise, some adaptation pro-
cess should be applied in order to change the behavior of the services and make
them follow the given policy.

Many previous works have proposed methods for service selection for com-
posite services[2,3]. Moreover, to adapt behaviors of services without changing
models of the composite services, various methods using Aspect-oriented Pro-
gramming (AOP)[4] or proxy for message exchange[5] have been proposed. In [6],
a comprehensive process for service selection and adaptation is also proposed.

However, service selection and adaptation during execution make it difficult
to verify that service providers’ policies are satisfied. Applying an adaptation
process to satisfy a policy may lead to violation of another policy which was sat-
isfied before the adaptation. Although model checking for composite services[7]
can verify behaviors, such method has the following problems.
Dynamic change of model. Runtime adaptation changes the behavior of the

target composite service during execution. It is unrealistic to manually change
the model for verification.

Verification cost. Verification is performed by exhaustively searching execu-
tion states. Runtime verification may decline the performance of the com-
posite service.

To solve the problems, we propose an execution control framework whose behav-
iors can be verified by extending the methods proposed in [8] and [6]. We also
show a reduction of search space for runtime verification according to service
selection and adaptation during execution.

The rest of the paper is organized as follows. In Section 2, we show a scenario
which represents the problems to be solved. In Section 3, we overview the system
architecture which solves the problems. Then we detail the solution, which con-
sists of an execution control framework for composite service and application of
model checking in Section 4 and Section 5 respectively. After introducing related
works in Section 6, we conclude this paper in Section 7.

2 Scenario

In this section, we show a typical scenario and the problems to be solved by
taking a composite service for translation on the Language Grid[1] as an exam-
ple. Suppose a composite service combines a morphological analyzer, a machine
translator, and technical term dictionaries. This service improves translation
quality of technical documents by translating technical terms in the given sen-
tences using the technical term dictionaries, not the machine translator.

110 M. Tanaka, Y. Murakami, and D. Lin

Figure 1 shows the overview of the composite service. A square which contains
a circle represents a service invocation. First the given sentences are divided into
morphemes by the morphological analyzer. Next dictionaries find technical terms
which consist of the morphemes and return the translation of the technical terms.
Finally the translator translates the whole sentences.

Morphological
analyzer

Dic�onary Translator

Dic�onary 1

Chemistry
dic�onary

Life science
dic�onary

Dic�onary 2

Mecab

TreeTagger Google
translate

JServer

Transla�on service combined with dic�onary

Dic�onary cross search service
Morphological

analyzer
service cluster

Translator
service cluster

Dic�onary service cluster

flow

while

Abstract service

Concrete service

Medical term
dic�onaryProvided by

same provider

Fig. 1. A composite service for translation

As shown in Fig. 1, we assume that a composite service is defined in a work-
flow description language such as WS-BPEL[9]. In a composite service, the con-
stituent services define only the interface and are not bound to any endpoint.
We refer to such a service as an abstract service. For example, on the Language
Grid, an abstract service is defined for each service type such as translators and
dictionaries. Endpoints for the services are determined when the composite ser-
vice is invoked or during execution. A service to which an endpoint is bound is
called a concrete service.

A set of concrete services which can be bound to an abstract service is called
a service cluster. In Fig. 1, there are more than one concrete services in each
service cluster. In our example, we bind one concrete service to the morphological
analyzer and the machine translator. For the dictionary, we first bind a composite
service for cross search and then bind two concrete services to abstract services
in the cross search composite service.

When we use the composite service, we need to select concrete services which
satisfy service providers’ policies. Assume that both the life science dictionary
and the chemistry dictionary are provided by the same provider and that the
provider prohibits concurrent access to the two services to prevent a user from
giving too much load. On the other hand, the composite service allows two dictio-
nary services to be concurrently executed because the designer of the composite
service does not know which services are bound. In the case that the two dictio-
naries are bound, the execution of the composite service violates the provider’s
policy. Since the providers’ policies must be certainly satisfied, some verification
method such as model checking should be applied.

A Service Execution Control Framework for Policy Enforcement 111

However, the uncertainty of service execution often causes the following prob-
lems. Assume the dictionary service replaces the technical terms found in the
input sentences with words in the target languages and that the translator does
not translate words in the target language. In this way, we can obtain a trans-
lation result whose technical terms are translated by the dictionary, not by the
translator. But this may cause a failure of execution of the translator because
the length of input sentences changes by the word replacement and may exceeds
the limit of input length of the translator.

One of the solutions to this failure is adding an adaptation process, which
divides the input string into sentences, translates each of them and merge the
translation results. But applying adaptation processes may cause other violation
of service providers’ policies because the business logic is changed. For example,
the service provider for a dictionary service and translator service may give
discount for a plan of the same count of invocation of the services. Therefore we
need to modify the model for verification according to the changes of business
logic and perform verification again.

The first problem of the above approach is that it is unrealistic for the user or
the human operator to modify models for verification during execution. Another
problem is that verification during execution may decline the performance of the
composite service.

3 System Architecture

In this section, we describe the system architecture which contains an execution
control framework for runtime service selection and adaptation and a verification
framework for dynamic changes of the business change.

Figure 2 shows the overview of the system proposed in this paper. The system
consists of the composite service execution engine, service selector and behavior
verifier.

The composite service execution engine interprets and executes the deployed
composite services. It is extended to provide APIs for adaptation which allows
changing business logics of composite services and get/set execution state of
running instance of a composite service. Using the APIs, we can define an adap-
tation service, which is a composite service and implements adaptation process
for other composite services. The interaction between the adaptation service and
the target composite service is configured by a supervision service, which is also
a composite service and uses the APIs.

The service selector finds a combination of services which satisfy service
providers’ policies and binds them to abstract services. If there is no combi-
nation which satisfies the given policies, it searches for adaptation processes
which can change properties of the services and satisfy given policies referring
to profiles of available services and adaptation processes.

The verifier checks that a composite services satisfies given policy based on
the model of the composite service, the model of the adaptation service and
changes of business logic defined in the supervision service. It uses SPIN model
checker.

112 M. Tanaka, Y. Murakami, and D. Lin

Target Service

Execu�on State
Control API

Supervision Service Adapta�on Service

Behavior Verifier

Service Selector

Service Providers

Business Logic
Control API

Service
Profiles

Adapta�on
Process
Profiles

Ac�vate
Adapta�on

Bind
Services

Model

SPIN Model Checker
Model

Policy

Modify
Model

Policy

Composite Service Execu�on Engine

Fig. 2. An architecture for policy enforcement

We describe the steps of service execution on the architecture below. First the
composite service execution engine is invoked by a request from a user. Since ab-
stract composite services are deployed on the engine, user can specify bindings for
constituent services of the composite services. For abstract services to which the
user does not bind a concrete service, the service selector selects concrete services
to be bound. Adaptation processes to be applied are also activated if needed.

Through execution of the composite service, the following two types of check
are performed.

Execution state check. Check if the combination of services and variables de-
fined in a composite service satisfy the given policies. This check is performed
before each service invocation.

Behavioral check. Check if the execution state and protocols of service invo-
cation. This check is performed before an adaptation process is executed.

Both checks are also performed when execution of a composite service starts.
If the service selector cannot find a combination which passes execution state
check, it applies adaptation processes to services. For example, when the system
finds that the input string exceeds the limit of length, the adaptation process
which divides an input string into sentences can be applied to pass the check.
The selected adaptation process must pass behavioral check using SPIN model
checker[10]. When it cannot finally find an appropriate combination of services
or adaptation processes, the execution of the composite service fails. The method
for finding a combination of services and adaptation processes is proposed in [6].

4 Adaptation Using Execution Control

The architecture shown in the previous section contains adaptation mechanism.
The adaptation requires flexible changes of behaviors of composite services, e.g.

A Service Execution Control Framework for Policy Enforcement 113

adding a parallel process and skipping defined a service invocation. We defined
two types of execution control APIs to realize the adaptation. In this section, we
describe the details of the APIs and a framework for adaptation using the APIs.

4.1 Execution State Control

The composite service defined in WS-BPEL, the standard language for de-
scribing composite services, consists of activities. An activity corresponds to
an atomic process in a composite service such as service invocation and assign-
ment of variables. Most of WS-BPEL execution engines define state for activities.
We assume that an activity is in one of the following states: Ready, Running,
Finished, Suspended.

A composite service defined in WS-BPEL also has variables and partner links
which are information about service to be invoked. A partner link has an end-
point address of the invoked service. Therefore we can change invoked services
at runtime by changing the endpoint address set to the partner link, without
changing the model of the composite service.

In this paper, we assume the state of a running instance of a composite service
is defined by the combination of states of activities, values of variables and end-
point addresses set to partner links. Most of constraints which come from service
providers’ policies are defined by the information. For example, the violation of
the limit of input length can be found by checking the value of the variable input
to the translator before invocation.

Table 1. Execution control APIs

API Effect

getVariable(pid,

varname)

Get the value of the specified variable. This API takes
a process ID and a variable name as parameters.

setVariable(pid,

varname, value)

Set a value to the specified variable. This API takes
a process ID, variable name and values to be set as
parameters.

getPartnerLink(pid,

plname)

Get the specified partner link. This API takes a process
ID and a partner link name as parameters.

setPartnerLink(pid,

plname, address)

Set a partner link. This API takes a process ID, a
partner link and an endpoint address to be set to the
partner link as parameters.

getActivityState(pid) Get states of all activities in the specified process. This
takes a process ID as parameters.

suspend(pid, activity) Suspend the specified running activity. This API takes
a process ID and activity as parameters.

resume(pid, activity) Resume the specified suspended activity. This API
takes a process ID and activity as parameters.

getProcessIds(sid) Get process IDs of running instances of the specified
composite service. This API takes a service ID as a
parameter.

114 M. Tanaka, Y. Murakami, and D. Lin

On the basis of the above assumption, we realized the APIs for execution
control shown in Table 1. These APIs get/set variables, partner links and states
of activities. We also provide an API for getting information of a target process.

WS-BPEL provides functionalities for getting/setting variables and partner
links in the same running instance. On the other hand, we provide APIs for
access information in other instances of composite services. This is because we
need to consider all processes which use a service in order to satisfy policies of
the provider of the service.

Moreover, even in the same instance, WS-BPEL does not provide functional-
ities for getting/setting states of activities. Therefore we usually need to modify
the model of the composite services and add an interface which allows access to
the execution state of the composite services. However, the designer of the com-
posite service does not know what interface is required because a combination
of services are decided at runtime.

Generally speaking, human operator monitors and manages execution state of
composite services. They usually have a process or a workflow for the monitoring
and management. Therefore we allow them to implement a composite service
which realizes the same process as they perform by providing the APIs as Web
service. The composite service can be defined also in WS-BPEL. Therefore we
apply existing methods or tools for business process modeling.

4.2 Business Logic Control

After defining an adaptaion process, we need to integrate it into the target com-
posite service. For example, using the APIs shown in Table 1, we can implement
a composite service which gets an input string to translator, divides it into sen-
tences, and merges after translating each of them. We need to define the protocol
between the target composite service and the composite service for adaptation.

Most of previous works on adaptation for composite services have proposed
methods for adding processes to existing composite services based on AOP[4,5].
But more flexible adaptations such as adding a parallel process or skipping activ-
ity are often required for adaptation in order to satisfy service providers’ policies.
Moreover, we need to apply adaptation at runtime because some violations of
policies are found during execution.

According to these requirements, we provide the APIs shown in Table 2 for
changing business logic. We also make these APIs accessible as Web service.
Therefore we can define a composite services for changing business logic in order
to integrate a certain adaptation process.

4.3 Adaptation Example

We can realize various adaptation processes by implementing composite services
which use the APIs shown in this Section. We refer to a composite service which
uses APIs for getting/setting execution state as an adaptation service, and a
composite service which uses APIs for changing business logic as a supervision
service.

A Service Execution Control Framework for Policy Enforcement 115

Table 2. Business logic control APIs

API Effect

skip(pid, start,

end)

Skip activities in the specified range. This API takes a pro-
cess ID and activity locations which specify the range to be
skipped.

fork join(pid,

start, end,

invocation)

Add a parallel process to the specified instance. This takes
a process ID, activity locations where the parallel process
starts/finishes and invocation information (endpoint address,
operation and input data) as parameters.

fork(pid, start,

invocation)

Add a parallel process to the specified instance. This takes
a process ID, an activity location where the parallel process
starts and invocation information as parameters.

insert(pid, start,

pname, param)

Invoke a service at the specified location. This takes a process
ID, an activity location where the invoked process starts and
invocation information as parameters.

if end if
fork_join

skip

getPartnerLink

Supervision Service

divide merge

while

TranslatorgetVariable

setVariable

TranslatorMorphological
analyzer

Dic�onary

Adapta�on Service

Target Service

flow
end
flow

Add parallel process

Skip ac�vity

Fig. 3. Adaptation for division and merging

Figure 3 shows an example of adaptation for the composite service shown in
Fig. 1. The adaptation divides input string to translator and merges them after
translating each of them.

The Supervision Service shown in Fig. 3 is invoked after Service Selector
decides to use the Adaptation Service. First it checks the endpoint for translator
getPartnerLink, and then integrates the Adaptation Service into the target
composite service (fork join) and skip invocation of translator defined in the
target service (skip).

The adaptation service first reads the variable which is set as the input to the
translator (getVariable). Then it divides the input to sentences and translates
each of them in loop. The traslation results are merged and set to the variable
which is set to the output of the translator (setVariable).

116 M. Tanaka, Y. Murakami, and D. Lin

5 Verification during Execution

When a supervision process is executed, the business logic of the target service
is changed as shown in Fig. 3. Therefore execution of the target service may
violate policies which were once satisfied. This is the reason we should perform
behavioral check whenever adaptation is applied. In this section, we first show
how models for verification are changed based on business logic APIs described
in the previous section. Then we propose an idea for reducing computational
cost for verification in order to prevent decline of performance.

5.1 Updating Model

Behavioral check described in Section 3 uses SPIN model checker and requires
model of composite services described in Promela. We assume the models for
SPIN can be generated from WS-BPEL processes. Although it is impossible to
generate models which represents complete behaviors of a composite service, in
[7], the author shows the method generating a model described in Promela from
composite services described in WS-BPEL by introducing some abstraction.

Using SPIN and model described in Promela, we can verify that policies repre-
sented as LTL (Liner Temporal Logic) formula are satisfied. For example, the fol-
lowing formula f represents that the life science dictionary service (Slife science)
and the chemistry dictionary service (Schemistry) are not concurrently executed.
state() returns the state of the given service.

f = �¬((state(Slife science) = Running)∧ (state(Schemistry) = Running))

SPIN transforms models described in Promela into an automaton which rep-
resents behaviors of the system. The automaton of the whole system including
the target composite services and adaptation services can be obtained as an
asynchronous product of automatons of target composite services S1...Sm and
those of adaptation services a1...an as shown below.

MA = MS1 × ...MSm ×Ma1 × ...×Man

The LTL formula f is satisfied if a synchronous product of MA and Mf , which
is an automaton corresponding to the negation of f , is empty.

MA needs to be changed when business logic control APIs are executed. Since
it is unrealistic to manually modify the model during execution, we defined
modification of an automaton for each API in Table 2.

Figure 4 shows the process for fork join. The idea of the modification is to
add states for sending requests/receiving response. In Fig. 4, we omit the process
ID from the parameter list for simplicity. Channels which represent sending a
request to/receiving a response from the adaptation service are defined. States
which correspond to activity location specified as start or end are also defined.
The automaton can have more than one state which corresponds to start or
end because the states can have the values of variables and partner links.

A Service Execution Control Framework for Policy Enforcement 117

fork_join(start, end, invoca�on)

ch!op <- send ac�on on channel which represents invoca�on
Sstart <- set of states which corresponds to start
ch?op <- receive ac�on on channel which represents invoca�on
Send <- set of states which corresponds to end

for each sstart in Sstart

Sto_start <- set of states which have transi�on to sstart

for each sto_start in Sto_start

create node Snew
replace transi�on(sto_start, sstart, act) with transi�on(sto_start, snew, act)
create transi�on(snew, sstart, ch!op)

end for
end for
for each send in Send

Sto_end <- set of states which have transi�on to send

for each sto_end in Sto_end

create node Snew
replace transi�on(sto_end, send, act) with transi�on(sto_end, snew, act)
create transi�on(snew, send, ch?op)

end for
end for

Fig. 4. Updating automaton of verification model (fork join)

In the first loop, the algorithm inserts a new state before the activity location
specified as start. The transition from/to the new state are also created. The
transition from the new state to the state which corresponds to the activity
location specified as start is performed when the send action on the channel
is executed. In the latter part of the algorithm, the same goes for states which
correspond to the activity location specified as end.

The modification process for other APIs are shown in Fig. 5.

5.2 Reducing Execution State Space

Behavioral check requires exhaustive search on state space and may decline the
performance of composite services. Therefore reducing search space contributes
to improving the performance.

Business logic control APIs does not affect states between the initial state and
states which corresponds to the activity location specified as start. This is the
reason the states do not have to be checked once verification is performed before
starting execution of the composite service.

On the other hand, we need to check reachability from the current state to
the states which are added by the processes shown in Fig. 4 and Fig. 5.

Based on the above idea, we search only transition to states which are newly
added by the processes in Fig. 4 and Fig. 5 if the search reaches the state which
has a transition to the newly added states.

118 M. Tanaka, Y. Murakami, and D. Lin

fork(start, invoca�on)

ch!op <- send ac�on on channel which represents invoca�on
Sstart <- set of states which corresponds to start

for each sstart in Sstart

Sto_start <- set of states which have transi�on to sstart

for each sto_start in Sto_start

create node Snew
replace transi�on(sto_start, sstart, act) with transi�on(sto_start, snew, act)
create transi�on(snew, sstart, ch!op)

end for
end for

insert(start, invoca�on)

ch!op <- send ac�on on channel which represents invoca�on
ch?op <- receive ac�on on channel which represents invoca�on
Sstart <- set of states which corresponds to start

for each sstart in Sstart

Sto_start <- set of states which have transi�on to sstart

for each sto_start in Sto_start

create node Snew1, Snew2

replace transi�on(sto_start, sstart, act) with transi�on(sto_start, snew1, act)
create transi�on(snew1, snew2, ch!op)
create transi�on(snew2, sstart, ch?op)

end for
end for

skip(start, end)

Sstart <- set of states which corresponds to start
Send <- set of states which corresponds to end

for each sstart in Sstart

Sto_start <- set of states which have transi�on to sstart

for each sto_start in Sto_start

for each send in Send

act <- ac�on for transi�on from sto_start to sstart

replace path(sto_start, send) with transi�on(sto_start, snew, act)
end for

end for
end for

Fig. 5. Updating automaton of verification model (fork, insert, skip)

Figure 6 shows the algorithm. First Initialize() is executed, then search is
recursively executed. This is based on depth-first search, which is used by SPIN
as default, and satisfy checks if the condition are satisfied or not. The condition
is given according to f which represents service providers’ policies. If any of states
does not satisfy the condition, the algorithm immediately exits and returns error.

A Service Execution Control Framework for Policy Enforcement 119

Ini�alize()
Add the ini�al state to State Space
Push the ini�al state to stack

search()
stop <- top of stack

if stop does not sa�sfy the condi�on
exit(error)

end if

Snext <- set of states to which can be directly moved from stop

for each snew in Snext

if snew is a state added by business logic control APIs
if snew is not in State Space

add snew to State Space
push snew to stack
search()

end if
end if

end for
pop from stack

Fig. 6. An execution state search algorithm

6 Related Works

This work shows architecture based on runtime service selection and adaptation
with verification for an infrastructure where many service providers join. In this
section, we introduce some related works on verification of composite services,
service selection and adaptation.

For verification, various approaches including process algebra, Petri net, fi-
nite state machine or logic have been proposed. Nakajima proposed a method
for generating description in Promela, which is used for SPIN model checker,
from a WS-BPEL process[7]. In the paper, the author shows an abstraction for
verification and refers to features which are characteristic of WS-BPEL such as
dead path elimination. Our paper assumes that the initial model of composite
services are generated by such a method.

Narayanan et al. modeled composite Web services in OWL-S using Petri nets
in order to verify the composite Web services [11]. Their work verifies the reach-
ability to certain states and detects deadlocks.

Ankolekar et al. proposed a method transforming a composite Web service
in OWL-S into descriptions in a language for model checking[12]. This makes it
possible to verify not only control flow but also dataflow. Fu et al. focused on
interactions between services in a composite Web service[13]. They transformed
interaction protocols described in BPEL into Guarded Automata(GA), which
reacts to certain messages. Then the GA is transformed into descriptions in a
language for model checking. Their method can flexibly adopt various combina-
tions of languages for composite Web service and languages for model checking.

120 M. Tanaka, Y. Murakami, and D. Lin

Many previous works have proposed methods for service selection. For exam-
ple, the method proposed in [2] focuses on finding a combination of services which
gives the best QoS. The method proposed in [3] selects services considering in-
terfaces of services in addition to QoS. These works assume that vast amount of
services are stored in a service cluster. In reality, however, the number of services
which have equivalent functions is limited. That is the reason the previous works
often cannot find a combination of services. Moreover, to handle the policies of
service providers, we need not only finding a static combination of services but
also dynamic adaptation and meta-level control of composite services.

Also in the area of dynamic adaptation, there have been some previous works.
Most of the works can be classified into three types: weaving a new process based
on AOP (Aspect-oriented Programming), using a proxy to monitor/change mes-
sages exchanged between a composite service and invoked services, and transform-
ing the model of a composite service based on definition of additional processes.

AO4BPEL[4] is one of the framework for realizing AOP of composite services.
It allows a user to define a pointcut in a WS-BPEL process and weave a process
described in WS-BPEL as an advice. This can add processes for adaptation
without changing the model of a composite service.

For service-oriented collective intelligence, however, it is required to satisfy
various policies of service providers. AOP is suitable for adaptation as described
in the previous section, but it is not flexible enough to coordination such as
controlling order of service execution.

The work proposed in [5] adopts a framework using a proxy. It checks if mes-
sages exchanged among a composite services and the constituent services satisfy
the given conditions when the composite service execution engine invokes the
constituent services. If any of conditions is not satisfied, it performs some recov-
ering processes, retries invocation, or changes the service to an alternative[14].
But this focuses on adaptation of single service and does not deal with policies
of all service provider concerned.

7 Conclusion

In this paper, we proposed a framework of execution control for composite ser-
vices. The framework realizes service selection and adaptation in order to satisfy
service providers’ policies. Moreover, adaptation applied at runtime can be ver-
ified using model checking.

The contributions of this paper are as follows.

– We defined procedures which update description of model checking for each
business logic control operation used for adaptation.

– We showed an algorithm which reduces the search space for verification by
focusing on search states updated by business logic control operations.

Although there have been many previous works on adaptation and verification,
they have not focused on verifying composite services which are adapted at
runtime. This paper is the first work that tries to verify service providers’ policies

A Service Execution Control Framework for Policy Enforcement 121

are satisfied even when adaptation is applied by formally defining effects of
execution control for adaptation.

For future works, we are going to propose generation of adaptation process
which satisfies service providers’ policies based on formal definition of execution
control APIs and business logic control APIs.

Acknowledgments

This works was partially supported by Strategic Information and Communica-
tions R&D Promotion Programme from Ministry of Internal Affairs and
Communications.

References

1. Ishida, T.: Language Grid: An infrastructure for intercultural collaboration. In:
IEEE/IPSJ Symposium on Applications and the Internet (SAINT 2006), pp. 96–
100 (2006)

2. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: Qos-
aware middleware for web services composition. IEEE Transactions on Software
Engineering 30, 311–327 (2004)

3. Hassine, A.B., Matsubara, S., Ishida, T.: A constraint-based approach to horizontal
web service composition. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe,
D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp.
130–143. Springer, Heidelberg (2006)

4. Charfi, A., Mezini, M.: AO4BPEL: An aspect-oriented extension to bpel. World
Wide Web 10(3), 309–344 (2007)

5. Baresi, L., Guinea, S., Plebani, P.: Policies and aspects for the supervision of
BPEL processes. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007
and WES 2007. LNCS, vol. 4495, pp. 340–354. Springer, Heidelberg (2007)

6. Tanaka, M., Murakami, Y., Lin, D., Ishida, T.: Service supervision for service-
oriented collective intelligence. In: IEEE 7th International Conference on Services
Computing (SCC 2010) (to appear 2010)

7. Nakajima, S.: Model-checking behavioral specification of bpel applications. Elec-
tronic Notes in Theoretical Computer Science 151, 89–105 (2006)

8. Tanaka, M., Ishida, T., Murakami, Y., Morimoto, S.: Service supervision: Coor-
dinating web services in open environment. In: IEEE International Conference on
Web Services (ICWS 2009), pp. 238–245 (2009)

9. Business process execution language for web services (BPEL), version 1.1 (2003),
http://www.ibm.com/developerworks/library/ws-bpel/

10. Holzmann, G.: The SPIN Model Checker. Addison-Wesley, Reading (2004)
11. Narayanan, S., McIlraith, S.A.: Simulation, verification and automated composi-

tion of web services. In: The 11th International Conference on World Wide Web
(WWW 2002), pp. 77–88 (2002)

12. Ankolekar, A., Paolucci, M., Sycara, K.: Towards a formal verification of owl-
s process models. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.)
ISWC 2005. LNCS, vol. 3729, pp. 37–51. Springer, Heidelberg (2005)

13. Fu, X., Bultan, T., Su, J.: Analysis of interacting bpel web services. In: The 13th
conference on World Wide Web (WWW2004), pp. 621–630 (2004)

14. Mosincat, A., Binder, W.: Transparent runtime adaptability for bpel processes. In:
Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364,
pp. 241–255. Springer, Heidelberg (2008)

http://www.ibm.com/developerworks/library/ws-bpel/

An Integrated Solution for Runtime Compliance

Governance in SOA

Aliaksandr Birukou1, Vincenzo D’Andrea1, Frank Leymann3,
Jacek Serafinski2, Patricia Silveira1, Steve Strauch3, and Marek Tluczek2,�

1 DISI, University of Trento, TN 38123, Italy
2 Telcordia Poland, Poznan

3 IAAS, University of Stuttgart, 70569, Germany

Abstract. In response to recent financial scandals (e.g. those involv-
ing Enron, Fortis, Parmalat), new regulations for protecting the society
from financial and operational risks of the companies have been intro-
duced. Therefore, companies are required to assure compliance of their
operations with those new regulations as well as those already in place.
Regulations are only one example of compliance sources modern orga-
nizations deal with every day. Other sources of compliance include li-
censes of business partners and other contracts, internal policies, and
international standards. The diversity of compliance sources introduces
the problem of compliance governance in an organization. In this paper,
we propose an integrated solution for runtime compliance governance in
Service-Oriented Architectures (SOAs). We show how the proposed solu-
tion supports the whole cycle of compliance management: from modeling
compliance requirements in domain-specific languages through monitor-
ing them during process execution to displaying information about the
current state of compliance in dashboards. We focus on the runtime part
of the proposed solution and describe it in detail. We apply the developed
framework in a real case study coming from EU FP7 project COMPAS,
and this case study is used through the paper to illustrate our solution.

Keywords: compliance governance, business process, monitoring, SOA,
complex event processing.

1 Introduction

During the last decade several companies, such as Enron in US, Fortis and
Parmalat in Europe, unexpectedly collapsed. In response to those events, new
regulations for protecting society from financial and operational risks of com-
panies have been introduced. The goal of those regulations is to avoid similar
bancruptcies in the future, and companies must comply with them. Compliance
become more and more important in modern organizations [12]. In this paper,
we use the term “compliance” in the sense of the conformance of a company in
� This work was supported by funds from the European Commission (contract no.

215175 for the FP7-ICT-2007-1 project COMPAS).

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 122–136, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Integrated Solution for Runtime Compliance Governance in SOA 123

fulfilling compliance requirements, i.e. constraints or assertions that are the re-
sults of the interpretation of the compliance sources. Modern organizations deal
with three main types of compliance sources: legislature and regulatory bodies
(e.g., Sarbanes-Oxley Act, Basel II, Solvency II), standards and codes of prac-
tice (e.g., ISO9000, ISO/IEC 27002, internal regulations), and business partner
contracts (e.g., licenses of service providers).

The diversity of compliance sources introduces the problem of compliance gov-
ernance in an organization. Compliance governance refers to the overall manage-
ment approach for controlling the state of compliance in the entire organization
and, in general, consists of: (1) selecting the sources to be compliant with and
designing corresponding compliance requirements; (2) (re-)designing business
processes compliant with the selected requirements; (3) monitoring compliance
of processes during their execution; (4) informing interested parties (managers,
auditors) on the current state of compliance; (5) taking specific actions or chang-
ing the processes in cases of (predicted or happened) non-compliance.

There are solutions for automating one or several steps of the compliance
governance, i.e. deriving requirements from sources (Global Information Rules
Database1), modeling and automating design time compliance checks [10], mon-
itoring [17] and informing interested parties [20]. However, the existing ap-
proaches rarely deal with different types of compliance sources and cover only a
few steps of the compliance governance.

There are several research challenges arising when speaking about an inte-
grated solution for compliance governance: (i) Is it possible to create a sys-
tem dealing with the whole process of compliance management, from selecting
compliance sources to dealing with cases of non-compliance? (ii) Is the service-
oriented technology mature enough to be used as the basis for such a solution?
(iii) Can we reuse the knowledge about achieving compliance within the com-
pany, or, even, across companies?

With the research challenges above in mind, we propose an integrated solu-
tion for runtime compliance governance in SOA. The framework is based on the
service-oriented technology and includes tools for: modeling compliance require-
ments for different compliance sources; linking the requirements to the business
processes; monitoring process execution using Complex Event Processing (CEP);
displaying the current state of compliance in a Compliance Governance Dash-
board (CGD) and analyzing cases of non-compliance in order to find what causes
such situations. In the description of framework we focus on the runtime aspects,
such as process execution and monitoring, but the design-time aspects (modeling
processes and requirements) are also briefly described. For a number of issues
(besides technical issues there are also organizational issues, legal responsibil-
ity, acceptance of an active role of the technology in the work practices), in
this paper, we do not address the issue of taking specific actions for achieving
compliance (also known as enforcement) and process re-design. This topic de-
serves dedicated research. Therefore, our framework covers selection and model-
ing compliance requirements and business processes, monitoring the compliance

1 http://www.grcroundtable.org/grc-grid.htm

http://www.grcroundtable.org/grc-grid.htm

124 A. Birukou et al.

at runtime and informing interesting parties on the state of compliance. The
framework and the prototypes of the licensing Domain-Specific Language (DSL)
for expressing compliance requirements, the business process engine, CEP-based
monitoring tool, the warehouse, the dashboard, etc. have been applied in a real case
study in the context of the EU FP7 project COMPAS2 (Compliance-driven Mod-
els, Languages, and Architectures for Services). The case study focuses on checking
compliance of telecom service provider to licenses of its business partners.

This paper is continuation of our work on the compliance governance. Previ-
ously, we introduced: compliance governance lifecycle and conceptual model [9],
which we adapt in the presented framework; a model-aware repository and ser-
vice environment (MORSE) [25], a licensing DSL [3], an approach for developing
compliance governance dashboards [20], and algorithms for root-cause analy-
sis [7], which are used withing the proposed framework. This paper connects the
proposed pieces within an integral runtime compliance governance framework
and shows how the whole framework is applied in the case study scenario.

The paper has the following structure: in Section 2 we review existing ap-
proaches for compliance governance in SOA. Section 3 introduces the scenario
we use through the paper to illustrate our solution. Section 4 presents the com-
pliance governance lifecycle in an organization, while Section 5 presents our so-
lution for runtime compliance governance, according to the considered lifecycle.
We conclude the paper in Section 6.

2 Related Work

Our approach is different from related work as it enables the adaption to various
domains of compliance by extending the conceptual model for compliance gover-
nance introduced in [9] and customizing the related components in the compliance
governance architecture accordingly. We deal with the domains of Quality of Ser-
vice (QoS), security, and licensing, while most of the existing approaches in the
field of compliance governance in SOAs are focusing on one single specific compli-
ance domain. For example, the approach presented by Kuster et al. [13] is limited
to the compliance of business processes with respect to data object lifecycles. A
data object lifecycle is specified as a model, which captures allowed states and
state transitions for a particular data object. The generated process model com-
plies to the object lifecycle based on automata theory.

Most of the scientific publications regarding compliance involves annotation
of business processes. For instance, Wolter and Schaad [27] investigated an ex-
tension for the Business Process Model And Notation (BPMN) [19], enabling the
modeling of task-based authorization constraints and supporting resource allo-
cation patterns such as separation of duties and role-task assignments. In con-
trast to our approach, this later focuses on task-based access control, which is a
subtopic of the compliance domain regarding business process security. Sadiq [23]
presents an approach based on a formal contract language to specify and describe

2 http://www.compas-ict.eu/

http://www.compas-ict.eu/

An Integrated Solution for Runtime Compliance Governance in SOA 125

compliance constraints, and to define compliance rules to annotate business pro-
cesses. Namiri et al. [18] propose a semantic-based approach for modeling and
implementation of internal controls in business processes, focusing on the sepa-
ration of business and internal control processes. An approach focusing on the
integration of semantic constraints in process management systems and its usage
for the verification of the integrated semantic constraints is introduced in [14].
Those approaches only consider the modeling phase of compliance constrains or
controls, lacking support for runtime compliance checking and monitoring.

The current studies involving policy-based frameworks are also restrict to the
modeling phase and far from having a full and well defined framework to man-
age compliance. They have been extending and integrating semantic of business
process and compliance policies in the form of ontologies in order to provide
compliant business process [15], [16]. In fact, the same lack of completeness is
also present when policy frameworks (e.g., IETF, Ponder, KAoS, Rei and WS-
Policy) are adopted to manage compliance in SOA as describe in this survey [26].
Hence, a lot of open issues are still around in the compliance field.

The work of Governatori et al. [10] checks compliance of business process to
regulations. They propose a framework for assessing if a given business process
complies with a set of regulatory control objectives. The compliance governance
framework proposed in this paper aims at an integral management of compliance
of all business processes in an organization. Differently from Governatori et al.,
whose framework provides diagnostic support for business process design, our
framework focuses on the aspect of compliance of process instances, with the
current status of compliance being updated on dedicated CGDs.

Business Activity Monitoring (BAM) aims at providing aggregated informa-
tion suitable for performing various types of analysis on data obtained from the
execution of business activities. For example, tools such as Oracle BAM, Nimbus
and IBM Tivoli aim at providing their users with real-time visual information
and alerts based on business events in a SOA environment. The information pro-
vided to users comes in the form of dashboards for reporting on key performance
indicators (KPIs) and violations of service level agreements (SLAs). The com-
pliance management part of these tools, if any, comes in the form of monitoring
of SLA violations, which need the SLA formal specifications as one of its inputs.

In the context of our research it is worth to mention event-based related work,
since our framework checks compliance taking in consideration the content of the
events produced during the execution of business processes or as a result of CEP.
The following works present solutions to monitor and evaluate process events,
but not taking into account their compliance. Michelson et al. [17] presented a
complete report overview about event-driven architecture (EDA) in SOA envi-
ronments. Their content is composed of many definitions and concepts involving
events, as well as strategies to process them in a SOA. Additionally, they also
describe event flows and the main components expected in an EDA. Many of
those components are presented in our solution (e.g., repositories, events, pro-
cess engine). However, even if with some similarities, the approaches are different,
in the sense that Michelsons work does not focus on and mention compliance.

126 A. Birukou et al.

Sriraman et al. [24] also claim the business utility and agility provided by the
union of SOA, EDA and model driven architecture (MDA). They present dif-
ferent perspectives containing SOA, EAD, and MDA together with different
domains (e.g., user, development, business) and views (e.g., user centric view).
They also show how to implement the proposed architectures in Java. However,
also this work does not explicitly comment or focus on event-based compliance
monitoring. Still, both paper are important to understand the role of events and
how they can be useful in a business process environment.

Giblin et al. [6] propose a compliance meta-model for uniform description and
management of compliance policies and show how subsets of compliance sources,
expressed in terms of the meta-model, can be (semi-)automatically transformed
into event monitoring rules. While the experience of authors in generation of
rules from requirement is definitely useful for this step in our framework, we go
beyond this, providing runtime monitoring and informing interested parties on
the state of compliance.

Robinson [22] proposes a generic framework for defining, monitoring, and
modifying (based on feedback) requirements in information systems. This work
lies in the area of system verification, while our framework rather deals with
compliance to requirements coming from different sources.

3 Motivating Scenario: Advanced Telecom Services

In this section, we describe the Advanced Telecom Services scenario we use
through the paper to illustrate our solution. This scenario is one of the case
studies of the EU FP7 project COMPAS. The scenario deals with a service
“WatchMe” that provides customers with on-demand aggregated audio and
video streaming content. Service clients can use the service to see videos with
soundtracks in different languages. This service is provided by a fictitious com-
pany called Mobile Virtual Network Operator (MVNO).

The case study focuses on particularly challenging environment: a provision
of advanced telecom services by a mobile operator that does not have its own
network, but uses existing networks of other operators to provide services. There-
fore, network infrastructure and many applications that provide the MVNO ser-
vice components are owned and managed by different enterprises, which include
third party application providers, network carriers, and the MVNO company.
We place the proposed architecture inside the MNVO company for managing
and monitoring the compliance with the licenses of content providers.

In this scenario, the WatchMe service serves as a content aggregator placed
between customers (cellphone owners) and the audio and video streaming third
party providers. For example, customers access the WatchMe service to see sport
events with audio comments in the language they prefer. The service processes
customer requests and provides streaming of the selected audio and video con-
tent. In the scenario, we assume the MVNO company is providing synchroniza-
tion between video and audio. The process describing the services offered by the
company (presented in Figure 1) includes the following operations:

An Integrated Solution for Runtime Compliance Governance in SOA 127

Fig. 1. The business process of the WatchMe service

– authorization of a customer,
– processing search queries for audio and video streams received from cus-

tomers and forwarding them to third party providers,
– collecting the results of the queries from the providers,
– merging all the results into a single list,
– sending the merged list of results to the customer,
– receiving requests for specific audio and video streaming content from the

customer,
– acquiring requested video and audio endpoints from the selected providers,
– receiving streams from the acquired endpoints, merging them online and

streaming the resulting content to the customer.

The terms and conditions of using the WatchMe service are regulated by ap-
propriate licenses between MVNO (the WatchMe service provider) and its cus-
tomers, and between the third party providers and MVNO. In this scenario,
we focus on the latter, which is the compliance of MVNO to the licenses of
third party providers. Licenses of audio and video providers specify conditions
related to various payment plans, as well as to types of allowed compositions
of audio and video streams. We consider two payment plans in this scenario.
The Time-based plan allows MVNO to acquire and resell any stream for an un-
limited number of times in a certain period, based on the amount paid to the
media supplier. The Pay-per-view plan allows the company to acquire and resell
a certain number of streams based on the amount paid to the supplier, without
time constraints. In both plans, the composition permission specifies predefined
combinations of video and audio providers, i.e., video streams from VideoSport
can only be combined with audio streams from AudioSport, a company from the
same media group.

128 A. Birukou et al.

Table 1. Licensing compliance requirements of the Advanced Telecom Services scenario

Compliance
Require-
ment

Description of Compliance
Requirement

Control

Pay-per-view
plan

When the WatchMe company sub-
scribes for the Pay-per-view plan
it acquires a limited number of
streams based on the amount paid
to the media supplier.

When WatchMe company subscribes for
the Pay-per-view plan it has to pay
29.90 euro first and then receive 300
streams from the media supplier.

Time-based
plan

When the WatchMe company sub-
scribes for the Time-based plan it
acquires any number of times any
possible streams in a certain pe-
riod, based on the amount paid to
the media supplier.

When WatchMe company subscribes for
the time-based plan it has to pay 89.90
euro first and then receive an unlimited
number of times any available stream
from the media supplier in a 30 days
period starting from the contract start
date.

Composition
permission

Only pre-defined combinations of
video and audio streams from
providers are allowed due to the
licenses specified by the video
provider.

Video streams from Football Games can
be assembled with audios streams from
AudioSport or SportingAudio. Videos
from VideoSport can only be assembled
with audio streams from AudioSport.

All licensing compliance requirements for the business process of the WatchMe
service are listed and described in Table 1. For each requirement we list the con-
trol, which describes what has to be done to realize the corresponding compliance
requirement. The compliance sources from where requirements have been derived
are licenses of the content providers. In order to model the requirements, we use
Licensing DSL, developed in COMPAS [3]. For the sake of simplicity we focus
on the composition permission compliance requirement throughout this paper
and use it to show the application of our framework to the Advanced Telecom
Services scenario.

4 Compliance Governance Lifecycle

Figure 2 shows the overall compliance governance lifecycle considered in the
COMPAS project. The compliance governance lifecycle starts with the step of
internalization of the external compliance sources, such as regulations, business
contracts, standards. This step is performed by a compliance officer.

The next step is the design or modeling of business processes and compliance
requirements that must be met by the processes. At this step, requirements are
derived from internalized external sources and also from internal policies defined
by the organization. This step involves a process analyst, a compliance officer
and a technical specialist.

In COMPAS the compliance requirements are modeled in DSLs [1] using the
corresponding DSL Editors. For instance, in the Advanced Telecom Services sce-
nario we use the Licensing DSL [3] , which is an extension of the Open Digital

An Integrated Solution for Runtime Compliance Governance in SOA 129

Fig. 2. The compliance governance lifecycle

Rights Language (ODRL) [21], for modeling the composition permission com-
pliance requirement. Other DSLs include QoS [1] and Security [4] DSLs. The
processes are specified using the View-based Modeling Framework (VbMF) [11],
which is a Model-driven Software Development (MDSD) software framework
based on the Eclipse Modeling Framework (EMF). The EMF Models specify-
ing the business process as well as the compliance requirements specified in the
corresponding DSLs are the input for the Code Generator, a component inte-
grated in VbMF to generate (semi-automatically) business processes defined in
BPEL. In addition to the BPEL process the configuration artifacts, e.g., CEP
rules for monitoring components are generated depending on the concrete com-
pliance requirements the execution of the business process has to conform to.
The framework currently does not deal with the problem of conflicts and redun-
dancy among the selected requirements, introduced in [5], but, rather, aims at
fulfilling all specified compliance requirements. Conflicts and redundancy can be
detected at later stages, for instance, applying root-cause analysis.

All artifacts used for the generation of the compliant business process and
the configuration artifacts such as compliance requirements, the EMF models,
and process models are stored in the Model Repository, which is part of the
Model-Aware Service Environment (MORSE) [25]. For the unique identification
of each artifact stored in the Model Repository we use Universal Unique Identi-
fier (UUID). Thus this important information might be requested for finding the
cause in case a compliance violation is detected during compliance monitoring,
by querying the Web service interface of the Model Repository. Finally, the com-
pliant BPEL process containing the UUIDs is deployed in the process engine and
the configuration artifacts containing UUIDs are deployed to the corresponding
compliance monitoring and checking components.

The third step of the lifecycle is business execution, where employees partici-
pate in execution of a business process. During such execution, the process emits

130 A. Birukou et al.

events that are used for the monitoring, and also produces data about process
execution. Such data, together with models of the business processes and com-
pliance requirements is used by a process manager or a compliance officer at the
fourth step: internal evaluation. During this step the compliance of the process
is assessed and the data is analyzed in order to find what causes non-compliance.
The results of the analysis assist an auditor and can be also used for process
re-engineering and re-thinking of initial requirements. These two latter steps are
out of the scope of this paper.

The reader can find the detailed definitions of terms and concepts of the
compliance governance in COMPAS, stemming from an effort of the whole team
of the COMPAS project at http://www.compas-ict.eu/terminology.php. An
initial version of the compliance management lifecycle and of the terminology
has been presented in [9].

5 Runtime Compliance Governance Framework

In this section we describe the compliance governance framework for monitoring
the compliance of business processes at runtime and show how to apply it in the
Advanced Telecom Services scenario.

5.1 Runtime Compliance Governance Architecture

Figure 3 shows the components of the runtime compliance governance archi-
tecture, described in the following. Runtime governance starts with deploying
a BPEL business process that contains the UUIDs of the process model and

Fig. 3. Runtime compliance governance architecture

http://www.compas-ict.eu/terminology.php

An Integrated Solution for Runtime Compliance Governance in SOA 131

those of the activities relevant for monitoring and checking of the compliance
requirements to the Extended Process Engine Apache ODE. After the deploy-
ment a Process Deployed system-level event containing the BPEL file of the
process including UUIDs is emitted and published to the Java Message Service
Topic named Process Engine Output within the Enterprise Service Bus Apache
ActiveMQ, used as messaging infrastructure. The Advanced Telecom Service Cus-
tom Controller (ATSCC) is subscribed to this JMS-Topic and therefore receives
all events emitted by the Apache ODE. The purpose of the ATSCC is to select
pre-defined events, e.g., Activity Completed system-level events, emitted by
the engine that are related to the deployed process.

The system-level events augmented with the corresponding UUIDs passing
the ATSCC internal event filter are published to the JMS-Topic named Com-
pliance Governance Input. Both the Event Log and the CEP Engine Esper are
subscribed to this topic to receive all system-level events relevant to runtime com-
pliance monitoring and checking. The goal of CEP is to provide the possibility
for finding complex event patterns within the low-level streams of events gener-
ated by the Business Process Engine or/and other Business Activity Monitoring
tools. The CEP Engine Esper processes system-level events to create higher-level
business-level events, for instance, subtracting timestamp of ActivityStarted
event from the timestamp of ActivityFinished event for the calculation of the
duration of an activity. The resulting business-level events also contain UUIDs,
which are UUIDs of the CEP rules and generated semi-automatically during
design phase using VbMF. Due to the fact that one business process may have
to be compliant to several different compliance requirements affecting not neces-
sarily a disjoint set of activities the UUIDs of the monitoring artifacts, e.g., CEP
rules are additionally required for the sufficient querying of the Model Reposi-
tory for drill-down. This enables a unique identification, because the relationship
between a concrete compliance requirement and the corresponding CEP rule is
always one-to-one as specified in the conceptual model [9]. The results of CEP
are shown on the online tab of the Compliance Governance Dashboard, allow-
ing for near real-time detection of violation patterns of events, which could lead
to violation of any of the licenses signed with their contractors. Therefore, the
runtime overhead of using CEP is required for the fast detection of patterns of
events leading to violations. Such detection might prevent major financial losses
for the company.

The Business Level Events augmented with UUIDs are published to the JMS-
Topic named CEP Engine Output. The Event Log storing the system-level events
augmented with UUIDs and Business Level Events containing UUIDs is sub-
scribed to both JMS-Topics Compliance Governance Input and CEP Engine
Output. The ETL extracts, transforms and loads the data including UUIDs from
the Event Log and stores it in the Data Warehouse. After this the Analysis/Busi-
ness Intelligence component retrieves the data from the Data Warehouse and
executes the analysis on the data. In case a compliance violation is detected the
Model Repository might be queried for drill-down to retrieve the corresponding
compliance requirements, EMF models, and CEP rules uniquely identified by the

132 A. Birukou et al.

corresponding UUIDs. Finally, the results of the offline compliance monitoring
and checking are displayed in the Compliance Governance Dashboard.

5.2 Compliance Governance in the Advanced Telecom Services

In the following, we use the four steps of compliance governance to explain how
our framework is applied in the Advanced Telecom Services scenario.

Fig. 4. The composition permission expressed in the Licensing DSL for the VideoSport
provider

Step 1. Selecting compliance sources and compliance requirements.
Figure 4 shows how the composition permission requirement (selected for the
running example, as we discussed in Section 3), is modeled in the Licensing
DSL.

Step 2. Designing business processes compliant with the selected re-
quirements. The business process is modeled in EMF using the VbMF [1,2].
This EMF model as well as the composition permission compliance requirement
modeled in Licensing DSL, as shown in Figure 4, serves as input for the Code
Generator component, which is integrated in VbMF.

This step is still under development in COMPAS, the goal is to have a process
model annotated with events that will be emitted during the execution. Such
events will be used during the execution to check compliance. Currently, attach-
ing events and generating rules requiring to monitor the compliance requirements
is done manually. The result of the semi-automatic generation is the business

An Integrated Solution for Runtime Compliance Governance in SOA 133

process in BPEL containing the UUIDs of the process model itself as well as of
the activities relevant for compliance checking. Moreover the CEP rules will be
generated for processing the corresponding system-level events for creation of
business-level events. Additionally the configuration file for the ATSCC specify-
ing the type of events not to be filtered out and the configuration artifacts for
the Analysis/Business Intelligence component are generated.

Step 3. Monitoring compliance of processes during their execution. In
order to be able to quickly react to any compliance violation, it is essential to
monitor business processes online. For this purpose we chose CEP as a perfect
solution for efficient and fast detection of events that match violation patterns.
Business process engine generates the events at every step of process execution,
according to the annotations. A specialized CEP engine catches and uses them
for the evaluation of predefined rules. The rules can be used to specify any
complex patterns (including temporal logic), various operators (mathematical,
logical) and operations for filtering and aggregation. Finally the configuration
artifacts are deployed on the corresponding component involved in compliance
monitoring and checking and the BPEL process is deployed on the extended
Apache ODE.

The following rule for monitoring violations of composition permission is used
to detect patterns of video and audio request events that are not compliant with
a license.

select * from pattern [every (VidProvVideoSport = Event

(name = ’WatchMeGetVideoStreamEvent’ AND VideoProviderID= ’VideoSport’)

AND (AudProvAudioSport = Event (name = ’WatchMeGetAudioStreamEvent’

AND NOT (AudioProviderID = ’AudioSport’))))]

where AudProvAudioSport.sessionID =VidProvVideoSport.sessionID

In this case, the pattern includes combinations of WatchMeGetAudioStream
events from the audio stream of AudioSport and from the video stream of
VideoSport for a given session. The query has to match only the events related
to the same session (matching is done by “sessionID” property of the events).
The system-level events emitted by the ATSCC as well as the Business Level
Events generated and emitted by the CEP Engine are afterwards stored in the
Event Log as described in Section 5.1. The ETL component extracts the data
from the Event Log and loads it into the Data Warehouse. Then the Analy-
sis/Business Intelligence component checks compliance based on the data. In
case a compliance violation is detected the Model Repository may be queried in
order to perform a drill-down.

Step 4. Informing interested parties on the current state of compli-
ance. The current state of compliance of the processes of the organization is
shown in offline and online dashboards. Using the monitoring table in the on-
line view, it is possible to verify event violations detected on the fly and take
actions to avoid violations in the future. Such view is mainly used by techni-
cal project resources that could change the business process implementation to
correct wrong behaviors. Using the offline view, composed of Key Compliance

134 A. Birukou et al.

Fig. 5. The current state of compliance of the WatchMe Business Process displayed at
the dashboard

Indicators (KCIs) widgets and an interactive table, it is possible to quickly check
violations in different perspectives (e.g., business or compliance) and summariza-
tion levels (e.g., compliance source, requirement, or policies, which group related
requirements, such as licensing requirements). In our example of monitoring the
composition permission, ad-hoc KCIs can be defined and their values will be
displayed in the dashboard. Having both business and compliance perspective
and different summarization levels, it is possible to show high-level information
(e.g., KCIs of compliance sources) useful for CEOs and CFOs and low-level infor-
mation (e.g., list of events violations per compliance requirement) to technical
experts. Figure 5 (a) illustrates the KCIs of the different compliance sources
from the Advanced Telecom Services scenario in descendant order, where the
first widget always contains the compliance source with the highest compliance
performance (the worst case). CGD also provides indicators for the compliance
requirements concerning licensing (Figure 5 (b)) and an interactive table (Fig-
ure 5 (c)). The later also allows users to drill-down KCIs from the highest level
information until the lowest level. The values showed by the KCIs are calculated
based on the data stored into the Data Warehouse (DW), which were previously
temporally stored into the Event log. More details about the CGD design and
implementation are available in [20] or at the CGD website3.

3 http://compas.disi.unitn.it/CGD/home.html

http://compas.disi.unitn.it/CGD/home.html

An Integrated Solution for Runtime Compliance Governance in SOA 135

6 Conclusion and Future Work

We have presented an integral framework for runtime compliance governance
supporting all the steps of the compliance governance lifecycle: from selecting
compliance sources to runtime monitoring and reporting on violations. This ad-
dresses the first research question posed in the introduction: (i) Is it possible to
create a system dealing with the whole process of compliance management, from
selecting compliance sources to dealing with cases of non-compliance? In this
paper we presented runtime aspects of such a system, while design aspects have
been presented in [1], [2].

Since the solution is service-oriented, we also address the second question: (ii)
Is the service-oriented technology is mature enough to be used as the basis for
such a solution? The service-oriented technology seems to be capable of dealing
with the matter, since the solution has been tested in a real case study and we
are currently working on testing it in another real case study dealing with the
loan approval scenario.

Future work includes support of other compliance domains, such as compli-
ance to security or QoS requirements and addressing the third research question:
(iii) Can we reuse the knowledge about achieving compliance within the company,
or, even, across companies? In this regard, we are studying the application of
business process fragments [8]. We are also planning applying the presented so-
lution in different settings in order to evaluate its performance and feasibility
for real-time business processes.

References

1. COMPAS Deliv. D1.2: Core Meta-models, Templates, and Languages (2009)
2. COMPAS Deliv. D1.3: MDSD Software Framework for Business Compliance (2009)
3. COMPAS Deliverable D5.3: Final Goal-oriented Data Model (2009)
4. COMPAS Deliverable D5.4: Reasoning Mechanisms to Support the Identification

and the Analysis of Problems Associated with User Requests (2009)
5. Awad, A., Weidlich, M., Weske, M.: Consistency checking of compliance rules. In:

Business Information Systems. ch.10, vol. 47, Springer, Heidelberg (2010)
6. Giblin, C., et al.: From regulatory policies to event monitoring rules: Towards

model-driven compliance automation. Technical report, IBM Zurich (2006)
7. Rodŕıguez, C., et al.: Analyzing compliance of service-based business processes

for root-cause analysis and prediction. In: Proceedings of ESW 2010, Springer,
Heidelberg (2010)

8. Schumm, D., et al.: Integrating Compliance into Business Processes: Process
Fragments as Reusable Compliance Controls. In: Proc. of the Multikonferenz
Wirtschaftsinformatik (MKWI 2010), Universitätsverlag, Göttingen (2010)

9. Daniel, F., et al.: Business compliance governance in service-oriented architectures.
In: Proceedings of the IEEE Twenty-Third International Conference on Advanced
Information Networking and Applications (AINA 2009), Bradford, UK (May 2009)

10. Governatori, G., et al.: Detecting regulatory compliance for business process models
through semantic annotations. In: Ardagna, D., Mecella, M., Yang, J. (eds.) Busi-
ness Process Management Workshops. ch. 2, vol. 17, Springer, Heidelberg (2009)

136 A. Birukou et al.

11. Tran, H., et al.: Modeling Process-Driven SOAs - a View-Based Approach. In:
Cardoso, J., van der Aalst, W. (eds.) Information Science Reference (2009)

12. Henry, T.: Product for managing governance, risk, and compliance: Market fluff or
relevant stuff? Report of Burton Group (March 2008)

13. Kuester, J., Ryndina, K., Gall, H.: Generation of business process models for object
life cycle compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 165–181. Springer, Heidelberg (2007)

14. Ly, L.T., et al.: Integration and verification of semantic constraints in adaptive
process management systems. Data Knowl. Eng. 64(1), 3–23 (2008)

15. El Kharbili, M., et al.: Policy-based semantic compliance checking for business
process management. In: Proceedings of the Workshops co-located with the Mo-
bIS2008 Conference,CEUR Workshop Proceedings, aarbrücken, Germany. CEUR
Workshop Proceedings, vol. 420, pp. 178–192 (November 2008) CEUR-WS.org

16. El Kharbili, M., et al.: Towards a framework for semantic business process compli-
ance management (2008)

17. Michelson, B.M.: Event-driven architecture overview. Report of Patricia Seybold
Group (2006)

18. Namiri, K., Stojanovic, N.: Pattern-based design and validation of business process
compliance. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803,
pp. 59–76. Springer, Heidelberg (2007)

19. Object Management Group (OMG). Business Process Model And Notation
(BPMN). Version 1.2, OMG Specification (January 2009)

20. Silveira, P., et al.: On the design of compliance governance dashboards for effec-
tive compliance and audit management. In: Proc. of the 3rd Workshop on Non-
Functional Properties and SLA Management in SOC, NFPSLAM-SOC 2009 (2009)

21. Iannella, R.: Open Digital Rights Language (ODRL). Version 1.1, (Septmeber
2002)

22. Robinson, W.: A requirements monitoring framework for enterprise systems. Re-
quirements Engineering 11(1), 17–41 (2006)

23. Sadiq, S.W., Governatori, G., Namiri, K.: Modeling control objectives for business
process compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 149–164. Springer, Heidelberg (2007)

24. Sriraman, B., Radhakrishnan, R.: Event driven architecture augmenting service
oriented architectures. Report of Unisys and Sun Microsystems (2005)

25. Holmes, T., et al.: Monitoring and analyzing service-based internet systems through
a model-aware service environment. In: Pernici, B. (ed.) Advanced Information
Systems Engineering. LNCS, vol. 6051, pp. 98–112. Springer, Heidelberg (2010)

26. Phan, T., et al.: A survey of policy-based management approaches for service ori-
ented systems. In: Proceedings of the 19th Australian Conference on Software
Engineering (ASWEC 2008), Washington, DC, USA, pp. 392–401 (2008)

27. Wolter, C., Schaad, A.: Modeling of task-based authorization constraints in BPMN.
In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp.
64–79. Springer, Heidelberg (2007)

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 137–151, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Differentiation-Aware Fault-Tolerant Framework
for Web Services

Gerald Kotonya1 and Stephen Hall2

1 Computing Department, Lancaster University, InfoLab21, Lancaster LA1 4WA UK
2 ESRC Centre for Economic and Social Aspects of Genomics (Cesagen),

Institute of Advanced Studies, Lancaster University, Lancaster LA1 4YD, UK
{gerald,s.hall}@comp.lancs.ac.uk

Abstract. Late binding to services in business-to-business operations pose a se-
rious problem for dependable system operation and trust. If third party services
are to be trusted they need to be dependable. One way to address the problem is
by adding fault tolerance (FT) support to service-oriented systems. However,
FT techniques are yet to be adopted in a systematic way within service oriented
computing. Current FT frameworks for service-oriented computing are largely
protocol-specific, have poor service quality differentiation and poor support for
the FT process model. This paper describes a service differentiation-aware, FT
framework based on the FT process model that can be used to support service-
oriented computing.

Keywords: Service-oriented systems, fault-tolerance, differentiation-aware.

1 Introduction

Service-oriented architectures (SOA) such as web services, pose a serious problem for
dependable system operation because they promise late binding. Late binding dele-
gates the decision to trust a service to an external software agent. However, if third
party services are to be trusted they need to be dependable. One way to address the
problem is by adding fault tolerance support to service-oriented systems. Fault toler-
ance (FT) build reliable systems using mediated replication techniques. However, the
adoption of FT techniques within service-oriented computing is still patchy and vari-
able. Current FT frameworks used in service oriented computing suffer from a num-
ber of limitations:

• Limited coverage of fault tolerance techniques. There is a tendency for ap-
proaches to be problem or protocol specific [1]. Some frameworks provide
extensibility mechanisms, but these are limited to simple active and passive
replication techniques. A direct consequence of this limited coverage is a
lack of evaluation of known FT protocols with regards to reliability and per-
formance in service-oriented computing.

• Poor support for the FT process model. The FT process model [2] is based on
a pure asynchronous messaging environment to remove all implicit timing as-
sumptions about interactions. Current FT frameworks struggle in to work with

138 G. Kotonya and S. Hall

standard SOAs to provide asynchronism. Some are based on SOAs that only
support synchronous request-response exchanges by being tied the underlying
transport protocol such as HTTP [3], [4], [5]. Others bypass the SOA in favour
of a hard-wired approach [6], [7], severely limiting extensibility.

• Lack of discoverable FT services. Existing service- oriented frameworks do
not support discoverable fault tolerance services. FT protocols are embedded
at a transport level using indirection. This makes them transparent to proc-
esses that may have specific FT requirements.

• Poor support for service differentiation. Existing FT frameworks do not pro-
vide a means for the system to select different protocols at runtime. In addi-
tion, current frameworks do not provide a means to differentiate between
services that fulfil the same well-known role.

Our solution has been to provide FT support through an asynchronous messaging
framework that provides a pluggable means to represent fault tolerance protocols as
process models and to expose them as discoverable services. The framework provides
runtime service differentiation mechanism based on quality of service and is sup-
ported by a decentralised platform. The rest of this paper is structured as follows.
Section 2 reviews related work. Section 3 introduces our FT framework. Section 4
describes how a real Trading Floor application was used to evaluate the framework.
Finally, we provide some closing thoughts in section 5.

2 Related Work

There are a number of initiatives for fault tolerance (FT) in service-oriented comput-
ing (SOC). Table 1 provides a summary of some notable FT frameworks in SOC.
Because of space considerations, these are representative rather than exhaustive.

The Generic FT Container for SOA [8] is a mediated FT approach for synchronous
SOAP invocations. Its limitations lie in its centralised approached to FT. Failure of
the mediator would result in overall failure of the system. Its failure detection is also
weak because it relies primarily on faults being raised by the services it mediates or
the underlying connection time outs. Web Service-Fault Tolerance Mechanism (WS-
FTM) [3] is a simple framework that is based on NVP [9]. WS-FTM is very limited in
its scope and can only operate with stateless web services. It is preconfigured and
cannot be reconfigured. It only allows active replication where most frameworks
provide support for passive replication. Lastly, it can only use synchronous RPC type
messaging.

FAult tolerance for Web Services (FAWS) [4] adopts a similar approach to the
Generic FT Container and has similar limitations. It uses a mediator to route messages
to variant implementations of the same service interface. It communicates with a
management component, the FT-Admin, using Java based RMI calls. The FT-Admin
component is responsible for informing the FT-Front of policy based on input from a
failure detection component.

CORBA provides transference to service-oriented computing with the FT-CORBA
standard. FT-CORBA has two implementations, FT-SOAP and FT-Web. FT-SOAP
provides many useful properties including pseudo group membership, but suffers

 A Differentiation-Aware Fault-Tolerant Framework for Web Services 139

from a singleton topology where management component themselves can fail. FTWeb
[5] provides a similar approach, but decentralises the management components. How-
ever, it is limited to synchronous RPC interactions.

Thema [6] is a FT framework for web services that provides an implementation of
the Castro and Liskov Byzantine Fault Tolerance protocol (CLBFT) [10] by extending
the BASE library [11]. Thema requires three libraries that extend the BASE libraries to
provide integration to SOAP. A major problem with Thema is its requirement of UDP
based IP multicast for its fault-tolerant framework for Web Services. CLBFT is very
complex and using reliable TCP connections diminishes the efficiency of the process
significantly. The Byzantine Fault-Tolerance framework for Web Services (BFT-WS)
[7] addresses the topology problems of Thema by implementing the CLBFT algorithm
directly on top of Web Services Reliable Messaging (WS-RM) [12]. However, there are
major concerns over the performance of BFT-WS. Multicasting is replaced by a series
of unicasts that degrades the performance. In addition, both Thema and BFT-WS are
fixed implementations in two ways. Firstly, they are tied to the CLBFT protocol. Sec-
ondly, replicas are not free to join or leave at any time.

WS-Reliable Messaging (WS-RM) is a standard developed by the OASIS consor-
tium [12]. The standard works by the sender indexing outgoing messages whilst requir-
ing the receiver to send acknowledgements for all messages received. WS-RM suffers
from several limitations. It does not support the broadcast of primitives required for
state machine replication. While several reference implementations of WS-RM exist,
the standard provides poor performance because of the overhead of starting/terminating
sequences and acknowledgements.

Table 1. FT-SOC frameworks Framework
Feature

Generic
Container

WS-FTM FAWS FT-Web THEMA BFT-WS

Approach Intermediary Intermediary (Client) Intermediary CORBA CLBFT CLBFT
Passive replication √ × √ √ × ×
Active replication √ √ × √ × ×
State machine
replication × × × × √ √
Crash model √ √ √ √ √ √
Byzantine model ≈ ≈ × ≈ √ √
Requires
synchrony √ √ √ √ × ×
Decentralization × × × × √ √
Messaging
complexity ϕ =2(f+1) ϕ =2n ϕ =2(f+1) ϕ =2(f+1) ϕ =2n ϕ =2n(n-1)#

Scalable √ √ √ √ × ×
Diversity √ √ × √ √ √
Late binding × × × √ × ×

Key
√ - Feature supported

≈ - Feature partially supported
× - Feature not supported
- Includes 2n2 digital signature validations.

140 G. Kotonya and S. Hall

3 A Differentiation-Aware Fault-Tolerant Framework

This section describes our proposed FT framework. The framework comprises two
main components; Late Asynchronous Message Brokering system (LAMB) and
Sandbox (shown in Figure 1). LAMB is an asynchronous message brokering system
that routes SOAP messages to services based on their header and content. LAMB
brokers messages to services based on name matching. We assume all semantic
decisions including deep interface matching are made at design-time [13]. Sandbox
is a container for web services that provides logging, authentication, failure detec-
tion, synchronization and election. LAMB and Sandbox are supported by a JXTA-
based platform for peer connectivity, organization and distribution of WSDL-based
services.

Every host that forms part of our architecture possesses one instance of LAMB and
Sandbox. Communications between hosts take place over protocols provided by the
JXTA P2P protocols [14]. We adopt JXTA to provide a distributed information model
based on adapted WSDL (with bindings to LAMB and QoS metrics). This is achieved
by wrapping WSDL in a new type of JXTA advertisement, the WS-Advertisement
forming the basis for service discovery. We also make use of JXTA's ability to share
peer information and self-organize. Finally, we use the JXTA pipe that abstracts unre-
liable asynchronous unicast and broadcast primitives. JXTA supports implementation
bindings, but these are passive. To link the LAMB and Sandbox infrastructure to
JXTA we provide the FT platform.

Fig. 1. Peer-based fault tolerance for web services

 A Differentiation-Aware Fault-Tolerant Framework for Web Services 141

3.1 LAMB

LAMB is a message-oriented middleware (MOM) that asynchronously routes
messages to web services, based on content. LAMB differs from other MOMs [18],
[16], [17] by adhering to the following propositions:

1. Any message mx {i1...in}, where ix is a service interface. In turn the inter-
face ix {s1...sn}, where sx is a service definition. Finally, the service sx

{e1...en}, where ex is a service endpoint.
A message has a name that identifies its content. LAMB uses the message

name to identify candidate services that are able to consume the message. A
WSDL defined service provides a set of endpoints to which the message can
be routed. The assumptive part of this proposition is that a message will al-
ways uniquely identify services. Finally, if a message is consumed by two
different interfaces then they intersect to form another interface mi ix ∧ mi

 iy ⇒ mi iz : iz ≡ ix ∩ iy
All LAMB entities {mx, ix, sx, ex} are uniquely identified by URIs.

2. Everything is exposed as asynchronous web services. LAMB treats the world
as asynchronous web services that consume messages. This means that any
orthogonal policies (in our case, FT) are also treated as services. Every ser-
vice, FT or not, that is discovered by a LAMB broker must have a WSDL de-
scription.

3. Policy Agnosticism. Stemming from proposition point 2, a LAMB broker is
not tied to any specific policy. Unlike other MOMs, such as WS-BUS [2],
JMS [4] or Narada Brokering [19], it does not assume publish-subscribe in-
teractions.

4. Transport Agnosticism. A LAMB broker should be able to use any well-
known protocol to deliver messages to their endpoint; this includes HTTP,
TCP/IP, SMTP or JXTA protocols.

5. Optimistic brokering. LAMB implements no specific infrastructure to ensure
FT. It optimistically assumes all messages get delivered. If a failure occurs,
LAMB neither notes it nor takes remedial action.

6. Interoperability with SOAP and WSDL. LAMB has bindings to SOAP and
WSDL to ensure web service interoperability. In common with standards such
as WS-Addressing [20], LAMB annotates SOAP message headers with its
brokering information.

7. Support for stateful services. Web services can be stateful between different
interactions. LAMB assumes that services are partitioned according to state
and maintains a causal service history for each message.

8. All brokers are equal. LAMB brokers can reside on any host and see the same
set of services within a domain. Service discovery does not depend on the
topological or geographical location of a LAMB broker.

9. LAMB Enabled Web-Services. Web services must be altered to work with
LAMB. Firstly, all outbound messages relative to a service must be passed di-
rectly to a LAMB broker service. Secondly, web services must correlate caus-
ally related messages by copying any LAMB headers between them.

10. Zero recursion. LAMB prevents a broker from selecting the service that a
message has just come from to avoid recursion.

142 G. Kotonya and S. Hall

Fig. 2. Architecture of LAMB

As shown in Figure 2 LAMB consists of three services:

• Discovery. Take a message and search for matching WSDL descriptions based
on qualified and URI names.

• Selection. Given a set of discovered services for mx, the selection service
chooses the most appropriate. We have implemented a simple priority scheme
where a message can define its requirements in terms of QoS, performance and
reliability. A service publishes similar QoS and the selection service chooses a
service based on these criteria. The benefits of this priority scheme are dis-
cussed in section 4.

• Delivery. A service may consist of 1 or more endpoints. LAMB sends the mes-
sage to all endpoints of a selected service using the most appropriate transport
protocol. This may be over JXTA or using transport such as HTTP.

By setting a special field within the LAMB header of a SOAP message, discovery and
selection modes can be changed. A direct mode means that a service endpoint is em-
bedded in the header and the message gets routed without discovery or selection. New
mode ensures that no service in the causal header is used. A local mode ensures dis-
covery only looks for services on the same host. A broadcast mode bypasses the se-
lection service. A default mode uses all three services with a bias towards services in
the causal history. We have integrated LAMB with the JXTA Peer-to-Peer framework
to provide decentralised discovery. It uses a WSAdvertisment an extended JXTA Ad-
vertisement, to index web service descriptions against message URIs to provide fast
lookup times. Service publication and discovery is simply the distribution of WSAd-
vertisements over the JXTA SRDI a distribute hash table. This provides a consistent
view across all LAMB brokers. Service descriptions are cached within all JXTA peers
to further improve discovery times.

 A Differentiation-Aware Fault-Tolerant Framework for Web Services 143

3.2 Sandbox

Sandbox is a container that houses FT protocol implementations and exposes them as
services. It stems from the Engine API in [21] and container described in [8]. Sand-
box uses introspection to expose FT protocols as process models enabled with WSDL
service descriptions. Sandbox provides a core set of APIs or facilities that provide
many common FT abstractions including failure detection and bounded synchronisa-
tion. These facilities include:

• Message Routing. Sandbox provides a conduit for incoming SOAP messages
to reach FT services. Sandbox inspects an incoming message for a service
URI and context identifier. The service URI is used to lookup a deployed
service class. The context is used to lookup a service instance.

• Service Lifecycle. It manages the creation, destruction and state of embedded
service instances.

• Logging. Many FT protocols require that messages and events get logged ei-
ther in memory or to stable-storage. Our mechanism, called Domesday,
stores arbitrary objects or messages, allowing querying in a variety of
chronological ways.

• Authentication. Gatekeeper is a facility available to embedded services that
provides message authentication and encryption using either RSA digital
signatures or Message Authentication Codes (MACs). This allows FT ser-
vices to check if a message has been tampered with and to verify that it is
truly from the sender.

• Crash Failure Detection. We have developed a distributed crash failure de-
tector, called Eternity, using heartbeats over a ring-topology to inform em-
bedded services of the liveliness of other processes.

• Synchronisation. We have developed Clockwork, an API that records mes-
sage-received times for incoming messages. Clockwork generates events
when two correlated messages do not synchronise within an upper-bound.

• Deterministic view changes. We have developed Viewpoint, an API that sup-
ports the view-change protocol [22]. Viewpoint allows processes to be cho-
sen deterministically as leaders across the network. It works by taking a view
number and selecting the leader from a set of identifiers.

3.3 Fault Tolerance Protocols
To demonstrate the agnosticism and coverage of our framework we have imple-
mented six different protocols that are exposed as FT services:

• Patmos. This is a distributed version of ubiquitous recovery block protocol
for passive replication, as also found in [4], [5], [8]. However, in our version
the intermediary is rotated between, and monitored by, multiple protocol in-
stances so that there are not single points of failure.

• Elegant. This protocol provides N-Version Programming like [3], [5], [8]
without voting. The protocol has no service implementation, hence it is ele-
gant, and it relies on the distribution of endpoints for one functional service.

144 G. Kotonya and S. Hall

• Atakos. Enhances Elegant to provide voting on multiple service responses,
this enables the leverage of diversity.

• Ionian. As far as we are aware this is the first web service implementation of
the Paxos protocol for state-machine replication (SMR) [1]. Ionian is a clone
of multi-Paxos instances that includes an extra messaging step to regulation
of total-order proposals.

• IonianNB. Ionian non-blocking is an extension to Ionian that removes the
proposal regulation step and instead internally consensus decisions.

• Andros. Andros is a clone of the CLBFT protocol [10] as supported by [6],
[7]. It uses three-step consensus and authentication (through Gatekeeper) to
provide Byzantine FT. Andros has both RSA digital-signatures and MAC
based variants.

4 Case Study – Trading Floor System

Our case study is based on the Trading Floor system used by one of London’s large
financial institutions. The system provides real-time information on stocks, bonds,
commodities, derivatives and currency to many traders simultaneously. The system
consists of three core services as shown in Figure 3. A coordinator service initiates the
cycle by sending a fetch indicator message to one or more source services, which
fetch the data from online systems. Once the source has fetched an indicator it sends a
show indicator message to all available screen services. Each screen service displays
the indicator value on the chart shown in the actual trading floor screen. The screen
service keeps a record of all indicators. To complete the cycle a screen service sends a
log indicator message back to the coordinator. The coordinator can determine what
screen services are currently operating or if a source service has failed.

 Reuters stock indexes, Currency indexes, Internal Systems Commodity Sources Source services

Screen services Coordinator service
Fetch indicator -Market X, Symbol Y

Log indicator –Market X, Symbol Y

Show indicator-Market X, Symbol Y

Fig. 3. Trading floor services

 A Differentiation-Aware Fault-Tolerant Framework for Web Services 145

This type of application is suitable for evaluating our FT framework as it depends
on the plurality of both the sources and the screens. The test case also allows us to
contrast the effect of different FT protocols. To evaluate the effect of errors, we doped
the source services to generate deterministic pseudo-random values based on the indi-
cator name and a clock value set by the coordinator. Hence unless instructed other-
wise, the sources service instances generated the same “random” value.

We scripted doping profiles to generate a wide range of failure conditions includ-
ing conditional, stochastic and periodic. The doping mechanism was used to drive the
injection of requests. The client dope used send methods in the trading floor coordina-
tor service to perform each request. We used two forms of injection; soak injection to
create client requests at a fixed rate for a given time and load injection to increase the
rate of requests over time.

4.1 Performance Monitoring

The framework incorporates an interface to assess the performance and reliability of
the FT protocols. The interface takes snapshots of messages at predefined points in
time, during the system operation and sends the results to a monitoring peer that
stores all snapshots. Relevant FT metrics are computed by sampling the snapshots
over a given period of time. Snapshots are grouped using a correlation identifier to
provide start and end points. The in-rate can be computed from the start points, and
the out-rate from the end points. Based on this, the throughput, cumulative loss and
average latency can be determined. It is also possible to determine when messages are
received out of order.

4.2 FT Configuration

A configuration in this context is the deployment of test-case and FT services across a
set of nodes. Table 2 shows all configurations used in our case study. A selection of
the FT scenarios applied to the case study are describe next.

Table 2. Configuration used in case study
Configuration

Coordinator Nodes Sources Nodes Screen Nodes Services Instances Services n f Services Instances No-FT TF Coordinator 1 TF Source 1 0 TF Screen 1 Elegant TF Coordinator 1 TF Source 3,5,7 2,4,6 TF Screen 1 Atakos TF Coordinator 1 TF Source 3,5,7 1,2,3 TF ScreenAtakos 1 Patmos TF Coordinator 1 TF SourcePatmos 3,5,7 2,4,6 TF Screen 1 Ionian TF Coordinator 1 TF Source Ionian 3,5,7 1,2,3 TF Screen Atakos 1 IonianNB TF Coordinator 1 TF SourceIonianNB 3,5,7 1,2,3 TF ScreenAtakos 1
Andros MAC TF Coordinator 1 TF SourceAndros MAC 4,5,10 1,2,3 TF Screen Atakos 1
Andros RSA TF Coordinator 1 TF SourceAndros RSA 4,5,10 1,2,3 TF ScreenAtakos 1

146 G. Kotonya and S. Hall

4.3 Normal Operation Scenario

This scenario evaluated the framework’s general performance and scalability. It was
divided into two parts. First, the soak variant injected requests at a fixed rate for a
given time allowing the user to contrast all configurations directly. By testing differ-
ent values of n for each protocol (for example Andros with n = 4,7,10) we observed
the properties of n-scalability directly. Secondly, a load variant was used to linearly
increase load to test the maximum throughput that each configuration could tolerate,
therefore assessing the load-scalability.

For the soak case our expectation was that latency would increase with the com-
plexity of the underlying protocol, results. The results, shown in Table 3, are in-line
with the expectation. At a fixed, one client request per second, there is a near zero
percent loss (given a 1.5% margin for error in the metric API). No-FT has the lowest
latency and Andros the highest.

Table 3. Normal operation with soak results

As Figure 4 shows, all FT protocols had a maximum throughput, however we did
not manage to overload the No-FT configuration. Elegant, Patmos and Atakos reached
a throughput of 4-5 trans/s whereas Ionian was limited to a throughput of 2 trans/s.
Andros demonstrated the poorest maximum throughput. All the consensus-based
protocols are erratic one their maximum throughput is exceeded.

 A Differentiation-Aware Fault-Tolerant Framework for Web Services 147

Fig. 4. Behaviour with increasing load (n=7)

4.4 Runtime Reconfiguration Scenario (Differentiation-Awareness)

The aim of this scenario was to test the property of dynamism that is enabled by the
priority service selection scheme. We wanted to show that when a more resilient FT
protocol (indicated by a higher reliability metric) is deployed, incoming requests are
delegated to it rather than lesser protocols. So, for example, Andros would be chosen
over Ionian, Ionian over IonianNB and so forth. To do this we constructed a series of
configuration deployments over time whilst soak injecting requests. The result, shown
in Figure 5, indicates that the transitions were smooth without the expected problems,
clearly demonstrating the effectiveness of the FT priority selection scheme.

Fig. 5. Runtime reconfiguration results

4.5 Concurrent Fail-Stop Scenario

The aim of this scenario was to establish whether the protocols could support concurrent
crash failures within a fail-stop distributed system model. We created two boundary
cases when n−1 and n nodes crash concurrently. To tolerate concurrent fail-stop the
configurations needed to survive n−1 crashes but not, trivially, n. For No-FT n−1 =0 so
we did not run that case.

148 G. Kotonya and S. Hall

Fig. 6. Concurrent fail-stop (n-1)

Fig. 7. Concurrent fail-stop (n)

Figure 6 shows that all the configurations tolerated n−1 concurrent fail stops suc-
cessfully (the latency is measured in milliseconds). Both Andros RSA and Atakos
showed a much slower recovery than the other protocols. Though in both cases there
was slightly recovery towards the end of the run. Figure 7 clearly shows that all the
protocols failed totally completing the boundary case.

4.6 Byzantine Scenario

The aim of the Byzantine scenario was to demonstrate that our framework is able to
tolerate arbitrary failures in common with [6], [7]. We divided the scenario into four
cases: f and f+1 concurrent failures; stochastic failures with an increasing probability;
post recovery state. A Byzantine failure is an alternation between the following: fail-
silent, omission, timing, denial-of-service or commission.

We expected that only Andros would be able to tolerate f Byzantine failures. This
result is demonstrated in Figure 8 where Andros has less loss than either Ionian or

 A Differentiation-Aware Fault-Tolerant Framework for Web Services 149

IonianNB. However, the result was not perfect. Through observational evidence we
noted that a fail-silent, omission, timing or Byzantine attack caused some less power-
ful nodes to fail-stop. This triggered constant reconfigurations inside the SMR proto-
cols leading to a temporary increase in loss, this result is reflected in Figure 8. In the
Byzantine f+1 scenario as expected all configurations showed an upward trend in loss
and latency times.

Fig. 8. Byzantine failures (f) for SMR protocols

Figure 9 shows part of the test-bed running the Trading Floor application

Fig. 9. Test-bed

5 Conclusions

In existing service-oriented frameworks FT is treated as an orthogonal issue to services.
Service-oriented frameworks do not support discoverable fault tolerance services. In-
stead FT protocols are embedded at the transport level making them transparent to the

150 G. Kotonya and S. Hall

application. Current FT frameworks provide poor support for the FT process model and
protocol differentiation restricting the applications ability to select appropriate FT pro-
tocols at runtime. Our solution is a differentiation-aware FT framework that provides a
pluggable means to represent fault tolerance protocols and to expose them as discover-
able web services. We have demonstrated using a real case study how our framework
addresses the problems outlined in section 1 (introduction). We have evaluated the
framework over many different fault scenarios covering common failure models and
showed it to be effective.

Our framework provides a messaging environment for fault tolerance protocols to
operate using LAMB, an asynchronous message brokering system. LAMB improves
on existing message-oriented middleware by providing a full service-oriented archi-
tecture. We have addressed the issue of representing FT protocols as process models
and exposing them as services by using Sandbox. Sandbox is container for FT ser-
vices that allows protocols to be represented as process models. Sandbox extends the
approach described in [5] by adding structure and introspection. We have provided a
decentralised platform for FT by implementing our framework over a P2P overlay.
Ensuring the framework has no singleton components.

We have provided a means for discovering FT services by providing LAMB with
the ability to publish and discover WSDL descriptions. To ensure that the descriptions
are disseminated to all LAMB brokers we use the JXTA SRDI as the information
model. Lastly, our framework supports runtime protocol differentiation by incorporat-
ing a simple QoS matching scheme within LAMB. All services have a priority based
on reliability and performance metrics.

While our FT framework is a significant improvement on existing frameworks for
service-oriented computing, further improvements are needed if it is to address com-
plex service-oriented systems. We are currently exploring ways to improve its per-
formance and to make it more scalable.

Acknowledgements. The support of the Economic and Social Research Council
(ESRC) is gratefully acknowledged. This work is part of the Research Programme of
the ESRC Genomics Network at Cesagen (ESRC Centre for Economic and Social
Aspects of Genomics).

References

1. Lamport, L.: Paxos Made Simple. ACM SIGACT News (Distributed Computing Col-
umn) 32(4), 51–58 (2001)

2. Guerraoui, R., Rodrigues, L.: An Introduction to Reliable Distributed Programming.
Springer, Heidelberg (2006)

3. Looker, N., Munro, M., Xu, J.: Increasing web service dependability through consensus
voting. In: Proc. of the 29th Annual International Computer Software and Applications
Conference, vol. 2, pp. 66–69. IEEE Computer Society, Los Alamitos (2005)

4. Jayasinghe, D.: FAWS for Soap-based Web Services. IBM Developerworks. (2005),
http://www.ibm.com/developerworks/webservices/library/ws-faws/

 A Differentiation-Aware Fault-Tolerant Framework for Web Services 151

5. Santos, G.T., Lung, L.C., Montez, C.: FTWeb: A Fault Tolerant Infrastructure for Web
Services. In: Proc. of the 9th IEEE International EDOC Enterprise Computing Conference
(EDOC 2005), pp. 95–105. IEEE Computer Society, Los Alamitos (2005)

6. Merideth, M.G., Iyengar, A., Mikalsen, T., Tai, S., Rouvellou, I., Narasimhan, P.: Thema:
Byzantine-Fault-Tolerant Middleware for Web-Service Applications. In: Proc. of the 24th
IEEE Symposium on Reliable Distributed Systems, pp. 131–142. IEEE Computer Society,
Los Alamitos (2005)

7. Zhao, W.: BFT-WS: A Byzantine Fault Tolerance Framework for Web Services. In: Proc.
of.Enterprise Computing Conference (EDOC 2007). Eleventh International IEEE, pp. 89–
96 (2007)

8. Sommerville, I., Hall, S., Dobson, G.: A Generic Mechanism for Implementing Fault Tol-
erance in Service-Oriented Architectures. Tech. Report, Computing Dept., University of
Lancaster (2005)

9. Avizienis, A.: The N-Version Approach to Fault-tolerant Software. IEEE Trans. Software
Engineering 11(12), 1491–1501 (1985)

10. Castro, M., Liskov, B.: Practical Byzantine Fault Tolerance and Proactive Recovery. ACM
Trans. Comput. Syst. 20(4), 398–461 (2002)

11. Rodrigues, R., Castro, M., Liskov, B.: Base: Using Abstraction to Improve Fault Toler-
ance. In: Proc. of the 18th ACM Symposium on Operating Systems Principles (SOSP
2001), pp. 15–28. ACM Press, New York (2001)

12. Davis, D., Karmarkar, A., Pilz, G., Winkler, S., Yalinalp, U.: Web Services Reliable Mes-
saging (WS-ReliableMessaging) Version 1.1. Web, (2007), http://DOCS.OASIS-
OPEN.ORG/WS-RX/WSRM/200702/WSRM-1.1-Spec-OS-01.html

13. Alonso, G.: Myths of Web Services. IEEE Data Engineering Bulletin 23(4), 3–9 (2002)
14. Verstrynge, J.: Practical JXTA, Lulu.com (2008)
15. Erradi, A., Maheshwari, P.: WSBUS: A Framework for Reliable Web Services Interac-

tions. In: Proc. of the 2005 ACM Symposium on Applied Computing (SAC 2005), pp.
1739–1740. ACM, New York (2005)

16. Hapner, M., Burridge, R., Sharma, R., Fialli, J., Stout, K.: Java Messaging Service. Web,
(2002), http://java.sun.com/products/jms/docs.html

17. Pallickara, S., Fox, G.: NaradaBrokering: A Distributed Middleware Framework and Ar-
chitecture for Enabling Durable Peer-to-Peer Grids. In: Proc. of Middleware 2003, pp. 41–
61. Springer, Heidelberg (2003)

18. Chinnici, R., Haas, H., Lewis, A., Moreau, J.-J., Orchard, D., Weerawarana, S.: Web Ser-
vices Description Language (WSDL) Version 2.0 part 2: Adjuncts. Web, (2005),
http://www.w3.org/TR/wsdl20-adjuncts

19. Reiter, M.K.: The Rampart Toolkit for Building High-Integrity Services. In: Birman, K.P.,
Mattern, F., Schiper, A. (eds.) Dagstuhl Seminar 1994. LNCS, vol. 938, pp. 99–110.
Springer, Heidelberg (1995)

20. Gudgin, M., Hadley, M., Rogers, T.: Web services addressing 1.0 - core. Web,(2006),
http://www.w3.org/TR/ws-addr-core

21. Hall, S., Kotonya, G.: An adaptable fault-tolerance for SOA Using a Peer-to-Peer Frame-
work. In: Proc. of the IEEE International Conference on E-Business Engineering (ICEBE
2007), pp. 520–527. IEEE Computer Society, Los Alamitos (2007)

22. Liskov, B.: From Viewstamped Replication to BFT, (2007),
 http://www.inf.unisi.ch/30YearsOfReplication/pps/
 Liskov.pdf, 30 Years of Replication Lecture Series

Repair vs. Recomposition

for Broken Service Compositions

Yuhong Yan1, Pascal Poizat2,3, and Ludeng Zhao1

1 Concordia University, Montreal, Canada
yuhong@encs.concordia.ca

2 University of Evry Val d’Essonne, Evry, France
3 LRI UMR 8623 CNRS, Orsay, France

pascal.poizat@lri.fr

Abstract. Service composition supports the automatic construction of
value-added distributed applications. However, this is nowadays mainly a
static affair, with compositions being built once and for all. Moving from
a static to a dynamic world, where both available services and needs may
change, requires automated techniques to correct broken compositions.
Recomposition is a working solution but it requires to rebuild compo-
sition models from scratch. With graph planning as the service compo-
sition framework, we propose repair as an alternative to recomposition.
Rather than discarding broken compositions, repair reuses and corrects
them for fast generating new service compositions. Our approach is com-
pletely tool-supported. This enables us to compare repair and recompo-
sition using both a case study and a data set from a service composition
benchmark framework.

1 Introduction and Motivating Example

Software architects benefit from automatic service composition (ASC) techniques
and tools [27,8,16] to foster the rapid design, implementation and deployment of
distributed applications. Still, ASC enables a more dynamic and on-demand way
to develop software, where end-users directly expose their needs to composition
engines. The conjunction of technical developments (ubiquitous computing and
service pervasiveness), social usages (smart devices equipment rate and user no-
madism), together with an adequate business model (cloud computing) makes
this vision a close reality. Still, ASC has to support the automatic evolution of
compositions, taking into account changes both in the needs of the (possibly
mobile) end-users and in the services availability.

A motivating example: the eMeet scenario. Let us imagine the following
scenario. Alice is on her way to meet a friend, Bob, who works at a University.
To reach him, Alice needs an itinerary map. Since she could get out of her
way inadvertently, Alice wants that itinerary can be updated. To achieve her
goals, Alice can use services in her vicinity (Fig. 1): M:map (localized map),
M:way (itinerary map from location p1 to location p2), F:gps (friend position),

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 152–166, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Repair vs. Recomposition for Broken Service Compositions 153

Alice Bob

eCampus

me
Bob

of
fic

e A

of
fic

e B

- contacts
- GPS

- guest registering
- faculty info
- office localizing

- closest office

WWW
- maps, itineraries
- social network
 with positioning

eCampus (offices)

name inputs outputs
maps and itineraries service

M:map gpsp mapp

M:way gpsp1 , gpsp2 wayp1p2
social network w/ positioning service
F:gps fidp1 , fpp1 , fidp2 gpsp2

eCampus service
U:reg np1 , np2 , labp2 vtp1
U:info vtp1 , np2 , labp2 idp2 , offp2
U:ogps vtp1 , offp gpsp

U:office vtp1 offp1
on-person services (smart phone)

:gps – gpsa

:info nb fidb, labb

P={a, b}, p, p1, p2 ∈ P , p1 �= p2

Fig. 1. eMeet scenario – architecture (left) and services (right)

U:reg (guest registration), U:info (faculty member information), U:ogps (office
location), U:office (closest office), :gps (own position), info (friend id and lab).
Services are equipped with semantic descriptions to support their automatic
discovery and composition. These refer to GPS positions (gps), social network
ids and passwords (fid, fp), names and labs (n, lab), faculty ids, office ids, and
visitor authorization tokens (id, off, vt), maps and itineraries (map, way).

Alice wants a way to Bob (wayab) and agrees to give her name (na), her social
network information (fida, fpa) and Bob’s name (nb). Using a service composi-
tion algorithm, e.g., based on chaining between service inputs/output one would
obtain that one must first call :gps to get Alice’s position, :info and then F:gps
to get Bob’s one, and finally M:way to get an itinerary from Alice to Bob.

Solving out broken compositions. Let us now suppose that Alice moves and
looses the GPS signal. The found composition gets broken (no :gps service).

A first solution is replacement, i.e., replacing a broken (disappeared, faulty,
or with a bad QoS) service by another one. There are different solutions for this,
a typical one is that service s′ can replace service s if it produces more outputs
using less inputs. Replacement is an efficient technique as far as computation
time is concerned (one comparison with each available service). It also yields
compositions resembling to the original ones, which is desirable both for technical
(commitment to used services) and social (transparency of the process) reasons.
A limit of replacement is that a broken service often cannot be replaced by a
unique one. It is the case in our example. The only other way to get a gps
position for Alice is by calling three services, namely U:reg, U:office, and U:ogps.
Further, while replacement can deal with broken services, it cannot deal with
added composition needs since in such a case no service is there to be replaced.

A second solution, that deals both with broken services and new needs is
recomposition, i.e., computing a new composition. However, this means re-
building models used in the underlying composition technique, while parts of
them may still be valid. Substitution is often used as a generic term for the
way to react to some service that has to be replaced. Technically, in case of 1-1
substitution we will refer to it as replacement, while in case of 1-n substitution

154 Y. Yan, P. Poizat, and L. Zhao

we will refer to it as recomposition (causal input/output relation between the n
services have to be computed). It should be noted that recomposition goes fur-
ther, since computing a brand new composition may result in using a completely
different set of services and hence would correspond to a kind of n-m substitution.

Contributions. To correct broken service compositions, we propose repair as
an alternative solution that goes beyond the limits of service replacement while
avoiding recomposition. This technique aims not only at keeping most of the
above mentioned models as-is (i.e., not recompute them), but also take benefit
from them while computing a corrected composition. As such, repair is a form
of heuristic and guided partial recomposition. In case of 1-1 substitution, repair
performs as replacement and is as efficient. In other cases and for added needs,
repair yields better computation time than recomposition while retrieving solu-
tions of the same quality. Setting up composition in the AI planning domain,
we propose to apply plan repair principles [22] to ASC. We evaluate and com-
pare our repair algorithm with reference to planning-based recomposition, i.e.,
replanning, using both a case study and a data set generated with a standard
ASC benchmark framework. Our approach is completely tool-equipped, includ-
ing going beyond models, i.e., reading ontologies and service descriptions files
and generating WS-BPEL orchestrations.

Organization. Preliminaries on AI planning are given in Sect. 2. Thereafter,
our formal models and the application of AI planning to ASC are given in Sect. 2.
Our repair algorithm and its principles are presented in Sect. 4. Details on our
prototype implementation and experimental comparative evaluation of repair vs.
recomposition are given in Sect. 5. Related work is presented in Sect. 6 and we
end up with conclusions and our perspectives in Sect. 7.

2 Preliminaries

In this section we introduce AI planning [12]. It been applied with success to
service composition [25,7], among others due to its support for under-specified
composition requirements which are well-suited to end-user composition.

Definition 1. Given a finite set L = {p1, . . . , pn} of proposition symbols, a
planning problem [12] is a triple P = ((S,A, γ), s0, g), where:

– S ⊆ 2L is a set of states.
– A is a set of actions, an action a being a couple (pre, effects+) where
pre(a) ⊆ L and effects+(a) ⊆ L denote respectively the preconditions and
the (positive) effects of a.

– γ is a state transition function such that, for any state s where pre(a) ⊆ s,
γ(s, a) = s ∪ effects+(a).

– s0 ∈ S and g ⊆ L are respectively the initial state and the goal.

Repair vs. Recomposition for Broken Service Compositions 155

The definition in [12] takes into account predicates and constant symbols which
are then used to define states (ground atoms made with predicates and con-
stants). We directly use propositions here. It also includes negative effects of
actions. Since we do not use them in our approach we remove them for clarity.

A plan is a sequence of actions π = a1; . . . ; ak such that ∃s1 ∈ S, . . . , sk ∈
S, s1 = s0, ∀i ∈ [1, k], precond(ai) ∈ si−1∧γ(si−1, ai) = si. Different algorithms
have been proposed to solve planning problems and get plans from them, e.g.,
depending on whether they are building the underlying graph structure in a
forward (from initial state) or backward (from goal) way. We propose to use an
algorithm based on planning graphs [4] since they yield a compact representation
of relations between actions and represent the whole problem world. Even after
some changes, whole parts of planning graphs would then still be valid. Moreover,
recent works have demonstrated the suitability of this model for ASC [3,32].

A planning graph G is a directed acyclic leveled graph (see, Fig. 2). The
levels alternate proposition levels Pi and action levels Ai. The initial proposition
level P0 contains the initial propositions (s0). The planning graph is constructed
from P0 using a polynomial algorithm. An action a is put in layer Ai iff pre(a) ⊆
Pi−1 and then effects+(a) ⊆ Pi. The planning graph actually explores multiple
search paths at the same time when expanding the graph, which stops at a
layer Ak iff the goal is reached (g ⊆ Ak) or in case of a fixpoint (Ak = Ak−1).
In the former case there exists at least a solution, while in the later there is
not. Solution(s) can be obtained using backward search from the goal. Planning
graphs whose computation has stopped at level k enable to retrieve all solutions
up to this level (while other planning techniques are only able to retrieve a single
one). Additionally, planning graphs enable to retrieve solutions in a concise form,
taking benefit of actions that can be done in parallel (denoted with ||).

3 Models

A service signature is made up of a set of operations which can be described
in terms of their inputs and outputs. Still, service being developed by different
third-parties, one can hardly imagine, and further, achieve service interoper-
ability at the service signature level. Semantic annotations help in solving this
issue [27]. Therefore, we associate semantic information to inputs and outputs.

Definition 2. Given a set D of concepts, a service w is a set Op of operations
where for each o in Op, in(o) ⊆ D (resp. out(o) ⊆ D) denote the inputs (resp.
the outputs) of o.

Our service model can be related to WSDL, with semantic annotations for in-
puts and outputs described using SAWSDL and ontologies supporting anno-
tations described using OWL. Most Web services currently posted online are
stateless black boxes (no conversations). For example, numerous services listed
by webservicelist.com and xmethods.net are this kind of Web services, with
capabilities that range from checking stock prices, weather, or driving directions
to calculating currency exchanges, mortgages, etc. Therefore, for each service w
with n operations o1, . . . , on we may do as if we had n services w : o1, . . . , w : on.

156 Y. Yan, P. Poizat, and L. Zhao

_:gps

U:reg

n

n

fid

fp

M:map

gps

M:map

U:info

lab

n

U:officen

n

lab

fid

gps

fid

fp

gps

map

vt

way

map

off

off

id

M:way way

M:way

_:info

F:gps

n

n

_:info

data, context=Alice

data, context=Bob

service invocation

= nb

= na

no-op (data transfer)

backtrack to solution

F:gps

P0 P1 P2 P3A1 A2 A3 layers

Fig. 2. Planing graph for WSC1=({services in Fig. 1, right}, {na,nb,fida,fpa}, {waydab})

Definition 3. A service composition problem is a triple (W,Din, Dout), where
W is a set of services, Din are provided inputs, and Dout are expected outputs.

Following [32], it is possible to map a service composition problem (W, Din,
Dout) to a planning problem P = ((S,W, γ), Din, Dout) with service inputs be-
ing mapped to action preconditions (in(w) �→ pre(w)) and outputs to positive
effects (out(w) �→ effects+(w)). Plans can be encoded in any orchestration lan-
guage with assignment and sequence operators, e.g., WS-BPEL. Additionally,
planning graphs enable to retrieve plans with parallel invocations. These can be
encoded using parallel operations (WS-BPEL flow).

Application. The planning graph for our example is given in Fig. 2. To keep
figures legible, in a layer Pi we draw only data that is used in some layer Aj,j>i.
We do not draw a service in a layer Ai if it is already in some layer Aj,j<i, unless
if its input data can be re-generated meanwhile. Finally, in the sequel we will not
take into consideration the fact that M:way can be used in layer A3 to produce
wayba (it is dual to it producing wayab). Backtracking from the goal, we get a
plan, (:info || :gps) ; F:gps ; M:way, which can flattened into two sequential
plans: :info ; :gps ; F:gps ; M:way and :gps ; :info ; F:gps ; M:way.

4 Repairing Service Compositions

4.1 Change Modelling

Service composition should be considered in a world that is subject to change.
Accordingly, a service composition problem model, (W,Din, Dout), should be
updated to accommodate inputs (Din), goals (Dout) and service (W) changes.

Goals may change, some getting out of interest while new ones may appear.
We denote them respectively with D−out and D+

out. Services become unavailable
due to many reasons, e.g., network failure or user mobility, and accordingly new

Repair vs. Recomposition for Broken Service Compositions 157

_:gps

_:info

U:reg

n

n

F:gpsfid

fp

M:map

M:way

M:map

U:info

lab

n

U:officen

n

lab

fid

gps

fid

fp

gps

vt

map

off

id

invalid

recomputed

newly computed

U:ogps

U:ogps

vt

off

gps

gps

M:way way

M:map map

map

M:map map

gps

map

way

gps

map

gps

P0 P1 P2 P3A1 A2 A3 P4 P5A4 A5

Fig. 3. Planing graph for WSC1 after removal of :gps (recomposition)

services may appear. We denote them respectively with W− and W+. We may
then set D′out = Dout\D−out ∪D+

out and W ′ = W\W− ∪W+.
When change has to be considered during execution, we updateDin to the state

of the partially executed composition. We also update Din if the inputs of the ser-
vice composition problem change. In other cases, we have D′in = Din. Finding
a solution for an updated problem may require to rollback an executed service,
w, and accordingly its effects. We do not constraint how the effects are canceled
(operation in the same service or not), but we set D′in = Din\effects+(w).

With this modelling, change yields a new service composition problem, (W ′,
D′in, D

′
out), and, in turn, a new planning problem, P ′ = ((S′,W ′, γ′), D′in,D′out).

Application. In our example we have D′in = Din, D−out = D+
out = W+ = ∅,

and W− = { :gps}. Using recomposition on the planning graph we get Fig. 3.
One can see that an important part of the graph is rebuilt, before a new part is
grown and yields a composition solution, either :info ; (U:reg || F:gps) ; U:office
; U:ogps ; M:way (way between the building next to Alice and Bob’s position),
or info ; U:reg ; (U:office || U:info) ; (U:ogps || U:ogps) ; M:way (itinerary
between the building next to Alice and Bob’s office).

4.2 Repair Algorithm

Broken preconditions and broken plans. After impacting change, we get a
partial planning graph G with a set of Broken Preconditions BPG

m∈[1,n], BP
G
m ⊆

Pi. BPG
n are unsatisfied goals, while BPG

m∈[1,n−1] are inputs of actions in Am+1

that are no longer available. Let A be a set of actions, we denote out(A) (resp.
in(A)) the set

⋃
a∈A out(a) (resp. the set

⋃
a∈A in(a)). We have BPG

m∈[1,n−1] =
{p ∈ in(Am+1)|p �∈ Din

⋃
k∈[1,m] out(Ak)} and BPG

n ={p∈ Dout|p �∈ Din

⋃
k∈[1,n]

out(Ak)}. We may also focus on a given plan, say π. Let πi be the set of ac-
tions in π at step m. Due to π computation with the planning graph we have

158 Y. Yan, P. Poizat, and L. Zhao

BP′
m = in(A)\(Pm\BPm)

(c)

Am

Pm - BPm

BP'm

Pm-1 - BPm-1

BPm-1

A

BPm+1

BPm+1 = ∅

Pm - BPm

BPm

added
layers

Am+2

Pm+1 = Pm ∪ out(A)

Am+2

= Am+1

+

(a)

Am

Pm - BPm

BPm

Pm-1 - BPm-1

BPm-1

Am+1

if m<n
else BPm ⊆ Dout

(b)

BP'mA

Am

Pm-1 - BPm-1

BPm-1

Pm - BPm

BPm

BP′
m = ∅

Am+1

P′
m = Pm ∪ out(A)

+

Fig. 4. Broken preconditions at level m, m ≤ n (basic repair)

πm ⊆ Am. We have then broken preconditions related to π, BP π
m∈[1,n−1] = {p ∈

in(πm+1)|p �⊆ Din

⋃
k∈[1,m] out(πk)} and BP π

n = {p ∈ Dout|p �∈ Din

⋃
k∈[1,n]

out(πk)}. Note that BPG
m and BP π

m are incomparable.
We then proceed as follows. If π is not broken (∀m ∈ [1, n], BPπ

m = ∅) we
have nothing to do. π is still a valid solution. Else, we run our algorithm for
BPπ (hence, in the sequel, we will use BPm for BP π

m for simplicity). Note that
if π is broken but G is not (∀m ∈ [1, n], BPG

m = ∅) then there is still at least
a solution in G, which we may retrieve using backtracking. However, this may
yield a solution which is very different from π. Running our algorithm we try
first to get a resembling solution. If this fails, any other solution will be found
too by the algorithm.

Repair principles. For a proposition level where BPm is not empty (Fig. 4 (a)),
we search for candidate services A which can produce BPm and insert them into
action level m (Fig. 4 (b)). This promotes shorter repair solutions. Sometimes,
the lower proposition level Pm−1 does not contain all the inputs needed by A.
We then insert A into a new action level m+1 (Fig. 4 (c)). By doing this, we can
use more propositions since Pm−1 ⊆ Pm but increase the plan length by one.

This technique can fail if we cannot find a set of services A that produce
all the broken preconditions in BPm. As a solution we may degrade our basic
repair principle. If it is not the goal layer (m < n), we remove the unrepairable
part (Fig. 5). New broken preconditions may appear at level m + 1 and will
be treated in a next iteration. If it is the goal layer (m = n), then there is no
solution, neither with repair nor with recomposition. Degraded repair increases
computation time wrt. basic repair since it gets closer to recomposition. Still, it
enables to find a solution whenever it exists.

Repair vs. Recomposition for Broken Service Compositions 159

BP'm

Am

Pm - BPm

A'm+1

A''m+1

Pm-1 - BPm-1

BPm-1

A′′
m+1 = Am+1\A′

m+1

P'm+1

BP'm+1
-

P′
m+1 = out(A′

m+1)

BP′
m = ∅ A′

m+1 = {a ∈ Am+1 | in(a) ∩ BPm = ∅}

Fig. 5. Broken preconditions at level m, m < n (degraded repair)

Repair algorithms. The main algorithm is the graph repair algorithm, Algo-
rithm 1. It corresponds to the repair principles that are applied for each layer
with broken preconditions, starting with the upper layer first. Once we get a re-
paired graph, a solution is computed with backward search, as with replanning.

Algorithm 1. G′= Repair(G,W)
inputs: partial planning graph G with size n, available services W
outputs: repaired planning graph or fail

1: while ∃BPi, i ∈ [1, n], BPi �= ∅ do
2: m = max {i ∈ [1, n]|BPi �= ∅};
3: candidates = {w ∈ W |out(w) ∩ BPm �= ∅};
4: if BPm ⊆ out(candidates) then {//fixable}
5: {A, C} = SelectServices(candidates, G, BPm, m);
6: if C = ∅ then {//insert A into action level m}
7: Am = Am ∪ A; Pm = Pm ∪ out(A); BPm = ∅;
8: else {//add A into action level m + 1}
9: {A, C} = SelectServices(candidates, G,BPm, m + 1);

10: insert a new proposition level Pm+1 and a new action level Am+1;
11: Am+1 = A; Pm+1 = Pm ∪ out(A); BPm+1 = ∅;
12: BPm = in(A)\(Pm\BPm);
13: else {// not directly fixable}
14: if degradeOption = no ∨ m = n then {// no degradation or last layer}
15: return fail

16: else {//degradation is possible}
17: Am+1 = {a ∈ Am+1 | in(a) ∩ BPm = ∅}; Pm+1 = out(Am+1)
18: BPm = ∅; recompute BPm+1

In this algorithm, SelectServices (Alg. 2) is in charge of selecting the best
services from candidate services to obtain some broken preconditions.

It is a greedy search algorithm. We use (1) and (2) to select the best services.
The evaluation depends on the layer where w is to be added. At the highest level
n, we define:

f1(w,G,m) =
|BPn ∩ out(w)|

maxΩ
×2+

|in(w) ∩ Pm−1|
maxPi

− |in(w)− Pm−1|
maxPe

, if m = n;

(1)

160 Y. Yan, P. Poizat, and L. Zhao

Algorithm 2. {Wselected, BPnew} = SelectServices(candidates, G, BPold, m)
inputs: candidate services candidates, planning graph G whose highest level is n,
broken preconditions BPold, level m where services to be added
outputs: selected services Wselected, new broken precondition BPnew

1: Wselected = ∅; BPnew = ∅;
2: while BPold �= ∅ do
3: w ∈ candidates is the best services by (1) or (2), depending on m;
4: candidates = candidates\w; Wselected = Wselected ∪ {w};
5: BPold = BPold\out(w); BPnew = BPnew ∪ in(w)\Pm−1;
6: return {Wselected, BPnew};

where |BPn ∩ out(w)| is the number of unimplemented goals that can be imple-
mented by w; |in(w)∩Pm−1| is the number of w inputs that can be provided by
propositions in Pm−1; |in(w)− Pm−1| is the number of w inputs that cannot be
provided by propositions in Pm−1. This set needs to be added into BP if w is
added. maxΩ, maxPi, and maxPe are the maximum value of the nominators in
the neighborhood respectively to normalize each term. The first term is given a
weight of 2 to increase its significance.

If w is to be added in another layer (m < n) then the evaluation function is:

f2(w,G,m) = f1(w,G,m) +

∑
i∈[m,n] |BPi ∩ out(w)|

maxBP
, if m < n; (2)

Compared to (1), the added term (
∑

i∈[m,n] |BPi ∩ out(w)|) is the number of
the broken propositions in the level Pm and above that can be satisfied by w
outputs. maxBP is the maximum value in the neighborhood to normalize each
term. For clarity, we have not put selection exception cases. To ensure repair
termination, we do not select services that would reproduce the same set of
broken preconditions (B = C), nor do we select a service that has been removed
in degraded mode.

According to [4], the size of the full planning graph is polynomial to the size
of services and the size of propositions. In the worst case, Algorithm 1 explores
all the possible paths in the graph, therefore it terminates in polynomial time.

Application. The application of repair to our example is given in Fig. 6. We
begin (a) with BP2 = {gpsa}. We select A = {U : ogps} but since in(A) =
{offa} �⊆ P1 we add a new level and add A in the new action layer (b). Still, BP2

(now {offa}) is not empty. We then select A = {U : office} and since in(A) =
{vta} �⊆ P1 we add again a new level (c). We then observe that BP2 = ∅ since
in(A) ⊆ P2. There is no more any BPi �= ∅ so repair has succeeded. We find the
solution which is the closest to the original one, namely :info ; (U:reg || F:gps)
; U:office ; U:ogps ; M:way. As one can see, the new graph is grown on top of the
existing one and computed parts are smaller than with recomposition (Fig. 3).

Repair vs. Recomposition for Broken Service Compositions 161

_:gps

_:info

U:reg

n

n

F:gpsfid

fp

M:map

M:way

M:map

U:info

lab

n

U:officen

n

lab

fid

gps

fid

fp

gps

vt

map

off

id

invalid newly computed

off

gps

map

way

broken precondition

U:ogps gpsU:office off

gps gps

lab lab

n n

vt vt

P0 P1 P2A1 A2 P3A3
P0 P1 P2A1 A2 P3 P4A3 A4
P0 P1 P2 P3A1 A2 A3 P4 P5A4 A5

(a)

(b)

(c)

Fig. 6. Planing graph for WSC1 after removal of :gps (repair)

5 Implementation and Experimental Evaluation

5.1 Evaluation Criteria

In order to evaluate efficiency and quality of repair vs. recomposition (replan-
ning), we use four criteria. Composition Time is the time to get the first feasible
solution or report nonexistence of it. Time Steps and Number of Services are
respectively the number of layers and the number of services used in the solu-
tion. Smaller values lead to more parallelism and less invocations, hence more
efficiency at execution time. We assume here that all services have the same
execution cost. A perspective is to take into account QoS both in the service
model and our heuristic service selection. Finally, Plan Stability [9] given two
plans π and π′ is defined as the number of actions in π not in π′ plus the number
of actions in π′ not in π. Stability is beneficial for transparency and for keeping
commitment to services.

5.2 Implementation and Benchmark

The PGA tool. Our approach is fully automated thanks to a tool we have im-
plemented in Java, PGA (Planning Graph with Adaptation). PGA includes three
main algorithms. The first one is a Java implementation of the standard graph
planning algorithm [4]. It is used to build the original planning graph for a service
composition problem and to find a solution for it (or detect there is none). The
second algorithm is used to apply change on a planning graph. One may then
either call the first algorithm to perform replanning, or use the third one, which
implements our repair technique. As far as input files are concerned, PGA can
read an OWL file describing ontology concepts and a set of Web service interfaces
described in WSDL. Note that the later are annotated with a simple extension
mechanism instead of using full-fledged SAWSDL. PGA is also connected to the

162 Y. Yan, P. Poizat, and L. Zhao

WSC platform1 which is used to generate WS-BPEL orchestrations from XML
descriptions of compositions.

Experimental benchmark. PGA has been used to generate solutions for our
example (represented in Fig. 3 and Fig. 6). However, this example contains only
20 ground concepts (gpsa, gpsb, na, nb, etc.) and 18 operations (corresponding
to the operations in Fig. 1, with duplicates due to genericity, e.g., we have two
M:map operations, one for gpsa and one for gpsb). To perform comparison of
recomposition and repair, we needed a larger benchmark.

The WSC testset generator is a tool that enables to compare service compo-
sition algorithms by generating sets of semantically annotated service interfaces.
We use a data set with 351 services. The services can use in their input and
output messages parameters in a list of 2891 parameters which are from 6209
instances of 3081 semantic concepts. Given a solution depth, the data genera-
tor generates several groups of solutions, each of which has the given solution
depth. The solution groups do not share services. Within a group, some services
can directly substitute others as they use the same input set and produce the
same outputs. The generator randomly generates a lot of “padding” Web ser-
vices around the services used in solutions. These “padding” services do not have
the outputs that can be used by the services within a solution. The data set has
four solution groups (1–4) with respectively 9, 18, 19, and 27 levels.

5.3 Experiment Results

We present here the comparative evaluation made for repair and replanning in
case of service removal and with group 1 (initial solution: 9 layers and 10 services)
Each point is obtained from the average of 100 independent runs. We remove
different percentage of services from the service set. We stop at 30% since after
it the success rate both for repair and replanning falls down below 50%.

Figure 7(left) shows that our repair algorithm is faster than replanning. Fig-
ure 7(right) compares the quality of the solutions. We can see that repair retrieve
solutions with the same quality than replanning (plots at superposed).

5 10 15 20 25 30
� Removed

20

40

60

80

Repair Time �ms�

•
• • • •

• • •
• •

•
•

•
• •

•
• •

•
•

•
•

• • •
•

• •
• •

•
• • • •

• • •
• •

•
•

•
• •

•
• •

•
•

•
•

• • •
•

• •
• •

��
��
�
�
���

�
�����

�
��
���

������
���

��
��
�
�
���

�
�����

�
��
���

������
���

�

�
� �
�

�
� �

�
�

� � �
�
�
�
� �
�
�
�

�

�
�
�

�

�
� �
�

�

�
� �
�

�
� �

�
�

� � �
�
�
�
� �
�
�
�

�

�
�
�

�

�
� �
�

5 10 15 20 25 30
� Removed

2

4

6

8

10

12

14

� Services�Levels, Distance

Fig. 7. Repair vs. replanning – composition time (thick: repair, thin:replanning) and
quality (same for repair/replanning, •/blue: services, +/red: levels, ∗/green: distance)

1 http://ws-challenge.georgetown.edu/wsc09/software.html

Repair vs. Recomposition for Broken Service Compositions 163

6 Related Work

Service composition has been studied under various assumptions and models
[27,8,16]. Among these, planning has successfully been used to support under-
specified composition requirements [25,7]. Still, to quote [24], service composition
is today largely a static affair. In this paper we address the evolution and adap-
tation of composition under changes.

When the issue is to react to a disappeared or faulty service, or to a service
with a bad QoS, strict replacement can be used, e.g., [10,13,6] for some recent
works. Some works support a less strict notion of replacement, e.g., with trans-
formers to solve out message mismatching [20]. Replacement is limited to 1-1
substitution. Further, it focuses on finding replacement for broken services, while
solving a broken composition may require removing other ones. Supporting the
substitution of one service by several ones, and using repair degradation, our
algorithm has therefore higher success rate than replacement.

Going further than 1-1 substitution, supporting both 1-n substitution and
added needs, can be done with recomposition, i.e., running a composition algo-
rithm on an updated composition problem. Any algorithm defined for service
composition [27,8,16] would apply there, including many ones based on some
form of planning, e.g., using heuristic search [19,23], linear programming [31],
automated reasoning [14,29]. In our previous works we have proposed to build
on planning graphs [32,3]. In this paper we have thoroughly compared our re-
pair algorithm wrt. graph planning recomposition. We get solutions of the same
quality in less computation time.

A complementary domain of research is software adaptation, devoted to the
generation of mediators (also called software adaptors, or simply adaptors) to
solve mismatch between components or services [28]. Software adaptation can be
used as a composition technique (when adapting between the composition need
and available services). It can also be used as a repair technique that keeps the
original (broken) composition unmodified and builds a mediator in between this
and available services. This technique has been employed for 1-1 replacement
(adaptation between one client and one server), e.g., in [5,21]. Some other works
have applied software adaptation in the large between n services, e.g., [17,1].
Computing a mediator is as expensive as computing a composition. Our repair
technique then share the same benefits wrt. software adaptation than wrt. re-
composition. Moreover, n-ary adaptation applies to services with conversations,
hence it requires that the services to adapt are previously discovered (which is
complex in case of conversations). Our repair technique does not require this
since it takes the assumption that services have no conversation.

Composition repair and reuse has been proposed for fault recovery. Substi-
tution and compensation actions are predefined in [10]. Whenever an erroneous
condition is encountered, the execution of the process is stopped and a repair
plan generated by automated reasoning is inserted and executed. [18] proposes
to substitute the faulty services and rebind to new services, or completely re-
compose a solution. Still, [18] does not present specific solutions to these strate-
gies. [2] proposes a language to define the substitution actions and uses them

164 Y. Yan, P. Poizat, and L. Zhao

in a self-healing mechanism implemented in the JBOSS rule engine. In work-
flow management, people also study how to dynamically handle failures. For
example, [11] proposes mechanisms like termination of failed activity instances
and replanning. Considering possible new opportunities is another motivation
for composition evolution. [15] alternates planning and execution of the compo-
sition in order to adapt to new opportunities. Compared the above work, our
method can be used for both fault recovery and plan evolution.

Plan Repair has been introduced in AI planning. [22] claims that repair is
not better than planning in the worst case, still in many cases the new planning
problem resembles the original one, hence repair is a technique that works in
practice. We have proposed a preliminary service composition repair technique
in [30]. But for its objective (repair vs. recompose), it is not a direct ancestor of
the approach we have presented here. The [30] algorithm degraded into backward
search whenever a service without a possible (1-1 or 1-n) substitution at the same
layer was removed. Also, the service selection process could lead to dead-ends,
i.e., repair failure while there was indeed a solution to the broken composition.
Using layer insertion and repair degradation we are able to avoid these draw-
backs. Performing comparison, using WSC generated testsets, between the [30]
algorithm and the one presented here, we achieve a stable quality of the solutions
but a better success rate and shorter composition time.

7 Conclusions and Future Work

Automatically generated service compositions may get broken upon change in
their envisioned environment, e.g., upon service disappearance, service failure, or
added needs. We have addressed this issue with a repair approach based on plan-
ning graphs, an alternative to replacement and to recomposition. Our approach
is completely automatic and tool-equipped. Repair does as good as replacement
when 1-1 substitution is possible, but goes beyond this limit, supporting 1-n/n-m
substitution and added needs. Empirical evaluation has shown that repair gets
solutions of the same quality than recomposition in better computation time.
Repair may sometimes fail to find a solution while one is found with recompo-
sition. To overcome this issue, we have proposed degradation techniques in our
repair algorithm. Experiments have shown that in practice we still get better
computation time with repair than with recomposition.

So far, we have compared our repair algorithm with the standard planning
graph algorithm. It would be interesting to further compare our repair technique
with more recomposition algorithms, especially those in AI replanning studies.
In this paper we took into account that many services do not expose a conversa-
tion. A promising direction is to support more expressive models [16] with both
service conversations and a rich conversation-based requirement language. We
made a first step in this direction with a technique based on planning graphs
for the composition of services with conversations in [26]. QoS models could also
enrich our heuristic service selection process. By now, our PGA tool is only used
to repair broken compositions at the model and process level, not for running

Repair vs. Recomposition for Broken Service Compositions 165

instances. The next step is then to study its integration in an existing runtime
monitoring and adaptation framework for services composition such as [20].

Acknowledgement. This work is supported by project “Building Self-Mana-
geable Web Service Process” (RGPIN/298362-2007) of Canada NSERC Discovery
Grant, and by project “PERvasive Service cOmposition” (ANR-07-JCJC-0155-01,
PERSO) of the French National Agency for Research.

References

1. van der Aalst, W.M.P., Mooij, A.J., Stahl, C., Wolf, K.: Service Interaction: Pat-
terns, Formalization, and Analysis. In: Bernardo, M., Padovani, L., Zavattaro, G.
(eds.) SFM 2009. LNCS, vol. 5569, pp. 42–88. Springer, Heidelberg (2009)

2. Baresi, L., Guinea, S., Pasquale, L.: Self-healing bpel processes with dynamo and
the jboss rule engine. In: Proc. of ESSPE, pp. 11–20 (2007)

3. Beauche, S., Poizat, P.: Automated Service Composition with Adaptive Planning.
In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364,
pp. 530–537. Springer, Heidelberg (2008)

4. Blum, A.L., Furst, M.L.: Fast Planning through Planning Graph Analysis. Artificial
Intelligence Journal 90(1–2), 281–300 (1997)

5. Brogi, A., Popescu, R.: Automated generation of bpel adapters. In: Dan, A.,
Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 27–39. Springer,
Heidelberg (2006)

6. Cavallaro, L., Nitto, E.D., Pradella, M.: An automatic approach to enable re-
placement of conversational services. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.)
ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 159–174. Springer, Heidelberg
(2009)

7. Chan, K.S.M., Bishop, J., Baresi, L.: Survey and comparison of planning tech-
niques for web service composition. Tech. rep, Dept Computer Science, University
of Pretoria (2007)

8. Dustdar, S., Schreiner, W.: A survey on web services composition. Int. J. Web and
Grid Services 1(1), 1–30 (2005)

9. Fox, M., Gerevini, A., Long, D., Serina, I.: Plan Stability: Replanning versus Plan
Repair. In: Proc. of ICAPS, pp. 212–221 (2006)

10. Friedrich, G., Ivanchenko, V.: Model-based repair of web service processes. Tech.
Rep. 2008/001, ISBI research group, Alpen-Adria-Universität Klagenfurt (2008)

11. Gajewski, M., Momotko, M., Meyer, H., Schuschel, H., Weske, M.: Dynamic failure
recovery of generated workflows. In: Proc. of DEXA Workshops, pp. 982–986 (2005)

12. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice.
Morgan Kaufmann Publishers, San Francisco (2004)

13. Grigori, D., Corrales, J.C., Bouzeghoub, M.: Behavioral matchmaking for service
retrieval: Application to conversation protocols. Inf. Syst. 33(7-8), 681–698 (2008)

14. Hashemian, S.V., Mavaddat, F.: A logical reasoning approach to automatic com-
position of stateless components. Fundam. Inform. 89(4), 539–577 (2008)

15. Lazovik, A., Aiello, M., Papazoglou, M.P.: Planning and monitoring the execution
of web service requests. Int. J. on Digital Libraries 6(3), 235–246 (2006)

16. Marconi, A., Pistore, M.: Synthesis and Composition of Web Services. In: Bernardo,
M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS, vol. 5569, pp. 89–157.
Springer, Heidelberg (2009)

166 Y. Yan, P. Poizat, and L. Zhao

17. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of service protocols using pro-
cess algebra and on-the-fly reduction techniques. In: Bouguettaya, A., Krueger, I.,
Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 84–99. Springer, Heidelberg
(2008)

18. Meyer, H., Kuropka, D., Tröger, P.: Asg - techniques of adaptivity. In: Proc. of
AAWS (2007)

19. Meyer, H., Weske, M.: Automated service composition using heuristic search. In:
Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp.
81–96. Springer, Heidelberg (2006)

20. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adap-
tation for ws-bpel. In: Proc. of WWW, pp. 815–824 (2008)

21. Motahari Nezhad, H.R., Xu, G.Y., Benatallah, B.: Protocol-aware matching of web
service interfaces for adapter development. In: Proc. of WWW, pp. 731–740 (2010)

22. Nebal, B., Koehler, J.: Plan Reuse versus Plan Generation: A Theoretical and
Empirical Analysis. Artificial Intelligence Journal 76(1-2), 427–454 (1995)

23. Oh, S.C., Lee, D., Kumara, S.: Web Service Planner (WSPR): An Effective and
Scalable Web Service Composition Algorithm. International Journal of Web Service
Research 4(1), 1–22 (2007)

24. Papazoglou, M., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented comput-
ing research roadmap (2006), technical report,
http://infolab.uvt.nl/staff/mikep/publications/

25. Peer, J.: Web Service Composition as AI Planning – a Survey. Tech. rep., University
of St.Gallen (2005)

26. Poizat, P., Yan, Y.: Adaptive Composition of Conversational Services through
Graph Planning Encoding. In: Proc. of ISoLA (to appear 2010)

27. Rao, J., Su, X.: A survey of automated web service composition methods. In:
Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54.
Springer, Heidelberg (2005)

28. Seguel, R., Eshuis, R., Grefen, P.: An overview on protocol adaptors for service
component integration (2008), working Paper from,
http://is.tm.tue.nl/staff/heshuis/publications.html

29. Sohrabi, S., Prokoshyna, N., McIlraith, S.A.: Web service composition via the cus-
tomization of golog programs with user preferences. In: Borgida, A.T., Chaudhri,
V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Appli-
cations. LNCS, vol. 5600, pp. 319–334. Springer, Heidelberg (2009)

30. Yan, Y., Poizat, P., Zhao, L.: Repairing service compositions in a changing world.
In: Proc. of SERA (2010)

31. Yoo, J.W., Kumara, S., Lee, D., Oh, S.C.: A Web Service Composition Framework
Using Integer Programming with Non-functional Objectives and Constraints. In:
Proc. of CEC/EEE. pp. 347–350 (2008)

32. Zheng, X., Yan, Y.: An Efficient Web Service Composition Algorithm Based on
Planning Graph. In: Proc. of ICW 2008, pp. 691–699 (2008)

http://infolab.uvt.nl/staff/mikep/publications/
http://is.tm.tue.nl/staff/heshuis/publications.html

Interoperation, Composition and Simulation

of Services at Home

Eirini Kaldeli, Ehsan Ullah Warriach, Jaap Bresser,
Alexander Lazovik, and Marco Aiello�

Distributed Systems Group
Johann Bernoulli Institute
University of Groningen

Nijenborgh 9, 9747 AG, The Netherlands
{e.kaldeli,e.u.warriach,j.bresser,a.lazovik,m.aiello}@rug.nl

Abstract. Pervasive computing environments such as our future homes
are the prototypical example of a dynamic, complex system where Service-
Oriented Computing techniques will play an important role. A home
equipped with heterogeneous devices, whose services and location con-
stantly change, needs to behave as a coherent system supporting its
inhabitants. In this paper, we present a fully implemented architecture
for domotic applications which uses the concept of a service as its funda-
mental abstraction. The architecture distinguishes between a pervasive
layer where devices and their basic internetworking live, and a composi-
tion layer where services can be dynamically composed as a reaction to
user desires or home events. Next to the architecture, we also illustrate a
visualization and simulation environment to test home coordination sce-
narios. From the technical point of view, the implementation uses UPnP
as the basic device connection protocol and techniques from Artificial
Intelligence planning for composing services at runtime.

Keywords: Pervasive Services, Internet of Things, Composition.

1 Introduction

The vision of the Internet of Things brings a number of fresh challenges, that the
field of Service-Oriented Computing can help to address. Having a large number
of autonomous and heterogeneous objects whose location, connectivity, and set
of functionalities may change during a home’s life cycle, requires a rich and
flexible infrastructure. Support for interoperation, dynamic discovery, sensing of
the current execution context, and run-time service compositions are among the
most notable elements of such an infrastructure.

In this paper, we focus our attention on the smart home. Following the vision
of the Smart Homes for All project [19], we design and implement a software
architecture based on the concept of service, that supports the integration of
� The research is supported by the EU project Smart Homes for All

(http://www.sm4all-project.eu), contract FP7-224332.

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 167–181, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

168 E. Kaldeli et al.

heterogeneous home devices, the inference of the home context, and the pos-
sibility to compose services inside the home as a response to a user need or a
home event. Technologies based on Service Orientation are not new for pervasive
systems. UPnP and Jini [6] have been proposed as protocols and architectures
for dynamic device and functionality discovery, based on describing services in
terms of WSDL and Java interfaces respectively. These are excellent starting
points for our study, as they provide support for basic interoperation, but to
realize genuinely smart homes, more aspects need to be designed in terms of
home sensing and composition.

Our approach is driven by the proposition that domestic events, may these
be generated by a user’s desire or by a home situation that needs to be handled,
can be best addressed by designing a complex behavior specific to the event
and the current home context. When a fire breaks for example, one does not
simply want to turn on a fire alarm, but rather, based on what services are
available in the home in terms of alarms, sprinklers, automatic doors, and so on,
infer the status of the home and the location of the user, and then compose the
available services to ensure maximum safety for the home inhabitants, as well as
protection for the home itself. Such a philosophy of design for pervasive systems
also brings an extra added value: the system is portable to several homes with
minimal reconfiguration. In fact, the same event will be dealt with differently in
different homes, simply because the available services will be diverse, as well as
the state of the environment.

The paper makes concrete the vision and philosophy above by resorting to Ar-
tificial Intelligence (AI) planning techniques for service composition, and UPnP
as the basic protocol for interoperation. Building on our previous work on service
composition [12,9] and creating a framework for integrating devices, we imple-
ment an instance of a SM4All architecture which is able to deal with physical
and simulated devices, and also visualize home behaviors. The implementation
is then evaluated to show that, despite the fact that we use elaborate AI tech-
niques, the system performs rapidly, and a road to actual home deployment is
definitely feasible.

The paper is organized as follows. A description of a possible scenario in a
smart home, working as our running example, is presented in Section 2. Then
we introduce the SM4All architecture, and we focus on the composition and
pervasive layers in Section 3. Section 4 provides details of the RuG ViSi visu-
alization tool. The results of performance evaluation for the framework at both
its composition and pervasive layer are presented in Section 5. A discussion of
related work and conclusions are presented in Sections 6 and 7 respectively.

2 Getting a Beer

The soccer World Cup is well under way and the user of our smart home, as
many others, likes to watch TV with a cold beer in his hands. Without too much
planning, he simply has to make sure that there is beer available in the house,
and that he has paid the electricity bills so that the TV can work. This simple
scenario can help illustrate the behavior of our smart home.

Interoperation, Composition and Simulation of Services at Home 169

Let’s assume that the inhabitant of the house has just taken his bath, and
wants to move to the sitting room to watch the forthcoming soccer match. Such a
request may include instructions about how the sitting room atmosphere should
be prepared—by adjusting the lights, probably opening the window if the tem-
perature is too high, and turning on the TV. During the halftime break, the user
decides to go to the kitchen to prepare something to eat. While being there, the
smoke detector in the kitchen identifies a potentially dangerous smoke leak——
but fortunately not due to fire. As a result, a predefined home goal for dealing
with this situation is automatically triggered: after having ensured that the user
has safely moved out of the kitchen (let’s say to the adjacent sitting room), the
door leading to the kitchen is closed to isolate the smoke in a single room. The
ventilator, if present, is turned on and the kitchen window is also opened, so that
the foul air is expelled, while an alarm notification appears on the TV screen.
While waiting in the sitting room, the user wants to move back to the kitchen,
but only after having assured that the environment there is safe, and the smoke
has been eliminated. This wish implies resorting to sensing to identify the cur-
rent situation in the kitchen. Let’s assume that after some time the smoke is
indeed eliminated, causing the alarm on the TV and the ventilator to automat-
ically turn off, and the user can finally move to the kitchen. After verifying that
no serious damage has been caused, he decides to move back to the sitting room
in order not to miss the second half of the match, that has just started.

While sitting on the sofa, and trying to overcome the stress from the unfor-
tunate smoke leak incident, the user wishes to have a cold beer in his hand.
Assuming that the household is equipped with a robot device, which is able to
move around the house, get and put items at particular places and sense their
temperature, the task for getting a cold beer can be assigned to the robot. Let’s
say that the user has neglected to put any beers in the fridge, however the system
finds out that there are some beers left on the store shelf. Having this informa-
tion in hand, the robot will move to the storage room and get a beer from there.
In order to satisfy the requirement that the beer should be cold, it will proceed
in placing the beer it has taken in the fridge, and leave it there for two minutes
to cool. Then it will take it out again and bring it to the sofa. It should be noted
that if the same goal was issued in another home instance, in which the robot
device has only the capability of getting items from the fridge, the user would
be unfortunate enough to be left without his highly desired cold beer, if there is
no one such available in the fridge.

3 Architecture

The middleware is the software layer that abstracts from distribution, providing
a coherent application interface. In the case of the Smart Home the middleware
is a thick layer that has to offer a number of services to the participating com-
ponents. It has to accommodate for dynamic group membership, asynchronous
communication, provide a common message ontology, support heterogeneous and
mobile devices, mobility of the user. Most notably, it has to coordinate atomic

170 E. Kaldeli et al.

Fig. 1. Architectural overview

device functionalities to satisfy elaborate application needs, that is, not sim-
ply expose a de-localized remote function, but rather aggregate and temporize
existing functions in order to provide an added-value complex functionality.

In the context of the Smart Homes for All project, we propose a middleware
architecture split into three macro layers. At the bottom is the pervasive layer,
where the heterogeneous sensors, actuators and mobile devices of the house live.
In the middle sits the composition layer, which is responsible for registering
and inferring the state of the home, as well as coordinating it on behalf of the
user. On top is the user layer which provides the interface to the home. This
schematization is illustrated in Figure 1 with the main control and information
flows represented by arrows. In this paper, we focus on the composition and
pervasive layer, and provide an instance of the architecture. The user layer using
touch screen and brain computer interface [8] is beyond the scope of the present
treatment.

The central composition layer is further abstracted into five major compo-
nents. The context awareness module is responsible for the collection of the
sensed information from the home, and the maintenance of a representation of
the execution and user context in the home, by reading information directly from
the pervasive layer [5]. The repository keeps a number of key data bases which
include a registry of description of abstract devices, a registry of currently active
devices, semantic descriptions of service invocations, and the layout of the house
(e.g., the rooms that comprise it, and how they are arranged). A rule engine
is constantly informed about any changes in the context, and identifies whether
certain conditions hold. If the conditions entail that some action has to be taken,
the rule engine directly invokes the composition module. The composition mod-
ule is the central one of the composition layer. It is responsible for finding the

Interoperation, Composition and Simulation of Services at Home 171

right combination of service operations that can satisfy the high level complex
goals, issued either by the rule engine (e.g., an emergency goal for combating
some dangerous gas that has been identified) or by the user layer (e.g., a request
for a beer). The composition module has to be aware of the home description
stored in the repository, as well as of the current state of the environment, as
seamlessly provided by the context awareness component. The working of the
module is based on AI planning [7], therefore we shall interchangeably refer to
it as the composition module or planner. Once a composition of services is com-
puted, it needs to be executed. The execution is controlled by the orchestration
module, which retrieves and invokes the physical services. Since the current state
of the environment constantly changes, and these changes may interfere with the
process in execution, the orchestrator should be able to use the feedback from
each invocation to drive the rest of the execution.

In the context of the SM4All project, we have instantiated the general ar-
chitecture described above using state-of-the-art and novel approaches we have
developed. In particular, we use a constraint-based approach to planning in order
to compose services [9], and UPnP [1] and OSGi [2] to provide a uniform infras-
tructure at the pervasive layer. In the followings, we describe in more details the
characteristics of each component and how it functions.

Pervasive Layer. The pervasive layer is a dynamic and open environment
where devices join and leave while offering and consuming services. A number
of requirements have to be satisfied. Firstly, new services should be automat-
ically detected, and the interested parties should be notified accordingly. Sec-
ondly, the services should be described in a standardized programmatic manner,
and it should be possible to control them in accordance with this description.
Thirdly, interested parties should be notified about changes of services’ states in
a event-driven manner, and communication between services should be enabled
regardless of the platform each service runs on. Moreover, the pervasive layer
should be able to perform well with varying loads and number of participating
devices.

To realize the layer and satisfy the above requirements, we use Universal
Plug and Play (UPnP) [1] as the protocol for the direct access to hardware
services, WSDL and SOAP protocols to expose high-level services, and the OSGi
framework [2] as the intermediate between the physical UPnP and the WSDL-
level service invocations. Figure 2 provides an overview of the architecture of the
pervasive layer. At the bottom sits the network layer where physical devices can
dock. UPnP devices use TCP/IP and UDP as basic networking protocols, but
alternatives to UPnP, such as Bluetooth or ZigBee (www.zigbee.org), are also
possible. According to the UPnP specification, a device includes a set of services,
each of which maintains some actions, i.e., operations that can be invoked, and
involves some state variables, which model the current state of the service.

OSGi provides the framework for the wrapping of devices (UPnP or non-UPnP
through the use of a proxy), providing a standard interface for interacting with
them. All components participating in the OSGi framework are deployed as so-
called bundles. The Controller is a special OSGi bundle that is responsible for

www.zigbee.org

172 E. Kaldeli et al.

Fig. 2. Pervasive layer architecture

handling events and controlling the services available in the framework, function-
ing as a bridge between the OSGi layer and the Web Service (WS) layer, which
provides a standardized API to the upper layers. On top are the clients, which
can invoke the services exposed by the available devices. Thanks to an event
propagation mechanism, registered clients are notified when UPnP services be-
come available or unavailable, and can subscribe to change events concerning the
state variables they are interested in. The clients may be a visualization and sim-
ulation tool (see Section 4), a BPEL orchestration engine [13], or a composition
layer.

The composition layer. The planner is the module standing at the core of the
composition layer. Its task is to compute a plan, that is, a sequence of actions
that need to be applied in order to satisfy a given goal. Starting from an initial
state, which in our case is reflected by the current values of all variables that
describe the home domain, the application of each action in the plan leads to
a new state, as prescribed by its effects. Referring to Figure 1, we go through
the interactions that take place between the planner and the other components
of the composition layer. The planner first retrieves the description of the home
stored in the repository, and forms the planning domain, by mapping each UPnP
action to a planning-level action, specified in terms of preconditions and effects
(see Figure 3). This process has to take place once for each house instance, and
be repeated only when a new service is discovered or removed.

The planner is being constantly informed about the current values of the
variables describing the house by the context module, which receives the noti-
fications about any changes in the environment in accordance with the event

Interoperation, Composition and Simulation of Services at Home 173

turn on ventilator
Preconditions:

ventilator := OFF
Effects:

ventilator := ON

move robot(destination)
Preconditions:

robotLocation �= destination ∧
(adjacent same room(robotLocation, destination) ∨
adjacent same room(robotLocation, destination) ∧
door open(room(robotLocation), room(destination))

Effects:

robotLocation := destination

Fig. 3. Examples of two planning-level actions

propagation mechanism mentioned in Section 3. Upon getting this information,
the planner updates its initial state accordingly. Whenever a goal is issued, the
planner performs a search to satisfy the goal under the conditions entailed by
the specific home and the current initial state. Then the actual plan is gener-
ated, and passed further to the orchestrator, which maps each planning-level
abstract action to the equivalent concrete UPnP action to be executed in the
pervasive layer. In Figure 3 we provide two examples of actions, as described
at the planner level. The first action turn on ventilator states that the action
can be applied if the ventilator is OFF in the current state, and has as a re-
sult that it will be ON in the next state. The action move robot(destination)
instructs how the robot can move to a destination, provided as a parameter.
The action can be applied if the destination does not coincide with the robot’s
current location robotLocation, and if either the current and the destination lo-
cations are adjacent to each other and belong to the same room, or, in the case
they are neighbor locations but in different rooms, the door between these two
rooms is open. Other actions, such as opening doors, can be applied to satisfy
the preconditions of the move robot action. This way, the moving will take place
in steps, with the robot maneuvering between neighbor locations, based on how
these are arranged in the specific house instance. Abiding by such a generic and
loosely-coupled encoding, the actions that are common in all houses have to be
specified once, without being tied to the details of each specific house.

The planner is a domain-independent CSP-based planner [9], which provides
a number of features that are of particular relevance to the requirements associ-
ated with smart domotic environments. Firstly, it supports efficient handling of
variables with large domains, which are frequently present in intelligent compo-
nent interactions—e.g., temperature measurements, or the number of beers in
our example. Moreover, current advances in the CSP field allow the employment
of powerful inference and search techniques to speed-up the search. An important
characteristic of the planner, that makes it especially well-suited for adaptable
and user-centric environments, is that it allows the expression and satisfaction of
extended goals. The supported goal language accommodates for temporal con-
structs and maintainability properties, and adopts a clear distinction between
sensing and achievement goals. The goal is expressed in a declarative way, i.e., it
prescribes what properties should be satisfied and under which conditions, but
not how the operations should be combined. A set of predefined-defined goals

174 E. Kaldeli et al.

Table 1. The goals corresponding to the test-case scenario

Goal 1:
watch TV

achieve-maint(TvState = ON ∧ sitrLight1 = ON ∧
sitrLight2 = OFF ∧ userLocation = AT SOFA) ∧

(achieve-maint(sitrWindow = OPEN)
under_condition_or_not(
find_out-maint(sitrT emperature > 30)))

Goal 2:
address smoke leak
(by Rule engine)

achieve-maint(kitchV entilator = ON ∧
TvState = ALARM ∧ kitchWindow = OPEN) ∧

(achieve-final(doorsLeadTo(KITCHEN) = CLOSED)
under_condition(

achieve-maint(personRoom �= KITCHEN)))

Goal 3:
smoke eliminated achieve-maint(kitchV entilator = OFF ∧ TV = OFF)
(by Rule engine)

Goal 4:
go to kitchen if safe

achieve-maint(userLocation = AT OV EN))
under_condition(

find_out-maint(kitchSmoke = OFF))

Goal 5:
bring cold beer

achieve-final(robotLocation = userLocation ∧
robotHolds = BEER ∧ beerTaken = COLD)

can be made available to the user, hidden behind the buttons that appear in
the user interface panel. If the goal issued can be satisfied, the generated plan
is executed and the UPnP devices change state accordingly. If the goal is not
satisfiable under the current context, a message is shown on the user interface.
Table 1 summarizes the goals that correspond to the scenario informally de-
scribed in Section 2. The syntax and semantics of most constructs can be found
in [9] (the language has been enriched with a couple of constructs thereafter).
In the case of Goal 1, the under_condition_or_not structure ensures that the
subgoal sitrWindow = OPEN will be satisfied if the temperature is higher
than 30 degrees, while if the temperature is lower than that, then only the rest
of the subgoals will be looked after. This is to be contrasted with the semantics
of the under_condition construct, which in Goal 4 for example dictates that
kitchSmoke = OFF should necessarily hold, otherwise the goal will fail. The
find_out type of subgoals take care of sensing. In the case of achieve-final
subgoals, the respective proposition has to be satisfied at the final state, but is
allowed to hold or not throughout the plan execution, like for example in Goal 5
where robotLocation will change many times while the robot is moving around
to find and get the beers. On the other hand, the maint annotation implies
that once the proposition is satisfied, it should remain true in all subsequent
states, preventing the variables involved to change many times in the plan states
traversal.

It is worth noting that the user does not have to know about the operational de-
tails of the service instances available in each specific house. It is up to the planner

Interoperation, Composition and Simulation of Services at Home 175

to find a “creative” solution based on the capabilities of the particular house and
the current context, without depending on any ad-hoc business processes. Another
useful feature is that, thanks to a mechanism of dynamic addition and removal of
constraints, continual planning for newly-issued goals can be performed in an ef-
fectual way, as well as the incorporation of recent changes reported by the context-
awareness component, after removing the obsolete information.

4 Simulation and Visualization

Testing and verifying the behavior of service orchestration in large pervasive
systems is a costly and error prone enterprise, which demands a vast amount
of time and effort. Therefore, an environment that mimics as closely as possible
the real setting, and is able to simulate a number of interactions and behaviors
can greatly help the development and testing of service-based pervasive comput-
ing applications. Following our initial implementation of a visualization tool for
home environments—the RuG ViSi tool—based on Google SketchUp [13], we
have upgraded it to a module compliant with the SM4All architecture, which is
capable of full bidirectional interactions with UPnP services or devices deployed
with a UPnP proxy. The visualization module is registered as a client of the
server on top of the OSGi framework. This way, one can control the devices at
the pervasive layer through their virtual equivalents, while the invocations of
the actual devices are in turn reflected at the visualization layer, by changing its
state. Figure 4 depicts a screenshot from the RuG ViSi tool, with a virtual house

Fig. 4. Simulated UPnP devices in the home

176 E. Kaldeli et al.

(in the center) surrounded by a number of UPnP devices: a door controller, a
wall-fan, a light, two window controllers, a fire alarm and a television set. A
UPnP module which represents the position of a user in the house, and can be
coupled with a location detector that provides information about the position
of the user, is also there (at the bottom). Real physical devices, that may follow
different standards and communication protocols, such as Bluetooth or ZigBee,
can also be linked to the RuG ViSi tool. For instance, we have coupled a light
service with a Sentilla mote (www.sentilla.com) equipped with an accelerom-
eter and a radio connection. The hardware is plugged in the OSGi layer and,
when shaken, turns on and off a specific light in the virtual home.1

5 Evaluation

We have implemented the architecture described in Section 3 and the simulation
and visualization tool described in Section 4. Next, we provide an evaluation of
our implementation to show the viability of a home solution based on such an
architecture. We start by evaluating the pervasive layer, and then look into the
composition layer and consider its interactions with the other modules in the
system.

Evaluating the pervasive layer. First, we test the latency in the pervasive
layer. The setup is based on using a 2.66 Ghz computer running Windows 7, 64
bit and Java 1.6.0 18. The devices used for the test are implemented as OSGi
bundles, i.e., the devices are simulated and wrapped in OSGi. Every device
has one service which has a single state variable and action. The clients are
implemented in Java using Apache CXF 2.2.5. For the purposes of the evaluation,
we define the following quantities and measures: t stimulus is the time at the
beginning of a UPnP action invocation at one of the test devices, and t response
the time a client receives a notification that a state variable changed as the result
of an action invocation. Latency is the absolute temporal difference between
stimulus and response of an action. This way, latency includes both service
control latency (latency related to the invocation of the action) and eventing
latency (latency related to the event notification mechanism).

In the context of this test, a device is a simulated OSGi UPnP device, with one
service, one state variable count of type integer, and one action called setCount,
which acts as a setter for count. Since each device has one service, the terms
(UPnP) device and (UPnP) service are used interchangeably. A client is an
instance of a WS client whose only function is to record the time, when it is
informed about state variable changes. Real clients, such as the visualization
client or the composition layer, would of course include more functionalities.

The testing protocol is as follows. After bootstrapping, each client subscribes
to device count state variables (of device count different devices). Then, the
following step is repeated iteration count times, with increasing values of cur-
rent iteration: for each device t stimulus is stored, its action is invoked with
1 A demo is available at www.youtube.com/watch?v=2w_UIwRqtBY ..

www.sentilla.com
www.youtube.com/watch?v=2w_UIwRqtBY

Interoperation, Composition and Simulation of Services at Home 177

current iteration as a value, and then a sleeping time of sleep time ms is is-
sued. Upon receiving a notification that a state variable has changed, each
client stores the current time in the t response which corresponds to the specific
state variable and iteration (as reflected by the received value current iteration).

0 5 10 15 20 25 30 35 40 45 50
5

10

15

20

25

30

35

40

45

50

55

number of clients

av
er

ge
 la

te
nc

y
in

 m
s

Fig. 5. Average latency with itera-
tion count = 10, device count = 100,
sleep time = 100ms

Finally, the time measurements are
aggregated to compute latency.
Figure 5 shows how the performance
of the system behaves when the num-
ber of clients increases, by plotting the
average latency. We also tried to in-
crease the number of devices up to
2.000 and have experienced latency
times in the order of 6 ms. It should
be noted that domotic systems involve
more complex devices, and therefore
the results of these tests should not
be used to make exact predictions on
how a real system will perform. The
evaluation however indicates that the
tool can support many clients and a
high number of devices, still provid-
ing very low response times. Next, we consider a very special type of client: the
composition module based on planning.

Evaluating the composition Layer. Considering the scenario of Section 2,
we implement all devices and services according to our architecture, and provide
an initial evaluation of the performance of the composition layer. The tests
have been run on a 1.83 Ghz computer running Debian GNU/Linuz 5.0, 32
bit and Java 1.6.0 12. The components are described with respect to the OSGI
UPnP Device Specification and are exposed as OSGi bundles, with each device
supporting one or more services, each of which involves a number of actions and
state variables. The constraint solver standing at the core of the planner is the
Choco v2.1.1 constraint solving library (www.emn.fr/x-info/choco-solver).
The composition layer is registered as a client to the WS server of the middleware,
and subscribes to all services comprising the domain. In the specific evaluation,
we model a home with 5 rooms, and 10 devices providing 21 UPnP actions (plus
the sensing operations that are defined for each state variable in the domain),
which affect 22 different state variables. The user himself is represented as one
of the services at the pervasive layer. It should be noted that a state variable can
be accessed or affected by more than one services, possibly belonging to different
devices, like the FridgeDoor variable, which, besides the Fridge device, can also
be directly set by the Robot, when for instance it wants to cool a beer. Each of
the exposed UPnP actions is mapped to an equivalent planner-level action, as
the ones shown in Figure 3.

We have tested the planner on each of the goals in Table 1, for different initial
states in accordance with our testing scenario. Table 2 shows two examples of

www.emn.fr/x-info/choco-solver

178 E. Kaldeli et al.

such plans. Each plan is represented as a partially ordered set of actions, with
comma-separated actions a1, a2 indicating that a1 has to be performed before
a2, while the actions included in the same set {a1, . . . , an} can be executed in
parallel. As one can see, the same goal for getting a cold beer results in different
plans, depending on the current context: if there are no beers in the fridge ([5a])
the robot has first to move to the storage to get a beer from there, and then
cool it by moving back to the fridge, while in the second case ([5b]) it can save
some effort by getting the requested beer directly from the fridge. It should be
noted that because of the use of random search strategies, the plans returned
may slightly vary between different runs.

Table 2. The plans generated for Goal 5 (getting a cold beer), for two different initial
states (only the initial values that are of interest to the goal are mentioned)

Goal/Initial state Plan

[5a]

Goal 5 (get cold beer)
with initial state :
robotLocation=AT START,
userLocation=AT SOFA,
kitchStorDoor=CLOSED,
sitrKitchDoor = CLOSED,
numOfBeersInFridge=0,
numOfBeersInStorage=8,
robotHolds=EMPTY,
fridgeDoor=CLOSED

open fridgeDoor, {open sitrKitchDoor,
open kitchStorDoor},
move robot to(AT OVEN),
move robot to(AT STOR SHELF),
robotGetsBeerFromStorage,
move robot to(AT FRIDGE),
robotCoolsBeer, {open fridgeDoor,
close kitchStorDoor},
robotGetsBeerFromFridge,
{move robot to(AT SOFA),
close fridgeDoor}

[5b]

Same as above but with
numOfBeersInFridge = 1

open fridgeDoor, open sitrKitchDoor,
move robot to(AT FRIDGE),
{robotGetsBeerFromFridge,
open kitchStorDoor, open bedrBathrDoor,
open sitrBedrDoor},
{move robot to(AT SOFA),
close fridgeDoor}

The time required by the planner to subscribe to the available UPnP services,
build the planning-level domain description, and sense the first initial state, by
invoking the UPnP sensing actions for all state variables, is 9.7 sec. This is the
‘home bootstrap’ time and needs to be executed only once per house and per set
of devices. We have measured the time the planner takes to generate a plan for
each of the goals, for a given initial state (the time taken by the other components
of the composition layer is negligible for the tests we run), as well as the time
needed for each plan to be actually executed by invoking the respective simulated
UPnP actions. These results are summarized in Table 3, along with the number
of actions included in the respective plan. We have used a random branching
strategy during constraint solving, by restarting the search after a maximum
number of backtracks. The reported times both for composition and execution

Interoperation, Composition and Simulation of Services at Home 179

Table 3. The time required for composition and execution. In [5a], which includes the
CoolBeer action, we have subtracted the time the robot waits for the beer to cool.

Test
Number of

actions in plan

Plan
Composition
(time in sec.)

Plan execution
(time in sec.)

[1] (watch TV) 10 1.5 1.1

[2] (address smoke leak) 9 1.1 0.8

[3] (smoke eliminated) 2 0.7 0.3

[4a] (go to kitchen, smoke on) 0 0.1 –

[4b] (go to kitchen, smoke off) 4–5 0.7 0.4

[5a] (get beer, fridge empty) 12–15 2.4 0.6

[5b] (get beer, fridge full) 6–9 2.1 0.5

are averaged over 5 separate runs. As already mentioned, the plans may differ
in some of the test situations, in which cases we mention both the minimum
and the maximum number of actions in the produced plans. It turns out that
the most demanding goal is 5 (getting a cold beer), especially in the case where
there are no beers already stored in the fridge, mainly due to the substantial
backtracking required to find a solution (up to 478 backtracks, compared to 47
backtracks in the worst case concerning the other goals). In general, the more
indirect the inter-relations between the different actions required to satisfy the
goal are, the more search and backtracks are needed to compute the desired
plan.

The changes entailed by the generated plan can also be visualized in the
simulated home environment. The visualization client has been tested on a
more restricted modelling of a house consisting of two rooms (see footnote 1 in
Section 4).

6 Related Work

In [4,3] we survey domotic standards and propose to use the Web service stack
as a means to solve the interoperability problem at home. We show how WS-
Notification can be used as an event-based mechanism for addressing emergency
situations in the home, most notably, the fall of an elder. The basic architecture
is an eventing one with no notion of context and coordination of service beyond
basic action/reaction interactions. The issue of composing domotic components
has been addressed in [18], where composite services are deployed as BPEL
processes, which are made available in a semantically enriched OSGi platform.
These BPEL processes are predefined and not created at run-time, based on
sensed information. A more dynamic approach inspired from AI techniques is
adopted in [17], where the problem of service integration is cast to Distributed
Constraint Optimization. This is a highly distributed framework, however it
suffers from an inflexible and cumbersome domain modelling process, while the

180 E. Kaldeli et al.

requests the user can make are restricted to a set of rather simple commands
that involve only a limited number of devices. AI planning techniques for Web
Service composition have been proposed by a number of authors, e.g., [12,11,14].
A common denominator of most of the approaches in this area is that they can
support a restricted variety of composite functionalities, either because they
rely on—to a lesser or greater extent—fixed templates of pre-anticipated user
behaviors, or because they support simple goals, with limited expressive power.

From the pervasive layer perspective, Service Oriented Architectures have
been widely proposed, e.g., UPnP or Jini [6]. A richer form of “pervasive SOA”
is proposed in [15], where the importance for home networks with platform inde-
pendence and loose coupling is advocated. In [15] the challenges that currently
exist in interconnecting home devices are described, and it is recognized that
OSGi can be useful for developing smart homes. In [16], a semantic annotation
of the OSGi description is proposed to improve the discovery process. Looking
at UPnP [1], its use as low level home middleware has been often proposed,
e.g., [10].

7 Concluding Remarks

Service-Oriented computing provides an advanced approach to building dynamic
systems. If its initial thrust came from the need of integration of business infor-
mation systems, the future may add a new important area: pervasive computing
with our homes being an important instance. We have designed, implemented
and evaluated a generic SOA for homes which supports highly dynamic comput-
ing context. Our initial evaluation indicates that the approach using AI planning,
context awareness, and OSGi/UPnP device wrapping is a viable one.

To achieve a robust, scalable and user-friendly solution, many research chal-
lenges remain open. Dealing with concurrency and possible contradictions that
may arise when events interfere with the execution of a plan, is an important
extension of our framework. Improving the efficiency of the planner used for
composition, and moving towards generating optimal plans, is also high in our
agenda, as are context updates and efficiency in sensing. Another direction of fu-
ture work involves further automating the process of transforming the pervasive-
level services to planning-level actions by using an ontology that provides the
necessary semantic annotations. Security, privacy, and user interfacing are also
important topics currently investigated by other partners of the SM4All project.

References

1. UpnpTM device architecture version 1.1 (2008), http://www.upnp.org
2. OSGi service platform core specification release 4 (2009), http://www.osgi.org
3. Aiello, M.: The Role of Web Services at Home. In: IEEE Web Service-based Systems

and Applications, WEBSA (2006)
4. Aiello, M., Dustdar, S.: A domotic infrastructure based on the web service stack.

Pervasive and Mobile Computing 4(4), 506–525 (2008)

http://www.upnp.org
http://www.osgi.org

Interoperation, Composition and Simulation of Services at Home 181

5. Baldoni, R., Cerocchi, A., Lodi, G., Montanari, L., Querzoni, L.: Designing highly
available repositories for heterogeneous sensor data in open home automation sys-
tems. In: Lee, S., Narasimhan, P. (eds.) SEUS 2009. LNCS, vol. 5860, pp. 144–155.
Springer, Heidelberg (2009)

6. Dobrev, P., Famolari, D., Kurzke, C., Miller, B.A.: Device and service discovery in
home networks with osgi. Communications Magazine, IEEE 40(8), 86–92 (2002)

7. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice.
Morgan Kaufmann, Amsterdam (2004)

8. Guger, C., Daban, S., Sellers, E., Holzner, C., Krausz, G., Carabalona, R.,
Gramatica, F., Edlinger, G.: How many people are able to control a P300-based
brain-computer interface (BCI)? Neuroscience Letters 462, 94–98 (2009)

9. Kaldeli, E., Lazovik, A., Aiello, M.: Extended goals for composing services. In:
Proceedings of the 19th International Conference on Automated Planning and
Scheduling, ICAPS 2009, Thessaloniki, Greece, September 19-23, AAAI, Menlo
Park (2009)

10. Kim, D.S., Lee, J.M., Kwon, W.H., Yuh, I.K.: Design and implementation of home
network systems using upnp middleware for networked appliances. IEEE Transac-
tions on Consumer Electronics, 963–972 (2002)

11. Kuter, U., Sirin, E., Nau, D., Parsia, B., Hendler, J.: Information Gathering During
Planning for Web Service Composition. Journal of Web Semantics (2004)

12. Lazovik, A., Aiello, M., Papazoglou, M.: Planning and monitoring the execution
of web service requests. In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.P.,
Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 335–350. Springer, Heidelberg
(2003)

13. Lazovik, E., den Dulk, P., de Groote, M., Lazovik, A., Aiello, M.: Services inside
the smart home: A simulation and visualization tool. In: Baresi, L., Chi, C.-H.,
Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 651–652. Springer,
Heidelberg (2009)

14. Mart́ınez, E., Lespérance, Y.: Web Service Composition as a Planning Task: Exper-
iments using Knowledge-Based Planning. In: Proc. of the Workshop on Planning
and Scheduling for Web and Grid Services, ICAPS 2004 (2004)

15. Ngo, L.: Service-oriented architecture for home networks. In: Seminar on Internet-
working, pp. 1–6 (2007)

16. Panagiotis Gouvas, T.B., Mentzas, G.: An OSGi-Based Semantic Service-Oriented
Device Architecture. In: OTM 2007, pp. 773–782 (2007)

17. Pecora, F., Cesta, A.: DCOP for Smart Homes: a Case Study. Computational
Intelligence 23(4), 395–419 (2007)

18. Redondo, R.P.D., Vilas, A.F., Cabrer, M.R., Arias, J.J.P., Duque, J.G., Solla,
A.G.: Enhancing residential gateways: A semantic OSGi platform. IEEE Intelligent
Systems 23(1), 32–40 (2008)

19. SM4All: Smart hoMes for All (2008-2011), http://www.sm4art-project.eu

http://www.sm4art-project.eu

Efficient QoS-Aware Service Composition with a

Probabilistic Service Selection Policy

Adrian Klein1, Fuyuki Ishikawa2, and Shinichi Honiden1,2

1 The University of Tokyo, Japan
2 National Institute of Informatics, Tokyo, Japan

{adrian,f-ishikawa,honiden}@nii.ac.jp

Abstract. Service-Oriented Architecture enables the composition of
loosely coupled services provided with varying Quality of Service (QoS)
levels. Given a composition, finding the set of services that optimizes
some QoS attributes under given QoS constraints has been shown to
be NP-hard. Until now the problem has been considered only for a sin-
gle execution, choosing a single service for each workflow element. This
contrasts with reality where services often are executed hundreds and
thousands of times. Therefore, we modify the problem to consider re-
peated executions of services in the long-term. We also allow to choose
multiple services for the same workflow element according to a prob-
abilistic selection policy. We model this modified problem with Linear
Programming, allowing us to solve it optimally in polynomial time. We
discuss and evaluate the different applications of our approach, show in
which cases it yields the biggest utility gains, and compare it to the
original problem.

1 Introduction

1.1 SOA

Service-Oriented Architecture (SOA) consists of a set of design principles which
enable defining and composing interoperable services in a loosely coupled way.
The value of SOA lies in assuring such compositions are easily and rapidly pos-
sible with low costs. Thus, service composition is a key to SOA. Especially,
achieving an automatic service composition remains a major challenge [1].

When selecting a service not only functional requirements, but also the non-
functional requirements [2], expressed by Quality of Service (QoS) attributes,
are very important. Especially, when there are many functionally equivalent
services, the QoS becomes the deciding factor. Thus, QoS-awareness is of crucial
importance in service composition.

QoS-aware automatic service composition is employed in two different prob-
lem settings: In the planning problem the composition itself is computed by
taking into consideration available input data and desired output data. While
the heuristics used for the planning can be geared towards optimizing QoS [3],
finding a functionally sufficient composition is the main focus.

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 182–196, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Efficient QoS-Aware Service Composition 183

Fig. 1. Sample Composition

This contrasts the traditional composition problem1 where the functional part,
the composition itself, is already given, e.g. as a business process specified with
BPEL [4], requiring some inputs, invoking some tasks, and producing some de-
sired outputs (Fig. 1).

The main focus lies in selecting the set of services, with one service per task, to
execute the composition optimally with regards to QoS. This means to maximize
the overall QoS of the composition according to given preferences while adhering
to given QoS constraints [5]. Of course, the output of the planning problem could
be used as an input for the composition problem.

1.2 Composition Problem

In this paper we will focus on the latter, the composition problem. For example,
if we take a simple workflow consisting of a sequence of two tasks X and Y ,
and corresponding services S1, S2 and S3, S4 that can fulfill X and Y , respec-
tively, there are four possibilities to execute this workflow (Fig. 2). Out of those
possibilities, the most common approach is to select the optimal set of services
regarding QoS preferences and constraints given [5,6].

Fig. 2. Sample Composition Problem

Trying all combinations obviously takes exponential time. Modeling it as a
Multi-Choice Multidimensional Knapsack problem (MMKP) gives the same re-
sult, as MMKP is known to be NP-hard [7]. In order to make use of existing
solvers, the problem is usually modeled by Integer (Linear) Programming (IP),
which is also NP-hard to solve in the general case. Thus, as of today, the problem
cannot be solved efficiently in polynomial time. This is an obstacle to the vision
of SOA encompassing a future “Enabling a Web of billions of services”2 where
1 We will refer to this problem as the composition problem from now on.
2 Credo & goal of the SOA4ALL project (part of the European FP7): www.soa4all.eu

184 A. Klein, F. Ishikawa, and S. Honiden

efficient algorithms are crucial in order to enable fast composition queries and
adaptation at runtime.

1.3 Contribution

In the present state of the art, approaches for the composition problem implicitly
assume that a service is executed only a single time. As a result, one service is
statically assigned to each task. We believe that in many situations a service
composition will be executed repeatedly. Thus, we propose to optimize the QoS
for the long-term, which implies the following:

1. There is no need to choose always the same set of services for each execution.
2. QoS constraints should also be applied for the long-term, e.g. keeping to a

monthly budget or assuring a hourly throughput.

Fig. 3. Sample Probabilistic Composition

For instance, the combinations {S1, S3} and {S2, S4} could represent different
trade-offs to execute the given workflow: One being fast/expensive and the other
cheap/slow. In such a case, for the long-term an optimal solution will most likely
contain a probabilistic mix of those two combinations in a certain ratio (Fig. 3)
in order to satisfy constraints on budget and throughput while adhering to the
QoS preferences given. We propose that such a solution is represented by a
set of probabilistic service selection policies. For each task a policy defines the
probability that a service is chosen for it at runtime.

As for the computational approach, we propose to use linear programming
(LP). We do not restrict our problem to integer solutions, as we represent the
decision to choose a certain service with a continuous probability value, not a
(binary) integer value. Thus, besides this difference, we can use identical model-
ing as in IP, and, at the same time, profit from efficient polynomial algorithms
to solve the problem. The only caveat is that such probabilistic modeling also
changes the nature of the specified QoS constraints, forcing them to apply to the
long-term. Later we will discuss the detailed implications of this fact, and show
some alternative ways to still guarantee QoS constraints for each execution, if
needed.

To summarize, we propose an approach for the service composition problem
that is both efficient and QoS-aware, maximizes QoS over the long-term, and
results in a set of probabilistic service selection policies. According to this policies
the services will be chosen probabilistically at runtime.

The structure of this paper is as follows: Section 2 surveys related work.
Section 3 defines our approach. Section 4 explains the possible applications of our

Efficient QoS-Aware Service Composition 185

approach. Section 5 evaluates the performance and effectiveness of our approach.
Finally, Section 6 concludes the paper.

2 Related Work

In this section we survey related work which can be roughly classified into four
different categories: work laying the foundation for our approach, work presenting
an alternative to our approach, complementary work, and work sharing similar
ideas.

The foundation for the QoS-aware composition problem is given in [5]. Many
common notions we use are introduced there, and the problem is formalized and
solved using IP.

As performance is such an important issue there are many alternative ap-
proaches tackling it. One popular theme is to to reduce the search space with
heuristics [6,8,9]. Another alternative is to use a genetic algorithm to solve the
problem [10]. Only optimizing locally is also an option [11], though its concep-
tion is slightly opposite to our idea that multiple services can be mixed and
(globally) compensate each others QoS. In comparison to our approach, all this
approaches are also efficient, but find only approximate solutions to the given
optimization problem.

A complementary approach is to compute the skyline of the services involved
in the composition beforehand in order to prune services that can never be part
of an optimal solution [12]. Obviously, this can be easily integrated with our
approach.

There is also work that shares ideas on a conceptual level. In [13] multiple
services for the same task are provisioned for adaptation at runtime in the case
that one of them fails. For instance, if the first service for a task fails, the second
one will be called, and so on. The goal is to improve the failure resilience of a
service execution, but not to combine those multiple services by calling them
probabilistically at runtime. Regarding considering several executions over the
long-term, there is not much related work, but in [14] we already showed an
approach that optimizes the service selection for a specific user given his expected
usage over the long-term. To the best of our knowledge no related work exists
that considers repeated executions of services in the long-term for QoS-aware
optimization though.

In conclusion our contribution lies in optimizing the QoS in the long-term
efficiently in polynomial time and in selecting between multiple services proba-
bilistically at runtime.

3 Approach

In this section we define our approach formally. The notions, which we will
briefly introduce in this section, follow the IP versions of the problem given in
[5,6]. Afterwards, we explain what the consequences of modeling the problem as
LP are with regards to the properties that hold for the solutions found.

186 A. Klein, F. Ishikawa, and S. Honiden

3.1 Formal Definition

As in [6], the following composition patterns are supported: Seq (sequential ex-
ecution), AND (parallel execution), XOR (alternative execution with certain
probabilities pi) and Loop (with maximum loop count x).

Fig. 4. Composition patterns: Seq, AND, XOR, Loop

For any given workflow, we have to aggregate the QoS according to the compo-
sition patterns. As usual, we unroll any loop to a sequence according to the max-
imum loop count. Then, the QoS gets aggregated according to the aggregation
functions presented in [15]. (Also attributes and their corresponding constraints
aggregated by non-linear functions are linearized for the LP formalization, e.g.
by taking their logarithm.) Given n aggregated QoS attributes q1, . . . , qn, we
normalize them like in [5] in order to limit their values to [0, 1] and to be able
to simply maximize the weighted sum of their normalized values q̃1, . . . , q̃n:

n∑

i=1

wiq̃i (1)

Regarding the constraints, we first consider a sample workflow that consists of
the four tasks {X, Y, A, B} (Fig. 5). A and B are executed in parallel, while the
rest is executed sequentially. Thus, each execution of this workflow will execute
all four tasks. In addition, there are two paths through the workflow, namely
{X, A, Y } and {X, B, Y }. Therefore, we maximize the sum of (1) over all paths,
as this has been proven to produce the best results in [6].

Fig. 5. Sample Workflow

The constraints Qmin
i /Qmax

i are applied on the aggregated non-normalized
QoS of the workflow:

qi ≥ Qmin
i ∧ qi ≤ Qmax

i (2)

We follow [6] in that a constraint needs to be applied to the whole workflow,
and/or to each path, depending on the particular kind of QoS and the workflow.
For example, for response time in conjunction with parallel executions paths,

Efficient QoS-Aware Service Composition 187

we have to apply the constraint for each path (e.g. {X, A, Y } and {X, B, Y }),
while for price we have to apply its constraint to the whole execution (e.g.
{X, Y, A, B}).

Regarding the selection variables, for each task ti, we introduce as many
variables sij as there are services capable of performing that task. This variables
represent the possible choices in our LP problem. In our approach, they represent
probabilities and, thus, are not constrained to be integers which is a difference
to the notions in [5,6]. Only their sum must be equal to one for each task, as
usual.

3.2 Relaxation

In general, removing the integer restriction on the variables of an IP problem is
called relaxing the IP problem. Thus, from now on, we will refer to the former IP
problem as the original problem and to our LP problem as the relaxed problem.

One important consequence is that we can solve our relaxed problem with
regular linear programming for which efficient algorithms like Simplex or Interior
Point exist that solve the problem in polynomial time. This is opposed to the
algorithms needed for IP that are exponential in the worst-case as IP is NP-hard.
The corresponding caveat is that this changes the nature of our constraints. For
instance a solution to the relaxed problem does not necessarily solve the original
problem, as seen from a small example workflow consisting of a single task with
two services A and B chosen for it according to Table 1. Such a probabilistic
combination of A and B will perfectly satisfy a constraint of 100ms on the
response time, as the QoS of A and B are multiplied by their probabilities before
being compared to the constraint. Thus, individual executions will violate the
constraint, even if in the long-term the expected value of the response time fulfills
the constraint. We will show some approaches that deal with this issue in the
next section where we describe how our approach can be applied. Those enable
us to get closer to guaranteeing QoS constraints for each execution, if needed.

Regarding the utility obtained, the solution to our relaxed problem is guaran-
teed to be at least as good, or better than the solution to the original problem.
That is because the feasible solutions of the original problem are only a sub-
set of the feasible solutions of the relaxed problem. The absolute difference in
utility depends on the formalization of the problem (e.g. scaling of QoS), but
the relative difference can become arbitrary large. Intuitively, a constraint could
forbid to choose a good solution in the original problem, even if the constraint
is only violated slightly. On the contrary, in the relaxed problem we can choose
this solution, if we can compensate this small violation in the long-term.

Table 1. Example Service Combination

Service Probability Response time

A 50% 150ms

B 50% 50ms

188 A. Klein, F. Ishikawa, and S. Honiden

3.3 Result

As for the result of our approach, we get a set of probabilistic service selection
policies, as illustrated in Fig. 6. At runtime the services are chosen according
to those policies. An approach that also tries to limit the deviation from the
policies at any given time should be preferred to a purely random strategy.

Fig. 6. Probabilistic Service Selection Policy

4 Application

In this section we show four different ways of applying our approach in practice:
We apply it to solve the original and the relaxed problem. Also it can be applied
to solve a refinement of our relaxed problem, and, as part of a computer-aided
decision process, it can be applied, too.

4.1 Original Problem

One interesting application is to use the solution of the relaxed problem to find a
solution for the original problem. The advantage of doing this is the performance
gain compared to using IP. This raises the questions, if this is possible, and, if
such solutions are optimal. To answer these questions, it is important to examine
how the solution to the relaxed problem differs from the one for the original
problem. As we get a set of probabilistic service selection policies instead of a
set of concrete services, a single solution to the relaxed problem contains many
potential solutions to the original problem. But, as we know, those solutions only
satisfy the QoS constraints in the long-term.

For example, the probabilistic composition in Fig. 7 satisfies a constraint of 3.2
seconds on its response time3, and to assure this constraint for each execution,
we can choose the subset of possible executions colored in grey. Apparently, if
we have just a single constraint, a solution that satisfies the QoS constraint for
each execution must exist. Given multiple QoS constraints this is no longer true,
as no single solution might satisfy all constraints. For example with constraints
Q and R, we might have two solutions, one over-satisfying Q, but not satisfying
R, and the other one vice versa. Thus, in the long-term their combination may
satisfy Q and R, but none of them satisfies both. This means that we may not
find such a solution in all cases, especially, if there are many constraints. In
3 The services are annotated with their response times in s(econds) in the figure.

Efficient QoS-Aware Service Composition 189

Fig. 7. Choosing a Subset of a Probabilistic Composition

general, it is quite difficult to answer how good the quality of such a solution
will be compared to the optimal solution. Therefore, we will rely on giving some
empirical results later in the evaluation part. One note regarding the scalability:
In order to find such a solution, we have to look at all possible solutions induced
by the probabilistic policies. If the number of possible solutions becomes too
large, it might be necessary to use a Monte-Carlo approach, just probabilistically
checking some solutions instead of an exhaustive search in order not to loose the
original performance benefit.

4.2 Relaxed Problem

The most obvious application is, of course, to apply the obtained solution to the
relaxed problem. We already discussed that this gives us a better utility than
solving the original problem. Also the constraints on the QoS are only guaranteed
for the long-term. We already mentioned some cases for which this works really
well, e.g. for a budget or throughput applied monthly, daily, et cetera. The
question is in which cases this is not acceptable. The most general answer is:
when a QoS constraint is important for each and every single execution. While
it is difficult to imagine a budget, throughput, or availability to be required for
every execution, QoS that directly correspond to the experience of the service
user might be a concern. One prime example is response time: a user might only
tolerate a certain maximum response time when he calls a service. Also, even
if a certain deviation is still acceptable, it might affect the impression of how
good a service is. In such cases, not only guaranteeing the QoS constraint in
the long-term, but additionally assuring only a limited deviation from it seems
better than directly taking the solution to the relaxed problem. This takes us to
next application of our approach.

4.3 Refined Relaxed Problem

Applying our approach to solve a refinement of the relaxed problem is the next
logical step. The idea is to solve the problem iteratively over and over again,
refining it slightly in each iteration to get closer to the desired result, e.g. guar-
anteeing some QoS constraints for every execution, or at least for a sufficient
percentage (e.g. 99.9%) of the executions. If a refinement with a sufficiently
good solution can be obtained in a limited (e.g. constant) number of iterations,
then we do not even lose the performance benefit either. In general, there are
two basic refinements: changing an existing constraint, and adding an additional
constraint. Both share the common refinement process shown in Fig. 8.

190 A. Klein, F. Ishikawa, and S. Honiden

Fig. 8. Refinement Process

For example, to guarantee a better response time for each execution we can
make the constraint on response time tighter. This will improve QoS in the long-
term and also for each execution on average. Doing this many times might finally
produce a solution that satisfies our original constraint for every execution. As
we are constraining an average value to guarantee a certain maximum value,
this might not always succeed though. Depending on the problem, no matter
how good the average is, some outliers might still get included; till the point
where a even better average is not possible anymore. Therefore, this kind of re-
finement might fail and also produce suboptimal solutions, because constraining
the average is not our real goal.

An alternative is to add additional constraints with each iteration. The idea is
that the found solution contains many combinations of which some over-satisfy
our QoS constraints and some under-satisfy them. If we can limit the amount
of those under-satisfying them, we can increase the probability that the QoS
constraints hold for every execution. In order to do so, we can analyze all found
combinations, and restrict a weighted sum of the probabilities of services con-
tributing to under-satisfying such a constraint. Lowering the upper bound on this
sum and heuristically determining those weights by how often and how much a
service contributes to the under-satisfaction should restrict the maximum value
of the QoS in question, and give a good utility. Apparently, this assumes two
things:

1. Services not selected in prior iterations cannot be selected in later iterations.
2. At least some of the solution’s combinations satisfy the QoS constraints.

Regarding the first point, we only want to analyze a hopefully small number of
combinations found in the LP problem instead of an exponential number of all
combinations possible. As we saw, the latter is not guaranteed, but guaranteeing
only a small number of QoS for each execution might still work out quite often
and provide better results than the first refinement given a good heuristic for
the weights mentioned. Also combining both types of refinements is possible:
tighten the corresponding QoS constraint till a satisfying combination is found,
and then constrain all under-satisfying combinations as far as needed.

4.4 Computer-Aided Decision Process

The previous applications all had in common that the problem is solved in an
automated way. Of course, this is useful in many cases, but it may not be possible

Efficient QoS-Aware Service Composition 191

Fig. 9. Decision Process

or desirable in all cases. For such cases we suggest applying our approach as part
of a computer-aided decision process. It has some similarities with the previous
application in that the problem gets refined in the process. Only the decision of
refining itself and of the kind of refinement is left up to a human. The motivation
behind that is the difficulty of defining the optimization problem in terms of the
objective function and the constraints. Thus, the idea is to let a human actively
control and evaluate the refinement of an initial solution till it fits his needs,
instead of forcing him to perfectly specify the objective and constraints in the
beginning that would automatically lead to a solution. The decision process
could then look similar to Fig. 9 which shows the human activities in grey. In
the analysis part e.g. each QoS constraint could be analyzed in depth:

– How often is the constraint kept for each execution?
– How big is the possible deviation from the target value?
– How does the probability distribution of the possible values look like?

A small deviation might for example be acceptable. Interpreting the problem as a
multi-objective optimization would also be possible, so instead of computing just
one optimal solution, several Pareto-optimal solutions could be computed, each
representing different trade-offs. Our approach is particularly suited for such kind
of applications, because of its performance: being able to run our computations
with different problem settings over and over again in a reasonable time, and,
thus, being able to explore different scenarios makes it possible to realize such a
computer-aided design process.

5 Evaluation

In this section we evaluate our approach taking into account the applications
mentioned in the previous section. We evaluate its performance and scalability.
Also we analyze the obtained utility gains, and show the results of applying our
approach to the original problem.

192 A. Klein, F. Ishikawa, and S. Honiden

5.1 Settings

The evaluation was run on a machine with an Intel Core 2 Quad CPU with 3
GHz. As a solver we used CPLEX, a state of the art IP solver from IBM, called
from within our Java program which was given 1.5 GB of memory. We gener-
ated our workflows as follows: given the workflow size we randomly inserted some
control structures, like AND, XOR, et cetera. Unless stated otherwise, the QoS
attributes were independently generated with random uniform distributions and
typical aggregation patterns. We varied the weights and constraints systemati-
cally. The execution time for the optimization was limited to 40 seconds for each
individual problem.

5.2 Performance and Scalability

For comparing the performance of LP and IP, we chose 4 attributes with 4 cor-
responding constraints. For each possible workflow size, 4 different workflows
were generated and solved with different weights and constraints for the QoS,
resulting in about 250 solved problems per datapoint for both Fig. 10(a) and
10(b). First we compare the performance our LP approach with IP: as shown
in Fig. 10(a), the performance is much better for our approach, compared using
workflow size 5. We increased the number of services that are available for each
task in the workflow from 10 to 40. We can see that already at this small scale
using IP at runtime for adaptation or queries is not possible anymore. This is
not surprising, because efficient polynomial algorithms are only available for LP.
Secondly, we look at the scalability of our LP approach. In Fig. 10(b) we can
see the performance of the approach for different workflow sizes (#10–40) and
different number of services per task again. The times are below 100ms even
for workflows with 40 tasks and 80 services available for each of the tasks. Such
performance allows the use even at runtime or under strict performance require-
ments, e.g. if we want to apply our approach as discussed in the previous section,
solving the problem not only once, but several times with different settings.

(a) LP vs. IP (b) LP

Fig. 10. Solution Time

Efficient QoS-Aware Service Composition 193

(a) 4 Attributes (b) 8 Attributes

Fig. 11. Chosen Services per Task

In addition to this, we also analyze how the number of combinations contained
by the solutions found scales with the size of the problem. By comparing Fig. 11(a)
and Fig. 11(b) we can observe that the maximum number of chosen services per
task for each solution seems to be limited only by the number of attributes. Addi-
tionally, there is no significant increase in the the averagenumber of services chosen
per task. The observed limit is plausible, because each combination represents a
specific trade-off that contributes to an optimal solution, and the number of trade-
offs is obviously limited by the number of attributes. Still, the number of combina-
tions per workflow increases exponentially in the worst-case. Hence Monte-Carlo
methods will indeed be required to explore the combinations efficiently.

5.3 Utility

For evaluating the utility obtained by our approach, we chose 6 attributes of
which 3 were bounded with constraints. We generated 4 different workflows of
size 5 with 5 services available for each task. Then, we solved the problem with
some different weights and many different constraints for the QoS, resulting in

(a) Independent QoS (b) Correlated QoS

Fig. 12. Utility vs. Constraint Satisfaction

194 A. Klein, F. Ishikawa, and S. Honiden

(a) Independent QoS (b) Correlated QoS

Fig. 13. Utility vs. Tightness of Constraints

over 1200 solved problems for each of the following figures. The most important
factor that we varied was how to generate the QoS attributes. First, we generated
them independently, and, secondly, we generated them assuming a correlation:
all QoS attributes xi were generated independently, except for one attribute xp

which we calculated from the formula4 e
∑

i�=p xi . Thus, xp represents a common
price attribute, reflecting that services with better QoS are more expensive. As
we can see in Fig. 12(a), the utility obtained does not exceed the utility of the
IP approach (which corresponds to 100%) by much in most cases given indepen-
dent QoS, but at the same time the constraint satisfaction is still quite high on
average: each constraint is satisfied in at least over 60% of all executions induced
by the probabilistic policies. Still there are some cases, where the utility of the
composition is improved to 150% of the IP solution. In the second setting with
correlated QoS, we see much higher utility gains shown in Fig. 12(b). One reason
is obvious: if we want to achieve good QoS, because of the high cost of selecting
a single service that is exceptionally good for all QoS attributes, it is cheaper to
achieve the same QoS by combining several services that may only be average
on most QoS and good for some QoS. Another observation that we can make
from Fig. 13(a) and 13(b) is that the tightness of the constraints chosen influ-
ences the (potential) utility gains. We define the tightness as a percentage value
regarding the location of the constraint between the minimum and maximum
QoS possible for a workflow. For loose constraints the solutions of the IP and
LP problem converge, and for tighter constraints they diverge greatly.

5.4 Original Problem

We again chose 6 attributes of which 3 were bounded by constraints, and gen-
erated 4 different workflows for each size (#5 and #10) with 5 or 10 services
available for each task. Then, we solved the problem with different weights and
constraints for the QoS which were either independent (ind) or correlated (corr),

4 Other linear formulas also produced the same tendencies.

Efficient QoS-Aware Service Composition 195

(a) Solvability (b) Solution Quality

Fig. 14. Solving the Original Problem

resulting in over 600 solved problems for each data point in the following figures.
From Fig. 14(a) we can see that for each data point a solution of the original
problem can be derived in over 80% of the problems. The solution quality in
terms of utility achieved is not as good as when solving the IP directly, but,
with less than 3% deviation from the optimal IP solution, the approximation
quality is very high, as we can see in Fig. 14(b).

6 Conclusion

In this paper we introduced an efficient approach for the composition problem
that optimizes QoS for repeated executions of services in the long-term. Our
approach produces a set of probabilistic service selection policies that must be
evaluated at runtime to choose a particular service accordingly. We demonstrated
several potential applications of our approach beyond the mentioned scenario,
including a computer-aided decision process. We evaluated our approach and
showed that it is indeed efficient and scalable for the needs envisioned in SOA.
We also showed in which cases our approach yields the most utility gains over
common approaches. Additionally, we showed that our approach can be used
to solve the traditional composition problem in many cases and produces near-
optimal solutions.

Exploring the various applications of our approach in depth, and develop-
ing corresponding methodologies and tools are possible extensions of our work.
Using our approach in conjunction with a genetic algorithm to compute a multi-
objective optimization yielding multiple Pareto-optimal solutions for different
trade-offs would also be a possible extension of our work.

Acknowledgments

We thank Nobuaki Hiratsuka for his work using multiple services that challenged
our assumption to just select a single service for each workflow element. We also
like to thank Florian Wagner and Benjamin Klöpper for the fruitful discussions
that helped form our approach.

196 A. Klein, F. Ishikawa, and S. Honiden

References

1. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F., Kramer, B.J.: Service-
oriented computing: A research roadmap. In: Service Oriented Computing (SOC).
Dagstuhl Seminar Proceedings (2006)

2. O’Sullivan, J., Edmond, D., Ter Hofstede, A.: What’s in a Service? Distributed
and Parallel Databases 12(2–3), 117–133 (2002)

3. Chen, K., Xu, J., Reiff-Marganiec, S.: Markov-HTN Planning Approach to En-
hance Flexibility of Automatic Web Service Composition. In: ICWS 2009: IEEE
International Conference on Web Services, pp. 9–16 (2009)

4. OASIS Committee Draft: Web Service - Business Process Execution Language (WS
BPEL), Version 2.0 (2006)

5. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality Driven
Web Services Composition. In: WWW 2003: Proceedings of the 12th International
Conference on World Wide Web, pp. 411–421 (2003)

6. Yu, T., Zhang, Y., Lin, K.-J.: Efficient algorithms for Web services selection with
end-to-end QoS constraints. ACM Transactions on the Web 1(1), 6 (2007)

7. Pisinger, D.: Algorithms for Knapsack Problems. PhD thesis, University of Copen-
hagen, Dept. of Computer Science (1995)

8. Menascé, D.A., Casalicchio, E., Dubey, V.: On optimal service selection in Service
Oriented Architectures. Performance Evaluation 67(8), 659–675 (2009)

9. Lecue, F., Mehandjiev, N.: Towards Scalability of Quality Driven SemanticWeb
Service Composition. In: ICWS 2009: IEEE International Conference on Web Ser-
vices, pp. 469–476 (2009)

10. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for QoS-aware
service composition based on genetic algorithms. In: GECCO 2005: Proceedings of
the 2005 onference on Genetic and volutionary Computation, pp. 1069–1075 (2005)

11. Alrifai, M., Risse, T.: Combining global optimization with local selection for ef-
ficient QoS-aware service composition. In: WWW 2009: Proceedings of the 18th
International Conference on World Wide Web, pp. 881–890 (2009)

12. Alrifai, M., Skoutas, D., Risse, T.: Selecting Skyline Services for QoS-based Web
Service Composition. In: WWW 2010: Proceedings of the 19th International Con-
ference on World Wide Web, pp. 11–20 (2010)

13. Stein, S., Payne, T.R., Jennings, N.R.: Flexible provisioning of web service work-
flows. ACM Transactions on Internet Technology 9(1), 1–45 (2009)

14. Klein, A., Ishikawa, F., Bauer, B.: A Probabilistic Approach to Service Selection
with Conditional Contracts and Usage Patterns. In: Baresi, L., Chi, C.-H., Suzuki, J.
(eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 253–268. Springer,Heidelberg
(2009)

15. Jaeger, M.C., Rojec-Goldmann, G., Muhl, G.: QoS Aggregation for Web Service
Composition using Workflow Patterns. In: EDOC 2004: Proceedings of the Eighth
IEEE International Enterprise Distributed Object Computing Conference, pp. 149–
159 (2004)

Using Real-Time Scheduling Principles in Web Service
Clusters to Achieve Predictability of Service Execution

Vidura Gamini Abhaya, Zahir Tari, and Peter Bertok

School of Computer Science and Information Technology
RMIT University, Melbourne, Australia

{vidura.abhaya,zahir.tari,peter.bertok}@rmit.edu.au

Abstract. Real-time scheduling algorithms enable applications to achieve pre-
dictability in request execution. This paper proposes several request dispatching
algorithms based on real-time scheduling principles that enable clusters hosting
web services to achieve predictability in service execution. Dispatching decisions
are based on request properties (such as deadline, task size and laxity) and they
are scheduled to achieve designated deadlines. All algorithms follow three impor-
tant steps to achieve a high level of predictability. Firstly, requests are scheduled
based on their hard deadlines. Secondly, requests are selected for execution based
on their laxity. Thirdly, the underlying software infrastructure provides means of
achieving predictability with high precision operations. The algorithms use vari-
ous techniques to increase the number of deadlines met. One decreases the vari-
ance of task sizes at each executor while another increases the variance of laxity
at an executor. The algorithms are implemented in a real-life cluster using real-
time enabled Apache Synapse as the dispatcher and services hosted in real-time
aware Apache Axis2 instances. The algorithms are compared with common al-
gorithms used in clusters such as Round-Robin and Class-based dispatching. The
empirical results show the proposed algorithms outperform the others by meeting
at least 95% of the deadlines compared to less than 10% by the others.

1 Introduction

With the advent of cloud computing and the trend of exposing ‘things’ as services on
the internet, web services have firmly established itself as the de-facto standard for dis-
tributed computing [8,9]. As platforms and infrastructure are being exposed as services,
the Quality of Service (QoS) aspects of web service execution mandates an increased
importance than before. With applications and systems joining the cloud bandwagon,
the performance of web services becomes pivotal to its overlaid applications, thereby
requiring stringent QoS levels in their operations. A common practice in alleviating
performance bottlenecks, is the use of clusters in hosting web services. The simple idea
is to balance the load among service replicas to gain performance. Although a cluster
results in a performance gain having multiple hosts and improves the availability of
services [18], it does not improve the predictability of web service execution.

Web service middleware are seldom designed to achieve predictability in service exe-
cution. Over the years, this has prevented web services being used for applications with
critical time requirements and precision in execution. SOAP engines and application

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 197–212, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

198 V. Gamini Abhaya, Z. Tari, and P. Bertok

servers contain many optimisations for throughput [2,14,16]. For instance, they employ
thread pools to service requests in parallel using processor sharing [11]. Although this
increases the number of requests being executed within a unit of time, it results in the
proportionate increase of the average execution time of a service.

Real-time applications consider predictability of execution with utmost importance.
In such systems, missing an execution deadline usually renders even a correctly ob-
tained result useless. As a result, they mandate the use of special scheduling techniques
that repeatedly guarantee completion of tasks within requested deadlines. Such stringent
requirements in service execution has hindered the use of web services as middleware
in real-time systems. In [5,6] we identified three important requirements to achieve pre-
dictability of execution. Firstly, the main attribute considered for scheduling a request
must be its deadline for completion. Secondly, there must be support from the underly-
ing infrastructure (development platform and OS) and thirdly, requests must be selected
for execution based on their laxity, which is the indicator of slacktime in a request.

When predictability of execution is considered, previous work on execution time
QoS of web services and request dispatching in clusters fail due to many reasons. A
common approach for web services is to consider multiple classes of requests [7,15]
and provide them with differentiated service. The classes are scheduled to share the
processor in a ratio defined by a Service Level Agreement (SLA). They fail due to
deadline not being considered as a scheduling parameter. Moreover the infrastructure
and software used, do not support predictability. Others [10] use heuristic techniques
such as fuzzy logic which cannot guarantee a specific outcome every time. Some [4]
support other QoS aspects such as reliability, fault tolerance and does not give promi-
nence to execution. Some of the well known work in request dispatching in distributed
systems [3,13,12] cannot be considered as they do scheduling with the goal of reduc-
ing the mean waiting time and slowdown of requests, therefore are unable guarantee
execution times without specifically scheduling based on deadlines. Neither are they
supported by a suitable infrastructure.

In our previous work [5,6] we introduced a solution based on real-time scheduling
principles, to achieve predictability in execution on a single server. We selected requests
for execution based on their laxity with a guarantee of meeting their deadlines through a
schedulability check. The selected requests were pre-emptively executed using earliest
deadline first scheduling policy. Furthermore, we presented a real-implementation of
the techniques supported by a development platform and an operating system with real-
time features. In this paper, we extend our solution to support a cluster.

To address the lack of real-time execution support in web service clusters, our pri-
mary contribution through this paper is a set of dispatching algorithms that select and
execute requests to meet hard execution deadlines on multiple executors in a cluster. As
a secondary contribution, implementation details of these algorithms in a real system,
is presented. The uniqueness of our solution lies in the use of real-time scheduling prin-
ciples and how each of the algorithms function. With RT-RoundRobin we show how a
simple algorithm can be made real-time ready by extending it to select requests for exe-
cution, based on laxity. The round-robin (RR) nature increases the inter-arrival times at
executors which helps them to achieve deadlines. The schedulability check introduced
guarantees that a request will not compromise the deadlines of others. RT-ClassBased

Using Real-Time Scheduling Principles in Web Service Clusters 199

is an extension to the popular method of service differentiation through traffic classes.
Candidate executors are selected based on the traffic class of a request and the schedu-
lability check tries to place the request among the already accepted, based on its laxity.
As traffic classes are based on the execution times, this reduces the variance of task
sizes at an executor. RT-LaxityBased makes use of laxities the best possible way. It
keeps track of the laxities of requests assigned to each executor and ensures a high vari-
ance of laxities at each cluster. As large laxities enable more requests to be scheduled
together, spreading them evenly increases the schedulability of requests on the cluster.
These three algorithms conduct only a single schedulability check per request on the
selected executor. RT-Sequential attempts to achieve a higher schedulability by con-
ducting multiple checks for a single request on different executors. This method makes
the best possible use of processing resources, although with a slightly lower deadline
achievement rate than the others. All four algorithms make use of our schedulability
check from [6] and executors schedule the selected requests using earliest deadline first
scheduling principle.

The algorithms are evaluated using a real-life implementation with Apache Synapse
[1] used for the dispatcher and Apache Axis2 [2] for cluster servers. We augment the
functionality of both these products to be real-time aware in execution. While there are
many aspects of QoS in web services, we only consider execution time as as the most
important, in this research. Moreover, network communication aspects are considered
to be reliable and we make the assumption of communication cost not being significant,
in service invocation.

Rest of this paper is organised as follows. In Sect. 2 we provide a background about
important task properties for predictable execution. Next we present our solution in
Sect. 3 followed by details of the implementation. We present the empirical evaluation
in Sect. 5 and discuss some related work in Sect. 6. Finally we conclude in Sect. 7 with
a summary and brief look at the way forward.

2 Background

In this section we discuss some important properties of tasks with deadlines to achieve
predictability of execution. For a task in execution with a start time S,a deadline D and
remaining execution time C, its slack time can be defined as L, where L = (D−S)−C.
Laxity of a task gives an indication of the same prior to the start of execution, as a ratio
between deadline and execution time.

Laxity = Deadline
ExecutionTime

In the context of deadline based scheduling, laxity and slack time indicates how long a
request (or its remaining execution) could be delayed without compromising its dead-
line. A higher laxity gives ability to delay a task more and schedule other tasks that need
to finish earlier. Similarly, a lower laxity means less tasks could be scheduled together.

Figure 2 gives an example on the effect of laxity on scheduling tasks. Tasks T1
and T2 have executed pre-emptively enabling T3, T4 and T5 to be scheduled within
their lifespan. It has been possible as a result of T1 and T2 having large laxities. Even
with smaller laxities T3 and T4 enable T5, which starts within their lifespan to achieve

200 V. Gamini Abhaya, Z. Tari, and P. Bertok

Fig. 1. Properties of a Real-time Task Fig. 2. A deadline based task schedule

its deadline due to its larger laxity. If T5 had a smaller laxity it may not have been
schedulable with T3 and T4 as its execution could not have been delayed.

The schedulability check in our previous work [6], selects tasks for execution based
on the same principles. Depending on the laxities of tasks it tries to schedule tasks to-
gether and ensures that deadline of the target task can be met while not compromising
the deadlines of the others. Furthermore, it also prevents a server being overloaded with
requests. This check is used by all algorithms presented in this paper for the same pur-
pose and can be identified by the method call IsSchedulable(newTask, Executor) where
the schedulability of newTask is considered with all accepted requests on Executor.

3 Real-Time Dispatching Algorithms for Web Service Clusters

The envisioned solution enables a web service cluster to function in a real-time aware
manner. Herein, the cluster will honour a hard deadline specified with each request. The
deadline for a request is communicated to the cluster using SOAP headers. The solution
consists of two components. First, we introduce several real-time aware algorithms to
be used at the dispatcher. These would match a request to an executor and ensure the
its deadline requirement could be met. The second part of the solution pre-emptively
schedules the requests at executors using Earliest Deadline First scheduling principle.

3.1 Dispatching Algorithms

The algorithms in our solution perform the task of assigning requests to executors,
however with the additional guarantee of meeting the requested deadline. Each of the
following algorithms perform in a different way and impacts the variance of laxity at
an executor. The goal of the algorithms is to increase the variance of laxities at each
executor, thereby increase the number of requests schedulable to meet their deadlines.
All algorithms, use our schedulability check presented in [6]. The following algorithms
are introduced for request dispatching.

RT-RoundRobin

Round-robin scheduling distributes requests evenly among the executors in a cluster.
Adapting this simple yet widely used scheduling technique, RT-RoundRobin (RT-RR)

Using Real-Time Scheduling Principles in Web Service Clusters 201

takes it a step further with an additional schedulability check prior to dispatching a
request. Even though RT-RR scheme has little effect on the distribution of request sizes
or laxities at an executor, it effectively reduces the arrival rate of tasks. As a result,
requests arrive further apart and reduces the number of requests vying to be scheduled
within the same window of time. This increases the number of requests schedulable to
meet their deadlines.

Algorithm 1 details the steps in RT-RR. The RR nature of it is maintained by keeping
track of the last executor a request was assigned to and assigning the new request to the
next executor in the list. A check ensures the previous executor assigned is not the last
of the list, in which case the list is reset to the beginning (Lines 2-4). Using the index
the executor is fetched and schedulability of the request is checked (Lines 7-8). If the
request is schedulable, it is assigned to the executor (Lines 9,11) and a reference to the
executor is kept as the last one to be assigned (Line 10). A negative result from the
check results in the request being rejected (Line 13). Executor information is kept in
a data structure with constant time access when the index is used. The schedulability
check has a worst case time complexity of O(n) as with the rest of RT-RR. Therefore
it results in an overall worst case time complexity of O(n). Moreover, RT-RR is the
simplest of the checks with the possible processing overhead kept to a minimum.

RT-ClassBased

Most of the related work on execution level QoS, follow the class based approach where
requests are divided into classes based on a priority scheme. These classes get process-
ing time allocations depending on the associated priority in a pre-determined ratio. For
instance, consider a system with 3 traffic classes A,B and C. The dispatcher may sched-
ule them based on a 3:2:1 ratio among the executors, where for every 3 requests of class
A it schedules 2 requests of class B and 1 of C.

The RT-ClassBased (RT-CB) algorithm follows the same principle with the addi-
tional step of ensuring the deadlines of the requests could be met. The class of a request
is based on the size of the task identified by the execution time. Executors are mapped
with request size ranges, offline and based on it the executor for a given request is
selected. With requests assigned to executors based on task size, RT-CB scheduling re-
sults in similar sized requests arriving at the same executor. This prevents small and
large requests competing for the same executor, thereby increasing the number of small
and medium sized requests accepted.

Algorithm 3 contains the steps of RT-CB. The size of the request is used to obtain
the executor, through a function that looks-up the mapping information (Lines 1-2). The
request is directly checked for schedulability with the executor (Line 3) and assigned
to it on being successful (Lines 4-5). On a negative result, the request is rejected (Line
7). Line 1 shows the class of the request being retrieved from itself for brevity. As
there is no knowledge of a request prior to its arrival, the size of the request has to be
inferred from information at hand. Profiled execution times or execution time history
can be used for this purpose. For this, we decided use a combination where profiled
times were used when a service was invoked first for a given set of inputs and execution
time history was used thereafter. The executor to task size mapping was stored in a data

202 V. Gamini Abhaya, Z. Tari, and P. Bertok

structure with constant access time. As a result the worst case time complexity of the
algorithm is O(n) due to the schedulability check.

RT-LaxityBased

The goal of RT-LaxityBased (RT-Lax) is to ensure the even distribution of tasks with
higher and lower laxities among the executors. While the schedulability check selects
a request for execution based on its laxity and that of already accepted requests, RT-
Lax takes it a step further with distributing requests based on laxity prior to using the
check. RT-Lax keeps track of the last two laxities assigned to an executor and ensures
the same laxities are not assigned to it consecutively. Moreover, it remembers the last
executor a request was assigned to and prevents it being considered first for the next
request assignment. This increases the variance of laxities at an executor and enables
more requests to be scheduled together.

Algorithm 4, describes the steps in the algorithm. Upon receiving a request, the laxity
is calculated (Line 1). It is checked to ensure not to be one of the last two laxities assigned
to the executor (Line 3-4). In the case of the calculated laxity being in the last two laxities
assigned to the last executor, next executor in the list is considered (Lines 13-14). The
schedulability check is done on the selected executor (Line 18-19) and the request is
either assigned to it or rejected based on the result (Lines 19-24). The first time a request
is scheduled through the algorithm, there is no last executor information available. In
such a scenario the request is checked for schedulability with the first executor in the
list (Lines 30-40). Executor information and details of last laxities assigned to executors
are kept in data structures with linear and constant access time complexities respectively.
Although a request maybe matched with more than one executor, the schedulability check
is conducted only with a single executor. The algorithm bar the schedulability check
exhibits a worst case execution time complexity of O(n). Together with the schedulability
check, the complete algorithm therefore still results in a time complexity of O(n).

RT-Sequential

RT-Sequential (RT-Seq) algorithm tries to make the best possible match for a request by
trying for schedulability more than once. In turn it tries to make best possible use of the
server resources by checking the schedulability of a request with more than one execu-
tor. If the schedulability check for a request fails with one executor, RT-Seq continues
to check its schedulability with the rest of the executors in the cluster until it is schedu-
lable on one of them or the list exhausted. Like RT-Lax this achieves a larger variance
of laxity at an executor due to fitting a request ultimately to the best executor. How-
ever,it does this with the additional cost of multiple schedulability checks per request.
The other algorithms keeps it to a minimum to ensure its cost being too significant, as
the lifetime of a request starts from the moment it enters the system.

Algorithm 2 details the steps in RT-Seq. To prevent RT-Seq always starting with the
same executor, the successful executor from the last run is kept track of and is considered
first (Lines 1,11,22). Requests are repeatedly assigned to it until the check fails (Lines
1-4), in which case another executor is considered (Lines 6-16). Executor information is
kept in a data structure with linear access time complexity when accessed sequentially.

Using Real-Time Scheduling Principles in Web Service Clusters 203

The worst case time complexity of the algorithm without the schedulability check is O(n).
As multiple schedulability checks may happen for a given request, the overall complexity
becomes O(mn) where m has an upper bound on the number of executors in the cluster.

Algorithm 1. RT-RoundRobin

Require: New request R, List of Executors E, Last Executor
L

Ensure: R assigned to an executor or rejected
1. lastExecIndx← L.getIndex
2. if lastExecIndx = E.size-1 then
3. lastExecIndx = 0
4. else
5. lastExecIndx← lastExecIndx + 1
6. end if
7. nextExec← E.getExec(lastExecIndx)
8. S← IsSchedulable(R,nextExec)
9. if S = true then

10. L← nextExec
11. Assign R to nextExec
12. else
13. Reject R
14. end if

Algorithm 2. RT-Sequential

Require: New request R, List of Executors E, Last executor
Ensure: R assigned to an executor or rejected
1. if lastExec is not /0 then
2. S← IsSchedulable(R,lastExec)
3. if S = true then
4. Assign R to lastExec
5. else
6. while E.hasMore() AND R not assigned do
7. nextExec← E.getNextExec
8. if nextExec is not lastExec then
9. S← IsSchedulable(R,nextExec)

10. if S = true then
11. lastExec← nextExec
12. Assign R to nextExec
13. end if
14. end if
15. end while
16. end if
17. else
18. while E.hasMore() AND R not assigned do
19. nextExec← E.getNextExec
20. S← IsSchedulable(R,nextExec)
21. if S = true then
22. lastExec← nextExec
23. Assign R to nextExec
24. end if
25. end while
26. end if
27. if R is not assigned then
28. Reject R
29. end if

Algorithm 3. RT-ClassBased

Require: New request R, List of Executors E
Ensure: R assigned to an executor rejected
1. C← R.getRequestClass
2. nextExec← E.GetExecforReqClass(C)
3. S← IsSchedulable(nextExec)
4. if S = true then
5. Assign R to nextExecutor
6. else
7. Reject R
8. end if

Algorithm 4. RT-LaxityBased

Require: New request R, List of Executors E, Laxity Map
LM, Last Executor L

Ensure: R assigned to an endpoint or rejected
1. Laxity← (R.getDeadline

R.getExecutionTime)
2. if lastExec is not /0 then
3. LL← lastExec.LastLaxities
4. if Laxity is not in LL then
5. S← IsSchedulable(R,lastExec)
6. if S = true then
7. lastExec.setLastLaxities(Laxity)
8. Assign R to nextExecutor
9. else

10. Reject R
11. end if
12. else
13. while E.hasMore() and R is not assigned do
14. nextExec← E.getNextExec
15. if nextExec is not lastExec then
16. LL← nextExec.LastLaxities
17. if Laxity not in LL then
18. S← IsSchedulbl(R,nextExec)
19. if S = true then
20. nextEx.setLstLaxities(Lax)
21. lastExec← nextExec
22. Assign R to nextExec
23. else
24. Reject R
25. end if
26. end if
27. end if
28. end while
29. end if
30. else
31. nextExec← E.getfirstExec
32. S← IsSchedulable(R,nextExec)
33. if S = true then
34. nextExec.setLastLaxities(Laxity)
35. lastExec← nextExec
36. Assign R to nextExec
37. else
38. Reject R
39. end if
40. end if

204 V. Gamini Abhaya, Z. Tari, and P. Bertok

4 Implementation

Dispatcher Component

The algorithms presented were implemented in Synapse using its mediation framework.
To support the real-time aspects of the algorithm, all thread-pools in Synapse were re-
placed with real-time implementations. A real-time scheduler component introduced
into Synapse manages the scheduling of the worker threads. Moreover, these additional
features were facilitated by running Synapse on Java Real-time System version 2.1
[17] supported by Sun Solaris 10 08/05 real-time operating system (SunOS). The de-
velopment platform and the operating system provides Synapse with better control,
runtime accuracy and precision at the system level which is unavailable for the default
implementation.

Executor Component

The executor portion of our solution conducts the important task of scheduling the
requests for execution to achieve the deadlines requested. The requests received are
scheduled using Earliest Deadline First (EDF) policy in a pre-emptive manner. The real-
time enabled Axis2 (RT-Axis2) from our previous work is used at the executors with a
few modifications. Unlike in [6], it is relieved of conducting schedulability checks as
this is done at the dispatcher. Its functionality is supported by RTSJ and SunOS at the
system level.

Fig. 3. RT-Synapse Internals Fig. 4. RT-Synapse Functionality

Cluster Functionality

Figure 3, shows the design of the cluster. Request processing in Synapse is handled
by worker-threads and the internal representation of a request is an instance of RTTask
class. The dispatcher stores the state of the cluster in Cluster Context and the state of
each executor in instances of Executor Context (EC). It keeps track of all tasks assigned
to an executor in two ordered queues based on deadlines.

Using Real-Time Scheduling Principles in Web Service Clusters 205

Figure 4 summaries the functionality of the dispatcher. On dispatching a request its
RTTask instance is queued on submittedQueue (SQ). Requests waiting to be dispatched
are queued in waitingQueue (WQ). Once a request is accepted for execution, its dead-
line is compared with already accepted requests. If the new request has the earliest
deadline, its RTTask instance is queued in SQ and it is dispatched to the executor. If
the new request should not be the earliest to finish, it is queued in WQ. The dispatcher
receives a notification from the executor at the completion of a request and its RTTask
is removed from the head of SQ. If SQ becomes empty the head of WQ is removed,
queued in SQ and the request dispatched to the executor. Conversely if SQ is not empty,
requests from the waiting queue are not dispatched to the executor as the executor would
be busy processing requests. When the executor is busy, the dispatcher only dispatches
a request having an earlier deadline than the one being processed at the executor.

Upon receiving a request, one of two things may happen at the executor. If the ex-
ecutor was idle, the request is taken for processing straight-away. If the executor was
busy, deadlines of all requests present is evaluated and the one with the earliest gets the
processor to run. The rest are queued on preemptedQueue (PQ) which is also ordered
on deadlines. At the completion of a request, once the result is returned back to the
dispatcher, the head of PQ is removed and its execution resumed. The worker threads
that requests are assigned to at arrival, are suspended when a request is pre-empted and
woken back up when its execution resumed.

Multi Core/Processor Support

The schedulability check evaluates requests on a single time line of execution. This does
not benefit from multi-core and multi-processors hardware. In order to take advantage
of such deployments, our solution makes the executors configurable for a number of
execution lanes. An execution lane represents a processor core. If an executor is config-
ured for N execution lanes, the same number of requests in the order of their deadlines,
would be executed in parallel. On the dispatcher, each lane has its own EC and is con-
sidered as a separate executor. As each lane gets its own processor core for execution, no
processor sharing takes place among the requests executing in parallel at each executor.

5 Empirical Evaluation

Our implementation is empirically evaluated with traffic generated to resemble various
conditions. Our previous work [6] indicated that it is best to test such an implementation
with a good mixture of request sizes making the composition of the stream totally ran-
dom. Hence, for all experiments conducted we use a uniform distribution for task sizes.
The deadline for each request is calculated by picking a value between 1.5 and 10 from
a uniform distribution and multiplying the profiled execution time for the request. For
each run we pick inter-arrival times of requests from a uniform distribution bounded by
a low and a high value. We use a web service that allows us to create task sizes with
fine-grain precision, using input parameters.

The proposed algorithms select requests for execution based on the schedulability
check and those selected are scheduled at the executors using EDF policy.

206 V. Gamini Abhaya, Z. Tari, and P. Bertok

Table 1. Performance Comparison of Round Robin vs. RT-RoundRobin

Round Robin (Non real-time) RT-RoundRobin
2 Executors 3 Executors 4 Executors 2 Executors 3 Executors 4 Executors

Inter-
arrival
time(sec)

% Acc. % D.
Met off
% Acc.

% Acc. % D.
Met off
% Acc

% Acc. % D.
Met off
% Acc

% Acc. % D.
Met off
% Acc

% Acc. % D.
Met off
% Acc

% Acc. % D.
Met off
% Acc

0.25 - 1 99.5 28.8 99.8 37.2 99.9 51.5 88.0 99.0 99.0 100 99.9 100
0.1 - 0.5 62.3 20.3 89.0 28.4 98.0 39.7 52.0 96.4 74.0 99.0 99.4 99.9
0.1 - 0.25 49.0 15.0 67.3 20.0 74.1 33.2 28.0 96.0 47.0 97.6 78.0 99.0
0.05 - 0.1 38.8 6.3 52.6 9.1 68.0 13.6 20.5 90.0 37.5 95.0 46.3 99.0

Table 2. Performance Comparisons of Class based vs. RT-ClassBased

Class based (Non real-time) RT-ClassBased
2 Executors 3 Executors 4 Executors 2 Executors 3 Executors 4 Executors

Inter-
arrival
time(sec)

% Acc. % D.
Met off
% Acc.

% Acc. % D.
Met off
% Acc

% Acc. % D.
Met off
% Acc

% Acc. % D.
Met off
% Acc

% Acc. % D.
Met off
% Acc

% Acc. % D.
Met off
% Acc

0.25 - 1 100 27.8 99.2 40.8 99.9 58.2 99.2 99.0 100.0 99.0 100 100
0.1 - 0.5 82.0 26.0 98.6 36.6 99.4 42.4 62.2 95.4 76.7 94.8 90.9 100
0.1 - 0.25 74.8 18.0 83.3 30.0 86.9 30.2 45.4 94.6 66.0 99.0 74.4 97.7
0.05 - 0.1 52.7 7.8 75.6 13.5 78.0 20.5 28.6 98.9 44.7 91.4 55.1 99.0

Table 3. Performance of RT-Sequential and RT-LaxityBased

RT-Sequential RT-LaxityBased
2 Executors 3 Executors 4 Executors 2 Executors 3 Executors 4 Executors

Inter-
arrival
time(sec)

% Acc. % D.
Met off
% Acc.

% Acc. % D.
Met off
% Acc

% Acc. % D.
Met off
% Acc

% Acc. % D.
Met off
% Acc

% Acc. % D.
Met off
% Acc

% Acc. % D.
Met off
% Acc

0.25 - 1 99.0 96.8 100 97.0 100 97.2 99.2 99.9 100.0 99.9 100 100
0.1 - 0.5 86.0 91.0 96.1 96.3 100 95.0 89.0 99.8 80.5 99.8 99.8 100
0.1 - 0.25 38.6 87.4 76.5 95.0 84.6 96.2 47.4 99.2 66.0 99.6 75.2 100
0.05 - 0.1 29.1 90.0 57.2 95.3 66.7 95.8 38.5 99.0 50.7 99.2 54.3 100

The non-real-time algorithms we compare ours against do not conduct any check for
task acceptance. They are implemented directly on non-real-time Synapse and non-
real-time Axis2 deployments with best-effort request execution. The three tables listed
below summarise the results from different experimental runs. Herein, the success of
an algorithm is measured using the percentage of requests accepted (% Acc.) for exe-
cution (from the schedulability check) and out of that, the percentage of deadlines met
(% D.Met off % Acc.). We conduct all runs with 2 to 4 executors being used in the clus-
ter. % Acc. under non-real-time algorithms used for comparison, signify the percentage
accepted due to server overloads resulted by those algorithms.

Round-robin vs. RT-RoundRobin

To illustrate the effect of scheduling based on deadlines, we compare the simple RR
algorithm with RT-RR. In RT-RR executors are selected in a RR fashion and the request
is checked for schedulability once with the selected executor. Requests that pass the
check are accepted for execution on that executor. Table 1 details the results of all runs

Using Real-Time Scheduling Principles in Web Service Clusters 207

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0.05s 0.1s 0.1s 0.25s 0.1s - 0.5s 0.25s - 1s

P
er

ce
nt

ag
e

of
 d

ea
dl

in
es

 m
et

Inter-arrival times

Comparison of Round-robin vs. RT-RoundRobin - Deadline Achievement Rates

RR - 2 Execs.
RR - 3 Execs.
RR - 4 Execs.

RT-RR - 2 Execs.
RT-RR - 3 Execs.
RT-RR - 4 Execs.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0.05 - 0.1 0.1 - 0.25 0.1 - 0.5 0.25 - 1

P
er

ce
nt

ag
e

of
 d

ea
dl

in
es

 m
et

Inter-arrival times

Comparison of Class-based vs. RT-CB - Deadline Achievement Rates

CB - 2 Execs.
CB - 3 Execs.
CB - 4 Execs.

RT-CB - 2 Execs.
RT-CB - 3 Execs.
RT-CB - 4 Execs.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0.05s 0.1s 0.1s 0.25s 0.1s - 0.5s 0.25s - 1s

A
ve

ra
ge

d
pe

rc
en

ta
ge

 o
f d

ea
dl

in
es

 m
et

Inter-arrival times

Comparison Deadline Achievement Rates - Averaged by Algorithm

RT-RR
RT-CB

RT-Seq
RT-Lax

Fig. 5. Execution Time Comparisons

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300 350 400

C
P

U
 U

til
iz

at
io

n
%

Sample #

CPU utilisation at each Executor - (1 - 5000000 (Uniform); 0.25sec - 1sec (Uniform) classbased 3 exec)

Executor 1
Executor 2
Executor 3

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200

C
P

U
 U

til
iz

at
io

n
%

Sample #

CPU utilisation at each Executor - (1 - 5000000 (Uniform); 0.25sec - 1sec (Uniform) laxitybased 3 exec)

Executor 1
Executor 2
Executor 3

Fig. 6. CPU Utilisation at Executors

conducted. The graph on the left side of the first row in Fig. 5 summarises the deadline
acceptance rates. It can be seen that, RT-RR performs better than simple-RR. Simple
RR results in better task acceptance rates due to not having an explicit check that rejects
request. However, it performs badly with the number of deadlines met. Although RT-
RR accepts less requests, it still outperforms simple-RR in meeting more than 90% of
the deadlines even in very high request arrivals. With best-effort request execution, the
resultant execution times easily miss the deadlines.

208 V. Gamini Abhaya, Z. Tari, and P. Bertok

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06 5e+06

E
xe

cu
tio

n
T

im
e

(m
s)

Task Size

Task Size distribution between 3 Executors (1 - 5000000 (Uniform); 0.1sec - 0.5sec (Uniform) roundrobin 3 exec)

Executor 1
Executor 2
Executor 3

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06 5e+06

E
xe

cu
tio

n
T

im
e

(m
s)

Task Size

Task Size distribution between 3 Executors (1 - 5000000 (Uniform); 0.1sec - 0.5sec (Uniform) classbased 3 exec)

Executor 1
Executor 2
Executor 3

Fig. 7. Task Size distribution at Executors

Class based vs. RT-ClassBased

Next we compare the performance (Table 2) of the class based service differentiation
technique with RT-CB, which matches an executor to a request in the same manner,
however only accepting the request through a schedulability check. Moreover RT-CB
schedules requests for execution based on their deadlines. The graph on the right side
of the first row in Fig. 5 summarises the deadline acceptance rates. In both algorithms,
requests were sorted into classes based on the size of the request (resultant execution
time) and executors were assigned based on the request class. This results in requests of
similar sizes being assigned to the same executor and avoids scenarios where a large re-
quest and small requests competing for the same server (Fig. 7). As a result, class-based
algorithms performs better than simple-RR. However, the percentage of deadlines met
are still quite low compared to RT-CB and RT-RR. The first graph on Fig. 6 shows the
processor utilisation levels of each executor for an RT-CB runs. The executors exhibit
different levels of utilisation due to the classes being based on task sizes.

Performance of RT-Sequential and RT-LaxityBased

RT-Seq checks the schedulability of a request with all executors in the cluster prior to
rejecting a request. As a result it returns the highest acceptance rates of all algorithms.
However, the total time taken for carrying out multiple checks can become significant
for certain requests. Therefore, RT-Seq results in the lowest values for percentage of
deadlines met out of all algorithms. These values are still better than the non-real-time
algorithms we compare them with. RT-Lax ensures the equal distribution of laxities
among cluster members. This creates a higher variance of laxities at each executor
thereby enables more requests to be scheduled together. As a result, RT-Lax performs
the best in meeting request deadlines. This property of RT-Lax, enables it to make use
of the processing resources the best possible way. Compared to a policy such as RT-
CB, Fig. 6 shows RT-Lax resulting in equal utilisation levels for all executors in the
cluster.

Using Real-Time Scheduling Principles in Web Service Clusters 209

Factors Affecting Request Acceptance and Deadlines Met

From the results presented, it is visible that other factors affect the amount of requests
accepted for execution and the deadlines met. As the inter-arrival times of requests
decreases, the number of requests accepted and deadlines met also decreases with it.
A reduction in inter-arrival times transforms to an increase of requests arriving at the
cluster in a given time period. As a result more requests compete for the processor
within a single window of time. However, only a portion of them could be accepted for
execution. Another factor affecting the acceptance rates and deadlines met is the number
of executors in the cluster. Having more executors in the cluster would mean more
processing power is available for requests to be executed. Moreover, spreading requests
across more executors also results in a reduction of request arrivals at an executor, in a
time unit. This enables the executors to successfully achieve the deadlines of requests.
Having more executors would mean an increase of workload at the dispatcher. However,
when the worst case time complexities of the algorithms are considered, introducing
additional executors would not have a big impact on the performance of the dispatcher.

Discussion

The experimental results clearly demonstrate that predictability of execution can be
achieved in a web services cluster. In these experiments, we tested the proposed algo-
rithms for the worst possible scenario where there is an equal mixture of task sizes with
all requests having hard-deadlines. Moreover, the implementation was exposed to very
high request arrival rates. With RT-RR, we demonstrate how a simple scheduling policy
could be transformed into being real-time aware. This combines the simplicity of the
RR dispatching with the objective scheduling of real-time algorithms. Supported by the
underlying software infrastructure RT-RR results in more than 90 % of deadlines being
met in all runs. Although simple RR results in higher rates of requests being executed
due to its best-effort nature, it fails to guarantee the deadlines of most of them, at times
being less than 10%.

With RT-CB we demonstrated how a request-aware dispatching policy could be
transformed in being real-time aware. With the additional steps of selecting requests
based on their laxity through a schedulability check and deadline based scheduling, it
achieves 95% of the deadlines under any traffic condition with more than 50% accep-
tance rates, at most times. The proposed approach of defining traffic classes based on
request sizes and assigning requests for traffic classes, replicate a common tactic used
in many other dispatching algorithms. Through this, a request stream consisting of any
mixture of requests gets transformed into a request stream with similar sizes at each
executor (Fig. 7). This prevents small and large tasks competing for the same executor.
This phenomenon, together with decreased arrival rates at executors due to requests be-
ing disseminated across many executors enable many requests to be scheduled to meet
their requested deadlines. Although the simple class based policy receives the same ben-
efits, the best effort nature of request execution results in deadlines being lost. RT-CB
would be suitable for request streams with comparatively more smaller sized requests.

Experimental results confirm that RT-Seq makes the best use of processing resources.
It achieved the highest acceptance rates out of all algorithms. Trying to schedule a re-
quest repeatedly on different executors ensures that, a request will be scheduled on the

210 V. Gamini Abhaya, Z. Tari, and P. Bertok

cluster if required processing time is available on any one of the executors. This effec-
tively fills the gaps on processor time lines making the maximum use of their process-
ing resources. However, conducting multiple checks may incur a significant overhead
depending on the size of the request. The life of a request, starts on its arrival at the
cluster. Therefore, the time spent on being dispatched and being checked for schedula-
bility, has to be subsumed within the execution time requirement of a request. For small
sized requests, the overhead incurred by multiple checks may result in them missing
their deadlines. As a result, RT-Seq is not suitable for request streams predominantly
containing smaller sized requests.

The distribution of requests based on laxity, ensures that requests with large and
small laxities are evenly distributed. If an executor gets too many requests with small
laxities, eventually some of them will end up being rejected, as they compete for the
same window of time. Requests with large laxities are able to shift or stagger their
execution within a larger time window enabling more requests to be scheduled within
their lifespan. This principle results in RT-Lax meeting the highest number of deadlines,
with more than 50% acceptance rate in most cases (second row of Fig. 5). All algorithms
show that they could achieve higher performance with the cluster scaling up with more
executors. With cost of hardware becoming cheaper by the day, the acceptance rates
could be increased with more executors being added to the cluster. In such a setup RT-
Lax will be the best algorithm to use with a good mixture of task sizes and laxities in
the request stream.

6 Related Work

Much work on dispatching in clusters can be found in the literature. Many of them are
for clusters hosting static web content and follow the premise of static web traffic tak-
ing a heavy tailed distribution. In [12], no prior knowledge of task sizes are assumed
and requests are sent through several executors assigned with increasing quanta until
the request is completed in a non-work conserving manner. Requests are mapped to
executors based on task sizes in [3,13] and as a result the dispatching transforms the
heavy tailed work load into that of type exponential. These work with the goal of re-
ducing the mean waiting time, mean slowdown of tasks and not the predictability of
execution. Moreover, with the assumptions they make on static web content such as the
heavy-tailed nature of traffic, they seem unsuitable to be used with the highly dynamic
nature of web services.

Similarly, evidence of work specific to web service clusters can be found in the litera-
ture. In [7] requests are dispatched to achieve probabilistic limits of maximum response
time defined in SLAs. A QoS controller monitors the response times resulted in each
executor for different types of requests and accepts or rejects requests to maintain the
agreed upon limits in the SLAs. While this allows the cluster to achieve a method of
controlling response times, the scheduling algorithms used do not consider any dead-
lines or give a guarantee of achieving them. Requests are divided into traffic classes in
[15] and they are scheduled to achieve average response times defined in SLAs. The
solution uses a utility function to compute the actual performance of executors and
compare them with the rate promised. A discrepancy identified would change the ratio

Using Real-Time Scheduling Principles in Web Service Clusters 211

of the number of requests executed from each class by the executors. Similarly, [10]
uses a class based approach where a controller based on fuzzy logic is used to optimise
the ratio of requests executed by the cluster.

Commonly, all the work discussed use some aspect related to execution time as a
QoS parameter. However, they all fail to guarantee predictable execution times mainly
for two reasons. None of them purposely schedule tasks to achieve a deadline in a
definite manner. Furthermore, their implementations and infrastructure does not support
predictability of execution, by design. Additionally, none of them contain means of
validating the schedulability of a request with requests already executing in the cluster.

7 Conclusion

In this paper, we presented four algorithms to achieve predictability of execution in
web service clusters. Execution time predictability becomes more important with web
services being used to integrate distributed platforms and infrastructure. Moreover, it
will enable the use of web services in applications with real-time requirements and en-
able the real-time development space to enjoy the benefits and advantages web services
bring. The proposed algorithms were compared with commonly used request dispatch-
ing techniques and experimental results confirm the inability for those techniques to
achieve the level of predictability the proposed algorithms demonstrate. We discussed
the use of specific algorithms in different types of request streams and their suitability.
We also provided brief details about how these algorithms can be implemented in real-
life using real-time enabled versions of Apache Synapse and Axis2 for a cluster setup.
The software infrastructure used for the implementation also plays a large part in en-
abling the proposed algorithms to achieve the levels of predictability they demonstrate.

To completely achieve predictability of execution, the network communication as-
pects of web services would also need to be considered. As future work, we hope to
extend our solution to the network level by ensuring the delays are minimised along
the path of the web service invocation. We continue to research on more cluster based
scheduling algorithms that are more application specific, which would enable them to
achieve better acceptance rates.

Acknowledgements. This work is supported by the ARC (Australian Research Coun-
cil) under the Linkage scheme (No. LP0667600, Titled “An Integrated Infrastructure
for Dynamic and Large Scale Supply Chain”).

References

1. Apache Software Foundation: Apache Synapse (June 9, 2008),
http://synapse.apache.org/

2. Apache Software Foundation: Apache Axis2 (June 8, 2009),
http://ws.apache.org/axis2/

3. Ciardo, G., Riska, A., Smirni, E.: EquiLoad: a load balancing policy for clustered web
servers. Performance Evaluation 46(2-3), 101–124 (2001)

http://synapse.apache.org/
http://ws.apache.org/axis2/

212 V. Gamini Abhaya, Z. Tari, and P. Bertok

4. Erradi, A., Maheshwari, P.: wsbus: Qos-aware middleware for reliable web services interac-
tions. e-Technology, e-Commerce and e-Service, 2005. In: Proceedings of The 2005 IEEE
International Conference on EEE 2005, pp. 634–639 (March April 1, 2005)

5. Gamini Abhaya, V.: Achieving Predictabiliy and Service Differentiation in Web Service Ex-
ecution. Tech. rep., School of CS and IT, RMIT University, Melbourne, Australia (April 17,
2009), http://goanna.cs.rmit.edu.au/˜vabhaya/publications/TechReport1.pdf

6. Gamini Abhaya, V., Tari, Z., Bertok, P.: Achieving Predictability and Service Differentiation
in Web Services. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009.
LNCS, vol. 5900, pp. 364–372. Springer, Heidelberg (2009)

7. Garcı́a, D.F., Garcı́a, J., Entrialgo, J., Garcı́a, M., Valledor, P., Garcı́a, R., Campos, A.M.: A
qos control mechanism to provide service differentiation and overload protection to internet
scalable servers. IEEE Transactions on Services Computing 2(1), 3–16 (2009)

8. Gartner : SOA Is Evolving Beyond Its Traditional Roots (April 2, 2009),
http://www.gartner.com/it/page.jsp?id=927612

9. Gartner and Forrester: Use of Web services skyrocketing (Septmeber 30, 2003),
http://utilitycomputing.com/news/404.asp

10. Gmach, D., Krompass, S., Scholz, A., Wimmer, M., Kemper, A.: Adaptive quality of service
management for enterprise services. ACM Transactions on the Web (TWEB) 2(1), 1–46
(2008)

11. Graham, S., Davis, D., Simeonov, S., Daniels, G., Brittenham, P., Nakamura, Y., Fremantle,
P., Konig, D., Zentner, C.: Building Web Services with Java: Making Sense of XML, SOAP,
WSDL and UDDI, 2nd edn. Sams Publishing, Indianapolis (2004)

12. Harchol-Balter, M.: Task Assignment with Unknown Duration. Journal of the ACM 49(2),
260–288 (2002)

13. Harchol-Balter, M., Crovella, M., Murta, C.: On Choosing a Task Assignment Policy for a
Distributed Server System. Journal of Parallel and Distributed Computing 59(2), 204–228
(1999)

14. Microsoft: Windows Communications Foundation,
http://msdn.microsoft.com/library/ee958158.aspx

15. Pacifici, G., Spreitzer, M., Tantawi, A., Youssef, A.: Performance management for cluster-
based web services. EEE Journal on Selected Areas in Communications, I 23(12), 2333–2343
(2005)

16. Sun Microsystems: Glassfish Application Server - Features (2009),
http://www.oracle.com/us/products/middleware/applicationserver/
oracleglassfishserver/index.html

17. Sun Microsystems: Sun Java Real-time System (2009),
http://java.sun.com/javase/technologies/realtime/

18. Vilas, J., Arias, J., Vilas, A.: High availability with clusters of web services. Advanced Web
Technologies and Applications pp, 644–653

http://goanna.cs.rmit.edu.au/~vabhaya/publications/TechReport1.pdf
http://www.gartner.com/it/page.jsp?id=927612
http://utilitycomputing.com/news/404.asp
http://msdn.microsoft.com/library/ee958158.aspx
http://www.oracle.com/us/products/middleware/applicationserver/oracleglassfishserver/index.html
http://www.oracle.com/us/products/middleware/applicationserver/oracleglassfishserver/index.html
http://java.sun.com/javase/technologies/realtime/

Aggregate Quality of Service Computation

for Composite Services

Marlon Dumas2, Luciano Garćıa-Bañuelos2, Artem Polyvyanyy3,
Yong Yang1, and Liang Zhang1

1 School of Computer Science, Fudan University, China
{081024011,lzhang}@fudan.edu.cn

2 Institute of Computer Science, University of Tartu, Estonia
{marlon.dumas,luciano.garcia}@ut.ee

3 Hasso Plattner Institute at the University of Potsdam, Germany
Artem.Polyvyanyy@hpi.uni-potsdam.de

Abstract. This paper addresses the problem of computing the aggre-
gate QoS of a composite service given the QoS of the services participat-
ing in the composition. Previous solutions to this problem are restricted
to composite services with well-structured orchestration models. Yet, in
existing languages such as WS-BPEL and BPMN, orchestration mod-
els may be unstructured. This paper lifts this limitation by providing
equations to compute the aggregate QoS for general types of irreducible
unstructured regions in orchestration models. In conjunction with ex-
isting algorithms for decomposing business process models into single-
entry-single-exit regions, these functions allow us to cover a larger set of
orchestration models than existing QoS aggregation techniques.

1 Introduction

The ability to rapidly and effectively build new services by composing existing
services – a practice known as service composition – is one of the key pillars of
Service-Oriented Computing (SOC). Service orchestration is a popular approach
for service composition [14]. The idea of service orchestration is to assign the
responsibility for coordinating the execution of a composite service to a single
entity (the orchestrator). The orchestrator is responsible for handling incoming
requests for the composite service and to interact with the services participating
in the composition (the component services) in order to fulfill these requests. The
interactions between the orchestrator and the component services are governed
by a orchestration model that usually takes the form of a process model in
which each task represents either an internal action (e.g. a data transformation)
or an interaction with a component service. In practice, these process models are
specified using a specialized language such as the Business Process Execution
Language (WS-BPEL) or the Business Process Modeling Notation (BPMN).

One of the key issues in service composition is that of predicting and managing
the Quality-of-Service (QoS) of composite services. If we assume that each com-
ponent service advertises its QoS, or that this QoS information can be derived

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 213–227, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

214 M. Dumas et al.

based on past observations (as detailed in [18] for example), we can estimate the
QoS of the composite service by aggregating the available information about the
component services’ QoS. This estimation can then be used to detect undesirable
QoS variance as early as possible [19,2] and to trigger corrective actions when
such variance is detected [4].

In this setting, this paper addresses the following problem: How to compute
the expected QoS of a composite service given its orchestration model specified
in a language such as WS-BPEL or BPMN, and a binding that assigns each
task in the orchestration to a concrete service? Following previous work, we
assume that QoS is captured in terms of numerical attributes (e.g. time, cost
and reputation) and that the QoS attribute values for each component service are
given. Gathering QoS attribute values for non-composite services is a separate
problem addressed in previous work [18].

Previous solutions to this problem [5,8,18,9,12] only work for composite ser-
vices with well-structured orchestration models, that is, models described as
graphs made up of split and join points, such that for every split there is a
corresponding join such that the region of the graph between the split and the
join is a single-entry-single-exit region. Yet, both WS-BPEL and BPMN allow
orchestration models to be unstructured. In the case of WS-BPEL, one can
obtain unstructured models by using so-called control links. These links allow
tasks to be connected in arbitrary topologies, with the restriction that links can-
not cross the boundaries of loop activities. Therefore, WS-BPEL orchestration
models may contain unstructured acyclic fragments that cannot be handled by
existing QoS aggregation methods. BPMN orchestration models are even less re-
stricted, and they may contain both acyclic and cyclic unstructured fragments.
The contribution of this paper is a generalized method for computing the QoS of
composite services that can handle unstructured acyclic fragments, and a larger
set of unstructured cyclic fragments than existing methods.

The rest of the paper is organized as follows. Section 2 introduces the orches-
tration model and the QoS model. Next, Section 3 describes the data structures
used to represent service orchestrations, while Section 4 outlines the QoS ag-
gregation method. Section 5 then discusses the implementation of the method
and its evaluation using models of various sizes and topologies. Finally, Section
6 discusses related work and Section 7 draws conclusions.

2 Background

In this section, we introduce an orchestration model covering the core features
of languages used in practice for specifying orchestration models, particularly
WS-BPEL and BPMN. We also introduce the basic model for capturing Quality
of Service that is used in the rest of the paper.

2.1 Orchestration Model

We consider service compositions whose internal logic is specified in terms of
orchestration models. An orchestration model is essentially a process graph in

Aggregate Quality of Service Computation for Composite Services 215

Record
payment

<3,4,0.95>

Get credit
card info

<2,1,0.95>

Get bank
info

<2,1,0.98>

Check paid
amount

<2,3,0.97>

Check
exchange rate

<1,1,0.99> Process over/
underpayment

<3,2,0.97>

Reimburse
overpayment

<4,5,0.8>

Record
failure

<2,3,0.96>

Notify
manager

<1,1,0.99>

Update
failure stats
<3,1,0.93>

Notify
Customer
<4,2,0.94>

a

b

c

d
e

f

g

h

i

j

k

Client

Fig. 1. Example of Composite Service

which the tasks are mapped to interactions with the client of the composite ser-
vice and with services drawn from a service repository (the component services).

Definition 1 (Composite Service, Orchestration Model)
A composite service is a tuple (Orc, Binding), where Orc is a service orchestra-
tion model and Binding is a function that maps tasks in the orchestration model
to component services or to a predefined Client role. An orchestration model is
a directed graph consisting of edges (n1, p, n2) such that n1 and n2 are process
nodes (the source and the target of the edge) and p is the probability of taking
the edge assuming that the execution of the orchestration has reached node n1.

Process nodes are of two types: tasks and gateways. Tasks represent units of
work that are delegated to component services, while gateways represent control-
flow routing points. There are two types of gateways: XOR gateways represent
conditional branching (XOR-split) or merging of exclusive branches (XOR-join),
wheres AND gateways represent parallel forking (AND-split) or synchronization
points (AND-join). Split gateways are gateways with multiple outgoing edges,
while join gateways are gateways with multiple incoming edges.

The binding of a composite service is not necessarily a total function – some
tasks might not be bound to any service. A task in a composite service that is
not bound to a service is called an empty task.

We impose the following well-formedness conditions: (i) an orchestration model
has a single source node (i.e., a node with no incoming edges), and a single sink
node (i.e., a node with no outgoing edges), and every node is on a path from the
source to the sink; (ii) every task node has a single incoming and a single outgoing
edge, and every gateway is either a split or a join. If these latter conditions are
not satisfied, the orchestration model can be trivially restructured into one that
satisfies these conditions; (iii) the sum of the probabilities attached to the outgoing
edges of an XOR-split gateway is 1; (iv) an edge whose source is not an XOR-split
gateway has a probability of 1, meaning that such edges are always traversed when
their source node is reached.

216 M. Dumas et al.

As an illustrative example, we consider a simplified Payment composite service
depicted in Fig.1. The figure shows the orchestration model of the composite
service in BPMN. Tasks are represented as rounded rectangles while gateways
are represented as diamonds labelled with ’X’ (XOR) or ’+’ (AND). Not shown
in the figure is the binding of the composite service which maps each task to a
service (except tasks “Notify Customer” and “Reimburse Overpayment” which
consist of interactions with the customer).

2.2 Quality of Service Model

QoS computations on composite services are performed with respect to a fixed set
of QoS attributes {Attri | i ∈ 1..n} such as execution time, cost and reliability.
The assumption of a fixed set of attributes is made for presentation purposes and
does not constitute a limitation since we can make this set as large as required.

We further postulate the existence of a function that given a service, returns
its QoS. This function is initially given for pre-existing (non-composite) services.
Our goal is to lift this function so that it can also be applied to composite services.

Definition 2 (QoS Function). The QoS of a service s, denoted by QoS(s), is
a vector 〈v1, · · · , vn〉, where vi is the value of QoS attribute Attri for service s. By
extension,QoS is also defined over tasks as follows:QoS(T) = QoS(binding(T)).

Numerous QoS attributes have been proposed in previous studies (e.g.,
[5,6,7,8,9,18]). With respect to the method for computing QoS attribute values
for composite services, we classify existing QoS attributes into three categories:
1. Critical path. The value of the QoS attribute for the composite service

is determined by the critical path of the orchestration. Examples include
execution time (longest critical path) and fault-tolerance (weakest path) [5].

2. Additive. The value of the QoS attribute for the composite service is a sum
of the QoS values of the component services taking into account how often
each service is invoked. Examples include cost and carbon footprint.

3. Multiplication. The QoS attribute value for the composite service is a prod-
uct of the QoS values of the component services taking into account how often
each service is invoked. Examples include reliability and availability [18].

Below, we only consider three representative attributes. For each service s,
QoS(s) = 〈T,C,R〉, where T,C and R stand for time, cost and reliability. In
Fig.1, for example, the numbers in each service denote its QoS attributes.

3 Anatomizing Service Orchestration

This section presents an approach for parsing service compositions. Given a
service orchestration, it gets decomposed into a collection of orchestration com-
ponents, each with clear structural characteristics. The approach is founded on
two techniques: a technique for structuring orchestration models [15] and a tech-
nique for discovery of SESE components in orchestration models [16,17]. Sect.3.1
presents the overall approach. Sect.3.2 and Sect.3.3 discuss two special types of
orchestration components: SEMELoop and DAG components.

Aggregate Quality of Service Computation for Composite Services 217

i

h

g

f

k

a

b d

c

e

j

P1R1P2

P3

R2

R3

(a)

a

b d

c

e

j

k

i

h

g

f

P1R1

P2

P3

R3

B1 B2

(b)

Fig. 2. (a) Service orchestration, (b) maximally-structured representation of (a)

3.1 Orchestration Component

In order to analyze service orchestrations, we decompose them into orchestra-
tion components. An orchestration component is a subgraph of the orchestration
model with a single-entry and single-exit point (including individual tasks in
the orchestration, but also larger subgraphs). QoS is then computed indepen-
dently for each orchestration component. This section discusses the approach we
employ for identifying orchestration components in orchestrations.

The Refined Process Structure Tree (RPST) [16,17] is a technique to parse
orchestration models into a tree of SESE components. A component in the RPST
contains all components at the lower level, whereas all components at a given
level are disjoint. Each component in the RPST belongs to one out of four classes:
A trivial (T) component consists of a single flow arc. A polygon (P) represents a
sequence of components. A bond (B) stands for a set of components that share
two common nodes. Any other component is a rigid (R) component.

Fig.2(a) exemplifies the RPST of the running example given in Fig.1. Note that
Fig.2(a) uses short-names for tasks (a, b, c, . . .), which appear next to each task in
Fig.1. In the figure, each dotted box represents a component in the RPST that is
formed by flow arcs that are inside or intersect the box. Names of components hint
at their class, e.g., P1 is a polygon component and R1 is a rigid component. Each
flow arc forms a trivial component. Trivial components, as well as polygons that
are composed of two flow arcs, are not visualized for simplicity reasons.

Rigid components determine what makes a service orchestration unstructured.
The service orchestration in Fig.2(a) contains three rigid components. To maxi-
mize the amount of structural information derived at the parsing step, we employ
the technique from [15]. The technique allows to derive maximally-structured
representation of a service orchestration under the fully concurrent bisimulation
equivalence notion [3]. By employing the technique from [15] to the model in
Fig.2(a), one obtains a service orchestration that is given in Fig.2(b); rigid com-
ponent R2 gets an equivalent representation that consists of bond components
B1 and B2. Importantly, at the stage of maximally-structured representation
we are able to define syntax of an orchestration component as follows.

218 M. Dumas et al.

SC1 SC2 SCn...

(a) SEQ

SC1

SC2

SCn

...

p1

pn

p2

(b) CHC

SC1

SC2

SCn

...

(c) PAR

SC
p

(d) RPT

Fig. 3. Structured orchestration components

Definition 3 (Syntax of an Orchestration Component)
Let P be the range of real numbers from 0.0 to 1.0.

ServiceComponent(SC) ::= τ | Service | C+ | C−

OrchestrationElement(OE) ::= SC | AND | XOR
StructuredComponent(C+) ::= SEQ([SC]) | CHC ({P × SC}) |

| PAR({SC}) | RPT (SC × P)
UnstructuredComponent(C−) ::= SEMELoop([SC × P × SC]) |

| DAG({OE × P ×OE})

We distinguish the following types of orchestration components: empty (τ)
tasks, regular tasks (tasks bound to services), structured orchestration compo-
nents, and unstructured orchestration components. Fig.3 exemplifies four types
of structured orchestration components: sequence (SEQ), choice (CHC), paral-
lel (PAR), and repeat (RPT). A sequence component is a list of orchestration
components. A choice component is a set of orchestration components along
with probabilities for executing each orchestration component. A parallel com-
ponent is a set of orchestration components. Finally, a repeat component is an
orchestration component along with the probability of repeating it. In Fig.2(b),
bond B1 is a choice component, bond B2 is a parallel component, and polygon
P2 = [B1, B2] is a sequence component.

3.2 Single-Entry-Multi-Exit Loop Component

In the context of flowcharts, it has been shown that loops with multiple entry
points can be restructured into loops with single entry point by means of node
duplication [13]. However, subsequent transformation of loops with multiple exit
points into loops with single exit point requires introduction of variables and
branching conditions on these variables. In these cases, it is not straightforward
to abstract branching conditions as a branching probability. Therefore, we explic-
itly deal with single-entry-multi-exit loop components (SEMELoop components)
that capture single entry point loop topologies. Fig.4(a) shows a 1-Entry-2-Exit
loop component, whereas Fig.4(b) gives a general topology of a SEMELoop com-
ponent of size n ∈ N, n ≥ 2.

We treat a SEMELoop component as a list of tuples (SCi, pi, eSCi), where
pi is the probability of proceeding with loop execution after an accomplishment

Aggregate Quality of Service Computation for Composite Services 219

SC1

SC2

SC3

...

p1
p2

eSC1 eSC2

...

(a) 1-Entry-2-Exit Loop

SC1

SC2

SCn+1

...

SC3 SCn...
p1 p2 pn

eSC1 eSC2 eSCn

...

...

(b) 1-Entry-n-Exit Loop

Fig. 4. SEMELoop components

of an orchestration component SCi and eSCi is an orchestration component
that is executed if the loop is left after an accomplishment of SCi. For instance,
a SEMELoop component that is given in Fig.4(a) is represented by the list
[(SC1, p1, eSC1), (SC2, p2, eSC2), (SC3, 1.0, τ)]. Note that the last element in the
list shows that the loop component cannot be left after SC3 (the probability of
staying in the loop is equal to 1.0) and, hence, no orchestration component
can be executed after leaving the loop after SC3 (denoted by a silent service
τ). Observe that R1, both in Fig.2(a) and in Fig.2(b), is a 1-Entry-2-Exit loop
component. Loop topologies that cannot be classified as SEMELoop components
within service orchestrations are left for future work.

3.3 DAG Component

Acyclic rigids that are present in maximally-structured representations of service
orchestrations are classified as irreducible acyclic components, or DAG compo-
nents. Fig.5 exemplifies DAG components: Fig.5(a) shows the simplest DAG
component—a well-known N-structure [10], whereas Fig.5(b) visualizes a DAG
component that is a composition of N-structures. Observe that rigid R3, both
in Fig.2(a) and in Fig.2(b), is a DAG component.

We treat a DAG component as a set of tuples (OE1, p, OE2), where OE1

and OE2 are orchestration elements, i.e., either an orchestration component or
a gateway, and p is the probability that OE2 will be executed after accomplish-
ment of OE1. For instance, the N-structure in Fig.5(a) is described by the set

SC1

SC2

SC3

SC4

a1

a2

a3

a4

(a) N-structure

SC1

SC3

a1
SC2 SC4

SC5

SC6

SC7

a2

a3 a4

a5

a6

(b) Composition of N-structures

Fig. 5. DAG components

220 M. Dumas et al.

{(a1, 1.0, SC1), (a1, 1.0, SC2), (SC1, 1.0, a2), (SC2, 1.0, a3), (a2, 1.0, a3), (a2, 1.0,
SC3), (a3, 1.0, SC4), (SC3, 1.0, a4), (SC4, 1.0, a4)}.

DAG components are analyzed by employing the notion of a run. A run is a
subgraph of a DAG component that can be interpreted as its concurrent execu-
tion along with the probability to observe this run. The notion which is relevant
to runs is that of configuration. A configuration is a set of tuples (OE1, p, OE2),
where OE1 is a XOR-split gateway, OE2 is an orchestration element, and p
is the probability that OE2 will be executed after visiting OE1. Moreover, a
configuration must define a run. For instance, {(x1, p11, x2), (x2, p21, SC2)} and
{(x1, p11, x2), (x2, p22, SC3)} are configurations of the DAG in Fig.6(a).

Individual runs allow us to treat each DAG component as a choice component.
A choice component that corresponds to a DAG component is a set of runs of
the DAG, each together with the probability to observe the run. We use Alg.1
to compute all configurations of a process graph.

Algorithm 1. Compute Configurations of a DAG Component
Input: G—a DAG component
Output: Θ—the set of configurations of G
X = {x1, x2, . . . , xn} // XOR-split gateways of G

Θ =
∏|X|

i=1 out(xi) // Cartesian product of outgoing flow arcs

foreach θ = (e1, e2, . . . , en) ∈ Θ do
foreach ei, ej ∈ set(θ) do

if ∃ path : src(ei), ej ∈ path ∧ tgt(ei) /∈ path then θ = θ − ej

Remove duplicates from Θ
return Θ

Example 1. We exemplify the steps of Alg.1 for the DAG component in Fig.6(a):
1. X = {x1, x2, x3} is the set of XOR-split gateways, with outgoing flow arcs

given as: out(x1) = {e1, e4}, out(x2) = {e2, e3}, out(x3) = {e5, e6}.
2. Θ =

∏3
i=1 out(xi) = {(e1, e2, e5), (e1, e2, e6), (e1, e3, e5), (e1, e3, e6),

(e4, e5, e2), (e4, e5, e3), (e4, e6, e2), (e4, e6, e3)}, where the underlining ele-
ments will be removed in the next step.

3. Θ = {(e1, e2), (e1, e2), (e1, e3), (e1, e3), (e4, e5), (e4, e5), (e4, e6), (e4, e6)}.
4. Θ = {(e1, e2), (e1, e3), (e4, e5), (e4, e6)}, after removing duplicate entries.

Given a DAG component and the set of its configurations, Alg.2 computes the set
of its runs. Consequently, one can construct a choice component that corresponds
to the original DAG component. A choice component is obtained by introducing
a single XOR-split gateway which leads to entry of each run with the probability
that reflects the chance to observe the run. Accordingly, exits of all runs must
be merged by a single XOR-join gateway. A choice component that corresponds
to the DAG component in Fig.6(a) is given in Fig.6(b).

Aggregate Quality of Service Computation for Composite Services 221

SC1

SC4

SC3

SC2

SC5

SC8

SC7

SC6

SC9

SC10

x1

x2

x3

e1

e2

e3

e4
e5

e6

(a)

SC2

SC1

SC6

SC4

SC1

SC8

SC3

SC1

SC7

SC5

SC1

SC9

SC10

SC10

SC10

SC10

(b)

Fig. 6. (a) a DAG component, (b) a choice component that corresponds to (a)

Algorithm 2. Compute Runs of a DAG Component
Input: G—a DAG component, Θ— the set of configurations of G
Output: Γ—the set of runs of G
Γ = {} // Initialize Γ as empty set

foreach θ ∈ Θ do Compute corresponding run for θ
γ = G // Initialize the run

q = 1.0 // Initialize the probability of observing the run

foreach (x, p, m) ∈ θ do
foreach (x, h, n) ∈ γ ∧ n �= m do γ = γ − (x, h, n)

while ∃(y, k, z) ∈ γ : � (y′, k′, y) ∈ γ do γ = γ − (y, k, z)
foreach XOR-split gateway x ∈ γ do γ = γ − (x, p, y) + (x.precede,1.0, y)
q = q × p // Update the probability of observing the run

Γ = Γ ∪ (q, γ)
return Γ

4 Quality of Service Aggregation

In this section, we discuss the aggregation of QoS of orchestration components.
Sect.4.1 proposes functions for computing QoS of service orchestration com-
ponents, and Sect.4.2 proposes an algorithm that combines these component-
specific functions into comprehensive approach for computing QoS.

4.1 Aggregation of Orchestration Component

Structured Component. The QoS of structured orchestration components is
computed based on the following equations, which are taken from [5].

QoS(SEQ[SCi]) = 〈
∑

TSCi,
∑

CSCi ,
∏

RSCi〉

QoS(CHC{(pi, SCi)}) = 〈
∑

piTSCi ,
∑

piCSCi ,
∑

piRSCi〉

QoS(RPT (SC, p) = 〈(1− p)−1TSC , (1 − p)−1CSC , R
(1−p)−1

SC 〉
QoS(PAR{SCi}) = 〈max{TSCi},

∑
CSCi ,

∏
RSCi〉 (1)

222 M. Dumas et al.

Note that, for repeat composition RPT (SC, p), the computation considers that
SC may be executed one or more times. Following the well-known power se-
ries relation, SC is expected to be executed (1 − p)−1 times1, where p is the
probability of staying in the loop.

Single-Entry-Multi-Exit Loop Component. As for repeat components, in
SEMELoop components a collection of orchestration components is executed one
or more times. However, for a given component the expected number depends
on its position in the loop.

Let L = SEMELoop[(SCi, pi, eSCi)], i ∈ [1..n + 1], be a SEMELoop and
{αi} = {SCi} ∪ {eSCi} be an orchestration component of L. Then, QoS of L
can be computed as follows:

〈
n+1∑

i=1

avg(αi) • Tαi ,

n+1∑

i=1

avg(αi) • Cαi ,

n+1∏

i=1

R
avg(SCi)
SCi

×
n∑

i=1

p(eSCi) •ReSCi〉 (2)

Here, avg(αi) stands for the average number of times that αi gets executed in the
loop, p(eSCi) stands for the probability of exiting the loop along orchestration
component eSCi, and avg(eSCi) = p(eSCi) for each service eSCi.

For each service αi, avg(αi) can be computed as follows:

avg(SC1) = 1 + ρn + ρ2
n + · · · =

∞∑

i=0

ρi
n = (1− ρn)−1

avg(SCk) = ρk−1 + ρk−1ρn + ρk−1ρ
2
n + · · · = ρk−1

∞∑

i=0

ρi
n = ρk−1(1 − ρn)−1

avg(eSCk) = p(eSCk) = ρk−1(1− pk) + ρk−1(1− pk)ρn + ρk−1(1− pk)ρ2
n + · · ·

= (1− pk)ρk−1

∞∑

i=0

ρi
n = (1− pk)ρk−1(1− ρn)−1

Wherein, ρk =
∏k

i=1 pi, k ∈ [1..n] and ρ0 = 1.

Example 2. The average number of times of each orchestration component in
Fig.4(a) is computed as follows:
avg(SC1) =

∑∞
i=0(p1p2)i = (1− p1p2)−1

avg(SC2) = p1

∑∞
i=0(p1p2)i = p1(1− p1p2)−1

avg(SC3) = p1p2

∑∞
i=0(p1p2)i = p1p2(1− p1p2)−1

p(eSC1) = (1 − p1)
∑∞

i=0(p1p2)i = (1− p1)(1 − p1p2)−1

p(eSC2) = p1(1 − p2)
∑∞

i=0(p1p2)i = p1(1− p2)(1 − p1p2)−1

DAG Component. A DAG orchestration component can be transformed into
an equivalent choice component as explained in Sect.3.3. Each of the branches
in this choice component corresponds to a run of the DAG component. The QoS
1 Power series: p0 + p1 + ... + pn =

∑∞
i=0 pi = (1 − p)−1.

Aggregate Quality of Service Computation for Composite Services 223

values calculated for individual runs are then aggregated taking into account the
probability of each run as follows:

〈
∑

pγk
Tγk

,
∑

pγk
Cγk

,
∑

pγk
Rγk
〉 (3)

For a given run γk, the execution time can be computed with the well-known
critical path method, i.e. compute the longest duration path in the run. Mean-
while, the cost of a run is the sum of the costs of the orchestration components
in the run, and the reliability of a run is the product of the reliabilities of the
orchestration components in the run.

For each run γ, therefore, QoS can be computed as follows:

〈CriticalPath(Tpathi),
∑

CSCi ,
∏

RSCi〉 (4)

Example 3. The QoS of the DAG component shown in Fig.5(a) is the following:
〈max{TSC1 +max{TSC3, TSC4}, TSC2 + TSC4},

∑
CSCi ,

∏
RSCi〉.

4.2 QoS of Composite Services

The overall QoS for a composite service is computed by aggregating the QoS
of its orchestration components according to their structure and relation, i.e.,
maximally-structured representation in Fig.2(b). To this end, the RPST of the
composite service is traversed in pre-order, i.e., computing the aggregate QoS
from leaf nodes up to the root node.

Alg. 3 details the procedure of computing QoS for a service orchestration.

Algorithm 3. Compute QoS for Service Orchestration: ComputeQoS(SC)
Input: SC — node of the RPST
Output: QoS — QoS of SC
if SC is an atomic service then return 〈TSC , CSC , RSC〉
foreach SCi ∈ ChildrenOf(SC) do ComputeQoS(SCi)
if SC is a structured orchestration component then

Compute QoS(SC) as according to Formula 1
if SC is a SEMELoop component then

Compute QoS(SC) according to Formula 2
if SC is a DAG component then

Compute configurations Θ of SC
foreach θ ∈ Θ do

Compute runs γ for θ according to Alg. 2
Compute QoS(γ) according to Formula 4

Compute QoS(SC) according to Formula 3
return QoS

Example 4. To exemplify the Alg.3, we compute QoS for the composite service
that is proposed in Fig.1.

224 M. Dumas et al.

QoS(B1) = 〈2 ·0.6+1 ·0.4, 1 ·0.6+2 ·0.4, 0.95 ·0.6+0.98 ·0.4〉= 〈1.6, 1.4, 0.962〉;
QoS(B2) = 〈max{2, 1}, 3 + 1, 0.97 · 0.99〉 = 〈2, 4, 0.9603〉;
QoS(P2) = 〈1.6 + 2, 1.4 + 4, 0.962 · 0.9238〉 = 〈3.6, 5.4, 0.8887〉;
QoS(P3) = QoS(B2) = 〈max{2 + 3, 2 + 4, 1 + 4}, 3 + 1 + 1 + 2, 0.96 · 0.99 · 0.93 ·
0.94〉 = 〈6, 7, 0.8308〉;
avg(P2) = 1/(1− 0.8 · 0.6) = 1.9231;
avg(j) = p(j) = (1− 0.8)/(1− 0.8 · 0.6) = 0.3846;
avg(e) = 0.8/(1− 0.8 · 0.6) = 1.5385;
avg(k) = p(k) = 0.8 · (1− 0.6)/(1− 0.8 · 0.6) = 0.6154;
avg(P3) = 0.6 · 0.8/(1− 0.8 · 0.6) = 0.9231;
QoS(P1) = QoS(R1) = 〈3.6 · 1.9231 + 3 · 0.3846 + 3 · 1.5385 + 4 · 0.6154 + 6 ·
0.9231, 5.4 · 1.9231 + 4 · 0.3846 + 2 · 1.5385 + 5 · 0.6154 + 7 · 0.9231, 0.88871.9231 ·
0.971.5385 ·0.800.6154 ·(0.95 ·0.3846+0.8308 ·0.9231)〉= 〈20.6927, 24.5388, 0.7506〉.

5 Implementation and Evaluation

We have implemented the proposed QoS aggregation method in a tool that takes
as inputs service orchestrations described in BPMN2 and computes the aggregate
value for each QoS attribute. The QoS values for each service and the branching
probabilities of gateways in the BPMN model are defined in separate (text) files.
The tool is distributed as an extension of the BPStruct tool and is available at:
http://sep.cs.ut.ee/Main/Bpstruct. Below we present an evaluation of the
scalability of the QoS aggregation method using the implemented tool.

5.1 Dataset

We collected a dataset consisting of 28 BPMN models from the following sources:
8 models from the public Oryx repository3, 8 models from BPMN-to-BPEL case
study of the Grabats’2009 graph transformation challenge4, and 12 models from
a repository of process models for local government authorities in China collected
by Fudan University. We discarded incomplete/incorrect models, and models
containing OR gateways, complex gateways, error events and boundary events,
which are out of the scope of this paper. The size of models in the dataset (num-
ber of process nodes) range from 5 to 32, with an average of 17.5 nodes. Some
of these models were larger, but they were structured into a top-level process
with subprocess invocations. In this case, the process and its subprocesses are
handled separately. The models cover all types of components: 72 SEQ compo-
nents, 19 CHC components, 24 PAR components, 20 SESE Loop components,
2 DAG components, and 4 SEME Loop components. Links to all the models in
the dataset are included in the tool distribution Web page. We assigned random
probability to each XOR-split branch of each model (using a uniform distribu-
tion), and random QoS to each service (i.e., time, cost and reliability).
2 Specifically, the tool accepts BPMN models exported from Oryx

(http://oryx-project.org/)
3 http://oryx-editor.org/
4 http://fots.ua.ac.be/events/grabats2008/cases.html

http://sep.cs.ut.ee/Main/Bpstruct
http://oryx-project.org/
http://oryx-editor.org/
http://fots.ua.ac.be/events/grabats2008/cases.html

Aggregate Quality of Service Computation for Composite Services 225

5.2 Results

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 5 10 15 20 25 30 35

T
im

e
(m

ill
is

ec
on

ds
)

Number of nodes

Fig. 7. Execution times for QoS
aggregation

We used the tool to compute the aggregate
QoS for each models in the dataset and mea-
sured execution times (in milliseconds). All
tests were performed on a laptop with a dual
core Intel processor, 2.53 GHz, 3 GB mem-
ory, running Microsoft Vista and SUN Java
Virtual Machine version 1.6 (with 512MB of
allocated memory). To eliminate load time
from the measures, each test was executed five
times, and we recorded the average execution
time of the second to fifth run. The measured
execution time included the time required to
compute the RPST and to calculate the QoS.
The resulting histogram of execution times is plotted in Fig. 7. The figure shows
that the QoS aggregation technique can deal with models of realistic size and
complexity and that it scales quasi-linearly.

6 Related Work

Several previous studies have addressed the problem of aggregating QoS in terms
of different structures in the orchestration model. Jaeger et al [8,9] discuss the
QoS aggregation problem for process models consisting of sequence, conditional
and parallel. The approach does not deal with loops. In order to cope with
the problem of binding and re-binding for composite services, Canfora et al [4]
propose QoS aggregation functions for four constructs: sequence, switch, flow and
loop, while Mukherjee et al [12] propose a model to estimate QoS of an executable
BPEL process definition, but without considering unstructured BPEL activities
(i.e. BPEL “flow” activities with control links). Cardoso et al [5] proposed a
Stochastic Workflow Reduction (SWR) algorithm which takes as input a process
graph and computes the expected QoS by repeatedly applying a set of reduction
rules for sequential, parallel, conditional and simple loop. Hwang et al [6,7]
represent composite services using a tree structure and compute the aggregate
QoS of composite services recursively by traversing the tree. This tree is similar
with the RPST structure, but the trees in the work of Hwang et al do not contain
any unstructured blocks. In summary, all of the above approaches are related to
ours, but all of them deal with well-structured orchestration models only.

The problem of computing QoS for composite services is related to that of
QoS-aware service composition [1,11,18], where the input is an orchestration
model and a set of service candidates for each task in the orchestration model.
The goal is to find a binding that optimizes a given objective function while
satisfying a given set of constraints. Zeng et al [18] study a local and a global
optimization approach to this problem using Simple Additive Weighting (SAW)
and Integer Programming (IP), respectively. Meanwhile, Liu et al [11] propose

226 M. Dumas et al.

a dynamic QoS computation model for web services selection in order to deal
with runtime QoS selection. Like [18], the authors construct a QoS matrix and
compute QoS of a composite service via normalization and then multiplication
with weights given by a user. A combination of the local optimization and the
global optimization approaches is studied in Alrifai et al [1]. This latter work
considers three types of QoS aggregation functions: summation, multiplication
and minimum relation. The classification of QoS attributes that we use is inspired
by this latter work.

The above studies address a more complex problem, in the sense that the
binding is not given, but instead needs to be computed based on the set of
candidate services for each task. On the other hand, the above work also suffer
from an inability to deal with unstructured components. In addition, the global
optimization approach proposed by Zeng et al [18] cannot deal with loops (not
even structured loops). Instead, it is assumed that loops are expanded by putting
an upper-bound to the number of times a loop is executed and unfolding the
loop into a sequential structure.

7 Conclusion

In this paper, we proposed a method for computing the QoS of composite
services. Unlike previous work, the proposed method can deal with orchestra-
tion models containing unstructured components, specifically models containing
single-entry-multi-exit loop (SEMELoop) and DAG components. The proposed
method has been implemented as a tool and tested with a collection of models
taken from multiple sources.

Our future work includes computing QoS for composite services with more
complex types of loops (e.g., overlapping loops) and extending the proposed
method to address the problem of QoS-aware service composition.

Acknowledgments. Work supported by the NSF of China grant 60873115, the
Chinese National Basic Research Program (973) grant 2005CB321905 and the
Fudan Short-Term Visits Program for Doctoral Students. Work also supported
by the ERDF via the Estonian Centre of Excellence in Computer Science.

References

1. Alrifai, M., Risse, T.: Combining Global Optimization with Local Selection for
Efficient QoS-aware Service Composition. In: Proc. 18th Int. Conf. on World Wide
Web, pp. 881–890. ACM Press, New York (2009)

2. Becker, C., Kulovits, H., Kraxner, M., Gottardi, R., Rauber, A.: An Extensi-
ble Monitoring Framework for Measuring and Evaluating Tool Performance in a
Service-Oriented Architecture. In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.)
Web Engineering. LNCS, vol. 5648, pp. 221–235. Springer, Heidelberg (2009)

3. Best, E., Devillers, R.R., Kiehn, A., Pomello, L.: Concurrent Bisimulations in Petri
Nets. Acta Informatica 28(3), 231–264 (1991)

Aggregate Quality of Service Computation for Composite Services 227

4. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: A framework for QoS-aware
binding and re-binding of composite web services. Systems and Software 81(10)
(2008)

5. Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of Service for
Workflows and Web Service Processes. Web Semantics 1(3), 281–308 (2004)

6. Hwang, S.Y., Wang, H., Srivastava, J., Paul, R.A.: A Probabilistic QoS Model and
Computation Framework for Web Services-Based Workflows. In: Atzeni, P., Chu,
W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 596–609.
Springer, Heidelberg (2004)

7. Hwang, S.Y., Wang, H., Tang, J., Srivastava, J.: A probabilistic approach to mod-
eling and estimating the QoS of web-services-based workflows. Information Sci-
ences 177(23), 5484–5503 (2007)

8. Jaeger, M.C., Rojec-Goldmann, G., Muhl, G.: QoS Aggregation for Web Service
Composition using Workflow Patterns. In: Proc. of Enterprise Distributed Object
Computing Conf., pp. 149–159. IEEE, Los Alamitos (2004)

9. Jaeger, M.C., Rojec-Goldmann, G., Muhl, G.: QoS Aggregation in Web Service
Compositions. In: Proc. IEEE Int. Conf. EEE, pp. 181–185 (2005)

10. Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.: On Structured Workflow Mod-
elling. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789, pp.
431–445. Springer, Heidelberg (2000)

11. Liu, Y., Ngu, A.H., Zeng, L.Z.: QoS Computation and Policing in Dynamic Web
Service Selection. In: WWW Alt, pp. 66–73 (2004)

12. Mukherjee, D., Jalote, P., Gowri Nanda, M.: Determining QoS of WS-BPEL com-
positions. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS,
vol. 5364, pp. 378–393. Springer, Heidelberg (2008)

13. Oulsnam, G.: Unravelling Unstructured Programs. Computer Journal 25(3) (1982)
14. Peltz, C.: Web services orchestration and choreography. IEEE Computer 36(10),

46–52 (2003)
15. Polyvyanyy, A., Garćıa-Bañuelos, L., Dumas, M.: Structuring Acyclic Process

Models. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336,
pp. 276–293. Springer, Heidelberg (2010)

16. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified Computation and General-
ization of the Refined Process Structure Tree. In: Proc. of the 7th Int. Workshop
on Web Services and Formal Methods, WS-FM (2010) (in press)

17. Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. Data
and Knowledge Engineering 68(9), 793–818 (2009)

18. Zeng, L., Benatallah, B., H.H. Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.:
QoS-Aware Middleware for Web Services Composition. IEEE Transactions on Soft-
ware Engineering 30(5), 311–327 (2004)

19. Zeng, L., Lei, H., Chang, H.: Monitoring the QoS for Web Services. In: Krämer,
B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 132–144.
Springer, Heidelberg (2007)

Creating Context-Adaptive Business Processes

Gabriel Hermosillo, Lionel Seinturier, and Laurence Duchien

INRIA Lille - Nord Europe, ADAM Project-Team
Univ. Lille 1 - LIFL CNRS UMR 8022

Lille, France
firstname.lastname@inria.fr

Abstract. As the dynamicity of today’s business environments keeps
increasing, there is a need to continuously adapt business processes to
respond to the changes in those environments and keep a competitive
level. By using complex event processing, we can discover information
that is relevant to our organization, which is usually hidden among the
data generated in the environment, and use it to adapt the processes
accordingly to respond to the changing conditions in an optimal way.
Unfortunately, the static nature of business process definitions makes it
impossible to adapt them at runtime and the redeployment of a modified
process is required. By using a component-based approach, we can trans-
form the existing business processes into dynamically bound components,
adding the flexibility needed to adapt the processes at runtime. In this
paper we present CEVICHE, a framework that combines the strengths
of complex event processing and dynamic business process adaptation,
which allows to respond to the needs of the rapidly changing environ-
ment, and its adaptation language called SBPL, an extension to BPEL
which adds flexibility to business processes.

1 Introduction

In order to maintain a competitive level, organizations are increasingly using ser-
vices to facilitate the integration of their business processes. These services are
loosely-coupled instances, which enable the separation of concerns. To orches-
trate them, organizations rely mainly in well known standards such as BPEL
(Business Process Execution Language). As business processes evolve and get
more complex, the data around them increases exponentially, to the point where
it becomes almost impossible to find valuable information among it.

Complex Event Processing (CEP) is an emerging technology that can help
the organizations to benefit from this data, since it allows them to find real-time
relationships between different events, using elements such as timing, causality,
and membership in a stream of data to extract relevant information [1]. CEP can
be used in a wide variety of applications, like preventing theft of merchandise
[2], monitoring the stock market [3], and interacting with RFID systems [4].

However, there are some occasions in which it is not enough just to be able
to obtain this information from simple raw data. A better approach would be
that, once the information is found, the system could automatically adapt itself

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 228–242, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Creating Context-Adaptive Business Processes 229

accordingly to respond to the presented scenario. In this case, we want to ap-
ply this approach to business processes, allowing them to be dynamically and
automatically adapted, according to the information discovered using CEP to
continue in an optimal way, and this is why we developed CEVICHE (Complex
EVent processIng for Context-adaptive processes in pervasive and Heterogeneous
Environments).

The purpose of CEVICHE is to create context-aware business processes that
are able to adapt dynamically to respond to different unpredictable scenarios.
CEVICHE relies on BPEL, since it is the most common orchestration language,
it is an OASIS standard [5], and it is an execution language and not a modeling
language (like BPMN). With CEVICHE the adaptation of the business process
happens at runtime during the execution. The decisions of how to respond to
a specific scenario are done by collecting data from different sources and trans-
forming it into useful information, using CEP. Separating the decision making
process from the core business process can help to keep a better understanding
of the process, by avoiding to have cross-cutting code in the main process defini-
tion. In this paper we present the Standard Business Process Language (SBPL),
an extension of BPEL which allows the user define the adaptation points in a
business process. By using a component-oriented approach, we can define al-
ternative processes that can be integrated into the existing business process at
runtime, allowing the business process to adapt in a dynamic way.

We have already presented CEVICHE in previous work, where we used an
aspect-oriented approach to monitor and maintain the Quality of Service (QoS)
of a business process, by monitoring the performance and availability of the
different tasks of the process, adapting the process to maintain a good QoS
whenever a decrease of those parameters was detected [6]. In this paper we are
using a component-oriented approach to show the flexibility of CEVICHE to
deal with different adaptation approaches, however we mainly want to focus
on the way in which this adaptation is defined by the user using CEVICHE’s
adaptation language, called SBPL, and the event definitions.

The rest of this paper is organized as follows. In Section 2, we use a scenario
to illustrate the motivation and challenges of our proposal. Section 3 presents a
background of the different domains used in this paper. In Section 4, we present
the SBPL and show how events are defined in CEVICHE. Section 5 explains the
CEVICHE framework and its architecture. In Section 6, we discuss our proposal
and how it solves the presented challenges. Section 7 presents some of the related
work. Finally, Section 8 concludes and discusses some future work.

2 Motivation and Challenges

In order to show how CEVICHE can help to improve the business process by
adding dynamic adaptation, we will use a small health-care scenario. The goal
of the process is to diagnose a patient, given her vital signs (i.e. temperature,
blood pressure and heart-beat rate), as can be seen in Fig. 1. If the vital signs
are normal, the results are logged and the process finishes, otherwise, the process
diagnoses the problem and logs the results.

230 G. Hermosillo, L. Seinturier, and L. Duchien

Fig. 1. The health-care sample process

Even though this is a very simple scenario, we can identify several limitations.
For example, if the information provided by the previous steps of the process
were not enough to diagnose a problem, and we needed other information to
accurately diagnose it (e.g. saliva PH, blood oxygen), there is no way to add it
to the process. We would need the user to start a new process that requests the
missing information in order to complete the diagnostic.

We could add additional steps to the process, like a validation in which, if
the first steps of the process do not provide enough information to diagnose
the problem, then the process will continue gathering other information until
the diagnostic can be completed. However, these additional steps are different
for each scenario, since the information needed to diagnose each problem is not
the same. Moreover, we do not want to have all the code for every case in the
main process definition, since this will generate code scattering and create a
very complex code that will be very hard to maintain. Finally, given the static
nature of business process definitions, whenever we want to add a new problem
detection to the process, or change the way in which an existing problem is being
diagnosed, we would need to modify and redeploy the whole process, stopping
the service while doing so and losing all the unfinished transactions.

Given these limitations, we can extract three challenges for the scenario:

1. Situation identification. In certain cases, the process needs to collect addi-
tional information about the patient, but we cannot anticipate what infor-
mation is needed in each case.

2. Code scattering. Even when we can anticipate the additional information, the
request for such information would have to be included in the main process
definition, generating code scattering and a complex logic in the process.

3. Process redeployment. If we need to add a new problem to diagnose, or
change the way an existing problem is being diagnosed, the whole process
would need to be redeployed.

Creating Context-Adaptive Business Processes 231

3 Background

In this section, we present a brief introduction to the main domains addressed in
this paper: complex event processing, business process execution language, and
component-oriented programming.

3.1 Complex Event Processing

CEP is an emerging technology for finding relationships between series of simple
and independent events from different sources, using previously defined rules [1].
The CEP technology can be used, among a lot of other things, to enrich the
enterprise’s existing processes, by introducing rules that will allow the capture
of relevant information from the different steps of their business process [7].

For example, let us consider the scenario of a retail store that keeps a record
of its inventory in an existing Enterprise Resource Planning (ERP) system and
wants to keep a live monitoring of its stocks to prevent shortage. To achieve
this, the store installs a CEP engine that will monitor the products’ movements
through their life cycle in the store process by receiving and analyzing all the
events generated by every change in the state. Since the objective is to monitor
inventory, the CEP engine will only keep the events related to changes in the
inventory and forget about the rest. By creating the necessary CEP rules, the
configuration is set to specify the lowest acceptable stock of product that the
store can have to avoid a shortage, e.g., a 10% for normal products and a 5% for
some low-demand products. Whenever a product reaches a minimum, the CEP
engine alerts the managers so they can make a supply order.

In addition to that, CEP can also be used to predict unexpected situations. To
complement the previous example, we can say that because of a global pandemic
alert, hand sanitizers are very popular and are selling a lot more than usual.
Given this demand, the store will run out of hand sanitizer before they can
resupply it, even with the minimum stock alert. By adding some specialized
CEP rules to analyze the frequency of sells of each product during the last 4
or 5 hours, the engine can polarize these values to know in advance (if the sells
rates are kept) that it will need to resupply before the expected time, which will
allow them to react in time even before it reaches the minimum level.

3.2 Business Process Execution Language

The Business Process Execution Language (BPEL) is an XML-based language
for composing services, created by IBM, BEA Systems and Microsoft in 2002, and
later approved as an OASIS Standard as WS-BPEL 2.0 [5]. There are two types
of service composition: orchestration (execution) and choreography (control).
BPEL is an orchestration language, which means that it focuses on the flow of
control and data among the different services of the business process, rather than
on the specification of peer-to-peer collaboration.

BPEL uses web services as a way to communicate with the different parties
involved in the business process. It has two types of activities: primitive and

232 G. Hermosillo, L. Seinturier, and L. Duchien

structured. The former refers to atomic or single activities while the latter refers
to composite activities (a combination of several activities). Some instructions
like invoke, receive or assign refer to the primitive activities, while sequence
and flow are part of the structured activities and refer to the order in which the
activities will execute.

In order to interact with the different parties of the business process (called
partners), we need to define a partner link, which specifies the roles of the
partner and the caller. We also need to define the different input and output
variables that we will use to send information to and receive information from the
service. Finally, BPEL also provides some facilities for transaction and exception
handling.

3.3 Component-Oriented Programming

Taylor et al. define a software component as an architectural entity that encap-
sulates a subset of the system’s functionality and/or data, restricts access to that
subset via an explicitly defined interface, and has explicitly defined dependencies
on its required execution context [8].

Component-oriented programming enables programs to be constructed from
prebuilt software components, which are reusable, self-contained blocks of com-
puter code. These components have to follow certain predefined standards includ-
ing interface, connections, versioning, and deployment [9]. Component-oriented
programming enables the development of software by assembling independent
components into a software architecture.

4 Events Definitions and the SBPL

The CEVICHE framework uses events to identify the situations where a process
adaptation is required. In this section we present how these events are defined
and how they are used by CEVICHE’s extension to BPEL, the Standard Business
Process Language (SBPL), to trigger the business process adaptation.

4.1 Event Definitions

Event definitions are one of the main parts of the CEVICHE framework. Since
the goal of CEVICHE is to work with any CEP engine, we need to provide
the user with a powerful enough event descriptor, in order to be able to use
the engine’s capabilities in the best possible way, after the event definitions are
translated. We are also concerned about standards, since it will be easier to
develop a translation plug-in for a specific CEP engine if the source were in
a well documented format, and this is why we use XPath1 expressions for our
event definitions, a query language for XML defined by the World Wide Web
Consortium. With XPath, the event conditions can be explicitly described and
therefore easily translated to other query languages. Besides, some CEP engines,
1 http://www.w3.org/TR/xpath20

Creating Context-Adaptive Business Processes 233

like Esper2, already support XPath event definitions, the translation plug-in can
be very simple or even non-existent.

An example of an event definition is shown in Fig. 2. Here we define an event
called Hypertension, which is triggered whenever the systolic blood pressure is
above 140 mmHg and the diastolic blood pressure is above 90 mmHg. For more
information about the use of XPath expressions, please refer to the specification.

1 <event name=’Hypertension ’>
2 <condition>
3 /event [@name=’BloodPressure ’]
4 and /event/ p r e s su r e [@type=’ Sy s to l i c ’] > 140
5 and /event/ p r e s su r e [@type=’ D ia s t o l i c ’] > 90
6 </condition>
7 </event>

Fig. 2. Event definition example

4.2 Standard Business Process Language

In order to respond to the lack of adaptation specifications in the current stan-
dards, we created the Standard Business Process Language (SBPL), an extension
of BPEL which allows the user to include, in the business process definitions,
the adaptation points, conditions and alternative processes to create dynami-
cally adaptable business processes. The syntaxis of the SBPL can be seen in Fig.
3. As an adaptation language, in SBPL we need to answer four basic questions:
Where to adapt?, When to adapt it?, How to adapt it?, and What to adapt?

To answer the first adaptation question, we need to identify the exact place
where we want to adapt the process, for which we use the adaptatioPoint tag
(line 11). We can use several adaptation points throughout the business process
definition. To define when adaptation that will take place, we need to specify the
conditions under which such adaptation is expected, and we do so by using the
situation tag (line 13). The first element is the event (line 14), which refers to
the name or alias of either a simple event generated by the process or a complex
event, generated by the CEP engine.

The conditions to identify these events will be defined as CEP rules and de-
ployed in the CEP engine using the translation plug-in. By separating the event
definitions from the business process definitions, we can increase the flexibility
of the process adaptation, since the conditions of the event definitions can be
easily managed, inserting, updating and deleting events without affecting the
business process. This also helps to the separation of concerns, avoiding to mix
the decision making process with the business process definition.

After declaring the expected event, we specify how the process should be
adapted, using the adaptationType tag (line 15). Inspired by the aspect-oriented
approach, the adaptation can be done either before, after or around the adapta-
tion point [10,11]. The first two types can be understood by their name, and the
2 http://esper.codehaus.org

234 G. Hermosillo, L. Seinturier, and L. Duchien

1 <proce ss>
2 <partnerL inks>
3 . . .
4 </partnerL inks>
5 <var i ab l e s >
6 . . .
7 </var i ab l e s >
8 <sequence>
9 <invoke/>

10 . . .
11 <adaptationPoint>
12 <invoke/>
13 <situation>
14 <event>... </event>
15 <adaptationType>... <adaptationType>
16 <adaptationProcess>
17 <partnerL inks >...</ partnerL inks>
18 <var i ab l e s >... </ va r i ab l e s >
19 <sequence >...</ sequence>
20 </adaptationProcess>
21 </situation>
22 <situation>
23 . . .
24 </situation>
25 </adaptationPoint>
26 <invoke/>
27 . . .
28 </sequence>
29 </proce ss>

Fig. 3. The SBPL definition

third is a combination of both, meaning that additional tasks will be executed
before and after the adaptation point. Also, when the around adaptation is used,
the task marked on the adaptation point can even be excluded from the process
and not executed at all.

Finally, we need to define what is to be adapted in the process, and for this we
use the alternativeProcess tag (line 16). This tag allows the user to introduce
the alternative business process that will be used to adapt the current process.
When using the around adaptation type, a tag called proceed should be added in
the alternative process to indicate the place where the adaptation point should be
inserted. Several situations can be defined for a single adaptation point, allowing
the process to be adapted in a different way according to the context information.

5 The CEVICHE Framework

In this section we present the CEVICHE framework. We start by giving an
overview of the system, then we present the framework’s architecture and finally
we show how the process adaptation is executed.

5.1 Overview and Architecture

CEVICHE is a framework that intends to facilitate the integration of CEP
into existing business processes and to allow these processes to be dynamically

Creating Context-Adaptive Business Processes 235

adapted to different circumstances. With this framework we want to address
mainly four issues: adaptation, dynamicity, integration of CEP into business
process, and non-dependency to a specific CEP engine.

To address the first issue, adaptation, we use a component-oriented approach.
We specifically use Easy BPEL3, a library that provides a BPEL 2.0 engine to or-
chestrate services based on a WSDL description. With this library, each task of the
business process is transformed into a component that exposes its interfaces, which
are bound according to the process definition, and the whole process is exposed as
a service using an Enterprise Service Bus (ESB). These bindings can be changed
at runtime, adding or removing components to the architecture, which allows the
process to be adapted dynamically, giving also a solution to our second issue.

By analyzing the current events with CEP and using context information,
CEVICHE can automatically decide when and how to adapt the process, inte-
grating CEP into business processes (third issue). To achieve this, we need to
provide CEVICHE with the definition of the adaptation points for the business
process and the events that will trigger that adaptation. This information is
defined using the SBPL, which contains also the complete business process. In
Section 4.2 we discussed the SBPL in more detail.

Finally, CEVICHE aims to be able to work with any CEP engine available. For
that, as part of this framework, we use a plug-in approach, which will allow us to
translate our events and conditions into the desired CEP engine. This approach
allows the users to define their business processes only once and deploy them
using their preferred CEP engine.

The architecture of CEVICHE is composed of four main parts: 1) a user in-
terface to create the SBPL definitions, 2) a translation framework that separates
the main business process from the adaptation conditions, 3) a translation plug-
in in charge of adapting the event definitions for each CEP engine, and 4) an
adaptation manager to deal with the process adaptation. CEVICHE also relies
on different technologies to achieve the process adaptation, like the CEP and
BPEL engines, as shown in Fig. 4.

To configure the system, the user needs to be able to specify where the process
has to be adapted and the conditions that will trigger such an adaptation. In
order to fulfill this need, CEVICHE requires a language that can describe the
business process along with all the adaptation points and conditions, and that
is just what the SBPL provides.

CEVICHE needs to kinds of information: first, the event definitions that iden-
tify the special situations that require process adaptation, and second, the busi-
ness process definition and adaptation points using the SBPL. Separating the
decision making process from the core business process, helps to reduce the cross-
cutting code and improves the maintainability of the process. The information
in the process definition is sent to the translation framework, which separates
the adaptation data from the core business process. The business process infor-
mation is sent to the BPEL engine, while the adaptation information is sent to
CEVICHE’s adaptation manager.

3 http://easybpel.petalslink.com

236 G. Hermosillo, L. Seinturier, and L. Duchien

Fig. 4. The CEVICHE framework

Since there is no standard yet to define the events and CEP rules, CEVICHE
uses a specialized plug-in approach to send the information in the second file in
the specific CEP engine’s format. This plug-in will need to be developed for each
specific CEP language, unless until a standard is defined by the Event Processing
Technical Society4. This way, whenever the user wants to use another CEP
engine, the only thing that needs to be done is to change the plug-in, without
rewriting all the specifications of the business processes. The event definitions
are explained in more detail in Section 4.1.

5.2 Process Adaptation

Once the initial setup is ready and all the components have been properly con-
figured, the process starts and the information begins to flow from one compo-
nent to the other. First, the BPEL engine transforms the business process into
components and exposes the process as a service in the ESB. When a request
message is received, a new instantiation of the BPEL process is triggered. Then,
the CEP engine subscribes to the different sources of events, here called the
events cloud , which will provide the engine with the information it needs to
take decisions and create complex events.

The CEP engine will gather all the events, filter the interesting ones according
to the business rules and find relations that can generate complex events. When
an adaptation situation is detected, the CEP engine notifies the adaptation man-
ager, which in turn searches for the corresponding condition in the alternative
process DB and adapts the process accordingly at runtime.
4 http://www.ep-ts.com

Creating Context-Adaptive Business Processes 237

Fig. 5. A process adaptation example

The adaptation is achieved by taking advantage of the reconfiguration capa-
bilities of the component-oriented approach in our model. The components from
the adaptation points are unbound from the process and the alternative process
is bound instead. Depending on the type of adaptation (before, after or around),
the adaptation point is bound again into the process in the proper place.

We can see an example of a component-based process adaptation in Fig. 5.
Here, the process presented in Fig. 1 is transformed into components on the
left-hand side of the figure. Then, on the right-hand side we add an alternative
process using a before adaptation type. As can be noticed, the input bindings
of the adaptation point are changed and bound to the alternative process. The
output of the last component of the alternative process is then bound to the
service of the adaptation point. Since the bindings in the component model can
be modified at run-time, the process is dynamically adapted.

6 Discussion and Validation

In this section we will show how CEVICHE can be used to deal with the chal-
lenges presented in Section 2, and discuss the advantages of our approach. In our
motivation scenario, we had mainly three challenges: 1) Situation identification,
2) Code scattering, and 3) Process redeployment.

Situation identification. In certain cases, the process needed to collect additional
information about the patient, but we cannot anticipate what information was
needed in each case. In CEVICHE, we use CEP rules to identify special situ-
ations. These situations allow us to provide the scenarios and special circum-
stances that we are interested in and to define how we want to respond to them.
Using the information from the process and even other sources, the CEP engine
matches the corresponding rules and alert the system when such a situation is
found.

Code scattering. If we could anticipate the additional information, the request
for such information would have to be included in the main process definition,

238 G. Hermosillo, L. Seinturier, and L. Duchien

generating code scattering and a complex logic in the process. To deal with code
scattering, we separated the event definitions from the business process defini-
tion. By doing this, we can focus all the decision making code in a separate file
which can be easily maintained without modifying or even interrupting the busi-
ness process execution. The adaptation rules only need to be written once, even
when the CEP engine is changed. This also helps to share the event definitions
among different partners, or even a community, without limiting its use to a
specific software.

Process redeployment. If we needed to add a new problem to diagnose, or change
the way an existing problem is being diagnosed, the whole process would need to
be redeployed. Given the dynamic reconfiguration of the components provided
by the component-oriented model, once our business processes is transformed
to bound components, these bindings can be modified at runtime, allowing the
process to be adapted without redeploying it and without losing any current
transactions in the process.

Evaluation and Performance. CEVICHE can be used to dynamically adapt busi-
ness processes according to a wide number of situations. In previous work, we
have shown how CEVICHE can be used to monitor and maintain the Quality
of Service (QoS) of a business process by monitoring the performance and avail-
ability of the different tasks of the process, adapting the process to maintain a
good QoS whenever a decrease of those parameters was detected [6].

As it can be expected, adding an external engine to deal with event processing,
to discover the adaptation situations, require some additional time and resources.
This overhead may vary depending on the number and the complexity of rules
that need to be processed by the CEP engine. However, the overhead induced
to the original process is negligible compared to the cost of the whole process,
specially when dealing with Internet interactions with partners, increasing only
around 1% or 2% the execution time. For the CEP engine, the overhead is
insignificant, taking it less than 1 ms to process each event through the whole
set of rules. In this case we used the Esper engine, which is an open source stream
event processing engine. The efficiency of the CEP engine to process the events
is such that it exceeds over 500,000 events per second.

7 Related Work

In this section we describe some of the works related to CEVICHE. Since our
project covers several topics, we divided the related work in three sections: CEP
and BPEL, business process adaptation, and BPEL context adaptation.

7.1 CEP and BPEL

As mentioned earlier in this paper, CEP is an emerging technology and the use
of it in the business processes is a recent topic of interest and research [12,13]. An
analysis of scenarios of composite event patterns comparing BPEL and BPMN is

Creating Context-Adaptive Business Processes 239

done in [12]. The authors analyze patterns of events that go from conjunction and
cardinality to time relations and event consumption possibilities. The conclusion
of their study is that neither BPEL nor BPMN are capable of supporting complex
event scenarios in their specifications, so there is a need to integrate event pattern
descriptions into the process definitions language, but they do not mention the
need to adapt the process according to those complex events.

In [13], we present a service to add traceability to the RFID tagged products
by using Complex Event Processing. When the RFID events are captured, they
are transformed into business events that correspond to the business rules defined
in the process which allows the users to have a better understanding of the status
of their products, i.e., the product’s location and the environment it has been
exposed to.

7.2 Business Process Adaptation

The need to adapt a process has been a topic of interest in the recent years and
there have been different approaches that offer solutions to it [14,15,16,17]. In
[14], the authors propose to deal with process adaptation by adding a web ser-
vice repository that handles the web services to invoke in each case. Whenever
an invocation of a web service is done, the call is intercepted and the repository
is checked for changes in the process definition, before the invocation of a web
service. If there have been some changes, then it examines the available web ser-
vices in the repository and chooses the one that best suits the criteria, otherwise
the invocation is executed as usual.

The authors in [15] use an aspect-oriented approach introducing executable
models, which are used to represent the cross-cutting concerns. They use open
objects, which are representations of the state of the elements in the model,
to monitor the invocation of services and adapt the process by weaving the
interaction with other models before (activation) and after (deactivation) the
call to the service.

Another aspect oriented implementation, using the Spring .NET framework,
is presented in [16]. They use a contract-based approach to assign a web service
to each instance of an execution call. To achieve adaptation of the process they
can change the contract at runtime to assign a new web service for the call. They
can also adapt an existing implementation of a web service by using aspects to
weave the new behavior.

An adaptation of the BPEL language called VxBPEL is presented in [17].
The authors insist on the need of flexibility and variability in the service-based
systems and the lack of them when deploying BPEL processes. They extend
the BPEL language to add new elements like Variation Points, which are
the places where the process can be adapted and Variants, which define the
alternative steps of the process that can be used. VxBPEL also accepts new
Variants to be added at runtime, allowing the systems to be adapted without
redeploying the process.

240 G. Hermosillo, L. Seinturier, and L. Duchien

7.3 BPEL Context Adaptation

The work that is closer to our proposal is the one presented in [18]. The au-
thors present a plug-in based architecture for self-adaptive processes that uses
AO4BPEL. Their proposal is to have different plug-ins with a well-defined ob-
jective. Each plug-in has two types of aspects: the monitoring aspects that
check the system to observe when an adaptation is needed and the adaptation
aspects that handle the situations detected by the monitoring aspects. When-
ever the conditions of a monitoring aspect are met, it uses AO4BPEL to weave
the adaptation aspects into the process at runtime. In our approach we deal
with the monitoring part using the rules deployed in the CEP engine, which
detect special situations (by relating simple events) and select the aspects to be
used to adapt the process.

An advantage of their work is that the monitoring aspects can be hot-deployed
to their BPEL engine while with our approach the changes in the rules might
not be considered at runtime, depending on the CEP engine. However, even if
we needed to restart the CEP engine in order to consider the new rules, this
would not affect any active running processes, as it would if we restarted the
BPEL engine. On the other hand, this difference also shows an advantage for our
proposal, since we are not tied to a single CEP engine and we can use any CEP
rules already defined for the monitoring process, while in their case we would
need to create a new plug-in for each new situation we want to monitor.

8 Conclusions and Future Work

Process adaptation and Complex Event Processing are two topics that are creat-
ing a lot of interest in the research community, however there is still no integra-
tion of both domains. In this paper we presented CEVICHE, a framework that
intends to facilitate the integration of CEP into existing business processes and
to allow these processes to be dynamically adapted to different circumstances.

With CEVICHE we addressed four issues: adaptation, dynamicity, integration
to business process, and non-dependency to a specific CEP engine. As part of the
CEVICHE framework, we proposed the SBPL, an extension of BPEL that allows
the user to include the adaptation points and conditions to create dynamically
adaptable business processes. We also presented how users can define their own
events to trigger the process adaptations. These event definitions are sent to a
special plug-ins to deal with the different languages of the CEP engines, allowing
the users to write their process specifications only once and deploy it in the engine
they want.

With a simple scenario we showed how CEVICHE can be used to monitor the
context information of a business process and adapt it dynamically to respond
to it, without the need to redeploy the process and without loosing any current
transactions. Using CEVICHE, we managed to respond to the three challenges
on the scenario: 1) Situation identification, 2) Code scattering, and 3) Process
redeployment.

Creating Context-Adaptive Business Processes 241

Thanks to the modular architecture of CEVICHE, it is not strongly linked to
any third party technology. In previous work, we have shown how CEVICHE can
also work in an aspect-oriented approach to monitor and maintain the quality
of service of a business process, showing that be used with different technologies
and approaches to deal with dynamic process adaptation. This architecture also
allows our work to be completely componentized in the future, facilitating the
integration with other technologies and the interaction with the different parts
of the architecture.

We plan to work on the definition of a RESTful architecture to leverage on
the deployment of CEVICHE components and facilitate the evolution of the
architecture by adding or changing components. Finally, we are creating a couple
of plug-ins for some open-source CEP engines, to demonstrate the feasibility of
our approach for standardizing event definitions.

Acknowledgements

This work was supported by the French Ministry of Higher Education and Re-
search, Nord-Pas de Calais Regional Council and FEDER through the Contrat
de Projets Etat Region (CPER) 2007-2013.

References

1. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Process-
ing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co.,
Inc., Amsterdam (2001)

2. Huber, N., Michael, K.: Minimizing Product Shrinkage across the Supply Chain
using Radio Frequency Identification: a Case Study on a Major Australian Retailer.
In: ICMB 2007: Proceedings of the International Conference on the Management
of Mobile Business, p. 45. IEEE Computer Society, Los Alamitos (2007)

3. Mangkorntong, P.: A Domain-Driven Approach for Detecting Event Patterns in
E-Markets: A Case Study in Financial Market Surveillance. VDM Verlag, Saar-
brücken (2009)

4. Zang, C., Fan, Y., Liu, R.: Architecture, implementation and application of com-
plex event processing in enterprise information systems based on RFID. Informa-
tion Systems Frontiers 10(5), 543–553 (2008)

5. OASIS: OASIS Standard. Web Services Business Process Execution Language Ver-
sion 2.0. (April 2007),
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

6. Hermosillo, G., Seinturier, L., Duchien, L.: Using complex event processing for
dynamic business process adaptation. In: SCC 2010: Proceedings of the 2010 IEEE
International Conference on Services Computing, IEEE Computer Society, Los
Alamitos (2010)

7. Ku, T., Zhu, Y., Hu, K.: A Novel Complex Event Mining Network for Monitoring
RFID-Enable Application. In: PACIIA 2008: Proceedings of the 2008 IEEE Pacific-
Asia Workshop on Computational Intelligence and Industrial Application, pp. 925–
929. IEEE Computer Society, Los Alamitos (2008)

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

242 G. Hermosillo, L. Seinturier, and L. Duchien

8. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations,
Theory and Practice. Addison-Wesley, Reading (2007)

9. Wang, A.J.A., Qian, K.: Component-Oriented Programming. Wiley Interscience,
Hoboken (2005)

10. Kiczales, G., Lamping, J., Mendheka, A., Maeda, C., Lopes, C.V., Loingtier,
J.M., Irwin, J.: Aspect-Oriented Programming. In: Gjessing, S., Nygaard, K. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

11. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of aspectj. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–353. Springer, Heidelberg (2001)

12. Barros, A.P., Decker, G., Großkopf, A.: Complex events in business processes. In:
Abramowicz, W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 29–40. Springer, Heidelberg
(2007)

13. Hermosillo, G., Ellart, J., Seinturier, L., Duchien, L.: A Traceability Service to
Facilitate RFID Adoption in the Retail Supply Chain. In: Proceedings of the 3rd
International Workshop on RFID Technology - Concepts, Applications, Challenges
IWRT 2009, pp. 49–58. INSTICC Press, Portugal (May 2009)

14. Lins, F.A.A., dos Santos Júnior, J.C., Rosa, N.S.: Adaptive web service composi-
tion. SIGSOFT Softw. Eng. Notes 32(4), 6 (2007)

15. Sánchez, M., Villalobos, J.: A flexible architecture to build workflows using aspect-
oriented concepts. In: AOM 2008: Proceedings of the 2008 AOSD workshop on
Aspect-oriented modeling, pp. 25–30. ACM, New York (2008)

16. Rahman, S.S.u., Aoumeur, N., Saake, G.: An adaptive eca-centric architecture for
agile service-based business processes with compliant aspectual.net environment.
In: iiWAS 2008: Proceedings of the 10th International Conference on Information
Integration and Web-based Applications & Services, pp. 240–247. ACM, New York
(2008)

17. Koning, M., Sun, C.a., Sinnema, M., Avgeriou, P.: Vxbpel: Supporting variability
for web services in bpel. Inf. Softw. Technol. 51(2), 258–269 (2009)

18. Charfi, A., Dinkelaker, T., Mezini, M.: A plug-in architecture for self-adaptive web
service compositions. In: ICWS 2009: Proceedings of the 2009 IEEE International
Conference on Web Services, pp. 35–42. IEEE Computer Society, Los Alamitos
(2009)

Statistical Quality Control for Human-Based

Electronic Services

Robert Kern, Hans Thies, and Gerhard Satzger

Karlsruhe Institute of Technology (KIT), Karlsruhe Service Research Institute,
Englerstraße 11, 76131 Karlsruhe, Germany
{robert.kern,gerhard.satzger}@kit.edu,

hans.thies@gmx.de

Abstract. Crowdsourcing in form of human-based electronic services
(people services) provides a powerful way of outsourcing tasks to a large
crowd of remote workers over the Internet. Research has shown that mul-
tiple redundant results delivered by different workers can be aggregated
in order to achieve a reliable result. However, existing implementations
of this approach are rather inefficient as they multiply the effort for task
execution and are not able to guarantee a certain quality level. As a
starting point towards an integrated approach for quality management
of people services we have developed a quality management model that
combines elements of statistical quality control (SQC) with group deci-
sion theory. The contributions of the workers are tracked and weighted
individually in order to minimize the quality management effort while
guaranteing a well-defined level of overall result quality. A quantitative
analysis of the approach based on an optical character recognition (OCR)
scenario confirms the efficiency and reach of the approach.

1 Introduction

The idea of human-based electronic services is that they look like Web services
but they are not performed by a computer, instead they use human workforce out
of a crowd of Internet users. The success of Amazon’s Mechanical Turk1 (MTurk)
platform and the growing number of companies that build their business model
entirely on that platform demonstrate the potential of this approach. The MTurk
platform acts as a broker between requesters who publish human intelligence
tasks (HITs) and workers who work on those tasks in return for a typically
small monetary compensation. Kern et al. proposed the term people services
(pServices) for this type of human-based electronic services [10]. As there is
limited control over the individual contributors, particular attention has to be
paid to the quality of the work results.

One quality assurance approach that is heavily used in practise and that can
be applied to a broad set of pServices scenarios is the majority vote (MV) ap-
proach which introduces redundancy by passing the same task to multiple workers

1 www.mturk.com

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 243–257, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

244 R. Kern, H. Thies, and G. Satzger

and aggregating the results in order to compute the result with the highest prob-
ability for correctness [9]. Existing applications of this approach typically apply
a fixed level of redundancy to each individual task, i.e. each task is performed
by multiple workers. From the perspective of quality management that means
that the quality of each individual task is validated. However, the concepts of
statistical quality control (SQC) teach us, that the quality management effort
can usually be drastically reduced by taking only samples rather than by per-
forming a full inspection of all individual items. [16]. Moreover, a fixed degree of
redundancy is both inefficient and incapable of assuring a certain level of result
quality because the level of agreement (and so the expected result quality) varies
depending on the error rates of the involved workers.

For some tasks, the agreement might be extremely high (e.g. all workers agree
on exactly the same result), for others the worker results might be at odds (e.g.
half of the workers return result A, while the other half returns B).

In this paper, a quality management (QM) approach for pServices is proposed
which improves the traditional MV approach in three ways: (1) It reduces the QM
effort in horizontal direction by validating only a sample of tasks rather than all
tasks. (2) It reduces the QM effort in vertical direction by dynamically adjusting
the level of redundancy rather than working with a fixed level of redundancy. (3)
It allows to guarantee a certain quality level by taking individual worker error
rates into account.

Within the multifaceted dimensions of quality, this paper concentrates on the
correctness dimension as the ability to return a minimum percentage of results
that are free of error [10]. According to Jurans definition of quality as fitness for
use [8], the paper assumes that the service requester can clearly categorize a task
result as correct or incorrect. The level of correctness is determined by a com-
parison with the ideal result (gold standard) provided by the service requester.
After providing some fundamentals of SQC in section 2, the QM approach for
pServices is presented in section 3. It has been implemented as a QM compo-
nent on top of the MTurk platform and it has been evaluated using an optical
character recognition (OCR) scenario. The results are provided in section 4. The
paper closes with related work and a summary and outlook in sections 5 and 6.

2 Fundamentals

This chapter describes some fundamentals about SQC which are required for
the considerations in section 3. Specifically, the paper leverages the concept of
sampling plans.

Acceptance Sampling is the process to decide based on a sample whether
a set of units meets certain quality requirements or not. Acceptance sampling
determines the probability of a lot of units being within the specified quality
levels, and accepts or rejects lots based on its quality characteristics. A sampling
plan is a procedure where a sample of n units is drawn from a lot of size N. If
the number of defects in the sample is higher than the acceptance number c, the
lot is rejected. Otherwise it is accepted. If the units do not occur in batches, but

Statistical Quality Control for Human-Based Electronic Services 245

in a continuous production, such as in line assembly or in a service scenario, the
process has to be decomposed into artificial batches. However, before a whole
batch has been handled, quality levels for this batch cannot be guaranteed and
the results of this batch cannot be further processed. In order to overcome this
restriction, continuous sampling plans have been developed.

Continuous Sampling Plans (CSPs) control the inspection frequency and
replacement of defects in such a way that a certain average outgoing quality
limit (AOQL) is not exceeded. Dodge developed the first continuous sampling
plan, the CSP-1. This plan has been further developed and adapted by Dodge
et. al and Lieberman et al. amongst others [4,12]. The most celebrated and
most used continuous sampling plan still is the CSP-1. The reason is not only
its relative simplicity, but also its efficiency, which in few cases is exceeded by
other continuous sampling plans like the CSP-2 [5]. Dodge made the following
assumptions developing the CSP-1: (1) The process of incoming units is under
statistical control and follows a Bernoulli distribution. (2) Sample inspection is
perfect. (3) Defective units are replaced by good ones.

The sampling plan is designed for attributes, thus quality parameters are cat-
egorized as either good or defective. This means that if the incoming process is
under statistical control i.e. the incoming fraction defective p does not change
over time, the process can be described by a Bernoulli process with defect proba-
bility p. As illustrated by figure 4, the sampling plan starts with 100% inspection.
If i consecutive units are found free of defects, only a fraction f of the units are
inspected. If a unit is found to be defective, the model returns to 100% inspection
and the process starts from the beginning. Defective units are either reworked
or replaced with good ones [16]. Important characteristics of the CSP-1 are the
average fraction inspected (AFI), the average outgoing quality (AOQ) and the
average outgoing quality limit (AOQL) [16].

The average fraction inspected (AFI) depends on the parameters i and f and
on the incoming fraction defective p:

AFI(p|i; f) =
1

1 + (1
f − 1)(1− p)i

(1)

The average outgoing quality is equal to the average amount of defective units
passing through without being inspected.

AOQ(p|i; f) =
(1

f − 1)p(1− p)i

1 + (1
f − 1)(1− p)i

(2)

The AOQ depends on the incoming fraction defective p. It is monotonically
increasing with p until reaching its maximum AOQL at pM . For values higher
than pM , AOQ is monotonically decreasing because CSP-1 is moving more and
more to full inspection and is thus detecting and replacing more of the defective
items. AOQL is called the average outgoing quality limit, it is the worst (highest)
value of AQL that can be reached depending on the incoming fraction defective
p. AOQL can be determined as:

246 R. Kern, H. Thies, and G. Satzger

AOQL =
(i+ 1)pM − 1

i
(3)

There are multiple combinations of i and f which result in the same value of
AOQL. In order to guarantee the average outgoing quality limit AOQL with
minimum inspection effort, i and f must be determined in such a way that AFI
is minimized. The optimal selection of i and f depends on the scenario, e.g.
on the overall number of units (run length). Several increments of the CSP-1
have been provided in order to adapt it to different scenarios. Two of them are
outlined in the following:

In case of imperfect inspection, two major inspection errors can be made:

– E1: a good item can be classified as defective, also referred to as a type 1
inspection error.

– E2: a defective item can be classified as good, also referred to as a type 2
inspection error.

In the following, A refers to the event that an item is defective. The probability
of the event that an item is classified as defective (B) can be calculated as:

P (B) = P (A) ∗ P (¬E2) + P (¬A) ∗ P (E1) (4)

Wang and Chen have presented a model to calculate a minimal AFI under the
assumption of imperfect inspection [24]. According to them, under the assump-
tion that the optimal value for i = i∗ is already known, an optimal value for f∗

can be calculated by

f∗ =
(1− P (B))i∗(1 − AOQL

p̂)

((1 − P (B))i∗ − 1)(1− AOQL
p̂) + (1− P (E2))

(5)

where AOQL is the specified value for the average outgoing quality limit and p̂
is the incoming fraction defective.

Blackwell developed a Markov-chain model for the CSP-1 under short pro-
duction runs [1]. McShane and Turnbull extended his model to compute proba-
bility limits on outgoing quality [15]. Although computationally expensive, their
model can be used to determine a CSP-1 with minimal inspection by iteratively
increasing i, determining the smallest value of f that meets the AOQL, and fi-
nally calculating the AFI. The details model go beyond the scope of this paper
and can be found in [15].

3 Statistical Quality Control for People Services

3.1 Assumptions

Because of the nature of pServices as Web based software services that deliver
human intelligence, perception, or action to customers as massively scalable re-
sources [10], it is obvious that pServices require some kind of Web platform.

Statistical Quality Control for Human-Based Electronic Services 247

Requester

Task

WorkersTask
queue

Embed results

Execute task sequence
via Web service

human
task TaskTask

description
+

Task data

Task
Task

Task
Task

Result
queue

Result
Result
Result
Result
Result

Result

pService platform

Worker
pool

Fig. 1. Scenario of basic pService platform

Figure 1 gives an overview of the basic pService scenario which comprises three
roles: the pService requester, the pService platform and the workers who belong
to a worker pool. The pService platform acts as a mediator between the pService
requester who publishes pService tasks and pService workers who select tasks
and work on it in return for a typically small compensation. The paper makes
some additional assumptions about the underlying pService platform: (1) It al-
lows for tracking individual workers based on an individual worker ID which is
returned to the requester for each result delivered by the worker. (2) It provides
means for making specific tasks only available to a well-defined group of workers,
e.g. by performing qualification tests.

It is further assumed that there is a large number of equivalent tasks which
consist of the same task description but different task data. The task description
primarily contains the instructions for the workers how to perform the task
as well as information about the expected result quality. The task data is the
variable part which might represent different pictures to be annotated, different
addresses to be validated or different products to be classified. A task instance
represents a task for an individual item of the task data, e.g. for an individual
picture to be annotated.

3.2 Acceptance Sampling for pServices

The objective of the model described in this paper is to leverage acceptance
sampling in order to ensure that pService results are delivered within a certain
average outgoing quality limit AOQL, while the inspection costs in terms of
labor work are minimized. The model can be seen as a quality management
(QM) component on top of the basic pService platform described in the previous
section. The overall scenario is given by figure 2. The model assumes that for a
given task type there is an individual error rate px for each worker x (A). This
error rate is the same for all tasks of the same type, but it may change over time,
since workers may learn and therefore improve their skills.

248 R. Kern, H. Thies, and G. Satzger

Requester
People service platform with QM component

Task

Workers

Task
queue

Embed results

Execute task sequence
via Web service

human
task TaskTask

description
+

Task data

Escalated
task

Improve task design and
instructions.

Quality
needs

Final
result

5
Raw
result

Raw result
queue

Raw
resultRaw
resultRaw
resultRaw
result

Quality management component Basic platform

Task
Task

Task
TaskAcceptance

sampling
(CSP-1)

Individual
tracking of

worker error
rates

Weighted
majority vote

(WMV)

Dynamic
sample

inspection
Worker

pool

Define quality
requirements

AOQL, ϕmin, εmax

L*, {wi} {px}

F

H

B

C
D

E

G

I A

Fig. 2. Schematic overview of pService platform with QM component

Because the error rates of individual workers are independent from each other,
the sampling has to be done at worker-level. The results are aggregated, and the
same AOQL is applied to all workers that work on this task type i.e. the same
quality of work results is requested from all participating workers. The QM
component uses continuous acceptance sampling in order to guarantee a certain
long-run average outgoing quality limit AOQL defined by the service requester.

The QM component consists of two functional parts: an acceptance sampling
component (B) and a sample inspection component (C). The acceptance sam-
pling component leverages the basic continuous sampling plan (CSP-1) with the
increment of imperfect inspection and replacement and the increment of limited
runtimes as presented in section 2. The CSP-1 leverages continuous sampling of
raw results (D) delivered by the workers and turns them into final results (E) in
order to guarantee an average outgoing quality limit AOQL that is defined by
the requester along with other quality requirements (F). The CSP-1 requires a
mechanism for sample inspection. For this purpose, a weighted majority vote ap-
proach (WMV) was designed which will be described in detail in section 3.3. The
WMV dynamically increases the redundancy by including additional workers in
the MV decision until a predefined significance ϕmin is reached. Because the in-
spection process performed by the WMV is not perfect but only meets a quality
level of ϕmin, Case et al.’s model for CSP-1 with imperfect inspection is utilized in
combination with Wang and Chen’s increment. As some tasks may not conform
to the specifications of that task type, e.g. they are harder to solve than the others
or the task description does not apply to all individual tasks, they are escalated
back to the requester (G) if a predefined escalation limit εmax (F) is reached. That
way, he can use this information to improve task design and provide the correct
results himself (H). As we assume a fixed payment per task, the QM costs can be
minimized by minimizing the total number of tasks. Because the WMV (as well as
the traditional MV) appraoch assumes that the raw results delivered by multiple
workers can be compared to each other or aggregated into a consolidated result,

Statistical Quality Control for Human-Based Electronic Services 249

the mechanism works only for deterministic tasks i.e. for tasks that have a certain
well-defined optimal result [9].

Additional parameters are administrated by the platform itself (I): The Markov
chain CSP-1 model developed by McShane and Turnbull (see section 2) is used
to take into account that some workers may contribute only few results. It deter-
mines a starting value of i, considering the expected run lengthL∗.L∗ specifies the
expected run length of a process per worker, that is the average amount of tasks
of the same task type each worker will work on. The CSP-1 is implemented using
an inspection status wx for each worker. The initial value will be wx = i which
will be reduced by 1 for each consecutive result that the worker has been submit-
ted and that has been classified as correct. If wx = 0, only fractional inspection
will take place. Once, a result submitted by the worker is classified as incorrect,
his inspection status will be reset to wx = i. The worker error rate px describes
the expected error rate of worker x, anticipated from historical values. Due to the
nature of human work, px should never completely reach 0.

Worker Pool Management. A worker who constantly stays in full inspection
mode leads to high costs, so depending on the availability of workers and the costs
for inspection, a decision has to be made as to which workers are not profitable
and should be removed from the worker pool. Therefore, the maximum error
rate e has been introduced. If a worker’s error rate exceeds the maximum error
rate px > e, he may not participate.

3.3 Sample Inspection Process - The Weighted Majority Vote
(WMV) Approach

The weighted majority vote (WMV) is used for sample inspection. All raw results
that have to be inspected according to the CSP-1 for the respective worker, are
validated by passing redundant task assignments to other workers in order to
be able to come to a group decision which meets a minimum inspection quality

Requester
People service platform with QM component

Task

Task
queue

Embed results

Execute task sequence
via Web service

human
task TaskTask

description
+

Task data

Escalated
task

Review and generate
feedback

Define quality
requirements

Quality
needs

Final
result

7
Raw
result

Raw result
queue

Raw
resultRaw
resultRaw
resultRaw
result

Quality management component Basic platform

Apply CSP-1 for
current worker

Inspection
of worker
required?

Yes

Publish one task
instance

Retrieve result
and worker ID

Publish same task
instance again (for

other workers)

Are quality
requirements

met?

Is further
improvement
expectable?

Get result and calculate
consolidated result

Yes
No

No
Yes

No

Yes

Update CSP-1
statistics of all

involved
workers and
return result

Task
Task

Task
Task

CSP-1

WMV

AOQL, ϕmin, εmax

L*, {wi}

Workers

{px}

Worker
pool

1

1

2

3

4

Fig. 3. Detailed overview of pService platform with QM component

250 R. Kern, H. Thies, and G. Satzger

Start

Inspect 100 percent of the units

Have i
consecutive units
been defect free?

Inspect fraction f of the units

Defect found?

No
Yes

Yes No

Fig. 4. Procedure of the continuous
sampling plan CSP-1

Publish one (more) task
instance

φ > φmin

ε > εmax

Retrieve result and
calculate φ and ε

Yes

No

Yes

No

2

3

4

5

Set φmin and εmax 1

Return final result

Escalate task

Fig. 5. The weighted majority vote (WMV)
approach

level ϕmin. The process of the WMV is explained based on figure 3. The basic
idea is to publish one additional (redundant) task assignment (2), retrieve the
result (3) and calculate based on his individual error rate whether the required
minimum inspection quality ϕmin has already been met (4). If this is the case,
the final result is returned (4). If the required quality has not yet been met, it is
checked in step (5), whether a quality improvement can be expected by adding
more workers. If that is not the case, the task is escalated back to the requester.
Otherwise, the process continues with step (2) where another redundant task
assignment is published. The process is continued until either the raw results
delivered by several workers can be aggregated into a reliable result (4) which
is returned as the final result to the requester or until the escalation limit is
reached in step (5). Figure 5 provides an overview of the WMV. Assuming each
worker x has an individual failure rate px when working on task y and returns
raw result rxy, the process is the following:

1. Specify desired level of inspection quality ϕmin and escalation limit εmax.
2. Make one (more) redundant assignment for task y available to the workers.
3. Retrieve the worker result rxy and identify the result with the highest prob-

ability of correctness ε as well as the actual escalation limit ε.
4. If the ϕ exceeds the desired level inspection quality ϕmin, return the result
rc with the highest probability of correctness and update the qualification
values qx of all participating workers, where qx = 1− px.

5. Escalate the task back to the requester if the overall probability ε for get-
ting a result set Ry is lower or equal than the escalation limit εmax, with
Ry = {r(x1), r(x2), ..r(xk)}, x1, x2..xk being the IDs of the workers who have
worked on the task and k being the number of assignments for the task.

Statistical Quality Control for Human-Based Electronic Services 251

Steps 2 to 5 are repeated until the final result is returned in step 4 or the task is
escalated in step 5. In step 3, the values ϕ and ε are calculated using equations
6, 7 and 8. Equation 6 determines the Bayes-conditional likelihood for result rc
being correct under the condition that the result set Ry was received.

ϕc = P (rc is correct|R = Ry) =
P (rc is correct ∩R = Ry)

P (R = Ry)
(6)

=

∏
∀ri=rc

rcqi
∏
∀ri �=rc

pi
∑k

j=1

∏
∀ri=rj

qi
∏
∀ri �=rj

pi +
∏N

j=1 pj

(7)

εy = P (R = Ry) = (
k∑

j=1

∏

∀ri=rj

qi
∏

∀ri �=rj

pi) +
N∏

j=1

pj (8)

4 Evaluation

4.1 Experimental Design

The QM approach has been implemented as a QM component on top of MTurk,
accessing the platform through the SOAP interface available to service requesters.
An optical character recognition (OCR) scenario was used for evaluation, which
consists of a dataset of 1176 handwritten words. In each of the tasks, a worker was
asked to type in a single handwritten word which was displayed as an image file
(JPEG). The expected optimal result (gold standard) was specified by the author
of the handwriting himself. On February 1st, 10 instances (assignments) of each
task were uploaded to the MTurk platform. It was prohibited that a worker han-
dles the exact same task more than once. The task payment was $0.01 per task,
with Amazon receiving a service charge of $0.005 for each task. Consequently a
total amount of 1, 176×10 = 11, 760 data sets has been collected during the eval-
uation leading to total expenses of 11, 760($0.01 + $0.005) = $176.40. The QM
mechanism was simulated on the raw results in order to be able to run multiple
simulations at different parameters and in order to have a baseline for comparing
with the performance of the traditional MV mechanism.

4.2 Qualification Testing

The MTurk platform provides means for limiting the access to tasks to those
workers who have successfully completed a so called qualification test. Such a test
can be designed individually for each type of task. The QM approach described
in this paper implicitly determines the error rates of the workers, therefore there
is typically no need to restrict the participation to those who have passed a
qualification test. However, as the actual test was only simulated on a fixed
number of instances (assignments) of each task, a qualification test was used to
reduce the overall cost of the experiment as it excludes spammers and workers
who submit bad quality right from the start. The test consisted of a series of 10
simple OCR tasks (10 words). All of them had to be typed in correctly in order
to pass the test.

252 R. Kern, H. Thies, and G. Satzger

4.3 Execution Performance

Probably the most astonishing result of the experiment was the speed with which
the results were submitted. In the first pre-tests, a batch of 3,528 tasks was com-
pleted by 112 workers in less than 15 minutes at an execution rate of 14,088 tasks
per hour. During other experiments we even observed total execution speeds up
to 3 times as fast, because of more workers participating. We assume that the
execution speed besides the payment also depends on the time of day, since most
workers are U.S.- or Indian citizens [19]. Figure 6 illustrates the execution of
the actual experiment in which 11,760 tasks have been processed by 36 workers
in about 2:40 hours. One can observe how workers successively join the process.
A similar chart is used by the crowdsourcing provider crowdflower.com.

0

5

10

15

20

25

30

35

12:00:00 AM 12:28:48 AM 12:57:36 AM 1:26:24 AM 1:55:12 AM 2:24:00 AM 2:52:48 AM

W
or

ke
r n

um
be

r

Worker participation

Time

Fig. 6. worker participation

4.4 Full Inspection

The first simulation was a full inspection by running the WMV for all tasks.
The CSP-1 was not used in this experiment. Running only the WMV leads to
remarkably good quality. The inspection quality goal of 0.99 was almost per-
fectly met. Figure 7 shows the results of WMV compared to the traditional MV
approach. The traditional MV was simulated based on the same data as the
WMV by averaging all possible combinations of 2 to 9 answers within each set
of 10 available answers per task for the two-fold up to the 9-fold MV. For each
combination, the most occurring answer was chosen. If several answers occur
the same amount of times (tie), a random choice between the answers occurring
most was made, as suggested by Snow et al. [21].

We see that our WMV (98.36%) even outperforms the accuracy of a ninefold
traditional MV (97.76%). That is a remarkable result given that the WMV is
4 times more efficient as it requires only 2.25 workers per task compared to

Statistical Quality Control for Human-Based Electronic Services 253

Approach MV 2 WMV MV 3 MV 4 MV 5 MV 6 MV 7 MV 8 MV 9 MV 10
Average
redundancy 2 2.25 3 4 5 6 7 8 9 10

Accuracy 0.927 0.984 0.954 0.958 0.962 0.974 0.975 0.977 0.978 0.977

Fig. 7. Comparison of the accuracy of different majority vote approaches

(Thies 2010)

MV 2

Weighted majority
vote (WMV)

MV 3
MV 4

MV 5

MV 6 MV 7
MV 8 MV 9 MV 10

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 1 2 3 4 5 6 7 8 9 10

A
cc

ur
ac

y

Redundancy level / QM costs

Fig. 8. Comparison of the accuracy of different majority vote approaches

9 workers per task for the basic ninefold MV approach. In other words: the
WMV approach has reduced the quality management effort by some 75 percent
compared to the traditional MV approach. Figure 8 illustrates this relation.

4.5 Acceptance Sampling

In a series of tests, the QM approach was used with CSP-1 for 3 different qual-
ity goals i.e. three different values of AOQL. Figure 9 shows the results of 10
simulation runs with an AOQL of 0.05:
AOQL = 0.05; i = 6; f = 0.249; ϕmin = 0.99; εmax = 0.01

Simulation # 1 2 3 4 5 6 7 8 9 10 Average Average per HIT
Run length 1176 1176 1176 1176 1176 1176 1176 1176 1176 1176 1176.0 1.0000
Assignments 1783 1744 1830 1823 1741 1797 1793 1836 1782 1762 1789.1 1.5213
Escalated 20 25 23 25 21 24 16 26 22 23 22.5 0.0191
Inspected 439 427 469 475 433 471 489 482 453 458 459.6 0.3908
Incoming failures 84 88 90 92 85 91 87 95 88 76 87.6 0.0745
Outgoing failures 59 62 48 55 67 58 64 58 56 50 57.7 0.0491

Fig. 9. Results of the acceptance sampling test for 10 simulations with AOQL=0.05

254 R. Kern, H. Thies, and G. Satzger

0.40

0.60

0.80

1.00

1 201 401 601 801 1001

AF
I

HIT number in batch

Fig. 10. Decrease of the average frac-
tion inspected (AFI) over time with
AOQL=0.05

Average per HIT AOQL=0.025 AOQL=0.05 AOQL=0.075
Run length 1.0000 1.0000 1.0000
Assignments 1.7954 1.5213 1.0930
Escalated 0.0404 0.0191 0.0032
Inspected 0.6331 0.3908 0.0601
Incoming failures 0.0723 0.0745 0.0745
Outgoing failures 0.0287 0.0491 0.0710

Fig. 11. Results of the acceptance sam-
pling tests for different values of AOQL

A total of 1.52 assignments per HIT was observed on average, which is a
significant improvement even compared to the 100%-inspection with 2.25 as-
signments per HIT. A number of 1.91 percent of the HITs are escalated. Some
39 percent of all tasks are inspected. Figure 10 illustrates the decrease of the
inspection rate over time, therefore a smaller inspection rate can be expected
in the long run. The AOQL value was achieved in 6 out of the 10 cases. It is
not surprising that in some runs the quality is slightly worse than the speci-
fied AOQL because of the short run time of only 1176 tasks. When averaging
over several runs, we obtain a reliable outgoing fraction of 0.0491, which can
be considered optimal as the goal is to minimize the QM effort rather than to
overachieve the quality objective.

We further tested the quality model with different AOQL levels (Figure 9):

AOQL = 0.025; i = 5; f = 0.582; ϕmin = 0.99; εmax = 0.01
AOQL = 0.075; i = 1; f = 0.039; ϕmin = 0.99; εmax = 0.01

For AOQL=0.075 the quality is again precisely met. However, when increasing
the quality demands to AOQL=0.025, the model does not manage to achieve
the desired level anymore. The reason for that lies in the gap between the gold
standard and the majority decision of the workers: In several cases, the majority
of the workers identified a certain word (e.g. ”five”) even if the writer (who
represented the gold standard) had written a different word (e.g. ”fine”).

5 Related Work

The concept of majority vote is widely used in the context of pServices. Re-
dundant task execution is a basic feature for quality improvement provided by
platforms like MTurk. Sorokin and Forsyth as well as Snow et al. have analyzed
the effect of the approach based on annotation scenarios [22,21]. Snow et al.
have investigated how many non-experts out of the crowd are needed in order to
achieve better results than one expert. Depending on the scenario, they report
a required number of non-experts between two and more than ten. Whitehill

Statistical Quality Control for Human-Based Electronic Services 255

et al. consider how to integrate labeler’s expertise into a majority vote mecha-
nism for image labeling [25]. They propose a probabilistic model and use it to
simultaneously infer the label of each image, the expertise of each labeler, and
the difficulty of each image. Complementary approaches for quality management
of pServices include iterative work processes [13], review processes [9] and the
injection of gold standard tasks [22]. A maximum likelihood estimation can be
used to estimate worker error rates as well as the correct categories of the task
results [7,9]. The approach leverages the EM algorithm dating back to Dawid
and Skene [3]. Raykar et al. propose a specific form of an EM algorithm which
is capable of generating a gold standard [17].

The validity of the majority vote model has been first mathematically proven
by Condorcet’s Jury Theorem [2]. Under the assumption that one of two out-
comes is correct and each decision maker has the independent probability p > 0.5
to make the right decision, the probability for a correct group decision is greater
than the individual one. Latif-Shabgahi et al. have examined and classified a
large number of software voting algorithms used in safety-critical systems [11].
Surowiecki illustrated that the aggregation of group responses may lead to better
results than the information of any single group member - if the opinions are
diverse, independent, decentralized, and an appropriate aggregation mechanism
exists [23]. This phenomenon has been described as the wisdom of the crowds.
Typical applications that leverage crowd intelligence are prediction markets [6],
Delphi methods [20] and extensions of the traditional opinion poll. In the field
of machine learning, Littlestone and Warmuth developed a weighted majority
algorithm, that acts as a ”master algorithm” and aggregates the answers of sev-
eral prediction algorithms in order to determine the best prediction possible [14].
The aggregation mechanism is a vital part of each majority vote model. Revow
et al. compare five combination strategies (majority vote, Bayesian, logistic re-
gression, fuzzy integral, and neural network) and arrive at the conclusion that
majority vote is as effective as the other, more complicated schemes to improve
the recognition rate for the data set used [18].

6 Conclusion and Future Work

We have presented a statistical model for managing the correctness of human-
based electronic services (people services) which leverages continuous acceptance
sampling and group decision theory. The mechanism consists of two parts: The
continuous acceptance sampling plan CSP-1 is used to track the contributions
of each worker individually based on samples taken from their work results. A
weighted majority vote (WMV) approach was introduced for the inspection of
the samples which leverages a group decision of multiple workers. The number of
workers participating in that group decision is adjusted dynamically depending
on their individual error rates. By validating only a fraction of the tasks and
keeping the validation effort per task at a minimum, the model is capable of
guaranteeing a certain predefined level of result quality at minimum costs. An
evaluation on Amazon’s Mechanical Turk platform has shown a reduction of the
quality management effort of up to 75 percent compared to existing approaches.

256 R. Kern, H. Thies, and G. Satzger

In our ongoing research we are expanding the scope of our QM mechanism to
other aspects of quality like performance and availability. Furthermore, we are
investigating the effect of worker feedback on the result quality.

References

1. Blackwell, M.: The effect of short production runs on CSP-1. Technometrics 19(3),
259–263 (1977)

2. le marquis de Condorcet, M., Caritat, A.N.: Essai sur l’application de l’analyse la
probabilit des dcisions rendues la pluralit des voix (1785)

3. Dawid, A., Skene, A.: Maximum likelihood estimation of observer Error-Rates using
the EM algorithm. Journal of the Royal Statistical Society 28(1), 20–28 (1979)

4. Dodge, H., Torrey, M.: Additional continuous sampling inspection plans. Industrial
Quality Control (7), 7–12 (1951)

5. Gosh, D.T.: An optimum continuous sampling plan CSP-2 with k i to minimise the
amount of inspection when incoming quality p follows a distribution. The Indian
Journal of Statistics 58(1), 105–117 (1996)

6. Gruca, T.S., Berg, J.E., Cipriano, M.: Consensus and differences of opinion in
electronic prediction markets. Electronic Markets 15(1), 13–22 (2005)

7. Ipeirotis, P.G., Provost, F., Wang, J.: Quality management on amazon mechanical
turk (2010)

8. Juran, J., Godfrey, A.: Juran’s Quality Handbook, 5th edn. McGraw-Hill, New
York (2000)

9. Kern, R., Bauer, C., Thies, H., Satzger, G.: Validating results of human-based elec-
tronic services leveraging multiple reviewers. In: Proceedings of the 16th Americas
Conference on Information Systems (AMCIS), Lima, Peru (2010) (forthcoming)

10. Kern, R., Zirpins, C., Agarwal, S.: Managing quality of Human-Based eServices.
In: Feuerlicht, G., Lamersdorf, W. (eds.) ICSOC 2008.December 1st, 2008, Revised
Selected Papers, LNCS, vol. 5472, pp. 304–309. Springer, Heidelberg (2009)

11. Latif-Shabgahi, G., Bass, J.M., Bennett, S.: A taxonomy for software voting algo-
rithms used in safety-critical systems. IEEE Transactions on Reliability 53(3), 319
(2004)

12. Lieberman, G.J., Solomon, H.: Multi-Level continuous sampling plans. The Annals
of Mathematical Statistics 26(4), 686–704 (1955)

13. Little, G., Chilton, L.B., Goldman, M., Miller, R.C.: Turkit: Tools for iterative
tasks on mechanical turk. In: Proceedings of the ACM SIGKDD Workshop on
Human Computation, pp. 29–30 (2009)

14. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Information
and Comutation 108, 212–261 (1994)

15. McShane, L.M., Turnbull, B.W.: Probability limits on outgoing quality for contin-
uous sampling plans. Technometrics 33(4), 393–404 (1991)

16. Montgomery, D.: Introduction to statistical quality control, 6th edn. Wiley & Sons,
New York (2008)

17. Raykar, V.C., Yu, S., Zhao, L.H., Valadez, G.H., Florin, C., Bogoni, L., Moy, L.:
Learning from crowds. Journal of Machine Learning Research 11, 1297–1322 (2010)

18. Revow, M., Williams, C.K.I., Hinton, G.E.: Using generative models for hand-
written digit recognition. IEEE Trans. Pattern Anal. Mach. Intell. 18(6), 592–606
(1996)

Statistical Quality Control for Human-Based Electronic Services 257

19. Ross, J., Irani, L., Silberman, M., Zaldivar, A., Tomlinson, B.: Who are the crowd-
workers?: shifting demographics in mechanical turk. In: Proceedings of the 28th of
the International Conference Extended Abstracts on Human Factors in Computing
Systems, pp. 2863–2872 (2010)

20. Rowe, G., Wright, G.: The delphi technique as a forecasting tool: issues and anal-
ysis. International Journal of Forecasting 15(4), 353–375 (1999)

21. Snow, R., OConnor, B., Jurafsky, D., Ng, A.Y.: Cheap and fast but is it good?
evaluating non-expert annotations for natural language tasks. In: EMNLP 2008:
Proceedings of the Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 254–263. ACL, Stroudsburg (2008)

22. Sorokin, A., Forsyth, D.: Utility data annotation with amazon mechanical turk.
In: CVPRW 2008: Proceedings of the Conference on Computer Vision and Pattern
Recognition Workshops, pp. 1–8. IEEE Computer Society, Washington (June 2008)

23. Surowiecki, J.: The Wisdom of Crowds, 1st edn. Doubleday, New York (2004)
24. Wang, R., Chen, C.: Minimum average fraction inspected for continuous sampling

plan CSP-1 under inspection error. Journal of Applied Statistics 24(5), 539–548
(1997)

25. Whitehill, J., Ruvolo, P., Wu, T., Bergsma, J., Movellan, J.: Whose vote should
count more: Optimal integration of labels from labelers of unknown expertise. In:
Advances in Neural Information Processing Systems, vol. 22, pp. 2035–2043 (2009)

A Requirement-Centric Approach to Web

Service Modeling, Discovery, and Selection

Maha Driss1,2, Naouel Moha1, Yassine Jamoussi2,
Jean-Marc Jézéquel1, and Henda Hajjami Ben Ghézala2

1 IRISA/INRIA,University of Rennes 1, France
{mdriss,moha,jezequel}@irisa.fr

2 ENSI, RIADI-GDL Laboratory, University of Manouba, Tunisia
{yassine.jamoussi,henda.benghezala}@ensi.rnu.tn

Abstract. Service-Oriented Computing (SOC) has gained considerable
popularity for implementing Service-Based Applications (SBAs) in a flex-
ible and effective manner. The basic idea of SOC is to understand users’
requirements for SBAs first, and then discover and select relevant services
(i.e., that fit closely functional requirements) and offer a high Quality of
Service (QoS). Understanding users’ requirements is already achieved
by existing requirement engineering approaches (e.g., TROPOS, KAOS,
and MAP) which model SBAs in a requirement-driven manner. However,
discovering and selecting relevant and high QoS services are still chal-
lenging tasks that require time and effort due to the increasing number of
available Web services. In this paper, we propose a requirement-centric
approach which allows: (i) modeling users’ requirements for SBAs with
the MAP formalism and specifying required services using an Intentional
Service Model (ISM); (ii) discovering services by querying the Web ser-
vice search engine Service-Finder and using keywords extracted from the
specifications provided by the ISM; and(iii) selecting automatically rele-
vant and high QoS services by applying Formal Concept Analysis (FCA).
We validate our approach by performing experiments on an e-books ap-
plication. The experimental results show that our approach allows the
selection of relevant and high QoS services with a high accuracy (the
average precision is 89.41%) and efficiency (the average recall is 95.43%).

Keywords: Service-Based Applications, Users’ Requirements Modeling,
Service Discovery, Service Selection, QoS, Formal Concept Analysis.

1 Introduction

Service-Oriented Computing (SOC) is an emerging paradigm for developing
low-cost, flexible, and scalable distributed applications based on Web services
(WSs) [1]. SOC is becoming broadly adopted as it offers the ability to build
efficiently and effectively added-value Service-Based Applications (SBAs) by
composing ready-made services. The basic idea of SOC is to understand users’
requirements for SBAs first, and then discover and select WSs that fit closely ex-
pected functional and non-functional requirements. Functional requirements de-
fine functionalities provided by WSs. We refer to services which fit closely users’

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 258–272, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Requirement-Centric Approach to Web Service Modeling 259

functional requirements as ‘relevant’ services. Non-functional requirements are
expressed by the term Quality of Service (QoS) that refers to various properties
such as availability, response time, security, and throughput [2]. If multiple WSs
offer the same functionality, then a QoS requirement can be used as a secondary
criterion for service selection.

Understanding users’ requirements includes requirements elicitation, analysis,
and modeling which provide a full support for SBAs engineering. Discovering ser-
vices is achieved by querying a WS search engine to browse WSs using several
criteria (e.g., functionalities and QoS). Among the set of services obtained by
discovery, only services that best match users’ functional and non-functional re-
quirements are selected. Understanding users’ requirements is already achieved
by traditional requirement engineering approaches that are extended and refined
to meet the SBAs characteristics. To this end, goal modeling techniques such as
TROPOS [3], KAOS [4], and MAP [5] are used to model SBAs. However discov-
ering and selecting relevant and high QoS WSs is still a challenging task because
of two main issues. First, the growing number and diversity of WSs in addition to
their publication over multiple public and private registries make service discov-
ery difficult to accomplish. Second, the frequent large number of WSs returned
by discovery requires costly and time-consuming selection of relevant and high
QoS services.

In this paper, we propose a new requirements-centric approach for: (i) mod-
eling SBAs in terms of functional and non-functional users requirements; (ii)
discovering potential services that match expected requirements; and (ii) select-
ing relevant and high QoS services. This approach consists of three successive
steps 1-3 as it is shown by Figure 1.

In the first step, our approach allows an intentional-driven modeling of SBAs
using the MAP formalism [5]. The MAP elicits and analyzes users’ requirements
in a set of graphs composed of intentions and strategies, called maps. In previous
work [6], an Intentional Service Model (ISM) is proposed to specify intentional ser-
vices presented by maps. In this paper, the same model will be enhanced to include
QoS aspects and will be used to specify intentional services. In the second step,
our approach permits discovery of operational services by querying the WS search
engine Service-Finder using keywords extracted from ISM models. To efficiently

Fig. 1. A requirement-centric approach to WS modeling, discovery, and selection

260 M. Driss et al.

discover relevant and high QoS services, we propose two-level filtration. In the first
level, some QoS properties are considered namely validity (i.e., we verify if the ser-
vice URI is valid) and availability (i.e., we verify if the service is operational). Ser-
vices which pass the first level are filtered according to a semantic matchmaking
between the intentional specification provided by ISM and the operational speci-
fication provided by WSDL. In the third step, the remaining set of services is clas-
sified into an ordered structure called concept lattice by applying Formal Concept
Analysis (FCA) [7]. FCA is a formal framework that allows grouping individuals
that share common properties and organizes them into concept lattices. The FCA
will automate the selection task by providing a clear and organized view of poten-
tial services to enable users to easily check out relevant and high QoS services. We
validate our approach by performing experiments on an e-books WS-based appli-
cation. The experimental results show that our approach allows the selection of rel-
evant and high QoS services with a high accuracy (the average precision is 89.41%)
and efficiency (the average recall is 95.43%).

The remainder of the paper is structured as follows. In Section 2, we present
the intentional-driven modeling of SBAs. In Section 3, we describe the WS dis-
covery conducted using Service-Finder. In Section 4, we explain how to apply
FCA to select relevant and high QoS WSs. Experimental results are documented
in Section 6. Section 5 surveys related work. This paper ends with concluding
remarks and future work.

2 Intentional Services Modeling

A considerable number of research efforts on SBAs modeling are conducted both
in industry and academia. Indeed, these initiatives aimed to propose languages
(e.g., BPEL4WS [8] and OWL-S [9]) and formalisms (e.g., Petri nets [10]) for
modeling SBAs. All these initiatives adopt a ‘function-driven’ service model-
ing focusing on ‘low level’ technical statements (e.g., coordination messages,
input/output parameters, and bindings) that are understandable by software
programmers but far to be comprehensible by users. However, users need to in-
teract with programmers to obtain SBAs satisfying their requirements. Thus,
SBAs must be modeled in terms of users’ requirements and not in terms of
technical statements.

In this paper, we adopt a ‘requirement-driven’ approach that allows a ‘high
level’ modeling of SBAs. This approach uses the MAP formalism to represent
users’ requirements. We refer to services presented by maps as intentional ser-
vices. These services are specified by an Intentional Service Model (ISM).

In the following, we present an overview of the MAP formalism, we introduce
the ISM model, and we provide guidelines to elicit intentional services and their
composition from maps.

2.1 Representing Users’ Requirements with Maps

A MAP is a meta-process formalism which allows designing several processes,
i.e., maps, under a single representation. A map is a labelled directed graph

A Requirement-Centric Approach to Web Service Modeling 261

Fig. 2. The e-books application map

with intentions as nodes and strategies as edges between intentions. A strategy
is a manner to achieve an intention. An intention is a requirement that can be
achieved by following different strategies. Each map has two distinct intentions
Start and Stop to respectively begin and end the navigation in the map. There
are two main reasons for using the MAP formalism: first, the MAP was already
applied to service modeling domain [11], so we can use previous knowledge and
experiences. Second, the MAP permits to capture variability by focusing on the
strategy to achieve an intention and the potential alternatives to accomplish
the same intention. This explicit representation of variability offered by maps is
missing in other requirement engineering formalisms such as TROPOS or KAOS.

Figure 2 represent users’ requirements for an e-books application with the
MAP formalism. The e-books application map has four key intentions to be
achieved, namely Search a book, Acquire a book, Organize the shipment, and
Finalize the buy. To achieve the Search a book intention, users can follow the By
manual search strategy or the By formulating a request strategy.

A map is composed of one or more sections. A section is a triplet <Source
Intention Ii, Target Intention Ij , Strategy Sij> that captures a specific manner
to achieve the target intention Ij starting from the source intention Ii with the
strategy Sij . For instance, <Start, Search a book, By formulating a request>
represents a way to achieve the target intention Search a book from the source
intention Start following the By formulating a request strategy.

There exist four relationships between sections: bundle, multi-thread, path,
and multi-path relationships.

Bundle relationship: sections in a bundle are mutually exclusive; exactly one
strategy can be used to realize the target intention. In Figure 2, By formulating

262 M. Driss et al.

a request is a bundle consisting of five different strategies: By ISBN, By author(s),
By book title, By editor, and finally By Keywords.

Multi-thread relationship: a target intention can be achieved from a source in-
tention in many different ways. Each of these ways is expressed as a section in
the map. One or more of these sections can be used to realize the target in-
tention. For example, By formulating a request and By manual search are two
different strategies to Search a book. These two strategies are in a multi-thread
relationship.

Path relationship: this establishes a precedence/succession relationship between
sections. For example, the sections <Start, Search a book, By formulating a
request> and <Search a book, Acquire a book, By purchase> constitute a path.

Multi-path relationship: given the three previous strategies, a target intention can
be achieved by combining several sections. For instance, there are two distinct
paths to achieve the intention Finalize the buy from Start. The first is the path
via Search a book, Acquire a book, and Organize the shipping intentions. The
second is the path via only the Search a book and the Acquire a book intentions.

In general, a map from its Start to its Stop intention is a multi-path and
may contain multi-threads. Finally, it is possible to refine a section of a map
into another map. Refinement is an abstraction mechanism by which a complex
assembly of sections at level i+1 is viewed as a unique section at level i. Figure
3 shows the refinement of the section <Finalize the buy, Stop, By payment>
as a map. This map is composed of two key intentions Sign in and Finish the
payment and it provides several strategies to achieve each of them.

Fig. 3. The refinement of the section <Finalize the buy, Stop, By payment>

2.2 Specifying Intentional Services

Intentional services are services presented by maps. Intentional services allow
the achievement of users’ requirements represented as intentions using the MAP
formalism. Intentional services are specified by the Intentional Service Model

A Requirement-Centric Approach to Web Service Modeling 263

Fig. 4. The intentional service model (ISM)

(ISM). Figure 4 presents the ISM meta-model using UML notations. As shown
by colors used in Figure 4, the ISM describes intentional services through four
main aspects: the intentional service interface, behavior, composition, and QoS.
We describe each of these aspects in the following paragraphs.

The Intentional Service Interface. There are three elements that constitute
interface, namely Intention, Initial Situation, and Final Situation. The key idea
of the ISM is that an intentional service allows the achievement of an intention
given an initial situation and terminating with a final situation. The intention
replaces the functionalities that can be achieved by the service. The achievement
of an intention will ultimately lead to a state that is expected to be reached
or to be maintained. The Initial Situation and the Final Situation represent
respectively the input and output parameters of the intentional service.

The Intentional Service Behavior. Pre-condition and Post-condition de-
scribe the service behavior aspect. Pre-condition and Post-condition are respec-
tively the initial and final state, i.e., the state requiring the achievement of the
intention and the state resulting from its achievement.

The Intentional Service Composition. Atomic and Aggregate services are
involved in the service composition aspect. An Atomic service has an opera-
tionalized intention that can be achieved directly by an atomic operational ser-
vice. An Aggregate service has a high level intention that should be decomposed
till atomic operational services are identified. Aggregation of services can result
either by Composite or Variant services. Composite services express the prece-
dence/succession relationship between intentional services. We distinguish three
types of composition: Sequential, Parallel, and Iterative. Variant services de-
scribe variability needed for SBAs. There are three variants in the ISM, namely
Alternative, Choice, and Multi-path.

The Intentional Service QoS. There are three elements specifying QoS of in-
tentional services, namely QoS Characteristic, QoS Characteristic Priority, and

264 M. Driss et al.

QoS Characteristic Preference. QoS Characteristic is the quality to be attained
or preserved. QoS Characteristic Priority allows the expression of a priority over
a QoS Characteristic. QoS Characteristic Preference allows the expression of a
preference over a QoS Characteristics.

2.3 Eliciting Intentional Services from Maps

The MAP is used to represent intentional services satisfying users’ requirements.
To elicit intentional services and their composition from maps, we follow three
key guidelines [6]:

1. The first guidline consists of associating every non-refined section of a map
to an atomic service. In the case of the e-books application map, this cor-
respondence leads to a set of 29 atomic services including for instance: ab1i

→ SSearch a book by ISBN and bc1i+1 → SPay with credit card
1.

2. The second guideline consists of identifying paths of a map by applying an
algorithm that calculates paths in a graph. This algorithm is an adaptation
of the MacNaughton and Yamada’s algorithm [12]. This algorithm is based
on formula that calculate the set of all possible paths between an initial node
and a final node of a graph which, in our case, are respectively the intentions
Start and Stop.

3. The third guideline consists of determining aggregate services by establishing
the following correspondences between section relationships in the map and
aggregate service types in the ISM model: <Path-Composite>, <Bundle-
Alternative>, <Multi-thread -Choice>, and <Multi-path-Multi-path>.

3 Discovering Operational Services

Discovering operational services is proceeded by querying Service-Finder [13].
Service-Finder is a Web 2.0 platform for WS discovery. It is managed to search
and access existing WSs on the Web. It searches among almost 25.000 WSs from
more than 200.000 related Web pages [13]. In order to understand the problem
of WS discovery and selection, we are going to demonstrate an example of a
WS from the e-books application. Naturally, discovery and selection should be
processed for all intentional services in order to build the e-books application. We
consider the service SPay with credit card presented by the section bc1 of the e-
books application map at level i+1. This service performs payment with a credit
card. Figure 5 shows the intentional model of the service SPay with credit card

according to the ISM.
SPay with credit card is an atomic service that ensures the achievement of the

intention Pay with credit card. SPay with credit card takes 2 input parameters
that are Book and Card and provides Payment as output. SPay with credit card

1 For sake of conciseness, we use an abbreviated notation to refer to a section of a
map. We refer to each intention by a letter starting from a and to each strategy by
a digit starting from 1. Levels of maps start from i.

A Requirement-Centric Approach to Web Service Modeling 265

Fig. 5. The intentional model of the service SPay with credit card

has as pre-condition Book.Cart=true and as post-condition Payment.State=true.
SPay with credit card is characterized by a very high availability and a very low
response time. Response time is three time more important for the users than
the availability. The QoS preferences and priorities are given by users.

We query Service-Finder using the keywords ‘payment + credit + card’. We
extract these keywords from the intentional model SPay with credit card using a
well known Information Retrieval (IR) metric called TF/IDF [14]. All words of
a service specification are weighted with TF/IDF metric. TF/IDF metric allows
us to filter out both stop words and low frequency words. Only meaningful
words (i.e., keywords) having a high TF/IDF weight are maintained. Service-
Finder returns a result set of 77 WSs2. To reduce this set, we process two-level
filtration. In the first level, we consider some QoS properties namely validity and
availability. These two properties are checked as follows: (1) validity is verified by
checking whether the endpoint URI exists or not; (2) Availability is verified by
checking if the service is operational or not. This first filtration level generates a
new reduced set that contains 37 WSs. These services are passed to a second level
filtration which is based on a semantic matchmaking between the intentional
model of the service SPay with credit card and WSDLs of the returned operational
services. This is done by parsing every service WSDL in order to check if required
operation with specified signature exists or not. An operation signature is the
combination of the operation name, its input parameters, and its output. In our
example, the required operation is Pay with credit card, its inputs are Book and

2 The discovery result set is obtained on June 13th, 2010.

266 M. Driss et al.

Card, and its output is Payment. A final set of 16 WSs is obtained after the
second level filtration. These remaining services will be organized into concept
lattices using FCA in order to facilitate the selection task.

4 Selecting Relevant and High QoS Operational Services

To automate the selection of relevant and high QoS services, Formal Concept
Analysis (FCA) [7] is used.

4.1 Introducing FCA

FCA offers a formal framework for clustering individuals along the properties
they share. It describes clusters, called formal concepts, both extensionally and
intentionally, i.e., as sets of individuals and sets of shared properties, and organ-
ises them hierarchically, according to a binary incidence relation, into a complete
lattice, called the concept lattice [7]. FCA considers a dataset as being organised
into a formal context, i.e., a triple K = (O,A, I), where O is a set of individuals,
A is a set of properties, and I is the binary incidence relation between O and
A, I ⊆ O ×A.

For our problem, we define a context K where individuals represent services
and properties represent QoS properties. We consider 2 QoS properties: avail-
ability and response time. Real time monitoring information of service avail-
ability and response time are provided by Service-Finder. The binary incidence
relation is the service-has-QoS property relationship. To spread out availabil-
ity and response time values, we use the boxplot statistical technique [15]. A
boxplot splits a set of numerical values into four quarters called quartiles. We
map these quartiles into a five-point Likert scale with the following ordinal val-
ues: very high, high, medium, low, and very low. Then, we associate QoS values
with these ordinal values. As specified in the intentional model of the service
SPay with credit card, users give three time more importance to the service re-
sponse time than to the availability (see Figure 5). So, we define for each re-
sponse time ordinal value three sub-values in order to express the priority. For
instance, we consider the sub-values: very low 1, very low 2, and very low 3 for
the ordinal value very low. Service having a very low response time should has
an incidence relationship with the three sub-values of the ordinal value very low.
Also, we consider that if a service has an incidence relationship with a response
time ordinal value (availability ordinal value, respectively), it should has inci-
dence relationship with all ordinal values that comes after (that comes before,
respectively). For instance, if a service has a very low response time (very high
availability, respectively) it has also low, medium, high and very high response
time (high, medium, low , and very low availability, respectively). Relevant and
high QoS of services are services which have more incidence relationships with
context properties.

Table 1 illustrates the context drawn from the final obtained set of services.
It shows the 16 services (individuals in rows), and their has-relationship links
with availability and response time (properties in columns).

A Requirement-Centric Approach to Web Service Modeling 267

Table 1. Context K linking services to QoS characteristics

(
A
1
)
V
e
r
y
L
o
w
A
v
a
i
l
a
b
i
l
i
t
y

(
A
2
)
L
o
w
A
v
a
i
l
a
b
i
l
i
t
y

(
A
3
)
M
e
d
i
u
m

A
v
a
i
l
a
b
i
l
i
t
y

(
A
4
)

H
i
g
h
A
v
a
i
l
a
b
i
l
i
t
y

(
A
5
)
V
e
r
y

H
i
g
h
A
v
a
i
l
a
b
i
l
i
t
y

(
R
T
1
1
)

V
e
r
y
L
o
w
R
e
s
p
o
n
s
e

T
i
m
e
1

(
R
T
1
2
)
V
e
r
y
L
o
w

R
e
s
p
o
n
s
e
T
i
m
e
2

(
R
T
1
3
)
V
e
r
y

L
o
w
R
e
s
p
o
n
s
e
T
i
m
e

3

(
R
T
2
1
)
L
o
w
R
e
s
p
o
n
s
e

T
i
m
e
1

(
R
T
2
2
)
L
o
w

R
e
s
p
o
n
s
e
T
i
m
e
2

(
R
T
2
3
)

L
o
w
R
e
s
p
o
n
s
e
T
i
m
e

3

(
R
T
3
1
)

M
e
d
i
u
m
R
e
s
p
o
n
s
e

T
i
m
e
1

(
R
T
3
2
)
M
e
d
i
u
m
R
e
s
p
o
n
s
e

T
i
m
e
2

(
R
T
3
3
)
M
e
d
i
u
m

R
e
s
p
o
n
s
e
T
i
m
e
3

(
R
T
4
1
)
H
i
g
h

R
e
s
p
o
n
s
e
T
i
m
e
1

(
R
T
4
2
)

H
i
g
h
R
e
s
p
o
n
s
e
T
i
m
e

2

(
R
T
4
3
)

H
i
g
h
R
e
s
p
o
n
s
e

T
i
m
e
3

(
R
T
5
1
)
V
e
r
y
H
i
g
h

R
e
s
p
o
n
s
e
T
i
m
e
1

(
R
T
5
2
)
V
e
r
y

H
i
g
h
R
e
s
p
o
n
s
e
T
i
m
e

2

(
R
T
5
3
)

V
e
r
y
H
i
g
h
R
e
s
p
o
n
s
e

T
i
m
e
3

(s0) XWebCheckOut × × × × × × × × × × × × ×
(s1) PaymentWS × × × × × × × × × × × × × ×
(s2) Pay-Service × × × × × × × × × × × × × × × ×
(s3) Checkout × × × × × × × × × × × × ×
(s4) Book247XMLWebServices × × × × × × × × × × ×
(s5) ExigoAPI × × × × × × × × × × ×
(s6) FSI × × × × × × × × × × × × × × × ×
(s7) CEPayProcessor × × × × × × × × ×
(s8) SmartPayment2 × × × × × ×
(s9) BasicOperations × × × × × × × × × × × × × × × ×
(s10) Order × × × × × × × × × ×
(s11) MemberServices × × × × × × × × × × × × × × × ×
(s12) SmartPayments × × × × × ×
(s13) SBWebServices × × × × × × × × × × × × ×
(s14) MWService × × × × × × × × × ×
(s15) OMService × × × ×

4.2 Using Concept Lattices to Select Relevant and High Quality
Operational Services

FCA organizes formal concepts into complete lattices, called concept lattices.
The lattice structure allows easy navigation and search as well as optimal rep-
resentation of information. Figure 6 depicts a simplified (reduced) labeling of
the concept lattice derived from our context K. This lattice is built using the
Galicia (Galois Lattice Interactive Constructor) [16] tool. Galicia is a multi-tool
open-source platform for creating, visualizing, and storing concept lattices. Our
lattice contains information that can be interpreted using the following set of
rules:

– The concepts are represented using the intent (I) and the extent (E) sets.
• A service that appears in the extent set E of a concept is inherited by

all the concepts that are above it.
• A QoS value that appears in the intent set I of a concept is inherited by

all the concepts that are below.

– When the extent set E is not empty, the concept represents exactly the
service(s) that is/are in the extent set E with its/their QoS value(s) in the
I set.

– When the extent set E is empty, this signifies that the concept represents a
service specification that does not exist in the services set.

From these rules, we can conclude that relevant and high QoS services are ser-
vices presented by the concept which is in the bottom of our lattice (node 4).
The extent set of this concept includes 4 services: Basicoperations, FS I, Mem-
berServices, and Pay-Service. These services have a high availability (A4) and a
low response time (RT21, RT22, and RT23).

268 M. Driss et al.

Fig. 6. The lattice of the context K

5 Experiments

We validate our approach on the 29 intentional services of the e-books applica-
tion. We verify manually that the services returned by our approach correspond
to real relavant and high QoS services. We recast our work in the domain of in-
formation retrieval and we use the precision and recall measures [17]. Precision
assesses the number of true relevant and high QoS operational services identified
among the returned set of operational services, while recall assesses the num-
ber of returned operational services among the existing relevant and high QoS
services, according to the following equations:

precision =
|{true relevant and high QoS operational services}∩{returned operational services}|

|{returned operational services}|

recall =
|{true relevant and high QoS operational services} ∩ {returned operational services}|

|{true relevant and high QoS operational services}|

Due to the limitation of paper space, we show only, in Table 2, experimental
results related to 10 intentional services. However, we provide the precision and
recall average of the 29 intentional services of the e-books application. In Ta-
ble 2, the first column corresponds to intentional services. In the second column,
we list, first, the keywords used to query Service-Finder; then, the number of

A Requirement-Centric Approach to Web Service Modeling 269

Table 2. Precision and recall of services of the e-books application

Intentional services Service-Finder Our Approach Precision Recall

K
e
y
w

o
rd

s

R
e
tu

rn
e
d

o
p
e
ra

ti
o
n
a
l

se
rv

ic
e
s

T
ru

e
re

le
v
a
n
t

a
n
d

h
ig

h
Q

o
S

o
p
e
ra

ti
o
n
a
l

se
rv

ic
e
s

D
is

c
o
v
e
ry

S
e
le

c
ti

o
n

T
ru

e
re

le
v
a
n
t

a
n
d

h
ig

h
Q

o
S

o
p
e
ra

ti
o
n
a
l

se
rv

ic
e
s

ab1i → ‘search + 7 2/7 4/7 2/4 2/2 2/2 2/2
SSearch a book by ISBN book + (100%) (100%)

isbn’
ab2i → ‘search + 16 3/16 10/16 4/10 3/4 3/4 3/3
SSearch a book by author(s) book + (75%) (100%)

author’
ab3i → ‘search + 31 5/31 22/31 6/22 5/6 5/6 5/5
SSearch a book by title book + (83.33%) (100%)

title’
...
cc2i → ‘sort + 64 11/64 52/64 9/52 8/9 8/9 8/11
SSort books by price price’ (88.89%) (72.73%)
cc3i → ‘sort + 58 12/58 40/58 11/40 11/11 11/11 11/12
SSort books by seller location location’ (100%) (91.67%)
...
ee1i → ‘change + 55 8/55 30/55 7/30 6/7 6/7 6/8
SChange the currency currency’ (85.71%) (75%)
ab1i+1 → ‘create + 330 26/330 203/330 25/203 22/25 22/25 22/26
SCreate an account account’ (88%) (84.62%)
ab2i+1→ ‘load + 29 4/29 20/29 5/20 4/5 4/5 4/4
SLoad an account account’ (80%) (100%)
bc1i+1→ ‘payment + 77 4/77 16/77 4/16 4/4 4/4 4/4
SPay with credit card credit + (100%) (100%)

card’
cd1i+1 → ‘send + 162 17/162 105/162 18/105 15/18 15/18 15/17
SSend sms sms’ (83.33%) (88.24%)

Average 89.41% 95.43%

services returned by Service-Finder; and finally, the number of services identi-
fied manually as true relevant and high QoS services. In the third column, we
enumerate the number of services obtained, first, after the discovery step of our
approach, and then, after the selection step, and finally the number of true ser-
vices among those returned after selection step. The two last columns correspond
to the precision and the recall. For example, the two keywords of the intentional
service SSend sms are: ‘send + sms’. The query returns an initial set of 162 op-
erational services. Among this set, only 17 services are verified manually as true
relevant and high QoS services. The discovery step reduces the initial set to a
second set of 105 services. The selection step using FCA reduces the second set
to 18 services. Among these services, only 15 services are verified manually as
true relevant and high QoS services. The precision of SSend sms is 83.33% and
he recall is 88.24%.

Table 2 shows that the precision and recall of our approach are both very
high. The average precision is 89.41% and the average recall is 95.43%.

To increase the robustness of our approach, we need to use more advanced se-
mantic techniques for the filtration of the discovered operational services. More-
over our selection is based only on two QoS properties. Thus, we need to enhance
our selection method with multiple QoS properties to identify more efficiently
high QoS services.

270 M. Driss et al.

6 Related Work

Recently, several requirements-driven approaches for service composition have
been proposed. The work presented by Pistore et al. [18] is the first work that takes
in the challenge of deriving service compositions by refining TROPOS
requirements models. The key idea of this work is to enrich formal TROPOS mod-
els with BPEL4WS code and exploit model checking techniques to ensure verifi-
cation and validation. More recently, the MAP formalism has been used in [6] to
describe services compositions. Main contribution of this work takes on the propo-
sition of an Intentional Service Model (ISM) to model, retrieve, and compose ser-
vices in an intentional manner. Unfortunately, this model omits QoS aspects. All
the works mentioned above focus only on modeling service composition in a re-
quirement driven manner. They do not provide solutions for service discovery and
selection to ensure the satisfaction of the users’ requirements. A similar work to
ours is provided by Zachos et al. [19]. The goal of this work is to align and refine
requirements to the available services. The key idea of the proposed approach is
to create an initial requirements specification, transform it into a registry query
and use the query results to refine the specification. This work suffers from several
problems: (i) the textual and incomplete requirements description; (ii) the lack of
the non-functional requirements description; and finally (iii) the difficulty to refine
the initial requirements based on service query result.

The solution that we present in this paper is complementary to [18], [6],
and [19] since our approach permits not only SBAs modeling in terms of func-
tional and non-functional requirements but also the discovery and the selection
of services that fit closely expected functional requirements and offer a high QoS.
To handle the problem of service selection we apply the FCA. Several approaches
using FCA in the context of WSs have been proposed. We detail these approches
in the following paragraphs.

Peng et al. [20] present an approach to classify and select services. They build
lattices starting from contexts where individuals are WSs and properties represent
the operations of these services. The approach allows similar services clustering
by applying similarity search techniques that compare operation descriptions and
input/output messages’ data type. The contributions of this work are complemen-
tary to ours, insofar as they do not deal with QoS properties in the selection task.
Azmeh et al. [21] present a similar approach to classify and select services using
the FCA. They propose WSPAB (Web Service Personal Address Book) tool that
permits the discovery, the automatic classification, and the selection of WSs. This
tool processes by multiple successive steps. It first queries the service registry to
find a first set of candidate services. Secondly, it filters this service set according to
functional and non-functional criteria. Finally, the set of remaining services is clas-
sified into a service lattice using FCA. Classification is accomplished by defining
a binary relation between services and operation signatures. The obtained lattice
can be used to identify relevant services and their substitutes. In contrast to our
approach, this work does not consider QoS properties to process WS selection.
Also, this work is purely syntactic (signature-based) while our work proposes a
semantic filtration of discovered services based on the intentional models.

A Requirement-Centric Approach to Web Service Modeling 271

7 Conclusion

In this paper, we presented a requirement-centric approach to WS modeling,
discovery, and selection. This approach consists of three successive steps. First,
our approach allows an intentional-driven modeling of SBAs using the MAP for-
malism. Intentional services, that are presented by maps, are specified with the
ISM model. Secondly, our approach permits discovery of operational services by
querying the WS search engine Service-Finder using keywords extracted from
specifications provided by ISM. To efficiently discover relevant services, we pro-
pose two-level filtration. In the first level, some QoS properties are considered
namely validity and availability. Services which pass the first level are filtered
according to a semantic matchmaking between the intentional specification pro-
vided by ISM and the operational specification provided by WSDL. Finally,
the remaining set of services is classified into concept lattices using FCA. We
consider contexts with services as individuals and QoS characteristics as prop-
erties. The obtained concept lattices are used to check out relevant and high
QoS services. We validate our approach by performing experiments on an e-
books application. The experimental results show that our approach allows the
selection of relevant and high QoS services with a high accuracy (the average
precision is 89.41%) and efficiency (the average recall is 95.43%). Future work
includes: (i) studying semantic similarity techniques to enhance the filtration
of the discovered operational services; (ii) considering multiple QoS properties,
during the selection step, to identify more efficiently high QoS services; and (iii)
applying Relational Concept Analysis (RCA) to identify high QoS composite
services since the presented approach is applicable to atomic services.

Acknowledgments. This work has been supported by the European Commu-
nitys Seventh Framework Programme FP7/2007-2013 under grant agreement
215483 (S-Cube). (http://www.s-cube-network.eu/).

References

1. Huhns, M.N., Singh, M.P.: Service-oriented computing: Key concepts and princi-
ples. IEEE Internet Computing 9(1), 75–81 (2005)

2. Menascé, D.A.: Qos issues in web services. IEEE Internet Computing 6(6), 72–75
(2002)

3. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems 8(3), 203–236 (2004)

4. Lamsweerde, A.V., Letier, E.: Handling obstacles in goal oriented requirements
engineering. IEEE Transactions on Software Engineering 26(10), 978–1005 (2000)

5. Rolland, C., Prakash, N.: Bridging the gap between organizational needs and erp
functionality. Requirements Engineering 5(3), 180–193 (2000)

6. Rolland, C., Kaabi, R.S., Kraeim, N.: On isoa: Intentional services oriented archi-
tecture. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and WES
2007. LNCS, vol. 4495, pp. 158–172. Springer, Heidelberg (2007)

http://www.s-cube-network.eu/

272 M. Driss et al.

7. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, New York (1999)

8. BPEL4WS,
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

9. OWLS, http://www.w3.org/Submission/OWLS/
10. Mecella, M., Presicce, F.P., Pernici, B.: Modeling e-service orchestration through

petri nets. In: Buchmann, A., Casati, F., Fiege, L., Hsu, M.-C., Shan, M.-C. (eds.)
TES 2002. LNCS, vol. 2444, pp. 38–47. Springer, Heidelberg (2002)

11. Kaabi, R.K., Souveyet, C., Rolland, C.: Eliciting service composition in a goal
driven manner. In: ICSOC 2004, New York, USA, pp. 308–315 (2004)

12. MacNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.
IEEE Transactions on Electronic Computers 9(1), 39–47 (1960)

13. Service-Finder, http://www.service-finder.eu/
14. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.

Information Processing and Management 24(5), 513–523 (1988)
15. Chambers, J.M., Clevelmd, W.S., Kleiner, B., Tukey, P.A.: Graphical methods for

data analysis. Wadsworth & Brooks / Cole, Belmont (1983)
16. Galicia, http://galicia.sourceforge.net/
17. Frakes, W.B., Baeza-Yates, R.: Information Retrieval: Data Structures and Algo-

rithms. Prentice-Hall, Englewood Cliffs (1992)
18. Pistore, M., Roveri, M., Busetta, P.: Requirements-driven verification of web ser-

vice. In: WSFM 2004, Pisa, Italy, pp. 95–108 (2004)
19. Zachos, K., Maiden, N., Zhu, X., Jones, S.: Discovering web services to specify more

complete system requirements. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.)
CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 142–157. Springer, Heidelberg
(2007)

20. Peng, D., Huang, S., Wang, X., Zhou, A.: Management and retrieval of web services
based on formal concept analysis. In: CIT 2005, Shanghai, China, pp. 269–275
(2005)

21. Azmeh, Z., Huchard, M., Tibermacine, C., Urtado, C., Vauttier, S.: Wspab: A
tool for automatic classification & selection of web services using formal concept
analysis. In: ECOWS 2008, Dublin, Ireland, pp. 31–40 (2008)

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.w3.org/Submission/OWLS/
http://www.service-finder.eu/
http://galicia.sourceforge.net/

Spreadsheet as a Generic Purpose Mashup Development
Environment

Dat Dac Hoang1, Hye-Young Paik1, and Anne H.H. Ngu2

1 School of Computer Science & Engineering, University of New South Wales, Sydney
2 Department of Computer Science, Texas State University, San Marcos
{ddhoang,hpaik}@cse.unsw.edu.au, angu@txstate.edu

Abstract. Mashup development is done using purposely created tools. Because
each tool offers a different paradigm and syntax for wiring mashup components,
users need to learn different tools for different tasks. We believe that there is
a need for a generic purpose mashup environment catering for a wider range
of mashup applications. In this paper we introduce MashSheet - a spreadsheet-
based, generic purpose mashup tool. Using MashSheet, mashups can be built
using spreadsheet paradigms that many users are already familiar with. We use
a generic data model (XML-based) to represent mashup components and data
produced by them, which enables the reuse of intermediate mashup results. We
support three classes of mashup operations: data, process and visualization.

1 Introduction

Mashup is a new application development method enabling users to create applica-
tions by reusing existing contents and functionalities. Recently, we have witnessed
rapidly growing interests in mashup tools and applications in the web community.
In programmableweb.com, for example, there are over 4815 mashup applications and
1995 Web APIs registered1. However, many mashup programmings today are done
in “special-purpose” and “hand-crafted” manners using a purposely created develop-
ment environment [8]. For example, MapCruncher [1] is designed for users to create
mashups involving maps. Swivel.com makes it easy for users to create graph mashups
from multiple data tables. Yahoo Pipes [5] is best suited to generate feeds. Due to the
ad-hoc nature of the popular mashups tools, users are required to learn different tools,
paradigms and syntaxes to write mashup applications. We believe that there is a need
for a generic purpose mashup environment that can cater for a wider range of mashup
applications with a uniform mashup paradigm.

In this paper, we propose a spreadsheet-based mashup programming framework
called MashSheet. Spreadsheets are frequently used to analyze data imported from dif-
ferent sources (e.g, database, file, data service), particularly in the context of decision
support. They also have been tagged as the most successful end-user development en-
vironment with millions of users [11,16].

We believe that spreadsheets can provide a programming paradigm that many users
are already familiar with, hence would be a good environment for designing a generic

1 The figures are as of 18 May 2010, from [2].

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 273–287, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

274 D.D. Hoang, H.-Y. Paik, and A.H.H. Ngu

purpose mashup tool. In fact, there have been some efforts in spreadsheet-based mashup
tools (e.g., [4,18,14,12]) with varying degree of success [10]. There is still much work
left to do in order to create a spreadsheet-based mashup framework which can be gener-
ically applied to multiple situations. We use these existing systems to benchmark our
prototype to show that our tool is more widely applicable for mashup programming.

1.1 Reference Scenario

Let us consider the following scenario as our running example. Tom wants to create a
mashup application that will help him to find Points of Interest (POI) (e.g., restaurant,
cinema) when he travels to a city. Tom considers the following five services:

– RL: with read() operation, it returns a list of restaurants with addresses,
– CL: with read() operation, it returns a list of cinemas with addresses,
– DG: with getDR() operation, it returns car driving direction,
– WF: with getWeather() operation, it returns weather forecast information,
– BU: with getBU() operation, it returns bus itinerary.

Some services require SOAP-based interactions and some are RSS feeds (Figure 1(b)).
Figure 1(a) shows the scenario of the application. Tom inputs the address of a hotel,
calls RL and CL, merges and sorts the results. He would use DG only when the WF service
reports rain, otherwise he prefers to use public transport, so information from BU will
suffice. Finally, Tom visualizes the direction results in a grid of cells.

Fig. 1. Tom’s scenario

Spreadsheet as a Generic Purpose Mashup Development Environment 275

1.2 Contributions

To make the tool generic, we start with a generic data model that will support a wide-
range of data types we need to deal with in the framework. We name the data type
‘MashSheet Object Type’ (MOT) and it is an XML-based data model. MOT is based
on [12], where the conventional spreadsheet data model is extended to include complex
data types to represent RSS feeds. Using MOT, we introduce two components to repre-
sent a web service (service) and web service output (service-output). At present,
MashSheet can work with SOAP-based services and RSS data feeds. However, it is not
difficult to extend the range in the future, e.g., REST-based services.

MashSheet offers the following advantages over existing approaches:

– MashSheet defines all operations as spreadsheet formula: data, process and visual-
ization. This means that the mashup operations would be like another spreadsheet
formula to the users - the concept many users are already familiar with.

– MashSheet provides different classes of mashup operations to make the framework
applicable to many mashup scenarios.
• Data operators: In spreadsheet, the data is represented as simple data types

(e.g., string, number). Web service invocation, on the other hand, often returns
complex data type such as XML document. In other spreadsheet-based mashup
tools, users have to “flatten” the complex data into two-dimensional grid of
spreadsheet before data operations (e.g., sort, filter, join) can be applied. This
creates unnecessary step in mashup creation process. In MashSheet, users can
manipulate the complex data “as-is” by applying data mashup operation di-
rectly on MOT. In addition, any intermediary result created by data operations
can be reused by other data and visualization mashup operators at any stage.
This increases the reusability of intermediate data in the application.
• Process operators: Evaluation of spreadsheet’s formula is driven by data de-

pendencies between cells. This data-flow model allows users to define some
process mashup operations using natural spreadsheet programming metaphor
(e.g., sequence by using cell referencing mechanism).

However, the semantics of some control flow patterns are not inherently
supported in spreadsheets and none of the existing spreadsheet-based mashup
tools address this issue (e.g., exclusive choice, synchronization). Supporting a
basic set of control flow patterns are important for mashup component compos-
ing scenarios. We introduce an extension to the spreadsheet formula language
so that the basic control flow patterns [17] are supported.
• Visualization operators. Data visualization needs in mashup cover a wide range

of options (e.g., grid, map, chart, timeline). In current spreadsheet-based mashup
tools we investigated, data can only represented in a grid of cells by using either
simple grid (i.e., column, row) [14,4] or nested grid (i.e., hierarchical, index,
repeater) [12,18]. Also, the data view needs to reflect any change in the data
source and make it immediately visible to users.

We define visualization operators as components to present service output
data using different visualization types (e.g., grid, map). The benefits of having
these operators are: (i) flexibility: the layout of data is automatically updated
when there is a change in the data source); (ii) generic applicability: we can

276 D.D. Hoang, H.-Y. Paik, and A.H.H. Ngu

apply different visualization operators to produce different layouts of data; (iii)
easiness to use: can be called like spreadsheet functions.

The remainder of this paper is organized as follows. The related work is discussed in
section 2. We introduce the architecture of MashSheet in section 3. Sections 4 and 5
explain the application model and operators of MashSheet. Implementation, mashup
formula evaluation mechanism and a brief evaluation are discussed in sections 6 and 7.
Section 8 presents conclusion and future work.

2 Overview of Spreadsheet-Based Mashup Tools

According to Fischer et al. [7], spreadsheet is one of the six programming paradigms
for mashup development, along with integrated development environment, scripting
languages, wiring paradigm, programming by demonstration and automatic creation of
mashup. In this section, we present mashup tools that use spreadsheet paradigm2.

StrikeIron [4] is a Microsoft Excel plugin allowing users to pull data from SOAP
web services into Excel worksheet. Using StrikeIron, users can create mashup applica-
tions by ‘wiring’ output data of one service with the input parameter of another service
(via cell referencing). However the main limitation of this approach is that it does not
support all of the basic control flow patterns. In addition, data visualization in Strike-
Iron is limited to conventional spreadsheet data visualization (i.e., data is visualized by
a grid of cells and a cell can only accommodate simple types such as number, string).

AMICO:CALC [14] is an OpenOffice Calc extension that lets users to create mashups
within Calc spreadsheet by using AMICO-Read and Amico-Write functions. The execu-
tion of mashup application is based on a middleware named Adaptable Multi-Interface
COmmunicator. By using a combination of Read and Write functions, users can model
basic control flow patterns in their mashup application. However, AMICO:CALC does
not provide data manipulation and visualization operators.

Mashroom [18] is a mashup tool that relies on nested table algebra and spreadsheet
programming metaphor to simplify the mashup creation process. However, Mashroom
is not a generic mashup framework since it focuses only on data mashup and its data
visualization is limited to nested table.

In SpreadMash [12], web data is modeled using entity relations, then browsed and vi-
sualized using widgets. SpreadMash, however, is limited to data importation and visual-
ization. It does not mention control flow and is not a generic mashup tool. Spreadator [15],
as SpreadMash’s earlier prototype, mainly provides means for accessing/manipulating
web data from spreadsheet. MashSheet builds further on the early ideas presented in
SpreadMash and Spreadator, focusing on generic applicability and mashup component
composition. We will discuss these tools further in section 7.

3 MashSheet Overview

This section sketches the overall design of MashSheet and explains how it draws inspi-
ration from spreadsheet. As depicted in Figure 2, the architecture of MashSheet com-
prises of four elements:

2 Please refer to [10] for more detailed analysis.

Spreadsheet as a Generic Purpose Mashup Development Environment 277

Fig. 2. The architecture of MashSheet

– MashSheet’s graphical user interface (GUI) (1). This element is a conventional
spreadsheet interface which includes a grid of cells (1.1) and a mashup plugin im-
plemented as a Task Pane. Cells are capable of storing values and formulas, while
mashup plugin allows users to build mashup applications by specifying composi-
tion logic and layout information. The GUI plays a role as a development environ-
ment and users mainly interact with this element. The mashup plugin includes:
• Formula editor (1.2). This element allows users to enter mashup formulas. Note

that our formula input area is different with the conventional formula input in
spreadsheets. The reason for this design is that most of the spreadsheets do not
allow developer to modify their evaluation engine with conventional input.
• Component explorer (1.3). This element lets users to visualize structure of web

service (e.g., WSDL) and service output (e.g., XML) in a tree view.
• Component repository (1.4). This element shows to the users a list of com-

ponents (i.e., representations of web services in the tool). It is a front-end of
“Component repository” element which will be defined below.
• Log (1.5). This element displays the output message of each operation.

– Component Repository (2). This element is a repository of all mashup compo-
nents available in the tool. Users can choose an external web service and create a
component that allows them to interact with the service within the tool. This ser-
vice component can be assigned a friendly name (i.e., alias) and can be called in the
MashSheet formula editor. For example, in the Tom’s scenario, DG is a component
representing a SOAP-based service that provides driving direction information.

– Mashup Engine (3). This key element is responsible for evaluating the mashup
formula (i.e., composition logic) and “wiring” components together. Since most
of spreadsheet tools do not allow users to modify their formula evaluation mecha-
nisms, mashup engine could be developed as an extension to spreadsheet evaluation
engine. Mashup engine is also responsible for maintaining the formula evaluation

278 D.D. Hoang, H.-Y. Paik, and A.H.H. Ngu

context and facilitate the reaction to cell modification by triggering the re-evaluation
of dependent formula (i.e., upon a service invocation returns, the corresponding ref-
erences need to be updated with the returning value). We will explain the working
of the engine with examples in the later sections.

– Wrappers (4). Wrappers facilitate interoperability among services which have dif-
ferent data formats (e.g., XML, RSS) or use different access protocols (e.g., SOAP,
RSS). For example, we need different wrappers to create components to correctly
serve the Tom’s scenario, such as SOAP wrapper for DG, RSS wrapper for RL. We
rely on existing works (e.g., RSS.NET library [3]) to provide wrappers for services.

4 MashSheet Application Model

MashSheet extends conventional spreadsheet to provide its application model. We use
the formal definitions of spreadsheet application in [6] to describe our model as follow:

A MashSheet application (S) is a spreadsheet contains a collection of cells organized
in a tabular grid. Each cell is identified by its address (a), value (v) and formula (f).
An address uses absolute coordinates of the cell in the grid (e.g., A1). A formula can
contain a value (v) (e.g., a number), a reference to another cell address (a) (e.g., A1) or
mashup operators (ω) (e.g., invoke()). A cell’s value is obtained by evaluating the cell’s
formula. In MashSheet, a value (v) can be either a simple data type (α) (e.g., number,
string) or complex data type. We model the complex type as XML-based data type
and name it MashSheet Object Type (MOT). Using MOT, we build two components:
service (SC) and service− output (OC) to represent web service and its output data,
respectively. Figure 3 illustrates the MashSheet’s model. We use the notion ‖(a, f)‖S to
denote the evaluation of a MashSheet cell with address a and formula f. Cell reference
can use single cell address (e.g., A1) or a range of cells (e.g., A1 : C3).

We use regular tree languages and tree automata from [13] to define MOT:

MashSheet Object Type (MOT) is a quadruples (N, T, B, P), where:

– N is a finite set of nonterminals which are regular expressions represented by capi-
talized Italic characters (ε is a null sequence of nonterminals),

– T is a set of terminals which are symbols represented by lowercase characters
(pcdata is a special terminal character matched with any node in the tree),

Fig. 3. MashSheet application model

Spreadsheet as a Generic Purpose Mashup Development Environment 279

– B is a set of start symbols, where B ∈ N,
– P is a set of rules in the form of X→ ar, where X ∈ N, a ∈ T, and r is a regular

expression over N.

Figure 4 shows an example of data produced by RL’s read() operation and its MOT
representation (for visibility issue, we remove some fields such as Link, PubDate).

Fig. 4. Example of RL data and its MOT representation

Service component (SC) is a triplet (Name, Type, URL),where:

– Name is an unique identifier of a web service (WS) to be used in MashSheet,
– Type is the type of the WS,
– URL is unified resource locater of the WS,

When a SC is bound to a MashSheet cell, MashSheet creates an instance of the SC in the
application. We call the instance of the SC as ‘bound SC’ and denote as SC∗. SC∗ inherits
all the attributes of the SC and has a new attribute: Location which is the address (a)
of the SC in MashSheet.

Service-output component (OC) is a triplet (Name, OprCell, OutputCell), where:

– Name is an unique identifier of a service− output component,
– OprCell is the address (a) of the SC ,
– OutputCell is the address (a) of the OC.

For example, consider a simple MashSheet application as follow:

create(‘http : //www.ecubicle.net/driving.asmx?WSDL’, ‘DG’)
(A1,= bind(‘DG’));
(B2,= invoke(A1.getDR(C1, C2)))

The first formula creates SCDG = {DG, SOAP,
http : //www.ecubicle.net/driving.asmx?WSDL} in the component repos-
itory. Evaluation of the formula in cell A1 creates: SC∗DG = {DG, SOAP,
http : //www.ecubicle.net/driving.asmx?WSDL, A1} and evaluation of the
formula in cell B2 creates: OCDG = {DG, A1, B2}.

280 D.D. Hoang, H.-Y. Paik, and A.H.H. Ngu

5 MashSheet’s Mashup Operators

MashSheet offers operators that support data, process (orchestration of services) and
visualization operations in a mashup application. They are used in MashSheet formula
and can be classified into four main categories: life cycle, process, data and visualiza-
tion. In this section, we briefly introduce these operators.

5.1 Life Cycle Operators

MashSheet has three life cycle operators for the purpose of managing SC and SC∗ in the
application: component creation, component deletion, service binding.

Component creation: create() registers a new SC to the component repository by
importing the service interface referenced. This operator does not produce any data
value in the MashSheet grid. For example, the following formula creates SCDG:

= create(‘http : //www.ecubicle.net/driving.asmx?WSDL’, ‘DG’)

Component deletion: delete() removes the referenced SC from the component repos-
itory. Similar to create(), delete() does not affect the MashSheet’s cell values since
it is repository management operator. For example, the following formula removes SCDG
from the repository:

= delete(‘DG’)

Component binding: bind() binds a SC to a specific cell and creates SC∗. When the
SC∗ is created, cell address (a) is used to identify the component and its operations are
accessible by using dot notation. The incentive of using binding operator is that users
can interact with a specific web service invocation within cells. For example, evaluation
of the following cell binds SCDG to cell B3 and creates (SC∗DG):

(B3,= bind(‘DG’))

Thereafter, Tom can refer to the operation of DG as B3.getDR(String, String). bind()
has one input parameter which is SC and returns SC∗. That is, it can be expressed as
‖(a, bind(SC))‖S → SC∗.

5.2 Process Operators

MashSheet has three process operators for the purpose of supporting orchestration of
web services: simple invocation, extended IF and synchronization. They are used to
support modeling basic control flow patterns [17] in the application.

Simple invocation: invoke() is defined much of the same way as other spreadsheet-
based mashup tools, however, in MashSheet, the output is held in a OC for further
access and manipulation. For example, evaluation of the following cell invokes getDR()
operation provided by SC∗DG in cell B3 and holds the output data (OCDG) in cell B5:

(B5,= invoke(B3.getDR(B1, B13))

invoke() has one parameter which is SC∗ and returns OC. That is, it would be expressed
as ‖(a, invoke(SC∗)‖S → OC.

Spreadsheet as a Generic Purpose Mashup Development Environment 281

Extended if: iff() is provided to model an exclusive choice pattern in conventional
spreadsheet. Consider the exclusive choice case in our reference scenario. The pseudo
code is represented as: If WF =‘rain’ Then DG Else BU. The semantically correct
interpretation of this situation is that there is only one execution between DG and BU. But
in conventional spreadsheets (and any other spreadsheet mashup tools we investigated),
both DG and BU will run in order for the code/formula can be evaluated.

iff() has a condition and two SC∗ parameters and returnsOC. It would be expressed as
‖(a, iff(condition, SC∗, SC∗))‖S → OC. The semantic of iff() is defined as follow:

‖(a, iff(condition, opr1, opr2)‖S =
{
‖(a, opr1)‖S if condition = True
‖(a, opr2)‖S if condition = False

For example, Figure 5 illustrates an exclusive choice scenario.

Fig. 5. iff() example: User input is in cell B1; Service bindings are in cells A2:B3; Simple invo-
cations are in cells A4:B4; Exclusive choice is in cell A5

Synchronization: sync() is provided to correctly support the semantic of AND-join
(synchronization) and XOR-join (simple merge) in spreadsheet [17]. It has parameters
which are SC∗ and a condition indicating the semantic of sync() (i.e., AND/XOR)
and returns a Boolean value (α) indicating the joining status of participating service
invocations: ‖(a, sync(SC∗, .., SC∗, condition))‖S → α. The semantic of AND-join
is defined as follow:

‖(a, sync(opr1, .., oprn, AND)‖S =

{
False if any ‖(a, oprk)‖S |k ∈ (1, n) has not evaluated
True if all ‖(a, oprk)‖S |k ∈ (1, n) has evaluated

The semantic of XOR-join is defined as follow:

‖(a, sync(opr1, .., oprn, XOR)‖S =

{
False if no ‖(a, oprk)‖S |k ∈ (1, n) has evaluated
True if any ‖(a, oprk)‖S |k ∈ (1, n) has evaluated

For example, Figure 6 illustrates a synchronization scenario.

5.3 Data Operators

MashSheet provides eight data operators: union(), join(), merge(), merge field(),
rename field(), filter(), filter field() and sort() for manipulating with OC
data. The main differences of these operators in comparison with data mashup operators
in other spreadsheet-based mashup tools are:

282 D.D. Hoang, H.-Y. Paik, and A.H.H. Ngu

Fig. 6. sync() example: User input is in cell B1; Service bindings are in cells A2:B2; sync() is in
cell A3. Users check the value of A3 to see whether two invocations are synchronized or not.

– Input parameters of MashSheet data operators are XML data. Therefore, instead
of mapping data into the grid before can run the operator (like in other tools),
MashSheet data operators can run directly on the XML data. The operators can
perform operations either on the structure of data (e.g., merge(), filter field())
or on the data itself (e.g., filter(), sort()).

– Instead of immediately visualized in cells, the output of a data mashup operator are
held in a cell for further processing by other data or visualization operators. These
operators are motivated by the fact that intermediate data in a mashup application
should be reused by others operators and visualized only when needed.

In this section, due to the space limitation, we only introduce the merge() operator. Full
description of all operators is given in [9].

Merge: merge() combines two OCs in a uniform structure to an OC containing all the
data from participating OCs. Evaluation of the cell containing merge() is defined as:
‖(a, merge(OC, OC)‖S → OC. We denote the first OC as OS1(N1, T1, B1, P1) and the sec-
ond OC as OC2(N2, T2, B2, P2). The merge() operator runs on OC1, OC2 will produce a
new OC(N, T, B, P) with MOT representation as follow:

N = N1 = N2, T = T1 = T2, B = B1 = B2, P = P1 = P2

For example, consider the following cells. The formula in cell C3 merges the output
data produced by RL’s read() and CL’s read() operations in cell A2 and B2.

(A1,= bind(‘RL’)); (B1,= bind(‘CL’));
(A2,= invoke(A1.read())); (B2,= invoke(B1.read()));
(C3,= merge(A2, B2))

5.4 Visualization Operators

The goal of these operators is to separate the presentation layer from data layer so that
users can visualize OC data using different layouts (e.g., grid, map). The separation is an
important issue, especially when users want flexibility and reusability in creating their
own display of OC data. Basically, visualization operators map a data space into a visual
space. In our context, data space is OC and visual space is a set of cell addresses (A).

MashSheet visualization operator is a triplet O = (D, V, R), where:

Spreadsheet as a Generic Purpose Mashup Development Environment 283

– D is an OC, OC = (N, T, B, P)
– V is a visual space including a set of cells addresses A
– R is a set of visualization rules, a rule r ∈ R is a mapping r : N→ V

MashSheet contains two visualization operators: grid() and map():

Grid: grid() allows users to visualize OC data in a grid of cells. Evaluation of the cell
containing grid() is defined as: ‖(a, grid(OC, α, a)‖S → (a, .., a). There are two types
of grid(): column and row identified by parameter α. Column (row) grid visualizes
data as a horizontal (vertical) sequence of columns (rows) where a column (row) is
constructed as a vertical (horizontal) sequence of attribute in N∗ (N∗ is a subset of N
constructed by selecting all “leaf” nodes in the OC’s tree). For example, Figure 7(a)
and 7(b) present two scenarios when Tom visualizes the data produced by RL’s read()
operator in cell B1 by a range of cells which the top-left cell is cell A3.

Fig. 7. Visualize RL data by (a)column, (b)row

Map: map() lets users to visualize static data in an OC using a map interface. This
operator creates a map object with points indicating the addresses and detail information
about each point. For implementation purpose, we choose Google API as foundation of
map provider. map() does not produce any data value in the MashSheet grid. Instead, it
shows a map object as a gadget in the grid interface. We define a0 is a special address
representing a floating gadget. Evaluation of the cell containing map() is defined as:
‖(a, map(OC)‖S → (a0). map() has two parameters which are addresses of the POIs and
information adding to each POI. Users have to manually extract the data for these two
parameters from an OC. Consider the following cells, evaluation of formula in cell B2
will get data produced by RL’s read() operation in cell B1 and display it in a map object.

(A1,= bind(‘RL’)); (B1,= invoke(A1.read()));
(B2,= map(B1.Channels.Items.Description, B1.Channels.Items.Title));

6 Building and Executing MashSheet Application

Figure 8 shows how Tom’s scenario can be implemented using MashSheet. First, Tom
defines cell B1 as the input area for entering hotel’s address. He uses create() to reg-
ister five components to the repository (not shown in the figure). He, then, binds five
components to cells A3:B4, C3. Tom is now ready to invoke services and build the
scenario:

284 D.D. Hoang, H.-Y. Paik, and A.H.H. Ngu

Fig. 8. A running example implementing Tom’s scenario. Note that in this figure we combine for-
mula view and evaluation view in one worksheet due to the space limitation. In fact, the formulas
will be evaluated to concrete data in the corresponding cells.

– He invokes the read() operations provided by RL and CL in cells A6 and B6 respec-
tively, He also invokes getWeather() by WF in C7,

– Tom uses a sync() formula in cell A8 to check the synchronization status of two
read() operations provided by RL and CL,

– After both RL and CL are completed, he merges the data in cell A6 and B6 and puts
the result in cell A93,

– He then, sorts the content of A9 and put the result into A11. The sorting is done by
the name column (i.e., A9.Channels[0].Items) in ascending order.

– In cell A13, Tom visualizes the data in cell A11 by a grid of cells which the top-left
cell of the grid is cell A14.

– Tom enters the formula in cell A18 to get the direction from his hotel to the first
POI in the list (in case WF reports rain, he uses DG otherwise he uses BU).

– Finally, he visualizes the direction produced in cell A18 in a grid of cells which the
top-left cell is cell A21 by entering a formula in cell A20.

To build the MashSheet application, Tom needs to consider two aspects: (i) control
flow: defines the order in which the cells’ formulas are evaluated and the condition

3 It is not shown in the figure for space reason, but the evaluation result of each operation is
displayed on the component explorer (Figure 2 part 1.3) when associated cells are clicked.

Spreadsheet as a Generic Purpose Mashup Development Environment 285

under which a certain formula may or may not be evaluated; (ii) data flow: defines how
data is passed between the evaluations of the formulas. We observe that spreadsheet
evaluation engine only depends on data flow through cell referencing mechanism. In
this framework, we extend the MashSheet language to support both control and data
flows in a MashSheet application but still using spreadsheet-like language. We consider
the basic control flow patterns as defined by [17], and explain how to model each pattern
in the following:

Sequence can be modeled in MashSheet either by spatial arrangement of cells’ formulas
in a MashSheet application or by using cell referencing (the spatial arrangement of cells
is considered first).

– Spatial arrangement: We define the spatial arrangement of the cell formulas as the
evaluation order. Two formulas are sequentially evaluated if their cells are located
in two adjacent cells. The evaluation order progresses from left to right and from
top to bottom of the cell locations. For example, the group of cells A3: B4, C3 in
Figure 8 are sequentially executed in the order:
A3→ B3→ C3→ A4→ B4.

– Cell referencing: Two formulas are also considered sequentially evaluated if they
have input-output dependency to each other. For example, the formula in cell A6 is
evaluated after the evaluation of formula in cell A3 in Figure 8.

Parallel split can also be modeled either by spatial arrangement of cell’s formulas or
using cell referencing.

– Spatial arrangement: Two formulas are evaluated in parallel if their cells are located
in two non-adjacent cells without data dependency. For example, cells A6 and C7
in Figure 8 are evaluated in parallel.

– Cell referencing: Two formulas are considered executed in parallel if they have
data dependency with the same data and have no data dependency to each other.
For example, cells A5 and B6 in Figure 9 are evaluated in parallel.

Exclusive choice can be modeled using iff() operator. For example, in Figure 8 the
formula in cell A18 models an exclusive choice pattern.

Synchronization and Simple Merge can be modeled using sync() operator with AND
and XOR parameters, respectively. For example, the sync() formula in A8 performs
synchronization for the formulas in A6 and B6 are executed in parallel, whereas the
sync() in B18 performs simple merge because the service invocations in iff() is done
as exclusive choice.

Fig. 9. Parallel example with input-output dependency

286 D.D. Hoang, H.-Y. Paik, and A.H.H. Ngu

Implementation. MashSheet is implemented as a plug-in of Microsoft Excel applica-
tion. It extends the work presented in [15], which is mainly designed for presenting data
services in spreadsheet. The language of choice for implementation is C# using Visual
Studio for Office (VSTO) toolkit and the language for implementing evaluation engine
is JScript. MashSheet GUI is implemented as a Task Pane in the Excel. RSS service
is accessible by using open source library RSS.NET. We use applications provided in
Microsoft .NET SDK to access SOAP services (e.g., wsdl.exe, csc.exe).

7 MashSheet Benchmark

In this section we evaluate the generic property of MashSheet against other spreadsheet-
based mashup tools. The first group of dimensions examines the support for basic con-
trol flow patterns. The second group of dimensions looks at data mashup operation
aspects and the last group includes visualization operators. Figure 10 shows the re-
sult. StrikeIron, SpreadMash and Mashroom do not support the dimensions in the first
group since they are data mashup frameworks. SpreadMash supports “update to data”
dimension since it allows users to update the change in spreadsheet to the data source.
Mashroom supports all data dimensions. AMICO:CALC supports the basic control flow
patterns, but it does not provide data mashup operators.

Fig. 10. Benchmarking MashSheet and reviewed spreadsheet-based mashup tools: (1)StrikeIron,
(2)AMICO:CALC, (3)SpreadMash, (4)Mashroom, (5)MashSheet

8 Conclusions and Future Works

In this paper, we introduced MashSheet - a generic purpose mashup framework that
allows users to write mashup applications using spreadsheet formulas. In MashSheet,
mashup applications can be built incrementally, producing intermediary results during
the process. MashSheet has the following benefits: (i) the mashup language is based on
a programming paradigm that many users are already familiar with, (ii) it considers not
only data flow but also control flow in mashup development, and (iii) it allows flexible
data visualization using visualization operators.

One might argue that the user interface for mashup development should be as sim-
ple as drag and drop, so that users do not have to write the formulas. However, drag-
and-drop manipulations are only suitable for simple scenarios. We believe supporting
formula-based scripting is more generic approach, making it applicable to more com-
plex scenarios.

Spreadsheet as a Generic Purpose Mashup Development Environment 287

Currently, we are working on several areas to improve out framework. First, we are
conducting an evaluation study to attain both qualitative and quantitative feedback on
the feasibility of MashSheet as a generic mashup tool. We target the scientific workflow
communities for obtaining concrete mashup scenarios for evaluating the tool. This will
also lead to extending our range of supported service interface types. An important
feature we would like to integrate into MashSheet is reusability. By supporting reuse, a
mashup application in MashSheet will be considered as a service component which can
be invoked from other applications.

References

1. Mapcruncher,
http://research.microsoft.com/en-us/um/
redmond/projects/mapcruncher

2. Programmableweb.com,
http://www.programmableweb.com/mashups/directory

3. Rss.net library, http://www.rssdotnet.com
4. Strikeiron web services for excel, http://www.strikeiron.com
5. Yahoo pipes, http://pipes.yahoo.com
6. Abraham, R., Erwig, M.: Type inference for spreadsheets. In: Proceedings of the 8th ACM

SIGPLAN, (PPDP 2006) (2006)
7. Fischer, T., Bakalov, F., Nauerz, A.: An overview of current approaches to mashup genera-

tion. In: Wissensmanagement, pp. 254–259 (2009)
8. D. Hinchcliffe. The 10 top challenges facing enterprise mashups,

http://www.zdnet.com/blog/hinchcliffe/
the-10-top-challenges-facing-enterpris

9. Hoang, D.D., Paik, H.Y.: Spreadsheet as a generic purpose mashup development environ-
ment. Technical report, The University of New South Wales, Sydney, Australia (2010)

10. Hoang, D.D., Paik, H.Y., Benatallah, B.: An analysis of spreadsheet-based services mashup.
In: Proceeding of the ADC 2010, Brisbane, Australia (2010)

11. Jones, S.P., Blackwell, A., Burnett, M.: A user-centred approach to functions in excel. In:
Proceedings of the ICFP 2003, Uppsala, Sweden (2003)

12. Kongdenfha, W., Benatallah, B., Saint-Paul, R., Casati, F.: Spreadmash: A spreadsheet-based
interactive browsing and analysis tool for data services. In: Bellahsène, Z., Léonard, M. (eds.)
CAiSE 2008. LNCS, vol. 5074, pp. 343–358. Springer, Heidelberg (2008)

13. Murata, M., Lee, D., Mani, M., Kawaguchi, K.: Taxonomy of xml schema languages using
formal language theory. ACM T. Internet Tech. 5(4), 660–704 (2005)

14. Obrenovic, Z., Gasevicc, D.: End-user service computing: Spreadsheets as a service compo-
sition tool. IEEE Transactions on Services Computing (2008)

15. Saint Paul, R., Benatallah, B., Vayssière, J.: Data services in your spreadsheet! In: Proceed-
ings of EDBT 2008 (Demo), Nantes, France, pp. 690–694 (2008)

16. Scaffidi, C., Shaw, M., Myers, B.: Estimating the numbers of end users and end user pro-
grammers. In: Proceedings of the VLHCC 2005, Dallas, USA (2005)

17. Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)

18. Wang, G., Yang, S., Han, Y.: Mashroom: end-user mashup programming using nested tables.
In: Proceedings of the WWW 2009, Madrid, Spain (2009)

http://research.microsoft.com/en-us/um/redmond/projects/mapcruncher
http://research.microsoft.com/en-us/um/redmond/projects/mapcruncher
http://www.programmableweb.com/mashups/directory
http://www.rssdotnet.com
http://www.strikeiron.com
http://pipes.yahoo.com
http://www.zdnet.com/blog/hinchcliffe/the-10-top-challenges-facing-enterpris
http://www.zdnet.com/blog/hinchcliffe/the-10-top-challenges-facing-enterpris

Combining Enforcement Strategies
in Service Oriented Architectures

Gabriela Gheorghe1, Bruno Crispo1,
Daniel Schleicher2, Tobias Anstett2, Frank Leymann2,

Ralph Mietzner2, and Ganna Monakova2

1 University of Trento, Italy
First.Last@disi.unitn.it
2 University of Stuttgart, Germany

Last@iaas.uni-stuttgart.de

Abstract. Business regulations on enterprise applications cover both infrastruc-
ture and orchestration levels of the Service-Oriented Architecture(SOA) environ-
ment. Thus, for a correct and efficient enforcement of such requirements, full
integration among different enforcement middleware is necessary. Based on pre-
vious work [1], we make a comparison between enforcement capabilities at busi-
ness and infrastructure levels. Our contribution is to make a first step towards a
policy enforcement model that combines the strengths of the orchestration level
enforcement mechanisms with those of the message bus. The advantage of such
a model is (1) that infrastructure and orchestration requirements are enforced by
the most appropriate mechanisms, and (2) the ability to enforce regulations that
would be otherwise impossible to enforce by a single mechanism. We present the
architecture and a first prototype of such a model to show its feasibility.

Keywords: policy enforcement, SOA, BPEL, ESB.

1 Introduction

There is an increasing number of regulations that all enterprise applications have to
comply with. These regulations usually concretise in policies on data protection, system
behaviour and resource or organisational management (e.g., EU Directives1, Basel3 and
Sarbanes-Oxley[14]). Such constraints crosscut enterprise applications.

Achieving compliance with such regulations can be done through policy enforcement.
From our point of view, this enforcement comes in two flavours: message or infrastruc-
ture level enforcement mechanisms and orchestration level enforcement mechanisms.
Mechanisms at the message level focus on technical details like communication pro-
tocols (e.g., SOAP, REST), message transformation (e.g., XSLT) or choice of message
routes. They are typically embedded within an Enterprise Service Bus (ESB). Regulatory
enforcement at the ESB level cannot normally go higher than controlling message flows
between physical endpoints or binding virtual endpoints to actual endpoints. Concepts

1 European Commision EC-95/46 http://ec.europa.eu/justice_home/fsj/
privacy/docs/95-46-ce/dir1995-46_part1_en.pdf

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 288–302, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://ec.europa.eu/justice_home/fsj/privacy/docs/95-46-ce/dir1995-46_part1_en.pdf
http://ec.europa.eu/justice_home/fsj/privacy/docs/95-46-ce/dir1995-46_part1_en.pdf

Combining Enforcement Strategies in Service Oriented Architectures 289

at higher levels address issues related to orchestration or choreography of activities. At
this level business processes and business process engines are used. Examples on this
level are based on the Business Process Execution Language (BPEL).

The gap between these two enforcement capabilities at the two levels is illustrated
by a real use case: the Hong Kong Red Cross2 implements its blood donation process
in a SOA. In order to stay compliant with existing laws and regulations, the Red Cross
needs to enforce the following policy: mutual exclusiveness of doctors approving blood
donation and distribution. The first policy is a policy most easily enforced at the mes-
sage level because location information is only managed at this level. The second is
a Separation of Duty (SoD) requirement saying that the same actor in an application
is not allowed to perform two conflicting operations. This can be enacted on a BPEL
engine by inhibiting one operation if the other operation has been previously performed
by the same actor. While the BPEL engine can disallow a process to handle the request
to perform an action, the problem is that the process has already received the request.
If this request contains sensitive information, the BPEL engine cannot prevent it from
arriving on the machine where it will be inhibited, and this may cause a data privacy
breach over which the BPEL process has no control.

It follows that enforcing policies of message level at the orchestration level or vice
versa is awkward for a number of reasons. First, it requires pulling data and associa-
tions that are not available to one layer or the other. Second, the policy specification
is more complicated and hence prone to errors. Third, there is a tight dependency be-
tween the policy languages at each level, and the limits of their enforcement. Also, for
management reasons it is advisable to have all policies in one language, and in one
place, since this makes deployment and review much easier. We follow this idea and
suggest a centralised enforcement model that discovers enforcement capabilities adver-
tised at both process engine and message level. The model decides where to enforce
which policy constraints, and how to map these constraints to the existing capabilities
at the right level. In our Red Cross example, presented in the next section, we envi-
sion the same SoD constraint enforced correctly by combining the BPEL-level check
with ESB’s capability to resolve the second operation to an endpoint that is surely op-
erated by a different actor. Hence, our approach extends typical ESB and BPEL engine
features, and combines rather than separates the resulting enforcement strengths.

The remainder of the paper is structured as follows. Giving a motivating example,
the gaps between BPEL engine and ESB enforcement as non-integrated components
are described in Section 2. Section 3 presents extensions of the ESB and BPEL engine
to address the enforcement limitations and also a general enforcement model. Section 4
shows how to join the two different sets of capabilities. Implementation considerations
are presented in Section 5. Problems with current approaches are given in Section 6,
and Section 7 concludes.

2 Motivating Example

In this section we use a real example to show the drawbacks of performing enforce-
ment by focusing on either BPEL engines or ESBs. In many countries the name Red

2 http://www.redcross.org.hk/en/home.html

http://www.redcross.org.hk/en/home.html

290 G. Gheorghe et al.

Cross encompasses those organisations dedicated to emergency situations and health
care. The Hong Kong Red Cross (HKRC) organisation manages, among other things,
blood donations for a number of public hospitals [12]. The organisation acts as an in-
termediary between blood donors, hospitals, and patients (blood receivers). Both the
HKRC and the hospitals have to comply with regulations defined by government health
agencies. These regulations relate to the blood treatment and donor data:

– The same doctor cannot approve both a blood donation and the distribution of that
blood sample to a public hospital. (Regulation 1)

– The temperature of the blood samples must always be below zero degrees Celsius.
(Regulation 2)

– The Red Cross must distribute the donated blood within 2 days after the blood is
collected in an HKRC branch. (Regulation 3)

Complying with these regulations means understanding how to detect and react to vio-
lations. For example Regulation 1 requires a differentiation between users of the Hong
Kong Red Cross so that a doctor approving a blood donation cannot approve the blood
distribution afterwards. Regulation 2 requires sensors detecting temperature changes to
a component responsible for monitoring temperatures and triggering reactions. Regu-
lation 3 requires that blood can only be collected from an HKRC branch and forbids
blood distribution after more than 2 days after the collection.

Regulations 1-3 above also concern internal business processes of the HKRC, such as
the blood donation management process. Figure 1 illustrates the interface between the
donors and the blood donation management process. We use this process in a slightly
changed form in the remainder of this work. The process is modeled as a WS-BPEL
process that orchestrates the Web services connected by an ESB.

Fig. 1. The Red Cross blood sample management process

The blood donation management process is modeled with respect to regulation 2.
For every blood donation a process instance is created; this instance continuously polls
the temperature of the corresponding blood storage system until the blood sample is
requested or regulation 2 was violated. The violation is detected by the evaluation of a

Combining Enforcement Strategies in Service Oriented Architectures 291

condition (similar to if-else structures) defined on the returned temperature. Despite be-
ing the only implemented solution of enforcing SoD constraints, this BPEL-only imple-
mentation falls short in several respects: (1) tagging and sending the blood for cooling
are logical invocations whose execution the BPEL engine cannot control down to the
message level; (2) the BPEL process does not distinguish between service invocations
emitted or served by the same host; (3) the BPEL process does not manipulate service
location information. These three aspects are covered by ESB capabilities, and to our
knowledge there is no approach that tries to link ESB with BPEL engine features for
the purpose of fine-grained policy enforcement.

In the following section we discuss in more detail the limitations of performing pol-
icy enforcement only at the level of business processes, or only at the ESB level. We
show how Regulations 1-3 can be realised with our combined approach.

3 SOA Enforcement: Current Approaches versus Our Approach

In this section we show architectural approaches to do enforcement and present the en-
forcement capabilities of current BPEL engines and ESBs. We also show a policy model
describing how to use these enforcement capabilities in a distributed and automated en-
vironment. In what follows, we use the term SOA enforcement to refer to the operation
of the service-oriented mechanisms whose job is to ensure that requirements of an en-
terprise policy (on security or performance) are satisfied. We also use the concept of an
enforcement life cycle as a three-step mechanism. Given a policy to be enacted, the first
step is to detect the events relevant to the policy; the second step is to decide whether
the detected events constitute a violation of the policy. The last step is to react as speci-
fied by the policy. Drawing this line between the enforcement steps helps to localise the
shortcomings of current approaches.

3.1 Different Architectural Approaches

Let us consider the separation of duty regulation (Regulation 1) from above: The same
doctor cannot approve both a blood donation and the distribution of that blood sample
to a public hospital. Enforcing this constraint requires to detect (1) on which doctor’s
behalf the donation approval service operates, (2) on which doctor’s behalf the blood
distribution service operates, and (3) the identifier of the blood sample. Figure 2 shows
different approaches to enforce such a policy. An initial approach is to weave enforce-
ment features into the donation approval service and the blood distribution service (Fig-
ure 2.A). The enforcement mechanism here couples all three stages of the enforcement
life cycle (detect, decide, react). Changing the reaction or detection criteria implies
that the donation approval service or blood distribution service code must be changed.
An improved approach is wrapping: bundling the donation approval service and the
blood distribution service with enforcement stubs to make any policy change indepen-
dent from the service logic (Figure 2.B). This approach does not scale with the policy
growth and burdens the two service nodes with heavy processing because the wrapper
is on the same node as the business logic. Figure 2.C shows a further improvement: en-
forcement as a service. External enforcement services make enforcement reusable for

292 G. Gheorghe et al.

Fig. 2. Different architectures for SOA enforcement. BDS stands for Blood Distribution Service.
DAS stands for Donation Approval Service.

other services, but are bypassable and not very scalable. If the blood distribution service
or the donation approval service is contacted on a channel that cannot be reached by the
enforcement service it cannot be detected that the same doctor performs the same oper-
ation for both services. Worse, for every new constraint on the communication between
the two services there will have to be a new enforcement service to enforce it.

A further logical step is to employ the message bus (ESB) as a communication chan-
nel to and from all services in an enterprise system (Figure 2.D). The ESB solves the
bypassability and overloading issues mentioned before. Since it mediates all commu-
nication between the donation approval service and the blood distribution service, all
relevant messages will be unnoticed before they are dispatched to their destination. All
enforcement mechanisms for any policy will have to be deployed to the bus, and the
ESB will ensure that messages are dispatched to the right destinations. The ESB falls
short in handling correlated enforcement actions that need access to the semantics of the
messages: the ESB by itself cannot easily detect that the same doctor performs the same
operation on the same blood sample. This correlation problem is solved by the BPEL
engine (Figure 2.E). In case there are several constraints on the communication related
to the donation approval service and the blood distribution service, an enhanced BPEL
engine can be used to orchestrate the way in which the different policies are enforced by
their respective services. Conversely, message routing and endpoint resolution is where
BPEL falls short. The BPEL engine can enforce the separation of logical users running
the approval and distribution of the blood sample. But it cannot impose that this hap-
pens in every case. The mapping between the users and their machines is done by the
ESB and not BPEL. Hence for a given blood sample, the ESB can ultimately resolve
the blood distribution service endpoint to a machine that is different from the one on
which the donation approval service has happened. Since it is realistic to assume each
doctor has its own machine, then the separation of duty constraint is satisfied because
different machines mean different doctors.

Having shown some important limitations of current ESB and BPEL approaches, in
what follows we present a more detailed study of the enforcement capabilities of these
two SOA components. Based on this we show how the enforcement capabilities of the
ESB and the ones of the BPEL engine can be combined to do policy enforcement.

Combining Enforcement Strategies in Service Oriented Architectures 293

3.2 BPEL Engine Enforcement Capabilities

There are three main categories of standard capabilities that a common BPEL engine
can employ for the detection of policy violations: observation, event triggering, and
event aggregation.

– Observation of events: BPEL engines can observe events occurring during the ex-
ecution of a process. The execution history of all process instances is saved in the
audit trail, and the data can be later used for an analysis if a certain condition has
become true.

– Triggering of events: BPEL engines are capable of triggering events at state changes
during the execution of a BPEL process. Events that occur during the execution of
a BPEL process are saved in the audit trail. The audit trail can be used to monitor
the execution of all running instances of all deployed process models on a BPEL
engine. A process instance can also be started when a message or event has arrived
at the BPEL engine.

– Aggregation of events. In a BPEL engine, event aggregation is implicitly done by
an internal component called the process navigator. The navigator is responsible
for the execution of the activities defined in a BPEL process. One feature of the
navigator is the initialisation of a new activity if the required previous activities
have completed or faulted. The navigator of a BPEL engine is notified by an event
that the preceding activity has ended. Such events can also be made visible to the
outside for complex event aggregation, e.g. by emitting an event containing the
aggregated information of several events.

Functionalities covering the reaction step of the enforcement life cycle include the sus-
pension and termination of process instances. These enforcement abilities are part of
the standard abilities of the BPEL engine we use in our prototype. To further support
enforcement we enriched the BPEL engine with additional reaction abilities: function-
ality to block and unblock processes, to insert, delete, and modify activities, and to
modify variables [3].

– Termination and suspension of process instances: A BPEL engine is capable of ter-
minating and suspending running process instances. This means it is possible to
stop a process instance that behaves in a way that violates policies. Terminated pro-
cess instances cannot be reactivated; suspended process instances can be resumed.

– Block or un-block process instances: The execution of running BPEL processes can
be blocked when a certain event occurs. This is the difference to the suspension of
a process instance described before. To unblock a process instance another event
needs to occur. This can be, for example, an unblock message coming from a policy
decision component.

– Insertion, deletion, and modification of activities of a running process instance: It
is possible to insert new activities into running process instances. For long running
process instances this is a means to implement new policies that were not present
when the process instance was initiated. The changes performed onto process in-
stances can be mapped to the underlying process model. This procedure has been
previously called instance migration [10].

294 G. Gheorghe et al.

– Modification of variables and activities: Variables and activities of running process
instances can be modified to lead the process execution to a direction that avoids
the violation of policies.

The BPEL engine inherently keeps track of the state of the process instances running
on it. In case of an emergency shut down most BPEL engines persist the states of all
running processes on disk so that they can be resumed after a restart. BPEL internal
fault and compensation handling is not always visible to the outside, thus it must be
signalled and enforced within the BPEL engine. State keeping helps to make BPEL-
level enforcement decisions, but an enforcement decision maker on the BPEL engine
cannot come off-the-shelf.

3.3 ESB Enforcement Capabilities

In this section we show enforcement aspects that are typical for an ESB and cannot
happen on a BPEL engine. Following the enforcement life cycle model, detection in
the ESB happens specifically on message flows. It encompasses endpoint resolution,
observation, triggering of events, blocking of a message flow and transformation of
messages. This functionality is provided by default in standard ESB platforms.

– Endpoint resolution: Endpoint resolution is one of the two main functions of the
ESB. Resolving endpoints means matching a virtual endpoint to a physical endpoint
in a service registry. The ESB uses its own protocols for this matching.

– Observation: The ESB mediates all messages flowing through. These message flows
can be logged for later analysis.

– Triggering of messages: ESBs are capable of emitting events, usually when a cer-
tain message arrives. Hence when a certain message is received, the system is in-
jected with a generated event. At message-level, both the message and the event can
be either a service invocation, a service response, or a fault raised in the application.

– Blocking message flows: ESBs offer the possibility to react synchronously to in-
coming or outgoing messages. This means that when a certain message has been
received or is about to be dispatched, the ESB can perform an action before routing
the message to its destination.

– Transformation of messages: ESBs are capable of aggregating, splitting, filtering,
and processing the messages that they route from one endpoint to another. Process-
ing of messages on certain criteria is covered generically by enterprise integration
patterns. Standard patterns like the message splitter, message aggregator, and mes-
sage filter are already implemented in a number of ESB platforms.

The added enforcement functionalities that were suggested and implemented in our pre-
vious work [1] cover the reaction step of the ESB enforcement life cycle. They include:

– Modification of a message: The ESB has control over the messages between the
source endpoint and destination endpoint. This implies that it can modify parts of
the message, be it the message metadata (source, destination, security headers, etc.)
or the message payload. Usually the ESB can discern between payload and routing
information. Still, the payload is not always accessible to the ESB, for instance
when it is encrypted.

Combining Enforcement Strategies in Service Oriented Architectures 295

– Rerouting messages: Rerouting messages can be done on the fly by sending a mes-
sage not to its intended destination, but to another endpoint. Rerouting can serve
multiple enforcement functions, e.g., block the initial destination endpoint from
receiving a message or to retain the message for a limited amount of time.

– Inserting messages: ESB traffic can be duplicated among endpoints, as the ESB can
insert messages into existing flows.

While the BPEL engine handles logical flows between logical endpoints, the ESB han-
dles correspondence with the real endpoints. The ESB features native endpoint name
resolution, message processing, message reliability and delivery mechanisms. For in-
stance, the ESB has access to service metadata such as: position information, interface
information, intra-service protocols, user tags, and ranking or price of a service. End-
point resolution means the ability to choose another endpoint for a message depending
on various parameters. Non-functional runtime aspects like traffic load and trust can
influence the flow of messages between endpoints. The message flow can be controlled
by the ESB at the infrastructure level. Similar to the case of the BPEL engine, the ESB
does not come with decision making support with respect to any kind of constraints.

Table 1 shows a comparison of the new enforcement capabilities we added to the
ESB [1] and the BPEL engine. It summarises our efforts to provide two middleware
components with extended support for enforcement in an SOA. The fact that the BPEL
engine and the ESB have two distinct feature sets in terms of enforcement emphasises
that there is a need to combine these enforcement capabilities.

Table 1. Comparison of new Enforcement Capabilities of ESB and BPEL engine

New Enforcement Capability BPEL engine ESB

Modification of Messages - ×
Rerouting Messages - ×
Insertion of Messages - ×
Block / Unblock Process × -
Termination / Suspension of Process Instances × -
Insertion, Deletion, and Modification of Activities × -
Modification of Process Variables × -

3.4 Enforcement Policy Model

To automatically react to critical states of a system, there have to be machine readable
policies describing what should happen when the system reaches a certain state or tries a
transition from one state to another. In this section we present a model of the information
needed in an enterprise policy for regulatory compliance. With this model it is possible
to describe enforcement actions on single SOA components like a BPEL engine or
an ESB or on a combination of these components. We use this policy model in the
Sections 4 and 5 to show the interaction between an ESB and a BPEL engine during the
execution of an enforcement action.

296 G. Gheorghe et al.

ReactiveDetective

Policy

Event Action

detect

specifies

Critical State Reaction

perform

ifReached

indicatedBy

onScope Target
onObservation

specifiesscopedTo

Fig. 3. Policy Content

Figure 3 shows the model specifying the content of the enforcement policy. It con-
sists of two parts. The detective part specifies the critical state of the system to observe
and how this state can be detected. The components that need to be observed in order to
detect the critical state constitute the scope of the detective part. For example, in order
to ensure encrypted communication between services S1 and S2, all messages sent be-
tween these services must be observed. A critical state in this case would be indicated
by the detection of an unencrypted message. The reactive part specifies what actions
should be taken if the critical state is reached and what are the targets of the actions.
In the previous example, a reaction can be the encryption of the message. In this case
message is the target of the action encrypt.

To enforce a policy, the decisions have to be made as to where the detective measures
for the policy have to take place and where the reactions have to be executed. The de-
cision is made based on the policy content, particularly on the observational scope and
on the targets the reactive actions need to be performed on, and on the capabilities of
the enforcement components, in particular ESB and BPEL engine, which are described
in a service catalogue. Thereby detective and reactive parts can be performed by dif-
ferent enforcement components. Currently, the decision regarding whether the policy is
enforced on a BPEL engine or on an ESB is made at the design time and must satisfy
the following two criteria:

1. Detective part: The enforcement component must be able to observe the compo-
nents specified in the scope

2. Reactive part: The enforcement component must be able to perform specified ac-
tions on the specified target

These criteria restrict the number of options to the components which are capable to
enforce the given policy. For example, a BPEL engine would not be able to observe
communications between services if this communication is not part of a business pro-
cess running on this engine. Similarly, an ESB would not be able to control internal
control and data flow of a business process. The ESB actions primarily target a mes-
sage and are scoped to the observation of the messages that flow between the services
that use this ESB. The BPEL engine actions, on the other hand, target process, process
instance, process activity, process activity instance. Thus, if a policy specifies Ensure
that every instance of a business process performs activity Approve on Blood Sample,
then the target is clearly a business process and at least the detection of the critical state

Combining Enforcement Strategies in Service Oriented Architectures 297

should go to the BPEL engine. If the policy on the other hand says Ensure that all mes-
sages between S1, ...,Sn are encrypted, then the observation scope and the action target
is a message and clearly belongs to the ESB. However, service invocations can be con-
trolled on both ESB and BPEL level: on the BPEL level by controlling invoke activities
that invoke a service, and on the ESB level by controlling the invocation message.

To demonstrate the differences and similarities between ESB and BPEL level en-
forcements in our case, consider the first example regulation specified in Section 2: The
same doctor cannot approve both a blood donation and the distribution of that blood
sample to a public hospital. The critical state of a policy guarding this regulation can
be specified as The doctor to have approved a blood donation wants to distribute the
blood sample with the corresponding reactive part of Block blood sample distribution
by the doctor. To detect the critical state, two services S1 performing blood donation
and S2 performing blood distribution need to be observed. If these services are invoked
from the same business process BP1, then the observation can be mapped to the obser-
vation of the corresponding invoke activities of BP1 and thus can be done on the BPEL
engine level. The reactive part in this example is specified by action block on target S2,
which can also be mapped to the blocking of the corresponding invoke activity on BPEL
level. However, if usage of S1 and S2 is not coordinated by a single business process,
for example when blood donation and blood distribution are parts of different business
processes, then additional correlation of the service invocations is required. In this case
the ESB can carry out the necessary message correlation to detect a critical state and
block messages to the service S2. In general, when the policy controls the usage of ser-
vices S1, ..., Sn, both ESB and BPEL can be used for its enforcement. In this case, the
decision of which to use must be made by the designer based on the current system im-
plementation and with the goal to minimize distribution of the policy enforcement. For
example, when these services are invoked from multiple points but all invocations flow
through one ESB, this ESB can intercept requests from different processes and services
at one centralized point. A BPEL engine in this case would need an extra policy for
each BPEL engine that runs processes that invoke these services, and thus would have
multiple enforcement points. Similarly, if a set of services that need to be observed
are invoked from a single business process, then their usage can be controlled at one
centralized point on the BPEL engine level.

4 Combination of Enforcement Capabilities

The ESB complements the process engine enforcement because it performs complete
mediation, endpoint resolution and leverages communication disparities. These dispar-
ities are often unavoidable because providers do not reveal the implementation of their
services. To the usually stateless controls offered by the ESB, the BPEL engine pro-
vides a central point of coordination and global state management. ESB capabilities fit
better with a cross-domain stateless enforcement, while the process engine better serves
enforcing complex actions to achieve adherence to a common policy.

As described in sections 3.2 and 3.3, we have extended an ESB and a BPEL en-
gine with added functionality for enforcement. Both components have been extended
independently to meet enforcement requirements in their respective domain. In order to

298 G. Gheorghe et al.

Fig. 4. Original implementation of the blood donation management process

Fig. 5. Modified implementation of the blood donation management process. Also shows ESB
responsible for choosing the doctor to approve the requests.

make best use of enforcement functionalities of both ESBs and BPEL engines we need
to combine them. In the following we show how the combination of both enforcement
capabilities works in a use case scenario.

Let us assume the Hong Kong Red Cross has a BPEL process for managing blood
donations shown in Figure 4. This process is out-dated: it does not implement Reg-
ulation 1 as stated in Section 2 because it only has one check activity instead of the
required two. There also is no policy deployed in the ESB ensuring the adherence to
Regulation 1. The activity labelled Check Distribution is responsible to check if a blood
sample can be distributed. The ESB forwards any approval request to any doctor being
currently in charge for approvals in the hospital.

Figure 5 shows the new blood donation management process with Regulation 1 im-
plemented. To implement Regulation 1, a new activity labelled Check blood donation
has been inserted into the process model. Already running instances have been changed
on the fly by using the activity insertion enforcement mechanism of the BPEL engine.
The Approval service in the ESB has not been changed. No new endpoint has been in-
troduced for the new check activity. Instead a new enforcement policy has been added
to the ESB stating that two approval requests from the same process instance are routed

Combining Enforcement Strategies in Service Oriented Architectures 299

MESSAGE BUS

SERVICE 1 SERVICE 2 SERVICE 3 SERVICE N

DECISION
COMPONENT

BPEL
ENGINE

POLICY

Enforcement
Capabilities

Enforcement
Capabilities

Fig. 6. The architecture implementing the enforcement life cycle. The arrows to the right indi-
cate that the decision component uses the interfaces provided by the ESB and BPEL engine for
detection and reaction to violations.

to distinct doctors. Of course, an underlying assumption is that every doctor is using the
system from a physically different endpoint, so that the ESB can differentiate between
doctors. When the same endpoint is operated by two different doctors for two differ-
ent actions, the ESB cannot go beyond ESB endpoint information, which is normally
not associated with user data. With extra information from the outside, the ESB can be
helped to route to distinct doctor endpoints on the same machine.

Enforcement actions affecting the control flow of a business process are meant to
be executed on a BPEL engine. It is possible to influence the control flow of a work-
flow from the outside by modifying input messages. To do this, deep knowledge of the
workflow is needed in order to be capable of doing the right modifications to the input
data. Therefore we propose to execute enforcement actions that affect the control flow
of a workflow directly on the BPEL engine. On the other hand enforcement actions that
have to do with message routing or endpoint resolution of Web services are better to be
executed on the ESB.

We envision an architecture that joins the capabilities of the message bus with those
of the BPEL engine, as shown in Figure 6. There can be one or more BPEL engines
deployed to the bus to orchestrate the execution of a business process. The enforce-
ment capabilities of these engines, as well as that of the ESB, are made available to
a higher-level enforcement component that we call the decision component. As men-
tioned earlier, neither the message bus nor the BPEL engine offer any explicit support
for enforcement decision making. Our suggested decision component will discover the
ESB and BPEL detection capabilities (as described in Section 3.4), and will make a
decision of how to react to a possible violation of a policy. This reaction can be either
at the BPEL, at the ESB level, or at both levels. For the moment, the way to decide
between these two cases is by checking an explicit flag in the policy, stating that its
target it located at one level or the other. Thus, we rely on the policy writer to spec-
ify what part of the policy is linked to the ESB and what part to the BPEL instance.
Keeping the decision component away from either the ESB or the BPEL engine makes
the decision component independent of the limitations of either layer. In this way, the
enforcement assurance of the composite will incorporate both types of message-level
and BPEL engine capabilities.

300 G. Gheorghe et al.

5 Implementation Considerations

In this section we show how the prototypes of an ESB and a BPEL engine implement
the enforcement life cycle. We use Regulation 1 from Section 2 to show an example of
how the ESB and BPEL engine work together to perform an enforcement action.

First, we instrumented Apache ServiceMix 3.03 to offer hooks to message inter-
ception, default endpoint resolution and message modification. ServiceMix offers an
interface for intercepting all messages at the level of the Normalised Message Router.
We employ this interface for detection: we direct all intercepted messages to a Decision
Component shown in Figure 6. Before being directed to this component, messages can
be filtered based on message metadata like message destination, message source, and
user data. As reaction, we added a set of Web services to the message bus that can per-
form the following enforcement actions: block a message, modify a message, delay a
message for a defined period of time and insert a message into the message flow. These
Web services act within the message router, before or after a message is dispatched.

Second, we extended the Apache ODE BPEL4 engine with enforcement capabilities
to block and unblock a running BPEL process. The concepts of the prototype are based
on two previous approaches [3,4]. The first approach proposes an architecture to extend
ODE to emit all events occurring when a process is executed. The BPEL engine is en-
hanced with a component to extract the internal events (detection). The other approach
shows a management framework for BPEL based on Web service Resource Framework
(WS-RF). Here, we use WS-RF to expose every BPEL process deployed on the Apache
ODE BPEL engine as a resource (detection). This resource can be queried and changed.
The changes are mapped back to the referred BPEL process (reaction).

Web service interfaces link enforcement on the Apache ODE BPEL engine with
enforcement on the modified message bus. All SOAP messages produced by the ODE
BPEL engine and possible application services are routed through the ESB. The ESB
can access the BPEL engine capabilities, and hence ask for orchestration of enforcement
actions or events occurring at the BPEL level. Conversely, the BPEL engine will access
ESB messages and ask to perform message modification actions at the message level.

How is Regulation 1 enforced with this implementation? The ESB detects all in-
coming requests to the check blood donation and the check distribution services. All
incoming requests to the former are let to pass unaltered. All incoming requests to the
check distribution service are blocked waiting for an enforcement decision. A copy of
the request to the check distribution services is sent to the decision component. The
decision component will record in a forbidden address parameter the physical location
of the doctor to which this request was directed, as well as the blood sample id. For
each request, the decision component will check if the blood sample id is the same as
in a previous check blood donation request.

If so, the decision component will invoke an enforcement operation at the BPEL
engine in order to send the check distribution request again with a new addressee. The
new request is again blocked by the ESB. After a check by the decision component, the
block is released and the message is forwarded to the right doctor performing the check.

3 http://servicemix.apache.org/home.html
4 http://ode.apache.org

http://servicemix.apache.org/home.html
http://ode.apache.org

Combining Enforcement Strategies in Service Oriented Architectures 301

The Decision Component shown in Figure 6 is for now manual. It is performed by
a human administrator declaring a list of doctors who cannot invoke the same Web
service operations.

6 Related Work

In SOA enforcement, there has been no approach, yet that covers the enforcement life
cycle in its entirety: (1) observation of events, (2) decision of right countermeasures,
and (3) execution of a reaction. Moser et al. introduce the VieDAME4BPEL framework
for monitoring BPEL processes and enforcing the replacement of partner services [8].
An interception and adaption layer allows to intercept outbound messages, monitor
messages, apply message transformations, and replace services. Monitoring inbound
messages and state changes is not discussed. This is a basic requirement to react to
possible faulty behaviour of a BPEL process. Another approach supporting the dynamic
change of workflows is ADEPTf lex [9]. ADEPTf lex defines a set of change operations
which can be used to adapt the structure of a running workflow. Conducting automatic
changes to the running workflow is not intended by the solution.

In [13] Tsai et al. propose an event driven framework to enforce policies in an SOA
environment. In this work a BPEL engine is instrumented to emit events for certain
state changes of a running BPEL process. These events are then aggregated by a so
called global policy engine and forwarded to a local policy engine. This policy engine
is responsible for executing the necessary enforcement action. There is no explanation
on what enforcement actions are possible and how these actions are executed.

Research in SOA enforcement that considers message-level enforcement has a lot of
generic models [11,5,2]. Neither of these solutions discusses how the enforcement at
the message bus layer actually happens, so that it can be linked with the orchestration
level. More relevant to our viewpoint are the message-level enforcement frameworks
that are scoped to SOA governance [6,7]. These approaches hint to the centralization of
policy management, when policies pertain to different abstraction layers. None of the
solutions above separate between message-level and BPEL engine-level enforcement
capabilities. To our knowledge, our work is the first to suggest to combine important
SOA components on the stages of the enforcement life cycle.

7 Conclusion and Future Work

This paper introduces a new approach and model for ensuring policy enactment in en-
terprise applications. Our approach extends and combines BPEL and ESB capabilities
on the framework of a SOA policy model. It is an architecture by which BPEL en-
forcement can use ESB abilities for policy enforcement, and vice versa. This is done by
exposing these capabilities via enforcement interfaces and already implemented in the
prototype. For future work, we will add mechanisms to automatically react to policy
violations. For now, the decision making component decides whether to delegate the
enforcement actions to the ESB or the BPEL levels based on flags contained in the poli-
cies. We aim to investigate the extent to wich this process can be automated, along with
its granularity. Also, the ongoing work on our prototype will be extended with several
case studies to show what is the impact of our model on the business process execution.

302 G. Gheorghe et al.

Acknowledgement

The work published in this article has partially received funding from the European
Community’s 7th Framework Programme Information Society Technologies Objective
under the MASTER project5 contract no. FP7-216917.

References

1. Gheorghe, G., Neuhaus, S., Crispo, B.: xESB: An enterprise service bus for access and usage
control policy enforcement. In: Uehara, T. (ed.) IFIPTM 2010. LNCS, vol. 321, pp. 63–78.
Springer, Heidelberg (2010)

2. Goovaerts, T., De Win, B., Joosen, W.: Infrastructural support for enforcing and managing
distributed application-level policies. Electron. Notes Theor. Comput. Sci. 197(1), 31–43
(2008)

3. Khalaf, R., Karastoyanova, D., Leymann, F.: Pluggable framework for enabling the execu-
tion of extended bpel behavior. In: Di Nitto, E., Ripeanu, M. (eds.) ICSOC 2007. LNCS,
vol. 4907, pp. 376–387. Springer, Heidelberg (2009)

4. van Lessen, T., Leymann, F., Mietzner, R., Nitzsche, J., Schleicher, D.: A Management
Framework for WS-BPEL. In: Proceedings of the 6th IEEE European Conference on Web
Services 2008, pp. 187–196. IEEE Computer Society, Los Alamitos (November 2008)

5. Leune, K., van den Heuvel, W.J., Papazoglou, M.: Exploring a multi-faceted framework for
soc: how to develop secure web-service interactions? In: Proc. 14th Intl. Workshop on Re-
search Issues on Data Engineering, pp. 56–61 (March 2004)

6. Maierhofer, A., Dimitrakos, T., Titkov, L., Brossard, D.: Extendable and adaptive message-
level security enforcement framework. In: International conference on Networking and Ser-
vices, ICNS 2006, pp. 72–72 (2006)

7. Hafner, M., Mukhtiar Memon, R.B.: SeAAS - a reference architecture for security services
in SOA. Journal of Universal Computer Science 15(15), 2916–2936 (2009)

8. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adaptation for
ws-bpel. In: WWW, pp. 815–824 (2008)

9. Reichert, M., Dadam, P.: Adeptflex: Supporting dynamic changes of workflow without loos-
ing control. Journal of Intelligent Information Systems 10, 93–129 (1998)

10. Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-aware information systems.
T. Petri Nets and Other Models of Concurrency 2, 115–135 (2009)

11. Svirskas, A., Isachenkova, J., Molva, R.: Towards secure and trusted collaboration environ-
ment for european public sector. In: Collaborative Computing: Networking, Applications and
Worksharing. CollaborateCom 2007. International Conference on, pp. 49–56 (2007)

12. Trojer, T., Kwong Lee, C., Fung, B.C.M., Narupiyakul, L., Hung, P.C.K.: Privacy-aware
health information sharing. In: Privacy Aware Knowledge Discovery: Novel Applications
and New Techniques, Chapman and Hall/CRC Press, Boca Raton (2010)

13. Tsai, W.T., Zhou, X., Chen, Y.: Soa simulation and verification by event-driven policy en-
forcement. In: ANSS-41 2008: Proceedings of the 41st Annual Simulation Symposium (anss-
41 2008), pp. 165–172. IEEE Computer Society, Washington (2008)

14. United States Code: Sarbanes-Oxley Act of 2002, pl 107-204, 116 stat 745. Codified in
Sections 11, 15, 18, 28, and 29 USC (July 2002)

5 http://www.master-fp7.eu

http://www.master-fp7.eu

Fault Handling in the Web Service Stack

Oliver Kopp, Frank Leymann, and Daniel Wutke

Institute of Architecture of Application Systems, University of Stuttgart, Germany
Universitätsstraße 38, 70569 Stuttgart, Germany

lastname@iaas.uni-stuttgart.de

Abstract. The Web services platform architecture consists of different layers for
exchanging messages. There may be faults happening at each layer during the
message exchange. First, the paper presents current standards employed in the
different layers and shows their interrelation. Thereby, the focus is on the fault
handling strategies. Second, current service middleware is reviewed whether and
how it follows the fault handling strategies.

1 Introduction

The service-oriented architecture (SOA) is an architectural style for building (enter-
prise) applications whose building blocks are services. One incarnation of the tech-
nology stack required to build SOA applications are Web services [1]. Web services
are defined by a modular and composeable stack of standards ranging from low-level
communication protocols, over standardized formats for description of services and the
messages exchanged during a Web service interaction to high-level standards for defin-
ing potentially complex composite applications built from Web services. An important
aspect of said enterprise applications is robustness, i. e. applications must be able to
cope with faults occurring during run-time.

Although the issue of building robust applications has been addressed in numerous
publications (see Sect. 2 for an overview), these typically focus on one specific aspect
of fault handling. None of the work has regarded the different layers of the Web service
stack altogether. To understand the cause of a fault in the application, it is necessary to
understand how the lower levels work and when and how a fault in the lower levels is
propagated to the upper levels. Thus, this paper aims at providing an overview of fault
handling across all layers of the Web service stack used by an application with special
focus on the interplay of the different functions involved in the fault handling process.

To achieve this goal, the contribution of this paper is two-fold: First, we provide
an overview of the functionality required to build a service-oriented application and
how it maps to different layers in the application’s architecture. With this description,
we then identify the different fault types that may occur during run-time of such an
application and classify them according to the layer they occur on. As part of this de-
scription, we discuss different approaches to reacting to a fault both on the level of the
employed middleware (i. e. the Web service run-time implementation or the workflow
management system) and on the level of the composite application’s logic. Second, we
provide an overview of how fault handling has been implemented in one open-source
technology stack comprising the BPEL [2] orchestration engine Apache ODE, the Web

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 303–317, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

304 O. Kopp, F. Leymann, and D. Wutke

service runtime Apache Axis 2 and the WS-Reliable Messaging implementation Apache
Sandesha 2 and investigate how their implementation relates to identifies fault types.

The structure of the paper is as follows: First, we present an overview of existing
work on fault handling in Web service-based applications Sect. 2. An identification and
classification of different fault types according to the Web service platform layer they
occur on is provided in Sect. 3. The properties of each fault class are discussed in detail
on a conceptual level, relating them to existing Web service specifications where appro-
priate. During this discussion, special focus is placed on pointing out inter-dependencies
among faults on different layers. Section 4 complements the conceptual fault classifi-
cation presented in Sect. 3 by providing an analysis of the fault handling behavior of a
workflow management system and corresponding Web service runtime implementation
across all layers of the Web service technology stack. Finally, Sect. 5 concludes and
provides and outlook on future work.

2 Related Work

Current work on investigating the parts of or the entire Web services platform architec-
ture such as [1,3,4] regards the layers in isolation and does not provide an overview on
the interplay between these layers.

The Web Service Business Process Execution Language (BPEL [2]) is the de-facto
orchestration language for services. It provides concepts for fault and compensation
handling. The specification does not state how faults from lower levels of the stack are
propagated into the process.

There are several approaches enhancing BPEL engines by adding capabilities of the
fault handling. For instance, Jijia et al. [5] present an extension to the invocation handler
of the BPEL engine. It can be configured what action is taken in case a Web service
fails. Current actions are retry, substitute, ignore and terminate. The authors rely on the
infrastructure to propagate network faults to the extension. Modafferi et al. [6] propose
enhancements to the architecture of BPEL engines with a similar functionality. Guidi et
al. [7] regard synchronous invoke activities: they propose to wait for the reply message
regardless of faults in parallel branches in the process before executing the termination
handler. Ardissono et al. [8] shows how hypothesis about the cause of a fault can be
constructed and how this information can be used in business processes. Friedrich at
al. [9] follow a similar approach based on the WS-DIAMOND infrastructure [10]. A
summary of all related work in the context of fault handling in the case of Web services
is also presented in [9]. All these approaches do not regard the different layers of the
WS stack, whereas our work focuses on the interplay between these layers.

The work by Russell et al. [11] presents workflow exception patterns. These patterns
investigate the expressiveness of the workflow language and does not deal with the
interplay between the workflow layer and the layers below.

To verify the conformance of a BPEL process, the process is represented as a formal
system and then verified for properties given by a specification. Current formalizations
of BPEL do not take the Web services stack into account [12]. State of the art formal-
izations such as the Petri net formalization [13] assume asynchronous communication,
but do not regard faults in the layers below the interface layer. Lohmann [12] considers

Fault Handling in the Web Service Stack 305

lost messages and buffer overflows, but disregards the interplay of the layers in the Web
service stack.

A classification of faults with respect to workflows is given in [14, 15]. Here, work-
flow engine failures, activity failures (expected exceptions), communication failures and
unexpected exceptions are distinguished. Workflow engine failures denote failures of
the workflow engine itself. Activity failures are also called expected exceptions. They
denote that an activity did not complete successfully and hence a special handling is
needed. Communication failures are failures in the communication with the activity im-
plementation. This is the focus of this paper. Unexpected exceptions are exceptions on
the process definition level, where the structure of the modeled process cannot handle a
special case. Mourao et al. [16] show how unexpected exceptions can be supported by
special workflows involving humans.

A general taxonomy in the context of dependability is given by Avižienis et al. [17].
Faults in system components cause error states in the system, which manifest in failures.
To be in line with the Web service specifications, we use the word “fault” whenever the
specification also uses it, even if the word “failure” is more appropriate.

Looker et al. [18] analyze dependability of Web services by injecting faults in mes-
sages. They differentiate in physical faults, software faults, resource-management faults,
communication faults and life-cycle faults. Gorbenko et al. [19] distinguish between er-
rors in the “Network and service platform”, in the “Web service software” and in the
“Client software”. Both works, however, do not consider all layers of the Web service
stack as we do.

3 Fault Classification

The Web service platform architecture [1] categorizes the required middleware func-
tions for facilitating interactions among the services of an SOA-based application in
several layers. These layers are depicted Fig. 1 along with the Web service standards
that specify the layer’s functionality.

The component layer (Sect. 3.5) addresses the realization of an application’s business
logic which invokes the business functions the application is composed of, technologi-
cally rendered as Web services. One possible incarnation of a technology that is widely
used for service orchestration in an SOA environment is the Web Service Business Pro-
cess Execution Language (BPEL [2]), which hence is the focus of the discussion in the
remainder of this paper. Composite applications often require nontrivial quality of ser-
vice from the orchestrated services; typical examples of such nonfunctional component
or service characteristics is reliability of interactions, transactional behavior of a set
of services or security-related aspects, such as ensuring message integrity or message
confidentiality. These functions are provided by the quality of service (Sect. 3.4) layer.
Apart from nonfunctional properties, a (Web service) component is characterized by
a description (Sect. 3.5) of its functional interface in form of a WSDL document [20],
specifying the business functions supported by the service along with the message types
they consume and produce. Concrete ordering of consumed and sent messages may be
defined using BPEL. Requesting applications interact with service components by ex-
changing messages. Messages have a well-defined format that follows the SOAP spec-
ification; multiple messages may be interrelated to form potentially complex message

306 O. Kopp, F. Leymann, and D. Wutke

Components
Composite Atomic

BPEL WS C, …

U
DDI,M Quality

f S i
WS AT,
WS BA WS Security WS Reliable

M i

Composite Atomic

M
etadata

of Service

DescriptionWSDL WS Policy

WS BA y Messaging

Exchange MessagingSOAP, WS Adressing JMS, …e,…

TransportHTTP, SMTP, RMI/IIOP, JMS, …

CommunicationTCP/IP, …

Fig. 1. Layers in the Web Service Platform Architecture, adapted from [1]

exchange patterns using the mechanisms provided by WS-Addressing [21] on the mes-
saging layer (Sect. 3.3) such as means for identification of communicating entities and
messages as well as message correlation. SOAP messages can be transmitted between
components using different network transport protocols, depending on the requester’s
requirements, these are reflected by the transport layer (Sect. 3.2). The functions pro-
vided by the communication layer (Sect. 3.1) focus on the transmission of “raw data”
among communication partners, potentially crossing the boundaries of one physical ma-
chine. Typically this functionality is provided by network transport protocols such as
the Transmission Control Procotol (TCP) or the User Datagram Protocol (UDP), with
themselves rely on lower level protocols such as the Internet Protocol (IP) for data trans-
mission. In case the partners participating in the interaction reside on the same physical
machine, machine-local data transmission mechanisms, such as shared memory, can
be used on the communication layer (e. g. invoking a Web service implemented as an
Enterprise Java Bean on the same machine). As Web services are defined as software
systems that interact “over a network” [22] we focus on networked interactions in the
remainder of this paper.

In the subsequent sections we discuss the fault handling behavior employed on each
of the aforementioned layers in detail by describing a message flow between a service
requester and service provider along with the faults that can occur on each layer and their
respective fault handling strategies. For the following discussion we chose one concrete
technology for the implementation of each layer: The application on the component layer
is implemented using BPEL. Messages are exchanged reliably using WS-Reliable Mes-
saging [23], encoded using SOAP and transported using HTTP over TCP/IP. Variants
of these setting are briefly discussed in the respective sections. Figure 2 illustrates this
setting. Each arc in the figure identifies a certain step in the overall message flow. Dur-
ing execution of the depicted interaction, messages are passed between the components
implementing the individual layers of the application; message flow is thereby restricted

Fault Handling in the Web Service Stack 307

Components (BPEL)
AA

Quality of Service (WS RM)

AA
QQ

BB
PP

II

JJ
HH

Messaging (SOAP)
PP

CC
OO

HH

KK
GG

Transport (HTTP)

EE
DD

NN
LL

FF

Receiving
Appli ation

Sending
Appli ation

Communication (TCP/IP) EE
MM

Default flow

E ti flApplicationApplication Exception flow

Fig. 2. Message Passing Through the Layers

to adjacent layers. In case a fault occurs it can be (i) either handled within the layer it
occurred on or (ii) it can be propagated to a higher layer, which can then again decide
to either handle the fault or propagate it to the next higher level. As the functionality
provided by the description layer is not invoked during runtime of the depicted message
exchange but during application build-time, this layer has been omitted from Fig. 2.

Note that faults occurring in the runtime environment, such as a component running
out of memory during execution, errors due to bad memory and hard disk or system
crashes are out of scope and hence not explicitly addressed in the discussion in the
remainder of this paper. The same holds for faults resulting from erroneous implemen-
tation, i. e. implementations not conforming to their specification. Note that an imple-
mentation error may manifest in a fault in an arbitrary layer. Hence, such faults are out
of scope of this paper and we focus on the specified behavior.

In the following sections we classify the faults according to the layers in the Web
service stack. The individual layers are explained bottom-up from the communication
layer to the component layer along with their respective fault types.

3.1 Communication Layer Faults

Generally, we subsume all protocols and mechanisms of the OSI Layered Network
Model [24] below layer 7, i. e. the OSI application layer, as providing a platform for
communicating data among the participants of an interaction and hence refer to them
collectively as the communication layer of an SOA-based application.

The faults that may occur on this layer (triggered by a message flowing along arc
D in Fig. 2) on the side of the sending application include connectivity faults where
a sender cannot establish a connection with a receiver (arc E) or data integrity faults
where the data exchanged between them is corrupted (arc E or arc M).

Examples for connectivity faults in applications are (i) problems in name resolution,
i. e. a host name cannot be resolved to an IP address through DNS [25], (ii) problems
during message routing from sender to receiver, i. e. host or network unreachable or

308 O. Kopp, F. Leymann, and D. Wutke

(iii) unavailability of a network endpoint, i. e. connection refused, due to the service
provider not being ready to process incoming data. An example for a data integrity fault
is loss of packets exchanged as part of an interaction.

Connectivity faults are typically not handled directly on the communication layer
(e. g. by retrying a failed connection attempt at a later point in time) but are instead
propagated up in the layered application architecture on the side of the sending appli-
cation (arc N). If it is desired that these faults should be handled before reaching the
requesting application’s component layer, fault handling must be carried out on the
quality of service layer as described in Sect. 3.4.

As data integrity faults may occur quite frequently—especially when using unre-
liable transports—some communication layer protocols, such as TCP, employ corre-
sponding fault handling mechanisms directly on the communication layer, such as a
retransmit of lost packets.

3.2 Transport Layer Faults

When a message is passed from the messaging layer down to the transport layer (arc C
in Fig. 2) as part of the execution of the Web service runtime’s binding implementation,
the sending application encodes the message to be sent in a representation that can be
conveyed using the chosen transport mechanism. In terms of the OSI layered model, this
transport mechanism resides on layer seven, i. e. the application layer. Once the message
has been encoded, the sending application uses the communication primitives provided
by the chosen transport protocol to transmit the message to the receiving application—
i. e. the component to be invoked—and potentially consumes response messages that
may be sent by the service.

Each network transport protocol used on the transport layer may employ its own
mechanisms for identifying and creating transport layer faults. In case of the Hyper-
text Transfer Protocol (HTTP) [26], transport layer faults are identified by an HTTP
error code (e. g. “403 Forbidden” in case a requester is not allowed to access a certain
resource exposed using HTTP). Note that—in contrast to communication layer faults—
these faults do not occur on the side of the sending application, but at the receiving
application and are then propagated back to the sender along the arcs L, M and N in
Fig. 2. This is even the case for client-side error codes (4xx) indicating that the client
made a wrong request (from the view of the server). Note that the communication along
these arcs is a normal communication taking place in the established http connection.
For the communication layer, the HTTP error is not an error. Communication layer
faults propagated to the transport layer and transport layer faults are propagated to the
next higher level (arc O in Fig. 2), i. e. the messaging layer.

3.3 Messaging Layer Faults

The messaging layer comprises the functionality of encoding messages coming through
the quality of service layer from an application (along arc B in Fig. 2), processing the
message according to the SOAP processing model [27], adding addressing information
about the message’s destination in form of corresponding WS-Addressing headers [21]
and passing it on to the transport layer through the Web service runtime’s binding im-
plementation (arc C).

Fault Handling in the Web Service Stack 309

According to the SOAP specification, the following messaging layer fault types are
distinguished: (i) a VersionMismatch fault identifies a fault due to an incompatible mes-
sage format version; (ii) a MustUnderstand fault is generated when a receiver cannot
process a mandatory SOAP header block; (iii) a DataEncodingUnknown is generated
when a SOAP message uses an encoding that is not supported by a receiving SOAP
node; (iv) a generic Sender fault represents invalid or missing message content as gen-
erated by the sending application and (v) a Receiver fault represents a fault that occurred
due to (potentially transient) problems on the side of the receiving applications. In case
of the latter fault type, resending the same SOAP envelope at a later point in time may
result in successful server-side message processing. Similar to transport layer faults,
these faults occur on the side of the receiving application and are propagated to the
sender along the arcs K, L, M, N, O and P.

The mapping between messaging layer SOAP faults and transport layer fault status
codes is defined as part of the specification of a Web service binding. In case of the
SOAP/HTTP binding [28] all SOAP faults except Sender faults map to HTTP status
code 500, which indicates a server-side processing error [26]. Sender faults map to a
HTTP status code 400, which indicates a client-side error resulting in an invalid request
message.

The SOAP processing model includes the definition of a routing concept from an ini-
tial sender over intermediary nodes to an ultimate receiver. This concept is one possible
implementation of the enterprise integration patterns by Hohpe and Wolf [29]. Concrete
examples are services for message encryption and message logging [30]. Messages may
also be transmitted over different transports before reaching the ultimate receiver. For
instance, SOAP/JMS may be used from the initial sender to the encryption service, the
encryption service sends the encrypted message using SOAP/JMS to a messaging gate-
way. Finally, the messaging gateway uses SOAP/HTTP as the ultimate receiver only
supports the SOAP/HTTP binding. As a consequence, a fault raised by an intermedi-
ary or the ultimate receiver may not just be propagated to the proceeding node which
established a connection using a specific transport, but has to be routed to the initial
sender. For that purpose, the WS-Addressing headers ReplyTo and FaultTo are de-
fined. ReplyTo defines the endpoint reference, where the reply message should be di-
rected. FaultTo is used to specify a different SOAP node to direct the fault to. In other
words, the latter header is especially useful in multi-hop interactions, where a SOAP
message is routed through several intermediaries, when only the original sender of the
message should be notified about processing errors on any of the SOAP processing
nodes along the message path.

Faults that may occur during message creation and processing on the side of the send-
ing application are not rendered as SOAP faults but instead propagated to the component
layer using the error handling mechanisms of the Web service runtime’s implementation,
e. g. Java exceptions when the runtime is implemented in the Java programming language.
Note that this is not required by the SOAP specification, but typically implemented.

3.4 Quality of Service Layer Faults

The quality of service layer adds nonfunctional capabilities to Web services.
These include support for transactions, security and reliable transfer of messages.

310 O. Kopp, F. Leymann, and D. Wutke

Transactions are implemented using the WS-Coordination framework, which in turn
offers WS-AtomicTransactions (WS-AT) for interoperable two-phase commits and
WS-BusinessActivity (WS-BA) for long-running compensation-based transactions [31].
WS-Security ensures message integrity and confidentiality [32]. In this paper, we fo-
cus on WS-ReliableMessaging (WS-RM) which enables reliable end-to-end messaging.
That means even if SOAP intermediaries with different transports inbetween are used
(see Sect. 3.3 for an example), the communication from the initial sender to the ulti-
mate receiver is reliable. In case no component of the quality of service layer is used,
messages from the component are directly passed to the messaging layer and messages
from the messaging layer are directly passed to the component.

By using WS-RM, faults propagated from the messaging layer (arc P) are handled
by the WS-RM component. WS-RM offers the configuration options AtLeastOnce, At-
MostOnce, ExcactlyOnce and InOrder. WS-RM places messages in sequences. Each
message takes a running number enabling in order delivery. Ranges of received mes-
sages are acknowledged by the receiver, which enables at least once and exactly once
delivery. At most once delivery does not require acknowledgments as no delivery con-
forms to at most once. WS-RM defines faults which are propagated to the component
layer. These faults indicate faults at the WS-RM processing itself, such as notifying
that an endpoint is not WS-RM aware, an invalid acknowledgment is received or that
the maximum value for numbering messages has been reached. They may be generated
by the sending and the receiving quality of service layer. A sequence takes an expiry
time. In case a sequence is not completed until the expiry, the sequence is terminated
and a SequenceTerminated fault is raised through arc Q. The receiver may either
discard the entire sequence, discard all messages following the first gap or discard noth-
ing. A permanent fault at the client side (e. g. “403 Forbidden”) is also propagated as
SequenceTerminated fault to the sender application. A WS-RM implementation is not
required to wait until the expiry is met and may propagate this fault earlier.

3.5 Component Layer Faults

Faults that may occur on the component layer, i. e. the layer on which an application’s
business logic resides, differ substantially from the fault types of the lower layers de-
scribed so far.

As the latter are—under the given assumption of absence of erroneous implemen-
tations presented in Sect. 3—often transient errors that may be handled by retrying a
message exchange after its failure, component layer faults are typically permanent in
nature and an indication of an error in the application logic of a component that has tech-
nically been invoked successfully (by transmitting a request message along the arcs A
to I and propagating the application fault by sending a new message). Component layer
faults can be made more tangible by classifying them into two groups: faults reflected
in the component’s interface description or in the component’s implementation.

Component Interface Description: WSDL. Component interface faults refer to faults
which are specified as part of the functional component contract, i. e. the component’s
WSDL description (Fig. 1). These faults reflect an error situation in the application logic
of a component and are hence—in contrast to the layers below the component layer—
expected during application design time.

Fault Handling in the Web Service Stack 311

An example for a component interface fault is a calculator component, whose divide
method signature defines a separate fault in addition to a request and a result message
for notifying a requester when e. g. a division by zero or a range overflow occurs. Using
this method, the requesting application gets notified about the component layer fault
“out of band” of the regular response and can hence clearly identify the error situation
and handle it accordingly.

In WSDL, component layer faults are specified through the fault-element of a
WSDL-operation in WSDL 1.1 [20] or an interface in WSDL 2.0 [33] and typed
using WSDL 2.0’s typing mechanism. Whether a fault can be specified as part of the
interface description of a component’s operation is dependent on its operation type in
WSDL 1.1 or its message exchange pattern in WSDL 2.0, respectively. In case an opera-
tion follows a one-way/in-only message exchange pattern, no faults may be propagated
back to the sending application due to the “fire and forget” nature of the interaction.
In the WSDL 2.0 specification this is referred to as no faults propagation rule. If this
behavior is undesired, other message exchange patterns (e. g. request-response/in-out)
should be chosen for the respective operation. In addition to these patterns, where a
component is required to send a response even in case no fault occurs, WSDL 2.0 de-
fines the robust-in-only message exchange pattern in which a fault may be propagated to
the requesting application. The WSDL specification, however, lacks a clear description
how requesting applications are supposed to handle these optional faults on a technical
level, e. g. how long to wait for a fault for a particular component invocation until it is
assumed that the invocation was successful. Thus, this pattern is underspecified [34].

Component Implementation: BPEL. A component interface fault is created during
the execution of the implementation of a component’s application logic. As not all faults
that may occur during execution of a component should become visible outside the
component itself, component implementation faults can be—similar to the other fault
types—be either handled or propagated. Propagation of component layer faults typically
result in involving a human in the fault handling process.

For component layer-internal fault handling, BPEL defines the concept of fault han-
dlers which can be attached to either scope or invoke activities in which process
modelers may specify application logic to be executed when a fault occurs. A fault can
be created either explicitly as part of the process model through the throw activity, or
can be raised implicitly during execution of e. g. an invoke interaction which results in
a fault declared as part of a component’s interface (cf. Sect. 3.5).

Although the BPEL specification defines how to react to interface layer faults, no ex-
plicit provisions are made how to treat faults that occur on layers below the component
layer during the process of sending an invocation request to a component (i. e. when
executing arcs A to E). Hence, implementations differ in their behavior with regard
to handling such faults. A common way to treat transient transport layer faults, which
is e. g. used in Apache ODE1, is distinguishing business faults and technical failures.
Whereas business faults are propagated into the process for “regular” fault handling
through the processes fault handlers, failures result in suspending process instance ex-
ecution and notification of an administrator who—after resolving the problem—may

1 http://ode.apache.org

http://ode.apache.org

312 O. Kopp, F. Leymann, and D. Wutke

resume process instance execution. Another approach to handling lower layer faults is
to propagate such faults to the process in form of custom typed BPEL faults which
may then be handled using BPEL’s fault handling mechanisms. The approach is ap-
plied in ActiveBPEL2. Apache ODE may be configured to this behavior by using the
faultOnFailure attribute.

4 Implemented Fault Propagation

Components (BPEL) ODE

QoS (WS RM)

A i

Sandesha

Messaging (SOAP)
Axis

Transport (HTTP) HTTP
Components

Application

Communication (TCP/IP) java.io

pp

Fig. 3. Layer Implementations

This section presents a concrete way to
implement the presented exception han-
dling strategies. We use Apache ODE 1.3.8,
Apache Sandesha23 and Apache Axis2 1.3.14

to illustrate the implementation concepts.
These implementations are put to relation to
the layers of the Web service stack (Fig. 1) in
Fig. 4: Being a BPEL engine, Apache ODE
implements a component. Apache ODE calls
Axis which implements the messaging and
the transport layer. Sandesha is a plugin for
Axis implementing WS-RM, which we focus
on. Axis uses HTTP components to imple-
ment the transport layer which in turn uses java.io from the Java runtime as imple-
mentation for the runtime layer.

4.1 Apache ODE

Apache ODE (ODE for short) is a BPEL engine developed by the Apache Software
foundation. After a process is instantiated, a BpelRuntimeContext is available. In
case of an invoke activity, its invoke method is called to invoke a service. This call
reaches the SoapExternalService class. Depending on the type of the invoke, a
OutOnlyAxisOperationClient or an OutInAxisOperationClient (cf. Sect. 4.2)
is created. In the case of a one-way invoke, an exception raised by the OutOnlyAxis-
OperationClient is logged without propagating into the process. In case of a two-way
invoke, an exception raised by the OutInAxisOperationClient the exception is put
as failure in a PartnerRoleMessageExchange object odeMex. If a SOAP fault is re-
ceived as reply, this fault is put as fault in odeMex. Otherwise, the reply message is put
there. An exception on the handling of the reply message is rendered as fault. Received
faults and locally generated faults and failures are propagated to the parent activity by
calling the completed or failuremethod. The ACTIVITYGUARD class implements the
failure method. Here, the faultOnFailure property is checked and the failure either
converted to a fault or an administrator involved. Faults are propagated up the activ-
ity hierarchy (using the completed method) until a scope is reached. Here, a failure

2 http://www.activebpel.org
3 http://ws.apache.org/sandesha/sandesha2/
4 http://ws.apache.org/axis2

http://www.activebpel.org
http://ws.apache.org/sandesha/sandesha2/
http://ws.apache.org/axis2

Fault Handling in the Web Service Stack 313

Handler Handler

Sending
Application

Client
API

Service
API

SOAP/xSOAP/x

SOAP/xSOAP/x

Receiving
Application

Transport
Sender

Transport
Listener

Transport specific implementationTransport specific implementation

Fig. 4. Axis 2 Architecture

is converted to a fault and the completed method is called. Subsequently, the usual
BPEL fault handling runs as described in the BPEL specification [2,35,36]. In short, all
activities in the scope the activity belongs to are terminated and a fault handler of the
scope is called. Here, completed activities of the scope may be compensated by calling
compensation activities. A fault may be re-thrown to the parent scope, where the same
handling starts.

4.2 Apache Axis2

Apache Axis 2 (Axis for short) is a Web service runtime that supports different Web
service specifications and transport protocols. In Fig. 4, a high-level overview of Axis’
architecture5 is depicted.

Axis supports two different service invocation styles: client may (i) either use
build-time tools to generate a client-side proxy object based on the service’s WSDL
description which wraps the interaction with the service provider or (ii) use Axis’
ServiceClient API to dynamically construct the service invocation request at run-
time. For this purpose, the API exposes several methods for SOAP message generation
(e. g. addHeader, setTargetEPR) and sending (e. g. fireAndForget, sendReceive,
sendReceiveNonBlocking, sendRobust). These methods can be used to implement
different message exchange patterns such as in-only in case of fireAndForget or
synchronous or asynchronous in-out in case of sendReceive and sendReceiveNon-
Blocking, respectively.

The following description of the internal actions carried out by the Axis run-
time during execution of a Web service interaction assumes that a client uses the
ServiceClientAPI directly. As generated proxy objects rely on the ServiceClient
API internally as well, there is no difference in fault handling behavior on the
layers below the component layer when using either service invocation style. The in-
vocation styles, however, differ with regard to their component layer fault handling
behavior. Whereas the proxy objects generated during build-time render interface faults
as typed faults in the client’s programming language (e. g. an exception in Java), the
ServiceClient API propagates them to the component layer in form of a generic
AxisFault.

5 Adapted from http://ws.apache.org/axis2/1_4_1/userguide.html

http://ws.apache.org/axis2/1_4_1/userguide.html

314 O. Kopp, F. Leymann, and D. Wutke

Once a client application has called an operation of the ServiceClient object, a
OperationClient object is created that corresponds to the message exchange pattern
implemented by the invoked ServiceClient method. In case the fireAndForget
method of theServiceClient is invoked, which implements an in-only WSDL message
exchange pattern, a OutOnlyAxisOperationClient object is created, which further-
more contains the client-defined SOAP envelope and determines the transport protocol
to be used to invoke the service based on the client-defined service endpoint address in
form of a TransportOutDescriptionObject.

After creation of the request message, it is passed into the AxisEngine in form of a
MessageContextobject. The engine subsequently passes the message context object to
several configurable handler objects (cf. Fig. 4) which may perform additional process-
ing steps before the message is passed to the implementation of the TransportSender
interface corresponding to the transport protocol that should be used for the respective
interaction. The TransportSender implementation for using a HTTP transport is the
CommonsHTTPTransportSender. Additional processing steps include WS-Security
and WS-RM steps. In the case of WS-RM, the SandeshaOutHandler is used. Here,
the WS-RM data are created or fetched from an internal storage (e. g. sequence num-
ber) and added to the message6. The message is put to a SenderBeanManager, where
messages to send are persistently stored to have them available for a retransmit. The
transport sender serializes the message payload in the MessageContext and sends it
to the receiver using the CommonsHTTPClient sendViaPost method. The message
transmission is carried out using the Apache HttpComponents Client7.

Any exceptions occurring during message creation and processing within Axis (in-
cluding the WS-RM phase) at the side of the message sender as described before result
in the creation of an AxisFault which is propagated back to the calling client applica-
tion. The reason of the fault (e. g. a MailformedURLException in case of an invalid
URL in the defined endpoint address or an IOException in case of an unavailable re-
ceiver) is embedded in the generated AxisFault which allows clients to individually
handle different fault types.

On the server-side Axis implementation, the request is received either through the
AxisServlet or a stand-alone HTTPTransportReceiver. The SOAP request mes-
sage is extracted from the incoming HTTP request and stored into a MessageContext
object which is then passed through the handlers of the server-side Axis runtime (see
Fig. 4) to the service’s application logic. Any fault occurring on the way up to the com-
ponent layer is rendered as a SOAP fault with its fault code chosen according to the
description in Sect. 3.3. The WS-RM part checks if the message is a WS-RM message
or if there are WS-RM headers present and executes the respective logic. For instance, in
the case of the SequenceAcknowledgement header, acknowledged message numbers
are compared with the numbers of the sent messages. In case a message is acknowl-
edged, it is removed from the SenderBeanManager. The unacknowledged messages
are sent using the SandeshaThread, which in turn periodically queries the sender bean
manager.

6 Details on the internal processing by Sandesha2 is provided by
http://ws.apache.org/sandesha/sandesha2/architectureGuide.html

7 http://hc.apache.org/

http://ws.apache.org/sandesha/sandesha2/architectureGuide.html
http://hc.apache.org/

Fault Handling in the Web Service Stack 315

After message transmission, the client-side transport sender interprets the status of
the message submission based on the received HTTP status code (cf. mapping between
SOAP faults and HTTP status codes in Sect. 3.2). In case the receiving side signals
an HTTP code of 2xx, the message transmission is considered successful and the
payload of the response message (which e. g. in case of an in-out message exchange
pattern contains the result of the service invocation) is extracted and stored into a
MessageContext object. In case an HTTP status code of 4xx (client error) or 5xx
(server error) is received, the response message is checked for the presence of a SOAP
fault which is extracted and stored into a MessageContext object similar to the re-
sponse case.

Whether the response or fault is propagated back to the calling application through
Axis’ handlers is dependent on the concrete message exchange pattern of the executed op-
eration. If the call is an in-only operation, the response and error messages are discarded
and not processed further by Axis. If the call on the other hand is a in-out operation (re-
alized by an OutInAxisOperationClient), either the created message context object
is passed back to the sending client application through Axis’ handlers or an exception
corresponding to the occurred fault is thrown and propagated back, either directly in
case of a blocking invocation of sendReceive or by invoking a client-provided call-
back in case of sendReceiveNonBlocking. Processing the response status codes even
in case of a fireAndForget invocation allows for developing implementations of the
TransportSender interface, which are independent of any concrete message exchange
patterns.

Alternative binding implementations, such as the MailTransport, which are real-
ized as further implementations of the TransportSender interface, generally follow
the same approach to identifying, wrapping and propagating faults back to the calling
client application.

5 Conclusions and Future Work

This paper provided an overview on the fault handling on all layers in the Web service
stack. Special emphasis was put on the analysis of the interplay between the different
layers. We showed that current related work in the field does not holistically regard the
communication between different services. This paper helps to foster the awareness of
the different layers of the Web service stack and enables a more detailed analysis of
impacts of new solutions to the Web service stack.

Not all specifications cover fault handling completely. The fault-handling-
mechanisms defined e. g. as part of the BPEL specification alone are not sufficient to
enable a robust behavior of a business process in all cases: BPEL engine implementa-
tions differ e. g. in the way how they handle a fault occurring on the communication
layer. Vendors include custom extensions; e. g. ODE suspends a process and allows an
administrator to decide how to handle the situation. Thus, guidelines are needed to en-
able developing applications which are reaching a consistent state even in the case of a
failure during the execution.

Currently, faults are handled by a component in each layer. In our future work, we
plan to use BPEL to coordinate fault handling in the quality of service layer and below
by extending the work presented in [30].

316 O. Kopp, F. Leymann, and D. Wutke

In this work, we discussed the implementations of Apache ODE and Apache Axis
only. Future work has to investigate the behavior of other WS runtimes such as the
Active BPEL engine and Apache CXF.

Current formalizations of BPEL and other process calculi currently do not capture
the behavior of the Web service stack. Thus, our future work is to use our findings to
include the behavior of the middleware in verification of processes.

References

1. Curbera, F., Leymann, F., Storey, T., Ferguson, D., Weerawarana, S.: Web Services Platform
Architecture: SOAP, WSDL, WS Policy, WS Addressing, WS BPEL, WS-Reliable Messag-
ing and More. Prentice Hall PTR, Englewood Cliffs (2005)

2. OASIS: Web Services Business Process Execution Language Version 2.0 – OASIS Standard
(2007)

3. Papazoglou, M.P.: Web Services: Principles and Technology. Prentice-Hall, Englewood
Cliffs (2007)

4. Coulouris, G., Dollimore, J., Kindberg, T.: Distributed Systems: Concepts and Design. In:
Distributed Systems: Concepts and Design, 4th edn. (2005)

5. Jiajia, W., Junliang, C., Yong, P., Meng, X.: A Multi-Policy Exception Handling System for
BPEL Processes. In: First International Conference on Communications and Networking in,
China (2006)

6. Modafferi, S., Mussi, E., Pernici, B.: SH-BPEL: a Self-Healing Plug-In for WS-BPEL En-
gines. In: 1st Workshop on Middleware for Service Oriented Computing, ACM, New York
(2006)

7. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: On the Interplay Between Fault Handling
and Request-Response Service Invocations. In: 8th International Conference on Application
of Concurrency to System Design ACSD (2008)

8. Ardissono, L., Furnari, R., Goy, A., Petrone, G., Segnan, M.: Fault tolerant web service
orchestration by means of diagnosis. In: Gruhn, V., Oquendo, F. (eds.) EWSA 2006. LNCS,
vol. 4344, pp. 2–16. Springer, Heidelberg (2006)

9. Friedrich, G., Fugini, M., Mussi, E., Pernici, B., Tagni, G.: Exception Handling for Repair
in Service-Based Processes. IEEE Transactions on Software Engineering 99(2), 198–215
(2010)

10. Console, L., et al.: WS-DIAMOND: Web Services-DIAgnosability, MONitoring, and Diag-
nosis. In: At Your Service: Service-Oriented Computing from an EU Perspective, pp. 213–
239. MIT Press, Cambridge (June 2009)

11. Russell, N., van der Aalst, W., ter Hofstede, A.: Workflow Exception Patterns. In: Ad-
vanced Information Systems Engineering. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS,
vol. 4001, pp. 288–302. Springer, Heidelberg (2006)

12. Lohmann, N.: Communication models for services. In: 2nd Central-European Workshop on
Services and their Composition (ZEUS 2010), vol. 563, CEUR (2010)

13. Lohmann, N.: A Feature-Complete Petri Net Semantics for WS-BPEL 2.0. In: Dumas, M.,
Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 77–91. Springer, Heidelberg (2008)

14. Eder, J., Liebhart, W.: The Workflow Activity Model WAMO. In: Conference on Cooperative
Information Systems (CoopIs), pp. 87–98 (1995)

15. Eder, J., Liebhart, W.: Workflow Recovery. In: COOPIS 1996: First International Conference
on Cooperative Information Systems, IEEE Computer Society, Los Alamitos (1996)

16. Mourao, H., Antunes, P.: Supporting Effective Unexpected Exceptions Handling in Workflow
Management Systems. In: SAC 2007, pp. 1242–1249. ACM, New York (2007)

Fault Handling in the Web Service Stack 317

17. Avižienis, A., Randell, B., Landwehr, C.: Basic Concepts and Taxonomy of Dependable and
Secure Computing. IEEE Transactions on Dependable and Secure Computing 1(1), 11–33
(2004)

18. Looker, N., Munro, M., Xu, J.: Simulating errors in web services. International Journal of
Simulation Systems 5(5), 29–37 (2004)

19. Gorbenko, A., Romanovsky, A., Kharchenko, V., Mikhaylichenko, A.: Experimenting with
Exception Propagation Mechanisms in Service-Oriented Architecture. In: WEH 2008: 4th

International Workshop on Exception Handling, ACM, New York (2008)
20. Christensen, E., Crubera, F., Meredith, G., Weerawarana, S.: Web Services Description Lan-

guage (WSDL) 1.1. W3C Note (2001), http://www.w3.org/TR/wsdl
21. Gudgin, M., Hadley, M., Rogers, T.: Web Services Addressing 1.0 – Core. W3C Recommen-

dation (2006), http://www.w3.org/TR/ws-addr-core/
22. Haas, H., Booth, D., Newcomer, E., Champion, M., Orchard, D., Ferris, C., McCabe, F.: Web

Services Architecture. W3C Working Group Note (2004),
http://www.w3.org/TR/ws-arch/

23. OASIS: Web Services Reliable Messaging (WS-ReliableMessaging) Version 1.2. (2009)
24. ISO 7498-1:1994: Information technology – Open Systems Interconnection – Basic Refer-

ence Model: The Basic Model. ISO, Geneva, Switzerland
25. Mockapetris, P.V.: Domain Names - Implementation and Specification. RFC 1035 (1987)
26. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.: Hy-

pertext Transfer Protocol – HTTP/1.1. RFC 2616 (1999)
27. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.J., Nielsen, H.F., Karmarkar, A.,

Lafon, Y.: SOAP Version 1.2 Part 1: Messaging Framework. W3C Recommendation (2007),
http://www.w3.org/TR/soap12-part1/

28. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.J., Nielsen, H.F., Karmarkar,
A., Lafon, Y.: SOAP Version 1.2 Part 2: Adjuncts. W3C Recommendation (2007),
http://www.w3.org/TR/soap12-part2/

29. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions. Addison-Wesley Professional, Reading (2003)

30. Scheibler, T., Karastoyanova, D., Leymann, F.: Dynamic Message Routing Using Processes.
In: KiVS 2009, Springer, Heidelberg (March 2009)

31. OASIS: OASIS Web Services Transaction (WS-TX) TC (2009),
http://www.oasis-open.org/committees/ws-tx/

32. OASIS: Web Services Security: SOAP Message Security 1.1 (2006),
http://docs.oasis-open.org/wss/v1.1/

33. Chinnici, R., Gudgin, M., Moreau, J.J., Schlimmer, J., Weerawarana, S.: Web Services De-
scription Language (WSDL) Version 2.0 Part 1: Core Language. W3C Recommendation
(2004), http://www.w3.org/TR/wsdl20/

34. Nitzsche, J., van Lessen, T., Leymann, F.: WSDL 2.0 Message Exchange Patterns: Limita-
tions and Opportunities. In: 3rd International Conference on Internet and Web Applications
and Services (ICIW), IEEE Computer Society, Los Alamitos (June 2008)

35. Curbera, F., Khalaf, R., Leymann, F., Weerawarana, S.: Exception Handling in the BPEL4WS
Language. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003.
LNCS, vol. 2678, pp. 276–290. Springer, Heidelberg (2003)

36. Khalaf, R., Roller, D., Leymann, F.: Revisiting the Behavior of Fault and Compensation
Handlers in WS-BPEL. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2009. LNCS,
vol. 5870, pp. 286–303. Springer, Heidelberg (2009)

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part2/
http://www.oasis-open.org/committees/ws-tx/
http://docs.oasis-open.org/wss/v1.1/
http://www.w3.org/TR/wsdl20/

Conjunctive Artifact-Centric Services

Piero Cangialosi, Giuseppe De Giacomo, Riccardo De Masellis, and Riccardo Rosati

Dipartimento di Informatica e Sistemistica “Antonio Ruberti”
SAPIENZA – Università di Roma
Via Ariosto, 25, 00185 Rome, Italy
lastname@dis.uniroma1.it

Abstract. Artifact-centric services are stateful service descriptions centered
around “business artifacts”, which contain both a data schema holding all the
data of interest for the service, and a lifecycle schema, which specifies the pro-
cess that the service enacts. In this paper, the data schemas are full-fledged rela-
tional databases, and the lifecycle schemas are specified as sets of condition-action
rules, where conditions are evaluated against the current snapshot of the artifact,
and where actions are suitable updates to database. The main characteristic of this
work is that conditions and actions are based on conjunctive queries. In particular,
we exploit recent results in data exchange to specify through tuple-generating-
dependencies (tgds) the effects of actions. Using such basis we develop sound
and complete verification procedures, which, in spite of the fact that the num-
ber of states of an artifact-centric service can be infinite, reduce to the finite case
through a suitable use of homomorphism induced by the conjunctive queries.

1 Introduction

In the past years, what can be called the artifact-centric approach to modeling workflows
and services has emerged, with the fundamental characteristic of considering both data
and processes as first-class citizens in service design and analysis [21,17,11], see also
[27,1]. In this approach the key elements of services are (i) data manipulated, which
correspond to key business-relevant entities, (ii) the service lifecycle (i.e., the process
that the service follows), and (iii) the tasks invoked and executed. Executing a task has
effects on the data managed by the service, on the service state, as well as on the in-
formation exchanged with the external world. This “artifact-centric” approach provides
a simple and robust structure for workflow and services, and has been demonstrated in
practice to permit efficiency in business transformation [5,6]. From the formal point of
view, artifact-centric services deeply challenge the research community by requiring si-
multaneous attention to both data and processes. Indeed, on the one hand they deal with
full-fledged processes and require analysis in terms of verification of sophisticated tem-
poral properties [10]. On the other hand, the presence of data [2] makes the usual analysis
based on model checking of finite-state systems impossible in general, since when data
evolution is taken into account the whole system becomes infinite state. In this paper,
we provide a formal model for a family of artifact-centric services, based on the notion
of conjunctive queries, used both to define preconditions and effects of tasks. In this
setting we take advantage of the recent literature on data exchange and data integration

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 318–333, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Conjunctive Artifact-Centric Services 319

[15,18], which has deeply investigated mapping between databases based on correspon-
dences between conjunctive queries, the so call tuple-generating dependencies (tgds) in
the database jargon [2]. In a nutshell, the core idea of our work is to consider the current
state of the data and their state after the performance of a task as two databases related
through a set of tgds. More precisely, our model follows the spirit of [5,16], but with im-
portant generalizations. The artifact “data schema” is a full-fledged relational database,
which is used to hold relevant information about the artifact as it passes through the
workflow. The “lifecycle schema”, which is used to specify the possible ways that the
artifact can pass through the workflow, is specified as a set of condition-action rules,
where the condition is evaluated against the current snapshot of the artifact (i.e., the cur-
rent state of the database), and where the actions are “tasks” invocations, which query
the current snapshot and generate the next snapshot possibly introducing existential val-
ues representing inputs from the outside world. Similar to the context of semantic web
services [24], the behaviors of the tasks used here are characterized using pre- and post-
conditions. The key point, however, is that both pre-conditions and post-conditions are
expressed as conjunctive queries. On top of such a system we introduce a powerful verifi-
cation logic based on a variant of μ-calculus [19,22,13,7] to express temporal properties.
Our verification logic is also based on conjunctive queries, in that it requires the atomic
formulas to be conjunctive queries and disallows forms of negation of such queries. No
limitations whatsoever are instead put on the fixpoint formulas that are the key element
of the μ-calculus. The main result of the paper is showing that the resulting formalism,
while quite expressive, and inherently infinite state, is decidable under a reasonable re-
striction, called weak-acyclicity [15], on the form of the tgds expressing the effects of
actions. In particular we develop a sound, complete and terminating reasoning proce-
dure for the verification formalism. The crux of the result is that conjunctive queries are
unable to distinguish homomorphic equivalent databases, and under suitable but quite
general circumstances, the number of homomorphically different states can be bounded
to be finite. Thus we can reduce verification to model checking of a finite state abstrac-
tion (based on homomorphic equivalence) of the system.

2 Framework

The framework that we propose, called conjunctive artifact-centric services, merges
data and processes following the artifact-centric approach. Namely an artifact is com-
posed by the following three components:

– Artifact Data Schema, which captures the data schema of the information ma-
nipulated in the artifact. States of the processes correspond to instances to such a
schema. Technically, the artifact data schema is a relational schema, and an instance
is a relational database.

– Artifact Tasks, which is the set of atomic actions that can be used to manipulate
data in the artifacts, i.e., to compute new states given the current one. We assume
that the user can freely query (through certain answers, see later) the current data
instance, and for simplicity we disregard a specific treatment of the output to the
user. Technically, such tasks are specified in terms of dependencies between con-
junctive queries.

320 P. Cangialosi et al.

– Artifact lifecycle, which specifies the actual process of the artifacts in terms of
tasks that can be executed at each state of the process. Technically, the artifact
lifecycle is specified in terms of condition-action rules, where the conditions are
again based on conjunctive queries.

It should result immediately clear that such a setting produces in general infinite state
processes, and that verification of such processes is in general undecidable. We will
leverage on the notion of conjunctive query and the associated notion of homomorphism
between instances to gain decidability of verification in spite of the infinite states.

2.1 Artifact Data Schema

Let us enter the formalism by showing how data are represented. As customary in rela-
tional databases, we consider an artifact data schema as a tuple S = 〈R, c〉 where:

– R = R1, . . . ,Rn is a finite set of relational (predicate) symbols each one with an
associated arity;

– c = c1, c2, . . . is a finite or countably infinite set of constants.

Given an artifact data schema S, an artifact data instance over a schema S is a stan-
dard first-order interpretation with a fixed interpretation doman. More precisely a data
instance is a couple I = 〈Δ, ·I〉 where:

– Δ is a countably infinite domain fixed a-priori for every data instance. For conve-
nience we partitionΔ into two countable infinite disjoint sets const(Δ) and ln(Δ),
and we use the first set to interpret constants, while the second is needed to correctly
interpret existentials, we call the latter labeled nulls (see later);

– ·I is an interpretation function that associates:
• to each constant symbol c a constant cI ∈ const(Δ) such that for each
c1, c2 ∈ const(Δ) if c1 �= c2 then cI1 �= cI2, namely we make the Unique
Name Assumption, furthermore we require that every interpretation interprets
contants in the same way, that i, given any two interpretation I and I ′, we have
that cIn = cI

′
n for each constant cn;

• to each m-ary relation symbol Ri a (finite) m-ary relation Ri
I ⊆ Δm.

Intuitively, an artifact data instance is alike a relational database instance, since the ·I
function lists all tuples belonging to each relation.

We call a fact an expression Ri(d1, . . . , dm). We say that a fact belongs to and
interpretation I iff d = 〈d1, . . . , dm〉 ∈ RI

i . We can characterize the interpretation
function ·I simply by listing of its facts (notice that such a set is finite). Following the
database literature [2], we call to the active domain Δ̄I of an instance I the set of
domain elements appearing in facts of I .

To query data instances we use a special class of first-order formulas, widely used
in database theory, which corresponds to relational algebra select-project-join queries:
conjunctive queries. A conjunctive query is a formula cq of the form:

∃y.body(y,x)

Conjunctive Artifact-Centric Services 321

where body is a conjunction of atomic formulas involving constants (but no labeled
nulls), existentially quantified variables y and free variables x.

Intuitively a conjunctive queries returns as answer the domain elements (both con-
stants and nulls) that substitute to the free variables make the formula true in the data
instance. More formally, let I = 〈Δ, ·I〉 an artifact instance, the answer to a conjunctive
query cq(x) with free variables x, denoted by cq(x)I is defined as:

cq(x)I = {η | 〈I, η〉 |= cq(x)}

with η : x→ Δ an assignment for the free variables. In fact, as usual in the database lit-
erature [2], we see assignments η simply as tuples of domain elements to be substituted
to the free variables.

The characterizing property of conjunctive queries from the semantical point of view
is that they are invariant under homomorphic equivalence [2]. That is if two data in-
stances I and I ′ are homomorphic, then each boolean (without free variables) conjunc-
tive query cq produces exactly the same (boolean) answer: cq(x)I = cq(x)I′

.
Homomorphism [8] indeed plays a key role in our setting, so we remind its definition

here. Given two instances I1 = 〈Δ, ·I1〉 and I2 = 〈Δ, ·I2〉 over the same schema S, a
homomorphism from I1 to I2, denoted by h : I1 → I2, is a function fromΔ to Δ such
that:

1. for every constant c, we have that h(c) = c and
2. for every 〈d1, . . . , dm〉 ∈ RI1

i , we have that 〈h(d1), . . . , h(dm)〉 ∈ RI2
i .

Two instances I1 and I2 are homomorphically equivalent, written I1
h= I2, if there

exist two homomorphisms h1 : I1 → I2 and h2 : I2 → I1.
A homomorphism h : I1 → I2 preserves the interpretation of constants but not

of labeled nulls of I1, which are mapped either to constants or nulls in I2, that is the
homomorphism can “determine” some nulls values assigning them to constants. In other
words, homomorphism interprets nulls of I1 as existential values.

The existential interpretation of labeled nulls given by homomorphisms suggest a
different way of answering to a conjunctive query, that essentially sees an interpretation
as a theory where all nulls are treated as existential values. To make this notion precise,
given an interpretation I we define the (infinite) set WI of all interpretations I ′ =
〈Δ, ·I′〉 over S such that there exists an homomorphism h : I → I ′. Then we define
the Certain Answers of a conjunctive query cq as:

certI(cq) =
⋂

w∈WI

cqIw

That is the certain answers to a query are all those tuples of (active domain) elements
(in fact constants) in I that are produced by the query in every interpretation I ′ such
that there exists an homomorphism h : I → I ′. Formally, it can be shown that, the
certain answers correspond to the tuples of constants such that, substituted to the free
variables of the query, would make the resulting query logically implied by the theory
constituted by a single conjunctive query formed by the logical AND of all facts in I ,
considering all labeled nulls as existentially quantified. From a more pragmatical point

322 P. Cangialosi et al.

of view, when using certain answers we consider the current instance as representative
of several possible instances, and while we assume to have incomplete information
on which is exactly the current instance, we still produce all answers that would be
produced in all possible instances.

In our framework, we assume that the user can pose arbitrary conjunctive queries
to the current instance, but require them to be evaluated returning the certain answers.
In this way we become independent of the particular null values occurring in the data
instance, since they are not returned as answers, though they can still be used as witness
of existential quantified variables.

2.2 Artifact Tasks

A task is specified as a set of effects that it can produce, and when it is performed over
the current (artifact) data instance, the result is a completely new data instance made
up of a subset of the action’s effects. The formalization of an effect is borrowed from
the database and data exchange literature and in particular from the notion of tuple
generating dependencies (tgds) [2,15]. A (conjunctive) effect specification ξ over a
schema S is a formula of the form:

∃y.φ(x,y, c)→ ∃w.ψ(x,w,d)

where φ and ψ are conjunctions of atoms over S; x, y, w denote the variables and c,d
the constants occurring in φ and ψ. We call the left-hand side of ξ the premise, and
the right-hand side the conclusion. Notice that both the premise and the conclusion are
conjunctive queries. Formally, let I = 〈Δ, ·I〉 be an artifact instance over the schema
S, and ξ = ∃y φ(x,y, c) → ∃w ψ(x,w,d) an effect specification. The result of
enacting effect specification ξ on I , is a set of facts ξ(I) defined as follows:

Let η = (∃y φ(x,y, c))I , be the answer to the query ∃y φ(x,y, c) in I , then
for each ηi ∈ η we proceed as follows. For each atomic formula Ri(x,w,d)
occurring in ψ, we include in ξ(I) a new fact RI′

i (x,w,d)|ψηi
, obtained by

substituting every variable in x with the corresponding element given by the
assignment ηi, and every variable in w with a fresh (not appearing elsewhere)
labeled null ln.

Intuitively, the premise, acting like a query, selects values form the current instance,
while the conclusion builds the resulting instance by inserting them in possibly different
positions of the schema, and by potentially introducing fresh elements, namely, the
labeled nulls and fixed constants.

A task T for a schema S is specified as a set ξ = {ξ1, . . . , ξn} of conjunctive effect

specifications. The result of executing task T on I , denoted by I
T−→ IT , is a new

instance IT = 〈Δ, ·IT 〉 on the same schema S, obtained as the union of the enactments
of each effect specification. Namely IT = 〈Δ, ·IT 〉 where is the interpretation function
·IT

characterized by the facts
⋃

ξ∈ξ ξ(I).
Let’s make some key observations on such tasks. First, we observe that the role of

the existential qualification on the two sides of an effect specification is very different.

Conjunctive Artifact-Centric Services 323

The existential qualification on the left-hand side is the usual one used in conjunctive
queries, which projects out variables used only to make joins. The existential qualifica-
tion on the right-hand side, instead, is used as a witness of values that should be chosen
by the user when executing the effect. In other words, the choice function used for as-
sign witness to the existential on the right should be in the hand of the user. Here since
we do not have such a choice at hand, we introduce a fresh null, to which we assign
an existential meaning through homomorphism. Essentially we imply that there exists
a choice made by the user of the value assigned to those variables.

The second observation is that we do not make any persistence (or frame [23]) as-
sumption in our formalization. In principle at every move we substitute the whole old
data instance with a new one. On the other hand, it should be clear that we can easily
write effect specifications that copy big chunks of the old instance into the new one. For
example,Ri(x)→ Ri(x) copies the entire extension of a relation Ri.

2.3 Artifact Lifecycle

The artifact lifecyle is defined in terms of condition/action rules, that specify, for every
instance, which tasks can be executed. A (condition/action) rule for a schema S is a
couple � = 〈π, T 〉 where π is a precondition, and T is a task. The precondition is a
closed formula over S of the following form:

π ::= cq | ¬π | π1 ∧ π2

where cq is a boolean conjunctive query. Preconditions are arbitrary boolean combi-
nations of boolean conjunctive queries interpreted under the certain answer semantics,
namely:

I � cq iff certI(cq) = true
I � ¬π iff I � � π
I � π1 ∧ π2 iff I � π1 and I � π2

In order to execute a task T , on an instance I , precondition π must certainly hold in I ,
written as I � π, and, if this is the case, a new instance IT is generated, according to
T ’s effects.

Observe that, while we disallow negation in task effects so as to exploit the theory
of conjunctive queries, which do not include negation, in the condition/action rules we
allow for it, but to do so we actually require conditions to be based on certain answers
of conjunctive queries, in this way we force a sort of “negation-as-failure” for negation
[9].

Example 1. We illustrate here an example of specification. The scenario concerns an
institution, e.g. a bank, that provides services to its customers, such as loans or money
transfers. Every service has a distinct cost, that has to be paid in advance by customers
that asked for it. A customer may inquire for the provision of a service, that first has to
be approved by a supervisor, then paid, and finally provisioned by the bank. Moreover
there are special “premier customers” that do not need the service’s approval.

The artifact schema S consists of the following relation symbols:
Customer(cust ssn,name) is the relation containing customers in-
formation; Service(serv code, cost) contains information about the

324 P. Cangialosi et al.

different types of services that the bank offers to its customers;
Service Claimed(serv code, cust ssn) keeps track of information of services
requested by clients; Request Exam(serv code, spv name, outcome) is the relation
containing the names of supervisors in charge of evaluating customers’ claims;
Payment(serv code, cust ssn, amount) contains information about service pay-
ments; Service Provided(serv code, cust ssn) holds the services which have
been provided; Premier Member(cust ssn) contains the customers that reach the
“premier” status; Account(acc id, cust ssn,maximum withdrawal , credit card) is
the relation that holds information about bank accounts.

Tasks model the possible modifications that can be performed over the artifact
schema. As syntactic sugar, we include some input parameters (the symbols between
brackets after the task name). In order to execute them such parameters must be instan-
tiated with constants.

– Claim service(cust ssn, serv code):
• ξ1 = ∃x, y. Customer(cust ssn, x) ∧ Service(serv code, y) →
Service Claimed(serv code, cust ssn)
• ξ2, . . . , ξ9 = copy frame

models the choice of the customer cust ssn to apply for the provision of a new
service of type serv code. Since the resulting instance is a completely new one
consisting in tuples added by the task only, we need to explicitely “copy” all
facts that we do not require to be dropped after the task execution. That is ex-
actly the role of effects ξ2, . . . , ξ9 that, for all relations R1, . . . ,Rm, are defined
as ξi = Ri(x1, . . . , xn) → Ri(x1, . . . , xn) with i ∈ {1, . . .m}. Intuitively,
the result of firing task Claim service(cust ssn, serv code) on an instance I
results in a new instance I ′ that either contains I but also include the new tuple
Service Claimed(cust ssn, serv code) provided that the premise are satisfied
by I , or I ′ = I if not.

– Make payment(cust ssn, serv code, amount):
• ξ1 = Service Claimed(cust ssn, serv code) →
Payment(serv code, cust ssn, amount)
• ξ2, . . . , ξ9 = copy frame

models the payment operation performed by a customer for a service that has
been previously requested, i.e., the resulting instance may include the tuple
Payment(cust ssn, serv code, amount).

– Grant approval(serv code):
• ξ1 = Service Claimed(serv code, x) →
∃z.Request Exam(serv code, z, “approved”)
• ξ2, . . . , ξ9 = copy frame

represents the approval of a service that has been requested, by including the fact
Request Exam(serv code, ln, “approved”) where ln is a fresh labeled null that
models a possible supervisor.

– Provide services():
• ξ1 = Service Claimed(x, y) ∧Request Exam(x, v, “approved”) →
Service Provided(x, y)
• ξ2, . . . , ξ9 = copy frame

Conjunctive Artifact-Centric Services 325

models the delivery of all services that have had explicitly approved by a supervisor
and that was already paid. The task

– Quick provide service():
• ξ1 = Service Claimed(x, y) → Service Provided(x, y)
• ξ2, . . . , ξ9 = copy frame

delivers all the services for which it was paid the correct amount and that have been
requested from a premier customer. Lastly

– Award premier status():
• ξ1 = ∃y, u, w, t. Customer(x, y) ∧ Service Provided(y, x) ∧
Account(u, x, w, t) → Premier Member(x)
• ξ2, . . . , ξ9 = copy frame

awards the premier status to all customers holding a bank account that applied for
the provision of a service that had already been accepted.

Finally, we assume that condition-action rules that specify the artifact lifecycle al-
low for executing every task in every state, except for the following rules:

�1 = 〈∃x, y, u, v, w. Payment(x, y, w)∧Service(x, u)∧Request Exam(x, v,“approved”),
Provide services()〉

�2 = 〈∃x, y, w. Payment(x, y,w) ∧ Service(x,w) ∧ Premier Member(y),
Quick provide service()〉

�3 = 〈∃x, y, u, w, t. Service Provided(x, y) ∧ Account(u, y, w, t),
Award premier status()〉 �

2.4 Artifact Executions

Let us consider an artifact as a tuple A = 〈S, T , C〉, where: (i) S is an artifact data
schema; (ii) T is a set of tasks; and (iii) C is a set of condition/action rules.

An artifact transition system forA starting from a initial data instance I0 is a tuple
AA = 〈Σ, σ0, L,Tr〉 where (i) Σ is the (possibly infinite) set of states; (ii) σ0 is the
initial state; (iii) L : Σ → I is a labeling function that associates to each state in Σ a
data instance of S, with the constraint that L(σ0) = I0; (iv) Tr ⊆ I × T × I is the

transition relation such that 〈σ, T, σ′〉 ∈ Tr , denoted σ
T=⇒ σ′ if there exists a rule

� = 〈π, T 〉 such that L(σ) � π, and L(σ′) = I ′ where I ′ is the result of applying task

T to data instance I = L(σ), i.e we must have that I
T−→ I ′.

Notice that if an artifact A may generate an infinite number of data instances in its
evolution, then every transition system associated to it must have and infinite number
of states in order for the labeling function L to be correctly defined. Though transition
systems may have more states than data instances, which implies that more states may
be labelled with the same data instance. Among the various artifact transition systems
for A starting from a initial data instance I0 there is one of particular significance, the
so called execution tree of an artifact A starting from I0, in which each state of the
transition system correspond to the full history that has generated it. Such an execution
tree is a transition system TA = 〈Σ, σ0, L,Tr〉whose set of states is defined as follows:
(i) the root is σ0; (iii) given a state σ for each task T ∈ T such that there exists a rule
� = 〈π, T 〉 such that L(σ) � π, add a state σ′T , and define L(σ′T) = I ′ where I ′ is data

326 P. Cangialosi et al.

instance resulting by applying T to L(σ). We can interpret σ′T as the T -successor of the
node σ.

We observe that the number of states of the execution tree is indeed infinite, and also
that given any state σ, by looking at the path from the root σ0 to σ, we can reconstruct
the full history that has lead to σ, including the sequence of tasks invoked and the
resulting data instance at each step.

All transition systems for and artifactA starting from a given data instance I0, even if
different, denote the same behavior, namely the behavior of the artifactA starting from
I0 and executing the various tasks. To formally capture such and equivalence between
transition system, we make use of the notion of bisimulation [20]. In fact in formally
detailing such a notion, we consider right from the start that the user can only query
data instances through conjunctive queries, evaluated to return certain answers.

Given two artifact transition systems A1 = 〈Σ1, σ0,1, L1,Tr1〉 and A2 =
〈Σ2, σ0,2, L2,Tr2〉 a bisimulation is a relation B ⊆ Σ1 ×Σ2 such that:

〈σ1, σ2〉 ∈ B implies that:
1. for every conjunctive query cq we have that certL1(σ1)(cq) =
certL2(σ2)(cq);

2. if σ1
a=⇒ σ′1 then there exists σ′2 such that σ2

a=⇒ σ′2 and 〈σ′1, σ′2〉 ∈ B;
3. if σ2

a=⇒ σ′2 then there exists σ′1 such that σ1
a=⇒ σ′1 and 〈σ′1, σ′2〉 ∈ B.

We say that two states σ1 and σ2 are bisimilar, denoted as σ1 ∼ σ2 if there
exists a bisimulation B such that 〈σ1, σ2〉 ∈ B. Two transition systems A1 =
〈Σ1, σ0,1, L1,Tr1〉 and A2 = 〈Σ2, σ0,2, L2,Tr2〉 are bisimilar if σ0,1 ∼ σ0,2. We
are now able to introduce the verification formalism.

3 Verification Formalism

We turn to verification of conjunctive artifact-centric services. To specify dynamic prop-
erties we will use μ-calculus [14] which is one of the most powerful temporal logics for
which model checking has been investigated, and indeed is able to express both linear
time logics, as LTL, and branching time logics such as CTL or CTL* [10]. In particu-
lar, we need to introduce a variant of μ-calculus, called μL that conforms with the basic
assumption of our formalism: the use of conjunctive queries and certain answers to talk
about data instances. This intuitive requirement can be made formal as follows: our μ-
calculus variant must by invariant with respect to the notion of bisimulation introduced
above.

Given an artifact A = 〈S, T , C〉, the verification formulas of μL for A have the
following form:

Φ ::= cq | ¬Φ | Φ1 ∧ Φ2 | [T]Φ | 〈T 〉Φ | μZ.Φ | νZ.Φ | Z

where cq is a boolean conjunctive query (interpreted through certain answers) over the
artifact schema, Z is a predicate variable symbol.

The symbols μ and ν can be considered as quantifiers, and we make use of notions
of scope, bound and free occurrences of variables, closed formulas, etc. The definitions

Conjunctive Artifact-Centric Services 327

of these notions are the same as in first-order logic, treating μ and ν as quantifiers. In
fact, we are interested only in closed formulas as specification of temporal properties
to verify. For formulas of the form μZ.Φ and νZ.Φ, we require the syntactic mono-
tonicity of Φ wrt Z: Every occurrence of the variable Z in Φ must be within the scope
of an even number of negation signs. In μ-calculus, given the requirement of syntac-
tic monotonicity, the least fixpoint μZ.Φ and the greatest fixpoint νZ.Φ always exist.
In order to define the meaning of such formulas we resort to transition systems. Let
AA = 〈Σ, σ0, L,Tr〉 be a transition system for A with initial data instance I0, and let
V be predicate valuation on A, i.e., a mapping from the predicate variables to subsets
of the states in A. Then, we assign meaning to μ-calculus formulas by associating to A
and V an extension function (·)A

V , which maps μ-calculus formulas to subsets of I. The
extension function (·)A

V is defined inductively as follows:

(cq)A
V = {σ ∈ Σ | certL(σ)(cq)}

(Z)A
V = V(Z) ⊆ Σ

(¬Φ)A
V = Σ − (Φ)A

V
(Φ1 ∧ Φ2)A

V = (Φ1)A
V ∩ (Φ2)A

V
(〈T 〉Φ)A

V = {σ ∈ Σ | ∃σ′. σ T=⇒ σ′ and σ′ ∈ (Φ)A
V}

([T]Φ)A
V = {σ ∈ Σ | ∀σ′. σ T=⇒ σ′ implies σ′ ∈ (Φ)A

V}
(μZ.Φ)A

V =
⋂
{E ⊆ Σ | (Φ)A

V[Z←E] ⊆ E }
(νZ.Φ)A

V =
⋃
{E ⊆ Σ | E ⊆ (Φ)A

V[Z←E]}

Intuitively, the extension function (·)A
V assigns to the various constructs of μ-calculus

the following meanings:

– The boolean connectives have the expected meaning.
– The extension of 〈T 〉Φ includes the states σ such that starting from σ, there is an

execution of task T that leads to a successive state σ′ included in the extension of Φ.
– The extension of [T]Φ includes the states σ such that starting from σ, each execu-

tion of task T leads to some successive state σ′ included in the extension of Φ.
– The extension of μZ.Φ is the smallest subset Eμ of Σ such that, assigning to Z the

extension Eμ, the resulting extension of Φ is contained in Eμ. That is, the extension
of μX.Φ is the least fixpoint of the operator λE .(Φ)A

V[Z←E] (hereV [Z ← E] denotes
the predicate valuation obtained from V by forcing the valuation of Z to be E).

– Similarly, the extension of νX.Φ is the greatest subset Eν of Σ such that, assign-
ing to X the extension Eν , the resulting extension of Φ contains Eν . That is, the
extension of νX.Φ is the greatest fixpoint of the operator λE .(Φ)A

V[X←E].

The reasoning problem we are interested in is model checking: verify whether a μL
closed formula Φ holds in an artifactA with initial data instance I0. Formally such

problem is defined as checking whether σ0 ∈ I ∈ (Φ)T
I0
A

V (where V is any valuation,
since Φ is closed), that is, whether Φ is true in the root of the A execution tree.

On the other hand we know that there are severals transition system that are bisimilar
to the execution tree TI0

A . The following theorem state that the formula evaluation in μL
is indeed invariant wrt bisimilarity, so we can equivalently check any such transition
systems.

328 P. Cangialosi et al.

Theorem 1. Let A1 and A2 be two bisimilar artifact transition systems. Then, for every
pair of states σ1 and σ2 such that σ1 ∼ σ2 (including the initial ones), for all formulas
Φ of μL, we have that σ0,1 ∈ (Φ)A1

V iff σ0,2 ∈ (Φ)A1
V .

Proof. The proof is analogous to the standard proof of bisimulation invariance of mu-
calculus, see e.g., [7], though taking into account our specific definition of bisimulation,
which makes use of conjunctive queries and certain answers as their evaluation.

In particular if, for some reason we can get a transition system that is bisimilar to the
execution tree, and is finite, then we can apply the following theorem.

Theorem 2. Checking a μL formula Φ over a finite transition system AA =
〈Σ, σ0, L,Tr〉 can be done in time

O((|A| · |Φ|)k)

where |A| = |Σ|+ |Tr |, i.e., the number of states plus the number of transitions of A,
|Φ| is the size of formulaΦ (in fact, considering conjunctive queries as atomic), and k is
the number of nested fixpoints, i.e., fixpoints whose variables are one within the scope
of the other.

Proof. We can use the standard μ-calculus model checking algorithms [13], with the
proviso that for atomic formulas we use the computation of certain answers of conjunc-
tive queries.

Example 2. Continuing the example introduced above, suppose now we have an
initial artifact data instance where: CustomerI0 = {〈337505, “JohnSmith”〉,
〈125232, “MaryStewart”〉}, and ServiceI0 = {〈L057, 100〉, 〈L113, 150〉,
〈C002, 50〉}, and all the other relations are empty. Consider the following liveness prop-
erty, which aks if it is actually possible to obtain the provision of a service:

μZ. ((∃ x1, x2, x3.Service(x1, x2) ∧ Service Provided(x1, x3)) ∨
∨

T∈T
〈T 〉Z

The formula is actually true: for example, a state in which
Service Provided(L057, 337505) holds can be reached after the following sequence
of tasks: Claim Service(337505, L057), Make Payment(337505, L057, 100),
Grant Approval(L057) and finally Provide Services(). Next consider the safety
property asking whether every possible reachable instance will always contain the
information that the service L113 has been paid and provided:

νZ. (∃ x1, x2, x3.Payment(L113, x1, x2) ∧ Service Provided(L113, x3) ∧
∧

T∈T
[T](Z))

that is trivially false, since in the initial state I there is no payment for any service.
More sophisticated properties such as strong form of fairness for example are also easily
expressible in μL, though for space limitation we don’t report them here �

Conjunctive Artifact-Centric Services 329

4 Results

Notice that we still do not have a concrete technique for the verification problem, since
model checking results in Theorem 2 only apply to finite structures. In fact, as a con-
sequence of the undecidability of the implication problem for tgds (see e.g. [2]), it is
obvious that, without any restrictions on effect specfications, the model checking in our
setting is undecidable. Addressing condition of decidability is the purpose of this sec-
tion. We start by introducing the notion of Skolem transition system and showing its
relationship with the concept of execution tree of an artifact.

4.1 Skolem Transition System

For every effect specification ξ = ∃y φ(x,y, c) → ∃w ψ(x,w,d) and for every
w ∈ w we define a Skolem term f ξ

w(x). Such Skolem term is interpreted as a fixed
injective function f ξ

w : Δ → ln(Δ). In this way, enacting an effect ξ on a the data
instance I results in the set of facts RI′

i (x, f ξ
w1

(x), . . . , f ξ
wn

(x),d)|ψηi
, for every for

every atom RI′
i (x, w1, . . . , wn),d) that occurs in ψ and every answer to the left-hand-

side query ηi ∈ (∃y.φ(x,y, c)I). The Skolem execution of a task T in I is the data
instance J formed by the union of all Skolem enactment of the effects in T . Notice that
being the interpretation of Skolem terms an fixed function, the Skolem execution of a
task is fully determined and functional.

Given an artifact A = (S, T , C) and an initial artifact data instance I0, we define the
Skolem transition system SA = 〈Σs, σ0,s, Ls,Trs〉 inductively as follows:

– σ0,s ∈ Σ and such that Ls(σ0,s) = I0;
– for all instances σ ∈ Σs and for each task T ∈ T such that there exists a rule
� = 〈π, T 〉 such that Ls(σ) � π, let J be data instance resulting from the Skolem
execution of task T in Ls(σ) then:
• if there exists an instance σ′ ∈ Σs such that Ls(σ′)

h= J then add the transition

σ
T=⇒ σ′ to Trs;

• if such a state does not exists, then add the a new state σJ to Σ with Ls(σJ) =
J to I and add the transition edge σ

T=⇒ σJ to Trs.

Theorem 3. Let A = (S, T , C) be an artifact and I0 be a data instance over schema
S. Then, the execution tree TA,Io = 〈Σt, σ0,t, Lt,Tr t〉 is bisimilar to the Skolem tran-
sition system SA,Io = 〈Σs, σ0,s, Ls,Trs〉.
Proof. Let us consider the bisimulation relationBts = {〈σt, σs〉 | σt ∈ Σt∧σs ∈ Σs∧
Lt(σs)

h= Lt(σt)}. This is the relation formed by the pris of states of the two transition
system such that their labeling data instances are homomorphically equivalent. We show
that Bts is bisimulation (according to our definition). Indeed consider 〈σs, σt〉 ∈ Bts.
Then:
1. For each cq, since Lt(σs)

h= Lt(σt) we have that certLt(σs)(cq) = certLt(σs)(cq)
from the definition of certain answers and homomorphical equivalence.

2. If σt
a=⇒ σ′t then there is a rule � = 〈π, T 〉 and Lt(σt)�π. Since Lt(σs)

h= Lt(σt)
then (i) Ls(σs) � π as well, so σs

a=⇒ σ′s moreover it is easy to see that Lt(σ′t)
h=

Ls(σ′s) by considering definition of executing a task and a Skolem executing task.

330 P. Cangialosi et al.

3. Symmetric to the previous case.
Finally observe that since Lt(σ0,t) = Ls(σ0,s) = I0 we trivially get that

〈σ0,s, σO,t〉 ∈ Bts.

This theorem basically allow us to make use of a Skolem transition system rather than
an execution tree for our verification tasks, taking advantage of Theorem 1. using equiv-
alence classes of homomorphically equivalent instances for the purpose of verification.
Notice, however, that this theorem it is not sufficient to achieve a decidability result,
since the number of state in the Skolem transition system is bounded only by the num-
ber of homomorphically non-equivalent data instances, which is infinite in general. Next
we concentrate on conditions that guarantee its finiteness.

4.2 Decidability

Given an artifact A = 〈S, T , C〉 and the set I of possible interpretations over S, we
consider two different functions: the first one, f : T × I → I, is the usual result of
Skolem executing a task on I; while the second one, g : T × I → I, is the inflationary
variant of the first one: g(T, I) = f(T, I)∪I , that is g generates the result of Skolem ex-
ecuting the task T on I and then copies all “old” facts of I . Notice that no contradiction
can arise since effects of tasks, being based on conjunctive queries, are only positive.
For f and g we have the following results:

Lemma 1. Functions g and f are monotonic wrt set containment. Namely, for every
task T and instance I , if I ⊆ J , we have both f(T, I) ⊆ f(T, J) and g(T, I) ⊆ g(T, J).

Lemma 2. Function g is monotonically increasing, namely for every task T and in-
stance I , I ⊆ g(T, I) holds.

The same result does not hold for function f, because some facts may not be propagated.

Lemma 3. For every task T and instance I , we have that f(T, I) ⊆ g(T, I).

Let us inductively define the set of instances LI0 obtained, starting from I0, by repeat-
edly applying g(·, ·) in all possible ways. This is the least set such that

– I0 ⊆ LI0 ;
– if I ′ ⊆ LI0 then, for every T ∈ T , g(T, I ′) ⊆ LI0 .

Notice also that, as an immediate consequence of its inductive definition, we get
g(T,LI0) = LI0 , since LI0 is a fixpoint, indeed, the least fixpoint [26].

Lemma 4. Let I0 be an instance andLI0 as above, then for every sequence of instances
I0, . . . , In such that Ii+1 = g(Ti, Ii), we have that Ii ⊆ LI0 , for i = 0, . . . , n.

Proof. By induction of length n of a task sequence.

Lemma 5. Let A = 〈S, T , C〉 be an artifact, I0 and initial data instance, and LI0 as
above. Then for every sequence of instances I0, . . . , In, such that Ii+1 = f(Ti, Ii), we
have that Ii ⊆ LI0 , for i = 0, . . . , n.

Conjunctive Artifact-Centric Services 331

Proof. By Lemma 3 and 4.

Roughly speaking, the above lemmas, guarantee that every possible instance that can be
produced from I0 by applying in every possible way both f and g functions is bounded
by the least fixpoint LI0 . Notice however that LI0 is infinite in general, in order to get
decidability we will still need a finite bound on LI0 .

To get such condition we exploit results from [15] on weakly-acyclic tgds. Weak-
acyclicity is a syntactic notion that involves the so-called dependency graph of the set
of tgds TG. Informally, a set TG of tgds is weakly-acyclic if there are no cycles in the
dependency graph of TG involving “existential” relation positions. The key property
of weakly-acyclic tgds is that chasing a data instance with them (i.e., applying them in
all possible way) generates a stet of facts (a database) that is finite. We refer to [15]
for more details. We show that, under the assumption that the tgds of the artifact are
weakly-acyclic, the set LI0 introduced above is finite.

Lemma 6. Let A = 〈S, T , C〉 be an artifact. If all effect specifications in every task
T ∈ T are weakly-acyclic, then the fixpoint LI0 has finite cardinality.

Proof. If the set of all effect specification is weakly-acyclic, from [15] we
know that the dependency graph has no cycle going through a special edge
[15]. Since every special edge represents the application of a Skolem func-
tion, it follows that for every Skolem execution task sequence, it is not possi-
ble to nest the same Skolem function. Indeed, suppose that at a certain point,
an effect specification ξ = ∃y.φ(x,y, c) → ∃w.ψ(x,w,d) adds a fact
RI

i (x, f ξ
w1

(x), . . . , f ξ
wi

(f ξ′
wj

(. . . (f ξ
wi

(x)), . . . , f ξ
wn

(x),d)|ψηi
, this means that: (i) there

is at least a special edge from a position p1 in a relation Rj that occurs in φ, to a po-
sition p2 in Ri that occurs in ψ, due to the presence of the outermost Skolem function
f ξ

wi
, (ii) there is a sequence (eventually empty) of special edges that propagate values

in position p2 to position pm, due to the presence of Skolem function between the out-
ermost and the innermost one, and (iii) there is a sequence (of length at least one) of
non-special edges that propagate values from pm back to p1, because the innermost
Skolem function f ξ

wi
is nested in itself (the outermost). But this contradicts the hypoth-

esis of weakly-acyclic set of effect specification. Since the domain and the image of
a Skolem function is finite, and no nesting of the same Skolem function is possible,
there is a bound on the number of different values that can exist in every position of the
schema. As a consequence, the number of possible instances that can be obtained from
a (finite) initial instance I0 by applying g in every possible way is finite. Given that g is
monotonic, the theorem is proved.

Based on the above theorem, we are able to derive our main result.

Theorem 4. Let A = 〈S, T , C〉 be an artifact such that all effect specifications in T
are weakly-acyclic, and let I0 be a data instance for A . Then, for every formula Φ of
μL, verifying that Φ holds in A with initial data instance I0 is decidable.

Proof. By Theorem 3 and Theorem 1, we can perform model checking of Φ on the
Skolem transition system for A and I0. Now, by Lemma 5, we have that all data in-
stances that can be assigned to the states of the Skolem transition system for A and I0

332 P. Cangialosi et al.

must be subsets of LI0 . And by Lemma 6, we get that LI0 has a finite cardinality. This
implies that Skolem transition system is finite and Theorem 2 can be applied.

5 Conclusions

In this paper we have introduced conjunctive artifact-based services, a class of services
which pose balanced attention to both data (here a full-fledged relational database) and
processes (acting on the database), and, through a suitable use of conjunctive queries in
specifying tasks pre- and post-conditions, guarantees decidability.

It is worth noting that decidability results for formalisms that fully take into account
both data and processes are rare. Here we mention three of them that are quite relevant
for artifact-centric approaches. The most closely related one is [12]), which shares the
general setting with our approach but differs in the conditions required to obtain de-
cidability. These are not based on conjunctive queries, but on some decidability results
of certain formulas of a first-order variant of linear time temporal logic [25]. Another
relevant decidability result is that of SPOCUS relational transducers [3], where decid-
ability is obtained through results on inflationary Datalog. Finally, the work on service
composition according to the COLOMBO model [4] is also related. There, decidability
is obtained through symbolic abstraction on data and the requirement that process are
input bounded (i.e., take only a bounded number of new values (similar to our nulls)
taken from input). The result presented here is not subsumed by (nor subsumes) any of
the above results. But actually opens a new lode for research in the area, based on the
connection with the theory of dependencies in databases that has been so fruitful in data
exchange and data integration in recent years [15,18].

Acknowledgments. The authors would like to thank Diego Calvanese and Yves Lesper-
ance for interesting discussions on the paper. This work has been supported by the EU
Project FP7-ICT ACSI (257593).

References

1. Abiteboul, S., Bourhis, P., Galland, A., Marinoiu, B.: The axml artifact model. In: TIME, pp.
11–17 (2009)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading
(1995)

3. Abiteboul, S., Vianu, V., Fordham, B.S., Yesha, Y.: Relational transducers for electronic com-
merce. J. Comput. Syst. Sci. 61(2), 236–269 (2000)

4. Berardi, D., Calvanese, D., De Giacomo, G., Hull, R., Mecella, M.: Automatic Composition
of Transition-based Semantic Web Services with Messaging. In: Proc. of VLDB 2005 (2005)

5. Bhattacharya, K., Gerede, C.E., Hull, R., Liu, R., Su, J.: Towards Formal Analysis of
Artifact-Centric Business Process Models. In: Alonso, G., Dadam, P., Rosemann, M. (eds.)
BPM 2007. LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)

6. Bhattacharya, K., Guttman, R., Lyman, K., Heath III, F.F., Kumaran, S., Nandi, P., Wu, F.Y.,
Athma, P., Freiberg, C., Johannsen, L., Staudt, A.: A model-driven approach to industrial-
izing discovery processes in pharmaceutical research. IBM Systems Journal 44(1), 145–162
(2005)

Conjunctive Artifact-Centric Services 333

7. Bradfield, J., Stirling, C.: Modal mu-calculi. In: Handbook of Modal Logic, vol. 3, pp. 721–
756. Elsevier, Amsterdam (2007)

8. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational
data bases. In: STOC, pp. 77–90 (1977)

9. Clark, K.L.: Negation as failure. In: Logic and Data Bases, pp. 293–322 (1977)
10. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. The MIT Press, Cambridge

(1999)
11. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling business opera-

tions and processes. IEEE Data Eng. Bull. 32(3), 3–9 (2009)
12. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic Verification of Data-Centric Business

Processes. In: Proc. of ICDT (2009)
13. Emerson, E.A.: Model checking and the mu-calculus. In: Descriptive Complexity and Finite

Models, pp. 185–214 (1996)
14. Emerson, E.A.: Model checking and the mu-calculus. In: Descriptive Complexity and Finite

Models, pp. 185–214 (1996)
15. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answer-

ing. Theor. Comput. Sci. 336(1), 89–124 (2005)
16. Fritz, C., Hull, R., Su, J.: Automatic construction of simple artifact-based business processes.

In: ICDT, pp. 225–238 (2009)
17. Hull, R.: Artifact-centric business process models: Brief survey of research results and chal-

lenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5331, pp. 1152–1163.
Springer, Heidelberg (2008)

18. Lenzerini, M.: Data Integration: A Theoretical Perspective. In: Proc. of PODS 2002, pp.
233–246 (2002)

19. Luckham, D.C., Park, D.M.R., Paterson, M.: On formalised computer programs. J. Comput.
Syst. Sci. 4(3), 220–249 (1970)

20. Milner, R.: An algebraic definition of simulation between programs. In: Proc. of IJCAI, pp.
481–489 (1971)

21. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Syst. J. 42(3), 428–445 (2003)

22. Park, D.: Finiteness is mu-ineffable. Theor. Comput. Sci. 3(2), 173–181 (1976)
23. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dy-

namical Systems. MIT Press, Cambridge (September 2001)
24. Sohrabi, S., Prokoshyna, N., McIlraith, S.A.: Web service composition via generic proce-

dures and customizing user preferences. In: Cruz, I., Decker, S., Allemang, D., Preist, C.,
Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp.
597–611. Springer, Heidelberg (2006)

25. Spielmann, M.: Verification of relational transducers for electronic commerce. J. Comput.
Syst. Sci. 66(1), 40–65 (2003)

26. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. of Mathemat-
ics 5(2), 285–309 (1955)

27. van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., Wainer, J.: Proclets: A framework for
lightweight interacting workflow processes. Int. J. Cooperative Inf. Syst. 10(4), 443–481
(2001)

Diagnosis of Service Failures by Trace Analysis
with Partial Knowledge

Wolfgang Mayer1, Gerhard Friedrich2, and Markus Stumptner1

1 Advanced Computing Research Centre, University of South Australia
{mayer.mst}@cs.unisa.edu.au

2 Alpen-Adria Universität, Austria
gerhard.friedrich@uni-klu.ac.at

Abstract. The identification of the source of a fault (“diagnosis”) of orchestrated
Web service process executions is a task of growing importance, in particular in
automated service composition scenarios. If executions fail because activities of
the process do not behave as intended, repair mechanisms are envisioned that will
try re-executing some activities to recover from the failure. We present a diagno-
sis method for identifying incorrect activities in service process executions. Our
method is novel both in that it does not require exact behavioral models for the
activities and that its accuracy improves upon dependency-based methods. Ob-
servations obtained from partial executions and re-executions of a process are ex-
ploited. We formally characterize the diagnosis problem and develop a symbolic
encoding that can be solved using constraint solvers. Our evaluation demonstrates
that the framework yields superior accuracy to classic dependency-based debug-
ging methods on realistically-sized examples.

1 Introduction

The proliferation of orchestrated Web Services has increased the importance of diagnos-
ing errors in process executions. Diagnosing the execution of concurrent applications
is a challenging task even in local environments, but is exacerbated in large scale dis-
tributed business interactions, as acknowledged in a recent IEEE TSC special issue on
Transactional behavior. Orchestrated Web Services define a process where individual
activities are implemented by Web Services. If individual activities fail during execu-
tion, raising exceptions, repairs must be carried out [8], but as the authors explain, while
languages such as WS-BPEL provide exception handling facilities, the construction of
the logic to conduct fault handling is time consuming and itself error prone. (The other
option at this point would be to fall back on compensation approach.) To provide com-
plete and correct methods for repair, a complete and correct diagnosis method is of
central importance. The goal of this paper is to infer minimal (irreducible) diagnoses,
or problematic service behaviors that need to be avoided (e.g,. through re-execution) in
terms of activity executions from observed execution traces.

While powerful techniques for runtime verification [5] or specification of fault han-
dling logic [2,8] have been proposed, essentially they presuppose the existence of a
detailed specification of intended service behavior in one case, and detailed fault mod-
els in the other. Unfortunately, these assumptions are not necessarily generally satisfied

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 334–349, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Diagnosis of Service Failures by Trace Analysis 335

in practice. The correct control flow may be specified but precise models of individ-
ual services and activity behaviors are usually unavailable. Fortunately, the sequence
of activity executions can be obtained from the execution engine. However, in case of
failures (i.e., if exceptions are triggered), a repair-enabled execution engine needs the
ability to execute and re-execute activities in order to achieve a successful process exe-
cution despite the fault. This increases the difficulty of the task, since repair executions
(re-executions) do not necessarily follow the defined control flow. Our only assumption
is that raising a fault will raise an exception.

To solve the problem of partial knowledge, earlier work has used dependency trac-
ing [14,1]. As we will show in our example, such methods cannot always correctly
compute the set of minimal diagnoses because they do not fully capture the semantics
of the employed control elements. Also, to the best of our knowledge no current generic
diagnostic approach can deal with (re-)executions of activities, nor deal with partially
known behaviors.

We present an approach to isolate minimal sets of faulty activity executions based
on the structure of a given process while assuming that the behavioral descriptions of
individual activities may not be given fully. Our approach relies on partial models of
individual activities that are gathered from observed input and output values that occur
in execution traces. No complete formal specification of an activity is required.

The paradigm of consistency-based diagnosis [13] is based on the assumption that
faults are expressed via inconsistencies between observations (observed results of the
actual system behavior) and the expected system behavior. In our case, such inconsisten-
cies are the result of raising an exception. A diagnosis specifies the set of observed activ-
ity executions that are assumed to be correct. These assumed-correct activity behaviors
must be part of “guaranteed safe” behavioral models for the activities of a process defi-
nition s.t. (i) no exceptions will be triggered for all possible process executions and (ii)
specified activity behavior constraints are fulfilled. Such behavior constraints express
partial knowledge about activity behaviors. If such a process behavior cannot exist,
then some activity behaviors must be incorrect. The lack of precise knowledge about
activity behaviors creates the necessity to reason about all possibly correct behaviors of
activities. We tackle this problem by introducing sets of possible behavior descriptions
and the propagation of symbolic constants representing specific but unknown values
that may be created during execution of the process. Our approach is highly flexible;
particular workflow patterns such as XOR splits (our example in this paper) are merely
special cases of activities with particular observed behaviors.

We develop a correct and complete diagnosis method for a sequence of activity
(re-)executions. We introduce basic concepts and an example in Sec. 2 and present
the process model in Sec. 3. In Sec. 4 we provide the diagnosis concepts for process
(re-)executions. Sec. 5 introduces the diagnosis method based on symbolic values. Its
implementation and evaluation are discussed in Sec. 6.

2 Example

We use the example depicted in Figure 1 to introduce core concepts of our approach.
The upper part of this figure shows the process definition, the lower part depicts the
executions of activities.

336 W. Mayer, G. Friedrich, and M. Stumptner

SEC1

SEC2

SAMPLE

REM

GUARD END

X1

X1

R1

R2

S

SAMPLE SEC1 X1 SEC2 X1 GUARD REM GUARD SAMPLE GUARDREM

nil nil true

t0 t1 t2 t3 t4 t5 t7 t8 t9 t10 t11 t12t6

J1

J2

no

no

Time

START

SPEC

START

t13

EC1 C2 C3

C4

C5

C6

C7

C8

C10

C11

C9

SPEC ← start()
S1 ← sample(SPEC)
R1 ← sec1(S1)
if x1(R1) :

R2 ← sec2(S1)
if x1(R2) :

S2 ← rem(S1)

S3 ← φ(S1, S2)

S4 ← φ(S1, S3)
guard(S4)
end(S4)

Fig. 1. Example process (top left), its Static Single Assignment form (right) and a sequence of
activity executions (bottom)

The process definition includes processing activities (e.g. SAMPLE) connected by a
control-flow using XOR-splits (i.e. X1) and XOR-joins (i.e. J1 and J2) as control activ-
ities. Activities read input variables and store their results in output variables. Process
executions are started by the execution of activity START which provides the process in-
puts. A process execution is finished by the execution of END. The outputs of a process
are the inputs of activity END. In our example the input to the process is a specifica-
tion of a test sample (variable SPEC) which is used by activity SAMPLE to generate a
sample placed at S. S is inspected by SEC1 and SEC2. Depending on the outcomes of
SEC1 and SEC2, activity REM is eventually executed to remove some parts of the sam-
ple. Before ending the process a guard examines the sample for a final quality control.
This guard can decide that the process failed by assigning nil to the control variable E
thus stopping the execution. In keeping with other work in the area, e.g., [5], we assume
for simplicity and without loss of generality, that a service has one operation and the
invocation of that operation equates execution of the service.

Assume that the process was executed as shown in Fig. 1. Time points mark the end
of an executed activity. The completion of activity executions are observed. GUARD
raises an exception by assigning nil toE at time t8. We assume that only the processing
activities SAMPLE, SEC1, SEC2, REM could be faulty. Given the flow of execution,
activity executions SAMPLEt1 and SEC2t4 are the only ones that could have failed.
〈SAMPLEt1, SEC2t4〉 is the only minimal conflict so far; a correctness assumption of
SEC1t2 is not needed to predict that the guard will fail. Both branches of the first occur-
rence of X1 in the process will lead to an execution of GUARD that fails if SAMPLEt1

and SEC2t4 are assumed to be correct. Diagnosis methods based on tracing dependen-
cies [14] would not exonerate SEC1t2 since the computation ofE depends on the output
of SEC1t2. (Recall that dependency based models implicate all activities that contribute
to the derivation of an inconsistency in an execution trace. Our model is stronger in that
we also consider inferences that involve hypothetical, unknown output values of ac-
tivities. Hypothetical values allow us to prove that some explanations derived from a
dependency based approach are in fact incorrect and result in an exception.)

Diagnosis of Service Failures by Trace Analysis 337

Let us assume that a failure of SAMPLEt1 is unlikely, so [SEC2t4] is the only leading
diagnosis. It follows, that SEC2 must output toR2 a value such that the second occurrence
of X1 takes the upper branch. REM has to be executed to avoid the exception.

Let us assume a repair reasoner decides to execute REM and GUARD after the exe-
cution of GUARD at t8, but the execution of GUARDt10 generates another exception.
It follows that 〈SAMPLEt1, REMt9〉 is a further minimal conflict. Whatever branch is
taken in the process, assuming executions SAMPLEt1, REMt9 as correct leads to an
exception raised by GUARD. Consequently, [SAMPLEt1] is the only single fault diag-
nosis. So the repair reasoner decides to execute SAMPLE again at t11. If we assume
that the second execution of SAMPLE (at t11) outputs the same value as the execution
of SAMPLE at t1, then the diagnosis [SAMPLEt1] has to be extended to [SAMPLEt1,
SAMPLEt11].

Consequently, there are two minimal diagnoses [SAMPLEt1, SAMPLEt11] and
[SEC2t4, REMt9]. If the first diagnosis is very unlikely (since we know that the prob-
ability for SAMPLE to fail twice is an order of magnitude lower than the second di-
agnosis) then the repair reasoner decides to execute REM again which now provides a
different value than REMt9. Next GUARD is executed which returns t (true). At this
point we can conclude that the value provided by REMt12 corresponds to a value where
the process is executed for the input provided by STARTt0 and all activities worked
correctly. Consequently, the faulty execution of the process is repaired.

In such a diagnosis/repair scenario two challenges must be addressed. (1) The exe-
cution follows the control path of the process definition until an exception is raised. At
this point a repair reasoner takes over control and (re-)executes activities in an order
that may differ from the one specified in the process definition. Note, if an activity can
be re-executed is decided by the repair reasoner.

(2) It cannot be assumed that a complete definition of the behavior of the activities is
available. In many cases only the structural description of the process and the execution
trace is provided.

To deal with partially known behavior we present a process model that allows to
define sets of possible activity behaviors. (For brevity, we will not address the mapping
to and from BPEL and remain within the formal notation.)

3 Process Model

In our model, a process consists of activities that are connected by shared variables.
To obtain a model that is suitable for simulation and diagnosis, the semantics of each
activity and the control and data flow between activities must be captured. We follow
the proposal of [11] and represent the semantics of the process as constraints over the
process variables. Different from previous models, our approach explicitly captures al-
ternative possible process behaviors in a single model. Our notation is based on Reiter’s
logic formalism [13], but the underlying ideas apply to other formalisms, such as tran-
sition systems. We first describe the flow-related modeling aspects:

Definition 1 (Process). A process P = 〈A, V, I, O〉 consists of a set of literals A =
{A1, . . . , An} representing activities. Occurrences of each activity are defined over a

338 W. Mayer, G. Friedrich, and M. Stumptner

set of process variables V . I ⊂ V and O ⊆ V represent the input and output variables
of P , respectively.

Each occurrence of activity Ai in P receives a vector of input values through some pro-
cess variables (the vector of variables is denoted by Ĩi) and outputs a vector of values to
process variables (denoted by Õj). Activities Ai may occur several times in the process
exploiting different process variables. A process has a distinguished START activity
with no predecessors and an END activity with no successors. Processes conform to
the Static Single Assignment (SSA) form [3], values through some process variables
and outputs values to some process variables. The vector of process variables serving
as input (output) for Aij is denoted by Ĩij (Õij). A process has a distinguished START
activity with no predecessors and an END activity with no successors. Processes con-
form to the Static Single Assignment (SSA) form [3], where each variable is defined by
exactly one activity. This is accomplished by creating new indexed “versions” of vari-
ables and by introducing so called φ-activities that are placed at control flow join points.
The SSA form of our example process is shown (in pseudo-code syntax) in Figure 1.

The input variables taken by a process are defined by the START activity, and the
output variables are inputs to the END activity. The structure of P is expressed as the
conjunction of all its activity occurrences

P (V) =
∧
Ai(Ĩj , Õj), Ai ∈ A; Ĩj , Õj ⊆ V ; i ∈ [1, n]

that defines the control and data flow admitted by the process. As noted, an activ-
ity Ai may occur several times in P (V). We use upper case letters to denote variables
in first-order logical sentences. We write P (Ĩ , X̃, Õ) to denote the conjunction P (V)
where the process input variables are bound to input values Ĩ , the output variables are
bound to Õ, and the remaining process-internal variables are bound to X̃ . PredicatesAi

govern the allowed value combinations admitted by the correct behavior of all occur-
rences of activity Ai. Hence, value assignments to all process variables Ĩ , X̃, Õ which
satisfy the predicates of the activities Ai in the conjunction P (Ĩ , X̃, Õ) correspond to
the allowed execution(s) where P receives input values Ĩ and produces output values Õ.
A value assignment that satisfies all predicates Ai in P (Ĩ , X̃, Õ) is an execution of the
process. For simplicity of presentation, we assume that END has only a single control
input variable E that indicates success or failure of a process execution. The SSA from
of the example process is represented as the conjunction

P (SPEC , R1, R2, S1, . . . , S4, C1, C2, . . . , E) =

start(C1,SPEC) ∧ sample(C1, SPEC , C2, S1) ∧
sec1(C2, S1, C3, R1) ∧ x1(C3, R1, C4, C5) ∧
sec2(C4, S1, C6, R2) ∧ x1(C6, R2, C7, C8) ∧

rem(C7, S1, C9, S2) ∧ φ(C8, C9, C10) ∧ φ(S1, S2, S3) ∧
φ(C5, C10, C11) ∧ φ(S1, S3, S4) ∧ guard(C11, S4, E) ∧ end(E, S4)

where the variablesCi andE model the control flow and the remaining variables model
the data flow. Control- and data flow joins are uniformly represented as φ-activities.

From here on we define the relation describing the behavior of an activity over a set
of activity variables. We focus on the possible relationships between input and output
values of an activity and do not rely on detailed knowledge about the internal structure

Diagnosis of Service Failures by Trace Analysis 339

or implementation of an activity. Since an activity may occur several times in P , the
activity variables (·) may be bound to different process variables (̃·) as shown in the
example for X1. That is, the activity variables in the definition of the behavior relation
serve as a placeholder for process variables.

Definition 2 (Behavior Relation). Let A be an activity with activity variables
U1, . . . , Ut where the input variables are I = 〈U1, . . . , Us〉 and the output variables
are O = 〈Us+1, . . . , Ut〉, and let DUk

denote the value domain of variable Uk. The
allowed behavior of activity A is given as a relation over the allowed input and output
values: A(I,O) ⊆ DU1 × · · · ×DUs ×DUs+1 × · · · ×DUt .

We require that A is total, that is, A(v̂, O) includes at least one tuple for each v̂ ∈
DU1×· · ·×DUs . We describe the behavior relation ofA extensionally by a set of literals.
Value domains correspond to types and can appear in multiple behavior descriptions.
For example, the domain of the data output of SAMPLE is the domain of the processing
input of SEC1. We require processes to be well typed such that an activity is defined
on all values that could be produced by its predecessors. Without loss of generality we
assume that any two domains are either equal or mutually disjoint.

Definition 3 (Process Behavior). A process behavior BP for a process P is a vector
of activity behavior relations

〈
A1(I1, O1), . . . , An(In, On)

〉
. Ii, Oi denote vectors of

activity variables.

To accurately model the flow of control in a process execution, we assume that each
domain DUk

contains a distinguished symbol nil that represents “no value” and that
is different from any value produced by any execution of an activity. The control flow
between activities is expressed as a shared variable connecting each predecessor activity
to its successor(s). Control activities AND-split, AND-join, and XOR-join are defined
as usual where control input and output variables have the binary domain {t,nil}. For
processing activities (those which process inputs and pass the control flow), guards,
and XOR-splits, we amend the relation A(I,O) to include all tuples 〈v̂,nil , . . . ,nil〉
where an input value in v̂ is nil and all other input variables are bound to values of
their domain. For φ-activities the output is nil iff both inputs are nil . We refer to these
sets of tuples as the nil-description. This model derived from SSA form ensures that
an activity produces non-nil outputs only if it is activated with non-nil inputs along the
control flow path and produces nil otherwise. As a result, the control and data flow in
any process execution are captured correctly. Furthermore, the model ensures that the
END activity receives a non-nil control input iff the process runs to completion and
does not raise an exception.

Let us now investigate the case where the behavior of an activity A is partially un-
known. This situation may arise if we must predict the execution of a process on partial
input or in the presence of fault assumptions. For example, the outputs of X1 cannot be
predicted precisely without knowing the values supplied by SEC1 and SEC2. However,
even if the behavior of SEC1 is not known, it is still possible to conclude that any ex-
ecution of SEC1 will result in an assignment for R1 and the activation of X1. Let the
hypothetical value of the assignment to R1 be r. Then it is known that X1 will activate
either the upper or the lower branch. Consequently, the behavior relation of X1 will

340 W. Mayer, G. Friedrich, and M. Stumptner

contain either x1(t, r, t,nil) or x1(t, r,nil , t) where the behavior of an XOR-split ac-
tivity is expressed by the relation x1(C,W, Y,N) defined over control variables C, Y ,
N and decision inputW . Since XOR-splits exhibit deterministic behavior (for given in-
puts) the behavior relation could not contain both tuples. To capture this form of incom-
plete knowledge, a model must be able to express a set of possible behavior relations
where each relation reflects a different possible behavior if complete information was
available.

We generalize our model of an activity from a single relation to a set of relations
in order to model the behaviors that may arise if the behavior relation is not known
completely. The possible behaviors of an activity A are expressed by a set of relations
A(I,O) =

{
A1(I,O), . . . , Az(I,O)

}
, where each Ak(I,O) represents a behavior

relation as defined previously.
E.g., the two possible behaviors of an XOR-split activity x1(C,W, Y,N) with its

decision input fixed to W = x (where x may be nil) are

{x1(nil , x,nil ,nil), x1(t,nil ,nil ,nil), x1(t, x, t,nil)} and

{x1(nil , x,nil , nil), x1(t,nil ,nil ,nil), x1(t, x,nil , t)} .

More generally, if the value of variable W is not known, AX1(IX1, OX1) comprises
all sets

{{x1(t, nil, nil ,nil) ∪
⋃

x∈DW

{x1(nil , x,nil , nil), x1(t, x, Y, N)}} |

〈Y, N〉= 〈t, nil〉 or 〈Y, N〉= 〈nil , t〉}

The behavior of the entire process P is determined as a combination of specific
behaviors, one each from Ai(Ii, Oi) for all activities Ai in P . By constructing the set
of possible selections we define the set of all possible process behaviors.

Definition 4 (Possible Process Behaviors). The set of all possible behaviors of P is
given as

BP =
{〈
Ak1

1 , . . . , A
kn
n

〉
| Aki

i ∈ Ai(Ii, Oi)
}
.

An element BP ∈ BP is a possible process behavior.

Assume an execution of P results in the following observed execution behavior of ac-
tivities Obs:

{start(t, spec1), sample(t, spec1, t, s1), sec1(t, s1, t, r11),
x1(t, r11, t,nil), sec2(t, s1, t, r21), x1(t, r21,nil , t), . . . ,
guard(t, s1,nil), rem(t, s1, t, s2), guard(t, s2,nil),

sample(t, spec1, t, s1), rem(t, s1, t, s3), guard(t, s3, t)}.
The same I/Os are observed for the executions of SAMPLE, while REM produces dif-
ferent outputs for the same input.

In absence of further information, the observed execution behaviors in Obs to-
gether with the nil -description comprise the behavior relations. Behavior relations
of φ-activities and END are also included. Assume that REM may behave non-
deterministically for some inputs, and that for the input value r21 the behavior of the

Diagnosis of Service Failures by Trace Analysis 341

XOR is unknown; that is, no behavior matching x1(t, r21, ,) has been observed. Then
there are two possible process behaviors BU

P and BL
P for P : in BU

P , the second occur-
rence of X1 in P activates the upper branch on input r21, while in BL

P the lower branch
is taken.

A given process behavior BP ∈ BP determines the set of possible executions of
P . We abstract from the concrete execution(s) implied by a given BP and project the
process behavior on its output values:

Definition 5 (Reachable assignment). Let BP be a behavior of a process P =
〈A, V, I, O〉. An assignment of value w to output variable Q̃ ∈ O is reachable under
BP iff some execution admitted by P (Ĩ , X̃, Õ) satisfies Q̃ = w. We write
BP |= ∃Ĩ X̃ Õ : P (Ĩ , X̃, Õ) ∧ Q̃ = w.

For the scenario described above it holds that in both possible process be-
haviors (BU

P and BL
P) E = nil is a reachable assignment: BL

P |=
P (SPEC , R1, R2, S1, . . . , S4, C1, C2, . . . , E) ∧ E = nil (the variables of P are ex-
istentially quantified). That is because the guard signals an exception both for s1 and s2.
Assignments S4 = s2 and S4 = s3 are both reachable in BU

P .
If BU

P determines the execution, E = nil , because the guard signals an exception if
S4 = s2 is reached. If BU

P is changed to B′UP by removing rem(t, s1, t, s2) from the
behavior relation of REM, E = nil is no longer reachable in B′UP but is still reachable
in BL

P . The process behaviorB′UP specifies a process where –regardless of the concrete
execution– no exception will be raised, whereasBL

P admits an execution that fails. Con-
sequently, if we assume that SEC2t4 produces a different value than the observed value
r21 and on this value the upper path of the second occurrence of X1 is taken, and REM
produces a different value than s1 or s2 then we are guaranteed a process behavior
which rules out exceptions.

4 Diagnosis Model

In “black box” application domains such as Web Services the complete behavior rela-
tion Ai(Ii, Oi) is unknown. However, we can exploit the available knowledge which
on one hand specifies the I/O tuples that must be contained in a behavior relation and on
the other hand describes which I/O tuples are forbidden. For each activityAi a behavior
relation Ai(Ii, Oi) is defined to include the nil -description, all observations gathered
from executions of activities, and possibly other known concrete I/O behaviors. This set
of predefined behaviors is denoted by Pre. Some domains of the variables of Ai may
be known, e.g., control variables, while others are only partially known (e.g. the output
of SAMPLE). If we observe a value v of a variable O whose domain is only partially
known, and v is not contained in this domain, we extend the domain with a new symbol
representing v.

Additional requirements constraints Rei determine whether the behavior of an ac-
tivity Ai must be deterministic. Rei is a constraint expression over the variables in
Ai(Ii, Oi) specifying which value combinations for activity variables Ii, Oi are al-
lowed in the behavior relation. For our purposes it is sufficient if Rei refers to known
domain values of Ii, Oi. These constraints are local to an activity and do not depend on

342 W. Mayer, G. Friedrich, and M. Stumptner

the behavior of any other activity. The set of requirements for all activities is denoted
by Re. The requirement that activity behaviors must be totally defined is part of Rei.

Definition 6 (Diagnosis Problem). A diagnosis problem DP = 〈P,Obs, Pre,Re〉
consists of a process P , a set of I/O behaviors Obs observed from executions, a set of
predefined behaviors Pre, and a set of requirements Re. Let P = 〈A, V, ∅, {E}〉 with
activities A = {A1, . . . , An}. Let Obs = {ob1(v̂1, ŵ1), . . . , obq(v̂q, ŵq)} be the set of
observed I/O behaviors of activity executions, where obj(v̂j , ŵj) ∈ Obs is the observed
execution of an activity occurrence Aij . The set of all observed execution behaviors of
an activityAi is denoted by obi. obi ⊆ Ai(Ii, Oi), Ai(I i, Oi) ∈ Pre for i ∈ {1, . . . , n}.
Process variable E indicates success or failure of any execution of P .

Note that without loss of generality, the definition limits P to a single output and does
not mention process inputs: the inputs that were observed in executions are modeled
as outputs of the START activity. Furthermore, the decisions that establish if a process
execution is successful (typically referred to as an “oracle”) are explicitly encoded in
the guard activities of the process. Note that we do not require that the criteria are
completely known and formalized. Rather, the behavior of guard activities is also de-
termined by observations in Obs. Our model implies that if a guard activity determines
that its input values violate a process constraint, a vector containing nil values will be
assigned to its output variables. By the definition of the SSA form and the behavioral re-
lations, nil will be propagated to the END activity by the subsequent activities. Hence,
it is sufficient to verify that the END activity does not receive a nil value to verify that
the process execution complies with all guards.

For example, the behavior PreX1 of x1(C,W, Y,N) is given by the set
{x1(t,nil ,nil ,nil), x1(nil , X,nil ,nil) | X ∈ DW }∪Obs whereObs contains the ob-
servations {x1(t, r11, t,nil), x1(t, r21,nil , t)}. The requirements ReX1 for the XOR
behavior are given by the following sentence:

x1(C,W, Y,N)⇒
[(C = nil ∨W = nil)⇔ Y = nil ∧N = nil]∨
[(C �= nil ∧W �= nil)⇔ Y �= N]

In addition ReX1 includes the property that X1 must be deterministic and totally
defined.

If a failure occurred (indicated by a guard raising an exception) either during process
execution or repair planner guided re-execution, some activity executions must have
produced incorrect values. In other words, specific activity behaviors in the process are
faulty, and the behavior definition must be restricted so that the incorrect I/O behaviors
cannot occur. Conversely, behaviors do not need to be removed if their execution cannot
result in a failure.

Let BP be a process behavior. For a set of tuples Δ, BP \Δ is the process behavior
where from each behavior relation in BP the tuples of Δ are removed.

Definition 7 (Diagnosis). Let DP = 〈P,Obs, Pre,Re〉 be a diagnosis problem with
P = 〈A, V, ∅, {E}〉. A subset Δ ⊆ Obs of activity executions is a diagnosis for DP iff
there exists a process behaviorBP such that

Diagnosis of Service Failures by Trace Analysis 343

1. Each A′i(Ii, Oi) ∈ BP is a superset of Ai(I i, Oi) \Δ for Ai(Ii, Oi) ∈ Pre
2. Each A′i(Ii, Oi) ∈ BP is consistent with Rei ∈ Re
3. BP �|= ∃X̃ E : P (∅, X̃, E) ∧ E = nil .

Δ is minimal if no Δ′ ⊂ Δ is a diagnosis for DP .

The first condition expresses the key concern that the executions should be consistent
with existing non-faulty activity behaviors, but omit the faulty behavior tuples. The sec-
ond condition formalizes the expectation that activity executions must also satisfy gen-
eral known requirements like totally defined. The third is the error-freeness condition
for the diagnosed and repaired execution.

Hence, a diagnosis Δ rules out certain observed behaviors of activities, such that no
process execution conforming to the remaining assumed-correct behavior relations in
BP can lead to a failure. We say Δ is accepted as a diagnosis iff there exists a correct
process behavior BP that extends Pre \Δ. A minimal diagnosis preserves as much as
possible the observed behavior. If the same behavior of an activity is observed multiple
times in an execution (e.g. sample(t, spec1, t, s1)) then either all of these executions
must be correct or all must be faulty. This assumption introduces dependencies between
activity executions and may affect the diagnosis probability. Devising suitable probabil-
ity models is beyond the scope of this paper.

As examples, consider the following diagnosis scenarios assuming that the process
was executed until the first execution of the guard returns a failure. All the behavior re-
lations of the activities contain just the observed I/O behaviors and the nil -description.
Re contains the usual restrictions on the allowed behavior of processing activities and
control activities. If Δ = ∅ then E = nil is reachable, so Δ = ∅ is not a diagnosis. If
Δ = {sample(t, spec1, t, s1)} then we can construct behavior relations for all activi-
ties such that Pre \Δ is extended and the process behavior is correct. For example, the
execution of SAMPLE generates a new value for which we can assume that the guard
does not signal a failure. However, if Δ = {sec1(t, s1, t, r11)} then it is not possible
to generate a correct process behavior by extending Pre \ Δ. Whatever value SEC1
generates, either the upper branch or the lower branch of the first occurrence of X1 in
P is taken. In both cases, s1 will be assigned to S4 and therefore the guard will output
nil (as in the original execution). Thus, Δ = {sec1(t, s1, t, r11)} is not a diagnosis, as
it does not prevent the exception.

In the following presentation we will assume that P is acyclic. This does not limit
the representation of observed execution traces (traces are usually represented as par-
tially ordered set of activities). But loops must be taken into account when projecting
unseen behavior forward through the process, using common techniques to determine a
sufficient number of unfoldings that cover all possible looping behaviors [7].

5 Symbolic Representation

To verify ifΔ is a diagnosis, behavior relationsA′i(I i, Oi) of activitiesAi ∈ A must be
found that include the tuples of Ai(Ii, Oi) \Δ, are consistent with Rei, and no guard
fails, i.e. E = nil cannot be reached. If no such set of behavior relations exist then Δ is
not a diagnosis. Consequently, all possible behavior relations ofAi have to be explored.
If all domains of I/O variables of Ai are known we can enumerate all behaviors which

344 W. Mayer, G. Friedrich, and M. Stumptner

are superset of Ai(Ii, Oi) \ Δ and consistent with Rei. However, if domains are only
partially known then we have to deal with unknown values.

We adopt the principle of symbolic execution [6] from program analysis to deal with
unknown behaviors. In symbolic execution, unknown values of input and output vari-
ables of program statements are represented as symbols. Every occurrence of an activity
Ai in the process P may produce a new, yet unseen value for a variable whose domain
is partially unknown.

For an activityAi and an output variableO of this activity, we inject unique symbols
s1, . . . , sp into the domain DO , where p is the number of occurrences of Ai in P . The
domainDO may be used multiple times by the same activity but also by other activities
as a domain for output variables.

For example, assume that activities SEC1 and SEC2 use the same domainD for their
data output. From observations we know that {r11, r21} ⊂ D. Both SEC1 and SEC2
can produce symbolic values y1 and y2 that represent yet unseen values in D. Since
the symbolic values are not constrained further, both activities may output an arbitrarily
chosen value —the same value or different values— in D. Hence the symbolic behav-
ior relation must consider the cases where both activity executions result in the same
symbolic value and where the values differ.

In the following we construct every possible behavior of activities given a diagnosis
problem and a Δ ⊆ Obs.

Let A be an activity with input variables I = 〈U1, . . . , Us〉 output variables O =
〈Us+1, . . . , Ut〉, and letDUk

denote the domain of variableUk. The set of all input vectors
of an activity iswI = {〈w1, . . . , ws〉 |w1 ∈ DU1 , . . . , ws ∈ DUs}. Likewise the set of all
output vectors of an activity iswO = {〈ws+1, . . . , wt〉 |ws+1 ∈ DUs+1 , . . . , wt ∈ DUt}.

Based on the I/O vectors we can construct all possible behavior relations of activities.
However, in such a relation, for each input vector, at most p output vectors need to be
defined, since the activity can only occur p times in P ; on each occurrence a different
output vector can be returned. If an activity is deterministic then just one output vector
is created for each possible input vector. Consequently, the set of possible behaviors
for an activity Ai is defined by behavior relations where for each input vector p output
behaviors are chosen. The same output vector may be selected multiple times.

A′i(I i, Oi) = {
⋃

wI∈wI
{〈wI , w1〉 , . . . , 〈wI , wp〉}|w1 ∈ wO, . . . , wp ∈ wO}

All the possible behavior descriptions in A′i are extended by the set of tuples consid-
ered to be correct, i.e. Ai(Ii, Oi) \Δ for Ai(Ii, Oi) ∈ Pre, and by the nil -description.
In addition, we eliminate all behavior descriptions in A′i that are inconsistent with re-
quirementsRei. We generate the possible behavior for all activities which have variables
with a partially unknown domain, such as processing activities, guards, XOR-splits, and
φ-activities. The result is a set of possible process behaviorsBP for a diagnosis problem
and a Δ ⊆ Obs.

For example, the domain DW of x1(C,W, Y,N) is extended to contain all of
{r11, r21, y1, y2} (and nil as the only other value). Every possible behavior of X1
includes the tuples in PreX1 (shown earlier) and must be consistent with ReX1. That
is, the behavior on inputs {r11, r21,nil} is fixed, but there are four different behaviors
which differ just on the outputs provided for inputs {y1, y2}:

Diagnosis of Service Failures by Trace Analysis 345

{x1(t, y1, t, nil), x1(t, y2, t, nil)}, {x1(t, y1, nil , t), x1(t, y2, t, nil)},
{x1(t, y1, t, nil), x1(t, y2, nil , t)}, {x1(t, y1, nil , t), x1(t, y2, nil, t)}.

Based on the possible process behaviors BP for a diagnosis problem DP and a
diagnosis Δ we can state the following property which is exploited for the generation
of diagnoses:

Property 1. Let DP = 〈P,Obs, Pre,Re〉 be a diagnosis problem with P =
〈A, V, ∅, {E}〉 and BP the set of possible process behaviors generated for a subset
Δ ⊆ Obs as described above.
Δ is a diagnosis for diagnosis problem DP iff there is a process behavior Bp ∈ BP

s.t. Bp �|= ∃X̃ E : P (∅, X̃, E) ∧ E = nil .

Proof sketch: (⇐) : This is trivially fulfilled by the construction of BP . All activity
behaviors in BP are supersets of Ai(Ii, Oi) \Δ, are consistent with Rei, and Bp does
not trigger an exception.

(⇒) : If there exists a diagnosis Δ for DP then there exists a process behavior
BP s.t. BP �|= ∃X̃ E : P (∅, X̃, E) ∧ E = nil . An instantiation of the variables in
BP |= ∃X̃ E : P (∅, X̃, E) corresponds to a process execution and defines behavior
tuples for activities Ai. Values not covered by observations are replaced by a symbol.
By construction, at least one symbolic value is available for each occurrence ofAi. The
introduction of symbolic values cannot trigger an exception, and all constraints in Rei

remain satisfied, since both cannot contain symbolic values. Thus, if a constraint is ful-
filled for an arbitrary unknown value it is also fulfilled for a symbolic value.Ai remains
to be totally defined after the substitution. The tuples of all process executions where
the unknown values are replaced by symbolic values define behavior relations which
are included in some behavior relation generated by our construction of BP . It follows
that if there is a process behavior BP for which Pre \ Δ can be correctly extended,
then there exists a process behavior B′P in the set of generated possible process behav-
iors BP which is also a correct extension of Pre \Δ. We have constructed a decision
method which determines if a set Δ ⊆ Obs is a diagnosis. �

Given our example process, observations and the diagnosis candidate Δ = ∅, all
Ai(Ii, Oi) in the process behaviors of the generated set BP contain their observed ex-
ecution behavior. Therefore, in each process behavior of BP , E = nil is reachable.
Consequently, there is noB′P which is a correct extension of Pre\Δ. Hence,Δ = ∅ is
not a diagnosis. However, if the observed execution behavior sample(t, spec1, t, s1) is
removed, then only symbolic (unseen) output values remain to be assigned to S1. There-
fore, we can construct behaviors for REM , GUARD , and all other activities such that
the guard is not triggered for any execution. Therefore, {sample(t, spec1, t, s1)} is
indeed a valid diagnosis.

6 Diagnosis Computation and Evaluation

Because all domains of the variables are finite, logic programming systems and model
checkers can be used to concisely express all possible process behaviors and check

346 W. Mayer, G. Friedrich, and M. Stumptner

whetherE = nil is reachable. The search for minimal, irreducible, or leading diagnoses
can be implemented by standard methods, such as HS-tree generation, combined with
appropriate minimization procedures, such as QuickXplain.

We conducted an empirical evaluation to determine the diagnostic accuracy that can
be expected from our model, compare it with previous approaches, and assess the com-
putational resources required. We sourced process examples from the literature, such
as [4], and generated additional (artificial) processes to obtain a comprehensive bench-
mark suite of 200 processes. Each process comprised 5–79 activities chosen from 3–9
different types of activity, and each process included up to 22 xor decision nodes. Ac-
tivities were assembled into complex processes based on a randomized graph grammar
to ensure process control and data flow are well-defined. For each activity type, a set
of observed behaviors was generated randomly to yield the observed process behav-
iors and exceptions. Two execution paths were generated for each process. The number
of activities occurring in an execution path varied from 5–65 activities. The resulting
benchmark suite of 400 process executions covers a wide range of different process
structures, and, to the best of our knowledge, is more comprehensive than any other
available benchmark.

We implemented the diagnosis framework in Eclipse Prolog. Each process was com-
piled into a finite domain constraint satisfaction problem which captured the structural
and behavioral links between the activities. Concrete and symbolic values were encoded
as integers to leverage efficient constraint solvers. We used additional variables to model
correctness assumptions and the selection of possible behaviors. The constraint system
was then used to isolate the maximal subsets of the observed process behaviors that did
not result in an exception.

Table 1. Comparison of dependency- and symbolic diagnosis model

Size N Xor Trace Dep. Symb. Imp. Time (s)
0–9 48 0.67 8.04 3.98 3.50 0.10 0.12

10–19 100 3.10 16.84 6.40 4.63 0.16 1.07
20–29 124 5.21 27.16 8.97 4.89 0.45 5.43
30–39 60 7.67 33.43 9.67 5.37 0.59 16.85
40–49 28 10.21 41.64 12.36 6.31 0.50 74.52
50–59 12 12.17 35.17 10.42 6.29 0.32 124.22
60–69 16 14.62 30.75 9.12 4.50 0.40 130.63
70–79 6 17.00 35.67 9.33 2.00 255.80
0–79 400 5.85 24.95 8.19 4.82 0.29 14.56

Our results are summarized in Table 1, aggregated by process size. The columns
show the average number of activities in a process (Size), the number of process execu-
tions considered in our study (N), the average number of decision nodes in a process
(Xor), the average number activities in each execution trace (Trace), the number of min-
imal diagnoses obtained from dependency-based models (Dep) and from our model
(Symb), the mean relative improvement (Imp= 1 − Symb/Dep), and the average di-
agnosis time in seconds (Time) to compute all diagnoses using the symbolic model.
Accuracy is measured as the fraction of activity behaviors that need not be examined

Diagnosis of Service Failures by Trace Analysis 347

0−
9

10
−

19

20
−

29

30
−

39

40
−

49

50
−

59

60
−

69

70
−

79

0
10

20
30

40 Symbolic Model
Dependency
Model
Executed
Activities

N
um

be
r

of
 M

in
im

al
 D

ia
gn

os
es

20 40 60 80

0
50

10
0

15
0

20
0

25
0

30
0

Number of activities
T

im
e

(s
ec

on
ds

)

Fig. 2. Process size vs. result size and diagnosis time

given a set of diagnoses. Note that Imp may be larger than 1− Symb/Dep since some
instances exceeded the five minute time limit for the symbolic model. The blank cell
denotes “no improvement” and is caused by too few symbolic results. Hence, Imp is a
conservative estimate and may improve further with faster algorithms.

The results show that the symbolic model yields significantly more accurate results
than simpler dependency-based models. The symbolic model on average eliminated
three diagnoses, but could shorten the result by as much as 20 diagnoses. Overall, the
number of diagnoses dropped by roughly 30% compared to dependency-based models.
Our model on average implicated only 21% of the executed activities. Figure 2 shows
a bar plot of the additional spurious diagnoses that are incurred when moving from a
more precise diagnosis model (lower bars in the diagram) to a more abstract model
(mid- and upper bars). The greatest reduction of the diagnosis ratio was observed for
process executions that contained a large number of activities. Among all diagnoses,
90% were single-fault explanations, 9.5% double-faults, and 0.5% triple-faults.

The measured execution times indicate that the symbolic model also performed well
in those scenarios that are most relevant for practical application. Figure 2 shows a scat-
ter plot of the diagnosis times. In 75% of all cases, the result was obtained after just 5.3
seconds. On average, all minimal diagnoses were obtained after 14.56 seconds of CPU
time.1 Our results confirm that the model is sufficient to address the majority of practi-
cal process diagnosis scenarios, where the number of activities is virtually always less
than 50. (Larger scenarios are usually decomposed hierarchically, where the number
of activities on each level is small. Our model is particularly suited for hierarchical di-
agnosis, since no detailed specification of the abstract activities’ behavior is required.)
We believe that further optimization of our naı̈ve implementation will improve these
results.

Another area for future work lies in the more detailed incorporation of particular
service properties. A significant paradigm adopted by most papers on Web services is

1 The data were obtained from Eclipse 6.1 on Intel P4@1.86GHz with 6Gb RAM running Linux
2.6.

348 W. Mayer, G. Friedrich, and M. Stumptner

the CRP (compensatable, retriable, and pivot) model originally developed for Multi-
database systems [10]. Though we have not addressed re-execution in detail this paper,
the CRP model is easily compatible with our re-execution concept; we have worked
on the default assumption that services are retriable, while pivot and compensatable
services would be represented as additional constraints on the set of possible behaviors.

7 Related Work

Current approaches for dealing with runtime faults in composite service execution ei-
ther assume the existence of an independent formal specification in the Event Calculus
(e.g., [5]) or an explicit definition of detailed fault handling logic, relying on predefini-
tion of detailed fault models and explicit specification of exception handling strategies
to be followed in a particular situation [8].

Dependency tracking techniques are well-known techniques for model-based diag-
nosis of programs [14] and Web Services [1].

Expressive constraint models have been developed to increase the accuracy of model-
based debugging of imperative programs [9,11]. While our processes are much simpler
“programs”, we cannot rely on the precise behavioral specification of the programs re-
quired by the earlier approaches. Instead, we exploit specific behavior instances ob-
served at run time and embrace a symbolic representation to address the problem of
incomplete information.

The repair planning problem in this paper, as it has been examined, e.g,. in [4,12].
The former assumes the existence of a diagnosis method to initiate the planning process,
but does not specify it; our work therefore complements [4] and provides a basis for
application of its methods. The latter requires explicit definition of planning operators
representing application semantics to enable use of AI planners.

8 Conclusion

In many practical diagnosis/repair scenarios where service process executions have to
be repaired, only partial knowledge about the behavior of activities is available. In or-
der to recover from failures, repair-enabled process execution engines apply sequences
of executions and re-executions, possibly resulting in exceptions signaling failures. For
the construction of correct repair plans without extensive separate specification require-
ments, the appropriate diagnosis methods are a necessary precondition.

In this paper we pointed out the limitations of classic dependency tracing methods for
process diagnosis and motivated the necessity to reason with multiple possible activity
behaviors including the propagation of symbolic values. We have proposed a diagno-
sis approach which (1) can deal with partial knowledge about activity behaviors and
(2) does not assume that activities are executed in an order as defined in the process.
Both properties are necessary in diagnosis/repair scenarios where only limited behavior
knowledge is available.

We presented a diagnosis method for process executions that relies only on obser-
vations gathered from concrete executions to infer possible faults in the execution

Diagnosis of Service Failures by Trace Analysis 349

of individual process steps. Our method can deal with partial information and non-
deterministic activity behavior but requires only a structural model of the process and
tolerates partially known behavior descriptions. We empirically confirmed the increased
precision of our method and its feasibility for practical applications using a library of
service processes. Thus our work lays the foundation for the overall goal of constructing
complete and correct repair methods for processes where only partial behavior knowl-
edge is available. We also address aspects of the repair process by seamlessly incorpo-
rating the repeated execution of activities.

This paper is an important first step towards a comprehensive diagnosis and repair
framework for Web services. We intend to further explore the properties of our frame-
work with respect to classical consistency-based and abductive diagnosis frameworks,
and to further integrate the diagnosis method with recent work addressing the repair
aspect of the problem [4].

Acknowledgements. The work is partially funded by the Australian Research Council
(ARC) under Discovery Project DP0881854 and the Austrian National Science Fund
(FWF) Project 813806 - C2DSAS.

References

1. Ardissono, L., et al.: Enhancing web services with diagnostic capabilities. In: European Con-
ference on Web Services (2005)

2. Casati, F., Ceri, S., Paraboschi, S., Pozzi, G.: Specification and implementation of exceptions
in workflow management systems. ACM Trans. Database Syst. 24(3), 405–451 (1999)

3. Cytron, R., et al.: Efficiently computing static single assignment form and the control depen-
dence graph. ACM TOPLAS 13(4), 451–490 (1991)

4. Friedrich, G., Fugini, M., Mussi, E., Pernici, B., Tagni, G.: Exception handling for repair in
service-based processes. In: IEEE TSE (2010)

5. Gaaloul, W., Bhiri, S., Rouached, M.: Event-based design and runtime verification of com-
posite service transactional behavior. IEEE TSC 3(1), 32–45 (2010)

6. King, J.C.: Symbolic execution and program testing. CACM 19(7), 385–394 (1976)
7. Kroening, D., Strichman, O.: Efficient computation of recurrence diameters. In: Zuck, L.D.,

Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 298–
309. Springer, Heidelberg (2002)

8. Liu, A., Li, Q., Huang, L., Xiao, M.: Facts: A framework for fault-tolerant composition of
transactional web services. IEEE TSC 3(1), 46–59 (2010)

9. Mayer, W., Stumptner, M.: Evaluating models for model-based debugging. In: Proc. ASE,
pp. 128–137. IEEE, Los Alamitos (2008)

10. Mehrotra, S., Rastogi, R., Korth, H.F., Silberschatz, A.: A transaction model for multi-
database systems. In: ICDCS, pp. 56–63 (1992)

11. Nica, M., Weber, J., Wotawa, F.: How to debug sequential code by means of constraint rep-
resentation. In: Proc. DX Workshop (2008)

12. Rao, D., Jiang, Z., Jiang, Y.: Fault tolerant web services composition as planning. In: Proc.
Int’l Conf.Intelligent Systems and Knoweldge Eng, ISKE 2007 (2007)

13. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 23(1), 57–95 (1987)
14. Wotawa, F.: On the relationship between model-based debugging and program slicing. Artif.

Intell. 135(1-2), 125–143 (2002)

Automatic Fragment Identification in Workflows
Based on Sharing Analysis�

Dragan Ivanović,1 Manuel Carro,1 and Manuel Hermenegildo1,2

1 School of Computer Science, T. University of Madrid (UPM)
idragan@clip.dia.fi.upm.es, {mcarro,herme}@fi.upm.es

2 IMDEA Software Institute, Spain

Abstract. In Service-Oriented Computing (SOC), fragmentation and merging of
workflows are motivated by a number of concerns, among which we can cite de-
sign issues, performance, and privacy. Fragmentation emphasizes the application
of design and runtime methods for clustering workflow activities into fragments
and for checking the correctness of such fragment identification w.r.t. to some
predefined policy. We present a fragment identification approach based on shar-
ing analysis and we show how it can be applied to abstract workflow representa-
tions that may include descriptions of data operations, logical link dependencies
based on logical formulas, and complex control flow constructs, such as loops and
branches. Activities are assigned to fragments (to infer how these fragments are
made up or to check their well-formedness) by interpreting the sharing informa-
tion obtained from the analysis according to a set of predefined policy constraints.

1 Introduction

Service-Oriented Computing (SOC) enables interoperability of components with low
coupling which expose themselves using standardized interface definitions. In that con-
text, service compositions are mechanisms for expressing in an executable form busi-
ness processes (i.e., workflows) that include other services, and are exposed as services
themselves. Compositions can be described using one of the several available notations
and languages [Obj09, Jea07, Wor08, ZBDtH06, vdAP06, vdAtH05] which allow pro-
cess modelers and designers to view a composition from the standpoint of business
logic and processing requirements.

These service compositions are coarse-grained components that normally implement
higher-level business logic, and allow streamlining and control over mission-critical
business processes inside an organization and across organization boundaries. However,
the centralized manner in which these processes are designed and engineered does not
necessarily build in some properties which may be required in their run-time environ-
ment. In many cases defining subsets of activities (i.e., fragments inside the workflow)

� The research leading to these results has received funding from the European Community’s
Seventh Framework Programme under the Network of Excellence S-Cube - Grant Agreement
n◦ 215483. Manuel Carro and Manuel Hermenegildo were also partially supported by Spanish
MEC project 2008-05624/TIN DOVES and CM project P2009/TIC/1465 (PROMETIDOS).
Manuel Hermegildo was also partially supported by FET IST-231620 HATS.

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 350–364, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Automatic Fragment Identification in Workflows Based on Sharing Analysis 351

according to some policy can be beneficial in order to increase reusability (by locating
meaningful sets of activities), make it possible to farm, delegate, or subcontract part
of the activities (if, e.g., resources and privacy of necessary data make it possible or
even advisable), optimize network traffic (by finding out bottlenecks and adequately
allocating activities to hosts), ensure privacy (by making sure that computing agents
are not granted access to data whose privacy level is higher than their security clear-
ance level), and others. To this end, various fragmentation approaches have been pro-
posed [WRRM08, BMM06, TF07]. In the same line, mechanisms have been defined for
refactoring existing monolithic processes into process fragments according to a given
fragment definition while respecting the behavior and correctness aspects of the original
process [Kha07, KL06].

This paper addresses the automatic identification of fragments given an input work-
flow, expressed in a rich notation. The kind of fragment identification policies we tackle
is based on data accessibility / sharing, rather than, for example, mere structural prop-
erties. The latter simply try to deduce fragments or properties by matching parts of
workflows with predefined patterns, as [AP08] does for deadlocks. In contrast, the
design-time analysis we propose takes into account implicitly and automatically dif-
ferent workflow structures.

At the technical level, our proposal is based on the notion of sharing between activ-
ities. This is done by considering how these activities handle resources (such as data)
that represent the state of an executing composition (i.e., process variables), external
participants (such as partner services and external participants), resource identifiers, and
mutual dependencies. In order to do so, we need to ensure that the workflow is dead-
lock free in order to infer a partial order between activities. This is used to construct
a Horn clause program [Llo87] which captures the relevant information and which is
then subject to sharing and groundness analysis [MH92, JL92, MS93, MH91] to detect
the sharing patterns among its variables. The way in which this program is engineered
makes it possible to infer, after analysis, which activities must be in the same fragment
and which activities need / should not be in the same fragment. Even more interest-
ingly, it can automatically uncover a lattice relating fragments of increasing size and
complexity to each other and to simpler fragments, while respecting the fragment policy
initially set.

2 Structuring Fragments with Lattices

We assume that any fragment definition is ultimately driven by a set of policies which
determine whether two activities should / could belong to the same fragment. Frag-
ment identification determines how to group activities so that the fragment policies are
respected, while fragment checking ensures that predefined fragments abide by the poli-
cies. For example, data with some security level cannot be fed to activities with a lower
security clearance level. This can be used to classify activities at different clearance
levels according to the data they receive, and also to check that a previous classification
is in accordance to the security level of the data received. This may have changed due,
for example, to updates in an upstream part of the workflow.

Some approaches to process partitioning [FYG09, YG07] assume that the
activities inside an abstractly described process can be a priori assigned to different

352 D. Ivanović, M. Carro, and M. Hermenegildo

organizational domains depending on the external service that is invoked from the
workflow. These are concerned with ensuring that each fragment, corresponding to a
projection of the workflow onto organizational domains, is correctly wired with other
fragments to preserve both the correct behavior of the original workflow, and to satisfy
externally specified constraints that describe legal conversations and data flows between
services in the different domains. Rules for correctly separating fragments have also
been devised for some concrete executable workflow languages, such as BPEL [Kha07].
In our approach we want to derive the fragmentation constraints from the workflow and
the characterization of its inputs, without relying on other external policy sources. Also,
we take a more flexible view of workflow activities, including different “local” data
processing and structured constructs such as loops and nested sub-workflows, which, in
principle, are not a priori organization domain specific.

Many fragmentation approaches assume flat, non-structured fragments: activities are
just split into non-overlapping sets. However, for the sake of generality (which will
be useful later), we assume that fragments can have a richer structure: a lattice, which
means that in principle it is possible1 to join activities belonging to two different frag-
ments in a super-fragment which still respects the basic policies. For example, two
activities with separate security clearance levels (because one deals with business profit
data and the other one with medical problems in a company) can be put together in
a new fragment whose clearance level has to be, at least, equal or higher than any of
these two. It turns out that it may be possible that in order to have a consistent work-
flow, an “artificial” security level needs to be created if some activity is discovered to
need both types of data. Of course, a lattice can also represent simpler fragmentation
schemes, such as “flat” schemes (no order is induced by the properties of the fragments)
or “linear” schemes (the properties induce a complete order).

Therefore we will assume that the fragmentation policies can be described using a
complete lattice 〈L,�,�,⊥,�,�〉, where � is a partial order relation over the non-
empty set L of elements which tag the fragments, � and ⊥ are the top and bottom
elements in the lattice, and � and � are the least upper bound (LUB) and the greatest
lower bound (GLB) operations, respectively. In the examples we will deal with in this
paper we will only use the LUB operation.

〈hi,hi〉

〈hi, lo〉 〈lo,hi〉

〈lo, lo〉
Fig. 1. Data confidentiality:
two levels × two domains

As an example in the domain of data confidentiality,
the simplest non-trivial case can be modeled using two
levels L1 = {lo,hi} such that lo � hi, and activities be-
long to these two classes depending on the level of data
they operate on. In a more complex setting, we can have
more degrees of confidentiality L2 = {lo,med,hi}, which
are still completely ordered (lo � med � hi) or, more in-
terestingly, data belonging to different domains / depart-
ments in a company which each have different security

levels, e.g., L3 = {lo,hi}n, where n > 1 is the number of domains. In this case � is to
be defined to represent the company policy: maybe some department “dominates” the
security in the company and therefore fragments marked with 〈hi, 〉 (where stands for
“any value”) can access any data, or maybe there is no such a dominance and an activity

1 But not necessarily permissible: it depends on the particular definition of the lattice.

Automatic Fragment Identification in Workflows Based on Sharing Analysis 353

marked with clearance 〈hi, lo〉 cannot read data marked with security level 〈lo,hi〉, and
only activities with clearance level 〈hi,hi〉 can access all data in the organization. The
corresponding lattice appears in Fig. 1.

The lattice formalism provides us with the necessary tools for identification of frag-
ments. When a fragment is marked by some element c ∈ L, we can decide whether
some activity a can be included in the fragment depending on whether its policy level
â respects â� c or not. Note that the direction of the partial order in the generic lattice
is arbitrary and may need to be adjusted to match the needs of a real situation.

As anticipated earlier, in our approach policies which apply to data are reflected on
the results of operations on data and on the activities that perform those operations.
Thus, we assign policy levels to activities based on the policy levels of their input data
flow. We on purpose abstract from the notion of program variables / storage locations
and focus instead on pieces of the information flow, which are more important in dis-
tributed workflow enactment scenarios.

3 Derivation of Control and Data Dependencies

As a first step for the automatic fragmentation analysis proper, we need to find out a
feasible order of activities which is coherent with their dependencies and which allows
the workflow to finish successfully. How to do this obviously depends on the palette
of allowed relationships between activities, with respect to which we opted for a no-
table freedom (Section 3.1). To find such an order we first establish a partial order
between workflow activities which respects their dependencies; in doing this we also
detect whether there are dependency loops that may result in deadlocks. While there
is ample work in deadlock detection [BlZ04, AP08], we think that the technique we
propose is clean, can be used for arbitrarily complex dependencies between activities,
and uses well-proven, existing technology, which simplifies its implementation.

3.1 Workflow Representation

We first state which components we highlight in a workflow.

Definition 1 (Workflow). A workflow W is a tuple 〈A,C,D〉, where A is a finite set
of activities {a1,a2, . . . ,an}, n ≥ 0, C is a set of control dependencies given as pre-
and post-conditions for individual activities (see later), and D is a finite set of data
dependencies expressed as pairs 〈ai,A(d)〉 ∈D where ai ∈ A is an activity that produces
(writes) data item d, and A(d) ⊆ A (ai ∈ A(d)) is a set of activities that consume (read)
data item d.

This abstract workflow definition corresponds in general with the most frequently used
models for distributed workflow enactment. However, the flexibility of the encoding we
will use for the fragmentation analysis allows for two significant extensions compared
to other workflow models.

– In our approach, the activities inside a workflow can be simple or structured. The
latter include branching (if-then-else) and looping (while and repeat-until) con-
structs, arbitrarily nested. The body of a branch or a loop is a sub-workflow, and

354 D. Ivanović, M. Carro, and M. Hermenegildo

a1
x1
y1

a2
x2
y2

a3
y1,y2

z1
a4

x2,y2
z2

A = {a1,a2,a3,a4}
C = {pre–a3 ≡ done–a1∧done–a2 ,

pre–a4 ≡ done–a2}
D ={y1,y2}

y1 = 〈a1,{a3}〉, y2 = 〈a2,{a3,a4}〉

Fig. 2. An example workflow. Arrows indicate control dependencies.

activities in the main workflow cannot directly depend on activities inside that sub-
workflow. Of course, any activity in such a sub-workflow is subject to the same
treatment as activities in the parent workflow.

– Second, we allow an expressive repertoire of control dependencies between activ-
ities besides structured sequencing: AND split-join, OR split-join and XOR split-
join. We express dependencies similarly to the link dependencies in BPEL but with
fewer restrictions, thereby supporting OR- and XOR-join.

Definition 2 (Activity preconditions). A precondition of an activity ai ∈ A is a propo-
sitional formula which can use the full set of logical connectives (∧, ∨, ¬,→, and↔),
the values 1 (for true) and 0 (for false), and the propositional symbols done–a j and
succ–a j, a j ∈ A, where done–a j holds if a j has completed and succ–a j stands for a
successful outcome of a j when done–a j holds (i.e., succ–a j is only meaningful when
done–a j is true).

Definition 3 (Dependencies). A set of control dependencies C that associates each
ai ∈ A with its precondition, which we will term pre–ai. We write C as a set of identities
of the form pre–ai ≡ 〈formula〉. Trivial cases of the form pre–ai ≡ 1 are omitted.

Commonly, the preconditions use “done” symbols, whereas “succ” symbols can be
added to reflect the business logic in the structure of the workflow, and to distinguish
mutually exclusive execution paths. We do not specify here how the “succ” indicators
are exactly computed. Note that each activity in the workflow is executed at most once;
repetitions are represented with the structured looping constructs (yet, within each iter-
ation, an activity in the loop body sub-workflow can also be executed at most once).

Figure 2 shows an example. The activities are drawn as nodes, and control depen-
dencies indicated by arrows. Data dependencies are textually shown in a “fraction” or
“production rule” format next to the activities: items above the bar are used (read) by
the activity, and the items below are produced. Note that only items y1 and y2 are data
dependencies; others either come from the input message (x1, x2), or are the result of
the workflow (z1, z2). Item y1 is produced by a1 and used by a3, and y2 is produced by
a2 and used by a3 and a4.

Many workflow patterns can be expressed in terms of such logical link dependencies.
For instance, a sequence “a j after ai” boils down to pre–a j ≡ done–ai. An AND-join
after ai and a j into ak becomes pre–ak ≡ done–ai∧done–a j. An (X)OR-join of ai and
a j into ak is encoded as pre–ak ≡ done–ai ∨ done–a j. And an XOR split of ai into
a j and ak (based on the business outcome of ai) becomes pre–a j ≡ done–ai∧ succ–ai,

Automatic Fragment Identification in Workflows Based on Sharing Analysis 355

pre–ak ≡ done–ai∧¬succ–ai. In terms of execution scheduling, we take the assumption
that a workflow activity ai may start executing as soon as its precondition is met.

3.2 Validity of Control Dependencies

The relative freedom given for specifying logic formulae for control dependencies
comes at the cost of possible anomalies that may lead to deadlocks and other undesir-
able effects. These need to be detected beforehand, i.e., at design / compile time using
some sort of static analysis. Here, we are primarily concerned with deadlock-freeness,
i.e., elimination of the cases when activities can never start because they wait on events
that cannot happen.

a1

a2
pre–a2 ≡
done–a1

a3

pre–a3 ≡ done–a2 •done–a4

a4

pre–a4 ≡
done–a1∧
done–a3

Fig. 3. An example of deadlock dependency on
logic formula: • can be either ∧ or ∨

Whether a deadlock can happen or not
depends on both topology and the logic
of control dependencies. Figure 3 shows
a simple example where the dependency
arrows are drawn from ai and a j when-
ever pre–a j depends on ai finishing. That
topological information is not sufficient
for inferring deadlock freeness, unless
there are no loops in the graph. If the
connective marked with • in pre–a3 is
∨, there is no deadlock: indeed, there is
a possible execution sequence, a1−a2−
a3−a4. If, however, • denotes ∧, there is a deadlock between a3 and a4.

Therefore, in general, checking for deadlock-freeness needs looking at the formulas.
We present one such approach that relies on simple proofs of propositional formulas.
We start by forming a logical theory Γ from the workflow by including all precondi-
tions from C and adding axioms of the form done–ai→ pre–ai for each ai ∈ A. These
additional axioms simply state that an activity ai cannot finish if its preconditions were
not met. On that basis, we introduce the following definition to help us detect deadlocks
and infer a task order which respects the data and control dependencies:

Definition 4. The dependency matrix Δ is a square Boolean matrix such that its ele-
ment δi j , corresponding to ai,a j ∈ A, is defined as:

δi j =

{
1, if Γ � pre–ai→ done–a j

0, otherwise

For every data dependency 〈a j,A(d)〉 ∈ D, and for each ai ∈ A(d), we wish to ensure
that ai cannot start unless a j has completed, since otherwise the data item d would not
be ready. Expressed with a logic formula, that condition is pre–ai→ done–a j, as in the
definition of Δ , above. Therefore, we require δi j = 1.

The computation of Δ involves proving propositional formulas, which is best achieved
using some form of SAT solvers, which are nowadays very mature and widely available
either as libraries or standalone programs. It follows from the definition that δi j = 1 if
and only if the end of a j is a necessary condition for the start of ai. It can be easily

356 D. Ivanović, M. Carro, and M. Hermenegildo

shown that Δ is a transitive closure of C, and that is important for the ordering of
activities in a logic program representation. However, the most important property can
be summarized as follows.

Proposition 1 (Freedom from deadlocks). The given workflow is deadlock-free if and
only if ∀ai ∈ A, δii = 0.

Proposition 2 (Partial ordering). In a deadlock-free workflow, the dependency matrix
Δ induces a strict partial ordering ≺ such that for any two distinct ai,a j ∈ A, a j ≺ ai

iff δi j = 1.

4 Translation and Analysis

To apply sharing analysis, we first transform the workflow into an appropriate logic
program. The purpose of such program is not to operationally mimic the scheduling
of workflow activities, but to express and convey relevant data and control dependency
information to the sharing analysis stage.

4.1 Workflows as Horn Clauses

Based on the strict partial ordering ≺ induced by the dependency matrix Δ , in the
deadlock-free case it is always possible to totally order the activities so that ≺ is re-
spected. The choice of a particular order does not impact our analysis, because we
assume that the control dependencies, from which the partial ordering derives, include
the data dependencies. From this point on we will assume that activities are renumbered
to follow the chosen total order. The workflow can then be translated into a Horn clause
of the form:

w(V)← T (a1),T (a2), . . . ,T (aN)

where V is the set of all logic variables used in the clause, and T (ai) stands for the
translation of the activity ai.

As mentioned before, the logic program aims at representing data flow and depen-
dencies in a sharing analysis-amenable way, which we will detail later. Logic variables
are used to represent input data, data dependencies, output data, and the data sets read
by individual activities. For each activity ai ∈ A, we designate a set Ri of logic variables
that represent data items read by ai, and a set Wi of logic variables that stand for data
items produced by ai. We also designate a special variable âi that represents the total
inflow of data into ai. The task of the translation is to connect Ri and Wi∪{âi} correctly.

A primer on logic programs. Data items in logic programs are called terms. A term
t can be either a variable, an atom (i.e., a simple non-variable data item, such as the
name of a object or a number), or a compound term of the form f (t1, t2, . . . ,tn), (n ≥
0), where f is the functor, and t1, t2, . . . ,tn are the argument terms. f (a,b) is not a
function call, — it can be seen instead as a record named f with two fields containing
items a and b. Terms that are not variables and do not contain variables are said to be
ground. Procedure calls in a logic program are called goals and have the syntactic form

Automatic Fragment Identification in Workflows Based on Sharing Analysis 357

p(t1,t2, . . . ,tn) (n≥ 0), where p is a predicate name of arity n (usually denoted as p/n),
and the terms t1,t2, . . . ,tn are its arguments. In goals, the infix predicate = /2 is used to
denote unification of terms (described later), as in t1 = t2.

In the execution of a logic program, variables serve as placeholders for terms that
satisfy the logical conditions encoded in the program. Each successful execution step
may map a previously free variable to a term. The set of such mappings at a program
point is called a substitution. Thus, a substitution θ is a finite set of mappings of the
form x �→ t where x is a variable and t is a term. Each variable can appear only on one
side of the mappings in a substitution. At any point during execution, the actual value
of the variables in the program text is obtained by applying the current substitution to
these (syntactical) variables. These applications may produce terms that are possibly
more concrete (have fewer variables) than the ones which appear in the program text. If
θ = {x �→ 1,y �→ g(z)}, and t = f (x,y), then the application tθ gives f (1,g(z)).

Substitutions at a subsequent program points are composed together to produce an
aggregated substitution for the next program point (or the final substitution on exit).
E.g., for the previous θ and θ ′ = {z �→ a + 1} (with a being an atom, not a variable),
we have θθ ′ = {x �→ 1,y �→ g(a + 1)}.

Substitutions are generated by unifications. Unifying t1 and t2 gives a substitution θ
which ensures that t1θ and t2θ are identical terms by introducing the least amount of
new information. Unifying x and f (y) gives θ = {x �→ f (y)}; unifying f (x,a + 1) and
f (1,z + y) gives θ = {x �→ 1,z �→ a,y �→ 1}; and the attempt to unify f (x) and g(y)
fails, because the functors are different. When a goal calls a predicate, the actual and
the formal arguments are unified, which may generate further mappings to be added to
the accumulated ones.

Take, for instance, the Horn clause translation of the example workflow on Fig. 4.
Variables in the listing are written in uppercase, and comments that start with “%”
indicate workflow activity. The comma-separated goals in the body (after “:-”) are
executed one after another. If the initial substitution is θ0 = {x1 �→ u1,x2 �→ u2}, then
the first unification produces θ1 = {â1 �→ f1(x1)}, so the aggregate substitution before
the next goal is θ0θ1 = {x1 �→ u1,x2 �→ u2, â1 �→ f1(u1)}. The second unification in the
body adds θ2 = {y1 �→ f2(x1)}, and the result is θ0θ1θ2 = {x1 �→ u1,x2 �→ u2, â1 �→
f1(u1),y1 �→ f1y1(u1)}.

The process continues until the final substitution is reached: θ0θ1 · · ·θ8 =
{x1 �→ u1, x2 �→ u2, â1 �→ f1(u1), y1 �→ f2(u1), â2 �→ f3(u2), y2 �→ f4(u2), â3 �→
f5(f2(u1), f4(u2)), z1 �→ f6(f2(u1), f4(u2)), â4 �→ f7(u2, f4(u2)), z2 �→ f8(u2, f4(u2))}.

Note that the program point substitutions are expressed based on u1 and u2, the terms
to which x1 and x2 were initially bound to. In this case it is interesting that some vari-
ables (for example, y1 and z1) are bound to terms that contain a common variable (u1,
in this case), and so we say that y1 and z1 share.

Definition 5 (Sharing). Given a runtime substitution θ , two syntactical variables x
and y are said to share if the terms xθ and yθ contain some common variable z.

In the preceding example â1 shares with x1 via u1; y2 shares with x2 via u2; â3 shares
both with x1 via u1, and with x2 via u2; etc. The basis for all sharing are u1 and u2, yet
they do not appear in the program, but in the initial substitution. The key to the use of
sharing analysis for the definition of fragments is, precisely, the introduction of such

358 D. Ivanović, M. Carro, and M. Hermenegildo

“hidden” variables, which act as “links” between workflow variables that represent data
flows and activities.

Assignments, expression evaluations, and service invocations are translated into uni-
fications that enforce sharing between the input and the output data items of the activity.
Complex activities are translated into separate predicates, and an example of such trans-
lation (for a repeat-until loop construct) is given in the example in Section 5.

w(X1,X2,A1,Y1,A2,Y2,A3,Z1,A4,Z2):-
A1=f1(X1), % a1
Y1=f1Y1(X1),
A2=f2(X2), % a2
Y2=f2Y2(X2),
A3=f3(Y1,Y2), % a3
Z1=f3Z1(Y1,Y2),
A4=f4(X2,Y2), % a4
Z2=f4Z2(X2,Y2).

Fig. 4. Logic program encoding of the workflow
from Fig. 2

For each output data item x∈Wi of the
translated activity ai, we introduce a uni-
fication between x and a compound term
that involves the variables that are used in
producing it, and which form a subset of
Ri. If we do not know exactly which vari-
ables from Ri are necessary to produce x,
we can safely use them all, at the cost of
over-approximating sharing. The choice
of functor name in the compound term is
not significant. The same applies to the
activity-level variable âi, which is unified
with a compound term containing all variables from Ri, to model the dependency of ai

on all information that it uses as input.

4.2 Sharing Analysis

The sharing analysis we use here is an instance of abstract interpretation [CC77], a
static analysis technique that interprets a program by mapping concrete, possibly in-
finite sets of variable values onto (usually finite) abstract domains, together with data
operations, in a way that is correct with respect to the original semantics of the program-
ming language. In the abstract domain, computations usually become finite and easier to
analyze, at the cost of lack of precision, because abstract values typically cover (some-
times infinite) subsets of the concrete values. However, the abstract approximations of
the concrete behavior are safe, in the sense that properties proven in the abstract domain
necessarily hold in the concrete case. Whether abstract interpretation is precise enough
for proving a given property depends on the problem and on the choice of the abstract
domain. Yet, abstract interpretation provides a convenient and finite method for calcu-
lating approximations of otherwise, and in general, infinite fixpoint program semantics,
as is typically the case in the presence of loops and/or recursion.

We use abstract interpretation-based sharing, freeness, and groundness analysis for
logic programs. Instead of analyzing the infinite universe of possible substitutions dur-
ing execution of a logic program, sharing analysis is concerned just with the question
of which variables may possibly share in a given substitution. This analysis is helped
by freeness and groundness analysis, because the former tells which variables are not
substituted with a compound term, and the latter helps exclude ground variables from
sharing. Some logic program analysis tools, like CiaoPP [HBC+10], have been devel-
oped which give users the possibility of running different analysis algorithms on input
programs. We build on one of the sharing analyses available in CiaoPP.

Automatic Fragment Identification in Workflows Based on Sharing Analysis 359

function RECOVERSUBSTVARS(V,Θ)
n← |Θ |; U ←{u1,u2, ...,un} � n = |Θ | fresh variables in U
S : V →℘(U); S← const(/0) � the initial value for the result
for x ∈V , i ∈ {1..n} do � for each variable and subst. setting

if x ∈Θ [i] then � if the variable appears in the setting
S← S[x �→ S(x)∪{ui}] � add ui to its resulting set

end if
end for

return U , S
end function

Fig. 5. The minimal substitution variable set recovery algorithm

1 init1(f(W1,W2),f(W2)).
init2(f(W1),f(W2)).

3 init3(f(W2),f).

5 caseN(X1,X2,A1,Y1,A2,Y2,A3,Z1,A4,Z2):-
6 initN(X1,X2),
7 w(X1,X2,A1,Y1,A2,Y2,A3,Z1,A4,Z2).

Case Sharing results

1 [[X1,A1,Y1,A3,Z1],
[X1,X2,A1,Y1,A2,Y2,A3,Z1,A4,Z2]]

2 [[X1,A1,Y1,A3,Z1],
[X2,A2,Y2,A3,Z1,A4,Z2]]

3 [[X1,A1,Y1,A3,Z1]]

{w1,w2}1 : x1

{w1}
1 : x2
2 : x1

{w2}
2 : x2
3 : x1

{} 3 : x2

{u1,u2}
1 : x1, â1,y1, â3,z1
2 : â3,z1

{u1}
1 :x2, â2,y2,a4,z2
2 :x1, â1,y1

{u2}
2 :x2, â2,y2,

a4,z2
3 :x1, â1,y1,

â3,z1
{} 3 : x2, â2,y2, â4,z2

Fig. 6. The initial settings and the sharing results

In the sharing and freeness domain, an abstract substitution Θ is a subset of all pos-
sible sharing sets. Each sharing set is a subset of the variables in the program. The
meaning of this set is that those variables may be bound at run-time to terms which
share some common variable. E.g., if θ = {x �→ f (u),y �→ g(u,v),z �→w}, then the cor-
responding abstract substitution (projected over x, y, and z) is Θ = {{x,y},{y},{z}}.
Note that if u is further substituted (with some term t), x and y will be jointly affected;
if v is further substituted, only y will be affected, and if w is further substituted only z
will be affected.

Although an abstract substitution represents an infinite family of concrete substitu-
tions (e.g., θ ′ = {x �→ v,y �→ h(w,v),z �→ k(u)} in the previous example), it is always
possible to construct a minimal concrete substitution exhibiting that sharing, by taking
as many auxiliary variables as there are sharing sets, and constructing terms over them.
Furthermore, if one is only interested in the sets of shared auxiliary variables, not the
exact shape of the substituted terms, the simple algorithm from Figure 5 suffices. Note
that only a ground variable x ∈V can have S(x) = /0.

4.3 Deriving Fragment Identification Information from Sharing

To derive fragment identification information from the sharing analysis results, the logic
program workflow representation has to be analyzed in conjunction with some initial

360 D. Ivanović, M. Carro, and M. Hermenegildo

conditions that specify the policy levels of the input data. In our example from Figures 2
and 4, this applies to the input data items x1 and x2. We will assume that the policy
lattice is isomorphic to or a sublattice of some lattice L induced by the powerset of a
non-empty set W = {w1, ...,wn} with the set inclusion relation.

The initial conditions are then represented by means of sharing between the input
data variables and the corresponding subsets of W . Several initial conditions (labeled
with 1, 2, and 3) are shown in Figure 6 (left). Each caseN (where N is in this case 1, 2,
or 3) predicate starts with all variables independent (i.e., no sharing), and calls initN
to set up the initial sharing pattern for x1 and x2 in terms of the hidden variables w1

and w2. How these different patterns place variables x1 and x2 in the policy lattice is
shown in the figure at the right, top, by displaying the case number just before each
variable. Below this lattice are the sharing results (as Prolog lists) obtained from the
shfr analysis.2 Right on the same figure are the projections of the initial sharing settings
for x1 and x2 on the original policy lattice L =℘(W), W = {w1,w2}, and projections of
the sharing results on the lattice L′ = ℘(U), U = {u1,u2} derived using the algorithm
in Figure 5.

Let us, for instance, interpret case 2. If we use variable names to mean their policy
levels (with primes in L′), we see that initially x1 = {w1} and x2 = {w2} are disjoint,
i.e., incomparable w.r.t. �. Activity a1 uses x1 as the input, and produces y1 from x1;
hence, â′1 = y′1 = x′1 = {u1}. Analogously, â′2 = y′2 = x′2 = {u2}. For a3, both y1 and y2

are used to produce z1. Hence, â′3 = z′1 = y′1� y′2 = {u1,u2}. Finally, a4 uses x2 and y2

to produce z2, and thus â′4 = z′2 = x′2� y′2 = {u2}. Therefore, a2 and a4 are at the same
clearance level, and a3 is at a different (but non-comparable) level.

The most important feature of the derived lattice L′ is that if for x,y∈ L we have x� y,
then for their respective images x′,y′ derived in L′, we also have x′ � y′. This feature
follows from the structure of the translation for simple activities (linear unifications), the
fact that variables in W are hidden inside the initialization predicate (and thus remain
mutually independent and free), and the semantics of unification in the shfr domain.
Therefore, the two typical fragmentation inference tasks are:

– The policy level �B of a subset of activities B⊆ A in L′ is �{â′i |ai ∈ B}.
– To check constraint compliance for B⊆ A in L, one needs to represent c as an input

data item in the workflow, and then check �B� c′ in L′.
Note that we have not defined at any moment the exact shape of the finally inferred
lattice: we merely stated the relationship between two input flow streams (for three
different possibilities, in this case) and the analysis algorithm built, for each of these
cases, the abstract substitution which places every relevant program variable in its point.

The following section will present in more detail an example involving privacy and
two types of data.

5 An Example of Application to Data Privacy
Figure 7 shows a simplified workflow for drug prescription in a health care organization.
The input data are the identity of the patient (x), authorization to access the patient’s
medical history (d) and the authorization to access the patient’s medication record (e).

2 These results were obtained in 3.712ms (total) on a Intel Core Duo 2GHz machine with 2GB
of RAM running CiaoPP 1.12 and Mac OS X 10.6.3.

Automatic Fragment Identification in Workflows Based on Sharing Analysis 361

a1
x,d
y

a2
x,e
z

a4
y,z
−

a3
y,z
−

a5

x
−

AND

AND

OR

a4 : repeat-until loop

exit depends on p

body : subworkflow W ′

a41

y,z
c

a42

c
p

W ′ ={A′,C′,D′}
A′ ={a41,a42}
C′ ={pre–a42 ≡ done–a41}
D′ ={c}, c = 〈a41,{a42}〉

W =〈A,C,D〉
A ={a1,a2,a3 ,a4,a5}
C ={pre–a4 ≡ done–a1 ∧¬succ–a1 ∧done–a2,

pre–a3 ≡ done–a1 ∧ succ–a1 ∧done–a2,

pre–a5 ≡ done–a3 ∨done–a4}
D ={y,z}, y = 〈a1,{a3,a4}〉, z = 〈a2,{a3 ,a4}〉}

Fig. 7. A simplified drug prescription workflow

Based on the patient id and the corresponding authorization, activity a1 retrieves the
patient’s medical history (y), and signals success (succ–a1) iff the patient’s health has
been stable. Simultaneously, activity a2 uses the patient’s id and the corresponding au-
thorization to retrieve the patient’s medication record (z). Depending on the outcome of
a1, either a3 or a4 is executed. Activity a3 continues the last medical prescription, based
on the medical history and the medication record. Activity a4, on the other hand, tries
to select a new medication. Activity a41 runs some additional tests based on the medical
history and the medication record to produce criteria c for the new medicine. Medica-
tion record z is used just for cross-checking, and does not affect the result c. Activity
a42 searches the medication databases for a medicine matching c, which is prescribed
if found; the search may fail if the criterion c is too vague. The search result p is used
as the exit condition from the loop. Finally, activity a5 records that the patient has been
processed.

The fragmentation policies used in this example are based on the assumption that
we want to distribute execution of this centralized workflow so that the fragments can
be executed inside domains that need not have access to all patient’s information. For
instance, the health care organization may delegate some of the activities to an outside
(or partner) service that keeps and integrates medical histories and runs medical checks,
but should not (unless expressly authorized) be able to look into the patient’s medication
record, to minimize influence that the types and costs of earlier prescribed may have on
the choice of medical checks. Other activities can be delegated to partners that handle
only medication records. Finally, the organization owning the workflow wants to reserve
to itself the right to access both the medical history and the medication record at the
same time.

To formalize the policies, we introduce a set of two data privacy tags W = {w1,w2},
and the lattice of policies L =℘(W). The presence of tag w1 indicates authorization to
access medical history related data and the presence of tag w2 indicates authorization to
access medication record related data. Using variable names to indicate policy levels,
we start with d = {w1}, e = {w2}, and x = { }; the latter implies that consulting the
identity of a patient does not require specific clearances.

It can be easily demonstrated that this workflow does not have deadlocks, and
that one compatible ordering of activities is 〈a1,a2,a3,a4,a5〉. The translation of the

362 D. Ivanović, M. Carro, and M. Hermenegildo

1 analysis(X,D,E,T,A1,Y,A2,Z,A3,A4,A41,C,A42,P,A5):-
init(X,D,E,T),

3 w(X,D,E,T,A1,Y,A2,Z,A3,A4,A41,C,A42,P,A5).

5 init(f,f(W1),f(W2),f(W1,W2)).

7 w(X,D,E,T,A1,Y,A2,Z,A3,A4,A41,C,A42,P,A5):-
A1=f1(X,D), % a_1

9 Y=f1_Y(X,D),
A2=f2(X,E), % a_2

11 Z=f2_Z(X,E),
A3=f3(Y,Z), % a_3

13 a_4(Y,Z,A4,A41,C,A42,P), % a_4
A5=f5(X). % a_5

15 a_4(Y,Z,A4,A41,C,A42,P):-
16 w2(Y,Z,A41,C2,A42,P2),

A4=f(P2),
18 a_4x(Y,Z,C2,P2,C,P,A4,A41,A42).

20 a_4x(_,_,C,P,C,P,_,_,_).
a_4x(X,Z,_,_,C,P,A4,A41,A42):-

22 a_4(X,Z,A4,A41,C,A42,P).

24 w2(Y,Z,A41,C,A42,P):-
A41=f41(Y,Z), % a_41

26 C=f41_C(Y),
A42=f42(C), % a_42

28 P=f42_P(C).

Fig. 8. Logic program encoding for the medication prescription workflow

workflow into a logic program is shown in Figure 8. Note the initial sharing setting
in the predicate init before calling the workflow translation in predicate w. It corre-
sponds to the lattice L from Figure 9. We have introduced the element � (variable T in
the listing) that corresponds to the top element of the original lattice.

Also, note how the repeat-until has been translated into two predicates, a 4 and
a 4x. Predicate a 4 invokes the sub-workflow w2, to produce data items c and p from
the single iteration (logic variables C2 and P2). It then enforces sharing between â4 and
the latest p on which the exit condition depends, and invokes a 4x. The latter predicate
treats two cases: the first clause models exit from the loop, by passing the values of
c and p from the last iteration as the final ones. The second clause of a 4x models
repetition of the loop. The sub-workflow comprising the body of the loop is translated
to w2 using the same rules as the main workflow.

The abstract substitution that is the result of the sharing analysis, as returned by
the CiaoPP analyzer, is shown on Figure 11.3 By interpreting these results using the
algorithm for recovery of the minimal sets of variable substitutions from Figure 5, we
obtain the resulting lattice L′, shown on Figure 10. Variables X and A5 are ground and

{w1,w2}(�)

{w1}(d) {w2} (e)

{} (x)

Fig. 9. The base sharing
setting for the code from
Fig. 11

{u1,u2,u3}(�, a3 , a41)

{u1,u2}
(d, a1 ,y, a4 ,

c, a42 , p)
{u2,u3} {u1,u3} (e, a2 ,z)

{u2} {u1} {u3}

{} (x, a5)

Fig. 10. Interpretation of the sharing results from Fig. 11

3 These results were obtained in 2.130ms on 2GHz Intel Core Duo machine with 2GB of RAM,
running Mac OS X 10.6.3 and CiaoPP 1.12.

Automatic Fragment Identification in Workflows Based on Sharing Analysis 363

[[D,E,T,A1,Y,A2,Z,A3,A4,A41,C,A42,P], (Corresponding to u1)
[D,T,A1,Y,A3,A4,A41,C,A42,P], (Corresponding to u2)
[E,T,A2,Z,A3,A41]] (Corresponding to u3)

Fig. 11. Sharing analysis result for the code from Fig. 8

do not appear in the result. Note that the relative ordering of the input data items (x,
d, e, and �) has been preserved in L′. Also, the assignment of policy levels to activities
shows that the activities a3 and a41 are critical because they need to have both the d and e
clearance levels—i.e., the level d�e. Activities a1, a4 and a42 can be safely delegated to
a partner that is authorized to look at the medical history of a patient, but not at the med-
ication record. Activity a2, by contrast, can be delegated to a partner that is authorized
to look at the medication record, but not the medical history of a patient; and finally, a5

can be entrusted to any partner, since it does not handle any private information.
Going in the other direction, we can look at the resulting lattice L′ to deduce the

policy level that corresponds to any subset of workflow activities. For B1 = {a1,a2},
�B1 =�; for B2 = {a2,a5}, �B2 = e, etc.

6 Conclusions
We have shown how sharing analysis, a powerful program analysis technique, can be
effectively used to identify fragments in service workflows. These are in our case rep-
resented using a rich notation featuring control and data dependencies between work-
flow activities, as well as nested structured constructs (such as branches and loops) that
include sub-workflows. The policies that are the basis for the fragmentation are repre-
sented as points in a complete lattice, and the fragments to which input data / activities
belong are stated with initial sharing patterns. The key to this use of sharing analysis
is how workflows are represented: in our case we have used Horn clauses designed to
adequately enforce sharing between inputs and outputs of the workflow activities. The
results of the sharing analysis lead to the construction of a lattice that preserves the or-
dering of items from the original policy lattice and which contains inferred information
which can be used for both deciding the compliance of individual activities with given
fragmentation constraints, and to infer characteristics of potential fragments.

As future work, we want to attain a closer correspondence between the abstract work-
flow descriptions and well-known workflow patterns, as well as provide better support
for languages used for workflow specification. Another line of future work concerns
aspects of data sharing in stateful service conversations (such as accesses to databases,
updates of persistent objects, etc.), as well as on composability of the results of sharing
analysis across services involved in cross-domain business processes.

References

[AP08] Awad, A., Puhlmann, F.: Structural Detection of Deadlocks in Business Process
Models. In: Abramowicz, W., Fensel, D. (eds.) International Conference on Busi-
ness Information Systems. LNBIP, vol. 7, pp. 239–250. Springer, Heidelberg (2008)

[BlZ04] Bi, H.H., leon Zhao, J.: Applying Propositional Logic to Workflow Verification. In-
formation Technology and Management 5, 293–318 (2004)

364 D. Ivanović, M. Carro, and M. Hermenegildo

[BMM06] Baresi, L., Maurino, A., Modafferi, S.: Towards Distributed BPEL Orchestrations.
ECEASST 3 (2006)

[CC77] Cousot, P., Cousot, R.: Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: ACM
Symposium on Principles of Programming Languages (POPL 1977), pp. 238–252.
ACM Press, New York (1977)

[FYG09] Fdhila, W., Yildiz, U., Godart, C.: A Flexible Approach for Automatic Process De-
centralization Using Dependency Tables. In: ICWS, pp. 847–855 (2009)

[HBC+10] Hermenegildo, M.V., Bueno, F., Carro, M., López, P., Mera, E., Morales, J.F.,
Puebla, G.: An Overview of Ciao and its Design Philosophy. Technical Report
CLIP2/2010.0, Technical University of Madrid (UPM), School of Computer Sci-
ence, Under consideration for publication in Theory and Practice of Logic Program-
ming (TPLP) (March 2010)

[Jea07] Jordan, D et al.: Web Services Business Process Execution Language Version 2.0.
Technical report, IBM, Microsoft, et. al (2007)

[JL92] Jacobs, D., Langen, A.: Static Analysis of Logic Programs for Independent And-
Parallelism. Journal of Logic Programming 13(2,3), 291–314 (1992)

[Kha07] Khalaf, R.: Note on Syntactic Details of Split BPEL-D Business Processes. Tech-
nical Report 2007/2, Institut für Architektur von Anwendungssystemen, Universität
Stuttgart, Universitätsstrasse 38, 70569 Stuttgart,Germany (July 2007)

[KL06] Khalaf, R., Leymann, F.: E Role-based Decomposition of Business Processes using
BPEL. In: IEEE International Conference on Web Services, ICWS 2006 (2006)

[Llo87] Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg
(1987)

[MH91] Muthukumar, K., Hermenegildo, M.: Combined Determination of Sharing and Free-
ness of Program Variables Through Abstract Interpretation. In: International Confer-
ence on Logic Programming (ICLP 1991), pp. 49–63. MIT Press, Cambridge (June
1991)

[MH92] Muthukumar, K., Hermenegildo, M.: Compile-time Derivation of Variable Depen-
dency Using Abstract Interpretation. Journal of Logic Programming 13(2/3), 315–
347 (1992)

[MS93] Marriott, K., Søndergaard, H.: Precise and efficient groundness analysis for logic
programs. Technical report 93/7, Univ. of Melbourne (1993)

[Obj09] Object Management Group. Business Process Modeling Notation (BPMN), Version
1.2 (January 2009)

[TF07] Tan, W., Fan, Y.: Dynamic Workflow Model Fragmentation for Distributed Execu-
tion. Comput. Ind. 58(5), 381–391 (2007)

[vdAP06] van der Aalst, W., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service Flow
Language. In: The Role of Business Processes in Service Oriented Architectures
number 06291 in Dagstuhl Seminar Proceedings (2006)

[vdAtH05] van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Lan-
guage. Information Systems 30(4), 245–275 (2005)

[Wor08] The Workflow Management Coalition. XML Process Definition Language (XPDL)
Version 2.1 (2008)

[WRRM08] Weber, B., Reichert, M., Rinderle-Ma, S.: Change Patterns and Change Sup-
port Features - Enhancing Flexibility in Process-Aware Information Systems. Data
Knowl. Eng. 66(3), 438–466 (2008)

[YG07] Yildiz, U., Godart, C.: Information Flow Control with Decentralized Service Com-
positions. In: ICWS, pp. 9–17 (2007)

[ZBDtH06] Zaha, J.M., Barros, A.P., Dumas, M., ter Hofstede, A.H.M.: Let’s Dance: A Lan-
guage for Service Behavior Modeling. In: Meersman, R., Tari, Z. (eds.) OTM 2006.
LNCS, vol. 4275, pp. 145–162. Springer, Heidelberg (2006)

Preventing SLA Violations in Service

Compositions Using Aspect-Based Fragment
Substitution

Philipp Leitner1, Branimir Wetzstein2, Dimka Karastoyanova2,
Waldemar Hummer1, Schahram Dustdar1, and Frank Leymann2

1 Distributed Systems Group, Vienna University of Technology
Argentinierstrasse 8, 1040 Wien, Austria

lastname@infosys.tuwien.ac.at
2 Institute of Architecture of Application Systems, University of Stuttgart, Germany

Universitätsstraße 38, 70569 Stuttgart, Germany
lastname@iaas.uni-stuttgart.de

Abstract. In this paper we show how the application of the aspect-
oriented programming paradigm to runtime adaptation of service compo-
sitions can be used to prevent SLA violations. Adaptations are triggered
by predicted violations, and are implemented as substitutions of frag-
ments in the service composition. Fragments are full-fledged standalone
compositions, and are linked into the original composition via special
activities, which we refer to as virtual activities. Before substitution we
evaluate fragments with respect to their expected impact on the perfor-
mance of the composition, and choose those fragments which are best
suited to prevent a predicted violation. We show how our approach can
be implemented using Windows Workflow Foundation technology, and
discuss our work based on an illustrative case study.

1 Introduction

As more and more companies shift towards a service-based model [1] of do-
ing business, e.g., by providing coarse-grained value-added services as composi-
tions of existing (external) Web services, management of service level agreements
(SLAs) [2] is becoming increasingly important. SLAs are contractual agreements
between a service provider and its customers, which govern the quality that the
customers can expect. Violating SLAs is often associated with monetary penal-
ties for the provider, i.e., the service provider generally has a strong interest in
preventing SLA violations.

To this end, research in the area of SLA monitoring and compliance man-
agement [2, 3, 4] has so far mostly focused on detecting and explaining SLA
violations after they have happened. While this is very useful to optimize ser-
vice compositions in the long run, it does not prevent the problem in the first
place. Therefore, we see the need for mechanisms to prevent violations at run-
time, before they have happened. Basically, such mechanisms need both, a way

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 365–380, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

366 P. Leitner et al.

to predict violations ahead of time, and a means to actually adapt the prob-
lematic composition instance in such a way that the violation is prevented. The
former has already been covered in earlier work [5, 6].

The main contribution of this paper is a proposed solution for the latter prob-
lem. We apply the aspect-oriented programming (AOP) approach [7] to adap-
tation of running composition instances. Adaptations are triggered by predicted
violations. Unlike in earlier work [8], aspects can contain composition fragments
of arbitrary complexity, which can be applied before, after or instead of any sub-
set of the original composition. We evaluate potential fragments based on their
expected impact on SLA conformance, in order to identify the fragments which
are best suited to prevent a predicted violation. Note that in this work we focus
on performance-related service level objectives (SLOs). Our work is not directly
applicable for most qualitative SLOs, such as security.

The rest of this paper is structured as follows. In Section 2 we present an
example case, which we use as an illustrative example in the remainder of the
paper. In Section 3 we present our approach to aspect-based adaptation in detail.
In Section 4 we explain how our approach can be implemented using Windows
Workflow Foundation [9] (Windows WF) technology. Section 5 contains an eval-
uation of our approach. In Section 6 we discuss related scientific work. Finally,
Section 7 concludes the paper with a summary and an outlook on future work.

2 Case Study and Motivation

To illustrate the core ideas of the paper we use an order processing scenario. The
scenario consists of a reseller who offers products to its customers. As shown
in Figure 1 (left part of the figure), the reseller composes services from other
providers (supplier, shipper, banking) to implement its process. After receiving
the customer order, the list of needed parts is determined and parts which are not
in stock are ordered from a supplier. After all the parts are gathered, the product
is assembled and shipped to the customer. The reseller guarantees its customers
a certain order processing time via an SLA. The goal of the reseller is to prevent
cases of SLA violations, as this would lead to reduced customer satisfaction as
well as penalty payments. The reseller can use SLA monitoring and prediction
techniques as discussed in our previous work [5] to predict at process runtime
whether the SLA with the customer is likely be violated, i.e., in our case, whether
the order processing time will exceed the agreed value. If SLA prediction shows
that the SLA with the customer will be violated, the reseller wants to adapt the
service composition instance by using alternative, better performing services.
Assume that in our scenario there are two alternative suppliers who offer faster
delivery times, but do not provide all needed product types on their own. The
full product range offered to the customer can only be realized by using both
alternative suppliers in conjunction. Figure 1 shows a composition fragment
consisting of a switch between those two suppliers, whereby supplier 2 is used if
supplier 1 is unable to provide a certain part. Even though not the default case,
this composition fragment can be used at runtime instead of the original supplier

Preventing SLA Violations in Service Compositions 367

invocation if a given instance is likely to exceed the maximum processing time
as promised to the customer in the SLA.

There are two approaches for supporting the execution of alternative compo-
sition fragments: (1) the straight-forward approach is to model all alternative
fragments already at design time as part of the composition, e.g., using if-else
branches; (2) the approach of this paper is to model alternative fragments sep-
arately from the original composition model, and dynamically substitute them
based on prediction results at composition runtime. We will now explain this
approach and its advantages in detail.

3 Aspect-Based Adaptation

In this paper we use the notion of aspect-based fragment substitution to model
how service composition instances can be adapted at runtime in order to pre-
vent predicted SLA violations. Our approach is general, in the sense that it is
not specific to any concrete composition model. Instead, it can be applied to
many existing block-structured composition models (for instance WS-BPEL or
Windows Workflow Foundation [9]). In our work we reuse well-known AOP ter-
minology to describe adaptations of service compositions. The most important
of these terms are aspects (cross-cutting concerns, which are turned off and on
at design or run-time, e.g., logging), advices (business logic which implements
aspects, e.g., the code to implement logging), joinpoints (points in the applica-
tion code where advices can potentially be inserted), and weaving (the process
of dynamically inserting advices in jointpoints). Note that in literature AOP is
often discussed as both a design time and a run time technology, i.e., weaving can

Received
Order

Get List
of Parts

foreach
Part

Get From
Warehouse

Order From
Supplier

Wait For
External Delivery

part in stock?

[yes]
[no]

Assemble
Product

Ship Handle
Billing

Order
Finished

Quality Assurance

TARGET
COMPOSITION

FRAGMENT

Order From
Supplier 2

Order From
Supplier 1

Wait For
External Delivery

Available at
Supplier 1?

[yes] [no]

JOINPOINT - IN IMPACT MODEL

Estimated
Avg. Part Delivery

Time
[VALUE]

ASPECT

ADVICES

JOINPOINT - OUT

CONSTRAINTS AND ORDERING

CONFLICTS_WITH AdviceA
REQUIRES_BEFORE AdviceB

.........

OTHER PROPERTIES

OFFLINE_WEAVING

TRIGGER

PREDICTION
CHECKPOINT

Fig. 1. Illustrative Example and Approach Overview

368 P. Leitner et al.

happen both statically or dynamically. In this paper we only consider weaving
at runtime (at running instances), since our primary concern is the adaptation
of composition instances, without modification of the underlying definition.

The main concepts of our work are summarized in Figure 1. Aspects are de-
fined as an adaptation trigger, which is based on a predicted SLA violation, and
any number of advices. Every advice in turn contains exactly one composition
fragment, one impact model containing any number of impact clauses, a list of
constraints on other advices of the same aspect, and any optional other prop-
erties. The fragment is linked to the service composition to adapt (denoted as
target composition in the following) using two types of joinpoints – in-joinpoints
mark the beginning of the composition segment to replace, while out-joinpoints
mark the end of the segment. We will now discuss these components in more
detail.

3.1 Adaptation Triggers

As discussed extensively in Section 1 and Section 2, our approach is motivated by
the need to prevent SLA violations. Therefore, runtime adaptation is generally
triggered by predictions of such violations. In the remainder of this paper we
will assume that some means of prediction are available. This may be powerful
prediction tooling as presented in [5] or [6], or simply some estimations provided
by a human domain expert. The actual approach to prediction is out of scope of
this paper, however, for the sake of completeness we give a very brief overview
of our own earlier work.

We generate predictions using regression from runtime data. This data is
collected using an event-based approach (i.e., components in the service-based
system emit status events, which are collected and correlated). The actual re-
gression is implemented as a black-box function, using methods from the field
of machine learning, more precisely artificial neural networks [10] (ANNs). We
sketch this in Figure 2. This prediction is carried out in predefined places in the
service composition, the so-called checkpoints. Checkpoints should be selected in
such a way that enough data is already available to generate useful predictions.
Note that there is a strong relationship between the checkpoint selection and
which actions can be associated with an advice – in earlier checkpoints a lot
of adaptation actions are still available, while later checkpoints allow for more
accurate predictions because of more data being available. The problem of se-
lecting checkpoints is discussed in more detail elsewhere [5].

23
NOKIA

C45
1 923 26

Number
Of_Parts

Product
To_Asse Quantity QoS_

Warehouse
QoS_

Supplier

27953

Predicted Order
Processing Time

Artificial Neural
Network

Fig. 2. Generating Predictions From Runtime Data

Preventing SLA Violations in Service Compositions 369

3.2 Composition Fragments

Composition fragments can be considered the core of our adaptation approach. In
essence, fragments are full-fledged, even if usually small, service compositions.
That is, fragments may contain variables, branches, Web service invocations,
parallel execution, loops, scopes, fault handling, compensation, or any other
construct which is legal in the composition model used. However, they do not
have to follow the same syntactic and semantic rules as the target composition.
For example, if WS-BPEL is used as composition model, designers of fragments
may access e.g., variables defined in the target composition, even if the respective
data is undefined in the fragment itself (syntactic rule). Also, they could specify
a receive activity without a corresponding reply activity (semantic rule). The
reason for this is that during weaving the fragment will be inserted into the
composition model of the target composition, essentially becoming part of the
composition itself. A fragment definition is valid if it results in an executable
composition after weaving, which cannot be checked in isolation.

In addition to all activities provided by the composition metamodel, fragments
may contain three additional activity types (FRAGMENT START, in the following re-
ferred to as start, FRAGMENT END, end, and TRANSPARENT BLOCK, transparent)
with a semantic specific to our approach. We refer to these activities as virtual
activities, because they are never actually executed. Instead, virtual activities
are dropped or replaced during weaving. Virtual activities are solely responsible
for defining the joinpoints between the fragment and the target composition,
marking the segment of the target composition to substitute.

Every fragment starts with exactly one start activity and ends with exactly
one end activity. In-joinpoints, defined via the start activity, represent the start
of substitution, and out-joinpoints, defined via the end activity, represent the end
of substitution. All joinpoints can reference any activity in the service composi-
tion, either before or after the execution of the activity (i.e., both “immediately
before executing Get List of Parts” and “immediately after executing Get List
of Parts” are valid joinpoints). However, the in- and out-joinpoint of a fragment
need to reference activities in the same sequence in the target composition, i.e.,
the joinpoints defined in Figure 1 are correct, but, for example, it would not be
possible to move the in-joint point to the activity ”Get List of Parts”. The reason
for this limitation is that semantic problems arise if in- and out-joinpoints are
situated in different sequences. In the example, the branching activity ”part in
stock?” would be removed, but not the actual branches, rendering it impossible
to decide which branch to execute.

It is not only possible to replace a segment of the target composition, even
though this is the general case we discuss. Trivially, one may also just insert the
fragment at a specific joinpoint (the in- and out-joinpoints are identical, and
the fragment is non-empty), or remove a segment (substitution with an empty
fragment). We refer to the sum of all joinpoints of a fragment as the linking of
the fragment to the target composition. Figure 3 summarizes this linking. The
start activity specifies that the fragment should be inserted before the activity
“Schedule Assembling”, while the end specifies that the end of the substitution

370 P. Leitner et al.

FRAGMENT

FRAGMENT_START

FRAGMENT_END

T :: Schedule
Assembling

T :: Wait

T :: Do
Assembling

T :: Check For
Faults

T :: Do Repair

T :: Billing &
Shipping

[no faults]

[faults]

F :: External
Assembling

TRANSPARENT
BLOCK

F :: Object To
External Assembler

[faults]

[no faults]

TARGET
COMPOSITION

T :: Order Parts

F :: External
Assembling

T :: Check For
Faults

T :: Billing &
Shipping

[no faults]

[faults]

WEAVED
INSTANCE

T :: Order Parts

F :: Object To
External Assembler

WEAVING

Fig. 3. Fragment Activities and Linking

segment is before the activity “Billing & Shipping”. On the right-hand side,
Figure 3 shows the dynamically constructed instance after the fragment has
been weaved into the target composition. Activities depicted with the prefix
T originate from the target composition, while activities with the prefix F are
specified in the fragment.

Transparents are more complicated than start or end . They are a place-
holder representing a part of the target composition in the fragment. This part
is defined in the same way as the substitution segment, i.e., transparents have
both out- and in-joinpoints. Additionally, the same restrictions apply (in and
out-joinpoints need to reference activities in the same sequence). At runtime,
transparents are replaced by a copy of the part that they represent. The pur-
pose of transparent activities is threefold. Firstly, they allow for the definition
of fragments which substitute segments, while still retaining some of this seg-
ment’s functionality. One example of this usage is depicted in Figure 3, where
the “Check for Faults” activity from the target composition is retained in the
fragment. Note that it is not mandatory that a transparent references only a
single activity. Secondly, transparent activities allow to essentially duplicate ac-
tivities in the target composition. This is because transparents are in fact free
to reference any part of the target composition, not only parts which are in the
substitution segment (and hence removed during weaving). Additionally, many
transparents may copy the same activities, multiplying them even further.
Thirdly, transparent activities allow for the definition of generic fragments.

3.3 Generic Fragments

Generic fragments are (unlike the fragments discussed so far) not developed
specifically for a given target composition. Instead, they can be applied to a num-
ber of compositions. Therefore, generic fragments do not contain any concrete

Preventing SLA Violations in Service Compositions 371

case-specific business logics. They are used to implement adaptation scenarios
which can be useful across several concrete target compositions and domains.
Figure 4 exemplifies three generic fragments. The main property of generic frag-
ments is that they consist only of virtual activities and control flow constructs,
i.e., they do not contain any concrete activities such as Web service invocations.
These generic fragments are instantiated by defining the linking (i.e., all in-
and out-joinpoints) to concrete target compositions. As soon as this linking is
defined, the fragment stops being generic, and is as case-specific as any other
fragment.

GENERIC FRAGMENT
Parallelize2

FRAGMENT_START

BRANCH_2BRANCH_1

FRAGMENT_END

GENERIC FRAGMENT
Reorder2

FRAGMENT_START

BEFORE

AFTER

FRAGMENT_END

GENERIC FRAGMENT
Remove

FRAGMENT_START

FRAGMENT_END

Fig. 4. Examples of Generic Fragments

The first and most simple generic fragment in Figure 4 (Remove) has been
mentioned before – it is an empty fragment consisting only of a start and end ac-
tivity. Using this generic fragment any segment of the target composition can be
deleted. The second example is a generic fragment named Reorder2. It consists of
start, end, and two transparents (“after” and “before”). Using this fragment
two segments in the target composition can be rearranged, e.g., exchanging their
order. Trivially, one can also implement similar generic fragments ReorderX, re-
arranging X segments instead of just two. Finally, Parallelize2 consists again
of start, end, and two transparents (“branch 1” and “branch 2”), however,
this time “branch 1” and “branch 2” are executed in parallel. Using this generic
fragment one can parallelize two segments from the target composition (which
presumably have been executed in serial before). Of course, it is again possible
to define ParallelizeX fragments to parallelize more than two segments at the
same time.

3.4 Dynamic Weaving

At run-time, one or more previously selected fragments are weaved into the
running instance of the target composition. The selection procedure will be dis-
cussed in Section 3.5. As we have sketched in Figure 5, the general weaving
algorithm is a simple 2-step procedure. Firstly, the fragment is pre-processed,
i.e., for each transparent in the fragment the linking to the target composition
is resolved, and the transparent is replaced by a deep copy of the segment that
it represents. Secondly, the linking of the fragment itself is resolved, and the

372 P. Leitner et al.

� �

1 # input : instance , fragment , mode # output : weaved in s tanc e
2

3 i f (mode == ”OFFLINE”) suspend (in s t anc e)
4

5 # step 1 − fragment p r ep roc e s s i ng
6 f o r e ach transparent in fragment
7 l i n k i n g = r e s o l v e l i n k i n g (t ransparent , i n s t anc e)
8 copy = copy segment (l i nk ing , i n s t anc e)
9 r ep l a c e f r agment s (fragment , t ransparent , copy)

10

11 # step 2 − fragment sub s t i t u t i o n
12 seqment := r e s o l v e l i n k i n g (fragment , i n s t anc e)
13 r emov e s t a r t a c t i v i t y (fragment)
14 r emove end ac t i v i t y (fragment)
15 r ep l a c e f r agment s (instance , segment , fragment)
16

17 i f (mode == ”OFFLINE”) resume (in s t anc e)
18

19 re turn in s tanc e
� �

Fig. 5. Weaving Algorithm

start and end virtual activities are removed from the fragment (they are not
needed anymore). Finally, the segment of the target composition (indicated by
the linking) is removed, and the fragment is inserted instead.

Weaving can be done either online or offline. For offline weaving the composi-
tion instance is halted while the adaptation is applied (see Line 4-5 in Listing 5),
and resumed when the adaptation is finished (Lines 19-20). If online adaptation
is used the instance continues running during weaving. This has the advantage
that weaving does not introduce additional execution time overhead. However,
if after weaving the running instance has already passed the entry point of the
fragment (the linking of the fragment’s start activity) the weaving fails and is
rolled back. This is because our system needs to guarantee that a fragment is
either executed as a whole, or not at all (which cannot be guaranteed after the
instance has begun executing the substitution segment in the target composi-
tion). Our system falls back to offline adaptation as soon as at least one advice
which needs to be applied requires it (i.e., if many advices are applied and only
one of them requires offline weaving, we still need to suspend the composition
instance before adaptation).

Generally, if more than one advice needs to be applied, we use recursive
one-by-one weaving, that is, we start by weaving the first fragment into the
instance (ignoring any other fragments). The result of this first weaving pro-
cess is then the input to the weaving of the second fragment. This is continued
until all fragments are weaved. The order in which fragments are applied is
unimportant as long as all fragments are independent (i.e., as long as none of
the segments indicated by any linking of either fragments or transparents over-
laps). If this is not the case the user can specify a defined ordering of advices
as part of the advice definition. The ordering can be defined using five differ-
ent order predicates (REQUIRES BEFORE, REQUIRES AFTER, IF PRESENT BEFORE,

Preventing SLA Violations in Service Compositions 373

IF PRESENT AFTER, and CONFLICTS WITH). REQUIRES [BEFORE|AFTER] specifies
that a given advice has to be applied before or after this advice (otherwise the
advice cannot be applied at all). IF PRESENT [BEFORE|AFTER] specifies that if
the other advice is present, it has to be applied before or after this one (but the
other advice can also simply not be applied). Using REQUIRES BEFORE one can
specify complex fragments, whose linking does not actually point to the target
composition itself, but to another fragment. This is possible since we can rely
that the referenced fragment has already been weaved into the target composi-
tion before before the weaving of the dependent fragment starts. Another type
of ordering predicate is CONFLICTS WITH. This predicate specifies that two frag-
ments are mutually exclusive, i.e., they cannot be applied together. At runtime,
we construct a forest of directed graphs from these predicates, whose nodes are
advices and whose edges are “is executed after” relationships. If the graphs in
this forest are acyclic there is at least one allowed order of advices, which can be
consructed using topological ordering. If the graphs contains at least one cycle
the definition of advices is invalid, since the definition contains at least one cyclic
dependency.

3.5 Impact Model and Advice Selection

As described briefly in Section 3.1, we build upon a predictor which estimates
SLO values by assessing a set of lower level metrics. Examples include ordered
product types, duration of branches of the composition, expected delivery times
of suppliers and shipper, or QoS of services used. In order to being able to
evaluate whether a given advice will actually help preventing the predicted SLA
violation, we need to specify for each advice its impact on those lower-level base
metrics (impact model). The impact model is used to identify which concrete
advice (from all advices designed within an aspect) should be applied, i.e., which
advices are best suited to prevent a predicted violation (advice selection).

The impact model contains a non-empty set of impact clauses. An impact
clause relates to one base metric and specifies the expected value of that met-
ric after adaptation (i.e., after this fragment has been applied). This value can
be determined in several ways: (1) based on measured history data if the cor-
responding advice has already been used in past composition instances, e.g.,
using data mining techniques; (2) based on SLAs with external providers; or
(3) by using QoS aggregation techniques as discussed in earlier research [11]. In
QoS aggregation, based on the composition fragment structure, the properties of
atomic activities are recursively aggregated (e.g., the duration of a sequence of
activities is the sum of durations of those activities, the duration of the parallel
execution of activities is given by the duration of the longest acitivity etc. [11]).
The impact model should specify impact clauses for all metrics which the advice
affects.

The impact model is specified as part of advice definition. Advice selection
at runtime is performed as follows. If in a checkpoint a violation is predicted,
we obtain the set of advices defined for this checkpoint. For each allowed com-
bination of advices we evaluate if the usage of these advices would prevent the

374 P. Leitner et al.

23
NOKIA

C45
1 0.9 26

Number
Of_Parts

Product
To_Asse Quantity Availability

Supplier
QoS_

Supplier

27953

Predicted Order
Processing Time

Predictor

23
NOKIA

C45
1 0.99 12

Number
Of_Parts

Product
To_Asse Quantity

QoS_
Availability

Supplier

QoS_
Supplier

After
Adaptation

25123

Predicted Order
Processing Time After

Adaptation

Impact Clauses Adaptation Impact

Fig. 6. Evaluation of Impact Models

SLA violation, i.e., all impact clauses are applied to the data which has origi-
nally been used to generate the prediction. The updated data (which essentially
represents the state after adaptation) is then again fed to the predictor, to re-
generate the prediction after adaptation. The difference between the original
prediction and the new prediction is the estimated impact of applying these ad-
vices. This is sketched in Figure 6. If more than one advice should be applied at
the same time, the impact clauses are applied in the same order to the data as
the weaving order of the fragments would be. If the predicted value complies to
the SLA, that advice or advice combination is put into a candidate set. In the
next step, we then select the best alternative from the candidate set by looking
at additionally specified criteria (in addition to the concrete predicted value). In
this step, complex evaluations can take place, taking into account and weighting
different dimensions (e.g., cost, customer satisfaction, reliability) according to a
user-defined utility function, which is currently left for future work. At the mo-
ment, we simply choose the candidate which brings the SLO value closest to the
target value, i.e., we apply “just as much” adaptation as necessary to prevent
the predicted violation.

4 Prototype Implementation

In our prototype we consider the aspect-based adaptation of service compo-
sitions implemented using the Windows Workflow Foundation [9] (WF) com-
position model. More concretely, our system can be applied to WF Sequential
Workflows1. WF Sequential Workflows are similar to e.g., Web service composi-
tions implemented using WS-BPEL. However, unlike most WS-BPEL engines,
WF is deeply integrated with Microsoft .NET (starting with version 3.0), along
with strong tool support for developing compositions. Additionally, and most
importantly for this paper, Microsoft .NET supports the dynamic adaptation of
WF instances via an explicit API, the WorkflowChanges API2. This API allows
us to suspend, modify, and resume any running composition instance. Addition-
ally, activities in the composition can easily be replicated. Implementation of
1 http://msmvps.com/blogs/theproblemsolver/archive/2006/10/11/

Sequential-versus-State-workflows.aspx
2 http://msdn.microsoft.com/en-us/library/ms734569(VS.85).aspx

http://msmvps.com/blogs/theproblemsolver/archive/2006/10/11/
Sequential-versus-State-workflows.aspx
http://msdn.microsoft.com/en-us/library/ms734569(VS.85).aspx

Preventing SLA Violations in Service Compositions 375

the weaving algorithm as discussed in Section 3 is, therefore, straight-forward.
Another important advantage of building the prototype based on WF is that we
can reuse the tooling integrated in Visual Studio to support the development of
fragments.

We have implemented the approach discussed in this paper within the larger
VRESCo SOA runtime environment project. VRESCo is discussed in detail
elsewhere [12], and will not be covered here. To trigger adaptations as briefly
discussed in Section 3.1, we utilize our earlier work on prediction of violations,
as discussed in [5]. The prototype has been designed to fit into PREvent , an
autonomous system for prevention of SLA violations [13]. The interested reader
may download a recent snapshot of our VRESCo prototype, which includes an
implementation of the case study used in this paper3.

5 Evaluation

We will now evaluate our approach in two different ways. Firstly, we will qualita-
tively analyse the expressiveness of our approach by comparison with previously
published adaptation patterns [14]. Secondly, we will have a look at performance
implications. This is done by monitoring the weaving time in our prototype
system, as well as comparing the execution time of dynamically weaved and
statically defined composition instances.

5.1 Coverage of Adaptation Patterns

In order to discuss the expressiveness of our approach we have used the adap-
tation patterns defined in [14]. In this work, 14 patterns of structural changes
in processes are identified. Using our approach 9 of these patterns are fully
supported.

We have summarized the coverage of adaptation patterns in Table 1. The
patterns AP1, AP2 and AP4 are the core feature of our approach, and can
be implemented trivially. For AP2 and AP5 we specifically described a generic
fragment in Section 3. Similarly, all of AP3, AP5, AP8, AP9, AP10 AP14
can be implemented rather elegantly using transparents. The patterns concern-
ing subprocesses (AP6 and AP7) cannot be implemented since our approach
does not support linking to more than one composition at the same time. AP11
and AP12 are in simple cases implementable using transparents, but our
approach does not provide any explicit support for it, making the implementa-
tion rather cumbersome. Similarly, AP13 can be implemented by replacing the
branching node as a whole, but we do not consider this solution as in line with
the idea of this pattern.

5.2 Performance Analysis

In a second step we have evaluated the runtime implications of our prototype.
For this, we monitored the average execution time of dynamically weaved com-
position instances with an increasing number of activities, and compare them to
3 http://sourceforge.net/projects/vresco/

http://sourceforge.net/projects/vresco/

376 P. Leitner et al.

Table 1. Coverage of Adaptation Patterns

ID Pattern Name Covered

AP1 Insert Fragment �

AP2 Delete Fragment �

AP3 Move Fragment �

AP4 Replace Fragment �

AP5 Swap Fragment �

AP6 Extract Sub Process �

AP7 Inline Sub Process �

AP8 Embed Fragment in Loop �

AP9 Parallelize Activities �

AP10 Embed Fragment in Conditional �

AP11 Add Control Dependency �

AP12 Remove Control Dependency �

AP13 Update Condition �

AP14 Copy Fragment �

 3700

 3750

 3800

 3850

 3900

 64 66 68 70 72 74

E
xe

cu
tio

n
T

im
e

of
 P

ro
ce

ss
 (

in
 m

s)

Number of Activities in Process After Weaving

Statically Defined Workflow
Online / Concrete Activities

Online / Transparent Activities
Offline / Concrete Activities

Offline / Transparent Activities

(a) Execution Time

 40

 45

 50

 55

 60

 65

 70

 64 66 68 70 72 74 76 78 80 82 84

W
ea

vi
ng

 T
im

e
(in

 m
s)

Number of Activities in Fragment

Online / Concrete Activities
Online / Transparent Activities

Offline / Concrete Activities
Offline / Transparent Activities

(b) Runtime Weaving

Fig. 7. Performance Analysis Outcomes

the same instance defined statically. We also compare online and offline weav-
ing, and distinguish between fragments defined using transparent activities and
fragments defined without. For simplicity, all compositions and fragments are se-
quences of “wait” activities. Using different types of activities would not have
an impact on the evaluation outcome, since our adaptation approach handles all
non-virtual activities the same way, i.e., weaving an “invoke” activity has a sim-
ilar overhead than weaving a “wait” activity. To mimimize external influences
all results are the average of 50 independent test runs. We have also repeated
the evaluation multiple times to make sure that the outcome is reproduceable.
The outcomes of these experiments are summarized in Figure 7(a).

As can be seen, online weaved compositions exhibit very little overhead as
compared to statically defined compositions. Of course, offline weaving intro-
duces some overhead, which stems from the time necessary to select the frag-
ments, to implement the actual weaving, and to suspend and unsuspend the
composition. In our experiments, the largest part of these factors is the actual

Preventing SLA Violations in Service Compositions 377

weaving time. Therefore, we have further analyzed this factor in Figure 7(b). We
depict the weaving time depending on the number of activities to weave. Gen-
erally, concrete activities are faster to weave than transparent activities (since
the logics of weaving transparents is more complicated), and offline weaving
is faster than online weaving (since, in the online case, some additional sanity
checks are done by the Windows Workflow runtime). In general, this increased
weaving time for online weaving does not matter too much, since the online
weaving time does not directly impact the execution time of the process. Over-
all, the overhead introduced by weaving is relatively constant in [45 : 80] ms,
even for large fragments (more than 80 activities).

Summarizing, we can see that dynamic weaving does not introduce a big
overhead, especially if online weaving is possible. If offline weaving has to be
used, an additional weaving overhead, which is generally in [45 : 80] ms, is
introduced. We argue that for most application areas this overhead is still far
from being dramatic. Even though the concrete numbers are specific for our
prototype implementation, they still show that implementing our ideas efficiently
is well possible.

6 Related Work

In this paper we apply the AOP paradigm to adaptation of service composi-
tions. On the level of atomic services earlier work in this direction has been
presented by Kongdenfha et al [15]. In this work, they use the AOP paradigm
to adapt the implementation of atomic Web services. A comparable approach
has also been presented by Song et al. [16], who use the AOP approach to
weave cross-cutting concerns, such as security, into all atomic Web services in
a composition. A similar track has also been followed by Narendra et al., who
used AOP-based adaptation of services in a composition to propagate changes
in non-funtional properties through the composition [17]. Of course, all of these
approaches assume that the developer has access to the implementation of these
atomic services.

The general scope of our work is similar to work presented by Gmach et al. [18].
However, the focus of our contribution is purely on adaptation of service compo-
sitions, while Gmach et al. adapt on service infrastructure level (i.e., by moving
services to different hosts, or by re-scheduling requests in the service bus). Fi-
nally, adaptation with the explicit goal of preventing SLA violations has been
discussed by various authors, e.g., our own earlier work on PREvent [13] or
recent work by Metzger et al. [19]. The concrete execution of adaptation of com-
positions has in the past been covered by research in various directions. Earlier
approaches often did not consider the adaptation of the composition structure
at all, instead focusing solely on service rebinding. In a simplistic manner such
adaptations can in fact be carried out using WS-BPEL alone, by using the Dy-
namic Partner Link feature. However, practical problems such as finding the
right service to bind to (often based on QoS), or the need to resolve interface
differences, demand for more sophisticated service rebinding approaches. Exam-
ples of such work include the WS-Binder [20] or the PAWS [21] frameworks.

378 P. Leitner et al.

More advanced service rebinding was also one of the contributions of Moser et
al. in [22]. Finally, some work on service rebinding (dealing also with stateful
services) has been presented by Mosincat and Binder in [23].

An early approach towards structural adaptation of compositions has been
discussed in [24]. However, in this work no free-form adaptation is possible.
Instead, predefined parameterizations are applied if certain conditions hold. Ar-
guably, the AOP paradigm can provide a more powerful abstraction for adapta-
tion in compositions. This idea has first been introduced by Charfi et al. [25,26].
However, unlike our work, Charfi et al. focus on the traditional AOP idea of
weaving crosscutting concerns into the composition, while we apply the AOP
paradigm with a different goal (adaptation for SLA compliance) in mind. Using
aspects for runtime adaptation in WS-BPEL has been covered by the BPEL’n’-
Aspects framework [8]. Our main contribution over this work is that in our case
aspects can be composition fragments, while BPEL’n’Aspects supports only sin-
gle Web service invocations as aspects. Work with similar goals, but specific to
the telecommunications domain, has been presented Niemöller et al. [27]. An ap-
proach which deals with process fragment composition is presented by Eberle et
al. [28]. Their idea is to exploit the redundancy in separately modeled composi-
tion fragments and use those redundant overlapping fragment parts to merge the
fragments. In our approach we model how fragments should be merged explicitly
by using virtual activities.

7 Conclusions and Future Work

In this paper we have presented an approach to runtime adaptation of service
compositions for preventing SLA violations. The adaptation is based on com-
position fragments which are dynamically substitued at runtime using AOP
techniques. Composition fragments are modeled separately and are explicitly
linked into the original composition using virtual activities. In addition to their
process logic, fragments specify also their expected impact on the composition
performance. This is necessary in order to be able to choose the best fitting
fragments for preventing a predicted SLA violation at composition runtime. We
have implemented the approach using Windows Workflow Foundation technol-
ogy and experiments show that the performance impact of dynamic weaving is
acceptable.

While the current status of the approach is promising, there are still some
open issues left for future work. Firstly, we do not take into account that adap-
tation which prevents the violation of one SLA metric could easily lead to the
violation of another. In particular, we currently do not take the costs of adap-
tations into account (e.g., increased costs by using more expensive services in
the weaved fragment) which in some cases could be higher than the gain of not
violating the SLA. Therefore, we will extend the impact model and its evaluation
in our future work. Secondly, we currently assume that the number of possible
combinations of advices to apply is small, so that finding the best combination
via full enumeration is possible. In future work we plan to embrace heuristic
optimization for cases where full enumeration is not feasible.

Preventing SLA Violations in Service Compositions 379

Acknowledgments

The research leading to these results has received funding from the European
Community’s 7th Framework Programme under the Network of Excellence S-
Cube (Grant Agreement no. 215483).

References

1. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Com-
puting: State of the Art and Research Challenges. IEEE Computer 40(11) (2007)

2. Dan, A., Davis, D., Kearney, R., Keller, A., King, R., Kuebler, D., Ludwig, H.,
Polan, M., Spreitzer, M., Youssef, A.: Web Services on Demand: WSLA-Driven
Automated Management. IBM Systems Journal 43(1), 136–158 (2004)

3. Bodenstaff, L., Wombacher, A., Reichert, M., Jaeger, M.C.: Analyzing Impact Fac-
tors on Composite Services. In: Proceedings of the 2009 IEEE International Con-
ference on Services Computing (SCC 2009) (2009)

4. Wetzstein, B., Leitner, P., Rosenberg, F., Brandic, I., Leymann, F., Dustdar, S.:
Monitoring and Analyzing Influential Factors of Business Process Performance. In:
Proceedings of the 13th IEEE EDOC Conference (EDOC 2009) (2009)

5. Leitner, P., Wetzstein, B., Rosenberg, F., Michlmayr, A., Dustdar, S., Leymann,
F.: Runtime Prediction of Service Level Agreement Violations for Composite Ser-
vices. In: Proceedings of the 3rd Workshop on Non-Functional Properties and SLA
Management in Service-Oriented Computing, NFPSLAM-SOC 2009 (2009)

6. Zeng, L., Lingenfelder, C., Lei, H., Chang, H.: Event-Driven Quality of Service
Prediction. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008.
LNCS, vol. 5364, pp. 147–161. Springer, Heidelberg (2008)

7. Miller, F.P., Vandome, A.F., McBrewster, J.: Aspect-oriented Programming. Al-
phascript Publishing (2010)

8. Karastoyanova, D., Leymann, F.: BPEL’n’Aspects: Adapting Service Orchestration
Logic. In: Proceedings of 7th IEEE International Conference on Web Services,
ICWS 2009 (2009)

9. Shukla, D., Schmidt, B.: Essential Windows Workflow Foundation. Microsoft.Net
Development Series (2006)

10. Haykin, S.: Neural Networks and Learning Machines: A Comprehensive Founda-
tion, 3rd edn. Prentice-Hall, Englewood Cliffs (2008)

11. Jaeger, M.C., Rojec-Goldmann, G., Muhl, G.: QoS Aggregation in Web Service
Compositions. In: Proceedings of the 2005 IEEE International Conference on
eTechnology, eCommerce and eService, EEE 2005 (2005)

12. Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: End-to-End Support for
QoS-Aware Service Selection, Binding and Mediation in VRESCo. IEEE Transac-
tions on Services Computing, TSC (2010)

13. Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar, S.: Monitoring, Prediction and
Prevention of SLA Violations in Composite Services. In: Proceedings of the 2010
IEEE International Conference on Web Services, ICWS 2010 (2010)

14. Weber, B., Reichert, M., Rinderle-Ma, S.: Change Patterns and Change Support
Features - Enhancing Flexibility in Process-Aware Information Systems. Data and
Knowledge Engineering 66(3), 438–466 (2008)

15. Kongdenfha, W., Saint-Paul, R., Benatallah, B., Casati, F.: An Aspect-Oriented
Framework for Service Adaptation. In: Dan, A., Lamersdorf, W. (eds.) ICSOC
2006. LNCS, vol. 4294, pp. 15–26. Springer, Heidelberg (2006)

380 P. Leitner et al.

16. Song, H., Yin, Y., Zheng, S.: Dynamic Aspects Weaving in Service Composition.
In: Proceedings of the International Conference on Intelligent Systems Design and
Applications (2006)

17. Narendra, N.C., Ponnalagu, K., Krishnamurthy, J., Ramkumar, R.: Run-time
adaptation of non-functional properties of composite web services using aspect-
oriented programming. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC
2007. LNCS, vol. 4749, pp. 546–557. Springer, Heidelberg (2007)

18. Gmach, D., Krompass, S., Scholz, A., Wimmer, M., Kemper, A.: Adaptive Quality
of Service Management for Enterprise Services. ACM Transactions on the Web 2(1),
1–46 (2008)

19. Metzger, A., Sammodi, O., Pohl, K., Rzepka, M.: Towards Pro-Active Adaptation
With Confidence: Augmenting Service Monitoring With Online Testing. In: Pro-
ceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS 2010 (2010)

20. Penta, M.D., Esposito, R., Villani, M.L., Codato, R., Colombo, M., Nitto, E.D.:
WS Binder: a Framework to Enable Dynamic Binding of Composite Web Services.
In: Proceedings of the International Workshop on Service-Oriented Software Engi-
neering, SOSE 2006 (2006)

21. Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., Plebani, P.: PAWS: A Framework
for Executing Adaptive Web-Service Processes. IEEE Software 24(6), 39–46 (2007)

22. Moser, O., Rosenberg, F., Dustdar, S.: Non-Intrusive Monitoring and Service Adap-
tation for WS-BPEL. In: Proceedings of the 17th International Conference on
World Wide Web, WWW 2008 (2008)

23. Mosincat, A., Binder, W.: Transparent Runtime Adaptability for BPEL Processes.
In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364,
pp. 241–255. Springer, Heidelberg (2008)

24. Karastoyanova, D., Leymann, F., Nitzsche, J., Wetzstein, B., Wutke, D.: Parame-
terized BPEL Processes: Concepts and Implementation. In: Dustdar, S., Fiadeiro,
J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 471–476. Springer, Hei-
delberg (2006)

25. Charfi, A., Mezini, M.: AO4BPEL: An Aspect-oriented Extension to BPEL. World
Wide Web 10(3), 309–344 (2007)

26. Charfi, A., Dinkelaker, T., Mezini, M.: A Plug-in Architecture for Self-Adaptive
Web Service Compositions. In: Proceedings of the 2009 IEEE International Con-
ference on Web Services, ICWS 2009 (2009)

27. Niemöller, J., Levenshteyn, R., Freiter, E., Vandikas, K., Quinet, R., Fikouras, I.:
Aspect Orientation for Composite Services in the Telecommunication Domain. In:
Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900,
pp. 19–33. Springer, Heidelberg (2009)

28. Eberle, H., Unger, T., Leymann, F.: Process Fragments. In: Meersman, R.,
Dillon, T., Herrero, P. (eds.) OTM 2009. LNCS, vol. 5870, pp. 398–405. Springer,
Heidelberg (2009)

Adaptive Management of Composite Services

under Percentile-Based Service Level
Agreements

Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi,
and Francesco Lo Presti

Università di Roma “Tor Vergata”, Viale del Politecnico 1, 00133 Roma, Italy
{cardellini,casalicchio}@ing.uniroma2.it,

{vgrassi,lopresti}@info.uniroma2.it

Abstract. We present a brokering service for the adaptive management
of composite services. The goal of this broker is to dynamically adapt at
runtime the composite service configuration, to fulfill the Service Level
Agreements (SLAs) negotiated with different classes of requestors, de-
spite variations of the operating environment. Differently from most of
the current approaches, where the performance guarantees are charac-
terized only in terms of bounds on average QoS metrics, we consider
SLAs that also specify upper bounds on the percentile of the service re-
sponse time, which are expected to better capture user perceived QoS.
The adaptive composite service management is based on a service selec-
tion scheme that minimizes the service broker cost while guaranteeing
the negotiated QoS to the different service classes. The optimal service
selection is determined by means of a linear programming problem that
can be efficiently solved. As a result, the proposed approach is scalable
and lends itself to an efficient implementation.

1 Introduction

The Service Oriented Architecture (SOA) paradigm encourages the construc-
tion of new applications through the composition of loosely coupled network-
accessible services offered by independent providers. One of the underlying ideas
is that different providers may offer different implementations of the same func-
tionality, differentiated by their quality of service (QoS) and cost attributes, thus
allowing a prospective user to choose the services that best suit his/her needs.
To state the respective expectations and obligations concerning the delivered
QoS and cost, users and providers of services engage in a negotiation process
that culminates in the definition of a Service Level Agreement (SLA) contract.

Given a SOA system consisting of a composition of services, the fulfillment of
the QoS requirements stated in its SLA is a challenging task that requires the
system to take complex decisions within short time periods, because of the intrin-
sically dynamic and unpredictable nature of the SOA operational environment.
A promising way to manage effectively this task is to make the system able to

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 381–395, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

382 V. Cardellini et al.

self-configure at runtime in response to changes in its operational environment.
In this way, the system can timely react to environment changes (concerning
for example the available resources or the type and amount of user requests), to
keep the ability of fulfilling at runtime the QoS requirements stated in a SLA,
thus avoiding SLA violations that could cause loss of income and reputation.

Severalmethodologieshavebeenalreadyproposedtodrive the self-configuration
of QoS-aware SOA systems. Most of them (e.g., [1,2,4,15,16]) address this issue
as a service selection problem: given the set of functionalities (abstract services)
needed to compose a new added value service, the goal is to identify at run-
time a set of concrete services (one for each abstract service) that implement
them, selecting it from a pool of candidates. Each selected concrete service is
then dynamically bound to the corresponding abstract service. Other method-
ologies [5,9,10] extend this idea by also considering the possibility of binding
each abstract service to a set of functionally equivalent concrete services rather
than a single service, coordinated according to some redundancy pattern (e.g.,
1-out-of-N or sequential retry), to achieve higher QoS at the expense of higher
cost: in this case both the redundancy pattern and the set of equivalent concrete
services must be selected at runtime.

The proposed methodologies also differ in the type of scenario they deal with:
most of them (e.g., [1,2,10,15,16]) deal with single requests for the composite
service independently of each another. The goal in this case is to determine the
concrete implementation of each abstract service for that request that is best
suited to satisfy the requestor SLA given the current conditions of the operating
environment. Others [4,5] jointly consider the aggregate flow of requests. In this
case, the goal is to determine how to switch different flows of requests, possibly
generated by several classes of users, to the different candidate implementations
as to satisfy the different SLAs.

Most of the proposed approaches for self-configurable QoS-aware SOA systems
consider SLAs where the performance guarantees are specified only in terms
of bounds on the expected values of the QoS metrics of interests. A potential
limitation of these approaches lies in the fact that the user perceived QoS is
often better expressed in terms of bounds on the percentile of the QoS metrics,
as also reflected in commercial practices. For example, the Amazon SOA-based
e-commerce platform [7] includes SLAs concerning the 99.9 percentile of the
response time under a given peak load of service requests per second. To the
best of our knowledge, only the approaches proposed in [8,14] offer guarantees
on the percentile of the response time. The results in [14], though, are limited
to sequential patterns and only apply to the single request scenario, while [8]
proposes a heuristic for request scheduling in a single database server which is
based on the execution time prediction.

In this paper, we overcome this limitation of current methodologies for self-
configurable QoS-aware SOA systems. We consider the flow scenario and propose
a service selection scheme to drive the self-configuration of composite SOA ap-
plications, which considers SLAs that include performance guarantees on the
percentiles of the QoS attributes. We present our solution from the perspective

Adaptive Management of Composite Services 383

of an application implemented as a composite service and managed by an inter-
mediary broker. We show that the application can efficiently provide the SLAs
by selecting, among the pool of available services, those services that allow it
to fulfill the SLAs negotiated with the users, given the constraints defined by
the SLAs settled with the providers. The selection is driven by the goal of max-
imizing some broker utility goal. The search for a new solution is triggered by
the occurrence of events that could make no longer valid a previously calcu-
lated solution, e.g., the arrival or departure of a user or a change in the set of
providers. We formulate the service selection problem as an optimization prob-
lem with non-linear constraints. For the solution, we linearize the constrains. The
resulting linear programming problem can thus be efficiently solved via standard
techniques. Hence the proposed approach is suitable for on-line operations.

The rest of the paper is organized as follows. In Sect. 2 we provide an overview
of the system architecture offering the composite service with percentile-based
SLAs and outline the SLA definition. In Sect. 3 we discuss how to compute the
QoS attributes of the composite service. In Sect. 4 we present the formulation
of the optimization problem that is solved to determined the percentile-based
service selection. Then, in Sect. 5 we present the simulation experiments to assess
the effectiveness of the proposed approach. Finally, we draw some conclusions
and give hints for future work in Sect. 6.

2 System Architecture

We present our approach from the perspective of an application architected as
a composite service and provided by an intermediary service broker. The service
broker offers to prospective users a composite service with a range of different
service classes. It acts as a full intermediary between users and concrete services,
performing a role of service provider towards the users and being in turn a
requestor to the concrete services offering the operations used to implement the
composite service. Its main task is to drive the adaptation of the composite
service it manages to fulfill the SLAs negotiated with its users, given the SLAs
it has negotiated with the concrete services. Moreover, it also aims at optimizing
a given utility goal.

Users

Service Registry

Users

Users

Concrete
Service Concrete

Service Concrete
Service

Concrete
Service

Adaptation
Manager

Service
Manager

WS
Monitor

Workflow
Engine

Composition
Manager

SLA
Manager

Optimization
Engine

QoS Monitor

Fig. 1. Service broker high-level architecture

384 V. Cardellini et al.

Figure 1 shows the core components of the broker high-level architecture and
their interaction. A detailed description of the architecture can be found in [5]; in
the next, we summarize the respective tasks of the components. The Composition
Manager describes the composite service in some suitable workflow orchestration
language (e.g., BPEL [13]) and identifies the concrete services implementing the
required functionalities of the abstract composition (including their SLAs).

The Workflow Engine is the software platform executing the business process
and represents the user front-end for the composite service provisioning. For each
invocation of the component services it interacts with the Adaptation Manager.
The latter binds dynamically the request to the real endpoint that represents
the concrete service, which is identified through the solution of the optimization
problem presented in Sect. 4. Together, the Workflow Engine and the Adaptation
Manager manage the user requests flow, once the user has been admitted to the
system with an established SLA. The Optimization Engine is the component that
solves the broker optimization problem. The parameters values for this problem
are derived from the parameters of the SLAs negotiated with the composite
service users and concrete services, and from a monitoring activity carried out
by the QoS Monitor and the WS Monitor.

The QoS Monitor collects information about the performance and availability
levels (specified in the SLAs) perceived by the users and offered by the concrete
services. This component is also in charge to observe and compute the distribu-
tion of the response time of the composite service for each service class and to
estimate its zα value (defined in Sect. 3). The WS Monitor checks periodically
the responsiveness of the pool of concrete services and notifies if some of them
becomes unavailable. Besides maintaining up to date the parameters of the opti-
mization problem, the QoS Monitor and WS Monitor check and notify whether
some relevant change occurs in the composite service environment. This may lead
to the solution of a new instance of the optimization problem which accounts for
the occurred changes. Events to be tracked include the arrival/departure of a
user, an observed variation in the SLA parameters of the concrete services, and
the addition/removal of concrete services.

The Service Manager and the SLA Manager are mainly responsible for the
SLA negotiation processes in which the broker is involved as intermediary. The
former negotiates the SLAs with the concrete services. The tasks of the latter are
the user SLA negotiation and registration, that is, it is in charge to add, modify,
and delete SLAs and users profiles. The SLA negotiation process towards the
user side includes also the admission control of new users; to this end, it involves
the use of the Optimization Engine in order to evaluate the broker capability
to accept the incoming user. Most of the broker components access to a storage
layer (not shown in Fig. 1) to know the model parameters of the composite
service operations and environment.

2.1 Composite Service

We assume that the composite service structure is defined using BPEL [13]. In
this paper, we actually refer to a significant subset of the whole BPEL definition,

Adaptive Management of Composite Services 385

focusing on its structured style of modeling (rather than on its graph-based one,
thus omitting to consider the use of control links). Specifically, in the definition
of the workflow describing the composite service, besides the primitive invoke
activity, which specifies the synchronous or asynchronous invocation of a Web
service, we consider most of the structured activities: sequence, switch, while,
and pick, whose meaning is summarized in Table 1. The percentile-based ser-
vice selection proposed in this paper is not currently able to manage the flow
structured activity, which is used for the concurrent execution of activities.

Table 1. Structured activities in BPEL

Activity Meaning

sequence Sequential execution of activities

switch Conditional execution of activities

while Repeated execution of activities in a loop

pick Conditional execution of activities based on external event/alarm

Figure 2 shows an example of a BPEL workflow described as a UML2 activity
diagram. With the exception of the pick construct, this example encompasses
all the structured activities listed in Table 1.

Fig. 2. An example of BPEL workflow

The business process for the composite service defines a set of abstract services
{S1, . . . , Sn}. Each abstract service can be instanciated with a specific concrete
service kij ∈ Ki, where Ki is the set of functionally equivalent concrete ser-
vices that have been identified by the Composition Manager as candidates to
implement Si.

2.2 SLA Negotiation

The Service Manager and SLA Manager components are involved in the SLA
negotiation with two counterparts: on one side the requestors of the composite
service, on the other side the providers of the concrete services. Let us first
discuss the SLA settled with the latter. The QoS of each concrete service can be

386 V. Cardellini et al.

characterized according to various attributes of interest, such as response time,
cost, reputation, availability, and throughput [6,16]. The values of these QoS
attributes are advertised by the service providers as part of their SLA. Without
loss of generality, in this paper we consider the following QoS attributes for each
concrete service kij :

– the response time tij , which is the interval of time elapsed from the invocation
to the completion of the concrete service kij ;

– the cost cij , which represents the price charged for each invocation of the
concrete service kij ;

– the log of the availability, aij , i.e., the logarithm of the probability that the
concrete service kij is available when invoked.

In the latter case, as in [16] we consider the logarithm of the availability, rather
than the availability itself, in order to obtain linear expressions when composing
the availability of different services.

For a given concrete service kij , the SLA established by the broker with the
service provider defines the service cost (measured in money per invocation),
availability, and expected response time (measured in time unit), provided the
volume of requests generated by the broker does not exceed the negotiated av-
erage load. Therefore, the SLA for the concrete service kij is represented by the
template 〈tij , cij , aij , Lij〉, being Lij the agreement on average load.

We denote by K the set of QoS classes offered by the broker. In the SLAs
created with the requestors, the broker characterizes the QoS of the composite
service in terms of bounds on the expected response time, quantile of the response
time, expected cost, and excepted availability for each QoS class k ∈ K (i.e.,
T k

max, T
k
α,max, C

k
max, A

k
min), where T k

α,max is a bound on the α-quantile T k
α of the

response time. Observe that while the concrete service provides only guarantees
on the expected response time tij , the composite service offered by the broker
provides guarantees on the tail of the response time distribution.

Each requestor has to negotiate for each QoS class the volume of requests
it will generate in that class (denoted by Δγk). The SLA established by the
broker with the requestor for the QoS class k ∈ K has therefore the template
〈T k

max, T
k
α,max, C

k
max, A

k
min, Δγ

k〉.

2.3 Admission Control

Upon the arrival of a new user, the SLA Manager determines whether it can be
accepted for the required class of service, without violating the SLAs of already
accepted requestors. Let γ be the aggregate arrival rate of already accepted
requestors (i.e., γ = (γ1, ..., γ|K|) and denote by Δγ the arrival rate requested
by the new user for all the service classes (i.e., Δγ = (Δγ1, ..., Δγ|K|)). The SLA
Manager determines whether the new requestor can be accepted by invoking the
Optimization Engine and asking for a new resolution of the optimization problem
with γ +Δγ as aggregate arrival rate. We have two possible cases. If a feasible
solution to the optimization problem exists, it means that the additional requests
can be satisfied - at the requested QoS - without violating the QoS of already

Adaptive Management of Composite Services 387

accepted users. The new requestor can be thus accepted and the SLA finalized
for the requested rate and QoS class. If, instead, a feasible solution does not
exists, the broker can: 1) turn down the new requestor; 2) renegotiate the SLA
with the requestor; 3) renegotiate the parameters of the SLAs with the service
providers.

2.4 Service Selection Model

The Adaptation Manager determines, for each QoS class, the concrete service kij

that must be used to fulfill a request for the abstract service Si. We model this
selection by associating with each abstract service Si a service selection policy
vector xi = (x1

i , ...,x
|K|
i), where xk

i = [xk
ij] and kij ∈ Ki. Each entry xk

ij of xk
i

represents the probability that the class-k request will be bound to the concrete
service kij . The xk

ij values are determined by the Optimization Engine every time
a new solution of the optimization problem is triggered by some environmental
change and are then stored in the storage layer, from where they are accessed
by the Adaptation Manager.

With this model, we assume that the Adaptation Manager can probabilis-
tically bind to different concrete services the requests (belonging to a same
QoS class k) for an abstract service Si. As an example, consider the case Ki =
{ki1, ki2, ki3} and assume that the selection policy xk

i for a given class k specifies
the following values: xk

i1 = xk
i2 = 0.3, xk

i3 = 0.4. This strategy implies that 30%
of the class-k requests for Si are bound to ki1, 30% are bound to ki2 while the
remaining 40% are bound to ki3. From this example we can see that, to get
some overall QoS objective for a flow of requests of a given class, the Adaptation
Manager may bind different requests to different concrete services.

3 Composite Service QoS Model

In this section, we present the QoS model for the composite service and show
how to compute its QoS attributes.

Upon a composite service invocation, the broker executes a sequence of tasks
as dictated by the service workflow. Each time a task Si is invoked, the broker
determines at runtime the concrete service kij to be bound to Si and invokes it.
We denote by Nk

i the number of times the task Si is invoked by a class-k user
service request.

For each class k ∈ K offered by the broker, the overall QoS attributes, namely,

– the expected response time T k, which is the time needed to fulfill a class-k
request for the composite service;

– the α-quantile T k
α of the response time;

– the expected execution cost Ck, which is the price to be paid to fulfill a
class-k request;

– the expected availability Ak, which is the logarithm of the probability that
the composite service is available for a class-k request

depend on: 1) the actual concrete service kij selected to perform each abstract
service Si, i = 1, . . . , n, and 2) how the services are orchestrated.

388 V. Cardellini et al.

Expected Value. To compute these quantities, let Zk
i (x) denote the QoS attribute

of the abstract service Si, Z ∈ {T,C,A}. We have

Zk
i (x) =

∑

kij∈Ki

xk
ijz

k
ij

where zk
ij , z ∈ {t, c, a} is the corresponding QoS attribute offered by the concrete

service kij ∈ Ki which can implement Si.
From these quantities, we can derive closed form expressions for the QoS

attributes of the composite service. Since all metrics, namely, the cost, the (log-
arithm of the) availability, and the response time QoS metrics are additive [6],
for their expected value we readily obtain

Zk(x) =
n∑

i=1

V k
i Z

k
i (x) =

n∑

i=1

V k
i

∑

kij∈Ki

xk
ijzij

where V k
i = E[Nk

i] is the expected number of times Si is invoked for a class-k
request.

Response Time α-quantile. It is not possible to find a general expression for a
percentile of the response time. We assume to know - or to be able to estimate -
the zk

α-value of the distribution, i.e., the α-quantile of the normalized response
time, which is defined as zk

α = T k
α−E[T k]√
Var[T k]

. Hence,

T k
α = E[T k] + zk

α

√
Var[T k] (1)

i.e., we rewrite the percentile of the distribution as function of the expected
value E[T k], the variance Var[T k], and the associated zk

α-value. The response
time variance takes the following form (the derivation of which, for its length, is
omitted and can be found in [3]):

Var[T k] =

n∑

i=1

V k
i Var[T k

i] +

n∑

i=1

n∑

i′=1

Cov[Nk
i Nk

i′]T
k
i (x)T k

i′(x) (2)

where

Var[T k
i] =

∑

kij∈Ki

xij(t
2
ij + σ2

ij) −

⎛

⎝
∑

kij∈Ki

xijtij

⎞

⎠

2

(3)

is the variance of the response time of task Si (being σ2
ij the response time

variance of service kij which we also assume to estimate). Observe that the
variance (2) comprises two terms: the first accounts for the variability of the
response time of each task weighted by the expected number of times each task
is invoked; the second term accounts for the variability of the number of tasks
invocations (which are correlated), weighted by the tasks expected response time.

Adaptive Management of Composite Services 389

4 Optimization Problem

The Optimization Engine goal is to determine the service selection strategy xk
ij ,

i = 1, . . . , n, k ∈ K, kij ∈ Ki which maximizes a suitable utility function. For
the sake of simplicity, here we consider the simple case that the broker wants
to minimize the overall expected cost to offer the composite service, defined as
C(x) = 1∑

k∈K
γk

∑
k∈K γkCk(x). In general we could optimize multiple QoS

attributes (which can be either mutually independent or possibly conflicting).
Therefore, the optimal service selection would take the form of a multi-objective
optimization which can be solved by reducing to a single objective problem using
a scalarization method, e.g., the Simple Additive Weighting technique.

The Optimization Engine task consists in finding the variables xk
ij , i=1, . . . , n,

k ∈ K, kij ∈ Ki, which solve the following optimization problem:

OPT : min C(x)

subject to: T k(x) ≤ T k
max k ∈ K (4)

Ck(x) ≤ Ck
max k ∈ K (5)

Ak(x) ≥ Ak
min k ∈ K (6)

P[T k > T k
α,max] ≤ 1 − α k ∈ K (7)

∑

k∈K

xk
ijV

k
i γk ≤ Lij i = 1, . . . , n, kij ∈ Ki (8)

xk
ij ≥ 0 kij ∈ Ki,

∑

kij∈Ki

xk
ij = 1 i = 1, . . . , n, k ∈ K (9)

Equations (4)-(6) are the QoS constraints for each service class on average re-
sponse time, average cost and availability, where T k

max, C
k
max, and Ak

min are re-
spectively the maximum response time, the maximum cost and the minimum
(logarithm of the) availability that characterize the QoS class k. Equation (7) is
the QoS constraint on the percentile of the response time. Equations (8) are the
broker-providers SLA constraints and ensure the broker does not exceed the SLA
with the service providers. Finally, equations (9) are the functional constraints.
The constraints P[T k > T k

α,max] ≤ 1−α can be rewritten as T k
α ≤ T k

α,max. Hence,

T k
α ≤ T k

α,max ⇐⇒ E[T k] + zα

√
Var[T k] ≤ T k

α,max

Thus, the constraints on the response time percentile can be rewritten as:

zα

⎛

⎝
n∑

i=1

n∑

i′=1

Cov[NiNi′]
∑

kij∈Ki

xijtij

∑

kij∈Ki′

xi′jti′j + . . .

n∑

i=1

V k
i

⎛

⎝
∑

kij∈Ki

xij(t
2
ij + σ2

ij) −

⎛

⎝
∑

kij∈Ki

xijtij

⎞

⎠

2⎞

⎠

⎞

⎠

1
2

≤

T k
α,max −

n∑

i=1

V k
i

∑

kij∈Ki

xk
ijtij k ∈ K (10)

390 V. Cardellini et al.

Constraints Linearization. Because of the constraints (10), there is no known
technique to solve problem OPT1. We tackle the problem by deriving a linear
program (LP) which is obtained by linearizing (10) in two steps. First of all
we eliminate the square root, which is not differentiable in zero by taking the
square of both side of (2). Then, we linearize the constraints by approximating
both sides with the first term of the Taylor expansion around a suitable point
x0, which yields (for space limitation, the computation of the first term of the
Taylor expansion is omitted; the details can be found in [3]):

n∑

i=1

∑

kij∈Ki

xk
ij

[

z2
α

(

2

n∑

i′=1

Cov[NiNi′]T
k
i′(x0)tij+

V k
i

(
t2ij + σ2

ij − 2tijT
k
i (x0)

))
+ 2tij

(
T k

α max − T k(x0)
)]

≤

z2
α

(
n∑

i=1

n∑

i′
Cov[NiNi′]T

k
i′(x0)T

k
i (x0) −

n∑

i=1

V k
i T k2

i (x0)

)

+

(
T k

α,max − T k(x0)
)2

+ 2
(
T k

α,max − T k(x0)
)

T k(x0) (11)

By replacing (7) with (11) in OPT we obtain the following LP LINOPT which
we use to determine the optimal service selection policy:

LINOPT : min C(x)

subject to:
n∑

i=1

V k
i

∑

kij∈Ki

xk
ijtij ≤ T k

max k ∈ K (12)

n∑

i=1

V k
i

∑

kij∈Ki

xk
ijcij ≤ Ck

max k ∈ K (13)

n∑

i=1

V k
i

∑

kij∈Ki

xk
ijaij ≥ Ak

min k ∈ K (14)

percentile constraints (11) k ∈ K (15)
∑

k∈K

xk
ijV

k
i γk ≤ Lij i = 1, . . . , n, kij ∈ Ki (16)

xk
ij ≥ 0 kij ∈ Ki,

∑

kij∈Ki

xk
ij = 1 i = 1, . . . , n, k ∈ K (17)

LINOPT is a LP problem and can be efficiently solved via standard techniques.
The solution thus lends itself to both on-line and off-line operations.

The choice of the linearization point x0 is crucial to obtain good solutions,
i.e., solutions close to those that would have been obtained by solving OPT. We
found that a good choice for x0 is provided by a most recent solution x itself.

1 Had the constraints be convex, we could have used semidefinite programming to
solve the problem. Since convexity does not hold in general, we have resorted to
linearization instead.

Adaptive Management of Composite Services 391

In case such a solution is not available, e.g., when the broker is initialized, we
simply do not consider the constraints (15) the first time LINOPT is executed.

5 Simulation Model and Experiments

In this section, we first describe the simulation model we have defined to study
the effectiveness of the percentile-based adaptation policy and then present the
results of simulation experiments.

5.1 Simulation Model

The broker simulation model comprises the same components of the architecture
shown in Fig. 1. We consider an open system model, where new users belonging to
a given service class k ∈ K offered by the broker arrive at mean user inter-arrival
rate Λk. Each class-k user is characterized by its SLA parameters defined in
Sect. 2.2 and by the contract duration dk. If admitted (according to the admission
control mechanism explained in Sect. 2.3), the user will start generating requests
to the composite service until its contract expires.

Differently from traditional Web workload, SOA workload characterization
has been not deeply investigated up to now (some preliminary results are in [12]).
Therefore, in our workload model we assume exponential distributions with pa-
rameters Λk and 1/dk for the user inter-arrival time and contract duration,
respectively, and a Gaussian distribution with parameters mk and σk for the
inter-arrival rate of requests to the composite service generated by each user.
We also assume that the response times of the concrete services follow Erlang
distributions with different shape parameters.

The discrete-event simulator has been implemented in C language using the
CSIM package [11]. Multiple independent random number streams have been
used for each stochastic model component. The experiments involved a minimum
of 10,000 completed requests to the composite service; for all reported mean and
percentile values the 95% confidence interval has been obtained using the run
length control provided by CSIM.

5.2 Experimental Results

We illustrate the dynamic behavior of our adaptive service selection through the
simple abstract workflow of Fig. 2. For the sake of simplicity we assume that two
candidate concrete services (with their respective SLAs) have been identified for
each abstract service, except for S2 for which four concrete services have been
identified. The respective SLAs differ in terms of cost, availability, and response
time (all time values are measured in sec.). Table 2 summarizes for each concrete
service kij the SLA parameters 〈tij , cij , aij〉 and the shape parameter Erlij of
the Erlang distribution for the response time (for each kij , the mean value of
the Erlang distribution corresponds to tij). The SLA and the Erlang shape
parameters have been chosen so that for abstract service Si, concrete service ki1

392 V. Cardellini et al.

Table 2. Concrete service SLA parameters and shape parameter of Erlang distribution

Service cij aij tij Erlij

k11 6 0.995 2 4
k12 3 0.99 4 2

k21 4.5 0.99 1 4
k22 4 0.99 2 4
k23 2 0.95 4 2
k24 1 0.95 5 2

k31 2 0.995 1 4
k32 1.8 0.95 2 2

Service cij aij tij Erlij

k41 1 0.995 0.5 4
k42 0.8 0.99 1 2

k51 2 0.99 2 4
k52 1.4 0.95 4 2

k61 0.5 0.99 1.8 4
k62 0.4 0.9 4 2

represents the best implementation, which at a higher cost guarantees higher
availability and lower response time (in terms of mean as well as variance) with
respect to concrete service kij for j ≥ 2, which costs less but has lower availability
and higher response time. For all concrete services, Lij = 10.

On the user side, we assume a scenario where the broker offers the composite
service with four QoS classes. The SLAs negotiated by the users are characterized
by a wide range of QoS requirements as listed in Table 3, with users in class 1
having the most stringent requirements A1

min = 0.95 and T 1
max = 7, and users

in class 4 the least stringent requirements A4
min = 0.8 and T 4

max = 18. With
regard to the bound on the α-quantile T k

α,max of the response time, we assume
that for all classes T k

α,max = βT k
max and α = 0.95 (i.e., we consider 95-percentile

of the response time). The SLA costs parameters for the four classes have been
set accordingly, where class 1 has the highest cost per request and class 4 is the
cheapest. The expected number of service invocations for the different classes is:
V k

1 = V k
2 = V k

3 = 1.5, V k
4 = 1, k ∈ K; V k

5 = 0.7, V k
6 = 0.3, k ∈ {1, 3, 4}; V 2

5 =
V 2

6 = 0.5, that is, all classes have the same usage profile except users in class 2,
who invoke S5 and S6 with different intensity. The values of the parameters that
characterize the workload model are dk = 100 and (mk, σk) = (3, 1) for each k
(Λk, dk, and mk values have to be set so that γk = Λkmkdk for Little’s formula).

We compare the performance obtained by the service selection with tight
bounds on the percentile of the response time with that of the service selection
where only guarantees on the mean values are offered to the users of the com-
posite service. The problem formulation of the latter case is in [4] and we denote
it with β =∞ (i.e., the tail of the response time distribution is unbounded). We
initially set β = 2.2, which represents a tight bound on the 95-percentile of the
response time; we then analyze the sensitivity of the response time to β.

Table 3. User-side SLA parameters for each service class

Class k Ck Ak
min T k

max T k
0.95,max γk

1 25 0.95 7 βT 1
max 10

2 18 0.9 11 βT 2
max 4

3 15 0.9 15 βT 3
max 2

4 12 0.8 18 βT 4
max 1

Adaptive Management of Composite Services 393

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Response Time [sec.]

β=∞ k=1
β=∞ k=2
β=∞ k=3
β=∞ k=4

β=2.2 k=1
β=2.2 k=2
β=2.2 k=3
β=2.2 k=4

(a) Cumulative distribution

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40

P(
T

k >
x)

Response Time [sec.]

SLA 95-perc k=1
SLA 95-perc k=2

β=∞ k=1
β=∞ k=2

β=2.2 k=1
β=2.2 k=2

(b) Complementary cumulative
distribution (lin-log scale)

Fig. 3. Response time

Figure 3(a) shows the cumulative distribution of the response time of the
composite service for all the service classes when the percentile-based and mean-
based optimizations are used, corresponding to β = 2.2 and β = ∞ curves, re-
spectively. We can see that the percentile-based optimization achieves a better
response time than the mean-based optimization for classes 1 and 2, which have
the more stringent SLA requirements. Through Fig. 3(b) we further investigate
the tendency of the response time for classes 1 and 2 by plotting its comple-
mentary cumulative distribution on a linear-logarithmic scale. The vertical lines
represent the 95-percentile of the response time agreed in the SLA with the users
of the composite services. We can see that the percentile-based service selection
largely satisfies the 95-percentile SLA, that is only 1.6% and 2.1% of class 1
and class 2 requests respectively experience a response time greater than the
95-percentile value. The conservative behavior of the percentile-based approach
is due to the constraints linearization explained in Sect. 4.

To compare in more detail the percentile-based and mean-based approaches,
Fig. 4 shows how the mean and 95-percentile response times of the composite
service vary over time for classes 1 and 2. The horizontal line is the agreed
response time (both mean and 95-percentile values), as reported in Table 3. We
observe that the mean-based approach leads to some violations of the agreed
response time, while the percentile-based approach allows the broker to offer
always a response time much better than that agreed.

We conducted a last set of experiments to analyze the sensitivity of the
percentile-based service selection to the β parameter, which correlates in the SLA
the 95-percentile to the mean of the composite service’s response time (smaller
values of β correspond to a tighter bound on the distribution tail). Figure 5
shows the trend of the 95-percentile response time to β for all classes (the cor-
responding SLA value is only shown for the most demanding classes 1 and 2).
The percentile-based approach succeeds in respecting the agreed 95-percentile
for all service classes and β values. The disadvantage of a tighter bound on the
percentile (e.g., β = 2.1) is that a larger fraction of incoming contract requests
are rejected.

394 V. Cardellini et al.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18

 0 20 40 60 80 100 120

R
es

po
ns

e
T

im
e

[s
ec

.]

Time [min.]

β=2.2 95-perc
β=∞ 95-perc
β=2.2 mean

β=∞ mean
SLA 95-perc

SLA mean
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40

 0 20 40 60 80 100 120

R
es

po
ns

e
T

im
e

[s
ec

.]

Time [min.]

β=2.2 95-perc
β=∞ 95-perc
β=2.2 mean

β=∞ mean
SLA 95-perc

SLA mean

Fig. 4. 95-percentile and mean response time over time for classes 1 (left) and 2 (right)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

2.1 2.2 2.3 2.4 2.5

95
-p

er
ce

nt
ile

 R
es

po
ns

e
T

im
e

[s
ec

.]

β

measured k=1
SLA k=1

measured k=2
SLA k=2

measured k=3
measured k=4

Fig. 5. Sensitivity of 95-percentile response time to β

6 Conclusions

In this paper, we have addressed the problem of selecting concrete services in
a composite service offered by a brokering service which supports differentiated
QoS service classes. Most of the existing approaches only consider SLAs based
on bounds of the expected values of the relevant QoS metrics. A limitation of
these solutions lies in the fact that the user perceived quality is often better
expressed in terms of bounds on the percentile rather than the expected value
of the QoS metrics. To overcome this limitation, in this paper we have consid-
ered SLAs which also specify bounds on the percentile of the response time.
We have formulated the service selection problem as an optimization problem
with non-linear constraints. For the solution, we have linearized the constrains.
The resulting linear programming problem can be efficiently solved via standard
techniques. Therefore, our approach can be used to efficiently manage the ser-
vice selection in a real operating broker-based architecture, where the broker
efficiency and scalability in replying to the users requests are important factors.

The model proposed in this paper provides statistical guarantees on the per-
centile of the response time. The results, though, only apply to the service se-
lection scenario and only consider a subset, albeit significant, of the workflows’
structured activities. Our future work includes the extension of these results
to the use of redundant coordination patterns, the support of the flow BPEL

Adaptive Management of Composite Services 395

activity, and the management of long term SLAs whose users cannot get their
request rejected.

Acknowledgment

Work partially supported by the Italian PRIN project D-ASAP.

References

1. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE
Trans. Softw. Eng. 33(6), 369–384 (2007)

2. Canfora, G., Di Penta, M., Esposito, R., Villani, M.: A framework for qos-aware
binding and re-binding of composite web services. J. Syst. Softw. 81(10) (2008)

3. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F.: Adaptive service se-
lection in service oriented systems under percentile-based service level agree-
ments. Tech. Rep. RR-10.85, DISP, Univ. of Roma Tor Vergata (2010),
http://www.ce.uniroma2.it/publications/RR-10.85.pdf

4. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F., Mirandola, R.: Flow-based
service selection for web service composition supporting multiple qos classes. In:
Proc. IEEE ICWS 2007, pp. 743–750 (2007)

5. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F., Mirandola, R.: Qos-driven
runtime adaptation of service oriented architectures. In: ACM ESEC/SIGSOFT
FSE, pp. 131–140 (2009)

6. Cardoso, J., Sheth, A.P., Miller, J.A., Arnold, J., Kochut, K.J.: Modeling Quality
of Service for Workflows and Web Service Processes. Web Semantics J. 1(3) (2004)

7. DeCandia, G., et al.: Dynamo: Amazon’s highly available key-value store. SIGOPS
Oper. Syst. Rev. 41(6), 205–220 (2007)

8. Gmach, D., Krompass, S., Scholz, A., Wimmer, M., Kemper, A.: Adaptive quality
of service management for enterprise services. ACM Trans. Web 2(1), 1–46 (2008)

9. Grosspietsch, K.: Optimizing the reliability of component-based n-version ap-
proches. In: Proc. IEEE IPDPS 2002 Workshops (2002)

10. Guo, H., Huai, J., Li, H., Deng, T., Li, Y., Du, Z.: Angel: Optimal configuration
for high available service composition. In: Proc. IEEE ICWS 2007, pp. 280–287
(2007)

11. Mesquite Software: http://www.mesquite.com/
12. Nagpurkar, P., Horn, W., Gopalakrishnan, U., Dubey, N., Jann, J., Pattnaik, P.:

Workload characterization of selected jee-based web 2.0 applications. In: Proc.
IEEE Int’l Symposium on Workload Characterization, pp. 109–118 (Septmeber
2008)

13. OASIS: Web Services Business Process Execution Language Version 2.0 (January
2007), http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

14. Xiong, K., Perros, H.: Sla-based service composition in enterprise computing. In:
IEEE Int’l Workshop on Quality of Service, pp. 35–44 (2008)

15. Yu, T., Zhang, Y., Lin, K.J.: Efficient algorithms for web services selection with
end-to-end qos constraints. ACM Trans. Web 1(1), 1–26 (2007)

16. Zeng, L., Benatallah, B., Dumas, M., Kalagnamam, J., Chang, H.: QoS-aware
middleware for web services composition. IEEE Trans. Softw. Eng. 30(5) (2004)

http://www.ce.uniroma2.it/publications/RR-10.85.pdf
http://www.mesquite.com/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

BPMN Modelling of Services with
Dynamically Reconfigurable Transactions�

Laura Bocchi1, Roberto Guanciale2, Daniele Strollo3, and Emilio Tuosto1

1 Department of Computer Science, University of Leicester, UK
2 Department of Computer Science, University of Pisa, Italy

3 Istituto di Scienza e Tecnologie dell’Informazione “Alessandro Faedo”, CNR, Pisa, Italy

Abstract. We promote the use of transactional attributes for modelling business
processes in service-oriented scenarios. Transactional attributes have been intro-
duced in Enterprise JavaBeans (EJB) to decorate the methods published in Java
containers. Attributes describe “modalities” that discipline the reconfiguration of
transactional scopes (i.e., of caller and callee) upon method invocation.

We define and study modelling and programming mechanisms to control dy-
namically reconfigurable transactional scopes in Service-Oriented Computing
(SOC). On the one hand, we give evidence of the suitability of transactional at-
tributes for modelling and programming SOC transactions. As a proof of concept,
we show how BPMN can be enriched with a few annotations for transactional
attributes. On the other hand, we show how the results of a theoretical frame-
work enable us to make more effective the development of transactional service-
oriented applications.

1 Introduction

In this paper we promote the use of transactional attributes for modelling transactional
business processes in service-oriented systems. An original element of our research
programme is the definition and study of modelling mechanisms for dynamically re-
configurable transactional scopes in SOC.

The long-lasting and cross-domain nature of activities in service-oriented systems
contributed in characterising a novel powerful paradigm but imposed to re-think a
number of classic concepts. Among these concepts, the notion of transaction had to
be adapted in order to fit the requirements of the Service-Oriented Computing (SOC)
paradigm. SOC transactions, which are often referred to as long-running transaction,
ensure a weaker set of properties (e.g., no atomicity nor isolation) with respect to the
classic ACID transactions used in database systems; on the other hand they do not re-
quire to lock resources.

The investigation of formal semantics for SOC transactions has been a topic of focus
in the last few years (see § 5 for a non-exhaustive overview). Central to this investiga-
tion is the notion of compensation, a weaker and “ad hoc” version of the classic roll-
back of database systems. Most of the research on long-running transactions has been
focusing on providing suitable (formal) semantics of compensations while not much at-
tention has been reserved to the inter-dependencies of failure propagation and dynamic

� This work has been supported by the project Leverhulme Trust Award ”Tracing Networks”.

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 396–410, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

BPMN Modelling of Services 397

reconfiguration. This is a very critical issue in SOC, where dynamic reconfiguration is
one of the key characteristics. In fact, the configuration of a service-oriented system
can change at each service invocation to include new instances of invoked services in
the ongoing computation. Notably, the reconfiguration affects the relationships between
existing and newly created transactional scopes.

These issues have been first considered in [2,3,1] where it has been proposed a pro-
cess calculus featuring transactional attributes (or attributes for short), inspired to the
transactional mechanisms of EJB [15,13]. The theoretical framework in [2,3,1] aims
to analyse different semantics of transactional scope reconfiguration, the observable
behaviour of service-oriented system, failure propagation, and transactional scope re-
configuration.

We contend that transactional attributes represent a useful conceptual device also in
the modelling phases and during the development of transactional SOC applications.
In fact, we propose a methodology based on the features of transactional attributes
and the theoretical framework of [2,3,1] to enable software architects and engineers
to design and develop distributed applications with transactional properties in SOC.
In this paper, we highlight the benefits of using transactional attributes for modelling
and programming transactional service-oriented processes. As a proof of concept, we
show how the Business Process Modelling Notation (BPMN) [12] can be enriched with
transactional attributes and, through the use of a simple case study, we illustrate the
suitability of an attribute-aware process modelling.

At design time, the software architect typically abstracts from the distribution of the
activities, the communication mechanisms, and the technologies that will implement
each activity. Also, a BPMN specification can describe a distributed workflow and its
transactional properties both from local and global points of view; as a matter of fact,
developers can create service-oriented applications from BPMN models by exploiting
different strategies. One strategy consists of modelling a service-oriented process by
means of an (e.g. BPEL4WS [10]) orchestrator by assembling tasks each representing
a call to either a local or outsourced functionality (i.e., service). The orchestrator is a
central entity that drives the interaction among services and manages their execution
order. The other strategy has a more collaborative flavour and requires processes of
BPMN designs to act as an ensemble that separately describe the role played by each
participant. In this case, there is no single “controlling” process managing the interac-
tions and the activity of each process consists of both invocations to other services and
to an interactive conversation with them.

We illustrate how the development from abstract BPMN designs can be improved
by the usage of transactional attributes. Intuitively, attribute-aware designs give infor-
mation on the transactional support required from the different tasks; noteworthy, such
information can be exploited when developing applications distributively. In fact, trans-
actional attributes provide a useful set of preconditions which helps in preventing what
is commonly known as defensive programming for those functionalities to be developed
internally to an organisation1. The use of transactional attributes let programmers to rely
on a set of preconditions and assumptions on the transactional context in which the task
will be executed thus (s)he is relieved form the burden of considering all possible cases.

1 In defensive programming the code is filled with unnecessary controls to validate data.

398 L. Bocchi et al.

For functionalities provided by external parties, attribute-aware designs provide a use-
ful set of non-functional requirements that allow to select the best match among the
available services.

Also, we illustrate how an extension of BPMN allows software architects to spec-
ify the information for controlling the run-time reconfiguration of transactional scopes.
More precisely, we consider the extension of BPMN with constructs for service invoca-
tion/instantiation associated to transactional attributes and constructs for representing
distributed transactions.

Finally, we show how the results of a recently published theoretical frame-
work [2,3,1] enable us to make more effective some common development activities
of service-oriented applications. Actually, in [1] it has been proved that, under certain
conditions, some of the proposed transactional attributes may be considered equivalent;
this can be used to deduce that some scenarios may be ignored during the development.

Structure of the paper. In § 2 we summarise the key ingredients of our paper, namely
BPMN, EJB attributes, and our case study. The description of our methodology and
the use of attributes in BPMN designs is given in § 3. The extension of BPMN to
incorporate service invocation and distributed transactional scope handling is reported
in 4. Concluding remarks and considerations on future work are given in § 5.

2 Background

This section provides the background information used in the rest of the paper. In § 2.1
we give a brief introduction of the BPMN notation. In § 2.2 we give an intuition of the
semantics of scope reconfiguration featured by EJB. Finally, in § 2.3 we introduce the
case study used to illustrate our approach.

2.1 The Business Process Modeling Notation

The Business Process Modeling Notation [12] (BPMN) allows us to describe business
processes through a graphical notation. We summarise here the main concepts of BPMN
necessary in this paper; for a more complete presentation we refer the reader to [12].

The main building blocks of a BPMN design are flow objects, which represent ac-
tivities and events involved in a business process. As illustrated in Figure 1, BPMN
processes involve two special events: the starting point of the business process, graphi-
cally represented by an empty single-edge circle, and its termination point drawn as an
empty double-edge circle; rounded-corner boxes represent tasks to be executed.

A BPMN task can be equipped with a compensation responsible for the (partial)
recovery of the task upon failure of the process that includes the task. BPMN compen-
sations are represented by tasks connected to the exception events by dotted dashed

Fig. 1. BPMN process with one task

BPMN Modelling of Services 399

A

CompA

Fig. 2. A BPMN task with compensation

lines. For example, the process in Figure 2 describes that the compensation CompA can
rectify the effects produced by task A.

Arrows connecting flow objects represent their dependencies, usually referred to as
forward-flow. Standard arrows describe the temporal order of execution of the business
process as opposed to the backward-flow, that describe the order of execution of com-
pensations. In literature, the order in which compensation must be executed is usually
“the inverse order” of the forward-flow. If the execution of a task fails, the forward-
flow is stopped and the backward-flow started by executing first the compensation of
the most recent successfully executed task back to the initial one. The BPMN process
in Figure 3 describes the usage of arrows to compose tasks and defining the forward-
flow. The process models a sequence of two tasks: task B can be executed only after the
successfully termination of A.

A

CompA

B

CompB

Fig. 3. Sequential composition of BPMN tasks

Figure 4 models a concurrent process. After the termination of task A, both tasks B
and C can be executed independently, the crossed box on the left is used to regulate their
parallel activation. The crossed box on the right represents a synchronization barrier,
waiting for the termination of all elements connected by an incoming arrow before to
propagate the forward-flow execution.

BPMN permits to design nested transactions, as depicted in Figure 5. A double edged
box represents a transactional scope. Intuitively, this scoping mechanism allows trans-
actional scopes to hide any fault of a contained task to external processes.

Finally, BPMN exploits “pools” to represent interactive participants in a business-
to-business design. A pool can contain a process, which must be fully contained within
the pool itself. Namely, forward-flow dependencies cannot cross the boundaries of a
pool (participant). Interaction between participants is modelled via the message flow as
illustrated in Figure 6 where the dashed arrow connecting the send and receive tasks
represents a message flow. Similarly, transactional boxes cannot cross pools.

400 L. Bocchi et al.

A

CompA

B

CompB

C

CompC

D

CompD

Fig. 4. BPMN concurrent tasks

A

CompA

Fig. 5. BPMN sub-transaction

B
uy

er

Receive... ...

S
el

le
r

Send... ...

order

PO Message

Fig. 6. BPMN pools

2.2 EJB Transactional Attributes

In EJB, objects can be assembled in specialised run-time environments called contain-
ers. A container can be thought of as a configuration tool that allows to set up, at de-
ployment time, a few characteristics of distributed applications. A Java bean can be
thought of as on object amenable to be executed in a container (see e.g., [15,13]). An
EJB container supports typical functionalities to manage e.g. the life-cycle of a bean and
to make components accessible to other components by binding it to a naming service2.

EJB containers feature a number of transactional features, namely Container Man-
aged Transactions (CMT), whereby a container associates each method of a bean with

2 http://docs.sun.com/app/docs/doc/819-3658/ablmw?a=view

http://docs.sun.com/app/docs/doc/819-3658/ablmw?a=view

BPMN Modelling of Services 401

a transactional attribute specifying the modality of reconfiguring transactional scopes.
Namely, a transactional attribute determines:

– the transactional modality of the method calls. The modality expresses a require-
ment the invoking party must satisfy (e.g., “calling the method fooBar from out-
side a transactional scope throws an exception”),

– how the scope of transactions dynamically reconfigures (e.g., “fooBar is always
executed in a newly created transactional scope”).

We denote the set of EJB transactional attributes as

A def
= {requires, requires new, not supported, mandatory, never, supports}.

The intuitive semantics of EJB attributes A is illustrated in table below, where each row
represents the behaviour of one transactional attribute and shows how the transactional
scope of the caller and callee behave upon invocation. The first two columns show,
respectively, invocations from outside and from within a scope. Scopes are represented
by a box, callers by •, callee by ◦, and failed activities by ⊗.

invoker outside a scope invoker inside a scope callee supports

(1) • =⇒ • ◦ • =⇒ • ◦ requires

(2) • =⇒ • ◦ • =⇒ • ◦ requires new

(3) • =⇒ • ◦ • =⇒ • ◦ not supported

(4) • =⇒ ⊗ • =⇒ • ◦ mandatory

(5) • =⇒ • ◦ • =⇒ ⊗ never

(6) • =⇒ • ◦ • =⇒ • ◦ supports

More precisely, (1) a callee supporting requires is always executed in a transac-
tional scope which happens to be the same as the caller’s if the latter is already running
in a transactional scope; (2) a callee supporting requires new is always executed in
a new transactional scope; (3) a callee supporting not supported is always executed
outside a transactional scope; (4) the invocation of a method supporting mandatory
fails if the caller is not in a transactional scope (first column of the fourth row in the
table), otherwise the method is executed in the transactional scope of the caller; (5) the
invocation of a method supporting never is successful only if the caller is outside a
transactional scope, and it fails if the caller is running in a transactional scope (in this
case an exception is triggered in the caller); (6) a method supporting supports is exe-
cuted inside (resp. outside) the caller’s scope if the caller is executing in (resp. outside)
a scope.

2.3 The Car Repair Case Study

We consider a case study where a car manufacturer offers a service that supports the
driver in case of engine failure. Once the user’s car breaks down, the service attempts
to locate a garage, a tow truck, and a rental car service so that the car is towed to the

402 L. Bocchi et al.

Charge
Credit Card

RevokeCharge

Order Garage
Appointment

Cancel Garage
Appointment

Order Tow Truck

Cancel Tow Truck

Order Rental Car

Redirect Rental Car

Fig. 7. The BPMN process for the Car Repair Scenario

garage and repaired, and the car owner may continue her/his travel with a substitutive
vehicle.

Figure 7 illustrates a BPMN process modelling the car repair service. The whole
process is included in a transactional scope. First, before any service lookup is made, the
credit card of the driver is charged with a security deposit. Second, the process searches
for a garage; the outcome of the search for the garage poses additional constraints to the
candidate tow trucks. Third, a tow truck is called and, if the search for a tow truck fails
then the garage appointment must be revoked (the dependencies among the bookings
made by the services make it necessary to equip the orchestration with compensations).
Finally, a car rental (which must in a reasonable proximity to the garage) is arranged.
If renting a car succeeds and finding either a tow truck or a garage appointment fails,
then car rental must be redirected to the actual location of the broken down car. We
model OrderRentalCar inside a nested transactional scope because its failure should
not affect the tow truck and garage appointments.

The BPMN design in Figure 7 uses a single BPMN pool. In fact, all activities and
compensations are executed within a BPMN transactional scope, which can involve
activities of only one participant. Namely, the design describes an orchestration that,
whenever executed by a leader participant, regulates the execution of partner services.
In the following section we extend the BPMN model in order to simplify modeling
more collaborative approaches.

3 Modelling Transactional Processes with BPMN and Attributes

We propose a methodology for designing distributed transactions in BPMN consisting
of the following phases:

phase 1 definition of the design of the system
phase 2 specification of (compensations and) transactional attributes
phase 3 refinement of transactional aspects of the design.

Before clarifying our methodology, it is worth emphasizing that, in phase 1, designs are
supposed to provide a local view of the system where activities are supposed to reside
within a same pool and the coordination strategy relies on an orchestrator (which is

BPMN Modelling of Services 403

specified by the design). For example, the design in Figure 7 yields such a local view
for the car repair scenario. The methodology could also be applied by using a diagram
like the one in Figure 7 as an high level model for a global distributed process with no
central orchestrator, abstracting form the mechanisms used by the participants to co-
ordinate. This would require further extensions of BPMN; for instance using, instead
of forward-flow connectors, a new kind of connector that subsumes both message and
sequence flows. Such model could be then transformed into a global, more detailed, de-
sign where tasks are partitioned into pools and their coordination explicitly represented.
In the next section we discuss global designs where we introduce service invocations
and distributed scope handling.

A key element of transactional attributes is the separation of concerns they provide;
EJB programmers, in fact, may develop their code independently of the transactional
behaviour because attributes do not directly affect the behaviour of an object. Likewise,
our methodology capitalises on this separation of concerns and makes attributes largely
independent of other aspects of designs. In other words, transactional attributes can be
specified once the software architect has designed the system. In a certain sense, we ex-
tend the design strategy that BPMN enables on compensations to attributes; indeed the
BPMN architect could in principle give an initial model of a system without considering
transactional aspects and introduce compensations at a later stage. Similarly, phase 2 of
our methodology allows us to decorate designs with attributes as well as refine them (if
necessary) subsequently.

For the moment, we just decorate BPMN designs with attributes assuming their in-
tuitive semantics (cf. 2.2); in § 4 we extend BPMN so to illustrate the semantics of each
attribute in a more precise way.

An attribute-aware design is simply a design where forward-flow arrows are labelled
with a finite number of attributes. The idea is that if two activities T and T ′ are con-
nected by a forward-flow arrow decorated with a set of attributes A = {a1, . . . ,an}, the
control is passed from T to T ′ if the latter “supports” at least one of the attributes in A.
In other words, T and T ′ explicitly “agree” on their combined transactional behaviour;
T requires T ′ to behave according to the set of transactional behaviours specified by A
and, dually, T ′ guarantees that it is supporting some of such behaviours. Put in other
terms, T ′ is aware of the transactional requirements of T which is in turn aware that the
possible transactional behaviours of T ′ are included in A.

We illustrate our methodology and the use of how to add transactional attributes to
BPMN designs considering the car repair scenario described in § 2.3. First, we extend
the design of Figure 7 to incorporate the invocation of a new logging service; such
extension allows us to explain the utility of the attributes not supported and never.
The idea is that, upon completion of the transaction, logging information is sent to
a logging service which outsources the calculation of some statistics to an external
service.

The extended design is given in Figure 8 together with the annotations with trans-
actional attributes. The BPMN design stays the same as in § 2.3 except for the newly
added tasks and the attributes decorating the connectors. For simplicity, we assign a
single attribute to each arrow except for the connector to the invocation of the tow truck
which has three attributes.

404 L. Bocchi et al.

Charge
Credit Card

RevokeCharge

Order Garage
Appointment

Cancel Garage
Appointment

Order Tow Truck

Cancel Tow Truck

Order Rental Car

Redirect Rental Car

Logging

Statistics

supports

requires

requires new

not supported

never

supports

mandatory

Fig. 8. Extended Car Rental with Attributes Annotations

– The attribute on the connector between the credit card check and garage activities
is supports; it stipulates that the latter activity should be capable of engaging in
the same transaction (if any) of the former one. In our scenario, since the credit
card check is executed in a transactional scope, the garage endpoint will be part of
the transaction of the check task.

– Once the garage is fixed, the process invokes a car rental that is able to start a new
transaction; the attribute requires new specifies that the rental endpoint will be
activated in new transaction whose failure will not cause the failure of the main
transaction. Notice that in the global view, this correspond to confine the rental
service in a subtransaction however, in the local view, the car rental will be a remote
transactional scope (this issue will be considered in § 4).

– in parallel to the car rental activity, a two truck is searched; such service is required
to support either of the attributes mandatory, supports, or requires; in fact,
the expected behaviour is that a failure of the tow truck order has to trigger the
failure of the whole transaction and such attributes will let the tow truck endpoint
to be added in the scope of the transaction. Hence, a service supporting any of the
remaining attributes should be ruled out.

– The logging service is specified to support the not supported attribute that will
execute the logging endpoint outside any transaction as its failure is not crucial and
should not affect the other transactional activities.

– The attribute never assigned to the connector to the statistics service specifies that
such service should never be invoked from within a transaction.

It is worth to remark that, if an orchestrator were due to realise the workflow, it should
also handle and coordinate possible failures of services and react according to the at-
tributes assigned to each invocation; in other words, the orchestrator will also act as (or
liaise with the) transaction manager.

Once the attributes have been assigned to a design, phase 3 of our methodology al-
lows some refinement both at the design level and at later stages of the development.
These refinements hinge on the theoretical framework of [1] where it has been proved
that, in certain contexts, some attributes exhibit the same observational behaviour.
Again we illustrate this on our running scenario.

BPMN Modelling of Services 405

C
al

le
r P

+
invoke s

Q
+

s =

Service Repository

end-point s (collapsed pool)

A

a

C

Fig. 9. Invocation of end-point s

Since an external observer cannot distinguish services supporting mandatory,
supports, or requires when they are invoked from transactional scopes, the design
of Figure 8 can be refined into one where only one of the attributes is assigned to the
invocation of the tow truck service. Notice that this may provide a great simplification
in the realisation of the design. For instance, the team developing the tow truck service
may avoid to consider testing cases corresponding to the different attributes and chose
the attribute that guarantees the smoother development.

Also, in a more complex scenario an activity may be invoked from many different
other activities with different transactional requirements. The equivalences proved in [1]
may again help in the refinement phase as the developers may factor out the invocations
with equivalent attributes so limiting the development efforts.

4 Modelling Attribute-Based Services Invocation and Instantiation

An important feature in the service-oriented scenario is to allow invokers to specify
their own requirements on the invoked services. In fact, a service invocation does not
target a specific service but is resolved at run-time by selecting one of the available
implementations matching a given description. Typically, both the service requester
and the service provider express a set of requirements that need to be matched when
defining the Service Level Agreement (SLA) for an invocation.

We consider a generalisation of the EJB mechanism for managing scope reconfigu-
ration allowing both service requester and service provider to specify the transactional
modality of each service instantiation. Namely, a service-oriented system is described
as follows:

1. a process can contain a number of service invocations. Each service invocation
specifies an abstract reference s3. Furthermore, service invocations specify a set of
acceptable attributes, say A ⊆ A . The execution of the invocation triggers, at run-
time, the discovery/selection/binding of a service matching with s and A. Figure 9
(left-hand side) represents the process “caller” consisting of a transactional scope.
The scope includes task invoke s, associated to compensation C, followed by
sub-process P

3 The service reference s can be thought as a service description that specifies the desired func-
tional properties. Hereafter we refer to s simply as a service.

406 L. Bocchi et al.

2. each provider can publish a number of services. The provider associates each ser-
vice s to an implementation (e.g., a process) and a transactional attribute (e.g.,
a ∈ A). In Figure 9 the provider, represented by the repository on the right-hand
side, implements s as a process consisting of a sub-process Q, and associates it to
attribute a

3. upon service invocation, the matching/binding between caller and callee on s hap-
pens only if a ∈ A. In this case, the invocation of s triggers a (possibly remote) new
instance s.

In other words, we threat attributes as non-functional properties that can be included as
part of the SLA.

We present below a few examples of service invocation with attributes using a
smooth extension of BPMN and following the semantics of EJB attributes. The BPMN
extension will be described in more detail in the second part of this section. Intuitively,
the system in Figure 9 may evolve to a number of different configurations depending on
which attribute a the provider associates to s. We recall that the reconfiguration seman-
tics, according to EJB, is decided by the provider through the definition of the attribute
a. We allow also the service requester to specify the desired semantics by defining the
set A.

The possible configurations follow from the semantics of transactional attributes il-
lustrated in Section 2.2, when the invocation occurs inside a transactional scope.

– If a = not supported then the new instance of s is executed “as it is” outside
any additional transactional scope. In this case the provider, by associating s with
a specifies that no transactional support is provided and that the requester accepts
such condition by including not supported in A. Figure 10a shows the reached
configuration where the activity Q is executed outside any transactional scope.

– If a = requires new then the new instance of s is executed in a different, newly
created scope. In this case, both provider and requester agree on the fact that the
service will be executed in a newly created scope. Figure 10b shows the reached
configuration where the activities P and Q are executed in different transactional
scopes.

– If a = requires or a = mandatory or a = supported then the caller and the
callee are executed in the same scope of the caller. Namely, caller and callee partic-
ipate to the same distributed transaction. In Figure 10c both activities P and Q are
executed in the same scope.

– If a= never then the invocation raises an exception which causes the execution of
the compensation C.

Notice that teach alternative is desirable under certain circumstances, and has an im-
pact on failure propagation. The configurations deriving from the invocation of s from
outside a transactional scope can be defined similarly.

As mentioned before we used a smooth extension to BPMN to represent attribute
aware service instantiation and distributed transactions.

Attribute-aware service instantiation. We represent the instantiation of a service as a
task invoke s that sends a message to a collapsed pool. The collapsed pool represents the

BPMN Modelling of Services 407

C
al

le
r

P
+

en
d-

po
in

t s

Q
+

(a) s executed as it is

C
al

le
r

P
+

en
d-

po
in

t s

Q
+

(b) s executed in a new scope

C
al

le
r

P
+

en
d-

po
in

t s

Q
+

(c) s executed in the caller’s scope

C
al
le
r

C

(d) Execution of C

Fig. 10. Scope reconfigurations following from the invocation of s in Figure 9

abstract reference of the service to be invoked. In general, the invoking process can have
an interactive conversation with the invoked services, modelled as a message exchange
with the collapsed pool (the messages are not shown in the examples for simplicity).
We extend BPMN message flow by annotating the messages that spawn new processes
to allow the caller to specify transactional requirements. Several implementations of a
service can be available, each of them implemented by a different sub-process and satis-
fying different transactional properties. Upon an activation request, the callee activates
only one of the processes satisfying caller requirement inside the right transactional
scope.

Distributed transactions. Even if BPMN directly supports design of transactional pro-
cesses, this features is limited to activities owned by a unique participant (e.g. confined
into a pool). Architects must care about exceptions and explicitly model interactions
performed by participants to implement distributed transactions. Moreover, BPMN pro-
vides a limited support to model service requirements and dependencies. In SOC, par-
ticipants dynamically activates partners services (e.g. processes) that must respect the
global transactional requirements.

To handle these issues we propose to extend BPMN to support the expressiveness
of [2,3]. In order to represent distributed transaction, we introduce the double arrow
connection. This artifact allows to represent that two (or more) participant transactions
are confined by the same scope. Namely, a fault of one participant activity can auto-
matically start the backward-flow of the linked transactions. Equipping BPMN with

408 L. Bocchi et al.

the distributed transaction artifact allows designer to statically define non functional
properties of systems abstracting from the implementation details of the mechanisms
for synchronising the outcomes. In fact, this artifact abstracts from the interactions re-
quired among participant to implement the correct behavior, that is demanded to the
SOC frameworks (e.g. WS-TX [11] and BTP [9]).

5 Concluding Remarks and Related Work

We proposed an approach for the modelling of transactional service-oriented business
processes that centres on the notion of transactional attribute. Our approach

1. features EJB-like mechanisms for the management of transactional scopes upon in-
vocation; notably this allows a straightforward implementation of models as Java
programs. Anyway, the approach we propose is not necessarily restricted to Java de-
ployments. Our approach is based on the awareness of the semantics and conceptual
relationship between transactional scopes and failure propagation. Such semantics
can be implemented using different technologies.

2. is based on a generalisation of EJB transactions, that have been adapted to the SOC
paradigm and can be used for the development of models in different technologies

3. builds on the theoretical results in [2,3] that allow to enhance and optimise software
development and testing

4. can be adapted to a number of notations; as a proof of concept we have integrated
our approach in BPMN.

Service development can benefit from transactional attributes for a number of rea-
sons. In the implementation phase, transactional attributes provide the developer with a
stronger set of preconditions on the (transactional) context in which a piece of software
will be executed thus preventing defensive programming.

A service provider may want to publish different versions of the same service guar-
anteeing different transactional properties. This would allow the provider to maximise
the number of matches for his/her portfolio of services. In [1] we proved equivalence
of different transactional attributes under specific context. Starting from a registry that
describes service versions, each associated with one transactional attribute, our theoreti-
cal results allow us to drive the implementation of the minimum set versions required to
respect the BPMN design. Also, relying on the testing theory in [1] we can ease the test-
ing of services-oriented artifacts since under certain conditions different transactional
configuration have the same observed behaviour.

Finally we proposed an extension to the BPMN notation that focuses on service
invocation and defines how the system should reconfigure at run-time. Notice that the
structure of the transactional scopes describes the configuration of the whole execution
of the transaction but does not details on how such configuration is achieved. Anyway,
the information included in the models annotated with attributes can be used to define
a semantics for dynamically reconfiguring BPMN processes. An interesting approach,
that we leave as a future work, would be to use graph rewriting [14] to formalise such
configurations.

BPMN Modelling of Services 409

Albeit our approach takes inspiration from EJB transactional attributes, our proposal
abstract from the underling technology. Architects can specify transactional properties
directly on the DSL that describe the business process.

Related Work. A number of formal models for long running transactions have been
proposed in the last years. Saga [7] is one of the earlier proposal to manage LRTs by
exploiting the notion of compensations. A recent work [8] provides a comparison of the
expressiveness of different approaches to specify compensations. A formal model for
failure propagation in dynamically reconfiguring systems has been proposed in [2] as
a CCS-like process calculus called ATc (after Attribute-based Transactional calculus).
The primitives of ATc are inspired to EJB [15] and allow to determine and control
the dynamic reconfiguration of distributed transactions so to have consistent and pre-
dictable failure propagation. In [3] it has been proposed an observational theory (based
on the theory of testing in [4]) yielding a formal framework for analysing the interplay
between communication failures and the observable behaviour of a service-oriented
system. In fact, the main result in [3] shows that the choice of different transactional
attributes causes different system’s behaviours and system’s reactions to a failure. A
comparison of the linguistic features of ATc wrt other calculi featuring distributed trans-
actions has been given in [2].

BPMN allows to statically define the transactional activities. More expressive mod-
els have been investigated. For example the dynamic recovery approach allows com-
pensations to be dynamically updated and replaced. It would be interesting to evaluate
the effectiveness of BPMN artifacts to express dynamic recovery. A number of work
tackled the lack of a formal semantics for BPMN (e.g., [6,17]). Our aim was rather
to propose a methodology for the design of transactional processes that relies on a
theoretical framework. The methodology centres on the fact that service invocations
cause a reconfiguration of transactional scopes in a service-oriented scenario. Up to our
knowledge, such aspects have not been included by existing formal models of BPMN.
A promising approach to provide a formal account of BPMN in reconfiguring system
would be to use graph rewriting techniques [14]. Some other work address the execu-
tion of BPMN models (e.g., [5] encodes them in executable YAWL [16] processes).
We address an orthogonal issue by proposing a general approach for attribute-aware
software development, that can be applied to many development techniques.

References

1. Bocchi, L., Tuosto, E.: A Java Inspired Semantics for Transactions in SOC, extended report
(2009), http://www.cs.le.ac.uk/people/lb148/javatransactions.html

2. Bocchi, L., Tuosto, E.: A java inspired semantics for transactions in SOC. In: Wirsing, M.,
Hofmann, M., Rauschmayer, A. (eds.) TGC 2010, LNCS, vol. 6084, pp. 120–134. Springer,
Heidelberg (2010)

3. Bocchi, L., Tuosto, E.: Testing attribute-based transactions in SOC. In: Hatcliff, J., Zucca, E.
(eds.) Formal Techniques for Distributed Systems. LNCS, vol. 6117, Springer, Heidelberg
(2010)

4. De Nicola, R., Hennessy, M.C.B.: Testing equivalences for processes. Theoretical Comput.
Sci. 34(1–2), 83–133 (1984)

http://www.cs.le.ac.uk/people/lb148/javatransactions.html

410 L. Bocchi et al.

5. Decker, G., Dijkman, R., Dumas, M., Garcı́a-Bañuelos, L.: Transforming BPMN Diagrams
into YAWL Nets. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS,
vol. 5240, pp. 386–389. Springer, Heidelberg (2008)

6. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models
in BPMN. Information & Software Technology 50(12), 1281–1294 (2008)

7. Garcia-Molina, H., Salem, K.: Sagas. In: Dayal, U., Traiger, I.L. (eds.) SIGMOD Conference,
pp. 249–259. ACM Press, New York (1987)

8. Lanese, I., Vaz, C., Ferreira, C.: On the expressive power of primitives for compensation
handling. In: Gordon, A.D. (ed.) ESOP. LNCS, vol. 6012, pp. 366–386. Springer, Heidelberg
(2010)

9. OASIS. Business Transaction Protocol, BTP (2002),
http://www.oasisopen.org/committees/business-transactions/
documents/primer/

10. OASIS. Web Services Business Process Execution Language, WS-BPEL (2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

11. OASIS. Web Services Transaction, WS-TX (2009),
http://www.oasis-open.org/committees/ws-tx/

12. OMG Group. Business Process Modeling Notation, BPMN (2002), http://www.bpmn.org
13. Panda, D., Rahman, R., Lane, D.: EJB 3 in action. Manning (2007)
14. Rozenberg, G. (ed.): Handbook of graph grammars and computing by graph transformation:

vol. I. World Scientific Publishing Co., Inc., River Edge (1997)
15. Sun Microsystems. Enterprise JavaBeans (EJB) technology (2009),

http://java.sun.com/products/ejb/
16. van der Aalst, W., Hofstede, A.H.M.T.: YAWL: Yet Another Workflow Language. Informa-

tion Systems 30, 245–275 (2003)
17. Wong, P.Y., Gibbons, J.: A Process Semantics for BPMN. In: Liu, S., Maibaum, T., Araki,

K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 355–374. Springer, Heidelberg (2008)

http://www.oasisopen.org/committees/business-transactions/documents/primer/
http://www.oasisopen.org/committees/business-transactions/documents/primer/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.oasis-open.org/committees/ws-tx/
http://www.bpmn.org
http://java.sun.com/products/ejb/

Programmable Fault Injection Testbeds

for Complex SOA

Lukasz Juszczyk and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology, Austria
{juszczyk,dustdar}@infosys.tuwien.ac.at

Abstract. The modularity of Service-oriented Architectures (SOA) al-
lows to establish complex distributed systems comprising e.g., services,
clients, brokers, and workflow engines. A growing complexity, however,
automatically increases the number of potential fault sources which have
effects on the whole SOA. Fault handling mechanisms must be applied
in order to achieve a certain level of robustness. In this paper we do not
deal with fault-tolerance itself but regard the problem from a different
perspective: how can fault-tolerance be evaluated? We argue that this
can be best done by testing the system at runtime and observing its
reaction on occuring faults. Though, engineers are facing the problem of
how to perform such tests in a realistic manner in order to get mean-
ingful results. As our contribution to this issue we present an approach
for generating fault injection testbeds for SOA. Our framework allows
to model testbeds and program their behavior, to generate running in-
stances out of it, and to inject diverse types of faults. The strength of
our approach lies in the customizability of the testbeds and the ability
to program the fault-injecting mechanisms in a convenient manner.

1 Introduction

The principles of SOA propagate building distributed systems based on modular
and loosely-coupled components. The spectrum of these components ranges from
stand-alone and composite Web services, clients, brokers and registries, workflow
engines, monitors, governance systems, message dispatchers, service buses, etc.
Considering the dependencies within a complex SOA, it becomes evident that
each component is a potential fault source and has an impact on the whole
system. Moreover, faults can happen at different levels, e.g., at the network
layer, at the interaction level, or as errors in the exchanged messages. As a
consequence, sophisticated fault handling mechanisms are required in order to
mitigate the effects of faults, to prevent failures, and to guarantee a certain
level of robustness. This problem has already been addressed in several works
[1,2,3,4] and is out of the scope of this paper. Instead, we are facing it from a
different perspective: how can engineers evaluate fault handling mechanisms of
a SOA? How can they verify that their systems will behave as expected once
deployed in their destination environment? These issues cannot be solved by
simply performing simulations but require thorough tests at runtime. But how
can engineers perform such tests prior to final deployment, without having access

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 411–425, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

412 L. Juszczyk and S. Dustdar

to a real(istic) environment which would serve as a testbed? In this paper we
address this question and present our contribution.

In our previous work [5] we have introduced the Genesis2 framework which
supports engineers in setting up testbeds for SOA. Genesis2 allows to model
testbeds consisting of various types of components, to program their behavior,
and to generate real instances of these on a distributed back-end. In the current
paper we extend this approach in order to generate multi-level fault injection
testbeds. We empower engineers to generate emulated SOA environments and
to program fault injection behavior on diverse levels: at the network layer, at the
service execution level, and at the message layer.

Our paper is structured as follows: in the next Section we present the motiva-
tion for our research. In Section 2 we present Genesis2 and explain in Section 3
how we generate fault-injection testbeds. Section 4 covers the implementation
the practical application of our approach. In Section 5 we review related work
and outline our contribution. Finally, Section 6 concludes this paper.

1.1 Motivation

Today’s SOAs comprise large numbers and varieties of components. This is not
only limited to services, clients, and brokers (as conveyed in the famous Web
service triangle [6]), but includes also more sophisticated components, such as
governance systems and monitoring registries [7], which are performing complex
tasks on the service-based environment. In general, we can divide SOA compo-
nents into three groups: a) stand-alone components which are independent, b)
complex services/components which have dependencies and, therefore, are af-
fected by others, and c) clients which are simply consuming the offered services.
Each of the components is prone to errors, but the complex ones are affected in
a twofold manner as they have also to deal with remote faults of the components
they depend on. As outlined correctly in [8] and [9], faults do happen on multiple
levels, to be precise, on each layer of the communication stack. This includes low-
level faults on the network layer (e.g., packet loss/delay), faults on the transport
layer (e.g., middleware failures), on the interaction layer (quality of service), as
well as directly at the exchanged messages which can get corrupted. Depending
on the structure and configuration of the SOA, each of these faults can cause
a chain of effects (also referred to as error propagation), ranging from simple
execution delays to total denial of service. These challenges can only be met if
engineers perform intense tests during the development phase, execute scenarios
in erroneous SOA environments, and check their system’s behavior on faults.
However, the main problem remains how to set up such scenarios, in particular,
the question how engineers can be provided with proper testbeds which emulate
SOA infrastructures in a realistic way. We argue that engineers must be given a
possibility to configure testbeds according to their requirements. Depending on
the developed system, this includes the ability to customize the topology and
composition of the testbed, to specify the behavior of all involved components,
and to program individual fault injection models for each of these. In Section 5
we will show that research on fault injection for SOA has been already done by

Programmable Fault Injection Testbeds for Complex SOA 413

several groups, yet that these works mostly aim testing only individual Web ser-
vices, for instance, by perturbing their communication channels. The problem of
testing complex components which are operating on a whole SOA environment
still remained unsolved. This has been our motivation for doing research on a
solution which allows to generate large-scale fault-injection testbeds, provides
high customizability, and offers an intuitive usage for engineers.

2 Genesis2 Testbed Generator Framework

The Genesis2 framework (Generating Service-oriented testbed InfrastructureS,
in short G2) [5] assists engineers in creating testbed infrastructures for SOA.
It comprises a centralized front-end, from where testbeds are modeled and con-
trolled, and a distributed back-end at which the models are transformed into
real testbed instances. In a nutshell, the front-end provides a virtual view on the
testbed, allowing engineers to manipulate it via scripts, and propagates changes
to the back-end in order to adapt the running testbed. To ensure extensibil-
ity, the G2 framework follows a modular approach and provides the functional
grounding for composable plugins that implement testbed generator features.
The framework itself offers a) generic features for modeling and manipulating
testbeds, b) extension points for plugins, c) inter-plugin communication among
remote instances, and d) a runtime environment shared across the testbed. All in
all, it provides the basic management and communication infrastructure which
abstracts over the distributed nature of a testbed. The plugins, however, en-
hance the model schema by integrating custom model types and interpret these
to generate deployable testbed instances at the back-end.

For a better understanding of the internal procedures inside G2, let us take a
closer look at its architecture. Figure 1 depicts the layered components, compris-
ing the framework, installed plugins, and, on top of it, the generated testbed:

– At the very bottom, the basic runtime consists of Java, Groovy, and 3rd-party
libraries, such as Apache CXF [10].

– At the framework layer, G2 provides itself via an API and a shared runtime
environment is established at which plugins and generated testbed elements
can discover each other and interact. Moreover, an active repository dis-
tributes detected plugins among all hosts.

– Based on that grounding, installed plugins register themselves at the shared
runtime and integrate their functionality into the framework.

– The top layer depicts the results of the engineer’s activities. At the front-end
he/she is operating the created testbed model. The model comprises virtual
objects which act as a view on the real testbed and as proxies for manip-
ulation commands. While at the back-end the actual testbed is generated
according to the specified model.

In G2, the engineer creates models according to the provided schema at the
front-end, specifying what shall be generated where, with which customizations,
and the framework takes care of synchronizing the model with the corresponding

414 L. Juszczyk and S. Dustdar

S
cr

ip
tin

g
In

te
rfa

ce

Groovy Java

G2 Plugin Repo G2 API

CXF

G2 Runtime Env.

WS
Generator

WS
References

Call
Interceptor Registry

Ref@
WS2

Ref@
WS1

WS2

Logger Cl1

Cl2

WS1
Reg

Groovy Java

G2 Plugin Repo G2 API

CXF

G2 Runtime Env.

WS
Generator

WS
References

Call
Interceptor

Client
Generator

Registry

Ref@
WS2

Ref@
WS1

Logger Cl1

Cl2

WS1
Reg

...

Ref@
WS2

Ref@
WS1

Groovy Java

Plugin Repo G2 API

CXF

G2 Front-End G2 Back-End

WS
Generator

WS
References

Call
Interceptor

Client
Generator

Registry

WS
Generator

WS
References

Call
Interceptor

Client
Generator

Registry

Groovy Java CXF

Logger Cl1

Cl2

...

Cl1

Cl2

WS1Model
specifies
Testbed

Runtime

G2 Framework

G2 Plugins

Generated
SOA

Testbed

Reg

...

Testbed
Model

Generated
Testbed

DtOp1
WS1

DtOp2
Op3

WS2

Op1Log

WS2
Log Op2

Op3

Plugin Repo G2 API Shared Runtime Environment

Fig. 1. Genesis2 architecture: infrastructure, plugins, and generated elements

back-end hosts on which the testbed elements are generated and deployed. The
front-end, moreover, maintains a permanent view on the testbed, allowing to
manipulate it on-the-fly by updating its model. Figure 2 illustrates the model
schema used in this paper. By default, G2 provides model types for specifying
Web services (which includes also Web service operations and used data types),
clients, registries, and other basic SOA components. In this paper, we are ex-
tending this schema with models for specifying faulty behavior (marked gray),
which are explained in more detail in the next section.

Listing 1 contains a sample specification for demonstrating how testbeds are
modeled based on the applied model schema. Basically, G2 is controlled via
Groovy scripts [11] that are executed on top of the shared runtime environment
(SRE, see Figure 1). Each applied plugin extends the SRE by registering itself,
its provided model types, additional macros and other artifacts via aliases. The

Host

1 *

WebService WsOperation DataType

1 * 1 2..*

MsgPerturber

1

*

WsInvoker1*

Client

1

*

«uses»

«uses»

1 *

QoS

1

1 1

1

NetworkFaults

CallInterceptor

Fig. 2. Testbed model schema for fault injection

Programmable Fault Injection Testbeds for Complex SOA 415

engineer references these in his/her scripts in order to make use of the provided
features and to integrate them into his/her testbeds. Moreover, he/she is free to
customize the testbed’s behavior via Groovy code blocks.

The sample script starts with referencing remote back-end hosts and importing
a data type definition from an XSD file. This is done via instantiating the corre-
sponding types from the model schema via their aliases (host and datatype).
In Lines 5 to 10 a simple Web service is created, which comprises only a single
operation (named SayHi) and which uses the imported data type in its request
message. By using the Builder feature [12] of Groovy, which simplifies the cre-
ation of nested datatypes, we are automatically binding the webservice to its
wsperation and the used datatype’s. In Line 12 the service is being deployed at
two back-end hosts. In this step G2 serializes the service’s model and propagates
it to the remote back-ends where real Web service instances, which implement
the modeled behavior, are being generated and deployed. Next, a simple client
is started (Lines 14 to 21), which uses the registry plugin to discover a desired
Web service and, eventually, invokes it. The main purpose of clients is to boot-
strap activity into the testbed which would otherwise be purely passive and wait
for invocations. Finally, in Lines 24 to 27 a callinterceptor is created and at-
tached on-the-fly to the running Web service instances. Call interceptors step in
to Web service invocations and allow, for instance, to extract the SOAP message
(as done in the sample for logging) and to manipulate it. We have used this feature
for implementing message perturbation in our fault injection testbeds.

All in all, G2 supports engineers in customizing testbeds, programming their be-
havior, and implementing extensions via plugins. Though, due to space constraints

1 de f beHost1 = host . c r e a t e (" 192.168.1.11:8080 ") // import BE host r e f s
2 de f beHost2 = host . c r e a t e (" 192.168.1.12:8080 ")
3 de f vCard = datatype . c r e a t e ("/ path / types . xsd " , " vCard ") // import XSD type

5 de f s e r v i c e = webserv i ce . bu i ld { //model Web s e r v i c e v ia Groovy bu i l d e r
6 // c r e a t e model o f Te s tS e rv i c e with one operat ion
7 Te s tS e rv i c e (b ind ing : "doc , lit " , tags : [" test "]) {
8 SayHi (card : vCard , r e s u l t : S t r i ng) { return " Hi ${ card . name }" }
9 }

10 } [0]

12 s e r v i c e . deployAt (beHost1 , beHost2) // deployment at two back−end hosts

14 de f c l = c l i e n t . c r e a t e () //model s imple c l i e n t which c a l l s Te s tS e rv i c e
15 c l . code = {
16 de f r e f L i s t=r e g i s t r y . ge t { s−> s . name==" TestService "} // query
17 de f r e f=r e f L i s t [0] // take f i r s t from r e s u l t l i s t
18 p r i n t l n r e f . SayHi (vCard . newInstance ()) //WS invoca t i on
19 }

21 c l . deployAt (beHost2) // deployment at back−end

23 // attach c a l l i n t e r c ep t o r
24 de f p i=c a l l i n t e r c e p t o r . c r e a t e ()
25 p i . code={ ctx−> l o gge r . logToDB(ctx . soapMsg) } // c a l l i n g l ogge r p lug in

27 s e r v i c e . i n t e r c ep t o r s+=pi // on−the−f l y attachement o f i n t e r c e p to r

Listing 1. ‘Sample script specifying a service, a client, and a call interceptor’

416 L. Juszczyk and S. Dustdar

it is impossible to provide a closer introduction to G2 and, therefore, we direct in-
terested readers to [5] which explains more details of our base framework.

3 Programmable Multi-level Fault Injection Testbeds

Taking into consideration the complexity of a typical SOA, which comprises di-
verse components being deployed on heterogeneous platforms and interacting with
each others, it becomes evident that each host, each component, each communica-
tion channel, and each exchanged message is a potential source of faults, erroneous
behavior, and service failures [13]. Basically, faults can occur at every level/layer
of the communication stack and, therefore, if testbeds are supposed to emulate
realistic scenarios they must be also able to emulate a wide range of fault types.
Based on the G2 framework we have developed an approach for generating SOA
testbeds and injecting programmable faults. Due to G2’s generic nature and its
extensibility it is possible to emulate a wide variety of faults by writing plugins
which augment the testbed’s components and impair their execution. However,
in the current state of our work we have concentrated on the following:

1. Faults at the message layer, in terms of message data corruption.
2. Faults at the service execution, affecting Quality of Service (QoS).
3. Faults at the network layer, hampering the packet flow between hosts.

Each type of fault is affecting a different part of the overall SOA and, therefore,
we have split their emulation into three independent plugins. Each plugin extends
the model schema and offers possibilities to customize and program the fault in-
jection behavior. Figure 2 depicts the provided model types and their position
within the schema. Since network faults affect the whole communication between
hosts, their model does directly extend the Host type. Service execution faults
can be caused by the whole service (e.g., low availability) or only by individual
operations (e.g., erroneous implementation), therefore their model is bound to
both. Finally, for message faults we have extended the CallInterceptor which
provides access to the request and response messages for perturbation purposes.
In the following sections we are explaining the individual fault injection mecha-
nisms in more detail.

3.1 Message Faults

SOAP Web services are using WSDL documents [14] to describe their interfaces.
Consequently, the service can define the expected syntax of the request messages
and the client is aware of the response message’s syntax. However, malicious com-
ponents can produce corruptedmessageswhich either contain meaningless content
(message errors on a semantical level), which violate the message’s XML schema
definition [15] (high-level syntax errors), or which even do not represent a correct
XML document at all (low-level syntax errors).Depending on the degree of corrup-
tion, fault handling mechanisms can be applied to allow the integration of faulty
components into a SOA.To test suchmechanismswehavedeveloped apluginwhich

Programmable Fault Injection Testbeds for Complex SOA 417

allows to intercept exchanged SOAP messages and to perturb them on each of the
mentioned levels. Engineers can program the perturbation via the MsgPerturber
model and the plugin attaches the faulty behavior to Web services and clients, by
using Apache CXF’s interceptors [16]. We have built the perturbation mechanism
upon thevisitor pattern [17].Perturbation code,wrapped invisitor objects, is prop-
agated recursively along the XML tree and/or the unmarshalled objects and has
full read/write access for performing manipulations.

For pure semantic perturbation the engineer can overwrite the message’s val-
ues, but cannot violate the XML structure. The plugin unmarshalls the SOAP
body arguments, as well as the headers, into Java objects and applies the visitor
code on them. The first sample block in Listing 2 shows an interceptor that is
programmed to assign random values to all integer fields named sum. Moreover,
it deletes all postcodes for matching addresses.

For high-level syntax manipulation, the engineer can alternate both, the con-
tent and the structure of the XML document. In this case the visitor is applied
on the DOM tree of the message. In the second sample block, the visitor is
looking for nodes which have children named country and appends a new child
which violates the message’s XSD definition. However, the result is still a well-
formated XML document. For low-level corruption, the message must be altered
directly at the byte level, as demonstrated in the last snippet which corrupts
XML closing tags. Finally, in Line 23, the interceptors get deployed at a Web
service and start injecting faults into its request and response messages.

1 de f va luePert = msgperturber . c r e a t e (" args ") // per t . data va lues
2 va luePert . code = { i t −>
3 i f (i t . name==" sum " && i t . type==int) { // get by name and type
4 i t . va lue∗=new Random () . next Int ()
5 } else i f (i t . name==" Address" && i t . va lue . country==" AT ") { //by value
6 i t . va lue . postcode=null
7 }
8 }

10 de f xmlPert = msgperturber . c r e a t e (" dom ") // pert . XML st ruc tu r e
11 xmlPert . code = { node −>
12 i f (node . ch i l d r en . any { c−> c . name==" country " }) {
13 Node newChild = node . appendNode(" NotInXSD ")
14 newChild . a t t r i b u t e s . someAtt=" 123 "
15 }
16 }

18 de f bytePert = msgperturber . c r e a t e (" bytes ") // per t . msg bytes
19 bytePert . code = { s t r −>
20 s t r . r e p l a c eF i r s t (" </" , " <") // remove c l o s i n g tag from XML doc
21 }

23 s e r v i c e . i n t e r c ep t o r s+=[bytePert , xmlPert , va luePert] // attach to s e r v i c e

Listing 2. ‘Programming message perturbation’

3.2 Service Execution Faults

Service execution faults usually result in degraded Quality of Service (QoS) [18].
Examples are slower processing times which delay the SOA’s execution, scala-
bility problems regarding the number of incoming requests, availability failures

418 L. Juszczyk and S. Dustdar

which render parts of the SOA inaccessible, etc. Especially in the context of
Web services, QoS covers a wide spectrum of properties, including also security,
discoverability, and also costs. However, in our work we only deal with those
concerning service execution, as defined in [19], comprising response time, scal-
ability, throughput, and accuracy of Web service operations and the availability
of the whole service. For emulating these, we developed the QoSEmulator plugin,
which has access to the generated Web service instances in on the back-end and
intercepts their invocations in order to simulate QoS. To model a service’s QoS,
engineers can either assign fixed values to the individual properties (e.g., pro-
cessing time = 10 seconds) or define more sophisticated fault models via Groovy
code closures [20], resulting in programmable QoS. The main advantage of clo-
sures consists in the ability to incorporate diverse factors into the fault models.
For example, engineers can set the availability rate depending on the number
of incoming requests or to define the processing time according to a statistical
distribution function, supported via the Java Distribution Functions library [21].

Listing 3 contains a sample specification of two QoS models, one for defining
the availability of a Web service and one for controlling the execution of its oper-
ations. The availability is defined according to the daytime in order to simulate
a less overloaded service during the night (Lines 1 to 7). For the service oper-
ation, the response time is derived from a beta distribution (alias dist) while
throughput and error rate (accuracy) are assigned with constant values. At the
end, the models are bound to the service and its operations.

1 de f svcQos = qos . c r e a t e ()
2 svcQos . a v a i l a b i l i t y = {
3 i f (new Date () . getHours () <8) { // from 0 to 7 AM
4 return 99/100 // se t high a v a i l a b i l i t y o f 99%
5 }
6 return 90/100 // otherwise , s e t lower a v a i l a b i l i t y ra t e
7 }

9 de f opQos = qos . c r e a t e ()
10 opQos . responseTime = { d i s t . beta . random(5000 ,1 , null) } // beta d i s t r i b .
11 opQos . throughput = 10/60 // r e s t r i c t to 10 invoca t i on s per minute
12 opQos . e r rorRate = 15/100 //15% o f invoca t i on s w i l l f a i l with exc ep t i on s

14 s e r v i c e . qos=svcQos // attach QoS model to s e r v i c e d e f i n i t i o n

16 s e r v i c e . op e ra t i on s . grep { o−> o . returnType !=null } . each {
17 o . qos=opQoS //and to a l l 2−way ope ra t i on s
18 }

Listing 3. ‘Programming QoS emulation’

3.3 Low-Level Network Faults

Network faults, such as loss and corruption of IP packets, play a minor role
in SOA fault handling, mainly because they are already handled well by the
TCP/IP protocol which underlays most of the service-oriented communication.
But they can cause delays and timeouts, and this way slow down the whole data
flow. Apart from that, there exist Web service protocols which are built upon

Programmable Fault Injection Testbeds for Complex SOA 419

UDP, such as SOAP over UDP [22] and Web Service Dynamic Discovery [23],
which are, therefore, more vulnerable to network faults. Creating testbeds which
emulate low-level faults requires a much deeper intrusion into the operating sys-
tem, compared to the other plugins. It is necessary to intercept the packet flow,
to perform dropping, duplication, reordering, slowing down, etc. This can hardly
be done on top of the Java Virtual Machine which hosts the G2 framework. To
by-pass this issue, we have developed our NetworkFaultEmulator plugin based
on the Linux tool Traffic Control (tc) [24] (with netem module [25]) which allows
to steer packet manipulation at the kernel level. Unfortunately, this deprives G2
of its platform independence but, on the other hand, allows to reuse tc’s rich set
of features. We have presented a first version of this approach in [26]. Similar to
the previously presented plugins, engineers create fault models but, in this case,
attach them directly to the back-end hosts. There the fault models are locally
translated into tc commands for manipulating the host’s packet flow.

Listings 4 and 5 comprise a sample for illustrating the mapping from the model
to the resulting tc commands. The model is created by assigning self-explanatory
parameters and is finally being attached to the hosts. At the back-end, the plugin
first sets up a virtual network interface which hosts all generated instances, such
as Web services, registries, etc. This step is necessary for limiting the effect of
the fault emulation only on the testbed instances, instead of slowing down the
whole physical system. Eventually, the modelled faults are translated into tc
commands applied on the virtual IP.

1 de f nf = ne twork f au l t s . c r e a t e ()
2 nf . l o s s = 2/100 //2% packet l o s s
3 nf . dup l i c a t e = 1/100 //1% packet dup l i c a t i on
4 nf . de lay . va lue = 100 //100ms
5 nf . de lay . v a r i a t i on = 20 //20ms o f v a r i a t i o n
6 nf . de lay . d i s t r i b u t i o n = " normal " //normal d i s t r i b u t i o n

8 nf . deployAt (beHost1 , beHost2) // attach to BE hosts

Listing 4. ‘Programming network faults’

1 i f c o n f i g l o : 0 add 192 . 168 . 100 . 1 #se t up v i r t u a l IP addr . f o r BE in s tanc e s

3 tc qd i s c change dev l o : 0 root netem l o s s 2.0%
4 tc qd i s c change dev l o : 0 root netem dup l i c a t e 1.0%
5 tc qd i s c change dev l o : 0 root netem de lay 100ms 20ms d i s t r i b u t i o n normal

Listing 5. ‘Network fault model translated to Traffic Control commands’

4 Implementation and Practical Application

4.1 Implementation and Extensibility of Genesis2 Prototype

The G2 framework has been developed in Java SE 6 [27] and Groovy [11]. The
critical parts, which handle the framework’s internal logic and the communica-
tion between front-end and back-end, are written in Java. Groovy, however, has

420 L. Juszczyk and S. Dustdar

been exploited for having a flexible scripting language for modelling the testbeds
and for programming customizations via Groovy closures [20].

G2 provides a generic framework which outsources the generation of testbed
instances to the corresponding plugins, supporting the procedure via its API.
Based on that grounding, plugins define their extensions to the model schema
and interpret their provided extensions for generating deployable testbed com-
ponents. For instance, the WebServiceGenerator plugin analyzes webservice
models and translates them into deployable Apache CXF-based [10] Web service
instances. All plugins provide access to their generated components but offer
also interfaces for customization, so that other plugins can intervene and/or ex-
tend their functionality. The fault injection plugins presented in this paper make
intense use of this feature. Though, of course they do not cover all possible error
sources in a SOA but only represent the current state of our work. For testing
complex SOAs it would be also necessary to emulate, for example, middleware
faults, fault in the execution of WS-* protocols, or misbehavior of human pro-
vided services [28] integrated into workflows. Depending on the next steps in our
research, and which fault injection mechanisms will be required for evaluating
our prototypes, we will develop further plugins in the future.

4.2 Practical Application in Testing of SOA Prototypes

The question how G2 should be used to generate fault injection testbeds depends
strongly on the type of the tested SOA, its composition, purpose, as well as its in-
ternal fault handling mechanisms. In the end, engineers have to generate testbeds
which emulate the SOA’s final deployment environment as realistically as pos-
sible. While Groovy scripts are G2’s primary interface for modeling testbeds,
we are currently investigating techniques for importing external specifications
of SOAs and their components into G2 models (e.g., from BPEL process def-
initions [29] and WSDL documents [14]). Independent on how the testbed got
specified, whether from scratch or via imports, the engineer is always operating
on a set of models describing SOA components which have their pendant gener-
ated instances located in the back-end. For providing a better conception of how
a testbed is actually structured Figure 3 illustrates its layered topology. At the
two bottom layers G2 connects the front-end to the distributed back-end and
the plugins establish their own communication structures. Most important are
the two top layers which comprise the results of the engineer’s activities. Based
on the provided model schema, he/she creates models of SOA components which
are then being generated and deployed at the back-end hosts. At the very top
layer the testbed instances are running and behave/interact according to the
engineer’s specification, which includes also fault injection behavior. The aggre-
gation of these instances constitutes the actual testbed infrastructure on which
the developed SOA can be evaluated.

Of course, the evaluation of a software system also comprises the monitoring
of the test cases as well as the analysis of collected data. These data are, for in-
stance, log files, performance statistics, captured messages, and other resources,
depending on the tested SOA and the fault-handling mechanisms to be verified.

Programmable Fault Injection Testbeds for Complex SOA 421

G2 Framework

G2 Plugins

Testbed
Control

Generated
Testbed

Instances

Tested
SOA / Workflow

Fig. 3. Interactions within layers of a G2 testbed

These data must be also gathered from both, the tested SOA, to analyze internal
procedures and reactions on faults, as well as from the testbed itself, to know
which faults have been injected at which time. By correlating both, it is possible
to narrow down errors in the SOA and to detect causes of misbehavior. G2 pro-
vides means for gathering relevant information about the execution inside the
testbed, such as an eventing mechanism that allows to track and log all changes
within the testbed configuration or call interceptors for logging of interactions.
However, regarding the gathering of log data from the tested SOA system, we
do not provide any tool support yet. Also, for the analysis of test results and
the narrowing down of errors/bugs inside the SOA we have not come up yet
with any novel contribution but regarded this problem as out of scope of the
current paper which just describes how we generate the testbeds. But we intend
to address these problems in future research.

4.3 Managing Large-Scale Testbeds

In [5] we have shown how G2 facilitates convenient generation of large-scale
testbeds as well as manipulation of these in an efficient multicast-like manner.
We are exploiting the multicast feature for adapting larger testbed on-the-fly,
e.g., for injecting faults. Listing 6 demonstrates its usage for updating hosts and
Web services. The command expects the type of the instances which shall be
altered (in the sample: webservice and host) and two closure code blocks. The
first closure specifies the filter which determines the designated instances, while
the second one contains the manipulation commands. In the presented sample,
fault models are attached to all Web services matching their namespace and
annotation tags. Moreover, all hosts within a defined subnet are being enhanced
with network fault emulation. As a result, multicast updates help to manage
large-scale testbeds in a clear and compact manner.

422 L. Juszczyk and S. Dustdar

1 webse rv ice { ws−> // f i l t e r
2 " faulty" in ws . tags && ws . namespace =˜ /www. i n f o s y s . tuwien . ac . at /
3 } { ws−> //command
4 ws . qos = qosModel
5 ws . i n t e r c e p t o r s += [xmlPertModel]
6 }

8 host { h−> // f i l t e r
9 h . l o c a t i on =˜ /192 . 168 . 1 . /

10 } { h−> //command
11 netFaultModel . attachTo (h)
12 }

Listing 6. ‘Injecting faults to hosts and Web services’

Regarding the performance of the framework and our fault injection mech-
anisms, we have omitted putting a detailed study into this paper, mainly due
to space constraints and because we believe that it would not emphasize the
message of our paper, which is the presentation of the concepts. Due to the fact
that G2 is a programmable framework, the actual performance and system load
also depend heavily on how it is applied and what kind of a testbed is being
generated, with which components and functionality. Therefore, we believe that
presenting a performance evaluation would be only of limited use for the readers.

4.4 Open-Source Prototype

As we did before with G2’s predecessor, the first Genesis framework [30], we will
also publish the current prototype as open-source via its homepage [31].

5 Related Research

Fault injection has been a well-established testing technique since decades. Nu-
merous tools have been developed and applied for evaluating quality of soft-
ware/systems. Due to the vast number of available tools, as well as due to their
diversity, we do not present a survey on them but refer readers to [32] and [33],
which provide a good introduction and overview of available solutions. In general,
research on fault injection has produced a lot of results, covering sophisticated
techniques for generating meaningful faults as well as for the analysis of their
effects on the tested software.

In the domain of Web services and SOA, several works deal with fault injec-
tion. Xu et al. have presented an approach for perturbing the XML/SOAP-based
messages exchanged by Web services in order to evaluate how well the tested sys-
tems can handle message corruption [34]. Moreover, Nik Looker has investigated
fault injection techniques in his dissertation [35] and has developed the WS-FIT
framework [9,36]. WS-FIT intercepts SOAP messages at the middleware level
and supports a rich set of features for manipulating these. This includes dis-
carding of messages, reordering of them in the interaction flows, perturbing the
XML content, and other features. In general, works like those of Xu and Looker

Programmable Fault Injection Testbeds for Complex SOA 423

assume the presence of already existing Web services and inject faults for testing
their runtime behavior and/or fault-handling mechanisms. However, we do not
regard these works as direct competitors, since we have not developed any novel
techniques for fault injection in the strict sense. Instead we empower engineers
to generate SOA testbeds from scratch and to extend these with programmable
faulty behavior. And this we regard as our most distinct contribution. Due to the
novelty of our work, we have not identified many related works, but have only
found SOABench, PUPPET, and ML-FIT to be relevant for testbed generation.

SOABench [37] provides sophisticated support for benchmarking of BPEL
engines [29] via modeling experiments and generating service-based testbeds. It
provides runtime control on test executions as well as mechanisms for test result
evaluation. Regarding its features, SOABench is focused on performance eval-
uation and generates Web service stubs that emulate QoS properties, such as
response time and throughput. Similar to SOABench, the authors of PUPPET
[38,39] examine the generation of QoS-enriched testbeds for service composi-
tions. PUPPET does not investigate the performance but verifies the fulfillment
of Service Level Agreements (SLA) of composite services. This is done by ana-
lyzing WSDL [14] and WS-Agreement documents [40] and emulating the QoS
of generated Web services in order to check the SLAs. Both tools, SOABench
and Puppet, support the generation of Web service-based testbeds, but both are
focused on evaluating workflows/compositions and do not support fault injection
beyond emulating QoS.

Only the Multi-Level Fault-Injection Testbed (ML-FIT) [8] has a similar focus
to our work. It also aims at emulating SOA faults at different levels, builds upon
existing fault injection mechanisms, and the authors intend to use collected
field data for creating realistic fault models. However, ML-FIT is still under
development and, therefore, not much has been published about it yet. It is
unclear how testbeds will be generated, which types of SOA components will
be supported, and how faults will be modelled and injected. Without knowing
these details it is difficult for us to compare our approach to ML-FIT.

6 Conclusion

In this paper we have presented our approach for generating programmable fault
injection testbeds for SOA. Based on the Genesis2 framework, which allows engi-
neers to model testbeds and to generate real instances of these, we have developed
techniques for specifying faults and injecting them into running testbeds. Due
to the extensibility of Genesis2, our approach supports the emulation of diverse
types of faults. In the current state of our work, we have developed mechanisms
for emulating network faults, service execution faults, and for corrupting ex-
changed messages. In a nutshell, our main contribution consists of the ability to
generate SOA testbeds via scripts and the programmability of the injected faults.
As a result, engineers can customize the fault behavior to their requirements, in
order to have realistic testbeds for evaluating SOA systems.

424 L. Juszczyk and S. Dustdar

For future plans, we will be working on further fault injection mechanisms to
extend the spectrum of supported fault types and we will publish the prototype
implementation as open-source.

Acknowledgments

The research leading to these results has received funding from the European
Community Seventh Framework Programme FP7/2007-2013 under grant agree-
ment 215483 (S-Cube).

The authors would also like to thank Philipp Leitner for contributing parts
of the QoSEmulator plugin.

References

1. Goeschka, K.M., Froihofer, L., Dustdar, S.: What SOA can do for software de-
pendability. In: DSN 2008: Supplementary Volume of the 38th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, pp. D4–D9. IEEE
Computer Society, Los Alamitos (2008)

2. Psaier, H., Skopik, F., Schall, D., Dustdar, S.: Behavior Monitoring in Self-healing
Service-oriented Systems. In: COMPSAC. IEEE Computer Society Press, Los
Alamitos (2010) (forthcoming)

3. Dialani, V., Miles, S., Moreau, L., Roure, D.D., Luck, M.: Transparent fault tol-
erance for web services based architectures. In: Monien, B., Feldmann, R.L. (eds.)
Euro-Par 2002. LNCS, vol. 2400, pp. 889–898. Springer, Heidelberg (2002)

4. Modafferi, S., Mussi, E., Pernici, B.: Sh-bpel: a self-healing plug-in for ws-bpel
engines. In: MW4SOC. ACM International Conference Proceeding Series, vol. 184,
pp. 48–53. ACM, New York (2006)

5. Juszczyk, L., Dustdar, S.: Script-based generation of dynamic testbeds for soa. In:
ICWS. IEEE Computer Society, Los Alamitos (2010) (forthcoming)

6. Gottschalk, K.D., Graham, S., Kreger, H., Snell, J.: Introduction to web services
architecture. IBM Systems Journal 41(2), 170–177 (2002)

7. Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: End-to-end support for
qos-aware service selection, binding and mediation in vresco. IEEE T. Services
Computing (2010) (forthcoming)

8. Reinecke, P., Wolter, K.: Towards a multi-level fault-injection test-bed for service-
oriented architectures: Requirements for parameterisation. In: SRDS Workshop on
Sharing Field Data and Experiment Measurements on Resilience of Distributed
Computing Systems, Naples, Italy, AMBER (2008)

9. Looker, N., Munro, M., Xu, J.: Simulating errors in web services. International
Journal of Simulation Systems 5(5), 29–37 (2004)

10. Apache CXF, http://cxf.apache.org/
11. Groovy Programming Language, http://groovy.codehaus.org/
12. Groovy Builders Guide, http://groovy.codehaus.org/Builders
13. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.E.: Basic concepts and tax-

onomy of dependable and secure computing. IEEE Trans. Dependable Sec. Com-
put. 1(1), 11–33 (2004)

14. Web Services Description Language, http://www.w3.org/TR/wsdl

http://cxf.apache.org/
http://groovy.codehaus.org/
http://groovy.codehaus.org/Builders
http://www.w3.org/TR/wsdl

Programmable Fault Injection Testbeds for Complex SOA 425

15. XML Schema Definition, http://www.w3.org/TR/xmlschema-0/
16. Apache CXF Interceptors, http://cxf.apache.org/docs/interceptors.html.
17. Palsberg, J., Jay, C.B.: The essence of the visitor pattern. In: COMPSAC, pp.

9–15. IEEE Computer Society, Los Alamitos (1998)
18. Menascé, D.A.: Qos issues in web services. IEEE Internet Computing 6(6), 72–75

(2002)
19. Rosenberg, F., Platzer, C., Dustdar, S.: Bootstrapping performance and depend-

ability attributes of web services. In: ICWS, pp. 205–212. IEEE Computer Society,
Los Alamitos (2006)

20. Groovy Closure Guide, http://groovy.codehaus.org/Closures
21. Java Distribution Functions library, http://statdistlib.sourceforge.net
22. SOAP Over UDP, http://docs.oasis-open.org/ws-dd/soapoverudp/1.1/os/

wsdd-soapoverudp-1.1-spec-os.html
23. Web Services Dynamic Discovery, http://docs.oasis-open.org/ws-dd/

discovery/1.1/os/wsdd-discovery-1.1-spec-os.pdf
24. Linux Advanced Routing & Traffic Control, http://lartc.org
25. Netem - Network Emulator, http://www.linuxfoundation.org/en/Net:Netem
26. Juszczyk, L., Dustdar, S.: Testbeds for emulating dependability issues of mobile

web services. In: EMSOS. IEEE Computer Society, Los Alamitos (2010) (forth-
coming)

27. Java 6 Standard Edition, http://java.sun.com/javase/6/
28. Schall, D., Truong, H.L., Dustdar, S.: The human-provided services framework. In:

CEC/EEE, pp. 149–156. IEEE Computer Society, Los Alamitos (2008)
29. Business Process Execution Language for Web Services, http://www.oasis-open.

org/committees/wsbpel/
30. Juszczyk, L., Truong, H.L., Dustdar, S.: Genesis - a framework for automatic gen-

eration and steering of testbeds of complex web services. In: ICECCS, pp. 131–140.
IEEE Computer Society, Los Alamitos (2008)

31. Genesis Web site, http://www.infosys.tuwien.ac.at/prototype/Genesis/
32. Hsueh, M.C., Tsai, T.K., Iyer, R.K.: Fault injection techniques and tools. IEEE

Computer 30(4), 75–82 (1997)
33. Wikipedia on Fault Injection, http://en.wikipedia.org/wiki/Fault_injection

(accessed on June 13, 2010)
34. Xu, W., Offutt, J., Luo, J.: Testing web services by xml perturbation. In: ISSRE,

pp. 257–266. IEEE Computer Society, Los Alamitos (2005)
35. Looker, N.: Dependability Assessment of Web Services. PhD dissertation, Durham

University (2006)
36. Looker, N., Munro, M., Xu, J.: Ws-fit: A tool for dependability analysis of web

services. In: COMPSAC Workshops, pp. 120–123. IEEE Computer Society, Los
Alamitos (2004)

37. Bianculli, D., Binder, W., Drago, M.L.: Automated performance assessment for
service-oriented middleware: a case study on bpel engines. In: WWW, pp. 141–
150. ACM, New York (2010)

38. Bertolino, A., Angelis, G.D., Polini, A.: A qos test-bed generator for web services.
In: Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607,
pp. 17–31. Springer, Heidelberg (2007)

39. Bertolino, A., Angelis, G.D., Frantzen, L., Polini, A.: Model-based generation of
testbeds for web services. In: Suzuki, K., Higashino, T., Ulrich, A., Hasegawa, T.
(eds.) TestCom/FATES 2008. LNCS, vol. 5047, pp. 266–282. Springer, Heidelberg
(2008)

40. WS-Agreement, http://www.ogf.org/documents/GFD.107.pdf

http://www.w3.org/TR/xmlschema-0/
http://cxf.apache.org/docs/interceptors.html
http://groovy.codehaus.org/Closures
http://statdistlib.sourceforge.net
http://docs.oasis-open.org/ws-dd/soapoverudp/1.1/os/wsdd-soapoverudp-1.1-spec-os.html
http://docs.oasis-open.org/ws-dd/soapoverudp/1.1/os/wsdd-soapoverudp-1.1-spec-os.html
http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.pdf
http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.pdf
http://lartc.org
http://www.linuxfoundation.org/en/Net:Netem
http://java.sun.com/javase/6/
http://www.oasis-open.org/committees/wsbpel/
http://www.oasis-open.org/committees/wsbpel/
http://www.infosys.tuwien.ac.at/prototype/Genesis/
http://en.wikipedia.org/wiki/Fault_injection
http://www.ogf.org/documents/GFD.107.pdf

Abstracting and Applying Business Modeling Patterns
from RosettaNet�

Pankaj R. Telang1,2 and Munindar P. Singh2

1 Cisco Systems Inc., Research Triangle Park, NC 27709, USA
prtelang@ncsu.edu

2 North Carolina State University, Raleigh, NC 27695-8206, USA
singh@ncsu.edu

Abstract. RosettaNet is a leading industry effort that creates standards for
business interactions among the participants in a supply chain. The RosettaNet
standard defines over 100 Partner Interface Processes (PIPs) through which the
participants can exchange business documents necessary to enact a supply chain.
However, each PIP specifies the business interactions at a syntactic level, but fails
to capture the business meaning of the interactions to which they apply.

In contrast, this paper takes as its point of departure a commitment-based ap-
proach for business modeling that gives central position to interactions captured
in terms of their meaning. This paper defines commitment-based business pat-
terns abstracted from RosettaNet PIPs. Doing so yields models that are clearer,
more flexible to changing requirements, and potentially enacted through multiple
operationalizations. This paper validates the patterns by applying them to model
the Order-to-Cash business process from the RosettaNet eBusiness Process Sce-
nario Library.

1 Introduction

The intense competition in the global economy compels organizations to provide high-
quality products and services at an attractive price. It forces organizations to innovate
in how they define and deliver their services by identifying context-aware processes
and activities, and operationalizing them flexibly, including by outsourcing them to
other organizations that specialize in executing those processes. Important examples of
such processes include human resources, workplace management, payroll, call centers,
and IT infrastructure administration. By outsourcing such processes, an organization
may reduce operational expenses, and at the same time gain access to any specialized
resources it needs. Such outsourcing results in a network of organizations who engage
in a complex set of service interactions.

RosettaNet [16], a leading industry effort, creates standards for business interactions.
The RosettaNet consortium consists of over 500 organizations of various sizes, and
from various industry sectors including electronics manufacturing from which domain
RosettaNet began. These organizations use elements of the RosettaNet standard, named
Partner Interface Processes (PIPs), to transact business that is worth billions of dollars.

� We thank the anonymous reviewers for helpful comments.

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 426–440, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Abstracting and Applying Business Modeling Patterns from RosettaNet 427

A PIP specifies two-party interactions for some specific business purpose. For example,
a buyer requests a quote from a seller using PIP 3A1, and a seller requests financing
from a financing processor, on behalf of the buyer, using PIP 3C2. A PIP specifica-
tion includes a natural language document that informally describes the purpose of the
PIP, any underlying assumptions, the intended outcome of executing the PIP, and the
message structures as XML DTD or XML Schema.

RosettaNet PIPs specify the business interactions well at a syntactic level, but they
fail to capture the business meanings of those interactions. For example, in PIP 3A1, a
buyer sends a request for quote to a seller, and the seller responds with either a quote or a
referral. RosettaNet leaves important business details unspecified. If the seller responds
with a quote, does the seller commit to the buyer to selling the goods at the quoted
price? As an analogy, consider the price for a book you read on an online bookseller’s
(e.g., Amazon’s) page versus the price you read for a stock on an online stock broker’s
(e.g., Ameritrade’s) page. You can normally buy the book but not the stock for the
quoted price, meaning that Amazon commits but Ameritrade doesn’t. Likewise, does
the buyer’s acknowledging the quote commit it to buying the goods at the quoted price?

Thus, 3A1 and other RosettaNet PIPs leave such important questions regarding the
business meanings of the interactions to human interpretation. Each group of analysts
and developers working in the partner organizations would negotiate such considera-
tions between themselves, but doing so has the effect of introducing idiosyncratic con-
straints through which the partners become inadvertently tightly coupled. This reduces
their prospects for service innovation.

In previous work [22,24], we present a (1) high-level business metamodel to capture
models that describe, purely in terms of business meaning, how cross-organizational
service engagements are carried out and (2) a method based on temporal logic model
checking [7] to establish that a particular operationalization satisfies a specified business
model. This paper uses the business metamodel to abstract business patterns from the
RosettaNet PIPs, and outlines a methodology for applying such patterns to develop
business models of specific service encounters based on legacy models, such as based
on activity models. The patterns developed here respect our previous metamodel and
consequently can be used as a basis for model checking, as in our recent work [24].

Note that the patterns we propose are not operational patterns such as the well-known
enterprise integration patterns [10] or workflow patterns [18]. Such operational patterns
are useful for developing implementations of processes but would not address the chal-
lenge of encoding the business meaning that we pursue in this paper. In particular,
developing operational patterns for the RosettaNet PIPs might offer implementation
best practices but would not answer the questions of the type we ask above: who is
committed to whom, for what, and when? Instead our patterns are high-level patterns
that specify the essence of a business interaction, and may potentially map to multiple
operational patterns depending upon other criteria.

There are two key motivations in abstracting commitment-based patterns from Ro-
settaNet PIPs. First, since the patterns are at a business level, business analysts can
easily understand and compose them to develop a desired business model. Second, a
model composed from these patterns serves as a formal specification that can be used
to verify an operational model defined in any technical standard, such as sequence

428 P.R. Telang and M.P. Singh

diagrams [24]. Organizations frequently migrate their business process implementa-
tions to newer technologies to benefit from the improvements those technologies offer.
In such cases of technology migration, the high-level formal specification provides a
basis for establishing the correctness of the new implementation.

Contributions. The main contribution of this paper is business patterns abstracted from
a key subset of the RosettaNet PIPs. Additionally, it outlines a simple methodology for
applying the patterns to a real-life business scenario. The paper evaluates its contribu-
tions via a case study using the Order to Cash process, which has been addressed by
conventional approaches—in particular, by the RosettaNet consortium using conven-
tional means—yielding a ready basis for comparison.

Organization. Section 2 provides the necessary background on the RosettaNet PIP
standard and introduces our business metamodel. Section 3 presents business patterns
for a subset of the RosettaNet PIPs. Section 4 applies the patterns to model the Order-
to-Cash scenario. Section 5 concludes the paper with a discussion of the related work
and some future directions.

2 Background

We now review some key background on RosettaNet and on our approach.

2.1 RosettaNet

The RosettaNet standard specifies over 100 PIPs for various business processes in the
eCommerce supply chain. The standard classifies the PIPs using clusters and segments.
A cluster represents a major business process of the supply chain and comprises seg-
ments that represent subprocesses of the cluster’s business process. Each segment con-
tains many PIP specifications. For example, Cluster 3 represents the Order Management
process. Segment A of Cluster 3 represents the subprocess Quote and Order Entry. Seg-
ment A contains PIPs such as for Request Quote (3A1), Request Shopping Cart Transfer
(3A3), and Request Purchase Order (3A4). RosettaNet PIPs are commonly identified
through their code names such as those in parentheses above.

The RosettaNet standard employs three views to specify a PIP: the Business Op-
erational View (BOV), the Functional Service View (FSV), and the Implementation
Framework View (IFV). The BOV informally describes the element of the business
process that the PIP implements. It specifies a process flow diagram that shows the par-
ticipant roles, business activities, and the flow of business messages among them. For
each activity, the BOV specifies performance controls, such as the need to acknowledge
receipt, the nonrepudiability of the receipt, and the timeout for the acknowledgment. For
a PIP, the FSV derives from the BOV, and specifies the RosettaNet services. It specifies
the message exchange sequence in a business transaction dialog, and for each message,
it specifies message exchange controls. These controls include the time period within
which an acknowledgment is required, the time within which a response to an action
is required, and whether authorization is required for an action. The IFV specifies the
formats of the messages exchanged in the PIP as XML DTDs or XML Schemas. For
each message, it specifies the communication requirements such as whether it needs a
digital signature or secure transport.

Abstracting and Applying Business Modeling Patterns from RosettaNet 429

2.2 Business Metamodel

The following discussion is extracted from our previous work [22]. A business model
specifies how business is conducted. We concern ourselves with business models that
involve two or more participants. The business participants, abstracted as roles, partici-
pate in a business relationship. The participants create, manipulate, and satisfy commit-
ments in a relationship. They execute tasks for each other that enable them to achieve
their respective goals.

Three distinct phases characterize business execution. First, in the agreement phase,
participants enter into an agreement, and create commitments toward each other. Sec-
ond, in the assembly phase, the participants delegate or assign commitments to others.
A participant may delegate a commitment that requires the execution of a task which is
not a core competency of that participant, or due to some other economic motivation.
Third, in the enactment phase, participants execute tasks to satisfy their commitments.

We now describe the concepts in our metamodel.

Agent: a computational representation of a business participant. An agent has goals
[23], and executes business tasks. An agent enacts one or more roles in each busi-
ness relationship in which it participates.

Role: an abstraction over agents that helps specify a business relationship. Each role
specifies the commitments expected of the agents who play that role along with the
tasks they must execute to function in that role.

Goal: a state of the world that an agent desires to be brought about [6]. An agent
achieves a goal by executing appropriate tasks.

Task: a business activity viewed from the perspective of an agent.
Commitment: a normative relationship between a debtor and a creditor: a commit-

ment C(DEBTOR, CREDITOR, antecedent, consequent) denotes that the DEBTOR

commits to the CREDITOR for bringing about the consequent if the antecedent
holds [19].

Business relationship: a set of interrelated commitments among two or more roles that
describe how a business interaction is carried out among the participating roles.

Since our approach is centered on commitments, we discuss them at greater length. A
commitment can be in one of the following states: inactive, active, detached, pending,
satisfied, or violated. Before a commitment is created, it is inactive. A commitment
may remain inactive forever if it is never created. Alternatively, if the debtor creates the
commitment, it becomes active.

If the antecedent of an active commitment is brought about, then the commitment is
detached. It is possible for a commitment to be created as detached—if its antecedent
is true at the outset. When the consequent of a commitment, whether detached or not,
is brought about, it is satisfied. After a commitment is satisfied, whether its antecedent
is brought about or not has no effect.

For an active commitment, an active timeout occurs if neither its antecedent nor its
consequent is brought about within the specified time period. In that case, the com-
mitment expires. Similar to an active timeout, for a detached commitment, a detached
timeout may occur if its consequent is not brought about, causing the commitment to
be violated.

430 P.R. Telang and M.P. Singh

An active commitment functions like an obligation, but key differences include that
a commitment is directed from a debtor to a creditor, arises in a (here, business) context,
and may be manipulated. Manipulations of commitments are particularly important to
business modeling. We discussed above how a commitment may be created (making an
offer), discharged (satisfied), or canceled (withdrawing an offer). In addition, a com-
mitment may be released (rejecting an offer), delegated to a new debtor (outsourcing),
assigned (a reseller directing a shipment to the actual customer site). When a commit-
ment is delegated or assigned, in some business patterns, we can place it in the pending
state to enable it being revived if necessary [21].

3 Business Patterns from PIPs

A business pattern abstracts from operational details and, using the concepts of our
business metamodel, captures the business-level interactions that underlie a PIP. We
identify the business meanings that derive naturally from a PIP’s description, and ex-
press them in terms of how they manipulate commitments. We now present the patterns
for a selected subset of the PIPs that help us model the Order to Cash process from
Section 4.

3.1 Request Quote (PIP 3A1)

Figure 1 shows the usage diagram extracted from the PIP 3A1 specification. The figure
shows that a buyer desiring to purchase certain goods sends a request for a quote to a
seller. If the seller is able to satisfy the requirements of the quote, the seller sends a
quote response. Alternatively, if the seller is unable to satisfy the requirements of the
quote request, the seller looks up and sends a referral to the buyer. In this case, the buyer
at its own discretion may engage in business with the referred seller.

Figure 2 shows the business pattern we derive from PIP 3A1. Similar to the original
RosettaNet specification for this PIP, the pattern specifies the two roles, the buyer and
the seller. The business intent of PIP 3A1 is for the buyer to secure a price commitment
from the seller for certain goods. The pattern captures this as a commitment C(SELLER,
BUYER, pay, goods). Note that the PIP specifies how the roles interact in terms of the
quote request, and the quote response. On the contrary, our pattern abstracts away from
these operational details, and specifies what the interaction achieves in terms of the
commitment that ensues from it.

At an operational level, the participants exchange messages to execute a PIP. The
execution updates the state of the relevant commitments. Here, commitment C1 remains
inactive if the buyer sends a request for quote, and either the seller fails to respond
within certain timeout, or the seller responds with a referral. In case where the buyer
requests a quote, and the seller responds with a quote, commitment C1 becomes active.

Note that PIP 3A1 requires the buyer to send a request for quote prior to the seller
sending a quote. However, this is not always necessary. A seller may send an unso-
licited quote as an advertisement to the buyer. Since our business pattern abstracts from
operational details, it applies for the unsolicited quote scenario as well, thus offering op-
erational flexibility beyond the traditional interpretation of the RosettaNet guidelines.

Abstracting and Applying Business Modeling Patterns from RosettaNet 431

Receive

Business
need

B
uy

er
Se

lle
r

Analyze
Request a

quote

Create quote
request

Send quote
request

Submit bid?

Generate detailed
quote response

Produce
referral

Send quote
response

Send
referral

Receive Receive

Yes

3A1
3A1 3A1

Yes

No

Yes

Refer another
party?

Fig. 1. Usage guideline for PIP 3A1 (verbatim from the RosettaNet specification [16])

Buyer Seller

Buyer Seller

pay
goodsC1

C1 C(SELLER, BUYER, pay, goods)

Fig. 2. Business pattern for PIP 3A1. Notice that the BUYER performs the task pay, and SELLER

performs the task goods.

3.2 Request Purchase Order (PIP 3A4)

In PIP 3A4, a buyer sends a purchase order to a seller. The seller either accepts or rejects
the order. This PIP presumes that the buyer and seller previously enacted another PIP
to create a price commitment from the seller to the buyer. Figure 3 shows the business
pattern for PIP 3A4. Similar to the original RosettaNet specification for this PIP, the
pattern contains two roles: the buyer and the seller. The pattern presumes that a com-
mitment C1 = C(SELLER, BUYER, pay, goods) exists from the seller to the buyer to
sell the goods for certain price. In this pattern, the buyer commits to the seller to pay if
the seller ships the goods. The pattern models this as the commitment C2 = C(BUYER,
SELLER, goods, pay).

432 P.R. Telang and M.P. Singh

Buyer Seller

pay
goodsC1

Buyer Seller

pay
goodsC1

goods
payC2

C1 C(SELLER, BUYER, pay, goods)
C2 C(BUYER, SELLER, goods, pay)

Fig. 3. Business pattern for PIP 3A4. Notice that the BUYER performs the task pay, and SELLER

performs the task goods.

Table 1 shows the states of the commitments for some of the possible executions
of PIP 3A4. Commitment C2 is not created and remains inactive if the buyer sends
an order, and the timeout occurs. Further, in case where the buyer sends an order, and
the seller rejects the order, the seller cancels its commitment C1 and thus C1 becomes
inactive. When the buyer sends an order, and the seller accepts the order, commitment
C2 is created, thereby making it active.

Table 1. Commitment state progression in alternative PIP 3A4 executions

Execution Commitment State
C1 C2

sendOrder, timeout Active Inactive

sendOrder, rejectOrder Inactive Inactive

sendOrder, acceptOrder Active Active

3.3 Request Purchase Order Change (PIP 3A8)

A buyer may use PIP 3A8 to request a change to an order. This PIP presumes that the
buyer and the seller have already negotiated, the buyer sent an order to the seller, and the
seller accepted the order. The business pattern from Figure 3 models the precondition
for this pattern. This pattern updates the antecedent and the consequent of commitments
C1 and C2, and does not introduce any new commitments. Since the pattern is similar
to the pattern from Figure 3, and to save space, we omit the details.

3.4 Request Shipping Order (PIP 3B12)

In this PIP, a shipper sends a shipping order to a shipping provider. The shipping
provider either accepts or rejects the order. The shipper is the participant that sells goods

Abstracting and Applying Business Modeling Patterns from RosettaNet 433

to a customer, and employs the shipping provider for shipping the goods to the customer.
Figure 4 shows the business pattern we abstract from this PIP. This PIP presumes that
the shipper is committed to the customer to shipping the goods, as modeled by C1. The
shipper outsources this commitment to a shipping provider. C4 is the outsourced com-
mitment that models the shipping provider’s commitment to the customer to ship the
goods. It is unconditional (detached) since its antecedent is true (�). To set up the out-
sourcing, the shipper and the shipping provider create commitments C2 and C3. In C2,
the shipper commits to the shipping provider to paying if the shipping provider creates
the outsourced commitment C4. Notice that commitment C3 is the converse of C2. We
term such commitments reciprocal commitments; they arise often in practice.

CustomerShipper
Shipping
Provider

CustomerShipper

pay
goodsC1

create(C4)
pay2C2

pay2
create(C4)C3

Τ
goodsC4

pay
goodsC1

C1 C(SHIPPER, CUSTOMER, pay, goods)
C2 C(SHIPPER, SHIPPING PROVIDER, create(C4), pay2)
C3 C(SHIPPING PROVIDER, SHIPPER, pay2, create(C4))
C4 C(SHIPPING PROVIDER, CUSTOMER, �, goods)

Fig. 4. Business pattern for PIP 3B12. Notice that the CUSTOMER performs task pay, SHIPPER

performs pay2 and goods, and SHIPPING PROVIDER performs goods

Table 2 shows the progression of commitments corresponding to the possible execu-
tions of the PIP. In the case where the shipper sends a shipping order to the shipping
provider, and either the timeout occurs or the shipping provider rejects the order, com-
mitments C2, C3, and C4 remain inactive. When the shipping provider accepts a ship-
ping order sent by a shipper, then the commitment C4 becomes active, commitment C3
becomes satisfied, and commitment C2 detaches. The original commitment C1 from the
shipper to the customer becomes pending, since the outsourced commitment C4 is now

Table 2. Commitment state progression in alternative PIP 3B12 executions

Execution Commitment State
C1 C2 C3 C4

sendShippingOrder, timeout Active Inactive Inactive Inactive

sendShippingOrder, rejectShippingOrder Active Inactive Inactive Inactive

sendShippingOrder, acceptShippingOrder Pending Detached Satisfied Active

434 P.R. Telang and M.P. Singh

active. Later, if the shipping provider fails to satisfy commitment C4, the original com-
mitment C1 is reactivated. In that case, the shipper may engage with another shipping
provider to bring about the shipping of the goods.

3.5 Notify of Advance Shipment (PIP 3B2) and Notify of Remittance Advice
(PIP 3C6)

Using PIP 3B2, a shipper notifies a receiver about a shipment. This PIP presumes that
the shipper and the receiver have negotiated, and agreed to exchanging goods for pay-
ment. At a business level, commitment C1 = C(SHIPPER, RECEIVER, pay, goods), and
the commitment C2 = C(RECEIVER, SHIPPER, goods, pay) may be active prior to the
shipper sending PIP 3B2. By executing this PIP, shipper satisfies commitment C1, and
detaches commitment C2.

A buyer sends a remittance advice to a seller using PIP 3C6. Similar to PIP 3B2,
this PIP presumes that the buyer and the seller earlier agreed to exchanging goods for
payment. At a business level, commitment C1 = C(SELLER, BUYER, pay, goods), and
commitment C2 = C(BUYER, SELLER, goods, pay) may be active prior to the buyer
sending PIP 3C6. By executing this PIP, the buyer satisfies commitment C2, and de-
taches commitment C1.

3.6 Distribute Inventory Report (PIP 4C1), Notify of Shipment Receipt (PIP
4B2), and Notify of Invoice (PIP 3C3)

Using PIP 4C1, an inventory owner reports the inventory status to an inventory infor-
mation user. We view this PIP as merely supporting information exchange between the
participants. At a business level, such a PIP does not create or manipulate any commit-
ments by either party to perform a tangible task for the other. In principle, we can create
commitments for such notifications as well if necessary, such as Xing et al. [25] have
done, but for simplicity we do not do so in this paper. Similarly, we view PIPs 4B2 and
3C3 as information exchange, and they do not create or manipulate any commitments.

4 Evaluation: Order to Cash Process

This section applies the above business patterns to model the Extended Order to Cash
process, which is specified as an important scenario in the RosettaNet eBusiness Process
Scenario Library [17].

Figure 5 shows the Order-to-Cash business process scenario. The participants of this
process are a supplier, a customer, and a shipper. The customer orders products from the
supplier. Later, the customer may request a change to the order. The supplier engages
a shipper for shipping the goods to the customer. Additionally, the shipper periodically
sends an inventory report to the supplier. Prior to shipping the goods, the shipper no-
tifies the customer. The customer notifies the supplier upon receiving the goods. Sub-
sequently, the supplier sends an invoice to the customer. The customer validates the
invoice, and thereafter sends a remittance advice to the supplier. Figure 5 shows the
RosettaNet PIPs that the participants employ for the above interactions.

Abstracting and Applying Business Modeling Patterns from RosettaNet 435

C
us

to
m

er
Su

pp
lie

r
Sh

ip
pe

r

Create
Purchase

Order

Process
Purchase

Order

Create
Change
Order

Process
Change
Order

Create
Shipping

Order

Process
Shipping

Order

Create
Inventory

Report

Process
Inventory

Report

Create
Shipment

Notice

Process
Shipment

Notice

Create
Receiving

Information

Process
Receiving

Information

Create
Invoice

Validate
Invoice

Create
Remittance

Advice

Process
Remittance

Advice

3A4 3A8

3B12 4C1 3B2

4B2 3C3 3C6

Fig. 5. The Order to Cash business process (verbatim from RosettaNet documentation [17])

We propose a simple bottom-up methodology to develop a business model for this
scenario. In this methodology, we begin with a process flow diagram, such as that based
on RosettaNet PIPs. The flow specifies the participating roles as swim lanes, and the in-
teractions between the participants in terms of the PIPs that they execute. The method-
ology progressively composes the business patterns abstracted from the PIPs. The roles
in the patterns are substituted by the corresponding roles in the modeled scenario. Fur-
ther, the commitment labels in the composed patterns are updated to prevent spurious
identification of distinct commitments. This methodology considers only those PIPs
that pertain to the agreement and the assembly phase, that is, the PIPs that introduce
new commitments.

Figure 6 applies the above methodology to the Order-to-Cash process, as described in
Figure 5. Step 1 introduces the primary participant roles: the customer and the supplier.
Notice that PIP 3A4 presumes that the buyer has previously secured a price commit-
ment from the seller using a PIP such as PIP 3A1. However, the traditionally specified
flow in Figure 5 fails to show such an interaction. Step 2 applies the business pattern
of PIP 3A1, which introduces commitment C2 into the model. We substitute the buyer
role with the customer role, and the seller role with the supplier role. Step 3 applies
the business pattern of PIP 3A4, which introduces commitment C1. Step 4 applies the
business pattern of PIP 3B12, and introduces commitments C3, C4, and C5 into the
model. This step substitutes the pattern roles shipper, shipping provider, and customer
with the scenario roles supplier, shipper, and customer, respectively. Since the remain-
ing PIPs in the process flow do not pertain to the agreement or the assembly phases, the
methodology stops here.

436 P.R. Telang and M.P. Singh

Customer Supplier Shipper

Customer Supplier

Customer Supplier

Customer Supplier

pay
goodsC2

goods
payC1

pay
goodsC2

Step 1

Step 2

Step 3
Step 4

goods
payC1

pay
goodsC2

create(C5)
pay2C3

pay2
create(C5)C4

Τ
goodsC5

C1 C(CUSTOMER, SUPPLIER, goods, pay)
C2 C(SUPPLIER, CUSTOMER, pay, goods)
C3 C(SUPPLIER, SHIPPER, create(C5), pay2)
C4 C(SHIPPER, SUPPLIER, pay2, create(C5))
C5 C(SHIPPER, CUSTOMER, �, goods)

Fig. 6. The Order-to-Cash business process expressed as a business model

The model in Figure 5 specifies the messages, in the form of PIPs, that the partici-
pants exchange and the temporal ordering of those messages. In this model, a participant
complies with the model only if it exchanges messages in the prespecified temporal or-
der. Such an operational restriction limits the flexibility that the participants have in
executing the business. For example, the operational model mandates that the customer
pays (3C6) only after receiving the shipment (3B2) and the invoice (3C3). At a business
level, such a restriction may not be appropriate: e.g., for tax purposes, a customer may
wish to pay prior to receiving the shipment.

Instead of imperatively specifying how the participants conduct business in terms
of their messages and orderings, the business model in Figure 6 declaratively specifies
how the business executes in terms of commitments. A participant complies with the
business model if it satisfies all the detached commitments of which it is a debtor.
Consider commitment C1(CUSTOMER, SUPPLIER, goods, pay). As per the operational
semantics of a commitment, a customer can pay either before or after receiving the
goods, thus benefiting from flexibility. A customer violates this commitment only if the
supplier ships the goods, and the customer never pays.

Unlike RosettaNet’s PIP-based flow model, our business model is based on the no-
tion of commitments with a declarative semantics. A business model can formally de-
tect if a given business execution is complete. An execution is complete if it leaves
no commitments in detached state. Consider Table 3, which shows the commitment

Abstracting and Applying Business Modeling Patterns from RosettaNet 437

Table 3. Commitment state progression (top to bottom) in the Order-to-Cash business process

PIP C1 C2 C3 C4 C5

3A4 (sendOrder, acceptOrder) Active Active Inactive Inactive Inactive

3A8 (sendChgOrder, acceptChgOrder) Active Active Inactive Inactive Inactive

3B12 (sendShipOrder, acceptShipOrder) Active Detached Satisfied Detached

4C1 (sendInventory) Active Active Detached Satisfied Detached

3B2 (notifyShip) Satisfied Detached Detached Satisfied Satisfied

4B2 (notifyGoodsReceipt) Satisfied Detached Detached Satisfied Satisfied

3C3 (sendInvoice) Satisfied Detached Detached Satisfied Satisfied

3C6 (sendRemitAdvice) Satisfied Satisfied Detached Satisfied Satisfied

progression corresponding to the process flow of Figure 5. In the end, the process flow
execution leaves commitment C3 in a detached state. That is, the shipper commits to
shipping the goods, but is never paid by the supplier. This means that the flow shown in
Figure 5 is incomplete. It lacks a PIP that enables the supplier to pay the shipper.

At runtime, a participant may violate a commitment. In such a case, a pattern that
creates a penalty commitment [13] may apply. For example, if the supplier ships the
goods but the customer fails to pay $10 within 15 days to the supplier, that is, the cus-
tomer violates commitment C1, then the model can activate a new penalty commitment
for the customer to pay $15 within 30 days to the supplier.

5 Discussion

This paper presents business patterns abstracted from a small subset of the RosettaNet
PIPs. It outlines a simple methodology to apply these patterns to a real-life business
scenario. The paper highlights the flexibility that our commitment-based model offers.
For example, the business pattern for the Request Quote PIP 3A1 applies to the un-
solicited quote scenario as well. The paper shows how our model detects incomplete
executions. Our model allows several alternative executions so long as the execution
leaves no commitments in the detached state.

RosettaNet PIPs can be divided into two broad categories: PIPs that create or manip-
ulate commitments, and PIPs that merely enable the participants to exchange informa-
tion. Section 3 describes how we abstract patterns from the PIPs that create or manipu-
late commitments. We can naturally expand our set of patterns to include PIPs used for
information exchange, e.g., as described by Xing et al. [25], which would be suitable
for capturing the PIPs focused on notifications. With this expansion, our approach will
model all of the RosettaNet PIPs.

5.1 Related Work

Traditional business process modeling approaches, and several related industry stan-
dards, are based on low-level concepts of data, and control flows. For example, BPMN

438 P.R. Telang and M.P. Singh

[13] is a leading standard that expresses business processes in terms of sequence flow,
and message flow. Such specifications do not capture the business meaning of the inter-
actions, which is better described in terms of how the participants create and manipu-
late their commitments. Since traditional models ignore business intent of interactions,
they over-constrain business behavior by mandating the exchange of a predetermined
sequence of messages.

Existing works that aim at creating a catalog of reusable patterns for business inter-
actions, such as the patterns that Zdun et al. [26] propose, concentrate on low-level
abstractions. Although they are valuable for characterizing best practices of opera-
tionalizations, they do not specify the business relationships between the participants.
It would be interesting to combine the patterns from this paper founded on the business
relationships with Zdun et al.’s and other such approaches.

Singh et al. [21] propose a set of commitment patterns for business service inter-
actions. They describe a pattern using a statechart that shows relevant elements of the
life cycles of the commitments involved. In contrast, this paper describes patterns us-
ing a graphical language based on our business metamodel, which functions at a higher
level of abstraction than statecharts, and indicates the design-time business relationships
among the parties. Our graphical language emphasizes the roles and tasks in addition to
showing the commitments. Singh et al. additionally outline a graphical notation based
on business relationships: our approach can be thought of as applying in the same spirit,
though offering additional refinement in terms of business relationships.

Nitto et al. [12] agree with us that systems in open environments need to be highly
dynamic and self-adaptive. Toward that end, they identify the need for natural, high-
level design abstractions for modeling such systems. Our research aims at developing
such abstractions while satisfying the need for formalization. This paper extracts busi-
ness patterns from RosettaNet PIPs in terms of the high-level abstractions from our
business metamodel.

Kotinurmi et al. [11] and Haller et al. [8] incorporate semantics at the lower-level of
data in RosettaNet PIPs. They develop an ontology using the Web Service Modeling
Language (WSML) for the PIP payloads and choreographies. In contrast, our work
identifies the business-level meaning of the PIPs in terms of the commitments.

Hofreiter et al. [9] present UN/CEFACT’s methodology UMM for modeling global
choreographies, that is, the business interactions realized by B2B scenarios. Similar to
our approach, UMM intends to specify a choreography at a business level, indepen-
dently of the underlying implementation technology. UMM’s business domain view
and business requirements view can benefit from our business metamodel by naturally
modeling the collaborations in terms of commitments.

Redding et al. [15] propose an artifact-centric approach for flexible business process
modeling called FlexConnect. This approach models a process as communicating state
machines of the relevant business objects. In contrast, our approach models a business
scenario more naturally in terms of business relationships founded upon commitments.

Work on agent-oriented approaches for services is also relevant here. We mentioned
the notion of goals above. Although goals are not central to this paper, they are important
in understanding why agents, i.e., independent parties, participate in a business inter-
action. At the design level, the work on Tropos [5] is relevant. At the implementation

Abstracting and Applying Business Modeling Patterns from RosettaNet 439

level, approaches such as Jadex [14] and others for agent programming [4] are crucial.
It would be important to relate our approach to such works. With respect to design, we
have taken some preliminary steps [23]. With respect to enactments, Avali and Huhns
[2] show how to relate commitments to agents who reason based on representations
such as beliefs, desires, and intentions.

Research on obligations, norms, and other deontic concepts is relevant here. Sec-
tion 2.2 compares commitments with obligations. Other normative concepts, such as
permissions and prohibitions, can be useful in describing high-level relationships among
autonomous parties [19]. Although they are not as central to business transactions as
commitments, it would be worth expanding our approach to accommodate them.

Research on temporal logic for representation and reasoning [7] is also relevant.
Most temporal approaches for describing processes, however, apply at a lower level of
abstraction [20,1]. Our recent effort [24] shows how to express a business model in
a temporal language for model checking sequence diagrams. Baldoni et al. [3] draw
deeper connections between commitments and time, which it would be interesting to
synthesize with this paper.

5.2 Future Directions

This work opens up several interesting directions. Of these, we are pursuing the de-
velopment of formal techniques that involve formalizing our business patterns so as to
verify the compliance of a low-level operational model with respect to a specified busi-
ness model. We expect also to develop a catalog of well-defined reusable patterns for
business modeling, including those for notifications.

The methodology outlined above is a good start on an approach for developing busi-
ness models based on traditional models. However, a more extensive and complete
methodology to specify business models in high-level terms would also be crucial to
the greater success of this effort. We hope to pursue such a methodology in future work.

References

1. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a truly declarative service flow lan-
guage. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp.
1–23. Springer, Heidelberg (2006)

2. Avali, V.R., Huhns, M.N.: Commitment-based multiagent decision making. In: Klusch, M.,
Pěchouček, M., Polleres, A. (eds.) CIA 2008. LNCS (LNAI), vol. 5180, pp. 249–263.
Springer, Heidelberg (2008)

3. Baldoni, M., Baroglio, C., Marengo, E.: Commitment-based protocols with behavioral rules
and correctness properties of MAS. In: Proc. Intl. Wkshp. Declarative Agent Languages and
Technologies (DALT), pp. 66–83 (2010)

4. Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E. (eds.): Multi-Agent Program-
ming: Languages, Platforms and Applications. Springer, Heidelberg (2005)

5. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-
oriented software development methodology. Autonomous Agents and Multi-Agent Sys-
tems 8(3), 203–236 (2004)

6. BRG: The business motivation model (2007)
7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)

440 P.R. Telang and M.P. Singh

8. Haller, A., Kotinurmi, P., Vitvar, T., Oren, E.: Handling heterogeneity in RosettaNet mes-
sages. In: Proc. 22nd ACM Symposium on Applied Computing, pp. 1368–1374 (2007)

9. Hofreiter, B., Huemer, C., Liegl, P., Schuster, R., Zapletal, M.: UN/CEFACT’s Modeling
Methodology (UMM): A UML Profile for B2B e-Commerce. In: Proc. 2nd Intl. Wkshp.
Best Practices of UML (ER), pp. 19–31 (2006)

10. Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Addison-Wesley, Boston (2004)
11. Kotinurmi, P., Vitvar, T.: Adding semantics to RosettaNet specifications. In: Proc. 15th Intl.

Conf. World Wide Web, pp. 1059–1060 (2006)
12. Nitto, E.D., Ghezzi, C., Metzger, A., Papazoglou, M.P., Pohl, K.: A journey to highly dy-

namic, self-adaptive service-based applications. Automated Software Engineering 15(3-4),
313–341 (2008)

13. OMG: Business process management initiative (August 2009), http://bpmn.org/
14. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine. In: [4], pp. 149–

174 (2005)
15. Redding, G., Dumas, M., ter Hofstede, A.H.M., Iordachescu, A.: Modelling Flexible Pro-

cesses with Business Objects. In: Proc. IEEE Conf. Comm. & Ent. Comp, pp. 41–48 (2009)
16. RosettaNet: Overview: Clusters, Segments, and PIPs (2008),

http://www.rosettanet.org
17. RosettaNet: Extended order to cash (2010), http://www.rosettanet.org/
18. Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P., Mulyar, N.: Workflow control-flow

patterns: A revised view. Tech. rep., BPMcenter.org (2006)
19. Singh, M.P.: An ontology for commitments in multiagent systems: Toward a unification of

normative concepts. Artificial Intelligence and Law 7(1), 97–113 (1999)
20. Singh, M.P.: Distributed enactment of multiagent workflows: Temporal logic for service

composition. In: Proc. 2nd Intl. Joint Conf. Autonomous Agents and MultiAgent Systems
(AAMAS), pp. 907–914 (July 2003)

21. Singh, M.P., Chopra, A.K., Desai, N.: Commitment-based service-oriented architecture.
IEEE Computer 42(11), 72–79 (2009)

22. Telang, P.R., Singh, M.P.: Business modeling via commitments. In: Kowalczyk, R., Vo, Q.B.,
Maamar, Z., Huhns, M. (eds.) SOCASE 2009. LNCS, vol. 5907, pp. 111–125. Springer,
Heidelberg (2009)

23. Telang, P.R., Singh, M.P.: Enhancing Tropos with commitments. In: Borgida, A.T., Chaudhri,
V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications.
LNCS, vol. 5600, pp. 417–435. Springer, Heidelberg (2009)

24. Telang, P.R., Singh, M.P.: Specifying and verifying cross-organizational business models:
An agent-oriented approach. TR 12, North Carolina State University (May 2010)

25. Xing, J., Wan, F., Rustogi, S.K., Singh, M.P.: A commitment-based approach for business
process interoperation. IEICE Trans. Info. & Syst. E84-D (10), 1324–1332 (2001)

26. Zdun, U., Hentrich, C., Dustdar, S.: Modeling process-driven and service-oriented architec-
tures using patterns and pattern primitives. ACM Trans. Web 1(3), 14 (2007)

http://bpmn.org/
http://www.rosettanet.org
http://www.rosettanet.org/

Heuristic Approaches for QoS-Based Service
Selection

Diana Comes, Harun Baraki, Roland Reichle, Michael Zapf, and Kurt Geihs

Distributed Systems Group, University of Kassel,
Wilhelmshöher Allee 73, 34121 Kassel, Germany

{comes,baraki,reichle,zapf,geihs}@vs.uni-kassel.de

Abstract. In a Service Oriented Architecture (SOA) business processes
are commonly implemented as orchestrations of web services, using the
Web Services Business Process Execution Language (WS-BPEL). Busi-
ness processes not only have to provide the required functionality, they
also need to comply with certain Quality-of-Service (QoS) constraints
which are part of a service-level agreement between the service provider
and the client. Different service providers may offer services with the
same functionality but different QoS properties, and clients can select
from a large number of service offerings. However, choosing an optimal
collection of services for the composition is known to be an NP-hard
problem.

We present two different approaches for the selection of services within
orchestrations required to satisfy certain QoS requirements. We devel-
oped two algorithms, OPTIM_HWeight and OPTIM_PRO, which per-
form a heuristic search on the candidate services. The OPTIM_HWeight
algorithm is based on weight factors and the OPTIM_PRO algorithm is
based on priority factors. We evaluate and compare the two algorithms
with each other and also with a genetic algorithm.

1 Introduction

Web Services constitute the most spreaded technology that overcomes interoper-
ability issues between applications from different partners using the Internet as
the underlined infrastructure. In order to be trusted by their clients, services have
to guarantee the fulfillment of the required functionality and also of the expected
non-functional properties, known as Quality of Service (QoS). Service clients and
providers come to an agreement where providers assure that the service com-
plies with the promised service levels. Web Services from different partners can
be composed to a service orchestration and realize a complex business process.
The de facto standard for executing business processes is the Web Services Busi-
ness Process Execution Language (WS-BPEL) [7] which specifies how service
orchestrations are built. It describes how the interaction between web services
takes place in order to realize a business process. The business workflow is de-
scribed via activities triggered in the order defined within the BPEL description
file. The language offers standard activities for specifying control structures (like

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 441–455, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

442 D. Comes et al.

while, repeatUntil, foreach activities), conditional structures (like if, switch) and
basic activities like invoke for calling a web service or the assign activity for as-
signing values to variables. A process may start with the arrival of a message (like
with a receive or a pick activity). It may send an answer back to the requestor
with a reply activity. Activities may be grouped inside a sequence (sequential
invocation) or a flow (parallel invocation) structure.

While WS-BPEL specifies the workflow and functionality of a business pro-
cess, Quality of Service is not part of the BPEL specification and so needs to be
treated separately. In this paper we address QoS properties like response time,
availability, reliability, and cost. The malfunction of one single service might
cause the failure of the entire process. Since enterprises offer services having the
same functionality but at different QoS levels, the QoS properties become the
key differentiator between multiple services. Therefore, other service offerings
need to be searched in the service registry and bound to the service process
dynamically at runtime, which is where the selection algorithm comes into play.
The goal of the selection algorithm is to find an optimal choice of services that
realize the service orchestration. The orchestration needs to satisfy certain QoS
constraints and to optimize an objective function which depends on the QoS
properties of the involved services. However, as soon as we have to optimize for
several independent QoS properties, finding the optimal combination from all
possible service candidates that might realize the service orchestration leads to
an NP-hard problem [11,9].

In this paper, we propose two heuristic algorithms for the selection of services
in service orchestrations. The OPTIM_HWeight algorithm is based on weight
factors and the OPTIM_PRO algorithm considers priority factors for perform-
ing the service search. The OPTIM_HWeight is an extension of the OPTIM_S
algorithm utilizing a specific heuristic function fHWeight. The OPTIM_S algo-
rithm can perform a heuristic search, a local, and a global (brute-force) search
by only modifying its parameters. We evaluate and compare the algorithms OP-
TIM_HWeight and OPTIM_PRO with each other and also with the genetic algo-
rithm proposed by [2] which we call GA_CAN. Our experiments revealed that our
OPTIM_PRO and OPTIM_HWeight algorithms perform better than the genetic
algorithm GA_CAN and reach optimization values at least as good as GA_CAN.
Our OPTIM_PRO algorithm is the fastest of the presented algorithms.

The paper is structured as follows: In Section 2 we describe the selection algo-
rithms OPTIM_S, OPTIM_HWeight, OPTIM_PRO and GA_CAN. Section 3
describes the experiments we run in order to compare the algorithms with each
other and measure their performance and results. In Section 4 we compare our
heuristic approaches to the related works.

2 Service Selection Algorithms

A service orchestration is a composition of multiple services that are required in
order to execute the orchestration. An abstract service represents the functional-
ity of the desired service and we assume that there are several concrete services

Heuristic Approaches for QoS-Based Service Selection 443

(candidates) that provide this functionality but have different QoS properties.
The QoS of the entire process is computed from the QoS of the services that build
up the service composition. Finding the optimal solution means selecting those
services that satisfy the QoS requirements, including the QoS constraints, and
optimizing an objective function for the entire orchestration. Assuming that we
have n abstract services and each abstract service may have m concrete service
realizations, we get a total of mn possible combinations. As we have to assume
that all QoS dimensions are independent, the whole optimization problem turns
out to be NP-hard [11,9].

We define the set Sa that contains the set of abstract services, the set Sc

containing the concrete services and the set QD of QoS dimensions. The set
V represents the set of service variants, meaning the possible combinations of
service candidates. The vector Q = (a, l, r, c) ∈ IR4 contains the QoS values of
the QoS dimensions availability (a), reliability (l), response time (r), and cost
(c) computed for the service variants v ⊆ V . As an example we consider the
following QoS requirements for the orchestration:

fobj(Q) =
k1 · a+ k2 · l
k3 · r + k4 · c

(1)

maximize fobj(Q) ∀v ⊆ V realizing the service orchestration (2)
a > b1, l > b2, r < b3, c < b4,where bi ∈ IR (3)

The factors ki, i = 1 . . . 4 represent the weights for the q ∈ QD variables de-
pending on the user’s preferences and bi represent the bounds for the q variables.
Within our approaches we address also non-linear objective functions, aggrega-
tion functions and constraints.

We developed the heuristic algorithms OPTIM_HWeight and OPTIM_PRO
for the service selection problem. First, we will describe the tasks which are com-
mon for all our algorithms: (a) QoS aggregation and constraint checking, (b) cre-
ating the BPEL tree, and then we will present the specifics of the algorithms.

(a) QoS aggregation and constraint checking
The QoS of the service compositions depends on the QoS values of the services
that build up the composition. The QoS value for a complex node (with children)
is computed by the aggregation functions shown in table 1 (taken from [2]).
The table is not complete but it provides examples for the structured activities
sequence, switch, flow and loop. The aggregation formulas for the switch activity
take into account the execution probabilities of the different branches to calculate
the expected value for the quality dimensions. Still, the QoS constraints need to
be fulfilled for every execution path, so for the switch activity we added an extra
column (the last one) in the table where we consider the worst case of the QoS
values over all of the branches of the switch. When we check the QoS constraints
we use the aggregation formulas of the table (columns 2-4) and for the switch
we take the formulas from the last column (switch worst). The QoS values of
the candidate services are normalized to map the values onto the [0, 1] interval.
This is done with the formula adopted from [3]:

444 D. Comes et al.

Table 1. Aggregation Functions

QoS Dimension sequence flow loop switch switch worst

response time(r)
n∑

i=1

ri max
i∈1..n

{ri} k · r
n∑

i=1

pi · ri max
i∈1..n

{ri}

cost (c)
n∑

i=1

ci

n∑

i=1

ci k · c
n∑

i=1

pi · ci max
i∈1..n

{ci}

availability (a)
n∏

i=1

ai

n∏

i=1

ai ak
n∑

i=1

pi · ai min
i∈1..n

{ai}

reliability (l)
n∏

i=1

li
n∏

i=1

li lk
n∑

i=1

pi · li min
i∈1..n

{li}

q′ =

{
q−qmin

qmax−qmin if qmax − qmin �= 0;
1 if qmax − qmin = 0.

(4)

(b) Creating the tree
Both algorithms start with creating a tree out of the BPEL description file. The
example in Figure 1 only serves to illustrate how our algorithms find a selection
for a composition with four abstract services SA, SB, SC , and SD which can be
realized by different concrete services. It does not show a realistic BPEL tree
as this would be too complex here. The nodes of the BPEL tree contain the
activities from the BPEL description file which are relevant for the execution of
the BPEL process. It does not contain nodes for partnerLinks, for instance. We
define S, the set of simple element types that contains the BPEL activities (e.g.
invoke, assign) which we represent as leaves in the tree. The set C of complex
element types contain the BPEL activities (e.g. sequence, while, switch) which
we represent as inner nodes. Each node of the tree has the same structure and
contains:

– the type node.elem ∈ S ∪ C of the node, the references node.parent to the
parent node and node.children to the child nodes,

– the set of variants node.V containing combinations of the service candidates
(e.g. V = {[v1 = (S2, S4)], [v2 = (S2, S5)]}),

– the set of QoS dimensions node.QD (e.g. node.QD = {a, l, c, r}),
– the set of QoS values node.vQ of variant v, where v ∈ node.V ,
– the set node.VQ for all the variants v ∈ node.V (e.g. V Q = {[v1(c = 7, r =

3)], [v2(c = 9, r = 4)]}), the objective values node.V Fobj computed for all the
variants v ∈ node.V having the QoS values node.VQ, (The objective value
of variant v is vFobj and is equivalent to fobj(vQ), analogously we define the
heuristic value fHeu(vQ)).

After being created, the BPEL tree has to be initialized with probabilities p
and iterations k obtained from the runtime monitoring of the BPEL process
during multiple executions. The probability pi appears for conditional activities
like switch and corresponds to the probability for executing the branch i of the
activity during an execution. The nodes representing a loop (e.g. repeatUntil,

Heuristic Approaches for QoS-Based Service Selection 445

SA

SB
SC

SC.V= { S4,S5 }
S4 : a4= 0.92 , r4= 2
S5: a5= 0.95 , r5= 3

Legend

SA,SB,SC,SD Abstract services; Sj Concrete service for realizing the abstract service, ai availability for service Si ;
ri responsetime for service Si ; pi probability to execute path/ branch i; Priority – priority computed with the OPTIM_PRO;
k – iterations for the while; X.V variants of the activity X; X.VQ QoS values for the variants in V of activity X

Execution Example

Sequence
E

SWITCH
I

QoS Requirements:

fobj = (a / r) a > 0.5 r < 75 , maximize fobj

Selection algorithms’ results:

1) Brute force search (Global) OPTIM_S
v = (S1,S2,S5,S6) fobj= 0.0197
2) Heuristic search

OPTIM_HWEIGHT
v= (S1,S2,S5,S6) fobj= 0.0197
OPTIM_PRO
v= (S1,S2,S5,S6) fobj= 0.0197
GA_CAN population 5
v= (S1,S2,S5,S6) fobj= 0.0197
3) Local search OPTIM_S LOCAL
v= (S1,S3,S4,S6) fobj= 0.0194

SA.V= { S1 }
a1= 0.98
r1= 4

SB.V= { S2,S3 }
S2 : a2= 0.97 , r2= 17
S3: a3= 0.91 , r3= 15

Total variants number |E.V| = 8
E.V= {[v1246 =(S1,S2,S4,S6)], [v1247 =(S1,S2,S4,S7)],
[v1256 =(S1,S2,S5,S6)], [v1257 =(S1,S2,S5,S7)],...}
E.VQ={ [v1246 (a=0.7041,r=36)], [v1247(a=0.7116, r=41)],
[(v1256(a=0.76, r=38.4)],[(v1257(a=0.768, r=43.4), ... }
E.VFobj= { [v1246(fobj= 0.0195)], [v1247(fobj=0.0173)],
[v1256 (fobj=0.0197)], ...}

While
W SD

SD.V= { S6,S7 }
S6 : a6= 0.93 , r6= 9
S7: a7= 0.94 , r7= 14

k = 3 iterations

if true
p1 = 0.2

priority=0.6

if false
p2 = 0.8
priority = 2.4 / OP_PRO

BPEL tree

priority=3 OP_PRO

priority=1 / OP_PRO

Sequence
N

Fig. 1. Service selection example

while) receive an iteration number k that represents the average number of
iterations monitored for that loop.

2.1 OPTIM_S Algorithm

Since our OPTIM_HWeight algorithm is an extension of our OPTIM_S al-
gorithm we will first describe the OPTIM_S algorithm. We developed the OP-
TIM_S algorithm with the intention to allow for easy adaptation to the runtime
environment, depending on the number of services that are available at runtime.
The OPTIM_S algorithm permits different types of search (local, global, and
heuristic search) for the service selection by only changing its parameters. Thus
the algorithm allows for adjusting between shorter computation time of the al-
gorithm and better solution quality. The choice of the service selection algorithm
should depend on the number of services searched and available at runtime. For
example, when the selection targets only few abstract services (like in a sub-
orchestration) a brute-force search is sufficient. In contrast, when the search is
performed for the entire process which contains many services, a suitable opti-
mization algorithm is needed. The choice of the selection algorithm may differ
between set-up time and runtime. At runtime, a quick and effective solution is
usually preferred to an optimal but slow strategy. All these requirements have
been considered in the development of our selection algorithms. As inputs, the
algorithm receives the BPEL tree, the QoS constraints, the objective function
fobj to be minimized or maximized, the maximum number of selected variants
(nr_v) for a node, and optionally a heuristic function fHeu used within the

446 D. Comes et al.

Algorithm 1: (tree, qosConstraints, fobj, nr_v, optional fHeu)

Input: tree- the BPEL tree ; qosConstraints – the QoS constraints, fobj -objective function, fHeu heuristic function, nr_v the maximal
number of variants selected for a node
Output: the selected services
1: Begin

2: initializeTree(tree) // initialize the tree nodes with probabilities (p) and iterations (k)
3: init(C,Sa) // initialize the set C with complex nodes and Sa with the abstract services
4: repeat // traverse the tree from bottom to top
5: node treeTraverseBottomToTop(tree)
6: if node.elem in Sa // Sa- is an abstract service, a call to a service
7: node.V node.getConcreteServices()
8: else

9: if node.elem in C // node is a complex element with children
10: children node.children
11: childrenV { }
12: foreach child in children
13: child.VQ aggregateQoS(child.V)
14: // sort the variants with fHeu and cut those that are too many
15: child.V sortAndCut(child.V, child.VQ, fHeu, nr_v)
16: childrenV childrenV U child.V
17: endforeach

18: node.V combine(childrenV)
19: //compute QoS for each variant and eliminate those that don’t meet QoS
20: foreach v in node.V
21: node.vQCons aggregateQoSCons(v) //aggregate with formulas for constraints check
22: if not (checkQoSConstraints(node.v, node.vQCons, qosConstraints))
23: node.V node.V \ v
24: endif

25: endforeach

26: endif

27: endif

28: until node.parent = null

29: node.VQ aggregateQoS(node.V)
30: node.VFobj computeFobj(node.V, node.VQ, fobj)
31: node.V sort(node.V, node.VFobj) // sort the variants by the value of fobj
32: return node.V[1]
33: End

Fig. 2. OPTIM_S Algorithm

selection process. The output of the algorithm will be the service selection fulfill-
ing the QoS constraints and with the best found value for the objective function.

The basic idea of the algorithm is that for each of the nodes in the tree
(node.V) starting with the leafs, we select only a subset of the variants of the
children of this node so that the size |node.V | of the variants set is at most nr_v.
For each variant the QoS is computed by using the aggregation functions in Table
1. With this QoS value (vQ) the heuristic value is computed by applying the
heuristic function (fHeu(vQ)). The variants are sorted according to this heuristic
value and those variants with better values are selected and propagated to the
parent node. An example for a heuristic function is the objective function itself.

The different search types heuristic, local, and global search can be switched
by modifying the parameters of the OPTIM_S algorithm nr_v and fHeu. The
global search is a simple brute force search without any heuristic function. The
algorithm is invoked by calling it with nr_v = ∞ (in Java we take Inte-
ger.MAX_VALUE). After sorting the variants on the root node with fobj , the
variant node.V [1] will be the global optimum. This kind of search is suited when
the search is performed on a small number of services. The heuristic search is

Heuristic Approaches for QoS-Based Service Selection 447

triggered by calling the algorithm with ∞ > nr_v ≥ 2 and a given heuristic
function. The discovered solution is not necessarily the optimal solution, but a
good heuristic could provide a near-optimal or even an optimal solution. The
local search is triggered by calling the algorithm with nr_v = 1 so that only
one variant is selected at each node. While this is the fastest way, the solution
quality is expected to be worse than from the heuristic search.

We describe the algorithm on the basis of the pseudocode (see Fig. 2). The
service selection starts with traversing the tree from the bottom to its root node
(line 5). We distinguish between nodes that represent a service call and complex
nodes. If the node represents a call to a service, the variants of the node node.V
are initialized with the concrete services (lines 6-7). The number nr_v represents
the maximum number of variants that are selected for each node. This allows
us to restrict the size of the search space considerably. For each of the non-leaf
nodes in the tree, the variants are selected from the variants of the child nodes
(lines 9-16) so that the number of combinations of the child variants is at most
nr_v. The heuristic function helps us to select those candidates which are likely
to perform better in the process (line 15). At selection time the child variants
are already sorted by their heuristic values computed with fHeu. Furthermore,
the selected child variants are combined with their siblings (see the combine
method in line 18) on their parent node. The QoS of the variants is computed
(line 21) using the formulas in Table 1. The variants are checked against the QoS
constraints and those which do not fulfill the constraints are eliminated (lines
22-23). In the final step, the variants of the root node are sorted with regard
to the objective function and the variant on top of the sorted list (node.V[1])
represents the service selection that has won the evaluation.

2.2 OPTIM_HWeight Algorithm

The OPTIM_HWeight algorithm makes use of the OPTIM_S algorithm, pro-
viding a specific heuristic function fHWeight which is used to rank and sort the
candidate services/variants. OPTIM_HWeight is a probabilistic iterative algo-
rithm with the heuristic function fHWeight at its heart. By virtue of this function,
the candidate variants are sorted at each node according to their influence on the
overall process, ascending from the leaves to the root, and only the best rated
variants are kept. The heuristic function fHWeight is defined for an arbitrary
node N as follows:

fHWeight(WN , q
c
N , q

s
N) = WN · (qc

N − qs
N) = ∇fobj · (qc

N − qs
N)

=
(
∂fobj

∂qN
1

,
∂fobj

∂qN
2

, . . . ,
∂fobj

∂qN
n

)T

· (qc
N − qs

N) (5)

with · being the scalar product, qs
N the QoS vector of the current variant se-

lection, qc
N the QoS vector of the candidate variant, and the qN

i being the QoS
value of the node (aggregated value for complex nodes) of the ith QoS dimension.
We denote the difference vector qdif = qc

N − qs
N . We take the gradient ∇fobj

computed at node N as the weight vector WN considering the QoS values of the

448 D. Comes et al.

Algorithm 2: n_iter, n_steps
1: Procedure computeWeight(tree, variant) //computes the weights vector w for the heuristic fHWeight
2: begin

3: tree.InitToLastLeaf();
4: repeat //Aggregate QoS for variant variant from the bottom to the top of the tree
5: node = treeTraverseBottomToTop(tree)
6: node.v = node.getSubVariant(variant)//get the sub-variant v of the node that coresponds to variant
7: node.vQ = aggregateQoS(node.v) //aggregate QoS values for v
8: until (node.parent == null)
9: repeat//propagate the QoS values from the top to the bottom of the tree and compute the weights
10: node = treeTraverseTopToBottom(tree)
11: foreach q in QD
12: if(node == tree.Root)
13: node.Weight(q) = partialDerivative(, q, node.vq);
14: else

15: node.Weight(q) = node.parent.Weight(q) * partialDerivative(Agg(node.parent, q), node.siblings.vq, node.vq));
16: endif

17: endforeach;
18: until (node == tree.LastLeaf)
19: return tree.Weight;
20: end;

Procedure OPTIM_HWeight (n_iter, n_steps)
21: begin //initialize multiple random variants, optimize with OPTIM_S, and select the best one
22: init(v_best)
23: for i = 1 to n_iter do

24: v_0 = randomVariants(tree,SC) //select a random variant from the set of concrete services
25: tree.Weight = computeWeight(tree, v_0)
26: v_prev = v_0;
27: for j=1 to n_steps do//iterative improvement of weights, iterative steps of the gradient ascent
28: = createFHWeight(tree.Weight, v_prev) //create the heuristic function fHWeight
29: v_s = OPTIM_S(tree, HWeight)
30: tree.Weight = computeWeight(tree,v_s)
31: v_prev =v_s
32: endfor

33: if v_sFobj > v_bestFobj //from the found Variants select the one that optimizes fobj
34: v_best = v_s
35: endif

36: endfor

37: return v_best
38: end

Fig. 3. OPTIM_HWeight Algorithm

current selection. The result of the fHWeight function is used to deliver a score
for the candidate service selection versus the current service selection; a higher
value is ranked higher. The idea of this approach is essentially a gradient ascent.
Given the current point represented by qs

N , i.e. the QoS vector of the current
selection, we calculate the gradient at that location. We try to find another vari-
ant which has "moved" from the point qs

N in the direction of the gradient. As we
have only discrete locations in our search space (the service selection variants)
we can only choose another point with a minimal error. For this purpose, we
compute the heuristic fHWeight as the scalar product between WN and qdif .
For the iteration we use the newly found point in the search space and retry (for
n_steps).

In order to compute the derivatives for the gradient we have to consider that
the objective function is a chain of aggregations, so we need to use the chain rule
for partial differentiation. This can be explained by the fact that the QoS of a
node in the tree is an aggregation of the QoS of its child nodes, and the QoS of
each child node is again an aggregation of its child nodes, etc. For instance in
Fig. 1, the tree has a root node E which has a child node W, and node W has a

Heuristic Approaches for QoS-Based Service Selection 449

child node N which has a child SA (abstract service) being a leaf. For the first
quality dimension q1 we may have the weight factor wSA computed at node SA:

wSA =
∂fobj

∂qSA
1

=
∂fobj(ag

q1
E (agq1

W (agq1
N (qSA

1))))
∂qSA

1

=
∂fobj

∂agq1
E

∂agq1
E (agq1

W (agq1
N (qSA

1)))
∂qSA

1

= . . . =
∂fobj

∂agq1
E

∂agq1
E

∂agq1
W

∂agq1
W

∂agq1
N

∂agq1
N (qSA

1)
∂qSA

1

(6)

where agq1
X denotes the aggregation function for node X with regard to the

QoS dimension q1. The partial derivatives can be efficiently computed when
traversing the tree top-down because we only need to reuse the last computed
value at parent node and multiply the inner derivative for the current node.

In the following we explain the pseudocode of the algorithm (see Fig. 3). The
weight factors of fHWeight differ dependent on the nodes in the tree where the
heuristic is evaluated. At each node in the tree we need the partial derivatives
for each QoS dimension. The weight vector WN is computed (procedure com-
puteWeight, lines 1-20) by aggregating the QoS values of a random variant v from
the bottom of the tree to the top. Through backpropagation of the influence of
the QoS dimensions from top to the bottom of the tree we compute the weight
factors WN for fHWeight. This is done by calculating the partial derivatives,
which requires the aggregated QoS values of the current selection as input.
OPTIM_HWeight performs two iterative processes, the external loop (lines

23-36, with n_iter iterations) and the internal loop (lines 27-32, with n_steps
iterations). The internal loop can be interpreted in two different ways: (1) it
implicitly performs a gradient ascent with regard to the objective function (2)
it iteratively improves the weight factors WN of the heuristic function. Starting
from an initial random variant v_0, the WN vector is computed (procedure
computeWeight) through bottom-up aggregation of the QoS of v_0 in the tree
and backpropagation of the influence of the QoS dimensions from top to the leafs
of the tree. Knowing the weight factors WN and the QoS of v_0 the heuristic
function fHWeight can be created (line 28). The function fHWeight is used inside
the OPTIM_S algorithm (in the sortAndCut procedure, see OPTIM_S line
15) and calculates the scalar product between WN and the difference vector
qdif = qc

N −q
v_0
N , i.e. the difference of the QoS vector of the candidate variant

at the actual node and the QoS vector of the current selection v_0. Now the
OPTIM_S algorithm is called to find the (desired optimal) variant (v_s line 29)
that optimizes the objective function. This selected variant (v_s) is considered in
the next iteration step as starting variant to make a further improvement to the
weights WN and perform a further step of the gradient ascent. The computation
of WN and of the selection variant v_s starts again and the iterations continue
until the n_steps iteration steps have been performed. In the external loop (line
23 - the for loop) all the steps described above are repeated n_iter times with
different random variants as starting points for the inner loop. From the found
variants during multiple iterations (i) the one with the best value for optimizing
the objective function (lines 33-34) is finally selected.

450 D. Comes et al.

Algorithm 3: (tree, qosConstraints, fobj, n_iter)
1:Begin

2: initializeTree(tree, p, k) // initialize the tree nodes with probabilities (p) and iterations(k)
3: init(root.v, C, Sa, vList)
4: foreach node.elem in Sa // node is an abstract service
5: node.priority computePriority(tree) //compute priority = k * p
6: SaSet SaSet U node
7: endforeach

8: SaSet sortByPriority(SaSet , ’descendent’)
9: i 0
10: NEXT while (i < n_iter)
11: i i + 1;
12: foreach sa in SaSet
13: c 0; roottmp root
14: foreach sc in sa.V // sc is a concrete service that realizes the abstract service sa
15: c c + 1
16: roottmp.v(sa) sc //sc replaces the old candidate service of sa, in the root copy variant
17: if (checkQoSConstraintsAggregate2 (roottmp.vQ, qosConstraints))
18: roottmp.vQ aggregateQoS1 (roottmp.v)
19: roottmp.vFobj computeFobj (roottmp.vQ)
20: if (roottmp.vFobj > root.vFobj) OR ((i==1) AND(c==1))
21: //optimizing obj function OR first iteration, first candidate service
22: root roottmp
23: endif

24: endif //else select the variant with the minimal distance to fulfill constraints
25: endforeach

26: if (root.v in vList)
27: root.v chooseForAllRandomServices() //root.v receives random service candidates
28: continue NEXT
29: else

30: vList vList U root.v //save the root variant in the root variants list, vlist
31: endif

32: endforeach

33: endwhile

34: sortByFobj(vList) //sort the variants list by their objective values
35: return vList[1] //return the best variant
36: End

Fig. 4. OPTIM_PRO Algorithm

2.3 OPTIM_PRO Algorithm

The OPTIM_PRO heuristic algorithm calculates priority factors and uses the
objective function to sort the variants. It is described in pseudocode in Figure
4. During monitoring of the execution, the nodes in the tree receive an itera-
tion number k and a probability p as explained previously. Each of the nodes
that represent an abstract service (Sa, lines 4-7) receive a priority as a product
of k and p and the node is added to the set of abstract services SaSet. The
priority factor states that those nodes which are executed more often should
receive a higher priority. The algorithm proceeds with sorting the nodes from
the SaSet (line 8) in descendent order of the computed priorities such as the
nodes with higher priorities are processed first. OPTIM_PRO is an iterative
algorithm which improves the found variant (the objective value) of the root
node with each iteration (lines 10-33) step. After selecting a variant for the root
node in the first iteration, this variant is going to be improved during the next
iterations. A copy of the root is created (roottmp, line 13) in order to check if
the currently selected service candidate (sc) is an improvement to the objec-
tive function. In the root copy variant, the currently selected service candidate
replaces the old service candidate. With this new service candidate value, the

Heuristic Approaches for QoS-Based Service Selection 451

QoS value of the root copy variant is aggregated (roottmp.vQ), checked against
the constraints, and the objective function is computed (roottmp.vFobj). If the
objective function yields a better value the root receives the value of its copy
(roottmp), otherwise it remains the same. The variants that no longer can be
improved are saved into the list vlist. When this is the case, the root variant re-
ceives random candidate services and the iterative process continues in the same
way as described above. After reaching the maximal iteration number (n_iter),
the iterative process stops. The list vlist that contains the found variants is
sorted due to their objective values. The first element in the list is returned as
being the best variant that was found for optimizing the objective function.

2.4 GA_CAN Algorithm

In order to compare our heuristic algorithms we implemented a genetic algorithm
as proposed by Canfora et al. [2]. Genetic algorithms are inspired by biology and
use meta-heuristics in optimization problems. The reason why we chose this al-
gorithm is because it can also be applied to non-linear functions and constraints,
which is also our target. For more details we recommend [2]. The genome repre-
sents the service variants that realize the service orchestration and is encoded as
an array. The length of the genome is equal to the number of abstract services.
Each element within the array contains a reference to the list of the concrete
candidate services that may realize the abstract service. The initial population
is built with random individuals. The fitness of the individuals represents their
utility as a solution and is computed using the fitness function defined in equa-
tion 7. It corresponds to the sum of the objective function calculated on the
genome and the weighted distance D(g) (multiplied with the penalty factor k5)
resulting from constraints satisfaction checking. This means that those individu-
als that do not fulfill the constraints are penalized with distance D(g). Assuming
that there are h missed constraints, the distance D(g) is defined as the sum of
all the deviations from each of the missed constraints.

ffit(g) = fobj(g) + k5 ·D(g) with D(g) =
h∑

i=1

devi (7)

We build multiple generations over the population in an iterative way by ap-
plying the mutation and crossover operators. Through the mutation operator,
the candidate services are varied randomly and an arbitrary concrete service
is selected to realize the abstract service. The crossover operator combines ser-
vice variants of different individuals. The algorithm stops when during multiple
generations there is no improvement to the fitness function value.

3 Evaluation

Several experiments have been performed in order to compare our algorithms
OPTIM_HWeight and OPTIM_PRO with the GA_CAN algorithm proposed

452 D. Comes et al.

Fig. 5. Computation time OPTIM_HWeight, OPTIM_PRO and GA_CAN

in [2]. We have evaluated the three algorithms with regard to the required com-
putation time and the optimization of the objective function. All tests have been
performed on a Lenovo R60, 1.83 GHz, 2 GB RAM with Windows XP SP3 and
JSDK 1.6.

As baseline for our experiments, we have randomly generated 10 different
BPEL trees for each test case, with different structures and dimensions. The tree
structures have been created in such a way that they contain the relevant BPEL
activities, like while, if, invoke, sequence and flow with adjustable probabilities.

For the GA_CAN algorithm we set the mutation probability to 0.01 and
the crossover probability to 0.7. The OPTIM_HWeight algorithm was triggered
with nr_v = 12 and n_iter = 12. Since all the algorithms are probabilistic, we
executed the algorithms 10 times (for each of the 10 BPEL trees, having 100
test runs in total) and took the average value. The results of our measurements
are presented in Figures 5 and 6.

In our experiments A and B (Fig. 5, Fig. 6 Table A and B) we compared the
computation time of OPTIM_HWeight and OPTIM_PRO with the computa-
tion time of the GA_CAN algorithm (with a population of 100) for reaching
approximately the same value (difference less than 0.01 %) for the objective
function.

In experiment A (Fig. 5, Fig. 6 Table A) we used a fixed number of abstract
services (15) and measured how an increasing number of concrete services (from
10 to 70 per abstract service) influences the computation time. The results show
that OPTIM_PRO is the fastest algorithm, requiring on average about 19% of
the time of GA_CAN for reaching approximately the same optimization of fobj .
We observed that in average, our OPTIM_HWeight algorithm requires only
about 28% of the time of the GA_CAN.

Experiment B is similar to experiment A, but this time we increased the
abstract services from 0 to 35 while keeping the number of concrete services

Heuristic Approaches for QoS-Based Service Selection 453

Table A Table C

Nr.

Con.

Serv

GA_CAN (G)

Avg. timeG

P100,[ms]

HWeight (H)

Avg. timeH

[ms]

Avg.

timeH/

timeG

O_PRO (P)

Avg. timeP

[ms]

Avg.

timeP/

timeG

Nr.

Abs.

Serv

Fobj_H/

Fobj_G

Fobj_P/

Fobj_G

10 443,10 205,10 46,29% 140,80 31,78% 5 100,00% 100,00%
20 736,10 210,10 28,54% 148,50 20,17% 10 101,22% 101,22%
30 942,20 225,80 23,97% 167,80 17,81% 15 100,01% 100,01%
40 1046,50 234,80 22,44% 186,90 17,86% 20 103,29% 103,36%
50 1244,00 280,10 22,52% 198,10 15,92% 25 110,78% 110,94%
60 1274,10 327,30 25,69% 206,50 16,21% 30 107,31% 107,31%
70 1269,00 331,30 26,11% 208,20 16,41% 35 107,10% 107,31%

Table B

Nr.

Abs.

Serv

GA_CAN

Avg. timeG

[ms]

HWeight (H)

Avg. timeH

[ms]

Avg.

timeH/

timeG

O_PRO (P)

Avg. timeP

[ms]

Avg.

timeP/

timeG

5 192,10 142,60 74,23% 136,80 71,21%
10 459,30 206,30 44,92% 176,10 38,34%
15 1046,50 234,80 22,44% 203,60 19,46%
20 1532,80 261,20 17,04% 210,40 13,73%
25 2404,70 621,80 25,86% 226,00 9,40%
30 2539,25 561,42 22,11% 238,30 9,38%
35 2909,92 606,25 20,83% 257,20 8,84%

Fig. 6. Algorithms evaluation: GA_CAN (G), OPTIM_PRO (P), OPT_HWeight (H)

constantly at 40. Experiment B (Fig. 5, Fig. 6 Table B) shows again that OP-
TIM_PRO is the fastest algorithm and needed in average about 24% of the
GA_CAN time while the OPTIM_HWeight needed about 32% of the GA_CAN
time.

In experiment C (Fig. 6 Table C) we evaluated how well the objective func-
tion was optimized by the different algorithms. We computed the value of fobj

reached by OPTIM_HWeight, OPTIM_PRO and GA_CAN, where the com-
putation time limit for all of them was set to 4 seconds. The population size of
GA_CAN during the evaluation was varied between 100 and 600 and the best
result was chosen. The evaluation shows that our OPTIM_HWeight and OP-
TIM_PRO provides an optimization value at least as good as GA_CAN. With
an increasing number of abstract services (the number of concrete services/pos-
sible realizations per abstract service is constantly 100) our algorithms provide
even better optimization results than GA_CAN (e.g. above 25 abstract services,
fobj is about 7% better). Thus, according to our evaluation, the more possible
combinations exist, the better are the optimization results of OPTIM_HWeight
and OPTIM_PRO in comparison to GA_CAN.

4 Related Work

Zeng et al. describe in [3] a "QoS-Aware Middleware for Web Service Composi-
tion". For the service selection the authors describe two approaches for local and
global optimization. In their global planning approach, the authors propose an
Integer Programming (IP) solution, assuming that the objective function, the
constraints, and the aggregation functions are linear. The multiplicative aggre-
gation functions for availability and success rate are linearized by applying the

454 D. Comes et al.

logarithm. Our goal was to also consider non-linear objective functions and ag-
gregation functions within both our heuristic algorithms. Due to the bad runtime
performance of IP, their approach quickly becomes unfeasible when confronted
with an increasing number of tasks and concrete services. An improvement of IP
in respect to runtime performance is achieved in [6] by using relaxed integer pro-
gramming and a backtracking algorithm. They have the same restrictions like
[3] and address only sequential web service compositions and linear objective
functions. In our approach we consider sequential and also parallel execution of
activities and non-linear objective functions. In particular, OPTIM_HWeight
utilizes gradient ascent and we perform the optimization on a tree.

Canfora et al. [2] propose a genetic approach for the selection problem. Since
the authors consider also non-linear objective functions, we implemented their
approach (within the GA_CAN algorithm) to compare it with our heuristic al-
gorithms. The runtime behaviour was discussed in the previous section. We used
the same aggregation functions as Canfora did. The authors select the genome
with a fitness function containing a penalty factor. This penalty factor does not
guarantee that the individuals will fulfill the QoS constraints for all possible exe-
cution paths. By checking the QoS constraints considering the worst case of QoS
values throughout multiple branches, our algorithms ensure that the QoS con-
straints are met for all of the execution paths. In addition, our OPTIM_HWeight
and OPTIM_PRO need less time than GA_CAN to find the same result or even
a better one. An amendment of the genetic approach is introduced in [10] where
the improvement is achieved by the usage of hybridization. The neighborhood
of each individual of the genetic algorithm is explored iteratively to replace the
actual individual with the best or the almost best neighbor. Still, this reduces
the diversification of the population or the number of generations if the com-
putation time shall not be increased. Thus, the authors come to the conclusion
that for bigger problem instances the basic genetic algorithms perform better.

In [5] different heuristics are evaluated, including approaches which consider
global constraints and obtain almost best possible QoS like the pattern-wise
selection or the discarding subsets approach. Nevertheless the runtime perfor-
mance can make them unsuitable for a growing number of tasks. Other heuristics
like greedy selection or the bottom-up approximation proposed in [5] result in
a loss of QoS up to 5% but lead to an acceptable runtime performance. In this
context, especially our OPTIM_HWeight and OPTIM_PRO algorithms can
provide an improvement in relation to shorter runtimes than pattern-wise selec-
tion and discarding subsets, and delivers a better QoS than greedy selection and
bottom-up approximation. Besides, the user can configure the runtime-to-QoS
ratio by setting few parameters like number of steps of OPTIM_HWeight or
nr_v for OPTIM_S.

5 Conclusion

We presented two heuristic algorithms as solutions to the service selection prob-
lem in Web service orchestrations: the OPTIM_HWeight algorithm based on

Heuristic Approaches for QoS-Based Service Selection 455

weighting factors inspired by gradient ascent approaches and the OPTIM_PRO
algorithm utilizing priority factors. Both algorithms are iterative improving the
found solution by every iteration step, and provide an easy way to trade compu-
tation time against the quality of the solution by merely changing their parame-
ters. As our target was to optimize non-linear objective functions, we compared
OPTIM_HWeight and OPTIM_PRO with the genetic algorithm GA_CAN
proposed by Canfora [2]. Our experiments revealed that our OPTIM_PRO and
OPTIM_HWeight are faster than GA_CAN (in average they needed about 22%,
respectively 30% of the time of GA_CAN) and even achieve better values for
the objective function (in our experiments up to 7% better) than GA_CAN in
cases with a high number of combinations. The OPTIM_PRO algorithm turned
out to be the fastest algorithm. In our future work we will also consider a combi-
nation of both algorithms, like having the solution of OPTIM_PRO as starting
point for OPTIM_HWeight.

References

1. Bleul, S., Comes, D., Geihs, K.: Automatic Service Brokering in Service oriented
Architectures, Homepage, http://www.vs.uni-kassel.de/research/addo/

2. Canfora, G., Penta, M., Esposito, R., Villani, M.L.: An approach for QoS-aware
service composition based on genetic algorithms. In: Proceedings of the 2005 con-
ference on Genetic and evolutionary computation, ACM, Washington (2005)

3. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.:
QoS-Aware Middleware for Web Services Composition. In: IEEE Transactions on
Software Engineering, pp. 311–327. IEEE Press, Los Alamitos (2004)

4. Comes, D., Bleul, S., Weise, T., Geihs, K.: A Flexible Approach for Business
Processes Monitoring. In: Senivongse, T., Oliveira, R. (eds.) DAIS 2009. LNCS,
vol. 5523, pp. 116–128. Springer, Heidelberg (2009)

5. Jaeger, M., Múhl, G., Golze, S.: QoS-aware Composition of Web Services: An
Evaluation of Selection Algorithms. In: International Symposium on Distributed
Objects and Applications (DOA 2005), Springer, Heidelberg (2005)

6. Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz, R.: Heuristics for
QoS-aware Web Service Composition. In: IEEE International Conference on Web
Services (ICWS 2006), IEEE Computer Society, Los Alamitos (2006)

7. Web Services Business Process Execution Language Version 2.0, OASIS standard
(2007), http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

8. Oracle BPEL Process Manager (2008),
http://www.oracle.com/technology/products/ias/bpel/index.html

9. Baligand, F., Rivierre, N., Ledoux, T.: A Declarative Approach for QoS-Aware Web
Service Compositions. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC
2007. LNCS, vol. 4749, Springer, Heidelberg (2007)

10. Parejo, J., Fernandez, A., Cortes, P., QoS-Aware Services, A.: composition using
Tabu Search and Hybrid Genetic Algorithms. Actas de los Talleres de las Jornadas
de Ingeniería del Software y Bases de Datos 2(1) (2008)

11. Garey, M., Johnson, D.: Computers and Intractability; A Guide to the Theory of
NP-Completeness. W.H. Freeman, New York (1979)

http://www.vs.uni-kassel.de/research/addo/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.oracle.com/technology/products/ias/bpel/index.html

From Quality to Utility: Adaptive Service

Selection Framework

Chung-Wei Hang and Munindar P. Singh

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8206, USA

{chang,singh}@ncsu.edu

Abstract. We consider an approach to service selection wherein ser-
vice consumers choose services with desired nonfunctional properties to
maximize their utility. A consumer’s utility from using a service clearly
depends upon the qualities offered by the service. Many existing service
selection approaches support agents estimating trustworthiness of ser-
vices based on their quality of service. However, existing approaches do
not emphasize the relationship between a consumer’s interests and the
utility the consumer draws from a service. Further, they do not properly
support consumers being able to compose services with desired quality
(and utility) profiles.

We propose an adaptive service selection framework that offers three
major benefits. First, our approach enables consumers to select services
based on their individual utility functions, which reflect their prefer-
ences, and learn the providers’ quality distributions. Second, our ap-
proach guides consumers to construct service compositions that satisfy
their quality requirements. Third, an extension of our approach with
contracts approximates Pareto optimality without the use of a market
mechanism.

1 Introduction

We consider the problem of service selection. In service-oriented environments
[16], consumers consume services for direct interaction or composition. How to
select the “right” services to consume is one of the main challenges in service-
oriented computing. The “right” services are determined based on two kinds
of properties: functional and nonfunctional. Service description matching pro-
vides design-time automation for consumers to discover services with desired
functionalities. By contrast, our emphasis is on service selection, which offers
run-time automation for consumers to select services with the desired nonfunc-
tional properties—quality of service (QoS), to meet consumers’ preferences.

Three main challenges arise in service selection. First, how do consumers
collect information about the QoS offered by a particular service? In open set-
tings, quality information can be collected based on either consumers’ direct ex-
perience or third-party referrals. However, learning from direct experience with

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 456–470, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

From Quality to Utility: Adaptive Service Selection Framework 457

a dynamic service (which delivers differing quality from time to time) is not
trivial. Also, how consumers accommodate false referrals provided by malicious
referrers is challenging. Second, how do consumers define their preferences for
QoS? Potentially, each consumer may have a different requirements. For exam-
ple, one may prefer high throughput, another low throughput, and yet another
intermediate throughput. Another difficulty is accommodating the consumers’
goals and context. For example, a latency of five seconds may be acceptable for a
galaxy simulation but unacceptable for a web search. Third, how do consumers
make selection decisions based on quality information and consumers’ prefer-
ences? Selecting the apparently best services may not always lead to long-term
success, because consumers have limited or incomplete knowledge, and services
may change their behavior.

Trust models provide a promising solution to the first and third challenges.
Trust models enable consumers to estimate the trustworthiness of dynamic ser-
vices in terms of QoS based on both direct and indirect evidence. We particularly
consider trust models, e.g., [10,19,21], that provide certainty measurement as an
indicator of how confident the estimated trustworthiness is.

Many trust-based service selection approaches have been proposed
[6,9,11,12,13,20]. However, many of them fail to deal with the second challenge
practically. Maximilien and Singh [13] describe consumers’ preferences of QoS
in terms of utility theory. They only consider that consumer preferences follow
a monotonic increasing function of QoS (i.e., the higher the quality the better).
In practical cases, the utility function of QoS may not always be increasing (say,
for price), or even monotonic. For example, a consumer may prefer medium over
high or low capacity. Low capacity may lead to long response time because many
consumers are waiting. In contrast, high capacity may lead to long latency be-
cause the service may not have sufficient buffer space to handle many requests
at the same time.

Many service selection approaches, e.g., [9,12,13], guide consumers to select
services for direct interaction but not for composition. Selecting for composition
is nontrivial because the composition changes the context and thus can affect
a consumer’s preferences. For example, a consumer may prefer low latency for
interaction but may prefer two subservices composed in parallel to have approx-
imately equal latency so as to reduce the need for buffering. But in a sequential
composition, the consumer may still prefer low latency for each service. Con-
sequently, a service selection method should guide consumers to adjust their
preferences based on the composition and quality being considered.

This paper proposes a service selection framework that enables consumers
to select services based on the utility they expect to gain from the services.
Our approach addresses all three of the above challenges. First, our approach
incorporates any probabilistic trust model to collect quality information about
the services. Second, our approach enables consumers to specify utility functions
describing their preferences. Third, our approach provides a learning policy to
explore and exploit desired services in order to maximize each consumer’s utility
based on its preferences and estimated quality of the services involved. We show

458 C.-W. Hang and M.P. Singh

experimentally that our approach helps achieve near Pareto optimality across
the consumers. Besides, our approach can guide a consumer to adjust its prefer-
ences for desired compositions based on its quality requirements and composition
types.

Section 2 surveys the relevant literature. Section 3 defines our problem and
scope. Section 4 formalizes our approach. Section 5 evaluates our approach via
simulations. Section 6 discusses our results and highlights future directions.

2 Related Work

Maximilien and Singh [13] study trust-based service selection involving multi-
ple qualities. Their approach considers consumers’ utility of each quality, and
enables consumers to define preferences between qualities. However, Maximilien
and Singh only consider two shapes of utility functions: linear and sigmoid. Our
approach can take any utility function as input.

ServiceTrust [9] calculates reputations of services from all consumers. It intro-
duces transactional trust to detect QoS abuse, where malicious services gain rep-
utation from small transactions and cheat at large ones. However, ServiceTrust
models transactions as binary events (success or failure), and combines reports
from all consumers without taking their preferences into account.

Malik et al. [12] propose a reputation assessment approach based on Hidden
Markov Models (HMMs). They maps qualities to each consumer’s personal eval-
uations that incorporate its preferences by weighing preferred qualities higher.
Next, they calculate an aggregated reputation based both on personal evalua-
tions and ratings by others. Based on the aggregated reputation, Malik et al. apply
HMM to predict future behavior. Instead of using weights, our approach reflects
consumers preferences via utility functions. Our approach can also incorporate
other consumers’ quality ratings by choosing probabilistic trust models that sup-
port referrals to model our quality distribution. For example, our approach can
adopt Wang and Singh’s trust model [19], which provides trust propagation [8]
and trust updates to deal with referrals from other consumers [7].

Li et al. [11] estimate the trustworthiness of composite services using Bayesian
inference. They formalize a variety of service invocations and convert composi-
tions into a service invocation graph. Then consumers can construct a desired
composite service by finding the optimal service execution flow. Li et al. express
trust as a normal distribution. and apply Bayesian inference to maintain trust.
Our approach models a service’s QoS as a probability distribution, which is also
learned and updated via Bayesian inference. However, our approach deals with
composition differently. Consumers select subservices for composition based on
utility. More specifically, a consumer adjusts its utility function based on the
already selected subservices to achieve better orchestration.

ServiceRank [20] ranks services from two aspects: quality of service and social
information. ServiceRank considers two qualities: response time and availability.
Social information includes (1) how many consumers a service has and (2) how
frequently a service is invoked. Similar to ServiceTrust [9], ServiceRank models

From Quality to Utility: Adaptive Service Selection Framework 459

transactions as binary events. Our approach does not limit to any particular
qualities and selects services with the highest expected utility of multiple qual-
ities. In our approach, an analog of social information is characterized via the
certainty of the quality distributions. Certainty measurements can be found in
many probabilistic trust models [10,19,21]. Certainty reflects how much evidence
a quality distribution has. If a service is seldom invoked or has few customers,
then the certainty of its quality distribution will be low.

Hang and Singh [6] present a trust model for service selection. Their model fo-
cuses on how to estimate the trustworthiness of subservices based on the observed
quality of composite services. Hang and Singh introduce composition operators
that define how a quality is composed from subservices to compositions. They
show their model can accurately estimate trustworthiness of subservices under
various composition operators. Hang and Singh fail to specify how consumers in-
terpret a quality as trust. Our approach builds trust based on the reputations of
services (i.e., their quality distributions) and consumers’ preferences (i.e., utility
functions). Following Hang and Singh’s formalization, our approach can be used
to select services for composition by adjusting utility functions. Depending on
the composition operator and existing subservices in the composition, the utility
function is adjusted differently.

Gerding et al. [5] design mechanisms for service procurement. They consider
the case where services may fail. Their mechanism guides consumers to procure
services to form a workflow for completing a task with constraints, for example,
within a certain time. The consumers aim to (1) maximize the probability of
success given the constraints and (2) balance success probability with costs.
Their work focuses on designing a mechanism to incentivise service providers
to reveal their quality information, whereas, in our approach, consumers collect
such information by themselves. Consumers apply probabilistic trust models to
collect quality information of providers from direct interaction, referrals, and
compositions. We show that our approach guides service procurement and leads
to Pareto optimality, i.e., resources are allocated efficiently.

3 Problem Description and Scope

Environment. A service-oriented environment includes a set of providers P =
{ P1, . . . , Pm } and a set of consumers C = { C1, . . . , Cn }. The providers
provide services of the same underlying functionality, but each provider po-
tentially offers different levels of the l qualities in Q = {Q1, . . . , Ql}. A
service composition is defined as χ = 〈S, T 〉, where S ⊆ P are services,
and the composition type T is one of sequence, flow, and case, as in typical
orchestrations [2].

Assumption. We assume the value of quality Qk offered by provider Pj is
governed by a probability distribution that is independent of the consumer
and the service composition in consideration.

Objective. Each consumer defines a utility function for each quality to describe
its preferences and selects services to maximize its utility.

460 C.-W. Hang and M.P. Singh

Scenario 1: Select Services for Direct Interaction. A consumer Ci would
like to interact with a service from P to maximize its utility regarding Q.

Scenario 2: Select Services for Composition. We are given a partial com-
position χ′ = 〈S′, T 〉 with existing subservices S′ ⊆ P , and a consumer Ci’s
utility function regarding Q. Now, Ci would like to create a “supercomposi-
tion” of χ′ as χ = 〈S′ ∪ S′′, T 〉 that builds on χ′ by adding services S′′ to
the composition.

4 Approach

We propose an adaptive service selection framework that enables consumers to
select providers to maximize their utility based both on their preferences of
qualities and what they learn about the providers’ quality distributions.

Figure 1 illustrates the service selection process. For a consumer Ci, its utility
functions with respect to each quality Qk ∈ Q are given. Next Ci applies the
following steps.

1. Collect quality information and learn the quality distributions of each provider
Pj ∈ P with respect to each quality Qk ∈ Q.

2. Calculate expected utility of each provider Pj ∈ P with respect to all qualities
Qk ∈ Q.

3. Select a provider Pj ∈ P to interact with.

0 1

Q1

U
til
ity

0 1

Q2

U
til
ity

0 1

Q3

U
til
ity

0 1

Q2

P
ro

ba
bi

lit
y

D
en

si
ty

0 1

Q1

P
ro

ba
bi

lit
y

D
en

si
ty

0 1

Q3

P
ro

ba
bi

lit
y

D
en

si
ty

Service Consumer Ci

Service Provider Pj

EU3(Pj)EU1(Pj) EU2(Pj)+ + =

Utility Function

Expected Utility

Quality Distribution

}
}

Fig. 1. Illustration of our approach. Consumer Ci describes its preferences of quali-
ties via utility functions, collects information about and learns the distributions of all
qualities of each provider, and calculates the expected utility of each provider.

From Quality to Utility: Adaptive Service Selection Framework 461

4. Repeat Step 1.

In the remainder of this section, we (1) define utility functions and quality distri-
butions; (2) introduce calculating expected utility involving multiple qualities;
(3) relate the service selection strategy to the learning policy used in reinforce-
ment learning; and (4) explain how our service selection can be used for selecting
subservices in service compositions.

4.1 Describe Service Consumers: Utility Functions

We describe a consumer’s preference of a particular quality by a utility function.

Definition 1. Utility function U(x). Let Cj be a consumer and random variable
x be the volume of some quality of service Qk. Cj ’s utility function U(x) is defined
as a function that maps Qk’s value x to Cj’s utility.

Table 1 shows some examples of utility functions.

Table 1. Example utility functions: Describing consumer preferences

Function Plot Description

Logistic [13]

1

1 + e−(x−u)/s

0 1

Q

U
til

ity

Rapid increase close
to desired value, as
for availability

Logarithm

log x

0 1

Q

U
til

ity

Diminishing returns,
as for throughput

Gaussian

1√
2πσ2

e
− (x−μ)2

2σ2

0 1

Q

U
til

ity

Tradeoff between be-
ing idle or buffer-
ing heavily, as for
throughput of subser-
vice

4.2 Describe Service Providers: Quality Distributions

We capture the quality of service provided by a service provider Pj by introducing
a quality distribution.

Definition 2. Quality distribution Qk(x). Let Pj be a service and random vari-
able xj be the quality of service Qk provided by Pj along some suitable dimension.
Then Pj’s quality function Qk(xj) with respect to quality Qk is defined as the
probability density function of the probability distribution that governs xj.

462 C.-W. Hang and M.P. Singh

The quality distributions can be learned by probabilistic trust models based on
evidence regarding quality, which can be obtained through 1. direct experience
[19], 2. referrals [8], or 3. composition [6,14].

4.3 Calculate Expected Utility of Providers

The consumers’ decision making is based on the utility they expect to obtain
from a provider.

Definition 3. Expected utility with respect to a quality. Let Pj’s quality distri-
bution be Qk(xj), and Ci be a consumer with utility function Uk(x). The expected
utility of quality Qk that Ci can obtain from Pj is defined as

EU i
k(Pj) =

∫

xj

Uk(xj)Qk(xj)dxj . (1)

The expected utility of provider Pj based on all its qualities is as follows.

Definition 4. Expected utility with respect to all qualities. Suppose Q1(x), . . . ,
Ql(x) are quality distributions of provider Pj and U1(x), . . . , Ul(x) are utility
functions of consumer Ci. Then Ci’s expected utility of Pj is defined as

EU i(Pj) =
∑

k=1,...,l

EU i
k(Pj) =

∑

k=1,...,l

∫

xj

Uk(xj)Qk(xj)dxj (2)

4.4 Select Services: Exploration vs. Exploitation

Based on the expected utility of a provider with respect to all qualities, a con-
sumer Ci can decide on which providers to interact with to maximize its utility
as follows:

Pj = arg max
Pj∈P

EU i(Pj) (3)

However, given the assumption that the consumer can only learn the quality
distributions from direct experience, selecting the provider that yields the most
utility may not lead to long-term success. This is because the consumer lacks evi-
dence (direct experience) to learn accurate quality distributions of the providers.

Here, we address this challenge by modeling the service selection problem as
the multiarmed bandit problem [15,1]. An agent (gambler) seeks to maximize
its reward by taking a series of actions (pulling levers from a multiarmed slot
machine). At each instant, the reward is based on a probability distribution
associated with each action. Notice that a myopic decision (choosing an action
with the highest known reward) may not yield the most long-term reward. A
policy is a function that predicts the (long-term) rewards from each action.
Research in reinforcement learning [18] studies how to learn an optimal policy, by
which the agent can select its actions. Doing so involves addressing the tradeoff
between exploration (trying new alternatives that might lead to higher payoffs)
and exploitation (making decision based on current knowledge).

From Quality to Utility: Adaptive Service Selection Framework 463

We model the service-oriented environment as a multiarmed bandit, where
the providers are the options and each consumer selects providers to maximize
its long-term reward. Here, the reward is defined as the utility derived by the
consumer and consumers learn a policy that maps actions (selecting a Pj ∈ P)
to their expected utility. To balance the above tradeoff between exploration and
exploitation, we adopt Boltzmann Exploration [3], a widely used learning policy
in reinforcement learning, written in our setting as:

Pr(Pj |EU i) =
eT∗EUi(Pj)

∑
Pi∈P e

T∗EUi(Pi)
, (4)

where Pj ∈ P is a service, EU i(Pj) is Ci’s expected utility of Pj , and T is
a temperature parameter. The consumer Ci chooses service Pj with probability
Pr(Pj |EU i). The idea of Boltzmann Exploration is for consumers to choose
services based on their expected utility. The services with low expected utility
(i.e., exploration) are chosen less frequently than those with high expected utility
(i.e., exploitation). The actual percentage of exploration and exploitation can be
adjusted by T . There are two ways of choosing T . For stationary environments,
T increases over time to reduce the probability of exploration after the policy is
learned. In contrast, for nonstationary environments, consumers may use a fixed
T to ensure continual exploration. Satinder Singh et al. [17] show a convergent
result for choosing T . Applying their result to our case, we can define T as
ln t/Ct, where t is the timestep, Ct = maxPj∈P |EU i(Pmax) − EU i(Pj)| and
Pmax = argmaxPj∈P EU i(Pj).

4.5 Selecting Services for Composition

Now we describe how our approach guides consumers to select services for com-
position. Section 3 mentions a scenario where a consumer Ci would like to add
services S′′ from P to a current composition χ′ = 〈S′, T 〉 to maximize the util-
ity of the resulting composition χ = 〈S′ ∪ S′′, T 〉 where S′ ⊆ P is the set of
constituent services of χ′ and T is the composition type.

Followingourpreviouswork [6],we introduce thecompositionoperators switch,
sum, max, min, and product. These operators determine the quality values of
a composite service based on the quality values of the constituent services. They
dependuponthecompositiontype (sequence,flow, orcase), andonthenatureof the
quality being considered. Table 2 shows examples of composition operators given
the types of compositions and qualities.

Table 2. Mapping composition types and representative qualities to operators [6]

Quality Sequence Flow Case

Latency sum max switch
Throughput min sum switch
Failure product product switch

464 C.-W. Hang and M.P. Singh

Table 3. Utility function examples for composition operators based on two linear utility
function: prefer higher and prefer lower. E[xi] is the expected quality from provide Pi.

Composition Utility Function
Operator Prefer Higher Prefer Lower

switch
0 1

Q

U
til

ity

0 1

Q

U
til

ity

sum
0 1

Q

U
til

ity

EU(Σ
i
 E[x

i
])

0 1

Q

U
til

ity

EU(Σ
i
 E[x

i
])

max
1

0

1

Q

U
til

ity

max
i
 E[x

i
]

0 1

Q

U
til

ity

max
i
 E[x

i
]

min
0 1

Q

U
til

ity

min
i
 E[x

i
]

0 1

Q

U
til

ity

min
i
 E[x

i
]

product
0 1

Q

U
til

ity

EU(Π
i
 E[x

i
])

0 1

Q

U
til

ity

EU(Π
i
 E[x

i
])

From Quality to Utility: Adaptive Service Selection Framework 465

Based on the expected quality of the existing subservices S′ in a composition χ,
consumer Ci can adjust the utility function Uk(x) of the composition with respect
to Qk. This adjustment depends on (1) the composition operator f , (2) composi-
tion χ’s preferences of the qualityQk, and (3) the expected quality xS′ of existing
subservices S′. For example, let f be max, the maximum of expected qualityQk of
S′ beE[xPmax], andχ’s original utility function beUk(x), Then the adjusted utility
function U ′k should be

U ′k(x) =
{
Uk(E[xPmax]) if x < E[xPmax]
Uk(x) otherwise. (5)

The idea behind this adjustment is that if the qualityx providedby the new subser-
vices is lower than E[xPmax], then the composite quality xχ is dominated by Pmax

because xχ = max(x,E[xPmax]) = E[xPmax]. Thus, the composite utility will be
Uk(E[xPmax]). Conversely, if x > E[xPmax], then the composite quality xχ is dom-
inated by x. The composite utility will be Uk(x).

Table 3 shows utility function examples for various composition operators. It
shows how monotonically increasing and decreasing utility functions are adjusted
based on existing constituent services and the composition types. Note that our
approach is not limited to these composition operators or utility functions.

5 Experiments

We conduct three experiments to evaluate the effectiveness of our approach. The
first experiment examines how accurately the expected utility can predict the ac-
tual gained utility. The second experiment verifies the selection strategy described
in Section 4.4 by checking if the consumers can quickly learn the quality distribu-
tions of all providers (exploration), and select the provider with the highest ex-
pected utility afterwards (exploitation). The third experiment adopts a resource
allocation perspective and examines how closely our approach can lead to Pareto
optimal allocations [4].

5.1 Two Consumers, Three Providers, One Quality, No Selection

We consider three providers: Low, Medium, and High, whose qualityQ is governed
by beta distributions with low, fair, and high means, respectively. We create two
consumers, respectively with utility functions Logistic (prefers high over low Q)
and Gaussian (prefers mid rangeQ over high or low values). At each timestep, each
consumer interacts with all providers once, and learns their quality distributions.
Figure 2 plots the expected and gained utility of the Logistic (left) and Gaussian
(right) consumers from provider Medium at each timestep. Medium provides av-
erageQ1 values, yielding utility around 0.50 for Logistic, whose gained utility has
a high variance, because Logistic is highly sensitive to Q1. Medium brings a fair
amount of utility to Gaussian, who is less picky. The expected utility calculated by
both consumers accurately predicts the actual gained utility. The experiment has
total 100 timesteps. Low and High providers yield similar results. The result ver-
ifies that the expected utility is an effective basis to maximize consumers’ utility.

466 C.-W. Hang and M.P. Singh

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timestep

Q
ua

lit
y/

U
til

ity
Logistic interacting with provider Medium

Gained utility

Expected utility

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timestep

Q
ua

lit
y/

U
til

ity

Gaussian interacting with provider Medium

Expected utility

Gained utility

Fig. 2. The expected and gained utility of Logistic (left) and Gaussian (right) against
Medium. Both consumers receive the same QoS from Medium but gain different utility
based on their utility functions. Logistic is sensitive to quality, and thus has high variance
in its gained utility. This experiment shows the expected utility correctly predicts the
actual gained utility. The other providers yield similar results.

5.2 Two Consumers, Three Providers, One Quality, Selection

This experiment helps us evaluate the effectiveness of the strategy described in Sec-
tion 4.4. Its setting follows Section 5.1, except that the consumers choose only one
provider instead of all to interact with. Each consumer seeks to maximize its long-
term utility. Figure 3 shows Logistic’s (left) and Gaussian’s (right) expected utili-
ties of all providers and the actual utility gained fromthe sole provider each chooses
to interact with at each timestep. Logistic explores all providers at the beginning,

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timestep

U
til

ity

Consumer Logistic interacts with three providers

Gained utility
Expected utility from Low
Expected utility from Medium
Expected utility from High

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timestep

U
til

ity

Consumer Gaussian interacts with three providers

Gained utility
Expected utility from Low
Expected utility from Medium
Expected utility from High

Fig. 3. The expected and gained utility of Logistic (left) and Gaussian (right) consumers
against three providers. In each timestep, consumers select one of the providers to in-
teract with. This shows each consumer learns the expected utility of all providers (ex-
ploration), and subsequently interacts with the desired provider to maximize its utility
(exploitation).

From Quality to Utility: Adaptive Service Selection Framework 467

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timestep

A
ve

ra
ge

 U
til

ity
Averaged optimal utility vs. gained utility

 Logistic optimal

 Gaussian optimal

 Gaussian gained

 Logistic gained

Fig. 4. Comparison of optimal and gained
utilities of Logistic and Gaussian. Con-
sumers choose nonoptimal services for ex-
ploration. This shows that when expected
utilities of providers are close, the con-
sumers are more willing to explore.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timestep

Pareto optimality rate vs Consumer’s average utility

U
til

ity
/R

at
e

Pareto optimality rate

Consumer 1

Consumer 4

Consumer 2
Consumer 3

Fig. 5. The rates of Pareto optimality and
consumers’ average utility with four con-
sumers and three providers, each of capac-
ity two. This shows that even though con-
sumers find desired services and maximize
utility independently, together they achieve
aPareto optimal allocation 80% of the time.

gaining low utility at the beginning. After it determinesHigh is its desired provider,
Logistic selects High much more than the other providers. Gaussian has a similar
strategy as Logistic at the beginning. However, since Gaussian is not as picky as
Logistic, Gaussian chooses all providers almost equally often, but because Medium
offers a slightly better expected utility, Gaussian selects Medium slightly more of-
ten than the other two. Both consumers gain utility close to optimal.

Figure 4 plots the comparison of optimal and actual gained utility of two con-
sumers. Our approach learns the quality distribution through greater exploration
at the beginning followed by greater exploitation subsequently. Because the gained
utility is smaller than the optimal when the consumers choose to explore (or when
the quality distribution is not learned accurately), the utility increases over time.

This result shows our service selection approach not only efficiently learns the
quality distributions of the providers, but also exploits the desired provider to max-
imize each consumer’s utility.

5.3 Contracts as a Means to Approximate Pareto Optimality

A resource allocation is Pareto optimal if and only if it is impossible to alter the
allocation that would offer increased utility to one agent without offering reduced
utility to another. In other words, no two agents can trade (their allocations)where
they would both gain. Pareto optimality is a widely used indicator of economic effi-
ciency. The intuition behind it is that we should allocate each resource to the party
who values the resource the most. To ensure Pareto optimality typically requires
some market mechanism such as an auction that takes bids from all consumers and
allocates resources in a way to guarantee efficiency. For example, allocating each

468 C.-W. Hang and M.P. Singh

resource to the highest bidder means that the bidder who values the resource the
most gets to use it.

We showhowanatural extension of our approachwith contracts leads to approx-
imating Pareto optimality despite independent decision making by the consumers
and without any central mechanism such as an auction clearinghouse. In an impor-
tant departure from the previous experiments, here a consumer may sign a long-
term contract with a provider. A contract is a way for a consumer to exploit (i.e.,
select the provider with most expected utility). We consider an exploitation strat-
egy where the contract length is proportional to (ten times as) the expected utility.
When a consumer chooses to explore, it interacts with the selected provider for one
timestep. The intuitive motivation is that the consumers who value a provider the
most will sign the longest contracts with it and thus gain the greatest utility from
it for the longest time.

We create four consumerswith different preferences of two qualities: throughput
andprice. Intuitively, the consumers vary fromrich (prefers the highest throughput
at any price) to poor (prefers to save money and accepts a little throughput). The
consumers have logistic utility functions (monotonically increasing) for through-
put with parameters (μ, s) = (0.8, 0.05), (0.6, 0.05), (0.4, 0.05), (0.2, 0.05), respec-
tively. For price, each consumer has a negative exponentially decreasing utility
function, with σ of 5, 4, 3, and 2, respectively:

Uprice(x) = − xσ

100σ
(6)

Three providers provide throughput governed by beta distributions with means
0.75, 0.5, and 0.25, and asking $75, $50, and $25 for their service, respectively.

The experiment runs for 500 timesteps. At each timestep, the consumers select
one provider to interact with. A provider can serve two consumers at a time. We
check if the resource allocation at each timestep is Pareto optimal.

For each timestep, Figure 5 shows the consumers’ average utility and the cumu-
lative percentage of instantaneous allocations that are Pareto optimal. We see that
the rate of Pareto optimality increases as the average individual utility increases.
This indicates thatwhen the consumers maximize their utility, Pareto optimality is
likely to be achieved.Pareto optimality is not achieved in every instance of exploita-
tion because a consumer may not be able to sign a contract with its best provider
who might be under another contract or because of the effects of randomness in
quality. In general, though, this experiment shows that our approach can approxi-
mate Pareto optimality by selecting services in an economically efficient way.

6 Conclusions and Directions

This paper proposes an adaptive service selection approach, which enables service
consumers to 1. collect quality information of service providers efficiently, 2. de-
scribe their preferences of quality by defining utility functions, and 3. select “right”
service providers to maximize their long-term utility. Besides, our approach can
guide consumers to select services for composition by defining utility functions for

From Quality to Utility: Adaptive Service Selection Framework 469

service compositions. Importantly, our approach yields a natural way to approxi-
mate Pareto optimality of service selection.

Important directions for future study include the generalization of our models
of quality and utility. In particular, we hypothesize that if we allow the providers to
change their quality profiles dynamically, that will yield protection against greedy
consumers signing arbitrarily long contracts with the best current service and thus
blocking other consumers.

Acknowledgment

This work is supported by the U.S. Army Research Office (ARO) under grant
W911NF-08-1-0105 managed by NCSU Secure Open Systems Initiative (SOSI).

References

1. Berry, D.A., Fristedt, B.: Bandit Problems: Sequential Allocation of Experiments.
Monographs on statistics and applied probability. Chapman and Hall, London (1985)

2. BPEL: Web services business process execution language, version 2.0 (July 2007),
http://docs.oasis-open.org/wsbpel/2.0/

3. Bridle, J.S.: Training stochastic model recognition algorithms as networks can lead
to maximum mutual information estimation of parameters. Advances in neural in-
formation processing systems 2, 211–217 (1990)

4. Feldman, A.M.: Welfare Economics and Social Choice Theory. Kluwer Nijhoff Pub-
lishing, Dordrecht (1980)

5. Gerding, E., Stein, S., Larson, K., Rogers, A., Jennings, N.R.: Scalable mechanism
design for the procurement of services with uncertain durations. In: Proceedings of
the 9th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 649–656. IFAAMAS, Columbia (2010)

6. Hang, C.W., Singh, M.P.: Trustworthy service selection and composition. In: ACM
Transactions on Autonomous and Adaptive Systems, TAAS (to appear 2010)

7. Hang, C.W., Wang, Y., Singh, M.P.: An adaptive probabilistic trust model and
its evaluation. In: Proceedings of the 7th International Conference on Autonomous
Agents and Multiagent Systems, pp. 1485–1488. IFAAMAS, Columbia (2008) (short
paper)

8. Hang, C.W., Wang, Y., Singh, M.P.: Operators for propagating trust and their eval-
uation in social networks. In: Proceedings of the 8th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), IFAAMAS,Columbia, SC, pp.
1025–1032 (2009)

9. He, Q., Yan, J., Jin, H., Yang, Y.: ServiceTrust: Supporting reputation-oriented ser-
vice selection. In:Proceedingsof the7th InternationalConferenceonServiceOriented
Computing, pp. 269–284 (2009)

10. Jøsang, A.: A subjective metric of authentication. In: Quisquater, J.-J., Deswarte,
Y., Meadows, C., Gollmann, D. (eds.) ESORICS 1998. LNCS, vol. 1485, pp. 329–344.
Springer, Heidelberg (1998)

11. Li, L., Wang, Y., Lim, E.P.: Trust-oriented composite service selection and discovery.
In: Proceedings of the 7th International Conference on Service Oriented Computing,
pp. 50–67 (2009)

http://docs.oasis-open.org/wsbpel/2.0/

470 C.-W. Hang and M.P. Singh

12. Malik, Z., Akbar, I., Bouguettaya, A.: Web services reputation assessment using a
hidden markov model. In: Proceedings of the 7th International Conference on Service
Oriented Computing, pp. 576–591 (2009)

13. Maximilien, E.M., Singh, M.P.: Agent-based trust model involving multiple quali-
ties. In: Proceedings of the 4th International Conference on Autonomous Agents and
Multiagent Systems, pp. 519–526. IFAAMAS, Columbia (2005)

14. Nepal, S., Malik, Z., Bouguettaya, A.: Reputation propagation in composite services.
In: Proceedings of the 7th IEEE International Conference on Web Services (ICWS),
pp. 295–302. IEEE Computer Society, Los Alamitos (July 2009)

15. Robbins, H.: Some aspects of the sequential design of experiments. Bulletin of the
American Mathematical Society 55, 527–535 (1952)

16. Singh, M.P., Huhns, M.N.: Service-Oriented Computing: Semantics, Processes,
Agents. John Wiley & Sons, Chichester (2005)

17. Singh, S.P., Jaakkola, T., Littman, M.L., Szepesvári, C.: Convergence results for
single-step on-policy reinforcement-learning algorithms. Machine Learning 38(3),
287–308 (2000)

18. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

19. Wang, Y., Singh, M.P.: Formal trust model for multiagent systems. In: Proceedings
of the 20th International Joint Conference on Artificial Intelligence (IJCAI), Detroit,
MI, USA, pp. 1551–1556 (2007)

20. Wu, Q., Iyengar, A., Subramanian, R., Rouvellou, I., Silva-Lepe, I., Mikalsen, T.A.:
Combining quality of service and social information for ranking services. In: Proceed-
ings of the 7th InternationalConference on Service Oriented Computing, pp. 561–575
(2009)

21. Zacharia, G., Maes, P.: Trust management through reputation mechanisms. Applied
Artificial Intelligence 14(9), 881–907 (2000)

Trust Assessment for Web Services

under Uncertainty

Zaki Malik1 and Brahim Medjahed2

1 Department of Computer Science, Wayne State University, MI. 48202
zaki@wayne.edu

2 Department of Computer Science, University of Michigan-Dearborn, MI. 48120
brahim@umd.umich.edu

Abstract. We introduce a model for assessing the trust of providers
in a service-oriented environment. Our model is cooperative in nature,
such that Web services share their experiences of the service providers
with their peers through ratings. The different ratings are aggregated
using the “statistical cloud model” defined for uncertain situations. The
model can uniformly describe the concepts of randomness, fuzziness, and
their relationship in quantitative terms. By incorporating the credibility
values of service raters in the model, we can assess a service provider’s
trust. Experiment results show that our proposed model performs in a
fairly accurate manner.

1 Introduction

With the introduction of Web services, applications can now be automatically
invoked by other Web clients. A Web service is a self-describing software ap-
plication that can be advertised, located, and used across the Web using a set
of standards (such as WSDL, UDDI, and SOAP) [29]. Businesses are increas-
ingly using Web services to automate interactions both with their customers
(B2C) and amongst each other (B2B). It is expected that future Web enterprises
would exhibit a loose coupling of smaller applications offered by autonomous
providers [26][29]. A primary goal of the Web services technology is therefore
enabling the use of Web services as independent components in Web enterprises,
that are automatically (i.e., without human intervention) formed as a result of
consumer demand and which may dissolve post demand-completion [26].

Automatic Web services interactions entail that Web services have to de-
termine to which extent they may trust other services to provide the required
functionality, before they interact with them [20]. By definition, Web services
are autonomous (i.e., provided by independent service providers), highly volatile
(i.e., low reliability), and a priori unknown (i.e., new or no prior history) [29]. As
a plethora of Web services are expected to compete in offering similar function-
alities, a key requirement is then to provide mechanisms for the quality access
and retrieval of services [25] [29]. Web services may make promises about the

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 471–485, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

472 Z. Malik and B. Medjahed

provided service and its associated quality but may fail partially or fully to de-
liver on these promises bringing down the quality of the whole enterprise. Thus,
the challenge lies in providing a framework for enabling the selection and com-
position of Web services based on trust parameters. The rationale behind the
need for trust is the necessity to interact with unknown entities that have varied
quality delivery levels [2]. There is a growing consensus that the Web service
‘revolution’ would not eventuate until trust related issues are resolved [4].

Trust has been defined as “an assured reliance on the character, ability, or
strength of someone or something.” Establishing trust is therefore a precondition
for any transaction [2][22]. In a service-oriented environment, trust correlates to
the ability of a service to perform the required functionality in an acceptable
manner. The inherent open and large-scale nature of Web services means that
traditional security approaches as confidentiality, authentication, authorization,
etc. are insufficient for completely instilling trust. For instance, a provider’s au-
thentication or authorization credentials cannot guarantee that it will exercise
these privileges in an expected manner [19]. When interacting with unknown
providers, service consumers are thus usually interested in gaging provider re-
liability in delivering the required functionality (on top of traditional security
mechanisms). Research results show that such a trust assessment process is facil-
itated by incorporating the “wisdom of crowds” through reputation ratings and
recommendations [8] [20]. For example, several studies attribute eBay’s com-
mercial success to its reputation mechanism, known as eBay’s Feedback Forum
which has been effective in deterring dishonest behavior, and stimulating eBay’s
growth [30] [10]. Similar studies have investigated and generally confirmed that
reputation systems benefit both sellers and buyers in e-auctions[15]. Reputation
is defined as the confidence in the ability of a specific provider to fulfill a certain
task [20]. It is a subjective assessment of a characteristic or an attribute ascribed
to one entity by another based on observations or past experiences. Normally
experiences from more than one source are assimilated to derive the reputation.
This increases the subjectivity of trust and creates uncertainty.

In recent years, theoretical and experimental research has explored the sub-
jective nature of trust. These works are primarily rooted in probability theory,
evidence/belief models, or fuzzy logic. Probability based models usually do not
consider the element of fuzziness in building trust [3] [34]. Since the reasoning
is done in a purely statistical manner, they tend over-formalize trust’s subjec-
tiveness. For example, Bayesian systems take binary ratings as input and assess
trust through updating of the beta probability density function [38] [33]. This
process is fairly complex to comprehend and implement, and loses the compo-
nent of fuzziness inherent in trust assessment. Models based on evidence and
belief theory exhibit similar characteristics with added complexity [13] [34]. On
the other hand, fuzzy logic based systems use precise set memberships for defin-
ing fuzziness of subjective trust. However, these solutions fail to consider the
randomness and uncertainty of membership in those fuzzy sets [9] [27]. We pro-
pose a solution that incorporates uncertainty and fuzziness of trust to provide
a more unified and holistic assessment. Our model employs the statistical cloud

Trust Assessment for Web Services under Uncertainty 473

model which defines a way for modeling the transition between a linguistic term
of a qualitative concept and its quantitative representation under uncertain and
fuzzy conditions.

The paper is organized as follows. In Section 2, we provide an overview of
a statistical model for predicting values in uncertain situations. In Section 3,
we extend this model to evaluate trust of service providers. Section 4 provides
experiment results, and verifies the applicability of our proposed model. Section 5
provides a brief overview of some related work, while Section 6 concludes the
paper.

2 Statistical Cloud Model

The basis of the statistical cloud model (or simply, the cloud model) is that
fuzziness and randomness are complementary and essentially inseparable con-
cepts when considered in linguistic terms. It states that the concept of fuzzy
membership functions is not sufficient for representing the uncertainty and im-
precision in real world settings, and probability theory needs to be incorporated
to overcome this inadequacy. In essence, a cloud model can uniformly describe
the concepts of randomness, fuzziness, and their relationship in quantitative
terms. Experiment results have shown that the cloud model exhibits higher lev-
els of simplicity and robustness in comparison with traditional fuzzy logic and
probability based methods [17] [18]. In the following, we provide a brief overview
of the cloud model.

Let U be the quantitative universe of discourse, and C denote a qualitative
concept associated with U . If x ∈ U is a random realization of C, and μ(x) ∈ [0, 1]
is a random variable with stable tendency denoting the degree of certainty for x
belonging to C, that is:

μ:U [0, 1] ∀x ∈ U x→ μ(x)

The distribution of x in U is called the cloud (denoted C(X)) and each x is
called a cloud drop. Note that in probabilistic terms, x ∈ U is not a simple
random number but it has a certainty degree, which itself is also random and
not a fixed number. The cloud is composed of a number of drops, which are
not necessarily ordered. The underlying character of the qualitative concept is
expressed through all cloud drops. Hence the overall feature of the concept is
more precisely represented by a large number of drops. The certainty degree of
each cloud drop defines the extent to which the drop can represent the concept
accurately. Formally, a cloud’s quantitative representation is defined over a set of
N ordered pairs (xi, yi), where xi is a cloud drop, and yi is its certainty degree,
with 1 ≤ i ≤ N .

A one-dimension normal cloud model’s qualitative representation can be rep-
resented by a triple of quantitative characteristics: Expected value (Ex), En-
tropy (En) and Hyper-Entropy (He). Ex is the expectation of the cloud drops’
distribution, i.e., it corresponds to the center of gravity of the cloud (contain-
ing elements fully compatible with the qualitative concept). En represents the

474 Z. Malik and B. Medjahed

uncertainty measurement of a qualitative concept. It is determined by both the
randomness and fuzziness of the concept. En indicates how many elements could
be accepted to the qualitative linguistic concept. He is a measure of the disper-
sion on the cloud drops. It can also be considered as En’s uncertainty. Vector
v = (Ex,En,He) is called the eigenvector of a cloud [17].

The transformation of a qualitative concept expressed by Ex, En, and He to
a quantitative representation expressed by the set of numerical cloud drops is
performed by the forward cloud generator [18]. Given these three digital charac-
teristics (Ex,En,He), and the number of cloud drops to be generated (N), the
forward cloud generator can create these N cloud drops in the data space with
a certainty degree for each drop that each drop can represent the qualitative
concept. The procedure is:

1. Generate a normally distributed random number F with mean En and stan-
dard deviation He.

2. Generate a normally distributed random number x with mean Ex and stan-
dard deviation F .

3. Calculate y = e
− (x−Ex)2

2(F)2 .
4. (x, y) represents a cloud drop in the universe of discourse.
5. Repeat Steps 1-4 until N cloud drops are generated.

Figure 1(a) shows the graph of a one-dimensional cloud whose digital character-
istics are (0.7, 0.1, 0.01). A similar cloud with same Ex and En, but a different
He (0.7, 0.1, 0.5) is shown in Figure 1(b). As defined in the above algorithm,
the quantitative value of cloud drops is determined by the standard normal form
distribution function. Hence, the certainty degree function adopts a bell-shaped
curve. This is similar to the one adopted in fuzzy set theory. As mentioned ear-
lier, the normal cloud model is therefore an inclusive model based on probability
theory and fuzzy set theory, and is able to depict randomness in the former and
fuzziness in the latter.

Fig. 1. Normal Cloud with Same Ex and En, but Different He Values

Trust Assessment for Web Services under Uncertainty 475

3 Statistical Cloud-Based Trust Model

We propose a trust model that is distributed in nature. In contrast to third-
party-based traditional approaches for trust management, no single entity is
responsible for collecting, updating, and disseminating ratings provided by dif-
ferent consumers. Each service consumer records its own perceptions of the rep-
utation of only the services it actually invokes. This perception is called personal
evaluation. For each service sj that it has invoked, a service consumer tx main-
tains a p-element vector PerEvalxj representing tx’s perception of sj’s behavior.
Different strategies may be adopted in updating PerEvalxj . A simple one may be
a per-invocation update. Upon an invocation of service sj , the delivered quality
QRefd is compared to service sj ’s promised quality QRefp and, if necessary,
a trust updating algorithm is run to compute the new personal evaluation of
service sj . In essence, personal evaluation reflects the Quality performance of
the provider in consumer’s views. The personal evaluation PerEvalxj , represents
only consumer tx’s perception of the provider sj ’s reputation. Other service con-
sumers may differ or concur with tx’s observation of sj . A service consumer that
inquires about the reputation of a given service provider from its peers may get
various differing personal evaluation “feedbacks.” To get a correct assessment of
the service provider’s behavior, all the personal evaluations for sj need to be ag-
gregated. Assume L denotes the set of service consumers which have interacted
with sj in the past and are willing to share their personal evaluations of sj. We
assume that L is not empty, i.e., some service willing to share information can
be found. Thus, L ⊆ T with L �= ∅ and each service x in L has PerEvalxj values
for sj . Then, consumer x’s trust over sj ’s ability to deliver is defined as:

Trust(sj) =
∧

x∈L

(PerEvalxj) (1)

where
∧

represents the aggregation function. Equation 1 provides a first approx-
imation of how the trust may be assessed. However, it involves various factors
that need to be precisely defined and measured.

The foremost drawback of feedback-only based systems is that all ratings are
assumed to be honest and unbiased. However, in the real world we clearly dis-
tinguish between the testimonies of our sources and weigh the “trusted” ones
more than others [36]. A Web service that provides satisfactory service (in ac-
cordance with its promised quality (QRefp)), may get incorrect or false ratings
from different evaluators due to several malicious motives. In order to cater for
such “bad-mouthing” or collusion possibilities, a trust framework should weigh
the ratings of highly credible raters more than consumers with low credibili-
ties [7] [39] [20]. In our model, the final trust value is calculated according to the
credibility scores of the raters (used as the weight).

After each interaction with the provider, apart from rating the provider sj ,
the service consumer also updates the credibility of the raters that provided a
rating for sj . The service consumer computes the Euclidean distance (d) be-
tween the consumer’s own experience (OE) and the provided rating (Vi). If d
is less than a pre-defined threshold (δ), the credibility is increased in a linear

476 Z. Malik and B. Medjahed

manner. Otherwise, the rater’s credibility is decreased exponentially by a factor
of d, i.e., greater the d, more the rater credibility will decrease. This is in ac-
cordance with the sociological trust building process where it is difficult to gain
inter-personal trust, but easy to lose it [6]. Since all transactions may not be
equally weighed in terms of their importance, a service consumer may decide to
decrease a dishonest rater’s credibility according to the transaction’s “impact”.
The transaction impact factor (τ) lies in the range [0, 1] and is assigned a low
value for high impact transactions, and vice versa by the service consumer. The
general formula for rater credibility is thus:

Crt =
{
Crt−1 + c(δ − d) if d ≤ δ;
Crt−1× e−(d+τ) otherwise.

where c is the linear increment factor, weighted by the difference between δ and
d. This implies that a lower value of δ will cause a lower increment in the value
of c and hence the rater’s credibility. Crt is the new credibility, and Crt−1 is
the rater’s previous credibility value. The credibility of a service rater lies in
the interval [0, 1] with 0 identifying a completely dishonest rater and 1 an hon-
est one. In cases where no Crt−1 exists, i.e., the rater and consumer have not
previously interacted, the rater’s initial credibility is set at the middle (0.5) to
indicate impartiality. However, previous research has shown that assigning pre-
defined high or average values may encourage “reputation white-washing” [21].
Therefore, we dampen the bootstrap value by weighing in the consumer’s pes-
simistic/optimistic preferences towards services interactions, i.e.,

Crbootstrap = 0.5× λ

where λ denotes the consumer’s pessimistic/optimistic preference in the range
[0, 1]. A high λ value indicates an optimistic consumer, one that is willing to
trust the testimony of a new rater. Alternatively, λ ≤ 0.5 indicates a pessimistic
consumer. The choice of λ is at the discretion of the service consumer. However,
to provide a better estimate of the consumer’s propensity to accept, we set λ
as the ratio of the total number of times the ratings submissions (by all raters)
are deemed useful (k) by the service consumer, over the total number of rating
submissions received by the service consumer (n). This is similar to the manner
in which peer recommendations are evaluated for usefulness in “recommender
systems” [16][35]. The λ factor is:

λ =
∑k

i=1 Ui∑n
x=1 Vx

(2)

where Ui is the submission where the rater was termed honest (i.e., d ≤ δ) and
Vx denotes the total number of rating submissions.

Reputation information of a service provider decays with time [20], [23]. Hence
all the past reputation data may be of little or no importance. For instance, a
Web service performing inconsistently in the past may ameliorate its behavior.
Alternatively, a service’s performance may degrade over time. It may be the

Trust Assessment for Web Services under Uncertainty 477

case that considering all historical data may provide incorrect reputation scores.
In order to counter such discrepancies, we incorporate temporal sensitivity in
our proposed model. The rating submissions are time-stamped to assign more
weight to recent observations and less to older ones. This is termed as “reputation
fading” where older perceptions gradually fade and fresh ones take their place.
We adjust the value of the ratings as:

PerEvalxj
:t = PerEvalxj

:t−1 ∗ fd (3)

where PerEvallxj is as defined above and fd is the reputation fader. In our
model, the recent most rating has the fader value 1 while older observations
are decremented for each time interval passed. When fd = 0, the consumer’s
rating is not considered as it is outdated. The “time interval” is an assigned
factor, which could be anywhere from a single reputation inquiry, ten inquiries
or even more than that. All inquiries that are grouped in one time interval are
assigned the same fader value. In this way, the service consumer can define its
own temporal sensitivity degree. For example, a service can omit the fader value’s
effect altogether by assigning it a null value. We propose to use a fader value that
can then be calculated as: fd = 1√

Pu
, where Pu is the time interval difference

between the present time and the time in which the rating was collected from
the rater. This allows the convergence of reputation to a very small value as time
passes. Note that the consumer can assign a group of ratings collected at different
times to have the same time-stamp, and hence lie in the same time interval. As
mentioned earlier, other calculated values for the fader are also acceptable.

Characteristics Extraction

The backward cloud generator allows transformation of the cloud model from its
quantitative representation to a qualitative one. We incorporate rater credibility
values and majority rating to produce the three digital characteristics of the
cloud (Ex,En,He). Given a set of N ratings PerEvalxj (x = 1, 2, ..., N), we can
extract the three characteristics as:

1. Update PerEvalxj values using fd, for all ratings (including previous time
instances).

2. For each rater x, update Crx (using equations defined previously).
3. Calculate

Ex =

∑N
x=1(CrxPerEval

x
j)

∑N
x=1 Crx

4. Calculate

En =
√
π

2
×
∑N

x=1 Crx|PerEvalxj − Ex|
∑N

x=1Crx
5. Calculate

He =

√
√
√
√

∑N
x=1 Crx(PerEvalxj − Ex)2

(N ′−1)
∑N

x=1 Crx

N ′

− (En)2

where N ′ is the number of non-zero credibilities.

478 Z. Malik and B. Medjahed

Trust Decision

The next step is using the three discovered characteristics to make a subjective
assessment of the provider’s trust. Since He is a measure of En’s uncertainty,
we only use Ex and He to quantify the provider’s trust and the associated
uncertainty. This allows us to consider the latest majority view of the provider’s
reputation and the decentralization of ratings from it. A higher value of Ex
therefore indicates high reputation, while a small He indicates the stability of
the ratings around this decision. Intuitively this makes sense, but for a large
N , making these comparisons is non-trivial. For instance, Ex and He can occur
together in one of four forms: one is high/low the other is low/high, both are
high, or both are low. Therefore, to quantify the relationship between the two
characteristics, i.e., the provider (sj)’s trust assessment, we use:

Trust(sj) =

⎧
⎨

⎩

1− He
Ex+He if Ex �= 0 � He �= 0;

Ex if He = 0;
0 if Ex = 0;

where both Ex �= 0 and He �= 0.

4 Experiments

We have performed a number of experiments to show the applicability of the
proposed statistical cloud-based trust model. We used Matlab for simulating
the services interactions and ratings. The environment consists of five service
providers and twenty service consumers (who act as raters) that interact over a
period of twenty iterations. At each iteration, the raters report their past experi-
ences (from the previous iteration) of the service providers. For simplicity, each
rater interacts with all the service providers in each time instance. Therefore,
the fader value (fd) is set to 1.

Thefive service providers exhibit different dynamic behaviors.The first provider
behaves consistently with high trust values, i.e., it behaves rationally and does
not engage in any malicious activity. The next provider performs with consis-
tently low trust values. It represents providers that are always looking to take
advantage of the consumer. The third provider performs with high values for
the first 10 iterations but then suffers a performance degradation. This strategic
provider aims to build a reputation by initially performing honestly, and then
starts “milking” [39] the attained reputation. The fourth provider acts in an
opposite manner to the third provider where it performs with low values in the
beginning. After the 10th iteration, it ameliorates its behavior and starts per-
forming with high trust values. This provider represents the class of providers
that learn from their mistakes. The provider performs in a random manner, os-
cillating between high (performing as promised) and low trust values (acting
maliciously).

The service raters are distinguished into two classes: honest and dishonest
raters. An honest rater provides the trust value it experiences, but a dishonest

Trust Assessment for Web Services under Uncertainty 479

rater generates a rating that differs at least by 0.3 points from the actual rating.
Say the provider’s trust value was 0.9, then a dishonest rater would generate a
value between [0.1 and 0.59]. These two classes of raters can be related to each
other in one of three ways in the environment: the number of honest raters can
exceed those of dishonest raters, honest and dishonest raters can be equal in
number, or dishonest raters can out-number honest raters. We set the inequali-
ties in rater behaviors (first and third scenario) to be significant (an 80-20 ratio
imbalance is used). The different classes of raters and five provider behaviors
mentioned above (and any combination thereof) cover any behavior that a ser-
vice may exhibit. This ensures that the experiment samples are representative
of the real world environment which contains a variety of provider and rater
behaviors.

In the first experiment, honest raters (ones with high credibility values) out-
number dishonest raters, i.e., 80% of the raters are honest. Figure 2(a) shows the
effect of this inequality in calculating the trust value for a provider that exhibits
low values in a consistent manner. The dashed-line represents the trust value
of the provider estimated using our proposed model, whereas the straight line
represents the actual behavior experienced by the trust evaluator. It can be seen
that due to the high number of honest ratings, the estimated trust value is almost
equal to the actual provider behavior. The small variation in estimated and
actual trust is due to the inconsistency brought in by the differences in opinions of
credible raters and malicious attempts of non-credible raters. Figure 2(b) shows
the case for the same provider (exhibiting same actual behavior) for the case
where a large majority of raters are dishonest. In this case, the system “catches
up” with dishonest testimonies after a few initial iterations. However, once this
learning process is complete, the presence of dishonest raters is minimized and
actual vs. estimated trust values become very close. Other classes of providers
exhibit similar results, thus we omit those graphs (and associated discussions
here).

(b)(a)

0

0.2

0.4

0.6

0.8

1

1 6 11 16

Trust

Iterations

Provider with Low Trust (80% Honest Raters)

Direct Evaluation
Estimated

0

0.2

0.4

0.6

0.8

1

1 6 11 16

Trust

Iterations

Provider with Low Trust (80% Dishonest Raters)

Direct Evaluation

Estimated

Fig. 2. Service Provider with Consistently Low Trust Values

480 Z. Malik and B. Medjahed

0

0.2

0.4

0.6

0.8

1

1 6 11 16

Trust

Iterations

Provider with Random Trust - 80% Honest Raters

Direct Evaluation

Estimated

Fig. 3. Service Provider with Random Trust Values: 80% Raters are Honest

Figure 3 shows the trust evaluation process for a provider that exhibits random
behavior in terms of trust values. Although the number of honest raters exceeds
that of dishonest ones, the system still exhibits inconsistent results. This is due
to the manner in which rater credibilities are evaluated and weighed. An honest
rater that reports its experienced trust may have its credibility reduced in the
next iteration due to the inconsistent behavior of the provider. Consequently,
widening the gap between estimated and experienced trust.

We evaluate the error percentage of the proposed model by comparing the
output (service provider chosen) against the “actual best service provider al-
ternative” available. Note that since these are controlled experiments, we can
identify the best providers for each iteration. A graph depicting these behaviors
for all service interactions becomes convoluted. Thus, for brevity Figure 4(b)
only shows a snapshot of actual service provider behaviors for interaction num-
bers 9 through 13. We can see that Service Provider 1 shows consistently high
trust values, while Provider 3’s performance (and hence trust) drops at 11th.
iteration onwards. In contrast, Provider 4’s trust values shift to higher values
at the same point. Similarly, Provider 2 performs with consistently low values,
while Provider 5 exhibits random behavior switching between high and low trust
values. Figure 4(a) shows the trust values estimated using the proposed model
for the same time period. The model chooses the service provider with the high-
est trust value at each iteration for interaction. For instance, at iteration 10,
Service Provider 3 is estimated to be the “best” service available, while at iter-
ation number 11 Provider 1 is chosen and Provider 5 is chosen at iteration 12
(and so on).

Table 1 shows all iterations, best provider alternatives for each iteration, and
the service provider chosen by our model. The final column labeled “Error”
places an X if the chosen service is incorrect. There are six instances in which
our model chose an incorrect service as per the given data. Apart from iterations
3 and 4, the other four errors were reported because the model chose Provider
5. Note that this class of providers behaves randomly at each iteration. Thus,
it is difficult for the system to predict or report correct trust values. However,
such provider behavior is expected to be rare [20]. The errors of iterations 3 and
4 can be termed as “minor” since both Provider 1 and 3 have high trust values

Trust Assessment for Web Services under Uncertainty 481

(a)

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Trust

Iterations

Assessed Service Provider Trust Values

Provider 1

Provider 2

Provider 3

Provider 4

Provider 5

... 9 10 11 12 13 ...

(b)

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Trust

Iterations

Actual Service Provider Trust Values

Provider 1

Provider 2

Provider 3

Provider 4

Provider 5

... 9 10 11 12 13 ...

Fig. 4. Actual Service Provider Trust Values Compared for Iterations 9 through 13

Table 1. Error Evaluation of the Proposed Model

Iteration Best Service Chosen Service Error
Provider Available Provider

1 P1 or P3 P5 X

2 P1 or P3 P1 -

3 P3 P1 X

4 P1 P3 X

5 P1, P3 or P5 P3 -

6 P1 or P3 P3 -

7 P1, P3 or P5 P1 -

8 P1 or P3 P5 X

9 P1 or P3 P1 -

10 P3 P3 -

11 P1 or P5 P1 -

12 P1 P5 X

13 P1 or P4 P1 -

14 P4 P4 -

15 P4 P4 -

16 P1 P1 -

17 P4 P5 X

18 P1 P1 -

19 P4 P4 -

20 P1 P1 -

(note that Provider 3 switches behavior at the 11th. iteration). If we consider all
reported errors, we can say the proposed model has 70% accuracy, while if we
consider P1 and P3 comparable (which they are), then system accuracy jumps
to 80%. Note that, these error evaluation results are for the case where 80% of
the raters are dishonest. When 80% of the raters are honest, error percentage
is reduced to less than 5%. In light of these results, we can conclude that our
proposed model estimates a service provider’s trust in a fairly accurate manner
even under uncertainty.

482 Z. Malik and B. Medjahed

5 Related Work

Trust assessment involves several components, including modeling, data collec-
tion, data storage, communication, assessment, and safeguards. Over the years,
several research initiatives have worked on most of these problems. Similar to our
model, most initiatives equate trust with reputation, i.e., the higher the reputation
of a provider, the more trustworthy it is, and vice versa. Varied disciplines includ-
ing economics, computer science, marketing, politics, sociology, and psychology
have studied reputation-based trust in several contexts [8]. In the recent past, these
research activities have gained momentum. In computer science, reputation has
been studied both in theoretical areas and practical applications.Theoretical areas
where reputation has been studied include game theory [12], Bayesian networks
[37], overlay networks,[32] and social networks [6] to name a few. Theoretical liter-
ature that addressed reputation focused on proving properties of systems based on
reputation. For example, results from game theory demonstrate that there are in-
herent limitations to the effectiveness of reputation systems when participants are
allowed to start over with new names [31]. In [11], the authors study the dynamics
of reputation, i.e., growth, decay, oscillation, and equilibria. Practical literature on
reputation is mainly concerned with the applications of reputations. Major appli-
cations where reputation has been effectively used include e-business, peer-to-peer
(P2P) networks, grid computing systems [1], multi-agent systems [33], Web search
engines, and ad-hoc network routing [5]. In the following, we give a brief overview
of a few reputation management frameworks for P2P systems and Web services
since these are closely related to our research.

PeerTrust [39] is a P2P reputation management framework used to quan-
tify and compare the trustworthiness of peers. In PeerTrust, the authors have
proposed to decouple feedback trust from service trust, which is similar to the
approach undertaken in this paper. Similarly, it is argued that peers use a simi-
larity measure to weigh opinions of those peers highly who have provided similar
ratings for a common set of past partners. However, this may not be feasible for
large P2P systems, where finding a statistically significant set of such past part-
ners is likely to be difficult. Consequently, peers will often have to make selection
choices for peers which have no common information in the system.

In [14], the EigenTrust system is presented, which computes and publishes a
global reputation rating for each node in a network using an algorithm similar
to Google’s PageRank [28]. Each peer is associated with a global trust value that
reflects the experiences of all the peers in the network with that peer. EigenTrust
centers around the notion of transitive trust, where feedback trust and service
trust are coupled together. Peers that are deemed honest in resource sharing
are also considered credible sources of ratings information. This is in contrast
with our approach and we feel this approach may not be accurate. Moreover,
the proposed algorithm is complex and requires strong coordination between
the peers. A major limitation of EigenTrust is that it assumes existence of pre-
trusted peers in the network.

PowerTrust [40] is a “distributed version” of EigenTrust. It states that the re-
lationship between users and feedbacks on eBay follow a Power-law distribution.

Trust Assessment for Web Services under Uncertainty 483

It exploits the observation that most feedback comes from few ”power” nodes to
construct a robust and scalable trust modeling scheme. In PowerTrust, nodes rate
each interaction and compute local trust values. These values are then aggregated
to evaluate global trust through random walks in the system. Once power nodes
are identified, these are used in a subsequent look-ahead random walk that is based
on Markov chain to update the global trust values. Power nodes are used to assess
the reputation of providers in a ”system-wide absolute” manner. This is in con-
trast with our approach where each consumer maintains control over the aggre-
gation of ratings to define a provider’s reputation. Moreover, PowerTrust requires
a structured overlay (for DHT), and the algorithms are dependent on this archi-
tecture. In contrast, service-oriented environments or the Web in general do not
exhibit such structure.

Despite the abundance in reputation-related literature, little research has fo-
cused on the reputation of Web services. In [24], a distributed model for Web
service reputation is presented. The model enables a service’s clients to use their
past interactions with that service to improve future decisions. It also enables
services’ clients to share their experience from past interactions with Web ser-
vices. Agents are associated with each Web service, that act as proxies to collect
information on and build a reputation of a Web service. The authors present
an approach that provides a conceptual model for reputation that captures the
semantics of attributes. The semantics includes characteristics, which describe
how a given attribute contributes to the overall rating of a service provider and
how its contribution decays over time. A similar reputation-based model us-
ing a node’s first hand interaction experience is presented in [32]. The goal of
the model is to increase/maintain QoS values in selfish overlay networks. The
authors show that in presence of a reputation management system, an overlay
network discourages selfish nodes. This increases the QoS guarantees in the net-
work. The proposed model considers a node’s first hand interaction experience
and peer testimonials for deriving node reputations. In this regard, the reputa-
tion building process in [32] is similar to our approach. However, the proposed
reputation model may not be completely robust and may not provide accurate
results. First, the individual experience takes time to evolve over repeated inter-
actions. Second, no distinction is made between the node’s service credibility in
satisfying consumer requests and its rating credibility. It may be the case that
a node performs satisfactorily but does not provide authentic testimonials. We
provide an extensive mechanism to overcome these and similar inadequacies.

6 Conclusion

We have presented a trust assessment model for Web services. We focused on an
environment where Web services can act as both consumers (i.e., requesters) and
providers of services, without the need of a trusted third party. This similarity
with P2P systems, wireless networks, etc. means that the model is extensible and
can be deployed in other contexts. We have also conducted extensive simulations
to verify the proposed model. Results exhibit strong evidence that our approach

484 Z. Malik and B. Medjahed

provides a fairly accurate assessment of provider trust. In the future, we intend
to implement the model in a real Web services environment. We also aim to
extend the model to include service compositions.

References

1. Azzedin, F., Maheswaran, M.: Evolving and Managing Trust in Grid Cmputing
Systems. In: Proc. of the IEEE Canadian Conference on Electrical and Computer
Engineering, pp. 1424–1429 (May 2002)

2. Bertino, E., Ferrari, E., Squicciarini, A.C.: Trust-X: A Peer-to-Peer Framework for
Trust Establishment. IEEE TKDE 16(7), 827–842 (2004)

3. Bharadwaj, K., Al-Shamri, M.: Fuzzy computational models for trust and reputa-
tion systems. Electron. Commer. Rec. Appl. 8(1), 37–47 (2009)

4. Birman, K.: The untrustworthy web services revolution. IEEE Computer 39(2),
113–115 (2006)

5. Buchegger, S., Le Boudec, J.-Y.: Performance Analysis of the CONFIDANT Pro-
tocol. In: Proc. of the 3rd ACM Intl. Symposium on Mobile Ad Hoc Networking
and Computing, June 9-11, pp. 226–236 (2002)

6. Buskens, V.: Social Networks and the Effect of Reputation on Cooperation. In:
Proc. of the 6th Intl. Conf. on Social Dilemmas (1998)

7. Delgado, J., Ishii, N.: Memory-Based Weighted-Majority Prediction for Recom-
mender Systems. In: ACM Workshop on Recommender Systems (1999)

8. Dellarocas, C.: The Digitalization of Word-of-Mouth: Promise and Challeges of
Online Feedback Mechanisms. In: Management Science (October 2003)

9. He, R., Niu, J., Yuan, M., Hu, J.: A novel cloud-based trust model for pervasive
computing. In: International Conference on Computer and Information Technology,
pp. 693–700 (2004)

10. Houser, D., Wooders, J.: Reputation in Auctions: Theory, and Evidence from eBay.
Journal of Economics and Management Strategy (2005)

11. Huberman, B.A., Wu, F.: The Dynamics of Reputations. TR, Hewlett-Packard
Laboratories and Stanford University (January 2003)

12. IBM. Aglet software development kit (2000), http://www.trl.ibm.com/aglets
13. Jøsang, A.: A logic for uncertain probabilities. Int. J. Uncertain. Fuzziness Knowl.-

Based Syst. 9(3), 279–311 (2001)
14. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for

reputation management in p2p networks. In: Proceedings of the Twelfth Interna-
tional World Wide Web Conference (WWW) (2003)

15. Kesler, C.: Experimental Games for the Design of Reputation Management Sys-
tems. IBM Systems Journal 42(3) (2003)

16. Lam, S., Riedl, J.: Shilling Recommender Systems for Fun and Profit. In: Proc.
of the 13th International World Wide Web Conference (WWW), New York, NY,
USA, pp. 393–402 (2004)

17. Li, D., Han, J., Shi, X., Chan, M.: Knowledge representation and discovery based
on linguistic atoms. Knowledge-Based Systems 10(7), 431–440 (1998), KDD: Tech-
niques and Applications

18. Li, D., Liu, C., Gan, W.: A new cognitive model: Cloud model. Int. J. Intell.
Syst. 24(3), 357–375 (2009)

19. Malik, Z., Bouguettaya, A.: Rater Credibility Assessment in Web Services Interac-
tions. World Wide Web Journal 12(1), 3–25 (2009)

20. Malik, Z., Bouguettaya, A.: Reputation-based Trust Management for Service-
Oriented Environments. VLDB Journal 18(4), 885–911 (2009)

http://www.trl.ibm.com/aglets

Trust Assessment for Web Services under Uncertainty 485

21. Malik, Z., Bouguettaya, A.: Reputation Bootstrapping for Trust Establishment
among Web Services. IEEE Internet Computing 13(1) (January-February 2009)

22. Malik, Z., Bouguettaya, A.: Trust Management for Service-Oriented Environments,
1st edn. Springer, Heidelberg (2009) ISBN:978-1-4419-0309-9

23. Marti, S., Garcia-Molina, H.: Limited Reputation Sharing in P2P Systems. In:
Proc. of the 5th ACM Conference on Electronic Commerce, New York, NY, USA,
pp. 91–101 (May 2004)

24. Maximillien, E.M., Singh, M.P.: Conceptual Model of Web Service Reputation.
SIGMOD Record 31(4), 36–41 (2002)

25. Medjahed, B., Bouguettaya, A.: Customized delivery of e-government web services.
IEEE Intelligent Systems 20(6) (November/December 2005)

26. Medjahed, B., Bouguettaya, A., Elmagarmid, A.: Composing Web Services on the
Semantic Web. The VLDB Journal 12(4) (November 2003)

27. Niu, J., Chen, Z., Zhang, G.: Towards a subjective trust model with uncertainty for
open network. In: Workshops, International Conference on Grid and Cooperative
Computing, pp. 102–119 (2006)

28. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking:
Bringing Order to the Web. Technical report, Stanford Digital Library Technologies
Project (1998)

29. Papazoglou, M.P., Georgakopoulos, D.: Serive-Oriented Computing. Communcica-
tions of the ACM 46(10), 25–65 (2003)

30. Resnick, P., Zeckhauser, R.: Trust Among Strangers in Internet Transactions: Em-
pirical Analysis of eBays Reputation System. Advances in Applied Microeconomics,
vol. 11. Elsevier Science, Amsterdam (2002)

31. Resnick, P., Zeckhauser, R., Friedman, E., Kuwabara, K.: Reputation Systems.
Communication of the ACM 43(12) (December 2000)

32. Rocha, B.G., Almeida, V., Guedes, D.: Increasing qos in selfish overlay networks.
IEEE Internet Computing 10(3), 24–31 (2006)

33. Sabater, J., Sierra, C.: Bayesian Network-Based Trust Model. In: Proc. of the first
Intl. Joint Conf. on Autonomous Agents and Multiagent Systems, Bologna, Italy,
pp. 475–482 (2003)

34. Shibin,Z.,Xiang,S.,Zhi,Q.: Subjective trust evaluationmodelbasedon fuzzy reason-
ing. International Symposium Electronic Commerce and Security. 1, 328–332 (2009)

35. Sundaresan, N.: Online trust and reputation systems. In: EC 2007: Proceedings of
the 8th ACM Conference on Electronic Commerce, pp. 366–367. ACM Press, New
York (2007)

36. Tennenholtz, M.: Reputation systems: An axiomatic approach. In: AUAI 2004:
Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, pp.
544–551. AUAI Press, Arlington (2004)

37. Wang, Y., Vassileva, J.: Trust and reputation model in peer-to-peer networks. In:
Proc. of the Third International Conference on Peer-to-Peer Computing, pp. 150–
158 (September 2003)

38. Whitby, A., Josang, A., Indulska, J.: Filtering Out Unfair Ratings in Bayesian Rep-
utation Systems. The Icfain Journal of Management Research 4(2), 48–64 (2005)

39. Xiong, L., Liu, L.: PeerTrust: Supporting Reputation-based Trust for Peer-to-
Peer Electronic Communities. IEEE Trans. on Knowledge and Data Engineering
(TKDE) 16(7), 843–857 (2004)

40. Zhou, R., Hwang, K.: Powertrust: A robust and scalable reputation system for
trusted peer-to-peer computing. IEEE Transactions on Parallel and Distributed
Systems 18(4), 460–473 (2007)

Incorporating Expectations as a Basis for Business
Service Selection

Adel M. ElMessiry, Xibin Gao, and Munindar P. Singh

North Carolina State University, Raleigh NC 27695, USA
{ammessir,xgao2,singh}@ncsu.edu

Abstract. The collaborative creation of value is the central tenet of services sci-
ence. In particular, then, the quality of a service encounter would depend on the
mutual expectations of the participants. Specifically, the quality of experience
that a consumer derives from a service encounter would depend on how the con-
sumer’s expectations are refined and how well they are met by the provider during
the encounter. We postulate that incorporating expectations ought therefore be a
crucial element of business service selection.

Unfortunately, today’s technical approaches to service selection disregard the
above. They emphasize reputation measured via numeric ratings that consumers
provide about service providers. Such ratings are easy to process computationally,
but beg the question as to what the raters’ frames of reference, i.e., expectations.
When the frames of reference are not modeled, the resulting reputation scores are
often not sufficiently predictive of a consumer’s satisfaction.

We investigate the notion of expectations from a computational perspective.
We claim that (1) expectations, despite being subjective, are a well-formed, re-
liably computable notion and (2) we can compute expectations and use them as
a basis for improving the effectiveness of service selection. Our approach is as
follows. First, we mine textual assessments of service encounters given by con-
sumers to build a model of each consumer’s expectations along with a model of
each provider’s ability to satisfy such expectations. Second, we apply expecta-
tions to predict a consumer’s satisfaction for engaging a particular provider. We
validate our claims based on real data obtained from eBay.

1 Introduction

This paper investigates the problem of business service selection based on an expanded
notion of reputation and trust. It is widely recognized now that the collaborative cre-
ation of value is the central tenet of services science [13]. Specifically, the importance
of understanding human behavior as a basis for service science is well-recognized, but
is not necessarily reflected in the technical approaches developed by computer scien-
tists. In particular, then, the quality of a service encounter would depend on the mutual
expectations of the participants. Specifically, the quality of experience that a consumer
derives from a service encounter would depend on how the consumer’s expectations
are refined and met by the provider during the encounter. Indeed, this is well-known
in marketing theory as the service quality GAPS model as a basis of customer satis-
faction [16]. This model, however, is traditionally applied from the perspective of the

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 486–500, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Incorporating Expectations as a Basis for Business Service Selection 487

service provider in terms of its marketing and operations. In contrast, we postulate that
incorporating expectations is a crucial element of business service selection as well.

Unfortunately, today’s technical approaches to service selection rely upon combin-
ing numeric ratings without regard to what the raters’ frames of reference, i.e., expec-
tations, might have been. When the frames of reference are not modeled, the resulting
reputation scores are often not sufficiently predictive of a consumer’s satisfaction. Ac-
cordingly, the main claim of this paper is that reputation scores produced merely by an
aggregation of context-free numeric ratings are not significantly effective in producing
trust. Specifically, this paper proposes to explicitly consider the expectations of the par-
ties involved in order to arrive at a finessed notion of reputation that an agent may use
as a basis for trusting others.

Both to show the practicality of the above claim and to evaluate it rigorously, this pa-
per considers the important setting of e-commerce interactions, such as the marketplaces
of eBay and Amazon. E-commerce settings provide an immediate and widespread ap-
plication for research into service selection. Further, they provide a source for indepen-
dent, real-life data with which to objectively evaluate research claims. Such real-life
evaluations are generally not prominent in the services literature.

To further motivate the problem, consider a buyer who is faced with a decision to
select a seller from a group of sellers. Other things being equal, a buyer would ratio-
nally decide based on the experiences of previous buyers with the various sellers. For
this reason, e-commerce sites include reputation systems whereby buyers can state a
numeric rating of a seller with whom they interact (and sellers can rate buyers, but we
do not consider those here). A subsequent buyer can use those ratings to select a suitable
seller. This buyer too would rate the seller he chose, thus helping maintain the informa-
tion in the reputation system. Current reputation systems aggregate numeric ratings and
present a simple measure of a potential seller’s quality.

In general, the better the reputation a seller accrues the more trustworthy it becomes.
The fundamental deficiency of this approach lies in its presumption that we can simply
combine ratings by different users. Doing so assumes that the different users have the
same frame of reference. Such naı̈ve aggregation may be acceptable in some cases, e.g.,
where a seller has obtained a large number of ratings from homogeneous buyers, but is
not valid for many practical settings involving smaller sets of ratings, especially when
the ratings differ in a way that can matter to a prospective buyer. Although reputation
aggregated solely from numeric ratings can be useful, it often misses the point of what
a buyer seeks. This is because the various ratings are given by different buyers based on
their respective frames of reference. It would be surprising if simply aggregating such
ratings would yield the most valuable information for a prospective buyer.

This paper is based on the idea that a key aspect of the frame of reference of a buyer
is captured in the buyer’s expectations. When a buyer’s expectations are met, his ex-
perience is pleasant, and one would assume his rating of the seller is positive. More
importantly, to predict the buyer’s quality of a buyer’s experience and his ultimate rat-
ing, we need to look beyond simply the ratings given by other buyers, and also incor-
porate the expectations that underlie those ratings. When we relate the expectations of
a buyer with the expectations of previous raters, we would produce a more accurate
recommendation and a more justifiable basis for the buyer to select a seller.

488 A.M. ElMessiry, X. Gao, and M.P. Singh

A natural challenge is how to estimate the expectations of a buyer. Fortunately, e-
commerce settings provide a clue as to their users’ expectations through text comments
(termed feedbacks) that a user may produce in addition to a numeric rating. A user’s
feedback often describes the user’s experience from a specific transaction and gives
reasons for the associated rating. Although feedbacks are free form, we find that their
vocabulary is generally quite restricted. Therefore, we can mine text feedback reason-
ably effectively to understand its author’s expectations for the given interaction.

Contributions. We begin from the prima facie reasonable assumption that users with
shared expectations would share a similar degree of satisfaction from their respective
encounters with the same business services. Our main contribution is to refine and val-
idate this assumption. We show that applying expectations in a common e-commerce
setting yields better predictions of ratings than otherwise possible. Further, we show that
the expectations of buyers can be reliably and effectively mined from the text feedbacks
they produce. Additionally, through the use of abstract expectations, this approach can
help match buyers and sellers even if there is no direct relationship between them. This
is crucial in overcoming the sparsity of data, e.g., with respect to new buyers and sellers.

Organization. Section 2 introduces expectations, a representation for them, and our
approach. Section 3 describes our evaluation methodology and presents our results.
Section 4 discusses some relevant literature and some future research challenges.

2 Understanding Expectations

There is fairly strong support in the literature on consumer behavior for the notion of
expectations. Kim et al. [11] observe that the fulfillment of a consumer’s expectation is
a key factor in the consumer’s satisfaction, and may indirectly influence the consumer’s
intention to repurchase from the same seller. The approach of this paper reflects the intu-
itions of Expectation-Confirmation Theory due to Bhattacherjee [4], which is a leading
model of consumer satisfaction. To understand the relation among expectations, satis-
faction, and ratings, we consider a three-phase model.

Formulate expectations. The customer identifies his requirements and expectations.
Transact. The customer selects a seller and carries out the interaction.
Evaluate. The customer compares his expectations with his experience. The customer’

expectations being met or confirmed correspond to greater satisfaction, and thus a
higher rating of the seller. The customer’ expectations not being met correspond to
(partial or total) dissatisfaction, and thus a lower rating of the seller.

2.1 Expectation and Reputation Profiles

To realize the above approach computationally, we need to express expectations, auto-
matically infer expectations, and compare them. A simple representation proves quite
effective. We can think of each expectation as a name-value pair: the value describes
the strength of the corresponding expectation as a real number in the interval [0, 1].

Incorporating Expectations as a Basis for Business Service Selection 489

It is convenient to write the expectation profile of a consumer as a row vector whose
columns are interpreted as the expectation attributes and whose cells are the correspond-
ing values. For example, in a two dimensional setting, we may interpret 〈0.9, 0.1〉 as the
profile of a consumer who expects a high Level of Service and is relatively unconcerned
with Shipping Time. The order in which the expectations are written is irrelevant, but
we require that the order is (arbitrarily) fixed so we can perform sound calculations on
the vectors. We use vector such as the above as the main representation in our approach:

Buyer’s expectation profile based on the buyer’s previous interactions. This repre-
sents the buyer’s typical expectations as the buyer enters into an encounter.

Seller’s reputation profile based on the previous interactions of buyers with this seller.
This represents the typical preexisting expectations of a buyer who enters into an
encounter with this seller.

We observe that feedbacks associated with negative ratings from a buyer yield a more
meaningful estimation of the buyer’s expectations. When buyers give negative ratings,
they often elaborate on why. By contrast, with positive ratings, they often merely state
that the experience is good. Some studies [19] also show that eBay auctions are mildly
influenced by positive ratings, however, negative ratings emerged as highly influential
and detrimental. Thus, in this paper, we focus exclusively on negative feedbacks to
induce expectation and reputation vectors.

For each buyer, we create an expectation profile based on the buyer’s comments. For
each seller, we create a reputation profile based on the comments posted by the buyers
who have interacted with that seller and given it negative feedbacks. Thus, the seller’s
reputation profile is negative: it captures expectations that the seller does not meet well.
From a match between a prospective buyer and a target seller we can estimate how
unsuccessful the buyer’s experience with that seller will be. That is, the stronger the
match the greater the chances of the buyer’s expectations not being met.

2.2 Analyzing Feedback to Infer Expectations

We consider the following expectation attributes specialized for e-commerce services:
Item (is as described), Communications (are effective), Shipping time (is small), Ship-
ping (and handling) charges (are appropriate), (Level of) service (is high). For brevity,
below, we omit the parenthesized parts of the names of each attribute. Notice that Item,
Communications, and Service are subjective qualities.

As we remarked above, often in practical settings, the set of text feedbacks given by
a user is the only source of knowledge we have of the user’s expectations. We adopt the
techniques of sentiment and affect analysis of text to infer a user’s expectations. Senti-
ment analysis assesses the directionality of a text fragment and asserts if it is positively
or negatively oriented [15]. Affect analysis [1] seeks to identify the emotions or affect
classes indicated in a text fragment.

We analyze expectations in analogy with affect, and abstract the expectation vector
construction process as a multiclass, multilabel text classification problem. An expec-
tation vector has five dimensions corresponding to the above attributes. The value of
each attribute represents its strength. For example, 〈0.1, 0.9, 0.0, 0.0, 0.0〉 means that
the user has a strong concern with communication, and does not care about shipping

490 A.M. ElMessiry, X. Gao, and M.P. Singh

time, shipping charges, or service. The expectation vector for a buyer is constructed by
aggregating the class labels for all the feedbacks the buyer left.

For each textual feedback, the vector is assigned by a text classifier. The class la-
bels are the above attributes plus Others because some feedbacks fall outside the five
attributes. For example, some feedbacks are in Spanish, and some only contain sym-
bols. Multiple class labels can be assigned to each feedback because multiple concerns
can be expressed in each feedback. For example, “Dirty console. Did not respond. Non
Working Console” alludes to Item (“Dirty console” and “Non Working Console”) and
to Communication (“Did not respond”).

We apply text processing techniques to analyze the feedbacks and induce an expec-
tation vector from these feedbacks.

Clean up the text using the Google Spell Checker service [8] to replace wrongly spelled
words and thus reduce the noise in the input. The checker mostly suggests correct
words, mapping “recieved” to “received” and “emials” to “emails.” However, this
step is not perfect. For example, it maps “wii” to “WI.”

Remove stop words (such as “a,” “the,” and “all” [12]) because they carry little mean-
ing. This process simplifies further text processing without sacrificing quality.

Reduce dimensionality of the data by stemming using Porter’s algorithm [17]. Stem-
ming maps several forms of a word to their common stem. For example, “receive,”
“received,” and “receiving” are reduced to “receiv.” Although “receiv” is not a dic-
tionary word, it suffices for the purpose of classifying feedbacks as similar words
are reduced to the same form.

Represent text computationally via two alternatives for representing text: unigram
(bag of words) and bigram (bag of pairs of adjacent words).

Assign class labels to the textual feedback using a text classification module [20]. We
evaluated two popular classification algorithms: Naı̈ve Bayes and Support Vector
Machine (SVM). We found that SVM outperforms Naı̈ve Bayes. Therefore, we
applied SVM over a combination of the unigram and bigram models.

Compute expectation profiles of the buyers using the results of the classification.
For example, suppose a buyer has left three feedbacks that are assigned the class
labels (1) Item, Communication; (2) Others; and (3) Communication. We disre-
gard the Others label because it is outside our five main concerns. Then we ag-
gregate the class labels from the other two feedbacks to obtain the initial vector
〈1.0, 2.0, 0.0, 0.0, 0.0〉. We divide this vector by the number of aggregated feed-
backs to normalize it. The final expectation vector is 〈0.5, 1.0, 0.0, 0.0, 0.0〉.

2.3 Buyer-Buyer Profile Match

Our approach reflects the intuition that if two buyers have closely related expectation
profiles, then each buyer is more predictive of the other’s ratings of a seller. Consider
a prospective buyer interested in purchasing a product offered by more then one seller.
We collect the feedback and ratings given by previous buyers to the same seller. We
analyze the feedback to extract the buyers’ expectations.

We calculate the prospective buyer’s predicted rating as the weighted sum of the
previous buyers ratings for the same seller. The weight used for each previous buyer

Incorporating Expectations as a Basis for Business Service Selection 491

is calculated based on the Pearson correlation between the prospective buyer’s expec-
tation profile and the previous buyer’s expectation profile, as used in conventional rec-
ommender systems [5]. The rating of each buyer is then weighted by how close his
expectation profile matches the prospective buyer’s expectation profile.

2.4 Buyer-Seller Profile Match

In addition to the above, we use the seller’s reputation profile to predict the prospec-
tive buyer’s rating. Since the seller’s reputation profile indicates the expectations of an
average buyer of this seller, comparing them with the prospective buyer’s expectations
helps us determine if the prospective buyer and the seller match.

To predict a prospective buyer’s experience with a particular seller, collect the feed-
back and ratings given by previous buyers to this seller. Analyze the feedbacks to extract
the buyers’ expectations (for reasons motivated earlier, consider only buyers giving the
seller negative ratings). Finally, use those profiles to generate the seller’s reputation pro-
file, which represents the average expectations of the buyers for that seller. Compare the
seller’s reputation profile to the prospective buyer’s expectation profile, to predict what
the prospective buyer’s rating would be.

We develop a seller’s reputation profile that reflects the feedbacks received by the
seller from previous buyers. This is the seller’s negative reputation profile from the
standpoint of the expectations of the previous buyers. It represents the expectations
most strongly arising in the buyers’ negative feedbacks for this seller.

The seller’s reputation profile represents the average buyer’s expectation profile as
the average buyer interacts with this seller. Intuitively, if the prospective buyer’s expec-
tation profile is close to the seller’s reputation profile, the prospective buyer will have
similar reaction. We apply this to the negative feedbacks, from which we can construct
the (negative) reputation profile of the seller and the prospective buyer.

We determine the similarity between the profiles in terms of the cosine of the angle
between them [18]. Below ⊗ refers to the inner product of two equal-length vectors,
namely, the sum of their element-wise products. Then cos(V1, V2) = V1⊗V2

‖V1‖×‖V1‖ . In
order to convert similarity into a categorical value, we check if the cosine is larger than
0.87 (which corresponds to an angle of 30 degrees or less) to determine that the profiles
are in agreement. Since we are focusing on the negative profiles, if those profiles are
in agreement, we conjecture the buyer is likely to give the seller a negative rating.
But if the buyer’s main complaints from past purchases indicate different expectation
attributes than what the seller’s previous buyers have complained about, the buyer and
seller’s expectation profiles would not agree. Consequently, the buyer would be more
likely to give a positive rating.

3 Evaluation

We conduct our evaluation using eBay, because it is one of the most popular online rep-
utation systems for e-commerce, and because we can retrieve the ratings and feedbacks
left by buyers after their actual transactions on eBay. On eBay, each party involved in
a transaction can leave a feedback and a rating on the other. A rating can be of one of
three values: {−1, 0, 1}. The numeric ratings help ground our approach.

492 A.M. ElMessiry, X. Gao, and M.P. Singh

3.1 Dataset

We explain below some important decisions necessary for the development of our
dataset from the large amount of information available through eBay. Some of these
decisions are pragmatic—to make the effort tractable. And, some decisions are neces-
sary for the theme of our experiments.

Selecting a Category. We select data pertaining to a particular sales category so that
we can find enough overlap among the buyers and sellers to conduct our experiments.
We choose a category based on the following criteria.

– Common. The category needs to be for common items. This is so we can find suf-
ficiently many buyers and find buyers with broad characteristics, so our results are
not biased by any tight community we might happen to select. For example, if we
chose a niche category, then there might be well-developed communities of interest
with established patterns of expectations.

– Affordable. The category must be affordable to allow for repeat purchases. For ex-
ample, not many buyers will be using the “Automotive” category repeatedly.

Thus, we focus our research on the categories Music CDs and Cell Phones.

Selecting the Sellers. Not all sellers would have meaningful data. We conjecture this is
due to the positive feedback being often quite vague and not containing sufficient useful
information. Thus we have followed the following criteria in selecting the sellers:

– Not perfect. The seller’s score should be less than 100%, and preferably in the 95%
to 99% range, so there is sufficient negative feedback to analyze. We remark in
passing that the average feedback on eBay is high, about 95% positive: thus we
identify sellers who are about average, not those who are unusually positive.

– Adequate feedback. In general, it is difficult to draw strong conclusions with only
sporadic data. We select sellers who have received at least 40 negative feedbacks.

Selecting the Buyers. We seek buyers for whom meaningful data is available. We
need buyer data for two experiments, and we select the buyers appropriately to suit the
needs of each experiment. In each experiment, the previous buyers are extracted from
eBay data. These buyers would give negative ratings in order for the feedback to be
meaningful. The prospective buyer is treated differently in each experiment.

– For Enhancing Ratings. The prospective buyers’ expectation profiles are deter-
mined in such a manner as to show their impact on the seller’s rating.

– Predicting the Buyer’s Rating. The prospective buyer can be positive or negative.
We withhold the buyer’s rating and use it as the ground truth to evaluate the pre-
dictions of our algorithm. The main criterion in selecting these buyers is that they
would have given an adequate amount of negative feedback to sellers other than the
one under consideration. The reason for this choice is that we need buyers with an
adequate track record to be able to infer their expectation profiles.

Incorporating Expectations as a Basis for Business Service Selection 493

Collecting the Data. For each of the selected sellers, we collect the feedback and
rating left by each buyer. We consider all ratings and feedbacks received by a seller
in a particular category. For each buyer, we collect the feedback and rating associated
with each previous transaction. (Typically, such transactions are with different sellers.)
This leaves us with a dataset that has sellers and buyers with sufficient history about
their interactions with each other and with additional parties. The following are the
instructions given to the human study participants.

– Consider the transactions with negative and neutral comments for each seller.
– For each transaction, determine which expectations of the buyer were not met—

these would be the ones that the buyer complained about.

From the above data, we calculate the ratio of the expectations not met with the number
of negative or neutral feedbacks.

Summary of the Data. Table 1 show a quick summary of our collected data.

Table 1. Statistics regarding feedbacks analyzed

Item Count
Sellers 1,794
Buyers 147
Number of feedbacks 2,242
Unique buyer-seller interactions 2,048
Feedbacks left by buyers for a joint seller 1,195

The first important test is whether the buyers leaving feedback for a joint seller have
matching profiles. If the expectation profile is not predictive, then buyers complaining
about the same seller would not share the same profile. We compare each pair of buyers
for the same seller across the entire data set, to find a relatively high percentage, 54%,
of profile matching between buyers complaining about a joint seller in 649 cases.

3.2 Result: Robustness of Expectations as a Well-Formed Concept

We now show that even though expectations are subjective, they are a robust concept
in that humans can extract buyers’ expectations from feedbacks, and do so in a reliable
manner. We show this by computing the interrater agreement among humans regarding
the expectations that can be inferred from text feedbacks.

The Kappa measure of interrater agreement captures whether agreement among raters
exceeds chance levels [9]. Given P (a) as the relative observed agreement among raters,
and P (e) as the (hypothetical) probability of chance agreement, the Kappa measure is
defined as P (a)−P (e)

1−P (e) , and ranges from 0 (complete disagreement) to 1 (complete agree-
ment). For a setting involving multiple classifications and raters, the appropriate variants
of Kappa have intricate definitions and we omit them for brevity.

Three raters independently assessed buyers’ expectations from various text feed-
backs. We selected 361 feedbacks that have three out of the six categories selected
by the raters. We obtained a high level of interrater agreement with overall Kappa of
85.5% and fixed and free marginal Kappa of 80.0% and 82.6%, respectively.

494 A.M. ElMessiry, X. Gao, and M.P. Singh

3.3 Result: Effectiveness of Negative Feedback in Indicating Expectations

We selected five sellers with high ratings (over 95%), compiled their recent 16 positive
and 16 negative feedbacks, thereby forming a sample of size 160 feedbacks. We sub-
mitted these 160 feedbacks to a human rater to rate each feedback’s usefulness. The
rater would assign the value of 1.0 if the feedback is useful in capturing the buyer’s
expectation associated with the feedback; otherwise, the rater would assign the value
of 0.0. For each seller, the average is computed for both the positive and the negative
feedbacks. From the summary Table 2, we infer that a negative feedback is more than
twice as indicative of the expectations associated with the transaction than is a positive
feedback.

Table 2. Relative effectiveness of positive and negative feedback in indicating expectations

Seller Average Rating Positive Feedback Usefulness Negative Feedback Usefulness
Seller 1 99.7% 40.00% 73.33%
Seller 2 99.8% 33.33% 80.00%
Seller 3 99.5% 26.67% 60.00%
Seller 4 99.6% 26.67% 66.67%
Seller 5 98.6% 26.67% 60.00%
Average 99.6% 30.67% 68.00%

3.4 Result: Effectiveness of Automatically Computing Expectations

As remarked above, we apply supervised machine learning using Naı̈ve Bayes (NB)
and SVM techniques. Traditional text classification is often evaluated in terms of pre-
cision, recall, and F-measure. Because our problem involves multiple labels, we report
these metrics as macro-averaged (calculating the average of a metric for each class) and
micro-averaged (using a global contingency table for each class) [21].

Using 500 annotated feedbacks, we apply ten-fold cross validation. That is, we train
our classifier on 90% of the data and test it on the remaining 10%, using a different
10% for testing each of ten times. Table 3 shows the results from different experimental
settings. In particular, SVM classification on a combination of unigram and bigram
yields the best performance. So we use that setting for the subsequent evaluation.

Notice that general text classification can yield better metrics than we obtained, but
our approach proves quite effective in demonstrating the power of expectations. We
conjecture that our classification results can be improved by using a larger training set,
a better spelling checker, and considering those domains of business services where the
feedbacks given are more complete.

3.5 Result: Buyer-Buyer Profile Match

In order to apply the buyer’s expectations, we need to construct the expectation profile
associated with the ratings.

Specifically, we select two sellers who sell under the Cell Phones and PDAs, Blue-
tooth Wireless Accessories, Headsets-Wireless category. Both sellers have a high Positive

Incorporating Expectations as a Basis for Business Service Selection 495

Table 3. Feedback classifier performance in different experimental settings. All settings use stop
words removal and stemming. They vary in using unigram (U), bigram: B, Naı̈ve Bayes (NB),
and Support Vector Machine (SVM). Each value is the mean of a ten-fold cross validation.

Setting Micro P Micro R Micro F Macro P Macro R Macro F Error
B+U+SVM 0.67 0.76 0.71 0.66 0.76 0.67 0.14
B+SVM 0.72 0.53 0.61 0.70 0.45 0.50 0.16
U+SVM 0.67 0.73 0.70 0.68 0.73 0.66 0.15

B+U+NB 0.59 0.79 0.68 0.61 0.66 0.58 0.18
B+NB 0.40 0.82 0.54 0.39 0.65 0.42 0.32
U+NB 0.57 0.79 0.66 0.54 0.64 0.54 0.19

Table 4. Expectation profiles for prospective buyers

Buyer 57 Buyer 119
Item 0.11 0.48
Communication 0.67 0.28
Shipping time 0.56 0.32
Shipping charges 0.11 0.04
Service 0.00 0.00

Feedback Percentage of 97.5%. In other words, the traditional eBay reputation cannot
be used to distinguish between them. We claim that our approach can help a prospective
buyer distinguish between such sellers.

From the negative feedback left for each seller by the previous buyers, we first de-
termine the expectation profile of each of the previous buyers. Let us consider two
prospective buyers with expectation profiles as shown in Table 4.

Table 5. Sellers’ reputation profiles computed by mining feedbacks

Item Communication Shipping time Shipping charges Service
Seller 1606 0.42 0.17 0.34 0.08 0.0
Seller 1321 0.25 0.75 0.50 0.25 0.0

To evaluate this approach, we select two sellers, collect the feedback left for them by
previous buyers. Using the approach of Section 2.2, we compute the expectation profile
for each feedback. We then average the profiles for all feedback received by each seller
to compute the seller’s reputation profile. Table 5 shows these results, normalized based
on the total number of values. It is evident that whereas both sellers have relatively
close results with respect to Item and Communication, they vary widely with respect to
Shipping time, Shipping charges, and Service.

Next we calculate the predicted ratings for each buyer for each seller. Our approach
yields the predicted ratings for the two sellers for each of the prospective buyers. It
shows a clear distinction between the two sellers: Seller 1321 has a lower performance
for communication, which is an important expectation attribute for Buyer 57. Thus its

496 A.M. ElMessiry, X. Gao, and M.P. Singh

predicted rating is reduced, leading us to identify Seller 1606 as a better match than
Seller 1321 for Buyer 57. Similarly, Buyer 119 would prefer Seller 1606.

3.6 Result: Buyer-Seller Profile Match

To validate the effectiveness of using expectation profiles, we select the top fifteen sell-
ers with the most feedback (more than five negative feedbacks each). Their minimum
rating is 97.2% with a mean of 98.4% and a standard deviation of 0.5 percentage points.
We isolate the distinct buyers for those sellers to eliminate repeated seller-buyer inter-
actions. We then apply the method of Section 2.2 to generate the buyers’ expectation
profiles and the reputation profile of each seller. Finally, we subject the resulting pro-
files to our buyer-seller matching. Our results show that in 73 cases out of the 116
available feedbacks, the buyer-seller profile matched, indicating a negative buyer expe-
rience. This is a hit ratio of 63% for our approach. Clearly, these 73 buyers would not
have considered purchasing from the seller if our expectations-based approach were
used. They interacted only because the traditional metric is not as effective in predict-
ing outcomes in such cases.

0

10

20

30

40

50

60

70

80

0.0 to 0.3 0.3 to 0.4 0.4 to 0.5 0.5 to 0.6 0.6 to 0.7 0.7 to 0.8 0.8 to 0.9 0.9 to 1

Fig. 1. Distribution of strength of matches between buyers and sellers for the top 15 sellers

Figure 1 shows that using the reputation profile of the seller and comparing it to
the prospective buyer’s expectation profile yields a significant advantage over using
the traditional approach. Typically, the benefit of our approach is greatest when the
profile match suggests a negative rating. This is because on eBay the average rating is
overwhelmingly positive. For this reason, a true negative rating is highly indicative of
an unsatisfied user, and an ability to predict accurately in cases of negative ratings is of
extremely high value. We think of this as a major result from our study.

We next take a closer look at how a buyer may fare using the traditional approach
compared to our approach. We selected a buyer (Buyer 60) who had already interacted
with five sellers, apparently because the sellers had high overall ratings. Table 6 shows
the profile we construct for each of these sellers in the usual way based on the feedback
left by buyers other than Buyer 60.

All of the above sellers match Buyer 60’s profile strongly (the cosines of the vectors
are 0.87, 0.92, 0.97, 0.92, and 0.92, respectively), indicating that the buyer’s expecta-
tions were not met. This result emphasizes our findings above that matching a buyer’s
expectations profile with a seller’s (negative) expectations profile is an effective predic-
tor of the buyer’s expectations being unmet.

Incorporating Expectations as a Basis for Business Service Selection 497

Table 6. Sellers’ reputation profiles computed by mining feedbacks

Seller ID Item Communication Shipping time Shipping charges Service Other
235 0.5 0 0.5 0 0 0
805 1 1 1 0 0 0
838 0.50 0.17 0.58 0.08 0.25 0
1035 1 0 1 0 0 0
1620 1 0 1 0 0 0

4 Conclusions and Discussion

To summarize, our approach produces three important results. First, we show that in-
corporating expectations leads to improved predictions in ratings. These improvements
arise precisely where they are the most valuable, which is when the prospective buyer
would otherwise be likely to produce a negative rating. The key observation is that even
if two sellers obtain similar numeric ratings, when they are viewed from a buyer’s per-
spective, they may exhibit unique deficiencies and strengths with respect to that buyer’s
expectations. Capturing such variations is crucial for service selection.

Second, we show that even minimal text fragments can carry useful clues about a
human’s expectations that go beyond mere numeric ratings; it is possible to mine such
text effectively to help bring cognitive models of trust to a new level.

Third, because the approach works at a level of abstraction, it can avoid the problem
of sparsity of data, which plagues traditional approaches (and which might be the reason
why content-free numeric ratings have become as popular as they have). We can predict
the ratings of a buyer based on the feedbacks of other buyers even if prospective buyer
has never shared a seller with them. This is important because finding adequate overlaps
in the transactions of different pairs of parties can be incredibly difficult, especially as
we approach the era of The Long Tail in e-commerce [2].

4.1 Threats to Validity

In general, it appears that the key elements of our approach are generalizable: most
service settings involve rich notions of expectations and text feedbacks from users may
often be our best path to access knowledge of such expectations. However, proving the
above claim presupposes access to sufficiently large amounts of data from other set-
tings. Such data is not readily available in vetted form with sufficient controls. It would
be valuable if the research community were to develop curated datasets by collecting
information from social websites regarding service interactions.

Our empirical study carries some inherent biases. First, we focus on negative ratings
because our limited evaluation in Section 3.3 shows they are more useful than positive
ratings. Second, the amount of data we consider is apparently fairly small in the scheme
of things. We hope to scale up our approach in future studies. However, two important
aspects of our study are human-intensive. One is to obtain human annotations of the
ratings to judge the stability (interrater agreement) of the concept of expectations as
reflected in text and the other is to use human annotations as a basis for supervised
learning. Third, we have considered buyers who generally gave multiple feedbacks and

498 A.M. ElMessiry, X. Gao, and M.P. Singh

sellers who received multiple feedbacks. We expect that a data mining approach such
as ours is inherently limited to such cases: without adequate data, it would not get far.

4.2 Relevant Literature

Many efforts on the theme of trust and reputation in e-commerce address challenges
such as malicious ratings or a seller employing others to provide false high ratings,
or to provide false low ratings of another seller in order to distort the other seller’s
reputation [10]. Other efforts concentrate on the propagation of trust through several
second-hand sources. Few have explored what other factors can influence the rating
of a user and thus, influence the final computation of trust. To our belief, not much
research has considered on the study of expectations and their relationship to reputation
and trust.

Singh and Maximilien [14] introduce a trust model that is centered on a shared
conceptualization for QoS (ontology) and a QoS preference model that considers con-
sumer’s tradeoffs among qualities as well as relationships between qualities. Their work
could be combined with the present approach by modeling the users’ expectations with
regard to the various qualities.

At a practical level, an interesting direction for future work is to expand the tech-
niques for sentiment and affect analysis that we have employed. We have considered
the five most common domain-independent expectations attributes, four of which are
now supported by eBay. However, the space of expectations is extremely broad. We
would like to expand this work to accommodate more sophisticated expectations espe-
cially those that arise in specific domains. For example, the expectations of coin collec-
tor may be quite different from those of a business-woman purchasing a printer. When
we broaden the scope of expectations, the problem naturally calls for sophisticated text
processing and machine learning techniques.

The notion of expectations is central to trust. Bernard Barber [3] defines trust essen-
tially in terms of expectations—regarding general social structures as well as the tech-
nical competence and intentions to meet obligations and responsibilities. The present
paper has focused on the lower end of this scale of complexity and subtlety so as to
demonstrate the effectiveness of several apparently simple techniques. However, the
scope of the work could be naturally expanded, and we hope that the success of the
approach and its results lead to greater interest in the study of expectations.

It is also interesting to consider trust, as Castelfranchi and colleagues [7] have ar-
gued, as a form of relationship capital that can be accumulated. The present approach
could feed into such work. Meeting expectations strengthens the relational capital
whereas violating expectations depletes it. We observe that a lot of the cognitively well-
motivated research into trust and reputation such as [6] has not had practical applica-
tions in broader computational settings. This is because of the difficulty in inferring the
cognitive states of users in open settings. The methodology developed here, of inferring
expectations as a form of simplified sentiment and affect analysis of text fragments,
could possibly develop into a more general approach that could handle the challenges
of the cognitive approaches—in settings where some clues to the user’s cognitive state
are available in text or other media.

Incorporating Expectations as a Basis for Business Service Selection 499

4.3 Future Work

We began from a motivation based on the importance of expectations from the services
science standpoint, especially as applied to business services. The e-commerce interac-
tions that we study are business as opposed to technical services, and the user experi-
ence they offer depends more on subjective expectations than on hard quality of service
data such as latency. Therefore, although they are simple, they are a useful surrogate
for business services at large. However, we imagine that more complex engagements
would offer additional challenges, including the involvement of more than two parties
and the evolution of expectations during negotiation. The latter would go beyond the
exchange of messages as in the eBay setting.

Formulating a more general model of consumer expectations for service-centric sys-
tems along with a method for computationally inferring expectations in such settings are
two significant challenges. We imagine that the computational method would again rely
upon techniques such as text mining, but perhaps more sophisticated than the present
approach. We hope to address some of these conceptual and technical challenges in
future work.

Acknowledgments

We thank the anonymous reviewers for their helpful comments.

References

1. Abbasi, A., Chen, H., Thoms, S., Fu, T.: Affect analysis of web forums and blogs using
correlation ensembles. IEEE Transactions on Knowledge and Data Engineering 20(9), 1168–
1180 (2008)

2. Anderson, C.: The Long Tail: Why the Future of Business is Selling Less of More. Hyperion,
New York (2008)

3. Barber, B.: Logic and Limits of Trust. Rutgers University Press, New Brunswick (1986)
4. Bhattacherjee, A.: Understanding information systems continuance: An expectation-

confirmation model. MIS Quarterly 25(3), 351–370 (2001)
5. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for col-

laborative filtering. In: Proceedings of the 14th Annual Conference on Uncertainty in Arti-
ficial Intelligence, pp. 43–52. American Association for Artificial Intelligence, Menlo Park
(1998)

6. Castelfranchi, C., Falcone, R.: Principles of trust for MAS: cognitive anatomy, social impor-
tance, and quantification. In: Proceedings of the 3rd International Conference on Multiagent
Systems, pp. 72–79. IEEE Computer Society Press, Los Alamitos (1998)

7. Castelfranchi, C., Falcone, R., Marzo, F.: Being trusted in a social network: Trust as relational
capital. In: Stølen, K., Winsborough, W.H., Martinelli, F., Massacci, F. (eds.) iTrust 2006.
LNCS, vol. 3986, pp. 19–32. Springer, Heidelberg (2006)

8. Checker, G.S.:
http://code.google.com/apis/soapsearch/reference.htm#1_3

9. Eugenio, B.D., Glass, M.: The kappa statistic: a second look. Computational Linguis-
tics 30(1), 95–101 (2004)

http://code.google.com/apis/soapsearch/reference.htm#1_3

500 A.M. ElMessiry, X. Gao, and M.P. Singh

10. Kerr, R., Cohen, R.: Smart cheaters do prosper: defeating trust and reputation systems. In:
Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS), pp. 993–1000. IFAAMAS, Budapest (2009)

11. Kim, D.J., Ferrin, D.L., Rao, H.R.: A study of the effect of consumer trust on consumer
expectations and satisfaction: the Korean experience. In: Proceedings of the 5th international
conference on Electronic commerce (ICEC), pp. 310–315. ACM Press, New York (2003)

12. Project stop words list, S.:
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/
a11-smart-stop-list/english.stop

13. Maglio, P.P., Spohrer, J.: Fundamentals of service science. Journal of the Academy of Mar-
keting Science 36(1), 18–20 (2008)

14. Maximilien, E.M., Singh, M.P.: Agent-based trust model involving multiple qualities. In:
Proceedings of the 4th International Joint Conference on Autonomous Agents and MultiA-
gent Systems (AAMAS), pp. 519–526. ACM Press, New York (July 2005)

15. Pang, B., Lee, L.: A sentimental education: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In: Proceedings of the 42nd Meeting of the Association for
Computational Linguistics (ACL), pp. 271–278. Association for Computational Linguistics,
Barcelona (2004)

16. Parasuraman, A., Zeithaml, V.A., Berry, L.L.: A conceptual model of service quality and its
implications for future research. Journal of Marketing 49(4), 41–50 (Fall 1985)

17. Porter, M.F.: An algorithm for suffix stripping. Information Systems 40(3), 211–218 (2006)
18. Salton, G., McGill, M.J.: An Introduction to Modern Information Retrieval. McGraw-Hill,

New York (1983)
19. Standifird, S.: Reputation and e-commerce: ebay auctions and the asymmetrical impact of

positive and negative ratings. Journal of Management 27(3), 279–295 (2001)
20. Williams, K.:

http://search.cpan.org/˜kwilliams/ai-categorizer-0.09/
21. Yang, Y., Liu, X.: A re-examination of text categorization methods. In: Proceedings of the

22nd Annual International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, pp. 42–49. ACM, New York (1999)

http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
http://search.cpan.org/~kwilliams/ai-categorizer-0.09/

Enhancing Collaboration with

IBM’s Rational Jazztm

Laura Anderson1, Bala Jegadeesan2, Kenneth Johns2,
Mario Lichtsinn2, Priti Mullan 2, James Rhodes2,
Akhilesh Sharma2, Ray Strong2, and Ruoyi Zhou2

1 Doctoral Student, Gateway PhD program, San Jose State University,
Queensland University of Technology, Brisbane, Australia
2 Almaden Services Research, IBM Research - Almaden

650 Harry Road, San Jose, California, 95120
l11.anderson@student.qut.edu.au,balaj@us.ibm.com,kjusf@us.ibm.com,

lichtsin@us.ibm.com,pritim@us.ibm.com,jjrhodes@us.ibm.com,

akhi@us.ibm.com,strong@almaden.ibm.com,ruoyi@us.ibm.com

Abstract. This paper describes our experience with IBM’s Rational
Jazztm platform for collaboration and for coordinating software
development in the context of a medium sized service research and devel-
opment project. We discuss the observed advantages of Jazz in system-
atizing the development process, especially when we are operating with
extreme agility and the team is widely distributed around the world.
We cover both narrative observations and quantitative measurements of
Jazz usage. We demonstrate an objective measure of the value of such
a software development management system. And we study the extent
to which Jazz interfaces can replace ad hoc communication. While Jazz
provides sufficient structure to replace all other communication within a
geographically distributed research and development team, we conclude
that redundant team communication in the forms of email and telephone
meetings is necessary to maintain team motivation.

Keywords: Agile Software Development, Collaboration, Service System.

1 Introduction

The service system concept provides a valuable abstraction for evaluating and
understanding the activities of a service provider, client, and the intrinsic value
co-creation [3], [8]. Software development is perhaps one of the best examples of
a service system today from several vantage points: the software under develop-
ment is most certainly destined to be a part of a larger service system, the overall
project team is a service provider to a customer within the enterprise, and the
extended team formed to create the software is itself a stand-alone operational
service system.

This practitioner paper examines the operation of a globally distributed vir-
tual team responsible for the research and development of a complex financial

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 501–514, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

502 L. Anderson et al.

system which includes applications, a data repository and advanced data ana-
lytics capabilities. Activities start from initial concept, requirements gathering,
all the way through the lifecycle to deployment and maintenance. Work is per-
formed collaboratively and dynamically by an organizationally matrixed team,
with members coming together from a wide variety of disciplines and professions.
The team is globally distributed, with some parts of the team co-located, and
others dispersed in individual locations. Primary team members and stakehold-
ers include the business process owners, the business transformation members,
architectural, development, and quality assurance professionals, and the target
customers. In addition, an agile software development methodology is utilized
to provide rapid prototyping and development as well as flexibility and respon-
siveness to changing business requirements [11].

Fig. 1. Communication and Collaboration among roles within the SDM Software
Development Service System

The project is named Solution Definition Manager (SDM), which includes
multiple subprojects producing IBMtm software for multiple customers within
IBM. Each project encompasses multiple roles and crosses various organizational
and geographic boundaries. In this study we aggregate these multiple roles and
projects into three roles with short names: Customer, Manager, and Developer.
The software being produced is used by solution architects and others within
IBM to prepare bids for IBM’s external service clients. Modifications and new
features in the software are requested by these solution architects, by execu-
tives responsible for sales and service delivery, and by executives responsible for
funding the research and development that produces the desired software. Our
focus in this paper is on the software development process, so we consolidate
all these users and executives into one role: Customer. We group all those who
participate in the research and development process by writing or testing code
into one role: Developer. And we collect a relatively small group of participants
in the development process who do not write or test code into one role: Manager.

Enhancing Collaboration with IBM’s Rational Jazztm 503

(Note that there is no particular correlation between IBM Management and any
of these roles.)

Managers are trained in software development project management. There are
very roughly ten times as many Developers as Managers. There are potentially
at least a thousand times as many Customers as Developers; but we are only
focused on the set of Customers who participate in the software development
service system to co-create value. The size of this set is roughly the same as the
size of the set of Developers.

The combination of Customers, Developers, and Managers constitutes a highly
geographically dispersed virtual team. Managers and Developers who reside on
different continents work closely together to produce software in spite of global
scale time differences and intervening organizational boundaries.

Our goal is to produce reliable, innovative software both punctually and with
agility [11]. Of course agility, reliability, and punctuality compete and cannot be
simultaneously maximized. In this paper we will describe our experience as we,
somewhat dynamically, explore tradeoffs toward the ultimate goal of optimizing
the value we are co-creating.

Work is organized into work streams that are included in research and de-
velopment projects. The output of several projects is combined into a release.
The frequency of releases varies from quarterly to annually depending on agree-
ments reached among all the roles (part of the exploration of tradeoffs mentioned
above). In addition, more frequent internal “prototyping and iteration” releases
can also be managed through this agile process to rapidly gather feedback on
user interfaces and functionality.

We will report qualitative experience over several years and many releases
of multiple software systems; but we will focus on one year of work involving
multiple releases of a single system for a report consisting of the interpretation of
quantitative data. During this year, the code base for this system was moved from
a previous management platform to Jazz, a program product from IBM Rational.
We will report on our experience with Jazz as a platform for collaboration and
co-creation of value within our service system.

Jazz is an integrated software development environment that includes a central
database, client applications and a web portal. It allows a virtual team to track
custom defined items related to software development. In our case, we track
defects (reported software problems), tasks (within work streams), requested
enhancements, requirements, and cross-line-of-business conflicts. Our selections
allow Jazz to function as a workload manager, a software source code file man-
ager, a software release content manager/scheduler, and a source code integra-
tion manager, a communication platform, and a project information repository.
The workload manager provides a view of work items and their associated sta-
tus (e.g., open closed) as well as the software developer that is assigned to the
work item. It also provides a cross-team view of workloads and assignments to
enable workload balancing. A software source code file manager enables pro-
grammers to utilize a shared code base and add to it or modify code elements.
It provides a central code repository and a foundation for producing software

504 L. Anderson et al.

builds. The software release content manager/scheduler provides the capabil-
ity to group individual work items together into an iteration plan, or release.
The communication platform and project information repository allow all team
members to access information about project work items without having to go
through e-mail trails, phone calls or other means of ad hoc communication.

2 Relevant Software Development Research

Two important enablers of close collaboration across the dimensions of physical
space, disparate time zones, and differing knowledge bases and disciplines are 1.
the establishment and active maintenance of “situation awareness”; the ability of
team members to perceive the activities and work items of their colleagues [10],
and 2. the creation of a common base or context around which to bring together
diverse disciplines, expertise, and viewpoints to a focused project objective. [7].

The computer supported cooperative work (CSCW) literature has addressed
these challenges from multiple angles: the exploration of collaboration support
systems, from general ”communication” systems to ones tightly integrated with
workflow and contextual tasks [1], formal and semi-formal frameworks [2], [5].

Integrated development environments, such as Jazz, have also been studied
and evaluated for their effectiveness in core technical activities such as coding, as
well as corollary tasks such as project management.[2], [9], [12], [13]. Our prac-
tical experience utilizing Jazz as a project activity and information hub, builds
on these previous studies and extends research to include other stakeholders in
the software development process, such as customers, business process owners,
and project managers.

Agile software development methodologies [4], [6] are characterized by iter-
ative, interactive, and highly collaborative practices. They provide a high de-
gree of customer value throughout the project, through this co-creation process,
particularly when compared with traditional waterfall methodologies. However,
agile methodologies can pose some practical challenges when the virtual team is
dispersed geographically, since the affordances of co-location, such as serendip-
itous informal meetings, are not present. The fast-paced and rapidly changing
priorities of an agile project put particular pressure on the capability to rapidly
synchronize the work activities of dispersed technical team members across mul-
tiple time zones. Similarly, the close collaboration required between the technical
team and the customers can also be negatively impacted by these same factors.
Jazz addresses these issues through an integrated software development envi-
ronment coupled with an information hub for related project information and
activities.

3 Narrative Observations

Qualitative data was gathered through a questionnaire completed by people
serving in the project manager role for different workstreams in the project, a
small subset of the full development team for this multi-year agile development

Enhancing Collaboration with IBM’s Rational Jazztm 505

project. They were asked to objectively provide information about their experi-
ences using Jazz in their daily work during the past year by responding to the
following questions.

1. How effective is Jazz at tracking defects, tasks, enhancements, requirements,
and cross-line-of-business conflicts?

2. How effective is Jazz in collaborating with a geographically dispersed team?
3. Does Jazz increase, reduce, or eliminate the time spent communicating syn-

chronously (in meetings, on the phone, and instant messaging)? Can you
estimate weekly meeting frequency before and after adopting Jazz?

4. Does Jazz increase, reduce, or eliminate the total time spent communicating
asynchronously (including email, Jazz, any other non-instant messaging)?

5. Does Jazz improve workload balance? How?
6. Does Jazz make more agility possible? How?
7. Does Jazz improve communication between developers and customers or

users? Do you use pie charts or trend graphs generated from Jazz data to
communicate with customers? Do you use similar visualizations to commu-
nicate with developers?

8. Does Jazz improve programmer productivity? How?
9. Does Jazz reduce the numbers of defects? How?

10. Does Jazz make source code integration (merge) easier and more defect free?
How?

11. How long did it take for you to learn how to use Jazz (in your PM role)?
Did you have to learn Jazz for all roles (PM, developer, customer, ...)?

12. What, if any, is your experience with the Jazz web portal? Why do developers
use a Jazz client and customers, a web portal?

This section provides the consolidated results of the responses to these questions
and is structured as an interview with one composite answer representing the
entire service system rather than answers from each role.

1. How effective is Jazz at tracking the items of interest to SDM
stakeholders (defects, tasks, enhancements, requirements, and cross-
line-of-business conflicts)?
Answer: During the previous three years of SDM development and research,
we have used different tools for tracking these items including spreadsheets, MS
Projecttm, Lotus Notes Teamroomtm, and CVStm. None of them are as effec-
tive as Jazz. Jazz integrates the development and project management processes
into one tool, reducing cross-process overhead. We use Jazz to log enhancements
(requests and new ideas) and requirements. Then we generate and track the as-
sociated development work items (tasks and defects). We rarely use the conflicts
selection, which was designed to track conflicting business requirements.

We have to define our own development process, including agility tradeoffs.
Jazz provides the framework. We are still exploring potential improvements to
our process. Requirement conflict tracking and resolution is an example area
where more work is needed before the item will be useful.

506 L. Anderson et al.

Sometimes a Customer creates a defect item or adds comments indicating a
problem on a development work item in order to suggest a change to an original
requirement. This provides a challenge because we need to detect this particular
category and treat it differently than we would a defect indicating a failure to
meet an original requirement. This is simply an overhead price the service system
pays for agility.

Overall, Jazz serves as a customizable, flexible, and easy to use information
hub, activity center, and status console, simultaneously providing high and low
level views of a project.

2. How effective is Jazz in collaborating with a geographically
dispersed team?
Answer: Jazz provides shared access to a common view of the state of the
service system. It facilitates context specific communication and work flow man-
agement (assigning and reassigning work items). The particular value of Jazz is
that it provides relevant access to all the different roles in the service system,
promoting co-creation of value between each pair of roles, across geographies,
time zones, and organizational boundaries. People from different organizations
with varied roles tend to have their own tools for collaboration and project track-
ing. Jazz breaks the silos and horizontally integrates different teams to focus on
the project.

3. Does Jazz change the time spent communicating synchronously (in
meetings, on the phone, and instant messaging)?
Answer: Jazz provides email notification for lists of people subscribed to specific
work items. We use Jazz to keep people informed and to record updates to plans.
However, Developers in particular are likely subscribed to large numbers of items
at any given time; so Managers use telephone or instant message as a redundant
communication medium for high priority information that might otherwise be
lost in a flood of emails. By serving as the definitive plan repository, Jazz does
reduce time that is otherwise wasted in meetings when information about plans
has not been synchronized. But Jazz does not replace the need for meetings
and other synchronous communication. On balance it may reduce synchronous
communication time slightly. It does provide a common authority and framework
for improving the overall project effectiveness. Project management processes
need to be aligned and integrated with the use of Jazz.

4.DoesJazz change the total time spent communicating asynchronously
(including email, Jazz, any other non-instant messaging)?
Answer: When items are updated with appropriate and timely information,
it does help reduce the time spent communicating asynchronously. It definitely
reduces coordination time among Managers who need to act on status infor-
mation including the number of requirements completed, the defect backlog,
and Developer work load. There is a significant reduction in total time spent in
asynchronous communication by Managers. In addition, providing a “level play-
ing field” for easily obtaining information between team members from different

Enhancing Collaboration with IBM’s Rational Jazztm 507

organizations addresses the problem of varying knowledge levels about a partic-
ular situation or activity, as can be the case with email distribution.

5. Does Jazz improve workload balance? How?
Answer: Jazz provides work load information across teams so that Managers
have some general visibility. This is especially helpful when one work stream
needs help from the team working on another. This is an area where we ex-
pect significant improvement when we upgrade to Jazz 2.0 and can explore new
processes corresponding to new Jazz function.

One feature we’re particularly interested in evaluating is plan risk assessment.
It takes a minimum/maximum time estimate for a work item and provides a
probability estimate for on time completion. If the probability is low, we can
reassign the item based on general work load information.

6. Does Jazz make more agility possible? How?
Answer: Yes. Jazz provides a platform for direct and documented communi-
cation within the entire service system. We build agile processes on top of this
platform. Without it, the communication channel for requirements and conflicts
becomes a bottleneck, inhibiting agility.

7. Does Jazz improve service system communication? Does anyone
use pie charts or trend graphs generated from Jazz data?
Answer: Jazz definitely improves communication by providing a shared view
of service system state as described above. We do not currently use the Jazz
visualization tools for service system communication. This is part of the tradeoff
in favor of agility.

8. Does Jazz improve programmer productivity? How?
Answer: Yes, here are two specific features jazz offers that have proven
invaluable:

1) The ability to associate a change-set to a work item and be able to later
reference why certain changes were made. It’s common to come across code and
wonder ”why is this here?” In Jazz, one can simply annotate the class file and
jazz will color code the file indicating the last change-set associated with every
line of code in the file. This makes it easy to pinpoint the person to contact if
further explanation is necessary. We’ve used this feature countless times and it’s
saved us from introducing regression bugs.

2) The suspend change-set feature allows a developer to remove changes from
the workspace, but keeps them available to resume at a later time. This elimi-
nates the need to maintain multiple development workspaces. If we’re working
on a new feature and we’re notified of a very high priority defect that needs to
be resolved ASAP, This feature allows us to suspend the changes for the new
feature and work on resolving the defect, without the new feature code getting
in the way. When the defect is resolved, we simply resume the change-set and
continue working. Prior to Jazz, this would require setting up a new workspace,
which consumes valuable time.

508 L. Anderson et al.

9. Does Jazz reduce the numbers of defects? How?
Answer: Jazz can help to reduce the number of defects if the developers use the
functions designed to do so. In Jazz we set up a status called ”ready for review”
indicating the item should be reviewed by a technical lead Developer before the
Developer can check in the code. We’re also looking into the using build/test
capabilities offered by Jazz. Once enabled, any developer will be able to kick off
a build and have automated test scripts performed before ever delivering code
for the rest of the team to consume.

10. Does Jazz make source code integration (merge) easier and more
defect free? How?
Answer: Without a question, Yes. The code merge process itself is very challeng-
ing. Especially for a project such as ours that’s very fast paced. The concept of
change-sets and the process of flowing them to various other work streams saves
a lot of time. The flow change-set process in Jazz identifies new change-sets that
have been added since the last merge. These change-sets can be accepted into
the stream and any conflicts are identified by Jazz. Jazz has a built-in feature
that attempts to auto merge conflicts. When it’s unable to merge automatically,
a manual merge is required.

11. How long did it take to learn how to use Jazz? Did you have to
learn Jazz for all roles?
Answer: It generally takes about a week to become proficient at one role. One
does not need to learn the other roles. At a basic level, the Jazz concepts were
simple to pick up. We had a working test environment set up for evaluation
within a day.

12. What, if any, is your experience with the Jazz web portal? Why
do developers use a Jazz client and customers, a web portal?
Answer: The web portal allows any jazz registered users to access project arti-
facts without having to install the client. Typically, Developers prefer the client
because it’s integrated with their IDE. Some non-Developers also prefer the
client because of speed and an integrated screen capturing feature.

4 Jazz Usage Measurements

Our working hypothesis is that increasing usage is an indication of perceived
value, particularly in the dimension of time savings through consolidated infor-
mation and global team presence awareness. Jazz puts every item created by
any Jazz user in its central database, so it provides us with a relatively easy way
to measure usage. However, it does not provide us with the number of times
an item is accessed or modified – it only maintains the most recent state of the
item. We rely on our experience to suggest that item creation activity provides
a reasonable proxy for all Jazz activity.

In this section we report on a little over one year of development work,
beginning with the introduction of Jazz as the new integrated development

Enhancing Collaboration with IBM’s Rational Jazztm 509

Fig. 2. Smoothed trace of Developer-created Jazz items per work day in monthly in-
crements (March, 2009 to March, 2010)

environment. Three releases of one system involving multiple projects and project
managers are covered. The dates of these releases are late August, early Decem-
ber, and early May (planned).

Figures 2, 3, and 4 are the plots of Jazz item creation activity by role.
During this time period, the three projects progressed through milestones that

generally included: a sequence of iteration releases to the Quality Assurance team
who performed functional verification tests; requirements and scope agreements
with the customer; a sequence of defect fixes and code build cycles; release to
a user acceptance test environment; and deployment to a pilot or production
environment.

The work schedules of members of this service system covered almost all of
the available hours of every day for the duration of our data; but there were
many days when no items were created, especially during the winter holiday
period in December, 2009. In order to represent items created per day in a
visually intelligible way, we have smoothed the raw data and applied a uniform
scaling factor of 10:7 to account for vacation, weekends, etc. The smoothing is
accomplished by taking a simple moving average of seven days (each data point
in figures 2, 3, and 4 is thus the average of the raw data points in the week
leading to the corresponding date, multiplied by the factor of 10/7).

Our experience suggests that the initial flurry of Developer and Manager ac-
tivity corresponds to the period in which Jazz was introduced to the already
ongoing effort. It also suggests that the delay before the beginning of Customer

510 L. Anderson et al.

Fig. 3. Smoothed trace of Manager-created Jazz items per work day in monthly incre-
ments (March, 2009 to March, 2010)

Fig. 4. Smoothed trace of Customer created Jazz items per work day in 2 month
increments (March, 2009 to March, 2010)

Enhancing Collaboration with IBM’s Rational Jazztm 511

Fig. 5. Smoothed trace of Jazz items created per work day by role - a combination of
Figures 2, 3, and 4

Fig. 6. Smoothed trace of Jazz items created per work day by role, scaled to compare
trends (as if equal numbers of items were produced - a scaling of Figure 5

512 L. Anderson et al.

creation activity also corresponds to the introduction of Jazz to the customer
via the web portal.

Figure 5 contains the stacked results from figures 2, 3, and 4. It is harder to
read because the number of items introduced by the Developers far outnumbers
the numbers of items introduced by the other roles so that scaling hides most
of the information about the relative trends for the roles. In order to provide a
visual representation of the relative trends (to compare roles independent of the
absolute numbers of items they create), we provide a scaled version of Figure 5
in Figure 6. In the case of Figure 6 data for each role is independently scaled
by factors that correspond to each role creating the same total number of items.
Thus Figure 6 shows the relative trends of Jazz item creation activity but not
the relative numbers of items produced.

If we ignore the first three months of reported activity as corresponding to
initialization, then the trend for each of the roles is increasing, with the Customer
providing the most increasing trend.

5 Conclusions and Future Research in This Area

We report from our experience that Jazz provides excellent value in terms of its
use as a manager of code files and integration as well as its use for communication
and collaboration. Our positive report on use of Jazz should be viewed as a
comparison with the use of a much less elaborate simple check-out and check-in
system that offered almost no assistance in collaboration. It is not a replacement
for other forms of communication; but there is some evidence that it does at least
reduce total synchronous communication (meetings, telephone calls, and instant
messages) and improve the effectiveness of those interactions.

We described how the two distinct methods of Jazz access (client and web
portal) each provided specific value to specific roles. Each has its strengths: the
client being more appropriately connected to the Developer’s other tools; the
portal requiring no client installation and easy access for the casual user.

Our study provides confirmation to our working hypothesis that usage is corre-
lated with perceived value. We were surprised to see the dramatically increasing
usage trend for Customers relative to the trends for other roles; but take it as
confirmation that Customers appreciate the value represented by Jazz: the more
they use it the more they appreciate it. We have dealt with sophisticated sys-
tems before that were adopted but never really used. The most important aspect
of this paper is the initial report on usage that we believe indicates the value
different classes of user place on the tool. In particular, the customers in our
service system for agile development demonstrate the value they see in the tool
by their increasing rate of usage. We suggest this criterion as a way to assess
such tools that goes beyond a comparison of features.

We did not find that the tool replaced all other types of communication or that
it dramatically reduced the frequency of communication outside the tool. Since
we introduced the tool in the middle of our project, we could compare at least
individual subjective reports, which we synthesized into the virtual Q and A. We

Enhancing Collaboration with IBM’s Rational Jazztm 513

had and still have no way to collect and measure out-of-band communication,
and our ability to measure the in-band communication begins with the tool
introduction. Our simple criterion of trend in tool usage is generally available
and seems to be a useful and inexpensive way to assess tool value. Future research
activities in this area include collection of more detailed quantitiative usage data
from Jazz by role and geography, survey data from customers and developers, and
in-depth examination of the role of email, phone converations and conferences,
and web conferences in conjunction with Jazz usage.

Acknowledgement. Special thanks to our colleagues and partners for their
many contributions to the project: Henri Naccache, Julian Jones, George De-
Candio, Roger Andrews, Rajesh Singi, Michael VanAmburgh, Roslyn Highsmith,
Kevin Janasak, and Isaac Councill.

References

1. Bernstein, A.: How can cooperative work tools support dynamic group process?
bridging the specificity frontier. In: Proceedings of the 2000 ACM conference on
Computer supported cooperative work, pp. 279–288. ACM, Philadelphia (2000),
doi:10.1145/358916.358999

2. Cheng, L., Souza, C.R.D., Hupfer, S., Patterson, J., Ross, S.: Building Collabora-
tion into IDEs. Queue 1(9), 40–50 (2004)

3. Councill, I.G., Hacigumus, H., Johns, K., Kreulen, J.T., Lehman, T.J., Rhodes,
J., Strong, R., et al.: An analysis of a service system supporting IBM’s global
service delivery. In: 2009 IEEE/INFORMS International Conference on Service
Operations, Logistics and Informatics, Presented at the 2009 IEEE/INFORMS
International Conference on Service Operations, Logistics and Informatics (SOLI),
Chicago, StateIL,USA, pp. 317–322 (2009), doi:10.1109/SOLI.2009.5203952

4. Dyba, T., Dingsøyer, T.: Empirical studies of agile software development: A sys-
tematic review. Information and Software Technology 50(9-10), 833–859 (2008)

5. Hayes, J.H., Dekhtyar, A., Janzen, D.S.: Towards traceable test-driven develop-
ment. In: Proceedings of the 2009 ICSE Workshop on Traceability in Emerging
Forms of Software Engineering, pp. 26–30. IEEE Computer Society, Los Alamitos
(2009)

6. Highsmith, D., Cockburn, A.: Agile Software Development: The Business of Inno-
vation. In: Computer, pp. 120–122 (September 2001)

7. Larsson, A.: Making sense of collaboration: the challenge of thinking together in
global design teams. In: Proceedings of the 2003 international ACM SIGGROUP
conference on Supporting group work, pp. 153–160. ACM, Sanibel Island (2003),
doi:10.1145/958160.958184

8. Maglio, P.P., Srinivasan, S., Kreulen, J.T., Spohrer, J.: Service systems, ser-
vice scientists, SSME, and innovation. Commun. ACM 49(7), 81–85 (2006),
doi:10.1145/1139922.1139955

9. Meneely, A., Williams, L.: On preparing students for distributed software develop-
ment with a synchronous, collaborative development platform. In: Proceedings of
the 40th ACM technical symposium on Computer science education, pp. 529–533.
ACM, USA (2009), doi:10.1145/1508865.1509047

514 L. Anderson et al.

10. Neale, D.C., Carroll, J.M., Rosson, M.B.: Evaluating computer-supported coop-
erative work: models and frameworks. In: Proceedings of the 2004 ACM confer-
ence on Computer supported cooperative work, pp. 112–121. ACM, USA (2004),
doi:10.1145/1031607.1031626

11. Nerur, S., Balijepally, V.: Theoretical reflections on agile development methodolo-
gies. Commun. ACM 50(3), 79–83 (2007)

12. Sengupta, B., Chandra, S., Sinha, V.: A research agenda for distributed software
development. In: Proceedings of the 28th international conference on Software en-
gineering. ACM, China (2006), doi:10.1145/1134285.1134402

13. Yaeli, A., Klinger, T.: Enacting responsibility assignment in software development
environments. In: Proceedings of the 1st international workshop on Software devel-
opment governance, pp. 7–10. ACM, Leipzig (2008), doi:10.1145/1370720.1370724

Discovering Business Process Similarities: An

Empirical Study with SAP Best Practice
Business Processes

Rama Akkiraju and Anca Ivan

IBM Almaden Research Center,
650 Harry Rd, San Jose, CA 95120

Abstract. Large organizations tend to have hundreds of business pro-
cesses. Discovering and understanding the similarities among these busi-
ness processes are useful to organizations for a number of reasons: (a)
business processes can be managed and maintained more efficiently, (b)
business processes can be reused in new or changed implementations, and
(c) investment guidance on which aspects of business processes to im-
prove can be obtained. In this empirical paper, we present the results of
our study on over five thousand business processes obtained from SAP’s
standardized business process repository divided up into two groups:
Industry-specific and Cross-industry. The results are encouraging. We
found that 39% of cross-industry processes and 43% of SAP-industry
processes have commonalities. Additionally, we found that 20% of all
processes studied have at least 50% similarity with other processes. We
use the notion of semantic similarity on process and process activity la-
bels to determine similarity. These results indicate that there is enough
similarity among business processes in organizations to take advantage
of. While this is anecdotally stated, to our knowledge, this is the first
attempt to empirically validate this hypothesis using real-world business
processes of this size. We present the implications and future research
directions on this topic and call for further empirical studies in this area.

Keywords: business processes, process maps, discovery.

1 Introduction

For the purposes of this paper, a business process means those ’structured activi-
ties or tasks’ in an organization which, when executed in a specific way, ’produce
a specific product or service for a specific customer’ [14]. Examples of business
processes include: accounts payable, accounts receivable, demand planning, order
processing, employee payroll management, new-hire on boarding, sales promo-
tion management, drug discovery management, clinical trial management etc.
As can be noted in the example business process names above, some of them are
applicable to most companies (cross-industry), while some are specific to some
industries (industry-specific). For example, most companies have some kind of

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 515–526, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

516 R. Akkiraju and A. Ivan

employee payroll management, new hire on boarding, accounts payable and ac-
counts receivable kind of processes. They are the cross-industry processes. Pro-
cesses such as drug discovery and clinical trial management are processes that
are specific to pharmaceutical industry. Demand planning business process is
typically used in manufacturing oriented industries and sales promotion man-
agement is most typical in retail industry context. These are typically referred
to as industry specific business processes.

A business process is said to be documented or modeled if the structure of the
collection of process activities involved is represented and can be visualized as
a model (eg: flowchart like diagram). A simplest form of such a representation
could be a sequence of activities. More complex representations include forks,
joins, parallel paths, decision nodes etc. A business process is said to be for-
mally documented if its flowchart-like model adheres to formal rules of any one
chosen business process representation language (eg: Business Process Modeling
Notation BPMN [12], Unified Modeling Language [13], Petrinets).

Large organizations tend to have hundreds and sometimes even thousands
of business processes. Organizations that are mature and disciplined in the
way they run their business processes may maintain models of their business
processes in repositories for reference and maintenance purposes. These reposi-
tories could be valuable assets for organizational learning. Analyzing these busi-
ness process models and discovering and understanding the similarities among
them can be useful to organizations in a number of ways. First, if similar as-
pects/tasks/activities of business processes are known business processes can be
managed more efficiently. For example, if a software patch is to be applied to
an application that supports a specific process activity, then knowing what all
business processes use the same process activity is very helpful. This informa-
tion helps in planning the business process unavailability and therefore even-
tually scheduling the business process unavailability optimally. Second, during
new business process implementations or changes to existing business processes,
those aspects of process activities that might be common with or similar to any
of the existing process activities can be readily reused or leveraged for efficient
implementations. Third, during mergers and acquisitions, knowing the similar-
ities among the business processes of the two organizations involved can help
with identifying opportunities for process standardization and consolidation. Fi-
nally, knowing similar process activities can also guide investment decisions if
the identified similar process steps are associated with metrics that need fur-
ther improvements. In summary, the need for understanding business process
similarities within an organization is well-established.

Discovering business process similarities canbe viewed from IT services provider
perspective as well. Information Technology (IT) services companies are under
constant pressure to deliver solutions quickly and cost effectively to their clients.
One way to achieve this is by reusing assets developed for past clients after appro-
priate cleansing in the context of a new client project. Most IT services providers
have some internal mechanisms in place to maintain assets from projects in
some repositories. Business processes stored in these repositories could contain

Discovering Business Process Similarities: An Empirical Study with SAP 517

a wealth of knowledge and assets related to business process models, best prac-
tices, time taken to implement solutions etc. Leveraging the assets around these
existing business process models can reduce project delivery times and improve
project efficiencies. For example, some aspects of campaign management process
in pharmaceutical industry might be similar to a trade promotions management
process in retail industry. Therefore, the assets related to the campaign man-
agement processes such as best-practices, process definition documents, imple-
mentation guides, test scripts, and possibly even some code implemented for a
specific client in pharmaceutical industry might be useful when implementing a
trade promotions management process for another client in retail industry.

Thus far in this introduction, we have presented several arguments for why dis-
covering and understanding similarities among business processes can be useful
for organizations. However, an important question that we feel is not answered
well in literature so far is: is there much similarity among business processes in
organizations, in real-world or is it merely a topic of academic interest? We have
not found any empirical studies presenting evidence one way or another. That
is what motivated our work.

In this empirical study, we explore business process similarity with the aim of
discovering similarities among a given set of business processes in an industry
setting. We have analyzed over one thousand publicly available best practice
business processes from SAP’s business process repository to discover similarities
among them within and across industries. The results are encouraging. We found
that 20% of all processes studied have at least 0.5 similarity with other processes.
We use the notion of semantic similarity on process and process activity labels to
determine similarity. While this is a simple start, the results indicate that there is
enough similarity among business processes in real-world organizations to take
advantage of. While this is anecdotally observed thus far, to our knowledge,
this is the first attempt to empirically prove this hypothesis using real business
processes of this size. We present the implications and future research directions
on this topic. The results can be applied and used by large organizations with
many business processes and also for IT services companies that provide business
process implementation services for their clients.

The rest of the paper is organized as follows. We discuss various aspects of
business process similarities in Section 2 and discuss some of the techniques used
in literature. We present the details of our experimental setup in Section 3. Sec-
tion 4 presents our analysis of process similarities in SAP best practice processes.
Finally, in Section 5 we discuss limitations of our study and call for additional
empirical studies to substantiate the need for more research on this topic.

2 Background and Related Work on Process Similarity

What information about business processes can be used to discover similari-
ties? Business processes operate in specific contexts in organizations. Business
processes have names(labels), structure, semantics, and data flow. They use re-
sources and manipulate resources(system, people, and data) and leave traces

518 R. Akkiraju and A. Ivan

behind when executed. The efficiency and effectiveness of business processes can
be measured by metrics. Business processes serve specific business objectives
that can be measured by key performance indicators. Business process designers
and analysts document information about processes and process steps in plain
text in design documents. Sometimes there might be rich text (attachments,
diagrams with annotations etc) about processes in process design documents.
Business processes can be classified along many dimensions: industry, scenario
groups, scenarios, functional areas, organizations (that are responsible for man-
aging and maintaining them), user groups and roles (that use the processes).
Business processes have dependencies on other processes and are related to other
business process. When business processes are not functioning normally or as de-
sired, certain aspects of business will be at risk. Business processes need to be
maintained and updated and when outages (planned or unplanned) occur, there
will be business impact. All of this information about processes can be used for
determining process similarity.

Obtaining all of the information about business processes at once is hard. The
organizational structure of companies makes it difficult to go to one single source
to obtain comprehensive information about business processes. In the past, there
weren’t enough mature tools that supported formal business process modeling,
analysis, and simulation. Even if they existed, they were considered academic and
didn’t receive much adoption in the industry. So, not many companies formally
documented their business processes. Recent emergence of industry standards
such as Business Process Modeling Notation [12] and Business Process Execution
Language [15] combined with the maturity and accessibility of vendor tools make
the goal of discovering business process similarities more achievable than it was
in the past.

Our related work analysis on business process similarity matching is not com-
prehensive since we are concerned with presenting the results of our empirical
study. We note that much of the past work done in business process similarity
matching is done based on matching of process labels, process structure (control
flow) and process execution semantics. Dumas et al. [4] present a nice sum-
mary of various techniques that have been applied to conduct process similarity
matching in their paper. They note the usage of string-edit distance based ap-
proaches for label matching, graph matching techniques [1,2,3] for process control
flow matching and process mining techniques for matching execution semantics
(traces, logs) [5,6]. Simulation and causal footprint analysis [7] have also been
used for matching. Much of this work focuses on matching pairs of business pro-
cesses. However, in our work, we are concerned with matching a query with a
repository of business processes.

Clustering and machine learning communities have looked at repositories of
business processes. For example, Lee H.S [8] generates hierarchical clusters from
a set of business processes using the notions of cohesion and coupling. The author
uses clustering as a means to find out related and dependent processes. This work
does not directly focus on finding a set of matching processes (from a repository
of processes) with the purpose of reuse in mind. J. Melcher and Sees [9] applied

Discovering Business Process Similarities: An Empirical Study with SAP 519

clustering to SAP reference models using process metrics values for finding (struc-
turally) similar processes among business process collections. The process metric
values of various processes are compared to obtain a heatmap. This visual tech-
nique is used for clustering. This is one empirical work that we are aware of on
SAP reference models. We perform semantic matching using process and pro-
cess step labels whereas this work used process metrics information. In another
work Jung and Bae et al [10] apply hierarchical machine learning to discover
process similarities among a group of processes. In their work they first trans-
form business process models to vector models based on their structures such
as activities and transitions, and the vectors are compared by Cosine similar-
ity measure. Finally, the models are clustered by the agglomerative hierarchical
clustering algorithm. B. Srivastava [11] uses process features to derive summaries
on groups of processes. These latter two works aim to address the same problem
of leveraging existing processes for future process implementations.

Although, it not the main focus of this empirical paper, it is interesting to
note that there is no body of work leveraging multiple attributes of business
processes (listed in Figure 2) at the same time - perhaps because of the difficulty
of obtaining that data. But it is increasingly becoming possible to obtain that
information. We believe that a combination of text analytics, clustering and
structure matching that takes into account data, resource flows into account will
yield more accurate and precise matches. This is the subject of our next study.
For now, we turn our attention to our study.

3 Empirical Study Setup and Discussion

We believe that there is enough similarity among business processes within a
company and within and across industries that discovering and understanding
these similarities is beneficial for individual organizations as well as IT services
providers. We want to test this hypothesis with our experiments.

To test our hypothesis we need access to a large number of business processes
that might exist either within a company or across various companies in various
industries. Because of the ease of accessing the data, we have chosen the latter.
Enterprise Resource Planning vendors such as SAP and Oracle offer models of
best practice business processes for various industries and cross industries. We
have chosen SAP’s best practice processes that are publicly available via SAP’s
Solution Composer tool. These business processes are classified across various
industries (eg: Pharmaceuticals, Retail, Financial Services etc) and cross indus-
tries (eg: Finance, Accounting, Human Resource Management etc). These best
practice business proccess have the following attributes: name of the business
process, any known process variants, names of the process steps (or activities),
and description. The industry classification, the process hierachies, names, de-
scriptions and names of process steps can all be visualized in SAP’s Solution
composer tool. For programmatic parsing, this data is also available as XML
files with several references and links (perhaps to avoid duplication). We did not
have access to the formal process model representations of these best practice

520 R. Akkiraju and A. Ivan

processes via the SAP Solution Composer tool. We are aware that EPC (Event
Process Chain) models of these best practice processes exist but they are not
public. We also did not have access to the data flow through these processes.
Therefore, our study has several limitations which are cited below. Since writing
this paper, we have had access to many business processes of a large company
with formal business process models and data flows. Currently, we are work-
ing on several extensions to this study by considering the structure, data and
resource flow in discovering similarities among business processes. However, we
believe that even with the known limitations of our current study, the results
are of great significance since very limited, if any, empirical studies exist in this
important space. First we list the limitations of our study and then describe the
nature of the data before presenting our analysis.

Limitations of our study

– In this study, our business process similarity matching approach does not
consider the structure of the processes into account. This is due to the lack
of availability of this data at the time of this study.

– In this study, we do not consider the data and resource flow through business
processes. Again, this is due to the lack of availability of this data at the
time of this study.

– We assume that name similarity of either processes or process steps implies
some underlying similarities. Currently, we do not account for the scenarios
where the names of processes or process steps might be the same but the
underlying behavior is very different.

Process complexity. The data analysis was peformed on 21 solution best
practice maps from the SAP Solution Composer tool [16]. Solution Composer
keeps these maps as XML files. Unfortunately, the XML files have no consistent
schema. Our first challenge was extracting the processes and their structure for
every map. Once the data was extracted and saved a consistent computer read-
able form, we ran several experiments to determine the nature of the data. Our
conclusions are presented next.

On average, the solution maps have 160 processes. The cross-industry maps
have 1916 processes, the SAP industry maps have 3383 processes (total of 5299
processes). Table 1 shows the number of processes defined for a sample set of
cross-industry and industry maps.

Each process has an average 6 or 7 process steps; Figure 1 shows the distri-
bution of processes as a function of number of steps contained in the process.
A very small number of processes have more than 20 steps: for example, the
Campaign Planning and Execution in CRM process from the SAP Service and
Asset Management cross-industry map has 27 steps, and 13 processes from in-
dustry maps including Management of Internal Controls from Mining industry
map which has 56 steps, and Local Close from Banking industry map which has
37 steps).

Discovering Business Process Similarities: An Empirical Study with SAP 521

Table 1. Number of processes for a sample set of industry and cross-industry maps

Cross Industry Map No. Industry Map No.

mySAP Product Lifecycle Management 47 Aerospace 192
Channel Management 377 Banking 244

SAP Business One integration for SAP NetWeaver 19 Defense 149
SAP Radio Frequency Identification (RFID) 62 Defense Logistics 220

SAP Business One 2005 239 Mining 236
Field Applications 344 Public Sector 177

E-Commerce 256 Higher Education 171
SAP Business One 2004 239 Hospitality 272

SAP CRM Powered by SAP NetWeaver 208 Insurance 113
SAP NetWeaver 82 Research 106

SAP Global Trade Services 43 Utilities Retail 239

Fig. 1. Process complexity as a function of number of steps

Process duplication. Given the large number of processes defined by both in-
dustry and cross-industry maps, the next question is whether these processes are
unique to their respective domains. Figure 2 highlights the process duplication
across maps. In this experiment, two processes are considered to be duplicates
if their names are identical. The Y axis represents the number of processes that
belong to 1, 2, 3 or more industries. In the case of cross-industry maps, 648
processes are unique to a single map, 295 processes can be found in 2 maps, 140
can be found in 3 maps, and 65 processes can be found in more than 3 maps.
For example, the Self-Service Support through FAQ and Solution Search process
belongs to the following cross-industry maps: SAP Service and Asset Manage-
ment, E-Commerce, and Channel Management. In the case of cross industry

522 R. Akkiraju and A. Ivan

Fig. 2. Process duplication across industry and cross-industry maps

maps, 39% of process are duplicated across maps; in the case of SAP-industry
maps, 43% are duplicated across maps.

4 Data Analysis

In order to evaluate the process similarity, we are using 3 approaches: (1) identify
process duplication (as described above), (2) identify common steps amongst
processes, and (3) compute the semantic similarity score for the process names.

The semantic similarity score is given by the following equation:

S = 2 ∗ nCS/(nP + nQ)

where nP and nQ are the numbers of steps contained in the structures of pro-
cesses P and Q, and nCS is the number of common steps.

Step-based similarity. Figure 3 shows how often business processes share pro-
cess steps. The X axis represents the number of process steps shared by two
processes. The Y axis represents the number of processes that share the given
number of process steps. In the SAP industry maps data set, the Complaints

Fig. 3. Process commonality across industries as a function of number of steps

Discovering Business Process Similarities: An Empirical Study with SAP 523

Processing with CRM Mobile Service for Handheld process from the Logistics
Service Providers map and the Service Order Processing with CRM Mobile Ser-
vice for Handheld process from Utilities map have 3 steps in common (similarity
score of 0.5): (1) Synchronize data, (2) System replicates data, and (3) Assign
business partner and contact person.

Process similarity scores. Figure 4 shows the process similarity trends for
both data sets; we computed the similarity scores between all pairs of processes
defined in each domain (cross-industry, and industry-specific). The similarity
scores are high for a small number of processes, and then they drop. Only about
20% of processes have similarity scores higher than 0.5: for example, in the cross-
industry maps, the similarity score between Quotation Processing with CRM
Mobile Sales and Activity Processing with CRM Mobile Sales is 0.8. This means
that 80% of the processes either have no variant or the variant is so different in
name that semantic matching is not discovering the variant.

Fig. 4. Similarity scores

Process variants. In order to find process variants, we used the semantic simi-
larity algorithm previously described for our experiments. Both graphs show only
a subset of the processes that have variants. For presentation purposes, we only
show a subset of the process variants that have representative variants (many
of the processes have very low similarity scores). In the case of cross-industry
maps, most processes are not connected (similarity scores are very low). This
makes sense because an enterprise runs only one instance of a process. There are
only a few processes that have variants and were found by the semantic similar-
ity engine; for example, “Complaints Processing with CRM Mobile Service” and
“Complaints Processing with CRM Mobile Service for Handheld”. In the case of
industry maps, the similarity scores are higher because there are more processes
related across multiple industries.

The results indicate the following. (1) There is enough similarity among these
processes studied. 39% of cross-industry processes and 43% of SAP-industry

524 R. Akkiraju and A. Ivan

(a) Cross-industry maps (b) Industry maps

Fig. 5. Process variants

processes are re-used across maps. Additionally, we found that 20% of all pro-
cesses studied have at least 50% similarity with other processes. (2) The amount
of similarity among processes in cross-industry segment is a little bit smaller
than (39%) that discovered among processes in industry segment (43%). While
it would be too early to draw any conclusions based on these experiments which
only consider the process and process step labels as similarity metrics, the re-
sults reveal opportunities for some further areas of study. This result when sub-
stantiated further might mean that there are fewer opportunities to leverage
similarities among business processes within an organization than among best
practice processes developed for many industries by IT services provider. IT ser-
vices providers might benefit more from conducting business process similarity
matching than individual organizations. This result makes one assumption that
individual organizations all have non-duplicating common best practices. We
know that that is seldom the case. Often companies end up with duplicate pro-
cesses and systems due to mergers and acquisitions. So, this result does not apply
to that case since the data assumes that there are standardized processes within
an organization. In any case, this calls for further empirical studies with business
process data within individual organizations as well as with data of best prac-
tices from IT services providers to really understand the nature of similarities in
business processes within companies, within industries and across industries.

5 Discussions and Conclusions

The data used for analysis in this work is from the best practice process reposi-
tory of a business process implementation software vendor, SAP. Individual com-
panies implement business processes that pertain to their industry. They don’t
implement all processes for all industries. Therefore, the results from analyzing
industry-specific processes apply more to IT services providers’ that implement
business process software for companies than to individual companies. The cross-
industry business processes apply more generally to companies in any industry.
So, these results apply to both individual companies and IT services providers.

Discovering Business Process Similarities: An Empirical Study with SAP 525

Our study, presently, uses semantic similarity of process and process activity la-
bels to determine similarities among processes. One might argue that semantic
matching of labels alone is a weak indication of similarity if the structure is not
considered. While we acknowledge that in general, we argue that for the specific
data set we considered that is not an issue. This is because SAP business process
repository uses vocabulary that is standardized across all of SAP’s software. For
example, the word ’sales order’ in a process activity would mean the same when
it is found in any other process activity in any business process within SAP
domain. Therefore, label matching works well in this domain. We acknowledge
the limitations of this study both in the amount of information about business
processes that was used and in the simplicity of technical approaches used to
discover similarities among business processes. The main reason for limiting the
study to these aspects is the lack of publicly available data on some of the other
aspects of business processes (such as control flow, data flow, resource flow etc)
for the data we considered. The results presented in this paper can be treated
as a call for further empirical studies to discover similarities among business
processes in an industry setting. As of the time of writing of this paper, we were
fortunate to get access to a large repository of internal business processes of a
large company (one of the 30 Dow Jones companies who guide the Dow Jones
Industrial Average Index) with detailed control flow, data flow, resource flow
and detailed design documentation. We are currently studying that data and
are exploring the application of machine learning, clustering and a combination
of graph matching, text analysis techniques and semantic matching algorithms
to determine process similarities.

References

1. Dijkman, R., Dumas, M., Garcia-Banuelos, L.: Graph matching algorithms for busi-
ness process model similarity search. In: Dayal, U., Eder, J., Koehler, J., Reijers,
H.A. (eds.) Business Process Management. LNCS, vol. 5701, pp. 48–63. Springer,
Heidelberg (2009)

2. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph
matching algorithm (extended technical report). Technical Report 2001-25, Stan-
ford InfoLab (2001)

3. Li, C., Reichert, M.U., Wombacher, A.: On measuring process model similarity
based on high-level change operations. Technical Report TR-CTIT-07-89, CTIT,
Enschede, The Netherlands (2007)

4. Dumas, M., Garcia-Banuelos, L., Dijkman, R.: Similarity Search of Business Pro-
cess Models, http://sites.computer.org/debull/A09sept/marlon.pdf

5. van der Aalst, W., Weijters, A., Maruster, L.: Workflow Mining: Discovering Pro-
cess Models from Event Logs. IEEE Transactions on Knowledge and Data Engi-
neering 16(9), 1128–1142 (2004)

6. Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow
Logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS,
vol. 1377, pp. 469–483. Springer, Heidelberg (1998)

7. van Dongen, B.F., Dijkman, R.M., Mendling, J.: Measuring similarity between
business process models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS,
vol. 5074, pp. 450–464. Springer, Heidelberg (2008)

http://sites.computer.org/debull/A09sept/marlon.pdf

526 R. Akkiraju and A. Ivan

8. Lee, H.S.: Automatic clustering of business processes. Business systems planning
European Journal of Operational Research 114(2), 354–362 (1999)

9. Melcher, J., Seese, D.: Visualization and Clustering of Business Process Collections
Based on Process Metric Values. In: 10th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing, pp. 572–575 (2008)

10. Jung, J.Y., Bae, J., Liu, L.: Hierarchical Clustering of Business Process Models.
International Journal of Innovative Computing, Information and Control 5(12)
(2009)

11. Srivastava, B.: Summarizing Business Processes; Manuscript (2009)
12. Business Process Model and Notation, http://www.omg.org/spec/BPMN/
13. Unified Modeling Language,

http://www.omg.org/technology/documents/formal/uml.htm

14. Wikipedia, http://www.wikipedia.org/
15. Web Services Business Process Execution Language,

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html

16. SAP Business Maps, Solution Composer,
http://www.sap.com/solutions/businessmaps/composer/index.epx

http://www.omg.org/spec/BPMN/
http://www.omg.org/technology/documents/formal/uml.htm
http://www.wikipedia.org/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html
http://www.sap.com/solutions/businessmaps/composer/index.epx

A Scalable and Highly Available Brokering

Service for SLA-Based Composite Services

Alessandro Bellucci, Valeria Cardellini, Valerio Di Valerio, and Stefano Iannucci

Università di Roma “Tor Vergata”, Viale del Politecnico 1, 00133 Roma, Italy
{cardellini,iannucci}@ing.uniroma2.it

Abstract. The introduction of self-adaptation and self-management
techniques in a service-oriented system can allow to meet in a chang-
ing environment the levels of service formally defined with the system
users in a Service Level Agreement (SLA). However, a self-adaptive SOA
system has to be carefully designed in order not to compromise the sys-
tem scalability and availability. In this paper we present the design and
performance evaluation of a brokering service that supports at runtime
the self-adaptation of composite services offered to several concurrent
users with different service levels. To evaluate the performance of the
brokering service, we have carried out an extensive set of experiments
on different implementations of the system architecture using workload
generators that are based on open and closed system models. The ex-
perimental results demonstrate the effectiveness of the brokering service
design in achieving scalability and high availability.

1 Introduction

The complexity of service-oriented systems poses an increasing emphasis on the
need of introducing runtime adaptation features, so that a SOA-based system
can meet its quality of service (QoS) requirements even when operating in highly
changing environments. In addition, the SOA paradigm allows to build new
applications by composing network-accessible services offered by loosely coupled
independent providers. A service functionality, e.g., booking an hotel, may be
implemented by several competing services (referred to as concrete services)
with different QoS and cost attributes, thus allowing a prospective user to select
the services that best suit his/her requirements. Hence, being able to effectively
deliver and guarantee the QoS levels required by differentiated classes of users
may bring competitive advantage to a composite service provider over the others.

In this paper, we present the design and performance evaluation of MOSES
(MOdel-based SElf-adaptation of SOA systems), a runtime adaptation frame-
work for a SOA system architected as a brokering service and operating in a
sustained traffic scenario. MOSES offers to prospective users various compos-
ite services, each of which presents a range of service classes that differ for the
QoS performance parameters and cost. Its goal is to drive the adaptation of the
composite services it manages to fulfill the SLAs negotiated with its users, given

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 527–541, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

528 A. Bellucci et al.

the SLAs it has negotiated with the concrete services used to implement the
composite services, and to optimize a utility goal (e.g., the broker revenue).

The major goals of the MOSES brokering service are: (1) its ability to man-
age in an adaptive manner the concrete services so that it guarantees the QoS
parameters agreed in the SLAs with the composite service users; (2) its scalabil-
ity and availability, being the brokering service subject to a sustained traffic of
requests; therefore, its architecture should not affect the performance of the man-
aged composite services. To achieve these goals, we have designed the MOSES
architecture as an instantiation for the SOA environment of a self-adaptive soft-
ware system, where the software components are organized in a feedback loop
aiming to adjust the SOA system to internal and external changes that occur
during its operation. Moreover, the MOSES prototype exploits the rich capabili-
ties offered by OpenESB (an implementation of the JBI standard) and MySQL,
which both provide interesting features to enhance the scalability and availabil-
ity of complex systems. We have evaluated the performance and scalability of
the MOSES prototype through an extensive set of experiments using workload
generators that are based on open and closed system models. The results show
that under every load condition the MOSES prototype based on OpenESB and
MySQL achieves a significant performance improvement in terms of scalability
and reliability with respect to a previously developed version of MOSES [4]. In
addition, the clustered version of the prototype further enhances the performance
introducing only a negligible overhead due to the load balancing.

The MOSES architecture is inspired by existing implementation of frameworks
for QoS brokering of Web services (e.g., [1,2,10]). Menascé et al. have proposed a
SOA-based broker for negotiating QoS goals [10] but their broker does not offer a
composite service and its components are not organized as a self-adaptive system.
PAWS [1] is a framework for flexible and adaptive execution of business processes
but some of its modules work at design time, while MOSES adaptation operates
only at runtime. Proxy-based approaches, similar to that used by MOSES for
the runtime binding to concrete services, have been previously proposed, either
for re-binding purposes [2] or for handling runtime failures in composite services
as in the TRAP/BPEL framework [5]. The SASSY framework for self-adaptive
SOA systems has been recently proposed in [11]: it self-architects at run-time
a SOA system to optimize a system utility function. Nonetheless, to the best
of our knowledge none of the previous works in the SOA field has evaluated
the proposed prototype in terms of performance and scalability, but this kind
of evaluation is needed for any prototype to be adopted and developed in an
industrial environment.

The methodology at the basis of MOSES has been presented in [3]; its distin-
guishing features are the per-flow approach to adaptation and the combination
of service selection and coordination pattern selection. The per-flow approach
means that MOSES jointly considers the aggregate flow of requests, generated
by multiple classes of users; to the contrary, most of the proposed adaptation
methodologies (e.g., [1,2,14]) deal with single requests to the composite service,
which are managed independently one from another. The second feature regards

A Scalable and Highly Available Brokering Service 529

the adaptation mechanisms used by MOSES, that combine service selection with
coordination pattern selection. The first mechanism aims at identifying for each
abstract functionality in the composite service one corresponding concrete ser-
vice, selecting it from a set of candidates (e.g., [1,2,14]), The coordination pat-
tern selection allows to increase the offered QoS by binding at runtime each
functionality to a properly chosen subset of concrete services, coordinating them
according to some redundancy pattern.

The paper is organized as follows. In Sect. 2 we present an overview of the
MOSES architecture. The MOSES design and implementation are discussed in
Sect. 3. We present the testing environment and analyze the experimental results
assessing the effectiveness of MOSES design in Sect. 4. Finally, we draw some
conclusions and give hints for future work in Sect. 5.

2 Overview of the MOSES Architecture

The MOSES architecture represents an instantiation for the SOA environment
of a self-adaptive software system [8], focused on the fulfillment of QoS require-
ments. The architecture of an autonomic system comprises a set of managed
resources and managers, that operate as part of the IBM’s MAPE-K (Monitor,
Analyze, Plan, Execute and Knowledge) reference model [9]. This autonomic
loop collects information from the system, makes decisions and then organizes
the adaptation actions needed to achieve goals and objectives, and controls the
execution. Figure 1 shows the MOSES architecture, whose core components are
organized in parts according to the MAPE-K cycle. In the following we provide
a functional overview of the tasks carried out by the MOSES components, while
in Sect. 3 we discuss in details their design and implementation.

The Execute part comprises the Composition Manager, BPEL Engine, and
Adaptation Manager. The first component receives from the brokering service

Service Manager

,

Adaptation
Manager

SLA Manager

QoS Monitor

Optimization Engine

D
at

a
A

cc
es

s
Li

br
ar

y

S
to

ra
ge

Composition
Manager

Monitor and Analyze

Plan

Execute

Knowledge

BPEL Process
Users Concrete Services

Execution Path
Analyzer

BPEL Engine

WS Monitor

Service Registry

Fig. 1. MOSES high-level architecture

530 A. Bellucci et al.

administrator a new BPEL process to be deployed inside MOSES and builds
its corresponding behavioral model. To this end, it interacts with the Service
Manager to identify the concrete services that implement the functionalities
required by the service composition. Once created, the behavioral model, which
also includes information about the discovered concrete services, is stored in the
Knowledge part to make it accessible to the other system components.

While the Composition Manager is invoked rarely, the BPEL Engine and
Adaptation Manager are the core modules for the execution and runtime adap-
tation of the composite service. The first is the software platform that actually
executes the business process and represents the user front-end for the compos-
ite service provisioning. It interacts with the Adaptation Manager to invoke the
proper component services: for each abstract functionality required during the
process execution (i.e., invoke BPEL activity), the Adaptation Manager dy-
namically binds the request to the real endpoint that represents the service. The
latter is identified by the solution of a linear programming (LP) optimization
problem [3] and can be either a single service instance or a subset of service in-
stances coordinated through some pattern. The MOSES methodology currently
supports as coordination patterns the 1-out-of-n parallel redundancy and the
alternate service [3]. With the former, the Adaptation Manager invokes the con-
current execution of the concrete services in the subset identified by the solution
of the LP problem, waiting for the first successful completion. With the latter,
the Adaptation Manager sequentially invokes the concrete services in the subset,
until either one of them successfully completes, or the list is exhausted.

The Optimization Engine realizes the planning aspect of the autonomic loop.
It solves the LP optimization problem, which is based on the behavioral model
initially built by the Composition Manager and instantiated with the parameters
of the SLAs negotiated with the composite service users and the concrete ser-
vices. The model is kept up to date by the monitoring activity carried out by the
components in the Monitor-and-Analyze part. Since the optimization problem
is formulated as an LP problem, it is suitable to be solved at runtime because of
its efficiency [3] and does not represent a bottleneck for MOSES scalability. The
problem solution provides indications about the adaptation actions that must
be performed to optimize the use of the concrete services with respect to the
utility goal of the brokering service and within the SLA constraints.

The Monitor-and-Analyze part comprises all the components that capture
changes in the MOSES environment and, if they are relevant, modify at runtime
the behavioral model and trigger a new adaptation plan. Specifically, the QoS
Monitor collects and analyzes information about the QoS levels perceived by
the composite service users and offered by the concrete services providers. The
WS Monitor checks periodically the concrete services availability. The Execution
Path Analyzer monitors variations in the usage profile of the composite service
functionalities by examining the business process executed by the BPEL Engine;
it determines the expected number of times that each functionality is invoked by
each service class. The Service Manager and the SLA Manager are responsible
for the SLA negotiation processes in which the brokering service is involved.

A Scalable and Highly Available Brokering Service 531

Specifically, the first negotiates the SLAs with the concrete services, while the
latter is in charge to add, modify, and delete users SLAs and profiles. The SLA
negotiation process towards the user side includes the admission control of new
users; to this end, it involves the use of the Optimization Engine to evaluate
MOSES capability to accept the incoming user, given the associated SLA and
without violating already existing SLAs. Since the Service and SLA Managers
can determine the need to modify the behavioral model and solve a new instance
of the LP problem, we have included them within the Monitor-and-Analyze part.

In the current MOSES prototype, each component in the Monitor-and-Analyze
part, independently from the others, senses the composite service environment,
checks whether some relevant change has occured on the basis of event-condition-
action rules and, if certain conditions are met, triggers the solution of a new LP
problem instance. Tracked changes include the arrival/departure of a user with
the associated SLA (SLA Manager), observed variations in the SLA parameters
of the concrete services (QoS Monitor), addition/removal of concrete services
corresponding to functionalities of the abstract composition (WS Monitor and
Service Manager), variations in the usage profile of the functionalities in the
abstract composition (Execution Path Analyzer).

Finally, the Knowledge part is accessed through the Data Access Library,
which allows to access the parameters of the composite service operations and
environment, among which the solution of the optimization problem and the
monitored model parameters.

3 MOSES Design

We have designed the MOSES architecture on the basis of the Java Business
Integration (JBI) specification. JBI is a messaging-based pluggable architecture,
whose components describe their capabilities through WSDL. Its major goal is to
provide an architecture and an enabling framework that facilitates the dynamic
composition and deployment of loosely coupled participating applications and
service-oriented integration components. The key components of the JBI envi-
ronment are: (1) the Service Engines (SEs) that enable pluggable business logic;
(2) the Binding Components (BCs) that enable pluggable external connectivity;
(3) the Normalized Message Router (NMR), which directs normalized messages
from source to destination components according to specified policies.

After thoroughly comparing the available and stable open source implemen-
tations for JBI, we chose OpenESB1, developed by an open source community
under the direction of Sun Microsystems, because it is an implementation and
extension of the JBI standard. It implements JBI because it provides binding
components, service engines, and the NMR; it extends JBI because it enables a
set of distributed JBI instances to communicate as a single logical entity that
can be managed through a centralized administrative interface. GlassFish ap-
plication server is the default runtime environment, although OpenESB can be
integrated in several JEE application servers.
1 ESB stands for Enterprise Service Bus.

532 A. Bellucci et al.

3.1 MOSES within the JBI Environment

Each MOSES component is executed by one Service Engine, that can be either
Sun BPEL Service Engine for executing the business processes logic and internal
orchestration needs, or J2EE Engine for executing the business logic of all the
MOSES components except the BPEL Engine. Developing the components with
J2EE Engine improves the flexibility, because they can be accessed either as
standard Web services or as EJB modules through the NMR.

Fig. 2. Typical execution flow in the ESB-based MOSES prototype

The typical execution flow of a request to the composite service is illustrated
by the sequence diagram in Fig. 2. As first step, the registered user issues a
SOAP request to the MOSES front-end, that is the HTTP BC; the request
format follows what expected by the BPEL process to whom the request is ad-
dressed. The HTTP BC normalizes the HTTP request and sends it to the BPEL
Engine through the NMR. Upon receipt of the message, the BPEL Engine de-
normalizes the message and starts to serve the request. The first task performed
within the process is the invocation of the authentication module (not shown in
the high-level architecture of MOSES) to verify that the user issuing the request
is properly registred. If not, an exception is forwarded to the user. Otherwise, for
each invoke activity within the BPEL process, the Adaptation Manager reads
the solution of the LP problem from the storage layer and for that abstract func-
tionality invokes the subset of concrete services using the coordination pattern
as determined by the solution (Fig. 2 shows the use of the 1-out-of-n parallel
redundancy pattern for one service invocation). Finally, when the response is
ready for the user (these steps are not shown in Fig. 2), the BPEL Engine puts
the response message on the NMR, the HTTP BC de-normalizes it, obtaining a
plain SOAP response message that is finally forwarded to the user.

Alternative execution flows can be split in monitoring and administration
flows. The former denotes each flow that is related to the resources monitoring
and can trigger the execution of the Optimization Engine to determine a new
optimal solution. The WS Monitor, QoS Monitor, and Execution Path Analyzer
are periodically invoked by the Scheduler BC, and each of them can trigger the

A Scalable and Highly Available Brokering Service 533

Optimization Engine when a new adaptation plan is needed. The Service Man-
ager can be invoked either by the Scheduler BC or by the Composition Manager
when new concrete services are needed. The SLA Manager is invoked by users
when they register or establish new SLAs with MOSES; the Composition Man-
ager is invoked by the MOSES administrator to manage new BPEL processes.

We observe that MOSES requires that only the BPEL Engine, the Adaptation
Manager and the storage layer must be up and running to complete the request-
response cycle. When only these components work, the broker can orchestrate
the composite service (although in a sub-optimal way, being not able to solve a
new instance of the optimization problem), but it still succeeds in providing a
response to the users.

3.2 MOSES Components

We analyze in detail only the Adaptation Manager and storage layer design,
because these are the components that mostly influence the MOSES performance
and scalability. We have designed and implemented all the other components,
except the Service Manager; their detailed description can be found in [4]. We
note that all inter-module communications exploit the NMR presence: message
exchanges are faster than those based on SOAP communication, because they are
“in-process”, thus avoiding to pass through the network protocol stack. However,
thanks to OpenESB we can expose every MOSES component as a Web service.

The tasks of the Adaptation Manager are to modify the request payload in
order to make it compatible with the subset of invoked concrete services and to
invoke these services according to the coordination pattern determined by the
solution of the optimization problem.

Being the Adaptation Manager the MOSES component that receives the high-
est request rate, its design is crucial for scalability and availability. We have
investigated three alternative solutions for its implementation. The first realizes
the component directly in BPEL, but we discarded it because the Sun BPEL
Service Engine does not currently support the forEach BPEL structured activ-
ity with the attribute parallel set to ’yes’. We needed this activity to realize
in BPEL the 1-out-of-n coordination pattern. With the second alternative we
investigated how to realize the Adaptation Manager as a Java EE Web service.
We found a feasible solution (based on the Provider interface offered by the
JAX-WS API) but we discarded it because it causes a non negligible and useless
performance overhead for the service invocation itself. The solution we finally
implemented realizes the Adaptation Manager as a Java class which is directly
invoked inside the BPEL process. The advantage is the higher communication
efficiency and the consequent reduction of the response time perceived by the
users of the composite service, as shown in Sect. 4.

The storage layer represents a critical component of a multi-tier distributed
system, because the right tradeoff between responsiveness and other performance
indexes (like availability and scalability) has to be found.

We have investigated various alternatives to implement the MOSES storage
layer and decided to rely on the well-known relational database MySQL, which

534 A. Bellucci et al.

offers reliability and supports clustering and replication. However, to free the
MOSES future developers from knowing the storage layer internals, we have
developed a data access library, named MOSES Data Access Library (MDAL),
that completely hides the data backend. This library currently implements a
specific logic for MySQL, but its interfaces can be enhanced with other logics.

3.3 MOSES Clustered Architecture

In designing the clustered architecture of MOSES we made a tradeoff between
flexibility and performance. By flexibility we mean the ability to distribute the
MOSES components at the finest level of granularity (i.e., each component on a
different machine); however, we have found that having a high degree of flexibility
impacts negatively on the overall MOSES performance [4]. Therefore, we have
carefully distributed the MOSES components in order to minimize the network
overheads for inter-module communications and storage access. Following this
guideline, we have collocated the BPEL Engine and the Adaptation Manager
on the same machine; in such a way, for each invoked external service whose
binding is executed at runtime by the Adaptation Manager, the BPEL Engine
does not need to communicate through the network. In addition, being these two
components executed by the same JVM, the Adaptation Manager is called as a
Java class rather than as a Web service, with consequent performance speedup.

Figure 3 illustrates the MOSES clustered architecture composed by three
clusters, where each one owns two replicas of the components placed in that
cluster. The BPEL Engine and the Adaptation Manager constitute the core
cluster, while the other two clusters provide additional features that are not
mandatory for the basic execution. The front-end cluster provides the broker
with the ability to receive new BPEL processes and negotiate SLAs with users.
The back-end cluster comprises the components to monitor and analyze the
environment and to determine a new adaptation plan. In front of those clusters
that are accessed by the composite service users, there is an HTTP load balancer
that distributes the requests among the replicas.

Fig. 3. MOSES clustered architecture

A Scalable and Highly Available Brokering Service 535

As regards the distribution of the storage layer, the core cluster hosts its
own high available DB server with strong consistency to execute the DB queries
as fastest as possible. The back-end cluster’s DB is instead synchronized with
the core cluster’s DB using an external weak consistency policy and an internal
strong consistency policy. Finally, the front-end cluster does not own a DB at all:
we assume that the request rate directed to it is much lower than that directed
to the core cluster; therefore, we prefer to pay a penalty for the DB accesses gen-
erated by the front-end cluster rather than having on it a new MySQL instance
with its own replication strategy and related overhead.

4 Experimental Results

In this section we present the results of the experiments we have conducted on
the MOSES prototype based on OpenESB. We compare its performance to that
of a previous version of the MOSES prototype, whose components have been
developed in Java as Web services. We refer to the latter as MOSES WS,
while the current version is referred to as MOSES ESB. We also analyze the
performance of the clustered MOSES ESB. Prior to present the experimental
environment and the tools supporting the performance testing, we briefly review
the main features of MOSES WS, whose detailed discussion can be found in [4].

4.1 MOSES WS

MOSES WS was entirely designed and implemented using the Web services
stack as core technology. It included each component of the high-level MOSES
architecture in Sect. 2; we also realized its replicated version.

Some choices we made during the MOSES WS design have turned out not
to be appropriate, especially from the performance point of view. First of all,
the adoption of Apache ZooKeeper [15] for the storage layer. ZooKeeper is a
distributed coordination system for distributed applications, that provides syn-
chronization primitives as well as a shared tree data structure. We relied on it to
have an uniform data view from every application instance and to build mecha-
nisms such as distributed counters and distributed locks. However, the penalty
for this choice is a significant performance overhead, caused by a large amount
of disk I/O operations. Secondly, we used ActiveBPEL from Active Endpoints
as BPEL engine. Although we chose it for its better performance with respect
to Apache ODE and for its usage in many research works on SOA systems, it
turned not to be sufficiently stable; moreover, it was also suddenly retired. Fi-
nally, the adoption of SOAP as the core application protocol for the components
inter-communications gave us a great flexibility, because we could place the com-
ponents everywhere, even in a geographically distributed fashion. However, the
cost paid for such flexibility is the overhead for managing the SOAP messages.

4.2 Experimental Setup

The testing environment is composed by 3 Intel Xeon quad-core servers
(2 Ghz/core) with 8 GB RAM each (referred to as nodes 1, 2, and 3); 2

536 A. Bellucci et al.

dual-processor Athlon MP servers with 1 GB RAM each (nodes 4 and 5); a
Gb Ethernet connection for the quad-core machines, 100Mbps for the others.

We have analyzed the performance of MOSES ESB in the non-clustered and
clustered versions: for each of these configurations we have executed the experi-
ments using two different workload generators that are based on closed and open
system models. Using the closed system model, we have identified the maximum
system throughput. The open system model has been useful to find the effective
response time in a real world SOA environment, where the generation of new re-
quests does not depend on the completion of previous ones, and to establish how
MOSES response time changes according to a controlled variation in the request
rate. Closed and open system models can lead to different system behaviors, as
discussed in [13]: therefore, using both we can analyze MOSES performance in
a more complete way. The closed-model experiments have been performed with
The Grinder [6], while httperf was used for the open-model load testing [7]. The
first is an open source powerful load testing framework, that allows to test every
application accessible through a Java API. For our testing purposes, we have
used the Grinder plugin HTTPlugin, therefore encapsulating the SOAP request
message to the composite service inside the HTTP request message. The latter is
an open-source tool largely used for measuring the performance of Web servers:
therefore, it can be also used to measure the performance of Web services when
they can be accessed through HTTP.

Differently from traditional Web workload, SOA workload characterization
has been not deeply investigated up to now (some results have been published
in [12]). Therefore, to evaluate the performance of our SOA system, we have
defined a BPEL process that mimics a “trip planner” SOA application, with
6 invoke activities (corresponding to 6 functionalities of the abstract composi-
tion). The tasks are orchestrated using most of the BPEL structured activities,
including flow, which is used for the concurrent execution of the activities. Two
concrete services can be selected for each functionality in the abstract composi-
tion and the binding is carried out at runtime by the Adaptation Manager; the
used service(s) and the coordination pattern depend on the solution of the LP op-
timization problem managed by the Optimization Engine. For the experiments,
we disabled the monitoring activities executed by the QoS and WS Monitors.
The invoked Web services are simple stubs with no internal logic, being the
analysis of MOSES scalability the goal of our performance study.

In the next sections we present the performance results, first considering the
non-clustered version of MOSES ESB and MOSES WS under closed and open
system models. Then, we analyze the performance of the MOSES ESB clustered
architecture. We anticipate that the experimental results show that MOSES ESB
outperforms MOSES WS for every load condition. The choice of MySQL and
the optimization of some components (e.g., the Adaptation Manager) allows
to remove most performance problems of MOSES WS; furthermore, from the
stability point of view GlassFish proved to have a high availability: even after
many stress tests no response error was received.

A Scalable and Highly Available Brokering Service 537

4.3 Closed-Model Experiments

In a closed system model, there is a fixed number of users who use the system
forever. Each user repeats two steps: (a) submits a job; (b) receives the response
and “thinks” for some amount of time. In a closed system, a new request is only
triggered by the completion of a previous one. We set a think time equal to 0,
because our aim is to perform a stress testing of the system to determine its
effective throughput. Each closed-model test was performed on a three-machine
environment, where node 1 hosted a full MOSES instance without data backend,
node 2 the data backend together with the concrete services, and node 3 The
Grinder. The latter generates an increasing number of client processes named
“worker processes”, each of which behaves like a user above described.

Figure 4(a) shows the MOSES WS throughput in terms of Transactions Per
Second (TPS), which represents the mean number of transactions per second for
a given number of worker processes. MOSES WS does not achieve a high TPS:
the maximum value is around 21 TPS, which is definitively too low to cope
with a relatively sustained incoming request rate. Furthermore, the maximum
TPS value is reached with a relatively high number of worker processes. The
motivation is that we get high response times (on average equal to the number of
worker processes divided by the TPS value) and a non-optimal CPU utilization.
By analyzing the components of the response time, we found that a large fraction
of the response time is spent in waiting for the data storage layer, which is based
on Apache ZooKeeper. Figure 4(a) illustrates the performance reason that lead
us to design and develop the second version of our prototype, i.e., MOSES ESB.

Figure 4(b) shows the MOSES ESB performance in terms of TPS within
the same testing environment. MOSES ESB achieves a significant performance
improvement with respect to MOSES WS: the maximum TPS value is around
140 and this maximum is achieved with only 9 worker processes.

As regards the availability of the two prototypes, MOSES ESB is again the
winner: MOSES WS reported an error percentage equal to 1.87 (2593 errors on
a total of 139030 requests), while MOSES ESB never returned an error message
for the entire experiment duration.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 5 10 15 20 25 30 35 40 45 50 55 60

T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

(T
PS

)

Worker processes

MOSES WS

(a) MOSES WS

 20

 40

 60

 80

 100

 120

 140

 160

 2 4 6 8 10 12 14 16 18

T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

(T
PS

)

Worker processes

MOSES ESB

(b) MOSES ESB

Fig. 4. Throughput in the closed system model

538 A. Bellucci et al.

4.4 Open-Model Experiments

In an open system model there is a stream of arriving users with an average
arrival rate. Each user submits one job to the system under test, waits for the
response, and then leaves. The main difference between open and closed systems
is that the arrival of a new request is only determined by a new user arrival and
does not depend on the completion of a previously issued request. We believe
that the real world SOA environment in which MOSES can operate is closer to
an open system model, because users with already established SLAs can generate
new requests independently of the completion of previously issued requests.

The overall experiment is composed by a maximum of 140 runs, each one
lasting 180 seconds, during which httperf generates HTTP requests at a constant
rate. We note that there is a 1-to-1 mapping between an HTTP request and a
request to the composite service provided by MOSES. The main performance
metric we collected for each run is the mean response time, i.e., the time spent
on average for the entire request-response cycle. The deployment environment
for the open-model experiment is the same of the closed one.

Figure 5(a) shows the response time achieved by MOSES WS in the open
model testing environment. When the system is stable (corresponding to a rate
ranging from 1 to 19 requests per second), the response time varies between 600
ms and 3 sec. When the request rate reaches 20, the system becomes unsta-
ble and we observe an uncontrolled grow of the queues length. We have found
that the high response times of MOSES WS is due to I/O waits. In prelimi-
nary experiments, we have also compared the response time of the composite
service managed by MOSES with that of the same service offered by a stan-
dalone BPEL engine [4]. When the system is stable, we found that the response
time of MOSES WS is on average 266% higher than that achieved by the Ac-
tiveBPEL engine. This overhead is very similar to that reported in [5] for the
TRAP/BPEL framework, which has a simpler architecture and provides less
adaptation functionalities than MOSES WS. Although the SOA system man-
ager expects to pay some performance penalty for the system self-adaptiveness,
our effort in designing MOSES ESB has been to reduce such overhead.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 2 4 6 8 10 12 14 16 18 20 22

R
es

po
ns

e
tim

e
[s

ec
]

Request arrival rate [req/sec]

MOSES WS

(a) MOSES WS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 20 40 60 80 100 120 140

R
es

po
ns

e
tim

e
[s

ec
]

Request arrival rate [req/sec]

MOSES ESB
GlassFish ESB with Sun BPEL Engine

(b) MOSES ESB

Fig. 5. Response time in the open system model

A Scalable and Highly Available Brokering Service 539

Figure 5(b) shows the results for MOSES ESB. First, we observe that in
this case the overall experiment is composed by almost 140 runs against 22
runs for MOSES WS. The system is stable up to 130 requests per second, which
represents the saturation point. The I/O waits are now reduced to less than 1% of
the overall CPU execution time and this positively impacts on the smoothness of
the curve with respect to that of MOSES WS. Figure 5(b) also shows the response
time obtained by the standard GlassFish ESB with Sun BPEL Engine when no
self-adaptive capability is provided. When the composite service is managed by
MOSES ESB, the response time is on average 108% higher than that served by
GlassFish ESB (the percentage increase ranges from a minimum of 30% to a
maximum of 209%). Therefore, the careful design of MOSES ESB allows us to
substantially reduce the overhead introduced by the self-adaptiveness.

Figure 6 compares the performance achieved by MOSES ESB and MOSES
WS, using a logarithmic axes scale (base 2 and 10 for x and y axes, respectively).
The performance improvement achieved by MOSES ESB is clearly evident. As
regards the availability of the two prototypes, MOSES ESB again returned no
error message, while MOSES WS reported 21 errors in 3600 seconds.

 0.1

 1

 10

 1 2 4 8 16 32 64 128

R
es

po
ns

e
tim

e
[s

ec
]

Request arrival rate [req/sec]

MOSES WS
MOSES ESB

Fig. 6. Comparison of the response time in the open system model

4.5 Performance of MOSES ESB Clustered

The experiments for the clustered version of MOSES ESB have also been based
on the open and closed system models. These sets of experiments were exe-
cuted with the same hardware already used for the non-clustered version, but
we slightly changed the component deployment schema. We used 5 machines,
where nodes 1 and 2 hosted a GlassFish instance, node 3 the data backend and
the concrete services, node 4 the load balancer, and node 5 either The Grinder or
httperf. GlassFish allows the system administrator to choose between two load
balancers: Sun Java Web Server or Apache Web Server with a load balancing
plugin. The first is a closed-source Web server; therefore, we have chosen the lat-
ter being open-source. Nevertheless, we were constrained to use a closed-source
plugin in order to have an active load-balancing subsystem, which allows to react
at the load-balancer level to any failure of the connected GlassFish instances,
for example by re-issuing the request to an active instance.

540 A. Bellucci et al.

 0

 30

 60

 90

 120

 150

 180

 210

 240

 270

 2 4 6 8 10 12 14 16 18 20 22 24

T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

(T
PS

)

Worker processes

MOSES ESB clustered
MOSES ESB

(a) Throughput in the closed model

 0.05

 0.1

 0.15

 0.2

 0.25

 20 40 60 80 100 120 140 160 180 200

R
es

po
ns

e
tim

e
[s

ec
]

Request arrival rate [req/sec]

MOSES ESB clustered
MOSES ESB

(b) Response time in the open model

Fig. 7. Performance comparison of MOSES ESB and MOSES ESB Clustered

Figure 7(a) shows the throughput improvement achieved by adding a Glass-
Fish instance to the MOSES cluster. The load balancer introduces a negligible
overhead and the overall performance is incremented by almost a factor of 2. Fig-
ure 7(b) compares the clustered version of MOSES ESB with its non-clustered
counterpart using the open system model. Similarly to what obtained in the
closed-model experiment, we can see that for a low request load, the clustered
version is a bit slower than the non-clustered one because of the load balancer
component. However, this gap is rapidly filled starting from the request rate
equal to 50. After this point, the clustered version is clearly the winner, achiev-
ing a response time that halves that of the non-clustered prototype.

5 Conclusions

In this paper we have presented an OpenESB-based prototype for a scalable and
highly available brokering service that provides runtime QoS-driven adaptation
of composite services. We have analyzed its performance and scalability, com-
paring them to those of a previous version of the prototype. The experimental
results demonstrate that the key choices made during the MOSES ESB develop-
ment have allowed to obtain significant performance improvements with respect
to MOSES WS, which presents some similarities with other prototypes devel-
oped for service selection in SOA applications. With respect to MOSES WS,
the response time achieved by MOSES ESB is two orders of magnitude lower,
while the throughput is one order of magnitude higher. Furthermore, MOSES
ESB clustered obtains a nearly linear performance improvement according to
the number of installed GlassFish instances.

We are planning new experiments using MySQL cluster, that allows to increase
the system availability and to improve further the performance through its in-
memory DB feature. We will also extend MOSES to support stateful as well as
asynchronous long-running services and to proactively monitor SLA violations.

A Scalable and Highly Available Brokering Service 541

Acknowledgment. Work partially supported by the Italian PRIN project
D-ASAP.

References

1. Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., Plebani, P.: PAWS: A framework
for executing adaptive Web-service processes. IEEE Softw. 24(6), 39–46 (2007)

2. Canfora, G., Di Penta, M., Esposito, R., Villani, M.: A framework for QoS-aware
binding and re-binding of composite web services. J. Syst. Softw. 81(10) (2008)

3. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F., Mirandola, R.: QoS-driven
runtime adaptation of service oriented architectures. In: ACM ESEC/SIGSOFT
FSE, pp. 131–140 (2009)

4. Cardellini, V., Iannucci, S.: Designing a broker for QoS-driven runtime adaptation
of SOA applications. In: IEEE ICWS 2010 (July 2010)

5. Ezenwoye, O., Sadjadi, S.: A proxy-based approach to enhancing the autonomic
behavior in composite services. J. of Networks 3(5), 42–53 (2008)

6. The Grinder, http://sourceforge.net/projects/grinder/
7. httperf, http://www.hpl.hp.com/research/linux/httperf/
8. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing - degrees, mod-

els, and applications. ACM Comput. Surv. 40(3), 1–28 (2008)
9. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-

puter 36(1), 41–50 (2003)
10. Menascé, D.A., Ruan, H., Gomaa, H.: QoS management in service oriented archi-

tectures. Perform 7-8(64), 646–663 (2007)
11. Menascé, D.A., Ewing, J.M., Gomaa, H., Malek, S., Sousa, J.P.: A framework for

utility-based service oriented design in sassy. In: WOSP/SIPEW 2010 (2010)
12. Nagpurkar, P., Horn, W., Gopalakrishnan, U., Dubey, N., Jann, J., Pattnaik, P.:

Workload characterization of selected JEE-based Web 2.0 applications. In: Proc.
IEEE Int’l Symposium on Workload Characterization, pp. 109–118 (September
2008)

13. Schroeder, B., Wierman, A., Harchol-Balter, M.: Open versus closed system mod-
els: a cautionary tale. In: USENIX NSDI 2006 (2006)

14. Yu, T., Zhang, Y., Lin, K.J.: Efficient algorithms for Web services selection with
end-to-end QoS constraints. ACM Trans. Web 1(1), 1–26 (2007)

15. Apache ZooKeeper, http://hadoop.apache.org/zookeeper/

http://sourceforge.net/projects/grinder/
http://www.hpl.hp.com/research/linux/httperf/
http://hadoop.apache.org/zookeeper/

Business Artifacts Discovery and Modeling

Zakaria Maamar1, Youakim Badr2, and Nanjangud C. Narendra3

1 Zayed University, Dubai, U.A.E.
2 INSA-Lyon, Lyon, France

3 IBM Research India, Bangalore, India

Abstract. Changes in business conditions have forced enterprises to
continuously re-engineer their business processes. Traditional business
process modeling approaches, being activity-centric, have proven to be
inadequate for handling this re-engineering. Recent research has focused
on developing data-centric business process modeling approaches based
on (business) artifacts. However, formal approaches for deriving artifacts
out of business requirements currently do not exist. This paper describes
a method for artifact discovery and modeling. The method is illustrated
with an example in the purchase order domain.

Keywords: Artifact, Data, Discovery, Process, Operation.

1 Introduction

Continuous changes in market opportunities and conditions have led enterprises
to re-engineer their business processes. Typically, these business processes are
modeled in an activity-centric manner. While this way of modeling is popular, it
has several limitations, e.g., aligning business requirements to business processes
is not simple and modifying these processes mid-stream is cumbersome. A data-
centric approach through (business) artifacts [3] can address these limitations.

As in our earlier work [2], we adopt the definition of artifact from [3] as a
“concrete, identifiable, self-describing chunk of information that can be used by
a business person to actually run a business”. That is to say that an artifact is a
self-describing collection of closely related data that represent a business record,
which describes details of goods and services provided or used by the business.
One would consider order and menu as artifacts when modeling a restaurant.
An artifact is subject to changes that are reflected on a state transition system
called Artifact Life-Cycle (ALC). Transitions between successive states in an
ALC are the result of executing specific tasks in a business process.

There is an abundant literature on artifacts [1,3,4]. However, there is still a
lack of rigorous approaches that assist those in charge of discovering and model-
ing artifacts We propose a method that examines the discovery of artifacts from
three perspectives. The data perspective capitalizes on the data in a system and
the dependencies between these data. The operation perspective capitalizes on
the operations in a system and the dependencies between these operations. Out
of the data and operation perspectives, two separate lists of candidate business

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 542–550, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Business Artifacts Discovery and Modeling 543

artifacts start to emerge. Finally, the connection perspective establishes links
between these two lists so that a list of final artifacts upon which the future
system will be built is identified.

Our running example is a simplified purchase order scenario. A customer places
an order of products via Customer-App. Based on this order, Customer-App ob-
tains details on the customer’s purchase history from CRM-App. Then Customer-
App forwards these details to Billing-App, which calculates the bill based on this
history (e.g., discount eligibility), and then sends the bill to CRM-App. The lat-
ter prepares the detailed purchase order and sends it to Inventory-App for order
fulfillment. For the in-stock products, Inventory-App sends a shipment request to
Shipper-App, which will deliver the products to the customer. For the out-of-stock
products, Inventory-App sends a supply message to the requisite Supplier-App,
which provides Shipper-App with the products for subsequent shipments to the
customer.

The rest of this paper is organized as follows. Section 2 introduces the method
along with a short description of the proof-of-concept prototype. Concluding
remarks and future work elements are included in Section 3.

2 Our Method

Fig. 1 shows our proposed method for business artifacts discovery and modeling.
The cloudy shape represents the business case-study. The ovals correspond to
the beginning and end states of this method. The dashed bold-line rectangles
correspond to the three perspectives mentioned in Section 1. The regular plain-
line rectangles correspond to the steps to carry out in each perspective. The
arrowed plain-lines connect the steps of the same perspective. Finally, the ar-
rowed dashed-lines connect the steps of separate perspectives.

In the method, the data and operation perspectives rely on the description of
the case study along with a complete understanding of other elements such as
types of users and nature of business. The data perspective identifies the core

Data space construction

Data clustering

Data-dirven sub artifacts
discovery

Big artifact establishment
Data

perspective

Operation space construction

Operation clustering

Operation-driven sub artifacts
discovery

Operation
perspective

System development
based on business artifacts

Case study

Data/Operation-driven
sub-artifacts association

Connection
perspective

Final artifacts discovery

Fig. 1. Method for business artifacts discovery and modeling

544 Z. Maamar, Y. Badr, and N.C. Narendra

data that are manipulated during users’ needs satisfaction, and the dependen-
cies between these data. This perspective leads into the data space of the case
study. In parallel, the operation perspective identifies the core operations that
are executed to satisfy users’ needs, and the dependencies between these opera-
tions. This perspective leads into the operation space of the case study. Putting
the data and operations together constitutes the basis for establishing different
elements namely Big Artifact (BA), Sub Artifact (SA), F inal Artifact (FA),
Data Space (DS), and Operation Space (OS).

The connection perspective connects the data-driven SAs and the operation-
driven SAs together. By doing this, the SAs are refined by (1) finalizing the
structure of the SAs in terms of data and operations, (2) identifying the possible
interactions between the SAs, or (3) either identifying new SAs or combining
some SAs into other SAs. Through this refinement, the FAs are now available.

In the method, there is one BA that represents the business case-study to
examine. A BA is like a melting pot that includes all the data and opera-
tions of the case study without any distinction to their types, natures, etc. BA
= 〈DAT A,OPERAT ION〉 where DAT A is a finite set of data di,i=1..n and
OPERAT ION is a finite set of operations opj,j=1..m. �

2.1 Data Perspective

Establishing the data perspective requires three steps to be detailed hereafter.
Data space construction space step. The construction of a data space

requires (1) extracting all the data di,i=0,··· ,n of the case study from DAT A
of the BA, (2) pruning these data from synonyms, homonyms, and antinomes,
and 3 describing each di ∈ DAT A using 〈id, l, t, i, u, e〉 structure where: (id:
is a unique identifier of the data), (l: is the label of the data), (t: is the type
of the data whether atomic (e.g., real) or composite (e.g., address); in case of
composite, identify recursively all the constituent data until the type of these
constituent data is atomic; atomic is assigned by default to any data whose type
is unknown), (i: is the input value of the data whether this value is assigned
or calculated), (u: is the expected use of the data, i.e., update, consultation, or
both), and (e: is the restrictions put on the receiver of the data, e.g., read only,
no transfer, etc.). Product, order, bill, and order list of products are ex-
amples of data extracted from the running example.

Data clustering within the data space step. To identify data-driven
SAs, the different data in the data space are grouped into clusters. A clus-
ter is a potential candidate to be a data-driven SA although the mapping is not
always one-to-one. For data clustering we use dependencies between data. We
define the following dependency types: Update Dependency (UD), Substitution
Dependency (SD), and Removal Dependency (RD). We refine each type of de-
pendency into strong and weak. The weak type is motivated by the restrictions
that can be put on data.

An UD from di to dj exists if the successful update of di (i.e., value modifi-
cation) triggers the update of dj . UD is weak if the successful update of dj is
guaranteed regardless of the artifact that will host it once dj is separated from

Business Artifacts Discovery and Modeling 545

the artifact of di. UD is strong if the successful update of dj is not guaranteed.
By moving dj to an artifact different from the artifact of di, there is a risk of
not updating dj (due to some restrictions). Both di and dj have to remain in
the same artifact.

A SD from di to dj exists if the unavailability of di (due to some restrictions)
makes dj available for use. SD is weak if dj is made available for consultation,
only. dj could be moved to a new artifact as long as there is no-strong UD
from di to dj . SD is strong if dj is made available for both consultation and
modification. Both di and dj have to remain in the same artifact.

A RD from di to dj exists if the deletion of di is declared complete subject
to the successful deletion of dj . RD is weak if the successful deletion of dj is
guaranteed regardless of which artifact hosts dj and as long there is no-strong UD
from di to dj . RD is strong if the successful deletion of dj is not guaranteed.
By moving dj to an artifact different from the artifact of di, there is a risk of
not deleting dj (due to some restrictions). Both di and dj have to remain in the
same artifact.

Before we continue describing the data clustering, some assumptions are made:
(#1) If there is a dependency of type X from di to dj , then a dependency of
the same type from dj to di will not be allowed, i.e., not commutative; (#2) If
there exists a strong dependency of type X from di to dj and another strong
dependency of the same type from dj to dk, then a similar strong dependency
from di to dk will not be allowed or will be broken. The no-transitivity eases
the ungrouping of data into separate clusters. Contrarily, if there exists a weak
dependency of type X from di to dj and another weak dependency of the same
type from dj to dk, then a similar weak dependency from di to dk will be formed.
The transitivity eases the grouping of data into clusters; And, (#3) An artifact
can limit the access to its data whether for consultation or update needs. This
access concerns the operations that require artifacts in their processing.

We have developed two algorithms. The first algorithm identifies the necessary
dependencies between the data of the data space. First, the algorithm determines
whether the type of di is atomic or composite. If it is composite, then the data
{dj,j �=i} that make up di are determined. For each dj , a RD from di to each
dj is then established. This is because the removal of di causes the removal
of all its constituent data {dj}. It is noted that if dj had to be removed, this
would make di incomplete calling for a RD from this dj to di. However, this
contradicts Assumption #1. If the type of di is atomic, then the algorithm
determines whether the value of di is assigned or calculated automatically. If it
is the latter, then the data {dj,j �=i} that contribute to the calculation of the value
of di are determined, and an UD from each dj to di is established. In addition
to the UD, a SD is established from di to each dj . Table 1 depicts some data
dependencies from the running example. Strong (+) and weak (-) types of each
dependency is done by the system engineer.

The second algorithm checks the consistency between the different depen-
dencies. The purpose is to modify the respective types of these dependencies
suitably from strong to weak and vice-versa so as to ensure that dependencies

546 Z. Maamar, Y. Badr, and N.C. Narendra

Table 1. Some data dependencies before consistency checking

di → dj pp ota oda omdd bn ba · · ·
order date approval (oda) — — n/a n/a — — ...

order maximum date delivery (omdd) — — SD(-) n/a — — ...

Table 2. Some data dependencies after consistency checking

di → dj · · · · · · oda omdd · · ·
omdd — — SD(+) n/a ...

are consistent and deadlock free. For example, in Table 2, the weak substitution
dependency from omdd to oda is changed into strong (for the sake of clarity,
Table 2 does not show all the dependencies.

Data-driven SAs discovery step. Using Table 2, a data dependency graph
is built. In this graph, each node is an atomic data, and each edge is a de-
pendency with emphasis on update. Strong dependencies are depicted by plain
lines, whereas weak dependencies are depicted by dashed lines. We, also, assume
the existence of “default” strong dependencies between atomic data that be-
long to the same composite data, and this is done purely for consistency. These
“default” dependencies are regarded as similar to strong update dependencies
while determining the connected components of the graph; the connected com-
ponents can be determined in linear time based on the number of nodes of
the graph [5], and this is explained below. Fig. 2 shows an example of such a
graph.

Fig. 2 shows that if the weak edges in the dependency graph are omitted,
the resultant graph is a disconnected one, partitioned into one or more con-
nected Clusters (Ci). Each cluster is a candidate to become a data-driven SA.
Connecting the different data-driven SAs can happen through the dashed edges
that symbolize weak dependencies. Later we show that the weak edges can be
modeled via message passing between the different data-driven SAs [2]. The
interesting insight about Fig. 2 is that product and order composite data are
merged into one cluster, i.e., one potentially separate data-driven SA.

product_name order_list_of_products

product_price order_total_amount

bill_number

bill

bill_amount

customer_history

customer_detailsC 1

C 2

C 3

Strong dependency

Weak dependency

Default dependency

Fig. 2. Partial data dependency graph for the running example

Business Artifacts Discovery and Modeling 547

Proposition 1. If weak edges are removed from a data dependency graph, then
the graph is transformed into a disconnected one, with at least two connected
clusters, (proof omitted).

Proposition 1 shows that each data dependency graph that contains at least
one dashed edge can be partitioned into at least two connected clusters by remov-
ing the dashed edges. This proposition provides the justification for decomposing
a data dependency graph into conceptually separate clusters, with each cluster
depicting the data of a data-driven SA, i.e., a “container” of the data that makes
up the data-driven SA. It should be noted that each data-driven SA is strongly
coupled internally and weakly coupled externally, in line with well-known soft-
ware engineering principles of high cohesion and low coupling. In this figure,
C1,2,3 can refer to OrderContent, Bill, and Customer, respectively.

2.2 Operation Perspective

Establishing the operation perspective of a case study requires three steps to be
detailed hereafter.

Operation space construction step. The construction of an operation
space requires (1) extracting all the operations oi,i=0,··· ,m from OPERAT ION
of the BA, (2) pruning these operations’ names from synonyms and homonyms,
and (3) describing each operation using 〈I, O, P, E〉 structure, where: (I: is a set
of input data reported in DAT A of the BA), (O: is a set of output data reported
in DAT A of the BA), (P : is a set of preconditions, which are boolean formulae
that must hold true if operation oi is to start execution; these formulae are in
CNF,and (E: is a set of effects, which are boolean formulae that hold true after
operation oi finishes execution; these formulae are in CNF as well).

We say that oj is dependent on oi if one of the outputs of oi is an input for oj ,
and if ei ∈ E is an effect of oi and pj ∈ P is a precondition of oj , then ei ⇒ pj ;
i.e., the effect ei subsumes the pre-condition pj.

We therefore define an operation dependency graph as a graph whose nodes
correspond to operations, and whose edges correspond to dependencies between
operations. Some operations from the running example are (o1: place order
submission), (o2: customer history verification), and (o3, bill preparation).

Operation clustering within the operation space step. With an op-
eration dependency graph in place, we have developed an algorithm to cluster
operations. It groups the operations that use the same set of input data into
clusters and then, relates these clusters to potential operation-driven SA.

To illustrate the operation clustering algorithm, Fig. 3 depicts the operation
dependency graph for some operations identified earlier. Initially, all the nodes
belong to cluster C1. Each operation oi has a unique index starting with 1.
The algorithm treats o1 and checks its successor, i.e., o2. Since both operations
share common input data (namely order list of products), o2 is assigned to C1.
The algorithm continues with the successors of o2, i.e., o3, and so on until all
the operations are processed. The various clusters created by the algorithm are
depicted as C′1, C′2, and C′3 in Fig. 3. The algorithm takes O(n) time, where n
is the number of nodes in the operation dependency graph. In this figure, plain

548 Z. Maamar, Y. Badr, and N.C. Narendra

lines represent intra-dependencies between operations in the same clusters, while
the dashed lines represent inter-dependencies between operations in separate
clusters.

Operation-driven sub-artifacts discovery step. Each cluster derived
using the operation clustering algorithm is a potential operation-driven SA. The
reason is to link the operations that manipulate a common set of data into a
common container.

C' 1

o 3o 1 o 2

Inter-dependency cluster

Intra-dependency cluster

C' 2

o 5

o 4

C' 3

o 7

o 6

Fig. 3. Partial operation dependency graph for the running example

2.3 Connection Perspective

In this perspective the data-driven SAs and operation-driven SAs obtained pre-
viously are combined to form the future data-driven FAs of the future system.
Data in the DAT A set are common to both SAs. The idea of the connection
perspective is that the data-driven SAs provide the necessary data, and the
operation-driven SAs provide the necessary operations that act on these data.

Fig. 4 shows the connection perspective that leads into obtaining FAs. In
Fig. 4 (a) each data-driven SA (e.g., d-SA1) along with its related operation-
driven SA (e.g., o-SA1) form a specific FA for instance FA1. As a result if n
data-driven SAs exist in the data perspective, the same number of FAs will exist
too. To obtain the states and life cycle of a FA we capitalize on the input and

O
pe

ra
tio

n
pe

rs
pe

ct
iv

e

o 1
o 2
.
.

o-SA 1

o 1
o 2
o 3
.

o-SA i

D
at

a
pe

rs
pe

ct
iv

e

d 1
d 2
d 3.
.

d-SA 1

d 1
d 2
.
.

d-SA j

act on

act on

act on

FA1

Final artifact

Legend
FAj

o-SA 1
o 1

d-SA j
d 1, d 2 , ...

o-SA i
o 3

d-SA j
d' 1, d 3 , ...

d-SA j
d' 3

state 1

state 2

state i

(a) FA identification (b) State and life cycle of FA2

Fig. 4. Connecting the data and operation perspectives

Business Artifacts Discovery and Modeling 549

FA 3

s 13 s 14

s 10 s 11 s 12

s 4s 1 s 2 s 3 s 5 s 6 s 7 s 8 s 9

FA 1

FA 2

Fig. 5. Final artifacts

output data (e.g., d-SA1.{d1, d2, d3}) that the operations (e.g., o-SA1.{o1, o2})
consume and produce, respectively. A state represents the data that are taken
as input and modified later by an operation as output. As per Fig. 4 the intra-
dependency between operations constitute the life cycle of a FA, whereas the
inter-dependency between operations constitute message passing between the
respective life cycles of the different FAs [2].

The set of final artifacts’ lifecycles - modeled via their states - is depicted in
Fig. 5. Operation o1 is represented via FA3, and refers to the customer placing
the purchase order. Further processing of the purchase order, described as per
operations o2 and o3, are represented by states s1 through s4 in FA1. Opera-
tions o4 and o5, which deal with billing, are represented with sub-artifact FA2,
after which control returns to FA1 for fulfilling the purchase order via states s5

through s9. These latter states pertain to operations o6 and o7.

2.4 Proof of Concept Implementation

We are now validating our business artifacts discovery and modeling method
through a proof-of-concept prototype. It is implemented in Java on top of Eclipse
3.5.2. Data Perspective, Operation Perspective, and Connection Perspective

Fig. 6. Data clustering snapshot

550 Z. Maamar, Y. Badr, and N.C. Narendra

modules constitute the prototype. Each module is accessible via interfaces based
on SWT/JFace components, and a graphical editor built on GEF/EMF Frame-
works. Currently we can model the data and operation perspectives, run the
algorithms, and derive the final artifacts (Fig. 6).

3 Conclusion

Activity-centric modeling approaches, which mainly deal with business pro-
cesses, fail to quickly respond to business changes. However, data-centric mod-
eling approaches stand out as a serious alternative to model businesses by only
focusing on data instead of activities. Data are often well-defined and stable
regardless of the activities that manipulate them. Based on user requirements,
our discovery and modeling method identifies business artifacts. The method
applies a bottom-up analysis to assess and then gather fine-grained data into
clusters before defining business artifacts. Concurrently, operations are identi-
fied and gathered into clusters with respect to their common input and output
data. The final step consolidates data and operations. In term of future work,
three areas are identified: compliance analysis of derived business artifacts with
user requirements, impact of changes in user requirements on these artifacts, and
exception handling analysis.

Acknowledgements. The authors thank Anil Nigam for his feedback.

References

1. Liu, R., Bhattacharya, K., Wu, F.Y.: Modeling Business Contexture and Behavior
Using Business Artifacts. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE
2007 and WES 2007. LNCS, vol. 4495, pp. 324–339. Springer, Heidelberg (2007)

2. Narendra, N.C., Badr, Y., Thiran, P., Maamar, Z.: Towards a Unified Approach for
Business Process Modeling Using Context-Based Artifacts and Web Services. In:
Proceedings of SCC 2009, Bangalore, India (2009)

3. Nigam, A., Caswell, N.S.: Business Artifacts: An Approach to Operational Specifi-
cation. IBM Systems Journal 42(3) (2003)

4. Santhosh, K., Rong, L., Wu, W., Frederick, Y.: On the Duality of Information- Cen-
tric and Activity-Centric Models of Business Processes. In: Bellahsène, Z., Léonard,
M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 32–47. Springer, Heidelberg (2008)

5. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice-Hall, Englewood Cliffs
(2000)

Carbon-Aware Business Process Design

in Abnoba

Konstantin Hoesch-Klohe and Aditya Ghose

Decision Systems Lab (DSL),
School of Computer Science and Software Engineering,

University of Wollongong

Abstract. A key element of any approach to meeting the climate change
challenge is the ability to improve operational efficiency in a pervasive fash-
ion. The notion of a business process is a particularly useful unit of analysis
in this context. This article describes a subset of the Abnoba framework for
green business process management and shows how an algebraic frame-
work can be leveraged to enable an environmental assessment on multiple
heterogeneous dimensions (of qualitative or quantitative nature). Further-
more, a machinery for process improvement is outlined.

1 Introduction

The Abnoba framework enables business process management with explicit sup-
port for the environmental sustainability aspects of processes (represented in
the Business Process Modeling Notation (BPMN) standard [1]). In particular
we are concerned with business process design and re-design/improvement. This
article extends our earlier work in the space [2,3] by describing a machinery for
assessing the sustainability performance of a process design (which may be po-
tentially incomplete) by aggregating task-level measures. These measures could
include the carbon-footprint of a process (as assessed at design time), but also
others, such as amount of water consumed, or the extent of waste generated. Our
machinery uses an abstract algebraic framework (the c-semiring framework [4])
that enables assessment on multiple heterogeneous dimensions, which could be
either qualitative or quantitative. The resulting framework extends the results of
[5] and represents an improvement over other approaches to Quality of Service
(QoS) modeling for processes [6,7]. We further outline how sustainability-driven
process improvement can be achieved by leveraging a library of process frag-
ments. This machinery requires us to leverage the ProcessSEER framework for
semantic effect annotation of process designs [8,9,10].

2 A Framework for Dealing with Green QoS Measures

Akey driver for process analysis, re-design and optimization is to satisfy or improve
certain QoS measures. However, in practice QoS measures are often not commonly
agreed upon and assessed on heterogeneous and multidimensional scales, which re-
duces their applicability (e.g. different machineries for each QoS measure have to

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 551–556, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

552 K. Hoesch-Klohe and A. Ghose

be defined)[5]. We address these issues by deploying the algebraic c-semiring struc-
ture, which permits a multi-dimensional assessment of both qualitative and quan-
titative QoS factors. The framework generalizes many useful scales (real-valued,
fuzzy-valued, probabilistic, qualitative and so on) and permits the integration of
multiple heterogeneous scales into a single composite scale with the same abstract
properties.Thus,whilewemight assess the carbon footprint of a process (or process
step) on a real-valued scale, we might assess the impact of a process on flora/fauna
on a qualitative scale of{high, medium, low}. In this articlewedo not describe how
to determine the values for the QoS measures, but note that they can be derived
in a context specific manner, by correlating (rich) resource models with process
designs (as described in our earlier work [3]).

A c-semiring, which adds additional properties to the classic mathematical def-
inition of a semiring, is defined as follows:

Definition 1. (C-Semiring[4])
A semiring is a 5-tuple 〈A,⊕,⊗, 0, 1〉 such that A is a set of preference values, where
0, 1 ∈ A. 0 denotes the “worst” element and 1 denotes the “best” element in A. ⊕
is a cumulative, associative and idempotent comparison operator with 0 as identity
element (a⊕ 0 = a) and 1 as absorbing element (a⊕ 1 = 1), closed over A.⊗ is an
associative and commutative combination operator with 0 as its absorbing element
(a⊗0 = 0) and 1 as identity element (a⊗1 = a), closed over the set A.⊗ distributes
over ⊕.

The “⊕” comparing operator is used to define a partial order ≥S over the set of
preference values A, enabling us to compare different elements of the semiring. On
principle a ≥S b if and only if a⊕b = a, denoting that the⊕ operator choses a over
b. The⊗ operator is used to combine elements of the set A. We have a⊗ b ≥S a (1
is the maximum element of A), denoting that combining more elements of A leads
to a “worse” result with respect to ≥S .

We require each activity to be annotated with its specific (local) QoS measures,
represented by a vector 〈m1, m2, ..., mk〉where each mi is an element of A, of the c-
semiring associated with the i-th QoS measure. We accumulate QoS values across
a process design, using the “⊗” combination operator, to receive the cumulative
QoS values for each distinct QoS measure of the process design (see subsection 2.3
for more details).

2.1 Green QoS Measures

Our particular interest is in green QoS measures. In the following we list a (incom-
plete) list of green scales and illustrate their instantiation in the c-semiring struc-
ture. Other, QoS measures instantiated in the c-semiring structure can be found
in [5].
1. Water consumption: 〈R+, min, +,∞+, 0〉
2. CO2-e1 emission: 〈R+, min, +,∞+, 0〉
1 Carbon dioxide equivalent (CO2-e) is an expression of other greenhouse gases in their

carbon dioxide equivalent by their global warming potential (CO2 itself has a global
warming potential of 1).

Carbon-Aware Business Process Design in Abnoba 553

3. Waste generation: 〈R+, min, +,∞+, 0〉
4. Damage to fauna and flora: 〈{low, ..., high}, min, max, high, low〉
5. Air Quality : 〈{normal, ..., dangerous}, min, max, dangerous, normal〉
6. Environmental performance: 〈{AAA, ..., D}, min, max, D, AAA〉

While “Water consumption”, “CO2-e emission” and “Waste generation” are gen-
erally quantifiable, other measures like “damage to fauna and flora” are assessed in
a qualitative scale, since their “real impact” can only be assessed in long term stud-
ies. Therefore, these values are often determined by an educated guesses of some
expert. On the other hand “Air Quality” and “Environmental Performance” are
qualitative measures, representing a combination of measures. In the next subsec-
tion we show how different heterogeneous c-semiring scales can be combined.

2.2 Combining C-Semirings

Each QoS scale is of individual interest. However, there is often the need to com-
bine different measures to asses the overall environmental performance of a pro-
cess design, considering all, or some subset of the green QoS scales. This results in
a multidimensional QoS assessment. The resulting composite scale can be shown
to have the same abstract properties (it is a c-semiring as well). More details and
the corresponding proofs can be found in [4].

Definition 2. (Composition of C-Semirings)[4]
Given n semirings Si = 〈Ai,⊕i,⊗i, 0i, 1i〉, for i = 1, ..., n, let us de-

fine the structure Comp(S1, ..., Sn) =〈〈A1, ..., An〉 ,⊕,⊗, 〈01, ..., 0n〉 , 〈11, ..., 1n〉〉.
Given 〈a1, ..., an〉 and 〈b1, ..., bn〉 such that ai, bi ∈ Ai for i = 1, ..., n,
〈a1, ..., an〉⊕〈b1, ..., bn〉 = 〈a1 ⊕1 b1,, an ⊕n bn〉, and 〈a1, ..., an〉⊗〈b1, ..., bn〉 =
〈a1 ⊗1 b1, ..., an ⊗n bn〉.

Accordingly, the order≥S over 〈A1, ..., An〉 is 〈a1, ..., an〉 ≥S 〈b1, ..., bn〉 if and only
if 〈a1 +1 b1, ..., an +n bn〉 = 〈b1, ..., bn〉. Since we have only defined the least upper
bound (〈01, ..., 0n〉) and greatest lower bound (〈11, ..., 1n〉) not all elements of the
composed c-semiring structure can be compared or combined. For example, con-
sider the following composition of c-semiring instantiations for CO2-e and damage
to fauna and flora. 〈〈R+, {l, m, h}〉 ,⊕,⊗, 〈∞+, h〉 , 〈0, l〉〉. Let us first compare the
elements 〈5, m〉 ⊕ 〈4, l〉 = 〈4, l〉, hence 〈4, l〉 ≥S 〈5, m〉 (a + b = a). However,
〈5, l〉 ⊕ 〈4, h〉 = 〈4, l〉 (a + b = c) is not comparable, since there is no order for
these two tuples. We can solve this by defining a new order ≥′S over each tuple in
〈A1, ..., An〉 such that there does not exist a situation where a ≥S b and a 	= b and
b ≥′S a (the orders contradict each other).

On the other hand, we can map each tuple of the combined c-semiring into a set
A of another c-semiring and define the order over this new structure. For example,
scales for “fine particles in the air”, “ground-level ozone”, and “carbon monoxide”
(besides others) can be composed and the resulting composition be mapped into
the “Air Quality” c-semiring. Such a mapping is particularly appealing when a
combination of different scales have to be communicated to stakeholders like the
government, business partners or costumers. Similar, the measure “Environmental

554 K. Hoesch-Klohe and A. Ghose

performance” 〈{AAA, ..., D}, min, max, D, AAA〉, listed in subsection 2.1, sub-
sumes other environmental scales for ease of communication, where AAA denotes
the “best” environmental performance and D the “worst”(similar scales are used
to rate credits in the financial sector).

2.3 QoS Measure Accumulation

In this subsection we show how the QoS values (annotated at each activity) for
distinct QoS measures can be accumulated across a process design to receive cu-
mulative QoS values for each path through the process design.

The task of accumulating QoS measures across business process designs is not
trivial since there might be various paths that can be traversed during process ex-
ecution. We refer to each path through the process model, starting from a “start
event” to a (user) selected activity, as a scenario label. A scenario label consists of
a sequence (〈〉) or a set ({}) or a combination of both. Sets can be processed in any
order and are used to represent parallel splits, while the sequence dictates an order
to account for the sequence in which the activities of a design are modeled.

Fig. 1. BPMN Process Design

Figure 1 shows a BPMN process design with an exclusive split after activity T 1
denoting that during process execution either the “upper path” (T 2, T 3, T 4, T 5)
or the “lower path” (T 6) can be taken, before both scenarios continue with activity
T 7 and terminate at E1. The corresponding scenario labels for selecting activity
T 7 are shown at the upper left corner of the Figure 1.

We accumulate as follows. Let S be a set of c-semiring, each denoting a distinct
QoS measure for a given process design. We accumulate annotated QoS values,
where each value corresponds to an element of the set A of each s ∈ S, between
a pair of contiguous activities T i and T j (T i pointing to T j) as follows. The (cu-
mulative) QoS values of a measure s ∈ S at T j consists of acu

i (s)⊗s alo
j (s), where

acu
i (s) is a cumulative QoS value associated with T i and alo

j (s) is a local QoS value
of T j. The operator ’⊗s’ is the corresponding combination operator for c-semiring
s ∈ S. We deal with XOR merges (see Figure 1 label G3) in the following manner.
If T i and T j are the only two activities immediately preceding an XOR-merge, and

Carbon-Aware Business Process Design in Abnoba 555

Tm is the activity immediately following it, we proceed by acu
i (s)⊗alo

m(s) = acu
m (s)

and acu
j (s)⊗s alo

m(s) = acu
m (s)′. To deal with AND merges (see Figure 1 label G4)

we have to add an additional parallel combination operator “�” to the semiring
structure. This operator allows us to specify how the QoS measures are propagated
along a parallel branch and combined together at the merge gateway. For exam-
ple, such an operator is needed when dealing with cycle time, where the “worst”
time value of each branch in a parallel environment is picked. Let T i and T j be the
only two activities immediately preceding an AND-merge, and Tm is the activity
immediately following it, we proceed by (acu

i (s) �s acu
j (s)) ⊗s alo

m(s) = acu
m (s). In

the case of cycle time, the � operator (choose max value) is idempotent, therefore
⊗ distributes over �.

3 Green Process Improvement

In this section we outline (space constraints do not permit a more detailed elab-
oration) a machinery for identifying process re-designs with a more desired sus-
tainability profile and the same functional outcome as the original design, using a
library of process fragments. A process fragment is a (sub)process graph with a sin-
gle entry and exit point (using process fragments any composition of well formed
fragments results in a well formed process design).

First we require the activities of a process design to be annotated with seman-
tic effects (denoting the post-conditions of the individual activity). These seman-
tic effect annotations are represented in conjunctive normal form (CNF) and are
accumulated along the execution paths of a process design (as described in [8,9]
and implemented in the ProcessSEER[10] tool), to obtain the cumulative effects
at the end-event of the process design. The final cumulative effects (representing
intended effects) determine functional requirements for the re-designed processes.
Consequently, any process re-designhas to meet these the functional requirements.

Second, we define a library of (semantic annotated) process fragments. These
fragments can denote single activities, processes, or potentially services derived
from a service broker. Essentially, we enable the replacement of fragments of a pro-
cess design with other fragments drawn from the library in an (exhaustive search)
procedure that ensures that the original functionality of the process is still realized,
but the sustainability profile of the resulting process design is improved.

Third, in the context of process improvement, there is often a requirement of
minimally change existing process designs, i.e., maximizing process improvement
while minimizing disruption to the status quo. This is particularly important if we
are interested in protecting investment put in existing process infrastructure and
minimizing the ancillary costs associated with any change to process designs. The
requirement for minimal change could be dealt with by design proximity as a tie
breaker when multiple alternative process re-designs achieve the same quantum of
process improvement. Instances of proximity relations and measures can be found
in [8] and [11].

556 K. Hoesch-Klohe and A. Ghose

4 Conclusion

In this article we described a subset of the Abnoba framework for green business
process management. In this context we first showed how the abstract algebraic
c-semiring structure can be leveraged to deal with heterogeneous and multidimen-
sional green measures. We further sketched a machinery for green business process
improvement. Afirst evaluation with a handcrafted library, confirms the soundness
of the approach, but its applicability in an industry setting remains future work.

References

1. Object Management Group: Business process modeling notation (bpmn) 1.2. ,
(2009), http://www.omg.org/spec/BPMN/1.2/PDF last checked 21.02

2. Ghose, A., Hoesch-Klohe, K., Hinsche, L., Le, L.S.: Green business process manage-
ment: A research agenda. Australian Journal of Information Systems 16 (2009)

3. Hoesch-Klohe, K., Ghose, A.: Towards Green Business Process Management. In:
Proc. of the 7th International Conference on Services Computing (Industry and Ap-
plication Track) (2010)

4. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. Journal of the ACM (JACM) 44(2), 236 (1997)

5. Ghose, A., Koliadis, G.: Pctk: A toolkit for managing business process compliance.
In: Proc. of the Second International Workshop on Juris-informatics (2008)

6. Pavlovski, C., Zou, J.: Non-functional requirements in business process modeling.
In: Proc. of the fifth on Asia-Pacific conference on conceptual modelling (2008)

7. Gorton, S., Reiff-Marganiec, S.: Towards a task-oriented, policy-driven business re-
quirements specification for web services. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P.
(eds.) BPM 2006. LNCS, vol. 4102, p. 465. Springer, Heidelberg (2006)

8. Ghose, A., Koliadis, G.: Auditing business process compliance. In: Krämer, B.J., Lin,
K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 169–180. Springer,
Heidelberg (2007)

9. Ghose, A., Koliadis, G.: Pctk: A toolkit for managing business process compliance.
In: Proc. of the 2008 International Workshop on Juris Informatics (2008)

10. Hinge, K., Ghose, A., Koliadis, G.: Process seer: A tool for semantic effect anno-
tation of business process models. In: Proc. of the 13th IEEE International EDOC
Conference, EDOC 2009 (2009)

11. Morrison, E.D., Menzies, A., Koliadis, G., Ghose, A.K.: Business process integra-
tion: Method and analysis. In: Proc. Sixth Asia-Pacific Conference on Conceptual
Modelling, APCCM 2009 (2009)

http://www.omg.org/spec/BPMN/1.2/PDF

On Predicting Impacts of Customizations to

Standard Business Processes

Pietro Mazzoleni, Aubrey Rembert, Rama Akkiraju, and Rong (Emily) Liu

IBM T.J. Watson research Center

Abstract. Adopting standard business processes and then customiz-
ing them to suit specific business requirements is a common business
practice. However, often, organizations don’t fully know the impact of
their customizations until after processes are implemented. In this pa-
per, we present an algorithm for predicting the impact of customizations
made to standard business processes by leveraging a repository of similar
customizations made to the same standard processes. For a customized
process whose impact needs to be predicted, similar impact trees are lo-
cated in a repository using the notion of impact nodes. The algorithm
returns a ranked list of impacts predicted for the customizations.

Keywords: Process Re-engineering, Process Comparison, Best
practices, Tree Comparison.

1 Introduction

In this paper, we consider the problem of predicting the impact of a given set
of customizations to a standard business process. We look at the problem from
an IT services providers perspective. IT services providers typically implement
the desired customizations to standard processes offered by ERP vendors for
many companies. In our solution, we assume that IT service providers maintain
a repository of anonymized customizations, each with its associated impact. We
predict the impact of changes done on a standard process by comparing a query
customization with all customizations (with associated impacts) available in the
repository. The set of retrieved customizations are ranked based on closeness to
the query customization.

2 Process Difference and Impact Representations

In this section, we describe delta trees and impact trees, which are both deriva-
tions of process structure trees. A Process Structure Tree (PST) is a hierarchical
representation of business process. PSTs are used to represent both standard
and customized processes because there are established algorithms for detecting
differences between trees [1]. The output of our PST difference detection algo-
rithm is a delta tree. Impact trees are delta trees that have been annotated with
impact information.

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 557–562, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

558 P. Mazzoleni et al.

2.1 Delta Tree

A delta tree is a PST difference representation that is annotated with customiza-
tion operations. To create delta trees, we only consider the customization op-
erations insert and delete. We do not consider the move and relabel operations
because their effects can be replicated with combinations of delete and insert op-
erations. Customization tags are labels on leaf nodes of a delta tree that represent
customization operations (i.e. whether a node has been inserted or deleted), and
customization summary tags are labels on interior nodes which summarize the
changes that were made to its descendents. The algorithm for constructing a
delta tree has three phases.

The first phase is a modification of the algorithm by Küster et. al. [7], which
determines the differences between two PSTs and represents those differences
with a Joint PST (JPST). The modification decomposes the move portion of
the algorithm into a series of insertions and deletions. The second phase involves
reducing the JPST by finding the delta root. The delta root is the least common
uncustomized ancestor of all the nodes in the JPST that have a customization
tag. Let � be the least common ancestor of the two customization tagged nodes
that are the farthest distance apart in JPST, J . Thus, � is also the ancestor
of all the customization tagged nodes in that Joint PST. There are, however,
situations when � could itself be a customization tagged node, and thus not the
delta root. When this happens, the delta root is the parent of � in the Joint
PST. Once the delta root, �, is found the subtree J/� becomes the delta tree.
The reduction procedure continues by finding all of the untagged nodes that
are not ancestors of customization tagged nodes and removing them from the
delta tree. The procedure recursively removes all of the untagged leaves from the
delta tree. The last phase in constructing a delta tree is adding customization
summary tags (CSTs) to each interior node. The CST of an interior node, x,
denoted by CST (x), can take on one of three different values:“+”, “-”, and “M”.
Let x be an interior node in a delta tree and v be a descendant of x.

Definition 1 (Insertion Summary Tag). If there exist at least one descen-
dent of x with a customization tag of ′′+′′, and no descendant of x with a cus-
tomization tag of ′′−′′, then CST (x) =′′ +′′.

Definition 2 (Deletion Summary Tag). If there exist at least one descendent
of x with a customization tag of ′′−′′, and no descendant of x with a customiza-
tion tag of ”+”, then CST (x) =′′ −′′.

Definition 3 (Mixed Summary Tag). If there is at least one descendant of
x with a customization tag of “+”, and at least one descendant of x with a
customization tag of “-”, then CST (x) = “M ′′.

2.2 Impact Trees

An impact tree is a delta tree that has user-specified nodes called impact nodes.
An impact node characterizes the effect the set of change operations defined by

On Predicting Impacts of Customizations to Standard Business Processes 559

the customization tagged descendents have on a business. There is at least one
impact node in an impact tree.

If a query delta tree matches an impact tree in the repository, then the impact
associated with the impact nodes is the impact predicted for the query.

Definition 4. Delta (Sub)Tree Compatibility. Let r be a node in impact tree R̂,
and X be the set of customization tagged descendents of r. Additionally, let q be
a node in delta tree Q̂ and Y be the set of customization tagged descendents of
q. Subtree R̂/r is incompatible with subtree Q̂/q, if X �⊆ Y . Otherwise, R̂/r is
compatible with Q̂/q.

It should be noted that compatibility is directional. Therefore, if R̂/r is compat-
ible with Q̂/q, it does not imply that Q̂/q is compatible with R̂/r. Based on the
customization summary tags on delta trees, we can determine whether or not a
subtree of an impact tree is compatible with a subtree of a delta tree. Given two
trees R and Q, let r be in R and q and a be in Q. If a is an ancestor of q in Q
and id(a) = id(r), then a is an r-matched ancestor of q.

Property 1. Let Q̂ and R̂ be a query delta tree and an impact tree in the repos-
itory, respectively, created from the same standard process. Additionally, let q
and r be interior nodes in Q̂ and R̂, respectively. Subtree R̂/r is compatible with
Q̂/q, if q does not have an r-matched ancestor and CST (r) = CST (q) or q does
not have an r-matched anscestor and CST (q) = M .

Fig. 1. Impact Tree Representation - Customized Process

3 Impact Prediction Algorithm

Our notion of tree matching is, as such, not new and is grounded in the methods
noted in literature. But, the innovative rubber-banding of sub-trees/nodes as
impact nodes for the customized processes in the repository is what differentiates
our approach. This enables us to apply conditions to prune the search space by
recognizing unfruitful paths. This allows us to speed up the performance. Our
match starts with the basic query delta tree on the left hand side and the impact
trees from a repository on the right hand side.

560 P. Mazzoleni et al.

Algorithm 1. ImpactTreeTraversal(Q̂, R̂)

r ← Root node of R̂ ;

q ← Root node of Q̂ ;
matched ← FALSE ;
if id(r) == id(q) then

matched ← TRUE ;

if r is an impact node then

ImpactTreeSearch(Q̂, R̂);

for each child node rj ∈ children(R̂) do do
if matched == FALSE then

ImpactTreeTraversal(Q̂, R̂/rj);

The algorithm to predict impacts for a delta tree Q̂ consists of three steps to
be repeated for all impact trees in the repository.

Step 1 described in Algorithm 1 performs a pre-order traversal of all impact
nodes r in R̂, where R̂ is an impact tree in the repository. For each impact node,
ImpactT reeSearch() (to be described in Step 2) traverses Q̂ searching for a
subtree matching the selected impact node in R̂/r. If such matching subtree is
found, the corresponding subtree, Q̂/q, is annotated with the impacts associated
with r. The algorithm terminates when there are no more impact nodes to be
searched in R̂.

In Step 2, ImpactTreeSearch(), which is illustrated in Algorithm 2, does a
pre-order traversal of Q̂ searching for a node qi in Q̂ such that Q̂/qi and R̂/rj
are a compatible . Step 2 primarily checks the compatibility of the sub-trees and
hands over the actual tree comparison to Step 3. The recursive comparison of
Q̂/qi and R̂/rj will stop under two conditions: (1) all the nodes in Q̂ have been
searched and no compatible subtree was found, or (2) R̂/rj is incompatible with
Q̂/qi.

In Step 3, DeltaTreeSimilarityMatch() is invoked to compare compatible trees.
The algorithm traverses the query and impact tree sub-trees to find similarity.
When matching leaf nodes, only the nodes with the same id are matched. Let
m be the number of leaf nodes in Q̂/qi and let n be the number of leaf nodes in
R̂/rj . Let k denote the number of matched leaf nodes between Q̂/qi and R̂/rj .
Then, the similarity match score M between these two sub-trees is:

M(R̂/rj ,Q̂/qi) = min(k/m, k/n)

Once all the matching is complete, repository customizations are ranked based
on the overall similarity score attributed to the parent query node. The impact
lists associated with each of the ranked repository customizations are the pre-
dicted impacts of the desired customizations in the query process.

On Predicting Impacts of Customizations to Standard Business Processes 561

Algorithm 2. ImpactTreeSearch(Q̂, R̂)

q ← Root of Q̂;

r ← Root of R̂;
if CST (q) == CST (r) then

if id(q) == id(r) then
DeltaTreeSimilarityMatch(q, r);
return();

else

for each node qi ∈ children(Q̂/q) do

ImpactTreeSearch(Q̂/qi, R̂);
return();

if CST (q) == “M ′′ then

for each node qi ∈ children(Q̂/q) do

ImpactTreeSearch(Q̂/qi, R̂);

else
return();

4 Related Work

A large number of publications have addressed the problem of process matching,
impact analysis, and tree comparison. However, they differ in domain, goal,
medium, or approach.

We are not the first to leverage the PST representation for detecting the
differences between process models. As example, the paper by Küsteret. al. [7]
detects the differences between PSTs and represents those differences in a JPST,
which is similar to our notion of delta trees. However, their work is concerned
with obtaining a change log when one is not available. The paper by Eshuis and
Grefen [3], which proposes a heuristic approach for matching BPEL processes
represented in Program Structure Tree [5,6], is similar but, once again, the goal of
their work (to find executable services exposing a certain behavior) is different
than ours. The work of Dijkman et. al. [2] compares four approaches to the
process similarity problem using a graph-based representation of process models.
Their work is similar to ours in that they explore the process similarity problem.
However, our approach differs in that we use a tree-based representation. The
authors of Provop [4] present an approach for managing process variants by
constraining the variations to select change operators such as insert, delete,
move and modify. Te main motivation for our work is to improve the overall
discoverability of variations on processes and also to predict the impact of these
variations.

5 Conclusion

In this paper we have presented an algorithm to predict the impact of customiza-
tions made to standard business processes. We assumed that (a) all customizations

562 P. Mazzoleni et al.

are to the same standard business processes and (b) a repository of such customiza-
tions exists. For a given customized process whose impact needs to be predicted,
we searched the repository of existing customizations to find similar customiza-
tions for that prediction. The algorithm presented takes advantage of two charac-
teristics of our problem domain (a) the set of operations to customize a standard
process is constrained, and (b) not all changes result in impact worthy of consider-
ation. Together, these characteristics limit the scope and speeds up the runtime of
the algorithm.

For future research, we would like to explore if given a desired business im-
pact to be achieved, could we predict the customizations that need to be made
to a standard process by analyzing customizations with similar impacts in the
repository. This could help IT service providers in assessing what needs to be
done to a standard process to meet customer requirements.

References

1. Bille, P.: A survey on tree edit distance and related problems. Theoretical Computer
Science 337(1-3), 217–239 (2005)

2. Dijkman, R., Dumas, M., Garcıa-Banuelos, L.: Graph matching algorithms for busi-
ness process model similarity search. In: Dayal, U., Eder, J., Koehler, J., Reijers,
H.A. (eds.) Business Process Management. LNCS, vol. 5701, pp. 48–63. Springer,
Heidelberg (2009)

3. Eshuis, R., Grefen, P.: Structural matching of BPEL processes. In: Fifth European
Conference on Web Services, ECOWS 2007, pp. 171–180 (2007)

4. Hallerbach, A., Bauer, T., Reichert, M.: Managing process variants in the process
lifecycle. In: ICEIS 2008 (2008)

5. Johnson, R., Pearson, D., Pingali, K.: The program structure tree: Computing con-
trol regions in linear time. In: Proceedings of the ACM SIGPLAN 1994 Conference
on Programming Language Design and Implementation, pp. 171–185. ACM, New
York (1994)

6. Johnson, R.C.: Efficient program analysis using dependence flow graphs (1995)
7. Küster, J.M., Gerth, C., Förster, A., Engels, G.: Detecting and resolving process

model differences in the absence of a change log. In: Dumas, M., Reichert, M., Shan,
M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 244–260. Springer, Heidelberg (2008)

Extended WS-Agreement Protocol to Support

Multi-round Negotiations and Renegotiations�

Christoph Langguth and Heiko Schuldt

Databases and Information Systems Group,
University of Basel, Switzerland

Abstract. WS-Agreement is a well-established and widely adopted pro-
tocol that helps service providers and consumers to agree on constraints
under which a service is made available. However, the original protocol
is limited to a simple interaction pattern for establishing agreements: the
requester suggests the Quality of Service (QoS) details, the responder ei-
ther accepts or declines. This is no longer sufficient when several rounds
of negotiations are needed before both parties agree on the QoS level
to be provided, or when an already established agreement needs to be
changed based on mutual consent (renegotiation). This paper presents
an extension to WS-Agreement which jointly addresses these limitations.

1 Introduction

As Service-oriented Architectures (SOA), and in particular Web Services (WS),
are constantly gaining in popularity and adoption, the research focus is broaden-
ing more and more towards non-functional service properties. A prime example
is Quality of Service (QoS): in a production system, customers may demand for
guarantees about a service’s QoS, for instance because a best-effort-only pro-
vision of the service could lead to untolerable latencies when the system gets
heavily loaded. If guarantees can be given, they are generally expressed in a
Service Level Agreement (SLA), which can be considered a binding contract
between provider and consumer.

WS-Agreement [2] is a well-established specification that allows to express and
manage such SLAs. It defines a standardized protocol for managing agreements,
while being flexible concerning their actual (domain-specific) content. However,
it has a few shortcomings that we point out in the following use case.

Consider the example of a workflow engine W that orchestrates a process
consisting of several service invocations – say, service S1 followed by S2. If each
individual service provider participating in the workflow could assure proper
QoS guarantees (e.g., on the availability of local resources to guarantee a certain
execution time; or to guarantee an upper bound on the cost incurring during
execution), the predictability of the individual service calls – and therefore also
of the process as a whole – would be greatly improved. Thus, W could support
the negotiation of QoS agreements for the overall process with its own client C.
� This work has been partly supported by the Hasler Foundation in the COSA project.

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 563–570, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

564 C. Langguth and H. Schuldt

However, as the workflow engine needs to act as a kind of mediator and has
to rely on QoS guarantees of the actual service providers, it has to individually
negotiate agreements with the service providers as well. The QoS guarantees
of the overall process need to be derived from “internal” negotiations with the
service providers. In the case of long-running workflows encompassing resource-
intensive services, each QoS agreement with a service provider might include
several parameters (run-time, local resources, execution cost) that need to be
jointly negotiated in a single agreement.

We have used the term negotiation in its literal sense, as this is a desirable
feature: C could send an agreement offer to W , which, in trying to find a config-
uration that can satisfy the SLA terms, in turn needs to negotiate with providers
offering S1 and S2. Clearly, if an agreement responder is able to send “counter-
offers” to proposals, instead of just rejecting them (and forcing a subsequent
attempt with a different proposal), the negotiation process is significantly fa-
cilitated. One shortcoming of WS-Agreement is that the specification does not
allow for such multi-round negotiations, but only considers “one-shot” agreement
creation, i.e., the responder has to immediately accept or reject an offer.

Furthermore, existing and valid agreements cannot be modified once estab-
lished, except by terminating the existing SLA and creating a new one. Yet, the
likeliness of “things going wrong” increases with the complexity of a workflow.
Suppose that the provider of S1 realizes it cannot assure the QoS it committed
to. Being able to renegotiate with W (which may in turn trigger other renegoti-
ations with providers of subsequent workflow activities) might limit the negative
effects, whereas being forced to terminate the SLA inevitably leads to all agree-
ments – and thus the workflow execution as well – having to be terminated.

This scenario stems directly from our ongoing research on DWARFS[4], which
uses Advance Reservations for delivering QoS guarantees at workflow level, par-
ticularly for complex, long-running and resource-intensive scientific workflows.
We consider the limitations of the WS-Agreement specification crucial. Thus, we
devised and implemented an extension which: a) allows for multi-round agree-
ment negotiations, as opposed to the existing single-shot “offer-accept-or-reject”
creation; b) supports renegotiations, i.e., changing SLA terms while an agree-
ment is in effect; c) is symmetric concerning the options that the involved parties
have to operate on an agreement (e.g., allows also the agreement responder to
terminate it); d) strives for maximum possible downward-compatibility.

The remainder of this paper is structured as follows: Section 2 analyzes the
original WS-Agreement specification and its limitations. Section 3 provides de-
tailed information about our extensions to the specification. Section 4 presents
related work. Finally, Section 5 concludes.

2 The Original WS-Agreement Specification

Figure 1 shows a high-level overview of the lifecycle of an agreement (for the
moment, consider only the “non-bold” part of the figure). The lifecycle states can
be related to the port types defined in the specification as follows. An agreement
passes through the negotiating state by two possible sequences of actions:

WS-Agreement Extension for Multi-round Negotiations and Renegotiations 565

– The agreement initiator invokes the createAgreement operation of the Ag-
reementFactory port type. This operation either returns an EPR to an Ag-
reement resource, which corresponds to the accept transition, or it throws
a fault, which corresponds to the reject transition.

– The agreement initiator invokes the createPendingAgreement operation of
the PendingAgreementFactory port type, passing it an EPR to an Ag-
reementAcceptance resource. The PendingAgreementFactory decides on
whether it accepts the offer, and calls back the respective operation (accept
or reject) on the AgreementAcceptance. This callback invocation directly
corresponds to the transition of the same name.

If the agreement ends up in state void, the semantics are the same as if the
agreement never existed, i.e., a contract has never taken place. Once an agree-
ment is in state effective, the specification allows for two further transitions:
The agreement comes to its “normal” end of lifetime, i.e., it successfully passes
its expiration time. The transition is implicit in the specification, and is taking
place when “[. . .] an agreement is no longer valid, and the parties are no-longer
obligated by the terms of the agreement” [2]. This transition is made explicit in
the figure, leading to the completed state. The second possible transition can
only be triggered by the agreement initiator by calling the terminate operation
on the Agreement resource. This leads to the terminated state, signifying that
the agreement was terminated unsuccessfully.

There are several implications of this protocol design. First, the negotiation
is in fact a simple request/response operation, in which the agreement initiator
sends an offer that the responder either accepts or rejects. Second, only the
initiator may terminate an agreement. There is no possibility for the agreement
responder to terminate an agreement. Third, an agreement may not be modified
after its creation – neither by the initiator nor by the responder. Fourth, when
an agreement is created using the callback mechanism (PendingAgreementFac-
tory/AgreementAcceptance), no provision is taken for the possible case of the
responder not answering.

The first three issues share one common aspect: they can only be fully ad-
dressed if the asymmetry of the protocol is broken. By asymmetry we mean that

Fig. 1. Lifecycle of an Agreement (extensions in bold)

566 C. Langguth and H. Schuldt

Table 1. Modified Port Types in the extended WS-Agreement Protocol

Port Type Operations Resource Properties
PendingAgreementFactory createPendingAgreement Template
Agreement accept Name

reject Id
terminate Context
updateProposal Terms
extendDecisionDeadline AgreementState
withdraw ServiceTermStateList
renegotiate GuaranteeTermStateList

AgreementServiceReferenceList
AgreementAcceptance accept Name

reject Id
terminate Context
updateProposal Terms
extendDecisionDeadline AgreementState
withdraw
renegotiate

Operations/Resource Properties: unchanged, reused, new

according to the specification, only the responder keeps track of the agreement,
while only the initiator may operate on it (e.g., call the terminate operation).

3 Extended WS-Agreement Protocol

Overcoming these limitations is possible by promoting the agreement initiator
role to actually (also) represent the SLA. This is already partially done in the
original specification by the definition of the AgreementAcceptance port type,
albeit it is defined to only provide callback methods. As an example, consider the
second issue: if an AgreementAcceptance also provides a terminate operation,
then it becomes possible for the responder to terminate an agreement.

3.1 Modifications of Port Types

In that spirit, we have modified the WS-Agreement port types as shown in
Table 1. The Agreement and AgreementAcceptance port types now present a
much more symmetric interface: both provide exactly the same operations, and
the AgreementAcceptance “mirrors” to a large extent the resource properties
(RP) of the Agreement port type. While we describe the operations in more
detail in Section 3.2, in the following we make a few important observations.

First, the AgreementFactory port type is not used. Even in the specification,
this port type merely presents a simpler alternative to the use of the Pending-
AgreementFactory in conjunction with the AgreementAcceptance. Since we
heavily rely on the latter, the AgreementFactory is simply superfluous. While
the AgreementState port type is not mentioned explicitly in Table 1, it is ac-
tually being used: according to [2], this port type “is not meant to be used as
is but instead, its resource properties may be composed into a domain-specific
Agreement port type”. In our proposal, the Agreement and AgreementAccep-
tance both represent the agreement, therefore we integrate the additional RPs

WS-Agreement Extension for Multi-round Negotiations and Renegotiations 567

into these port types. As we do not want our system to permanently “synchro-
nize” system state from one port type to another, the ServiceTermStateList
and the GuaranteeTermStateListRPs are only available at the service provider
side (Agreement), while the AgreementState RP is part of both Agreement and
AgreementAcceptance.

The full state diagram that the modified port types allow is shown in Figure 1.
We have not introduced new states, but several new transitions. Most notably,
the agreement can stay in state negotiating for arbitrarily long, by repeatedly
following the updateProposal transition. Thus, the agreement responder no
longer needs to immediately accept or reject an agreement, but may instead
send a counter-offer to the initiator, who then has to accept or reject it, or
in turn come up with another proposal. This “ping-pong” style is the reason
why the operations and RPs of Agreement and AgreementAcceptance are to
a large extent symmetric: both agreement partners now have equal roles in the
negotiation. The concept of having this alternation of responsibility to decide
about the “fate” of an agreement means that while the agreement is in the
negotiating state, there is always one involved party waiting for a decision
from its partner. To cope with the possible case of that partner not answering
anymore, we have introduced a decision deadline: this is the time by which a
decision must have been taken, or the agreement is cancelled by the waiting
party (transition timeout into state void).

3.2 Operations in Detail

The following list gives an overview of the newly introduced operations. In the
interest of space, operations which were merely “copied” from the Agreement to
the AgreementAcceptance or vice-versa, are not discussed, as their semantics
remains the same. Figure 2 shows sequence diagrams of how these operations may
play together during the initial negotiation and renegotiation of agreements.1

– updateProposal: This operation allows for a multi-round negotiation pro-
cess. If one of the agreement partners receives an agreement proposal that it
neither accepts nor rejects, it responds by sending a proposal which would
be accepted instead, by invoking the updateProposal operation at the part-
ner’s endpoint. The method has one parameter, which is the proposal, and
it does not return any value. An invocation of the updateProposal opera-
tion should always be responded to by invoking either the accept or reject
operation, or by sending yet another proposal.

– extendDecisionDeadline: As described earlier, there is a deadline to prevent
timeouts and to give agreement partners the possibility to limit the time for
decision making. It is initially defined by the service provider, but either of
the negotiation parties can request an extension by invoking the extendDe-
cisionDeadline operation on its partner’s endpoint. The operation does not

1 To avoid clutter, illustration of the decision making process is limited to the initia-
tor’s side. The analogous parts on the responder’s side have been omitted.

568 C. Langguth and H. Schuldt

expect any parameters. If the invoked party is willing to accept the extension,
it returns the new deadline or else throws a fault.

– withdraw: If one of the parties has sent a proposal to the other partner and
has not yet received an answer, it still has the possibility to abort the nego-
tiation process by calling the withdraw operation at the partner’s endpoint.

– renegotiate: Either partner can request renegotiation of an existing agree-
ment. This is described in more detail in Section 3.3.

3.3 Renegotiation

As we have mentioned, the possibility to renegotiate an existing agreement is of
fundamental importance. As shown in Figure 2, invocation of the renegotiate
operation creates two new resources (Agreement and AgreementAcceptance).2

The partners then carry out the renegotiation in exactly the same style as a nor-
mal multi-round negotiation, using these new endpoints. Once that negotiation
process comes to an end, the following actions depend on its outcome. In case of
a successful negotiation, the newly created agreement enters the effective state,
superseding the existing one, which gets discarded (transition superseded). If
the negotiation process is not successful, the existing agreement stays in place
unchanged (and the newly created one is void).

3.4 Compatibility with the Original Specification

With the exception of the (dispensable) AgreementFactory port type, our ex-
tension is completely downward-compatible with the existing WS-Agreement
specification. In other words, if none of our extensions are being used, i.e., the
responder immediately accepts or rejects the first proposal, and no renegotiation
takes place, the interaction patterns correspond exactly to the original specifi-
cation. The only additional data that needs to be communicated is the decision
deadline; it was added to the wsag:Context (which allows for xs:any). Thus, we
ensure interoperability with endpoints not using our extension – but it should
be noted that this will not hold anymore if one party requires our extension.

4 Related Work

The shortcomings of WS-Agreement that our extension deals with have been
addressed at various levels. A formal analysis of the structure of an agreement
and its internal state is presented in [3]. The authors analyze in detail when an
agreement may need to be renegotiated, and propose an extension to the agree-
ment representation that allows for (in-place) modification of existing agreement
terms; however, how a renegotiation can be performed is not addressed. Multi-
round negotiation is discussed in [7,8] using an approach similar to ours, but

2 The figure only shows the case of the initiator triggering a renegotiation. The sym-
metric case is, of course, also possible.

WS-Agreement Extension for Multi-round Negotiations and Renegotiations 569

Negotiation

initiator side withdraws/detects timeout

initiator rejects

t imeout/
withdraw

initiator accepts

accept/reject

repeat n t imes

ResponderPendingAgree-
mentFactory

Agreement

Agreement-
Acceptance

Initiator

13: Accept()

10: UpdateProposal(Agreement)

7: UpdateProposal(Agreement)

16: Reject()

19: Withdraw()

21: Abort(Reason=Withdraw)
20: Withdraw()

18: Abort(Reason=Reject)17: Reject()

15: Accept()
14: Accept()

12: updateProposal(Agreement)
11: UpdateProposal(Agreement)

9: UpdateProposal(Agreement)
8: UpdateProposal(Agreement)

3: create(Agreement)

6: updateProposal(Agreement)

5: create()

4: EPR CreatePendingAgreement(Agreement, EPR)

2: Template[] getResourceProperty("Template") 1: provide Templates

Renegotiation

see steps 7 ff . above

ResponderAgreement
(old)

Agreement
(new)

Agreement-
Accept.(new)

Agreement-
Accept.(old)

Initiator

5: UpdateProposal(Agreement)

4: create(Agreement)

3: EPR Renegotiate(Agreement, EPR)
2: create(Agreement)

1: Renegotiate(Agreement)

Fig. 2. Sequence Diagrams: Agreement Negotiation and Renegotiation

570 C. Langguth and H. Schuldt

performing the negotiation using agreement templates rather than actual agree-
ment offers. A protocol that focuses on renegotiation only is described in [6]. It
proposes multiple operations that allow for renegotiation, whereas our approach
mostly reuses the multi-round negotiation capabilities for renegotiation; also, the
inherent asymmetry is not addressed, thus enabling only the agreement initiator
to request a renegotiation. Finally, [5] proposes new port types that allow for a
(symmetric) renegotiation, whereas we extend the existing port types. In addi-
tion, our proposal does not require any changes to the structure of an agreement
representation, but deliberately strives to be “agnostic” of the SLA content.

5 Conclusions

We have described an extension of the WS-Agreement protocol which allows
for multi-round agreement negotiation. It also enables renegotiation of existing
SLAs, giving both agreement partners the opportunity to trigger such renegoti-
ations. Our proposal requires no modifications to the structure of an agreement
and, to a large extent, reuses the operations and resource properties defined
in the specification, assigning them in a symmetric fashion to the original port
types. This approach allows us to stay compatible with the original specification.

Acknowledgement. The authors would like to thank David Ammann for his
support in the implementation and evaluation of this proposal.

References

1. Ammann, D.: Design and Implementation of a Negotiation Protocol for Scientific
Workflows based on WS-Agreement. Master’s thesis, University of Basel (2009)

2. Andrieux, A.: et al. Web Services Agreement Specification. Specification, Open Grid
Forum (2007), http://www.ogf.org/documents/GFD.107.pdf

3. Frankova, G., Malfatti, D., Aiello, M.: Semantics and Extensions of WS-Agreement.
Journal of Software 1(1) (2006)

4. Langguth, C., Ranaldi, P., Schuldt, H.: Towards Quality of Service in Scientific
Workflows by using Advance Resource Reservations. In: IEEE 2009 Third Interna-
tional Workshop on Scientific Workflows, (SWF 2009) (2009)

5. Modica, G.D., Tomarchio, O., Vita, L.: Dynamic SLAs management in service ori-
ented environments. Journal of Systems and Software 82(5), 759–771 (2009)

6. Parkin, M., Hasselmeyer, P., Koller, B., Wieder, P.: An SLA Re-Negotiation Pro-
tocol. In: 2nd Non Functional Properties and Service Level Agreements in Service
Oriented Computing Workshop, NFPSLA-SOC 2008 (November 2008)

7. Pichot, A., Wäldrich, O., Ziegler, W., Wieder, P.: Towards Dynamic Service Level
Agreement Negotiation: An Approach Based on WS-Agreement. In: WEBIST (Se-
lected Papers), pp. 107–119 (2008)

8. Ziegler, W., Wieder, P., Battr, D.: Extending WS-Agreement for dynamic negotia-
tion of Service Level Agreements. Technical Report TR-0172, Institute on Resource
Management and Scheduling, CoreGRID - Network of Excellence (August 2008)

http://www.ogf.org/documents/GFD.107.pdf

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 571–578, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Event-Driven Virtual Machine for Business Integration
Middleware

Joachim H. Frank1, Liangzhao Zeng2, and Henry Chang2

1 IBM Software Group
jhfrank@us.ibm.com

2 IBM T.J. Watson Research Center
{lzeng,hychang}@us.ibm.com

Abstract. Business integration middleware uses a variety of programming
models to enable business process automation, business activity monitoring,
business object state management, service mediation, etc. Different kinds of
engines have been developed in support of these programming models. At their
core however, all of these engines implement the same kind of behavior: for-
matted messages (or events) are received, processed in the context of managed
objects, and new messages are emitted. These messages can represent service
invocations and responses, tracking events, notifications, or point-to-point mes-
sages between applications. The managed objects can represent process in-
stances, state machines, monitors, or service mediations. Developing separate
engines for each programming model results in redundant implementation ef-
forts, and may even cause an "integration problem" for the integration middle-
ware itself. To address these issues, we propose to use an event-driven virtual
machine that implements the fundamental behavior of all business integration
middleware as the sole execution platform, and provide compilers for higher
level programming models. Conceptually, this is similar to passing from CISC
to RISC architecture in CPU design: efficiently implement a small instruction
set, and support higher level languages via compilers.

1 Introduction

The key observation leading to this work was that event-driven systems [1] [2] [3] im-
plement all of the key mechanisms used by integration middleware components:
event/message1 identification, correlation, updates of stateful objects, and emission. In a
business integration environment, which can include components for business process
automation, business activity monitoring, service mediation, and so on, events are typi-
cally transmitted over a network, for example in the SOAP [4] format. While event-
driven systems are gaining considerable momentum in both academia and industry, no
unified architecture has been proposed for a generic event processor in the business
integration middleware domain. Instead, different engines are developed for different
high-level programming models, all of which implement the same fundamental set
of operations. For example, in a business process management (BPM) system events

1 Throughout this paper we use the term "event" synonymously with "one-way message".

572 J.H. Frank, L. Zeng, and H. Chang

indicating that a process should be started or an activity has completed are received, cor-
related, and used to update process instances. As another example, in a business activity
monitoring (BAM) system, tracking events are received, correlated, and update metrics
in an observer object (monitoring context). While the need for different high-level pro-
gramming models in the business integration domain seems obvious, developing separate
engines for each of those models results in: (i) redundant development efforts; (ii) high
installation and maintenance cost for a variety of engines; and (iii) possibly additional
work to "integrate the integration platform".

After analyzing various business integration programming models, six funda-
mental capabilities emerged that they all had in common: identifying and receiving
events; correlating events; creating, updating, and deleting stateful objects; and
emitting events. These basic capabilities were captured in a concise machine lan-
guage with six instructions. A virtual machine for this language was developed and
tested with a variety of event processing applications. The main contributions of
this paper are thus:

• A machine language for event-driven applications. We propose a machine lan-
guage for event processing called ICE (for Intermediate CodE). It has six instruc-
tions that cover the fundamental spectrum of capabilities required by business inte-
gration middleware. The small instruction set facilitates building virtual machines
for this language on different hardware platforms and operating systems.

• A componentized ICE virtual machine. We present a virtual machine for the ICE
language, written in Java. It can be embedded in event-processing applications, or
be at the core of a business integration hub or event processing service. Its compo-
nent architecture allows to easily replace functional parts (for example, the expres-
sion evaluator or the persistence manager) which helps portability.

• A collection of ICE compilers. We discuss how to write ICE compilers for higher
level programming models, so that business integration software written in a vari-
ety of high-level languages (processes, mediations, monitor models, etc.) can run
on the same virtual machine.

2 ICE Language

2.1 Overview

An ICE virtual machine ("ICE machine") provides an execution environment for
processing events in the context of target objects. A target object may represent a state
machine, a process execution, a stateful mediation, a monitoring context, and so on.
Events are processed in an ICE machine using five basic steps: (1) Event filtering, to
determine the kind of the incoming event. (2) Event correlation processing, to find
target objects, and instantiate new ones if necessary. (3) Update operations, to change
the state of the target objects. (4) Event emission, to send out requests, replies, alerts,
etc. (5) Terminating target objects. The ICE instruction set reflects these five opera-
tions, with a sixth instruction added for conditional branching.

 Event-Driven Virtual Machine for Business Integration Middleware 573

2.2 Instruction Set

Following a “reduced instruction set” paradigm (similar to the RISC philosophy in
CPU design) we defined a small but fundamental set of event processing instructions.
It appears that the following six instructions are necessary and sufficient to support
any event-driven application:

1. onEvent. An onEvent statement represents an event subscription. It has a Boolean
filter condition which defines the subscription criteria: events that pass the filter,
and only those, will be processed by the onEvent statement. The statement can nest
an instruction sequence, and when an incoming event passes the filter, that se-
quence is executed. The nested statements can be any of the following:

2. forAll. A forAll statement selects target objects based on a target object type and a
correlation predicate. The correlation predicate is evaluated for all target objects of
the given type. It typically compares a key value in the incoming event with a field
containing this key in all candidate target objects. Zero, one, or several matches
can result, and the forAll specifies what to do in each case. Here are some exam-
ples: create a new target object if none was found; process the event for all match-
ing target objects; ignore the event if no target is found; raise an error if more than
one target is found; etc. A forAll can nest a statement sequence, which is executed
once in the context of each target object. If forAll statements are nested, a tree of
target objects results with each nested forAll contributing a new set of child nodes.

3. assign. An assign statement has a left hand side expression whose evaluation must
yield a slot in the target object’s data structure (“target slot”) and a right hand side
expression that can depend on target object data and the current event. The target
slot is updated with the result of the right-hand side, and created if it did not exist.

4. branch. A branch statement allows for conditional branching within an ICE pro-
gram. It has a Boolean branch condition. If it evaluates to true the branch is taken,
otherwise execution continues with the following statement. A branch may specify
a positive (forward) or negative (backward) branching distance.

5. emit. An emit statement specifies that an outbound event will be sent, whose pay-
load will be taken from a specified target slot.

6. terminate. A terminate statement specifies that the current target object (identified
by the nearest enclosing forAll) is to be removed from the set of objects under con-
trol of the ICE machine after the current event has been processed completely.

The instruction set of the ICE machine is “minimal” for a virtual machine that proc-
esses events in the context of target objects: Obviously, an instruction is needed to
receive and classify events (onEvent) and to send them out (emit); a correlation step is
required for target identification (forAll); there must be instructions for target object
creation (forAll, implicit), update (assign), and deletion (terminate). Target object
creation is covered by forAll with the “no correlation matches” option set to “create
new target”. Finally, a statement is needed to permit conditional logic (branching) and
for a machine language, GOTO semantics seemed adequate.

574 J.H. Frank, L. Zeng, and H. Chang

3 ICE Machine

3.1 Component Architecture

Two considerations guided our design: (i) Pluggability of Components. A modular
structure as in Fig. 1 allows to vary implementation options and facilitates portability.
For example, different Expression Managers can support a variety of expression lan-
guages and evaluators. Different ICE Cube Managers (persistence managers) can pro-
vide interfaces to a variety of databases. (ii) Usability in Different Environments. It
should be possible to use an ICE machine as a universal event processor in a variety
of environments: embedded in applications; as a stand-alone middleware component;
or as an event processing service in a cloud environment.

Fig. 1. ICE Machine Architecture Overview

3.2 Components

As shown in Fig 1. an ICE machine has five components: program manager, event
manager, cube manager, expression manager and kernel. They interact as follows:

1. The Program Manager receives ICE program segments. A program segment is
the smallest unit of logic that can be deployed to or removed from an ICE machine.
The program manager parses the program segments and constructs an in-memory
model of the code, which the kernel will use to control execution.

 Event-Driven Virtual Machine for Business Integration Middleware 575

2. The Event Manager receives incoming events and puts them in the input bucket,
from where they are consumed by the kernel. Events can be returned to the event
manager if correlation processing ends with a "retry" condition (typically, when an
expected target object does not yet exist) or when unrecoverable errors occur; they
are then put in the retry or error bucket, respectively. Events in the retry bucket are
moved back to the input bucket after some wait time. An event that has exceeded
the maximum number of retries goes to the error bucket. The event manager also
publishes outbound events produced by emit statements. Their further processing
and routing, for example via an ESB or pub-sub infrastructure, depends on the en-
vironment in which the ICE machine operates.

3. The Cube Manager handles the creation, persistence, locking, updating, and ter-
mination of target objects. The target objects in an ICE machine are dubbed "ICE
cubes" which explains the name of this component.

4. The Expression Manager is called by the kernel to evaluate filters, correlation
predicates, branch conditions, and right hand sides of assigns. It is passed an ex-
pression and its evaluation context, which consists of the current event, any target
objects, and any local variables. It returns the evaluation result.

5. The Kernel is the actual virtual machine. It fetches an event from the input bucket,
initiates a new ICE program execution, and runs it by interpreting the ICE pro-
gram. It calls the event manager, the cube manager, and the expression manager to
use their services as needed.

3.3 Compilers

A detailed description of ICE compiler algorithmss for the programming models
commonly used in business integration would exceed the realm of this paper, but here
is an outline:

The simplest use case is stateless message transformation (mediation) which is
translated into an ICE program with a onEvent statement for each type of message to
be transformed. It contains a sequence of assigns updating a local variable, and an
emit to send out the content of that variable at the end. No target objects are used.

A monitor model [2] [3] is compiled by mapping each event subscription to an on-
Event (for filtering) followed by a forAll (for correlation). The target object now
represents a "monitoring context" whose fields (representing metrics) are updated by
assign statements based on the content of the incoming event. Outbound events are
sent via emit statements; their triggers are translated into branch statements, which
skip the emit if the trigger condition is false.

A business state machine is compiled by generating an onEvent/forAll pair for
each kind of event that the state machine can process. The target objects are state ma-
chine instances. State machine start events will find no target instance, and their
forAll will create a new instance in an initial state. Other events, once their target ob-
ject has been identified by a forAll, will drive assigns that put those target instances in
a new state, followed by emits for any events to be sent as part of the state transition.

A business process [5] can be considered a state machine whose states are given by
token placements on the process graph. Process start events create a new instance
corresponding to an initial token placement. Events representing activity completions,

576 J.H. Frank, L. Zeng, and H. Chang

or (BPMN) process events, cause transitions to new states by tokens being added
and/or moved to subsequent nodes of the graph. As tokens enter nodes, outbound
events may be sent representing service invocations or process event emissions.

An illustration is shown in Fig. 2, where a business integration solution comprising
a business process, a monitor model, and a service mediation runs on a single ICE
machine after all of the higher level logic has been compiled into ICE programs.

Fig. 2. Illustration of using common intermediate code (ICE) for different high-level
programming models

4 Implementation Aspects

Our ICE machine prototype was developed in Java. Any well-formed XML can be
processed as an event. We currently have two event managers, one using JMS and
one using in-memory queues. The program manager and the kernel are pure Java. The
expression manager uses an XPath 2.0 [6] evaluator, and is the most performance-
critical component at this time. There are two versions of the cube manager, one that
holds target objects in memory and one based on Apache Cassandra [8]. Assemblies
of these components into a full ICE machine are currently available as a stand-alone
Java program, as a Java EE application on IBM WebSphere Application Server [7],
and as an event processing stage in Apache Cassandra.

 Event-Driven Virtual Machine for Business Integration Middleware 577

An implementation of the cube manager using an XML database is in preparation,
and we expect that pushing expressions to the database will result in significant per-
formance benefits: correlation predicates for example become queries that return the
keys of matching target objects, which can benefit from indexes on those keys.

The ICE machine has an external control interface, which allows to deploy and re-
move ICE program segments, submit events, inspect the three event buckets, browse
the object store, and control the virtual machine. In the WebSphere based implemen-
tation the control interface is exposed as a REST API. This version of the ICE ma-
chine is also used in an interactive debugger for monitor models [3].

5 Related Work

We review some related event-processing systems, including active databases, com-
plex event processing applications and event stream processors.

Modern database systems support triggers as a means of reacting to certain condi-
tions (or "events"). Triggers are part of the SQL3 standard [9] and use Event Condi-
tion Action (ECA) rules to specify their logic. However, the events in database ECA
rules are limited to database state transitions. It should be noted that an ICE machine
can also be considered an ECA rule engine, because ECA rules can be complied into
ICE programs—thus adding to the set of high-level programming models that an ICE
machine can handle and affirming its role as a "universal" event processor. An ICE
machine imposes no limitations on the format of the events processed (our current
implementation accepts any well-formed XML).

Unlike active database systems, which provide a data-centric approach to event
processing, complex event processing systems [13] are usually considered middle-
ware. They can enrich and extend the event processing semantics in active databases,
and provide a collection of event operators that allow to define complex event pat-
terns. These operators include and, or, sequence, not, periodic, etc. Note however
that event patterns can also be compiled into ICE programs. For example, the com-
plex event Event_A and Event_B would be realized as two onEvent statements,
with subsequent logic to register the arrival of each event in a stateful target object,
and emit the "combined" event after both have arrived.

Event stream processors [10] [11] [12] consider a collection of events in a time
window as relations, using SQL like languages to process the event streams. Unlike
traditional database systems, which assume that data is persisted first and processed
later, event stream processors process events in memory, following a paradigm of
"read and read only once". Event-driven systems on the other hand, including the ICE
machine, focus on individual events rather than collections, and perhaps the most dis-
tinguishing feature of the ICE machine is its correlation logic, putting events in the
context of target objects that persist the processing result.

6 Conclusion

We have introduced an event-driven virtual machine as a universal runtime for busi-
ness-integration middleware. It features a minimal instruction set and a componentized

578 J.H. Frank, L. Zeng, and H. Chang

engine. We briefly discussed compiler algorithms for a number of programming models
used in the business integration domain. Going forward, we plan to improve the per-
formance and scalability of the ICE machine, provide improved tool support, an open
testbed, and study its usability as an event-processing service in a cloud environment.

References

[1] Zeng, L., Lei, H., Chang, H.: Model-analysis for Business Event Processing. IBM Sys-
tems journal (2007)

[2] Zeng, L., Lei, H., Dikun, M.J., Chang, H., Bhaskaran, K.: Model-Driven Business Per-
formance Management. In: ICEBE 2005, pp. 295–304 (2005)

[3] IBM WebSphere Business Monitor,
 http://publib.boulder.ibm.com/infocenter/dmndhelp/v7r0mx/
 topic/com.ibm.btools.help.monitor.doc/home/home.html

[4] SOAP specification, http://www.w3.org/TR/soap/
[5] BPMN 2.0 specification, http://schema.omg.org/spec/BPMN/2.0/Beta2/
[6] XPath 2.0, http://www.w3.org/TR/xpath20/
[7] IBM WebSphere Application Server,

 http://www-01.ibm.com/software/webservers/appserv/was/
[8] Apache Cassandra, http://cassandra.apache.org/
[9] Kulkarni, K., Mattos, N.M., Cochrane, R.: Active database features in SQL3. In: Paton,

N.W., Gries, D., Schneider, F. (eds.) Active rules in database systems. Monographs in
computer science, pp. 197–219. Springer, Heidelberg (1999)

[10] Babu, S., Widom, J.: Continuous queries over data streams. In: SIGMOD Rec. 30,3,2
[11] Fjording the Stream: An Architecture for Queries over Streaming Sensor Data. In: ICDE

2002 (2002)
[12] Chandrasekaran, S., Franklin, M.J.: Streaming Queries over Streaming Data. In: VLDB

2002 (2002)
[13] Luckham, D.C.: The Power of Events: an Introduction to Complex Event Proc-essing, in

Distributed Enterprise Systems. Addison-Wesley Longman, Inc, Amsterdam

Consistent Integration of Selection and

Replacement Methods under Different
Expectations in Service Composition and

Partner Management Life-Cycle

Fuyuki Ishikawa

GRACE Center, National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

f-ishikawa@nii.ac.jp

Abstract. Active efforts on Service-Oriented Computing have involved
a variety of proposals on service selection and replacement methods to
achieve quality assurance with adaptability in service composition. How-
ever, each method has specific expectations on when it is activated and
how it affects service composition. Blind use of such methods can thus
lead to inconsistency. This paper proposes a framework to integrate selec-
tion and replacement methods. The framework supports to clarify and
analyze expectations in service composition and partner management
life-cycle as well as to construct a consistent implementation accord-
ingly. The proposed framework facilitates to test, introduce and replace
service selection and replacement methods according to the environment
and its change, for a variety of application domains.

Keywords: WS-BPEL, Service Composition, Service Selection, Service
Replacement, Service Management.

1 Introduction

Service-Oriented Computing (SOC) aims at facilitating agile and flexible system
composition by combining services published on the web [8]. Here “services” mean
software components that are published on networks with machine-accessible self-
description and interface. A variety of services have been explored, not only classi-
cal web-based applications such as travel reservation and stock information access
but emerging services (cloud services, ambient services, etc.).

Process-based approaches are often considered where control and data flows
are specified among a set of tasks to compose a new service. In those approaches,
process languages such as WS-BPEL, or just BPEL, (Web Services Business
Process Execution Language) are used to define the control and data flows [7].
At this point, only interfaces of the involved services are often defined so that
decisions on concrete bindings with service providers be made at deployment
time or runtime. On the basis of such approaches, a variety of methods have
been proposed to select services according QoS (Quality of Service) aspects as

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 579–586, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

580 F. Ishikawa

Fig. 1. Underlying Architecture for BPEL-based Services

well as to replace them according to runtime situations. Figure 1 illustrates
this architecture, which has become somewhat common in research activities for
SOC.

Each of such selection and replace methods has specific expectations for envi-
ronments where it is applied. For example, many selection methods have expecta-
tions on available QoS data and their formats, such as conditional statements in
SLA (Service Level Agreement) and accumulation of third-party or user scores.
Selection methods may also differ in scalability against the number of candidate
services. Environmental characteristics, such as QoS data availability and the
number of service providers, are continuously changing over time while depend-
ing on the application targets (e.g., services provided in Japan). It is therefore
desirable to make use of service selection and replace methods by selecting and
replacing themselves as well. This is also useful in terms of testing where devel-
opers can test a variety of methods, whose effectiveness is difficult to assess and
compare with each other without testing against actual data sets.

The above discussion might seem to just imply that selection and replacement
methods should be also modeled and implemented as services (or components).
However, actually each method has specific expectations on its expected use,
when it is activated and how it affects the composition. It is thus necessary to
integrate selection and replacement behaviors to a service composition process
in a consistent way. For example, typical replacement methods transparently
replace a service upon some events during execution of the composition process.
However, blind use of such methods can lead to inconsistency, when the replaced
service has states or protocols (e.g., requires a cancellation message), or when
a selection method was used together that chose a set of multiple providers to
make their QoS balanced to satisfy some constraints.

In response to the problem, this paper proposes a framework to integrate selec-
tion and replacement methods into a service composition process. The framework
is based on analysis of different expectations in service composition and part-
ner management life-cycle. The framework supports to clarify and analyze such

Consistent Integration of Selection and Replacement Methods 581

expectations, and then to construct a consistent implementation accordingly.
It facilitates to test, introduce and replace service selection and replacement
methods according to the environment and its change. This paper reports the
approach of the framework (Section 2) and case studies (Section 3) as well as
discussion on advantages and limitations (Section 4).

2 Framework for Integration of Selection and
Replacement Methods

In the proposed framework, expectations are first analyzed and clarified in service
composition as well as selection and replacement methods (Section 2.1). Patterns
are then determined to weave selection and replacement behaviors into process
execution and management, and actually implemented with a policy description
provided by the framework (Section 2.2).

2.1 Classification of Expectations in Service Composition and
Partner Management Life-Cycle

Expectations in Use of Each Component Service. A component service
used by a composition process sometimes has states, which the composition
process needs to manage carefully. Below two types of states are discussed, states
within one session, a unit of interaction a process instance has with the service,
and states among multiple sessions.

Session States. Some services can be used through one-shot invocation of their
operations (e.g., get the current stock price). Others require specific sequences
of message exchanges to complete some functionality (e.g., login, then add an
item to cart, check out, and finally logout). These different expectations are re-
ferred to as Session States: No (One-Shot Invocation) and Session States:
Yes(Conversational Interaction). In the latter case, service replacement dur-
ing process execution can lead to inconsistencies. As the simplest example,
suppose a choreography where an operation opA is first invoked then another op-
eration opB is invoked. It is nonsense to invoke opA of serviceA, then switch the
service and invoke opB of serviceB. In this case, opA of serviceB should be invoked
before opB, thus requiring some rollback or replaymechanism. In addition, explicit
compensation or cancellation activities may be necessary for serviceA. In this way,
service replacement at an intermediate state of the choreography requires careful
state management in the case of Conversational Interaction.

Persistent States. Some services provide functionality that is closed within one
instance of interaction, which means instances of interaction with the services
do not affect each other. Others provide functionality to operate on service-side
states (e.g., photo upload service), whose effects are persistent and shared by
succeeding instances of interaction with the services. These different expectations
are referred to as Persistent States: No (No Persistent Service States)
and Persistent States: Yes (Persistent Service States). In the latter case,

582 F. Ishikawa

service replacement may require state migration. For example, migration may
be required by downloading data from a service to be replaced, uploading it to
the alternative service, and deleting the data on the original service. It is notable
that service contracts can be also considered as this kind of states, as initiation of
contracts have persistent effects such as permission to use the service and billing
while service replacement requires termination of a contract and initiation of a
contract with another service.

Expectations in Service Selection and Replacement. As a variety of
selection and replacement methods have been proposed, each of them has specific
expectations on when it is activated and how it affects during process execution
and management. In other words, these method vary in terms of when to modify
which partner references, which developers need to consider when incorporating
these methods into process execution and management.

Inter-Service Dependency. In some cases, a service for each service type is se-
lected or replaced one by one, independently of the other service types. This
kind of methods matches with the situations where QoS constraints or opti-
mization is considered for each of the service types. In other cases, selection or
replacement of multiple services is considered to deal with inter-service depen-
dencies in QoS aspects. For example, suppose constraints are imposed on the
composite QoS of the whole process (e.g., upper bound of the total cost and
upper bound of the total processing time) [5]. In such a case, QoS of each ser-
vice cannot be examined solely and it is necessary to consider sets of services
for all the involved service types. Other examples of inter-service dependencies
include discounts when using services provided by the same company and bet-
ter communication performance when using services that within the same area
(e.g., data center). These different expectations are referred to as Inter-Service
Dependency: No (One-by-One Service Selection) and Inter-Service De-
pendency: Yes (Service Set Selection). When consideration of inter-service
dependency is essentially required by the composer’s intention or characteristics
of available services, selection methods should be used that can deal with the
aspect. Here the expected benefits of such a method can be lost if a replace-
ment method would replace one service with another without consideration of
the aspect. Selection methods and replacement methods should not be blindly
used in combination actually, while they have been often discussed and proposed
independently.

Target of Selected References. As multiple instances run for one definition of a
service composition process, it is necessary to clarify the target scope in which
a certain partner reference chosen by a selection method (or re-selection within
a replacement method) is used. In some cases, service selection is conducted for
each process instance, when the selection method considers properties specific to
the instance such as its request parameters. In other cases, the results of service
selection are shared among multiple process instances. These different expecta-
tions are referred to as Selection per Instance: No (Instance-Independent

Consistent Integration of Selection and Replacement Methods 583

Selection) and Selection per Instance: Yes (Instance-Specific Selec-
tion). In the latter case, it is necessary to activate the selection method in
every process instance. In the case of Instance-Independent Selection, selection
methods may be repeatedly activated upon some events or periodically. This
type of re-selection does not affect the running process instances and the new
references are used for process instances initiated after the replacement.

Replacement during Process Execution. Many methods have been proposed for
service replacement during execution of a process instance. Typically replace-
ment upon failure in service invocation is considered, to retry the invocation
with an alternative (e.g., [2]). Other methods consider replacement of services
to be used successively. For example, such replacement may aim at covering a
loss in QoS (e.g., more processing time than estimated) of the precedent services
(e.g., [1]). These different expectations are referred to as Replacement Type:
Retry (Replacement for Retry) and Replacement Type: Re-selection
(Replacement for Re-Selection). Actually none, either, or both of these
types of replacement methods can be used for each of the involved service types.
It is necessary to replace services in a consistent way in complying with the
state management (if required). Especially, in the case of Retry, it is necessary
to properly rollback the states in the case of Conversational Interaction.

2.2 Implementation according to the Classification

Depending on the expectations classified according to the criteria presented in
Section 2.1, it is sometimes possible that the chosen methods essentially lead to
inconsistency. For example, suppose a replacement methods that expect One-
Shot Invocation is used for a service type that involves Conversational
Interaction. In this case, message sequences can become invalid against the
choreography with replacement at an intermediate state, for both of the original
service and the alternative service.

For the other cases, the framework provides interfaces of components and no-
tations for policy description to weave selection and replacement behaviors that
modify partner references (and have additional state transitions in the compo-
sition process) according to the expectations. For example, it is necessary to
implement components that define service selection methods. Use of the com-
ponents is declared in the policy description. One component may be used for
selection of services for multiple service types, when Service Set Selection
is considered. Otherwise (One-by-One Selection), one component is allocated
with one service type. Triggering events are also declared in the policy description
for each of these selection components. Those events can be user-defined, specific
to the environment or the application, such as time passage, user command, and
a specific notification by a monitoring service. In the case of Instance-Specific
Selection, triggering events defined in the framework can also be used. One of
the defined events denotes instantiation of a process so that selection per process
instance is activated as soon as a new process instance is initiated. Another one
denotes activation of a specific activity so that election per process instance is

584 F. Ishikawa

activated as soon as the branch is chosen and it turns out that interaction with
the service type is required.

Due to the page limitation, only a few examples have been shown to illustrate
the approach. but the essential intention has been discussed in Section 2.1.

The framework provides a mechanism for generation of a BPEL process where
additional behaviors are woven as described above, given an original BPEL pro-
cess and the policy description. It is thus possible to use any BPEL engine if
references of the involved components are configured adequately. On the other
hand, as many selection and replacement methods require logs or statistics of
QoS and other aspects, it is sometimes necessary to accumulate such data and
make it available for the components that implement selection or replacement
methods. Use of a certain BPEL engine can be inadequate regarding this point,
depending on its capabilities for logging, insertion of additional behaviors, or
programmable management through API. The presented framework also accom-
panies its own implementation of a custom BPEL engine, which can interpret
the policy description directly and insert additional behaviors.

3 Case Studies

Five cases from different application domains have been investigated in order
to illustrate and discuss different usages of the proposed framework, or differ-
ent combinations of the expectations discussed in Section 2.1. Due to the page
limitation, below illustrates only the essential aspects of each case study.

Stock Information: the composition process receives a list of company names as
input. It returns their stock information (e.g., current prices) and latest news on
the companies, by using a stock service and a news service. This case is discussed
as the simplest situation where the best service is just chosen for each service
type and replacement upon failure is taken.

Travel Planning: the composition process receives a request including the des-
tination and period for a travel. It returns several sets of recommended flights
and hotels with their price information, by using a flight search service and a
hotel search service. This time, the composer intends to use a selection method
that evaluates the number of hotels covered by each hotel search service within
the target area, which means the selection depends on the destination given in
the request (Selection per Instance: Yes).

Logistics: given a request for shipping, the composition process conducts the
actual delivery by using a domestic delivery service for the source side, an in-
ternational (air/sea) delivery service and a domestic delivery service for the
destination side. The composite service and the involved delivery services have
adhesive terms and conditions that specify the price and the maximum time
required for the delivery, with some penalty statements. The composer thus in-
tends to carefully select a set of services to be used to satisfy the constraint of
the maximum delivery time (Inter-Service Dependency: Yes). In addition,
the composer also considers adaptation during process execution to replace the

Consistent Integration of Selection and Replacement Methods 585

succeeding service(s) to be used, when delay occurs in the precedent service(s)
or some trouble is found in the succeeding service to be used [1] (Replacement
Type: Re-selection).

Storage for Mobile Phone: the composition process receives a movie or music
file as its input and put it on a storage service after some transformation by a
conversion service so that the users can access the file later by using their mobile
devices. In this case, re-selection of the storage service after a long term may
happen with migration of the accumulated data (Persistent States: Yes).

Smart Space: the composition process receives a file as its input and plays it
using a display service and an audio service that are located nearby the user. So
the composer selects the services according to their locations and replaces them
upon user movement as well as upon device failures. In this case, both of the
two service types have expected control sequences, e.g., initially to switch on,
then to start playing the content, and finally to stop it (Session States: Yes),
and their selection is meaningful only if both of the service types are provided
in the space where the user is (Selection per Instance: Yes, Inter-Service
Dependency: Yes). Although omitted in Section 2.2, this case leads to the most
complex implementation pattern. The two services need to be replaced at the
same time, e.g., in response to user movement, while both require management of
the session states. So it is necessary to define a process that includes the behavior
to rollback by canceling and replacing both of the two services in response to
the partner switch fault, which is defined and thrown by the framework when
replacement is activated.

4 Discussion and Concluding Remarks

Although there have been a variety of proposals on selection and replacementmeth-
ods, each proposal is often incremental to cover additional aspects that had not
been discussed before. Such state-of-the-art methods often require finer-grained
QoS data to meet finer-grained requirements (e.g., conditional statements in SLAs
[3]).Thosemethods also differ in their purposes, e.g., optimization, constraint satis-
faction or both of them. This fact implies selection and replacement of the selection
and replacement methods themselves are also desirable, in terms of customization
and adaptation as well as testing. On the other hand, such methods have stronger
support by dealing with selection of multiple services as well as automated replace-
ment transparent to the process. This fact means that those methods may involve
possibilities to have side effects that invalidates effects of other methods or origi-
nal behaviors of the composition process. The primary contribution of the paper
is a comprehensive framework to deal with different expectations in selection and
replacement methods.

The implementation approach of the proposed framework is essentially not
so novel, which uses configuration to define how to incorporate additional be-
haviors for adaptation. Specifically, it is now common to use such an approach
to handle faults by defining behavior patterns such as retry and replace (e.g.,

586 F. Ishikawa

[4]). However, the patterns have not been explored for the various expectations,
specifically Inter-Service Dependency introduced in the state-of-the-art selection
methods. This paper has discussed even so complex a case where multiple ser-
vices are replaced upon a failure of one service, leading to a partial rollback
caused by different triggers. On the other hand, many frameworks have been
proposed and used for separation of concerns, based on aspect-oriented pro-
gramming (e.g., [6]). However, they have only discussed value-added functional-
ity such as logging, which does not affect the essential service composition logic,
e.g., by rewriting partner references. This paper has focused on and discussed
insertion of additional behaviors that essentially affect partner references.

In summary, this paper proposed a framework to integrate selection and re-
placement methods. The framework supports to clarify and analyze expectations
in service composition and partner management life-cycle as well as to construct
a consistent implementation accordingly. The proposed framework facilitates to
test, introduce and replace service selection and replacement methods according
to the environment and its change, for a variety of application domains. This is
the first step to integrate a variety of selection and replacement methods, and
future work involves construction of actual libraries of existing methods.

References

1. He, Q., Yan, J., Jin, H., Yang, Y.: Adaptation of web service composition based
on workflow patterns. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC
2008. LNCS, vol. 5364, pp. 22–37. Springer, Heidelberg (2008)

2. Kalayci, S., Ezenwoye, O., Viswanathan, B., Dasgupta, G., Sadjadi, S.M., Fong,
L.: Design and implementation of a fault tolerant job flow manager using job flow
patterns and recovery policies. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.)
ICSOC 2008. LNCS, vol. 5364, pp. 54–69. Springer, Heidelberg (2008)

3. Klein, A., Ishikawa, F., Bauer, B.: A probabilistic approach to service selection
with conditional contracts and usage patterns. In: Baresi, L., Chi, C.-H., Suzuki, J.
(eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 253–268. Springer, Heidelberg
(2009)

4. Mosincat, A., Binder, W.: Transparent runtime adaptability for bpel processes. In:
Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364,
pp. 241–255. Springer, Heidelberg (2008)

5. Mukherjee, D., Jalote, P., Nanda, M.G.: Determining QoS of ws-bpel compositions.
In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364,
pp. 378–393. Springer, Heidelberg (2008)

6. Niemoller, J., Levenshteyn, R., Freiter, E., Vandikas, K., Quinet, R., Fikouras, I.:
Aspect orientation for composite services in the telecommunication domain. In:
Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900,
pp. 19–33. Springer, Heidelberg (2009)

7. OASIS: Web Services Business Process Execution Language Version 2.0. (April
2007), http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

8. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented comput-
ing: State of the art and research challenges. Computer 40(11), 38–45 (2007)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

Optimizing the Configuration of Web Service

Monitors

Garth Heward1, Jun Han1, Ingo Müller1,
Jean-Guy Schneider1, and Steve Versteeg2

1 Swinburne University of Technology, Hawthorn, Victoria, Australia
2 CA Labs, Melbourne, Victoria, Australia

{gheward,jhan,imueller,jschneider}@swin.edu.au,
Steve.Versteeg@ca.com

Abstract. Service monitoring is required for meeting regulatory require-
ments and verifying compliance to Service Level Agreements (SLAs). As
such, monitoring is an essential part of web service-based systems. How-
ever, service monitoring comes with a cost, including an impact on the
quality of monitored services and systems. To deliver the best value to a
service provider, it is important to balance meeting monitoring require-
ments and reducing monitoring impacts. We introduce a novel approach
to configuring the web service monitors deployed in a system so that they
provide an adequate level of monitoring but with minimized quality im-
pacts, delivering the best value proposition in terms of monitoring benefits
and costs. We use a prototype system to demonstrate that by optimizing
a web service monitoring system, we can reduce the impact of a set of de-
ployed web service monitors by up to two thirds.

Keywords: Web Services, Monitoring, Monitoring Optimization.

1 Introduction

Web service providers give quality guarantees for their services, so that con-
sumers know the expected Quality of Service (QoS) of services prior to using
them. To demonstrate that they have met these guarantees, providers monitor
their services. Whilst achieving this goal, service monitoring creates a problem
because the monitoring itself reduces the quality of the web services. This im-
pact has been demonstrated to be as much as 40% (for response time) for a
single monitor[1]. As such, there is a conflict between the goal of performing
monitoring, and the goal of maintaining acceptable quality levels.

To meet these conflicting goals, a web service provider should carefully select
what monitoring is performed in the system in order to meet their monitoring
obligations without violating any quality guarantees or requirements. Achiev-
ing a balance between meeting monitoring requirements and achieving required
quality levels by manual configuration is difficult, time-consuming, and unveri-
fied for optimality. We propose an automated approach, which allows a service
provider to discover an optimal monitoring configuration with less human effort.

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 587–595, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

588 G. Heward et al.

Methods exist for optimizing the performance of web service systems through
selective execution or load balancing, e.g. [2,3]. Whilst highlighting the need to
optimize the performance of web service systems, none of these techniques relate
to the management of deployed service monitors. Only Baresi and Guinea [4]
discuss the configuration of web service monitors in order to achieve a trade-off
between performance and monitoring. However, they only go as far as manually
assigning a resolution of monitoring to each individual service in the system.

We introduce a novel approach that takes as inputs the monitoring require-
ments (benefits) and the monitoring impacts on system performance (costs), and
determines an optimal monitoring configuration that delivers the best value by
trading-off these benefits and costs. It considers the quality aspects and moni-
toring levels for each monitor and service. The optimal monitoring configuration
consists of which monitors should be enabled, for what measures of quality, and
at what sampling rates, in order to meet monitoring requirements whilst not
reducing delivered qualities of service to unacceptable levels.

We demonstrate the benefits (the performance and utility increases) of ap-
plying our approach to the deployed monitors of a web service system. We have
shown that in the best case, the web services under an optimal monitoring config-
uration had a response time impact just one third of the impact that a standard
monitoring configuration had on the same services.

In Section 2, we introduce our approach to automated monitoring optimiza-
tion. In Section 3, we discuss the experiments conducted to demonstrate the
possible performance benefits of our approach.

2 Monitoring Optimization

As discussed above, to optimize the configuration of deployed web service mon-
itors, their impact on system performance must be minimised, whilst meeting
monitoring requirements. As such, the optimization problem is to find a monitor-
ing configuration that gives the maximum value (utility) in terms of performance
impact (costs) and monitoring coverage (benefits). Figure 1 shows a framework
illustrating our approach to monitoring optimization, annotated with the or-
dering of activities of the optimization process. In step 1, the set of deployed
monitors is identified based on IT records, and then the Enumerator generates
all the possible monitoring configurations for this set of monitors. In step 2, the
performance impacts of each monitor are identified from IT Records or bench-
marking, and the Impact Analyser derives the total performance impact of each
possible monitoring configuration. In step 3, the monitoring requirements and
associated penalties for not meeting them are identified from analysing SLAs,
policies and laws, and the Requirements Analyser transforms requirements into a
set of utility functions that define the benefit gained from monitoring a quality
whilst a specific level of performance is being achieved. In step 4, the Optimizer
uses the set of utility functions from the Requirements Analyser to score all moni-
toring configurations with impacts from the Impact Analyser, and the monitoring
configuration that yields the highest utility is selected and applied to the moni-
toring system. Each framework component is described below in more detail.

Optimizing the Configuration of Web Service Monitors 589

Requirements Analyser

Optimizer

Governance

Impact Analyser

Consumers

IT Records

Policies & Laws

SLAs

Monitoring
Impacts

Enumerator

Monitoring Manager

2

3 4

1

Available
Monitors

Monitoring Configurations
with Impacts

Optimal Configuration

Utility Functions

Possible Monitoring
Configurations

Fig. 1. Monitoring Optimization Framework

Enumerator. The Enumerator takes as input the set of available monitors, and
outputs the set of all possible monitoring configurations.

A monitor can monitor one or more quality types of one or more services,
simultaneously or separately. We refer to the set of all quality types of a system
as Q, and the set of all services as S. A monitoring capability, mcap = (m, s, q) �→
SR represents the ability of a monitor m ∈ M to monitor a quality q ∈ Q
of a service s ∈ S at a sampling rate sr ∈ SR. A monitoring setting, ms =
((m, s, q) �→ sr, sr ∈ mcap(m, s, q) represents a monitoring capability set at a
particular sampling rate sr. MS represents the set of all possible monitoring
settings. A set of monitoring settings obtained by assigning every monitoring
capability to a sampling rate is called a monitoring configuration, mc ∈ MC
and mc = {(m, s, q) �→ sr ∈ mcap(m, s, q)|∀(m, s, q) ∈ MCAP}, where MCAP
is the set of all the deployed monitoring capabilities in the system.

For example, if we have monitor m1 capable of monitoring quality q1 of service
s1 at sampling rates of 0, 0.5, or 1.0, and monitor m2, capable of monitoring
quality q1 and q2 of service s1 at sampling rates of 0 or 1.0, the three monitoring
capabilities are {(m1, s1, q1) �→ (0, 0.5, 1.0), (m2, s1, q1) �→ (0, 1.0), (m2, s1, q2) �→
(0, 1.0)}. One of the monitoring configurations is mc = {(m1, s1, q1) �→ 0.5, (m2,
s1, q1) �→ 0, (m2, s1, q2) �→ 1.0}}. The Enumerator generates all possible moni-
toring configurations MC by stepping through all the allowable combinations
of monitors, services, qualities and sampling rates. For the above example, the
output from the Enumerator is presented in Table 1, where a row corresponds to a
monitoring capability, a column corresponds to a monitoring configuration, and
a cell is the specific sampling rate of the corresponding monitoring capability in
the relevant monitoring configuration. The monitoring configuration mentioned
above is column mc8 in Table 1.

590 G. Heward et al.

Table 1. Monitoring Enumeration

mc1 mc2 mc3 mc4 mc5 mc6 mc7 mc8 mc9 mc10 mc11 mc12

m1s1q1

⎧
⎨

⎩

0
⎫
⎬

⎭

⎧
⎨

⎩

0.5
⎫
⎬

⎭

⎧
⎨

⎩

1.0
⎫
⎬

⎭

⎧
⎨

⎩

0
⎫
⎬

⎭

⎧
⎨

⎩

0.5
⎫
⎬

⎭

⎧
⎨

⎩

1.0
⎫
⎬

⎭

⎧
⎨

⎩

0
⎫
⎬

⎭

⎧
⎨

⎩

0.5
⎫
⎬

⎭

⎧
⎨

⎩

1.0
⎫
⎬

⎭

⎧
⎨

⎩

0
⎫
⎬

⎭

⎧
⎨

⎩

0.5
⎫
⎬

⎭

⎧
⎨

⎩

1.0
⎫
⎬

⎭
m2s1q1 0 0 0 1.0 1.0 1.0 0 0 0 1.0 1.0 1.0
m2s1q2 0 0 0 0 0 0 1.0 1.0 1.0 1.0 1.0 1.0

Impact Analyser. The Impact Analyser takes as input all possible monitoring
configurations MC , all monitor setting impacts MI and monitor overheads MO ,
and outputs the set of monitoring configurations with impacts MCI .

il denotes the impact level on a quality q of a service s, (s, q) �→ il. Impact
level il ∈ IL is an impact as a percentage on the original quality. For example,
the impact of ((s1, q1) �→ 0.5) means the level of q1 of s1 is halved.

Monitoring has both overhead and monitor setting impacts. The overhead mo
of a monitor m on a service s occurs whenever the monitor is in use, regardless
of the activities of the monitor. Let SQ be all the service-quality pairs of concern
in the system, the overheads a monitor has on every relevant quality q of every
service s are mo = {(s, q) �→ il : IL|∀(s, q) ∈ SQ}. For example, an interceptor
m1 that redirects messages of services s1 and s2 for analysis may reduce response
time of all messages passing through it by 10%, whether or not those messages
are actually analysed. Let MIS = SQ → IL, the set of all monitor overheads is
the collection of all the monitors’ overheads, MO = {m �→ P(MIS)|∀m ∈M}.

The monitoring setting impacts msi represent the impacts that a monitoring
setting ms has on each quality q of each service s in the system. That is, msi =
{(s, q) �→ il : IL|∀(s, q) ∈ SQ}. For example, IT records may show that when
monitor m1 is configured to measure q1 of s1 at sampling rate 0.5, it reduces q1

of services s1 and s2 by 10%. The impacts of this monitor setting are {(s1, q1) �→
0.1, (s2, q1) �→ 0.1}. The set of impacts of all possible monitor settings in MS is:
MI = {ms �→ msi : P(MIS)|∀ms ∈ MS}.

The impact of a monitoring configuration mc on quality q of service s is
made up the following components: (1) the sum of the impacts of all monitoring
settings on q of s: Is,q(mc) =

∑
ms∈mc MI (ms)(s, q); and (2) the sum of all

the monitors’ overheads on q of service s: Os,q(mc) =
∑

m∈M MO(m)(s, q) ×
inUse(m), where inUse(m) = {1iff ∃mci∈mc,mci.m=m,mci.sr>0

0iff �mci∈mc,mci.m=m,mci.sr>0}. Therefore, mc’s
impacts on q of s are: IM (mc)(s, q) = Is,q(mc) + Os,q(mc), and mc’s impacts
on all (s, q) pairs are: IM (mc) = {(s, q) �→ IM (mc)(s, q)|∀(s, q) ∈ SQ}. Finally,
the set of all monitoring configurations with impacts (on service-quality pairs)
is: MCI = {mc �→ IM (mc)|∀mc ∈ MC }.

RequirementsAnalyser. The Requirements Analyser takes requirements from
SLAs and other sources such as corporate governance as input, and outputs a
set of utility functions representing the values of achieving those requirements.

We assume that requirements can be translated into statements that describe
a fine for not meeting or not monitoring a QoS. For example, an SLA may re-
quire a service s1 to have response time of 15 seconds and sampling rate of 50%
to demonstrate a QoS has been met, with a penalty of $100 for exceeding this.

Optimizing the Configuration of Web Service Monitors 591

We say that the benefit is $100 for monitoring service s1 for response time whilst
that response time is less than 15 seconds with a sampling rate of at least 0.5.

A requirement that the quality q of service s must be at least ql and monitored
with a sampling rate at least sr can be represented as r = (s, q, ql, sr), and
the requirement r with a fine for non-compliance can be represented as rp =
((s, q, ql, sr) �→ fine). The quality level ql is a fraction of the required quality
level over the ideal quality level that is provided by the service. For example,
if the best possible response time of a service is 10 seconds, and the required
response time is 20 seconds, then the quality level ql is 0.5. The fine is the
penalty that must be paid if the sampling rate sr and the quality level ql are
not met. The set of all requirements with fines is RP = {(s, q, ql, sr) �→ fine :
R|∀(s, q, ql, sr) ∈ R}, where R is the set of all requirements.

Consider the requirements that the quality q of service s should be monitored
all the time and achieve a quality level of 0.75, with a fine of $60 if the quality
level goes below 0.75, and a fine of $90 if the quality level goes below 0.5. This
set of requirements with fines can be represented as rps = {(s1, q1, .50, 1) �→
$90, (s1, q1, .75, 1) �→ $60, (s1, q1, 1, 1) �→ $0}.

We transform each monitoring requirement describing fines for non-compliance
into utility functions describing benefit (utility) for compliance. Since our utili-
ties are cumulative, for rp = ((s, q, ql, sr) �→ fine), we have the corresponding
utility util(s, q, ql, sr) = (curmax−RP (s, q, ql, sr))−

∑
lr∈LR(s,q,sq,sr)(curmax−

util(lr)), where curmax is the benefit of achieving the quality level ql and sam-
pling rate sr, and LR is the set of requirements with a quality level lr.ql < ql
or sampling rate lr.sr < sr, LR(s, q, ql, sr) = {(s, q, ql1, sr1)|∀(s, q, ql1, sr1) ∈
R((ql1 < q1) ∧ (sr1 ≤ sr)) ∨ ((ql1 ≤ q1) ∧ (sr1 < sr))}. Therefore, the util-
ity function covering all the monitoring requirements is U = {(s, q, ql, sr) �→
util(s, q, ql, sr)|(s, q, ql, sr) ∈ R}.

For the above set of example requirements rps,wehave the following correspond-
ingutilities:us = {(s1, q1, .50, 1) �→ $0, (s1, q1, .75, 1) �→ $30, (s1, q1, 1, 1) �→ $60}.
The last element ((s1, q1, 1, 1) �→ $60) of the utility set us is read as “achieving
quality level greater than .75 of quality q1 for service s1 with a sampling rate
of 1 is worth an additional $60 (relative to the next lower quality level of 0.75),
since fines of that amount will not have to be paid”. The absolute utility for the
ql = 1 level is $90, including the utility at the lower quality level ($30). Designers
may also add utilities that are not directly derived from requirements.

Optimizer. The Optimizer takes as input the set of utilities U , the set of mon-
itoring configurations with impacts MCI , and the ideal service quality levels for
all qualities of all services IQL = {(s, q) �→ iql : QL|∀s ∈ S, ∀q ∈ Q}, where iql
is the pre-determined best achievable quality level for quality q of service s. The
Optimizer outputs a monitoring configuration that gives the best utility in terms
of meeting requirements and reducing monitoring impacts.

For a monitoring configuration mc with impacts, the Optimizer first obtains
the Final Quality Levels FQL of all (s, q) pairs by subtracting all relevant impacts
from their ideal quality levels IQL, i.e., FQL(mc) = {(s, q) �→ fql : QL|iql =
IQL(s, q)−MCI (mc)(s, q)}.

592 G. Heward et al.

The utility of the (s, q) pair under monitoring configuration mc, u(mc)(s, q),
is the sum of those utilities of (s, q), (1) whose required quality level ql has been
met by the pair’s final quality level FQL(mc)(s, q) and (2) whose sampling rate
sr is met by at least one monitor setting in mc.

Let R(s,q) be the set of all requirements concerning (s, q), i.e.,R(s,q) = {(s1, q1,
ql, sr)|(s1, q1, ql, sr) ∈ R ∧ s1 = s ∧ q1 = q}. Then,u(mc)(s, q) =∑

(s,q,ql,sr)∈R(s,q)
(util(m, s, ql, sr)× a× b, where

a = {1iff FQL(s,q)≥ql
0iff FQL(s,q)<ql}, b = {1iff ∃m∈M,ms(m,s,q)≥sr

0iff �m∈M,ms(m,s,q)≥sr}.

The total utility for the monitoring configuration mc will be the sum of the
utilities for all (s, q) pairs under the configuration, u(mc). Let SQmc = {(s, q)|∀
(m, s, q, l) ∈ mc}. Then, u(mc) =

∑
(s,q)∈SQmc

u(mc)(s, q). The set of all
monitoring configurations with utility is, MCU = {mc �→ u(mc)|mc ∈ MC }.
A monitoring configuration that gives the highest total utility will be an opti-
mal monitoring configuration, optimalmc ∈ {mc1|∀mc2 ∈ MC ,MCU (mc1) ≥
MCU (mc2)}, which may be applied to the monitors in the system either manually
or automatically (if available via methods such as SNMP or WS-Management).

Optimization Complexity. The number of monitoring configurations is the
product of the number of monitoring levels (MLmcap) for all monitoring capabil-
ities in the system (mcap ∈ MCAP). The size of this search space is bounded by
O(avg(|MLmcap|)|MCAP|)). Since we step through the search space once for each
of Impact Analysis and Optimization, this is also the time complexity for our op-
timization technique. The problem is a combinatorial optimization problem with
both overhead (fixed) and instance (variable) costs, a case of an integer fixed
charge network flow (FCNFP) problem, demonstrated to be NP-hard [5]. We
have provided a brute force technique to demonstrate the possible performance
and utility benefits of applying optimization. This also provides a baseline of a
‘perfect’ optimization against which to compare future heuristic algorithms.

3 Performance Evaluation

A prototype1 of a travel agency with two web services, five monitors, four qual-
ity types, six SLA requirements, four Corporate Governance requirements, and
2.5×105 possible monitoring configurations has been implemented to verify our
optimization technique and measure possible performance benefits of monitoring
optimization. There always exists one or more optimal monitoring configurations
(yielding the highest utility) in terms of monitoring coverage and performance.
The purpose of these experiments is to discover these optimal monitoring config-
urations, and compare the utility and performance of each optimal configuration
to the utility and performance of each corresponding maximum (un-optimized)
monitoring configuration, in which all monitors run at a 100% sampling rate.

1 Full details at http://www.ict.swin.edu.au/personal/gheward/

Optimizing the Configuration of Web Service Monitors 593

The performance measurements are based on a series of simulated service
executions, which use response time measured through real service invocations
to determine what the performance will be for a given monitoring configuration.

3.1 Results

We report average response times and utilities to demonstrate that system per-
formance has increased whilst monitoring requirements have been met. Utility
increased in each experiment, as only the minimum valuable monitoring level was
met, allowing for a performance increase which minimised the chance of breach-
ing requirements for response time. Figure 2 shows response time versus load
level with unmonitored, maximum, and optimal monitoring configurations. The
load levels on the horizontal axis represent the average number of active client
requests, and the vertical axis is the average response time over both services.

Fig. 2. Performance Evaluation

Optimization reduced the average response time by approximately 30% from
maximum monitoring, and reduced the average response time impact by 80%.

The horizontal line on Figure 2 shows the 10-second boundary, for which
penalties apply in the test system. The optimized monitoring configuration stays
under this 10-second boundary for approximately twice as long as the maximum
monitoring configuration, i.e. the system with optimized monitoring dealt with
twice as much load before a penalty would have been paid.

The utility provided by the unmonitored solution was 0, since no requirements
could be verified. The Maximum and Optimal monitoring configurations both
included complete monitoring coverage. For each of these two configurations,
the utility at or below 10 seconds response time was 4.245, and the utility above
10 seconds response time was 3.75. We repeated all experiments with randomly
generated utility functions and monitoring impacts ranging from mild (less than
.01% per monitoring instance on average) to severe (up to 20% per monitoring
instance), under various load levels. The response times for the optimized solu-
tions were on average 40% lower than maximum monitoring, and the optimized

594 G. Heward et al.

response time impacts were on average 70% lower than maximum monitoring.
Utility values were on average 30% higher for the optimized solutions.

4 Related Work

Ranganathan and Dan present a Web Services management system to monitor
and reallocate local system resources for services based on comparing their cur-
rent QoS to their SLAs[6]. Whilst performing system-level administration, this
method does not re-configure the web service monitoring system.

Baresi and Guinea present a method for dynamic monitoring of WS-BPEL
processes, which uses high level monitoring rules [4]. These Monitoring Rules are
used to control the monitoring of each WS-BPEL process. The rules are created
with an equivalent of debug levels (one to five), which allows for optimization in
terms of performance versus monitoring trade-offs at run-time. The monitoring
level must be set for each service as a unit. Rather than assigning a monitoring
resolution (debug level) to each individual service in the system, we assign a
monitoring resolution to each quality of each service, directly reflecting require-
ments from SLAs. Furthermore, we enhance the optimization by selecting those
monitors which will most efficiently monitor each service.

Overall, there have been numerous efforts for optimizing the QoS of web
services and web service compositions, which consider the selection of services in
order to optimize QoS. We have discovered no work that optimizes a web services
monitoring system by trading off between monitoring costs and benefits, directly
translated from SLAs and other requirements for monitoring.

5 Conclusions and Future Work

We have presented a framework and techniques for optimizing the configuration
of web service monitors, in order to maximise utility for a web services provider.

A prototype instantiation of our proposed framework was used for a series
of experiments, which demonstrated that both utility and performance can be
improved by optimally configuring a web services monitoring system. Results
indicate that the performance impact of web service monitoring can be signifi-
cantly reduced, whilst meeting monitoring requirements.

We plan to extend the framework and implementation so that run-time prop-
erties of the system being monitored are fed back into the monitoring optimiza-
tion framework, for re-optimization at run-time. We will also develop a heuristic
approach to optimization in order to ensure scalability of the technique.

Acknowledgements. This work is supported by the Australian Research
Council in collaboration with CA Labs.

References

1. Heward, G., Müller, I., Han, J., Schneider, J.G., Versteeg, S.: Assessing the perfor-
mance impact of service monitoring. In: Australian Software Engineering Conference
(ASWEC 2010), pp. 192–201 (2010)

Optimizing the Configuration of Web Service Monitors 595

2. Ludwig, H., Dan, A., Kearney, R.: Cremona: An architecture and library for creation
and monitoring of ws-agreements. In: International Conference on Service Oriented
Computing (ICSOC 2004), vol. 74, pp. 65–74 (2004)

3. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F.: Flow-based service selec-
tion for web service composition supporting multiple qos classes. In: International
Conference on Web Services (ICWS 2007), pp. 743–750 (2007)

4. Baresi, L., Guinea, S.: Towards dynamic monitoring of ws-bpel processes. In: Bena-
tallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 269–282.
Springer, Heidelberg (2005)

5. Stevens, T., Vermeir, J., Leenheer, M.D., Develder, C., Turck, F.D., Dhoedt, B.,
Demeester, P.: Distributed service provisioning using stateful anycast communica-
tions. In: Annual IEEE Conference on Local Computer Networks (LCN 2007), pp.
165–174 (2007)

6. Ranganathan, K., Dan, A.: Proactive management of service instance pools for
meeting service level agreements. In: Benatallah, B., Casati, F., Traverso, P. (eds.)
ICSOC 2005. LNCS, vol. 3826, pp. 296–309. Springer, Heidelberg (2005)

A Soft Constraint-Based Approach
to QoS-Aware Service Selection�

Mohamed Anis Zemni1, Salima Benbernou1, and Manuel Carro2

1 LIPADE, Université Paris Descartes, France
2 Facultad de Informática, Universidad Politécnica de Madrid, Spain

mohamedaniszemni@gmail.com, salima.benbenrou@paridescartes.fr,
mcarro@fi.upm.es

Abstract. Service-based systems should be able to dynamically seek replace-
ments for faulty or underperforming services, thus performing self-healing. It
may however be the case that available services do not match all requirements,
leading the system to grind to a halt. In similar situations it would be better to
choose alternative candidates which, while not fulfilling all the constraints, allow
the system to proceed. Soft constraints, instead of the traditional crisp constraints,
can help naturally model and solve replacement problems of this sort. In this work
we apply soft constraints to model SLAs and to decide how to rebuild composi-
tions which may not satisfy all the requirements, in order not to completely stop
running systems.

Keywords: Service Level Agreement, Soft Constraints.

1 Introduction

A (web) service can be defined as a remotely accessible software implementation of
a resource, identified by a URL. A set of protocols and standards, such as WSDL, fa-
cilitate invocation and information exchange in heterogeneous environments. Software
services expose not only functional characteristics, but also non-functional attributes
describing their Quality of Service (QoS) such as availability, reputation, etc. Due to
the increasing agreement on the implementation and management of the functional as-
pects of services, interest is shifting towards non-functional attributes describing the
QoS. Establishing QoS contracts, described in the Service Level Agreement (SLA),
that can be monitored at runtime, is therefore of paramount importance. Various tech-
niques [1] to select services fulfilling functional and non-functional requirements have
been explored, some of them based on expressing these requirements as a constraint
solving problem [2,3] (CSP). Traditional CSPs can either be fully solved (when all re-
quirements are satisfied) or not solved at all (some requirements cannot be satisfied).
In real-life cases, however, over-constraining is common (e.g., because available ser-
vices offer a quality below that required by the composition), and problems are likely

� The research leading to these results has received funds from the European Community’s
Seventh Framework Programme FP7/2007-20013 under grant agreement 215483 (S-CUBE).
Manuel Carro was also partially supported by Spanish MEC project 2008-05624/TIN DOVES
and CM project P2009/TIC/1465 (PROMETIDOS).

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 596–602, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Soft Constraint-Based Approach to QoS-Aware Service Selection 597

A C-semiring is a tuple 〈A, +,×,0,1〉 s.t.

– A is a set and 0 ∈ A, 1 ∈ A.
–

∑
(the additive operation)a is defined on subsets of A as follows:

• + is commutative (a + b = b + a), associative (a + (b + c) = (a + b) + c), with
unit element 0 (a + 0 = a) and absorbing element 1 (a + 1 = 1).

• ∑ ∅ = 0 and for all a ∈ A,
∑{a} = a.

• Given any set of indices S,
∑

i∈S(
⋃

Ai) =
∑

({∑i∈S Ai}) (flattening).
– × (the multiplicative operation) is associative, commutative, a × 1 = a and a × 0 = 0.
– × distributes over +, i.e., a × (b + c) = (a × b) + (a × c).

a Written as infix + when applied to a two-element set.

Fig. 1. Definition of a C-Semiring for Soft Constraints

not to have a classical, crisp solution. Solving techniques for soft CSPs (SCSP) [4,5,6]
can generate solutions for overconstrained problems by allowing some constraints to
remain unsatisfied.

Our framework takes into consideration the penalties agreed upon on the SLA by
building a new (Soft) Service Level Agreement (SSLA) based on preferences where
strict customer requirements are replaced by soft requirements allowing a suitable com-
position. This agreement has to include penalty terms to be applied while the contract
terms are violated.

2 Soft Constraints in a Nutshell

A CSP defines a set of variables whose ranges we assume a finite domain (FD)1 and a
set of constraints which restrict the values these variables can take. A solution for a CSP
is an assignment of a value to every variable s.t. all the constraints are simultaneously
satisfied. Soft constraints [5,6] generalize classical CSPs by adding a preference level
to every tuple in the domain of the constraint variables. This level can be used to obtain
a suitable solution which may not fulfill all constraints, which optimizes some metrics,
and which in our case will be naturally applied to the requirements of the users.

The basic operations on soft constraints (building a constraint conjunctions and pro-
jecting on variables) need to handle preferences in a homogeneous way. This requires
the underlying mathematical structure of classical CSPs to change from a cylindrical al-
gebra to a semiring algebra, enriched with additional properties and termed a C-semiring
(Figure 1). In it,A provides the levels of preference of the solutions and it can be proved
that it is a lattice with partial order a � b iff a + b = b, minimum 0, and maximum
1. When solutions are combined or compared, preferences are accordingly managed
using the operations × and +. Note that the theory makes no assumptions as to what
the preferences mean, or how they are actually handled: × and + are placeholders for

1 CSPs can be defined on infinite domains, but assume a FD here because it can accommodate
many real-life problems, as witnessed by the relevance of FD in industrial applications, and
because soft constraint theory requires finiteness.

598 M.A. Zemni, S. Benbernou, and M. Carro

Definition 1 (Constraint). Given a c-semiring 〈A, +,×, 0, 1〉, a set of variables V , and a set
of domains D, one for every variable in V , a constraint is the pair 〈def, con〉 where con ⊆ V
and def : D|con| → A.

Definition 2 (Soft Constraint Satisfaction Problem SCSP). A SCSP is a pair 〈C, con〉 where
con ⊆ V and C is a set of constraints. C may contain variables which are not in con, i.e.,
they are not interesting for the final result. In this case the constraints in C have to be projected
onto the variables in con.

Definition 3 (Constraint combination). Two constraints c1〈def1, con1〉 and c2 =
〈def2, con2〉 can be combined in c1 ⊗ c2 = 〈def, con〉 by taking all the variables in the
original constraints (con = con1

⋃
con2) and assigning to every tuple in the new con-

straint a preference value which comes from combining the values in the original constraints:
def(t) = def1(t ↓con

con1)×def2(t ↓con
con2), with t ↓X

Y denoting the projection of tuple t , which
is defined on the set of variables X, over the set of variables Y ⊆ X .

Definition 4 (Projection). Given a soft constraint c = 〈def, con〉 and a set of variables I ⊆
V , the projection of c over I , denoted by c ⇓I is the constraint 〈def ′, con′〉 where con′ =
con

⋂
I and def ′(t′) =

∑
{t|t↓con

con∩I
=t′} def(t).

Definition 5 (Solution). A solution of a SCSP problem 〈C, con〉 is the constraint (⊗C) ⇓con,
i.e., the combination (conjunction) of all the constraints in C projected over all the variables
con of interest.

Fig. 2. Definitions for Soft Constraints

concrete definitions which can give rise to different constraint systems, such as fuzzy
constraints, traditional constraints, etc.

Figure 2 summarizes some basic definitions regarding soft constraints. A constraint
takes a tuple of variables and assigns it a tuple of concrete values in the domain of the
variables, plus a preference value (belonging to the set A). Constraints can be com-
bined into other constraints (with ⊗, similar to conjunction) and projected (⇓X

Y) onto
a tuple of variables. The preference value of every tuple in a constraint conjunction is
worked out by applying × to the preference values of the tuples in the individual con-
straints. Projections eliminate “columns” from tuples and retain only the non-removed
tuple components. Repeated rows may then appear, but only one is retained, and its
preference is calculated applying + to the preferences of the repeated tuples. Since a
solution is a projection on some selected set of variables, the preferences of solutions
are naturally calculated using the projection operation. Usually the tuple with the high-
est preference value is selected as the “optimal” solution.

3 Soft Service Level Agreement and SCSPs

A Service Level Agreement (SLA) [7] is a contract between provider(s) and client(s)
specifying the guarantees of a service, the expected quality level, and the penalties to
be applied in case of unfulfillment of duties, and it is therefore an important quality
management artifact. The SLA can be used to identify the responsible of a malfunction

A Soft Constraint-Based Approach to QoS-Aware Service Selection 599

Definition 6 (Preference). The set Pr = {〈δi, υi, ai〉|δi ∈ Δ, υi ∈ Υ, ai ∈ A} where δi is
the sub-domain that the i-th preference belongs to, υi is the variable defining the preferences,
and ai is semiring value, representing the preferences in an SSLA.

Definition 7 (Penalty). The set Pn = {pni | ∃pri s.t. υi /∈ δi} represents the penalties.

Definition 8 (SSLA document). A SSLA document is a tuple ζ = 〈Υ,Δ, A,Pr, Pn, T 〉
where Υ is a set of variables vi, Δ is a set of variable domains δi (one for each variable), Pr
is a set of preferences Pri, Pn is a set of penalties Pni to apply when the preferences are
not satisfied and T is a set of pairs 〈pri, pni〉 which associates preferences with the penalties
to apply in case of violation.

Fig. 3. Definitions related to a soft SLA

and to decide which action (if any) has to be taken. An SLA should, therefore, be
realistic, achievable, and maintainable.

An SLA has a rich structure from which we underline the properties of the services,
including those measurable aimed at expressing guarantees. This part provides a set
Υ of variables υi (whose meaning is explained in the service description) and their
domains δi ∈ Δ, which can be established by the metric attribute. A Soft SLA (SSLA)
is similar to a SLA but with the addition of a set of user preferences and of penalties
associated to contract breaking (respectively, Pr and Pn). The preferences are used
to make a composition in the presence of unsatisfied requirements and the penalties
are used to refine found solutions and to protect each party from the violation of the
contract terms. These notions are depicted in Figure 3. The i-th penalty pni ∈ Pn is
applied when the i-th preference pri ∈ Pr is not satisfied.

3.1 Extending SCSP Using Penalties

We will adapt the SCSP framework to handle explicitly penalties for service selection
and to build a Soft Service Level Agreement including preferences and penalties. In this
framework, service selection has three phases:

1. Model the characteristics for the selection using soft constraints.
2. Assuming a pre-selection is made using functional requirements, rank candidate

services using non-functional requirements and the constraint preferences.
3. We assign penalties to unmet user preferences, and these penalties are used to rank

solutions having the same constraint preferences.

Figure 4 shows the definitions for this extended SCSP framework. We extend the ap-
plication of semiring operations to penalties. Variables are assumed to take values over
subdomains which discretize a continuous domain, and which for brevity we represent
using identifiers in D{}. The constraint preference function def is also adapted in order
to apply it both to preferences and to penalties. The projection operation is kept as in
the SCSP framework.

600 M.A. Zemni, S. Benbernou, and M. Carro

Definition 9 (CP-semiring). A CP-semiring is a tuple S = 〈A,Pn, +,×, 0, 1〉, extending a
C-semiring. A and Pn are two sets with lattice structure stating preference values for solutions
and penalties. Operations × and + are applied when constraints are combined or projected.

Definition 10 (Constraint System). A constraint system is a tuple CS = 〈S,D{}, V 〉, where
S is c-semiring, D{} represents the set of identifiers of subdomains, and V is the ordered
set of variables.

Definition 11 (Constraint). Given a constraint system CS = 〈Sp, D{}, V 〉 and a problem
P = 〈C, con〉 , a constraint is the tuple c = 〈defc, type〉, where type represents the type of
constraint and defc is the definition function of the constraint, which returns the tuple

def : D
|con|
{} → 〈pr, pn〉,

Definition 12 (Soft Constraint Satisfaction Problem SCSP). Given a constraint system
CS = 〈S, D{}, V 〉 , an SCSP over CS is a pair P = 〈C, con〉, where con , called set
of variables of interest for C , is a subset of V and C is a finite set of constraints, which may
contain some constraints defined on variables not in con .

Fig. 4. CP-Semiring

3.2 An Example

A delivery service has an order-tracking web service. Companies wishing to hire this
service want to have in the contract non-functional criteria such as availability, reputa-
tion, response time and cost.

Phase 1. Let CS = 〈Sp, D{}, V 〉 be a constraint system and P = 〈C, con〉 be the prob-
lem to be solved, where V = con = {Availability, Reputation, response Time, coSt},
D{} = {{a1, a2}, {r1, r2}, {t1, t2, t3}, {s1, s2}}, Sp = 〈[0, 1], Pn,max,min, 0, 1〉,
C = {c1, c2, c3, c4}. For simplicity, variables and their domains have been written in
the same order.

A set of penalties, ranked from the most to then less important one, has been set:
pni � pnj if i ≤ j. The above shown values of the variable domains comes from a dis-
cretization such as availability ∈ {[0, 0.5[, [0.5, 1]}, reputation ∈ {[0, 0.6[, [0.6, 1]},
response time ∈ {[20,∞[, [5, 20[, [0, 5[}, cost ∈ {[1000, 1500[, [1500, 3000]}.

Table 1. Constraint definitions

〈A,R〉 defc1 〈T 〉 defc2 〈A, R, S〉 defc3 〈R,T 〉 defc4
〈a1, r1〉 〈0,−〉 〈t1〉 〈0.25, pn6〉 〈a1, r1, s1〉 〈0.25, pn8〉 〈r1, t1〉 〈0.5, pn6〉
〈a1, r2〉 〈0.25, pn1〉 〈t2〉 〈0.5, pn5〉 〈a1, r1, s2〉 〈0.25, pn1〉 〈r1, t2〉 〈0.5, pn5〉
〈a2, r1〉 〈0.5, pn3〉 〈t3〉 〈1, pn7〉 〈a1, r2, s1〉 〈0.5, pn1〉 〈r1, t3〉 〈0,−〉
〈a2, r2〉 〈0.75, pn3〉 〈a1, r2, s2〉 〈0.25, pn3〉 〈r2, t1〉 〈0.75, pn2〉

〈a2, r1, s1〉 〈0.75, pn9〉 〈r2, t2〉 〈0.75, pn4〉
〈a2, r1, s2〉 〈0.5, pn8〉 〈r2, t3〉 〈1, pn2〉
〈a2, r2, s1〉 〈0.75, pn2〉
〈a2, r2, s2〉 〈0.25, pn1〉

A Soft Constraint-Based Approach to QoS-Aware Service Selection 601

Table 2. Ordered constraint combinations with preferences and penalties

〈A,R, T, S〉 〈pr, pn〉 〈A,R, T, S〉 〈pr, pn〉 〈A, R, T, S〉 〈pr, pn〉 〈A,R, T, S〉 〈pr, pn〉
〈2, 2, 3, 1〉 〈0.75, pn2〉 〈2, 2, 1, 2〉 〈0.25, pn1〉 〈1, 2, 1, 1〉 〈0.25, pn1〉 〈1, 1, 3, 2〉 〈0.0,−〉
〈2, 2, 2, 1〉 〈0.50, pn2〉 〈1, 2, 3, 2〉 〈0.25, pn1〉 〈2, 2, 1, 1〉 〈0.25, pn2〉 〈1, 1, 3, 1〉 〈0.0,−〉
〈2, 1, 2, 2〉 〈0.50, pn3〉 〈1, 2, 3, 1〉 〈0.25, pn1〉 〈2, 1, 1, 2〉 〈0.25, pn3〉 〈1, 1, 2, 2〉 〈0.0,−〉
〈2, 1, 2, 1〉 〈0.50, pn3〉 〈1, 2, 2, 2〉 〈0.25, pn1〉 〈2, 1, 1, 1〉 〈0.25, pn3〉 〈1, 1, 2, 1〉 〈0.0,−〉
〈2, 2, 2, 2〉 〈0.25, pn1〉 〈1, 2, 2, 1〉 〈0.25, pn1〉 〈2, 1, 3, 2〉 〈0.0,−〉 〈1, 1, 1, 2〉 〈0.0,−〉
〈2, 2, 3, 2〉 〈0.25, pn1〉 〈1, 2, 1, 2〉 〈0.25, pn1〉 〈2, 1, 3, 1〉 〈0.0,−〉 〈1, 1, 1, 1〉 〈0.0,−〉

Let us consider the following constraints: c1 = 〈defc1, {availability, reputation}〉,
c2 = 〈defc2, {response time}〉, c3 = 〈defc3, {availability, reputation, cost}〉 , c4 =
〈defc4, {reputation, response time}〉, where the preference values and corresponding
penalties are in Table 1. For example, for the tuple 〈a2, r1〉, attributes “availability” and
“reputation” are respectively assigned subdomains [0.5, 1] and [0, 0.6[. The function
defc1(〈a2, r1〉) = 〈0.5, pn3〉 shows that these attribute values have a preference 0.5
and company is ready to sign away this preference for a penalty pn3.

Phase 2. Given the model, we define constraint combination to keep the minimum
value of preferences (resp. for the penalties). For example defc1(〈a2, r1〉) ⊗ defc2

(〈t3〉) = min(〈0.5, pn3〉, 〈0.25, pn6〉) = 〈0.25, pn3〉 and so on with all the tuples to
obtain c1,2. Next, we would combine c1,2 and c3 to get c1,2,3 = c1,2 ⊗ c3 and so on,
until all constraints have been combined. Table 2 shows the results of combining all the
constraints.

Phase 3. The set of solutions is ranked by preferences and then by penalties (already in
Table 2). The solution with highest rank is chosen first. If it turns out not to be feasible,
the associated penalty is applied and the next solution is chosen, and so on.

3.3 Mapping SSLA onto SCSP Solvers

Given the our design of an SSLA, mapping it into a SCSP is very easy: variables vi in
the SSLA are mapped onto the corresponding vi in the SCSP; SSLA domains δi are dis-
cretized and every discrete identifier is a domain for a SCSP variable; and preferences
and penalties (both lattices) are handled together by the def function, so they can be
mapped to the A set in a C-semiring with an adequate definition of the def function.

4 Conclusion

We have presented a soft constraint-based framework to seamlessly express QoS prop-
erties reflecting both customer preferences and penalties applied to unfitting situations.
The application of soft constraints makes it possible to work around overconstrained
problems and offer a feasible solution. Our approach makes easier this activity thanks
to ranked choices. Introducing the concept of penalty in the Classical SCSP can also be
useful during the finding and matching process. We plan to extend this framework to
also deal with behavioral penalties.

602 M.A. Zemni, S. Benbernou, and M. Carro

References

1. Müller, C., Ruiz-Cortés, A., Resinas, M.: An Initial Approach to Explaining SLA Inconsis-
tencies. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364,
pp. 394–406. Springer, Heidelberg (2008)

2. Montanari, U.: Networks of Constraints: Fundamental Properties and Application to Picture
Processing. Information Sciences 7, 95–132 (1974)

3. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)
4. Bistarelli, S.: Semirings for Soft Constraint Solving and Programming. Springer, Heidelberg

(2004)
5. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimiza-

tion. J. ACM 44(2), 201–236 (1997)
6. Bistarelli, S., Montanari, U., Rossi, F.: Constraint Solving over Semirings. In: Proc. IJCAI

1995 (1995)
7. Bianco, P., Lewis, G.A., Merson, P.: Service Level Agreements in Service-Oriented Architec-

ture Environment. Technical Report CMU/SEI-2008-TN-021, Carnegie Mellon (September
2008)

Timed Conversational Protocol Based Approach

for Web Services Analysis

Nawal Guermouche and Claude Godart

LORIA-INRIA-UMR 7503
F-54506 Vandoeuvre-les-Nancy, France

{Nawal.Guermouche,Claude.Godart}@loria.fr

Abstract. Choreography is one of the most important features of Web
services. It allows to capture collaborative processes involving multiple
services. In this paper, we are interested in analyzing the interoperability
of Web services that support asynchronous communications which are
constrained by data and timed constraints, using a model checking based
approach. In particular, we deal with the compatibility problem. To do
so, we have developed a set of abstractions and transformations on which
we propose a set of primitives characterizing a set of compatibility classes
of Web services. This paper is about the specification and implementation
of this approach using the UPPAAL model checker.

Keywords: AsynchronousWeb service,Timedproperties,Compatibility
analysis.

1 Introduction

Web services are the main pillar of the Service Oriented Computing (SOC)
paradigm. Based on standard interfaces, they facilitate application-to-application
interactions thanks to the notion of choreography of message exchanges between
services. Such a feature offers the possibility to capture collaborative processes
involving multiple services where the interactions between these services are
seen from a global perspective. In this context, one of the important elements is
the compatibility analysis. By compatibility we mean the capability of a set of
services of actually fulfilling successful interactions by exchanging messages.

It is commonly agreed that in general the interaction of Web services and in
particular the compatibility of Web services depends not only on the supported
sequences of messages but also on crucial quantitative properties such as timed
properties [8,10]. We mean by timed properties the required delays to exchange
messages (e.g., in an e-government application, a prefecture must send its final
decision to grant an handicapped pension to a requester after 7 days and within
14 days).

Some works have dealt with the problem of compatibility of two services.
In [4,3,2], authors consider the sequence of messages that can be exchanged be-
tween two synchronous Web services to analyze compatibility of two services.

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 603–611, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

604 N. Guermouche and C. Godart

Considering only the message exchange sequences is not sufficient. To succeed a
conversation, other metrics can have an impact such as timed properties which
are not considered in [4]. Another important remark is that in [4], authors con-
sider synchronous Web services. Such assumption is very restrictive since two
services can succeed a conversation despite that they do not support the same
branching structure.

The compatibility framework presented in [10] considers a more expressive
timed constraints model. Although powerful, in some cases, the compatibil-
ity framework cannot detect some timed conflicts due to non-cancellation con-
straints. In fact, the authors deal only with synchronous communicating services
and discover timed conflicts based on synchronizing the corresponding timed
properties over messages. However, in case of asynchronous Web services, this
framework cannot be applied to discover timed conflicts.

In [5], the authors handle the timed conformance problem. The timed confor-
mance problem consists in checking if a given timed orchestration satisfies a global
timed choreography. In this framework, the authors deal with timed cost (i.e., the
delay) of operations. Our aim is to detect deadlocks that can arise when a set of
Web services are interacting altogether. While authors of [5] are not interested in
analyzing the compatibility of a choreography but only in checking if a given or-
chestration conforms to a choreography. So, one of the assumption on which the
work presented in [5] relies, is that the choreography does not hold timed conflicts.

Regarding our previous work, [6] presents a framework for analyzing the com-
patibility of Web services. [6], presents an algorithm to analyze the compatibility
of Web services based on the clock ordering process. This work is limited to dis-
cover only some kind of timed conflicts that do not consider other eventual timed
conflicts that can arise when Web services interact together.

In this paper, we propose an analyzing choreography compatibility framework
which is based on our previous work [6,7]. This approach is based on the model
checker UPPAAL1. In this framework we take into account data flow involved
when exchanging messages. Furthermore, we consider constraints over data and
timed properties that specify delays concerning message exchanges. By studying
the possible impacts of timed properties on a choreography, we remarked that
when Web services are interacting together, implicit timed dependencies can be
derived from the different timed properties of the different services [6,7]. Such
dependencies can give rise to implicit timed conflicts. In order to catch the
possible timed deadlocks, we propose a set of model checking based primitives.

More precisely, in order to be able to analyze the compatibility of a set of timed
and asynchronous Web services, we propose a set of primitives which consists in:
(1) extending the model of conversational protocols proposed in [7,6] to consider
together messages, data flow, data constraints, and timed constraints, (2) extend-
ing the transformation process we proposed in [7] to allow applying model check-
ing to asynchronous Web services composition analysis, particularly, considering
timed properties and data constraints when analyzing asynchronous services, (3)
finally, we propose new fine grained asynchronous compatibility classes.

1 http://www.uppaal.com/

Timed Conversational Protocol Based Approach for Web Services Analysis 605

The remainder of the paper is organized as follows. The next section presents
how we model the timed behaviour of Web services. In order to be able to
handle asynchronous services with the UPPAAL model checker, we present a set
of abstractions and transformations. Before concluding, we present our formal
choreography compatibility investigations.

2 Modeling Timed Behaviour of Web Services

The model we consider is based on timed automata. Intuitively, the states repre-
sent the different phases a service may go through during its interaction. Transi-
tions enable sending or receiving a message. An output message is denoted by !m,
whilst an input one is denoted by ?m. A message involving a list of data types is
denoted by m(d1, . . . , dn), or m(d) for short. These automata are equipped with
a set of clocks [1]. Transitions are labelled by timed constraints, called guards,
and resets of clocks. The former represent simple conditions over clocks, and the
latter are used to reset values of certain clocks to zero. The guards specify that
a transition can be fired if the corresponding guards are satisfied.

A timed constraint is a conjunction of atomic formula that compares the value
of a clock x ∈ X , to a positive real constant a ∈ R≥0.

The set of Web services are equipped with a bounded queue to store the
incoming messages.

Figure 2 shows the timed conversational protocols of an e-government appli-
cation we consider. The goal is to manage handicapped pension requests. Such
a request involves three Web services: (1) a prefecture service (PS) (2) a health
authority service (HAS), and (3) a town hall service (TH). A citizen can apply
for a pension. The prefecture solicits the medical entity to examine the requester.
On the other side, the prefecture asks the town hall to deliver the domiciliation
attestation. After studying the received file, the prefecture sends the notifica-
tion of the final decision to the citizen after 48 hours and within 96 hours from
receiving the pension request. To specify such constraint, we associate a reset
of the clock t1 (t1 = 0) to the transition that enables to receive the request of
the pension and we associate the constraint 48 ≤ t1 ≤ 96 to the transition that
enables to send the final decision.

As the approach we propose is based on the model checker UPPAAL, next,
we present the required process we propose to adapt this general model to the
UPPAAL one to be able to perform the compatibility cheking.

3 From Conversational Protocols to UPPAAL Timed
Automata

UPPAAL is a model checker for the verification and simulation of real time
systems. An UPPAAL model is a set of timed automata, clocks, channels for
systems (automata) synchronization, variables and additional elements [9,7].

606 N. Guermouche and C. Godart

Fig. 1. Web services of the e-government scenario

In order to perform a model checking using UPPAAL, we use a set of trans-
formation steps, which are: (1) Messages abstraction, (2) data constraints ab-
straction, (3) final states specification. The steps of messages abstraction and
final states specification are presented in [7].

3.1 Abstraction of Data Constraints

As said previously, our model considers constraints over data. To analyze these
constraints with UPPAAL, the values of the data must be known. However,
as the compatibility analysis we propose is done at design time, the values of
the data cannot be known in advance. Consequently, the constraints over data

Timed Conversational Protocol Based Approach for Web Services Analysis 607

cannot be correctly considered. To consider constraints over data, we propose
to abstract the variables of messages resulting from the process of message ab-
straction described in [7] with information about data constraints. The idea is
to compute the set of transitions that hold the same variable. If the set of solu-
tions of the data constraints associated to these transitions is disjoined, then we
abstract differently the variables. Whilst, if the set of solution is not disjoined,
then we remove only the data constraints without changing the variables. To
explain this issue, let us present the following example.

Example 1. Via this example, we are going to show how we apply the data
constraints abstraction process. As we can see, the two services, illustrated in
Figure 2, have the following two common transitions (i.e., transitions that hold
the same variable):

– (s0, m0 + +, d0 < 100, s1) and (p1, m0 + +, d0 > 120, p2)
– (s2, m21 −−, m21 > 0, d1 < 50, s3) and (p0, m21 + +, d1 < 80, p1)

Let us start with the first pair of transitions (s0, m0 + +, d0 < 100, s1) and
(p1, m0 + +, d0 > 120, p2). We can remark that the set of solutions of the con-
straints d0 < 100 and d0 > 120 is disjoint, i.e., Sol(d0 < 100)∩ Sol(d0 > 120) =
∅. Hence, by applying the data constraints abstraction process, we substitute
m0 + + of the transition (p1, m0 + +, d0 > 120, p2) by another variable m′0. So
the transition becomes (p1, m

′
0 + +, p2)

Now, we check the second pair of transitions (s2, m21−−, m21 > 0, d1 < 50, s3)
and (p0, m21 + +, d1 < 80, p1). We can see that the set of solutions of data
constraints d1 < 50 and d1 < 80 is not disjoint. The two constraints have a
common set of solutions, i.e., Sol(d1 < 50) ∩ Sol(d1 < 80) �= ∅ . Consequently,
when abstracting data constraints, we do not substitute the variable m21.

The result of the transformation steps we described above is a set of abstract
UPPAAL timed automata. These automata preserve the semantic we consider
in timed conversational protocol of asynchronous services.

Fig. 2. Abstraction of data constraints

608 N. Guermouche and C. Godart

Next, we present the formal primitives we propose to characterize the com-
patibility class of a set of timed asynchronous Web services.

4 Formal Asynchronous Compatibility Checking

Based on the previous transformations, we present in this section a compatibility
checking using UPPAAL. We define the following fine grained timed asynchronous
compatibility classes: (1) full and perfect compatibility, (2) full but non-perfect com-
patibility, (3) perfect partial compatibility, (4) partial but non-perfect compatibility,
and (5) full incompatibility.

4.1 Perfect Full Compatibility

In general, a set of Web services constitute a full compatible choreography if
they can interact without an eventual blocking. As we deal with asynchronous
services, the output messages are sent without synchronization with the corre-
sponding input. Thus, it is not sufficient to check only if there is no deadlock
when services interact together, but, it is important too to check if all the sent
messages are consumed. So, a set of services constitute a full and perfect compat-
ible choreography if: (1) they collaborate together without any eventual blocking
and (2) at the same time, all the generated messages are consumed.

Formally, checking if a set of Web services interact without an eventual block-
ing is equivalent to checking if the services reach their final states in all inter-
actions. At the same time, when the services reach their final states, the fact
that all the sent messages must be consumed is formally equivalent to checking
that, when the services reach their final states, all the variable values are equal
to zero.

Let P1, . . . , Pn be n (asynchronous) services and R1, . . . , Rn be the corre-
sponding set of variables. The set of fully and perfect compatible Web services
is specified by the following CTL formulas:

AF P1.f inal ∧ . . . ∧ Pn.f inal ∧ AG (P1.f inal ∧ . . . ∧ Pn.f inal ⇒ AF
r1 == 0 and . . . ∧ rm == 0) where ri ∈ {R1, . . . Ri, . . . , Rn}

(1)

4.2 Non-perfect Full Compatibility

When a set of Web services can collaborate together without an eventual blocking
but at the same time, during their interaction, there are messages that cannot
be consumed, i.e., extra messages, we say that the services are fully but non-
perfectly compatible.

Formally, a set of Web services are said to be fully and non-perfectly compat-
ible if via all the paths, the services reach their final state and at the same time,
and in this state, there exists at least one variable whose value is bigger than
zero. This latter can be specified by the following CTL formulas:

Timed Conversational Protocol Based Approach for Web Services Analysis 609

AF (P1.final ∧ . . . ∧ Pn.final) ∧ EF (P1.final∧. . .∧Pn.final ⇒ r1 > 0∨. . .∨rn > 0)
where ri ∈ {R1, . . . Ri, . . . , Rn}

(2)
4.3 Partial But Non-perfect Compatibility

As services are heterogeneous they can fulfil incorrect conversations. A conver-
sation during which a service remains blocked is called incorrect. A set of Web
services are not fully compatible when the set of possible conversations of the
services hold at least one incorrect conversation.

Formally, a set of Web services are not fully compatible if there exists at least
a path of their automata that cannot reach the final state. This later can be
specified as the following formula:

EG ¬P1.final ∨ . . . ∨ EG ¬Pn.final

(3)
When a set of Web services can achieve correctly a set of conversations and

at the same time they fail other conversations, we say that the services are
partially compatible. In this section, we define particularly the partial but non-
perfect compatibility class. This class is assigned to a set of Web services that
are partially compatible and at the same time, there is at least one correct
conversation during which there is at least one extra message. This is formally
specified by the following CTL formulas:

EF P1.final ∧ . . . ∧ Pn.final ∧
(EF P1.final ∧ . . . ∧ Pn.final ⇒ r1 > 0 ∧ . . . ∧ rm > 0) where ri ∈
{R1, . . . Ri, . . . , Rn}

(4)
Formally, a set of Web services is said to be partially but non-perfectly com-

patible if the formulas (3) and (4) are satisfied.

4.4 Partial and Perfect Compatibility

The partial and perfect compatibility class characterizes the fact that services are
not fully compatible but at the same time, they can fulfil correctly conversations
during which all the produced messages are consumed.

Formally, a set of Web services can achieve correctly at least one conversation
so that all produced messages are consumed is equivalent to checking that there
exists at least one path so that all the services reach their final state and at the
same time, when the final state is reached, the value of all variables is equal to
zero. This is specified by the following CTL formula:

EF P1.final ∧ . . . ∧ Pn.final ∧
(EF P1.final ∧ . . . ∧ Pn.final ⇒ r1 == 0 ∧ . . . ∧ rm == 0) where ri ∈
{R1, . . . Ri, . . . , Rn}

(5)

610 N. Guermouche and C. Godart

A set of Web services whose conversational protocols do not verify the formula
4 and at the same time, verify the formulas 3 and 5 is said to be partially and
perfectly compatible.

4.5 Full Incompatibility

Full incompatibility characterizes the fact that the set of services cannot, abso-
lutely, collaborate together. Formally, a set of services are fully incompatible, if
for all the paths, all the services cannot reach the state ’final’. This property is
specified as the following CTL formulas:

AG ¬ P1.final ∧ . . . ∧ AG ¬ Pn.final

(6)

5 Conclusion

In this paper, we presented a formal framework for analyzing the timed compat-
ibility of a choreography. Unlike the existing approaches, this framework caters
for timed properties and data constraints of asynchronous Web services. In order
to handle timed and data constraints deadlocks, we proposed an approach based
on the model checker UPPAAL. The model checker UPPAAL does not take into
account constraints over data semantics. In order to handle asynchronous ser-
vices augmented with data flow and data constraints, we proposed to extend
our previous work [7] by the data constraints abstraction process. By using the
result of the abstractions, we presented a set of CTL formulas that characterize
the different choreography compatibility classes we have defined.

In our ongoing work, we are interested in analyzing the compatibility of a
choreography in which the instances of the involved services is not known in
advance. Our aim is to provide primitives for defining dynamically the required
instances for a successful choreography. Moreover, we plan to extend the pro-
posed approach to support more complex timed properties when analyzing the
compatibility of a set of Web services.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

2. Benatallah, B., Casati, F., Toumani, F.: Analysis and management of web service
protocols. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004.
LNCS, vol. 3288, pp. 524–541. Springer, Heidelberg (2004)

3. Benatallah, B., Casati, F., Toumani, F.: Web service conversation modeling: A cor-
nerstone for e-business automation. IEEE Internet Computing 8(1), 46–54 (2004)

4. Bordeaux, L., Salaün, G., Berardi, D., Mecella, M.: When are two web services
compatible? In: Shan, M.-C., Dayal, U., Hsu, M. (eds.) TES 2004. LNCS, vol. 3324,
pp. 15–28. Springer, Heidelberg (2005)

Timed Conversational Protocol Based Approach for Web Services Analysis 611

5. Eder, J., Tahamtan, A.: Temporal conformance of federated choreographies. In:
Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181,
Springer, Heidelberg (2008)

6. Guermouche, N., Godart, C.: Asynchronous timed web service-aware choreography
analysis. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS,
vol. 5565, pp. 364–378. Springer, Heidelberg (2009)

7. Guermouche, N., Godart, C.: Timed model checking based approach for web ser-
vices analysis. In: IEEE International Conference on Web Services (ICWS 2009),
Los Angeles, CA, USA, July 6-10, pp. 213–221 (2009)

8. Kazhamiakin, R., Pandya, P.K., Pistore, M.: Representation, verification, and com-
putation of timed properties in web service compositions. In: Proceedings of the
IEEE International Conference on Web Services (ICWS), pp. 497–504 (2006)

9. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer (1997)

10. Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Fine-grained compatibility and
replaceability analysis of timed web service protocols. In: Parent, C., Schewe, K.-D.,
Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 599–614. Springer,
Heidelberg (2007)

Service Discovery Using Communication Fingerprints�

Olivia Oanea1, Jan Sürmeli2, and Karsten Wolf1

1 Universität Rostock
18051 Rostock, Germany

�������������	
���������������������
���
2 Humboldt-Universität zu Berlin

Unter den Linden 6
10099 Berlin, Germany

�����������������
�������������

Abstract. A request to a service registry must be answered with a service that
fits in several regards, including semantic compatibility, non-functional compat-
ibility, and interface compatibility. In the case of stateful services, there is the
additional need to check behavioral (i.e. protocol) compatibility. This paper is
concerned with the latter aspect. For speeding up compatibility checks which
need to be performed on many candidate services, we propose an abstraction of
the behavior of each published service that we call communication fingerprint.
The technique is based on linear programming and is thus extremely eÆcient.
We validate our approach on a large set of services that we cut out of real world
business processes.

1 Introduction

In a service oriented architecture, we expect a service broker to manage a service reg-
istry. The broker can be approached by a service provider or a service requester. Service
providers want their service to be published such that it can later on be bound to a ser-
vice requester. The service broker may extract useful information about the provided
service. A service requester approaches the broker for extracting one of the registered
services. Besides all kind of functional and non-functional properties that should match
the request, it is important that the requesting service R and the service P selected by
the broker have compatible behavior, i.e. their interaction should not run into problems
such as deadlocks and livelocks. In this article, we propose an approach for supporting
a service broker in this regard.

An apparent method for asserting deadlock and livelock freedom would be to model
check [2] the composition R � P before shipping the URI of P to R. This is a rather
expensive procedure which has a strong negative impact on the response time of the
broker. For this purpose, we proposed an alternative check [3] which preprocesses frag-
ments of the state space to be checked at publish time. However, even this check must
in worst case be applied to all compositions R � Pi where �P1� � � � � Pn� is the set of reg-
istered services. Consequently, we need a complementing technique which narrows the
set of registered services to be checked with R to a subset as small as possible.

� An extended version of this paper is available as technical report [1].

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 612–618, 2010.
c� Springer-Verlag Berlin Heidelberg 2010

Service Discovery Using Communication Fingerprints 613

To this end, we propose communication fingerprints. A communication fingerprint
of service P collects constraints on the number of occurrences of messages in any cor-
rect run of a composed system that involves P. The fingerprint of a registered service is
computed upon publishing a service. When a requester approaches the registry, its fin-
gerprint is computed as well and matched with the fingerprints of the registered services.
We show that fingerprint matching is a necessary condition for correct interaction, so
the expensive model checking procedures need only be executed for matching services.

For computing communication fingerprints, we rely on Petri net models of services
which can be automatically obtained [4] from specifications in the industrial language
WS BPEL [5]. We apply a technique called the state equation to the Petri net models.
The state equation provides a linear algebraic relation between two markings (states) m
and m� as well as a sequence of transitions that transforms m into m�. Using the state
equation, we derive constraints on the number of message occurrences. For matching
fingerprints, we rely on a relation between the state equations of components and the
state equation of the composed system that has been observed in [6,7,8].

The paper is organized as follows. We introduce Petri net models for services and
formally define compatibility of services. We continue with the formal definition of fin-
gerprints, their computation, and their application in deciding compatibility. We present
a case study that underpins the performance gain of our approach. Finally, we discuss
further use cases for communication fingerprints.

2 Compatibility of Services

We model services as open nets, which are Petri net models with classical syntax and
semantics, enriched with a simple notion to support message exchange and composition.
Figure 1 shows two example open nets D and S and their composite D � S: Initially,
transition s1 is enabled. Firing s1, a message is sent by S over channel document,
enabling transition d1. Firing d1, D consumes the message from the document channel
and results in a state that allows D to make a decision: It fires either d2, d3 or d4,
resulting in a message either on the channel feedback, reject or accept. If d2 fires, D
is in a state waiting for a new message over channel document; otherwise it is in a
final state [�D]. Before this decision, S is in a state waiting for a message over channel
feedback.

The composite S � D can not reach a common final state from any other reachable
state. We thus call D and S incompatible: In this paper, we inspect the compatibility
criterion weak termination of a closed composite. Weak termination is similar to sound-
ness which is applied as a correctness criterion in the field of business processes. A
closed composite is weakly terminating, if from each reachable state, some final state
is reachable. We call two partner services N and Q compatible if either (1) their com-
posite is closed and weakly terminating or (2) there exists a partner P of N � Q, such
that (N � Q) � P is closed and weakly terminating. For finite state services, (1) can be
decided by model checking; case (2) is exploited in [9].

Since all known techniques to decide compatibility base on state space computation,
they result in a high complexity and runtime. In our scenario, many such decisions need
to be done subsequently. We thus suggest a necessary condition for compatibility to pre-
select potential partners. The condition is based on the observation that, in a terminating

614 O. Oanea, J. Sürmeli, and K. Wolf

d1

d2

d4

d3

feedback

reject

accept

ωD

document

(a) D

s1

s2

s4

s3

ωS

feedback

reject

accept

document

(b) S

d1

d2

d4

d3

document

feedback

reject

accept

ωD

s1

s2

s4

s3

ωS

(c) D � S

Fig. 1. Two example services D and S, and their composition D�S. The final markings are defined
as follows: �S � �[�S]�, �D � �[�D]�, and �D�S � �[�D� �S]�.

run, the number of send events for some message type must match the number of re-
ceive events for that type. Consequently, it is necessary for compatibility that the range
of send event occurrences permitted by the internal control flow of one service must
intersect with the range of receive event occurrences permitted by the internal control
flow of the other service. The same is true for more complicated expressions involving
send and receive events, e.g. the di�erence between the number of send events. Such
more complicated expressions are quite useful for services with loops where the abso-
lute number of occurrences of some event may be unbounded. The mentioned ranges
for occurrence numbers can be computed for each service independently.

3 Communication Fingerprints

The objective of a fingerprint [1] is to represent the terminating behavior of an open net
finitely on an abstraction level which is applicable for preselecting a set of compatible
partner services. Since compatibility bases on proper interaction, we focus on message
dependencies and abstract from private activites. More precisely, we take into account
boolean combinations of integer linear constraints, counting messages that are sent over
specific channels and the relations thereof.

Formally, a linear constraint c � f � b consists of a formal sum f containing
channel name variables, a comparison operator � � ������� �� ��, and an integer b.
To decide whether a transition sequence � satisfies a linear constraint c, we abstract
� to its channel usage �(�): A function mapping each channel a to the number of
messages exchanged over a while executing �. Obviously, �(�) is a variable assign-
ment for f . Based thereon, � satisfies c, written � �� c, if and only if substitution of
the variables in f according to �(�) leads to a true sentence. An example linear con-
straint for open net D in Fig. 1 is accept � 2 	 reject � 2 which is satisfied by any
transition sequence with �(�)(accept) � 0 and �(�)(reject) � 1. We call c satisfi-
able if there exists some � satisfying c. We combine such linear constraints with the
boolean operators
���� to formulas with the obvious semantics. Example formulas
are �1 � accept � 1 � accept � reject � 1 and �2 � accept � 1 � accept � 2. Any
transition sequence � with �(�)(accept) � 0 and �(�)(reject) � 1 satisfies �1, but �2

is not satisfiable.

Service Discovery Using Communication Fingerprints 615

A formula � can be used to describe the channel usage of an open net N: Each termi-
nating firing sequence � � �(N) needs to satisfy �. We call such a formula fingerprint
of N. Example fingerprints for D and S in Fig. 1 are �D � document (feedback �
accept � reject) � 0 � accept � reject � 1 and �S � document feedback � 0.

Services may have infinitely many fingerprints. We can classify a fingerprint based
on the formal sums that appear on left hand sides in its constraints: A fingerprint con-
taining only formal sums from a set F is called F-fingerprint. Fingerprint �D is a
�document (feedback � accept � reject)� accept � reject�-fingerprint. The idea is
to compute a F-fingerprint for a given set of formal sums F. Our algorithm yields a
fingerprint of the form

�
m��

�
f�F ((f � l f

m) � (f � u f
m)): Each conjunctive clause rep-

resents the firing sequences resulting in a specific final marking m by specifying two
inequalities per formal sum f . We sketch our algorithm for computing l f

m and u f
m for

some given f and m: The set of firing sequences resulting in a specific final marking
m is over-approximated by a system of linear equations, called the state equation for
m [10]. The state equation is derived from the structure of N, its solutions are vectors
over transition variables, which we transform to channel variables. This yields a valid
base to minimize and maximize a formal sum of channel variables, resulting in valid
lSm and uS

m. If the solver returns unbounded, we skip this result. If the solver returns in-
feasible, we skip this final marking. This may result in an empty fingerprint: N might
not be compatible to any partner. The complexity for computing such a F-fingerprint
of N is that of solving 2 	 �	� 	 �F � integer linear programs. In [1], we discuss di�erent
generic parameter sets, i.e. sets of formal sums that can be canonically derived from
an interface or an open net structure. As a rule of thumb, the complexity of the for-
mal sums has an impact on the precision of the fingerprint: �D is more precise than
��

D � document (feedback � accept � reject) � 0.
Matching fingerprints �N and �Q is a method to semi-decide compatibility of N and

Q by deciding satisfiability of �N � �Q. We assume that �N and �Q have the above
introduced structure. We transform �N � �Q into an equivalent formula in disjunctive
normal form by applying the distributivity rule. We then check satisfiability for each
conjunction which is equivalent to solving a system of linear inequalities. As soon as
one satisfiable conjunction is found, we terminate the matching process with inconclu-
sive, otherwise with incompatible. Di�erent variants of matching, for example matching
a �N directly with Q, are discussed in [1]. For example, taking the fingerprints �D and
�S, we find that �D � �S is unsatisfiable and thus N and Q are incompatible. Turning to
��

D, we notice that ��

D � �S is satisfiable, which proves that matching is not a suÆcient
condition.

4 Case study

For validating our approach, we had to build up a large number of services. As a suÆ-
ciently large set of actual services was not available to us, we generated “close to real”
services as follows. We started with a large set of real industrial business processes
available to us. They have been modeled using the IBM W��S����� B���	��� M
�-
����, then anonymized so they could be made available to us and finally translated into
anonymized Petri net models. The used set of business processes has been analyzed

616 O. Oanea, J. Sürmeli, and K. Wolf

Table 1. Testbed statistics and analysis results

Library # Processes # Composites # Weakly terminating # Matching inconclusive

A 127 2412 252 672
B1 43 2066 20 597
B2 49 592 25 209
B3 105 3460 210 1165

Table 2. State-based approach vs. fingerprint approach

Library State-based Fingerprint
Total Computation Matching Model checking Total

A �48h 2m49s 30s 28h �28h
B1 18m3s 2m57s 29s 6m9s 6m38s
B2 30m43s 53s 12s 16s 28s
B3 �36h 11m6s 1m29s 2h �2h

in [11]. We decomposed the processes into asynchronously communicating services
following the idea of [6,12] using D�	�. Due to di�erent decomposition options, we
obtain a rather big set of services. Two services that each have been obtained from a
weakly terminating business process model are not necessarily compatible. In addition,
several original models have not been weakly terminating in the first place. The origi-
nal process set is organized into libraries, each containing models from similar business
fields, we thus experimented with one sample set for each library. As the final prepa-
ration, we paired interface matching services inside the same sample set. In a first run,
we model checked each composite with L
LA. In a second run, we computed the fin-
gerprints of the components with L�	� and matched them with Y���	. Table 1 lists
statistics of the used testbed and analysis results: For each library, we list the number
of processes and service pairs, i.e. composites. The fourth column shows how many
of those composites were actually weakly terminating, while the fifth displays for how
many composites the fingerprint matching of the components returned inconclusive.

In Table 2, we compare the run times of a pure state based approach with the run
times of the proposed fingerprint based approach. To this end, we checked all pairs
of partner services that stem from the same library. The reported times are the overall
times for executing all these checks within a library: The second column lists total
amount of time for model checking the composites. The third column states the run
time of the fingerprint computation. The fourth column displays the time needed for
fingerprint matching. For all inconclusive results, we used model checking, resulting
in run times as given in the fifth column. Finally, the sixth column displays the total
amount for the fingerprint based compatibility check, which does not include the run
time for fingerprint computation.

Service Discovery Using Communication Fingerprints 617

We see that for about two thirds of the individual problems, the fingerprint check tells
that these services are incompatible. These are the problem instances for which it is not
necessary to perform a subsequent model checking. For the remaining services, model
checking must be applied in any case. Hence, the speed-up can be seen in comparing the
overall time of model checking all instances with the overall time of all fingerprint match-
ings plus the overall time for those model checking runs where the fingerprint check was
inconclusive. The runtime of the fingerprint matching alone does not contribute signifi-
cantly to the overall run time and the fingerprint approach requires only about one third
of the state-based approach. The used tools D�	�, L
LA, L�	�, and Y���	 are open
source tools available at ����������	
����������������������.

5 Conclusion

In this paper we have considered service communication fingerprints as an approach
for pre-selecting appropriate interaction partners with respect to weak termination. We
used the state equation of the underlying Petri net to derive constraints over the set
of synchronous and asynchronous message event occurrences. Communication finger-
prints are considerably small in comparison to the state space of a service. We consid-
ered a simple and eÆcient procedure for obtaining a suitable (not necessarily optimal)
communication fingerprint. Matching fingerprints amounts to solving linear program-
ming problems. Our experiments show that the fingerprint approach can significantly
speed up service discovery. Our approach is complementary to testing observed be-
havior against model behavior using frequency profiles [13] and keeping repositories
of behavioral profiles [14,15]. Both approaches apply to monolithic workflow and are
restricted to transition occurrences. Our approach is di�erent from compositional anal-
ysis of invariants of functional nets [6]: We analyze communication patterns which are
inherently related to communication.

For future work, we shall consider the application of fingerprints in the synthesis of
livelock-free partners. Further, we shall experiment how service communication finger-
print registries created to store subclasses of potentially compatible partners contributes
to speeding up operations on behavioral registry [16].

Acknowledgments. Olivia Oanea and Karsten Wolf are supported by the German Re-
search Foundation (DFG) under grant WO 1466�11-1.

References

1. Oanea, O., Sürmeli, J., Wolf, K.: Service discovery using communication fingerprints.
Informatik-Berichte 236, Humboldt-Universität zu Berlin (2010)

2. Clarke, E.M., Peled, D., Grumberg, O.: Model Checking. MIT Press, Cambridge (1999)
3. Wolf, K., Stahl, C., Ott, J., Danitz, R.: Verifying livelock freedom in an SOA scenario. In:

ACSD 2009, pp. 168–177. IEEE, Los Alamitos (2009)
4. Lohmann, N.: A feature-complete Petri net semantics for WS-BPEL 2.0. In: Dumas, M.,

Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 77–91. Springer, Heidelberg (2008)
5. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0. Technical

Report CS-02-08, OASIS (2007)

http://service-technology.org/tools

618 O. Oanea, J. Sürmeli, and K. Wolf

6. Zaitsev, D.A.: Compositional analysis of Petri nets. Cybernetics and Systems Analysis 42(1),
126–136 (2006)

7. Sürmeli, J.: Profiling services with static analysis. In: AWPN 2009 Proceedings, of CEUR
Workshop Proceedings, vol. 501, pp. 35–40 CEUR-WS.org (2009)

8. Oanea, O., Wolf, K.: An eÆcient necessary condition for compatibility. In: ZEUS, of CEUR
Workshop Proceedings, vol. 438, pp. 81–87 CEUR-WS.org (2009)

9. Wolf, K.: Does my service have partners? In: Jensen, K., van der Aalst, W.M.P. (eds.) Trans-
actions on Petri Nets. LNCS, vol. 5460, pp. 152–171. Springer, Heidelberg (2009)

10. Lautenbach, K.: Liveness in Petri Nets. St. Augustin: Gesellschaft für Mathematik und Daten-
verarbeitung Bonn, Interner Bericht ISF-75-02.1 (1975)

11. Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: In-
stantaneous soundness checking of industrial business process models. In: Dayal, U., Eder,
J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, Springer, Heidelberg (2009)

12. Mennicke, S., Oanea, O., Wolf, K.: Decomposition into open nets. In: AWPN 2009, Proceed-
ings of CEUR Workshop, pp. 29–34 CEUR-WS.org (2009)

13. van der Aalst, W.M.P.: Matching observed behavior and modeled behavior: an approach
based on Petri nets and integer programming. Decis. Support Syst. 42(3), 1843–1859 (2006)

14. Weidlich, M., Weske, M., Mendling, J.: Change propagation in process models using be-
havioural profiles. In: SCC 20209, pp. 33–40. IEEE, Los Alamitos (2009)

15. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: EÆcient computation of causal
behavioural profiles using structural decomposition. In: Lilius, J., Penczek, W. (eds.) PETRI
NETS 2010. LNCS, vol. 6128, Springer, Heidelberg (2010)

16. Kaschner, K., Wolf, K.: Set algebra for service behavior: Applications and constructions.
In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp.
193–210. Springer, Heidelberg (2009)

Quantifying Service Compatibility: A Step

beyond the Boolean Approaches

Meriem Ouederni1, Gwen Salaün2, and Ernesto Pimentel1

1 University of Málaga, Spain
{meriem,ernesto}@lcc.uma.es

2 Grenoble, INP–INRIA–LIG, France
Gwen.Salaun@inria.fr

Abstract. Checking the compatibility of service interfaces allows one to
avoid erroneous executions when composing services together. In this pa-
per, we propose a flooding-based approach for measuring the compatibil-
ity degree of service interfaces specified using interaction protocols. This
proposal is fully automated by a prototype tool we have implmented.

1 Introduction

Checking the compatibility of service interfaces guarantees the safe reuse and
the successful interoperation of services in the context of Service Oriented Com-
puting (SOC). In this paper, we focus on the interaction protocol level of service
interfaces. Checking the compatibility of interaction protocols is a tedious and
hard task even though this is of utmost importance to avoid run-time errors, e.g.,
deadlock situations or unmatched messages. Most of the existing approaches (see
for instance [5,17,2,8,6,3]) return a “True” or “False” result to detect whether
services are compatible or not. Unfortunately, a Boolean answer is not very
helpful for many reasons. First, in real world case studies, there will seldom
be a perfect match, and when service protocols are not compatible, it is useful
to differentiate between services that are slightly incompatible and those that
are totally incompatible. Furthermore, a Boolean result does not give a detailed
measure of which parts of service protocols are compatible or not.

To overcome the aforementioned limits, a very few works (see for instance [16])
recently aim at measuring the compatibility degree of service interfaces. However,
most of them are based upon description models of service interfaces which do
not consider value-passing and internal behaviours (τ transitions). Moreover,
they often measure the interface compatibility using a simple (i.e., not iterative)
traversal of protocols, and consider a unique compatibility notion making their
application quite restricted.

In this paper, we propose a generic framework where the compatibility de-
gree of service interfaces can be automatically measured according to different
compatibility notions. We illustrate our approach using a bidirectional compat-
ibility notion, namely unspecified receptions. Additional notions can easily be
added to our framework. We consider a formal model for describing service in-
terfaces with interaction protocols (messages and their application order, but

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 619–626, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

620 M. Ouederni, G. Salaün, and E. Pimentel

also value-passing and internal actions). In our approach, the compatibility de-
gree is computed in two steps. A first step computes a set of static compatibility
degrees where the execution order of messages is not taken into account. Then,
a flooding algorithm computes the compatibility degree of interaction protocols
using the static compatibility results. The computation process also returns the
mismatch list indicating the interoperability issues. The proposed framework is
fully automated by a prototype tool (called Comparator) we have implemented.

The remainder of this paper is structured as follows. Section 2 describes our
model of services. Section 3 introduces the compatibility notion we use in this pa-
per for illustration purposes. In Section 4, we present our solution for measuring the
service compatibility. Section 5 introduces our prototype tool. Finally, concluding
remarks are presented in Section 6. All the formal definitions and more details are
given in a companion technical report available at Meriem Ouederni’s Webpage.

2 Service Model

We assume service interfaces are described using their interaction protocols rep-
resented by Symbolic Transition Systems (STSs) which are Labelled Transition
Systems extended with value-passing (parameters coming with messages). In
particular, a STS is a tuple (A,S, I, F, T) where: A is an alphabet which corre-
sponds to the set of labels associated to transitions, S is a set of states, I ∈ S is
the initial state, F ⊆ S is a nonempty set of final states, and T ⊆ S\F ×A× S
is the transition relation. In our model, a label is either an (internal) τ action or
a tuple (m, d, pl) where m is the message name, d stands for the communication
direction (either an emission ! or a reception ?), and pl is either a list of typed
data terms if the label corresponds to an emission (output action), or a list of
typed variables if the label is a reception (input action).1

It is worth noticing that communication between services relies on a syn-
chronous and binary communication model. The operational semantics of this
model is given in [6]. STSs can also be easily derived from higher-level description
languages such as Abstract BPEL, see for instance [7,14,4] where such abstrac-
tions were used for verification, composition or adaptation of Web services.

3 Unspecified Receptions Compatibility

Compatibility checking verifies the successful interaction between services wrt. a
criterion set on their observable actions. This criterion is referred to as a compat-
ibility notion. We distinguish two classes of notions depending on the direction
of the compatibility checking, that are, bidirectional and unidirectional analy-
sis. Our approach supports both classes; here we particularly illustrate it with a
bidirectional compatibility notion, namely unspecified receptions (UR for short).
This notion is inspired from [17] and requires that two services are compatible
(i) if they are deadlock-free, and (ii) if one service can send a message at a reach-
able state, then its partner must eventually receive that emission such that both
1 The message names and parameter types respect the service signature.

Quantifying Service Compatibility: A Step beyond the Boolean Approaches 621

services evolve into states where the UR notion is preserved. In real-life cases,
one service must receive all the requests from its partner, but can also accept
more receptions, because the service could interoperate with other partners.

4 Measuring Protocol Compatibility

This section presents our techniques for measuring the compatibility of two ser-
vice protocols. In what follows, we describe a transition using a tuple (s, l, s′)
such that s and s′ denote the source and target states, respectively, and l stands
for its label. We suppose that for all transitions (s, τ, s′), s �= s′. Given two
services described using STSs STSi∈{1,2} = (Ai, Si, Ii, Fi, Ti), we define a global
state as a pair of states (s1, s2) ∈ S1 × S2. All the compatibility measures we
present in the sequel belong to [0..1] where 1 means a perfect compatibility.
The approach overviewed in Figure 1 consists first in computing a set of static
compatibility measures (Section 4.1). In a second step, these static measures are
used for computing the behavioural compatibility degree for all global state in
S1 × S2 (Section 4.2). Last, the result is analysed and a global compatibility
degree is returned (Section 4.3).

Static Compatibility

State Nature

Parameters

Labels

uses

State Compatibility
uses

Compatibility Flooding

+ Mismatches
+ Global Compatibility

x
1

...
k

Behavioural Compatibility

uses

uses

uses

Unspecified Recpetions

Unidirectional Complementarity

Observational Compatibility

Bidirectional Propagation

Unidirectional Propagation

STSs

a? c!p:t’

tau

a!

b?

c?p:t

Foward Propagation Backward Propagation

Fig. 1. Compatibility Measuring Process

4.1 Static Compatibility

We use three auxiliary static compatibility measures, namely state nature, labels,
and exchanged parameters.

State Nature. The comparison of state nature assigns 1 to each pair of states
which have the same nature, i.e., both states are initial, final or none of them.
Otherwise, the measure is equal to 0.

Parameters. The compatibility degree of two parameter lists pl1 and pl2 de-
pends on three auxiliary measures, namely: (i) the compatibility of parameter

622 M. Ouederni, G. Salaün, and E. Pimentel

number comparing the list sizes; (ii) the compatibility of parameter order mea-
suring the number of types which does not appear in the same order, and (iii) the
compatibility of parameter type using the set of unshared types in both lists.
These measures must be set to 1 if these lists are empty.

Labels. Protocol synchronisation requires that compatible labels must have op-
posite directions. Therefore, given a pair (l1, l2) ∈ A1 × A2, the label compati-
bility – lab-comp(l1, l2) – is measured as 0 if these labels have same directions.
Otherwise, the computation of this measure uses the semantic distance between
message names and the parameter compatibility degree presented above. Here,
message names are compared using the Wordnet similarity package [13].

4.2 Behavioural Compatibility

We consider a flooding algorithm which performs an iterative measuring of be-
havioural compatibility for every global state in S1 × S2. This algorithm in-
crementally propagates the compatibility between neighbouring states using
backward and forward processing. The compatibility propagation is based on
the intuition that two states are compatible if their backward and forward
neighbouring states are compatible, where the backward and forward neigh-
bours of global state (s′1, s

′
2) in transition relations T1 = {(s1, l1, s′1), (s′1, l′1, s′′1)}

and T2 = {(s2, l2, s′2), (s′2, l′2, s′′2)} are the states (s1, s2) and (s′′1 , s
′′
2), respec-

tively. The flooding algorithm returns a matrix denoted COMPk
CN ,D where

each entry COMPk
CN ,D [s1, s2] stands for the compatibility measure of global

state (s1, s2) at the kth iteration. The parameter CN refers to the considered
compatibility notion which must be checked according to D, that is, a bidirec-
tional (↔) protocol analysis in this paper. COMP0

CN ,D represents the initial
compatibility matrix where all states are supposed to be perfectly compati-
ble, i.e., ∀(s1, s2) ∈ S1 × S2, COMP0

CN ,D [s1, s2] = 1. Then, in order to com-
pute COMPk

CN ,D [s1, s2], we consider the observational compatibility function,
obs-compk

CN,D, and the state compatibility function, state-compk
CN,D, which

combines the forward and backward propagations. In this paper, we only present
the forward compatibility for lack of space, the backward compatibility can be
handled in a similar way based upon incoming rather than outgoing transitions.
Unspecified Receptions. For all global state (s1, s2): (i) obs-compk

UR,↔ re-
turns 1 if and only if every outgoing emission at state s1 (and s2) perfectly
matches an outgoing reception at state s2 (and s1) and all synchronisations on
those emissions lead to compatible states; (ii) obs-compk

UR,↔ returns 0 if there
is a deadlock; (iii) otherwise, obs-compk

UR,↔ measures the best compatibility of
every outgoing emission at s1 with the outgoing receptions at s2, leading to the
neighbouring states which have the highest compatibility degree, and vice-versa.

Example 1. Let us consider the global state (s0, c0) in Figure 2. Here, there
is a unique emission seek! at c0 which perfectly matches with search? at s0,
lab-comp(seek!, search?) = 1 using Wordnet similarity package. The synchroni-
sation on these compatible labels leads to (s1, c1) where COMP0

UR,↔[s1, c1] = 1.

Quantifying Service Compatibility: A Step beyond the Boolean Approaches 623

Fig. 2. Online Store

c0 c1 c2 c3

s0 0.95 0.17 0.01 0.01
s1 0.01 0.82 0.01 0.32
s2 0.01 0.26 0.95 0.51
s3 0.01 0.47 0.01 0.16
s4 0.01 0.26 0.75 0.51

Fig. 3. Matrix COMP7
UR,↔

Thus, at the first iteration, obs-comp1
UR,↔((s0, c0)) = lab-comp(seek!, search?)∗

COMP0
UR,↔[s1, c1] = 1.

Forward Propagation. The compatibility is computed from both services
point of view. The function fw -propagk

CN ,↔((s1, s2)) propagates to (s1, s2) the
compatibility degrees obtained for the forward neighbours of state s1 with those
of state s2, and vice-versa. For each τ transition, fw -propagk

CN ,↔ must be checked
on the target state. Observable transitions going out from (s1, s2) are compared
using obs-compk

CN,↔((s1, s2)).

Example 2. Let us consider the global state (s1, c1) in Figure 2. We show below
the computation of fw -propag1

UR,↔((s1, c1)) which results in the average of the
auxiliary values computed from each protocol point of view:
fw -propag1

UR,↔((s1, c1)) = 1
2∗

[fw-propag1
UR,↔((s1,c3))+obs-comp1

UR,↔((s1,c1))

2 + obs-comp1
UR,↔((s1, c1))]

where:

– fw -propag1
UR,↔((s1, c3)) = obs-comp1

UR,↔((s1, c3)) = 0 due to the deadlock
that can occur at the state (s1, c3).

– obs-comp1
UR,↔((s1, c1)) = lab-comp(reply?, reply!)∗COMP0

UR,↔[s2, c2] = 1.

As a consequence, fw -propag1
UR,↔((s0, c0)) = 3

4 .

State Compatibility. The function state-compk
CN,D((s1, s2)) computes the

weighted average of three measures: the forward and backward compatibilities,
and the value returned by the function comparing state natures.

Compatibility Flooding. As a final measuring step, COMPk
CN ,D [s1 , s2] is

computed as the average of its previous value COMPk−1
CN ,D [s1, s2] and the current

state compatibility degree. Our iterative process terminates when the Euclidean
difference εk = ‖COMPk

CN ,D − COMPk−1
CN ,D‖ converges.

Example 3. Figure 3 shows the matrix computed for the example depicted in
Figure 2. This matrix was obtained after 7 iterations. Let us comment the com-
patibility of states c0 and s0. The measure is quite high because both states are
initial and the emission seek! at c0 perfectly matches the reception search? at
s0. However, the compatibility degree is less than 1 due to the backward prop-
agation of the deadlock from the global state (s1, c3) to (s1, c1), and then from
(s1, c1) to (s0, c0).

624 M. Ouederni, G. Salaün, and E. Pimentel

Mismatch Detection. Our compatibility measure comes with a list of mis-
matches which identifies the incompatibility sources, e.g., unmatched message
names or unshared parameter types. For instance, the states s0 and c1 in Fig-
ure 2 present several mismatches, e.g., the first state is initial while the second
is not, and their outgoing transition labels have the same directions.

Extensibility. Our approach is generic and can be easily extended to integrate
other compatibility notions. Adding a compatibility notion CN only requires to
define a new function obs-compk

CN ,D .

4.3 Analysis of Compatibility Measures

Compatible Protocols. Our flooding algorithm ensures that every time a mis-
match is detected in a reachable global state, its effect will be propagated to the
initial states. Hence, the forward and backward compatibility propagation be-
tween neighbouring states implies that protocols are compatible if and only if
their initial states are also compatible. Such information is useful for automat-
ically discovering available services that can be composed without using any
adaptor service for compensating mismatches [10].

Global Protocol Compatibility. As regard incompatible protocols, this global
measure is helpful to differentiate between services that are slightly incompat-
ible and those which are totally incompatible, and for service ranking and se-
lection. Seeking for services with high global compatibility degree enables to
simplify further processing to compensate existing mismatches, e.g., using ser-
vice adaptation. In our approach we compute the global compatibility degree
as the weighted average of all behavioural compatibility degrees that are higher
than a threshold t. The weight is the rate of states having a compatibility degree
higher than t, among all states compared in one service, with the states in the
partner service.

5 Prototype Tool

Our approach for measuring the compatibility degree of service protocols has
been fully implemented in a prototype tool called Comparator which has been

Fig. 4. Comparator Architecture

Quantifying Service Compatibility: A Step beyond the Boolean Approaches 625

validated on more than 110 examples. The framework architecture is given in
Figure 4. The Comparator tool, implemented in Python, accepts as input two
XML files corresponding to the service interfaces and an initial configuration,
i.e., the compatibility notion, the checking direction, and a threshold t. The tool
returns the compatibility matrix, the mismatch list, and the global compatibility
degree which indicates how compatible both services are. The implementation of
our proposal is highly modular which makes easy its extension with new compat-
ibility notions, or other strategies for comparing message names and parameters.

6 Concluding Remarks

Existing quantitative analysis of service behaviours have been devoted to two
related issues in SOC. A first research line measures the compatibility, that
is, how much interacting services fulfill each other’s requirements. The second
research line checks the substitutability, that is, the correspondences between
similar service behaviours. The techniques used for measuring the simulation-
based correspondences in [15], and the global compatibility degree based on
checking the deadlock-freedom in [16] of two protocols, rely on a simple (not
iterative), forward, and parallel traversal. In [9,1], the authors compute the min-
imal edit distance between two similar versions of one service interface. Other
works [11,12] rely on a similarity flooding algorithm for computing the matrix
of correspondences between models such as labelled graphs and statecharts.

Our work advances the state-of-the-art as follows. Our behavioural model
takes value passing and internal behaviours into account. Our framework is
generic, supports different compatibility notions, and can be extended with
other ones. Considering both the forward and backward compatibility propa-
gations makes our flooding algorithm more precise, and also enables to detect
the boolean compatibility. Our proposal is fully supported by the Comparator
tool which has been validated on many examples. The global compatibility de-
gree is helpful for service selection and ranking. The returned matrix and the
mismatch list have some straightforward applications in the software adaptation
area [10,17]. Our tool was already integrated into an environment for the inter-
active specification of adaptation contracts [4]. Our main perspective is to apply
our compatibility measuring approach for the automatic generation of adaptor
protocols.

Acknowledgements. This work has been partially supported by the project
TIN2008-05932 funded by the Spanish Ministry of Innovation and Science and
FEDER, and by the project P06-TIC220, funded by the Andalusian government.

References

1. Aı̈t-Bachir, A.: Measuring Similarity of Service Interfaces. In: Bouguettaya, A.,
Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364. Springer, Heidelberg
(2008)

626 M. Ouederni, G. Salaün, and E. Pimentel

2. Bordeaux, L., Salaün, G., Berardi, D., Mecella, M.: When are Two Web Ser-
vices Compatible?. In: Shan, M.-C., Dayal, U., Hsu, M. (eds.) TES 2004. LNCS,
vol. 3324, pp. 15–28. Springer, Heidelberg (2005)

3. Bravetti, M., Zavattaro, G.: Contract-Based Discovery and Composition of Web
Services. In: Bernardo, M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS,
vol. 5569, pp. 261–295. Springer, Heidelberg (2009)

4. Cámara, J., Salaün, G., Canal, C., Ouederni, M.: Interactive Specification and
Verification of Behavioural Adaptation Contracts. In: Proc. of QSIC 2009, pp.
65–75. IEEE Computer Society, Los Alamitos (2009)

5. de Alfaro, L., Henzinger, T.: Interface Automata. In: Proc. of ESEC/FSE 2001,
pp. 109–120. ACM Press, New York (2001)

6. Durán, F., Ouederni, M., Salaün, G.: Checking Protocol Compatibility using
Maude. In: Proc. of FOCLASA 2009. ENTCS, vol. 255, pp. 65–81 (2009)

7. Fu, X., Bultan, T., Su, J.: Analysis of Interacting BPEL Web Services. In: Proc.
of WWW 2004, pp. 621–630. ACM Press, New York (2004)

8. Hameurlain, N.: Flexible Behavioural Compatibility and Substitutability for Com-
ponent Protocols: A Formal Specification. In: Proc. of SEFM 2007, pp. 391–400.
IEEE Computer Society, Los Alamitos (2007)

9. Lohmann, N.: Correcting Deadlocking Service Choreographies Using a Simulation-
Based Graph Edit Distance. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM
2008. LNCS, vol. 5240, pp. 132–147. Springer, Heidelberg (2008)

10. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of Service Protocols Using Process
Algebra and On-the-Fly Reduction Techniques. In: Bouguettaya, A., Krueger, I.,
Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 84–99. Springer, Heidelberg
(2008)

11. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A Versatile Graph
Matching Algorithm and Its Application to Schema Matching. In: Proc. of ICDE
2002, pp. 117–128. IEEE Computer Society, Los Alamitos (2002)

12. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S.M., Zave, P.: Matching
and Merging of Statecharts Specifications. In: Proc. of ICSE 2007, pp. 54–64. ACM
Press, New York (2007)

13. Pedersen, T., Patwardhan, S., Michelizzi, J.: WordNet:Similarity - Measuring the
Relatedness of Concepts. In: Proc. of AAAI 2004, pp. 1024–1025. AAAI, Menlo
Park (2004)

14. Salaün, G., Bordeaux, L., Schaerf, M.: Describing and Reasoning on Web Services
using Process Algebra. IJBPIM 1(2), 116–128 (2006)

15. Sokolsky, O., Kannan, S., Lee, I.: Simulation-Based Graph Similarity. In: Her-
manns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 426–440.
Springer, Heidelberg (2006)

16. Wu, Z., Deng, S., Li, Y., Wu, J.: Computing Compatibility in Dynamic Service
Composition. Knowledge and Information Systems 19(1), 107–129 (2009)

17. Yellin, D.M., Strom, R.E.: Protocol Specifications and Component Adaptors. ACM
Trans. Program. Lang. Syst. 19(2), 292–333 (1997)

Consistency Benchmarking:

Evaluating the Consistency Behavior of
Middleware Services in the Cloud

Markus Klems1, Michael Menzel2, and Robin Fischer1

1 Karlsruhe Institute of Technology (KIT),
76131 Karlsruhe, Germany

markus.klems@kit.edu, robin.fischer@kit.edu

http://www.kit.edu
2 FZI Forschungszentrum Informatik,

Haid-und-Neu-Straße 10-14,
76131 Karlsruhe, Germany

menzel@fzi.de

http://www.fzi.de

Abstract. Cloud service providers such as Amazon Web Services offer
a set of next-generation storage and messaging middleware services that
can be utilized on-demand over the Internet. Outsourcing software into
the cloud, however, confronts application developers with the challenge of
understanding the behavior of distributed systems, which are out of their
control. This work proposes an approach to benchmark the consistency
behavior of services by example of Amazon Simple Queue Service (SQS),
a hosted, Web-scale, distributed message queue that is exposed as a Web
service. The data of our consistency benchmarking tests are evaluated
with the metric harvest as described by Fox and Brewer (1999). Our
tests with SQS indicate that the client-service interaction intensity has
an influence on harvest.

Keywords: cloud computing, distributed systems, service-oriented
computing.

1 Background and Motivation

Leveraging the seemingly infinite resources of cloud computing needs software
to scale out and, hence, run in multiple, replicated instances. Coordination and
collaboration between multiple replicas is required to allow distributed software
acting as a whole. Middleware promises a solution by delivering distribution
transparency for heterogeneous distributed systems [1]. Middleware is typically
applied to integrate client-server architectures that have been deployed in Lo-
cal Area Networks (LANs) or in Wide Area Networks (WANs). Unfortunately,
additional software layers increase the size and complexity of technology and
infrastructure that is required to support these new programming abstractions.

Cloud-based middleware services follow a different paradigm by using the
Web as a platform. The success of RESTful services (in particular for mashups)

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 627–634, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.kit.edu

628 M. Klems, M. Menzel, and R. Fischer

demonstrates that applications on the Web strive for less features in favor of sim-
plicity and scalability. Although traditional middleware services might be ported
into the cloud, substantial modifications would be required to fulfill availabil-
ity and scalability characteristics commonly associated with the cloud. On the
other side, cloud service providers already offer scalable services of basic mid-
dleware capabilities, such as Amazon Simple Queue Service (SQS), a Web-scale
distributed message queue. We discuss new challenges that arise from using
cloud-based middleware services, particularly the less predictable consistency
behavior. Then we present a prototypical benchmarking tool that we designed
and used in order to conduct experiments on SQS.

2 Approach

Cloud-based middleware service promise improvements over traditional middle-
ware, such as reduced complexity, better re-use, scalability, world wide access
and high availability. On the other side, new challenges arise when using cloud-
based middleware services.

2.1 Consistency-Availability Trade-off Challenges

Cloud-based middleware services are built of large-scale systems which are possi-
bly distributed over multiple datacenters in different availability zones, connected
by the Internet. Distribution of storage infrastructure provokes a fundamental
trade-off challenge known as the strong CAP principle [2] [3]: only two out of the
three properties of a distributed system, strong consistency (C), high availability
(A), and partition-tolerance (P), can be achieved at the same time. The weak
CAP principle generalizes the strong CAP principle by characterizing the trade-
off as a continuum instead of binary choices. In particular, relaxing consistency
requirements to a certain degree and trading them for higher availability has be-
come a successful modus operandi for large-scale systems [4] [5]. Understanding
and addressing the weak CAP principle in application design and development
– as there seems to be no general-purpose solution – becomes increasingly im-
portant.

The Amazon Web Service developer guides raise explicit awareness for chal-
lenges that software developers must face if they want their software to work
correctly [6]. SQS stores multiple replicas of the same message on multiple stor-
age servers with the goal to provide fault-tolerance and high availability. Due
to the distributed nature of SQS, message delivery order cannot be guaranteed.
Moreover, on rare occasions, it may happen that messages are delivered more
than once. Therefore, it is important to design SQS-based applications with
idempotent “receive message” operations. Behind the scenes, SQS uses weighted
random server sampling. Not all available server replicas are queried, but only
a randomly chosen subset. Repeated receive requests will eventually retrieve all
messages.

Consistency Benchmarking: Evaluating the Consistency Behavior 629

2.2 Consistency Behavior

We define the consistency behavior of a cloud-based middleware service along the
lines of temporary inconsistencies and conflicts. Temporary inconsistencies can
emerge as a consequence of optimistic and probabilistic replication techniques.
Temporary inconsistencies are non-deterministic and disappear eventually over
time. Conflicts are server-side inconsistencies between replicas that require rec-
onciliation. Our work focuses on temporary inconsistencies.

Fox and Brewer introduced the two metrics harvest and yield to differentiate
the behaviour of applications which are capable of graceful availability degrada-
tion [2]. Yield measures the amount of successfully completed requests, whereas
harvest measures the fraction of data reflected in the responses in relation to
the data that could have been delivered in a failure-free world. Besides grace-
ful degradation, we believe that harvest and yield are well-suited metrics to
measure the client-side consistency behavior of those middleware services which
relax consistency requirements on purpose. The metrics can easily be recorded
by observing communication interactions between client and service.

2.3 Consistency Benchmarking of SQS

With our approach to consistency benchmarking, we attempt to better under-
stand the significance of eventual consistency from an application programmer
perspective. Although the qualitative nature of software development challenges
has been described in the SQS developer guide, their gravity is unknown. Based
on a qualitative description of the consistency behavior of SQS, we propose to
measure the following indicators:

Y: How many requests return a valid response?
H: How many messages are received with a receive request?
O: To which degree are messages out-of-order?
D: How often are duplicate messages received?

Furthermore, we want to evaluate whether these indicators depend on the fol-
lowing application properties:

P1: The location of application clients,
P2: the maximum number of messages fetched with a single receive request,
P3: the timespan between subsequent Web service requests,
P4: the availability zone of the SQS service endpoint, and
P5: the average amount of messages stored in SQS.

3 Experiment and Evaluation

We implemented a benchmarking tool prototype to conduct experiments on
Amazon SQS. First, we describe the basic benchmarking test setup. Then we
discuss the metrics for the indicators under evaluation. The test case is described
with pseudocode, and our results are presented and discussed.

630 M. Klems, M. Menzel, and R. Fischer

3.1 Benchmarking Test Setup

The test case is executed by a local client who triggers remote Web services
deployed on Amazon EC2 instances in four different availability zones: Ire-
land (EU), Singapore (ASIA), Virginia (US-EAST), and North California (US-
WEST). In the example depicted in figure 1, the local client triggers synchronous
requests of the benchmarking Web services, which, in turn, call the SQS Web
service with endpoint US-EAST. The local client triggers two servers in EU and
ASIA to send messages with ids “7214c...” and “6f7ab...” to the SQS queue.
Two servers in US-EAST and US-WEST are triggered to request receiving mes-
sages from the queue. All response messages are collected by the local client and
aggregated for statistic evaluation.

Fig. 1. Example of a benchmark test run

3.2 Test Case Algorithm

The basic test case is described with pseudocode shown in Algorithm 1. Re-
quired input parameters are the Web services “Sender S” and “Receiver R”,
particularly the respective availability zones where they are deployed (property
P1). The service endpoint E determines to which of the four availability zones
currently provided by SQS a service request should be routed (property P4).
Other required input parameters are the maximum number of messages received
with a single “receive” request maxR (property P2), the number of messages
noS sent by S within a single test run (property P5), the number of test runs
T performed in a single test case, and the waiting period w between subsequent
requests (property P3). Output parameters of the algorithm are a “yield” vec-
tor Y of dimension T (number of test runs), and similarly “harvest” H, “order
error” O, and “number of duplicate messages” D.

Each test case begins with the creation of a new queue QE (line 3). The for-
loop from line 5 to 31 encloses a single test run. With the first inner for-loop,
noS messages are sent to QE and the message id that is created for each sent

Consistency Benchmarking: Evaluating the Consistency Behavior 631

message is added to Setsent. Then the for-loop starting in line 12 tries to retrieve
all messages stored in QE . In line 15, a check for duplicate messages is performed.
The following conditional statement in line 17 checks whether a previously sent
message has been received. If none of these two conditional statements are true,
a stale message from a previous test run has been received. In the basic version of
the algorithm, stale messages are simply discarded. However, one could evaluate
how many requests it takes on average to retrieve a specific message from QE .
For each test run, the metrics yield Yt, harvest Ht, order error Ot, and duplicate
messages Dt are recorded. After all test runs have been performed, the queue
QE is deleted (line 32).

Algorithm 1. SQS Consistency Benchmarking Algorithm
Require: S, R, E, maxR, noS , T, w
Ensure: Y ∈ [0,1], H ∈ [0, 1],O ≥ 0, D ≥ 0
1: Y ⇐ 1,H ⇐ 1,O ⇐ 0,D ⇐ 0
2: Setsent ⇐ ∅, Setdeleted ⇐ ∅, sequence ⇐ ∅
3: Create queue QE

4: Wait w seconds.
5: for t = 1 to T do
6: for s = 1 to noS do
7: Sender S requests to send a new message to QE with sequence number s in

message body.
8: Add message id to Setsent.
9: Wait w seconds.

10: end for
11: h ⇐ 0
12: for r = 1 to noS/maxR do
13: Client R requests to receive at most maxR messages from queue QE as

Setreceived.
14: for all messages ∈ Setreceived do
15: if message id ∈ Setdeleted then
16: Dt ⇐ Dt + 1
17: else if message id ∈ Setsent then
18: h ⇐ h + 1
19: Append s to sequence.
20: Remove message id from Setsent.
21: Add message id to Setdeleted.
22: else
23: Evaluate stale messages from previous test run.
24: end if
25: Wait w seconds.
26: end for
27: end for
28: Yt ⇐ the fraction of HTTP requests that return with code 200.
29: Ht ⇐ h/noS

30: Ot ⇐ complexity of sorting algorithm applied on sequence.
31: end for
32: Delete queue QE.
33: return Y,H,O, D

632 M. Klems, M. Menzel, and R. Fischer

3.3 Data and Discussion

We perform tests based on a ceteris paribus assumption where four of the five
properties presented in section 2.3 remain fixed. Thereby, the influence of a single
independent variable (properties P1-P5) on the dependent variables (indicators
Y,H,O,D) can be measured. The results of our tests never recorded duplicate
messages or invalid responses; in other words, the results showed 0 duplicates
and 100% yield.

Fig. 2. Charts showing harvest depending on maximum number of messages to be
retrieved with a single request for maxR = 1, maxR = 2, and maxR = 5 (a). Histogram
of harvest depending on maxR (b).

Fig. 3. Chart (a) showing how harvest improves for maxR = 1 when the number of
sent messages noS , and thereby average queue size increases. Chart (b) shows the same
effect for maxR = 2, and chart (c) for maxR = 5.

Influence of Property P2 (maxR) on Harvest (H). For each of three test
cases, the maximum number of messages to be retrieved with a single request,
maxR, is set to 1,2, and 5, respectively, while sender and receiver client location
(P1), waiting time (P3), service endpoint (P4), and average number of queued
messages (P5) remain fixed for all test cases.

Consistency Benchmarking: Evaluating the Consistency Behavior 633

The local client performs T = 1000 test runs with noS = 10 messages sent
in each test run. Test results show that “receive” requests with maxR = 1
achieve better harvest than those with maxR = 2, and maxR = 2 achieves
better harvest than maxR = 5 (figure 2). The results suggest that lower maxR

leads to larger harvest. Subsequent tests with other values of the fixed properties
were in accordance with this observation.

We interpret these results in the context of our benchmarking algorithm (Al-
gorithm 1). In the for-loop starting in line 12 that encloses a statement issuing
“receive” requests, iterating from r = 1 to noS/maxR, a larger value of maxR

means that less “receive” requests are issued. Based on the weighted random
server sampling algorithm employed by SQS, with each request a new server
sample is chosen. Therefore, the coverage of servers increases with the number
of requests, since more potentially different server samples are addressed.

Interestingly, the harvest of all three test cases decreases in the beginning. We
interpret this effect as a result of how stale messages are dealt with: the basic
algorithm simply discards stale messages and does not count them as harvest.
After a few test runs that do not return 100% harvest, stale messages accumulate
in the queue Q.

Other Results. We measured the influence of average queue size (P5), in
terms of number of messages sent to and stored in the queue noS , on harvest H ,
while the other properties remain fixed. Tests with T = 10 indicate that harvest
improves considerably when more messages are sent to the message queue (figure
3). We believe that this is the case because more messages sent to and stored in
the queue clearly imply a higher probability to retrieve any harvest messages.
The margin by which harvest can be improved apparently converges toward a
number near zero.

Tests did not indicate evidence of harvest (H) depending on client location
(P1) and service endpoint (P4), respectively.

4 Related Work

Garfinkel described early hands-on experience with Amazon Simple Storage Ser-
vice (S3), Elastic Compute Cloud (EC2), and Simple Queue Service (SQS) in
a technical report [7]. The author performed thorough performance benchmark-
ing of S3 and EC2 and found that EC2 and S3 delivered on their promises to
provide scalability and high availability. In some tests, S3 did not provide good
through-put, though. Garfinkel also tested SQS, however not as extensively as
the other two Web services.

Binning et al. are the first to suggest that cloud services require a benchmark-
ing approach and tools that are considerably different from traditional bench-
marking [8]. The authors point out that cloud services are different from tra-
ditional software systems with respect to cost model, performance, scalability,
consistency guarantees, fault-tolerance, and other properties. For our bench-
marking tests we focused on the metric harvest, introduced by Fox and Brewer

634 M. Klems, M. Menzel, and R. Fischer

[2] to measure client-side consistency behavior. Yu and Vahdat suggest the con-
cept of a consistency unit (conit) as a means to quantitatively express and mea-
sure a continuous consistency range and continuous consistency programming as
a software development approach to create consistency-aware applications [9].
This approach is viable for on-premise systems, but not for hosted services like
Amazon SQS.

5 Conclusion and Future Work

Software developers are confronted with a general problem when using cloud-
based middleware services: eventual consistency. We proposed an approach to
consistency benchmarking along with a prototypical implementation and used
the prototype to conduct experiments on Amazaon SQS. The results show that
frequent service requests result in better harvest, probably due to the fact that
SQS uses server sampling. Client location and service endpoint location, on the
other hand, did not appear to have an influence on harvest. With our tests, we
never detected duplicate messages or unavailability of service. Future work will
extend our basic approach to measure a richer set of properties of more complex
software stacks.

References

1. Bernstein, P.A.: Middleware: A model for distributed system services. ACM Com-
mun 39(2) (1996)

2. Fox, A., Brewer, E.A.: Harvest, yield, and scalable tolerant systems. In: Proceedings
of the 7th Workshop on Hot Topics in Operating Systems (1999)

3. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent available
partition-tolerant web services. ACM SIGACT News 3(2), 51–59 (2002)

4. Vogels, W.: Eventually consistent. ACM Comm. 52(1), 40–44 (2009)
5. Pritchett, D.: BASE: An ACID alternative. Queue 6(3), 48–55 (2008)
6. Amazon Web Services LLC: Amazon Simple Queue Service developer guide - API

version 2009-02-01 (2010)
7. Garfinkel, S.: An evaluation of Amazon’s grid computing services: EC2, S3 and SQS.

Tech. Rep. TR-08-07, Harvard University (2007)
8. Binnig, C., Kossmann, D., Kraska, T., Loesing, S.: How is the Weather tomor-

row? Towards a Benchmark for the Cloud. In: DBTest Workshop (ACM SIGMOD),
Providence, USA (2009)

9. Yu, H., Vahdat, A.: Design and evaluation of a conit-based continuous consistency
model for replicated services. ACM Transactions on Computer Systems 20(3), 239–
282 (2002)

Service Composition with Pareto-Optimality of

Time-Dependent QoS Attributes

Benjamin Klöpper�, Fuyuki Ishikawa, and Shinichi Honiden

National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan

Abstract. Quality of Services (QoS) plays an essential role in realizing
user tasks by service composition. Most QoS-aware service composition
approaches have ignored the fact that QoS values can depend on the time
of execution. Common QoS attributes such as response time may depend
for instance on daytime, due to access tendency or conditional Service of
Level Agreements. Application-specific QoS attributes often have tight
relationships with the current state of resources, such as availability of
hotel rooms. In response to these problems, this paper proposes an inte-
grated multi-objective approach to QoS-aware service composition and
selection.

Keywords: Service Composition, Multi-objective Optimization.

1 Introduction

Both, functional and non-functional properties - the latter expressed by Quality
of Service (QoS) Attributes - have to be taking into account when identifying
a suitable composition of a user task. Current approaches consider these QoS
attributes to be static, so they do not change over time. Hence, these approaches
cannot properly reflect certain business models or the interaction with scarce
resources. For instance, service providers maybe use flexible price models in
order to level the utilization of their computational resources. Furthermore, the
availability and hence the price of goods and non-computational services are
also time-dependent, e.g. flight tickets or hotel rooms get less overtime. Hence,
composition approaches should be able to consider the time-dependency of QoS
attributes. Furthermore, this time dependency makes the decision problem more
complex and hardly comprehensible for human users. A composition process is
desirable that presents a set of relevant solutions to the user.

2 The Timed Service Composition Problem

To realize a user task by a composed service, two problems must be solved. First,
a workflow must be identified that implements the user task. Often, alternative
workflows can be found. Second, specific service instances must be selected to
implement the workflow. If these problems are solved subsequently, only local
optima can be found. Hence, we introduce an integrated solution approach.
� Benjamin Klöpper is a visiting researcher and scholarship holder of the (DAAD).

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 635–640, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

636 B. Klöpper, F. Ishikawa, and S. Honiden

2.1 Workflow Model

The service model used throughout the paper follows basically a model intro-
duced by Kalasapur et al. [3]. A user service s is described by a workflow schema,
a directed acyclic graph (DAG) w = (ST, D, Source, Sink) where the vertex set
ST represents the services required to implement the user service and the edge
set D describes input-output relation or dependencies between two services. If
there is a d = (sta, stb) ∈ D and sta, stb ∈ ST , the service sta has to be ac-
complished before stb can start. To include alternative workflow schemes for the
implementation of user services, we extend the model from [3]. Two different
types of services are considered:

1. Atomic services (SA): services offered by a service provider
2. Complex services (SC): services with alternative workflow schemes

A complex service cs ∈ SC is a set of alternative workflow schemes Wcs. The
composition of a complex service cs consists of the implementation of all services
st in one of the workflows wcs ∈ Wcs. An implementation of an atomic service
is defined by the selection of a service instance offered by a service provider and
a corresponding start time. A specific implementation of a service s is referred
to as is.

2.2 Solution of the Timed-Composition Problem

A timed composition plan CP of a user service or complex service cs is the set
of all service instances so, ..., sk from a workflow schema wcs ∈ Wcs with start
time starti and finishing time finishi of each service instance si in the list. A
feasible composition plan contains no service instances si and sj such that there
is a directed edge from sj to si in the workflow schema wcs and si starts before
sj ends. A number of QoS attributes qa [1..n-1] and the response time of the user
service ics establish a n-dimensional vector PV , describing the performance of
the composition plan. Given the n-dimensional vector, the pareto-optimality of
composition plans can be defined. A composition plan with performance vector
PV is pareto-optimal or non-dominated if there is no other composition plan
with performance vector PV ′ such that:

PV ′i ≤ PVi ∀i, 1 ≤ i ≤ n + 1 and PV ′i < PVi ∃i, 1 ≤ i ≤ n + 1 (1)

If FS is the set of feasible solutions, a pareto-optimal composition process returns
a set PO with all performance vectors that satisfy two conditions:

∀pvpo ∈ PO : �s ∈ FS : pvs ≺ pvpo (2)
∀pvpo ∈ PO : ∃s ∈ FS : pvs = pvpo (3)

Pareto-Optimality of Time-Dependent QoS Attributes 637

2.3 Monotone Quality of Service Attributes

If QoS attributes depend in execution time and response time is a relevant QoS
attribute, a potential trade-off occurs: It is possible to achieve a gain in some
QoS attributes by delaying the execution of a service. To catch this trade-off
properly in the composition problem, we will assume that the QoS attributes of
service instances are monotonically decreasing. Any service instance without this
property will be split into several logical service instances with an earliest and
latest start time. These logical services are encapsulated in a complex service,
where each alternative workflow consists of exactly one atomic service with the
corresponding earliest and latest start time.

qai

worst

best

4 8 time

I II III
Complex Service A

I

II

III

Service
Instance A

SinkSourceqa1qa1

Fig. 1. Service Instance split into Logical Instances I, II, III with Monotony Property

3 Partial Composition Plan Search Tree

This section maps the timed composition problem defined above to a search
problem. Each node in the search tree represents a partial composition plan of
the complex service to be composed, selecting a number of specific services for
composition. Starting from an empty composition (no services are selected) the
partial composition plans subsequently are extended until a complete composi-
tion is found.

A partial composition plan is a tuple (Spc, Apc, Npc, STpc, FTpc), where Spc is
the set of services selected for the composition plan (complex services and atomic
service), Apc is the set of services available for expansion, and Npc contains all
services that are not yet available. A service is available for expansion, if all
its predecessors from the corresponding service graph are already included in
Spc. STpc and FTpc are two functions mapping the service Spc to their start
and finishing times. The start time of any service is determined by the latest
finishing time of any of its predecessors in the workflow schema and the earliest
start time of the service. The root of the search tree is the partial composition
plan which contains the services from the user specified service and Spc is empty,
Apc contains only the source of the user service workflow and Npc contains all
remaining services.

Partial composition plans are extended towards a complete composition plan
by two repeated steps. In the first step, a service s from Apc is selected for
expansion. In the second step, all offspring pc′ regarding parent pc and selected
service s are generated. Regarding the generation of offspring, two cases have
to be distinguished. In the first case a service instance as from the set Apc is

638 B. Klöpper, F. Ishikawa, and S. Honiden

added to the partial composition plan. The result is one offspring for each service
instance. In each of these new partial composition plans, as is added to the set
of selected services Spc. The earliest start time depends on the latest finishing
time of any predecessor service, the finish time as well as the QoS attributes qa

depend on the performance offered by the service provider at start time. In this
way, the QoS attributes of a service instance depends of the selected start time
of its predecessor. After adding as to the set Cpc, all services from Npc that are
now available are moved to Apc.

In the second case, a complex service cs from the set Apc is added to the
composition plan. The result is one offspring for each decomposition d of the
complex service. In each new partial composition plan, the source node of the
decomposition d is added to the set of selected services Spc. The remaining
services from the decomposition are added to Apc if the source is their only
predecessor or to Npc otherwise. The complex service cs will be finally moved
to Apc, when the sink node of d is moved to Apc. Hence, all successors of cs can
become available, when the decomposition d is entirely included in the partial
composition plan. Given these two expansion operations, a search tree is defined.
The leaves of the tree are complete composition plans of the user specified service.
A composition plan is complete, when the two sets Apc and Npc are empty. We
refer to the set of leaves reachable from partial composition pc as CPpc.

Given an admissible heuristic function that systematically underestimates the
distance towards a complete schedule; heuristic search algorithms can be used to
identify optimal compositions. The extension to the multi-objective case is done
by not optimizing a scalar value (e.g. weighted sum over all QoS attributes),
but identifying all non-dominated compositions regarding the n-dimensional ob-
jective vector. In [4] we introduced a suitable heuristic function. Hence, multi-
objective heuristic search algorithms (for instance, cf. [6,5]) can be used to iden-
tify the set of non-dominated compositions.

3.1 Use Case with Multi-objective Search Based Composition

Figure 2 shows an example user task with two alternative workflows. As well, the
complex task E1 encompasses two alternative workflows, the first one consisting
of a single task and the second one consisting of two subsequent tasks.

User Task

A1

B1

C1

D1

E1

F1

G1

WF1

A2

B2

WF2

Complex TaskExternal TaskSinkSource

Fig. 2. User Task

Pareto-Optimality of Time-Dependent QoS Attributes 639

For the evaluation regarding the use case, the time-dependent QoS attributes
and the execution time were randomly chosen. The QoS attributes for each
service instance were generated for a time horizon with 100 time points. The
attributes were generated as monotone increasing on time intervals between 3
and 7 time steps. Hence, each service instance is split into 15 up to 34 logical
service instances.

Figure 3 shows results from experiments1 with different of service instances.
Each experiment consisted in 50 randomly generated problem instances. Figure
3(a) shows that the run-times do not solely depend on the size of the problem, but
also on the relation between the objective functions. The maximum run-times
for bigger instances are significantly too long for interactive systems. Figure 3(b)
on the other hand shows that a feasible solution can be found rather fast (below
one second). This is a strong hint, that anytime algorithms could be developed
for interactive systems.

12

14

16

21

26

ro
vi
de

rp
er

cl
as
s

0 20 40 60 80

6

8

10

Processing Times in [sec]

#
p

avg.
max.

(a) Processing Times

10

12

14

16

21

26

pr
ov
id
er

pe
rc
la
ss

0 0.2 0.4 0.6 0.8 1

6

8

10

Time to Find First Solution [sec]

#
p

avg.

max.

(b) Time to find a first Composition

Fig. 3. Experimental Results from the Example Problem

4 Related Work

The introduced service model and solution procedure are in between staged com-
position and execution and template-based composition [1]. The composition is
not as static as in template based approaches, but the structure of complex ser-
vices resembles predefined workflow scheme. The hierarchical structure and the
subsequent refinement of complex tasks resembles Hierarchical Task Network
Planning (HTN) that is quite popular in the service community [2]. HTN based
approaches do not consider time-dependent attributes and cannot find the set of
non-dominated compositions regarding a set of QoS attributes. Multi-objective
approaches for service composition were until now limited to template-based
approaches [7,8].

1 Performed on a PC with an Intel Core 2 Quad CPU (2.99Ghz), 8GB RAM, Windows
7 64 Bit, JVM 1.6 using a single thread implementation.

640 B. Klöpper, F. Ishikawa, and S. Honiden

5 Conclusion

In this paper we introduced the timed service composition problem that consid-
ers time-dependent QoS attributes. Furthermore, we mapped the problem to a
search problem and showed first results of the implementation of a composition
algorithms based on multi-objective heuristic search. In our opinion, the timed
service composition problem is an important step towards the proper consider-
ation of complex business models of service providers as well as scarce physical
resources and services, such as hotel rooms or flight tickets. The employment of
the multi-objective composition algorithm is more straightforward then classical
single objective approaches because a priori definition of an objective function
is not necessary. To use the approach in practical application, approximation
algorithms have to be developed and implemented.

References

1. Argarwal, V., Chafle, G., Mittal, S., Srivastava, B.: Understanding Approaches for
Web Service Composition and Execution. In: Proceedings of the 1st Bangalore An-
nual Compute Conference, ACN (2008)

2. Chen, K., Xu, J., Reiff-Marganiec, S.: Markov-HTN Planning Approach to Enhance
Flexibility of Automatic Web Service Composition. In: IEEE International Confer-
ence on Web Services, pp. 9–16 (2009)

3. Kalasupur, S., Kumar, M., Behrooz, A.: Dynamic Service Composition in Pervasive
Computing. IEEE Transactions on Parallel and Distributed System 18, 907–917
(2007)

4. Klöpper, B.: First Steps Towards Distributed Multiobjective Scheduling for Self-
Optimizing Manufacturing Systems. In: 10th IFAC Workshop on Intelligent Manu-
facturing Systems (2010)

5. Mandow, L., Pérez de la Cruz, J. L.: A new approach to multiobjective A* Search.
In: Proceedings of the Nineteenth International Joint Conference on Artificial Intel-
ligence (IJCAI 2005). pp. 218–223. Edinburgh, Scotland (2005)

6. Stewart, B.S., White, C.C.: Multiobjective A*. Journal of the Association for Com-
puting Machinery 38(4), 775–814 (1991)

7. Wang, J., Hou, Y.: Optimal Web Service Selection based on Multi-Objective Genetic
Algorithm. In: International Symposium on Computational Intelligence and Design
(2008)

8. Zeng, L., Benatallah, B., Ngu., A., Dumas, M., Kalagnanam, Chang, H.: QoS-Aware
Middleware for Web Services Composition. IEEE Transactions on Software Engi-
neering 30, 311–327 (2004)

QoS-Based Optimization of Service
Compositions for Complex Workflows

Dieter Schuller, André Miede, Julian Eckert, Ulrich Lampe,
Apostolos Papageorgiou, and Ralf Steinmetz

Multimedia Communications Lab (KOM),
Technische Universität Darmstadt, Germany
firstname.lastname@KOM.tu-darmstadt.de

Abstract. In Service-oriented Architectures, business processes can be
realized by composing loosely coupled services. If services in the Internet
of Services with comparable functionalities but varying quality levels are
available at different costs on service marketplaces, service requesters
can decide, which services from which service providers to select. The
work at hand addresses computing an optimal solution to this service-
selection-problem considering complex workflow patterns. For this, a lin-
ear optimization problem is formulated, which can be solved by applying
integer linear programming techniques.

Keywords: Optimization, Service Selection, Quality of Service,
Complex Workflows.

1 Introduction

In highly competitive markets with similar products and services, enterprises
are facing a tough cost pressure. Their offered products and services need to
be constructed and provided efficiently. Therefore, efficient process execution
is mandatory. With respect to the globalization and the deregulation of mar-
kets, enterprises are forced to react quickly to changing environments, driven
by market forces, and adapt their business processes. This requires the business
processes to be flexible. But as IT architectures within an enterprise are often
heterogeneous, the required flexibility is hard to achieve. Even within a single
enterprise, a certain amount of legacy systems and a couple of applications exist
running on different operating systems and middleware platforms, implemented
with different programming languages. An approach for integrating these legacy
systems and applications is necessary in order to realize the required flexible and
efficient business processes.

In Service-oriented Architectures (SOA), business processes can be realized by
composing loosely coupled services, which autonomously provide a more or less
complex functionality depending on their granularity (cf. [1]). To support and
enable agile business processes, the SOA paradigm is often recommended [2].
In the Internet of Services, typically multiple service providers offer equal or
rather similar services regarding the services’ functionalities at different Quality

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 641–648, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

642 D. Schuller et al.

of Service (QoS) levels and at different costs on service marketplaces. This gives
enterprises the opportunity to select those services which meet their business
and QoS requirements best. The problem of selecting appropriate services which
meet specified QoS and cost conditions and restrictions for business processes
– the service-selection-problem – is well known in the literature and has been
discussed recently by several authors [3,4,5]. An optimal selection of services and
their invocation results in an efficient business process execution. Therefore, the
work at hand addresses the computation of an optimal solution to the service-
selection-problem for complex workflows by formulating a linear optimization
problem, which can be solved optimally by applying integer linear programming
(ILP) [6]. It extends our approach in [7] by taking recursive interlacings of these
patterns into account.

The rest of this work is structured as follows. In Section 2, we distinguish our
approach from related work in this field. The considered workflow patterns and
the applied system model is depicted in Section 3. An approach for recursively in-
terlacing the required QoS aggregation functions is discussed in Section 4. In Sec-
tion 5, the computation of an optimal execution plan taking recursive workflow
pattern interlacings into account is addressed. Finally, in Section 6, conclusions
are drawn and future work is discussed.

2 Related Work

A lot of work has been done regarding the service-selection-problem. Several au-
thors propose and implement heuristic solutions to this problem [3,8,9]. Further,
also tree-based algorithms are proposed in [4]. Here, the complex workflow is
transformed into a tree-like execution structure (BPTree) based on the align-
ment of the considered workflow patterns. An optimal solution to the service-
selection-problem is proposed in [10,11]. The respective authors solve this prob-
lem for complex workflows by unfolding arbitrary cycles and computing optimal
execution plans for each possible path in the complex workflow, thereby formu-
lating and solving a linear optimization problem using ILP solely for sequential
workflows.

This is overcome in the work at hand, as (in our approach) the knowledge of
all possible execution paths is not necessary in advance. Our aim is to describe
and implement an approach that enables the computation of an optimal solution
to the service-selection-problem for complex workflows without considering each
execution path separately and for recursive interlacings of these patterns, which
– to the best of our knowledge – has not been addressed in the literature so far.
Thus, we create a sort of benchmark, enabling other (heuristic) approaches to
evaluate their achieved solution quality without having to calculate the optimal
solution with brute force algorithms (checking out the whole solution space)
but by (simply) applying ILP. In case, scalability issues are foregrounded, the
heuristic solution method proposed in [12] can be applied to our approach.

QoS-Based Optimization of Service Compositions for Complex Workflows 643

3 System Model

In order to formulate the mentioned linear optimization problem – consisting of
an objective function and a set of process conditions – in Section 5, we present
the applied system model in this section. Thereby, an abstract business process
(written, e.g., in Business Process Modeling Notation – BPMN) consisting of n
abstract process steps respectively tasks (we will use these terms synonymously)
is assumed. In the work at hand, the process steps may be arraged according
to the workflow patterns sequence, parallel split (AND-split), synchronization
(AND-join), exclusive choice (XOR-split), simple merge (XOR-join), which are
described in [13]. Additionally, the simple loop pattern (cf. [14]) is considered.
Besides concatenating these patterns, they can be interlaced recursively to create
complex workflows respectively complex business processes. An example for such
a complex workflow is given in Figure 1. The process steps in this figure are
abbreviated with PS.

PS1

PS2

PS5

PS12

PS8 PS9

PS3 PS4

PS6

PS7

PS15

PS13 PS14

PS10 PS11

Fig. 1. Example Workflow

The set of all tasks is labeled with I, i ∈ I = {1, ..., n}. Each task is ac-
complished by exactly one service j ∈ Ji = {1, ...,mi}. The decision-variables
xij ∈ {0, 1} state, whether service j is selected for task i or not. As QoS param-
eters, we take execution time e (the time it takes to execute the service), costs
c (costs for the invocation of a service), reliability r (the probability that the
service successfully executes), and throughput d (number of parallel service invo-
cations) into account. These parameters – in fact, even a subset of these param-
eters – are sufficient to cover the aggregation types summation, multiplication
and min/max-operator, so that the integration of further QoS parameters into
the optimization problem is straightforward. The respective restrictions (bounds)
are labeled with b[index]. We further consider a pay-per-use pricing model.

When it comes to branchings, we define the set L of paths l as l ∈ L =
{1, ..., l#}. Thus, l represents the respective path number within a branching.
To make this clear, we refer to Figure 1. After a successful execution of PS1,
the following AND-split branches into three paths l (so L = {1, 2, 3}), beginning
with PS2, PS8, PS12. The set IWL ⊆ I represents the set of tasks within a
branching and IWl ⊆ IWL the set of tasks within path l ∈ L. The remaining
tasks (not located within a branching) are covered in the set IS = I\(IWl|l ∈ L).

644 D. Schuller et al.

The parameter pl indicates the probability that path l is executed. We thereby
assume

∑
l∈L pl = 1.

4 Recursive Workflow Pattern Interlacing

In order to formulate the optimization problem, it is necessary to aggregate
the considered QoS parameters and to restrict them to their respective process
conditions. Referring to our work in [7], we propose the aggregation functions in
Table 1 to address the workflow patterns mentioned in Section 3.

Table 1. Aggregation Functions

QoS Sequence AND-split/-join XOR-split/-join
e

∑

i∈IS

∑

j∈Ji
eijxij max

l∈L
(
∑

i∈IWl

∑

j∈Ji
eijxij)

∑

l∈L
pl
∑

i∈IWl

∑

j∈Ji
eijxij

c
∑

i∈IS

∑

j∈Ji
cijxij

∑

l∈L

∑

i∈IWl

∑

j∈Ji
cijxij

∑

l∈L
pl
∑

i∈IWl

∑

j∈Ji
cijxij

r
∏

i∈IS

∑

j∈Ji
rijxij

∏

l∈L

∏

i∈IWl

∑

j∈Ji
rijxij

∑

l∈L
pl
∏

i∈IWl

∑

j∈Ji
rijxij

d min
i∈IS

(
∑

j∈Ji
dijxij) min

l∈L
(min
i∈IWl

(
∑

j∈Ji
dijxij))

∑

l∈L
pl min
i∈IWl

(
∑

j∈Ji
dijxij)

But applying these aggregation functions for the optimization implies a se-
quential arrangement of the process steps within a split and join (cf. [7]). There-
fore, we describe in this section an approach to account for recursive interlacings
of workflow patterns to overcome this shortcoming. An example for such an in-
terlacing is given in Figure 1. Here, after the AND-split, the process steps in
the path starting with PS2 are not arranged sequentially. Subsequent to PS2,
another split and join follows. To cope with this situation, we abstract from the
interlacing by creating a “new” service which represents a composition of the
services able to realize the respective tasks within the interlacing. Referring to
Figure 1, we build a service by loosely coupling the alternative services for PS3,
PS4, PS5, PS6 according to the structural arrangement of these process steps in
the workflow, i.e., XOR-split with XOR-join. This way, we exchange PS3, PS4,
PS5, PS6 for PS3456 to obtain a sequential arrangement of the “remaining” pro-
cess steps PS2, PS3456, PS7. To compute the QoS values of the newly composed
service, we introduce variables e′l, c′l, r′l, d′l (with respect to the considered QoS
parameters) and apply the appropriate aggregation functions from Table 1 –
depending on the kind of split and join. Regarding Figure 1, we specify e′l, r′l,
d′l in (1) to (3) – c′l is specified analogously to e′l – by applying the respective
aggregation functions for XOR-split with XOR-join. Integrating these variables
into the optimization problem and performing the described abstraction enables
the application of the aggregation functions Table 1 for the optimization.

e′l :=

⎧
⎨

⎩

∑

l∈L
pl
∑

i∈IWl

∑

j∈Ji
eijxij , if interlacing at path l

0 , else
(1)

QoS-Based Optimization of Service Compositions for Complex Workflows 645

r′l :=

⎧
⎨

⎩

∑

l∈L
pl
∏

i∈IWl

∑

j∈Ji
rijxij , if interlacing at path l

1 , else
(2)

d′l :=

⎧
⎨

⎩

∑

l∈L
pl · min
i∈IWl

(
∑

j∈Ji
dijxij) , if interlacing at path l

∞ , else
(3)

5 Optimization Problem

In this section, we formulate a non-linear optimization problem in Model 1 by
specifying the target function in (4) – aiming at minimizing overall costs of
the selected services – and restrictions for the aggregated QoS values address-
ing workflows arbitrarily compiled by combining sequences, AND-splits/-joins,
XOR-splits/-joins and Loops. Due to column width, we define yij = dijxij and
introduce cs, ca, cx representing the costs for the respective patterns. Further, we
use La, Lx to seperate AND-splits from XOR-splits. In order to consider Loops,
we would exchange the QoS parameters e, c, r for the adapted parameters e∗,
c∗, r∗ defined in Table 2 (c∗ is defined analogously to e∗; d is not affected by a
Loop) (cf. [7]).

In conditions (5) to (8), the restrictions for the regarded QoS parameters are
depicted. By integrating e′l, c′l, r′l, d′l in (5) to (8), we take additional interlacings
within the AND-split/-join part into account. The values of e′l, c′l, r′l, d′l are
determined in (9) to (12) by applying the respective aggregation functions for an
XOR-split with XOR-join. This way, also other (and more complex) interlacings
can be considered. Condition (13) ensures that exactly one service is selected to
realize a process step and condition (14) represents the integrality condition.

As the min/max-operator as well as the multiplication are non-linear aggre-
gation types regarding the decision-variables xij , we require to adapt these non-
linear functions and terms in order to obtain a linear optimization problem,
which can be solved optimally by applying ILP techniques. To linearize the term
with the max-operator in (5), we exchange this term for emaxa and add condition
(15) to Model 1. Analogously, additional variables dmin are specified and appro-
priate conditions for each min-operator in (8) are added to Model 1. Regarding
condition (7), we apply the approximation in (16) to (7) – which is very accurate
for parameter values zij very close to 1 (such as reliability) – and exchange (7)
for (17), which is linear regarding xij .

e′l +
∑

i∈IWl

∑

j∈Ji
eijxij ≤ emaxa ∀l ∈ L (15)

∏

i∈I

∑

j∈Ji
zijxij ≈ 1−

∑

i∈I
(1−
∑

j∈Ji
zijxij) (16)

1−
∑

l∈Lx
(pl

∑

i∈(IS∨IWLa∨IWl)
(1−
∑

j∈Ji
rijxij)) ≥ br (17)

646 D. Schuller et al.

Model 1 . Optimization Problem
Objective Function

minimize F (x) = cs + ca + cx (4)
so that

∑

i∈IS

∑

j∈Ji

eijxij + max
l∈La

(e′l +
∑

i∈IWl

∑

j∈Ji

eijxij) +
∑

l∈Lx
pl
∑

i∈IWl

∑

j∈Ji

eijxij ≤ be (5)

∑

i∈IS

∑

j∈Ji

cijxij +
∑

l∈La
(c′l +

∑

i∈IWl

∑

j∈Ji

cijxij) +
∑

l∈Lx
pl
∑

i∈IWl

∑

j∈Ji

cijxij ≤ bc (6)

(
∏

i∈IS

∑

j∈Ji

rijxij

)

·
(
∏

l∈La
(r′l ·
∏

i∈IWl

∑

j∈Ji

rijxij)

)

·
(
∑

l∈Lx
pl
∏

i∈IWl

∑

j∈Ji

rijxij

)

≥ br (7)

min

(

min
i∈IS

(
∑

j∈Ji

yij),min
l∈La

(d′l, min
i∈IWl

(
∑

j∈Ji

yij)),
∑

l∈Lx
pl · min

i∈IWl
(
∑

j∈Ji

yij)

)

≥ bd (8)

∑

l∈L
pl
∑

i∈IWl

∑

j∈Ji

eijxij = e′l ∀l ∈ La| interlacing at path l (9)

∑

l∈L
pl
∑

i∈IWl

∑

j∈Ji

cijxij = c′l ∀l ∈ La| interlacing at path l (10)

∑

l∈L
pl
∏

i∈IWl

∑

j∈Ji

rijxij = r′l ∀l ∈ La| interlacing at path l (11)

∑

l∈L
pl · min

i∈IWl
(
∑

j∈Ji

dijxij) = d′l ∀l ∈ La| interlacing at path l (12)
∑

j∈Ji

xij = 1 ∀i ∈ I (13)

xij ∈ {0, 1} ∀i ∈ I,∀j ∈ Ji (14)

By performing these adaptation and substitution steps, we transform Model 1
into a linear optimization problem. To compute an optimal solution to this prob-
lem – if a solution exists – ILP can be applied. In order to address scalability
issues we propose to relax the integrality conditions for the decision-variables
xij and calculate an optimal solution using mixed integer linear programming
(MILP) (cf. [6]). A valid (probably non-optimal) solution – containing integer
values for xij – is obtained afterwards by selecting those services, which sat-
isfy the constraints, based on the decision-variables’ values. A possible heuristic

Table 2. Aggregation Functions

Ex. time Reliability

Loop e∗ij :=

{
1

1−ρi eij , if i ∈ Iloop
eij , else

r∗ij :=

{
(1−ρi)rij
1−ρirij , if i ∈ Iloop
rij , else

QoS-Based Optimization of Service Compositions for Complex Workflows 647

approach could be H1_RELAX_IP [12], which is not performing significantly
worse compared to the optimal solution (cf. [15]).

6 Conclusion and Outlook

In highly competitive markets, flexible and efficient business process execution
is mandatory. By applying service-based processes and selecting services which
meet the enterprises’ business and QoS requirements best, the mentioned flexibil-
ity and efficiency can be increased. This leads to the service-selection-problem
which has attracted a lot of research efforts recently. But complex workflows
have thereby only insufficiently been addressed in the literature (cf. Section 2).
The work at hand enables the computation of the optimal solution to the service-
selection-problem without requiring to consider all possible execution paths. It
extends previous solutions in this field by allowing arbitrary combinations (in-
cluding recursive interlacings) of the workflow patterns sequence, AND-split with
AND-join, XOR-split with XOR-join, and Loops. We presented an approach to
compute an optimal solution to the service-selection-problem by formulating a
linear optimization problem for complex workflows, which can be solved opti-
mally using ILP techniques. Applying the optimal service selection increases the
mentioned efficiency regarding business process execution.

In our future work, we will focus on integrating security features as qualitative
service properties into the optimization. The aim is to arrive at a more or less
secure communication between service requester, provider and broker, and to
ascertain and assess the achieved Quality of Protection (QoP). This achieved
QoP will then be considered as additional QoS parameter in the optimization.

Acknowledgements. This work is supported in part by E-Finance Lab e. V.,
Frankfurt am Main, Germany (http://www.efinancelab.com).

References

1. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA: Service-Oriented Architecture
Best Practices. Prentice Hall PTR, Upper Saddle River (2004)

2. Papazoglou, M.P.: Service-Oriented Computing: Concepts, Characteristics and Di-
rections. In: Proceedings of WISE, pp. 3–12 (2003)

3. Anselmi, J., Ardagna, D., Cremonesi, P.: A QoS-based Selection Approach of Au-
tonomic Grid Services. In: Proceedings of ICSOC, pp. 1–8 (2007)

4. Menascé, D.A., Casalicchio, E., Dubey, V.: A Heuristic Approach to optimal Service
Selection in Service-oriented Architectures. In: Proceedings of WOSP, pp. 13–24
(2008)

5. Huang, A.F.M., Lan, C.W., Yang, S.J.H.: An optimal QoS-based Web Service
Selection Scheme. Information Sciences 179(19), 3309–3322 (2009)

6. Domschke, W., Drexl, A.: Einführung in Operations Research. Springer, Heidelberg
(2007)

7. Schuller, D., Eckert, J., Miede, A., Schulte, S., Steinmetz, R.: QoS-Aware Service
Composition for Complex Workflows. In: Proceedings of ICIW (2010)

http://www.efinancelab.com

648 D. Schuller et al.

8. Jaeger, M.C., Rojec-Goldmann, G.: SENECA-Simulation of Algorithms for Selec-
tion of Web Services for Composition. In: Proceedings of TES, pp. 84–97 (2005)

9. Mabrouk, N.B., Georgantas, N., Issarny, V.: A semantic end-to-end QoS Model
for dynamic Service oriented Environments. In: Proceedings of PESOS, pp. 34–41
(2009)

10. Ardagna, D., Pernici, B.: Adaptive Service Composition in Flexible Processes.
Transactions on Software Engineering 33(6), 369–384 (2007)

11. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
Aware Middleware for Web Services Composition. Transactions on Software Engi-
neering 30(5), 311–327 (2004)

12. Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz, R.: Heuristics for
QoS-aware Web Service Composition. In: Proceedings of ICWS, pp. 72–82 (2006)

13. Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed Parallel Databases 14(1), 5–51 (2003)

14. Cardoso, J., Sheth, A.P., Miller, J.A., Arnold, J., Kochut, K.: QoS for Workflows
and Web Service Processes. Journal of Web Semantics 1(3), 281–308 (2004)

15. Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz, R.: Dynamic Replan-
ning of Web Service Workflows. In: Proceedings of DEST, pp. 211–216 (2007)

Privacy-Aware Device Identifier through a

Trusted Web Service

Marcelo da Cruz Pinto, Ricardo Morin,
Maria Emilia Torino, and Danny Varner

Intel Corporation
{juan.m.da.cruz.pinto,ricardo.a.morin,maria.e.torino,

danny.varner}@intel.com

Abstract. Device identifiers can be used to enhance authentication
mechanisms for conducting online business. However, personal computers
(PC) today are not equipped with standardized, privacy-aware hardware-
based device identifiers for general use. This paper describes the imple-
mentation of privacy-aware device identifiers using the capabilities of the
Trusted Platform Module (TPM) and extending the trust boundary of
the device using a Web Service. It also describes a case study based on
a device reputation service.

Keywords: device identifiers, identity, privacy, protected execution,
reputation systems, TPM, Web Services.

1 Introduction

Internet usage is permeating many aspects of our life. E-Commerce, online com-
munities, media services and many other sectors are growing at a rapid pace. At
the same time, issues such as fraud, identity theft and spoofing are real problems
[7]. For example, in 2009 the online revenue loss due to fraud has been estimated
at USD 3.3 billion [5].

To help address these issues, multifactor authentication can be used to en-
hance the ability of identifying parties engaged in online business, but it usually
requires the issuance of tokens or other devices as a supplemental mechanism for
identity proof [9]. One way of enhancing authentication is to use platform-specific
device identifiers in lieu of tokens, but these are not standardized in commodity
personal computers (PC). This leads to the usage of proprietary software-based
methods that attempt to generate device identifiers through multiple sources
such as IP address, MAC address, and browser cookies, all of which can be
easily spoofed. It is therefore desirable to have the ability to establish and use
device identifiers that are hard to tamper with by strongly rooting them in the
device’s hardware.

One of the key challenges with unique device identifiers is how to preserve the
user’s privacy, i.e., ensuring complete control over the usage of artifacts that may
expose their identity. Users should be able to opt-in and opt-out of requests to
release device identifiers for authentication or tracking applications. In addition,

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 649–656, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

650 M. da Cruz Pinto et al.

device identifiers should be protected from being used to link interactions across
multiple sites or domains without the explicit consent of the user.

Today, an increasing number of PCs are being furnished with a Trusted Plat-
form Module (TPM) [6]. The TPM provides hardware assisted key generation,
secure storage of keys and hashes, and basic cryptographic functions. However,
the TPM does not provide a general purpose protected execution environment
for deploying algorithms needed to deliver privacy aware device identifiers. While
it is possible to establish multiple, unlinkable device identifiers using the TPM
through multiple attestation keys [4], the system is vulnerable to malware soft-
ware extracting various identifiers or keys and sending them to a remote server
for linking, thus compromising the users privacy.

In this paper, we describe the implementation of a strong device identifier
(Device ID) that could be used by service providers to make decisions on the
trustworthiness of transactions emanating from a device, while protecting the
privacy of the user. We explore extending the trust boundary of a TPM-equipped
device out to a trusted Web Service hosted in the cloud thus leveraging an
execution environment that is protected from local attacks.

Our approach is privacy-aware because it a) requires user opt-in, b) protects
device unique keys generated by the TPM, c) ensures that Device IDs are appli-
cation, site and/or domain specific under the control of the user, and d) users
can opt-out by removing Device IDs if desired.

To illustrate the proposed solution we describe a use case based on a hypo-
thetical device reputation system that uses a tamper-proof persistent Device ID
as the basis for its identity system.

2 Requirements

Access control : The user shall be in control of the Device ID feature (e.g. opt-
int/opt-out and access control for third parties).

Unlinkability: The Device ID shall be site and/or domain specific in that no
two (or more) third parties should be able to link users from their respective
domains by solely using the Device ID feature. This prevents unscrupulous third
parties from damaging the privacy of the user.

Malware protection: Unprotected Device IDs could lead to identity theft and
damaging the user’s reputation. The solution needs to mitigate these attacks.

Context : The Device ID itself is of no use without some context information
such as longevity (i.e., the time elapsed since the creation of identity). This can
help a third party better infer trust based on historical records.

Trust & Integrity: In order for a third party to make a trustworthy decision
based on the Device ID, the solution needs to provide a proof of origin and
tamper evidence in the form of a digital signature.

Confidentiality: The Device ID information shall be protected against eaves-
dropping and replay attacks while transferred from the device to a third party.

Integration and ease of deployment : The proposed solution shall be easy to
integrate to existing Web applications via standards such as XML and HTTP.

Privacy-Aware Device Identifier through a Trusted Web Service 651

3 Architecture

The proposed architecture is depicted in Figure 1. The Device that requires
the identity feature contains a Web browser that acts as a nexus between the
Security Hardware (SH), the Device Identity Provider (DIP) and the Service
Provider (SP).

<XML> <XML>

Web Browser

AIK Public Key Private Key

<Binary data>

Security Hardware

Device

TPMTCG Software Stack

Core Processor

Device Identity Orchestrator
<extension/add-on>

Service Provider Device Identity Provider

Fig. 1. Proposed architecture

The SH is a component that provides support for digital signature, protection
of the involved private keys, and a proof of the hardware support behind it. A
good example of SH is the TPM [2].

The DIP is a Web Service that takes the digital signature value generated
by the Device (using the SH) and binds this information to some calculation
performed in the protected environment of the Web Service. In our solution, the
DIP calculates a “pseudonym” identity for the device to meet the Unlinkability
and Context requirements listed in section 2.

The SP is a Web entity that is interested in using the Device ID produced by
the DIP for weighing some decision. This entity could be an e-Commerce Web
site, social network, banking Web site, etc. that requires strong authentication or
an intermediate entity which manages device reputation for the aforementioned
(in section 6 we present this as a case study).

The Web browser orchestrates these components while also providing an
overall smooth user experience. This configuration effectively extends the trust
boundary of the device to the cloud, more specifically to the DIP. The DIP
acts as an extension of the device by performing some calculation that would
otherwise require a protected execution environment in the device.

4 Security Protocol

As mentioned in section 3, we separate the DIP from the actual platform by
using a Web Service. Therefore, we need a secure communication protocol which
ensures the correct binding between these components. We achieve this binding
by using TPM’s support for attestation, and creating a pseudonym identity for
the device in the context of the requesting SP. In this section we describe this
protocol using a simplified version of the notation from [8].

652 M. da Cruz Pinto et al.

Declarations

– Let D be the device
– Let SP be the Service Provider
– Let DIP be the Device Identity Provider
– Let TA be the timestamp for the identity request
– Let NA be the nonce for the identity request
– Let TE be the timestamp in which the device was first seen by the DIP

(“Enrollment” timestamp)
– Let TR be the timestamp of the last identity reset
– Let TS be the current time on the DIP server
– Let RC be the reset count (times the user has requested an identity reset)
– Let DevSeed be a unique number which represents the universal device

identity of D for a given DIP. This unique number is randomly generated
the first time D accesses the services of the DIP

– Let pub(X) be the public key and priv(X) the private (secret) key of entity X

Pre-conditions

– At least one TPM AIK has been provisioned on D, and a signature key has
been generated which is rooted on said AIK. (pub(D), priv(D)) refers to the
aforementioned signature key pair.

– SP has generated a private/public key pair, and has shared the public por-
tion (or certificate) with the DIP service. (pub(SP), priv(SP)) refers to the
aforementioned key pair.

– DIP has generated a private/public key pair, and has shared the public
portion (or certificate) with the SP . (pub(DIP), priv(DIP)) refers to the
aforementioned key pair.

– Given the two previous pre-conditions, SP trusts DIP and vice-versa

Protocol

1. SP → D : {NA, TA}priv(SP), pub(SP)
2. D → DIP : {NA, TA}priv(SP), {NA, TA}priv(D), {pub(D)}pub(DIP)

3. DIP → D :
{{NA, TE, TR, RC, hash(DevSeed|pub(SP)), TS}pub(SP)}priv(DIP)

In the above flow, the Device ID of device D requested by service provider SP
in the context of Device Identity Provider DIP is denoted as hash(DevSeed
|pub(SP)): This enforces the Unlinkability requirement from section 2, since two
SPs who share information about device identities will not be able to correlate
any transactions solely based on this identity. The DevSeed value will be gen-
erated by the DIP in step 2, only for devices that are new to the DIP . Once
generated, this value will be stored in the DIP ’s database using D’s public key as
the index, and recalled every time the same device requests the identity service.
This protocol also ensures the requirements of Trust & Integrity and Confiden-
tiality by using digital signatures and encryption, and the Context requirement
is met by attaching the timestamps and reset count information corresponding
to the device.

Privacy-Aware Device Identifier through a Trusted Web Service 653

5 Implementation

Our implementation uses the TPM as the SH component. We are particularly
interested in the Attestation Identity Key (AIK)/Direct Anonymous Attesta-
tion (DAA) feature of the TPM specification, which provides support for remote
attestation. We use this capability as the proof that the SH component is pro-
tecting the signature keys used by the DIP to derive trust in the device.

We assume that the TPM chip inside a device will be provisioned with at
least one attestation key. For our implementation, we use the AIK scheme and
a Privacy CA (Certification Authority) to attest the TPM hardware, but our
architecture does not impose this model. Since the AIK cannot be used to sign
artifacts generated outside the TPM hardware, the TPM is instructed to create
a generic signing key and sign it with the AIK. The key pair (AIK, SigningKey)
is our effective trust anchor for the device.

The proposed implementation uses a Web browser add-on for orchestrating
the information flow between the SP and the DIP, including the communication
with the TPM for the digital signature primitive.

The DIP exposes a Web Service interface, which provides a TPM AIK signa-
ture consumption service and creates unlinkable identifiers for each SP.

TCG Software Stack. A TCG Software Stack (TSS) [1] implementation was
used as the interface to the TPM for creating and protecting the Device IDs and
represents the SH as described in section 3. The TSS can create a complete PKI
(Public Key Infrastructure) tree using an AIK (Attestation Identity Key) as the
trust anchor, but for the purpose of this paper and to fulfill the requirement of
Malware Protection by having the Device ID protected, we only require a single
RSA key, issued by an AIK. This TPM public key, which will be pseudonymized
by the DIP, forms the basis of the Device ID. It is important to note that this
key is never exposed to an SP.

Web browser extension. The Web browser extension is responsible for orches-
trating the device identity generation process through the Device Identity Or-
chestrator(DIO) and for providing device identity management abilities through
a graphical interface. This allows for standard Web protocols to be used fulfilling
the requirement of Integration as described in section 2.

This extension also includes improvements in user experience, facilitating the
opt-in and opt-out from the service as desired, meeting the Access control re-
quirement also described in section 2.

The DIO is made up of two main components that manage the entire device
identity generation process: A core communication protocol stack, which ensures
that the messages from the SP and DIP are exchanged correctly (see message
list in section 4), and the TSS wrapper which allows the interaction with the SH
to access the device credentials.

Device Identity Provider (DIP). It provides the implementation of the
message exchange protocol described in section 4 as a RESTful Web Service,

654 M. da Cruz Pinto et al.

mapping all the messages to XML structures. All of the cryptography described
in section 4 is implemented with XML Security standards (see [3]).

The DIP verifies the identity of the SP and of the Device. SPs participating
in the device identification service must enroll with the DIP through a prior
exchange of certificates in order to be considered trusted. The certificate embed-
ded in the XML Digital Signature is then extracted and looked up in the list of
trusted SPs to ensure communication was initiated by a valid SP.

The DIP authenticates the identity of the device itself using embedded TPM
based credentials rooted into the Privacy CA. The TPM public key is used as a
primary key for accessing the DIP database and storing data associated to the
device (timestamps and reset count as described in section 4).

A possible extension of this work would be to maintain a list of all identity
requests by Service Providers to give the user full transparency in how their
Device ID is being accessed.

6 Case Study: A Device Reputation Example

As online fraud costs to online vendors is significant [5] there is a vested com-
munity interest in the prevention of processing fraudulent transactions through
secure data sharing without impeding on user privacy. To put our proposed
system in context, we developed a case study providing an end-to-end scenario
demonstrating the strength and value of the solution coupled with a device rep-
utation service. The result is a reputation service that is unique in two ways.
The first is user privacy, as the solution is designed to be opt-in only through
collecting and rewarding positive behavior. The second is device trust, since the
online SP can guarantee the device identity is legitimate.

The case study consists of four actors as seen in Fig. 2: a reputation service,
an online vendor subscribed to the reputation service, a client device operated
by a user wishing to execute a transaction with the online vendor, and the DIP.

The device reputation service collects data on the Device ID longevity and
transaction history of the device to determine the device’s reputation in online
commerce. The user is in effect relinquishing control of the longevity of their De-
vice ID tied to online transactions to provide evidence the device is not involved
in fraudulent activities. The benefit for the user in relinquishing this control can
simply be gained confidence in initiating transactions within a trusted web of

1
Initiate Transaction

2.
Invoke plugin

3.
Retrieve Paramaters

4.
Sign Request

5.
Request Device

Verification

6.
Verify Request

Encrypt DeviceID
 7.

 Return DeviceID

8.
Provide DeviceID

9.
 Retrieve Device

ReputationReputation Service
<service provider>

Online Vendor
<service provider>

Service Providers

Client
<device>

Device Identity Provider
<trusted entity>

Fig. 2. Case study

Privacy-Aware Device Identifier through a Trusted Web Service 655

SPs. This trusted web of the DIP, SPs subscribed to the DIP, and the user will
be defined as a ’trusted computing community.’

The user wishing to participate in the trusted computing community installs
a browser plug-in provided by the DIP, the user consents to the opt-in policy
and initiates the process of obtaining device identity trust. The wizard walks
the user through provisioning of the TPM and provides the user the ability to
set an access control list on their Device ID. The plug-in will also expose a
menu option for the user to fully reset their device identity, with the associated
consequence of resetting any reputation they have built up. The user is now
ready to initiate a transaction with an online vendor participating in the trusted
computing community. It is worth noting the reputation service and the online
vendor can be a single entity or separate SPs. By separating the reputation
service from the online vendor, it provides the benefit that a single online vendor
can access the reputation history of the device in question for all the device’s
transactions within the trusted computing community.

The user initiates an online transaction with the online vendor and the device
trust process is activated. A nonce from the reputation service is generated, the
TPM performs the signature and attestation process, the payload is signed by
the reputation service certificate and sent to the DIP. The DIP performs the
device verification and then hashes and encrypts the Device ID with the repu-
tation service certificate in order to send it back to the client to be embedded
in the response to the online vendor. At this point the online vendor has the
verified Device ID in possession however is unable to access any details as it is
encrypted by the reputation service key. The online vendor forwards this data to
the reputation service to receive a user consented feedback report on the trusted
Device ID. The reputation report is generated by the number of successful trans-
actions the device has completed and the longevity of the Device ID. After the
transaction is complete the online vendor provides feedback on the results of the
transaction to the reputation service, affecting the device’s overall reputation.

This case study demonstrates how: a) an online vendor can achieve a trusted
network based reputation report on a device without obtaining any additional
personally identifiable information; b) the user is able to maintain full control
over their privacy through an opt-in only approach and the ability to reset the
identity/reputation of the device; and c) the reputation service maintains data
integrity by only tracking data on verified devices.

7 Conclusions

We introduced a privacy-aware Device ID system that can be implemented using
off-the-shelf TPM capabilities present in many commodity PCs, enhanced with
a Web Service that extends the trust boundary of the device. The Web Service
is used to protect the user’s privacy in addition to providing additional security
to prevent tampering attacks. We described an end-to-end implementation of a
fully functional proof-of-concept in the context of a device reputation application
that can be deployed with today’s available technologies. Our contribution is

656 M. da Cruz Pinto et al.

innovative in two ways. First, through a security protocol, we extend the trust
boundary of a device to a Web Service that can be hosted in the cloud. Second,
using cryptographic techniques we generate unlinkable identities that are fully
controllable by the user.

Future work opportunities would involve the replacement of the trusted ex-
ternal Web Service by utilizing a local secure execution environment. This capa-
bility is not available in commodity PC today. However, the system we describe
would provide a valuable application of such capability. By describing this solu-
tion and its applications, we hope to encourage PC manufacturers to consider
the inclusion of secure execution environments in their product offerings in the
future.

References

1. Trusted computing group software stack (2010),
http://www.trustedcomputinggroup.org/developers/software_stack

2. Trusted platform module (2010),
http://www.trustedcomputinggroup.org/developers/trusted_platform_module

3. Xml digital signature (2010),
http://www.xml.com/pub/a/2001/08/08/xmldsig.html

4. Balfe, S., Lakhani, A.D., Paterson, K.G.: Trusted computing: Providing security for
peer-to-peer networks. In: IEEE International Conference on Peer-to-Peer Comput-
ing, pp. 117–124 (2005)

5. CyberSource: 2010 fraud report (2010),
http://www.cybersource.com/cgi-bin/resource_center/resources.cgi

6. McFadden, T.: Tpm matrix (2006),
http://www.tonymcfadden.net/tpmvendors_arc.html

7. Ahamad, M., et al: Emerging cyber threats report for 2009 (2008),
http://www.gtisc.gatech.edu/pdf/CyberThreatsReport2009.pdf

8. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large net-
works of computers. Commun. ACM 21(12), 993–999 (1978)

9. O’Gorman, L.: Comparing passwords, tokens, and biometrics for user authentica-
tion. Proceedings of the IEEE 91(12), 2021–2040 (2003)

http://www.trustedcomputinggroup.org/developers/software_stack
http://www.trustedcomputinggroup.org/developers/trusted_platform_module
http://www.xml.com/pub/a/2001/08/08/xmldsig.html
http://www.cybersource.com/cgi-bin/resource_center/resources.cgi
http://www.tonymcfadden.net/tpmvendors_arc.html
http://www.gtisc.gatech.edu/pdf/CyberThreatsReport2009.pdf

Towards Mitigating Human Errors in IT Change

Management Process

Venkateswara R. Madduri1, Manish Gupta1, Pradipta De1, and Vishal Anand2

1 IBM Research India, Delhi
2 IBM Integrated Technology Delivery, Bangalore, India

Abstract. IT service delivery is heavily dependent on skilled labor. This
opens the scope for errors due to human mistakes. We propose a frame-
work for minimizing errors due to human mistakes in Change Manage-
ment process, focusing on change preparation and change execution. We
developed a tool that brings better structure to the change plan, as well
as, helps the change plan creator in developing a plan faster through
use of knowledge-base and automatic guidance. At the change execution
phase, we designed and implemented an architecture that intercepts and
validates operator actions, thereby significantly reducing operator mis-
takes. The system can be tuned to vary the involvement of the operator.
We have tested the system in a large IT delivery environment and report
potential benefits.

1 Introduction

IT service delivery has seen unprecedented growth. To tackle the surge, IT service
management has become a human labor intensive industry. The strong depen-
dence on human workforce leads to several outages which can be traced back to
human mistakes [5,3,2,4]. Outage in service delivery stems from several factors,
starting from hardware failures to simple misconfiguration of an application,
leading to service downtime.

This paper proposes a framework for minimizing outages, that are triggered
by human errors, in service delivery environment. We look closely at the change
management process, as defined by ITIL [1]. A typical change management life-
cycle involves: (i) a change request is raised and logged into a change request
system, (ii) an expert team reviews the problem and draws up a change plan,
(iii) designated change assignee executes the steps as documented in the change
plan, (iv) changes are validated and the change ticket is closed. Starting from
change plan preparation to change execution, the process is heavily dependent on
skills of the human workforce.

We propose a solution targeted at two levels: change preparation and change
execution. At change preparation, errors could be due to inadequately speci-
fied instructions, reuse of older change plans, and omission of instructions for
rarely used stages, like pre-validation and backout. We introduce a column-based
structure for change plan creation. An MS-Excel plugin based wizard, referred

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 657–662, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

658 V.R. Madduri et al.

to as TexExpeditor, helps in building a structured change plan. Standardized
structure, along with several functionalities to guide the change plan creation.

The proposed method to prevent errors during change execution is based on
the idea of intercepting operator actions. The system, referred henceforth as
Facade, checks the correct time window for the change execution, as well as, val-
idates the server address on which the change must be acted. The interceptor is
also capable of automating command execution by matching command outputs.
Facade can also run in supervised mode where it waits for the user to indicate
successful command execution.

In this paper, our key contributions are two-fold: we propose a standardization
for change plan creation, and provide a tool to create standard change plans; and
based on this standard template, we have designed and implemented a change
execution engine, called Facade, which can be tuned to run at different levels of
automation. In the rest of the paper, we present a broad overview of the tools
(Section 2), followed by details of the implementation. We also present a set of
results from our limited engagement with accounts (Section 4).

2 System Overview

We have developed a system that addresses the challenges of Change Manage-
ment at two levels: change preparation and change execution. In this section, we
describe the overall design of two complementary tools: TexExpeditor used for
change plan creation, and Facade used for mitigating errors during execution of
the plan.

2.1 Change Plan Creation

In most service delivery environments, Subject-Matter-Expert (SME) creates the
change plan. A change plan is usually a set of instructions in unstructured text.
Use of unstructured text leaves scope for misinterpretation during execution.
Keeping the current state in mind, the key goal of the change plan creation phase
is two-pronged: (i) to reduce ambiguity in the definition of execution instructions
in a change plan, and (ii) reduce the effort, as well as, chance of mistakes in the
creation of change plan.

We introduce a structure in the change plan to reduce ambiguity. The pro-
posed change plan is a set of tasks, with each step in the task described as
a record with fixed number of fields. The fields are <command, node to exe-
cute on, type of command, comments>. To aid the process of plan creation, we
have implemented a MS-Excel based wizard to guide in plan creation (details
in Section 3.1). Figure 1 shows the workflow of change plan creation and that
of new change plan template generation. During the plan creation, a user can
provide the keywords describing the change, which will pull out relevant plans
for reference.

Towards Mitigating Human Errors in IT Change Management Process 659

Fig. 1. Steps in Change Plan Creation
using TexExpeditor tool

Fig. 2. Overall Architecture of Facade

2.2 Change Plan Execution

At present, a change plan is written in an unstructured manner leading to misinter-
pretation of the instructions, and errors in execution. Other sources of error in this
manual mode of change execution are, (i) the user mistakenly logs into the incor-
rect server and performs changes, (ii) being in a different time zone from the target
servers, the implementer may start execution at wrong change window,

Facade execution engine is a gateway before any change action reaches the
target server, as shown in Figure 2. The ticketing system holds the change re-
quests and change plans for target servers. Facade architecture has three impor-
tant modules which makes it flexible to incorporate new ticketing systems and
new connection types. The adapters to the ticketing system perform the task of
fetching relevant tickets for display to the user. The connector module opens ses-
sions to the target hosts specified in the change plan. Since the connections are
opened automatically by reading in the hostname from the change plan directly,
this eliminates possibility of wrong server login. Before executing any change
command on the target host, the change time window is checked with the server
time to ensure that a change is restricted within its change window. In order to
make the transformation from the current state-of-the-art to a fully automated
change plan execution, we have implemented an extensible framework. The flex-
ibility provided in the semi-automatic mode is that the user analyzes the output
of a command and decides on the progress of the change, while in the automatic
mode the command is pushed to the endhost, output analyzed and the next
command is executed.

3 Design Choices and Implementation

The design choices and implementation of the change preparation tool (TexEx-
peditor) and change execution engine (Facade) are guided by several business
and practical constraints. In this section, we will present the requirements that
shaped our design choices, followed by the implementation of the tool.

660 V.R. Madduri et al.

Fig. 3. A typical change plan along with the wizard for creating a plan

3.1 TexExpeditor: Design and Implementation

Several factors lead to making mistakes during change plan creation. Cut-Paste
error is the classic case of reusing old plans to create new ones, and forgetting to
change a parameter in the new plan. Omission error happens when an impor-
tant field, like patch version, is omitted during plan creation. Another common
practice is to omit backout plan for simple changes, assuming there will be no
complication during change.

TexExpeditor tool forces a structure while building the change plan, as well
guides the user with recommendations. It is built on top of MS-Excel, and opens
a wizard to guide the plan creation. Six mandatory worksheets are defined: Execu-
tive Summary, Pre-execution Phase, Execution Phase, Validation Phase, Backout
Plan, SME list. Any violation of the structure alerts the user. For example, while
filling out a sheet, if incorrect type is entered in a column, e.g. host address does
not match IP format, then an error is raised. The wizard is shown in Figure 3. We
also create a change plan store which can be searched based on keyword. Search for
a relevant plan is based on keywords. The task store is a 3-way dictionary with key-
words describing Actions, Software and Platform. Sample keywords for Action are
Install, Upgrade, Update, Modify, Patch, etc; for Software is DB2, Oracle, Web-
sphere, etc,; and for platform are Linux, Windows, AIX, etc.

3.2 Facade: Change Plan Execution Engine

Several observations guide the Facade design. Complex changes often require
human intervention, and therefore, Facade must be tuned to switch from auto-
matic to supervised mode. Multiple changes could be implemented simultane-
ously. Once a change has started, Facade must ensure that no other person by
mistake accesses the same ticket; this requires maintaining session state of the
ticket. An alerting mechanism is necessary to intimate relevant stakeholders on
exception scenarios.

Facade is a web application with a web-based Graphical User Interface (GUI),
as shown in Figure 4. The web UI allows several features, viz. Role-based access
control, Multiple ticket execution, Failed execution handling. Different users,
like Subject-Matter-Expert(SME) and an implementer, get different views of

Towards Mitigating Human Errors in IT Change Management Process 661

Fig. 4. Facade Graphical User Interface for executing a change plan

the ticket. Separate tabs are opened for each ticket, so that a user implementing
multiple changes can navigate across tickets. When exception occurs during a
change, Facade allows user to abort a ticket, and triggers the backout plan. It
also alerts the list of SMEs mentioned along with the ticket, and updates are
sent to the Ticketing system.

Three key building blocks in Facade framework are interface to the native
ticketing systems, the session management and interceptor modules, and end-
host connection manager. Tickets are accessed from ticketing system using web-
service interfaces. For example, BMC Remedy ARS [6] exposes web service APIs,
that is used to implement access to the ticketing database.

Once a change begins, Facade maintains a session for the ticket to guide the
user with the progress. Facade maintains the current command being executed
on the endhost, and proceeds to the next command when previous command is
successfully completed. In supervised mode, user indicates successful completion;
in automatic mode, it is detected by Facade. There are two types of commands
in a change plan, non-interactive, and interactive/text based. For the text based
commands, Facade opens a putty session to the designated endhost and allows
the user to execute the change directly on the target host. However, the chance
of an error in terms of execution on a wrong node is precluded by opening the
putty session to defined host.

The connection management to the target host is the other important func-
tionality in Facade. Since all target hosts are now accessed through Facade, this
allows the ability to control access to endhosts. If due to incorrect scheduling
of change, multiple tickets try to access the same endhost, Facade can easily
intercept and prevent. For connecting to the endhost, Facade uses the same
authentication method, like ssh or telnet, and asks the user for the credentials.

4 Results and Observations

This section presents preliminary results collected from a test engagement. The
results are indicative of the benefits of the tools. In order to understand the

662 V.R. Madduri et al.

benefit of TexExpeditor, we studied over 300 change requests over a period of 6
months raised for database operations team at a large telecom account. Approx-
imately 60% of the changes were repeating, where some of the major keyword
classes were dba, patch, update, database, upgrade, migration, with changing ta-
blespace in DB being the most common activity.

During change execution, Facade was useful for simple changes, but more su-
pervision was required for complex changes. Facade was able to prevent execution
of about 50% of the changes which were attempted. We prevented execution of
tickets whose change time window has not been reached, and those which were
pending approval. The web based display of the execution result is difficult to
read for the user. However, in our upcoming version, we are integrating a VT100
terminal emulator to maintain the standard look-and-feel for the user.

5 Conclusion

In the current human labor intensive IT delivery model, scope for errors due
to human mistakes cannot be precluded. We designed a framework that mini-
mizes the chance of human mistakes in Change Management process. We target
two key stages to restrict the errors: change preparation and change execution.
TexExpeditor tool introduces a structure in change plan creation, and guides
the user during change plan creation, thereby reducing the chances of making
common mistakes. Facade execution engine acts like a validation system before a
user can start executing change on the target host. It intercepts operator actions,
and allows execution only after validating the correct execution parameters, like
correct time window, correct target host. Facade can be tuned to run in a semi-
supervised mode, as well as, execute changes automatically on the endhost. We
envision that commonly occurring changes will benefit significantly from the
automated execution framework of Facade, while complex changes will involve
human intervention.

References

1. It infrastructure library. itil service support, version 2.3. In: Office of Government
Commerce (2000)

2. Benson, T., Sahu, S., Akella, A., Shaikh, A.: A first look at problems in the cloud.
In: Proceedings of the 2nd Workshop on Hot Topics in Cloud (2010)

3. Gray, J.: Why do computers stop and what can be done about it. In: Proc of SRDS
(1986)

4. Oliveira, F., Tjang, A., Bianchini, R., Martin, R.P., Nguyen, T.D.: Barricade: De-
fending systems against operator mistakes. In: Proc. of Eurosys (2010)

5. Oppenheimer, D., Ganapathi, A., Patterson, D.: Why do internet services fail, and
what can be done about it. In: Proc. of Usenix Symposium on Internet Technologies
and Systems (2003)

6. BMC Remedy IT Service Management Suite,
http://www.bmc.com/products/offering/

bmc-remedy-it-service-management-suite.html.

http://www.bmc.com/products/offering/bmc-remedy-it-service-management-suite.html
http://www.bmc.com/products/offering/bmc-remedy-it-service-management-suite.html

A Service-Based Architecture for

Multi-domain Search on the Web

Alessandro Bozzon, Marco Brambilla,
Francesco Corcoglioniti, and Salvatore Vadacca

Dipartimento di Elettronica e Informazione - Politecnico di Milano
via Ponzio, 34/5 - 20133 Milano, Italy

{bozzon,mbrambil,corcoglioniti,vadacca}@elet.polimi.it

Abstract. Current search engines lack in support for multi-domain que-
ries, i.e., queries that can be answered by combining information from
two or more knowledge domains. Questions such as “Find a theater close
to Times Square, NYC, showing a recent thriller movie, close to a pizza
restaurant” have no answer unless the user individually queries different
vertical search engines for each domain and then manually combines re-
sults. Therefore, the need arises for a special class of search applications
that combine different search services. In this paper we propose an archi-
tecture aiming at answering multi-domain queries through composition
of search services and we provide facilities for the execution of multi-
domain queries and the visualization of their results, at the purpose of
simplifying the access to the information. We describe our service-based
architecture and the implemented optimization and distribution options,
and we evaluate the feasibility and performance of our approach.

1 Introduction

Throughout the last decade, search has become the most adopted way to access
information over the Internet. User queries are becoming more and more engag-
ing for search engines: the single query itself becomes more complex (both in
terms of amount and extension of queried information), the user interaction as-
sumes the form of a process instead of a single query and search sessions tend to
become longer and focus not only on documents but also on structured objects.
The information to be retrieved is often hidden in the so called “deep Web”.
While vertical domain-specific search engines provide access to this information,
a whole class of queries spanning multiple domains, possibly covered by distinct
vertical engines, is unsupported and requires the manual intervention of the user.

We define search computing applications [6] the new class of applications
aimed at responding to multi-domain queries, i.e., queries over multiple semantic
fields of interest, by helping users (or by substituting to them) in decomposing
queries and manually assembling complete results from partial answers, provided
by domain-specific search services.

The motivation for a novel approach to search service composition is due
to: the peculiar characteristics of search services (i.e., ranking and chunking of

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 663–669, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

664 A. Bozzon et al.

results), the data-intensive essence of the orchestration, the ad-hoc optimization
strategies of query plans, the algorithms for the computation of composite results
(based on different join strategies), and the novel user interaction paradigms that
let users access queries and interact with results. These aspects also challenge
the performance and scalability issues of traditional SOA solutions.

2 Architecture

In this section we present an overview of the reference architecture (see Figure 1)
of a search computing system, and we provide some details of the main modules.
Components are partitioned in three deployment environments (client, server
and services) organized as on-line (see Section 3.1) and off-line (see Section 3.2)
components.

The search infrastructure is built on top of search services, which may consist
of wrapped websites, relational databases, Web services, ReST APIs, SPARQL
endpoints, or any other data resources.

Data produced by search services are extracted and combined according to a
query execution plan. The query processor accepts users’ queries as input, defines
the execution plan and orchestrates the invocation of services. The orchestration
is performed according to user and service statistics collected and analyzed by
means of an off-line profiler. When needed, service materialization increases the
overall performance of the system, thanks to local replication.

Finally, a set of tools allows administrators to manage the system and to
configure search applications. Caching techniques and the use of multiple query
processor instances, together with a load balancer, increase availability and per-
formance of the overall system.

Client

Load Balancer

Query
Processor

Services

Profiler /
Analyzer

Service Wrappers Materializer

Cache

Tools

C
lie

nt
S

er
ve

r
S

er
vi

ce
s

On-line Off-line

Fig. 1. Overview of the Search Computing architecture

A Service-Based Architecture for Multi-domain Search on the Web 665

2.1 Client Tier

The client tier comprises the Search Computing user interface. It is based on the
Liquid Query [2] approach, a “search as a process” information seeking paradigm
based on two distinct interaction steps: the initial query submission and the
result browsing and query refinement.

At initial query submission time, the user specifies the actual parameters of
his search, either by filling up a search form or by expressing her needs via
natural language queries. The result set computed by the server is shown by the
client according to the user’s data visualization choices.

Result browsing and query refinement options are offered as a set of interaction
primitives that support manipulation, exploration and expansion of the search
results, thus allowing for continuous evolution of the query and of the result set
itself. The user can also apply data-driven operations to results such as: attribute
projection, filtering, sorting, grouping, clustering, and so on. Finally, users can
switch between alternative data visualization options such as maps and graphs.

The client is designed as a Rich Internet Application (RIA) architecture run-
ning in a Web browser, providing local data storage and manipulation, off-line
functioning, and asynchronous, bidirectional client-server communications. Ap-
plication designers can configure the default data visualization and interaction
paradigm, leaving to end users the possibility to dynamically select and download
additional visualization components providing alternative views of result sets.

2.2 Server Tier

The Server side mainly comprises the Query Processor, plus a set of caching and
balancing facilities. The Query Processor is the component devoted to the man-
agement and orchestration of users’ queries. The component is accessed by exter-
nal users and tools through a ReST API and comprises the following modules.

Query Analyzer and Optimizer. It translates user-specified queries into an
internal format, which is then optimized by the Query Optimizer [4] according to
expected invocation costs and intermediate and final result sizes, as calculated
by the offline Profiler/Analyzer. Eventually, the optimization process produces
a query plan; query optimization can take place on-line (providing optimized
plans in response to user queries) and off-line (refining recurring plans for reuse
by other users).

Execution Engine. It executes Panta Rhei query plans [3]. The role of the en-
gine is to produce an execution environment where results from service calls flow
within the engine to generate new result combinations at the maximum speed,
at the same time also supporting adaptation to changes in the search process
and to other runtime factors. The system provides users with both synchronous
(pull) and asynchronous (push of results to the user) search mechanisms and
fine-grained control to allow for interaction with the search process, in order to
dynamically orchestrate it (e.g., to react to the results being produced).

666 A. Bozzon et al.

Query Registry. The aim of the Query Registry is to store optimized query
execution plans for future reuse.

Mart Registry. We define the abstraction of a search service by means of the
notion of Service Mart [5]. The purpose of the Mart Registry is to store Service
Marts, with expected attributes and their data types; Connection Patterns, in-
troducing pair-wise couplings of service marts that define possible join paths; and
pointers to the concrete Service Interfaces that implement the marts, together
with the profiling information collected by the analyzer component.

Service Invoker. When invocations to search services are requested, the invoker
looks up the Mart registry and, based on the information at hand, performs the
physical invocation of services, possibly through service wrappers.

2.3 Services Tier

While Services consist of the actual search service implementations made avail-
able by third party providers, Service Wrappers are components that expose a
homogeneous interface to search services, providing retrieved data in a common
format processable by the higher layers of the architecture.

In the picture, the component is half-way between the server and the service
side to represent two different usage scenarios: the wrappers can be deployed
either at the service provider premises or at server side within the Search Com-
puting environment.

3 Distribution Issues

The proposed architecture could be easily compared to a distributed Web re-
trieval system [1]. We classify the operations executed within the system in
the two typical classes of on-line processing of queries and off-line indexing and
analysis of user and service data and metadata. Both on-line and off-line aspects
require hardware and software able to cope with high data volumes and to han-
dle high query throughput. Indeed, the number of existing sites and services and
the rapidly growing amount of user generated content pose several challenges to
the system in terms of result quality and scalability.

3.1 On-Line Query Processing

The system allows users to submit multi-domain queries by means of the Liquid
Query UI or by exploiting the available ReST API.

The architecture takes advantage of caching mechanisms. Cache servers hold
results of frequent and popular queries, thus reducing the load of the query pro-
cessor and the latency of the query. Partial results obtained after service calls
are also stored in cache. This allows shortening the query latency whenever the
execution plan partially overlaps with a previously executed one. Since service
invocations are the bottleneck of the architecture, a careful planning and orga-
nization of the cache boosts the performance of the overall system, reduces the

A Service-Based Architecture for Multi-domain Search on the Web 667

bandwidth requirements and also increases the availability and fault tolerance
of the infrastructure. A load balancer assigns queries to processors according to
the availability of the nodes and their internal load. In the future we also plan to
take into account geographical position of clients, nodes, and services, so as to
route queries to the appropriate query processor according to the geographical
proximity of the client to the processor node and the distance of the processor
node from the service provider. The architecture exploits a set of registries to
store execution plan descriptions and metadata of the services. The system cur-
rently supports several distributed stores; their adoption allows several instances
of the query processor to share the data, taking advantage of the partitioning
and replication features of the underlying back-end.

3.2 Off-Line Data Indexing and Analysis

User and service profiling is a time-consuming and computation-intensive task,
which must be performed off-line and requires ad-hoc hardware and software.
Profiling improves the user experience and the efficiency, as we describe below.
User profiling. The user is part and parcel of the search process. He submits
queries, expands results, chooses the combinations which best fit to her needs and
expresses her preferences. Tracking users’ behaviors allows providing high-quality
answers: the query execution plan comprises user’s favorite services, ranking of
result combinations is defined on a per-user basis [8] and result diversification
[7] is promoted to address the interests of the user.
Service profiling. Services are subject to a variable load in the space of a day,
according to the provenance of users accessing it. If services are correctly profiled,
the system can apply more precise load balancing, by querying services with
lower load. Moreover, data coming from different services may not be updated
with the same frequency. If the update frequency is profiled, ad-hoc time-to-
live values can be fixed for the cached data in order to avoid stale data and
maximizing the use of the cache at the same time.
Data prefetch. The system implements some proactive behavior by anticipat-
ing possible user needs. Recurring usage patterns can be identified and some
tasks can be anticipated. The system can decide either to show prefetched data
anticipating the user input or to react to the user input with prefetched data.
Service materialization. Service materialization is a bulk operation that is
useful whenever there is the need for invoking a service with heavy load. The
a-priori download of its data is the best way to provide the answer in a reason-
able amount of time. When materialization is performed, the Search Computing
infrastructure exposes its own surrogate of the service, guaranteeing better per-
formance due to the locality and replication of data.

4 Experimental Evaluation

In this section we evaluate functionalities and performance of our system. We
consider the scenario in which the user is looking for a cinema displaying a thriller
movie near Times Square in New York City and a pizza restaurant nearby.

668 A. Bozzon et al.

A prototype, together with a few other examples in different scenarios, is
available at the following URL: http://demo.search-computing.com/. In the
prototype, movie information is retrieved through the IMDb archive API, show-
times and theaters through Google Movie Search, and restaurants through the
Yahoo Local source. The user interface allows customers to submit their search
criteria and to get a set of results, that can be further explored by asking for
more combinations, expanding to other concepts, and so on.

Service invocation is the most time-consuming task, requiring respectively 0.2,
0.4 and 0.7 seconds for the Theater, Restaurant and Movie services. The first
query result is computed after 4.368 seconds. The system suggests as a first result
combination the movie “Iron Man 2” at the “Regal E-Walk 13” theater (which is
0.4 miles far from Times Square) and then a pizza at “Times Square Deli” (300
feet far from the cinema). Globally, the system retrieves 308 results in 18.752
seconds, with 15 invocations of Movie, 7 of Theater and 111 of Restaurant.

Figure 2(a) shows the average number of service invocations required to obtain
the top-k query results, with k ranging from 1 to 100, averaging out over multiple
random query inputs. The number of invocations of the Restaurant service is
almost linear in k, since each one produces an average of 10 query results (its
chunk size). Fewer invocations of the Movie and Theater services are required
since the number of combinations generated after the parallel join of the two
is enough to invoke the Restaurant service to produce the desired amount of
results. In some cases, an increase of k may also correspond to a lower number of
invocations of some services, due to the impact of other services and compositions
on the combination number. In the example, this happens for the Movie and
Theater services, due to variations in the number of combinations extracted
after the parallel join.

Figure 2(b) shows the impact of caching on the average query execution time,
for cache hit probabilities ranging from 0 to 1. Experimental results were ob-
tained by testing our prototype with 20 concurrent clients, running the query of

0

10

20

30

40

0 10 20 30 40 50 60 70 80 90 100

movie restauranttheater

Combinations

S
er

vi
ce

 in
vo

ca
ti

o
n

s

(a)

0

10

20

30

40

0 0.25 0.5 0.75 1

Cache hit probability

E
xe

cu
ti

o
n

 t
im

e
(s

ec
)

0.25 s 0.5 s 1 s 2 s 4 s

(b)

Fig. 2. (a) Required service invocations vs. desired number k of results; (b) Response
time vs. probability of cache hit for different average service response times

A Service-Based Architecture for Multi-domain Search on the Web 669

our scenario to extract the top 10 results from synthetic services whose response
time can be configured and ranges from 0.25 sec to 4 sec. Average query exe-
cution times dramatically decrease with the growth of cache hit probabilities.
Ideally, a cache hit probability of 1 lends to the same execution time regardless
of service performance, which depends only on the overhead introduced by our
system and, therefore, represents a measure of its efficiency.

5 Conclusion

In this paper we presented a distributed architecture for multi-domain web search
applications, according to the Search Computing vision [6]. From a functional
standpoint, our approach allows for exploratory search of composite concepts in a
service-based environment with no navigational constraints. Our implementation
and experimental results demonstrate the feasibility of the approach and show
how standard optimization techniques such as distribution, load balancing and
caching can be proficiently applied to the multi-domain search problem and are
actually needed in a realistic setting to grant performances acceptable for the
end user.

Acknowledgments. This research is part of the Search Computing (SeCo)
project [www.search-computing.org], funded by the European Research Council.
We wish to thank all the members of the SeCo team for their contributions.

References

1. Baeza-Yates, R.A., Castillo, C., Junqueira, F., Plachouras, V., Silvestri, F.: Chal-
lenges on Distributed Web Retrieval. In: 23rd International Conference on Data
Engineering, ICDE 2007, Istanbul, April 15-20, pp. 6–20 (2007)

2. Bozzon, A., Brambilla, M., Ceri, S., Fraternali, P.: Liquid Query: Multi-domain Ex-
ploratory Search on the Web. In: WWW 2010: Proceedings of the 19th international
conference on World wide web, pp. 161–170. ACM, New York (2010)

3. Braga, D., Ceri, S., Corcoglioniti, F., Grossniklaus, M.: Panta Rhei: Flexible Execu-
tion Engine for Search Computing Queries. In: Ceri, S., Brambilla, M. (eds.) Search
Computing Challenges and Directions. LNCS, vol. 5950, pp. 225–243. Springer,
Heidelberg (2010)

4. Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Optimization of Multi-domain Que-
ries on the Web. PVLDB 1(1), 562–573 (2008)

5. Campi, A., Ceri, S., Maesani, A., Ronchi, S.: Designing Service Marts for Engi-
neering Search Computing Applications. In: Benatallah, B., Casati, F., Kappel, G.,
Rossi, G. (eds.) ICWE 2010. LNCS, vol. 6189, pp. 50–65. Springer, Heidelberg (2010)

6. Ceri, S., Brambilla, M. (eds.): Search Computing. LNCS, vol. 5950. Springer,
Heidelberg (2010)

7. Gollapudi, S., Sharma, A.: An Axiomatic Approach for Result Diversification. In:
Proceedings of the 18th International Conference on World Wide Web, WWW 2009,
Madrid, Spain, April 20-24, pp. 381–390 (2009)

8. You, G., Hwang, S.: Personalized Ranking: a Contextual Ranking Approach. In:
Proceedings of the 2007 ACM Symposium on Applied Computing (SAC), Seoul,
Korea, March 11-15, pp. 506–510 (2007)

Natural Language Service Composition with

Request Disambiguation

Florin-Claudiu Pop1, Marcel Cremene1, Mircea Vaida1, and Michel Riveill2

1 Technical University of Cluj-Napoca, Romania
{florin.pop,cremene,mircea.vaida}@com.utcluj.ro

2 University of Nice, Sophia-Antipolis, France
riveill@unice.fr

Abstract. The aim of our research is to create a service composition
system that is able to detect and deal with the imperfections of a natural
language user request while keeping it as unrestricted as possible. Our
solution consists in three steps: first, service prototypes are generated
based on grammatical relations; second, semantic matching is used to
discover actual services; third, the composed service is generated in the
form of an executable plan. Experimental results have shown that inac-
curately requested services can be matched in more than 95% of user
queries. When missing service inputs are detected, the user is asked to
provide more details.

1 Introduction

The major issue for a natural language composition system is to understand the
user request, knowing that natural language implies a diversity of expressions,
may be inaccurate and incomplete. Some user queries may contain indications
about how to achieve a goal (i.e. book flight from Paris to London) but other
expressions (i.e. get me to London) will just indicate a goal without giving an
indication about how to achieve it. The user request needs to be interpreted in
a specific context; some of the user needs are implicit, etc.

To overcome these problems, current natural language service composition
approaches impose restrictions like: a narrow dictionary (a subset of natural
language), the use of keywords as boundaries for different sentence blocks, a
specific grammatical structure (e.g a verb and a noun).

Service composition based on restricted natural language is not convenient for
the end user. In order to keep the format of the request unrestricted, we need
a more reliable way to deal with the ambiguous nature of the language. When
using the term ambiguity in the context of this paper, we refer to inaccurate
(inexact) or incomplete user requests.

This paper proposes a service composition system that is able to detect and
deal with the imperfections of a natural language user request while keeping
it unrestricted, in the context of current Web services technologies. The next
section presents the proposed solution, while section 3 shows the evaluation of
our implementation. In Section 4, we discuss related approaches. Finally, the
conclusions and perspectives are summarized in Section 5.

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 670–677, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Natural Language Service Composition with Request Disambiguation 671

2 Proposed Solution

Our service composition system, called NLSCd - Natural Language Service Com-
poser with request disambiguation is the second release of NLSC [1]. Its archi-
tecture is depicted in Fig. 1.

Fig. 1. NLSCd architecture

The input subsystem receives a natural language query from the user. A
natural language parser extracts grammatical relations (GR) between the parts
of speech in the request. Based on GRs, the Service Prototype Builder trans-
forms the user input into a machine readable, formal request - a list of service
prototypes.

A semantic tier is used as a bridge between natural language and the services
ontology. In order to identify actual Web services based on their natural language
prototypes, we use the Semantic Matcher. Services in the Service Repository are
annotated using OWL-S [3].

Composition subsystem. The list of actual services identified by the matcher
represents the input for the Plan Builder. First, the Plan Builder finds other
services, on which required services depend on. Second, it matches the input
values of the prototypes with the inputs of actual services. Values for the inputs
that can’t be satisfied is requested from the user. Finally, an initial state and a
goal is defined, which the AI Planner uses to generate the composed service.

2.1 From a Natural Language Request to a Service Prototype

NLSCd ’s input subsystem accepts imperative natural language requests. Accord-
ing to Portner [4], an imperative construct can be modeled as function which

672 F.-C. Pop et al.

assigns a set of imperative denotations (a To-Do List with properties P) to the
addressee (A): Requiring TDL(A) U {P}.

In service composition, the addressee is implicit (the computer), and each
property P describes a service (process) to be invoked. Current natural lan-
guage interfaces rely on parts of speech (mainly verbs and nouns) to extract
such properties. But in cases of more complex user requests, parts of speech
by themselves are not sufficient to correctly identify services. For example, in
a request with two or more verbs and several nouns, it would be impossible to
find which noun is related to each verb without taking into account the syntax
of the sentence.

In a sentence, the action is expressed by a predicate, which must contain a
verb. Other parts of speech (direct/indirect/prepositional objects, complements,
adverbials, etc.) may complete the predicate of the sentence. To identify the
parts of speech and the grammatical relations between them, we use a natural
language parser called RASP - Robust Accurate Statistical Parser [2].

First, the parser finds the predicate of the sentence, which becomes the root
node in a grammatical relations (GR) tree. Then, parts of speech (PoS) that are
related to the predicate are added as leaves to this tree. The process continues
for parts of PoS related to the ones added in the previous step, and so on.

For example, the predicate of the sentence Print directions from Paris to Lon-
don contains the verb print and its direct object (dobj) is the noun directions.
Prepositions to and from complete the predicate print, while themselves are
completed by the nouns Paris and London, therefore these nouns are indirectly
related to the predicate.

The GR tree is used by the Service Prototype Builder component to generate
service prototypes. A service prototype corresponds to a property P in the request
function and consists in a process name and its input values.

To create prototypes, the Service Prototype Builder component finds dobj
(direct object) relations that include the predicate of the sentence. Then, the
predicate and its direct object represent the process name. Other PoS that are
related to either the predicate or its direct object (except other predicates) rep-
resent inputs for the process. For the previous example, the process is print
directions and its inputs are Paris and London.

2.2 Semantic Matching

Information about services is published at a service registry. In Service Oriented
Computing, the act of locating a machine-processable description of a resource
that can be reached through a service that may have been previously unknown
and that meets certain functional criteria is called service discovery. In essence,
the discovery activity is comprised of matching the requirements of a service
requester with the properties of a service provider.

Services are annotated using OWL-S [3], which is a standard ontology for
describing the semantics of Web services. In order to find concrete services based
on the user request, the concepts in the OWL-S service profiles are matched
against their natural language service prototypes. Semantic matching evaluates

Natural Language Service Composition with Request Disambiguation 673

the semantic similarity between a prototype and a concrete service. The metric
we use, called the conceptual distance, was presented in paper [1].

The conceptual distance is a measure of the relatedness between two concepts.
It is based on the WordNet [6] lexical database for the English language. The dis-
tance is zero for two synonyms and increases for remotely related terms. The use
of related terms compensates for the inexact (inaccurate) user requests. Based
on the conceptual distance, the distance between a prototype and a concrete
service is evaluated as follows:

1
2
min{D(Ppn, Sn), D(Ppn, Pn))}+

1
4
D(Ppi, P i)+

1
4
(1− min(Npp, Np)

max(Npp, Np)
) (1)

where Ppn is the prototype process name, Sn is the OWL-S service name, Pn
is the OWL-S process name, Ppi are the prototype input names, Pi are the
OWL-S input names, Npp is the number of prototype inputs, Np is the number
of the actual service inputs.

For example, let’s consider that the service prototype is reserve flight (John
Doe), where reserve flight is the prototype process name and John Doe and is
the prototype process input. Also, the service repository contains 3 services:

1. Book Flight Service: Book Flight Atomic Process (Customer, Account Data,
Flight), where the OWL-S service name is Book Flight Service, the OWL-S pro-
cess name is Book Flight Atomic Process and the process input names are: Cus-
tomer, Account Data, Flight

2. Book Flight Service 2: Book Flight Atomic Process (Flight, Account Data)
3. Book Medical Flight Service: Book Medical Flight Atomic Process (Atten-

dant, Patient, Flight)
The distances for the prototype and named services are: D1 = 0.516, D2 =

0.75 and D3 = 0.75. The first service is the match for the given prototype. Even
though the request is inexact, the matcher identifies the correct service as the
verb to book is a related term to the verb to reserve. Also, John Doe is a Person,
which is a related term to Customer and Attendant, therefore they match better
than with other inputs.

2.3 Service Composition and Dealing with Request Incompleteness

Having identified the services requested by the user, a composed service can
be created. Since generating workflows would be practically impossible without
control constructs, we chose to use AI planning to keep the format of the user
request unrestricted. But, in order for a planner to function, it requires complete
knowledge of the world - a description of the initial state and goal, the set of
services.

To specify the initial state and the user goal, first we determine the list of all
services required for the composition. Semantic matching only retrieves services
that are indicated by the user. But these services may require data provided
by other services. For example, the flight booking service may require a valid
account, therefore the create account service (which was not mentioned in the
user request) needs to be invoked first.

674 F.-C. Pop et al.

To solve this, we use XPlan’s [7] OWL reasoner. In AI planning, the reasoner
is used to store the world state, answer the planner’s queries regarding the eval-
uation of preconditions, and update the state when the planner simulates the
effects of services. [8] When the complete list of required services is available,
their inputs are matched against the inputs from the service prototypes. An in-
put can have one of two sources: a value from the user, or the result of invoking
another service. The value from the user can be part of the user request or ac-
quired based on the user context / profile. For simplification, we assume that
the user request is the only source of values for user provided inputs.

First, the inputs that result from invoking other services are resolved. What
remains after this step is the list of inputs that need to be satisfied by the user.
These are compared to the types and values of the service prototype inputs. If
all the inputs are satisfied, the initial state and the user goal are created and
provided to the planner for composition. Unsatisfied inputs, if any, are caused
by incomplete requests. In a case when such a request is detected, the user
is prompted for the value of unsatisfied inputs. This way, he is engaged in a
dialog with the system, which keeps the service composition process intuitive
and unrestricted.

3 Evaluation and Results

We approached two aspects of ambiguity - incompleteness and inexactness -
for which we used two separate methods. Therefore, a separate evaluation is
required for each of these methods. Instead of creating a new ontology from
scratch, we extended the Health-SCALLOPS (H-S) ontology, that was proposed
for evaluating XPlan. We chose this ontology, because it already provides support
for various transportation services.

For the evaluation of semantic matching, we used 23 most common user
queries, some that request a transportation service, others completely out of
the context of the H-S ontology. Prototypes based on five of these queries and
their similarity with services in the repository are summarized in Table 1.

The smallest semantic distance corresponds to a match. Matches for 95% of
tested prototypes were correctly identified. One particular case is that of the
prototype create account (John), when the semantic matcher finds two candi-
date services. Situations like this are solved by picking the service that has the
minimum D(Ppn, Sn) from equation (1).

For the evaluation of service composition we used the same set of user queries.
Following, we present a scenario for the where the user request is Book medical
flight from Paris to London. Based on this request, the service prototype is book
medical flight (Paris, London). The matching service in this case is Book Medical
Flight Service.

The OWL reasoner selects 3 extra services for composition: Find Nearest Air-
port Service, Propose Medical Flight Service and Create Medical Flight Account
Service. Following inputs need to be satisfied: 1. Provided Flight (isBookedFor
: Person, hasDepartureLocation : Location, hasDestinationLocation : Location)
and 2. Person (hasAddress : Address).

Natural Language Service Composition with Request Disambiguation 675

Table 1. Similarity matching results

The isBookedFor field of the Provided Flight input is satisfied by the Person
input. The remaining fields are compared to the service prototype input val-
ues: hasDepartureLocation, hasDestinationLocation, hasAddress. But the service
prototype has only two inputs: Paris, London. Since input matching also uses
the conceptual distance, and location and address are synonyms and Paris and
London can be the value of both an address and a location, the system assigns
Paris to the hasDepartureLocation field and London to the hasDestinationLoca-
tion of the Provided Flight input, then it asks the user to provide the value of
the hasAddress field for the Person input. The composition plan the AI planner
generates is shown in figure 2.

Fig. 2. The composition plan

4 Related Work

Several natural language service composition systems have been proposed in
literature. The most relevant solutions related to our work are discussed below.

676 F.-C. Pop et al.

A solution based on restricted natural language and sentence templates. The
system described in [5] assumes that the user request is expressed using a con-
trolled vocabulary and is according to patterns like: if . . . then . . . else, when
. . . do and others. Based on verbs and patterns, the user request is transformed
into a flow model. The major limitation of this solution derives from the restric-
tions imposed on how the user request is formulated. Another limitation is that,
according to this approach, it is not clear how to create a new service if the user
request specifies only a goal, without indications about how to achieve it.

Constructing workflows from natural language requests. Lim & Lee [9] propose
a method for extracting a workflow from a natural language request. First, the
user sentence is split into blocks based on control constructs (if, then, else,
etc.) and verbs. Workflow templates are extracted by applying basic workflow
patterns to control constructs. Second, for each sentence block, the service type
and a list of candidate services are determined. Third, a service is selected from
the candidate service list by calculating a similarity with the sentence block.
Finally, an abstract workflow is generated by combining the workflow templates
and the selected services. Control constructs and the lack of a semantic similarity
measure (services need to be specified using words exactly as in their ontology)
are the main disadvantages of this solution.

A solution based on AI Planning. The solution called SPICE ACE (Auto-
matic Composition Engine) [10] is proposed as a development and a deployment
platform for value-added services. The user request is transformed into a formal
service request, specific to the ACE platform, a process which is not detailed
in the paper. A causal link matrix models all possible interactions between all
the known Web services as semantic connections. A semantic connection or a
causal link consists of a triple: the output, the input and the semantic meaning of
the link. An ontology is used to infer concept matching. The backward chaining
technique is used for service composition: a plan of Web services is generated
for finding an optimal plan among various compositions. The main drawbacks of
this approach derive from the proposal’s initial assumptions: a) the set of Web
services is closed; situations like non-determinism, implicit goal, fuzzy service
description are not considered.

5 Conclusion and Perspectives

In this paper, we propose an efficient method to compose a service, based on
natural language requests. We focus on dealing with inexact and incomplete
requests, while keeping them unrestricted. Inexactly named services are discov-
ered using a semantic matcher that is able to measure the similarity between
a natural language term and a concept from an ontology. Taking into account
preconditions and effects, a reasoner discovers services related to those pointed
by the user. When invoking these services, if missing inputs are detected, as in
an incomplete request, the user is prompted to provide the required values.

The original aspect of our work is that by dealing with inexact and incomplete
user requests, we manage to keep the query unrestricted in the context of current

Natural Language Service Composition with Request Disambiguation 677

Web service standards. Also, the user is actively involved into the composition
process, through a dialog with the machine.

A few assumptions have been made: the user request is a form of imperative,
a service prototype only matches a service from the repository and a contextual
source of inputs is out of scope. The first two assumptions are justified, as most
English requests are a form of imperative, and additional input sources can be
implemented with ease.

The condition that a service prototype only matches a service from the repos-
itory is the major limitation of our system. Our semantic matching algorithm is
intended to compensate for inexactness, which requires a compromise between a
relaxed similarity metric and a small number of matches. The number of matches
is linked to the number of candidate services. Instead of using a single candidate,
the system could provide the user with a list of potential candidates to select
from. But this is a challenge we intend to approach in the future.

Acknowledgments. This work was supported by CNCSIS-UEFISCSU, project
code 1062/2007 and 1083/2007 and Brancusi PHC 301 project.

References

1. Cremene, M., Tigli, J.Y., Lavirotte, S., Pop, F.C., Riveill, M., Rey, G.: Service
composition based on natural language requests. In: IEEE International Conference
on Services Computing, pp. 486–489 (2009)

2. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., et
al.: OWL-S: Semantic Markup for Web Services (2004)

3. Portner, P.: The semantics of imperatives within a theory of clause types. In:
Young, R.B. (ed.) Proceedings of SALT XIV, pp. 235–252. CLC Publications,
Ithaca (2004)

4. Briscoe, T., Carroll, J., Watson, R.: The second release of the rasp system. In: Pro-
ceedings of the COLING/ACL on Interactive presentation sessions, Morristown,
NJ, USA. Association for Computational Linguistics, pp. 77–80 (2006)

5. Christiane Fellbaum, E.: WordNet An Electronic Lexical Database. The MIT Press,
Cambridge (1998), http://wordnet.princeton.edu/

6. Klusch, M., Gerber, A.: Evaluation of service composition planning with owls-
xplan. In: WI-IATW 2006: Proceedings of the 2006 IEEE/WIC/ACM international
conference on Web Intelligence and Intelligent Agent Technology, Washington, DC,
USA, pp. 117–120. IEEE Computer Society, Los Alamitos (2006)

7. Sirin, E., Sirin, E., Parsia, B.: Planning for semantic web services. In: Semantic
Web Services Workshop at 3rd International Semantic Web Conference (2004)

8. Bosca, A., Corno, F., Valetto, G., Maglione, R.: On-the-fly construction of web
services compositions from natural language requests. JSW 1(1), 40–50 (2006)

9. Lim, J., Lee, K.H.: Constructing composite web services from natural language
requests. Web Semant 8(1), 1–13 (2010)

10. Lécué, F., da Silva, E.G., Pires, L.F.: A framework for dynamic web services com-
position. In: WEWST (2007)

http://wordnet.princeton.edu/

Families of SOA Migration

Maryam Razavian� and Patricia Lago

Department of Computer Science, VU University Amsterdam, The Netherlands
{m.razavian,p.lago}@few.vu.nl

Abstract. Migration of legacy systems to SOA constitutes a key chal-
lenge of service-oriented system engineering. Despite the many works
around such migration, there is still little conceptual characterization
on what SOA migration entails. To solve this problem, we conducted a
systematic literature review that extracts main categories of SOA mi-
gration, called SOA migration families, from the approaches proposed in
the research community. Based on the results of the systematic review,
we describe eight distinct families along with their characteristics and
goals.

1 Introduction

One of the key promises of service oriented paradigm is facilitating reuse of
enterprise assets in legacy systems. Migration of legacy systems to service-based
systems enables achieving advantages offered by SOA while still reusing the
embedded capabilities in the legacy systems. Various studies present an approach
for such migration. These studies mainly differ in the way they provide solutions
for two challenging problems of what can be migrated (i.e. the legacy elements)
and how the migration is performed (i.e. the migration process). Such differences
can hinder achieving a general understanding of ‘what SOA migration entails’
and therefore making it difficult to determine how to migrate.

To obtain such understanding, we conducted a systematic literature review
that extracts main migration categories existing in the field. Due to its method-
ological rigor, we chose systematic review as our research method in aggregating
existing SOA migration approaches. Furthermore, the strength of systematic
reviews in minimizing the bias in the review process enhances the extraction
of sound and meaningful migration categories. By devising a coding procedure,
we analyzed the studies and extracted eight distinct categories. Using a holistic
conceptual framework that reflects distinct conceptual elements involved in the
migration process, SOA migration families are typified in a unified manner. As
such, these families act as a frame of reference for SOA migration which brings
order and enhances understanding in how such migration can be carried out.
Accordingly, this frame of reference increases awareness of the ways in which a
legacy system can be migrated to SOA.
� This research has been partially sponsored by the Dutch Jacquard program on Soft-

ware Engineering Research via contract 638.001.206 SAPIENSA: Service-enAbling
PreexIsting ENterprISe Assets; and the European Community’s FP7/2007-2013
under grant agreement 215483 (S-Cube).

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 678–679, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Families of SOA Migration 679

2 SOA Migration Families

By applying the pre-defined protocol of the systematic review, we identified
39 primary studies. Using qualitative analysis techniques, each of the primary
studies was mapped to a framework represented in Fig. 1 called SOA-MF. By
considering similar SOA-MF coverage patterns, out of 39 different mappings
eight distinct families of SOA migration approaches were extracted. Fig. 1.III
illustrates the schematic form of distinguished mappings that are dedicated to
each family. As an example, F4.b is a schematic form of the mapping shown
in Fig 1.II. At first glance, a SOA migration family represents a set of ap-
proaches with graphically similar mappings on SOA-MF. Despite their simplic-
ity, the mappings reflect the following information about the migration process:
to what extent the reverse engineering, transformation and forward engineer-
ing occur, what activities are carried out, what artifacts are used or produced,
and what abstraction levels are covered. By positioning a migration approach
on these families, insight in the following aspects can be achieved: what is mi-
grated, how the migration is carried out, what is the main objective of migra-
tion, and finally, what are the available solutions. More details are outlined at
http://www.few.vu.nl/~mrazavi/SOAMigrationAppendix.pdf.

Code
I. SOA-MF

II. Mapping of F4(b) on
SOA-MF

Code Analysis Service
Implementation

Design Element
Transformation

Basic Design Element

Code
Transformation

... ...

Code Analysis

Architectural
Recovery

Business Model
Recovery

Service
Implementation

Service Design

Service
Analysis

Business Model
Transformation

Composition
 Transformation

Design Element
Transformation

Basic Design Element

Code
Transformation

Composite Design Element

Concept

R
ev

er
se

 E
ng

in
ee

rin
g Forw

ard Engineering

Transformation

F1)

F2)

F3)

F4)

F5)

F6)

F7)

F8)

a) b) c) d)

III. Migration Families

Fig. 1. SOA Migration Families

http://www.few.vu.nl/~mrazavi/SOAMigrationAppendix.pdf

An Ontology Based Approach for Cloud Services

Catalog Management

Yu Deng, Michael R. Head, Andrzej Kochut, Jonathan Munson,
Anca Sailer, and Hidayatullah Shaikh

IBM T.J. Watson Research Center,
P.O. Box 704, Yorktown Heights, NY 10598 USA

{dengy,mrhead,akochut,jpmunson,ancas,hshaikh}@us.ibm.com

Abstract. As more and more service providers choose to deliver services
on common Cloud infrastructures, it becomes important to formally rep-
resent knowledge in a services catalog to enable automatic answering of
user requests and sharing of building blocks across service offerings. In
this paper, we propose an ontology-driven methodology for formal mod-
eling of the service offerings and associated processes.

Keywords: Ontology,Process composition,Catalogmanagement,Cloud
services, Service composibility.

1 Introduction

Cloud computing, as a new computing model delivering on demand services re-
gardless of time and location, hides complexities of large scale systems from its con-
sumers. The services delivered on Cloud are normally presented to customers in a
service catalog. As more and more service providers leverage Cloud environments
to deliver their services, it becomes important to formally represent the knowledge
in these service catalogs. Such knowledge may include the definition of service of-
ferings, relationships between offerings, processes to implement operations on the
offerings as well as related constraints and rules. We propose an ontology based
approach to formally model the service offerings and associated processes.

2 Ontology Model for Services Catalog

Ontology has received a lot of attention in the last few years. For example, the
Web Service Modeling Language (WSML)[1] provides a syntax and semantics
for modeling Web Service. In the process support aspect, Task ontologies [3] and
enterprise ontologies [2] enable process description as part of the problem and
respectively enterprise structure description. Recently, Youseff et al. [5] proposed
a unified ontology for Cloud computing, which is a layered classification of Cloud
services. In the business-process modeling and workflow automation arena, the
authors in [4] developed an workflow ontology. When integrated with a workflow
execution engine, they can map the top level of their ontology to a process-
modeling language as required by a workflow execution engine.

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 680–681, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Ontology Based Approach for Cloud Services Catalog Management 681

Fig. 1. An Simplified Catalog Ontology

We propose modeling the composibility of Cloud service offerings with com-
mon requirements for user actions in the services catalog. The composibility
refers to the ability to compose a service offering from one or more other of-
ferings. By examining common actions (e.g., onboarding, subscription, upgrade)
taken by a user in a catalog across Cloud service offerings, we cover the follow-
ing concepts in our ontology model: (1) Simple offering that is defined through
properties (e.g., service functional requirements) and basic operations; (2) Ba-
sic operation that is a catalog action or internal atomic process; (3) Composite
offering that leverages operations provided by simple or composite offerings; (4)
Composite operation that is defined on top of simple or composite operations
and corresponds to a user action when related to catalog offerings.

Figure 1 shows a simplified catalog ontology, where the links without any
labels represent rdfs:subClassOf property. In the figure, DB2SingleServer and
DB2HACluster are simple offerings and DB2Upgrade is a basic operation be-
tween these two offerings. In addition, J2EEHstTrial is a composite offering
based on DB2SingleServer while J2EEHstPro is a composite offering based on
DB2HACluster. The upgrade operation J2EEHstUpgrade between J2EEHstTrial
and J2EEHstPro can be defined as a composite operation leveragingDB2Upgrade.
Using our ontology model, we have developed algorithms to decompose user cat-
alog actions into sequences of basic operations. Thus, the execution of complex
actions can be automated using the sequenced operations on a Cloud platform.

References

1. WSML Language Reference, http://www.wsmo.org/TR/d16/d16.1/v1.0/
2. Grüninger, M., Atefi, K., Fox, M.S.: Ontologies to support process integration in

enterprise engineering. Comput. Math. Organ. Theory 6(4), 381–394 (2000)
3. Mizoguchi, R., Vanwelkenhuysen, J., Ikeda, M.: Task ontology for reuse of problem

solving knowledge. In: Proceedings of 2nd International Conference on Very Large-
Scale Knowledge Bases (1995)

4. Sebastian, A., Noy, N.F., Tudorache, T., Musen, M.A.: A generic ontology for collab-
orative ontology-development workflows. In: Gangemi, A., Euzenat, J. (eds.) EKAW
2008. LNCS (LNAI), vol. 5268, pp. 318–328. Springer, Heidelberg (2008)

5. Youseff, L., Butrico, M., Silva, D.D.: Towards a unified ontology of cloud computing.
In: Proceedings of GCE 2008, held in conjunction with SC 2008 (2008)

http://www.wsmo.org/TR/d16/d16.1/v1.0/

A Scalable Cloud-Based Queueing Service with
Improved Consistency Levels

Han Chen, Fan Ye, Minkyong Kim, and Hui Lei

IBM T.J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532
{chenhan,fanye,minkyong,hlei}@us.ibm.com

Queuing, an asynchronous messaging paradigm, is used to connect loosely cou-
pled components to form large-scale, highly-distributed, and fault-tolerant ap-
plications. As cloud computing continues to gain traction, a number of vendors
currently operate cloud-based shared queuing services. These services provide
high availability and network partition tolerance with reduced consistency—at-
least once delivery (no-loss) with no effort in message order. This paper presents
the design and implementation of BlueDove Queuing Service (BDQS), a scalable
cloud-based queuing service with improved queuing consistency. BDQS provides
at-least once and best-effort in-order message delivery model, while preserving
high availability and partition tolerance. It also offers clients a flexible trade-off
between message duplication and message order. Performance evaluation shows
that BDQS achieves linear throughput scalability and offers significantly reduced
out-of-order messages compared to no-order queuing services.

BDQS consists of three main components. Cassandra, an open source
distributed key-value store, provides highly available and partition tolerant per-
sistence. The queue operations component implements a queue API using Cas-
sandra API. The queue operations component stores all states in Cassandra;
therefore, multiple instances can be deployed to maximize overall system through-
put. To enable a wide variety of clients to access the service, an HTTP REST
component provides a RESTful interface of the native queue API via HTTP
binding. In a cloud-based deployment, VM images consisting of one instance of
each component described above are deployed on an Infrastructure-as-a-service
cloud, as shown in Figure 1. A dispatching mechanism routes client requests to
a REST interface instance. To provide adequate service level, a separate moni-
toring mechanism controls the dynamic scaling of the cluster.

Messages in BDQS are distributed among all available nodes. To provide
best-effort in-order delivery, an index of message sequence is maintained for
each queue. In order to maximize system throughput and assure availability, no
distributed locks are used among the multiple queue operations instances. The
result is that, when multiple clients invoke ReceiveMessage operation on the
same queue object using different entry points into the system, the same message
may be returned to these clients. BDQS uses a collision avoidance algorithm to
balance the probability of duplication and the message delivery order. Instead of
always retrieving the first message in the index, the system retrieves a random
one among the first K messages. The larger the value of K, the less likely that
concurrent receivers will obtain the same message, but the more out-of-order

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 682–683, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Scalable Cloud-Based Queueing Service with Improved Consistency Levels 683

Virtual Machine
Virtual MachineVirtual Machine

HTTP REST

Infrastructure-as-a-Service

Queue
Operations

Cassandra

Java

Thrift
M

on
ito

rin
g

Dispatching

Clients

Requests

Performance Signals

Scaling Actions

Fig. 1. Deployment architecture of
BDQS on an IaaS cloud

 0

 1

 2

 3

 1 2 3

D
up

lic
at

io
n

ra
te

 (
%

)

Number of receiving threads

k=1
k=2
k=3

SQS

(a) Duplication rate

(b) Out-of-order rate

 0
 20
 40
 60
 80

 100

 1 2 3

O
ut

-o
f-

or
de

r
ra

te
 (

%
)

Number of receiving threads

k=1
k=2
k=3

SQS

Fig. 2. Consistency level hint (K) controls
the tradeoff between order and duplication

the returned message sequence will be. Thus K acts as a consistency level hint,
which the system exposes as a configurable parameter for each queue.

A prototype of BDQS has been implemented and deployed on an IaaS plat-
form. Simulation drivers are used to generate a synthetic workload to benchmark
the system’s performance. Evaluation results show that the system’s throughput
scales linearly versus the cluster size. (Details are not reported here.) To quan-
tify the improvement in consistency, we vary the number of receiver threads
per queue, Trecv, from 1 to 3 to generate different levels of concurrency in
ReceiveMessage operations. Three consistency level hints are used, K = 1, 2, 3.
To compare the consistency level against a no-order system, the same workload is
tested on Amazon SQS. Figure 2(a) shows that with no concurrency (Trecv = 1),
both BDQS and the no-order system produce negligible amount of duplication.
When concurrency increases, duplication rate increases for BDQS. The rate of
increase depends on the consistency level hint—the more order is favored, the
more duplicates are produced. In a no-order system, random sampling is used to
retrieve message. Therefore the duplication rate remains low when concurrency
increases. On the other hand, Figure 2(b) shows that BDQS produces signifi-
cantly fewer out-of-order messages. With consistency level hint K = 1, almost
all messages are delivered in order, whereas the no-order system delivers about
50% of messages out of order. Out-of-order measures increase as K increases, but
they are much smaller than those of the no-order system. This result shows that
BDQS offers client a flexible way to specify the desired tradeoff between the two
aspects of consistency—order and duplication. In fact, the no-effort approach
can be viewed as a special case of BDQS, where K =∞.

Exploring Simulation-Based Configuration

Decisions

Michael Smit and Eleni Stroulia�

Department of Computing Science
University of Alberta

Edmonton, AB, Canada
{msmit,stroulia}@cs.ualberta.ca

Abstract. As service compositions grow larger and more complex, so
does the challenge of configuring the underlying hardware infrastruc-
ture on which the component services are deployed. With more con-
figuration options (virtualized systems, cloud-based systems, etc.), the
challenge grows more difficult. Configuring service-oriented systems in-
volves balancing a competing set of priorities and choosing trade-offs
to achieve high-priority goals. We describe a simulation-based methodol-
ogy for supporting administrators in making these decisions by providing
them with relevant information obtained using inexpensive simulation-
generated data. From our existing services-aware simulation framework,
we generated millions of performance metrics for a given system in vary-
ing configurations. We describe how we structured our simulation exper-
iments to answer specific questions such as optimal service distribution
across multiple servers; we relate a general methodology for assisting ad-
ministrators in balancing trade-offs; and we present results establishing
benchmarks for the cost and performance improvements we can expect
from run-time configuration adaptation for this application.

Deciding on the size, scale, and configuration of computing infrastructure is
complex even for technical experts. Decisions must be made about trade-offs
between many different attributes and configuration parameters. Configuration
assistance supports decision-making about systems; our focus is on the domain of
service-oriented software infrastructure, particularly trade-offs involving quality
versus cost, where “quality” means attributes that fall within the domain of
quality of service (QoS), and “cost” means financial cost.

We offer three novel contributions in the area of configuration assistance, each
on a path toward autonomic assistance based on models built by reasoning with
simulation-generated data. These methodologies are applicable to other applica-
tions and data sets. We describe a proof-of-concept based on data generated by a
simulated service-oriented system (running on our existing simulation framework
[1,2]), run in a variety of configurations and usage scenarios.

The first contribution is question answering, where the simulation is run in
specific scenarios designed to explore the system behavior under alternative con-
ditions. For example, we considered the challenge of distributing the operations
� The authors acknowledge the generous support of iCORE, NSERC, and IBM.

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 684–685, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Exploring Simulation-Based Configuration Decisions 685

of a web service among a number of servers to identify the configuration that
produced the best performance versus cost trade-off. For all possible distribu-
tions on 1, 2, or 3 servers, we simulated a two hour block of realistic traffic. The
single-server configuration took 277 minutes to process all of the requests. The
fastest two-server configurations took 140 minutes (50% less time); twice the
cost, twice the performance. The fastest three-server configurations completed
shortly after the traffic generator stopped generating requests (120 minutes),
57% less time than the single server. This represents 3 times the cost but only
2.3 times the performance: a more expensive improvement. An expert manually
created a three-server configuration using the same information available to the
simulation. His suggestion took 137 minutes: worse than the best three-server
configurations but better than two servers.

Second, we present our method for undirected exploration of potentially
conflicting configuration goals and trade-offs, where we assist in establishing
service-level agreements (SLAs), appropriate thresholds, accurate costing mod-
els, or appropriate configurations to meet a specific SLA or cost model. The
foundation is our visual comparison tool for viewing the trade-off between two
potentially conflicting metrics. For example, to identify an SLA with appropriate
thresholds, a user is shown a series of such comparisons for relevant metrics, and
for each selects the configurations with the balance they desire. Each configura-
tion is given a fitness score based not only on how frequently that configuration
is selected, but also by both how close to the “ideal” trade-offs identified by the
user and how important each trade-off is to the user (estimated automatically).
This identified plausible ideal configurations; a full user study of satisfaction
with the results is pending.

Finally, we explored the effect of run-time configuration adaptation on the
simulated application, determining the benefit of and targets for a future auto-
nomic system. The tool developed for this exploration could also be used to train
administrators to adapt configurations to changing situations, or to help admin-
istrators understand how the system behaves in various configurations. Using our
simulation, we sent an identical set of requests to 5 configurations: fixed 3, 4, 5,
and 6 server configurations, and a configuration where the number of servers was
manually adapted based on the performance of the application. Compared to a
fixed 3-server configuration, a manually varied configuration with 1 to 6 servers
was 3% more expensive but performed 75% better. 5 and 6 server configurations
performed 78% and 88% better, but cost 22% and 38% more (respectively).

References

1. Smit, M., Nisbet, A., Stroulia, E., Edgar, A., Iszlai, G., Litoiu, M.: Capacity plan-
ning for service-oriented architectures. In: CASCON 2008: Proceedings of the 2008
conference of the Center for Advanced Studies on collaborative research, pp. 144–
156. ACM, New York (2008)

2. Smit, M., Nisbet, A., Stroulia, E., Iszlai, G., Edgar, A.: Toward a simulation-
generated knowledge base of service performance. In: Proceedings of the 4th In-
ternational Workshop on Middleware for Service Oriented Computing (November
2009)

Efficient, Failure-Resilient Semantic Web Service

Planning

Florian Wagner1

(Advisors: Fuyuki Ishikawa2 and Shinichi Honiden1,2)

1 The University of Tokyo, Japan
2 National Institute of Informatics, Tokyo, Japan

{florian,f-ishikawa,honiden}@nii.ac.jp

Abstract. Over the past years service-oriented architectures have been
widely adopted by stakeholders from research and industry. Since the
number of services increases rapidly, effective methods are required to
automatically discover and compose services according to user require-
ments. For this purpose, machine-understandable semantic annotations
have to be applied in order to enable logical reasoning on the functional
aspects of services. However, current approaches are not capable of com-
posing workflows in reasonable time, except for planning tools that re-
quire domain-dependent heuristics or constrain the expressiveness of the
description language. In addition to that, these tools neglect alternative
plans, concealing the danger of creating a workflow having insufficient
reliability. Therefore, we propose an approach to efficiently pre-cluster
similar services according to their parameters. This way the search space
is limited and vulnerable intermediate steps in the workflow can be ef-
fectively avoided.

1 Introduction

The service-oriented paradigm envisions the discovery and composition of re-
usable services by using widely accepted standards such as XML and HTTP.
This way loosely coupled components can be dynamically integrated into an
infrastructure of e.g. a company, independent of the given hardware and software.

In order to further enhance the automatic selection and composition of services,
machine-processable descriptions based on service ontologies such as WSMO and
OWL-S and the annotation language SAWSDL have been proposed. Web services
that provide semantic descriptions are called semantic web services.

Semantic annotations are mandatory for AI planning, that can be incorpo-
rated in order to create service workflows automatically. Instead of offering a
restricted set of predefined composite services, the user can request customized
composite services by providing a set of input and output parameters plus pre-
conditions and the intended effects. Service planning is an active research field
that poses one central challenge in service computing research [4].

In this paper we tackle the problems of insufficient performance and lacking
reliability of current service planning algorithms. Many registries contain ser-
vices that have the same intended purpose. Therefore, we will show how the

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 686–689, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Efficient, Failure-Resilient Semantic Web Service Planning 687

performance and reliability issues can be addressed by identifying and clustering
these services beforehand.

2 Problem Statement

In this section we present the two main phases in service planning, the compo-
sition of abstract workflows and the subsequent service grouping for each task.

In the composition phase, a planning tool attempts to compute a composite
service from a set of given services. For this purpose, the user provides a set
of input and output parameters including the guaranteed preconditions and the
intended effects to the planer. Since the search space is exponential, the runtime
performance and memory usage are central issues in current planning tools and
therefore AI algorithms cannot be applied blindfolded. In order to prune the
search space, heuristics can be employed but these are in most cases tailored for
a particular domain and therefore are only of limited reusability.

After computing an appropriate workflow, for each task all applicable services
are selected and grouped in so-called service classes. If in the execution phase
one service crashes, then any other service from the same class can be used to
compensate the erroneous services (failure resilience). Moreover, QoS-(Quality-
of-Service) aware service selection algorithms [7] can be applied to choose a
specific service for each class in order to optimize the utility function of the user.
However, current planning tools do not take the reliability of the service classes
into account but instead attempt to find the shortest possible plan in order to
simplify the planning task. If a service class contains only very few services, then
these class might comprise the whole workflow, in other words pose a so-called
single point of failure.

If a service fault occurs, re-planning can be instantiated [2], invoking addi-
tional services in order to obtain the desired output parameters and effects. This
might include services that try to revert some recent world state changes caused
by previous services, entailing additional costs for the user.

3 Proposed Approach

Our approach towards service planning is divided into two steps. First, func-
tional similar services are pre-clustered and arranged in a hierarchical structure
beforehand. Second, in the composition stage a planning tool is incorporated,
taking only the representatives of each cluster into consideration. This way the
search space is limited efficiently and heuristics that take the reliability into
consideration can be integrated easily.

3.1 Pre-clustering of Services

Registries often contain services that have the same intended purpose, e.g. book-
ing of a hotel room or requesting stock market information. By clustering these
services automatically, we can avoid redundant computations in the planning

688 F. Wagner

phase and moreover evaluate the reliability of every type of service. In order to
identify such clusters we propose to use the partial order relation that is given
by Exact and Plug-in matches and was first introduced as a clustering method
in pervasive service computing [3]. Given a specific service s, all services that
have an Exact or Plug-in match with this service can be used as a replacement.

In the end, services are grouped in a hierarchical structure, turning the registry
into a set of trees. Roots are called representatives since their functionality can
be considered as a “least common denominator” of its corresponding subtree.

3.2 Planning Algorithm Outline

In the planning stage only the computed representatives are taken into account.
In case no feasible plan could be computed, large service classes are split up by
removing the root and adding the subtrees into the registry (cf. Figure 1).

(a) Original service classes (b) After splitting the biggest
class

Fig. 1. A split operation on the service classes

Afterwards, the planning algorithm iteratively attempts to compute a plan
with the modified classes until a plan was found. In the end, the workflow con-
taining the corresponding classes is returned.

3.3 Expected Outcome

We expect to shrink the search space to a size that can be solved by planning
tools in reasonable time. In contrast to related search algorithms, that employ
a domain-specific heuristic, our approach is domain-independent.

Single points of failure can be avoided effectively since each service in the
service class can be used as a replacement service in case of a failure.

Selection algorithms, mentioned in Section 2, benefit from our approach as
well. Since we attempt to extend the number of services per task, these algo-
rithms have more services to choose from. Using our approach, these algorithms
can be reused and therefore bridge the gap between automatic composition and
service selection research.

4 Related Work

AI planning has a long history in computer science and various approaches have
been introduced to the service domain [5].

Efficient, Failure-Resilient Semantic Web Service Planning 689

The approach described in [6] uses the HTN planner SHOP2, requiring a
plan library that contains decomposition rules for dedicated domains, thus this
approach cannot be applied to arbitrary domains.

In [1] the HTN planner Xplan is employed, combining forward and HTN
planning. It uses a graph plan algorithm if no decomposition rules can be applied.
Thereby, it will always find a plan, but the search space is also exponential.

Apart from that, several researchers focus on the problem of crashing services.
For instance, in [2] a re-planning scope is defined and iteratively extended until
all faulty services have been successfully compensated. Our approach attempts
to avoid re-planning, since it entails additional costs for the user.

Our approach is based on [3] that originally introduced the hierarchical struc-
ture implied by Exact and Plug-in matches for the service matchmaking domain.

5 Conclusion and Future Work

In this paper we have presented our approach towards semantic web service plan-
ning. Thereby, we addressed performance and reliability issues by pre-clustering
functional similar services and determining representatives for the planning stage.

As a next step we intend to further develop the current pre-clustering and
planning algorithm. Subsequently, we will examine how to integrate both into
given planning tools and evaluate our approach.

References

1. Klusch, M., Gerber, A.: Semantic web service composition planning with OWLS-
XPlan. In: Proceedings of the 1st Int. AAAI Fall Symposium on Agents and the
Semantic Web, pp. 55–62 (2005)

2. Lin, K.J., Zhang, J., Zhai, Y.: An efficient approach for service process reconfig-
uration in SOA with End-to-End QoS constraints. In: Hofreiter, B., Werthner, H.
(eds.) CEC, pp. 146–153. IEEE Computer Society, Los Alamitos (2009)

3. Mokhtar, S.B., Preuveneers, D., Georgantas, N., Issarny, V., Berbers, Y.: EASY:
Efficient semantic service discovery in pervasive computing environments with QoS
and context support. Journal of Systems and Software 81(5), 785–808 (2008)

4. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented comput-
ing: State of the art and research challenges. IEEE Computer 40(11) (2007)

5. Peer, J.: Web service composition as AI planning - a survey. Tech. rep., University
of St. Gallen, Switzerland (2005)

6. Wu, D., Parsia, B., Sirin, E., Hendler, J.A., Nau, D.S.: Automating DAML-S web
services composition using SHOP2. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.)
ISWC 2003. LNCS, vol. 2870, pp. 195–210. Springer, Heidelberg (2003)

7. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven
web services composition. In: WWW 2003: Proceedings of the 12th International
Conference on World Wide Web, pp. 411–421. ACM, New York (2003)

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 690–694, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Integrated Service Process Adaptation

Zhe Shan
(Advisor: Dr. Akhil Kumar)

Department of Supply Chain and Information Systems,
Smeal College of Business, Penn State University, USA

zheshan@psu.edu

Abstract. With more automation in inter-organizational supply chains and prolif-
eration of Web services technology, the need for organizations to link their busi-
ness services and processes is becoming increasingly important. Using adapters to
reconcile incompatibilities between multiple interacting business processes is an
efficient and low-cost way to enable automatic and friction-free supply chain
collaboration in an IT-enabled environment. My dissertation proposes a new
framework and novel techniques for integrated service process adaptation. For the
control flow adaptation, we propose an algorithm based on Message Interaction
Graph to create an optimal adapter. For message adaptation, we identify a set of
extendible message adaptation patterns to solve typical message mismatches. In
addition new message adapter can be generated on the fly so as to integrate
control flow considerations into message adaptation. Finally we design another
algorithm to integrate individual message adaptation patterns with control flow
adapters to create a full adapter for multiple processes. We implement all these al-
gorithms in a Java-based prototype system and show the advantages of our meth-
ods by performance experiment and case study.

Keywords: business process composition, service process adaptation, message
interaction graph, optimal adapter, message adaptation patterns.

1 Introduction

Organizations rely on effective supply chains to successfully compete in the global
market. Successful supply chain management integrates individual functions within
organization or across difference parties. Supply chain business process integration
involves collaborative work between supply chain partners. The concept of business
collaboration seeks to organize entire business processes throughout a value chain of
multiple parties. In recent years, the concentration of supply chain collaboration has
shifted from the inputs and outputs of the processes to the process semantics of indi-
vidual players. Furthermore, market forces demand changes with supply chain part-
ners. This variability has significant effect on the design and configuration of the
processes. Therefore, how to analyze the correctness and robustness of business col-
laboration has become a key factor of supply chain success.

During the past decades, information technology has enabled many organizations
to successfully operate solid collaborative supply networks. Recently, E-services and
cloud computing technologies prevail to increase creativity, information sharing, and

 Integrated Service Process Adaptation 691

collaboration among supply chain network. The grand vision of those revolutionary
technologies is leading to considerable inner- or cross-organization interactions in a
real-time and ad-hoc way. Therefore, how to achieve automated, "on-the-fly" compo-
sition of two or more processes to create new collaboration, and new technologies for
designing and offering business processes is the key challenge in this new business
environment. The traditional approaches based on process re-design or re-engineering
cannot fulfill those new requirements due to their long lifecycle and high cost. By
comparison, creating adapters to enable conflict-free collaborations is a much more
efficient and cost-saving solution.

The purpose of service process adaptation is to mediate the communication be-
tween multiple processes to overcome the mismatches in the message and control
flow aspects. Our goal in this work is to develop a framework and new techniques for
creating highly flexible, dynamic, general purpose adapters that can be written on-the-
fly to allow interaction between multiple services. This framework (Figure 1) can
integrate two major dimensions of adaptation, i.e. control flow adaptation and mes-
sage adaptation.

Fig. 1. Framework for service process adaptation

2 Control Flow Adaptation Based on Message Interaction Graph

In this work, we assume that each process is well structured, i.e. each split for a pat-
tern has a corresponding join, and also that the patterns are properly nested inside one
another. We focus on the analysis of Sequence and Parallel (SP) structure, because
Choice and Loop structures are eventually composed of branches of these structures.
It has been shown in previous work that for two processes to be compatible their
choice and loop structures must be matched [1]. Moreover, it is assumed that the
messages in interacting processes (and along branches of choice and loop structures)
are well matched, i.e. each send activity in process i has a corresponding receive ac-
tivity in process j, and vice versa. Additionally, we assume for ease of exposition that
each send or receive activity is unique and is not repeated in the process.

The incompatibilities in SP processes are mainly due to crossovers in message
flows. We explain all these incompatibilities in a new tool named Message Interac-
tion Graph (MIG), and generalize the incompatibility analysis for multiple messages
and multiple processes.

692 Z. Shan

A Message Interaction Graph (MIG) consists of nodes and directed edges, where a
node denotes a unique message in a multiple-process interaction, labeled with mes-
sage ID or name. There are one or two arcs between each two nodes. Each arc denotes
a control-flow link between two messages, labeled with activity information (S for
Send and R for Receive.). Figure 2 shows one incompatibility example and its corre-
sponding MIG.

Based on MIG, we have the following results for incompatibility detection and
adapter creation. The proofs of these results are available in [2].

Result 1: In a MIG, if all the links in a cycle are of type RS or RR, then the process
interaction represented by the MIG is deadlocked and it cannot be broken with an
adapter.

Result 2: Multiple interacting processes are compatible without an adapter if and only
if their MIG does not contain any cycle.

Result 3: In a MIG cycle, message m can be adapted to break the cycle if its outgoing
arc is labeled with S* (SR or SS), and its incoming arc is labeled with *R (SR or RR).

Fig. 2. Incompatible case and MIG

From result 2 and 3, we know that to check whether multiple processes are com-
patible in an interaction, we transform them into a MIG and check for cycles in it. If
there is no cycle in the MIG, then these processes are compatible without an adapter.
If there exists at least one cycle in which no Send is adaptable (Type I(0) incompati-
bility), these interacting processes are deadlocked. If all cycles in the MIG contains at
least one adaptable Send (from result 3), then we can always create an adapter to
make these processes compatible in interaction. Two variants of the optimal adapter
creation algorithm are discussed in [2].

3 Message Adaptation

After the discussion on the control flow adaptation, we focus on the message adapta-
tion in this section. Due to independent design efforts or non-standardized industry
practices, generally the message interfaces between multiple services are not well
matched. Message adapters are needed to reconcile this incompatibility. We propose a
set of patterns for message adaptation. a) Message data generation: It generates de-
fault information for it based on specific scenario semantics. b) Message data casting:
It calculates or transforms the data based on available information. c) Message Frag-
mentation and Aggregation: Message fragmentation means that a large message is

 Integrated Service Process Adaptation 693

divided into sub-elements in a 1-to-n relationship, while message aggregation means
the opposite. Some typical patterns are shown in Figure 3.

These patterns can be further concatenated, nested, or extended by users. In gen-
eral, the interaction between two subgroups of activities is quite complex if one sub-
group contains a mix of sequence and parallel structures. Basic adaptation patterns
cannot cover all such situations. A new algorithm is introduced in [3] to create an
message adapter on the fly. Furthermore, an adapter integration algorithm is pre-
sented in [3] to integrate individual message adaptation patterns with control flow
adapters to create a full adapter.

4 Related Work and Conclusion

In the control flow adaptation part, [4] and [5] are closely related work to ours. But
they create non-minimal adapters. There is very limited research involving integration
of both control flow and message aspects in service process adaptation. [6], [7], and
[8] are valuable work in this area. We compare our approach with them in [3].

Fig. 3. Selected message adaptation patterns

In this work, we propose a new framework and novel techniques for service proc-
ess adaptation, which integrates both message and control flow adaptation. It is based
on the recognition that message adaptation can affect control flow and vice versa.
Hence, a tight integration is required between these two aspects. For control flow ad-
aptation, our algorithms are based on using a pattern compatibility matrix and match-
ing rules to reduce the search space. Furthermore, we described algorithms based on
MIG to generate an optimal adapter. For message adaptation, we identify common
message mismatch patterns and also show how adapters can be created on the fly for
matching parts of two services where basic adapter patterns do not exist. Last, we
show how message adapters can themselves be combined to create an aggregate
adapter for the complete service process integration. We implemented all these algo-
rithms in a Java-based prototype system and show the advantages of our methods by
performance experiment and case study in [2, 3].

694 Z. Shan

References

1. Kumar, A., Shan, Z.: Algorithms Based on Pattern Analysis for Verification and Adapter
Creation for Business Process Composition. In: CoopIS 2008, pp. 120–138 (2008)

2. Shan, Z., Kumar, A., Liu, R.: Creating a Minimal Adapter for Multiple Business Process
Composition. Under review (2010)

3. Shan, Z., Kumar, A., Grefen, P.: Towards Integrated Service Adaptation – A New Approach
Combining Message and Control Flow Adaptation. In: ICWS 2010, pp. 385–392 (2010)

4. Brogi, A., Popescu, R.: Automated Generation of BPEL Adapters. In: Dan, A., Lamersdorf,
W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 27–39. Springer, Heidelberg (2006)

5. Seguel, R., Eshuis, R., Grefen, P.: Constructing minimal protocol adaptors for service com-
position. In: WEWST 2009, pp. 29–38 (2009)

6. Motahari Nezhad, H.R., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-
automated adaptation of service interactions. In: WWW 2007, pp. 993–1002 (2007)

7. Kongdenfha, W., Motahari-Nezhad, H.R., Benatallah, B., Casati, F., Saint-Paul, R.: Mis-
match Patterns and Adaptation Aspects: A Foundation for Rapid Development of Web Ser-
vice Adapters. IEEE Transactions on Services Computing 2, 94–107 (2009)

8. Li, X., Fan, Y., Madnick, S., Sheng, Q.Z.: A Pattern-based Approach to Procotol Mediation
for Web Services Composition. Working Paper, 4716-08, MIT Sloan School of Manage-
ment (2008)

Contract Based, Non-invasive, Black-Box Testing of Web
Services

Michael Averstegge
(Advisor: Bernd J. Kraemer)

FernUniversitt Hagen, Germany
Department of Electrical Engineering
Michael.Averstegge@web.de

Abstract. The Web service standard represents a prominent conversion of the
SOA paradigm increasingly used in practice. The (not so knew) technical aspects
in combination with the practices introducded by the WEB, lead new challanges
in testing Web services often stated in literature. Introduced in this paper is a
not invasive functional testing approach for Web services based on the Design
by Contract (DbC) paradigm. By using formal semantic specification in a con-
sequent manner we can present a generic testing approach which enables us to
introduce quality metric measurements not before viable in traditional testing in
a practicable way. We present results of our first basic study at the Schweizer
Bundesbahn (SBB) Informatik in Bern.

Keywords: Web service, design by contract, generic testdriver, generic oracle,
semantic specification, conformity, black-box test, monitoring, contract checker,
test data generation, non-invasive.

1 Introduction

Web services are the main realization of service oriented architecture (SOA) and are
widely considered to be the strategic model for loose coupled, distributed computing
([9], [7], [4], [13]).

Its often stated that unforseen dynamically use of Web services leads to new chal-
langes in the field of testing ([5], [1]). The WSDL specification ([12]) is a syntacti-
cal contract of a Web service and ist therefor on the first level of contracts ([3]). New
conceptual enhancements of the traditional test techniques and methods is
postulated ([8], [6]).

Immens growing dependencies and fast changing interfaces make it impossible to
test bug fixes as well as newly added interfaces in manifold usage environments. Our
answer to the challanges is a new fully generic, non-invasive functional test-technique
method of contract based Web service functions. Test oracle and test driver are gener-
ally derived from the contract and the WSDL specification. By this newly introduced
technique we can use the structural coverage proof of the formal semantic specification
as a quality metric ([2]).

One basic side effect is the economic efficiency: writing testdrivers manually is
obsolete.

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 695–698, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

696 M. Averstegge

2 Contract-Based Testing

We connote a contract to a WSDL and its correspondig Web service. The contract is
given in XML-syntax specified by an XSD definition. The expression of contract con-
ditions are given in OCL. This language is used to be adoptable to model based ap-
proaches.

The technical architecture for the interaction of any client, VWS, monitor agents and
WSUT is depicted in figure 1.

Fig. 1. VWS-Proxy and Monitor

The framework includes following functional kernels:

1. Proxy and monitor-agents generation,
2. Type-system analysis and persisting,
3. Runtime monitoring of the Web service under test (WSUT),
4. Testdriver generation,
5. Oracle generation,
6. Testdata import,
7. Test executing. i.e.:

(a) running generic testdriver,
(b) agent monitors and persists runtime values,
(c) generic oracle,

i. verifies pre-/post-conditions and invariants,
ii. determines coverage metrics qualities of expression and atomic expression

and
iii. determines functional correctness of the particular WSUT function.

The observer pattern allows to plug in in further agents, especially ones that break
the proxy conformity by, e.g., refusing calls with actual parameter values which don’t
achieve the preconditions and can be used to implement Meyer’s Modular Protection
([10], pp. 345). We tested this first and necessary condition in a study at real business
WSUT applications (ticketing system) at the Schweizer Bundesbahn (SBB).

Contract Based, Non-invasive, Black-Box Testing of Web Services 697

2.1 An Example: Bookflight

We give a simple example to demonstrate the functionality and the benefit of using
business rules in form of contracts right from the start.

Let’s take the often used example of booking a flight.

precondition flight nof > children nof and
children nof >= 0 and
location from <> location to

postcondition result.akzeptedOrder.flight nof > 0

Fig. 2. Simple contract (3)

From the VWS-System GUI we start the test run by clicking a button to start to
formentioned mechanism.

The result is depicted in figure 3. We focus on branche coverage (Branch), simple
condition coverage (SCC), modified decision condition coverage (MCDC) and multiple
condition coverage (MCC).

Fig. 3. Oracle Report (3)

In a study we implemented a testdata generator which uses the contract, transforms it
to an equation with n unknowns (n = number of distinct atomar conditions) and calling
the solver GlassTT ([11]). This works for about 80% of conditions used in the WSDL
interfaces. This technique is also very effective in evaluating boundary values.

In further studies we will collect data in professional projects to measure and prove
the aformentioned benefits in terms of numerary.

698 M. Averstegge

3 Summary

We presented the non-invasive validating system VWS framework, with which Web
services can be supervised and tested based on contract in a contract-based way.

The non-invasive approach is realized by inserting an intermediate, transparent layer
between caller and supplier that serves for validating the WSUT.

We introduce with the VWS testing framework a new technical and methodic way
of testing Web services, based on behavioral contractual level. Conceptually this is not
limited to a specific component technology, but for Web service testing it generates the
most dramatic earnings. This method enables us to adopt structural quality metrics in
thorough generic functional testing. The aforementioned metrics could not be measured
practicable without formal semantic specification before.

References

1. Andrikopoulos, V., Benbernou, S., Papazoglou, M.P.: Evolving services from a contractual
perspective. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565,
pp. 290–304. Springer, Heidelberg (2009)

2. Averstegge, M.: Generisches testen von webservices. OBJEKTspektrum 4(4) (2010)
3. Beugnard, A., Jézéquel, J.-M., Plouzeau, N., Watkins, D.: Making components contract

aware. Computer 32(7), 38–45 (1999)
4. Dustdar, S., Haslinger, S.: Testing of service-oriented architectures - a practical approach.

In: Weske, M., Liggesmeyer, P. (eds.) NODe 2004. LNCS, vol. 3263, pp. 97–109. Springer,
Heidelberg (2004)

5. Farooq, A., Dumke Reiner, R., Georgieva, K.: Challenges in evaluating soa test processes. In:
Dumke, R.R., Braungarten, R., Büren, G., Abran, A., Cuadrado-Gallego, J.J. (eds.) IWSM
2008. LNCS, vol. 5338, pp. 107–113. Springer, Heidelberg (2008)

6. Heckel, R., Lohmann, M.: Towards contract-based testing of web services (2004)
7. Huang, H., Tsai, W.-T., Paul, R., Chen, Y.: Automated model checking and testing for com-

posite web services. In: ISORC , pp. 300–307 (2005)
8. Martin, E., Basu, T.X.S.: Automated testing and response analysis of web services. In: Proc.

the IEEE International Conference on Web Services (ICWS 2007), Application Services and
Industry Track, July 2007, pp. 647–654 (2007)

9. Martı́nez, A., Martı́nez, M.P., Jiménez-Peris, R., Pérez-Sorrosal, F.: Zenflow: A visualweb
service composition tool for bpel4ws. In: Proceedings of the 2005 IEEE Symposium on
Visual Languages and Human-Centric Computing, VL/HCC 2005 (2005)

10. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Englewood Cliffs
(1997)

11. Kuchen, H., Müller, R., Lembeck, C.: GlassTT – a Symbolic Java Virtual Machine Using
Constraint Solving Techniques for Glass-Box Test Case Generation. Technical Report 102,
Universität Münster, Institut für Informatik (2003)

12. W3C. Web Services Description Language (WSDL) 1.1 (2001),
http://www.w3.org/TR/wsdl (last visited (2010.06.03))

13. Yang, J.: Web service componentization. Commun. ACM 46(10), 35–40 (2003)

http://www.w3.org/TR/wsdl

Managing Process Model Collections with AProMoRe

M.C. Fauvet1,�, M. La Rosa2, M. Sadegh2, A. Alshareef2, R.M. Dijkman3,
Luciano Garcı́a-Bañuelos4, H.A. Reijers3, W.M.P. van der Aalst3,

Marlon Dumas4, and Jan Mendling5

1 University of Grenoble, France
2 Queensland University of Technology, Australia

3 Eindhoven University of Technology, The Netherlands
4 University of Tartu, Estonia

5 Humboldt-Universität zu Berlin, Germany

Abstract. As organizations reach higher levels of Business Process Management
maturity, they tend to collect numerous business process models. Such models
may be linked with each other or mutually overlap, supersede one another and
evolve over time. Moreover, they may be represented at different abstraction lev-
els depending on the target audience and modeling purpose, and may be available
in multiple languages (e.g. due to company mergers). Thus, it is common that or-
ganizations struggle with keeping track of their process models. This demonstra-
tion introduces AProMoRe (Advanced Process Model Repository) which aims to
facilitate the management of (large) process model collections.

1 Introduction

AProMoRe is a process model repository which goes beyond the typical amenities of
traditional repositories, such as model import/export and version control. First, it sup-
ports a variety of process modeling languages, including EPCs, BPMN, YAWL, BPEL.
Second, it offers an open and extensible platform to build advanced features that specifi-
cally deal with large process model collections, such as similarity search, process merg-
ing and efficient model querying. These features can be classified according to four
main service areas: i) evaluation, concerned with establishing the adherence of process
models to various quality notions such as syntactic quality and usability issues; ii) com-
parison, offering capabilities to compute the degree of similarity between models and
to merge similar models; iii) management, supporting the creation, modification and
completion of process models, based on the reuse of existing content; and iv) presenta-
tion, providing visual support for improving the understanding of process models, e.g.
via abstraction or coloring techniques. The possibility to operate over process models
irrespective of their language and abstraction level, is made possible via the use of an
internal canonical process format [1]. This format provides a common, unambiguous
representation of business processes so that all process models can be treated alike.
The idea is to represent only the structural characteristics of a process model that are
common to the majority of modeling languages. Language-specific concepts are omit-
ted because they cannot be meaningfully interpreted when dealing with process models

� This work was done while she was visiting Queensland University of Technology, Australia.

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 699–701, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

700 M.C. Fauvet et al.

originating from different notations, i.e. when cross-language operations need to be per-
formed such as comparing process models that are in BPMN with models that are in
EPCs. Moreover, this canonical format is agnostic of graphical information (e.g. lay-
out, shapes, line thickness). Instead, this information is stored separately in the form
of annotations linked to files in canonical format. These annotations are used when a
canonical model needs to be presented to the user or converted back to a process mod-
eling language.

2 System Overview

AProMoRe is implemented via a three-layered Service Oriented Architecture (SOA)
and deployed over the internet (see Fig. 1). The Enterprise layer hosts the Manager—a
public enterprise service which exposes all the repository features via Web service oper-
ations for integration with third-party applications, e.g. a BPM System. Moreover, these
operations can be accessed via a Web Portal, which in turn delegates model editing
functionality to Oryx (http://bpt.hpi.uni-potsdam.de/Oryx/WebHome).

Enterprise Layer

Intermediary Layer

Basic Layer

Web Portal

Organizations BPMS users / vendors

Manager
(public)

Toolbox
(façade)

AlgorithmsRelational

Canonizer
(adapter)

Data Access
(basic)

Access Control
(basic)

General
purpose data

Native processes,
Canonical processes,

Annotations

Oryx Third-party
Applications

XML

Fig. 1. AProMoRe’s SOA.

The Intermediary layer hosts the Can-
onizer which is an adapter responsible
for (de-)canonizing process models as
they are imported/exported into/from
the repository. The Toolbox is a façade
over the advanced operations that can
be performed on the stored process
model collections. Access to these
models is achieved via the Data ac-
cess service in the Basic layer, which
encapsulates data-centric operations
for reading/writing data upon requests
made by the other services. Finally, the
Access Control service controls security
aspects such as user authentication and
authorization. In future work, we plan
to also store process logs and to integrate AProMoRe with the process mining tool
ProM (http://www.processmining.org). AProMoRe’s portal is accessible
at http://brahms0.imag.fr:8080/Apromore-portal (login: icsoc, no
password). The source code, manuals and a demonstration screencast can be found at
http://code.google.com/p/apromore (under Downloads).

3 Demo Script

This demonstration focuses on the similarity search and merging functionality. After a
quick overview of AProMoRe’s basic features—e.g. import/export and editing of pro-
cess models in various formats—we will show how AProMoRe is able to retrieve mod-
els from a repository that are similar to a given model. Next, we will show how the
repository can be queried according to various parameters. Finally, we will retrieve two

http://bpt.hpi.uni-potsdam.de/Oryx/WebHome
http://www.processmining.org
http://brahms0.imag.fr:8080/Apromore-portal
http://code.google.com/p/apromore

Managing Process Model Collections with AProMoRe 701

similar models and show how they can be merged into a single model—a feature that
has been used in a real process model consolidation project.

Reference

1. La Rosa, M., Reijers, H.A., van der Aalst, W.M.P., Dijkman, R.M., Mendling, J., Dumas,
M., Garcia-Banuelos, L.: Apromore: An advanced process model repository. QUT ePrints
Technical Report (2009), http://eprints.qut.edu.au/27448

http://eprints.qut.edu.au/27448

Managing Long-Tail Processes Using FormSys�

Ingo Weber, Hye-Young Paik, Boualem Benatallah, Corren Vorwerk,
Zifei Gong, Liangliang Zheng, and Sung Wook Kim

School of Computer Science and Engineering
University of New South Wales, Sydney, Australia
{ingo.weber,hpaik,boualem}@cse.unsw.edu.au

Efforts and tools aiming to automate business processes promise the highest
potential gains on business processes with a well-defined structure and high
degree of repetition [1]. Despite successes in this area, the reality is that today
many processes are in fact not automated. This is because, among other reasons,
Business Process Management Suites (BPMSs) are not well suited for ad-hoc and
human-centric processes [2]; and automating processes demands high cost and
skills. This affects primarily the “long tail of processes” [3], i.e. processes that
are less structured, or that do not affect many people uniformly, or that are not
considered critical to an organization: those are rarely automated. One of the
consequences of this state is that still today organisations rely on templates and
paper-based forms to manage the long tail processes.

In this paper, we present a novel tool for enabling end-users to model and
deploy processes they encounter in their daily work. We thus focus on a sub-
set of long-tail processes, which we refer to as personal processes, i.e., business
processes as experienced and described by a single person. Hence we can avoid
many complicated modelling constructs, and devise simple process representa-
tions which can be as easily understood as a cooking recipe or an audio playlist.
By focusing our efforts on a smaller set of usage scenarios, we aim to enable end-
users to design their own executable processes, to support their everyday tasks.
In earlier work, we built a system named FormSys [4] for creating form-filling
Web services. Herein we present a completely new development as an extension
of the earlier tool, therefore named FormSys Process Designer, for modeling and
executing processes over such form-filling (and related) services. This can be use-
ful to automate processes that involve filling the same information into multiple
forms. E.g., when a new employee is hired at UNSW, the following units need
to be informed: HR, IT support, procurement, the faculty, facilities, etc. Filling
all different forms manually is a time-consuming task.

In order to enable end-users to design executable process models, we devised a
simple control flow language for sequential process steps and conditional execu-
tion (or skipping) of process steps. The processes can be represented graphically
or textually, as shown in Fig. 1. For the textual representation, we tried to stay
close to natural language descriptions of how a process is executed; for the graph-
ical representation we followed the analogy to composing a playlist in an audio
player, such as using “cover flow”. Data field equivalence between forms used
in different process steps can be specified in a mapping part. Once the editing

� This work has been supported by a grant from the SmartServices CRC.

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 702–703, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Managing Long-Tail Processes Using FormSys 703

is completed, the process can be translated to BPEL. By doing so, an input
Web form is automatically created, from which the data is distributed to the
various steps in the process. Together with other artifacts, the BPEL process
and the input form comprise an Intalio deployable package. By currently re-
stricting focusing this work on processes around form-filling services, we achieve
the desired simplicity but limit the scope of application to long-tail form-based
processes. More details can be found in a technical report [5] and a screencast
video, available at http://www.cse.unsw.edu.au/~FormSys/FormSys/.

To our knowledge, no related end-user process modeling tool features the cre-
ation of executable processes. CoScripter (http://coscripter.researchlabs.
ibm.com) in contrast is a tool for recording and automating processes performed
in a Web browser. While closely related to our textual representation, it does
not support Web service invocation or conditional execution.

(a) (b)

Fig. 1. Screenshots of the tool: textual (a) and graphical (b) process editing

The demonstration includes viewing, editing, translating, and executing pro-
cesses using our system. While the control flow part seems intuitive to the users,
the mapping task requires further support, e.g., by semi-automatically creating
the mappings, re-using mappings created by other users. From this work we
want to expand the concepts, so as to support more generic scenarios involving
arbitrary kinds of services and interactions between multiple people.

References

1. Leymann, F., Roller, D.: Production Workflow - Concepts and Techniques. Prentice
Hall, Englewood Cliffs (2000)

2. Schurter, T.: BPM state of the nation 2009. bpm.com (2009),
http://www.bpm.com/bpm-state-of-the-nation-2009.html

(accessed 25/11/2009)
3. Oracle White Paper: State of the business process management market (August

2008), http://www.oracle.com/technologies/bpm/docs/state-of-bpm-market-

whitepaper.pdf (accessed 20/11/2009)
4. Weber, I., Paik, H., Benatallah, B., Gong, Z., Zheng, L., Vorwerk, C.: FormSys:

Form-processing web services. In: WWW, Demo Track (2010)
5. Weber, I., Paik, H.Y., Benatallah, B., et al.: Personal process management: Design

and execution for end-users. Technical report, UNSW-CSE-TR-1018 (2010)

http://www.cse.unsw.edu.au/~FormSys/FormSys/
http://coscripter.researchlabs.
ibm.com
http://www.bpm.com/bpm-state-of-the-nation-2009.html
http://www.oracle.com/technologies/bpm/docs/state-of-bpm-market-whitepaper.pdf
http://www.oracle.com/technologies/bpm/docs/state-of-bpm-market-whitepaper.pdf

Managing Web Services: An Application in

Bioinformatics

Athman Bouguettaya, Shiping Chen, Lily Li, Dongxi Liu, Qing Liu,
Surya Nepal, Wanita Sherchan, Jemma Wu, and Xuan Zhou

CSIRO ICT Centre, Australia
{firstname.lastname}@csiro.au

Abstract. We propose to treat Web services as first-class objects that
can be manipulated as if they were data in DBMS. We provide an in-
tegrated way for service users to query, compose and evaluate Web ser-
vices. The resulting system is called Web Service Management System
(WSMS). We deployed WSMS as the backbone of a bioinformatics ex-
periment framework named Genome Tracker. In this demonstration, we
show how WSMS helps biologists conduct experiments easily and effec-
tively using a service-oriented architecture.

1 Introduction of WSMS

Fully delivering on the potential of Service Oriented Architecture (SOA) requires
building fundamental technologies for efficiently modeling, querying, composing,
monitoring, trusting, and optimizing access to services. We have deployed these
technologies into an integrated framework called Web Service Management Sys-
tems (WSMS). In this framework, Web services are treated as first-class objects
that can be manipulated as if they were pieces of data. WSMS provides a single
entry point for customers to find, compose and use services.

WSMS is composed of a number of key components that work collaboratively
to manage the life-cycles of Web services. They include service organizer, service
query processor, service composition generator, service optimizer and service
trust manager. To use WSMS, a user declares the requirements using a service
query language. Taking the user’s request, the WSMS guides the user to create
and consume a customized composite service. For instance, the service query
processor interprets the service query by mapping it to a set of relevant services.
Based on interpretation, the composition generator creates a composition plan,
which is then instantiated into a composite service by the service optimizer.
During the optimization, the trust manager is consulted to obtain services’ rep-
utation. Finally, the composite service is executed by the service executor to
satisfies the user’s requirements. The workflow of WSMS is shown in Figure 1.
The detailed technologies of WSMS have been reported in [2,3,1].

2 The Application Scenario

We have deployed WSMS as the back-end of the Genome Tracker system, which
aims to help biologists conduct bioinformatics experiments easily and effectively
using a service oriented architecture.

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 704–705, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Managing Web Services: An Application in Bioinformatics 705

Fig. 1. WSMS Architecture

A bioinformatics study conducted in Genome Tracker usually involves a series
of statistical analysis and functional analysis. There are a number of databases
and software packages on the Web providing facilities for these analysis. However,
it is difficult for a biologist to utilize these tools. First, they are not aware of
what tools can help in their study. Second, they are not informed about the
quality of the tools. Last but not the least, hey have to manually assemble the
tools into an analysis process, which requires a considerable amount of expertise.

To support biologists in bioinformatics study, wedeveloped the GenomeTracker
system on top of WSMS. All the datasets and analytic services in Genome Tracker
are encapsulated as services and managed by WSMS. A biologist accesses these
services by simply issuing queries to WSMS. WSMS help the user to easily find,
compose, optimize and invoke services.

3 The Demonstration

In our demonstration1, we will showcase how Genome Tracker supports a biol-
ogist to conduct bioinformatic experiments. Our purpose is to demonstrate the
strength of WSMS. We use the analysis of colorectal cancer as the user scenario.
We show how a biologist uses our system to quickly compose workflows that aim
to analyze the genetic causes of colorectal cancer.

The demonstration will show the following benefits of WSMS: first, prior
knowledge about the available tools or datasets is not mandatory for biologists;
second, a biologist does not need to be aware the quality of service, and WSMS
is intelligent enough to select the best services for her; finally, WSMS is able to
guide the user to construct a workflow through intuitive interactions.

References

1. Malik, Z., Bouguettaya, A.: Evaluating rater credibility for reputation assessment
of web services. In: WISE, pp. 38–49 (2007)

2. Medjahed, B., Bouguettaya, A.: A multilevel composability model for semantic web
services. IEEE TKDE 17(7), 954–968 (2005)

3. Yu, Q., Bouguettaya, A.: Framework for web service query algebra and optimization.
TWEB 2(1) (2008)

1 A video can be found at: http://www.youtube.com/watch?v=U84ZGr-otkE

An Integrated Solution for Runtime Compliance

Governance in SOA

Aliaksandr Birukou1, Agnieszka Betkowska Cavalcante2, Fabio Casati1,
Soudip Roy Chowdhury1, Vincenzo D’Andrea1, Frank Leymann3,

Ernst Oberortner4, Jacek Serafinski2, Patricia Silveira1,
Steve Strauch3, and Marek Tluczek2,�

1 DISI, University of Trento, TN 38123, Italy
2 Telcordia Poland, Poznan

3 IAAS, University of Stuttgart, 70569, Germany
4 Distributed Systems Group, Vienna University of Technology, 1040, Austria

Abstract. Compliance governance in organizations has been recently
gaining importance because of new regulations and the diversity of com-
pliance sources. In this demo we will show an integrated solution for run-
time compliance governance in Service-Oriented Architectures (SOAs).
The proposed solution supports the whole cycle of compliance manage-
ment and has been tested in a real world case study.

Keywords: compliance governance, DSL, monitoring, SOA, CEP.

1 Introduction and Contributions

Compliance governance refers to the overall management approach for control-
ling the state of compliance in the entire organization and, in general, consists
of: (1) selecting the sources to be compliant with and designing corresponding
compliance requirements; (2) (re-)designing business processes compliant with
the selected requirements; (3) monitoring compliance of processes during their
execution; (4) informing interested parties (managers, auditors) on the current
state of compliance; (5) taking specific actions or changing the processes in
cases of (predicted or happened) non-compliance. Compliance governance has
been gaining importance in organizations because of new regulations appeared
recently (e.g., Sarbanes-Oxley Act, Basel III, Solvency II), non-compliance bring-
ing money loss and reputation damage, and the diversity of compliance sources:
business owners consider legislature and regulatory bodies, standards and codes
of practice, business partner contracts. Existing approaches rarely deal with dif-
ferent types of compliance sources and cover only few steps of the compliance
governance.

In this demo we will show how service-oriented technology can be used as the
basis for an integrated solution for runtime compliance governance in a company.
� This work was supported by funds from the European Commission (contract no.

215175 for the FP7-ICT-2007-1 project COMPAS).

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 706–707, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Integrated Solution for Runtime Compliance Governance in SOA 707

The framework includes tools for: modeling compliance requirements for differ-
ent compliance sources in domain-specific languages; linking the requirements
to the business processes; monitoring process execution using Complex Event
Processing (CEP); displaying the current state of compliance in dashboards,
and analyzing cases of non-compliance to find what caused them. The frame-
work is targeted at people dealing with compliance in an organization, ranging
from people specifying compliance requirements (process analysts, compliance
officers, technical specialists) to those controling the compliance (managers, au-
ditors) and it helps them to deal with various compliance aspects in a uniform
and automated manner. The framework has been applied in a real case study in
the context of the EU FP7 project COMPAS1 (Compliance-driven Models, Lan-
guages, and Architectures for Services). The case study focuses on the compliance
of telecom service provider to licenses of its business partners. The framework
provides the following unique contributions:

– handling requirements from different source in a uniform manner within an
integrated solution;

– covering whole compliance governance lifecycle;
– the model-driven approach reduces user inputs by transforming information

defined in requirements to further steps - up to monitoring;
– supporting traceability and access to information during runtime execution,

monitoring and mining, thus enabling drill-down in non-compliant cases.

2 Demonstration Storyboard

The live demonstration introduces the contributions of the compliance gover-
nance framework by means of a joint use of slides (for the conceptual aspects)
and hands-on framework demos (for the practical aspects):

1. Advanced Telecom Services scenario: a company provides customers with
on-demand aggregated audio/video streaming by combining services from
different providers

2. Design aspects: identifying compliance sources and requirements, modelling
business process, expressing compliance requirements in QoS and Licensing
Domain-Specific Languages (DSLs), generating events and CEP rules for
monitoring.

3. Runtime aspects: deployment of the process in the process engine, executing
the process, showing the use of the online dashboard for monitoring and the
offline dashboard for the historical analysis of the processes.

4. Runtime Compliance Governance architecture: explanation of the architec-
ture and showing that framework in general is more than what is shown in
the demo.

The video illustrating this demo is available at
http://disi.unitn.it/~birukou/2010runtime-compas-demo.zip

1 http://www.compas-ict.eu

http://disi.unitn.it/~birukou/2010runtime-compas-demo.zip
http://www.compas-ict.eu

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 708–710, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Event-Driven Privacy Aware Infrastructure for Social
and Health Systems Interoperability: CSS Platform

Giampaolo Armellin1, Dario Betti1, Fabio Casati2, Annamaria Chiasera1,2,
Gloria Martinez2, Jovan Stevovic1,2, and Tefo James Toai1

1 GPI SpA, Via Ragazzi del ’99, 13, Trento, Italy,
{garmellin,dbetti,achiasera,jstevovic,ttoai}@gpi.it

2 Information Engineering and Computer Science Department,
University of Trento, Italy,

casati@disi.unitn.eu, glomarin@gmail.com

Abstract. Assistive processes in healthcare and socio-assistive domains typically
span multiple institutions which usually communicate manually with the ex-
change of documents. Despite the needs of cooperation it is difficult to provide an
integrated solution to improve data exchange and allow comprehensive monitor-
ing of the processes due to the complexity of the domains and the privacy issues
derived by the use of sensitive data. In this demo we show how we approached
the problem in designing and deploying a platform for the interoperability and
monitoring of multi-organization healthcare processes in Italy. Our solution pro-
vides an event-based platform that assures privacy enforcement with a fine-
grained control on the data that is distributed and minimizes the effort required to
join the platform providing components that automates the data exchange.

Keywords: EDA, interoperability, cooperation, privacy, business intelligence.

1 Introduction and Contributions

In this demo we describe a solution to manage and partially automate the integration
between social and healthcare institutions to deliver social and health services. The
work is the result of a large, multi-million dollar effort, the CSS (Cartella Socio-
Sanitaria) project, undertaken by the autonomous province of Trento, Italy1. The con-
text in which CSS is born is characterized by many heterogeneous and very complex
systems with different level of evolution and owned by different institutions with new
partners joining the scenario over time. The data used in this domain is particularly
sensitive and related to the health status of citizens. This imposes strict legal con-
straints on the way data is collected, stored, distributed and processed in a context
with multiple data controllers collecting the data of citizens and their consent.

1 This work was supported by the CSS project, funded by the Autonomous Province of Trento

(Italo della Noce, Cinzia Boniatti) and coordinated by Fondazione Bruno Kessler (Giuliano
Muzio). Besides the authors of this paper, the CSS project includes as participants: Munici-
pality of Trento (Claudio Covelli) and Rovereto (Mauro Viesi), Local Healthcare Agency of
Trento-APSS (Leonardo Sartori), CNR-ISTC (Nicola Guarino), Informatica Trentina (Luca
Mion), Dedagroup (Michele Brugnara), Engineering (Stefano Scamuzzo).

 Event-Driven Privacy Aware Infrastructure 709

We approached the analysis problem in a lighter way than for classical integration
approaches. We analyzed processes of assistance isolating interesting events in a
Business Intelligence (BI) and interoperability perspective. We used those events as
unit of information and developed a platform based on SOA and EDA that enables the
routing of data among involved institutions and also to the BI that becomes an Event
Based BI. Privacy is assured via a fine-grained, purpose-based, two-phase access
control mechanism: each source produces notification of events that are only partially
specified (with no sensitive data) and CSS notifies them to interested consumers; each
consumer must explicitly request the details to the source (along with a purpose
statement) via the CSS platform; the source returns only the allowed details always
via the CSS platform. This protocol allows sources to specify different visibility rules
based on explicitly stated purposes in compliance with privacy regulations [1] and to
CSS to trace the requests for auditing. The main contributions of CSS are:

- an event-based interoperability infrastructure that allows the different institu-
tions to interoperate easily with minimum effort;

- a fine-grained privacy control over the exchanged information among involved
partners;

- an event based Business Intelligence analysis over processes of assistance that
span different organizations available to the Governance.

2 Demonstration Storyboard

In the demo we will explain the main concepts of the architecture (with some slides)
and simulate some concrete usage scenarios of the event-base CSS platform. In par-
ticular, the demo will be as follow:

1. Intro: explains the real context, its challenges, CSS goals and contributions
2. Approach: presents our analysis approach and its points of innovation
3. Architecture: explains the CSS components and their interactions, simplicity of

installation, privacy management visibility rule wizard to define privacy policies
on events

4. Event creation demo: we simulate a patient using the tele-care and tele-assistance
service requesting a rest home service. A social assistant approves the request and
edits the social profile of the patient generating an event that is automatically no-
tified by the platform to the destination rest home and tele-care/tele-assistance
system for interoperability and BI module for reporting.

5. Privacy-aware event routing: explains the routing of notifications and the pri-
vacy-aware retrieval of the details

6. Event consumption demo: we show how the detailed acceptance event is accessed
differently depending on roles and purposes. A doctor of the rest home can see all
the details of the patient while the reception does not receive the social profile.
We show the operator at the tele-care and tele-assistance service searching the
events to know where the patient is and his destination rest home. Finally we
show the BI module for the Governance receiving only aggregated data to create
the report in a near real time fashion.

7. Conclusions and future works: a summary of the lessons learned and future
extensions.

710 G. Armellin et al.

Reference

1. Armellin, G., Betti, D., Casati, F., Chiasera, A., Martinez, G., Stevovic, J.: Privacy preserv-
ing event driven integration for interoperating social and health systems. In: Jonker, W.,
Petković, M. (eds.) SDM 2010. LNCS, vol. 6358, pp. 54–69. Springer, Heidelberg (2010)

Mashups with Mashlight�

Luciano Baresi and Sam Guinea

Politecnico di Milano
Deep-SE Group - Dipartimento di Elettronica e Informazione

Piazza L. da Vinci, 32 - 20133 Milano, Italy
{baresi,guinea}@elet.polimi.it

Abstract. Mashlight is a framework for creating process mashups out
of Web 2.0 widgets. In our demo we show how Mashlight can be used to
simplify patient management in a hospital. We illustrate the design-time
tools for creating mashups, a desktop execution environment, and mobile
environments for iPhones and Android smartphones.

1 Mashlight

The web is becoming a user-centric platform. Social networks, video-sharing
sites, blogs, and wikis have converted millions of users from spectators to con-
tributors. People use the Web to collaborate, share information, and solve their
everyday needs. This ecosystem has placed the grounds for mashups, i.e., appli-
cations that combine data and functionality from different sources to meet user
goals. Mashlight [1] presents a flexible solution that supports data, logic, and
presentation mashups both on the desktop and on mobile devices. It encourages
creativity by taking inspiration from widgets, i.e., interactive and single-service
auto-contained web applications such as those provided by Apple’s Dashboard
and Google’s Gadgets.

In Mashlight widgets can exchange data and be sequenced in a process-like
fashion. Widgets exchange data through input and output parameters, while
their sequencing determines the order in which they are presented to the user.
For greater flexibility, Mashlight introduces the notion of super-widget, an ab-
straction for aggregating widgets that need to be shown to the user at the same
time. Inside a super-widget there is no process flow, and the user is free to interact
with the internal widgets in any order; however, there are data flows that allow
widgets to collaborate by exchanging information. Externally, a super-widget
exchanges data and is sequenced just like any other regular widget.

The “Mashlight Suite” (see Figure 1) provides two design-time tools1. The
“Widget Builder” is an Eclipse plugin for creating composable widgets. The
� This research has been funded by the European Commission, Programme IDEAS-

ERC, Project 227077-SMScom (http://www.erc-smscom.org) and the Network of
Excellence S-Cube (http://www.s-cube-network.eu/)

1 The Mashlight Suite can be experienced online at
http://home.dei.polimi.it/guinea/mashlight/index.html, while a video can be
seen at
http://home.dei.polimi.it/guinea/mashlight/demo.mov

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 711–712, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.erc-smscom.org
http://www.s-cube-network.eu/
http://home.dei.polimi.it/guinea/mashlight/index.html
http://home.dei.polimi.it/guinea/mashlight/demo.mov

712 L. Baresi and S. Guinea

iPhone
Execution
Environment

Android
Execution
Environment

Desktop
Execution
Environment

September
2009

S
u
n

M
o
n

T
u
e

W
e
d

T
h
u

F
ri

S
a
t

Mashlight
Execution Environments

Mashlight
Widget Builder

Mashlight
Widget

Mashlight
Mashup Builder

Mashlight
Design-time Tools

Mashup

Fig. 1. The Mashlight Suite

“Mashup Builder” provides designers with a drag-and-drop canvas in which
they can define process and data flows. Mashlight also provides three execu-
tion environments. The first is intended for Webkit browsers and is implemented
in JavaScript. The other two environments are intended for iOS and Android
mobile devices. For each we have developed special-purpose widgets that take
advantage of their capabilities (e.g., GPS geolocation, contact lists, etc.).

2 Demo Proposal

In our demo we improve patient service in a fictional public hospital. Through
Mashlight doctors setup personalized management processes for their patients
that nurses carry out. Doctors interact with the “Patient Management Process
Creator” (PMPC), a mashup created by Mashlight experts that acts as a domain-
specific mashup creation environment. Through the PMPC doctors state their
patient’s needs; the result is a dynamically generated process for that patient,
one that nurses can run on the mobile devices provided by the hospital. The
demo will start with a brief overview of the Mashlight Suite, and proceed to
present the scenario and its requirements. The demo will then illustrate how
the Mashup Builder was used to create the PMPC mashup, and conclude with
a presentation of the runtime environments. The PMPC will be executed in
a browser, and we will run a personalized management process within an iOS
device.

Reference

1. Albinola, M., Baresi, L., Carcano, M., Guinea, S.: Mashlight: a Lightweight Mashup
Framework for Everyone. In: 2nd Workshop on Mashups, Enterprise Mashups and
Lightweight Composition on the Web - 18th International World Wide Web Con-
ference (2009)

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 713–714, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Service Mashup Tool for
Open Document Collaboration

Nelly Schuster, Raffael Stein, Christian Zirpins, and Stefan Tai

eOrganization Group, Karlsruhe Institute of Technology (KIT),
Englerstraße 11, Karlsruhe, Germany

{firstname.lastname}@kit.edu

Abstract. Mashup technologies enable end-users to compose situational appli-
cations from Web-based services. A particular problem is to find high-level
service composition models that a) are intuitive and expressive enough to be
easily used by end-users and b) allow for efficient runtime support and integra-
tion on the Web. We propose a novel approach that leverages a metaphor of
document collaboration: end-users declare the coordination and aggregation of
peer contributions into a joint document. Peers provide contributions as Web-
based services that allow a) integrating any Web-accessible resource and b) or-
chestrating the collaboration process. Thus, collaborative document mashups
enable lightweight, situational collaboration that is not addressed by most BPM
or CSCW systems. In this demo we present our document service infrastructure
and collaboration RIA, which allows collaborators to declare and participate in
document collaborations in an interactive, intuitive and dynamic way.

Keywords: service mashups, open document collaboration.

1 Introduction

Service mashups offer end-user-oriented compositions of APIs, content and data
sources from the Web. However, early approaches that built on simplified program-
ming languages (scripting) or software composition techniques (pipes, workflows)
saw limited commercial success. To tap their full potential, service mashups need to
become more intuitive, beneficial and easy-to-use for end-users. This requires higher-
level models closer to end-user applications. In this work we present a novel mashup
approach called MoSaiC that is based on a document metaphor and tailored to support
open collaboration of end-users. Document mashups do not only provide an intuitive
means to utilize service composition techniques but also enable so far missing support
for human-centric situational ad-hoc processes. The demo illustrates the utilization of
the MoSaiC Web application, execution platform and integration infrastructure.

2 Concept, Implementation and Benefits of MoSaiC

MoSaiC supports coordinators to decompose collaborative tasks into contributions to
be provided by collaborators or robots as Web-based services. MoSaiC mashups
define the aggregation and orchestration of contributions into a joint document [1]. To
this end, contribution services are mapped to formatted elements of the document

714 N. Schuster et al.

structure. The coordination of different collaborators (e.g. causal or temporal relations
of their contributions) is declared by ECA-based rules associating incoming and out-
going service messages.

Mashups are one-way document instances that are evolved by collaborating indi-
viduals in terms of structure, behavior and contents. This flexible model fits a variety
of application scenarios including financial reporting, process documentation, product
specification, research publication, education material/exercises and many more.

Fig. 1. Document Mashup System Architecture Overview (see screencast1 for UI pictures)

Figure 1 shows the MoSaiC architecture consisting of a) the mashup management
system providing a rule-driven mashup engine and a Web GUI to initiate, maintain
and participate in open document collaborations, b) the document service infrastruc-
ture enabling interaction (asynchronous messaging, dynamic routing) as well as man-
agement (service registry) and integration (adapters) of various Web-resources.

The MoSaiC approach offers an application-specific mashup model that is more
pragmatic and intuitive than simplified software composition models. It leverages the
potential of service mashups for unique support of open document collaborations.
Beyond the specific MoSaiC application, we anticipate that the document metaphor is
a promising basis to be leveraged by a future class of mashup approaches.

3 Demonstration Overview

The demo will showcase the utilization of MoSaiC for the use case of supporting
collaborative research resulting in a paper. It illustrates the use of many concepts and
features of the tool and infrastructure like ad hoc integration of human-provided and
Web-based services or usage of coordination rules. We provide a screencast online1.

Reference
1. Schuster, N., Zirpins, C., Tai, S., et al.: A Service-Oriented Approach to Document-Centric

Situational Collaboration Processes. In: Proc. WETICE 2009, pp. 221–226. IEEE, Los
Alamitos (2009)

1 www.zirpins.de/downloads/MosaicScreenCast.m4v (subject to frequent updates)

Panta Rhei: Optimized and Ranked Data

Processing over Heterogeneous Sources

Daniele Braga, Francesco Corcoglioniti,
Michael Grossniklaus, and Salvatore Vadacca

Dipartimento di Elettronica e Informazione - Politecnico di Milano
Via Ponzio, 34/5 - 20133 Milano, Italy

{braga,corcoglioniti,grossniklaus,vadacca}@elet.polimi.it

Abstract. In the era of digital information, the value of data resides
not only in its volume and quality, but also in the additional information
that can be inferred from the combination (aggregation, comparison and
join) of such data. There is a concrete need for data processing solu-
tions that combine distributed and heterogeneous data sources, such as
Web services, relational databases, and even search engines, that can all
be modeled as services. In this demonstration, we show how our Panta
Rhei model addresses the challenge of processing data over heterogeneous
sources to provide feasible and ranked combinations of these services.

Keywords: Panta Rhei, data processing, search computing.

1 Introduction and Contributions

Users have the need to express complex queries over multiple sources and het-
erogeneous domains. We define search computing systems [1] as a new class of
systems aimed at responding to multi-domain queries, i.e., queries over multiple
semantic fields of interest.

Data sources currently available on the Web share some common features:
results are brought to the user as small chunks of information, data is retrieved
in a given order and more or less sophisticated interfaces allow querying the
data. We model these sources as Web “services” to be composed in order to
solve a multi-domain query. Currently existing solutions to the problem, such as
BPEL, lack in real-time adaptivity to failure and on-line statistics, optimization
and performance of the process, and definition of a “global” ranking.

These requirements led us to the definition of Panta Rhei, an execution model
supporting multi-domain queries, whose contribution is three-fold.

– a physical query algebra, representing query plans as a workflow (comprising
both data and control) where the basic node is the service implementation
and composition of nodes is performed according to a set of simple and
recursive production rules (parallel and pipe join of nodes and concatenation
of modifiers, such as selection, projection and sorting).

– an optimization layer, choosing a feasible plan topology and defining the
optimal parameters based on off-line service statistics.

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 715–716, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

716 D. Braga et al.

– a runtime environment, executing plans expressed by means of the physical
algebra and adapting the execution according to possible failure events and
on-line service statistics.

A query workbench has been deployed to highlight internal details of the model
and to ease debugging and testing of optimization heuristics.

2 Demonstration Storyboard

Our demonstration highlights the four steps of the query process. The conceptual
aspects our model will be presented with the joint use of slides, whereas the
practical aspects will be showcased by means of a query execution workbench.
To be more precise, the demonstration is organized as follows:

1. Introduction. Introduction of the Panta Rhei model, its conceptual back-
ground and novelty of our approach.

2. Query design. Specification of the query in a Datalog-like conjunctive form
and definition of the optimization parameters to be applied. We will show how
different optimization parameters and statistics lead to different topologies.

3. Logical query plan. Specification of a workflow with quantitative estimates
of the size of partial results determined by the planner which exploits the
available degrees of freedom to fix the topology, the number and sequence of
service invocations, the join strategies, etc.

4. Physical query plan. Definition of both data and control flow in the execution
of a query. The execution engine instantiates physical operators (units) of
the compiled plan and the query is orchestrated accordingly.

5. Query execution. Execution of the physical plan and specification of the
input attributes. Plan execution can be constrained in terms of number of
commands, resulting combinations or execution time.

6. Conclusion and future work. Summary and possible future directions.

A preview of the demo can be found at http://www.search-computing.it/demo/qp.

Acknowledgments. This research is part of the Search Computing (SeCo)
project [www.search-computing.it], funded by the European Research Council
(ERC). We thank all the members of the SeCo team for their contributions.

Reference

1. Ceri, S., Brambilla, M. (eds.): Search Computing. LNCS, vol. 5950. Springer,
Heidelberg (2010)

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 717–718, 2010.
© Springer-Verlag Berlin Heidelberg 2010

RnR: A System for Extracting Rationale from Online
Reviews and Ratings

Dwi A.P. Rahayu1, Shonali Krishnaswamy1, Cyril Labbe2, and Oshadi Alhakoon1

1 Centre of Distributed System and Software Engineering, Monash University, Australia
2 University of Genoble, France

dwi.ap.rahayu@gmail.com, {Shonali.Krishanswamy,
Oshadi.Alhakoon}@monash.edu.au, Cyril.Labbe@imag.fr

Abstract. In this paper we present a web based system as well as web service
based application to summarise and extract the rationale that underpins online
ratings and reviews. The web-based version of RnR system is available for
testing from http://rnrsystem.com/RnRSystem. RnR system web service is
available from http://rnrsystem.com/axis2/services/RnRData?wsdl.

Keywords: Review mining, Online Reviews/Ratings.

1 Introduction

The phenomenal growth of online social networking and Web 2.0 has led to an unprece-
dented increase in opinions/reviews on a wide range of topics, products and services
being available and accessible both through websites or review service APIs [1]. In fact,
these reviews and opinions are now a de facto basis and contributing factors for a range
of daily activities such as buying products (e.g., electronic goods), choosing restaurants,
booking hotels and planning holidays. Thus, there is an increasing reliance on online
opinions for selection of product and services. This in turn is leading to an increasing
focus in the area of opinion/review mining. The main of aim of review/opinion analysis
is to firstly identify the product/service and its key features and then to distill whether a
review expresses positive/negative sentiments towards the object that is being reviewed.

In this paper, we present our RnR system that in addition to feature identification
and sentiment analysis, focuses on explicating the rationale and reasoning that under-
pins an opinion expressed with respect to a product/service or its specific features.
This can be easily justified as follows. Consider the example of a hotel which has
very clean rooms, with a good view – but which is rather small in size. It is quite
possible that for certain users, this hotel could be rated very positively because of the
cleanliness or the view. However, it is also possible that some users have negative
opinions based on the size of the room. Thus, it is important to understand what drives
users to rate things differently since this makes selections based on such reviews more
personalized and appropriate.

It is interesting to note that while many online reviews/opinions typically have a rat-
ing to specify the extent of positive or negative affinity for the product/service. We
take the position those ratings (when available) along with textual descriptions provide
a holistic representation of the opinion. Together, they combine an objective/directly
measurable opinion along with a subjective/qualitative view which underpins the

718 D.A.P. Rahayu et al.

rationale for the opinion [2]. We also take the view that in opinion analysis, “positive”
opinions that indicate certain negative aspects or “negative” opinions that bring to the
positive features are significant and worthy of highlighting. Finally, we take the posi-
tion that in analyzing reviews/opinions, it is important to factor in the changing views
over time. This temporal dimension captures the essential improvement or decline in
the general perception of a product or service. In this paper, we present our RnR sys-
tem for extracting rationale from online reviews/ratings. The system captures and
summarizes the key rationale for positive and negative opinions expressed in a corpus
of reviews. It highlights the negative features among positive reviews and vice versa. It
also displays the changing perceptions of reviewers over time with respect to the entity
that is being reviewed. We have developed as part of the RnR approach, innovative
algorithms that leverage a new support metric in conjunction with a domain ontology
to improve the computational overheads associated with sentiment identification. We
have implemented the RnR system for a hotel review mining application. The RnR
system uses reviews in the TripAdvisor.com as its corpus.

2 Architecture and Operation of the RnR System

RnR is implemented as web based system as well as web service application. Users can
access the system using the web based application or embed RnR system in their web-
sites using it as a web service. The user enters the product/service name, for which a
performance summary based on online customer reviews is determined, either using
RnR webpage or RnR service request. RnR main system connects to and accesses a
corpus of previous reviews for the queried product/service. RnR system has a local
cache for recently retrieved reviews. If the cached data is valid (in terms of being recent,
as determined by a user threshold), and valid for the query, then the cached data is used
rather than performing an online crawling and retrieval. Otherwise, the query is sent to
an external site where online reviews are maintained (e.g. TripAdvisor.com, Expe-
dia.com.au) via their service API. The retrieved set of reviews is then locally processed
to extract the requisite rationale. The current implementation accesses TripAdvisor.com.
An important feature of RnR is to identify “good” opinions in the negative group and
“bad” opinions in the positive group. The RnR system highlights in grey negative adjec-
tives within positive group and positive adjectives within negative group. The results are
presented in four quadrants showing an overall summary, a detailed summary of posi-
tive features (highlighting negative aspects within positive reviews), a detailed summary
of negative features (highlighting positive aspects within negative reviews), and a chart
showing temporal evolution of ratings. Each point on the chart represents one rating
given for a date of stay. The straight line within the scattered chart is the linear regres-
sion line showing the trend of performance.

References

[1] Hu, M., Liu, B.: Mining opinion features in customer reviews. In: Proceedings of National
Conference of Artificial Intelligent, pp. 755–760. AAAI Press, San Jose (2004)

[2] Sherchan, W., Loke, S.W., Krishnaswamy, S.: Explanation aware service selection: Ra-
tionale and reputation. Service Oriented Computing and Applications 2(4), 203–218
(2008)

Liquid Course Artifacts Software Platform

Marcos Baez1, Boualem Benatallah2, Fabio Casati1, Van M. Chhieng2,
Alejandro Mussi1, and Qamal Kosim Satyaputra2

1 Dipartimento di Ingegneria e Scienza dell’Informazione, University of Trento, Italy
2 School of Computer Science and Engineering, UNSW, Sydney, Australia

{baez,casati,mussi}@disi.unitn.it, {boualem,vmc,qamalk}@cse.unsw.edu.au

Abstract. Liquid Course Artifacts Software Platform aims to improve
social productivity and enhance interactive experience for teaching and
collaborating by using suppliment materials such as slides, exercises, au-
dios, videos and books.

1 Introduction

Teaching a course involves preparing notes, tutorials, exercises, exams, slides
and others teaching materials. It is very common that besides preparing the
core teaching artifacts such as notes and tutorials, it is useful to provide access
to complementary materials that add to the student experience and improve
learning such as additional non conventional supplement materials (exercises,
slides, books, tags, audios, videos).

Services like Wikipedia, Q&A services (Yahoo Answers), Google Wave, Search
Engines and various vertical social networks are making it possible for people
to access and contribute content, as well as collaborating over the web. While
there are advancements in Web 2.0 [1], cloud computing, and service oriented
architectures which have techniques, services, tools, content accessibility and
sharing in general to foster collaboration, there no effective support to foster
sharing and collaboration on course materials [2] and artifacts. These include co-
editing slides and notes, sharing tutorials and references, reusing complementary
materials, comments and feedbacks from external students and colleagues.

This paper presents a Web 2.0 social productivity platform, called Crowd
Learning and Teaching (CrowdL&T), which supports effective collaboration
among teachers and students. The vision of CrowdL&T is to promote a compre-
hensive, end-to-end framework and Web 2.0 social productivity platform [3] that
unlock teaching and learning knowledge. This can be done by empowering teach-
ers and students with robust techniques, efficient services, easy to use tools that
allow them to share course artifacts and to collaborate on building a free knowl-
edge base about teaching and learning based on lecture notes, slides, tutorials,
video presentations, quizzes, and experiences. The CrowdL&T platform aims to
develop services for evaluating contribution of knowledge from collaborators.

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 719–721, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

720 M. Baez et al.

2 Architecture

The following diagram depicts the overall architecture of our system. It consists
of services, open APIs and portals that allow live interaction between users such
as teachers and students. An open service is called CoreDB. It contains several
modules. The first module is used as the basis for artifacts browsing and editing.
The second module is used to enable traceability where changes to artifacts
are traced. The third module is used for security where access control level
(ACL) policy are created to manage access to entities representing artifacts and
relationships. The forth module provides fulltext search capability over artifact
database.

Fig. 1. Overall Architecture

Collaborative editing is a service provided by our system. It is a browser based
tool that allows both private and live-collaborate editing of artifacts such as
lecture notes and slides. Its functionalities include content importation from and
exportation to well-known document formats (PDF and PowerPoint). Another
feature that makes our system unique is tagging [4] artifacts with other various
form of artifacts includes text books, research papers, video and audio lectures.

Another service provided by the system is knowledge improvement. This ser-
vice is achieved by using the combination of the annotation tool and the creation
of semantic relation technique that improve the second order knowledge. Another
service is the artifact reputation. This service allows the system makes use of
information from the sharing artifacts such as annotations, artifacts and artifact
relations that compute the reputation of individual artifacts such as persons,
files and folders. This improves search accuracy and provides incentives to users
to collaborate.

3 Demo Routine

First, we show how teachers create, upload and organise courses. From a course
workspace, teachers create course artifacts, namely lecture notes and slides using
the notes collaborative editor featuring real-time. Users tag slides using terms au-
tomatically extracted from PDF, text books and online video lectures. Second, we
show the organisation of course artifacts and the continuous superimposition of

Liquid Course Artifacts Software Platform 721

additional information through links to other artifacts forming dynamic folders.
In doing this, the course knowledge base is incrementally enriched and provide
valuable learning experiences to students and colleagues. Third, we demonstrate
how feedback and ranking are used to improve artifacts quality and reputation.
Demo Link: http://www.youtube.com/watch?v=yqBhQRFfinE

References

1. Ullrich, C., Borau, K., Luo, H., Tan, X., Shen, L., Shen, R.: Why web 2.0 is good
for learning and for research: principles and prototypes. In: Proc. WWW 2008, pp.
705–714 (2008)

2. Bercovitz, B., Kaliszan, F., Koutrika, G., Liou, H., Mohammadi Zadeh, Z., Garcia-
Molina, H.: CourseRank: a social system for course planning. In: Proc.SIGMOD
2009, pp. 1107–1110 (2009)

3. Huberman, B.A., Romero, D.M., Wu, F.: Crowdsourcing, attention and productiv-
ity. J. Inf. Sci. 35(6), 758–765 (2009)

4. Golder, S.A., Huberman, B.A.: Usage patterns of collaborative tagging systems. J.
Inf. Sci. 32(2), 198–208 (2006)

http://www.youtube.com/watch?v=yqBhQRFfinE

A Programmble Fault Injection

Testbed Generator for SOA

Lukasz Juszczyk and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology, Austria
{juszczyk,dustdar}@infosys.tuwien.ac.at

Abstract. In this demo paper we present the prototype of our fault
injection testbed generator. Our tool empowers engineers to generate
emulated SOA environments and to program fault injection behavior
on diverse levels: at the network layer, at the execution level, and at the
message layer. Engineers can specify the structure of testbeds via scripts,
attach fault models, and generate running testbed instances from that.
As a result, our tool facilitates the setup of customizable testbeds for
evaluating fault-handling mechanisms of SOA-based systems.

1 Motivation

Today service-oriented architectures (SOAs) do not only comprise Web services,
clients, and brokers, but also diverse complex components that operate on dis-
tributed service-based environments, e.g., workflow engines executing business
processes or governance systems managing whole large-scale systems. Usually,
these components carry out critical tasks and, therefore, must be dependable.
However, if one considers that SOA-based infrastructures often have complex
dependency structures and each service is a potential fault source, it becomes
obvious that single faults can trigger chains of harmful effects. Consequently,
complex SOA components must provide fault handling mechanisms in order to
guarantee a certain level of dependability.

In our current research, we regard this challenge from the perspective of how
such mechanisms can be evaluated in order to verify their correct execution. We
argue that this can only be achieved by testing the developed component at run-
time, in an environment which comprises faulty elements, and by observing the
component’s reaction on occurring faults. Yet, the main obstacle remains how to
get access to such an environment which exhibits faulty behavior and, therefore,
can be used as a testbed infrastructure. As a contribution to solving this issue
we have developed the Genesis2 testbed generator framework and extended it
with fault emulation techniques. Our tool provides SOA engineers the facility to
generate customizable testbeds for evaluating their complex components.

2 Fault Injection Testbed Generator Framework

The presented prototype uses the Genesis2 testbed generator framework [1] (in
short, G2) as a base grounding for emulating testbeds for SOA. Engineers model

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 722–723, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Programmble Fault Injection Testbed Generator for SOA 723

the composition of required testbeds via a Groovy-based [2] scripting language,
define the communication topology among the testbed’s components, and pro-
gram the functional behavior of these. G2 interprets these models, generates real
SOA components, and deploys them on a distributed back-end environment, cre-
ating this way testbed infrastructures on-demand. For the sake of extensibility
G2 comprises a modular architecture and applies composable plugins that extend
the framework’s functionality and augment the generated testbeds, for instance
by providing the generation of additional SOA artifacts.

Based on G2 framework we have developed techniques for injecting multi-level
faults into running testbeds in order to emulate typical failures in service-oriented
computing. In the current state we support the following fault types:

– faults at the message layer, in terms of message data corruption,
– faults in service execution, for simulating quality of service (QoS) issues, and
– faults at the network layer, hampering the IP packet flow between hosts.

A distinct feature of our tool is the ability to program fault models via the
scripting language. It provides fine grained control on the fault injection mech-
anisms and allows engineers to customize the functionality of their testbeds to
their requirements of the tested complex SOA component.

For a mode detailed description of how we perform fault injection we refer read-
ers to [3] and for learning how G2 generates testbeds we recommend to read [1].

3 Prototype Demonstration

In the demo we will present the prototype implementation of our testbed gen-
erator. Via sample scripts we will demonstrate how testbeds are modeled, how
faulty components are specified, and, eventually, how faults are injected into run-
ning testbeds. Particular focus will be put on the programmability of the fault
models, which is the most novel contribution of our approach. We will show the
effects of injected faults on a deployed complex SOA component (e.g., a BPEL
workflow engine) by visualizing the intercepted communication and pointing out
occurring misbehavior.

The provision of our prototype as open source software (downloadable at [4])
will be an additional asset of our demonstration.

References

1. Juszczyk, L., Dustdar, S.: Script-based generation of dynamic testbeds for soa. In:
ICWS, pp. 195–202. IEEE Computer Society, Los Alamitos (2010)

2. Groovy Programming Language, http://groovy.codehaus.org/
3. Juszczyk, L., Dustdar, S.: Programmable Fault Injection Testbeds for Complex SOA.

In: ICSOC. LNCS, Springer, Heidelberg (2010)
4. Genesis Web site, http://www.infosys.tuwien.ac.at/prototype/Genesis/

http://groovy.codehaus.org/
http://www.infosys.tuwien.ac.at/prototype/Genesis/

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 724–725, 2010.
© Springer-Verlag Berlin Heidelberg 2010

BPEL’n’Aspects&Compensation: Adapted Service
Orchestration Logic and Its Compensation Using Aspects

Mirko Sonntag and Dimka Karastoyanova

Institute of Architecture of Application Systems, University of Stuttgart
Universitaetsstrasse 38

70569 Stuttgart, Germany
{sonntag,karastoyanova}@iaas.uni-stuttgart.de

Abstract. One of the main weaknesses of workflow management systems is
their inflexibility regarding process changes. To address this drawback in our
work on the BPEL’n’Aspects approach we developed a standards-based
mechanism to adapt the control flow of BPEL processes [1]. It uses AOP tech-
niques to non-intrusively weave Web service invocations in terms of aspects
into BPEL processes. Aspects can be inserted before, instead or after BPEL
elements and that way adaptation of running processes is enabled. In this work
we want to present a novel extension of the BPEL’n’Aspects prototype that
deals with the compensation of weaved-in aspects in a straight-forward manner.
The extension enormously improves the applicability of the approach in real-
world scenarios: processes in production need the means to compensate behav-
ior that was inserted into the process in the course of adaptation steps. The
ability to compensate weaved-in aspects distinguishes our approach from other
existing concepts that introduce AOP techniques to business processes.

Keywords: Service orchestration, BPEL, compensation, aspect-orientation,
adaptability.

1 System Overview

The BPEL’n’Aspects system consists of four components (see Fig. 1) described in the
following: A BPEL engine with an extension event system to publish a set of events
(e.g. navigation events). Process instance data such as variable instances can be ac-
cessed through an engine adapter. A broker conducts the actual weaving of aspects
into processes. After deployment of an aspect it subscribes to the engine’s event sys-
tem and waits for an event that signals the correct position of the aspect (as given in
the aspect definition). Execution of an advice of an aspect (i.e. invocation of a ser-
vice) is done by the service bus. It consists of several wrappers that act as gateways to
invoke services. This design decouples the broker from the service invocations. The
results of these invocations are routed to the broker that propagates them back to the
engine. The user can create, edit, delete, deploy and undeploy aspects with the help of
the aspect management tool.

In order to account for compensation of weaved-in aspects, we extended the existing
prototype as follows: (1) the aspect management tool now allows to attach compensation

 Adapted Service Orchestration Logic and Its Compensation Using Aspects 725

aspects to aspects to be executed during compensation of the associated scope; (2) engine
events that signal states of compensation handlers (ready, executing, finished) can be
generated; (3) the engine adapter now provides functionality to dynamically register
events that block process instance execution. This is needed to weave in compensation
aspects; (4) the new auditor component stores the audit trail of processes (especially
execution timestamps of activities and weaved-in aspects, and variable snapshots); (5) the
weaver is capable of registering compensation aspects.

BPEL Engine

Event
System

Engine
Adapter

MOM

Controller

Weaver
WS-N
Broker WrapperWrapperWrapper

Web
Service

Web
Service

…

WS-N

Aspect
Management Tool

Auditor

Broker

Service Bus

WS-N

System Boundary

Fig. 1. Overview of the BPEL’n’Aspects system. Gray components were developed or adapted
during this work.

2 Functions to Be Demonstrated

We demonstrate the extended BPEL’n’Aspects prototype with an example scenario of
an online book store: (1) we show how users create aspects with the aspect manage-
ment tool; (2) how a compensation aspect is attached to an aspect; (3) how aspects are
deployed to the book store process model; (4) we prepare three different kinds of
aspects that cover the most important use cases of our approach. For these three cases
we show the deployment, normal execution with the changed process logic, and faulty
execution with the compensation of the changed process logic.

Acknowledgments. The authors would like to thank the German Research Founda-
tion (DFG) for financial support of the project within the Cluster of Excellence in
Simulation Technology (EXC 310/1) at the University of Stuttgart.

Reference

1. Karastoyanova, D., Leymann, F.: BPEL’n’Aspects: Adapting Service Orchestration Logic.
In: Proceedings of the 7th International Conference on Web Services, ICWS 2009 (2009)

A Tool for Integrating Pervasive Services and

Simulating Their Composition

Ehsan Ullah Warriach, Eirini Kaldeli, Jaap Bresser,
Alexander Lazovik, and Marco Aiello�

Distributed Systems Group, Johann Bernoulli Institute
University of Groningen, Nijenborgh 9, 9747 AG, The Netherlands

{e.u.warriach,e.kaldeli,j.bresser,a.lazovik,m.aiello}@rug.nl

Abstract. As computation and services are pervading our working and
living environments, it is important for researchers and developers to
have tools to simulate and visualize possible executions of the services
and their compositions. The major challenge for such tools is to integrate
highly heterogeneous components and to provide a link with the physical
environment. We extend our previous work on the RuG ViSi tool [4],
in a number of ways: first, we provide a customizable and interactive
middleware based on open standards (UPnP and OSGi) [3]; second, we
allow any composition engine to guide the simulation and visualization
(not only predefined compositions using BPEL) [3]; third, the interaction
with simulated or physical devices is modular and bidirectional, i.e., a
device can change the state of the simulation. In the demo, we use an AI
planner to guide the simulation, a number of simulated UPnP devices, a
real device running Java, and a two room apartment. The related video
is available at http://www.youtube.com/watch?v=2w_UIwRqtBY.

Domotics is concerned with the automation of the home in order to improve the
safety and comfort of its inhabitants, by having numerous loosely-coupled and
heterogeneous devices working together. The EU Smart Homes for All (SM4All)
project provides a Service Oriented Computing approach to have the smart
home respond to user needs by performing a set of actions and being aware of
the home context. The objective is to realise a domotic infrastructure that is
highly interactive and adaptive to the needs of different users and environments.
The main components of the SM4ALL framework are the building blocks of
the implementation presented here and include the pervasive platform, the com-
position module, and the visualisation and simulation tool. Figure 1 illustrates
how these components interact with each other. The pervasive platform is where
the devices of the house live. The devices are described following the UPnP
(www.upnp.org) protocol, and are wrapped as service components at the OSGi
(www.osgi.org) platform. Non-UPnP devices are also supported by deploying
a UPnP proxy. In Figure 1 the pervasive platform includes a set of simulated
� The research is supported by the EU project Smart Homes for All

(http://www.sm4all-project.eu), contract FP7-224332.

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 726–727, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.youtube.com/watch?v=2w_UIwRqtBY
www.upnp.org
www.osgi.org

A Tool for Integrating Pervasive Services and Simulating Their Composition 727

devices (door, window and TV) that use the UPnP protocol, as well as a phys-
ical Sentilla mote (www.sentilla.com) with a ZigBee interface. Several clients
can subscribe to the server built on top of the OSGi framework, and interact
with the service components by exchanging SOAP messages, as well as receive
notifications about new devices and contextual changes.

Fig. 1. Architectural Overview

The composition module we
use in the current demo to drive
the simulation and visualization is
registered as a client, and is re-
sponsible for registering the state
of the home, as well as for coordi-
nating the available services. The
most important part of the com-
position component is the plan-
ner, which is domain-independent
and builds upon constraint satis-
faction techniques [2]. A rule en-
gine is responsible for identifying
whether certain conditions hold,
and accordingly triggering some
appropriate pre-defined goals, e.g.
to deal with an event of fire. The user can also issue his own goals through the
Brain-Computer Interface (BCI) [1] and web interfaces, e.g. a request to watch
TV. The computed plan is then passed to an orchestrator that executes it by
invoking the corresponding operations at the pervasive layer, which are in turn
visualised at the simulated home environment.

The simulation and visualisation platform –the RuG ViSi tool– is an extension
of our initial work presented last year at the ICSOC Demo session [4]. It is
based on Google SketchUp for the 3D rendering. The most notable improvements
are: first, we provide a customizable and interactive middleware based on open
standards (UPnP and OGSi); second, we allow any composition engine to guide
the simulation and visualization third, the interaction with simulated or physical
devices is modular and bidirectional. In addition, we now fully comply with the
modular SM4ALL architecture.

References

1. Babiloni, F., Cincotti, F., Marciani, M., Astolfi, L., Aloise, F., Fallani, F., Mattia,
D.: On the use of bci outside scientific laboratories: Toward an app. in domotic
environments. Int. Review of Neurobiology (2009)

2. Kaldeli, E., Lazovik, A., Aiello, M.: Extended goals for composing services. In: Int.
Conf. on Automated Planning and Scheduling (ICAPS 2009), AAAI Press, Menlo
Park (2009)

3. Kaldeli, E., Warriach, E.U., Bresser, J., Lazovik, A., Aiello, M.: Interoperation,
composition and simulation of services at home. In: ICSOC (2010)

4. Lazovik, E., den Dulk, P., de Groote, M., Lazovik, A., Aiello, M.: Services inside the
smart home: A simulation and visualization tool. In: ICSOC, pp. 651–652 (2009)

www.sentilla.com

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 728–729, 2010.
© Springer-Verlag Berlin Heidelberg 2010

BPEL4Pegasus: Combining Business
and Scientific Workflows

Mirko Sonntag1, Dimka Karastoyanova1, and Ewa Deelman2

1 Institute of Architecture of Application Systems, University of Stuttgart
Universitaetsstrasse 38

70569 Stuttgart, Germany
{sonntag,karastoyanova}@iaas.uni-stuttgart.de
2 Information Science Institutes, University of Southern California

Admiralty Way 4676
90292 Marina Del Rey, California, USA

deelman@isi.edu

Abstract. Business and scientific workflow management systems (WfMS) offer
different features to their users because they are developed for different applica-
tion areas with different requirements. Research is currently being done to ex-
tend business WfMSs by functionality that meets requirements of scientists and
scientific applications. The idea is to bring the strengths of business WfMSs to
e-Science. This means great effort in re-implementing features already offered
by scientific WfMSs. In our work, we investigated another approach, namely
combining business and scientific workflows and thus harnessing the advan-
tages of both. We demonstrate a prototype that implements this idea with BPEL
as business workflow language and Pegasus as scientific WfMS. Our motiva-
tion is the fact that the manual work to correctly install and configure Pegasus
can be supervised by a BPEL workflow to minimize sources of failures and
automate the overall process of scientific experimenting.

Keywords: Scientific workflows, business workflows, human tasks, Pegasus,
BPEL.

1 System Overview

The main idea of the work is allowing a business workflow to orchestrate and super-
vise one or more scientific workflows that in combination represent a whole scientific
experiment with all its stages. Fig. 1 shows how this concept is implemented in the
prototype to demonstrate. Note that the dotted lines represent possible machine bor-
ders. Pegasus relies on Condor DAGMan and Condor to execute scientific workflows
on Grids. A BPEL engine (we used the open source engine Apache ODE 2.0,
http://ode.apache.org/) runs a business process that supervises the Pegasus work-
flow’s planning and execution phase. In order to invoke Pegasus by BPEL we created
a Web service (WS) that wraps and offers Pegasus’ functionality. Apache ODE cur-
rently does not implement a direct support for human activities and hence there is no
human task (HT) client. That is the reason why we developed a Web application as

 BPEL4Pegasus: Combining Business and Scientific Workflows 729

GUI for the users. It is a HT client and monitoring tool in one, and HTs are called by
BPEL in terms of WS calls. Since scientific workflows executed by Pegasus can be
long-running, we follow an asynchronous communication model between the GUI,
BPEL engine and Pegasus.

Fig. 1. Overview of the system. Gray ingredients were developed as part of this work.

Contributions of the prototype can be summarized as follows: (1) the correlation
between BPEL workflow instances and Pegasus workflows; (2) providing Pegasus’
original interface that is a mix of shell commands and file operations as WS; (3) a
GUI for preparing and executing Pegasus workflows; and (4) GUI support for users to
setup Pegasus’ site, transformation and replica catalogs. These contributions enor-
mously simplify the work of scientists since it is more straightforward to use and
lowers the learning curve, automates manual tasks and supports decision making.

2 Functions to Be Demonstrated

The demonstration has two parts: (1) All aspects of the GUI are shown: The work list
containing all work items assigned to a user, the monitor that shows the current state
of workflow instances, and the view to select a Pegasus server, and to choose and start
a Pegasus workflow. (2) Pegasus workflow execution: It is shown how a user can
follow the progress of scientific experiments with the help of the monitor, how work
items are assigned to users, and how they can handle these work items. Moreover, we
present how a user is assisted during the configuration of Pegasus catalogs and how
he can react to failures in the Pegasus planning phase and can ensure convergence of
result files. A video of the demonstration can be found here: http://www.iaas.uni-
stuttgart.de/institut/mitarbeiter/sonntag/indexE.php.

Acknowledgments. The authors M.S. and D.K. would like to thank the German Re-
search Foundation (DFG) for financial support of the project within the Cluster of
Excellence in Simulation Technology (EXC 310/1) at the University of Stuttgart.

Multidisciplinary Views of Business Contracts

Munindar P. Singh1 and Nirmit Desai2

1 North Carolina State University, Raleigh, NC 27695-8206, USA
2 IBM Research, Bangalore 560071, India

Several major trends in the services industry drive toward an increasing impor-
tance of contracts. These include the formalization of business processes across
the client and the provider organizations; resource administration in cloud com-
puting environments; service-level agreements as they arise in infrastructure
and networking services; and services viewed from the perspective of real-life
engagements.

Previous work on e-commerce architectures and on technical services (such
as web and grid services) has focused on low-level aspects of computation. In
contrast, the emerging trend toward contracts recognizes the importance of high-
level, flexible specifications of interactions. It is clear that contracts make sense
only when the contracting parties are autonomous. Further, contracts help shield
the organizational heterogeneity of the contracting parties from one another.
In this manner, contracts provide a natural match for a variety of real-world
problems that service scientists are beginning to recognize.

By developing and studying contracts from perspectives of multiagent sys-
tems, legal and jurisprudence literature, and economics, we would not only find
compelling new applications for the concepts and techniques of multiagent sys-
tems but also discover new and multidisciplinary methods driven by contracts
for architecting service systems.

This tutorial introduces the key ideas and techniques of contracts as they
arise in major real-world service engagements; the benefits of formalizing con-
tracts to realize them computationally; and the opportunities and challenges
contracts offer for researchers and practitioners. We are seeing increasing inter-
est in contracts from the services research community. Recently, several high-
profile research projects have been centered on contracts. While most members
of the ICSOC community may be familiar with WS-Agreement, Service-Level,
Agreements, and Quality of Service, the attendees may benefit from alternative,
multidisciplinary, perspectives into contracts such as the theory and practice of
multiagent systems, the legal and jurisprudence literatures, and ideas from social
sciences and economics. This tutorial eill enable studies of contracts by explain-
ing why contracts are needed, how they can be represented, and which concepts
and techniques support contracts naturally. This tutorial will provide the key
background, which attendees can use as a launching pad for their investigations.

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, p. 730, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Quantitative Service Analysis

Naveen Kulkarni, Deepti Parachuri, and Shashank Trivedi

Software Engineering and Technology Labs, Infosys Technologies Ltd, India
{Naveen_Kulkarni,Deepti_Parachuri,Shshank_Trivedi}@infosys.com

Abstract. Service Orientation has become popular due to dynamic
market conditions and changing customer needs. A successful service
oriented architecture implementation requires the need for right identi-
fication of services from business process models. Service identification
is considered to be the main activity in the modeling of service oriented
solution, as errors made during service identification flows down through
detailed design and implementation of activities.

Though service orientation has been an important milestone in many
enterprise transformation initiatives, there hasn’t been much work on
identification of services. Services have been identified and are used in
day to day transactions, but they are limited to exchange of information
between partners (two different organizations) or infrastructure related.
Functionalities that are widely used across all applications such as se-
curity, auditing has been considered for servicification. In some other
cases, business processes have been considered as simple orchestrated set
of web services with each activity mapping to a single web service.

Adopting any service identification approach for Service Orientation
without verification would rather be impractical for the simple reason
being that no common notion of service can be established among stake-
holders. It is essential to assert if all services identified provide necessary
value and exhibit acceptable technical health (flexibility, reuse etc). To
be more effective, there is a need for a methodology that can quanti-
tatively measure the candidature of services with respect to business
process models. With such automation, a platform can be provided to
bootstrap service analysis where stakeholders can continually model and
refine services based on predefined criteria.

This tutorial is intended for researchers and industry practitioners who
are interested in Service Oriented Architecture and Service Analysis. The
tutorial gives a deeper insight on service analysis and service identifica-
tion methodologies. Though our methodology follows the prescribed top
down approach while recognizing the importance of starting with busi-
ness models for service identification, it stands different as it is based on
mathematical model rather than heuristics or questionnaire based. Our
method adopts quantitative way of groping set of business activities and
measuring the service candidacy of those groups based on well defined
principles. It also demonstrates an automated tool for service analysis.

abstract environment.

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, p. 731, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Scalable Services:

Understanding Architecture Trade-off

Markus Klems and Stefan Tai

Karlsruhe Institute of Technology, Germany
{markus.klems,stefan.tai}@kit.edu

http://www.kit.edu

Abstract. Creating Internet-scale services is a critical challenge for
many organizations today. Data storage is a key component and fac-
tor to scalability, and data partitioning and replication along with loose
coupling and simple service interfaces have become successful architec-
ture guidelines to preventing scalability issues.

Partitioning realizes incremental scalability by splitting up large data
sets and distributing smaller data shards across multiple servers. Replica-
tion and loose coupling help tolerate server failures and improve service
availability. Replica synchronization, however, can produce substantial
volumes of server-to-server traffic and delay service response time.

Distribution of storage infrastructure, consequently, provokes funda-
mental trade-off challenges, known as the strong CAP principle: only two
out of the three properties of a distributed system, strong consistency
(C), high availability (A), and partition-tolerance (P), can be achieved
at the same time. For example, a transactional database on a single node
provides CA without P, a distributed database system with pessimistic
locking provides CP without A, and the Domain Name System provides
AP without C. The weak CAP principle generalizes the strong CAP
principle by characterizing the trade-off as a continuum instead of binary
choices. In particular, relaxing consistency requirements and trading con-
sistency for higher availability has become a successful modus operandi
for Internet-scale systems.

Key-value data stores provide storage capabilities for a wide range
of applications and services, from Amazon’s shopping carts to Zynga’s
social gaming engine. We explore common mechanisms employed by
Internet-scale key-value data stores, such as Dynamo, Cassandra, and
Membase, and discuss how key-value data stores are used in support of
representative Internet applications and services.

To evaluate and compare eventually consistent data stores, metrics
and benchmarking tools are needed. We review metrics proposed by the
distributed systems community and argue for a novel consistency bench-
marking model as a systematic approach to measure relaxed consistency.

Keywords: Service-Oriented Computing, Cloud Computing, Data Store
Architecture.

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, p. 732, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.kit.edu

Crowd-Driven Processes:

State of the Art and Research Challenges

Maja Vukovic1 and Claudio Bartolini2

1 IBM Research, 19 Skyline Dr, Hawthorne, NY 10532, USA
maja@us.ibm.com

2 HP Labs, 1501 Page Mill Road, Palo Alto, CA 94304, USA
claudio.bartolini@hp.com

Abstract. Over the past few years the crowdsourcing paradigm has
evolved from its humble beginnings as isolated purpose-built initiatives,
such as Wikipedia and Elance and Mechanical Turk to a growth indus-
try employing over 2 million knowledge workers, contributing over half a
billion dollars to the digital economy. Web 2.0 provides the technological
foundations upon which the crowdsourcing paradigm evolves and oper-
ates, enabling networked experts to work collaboratively to complete a
specific task.

Crowdsourcing has a potential to significantly transform the busi-
ness processes, by incorporating the knowledge and skills of globally
distributed experts to drive business objectives, at shorter cycles and
lower cost. Many interesting and successful examples exist, such as Gold-
Corp, TopCoder, Threadless, etc. However, to fully adopt this mechanism
enterprises, and benefit from appealing value propositions, in terms of
reducing the time-to-value, a set of challenges remain, in order for enter-
prises to retain the brand, achieve high quality contributions, and deploy
crowdsourcing at the minimum cost.

Enterprise crowdsourcing poses interesting challenges for both aca-
demic and industrial research along the social, legal, and technological
dimensions. In this tutorial we present a landscape of existing crowd-
sourcing applications, targeted to the enterprise domain. We describe the
challenges that researchers and practitioners face when thinking about
various aspects of enterprise crowdsourcing. First, to establish technolog-
ical foundations, what are the interaction models and protocols between
the Enterprise and the crowd (including different types of crowd, such
as internal, external and hybrid models). Secondly, how is crowdsourcing
going to face the challenges in quality assurance, enabling Enterprises to
optimally leverage the scalable workforce. Thirdly, what are the novel
(Web) applications enabled by Enterprise crowdsourcing, and how can
existing business processes be transformed for crowd consumption.

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, p. 733, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Author Index

Aiello, Marco 167, 726
Akkiraju, Rama 515, 557
Alhakoon, Oshadi 717
Alshareef, A. 699
Anand, Vishal 657
Anderson, Laura 501
Anstett, Tobias 288
Armellin, Giampaolo 708
Averstegge, Michael 695

Badr, Youakim 542
Baez, Marcos 719
Baraki, Harun 441
Baresi, Luciano 711
Bartolini, Claudio 733
Bellucci, Alessandro 527
Benatallah, Boualem 702, 719
Benbernou, Salima 596
Ben Ghézala, Henda Hajjami 258
Bertok, Peter 197
Betti, Dario 708
Birukou, Aliaksandr 122, 706
Bocchi, Laura 396
Bouguettaya, Athman 92, 704
Bozzon, Alessandro 663
Braga, Daniele 715
Brambilla, Marco 663
Bresser, Jaap 167, 726
Bulanov, Pavel 47

Cangialosi, Piero 318
Cardellini, Valeria 381, 527
Carro, Manuel 350, 596
Casalicchio, Emiliano 381
Casati, Fabio 706, 708, 719
Cavalcante, Agnieszka Betkowska 706
Chang, Henry 571
Chen, Han 682
Chen, Shiping 704
Chhieng, Van M. 719
Chiasera, Annamaria 708
Chowdhury, Soudip Roy 706
Comes, Diana 441
Corcoglioniti, Francesco 663, 715

Cremene, Marcel 670
Crispo, Bruno 288

da Cruz Pinto, Marcelo 649
D’Andrea, Vincenzo 122, 706
Deelman, Ewa 728
De Giacomo, Giuseppe 318
De Masellis, Riccardo 318
Deng, Yu 680
De, Pradipta 657
Desai, Nirmit 730
Dijkman, R.M. 699
Di Valerio, Valerio 527
Doshi, Prashant 77
Driss, Maha 258
Duchien, Laurence 228
Dumas, Marlon 213, 699
Dustdar, Schahram 365, 411, 722

Eckert, Julian 641
Elgammal, Amal 17
ElMessiry, Adel M. 486

Fauvet, M.C. 699
Fischer, Robin 627
Frank, Joachim H. 571
Friedrich, Gerhard 334

Gamini Abhaya, Vidura 197
Gao, Xibin 486
Garćıa-Bañuelos, Luciano 213, 699
Geihs, Kurt 441
Gheorghe, Gabriela 288
Ghose, Aditya 551
Godart, Claude 603
Gong, Zifei 702
Grassi, Vincenzo 381
Grossniklaus, Michael 715
Guanciale, Roberto 396
Guermouche, Nawal 603
Guinea, Sam 711
Gupta, Manish 657

Hall, Stephen 137
Han, Jun 587

736 Author Index

Hang, Chung-Wei 456
Harney, John 77
Head, Michael R. 680
Hermenegildo, Manuel 350
Hermosillo, Gabriel 228
Heward, Garth 587
Hoang, Dat Dac 273
Hoesch-Klohe, Konstantin 551
Honiden, Shinichi 182, 635
Hummer, Waldemar 365

Iannucci, Stefano 527
Ishikawa, Fuyuki 182, 579, 635
Ivan, Anca 515
Ivanović, Dragan 350

Jamoussi, Yassine 258
Jegadeesan, Bala 501
Jézéquel, Jean-Marc 258
Johns, Kenneth 501
Juszczyk, Lukasz 411, 722

Kaldeli, Eirini 167, 726
Karastoyanova, Dimka 365, 724, 728
Kern, Robert 243
Kim, Minkyong 682
Kim, Sung Wook 702
Klein, Adrian 182
Klems, Markus 627, 732
Klöpper, Benjamin 635
Kochut, Andrzej 680
Kopp, Oliver 303
Kotonya, Gerald 137
Krishnaswamy, Shonali 717
Kulkarni, Naveen 731

Labbe, Cyril 717
Lago, Patricia 678
Lampe, Ulrich 641
Langguth, Christoph 563
La Rosa, M. 699
Lazovik, Alexander 47, 167, 726
Lei, Hui 682
Leitner, Philipp 365
Leymann, Frank 122, 288, 303, 365, 706
Li, Lily 704
Li, Wenya 92
Lichtsinn, Mario 501
Lin, Donghui 108
Liu, Dongxi 704

Liu, Qing 704
Liu, Rong (Emily) 557
Liu, Weihong 92
Lohmann, Niels 32
Lo Presti, Francesco 381

Maamar, Zakaria 542
Madduri, Venkateswara R. 657
Malik, Zaki 471
Martinez, Gloria 708
Mayer, Wolfgang 334
Mazzoleni, Pietro 557
Medjahed, Brahim 471
Mendling, Jan 1, 699
Menzel, Michael 627
Miede, André 641
Mietzner, Ralph 288
Moha, Naouel 258
Monakova, Ganna 288
Morin, Ricardo 649
Mullan, Priti 501
Müller, Ingo 587
Munson, Jonathan 680
Murakami, Yohei 108
Mussi, Alejandro 719

Narendra, Nanjangud C. 542
Nepal, Surya 704
Ngu, Anne H.H. 273

Oanea, Olivia 612
Oberortner, Ernst 706
Ouederni, Meriem 619

Paik, Hye-Young 273, 702
Papageorgiou, Apostolos 641
Papazoglou, Mike 17
Parachuri, Deepti 731
Pimentel, Ernesto 619
Poizat, Pascal 152
Polyvyanyy, Artem 213
Pop, Florin-Claudiu 670

Rahayu, Dwi A.P. 717
Razavian, Maryam 678
Reichle, Roland 441
Reijers, H.A. 699
Rembert, Aubrey 557
Rhodes, James 501
Riveill, Michel 670
Rosati, Riccardo 318

Author Index 737

Sadegh, M. 699
Sailer, Anca 680
Salaün, Gwen 619
Satyaputra, Qamal Kosim 719
Satzger, Gerhard 243
Schleicher, Daniel 288
Schneider, Jean-Guy 587
Schuldt, Heiko 563
Schuller, Dieter 641
Schuster, Nelly 713
Seinturier, Lionel 228
Serafinski, Jacek 122, 706
Shaikh, Hidayatullah 680
Shan, Zhe 690
Sharma, Akhilesh 501
Sherchan, Wanita 704
Silveira, Patricia 122, 706
Singh, Munindar P. 426, 456, 486, 730
Smirnov, Sergey 1
Smit, Michael 684
Sonntag, Mirko 724, 728
Steinmetz, Ralf 641
Stein, Raffael 713
Stevovic, Jovan 708
Strauch, Steve 122, 706
Strollo, Daniele 396
Strong, Ray 501
Stroulia, Eleni 684
Stumptner, Markus 334
Sürmeli, Jan 612

Tai, Stefan 713, 732
Tanaka, Masahiro 108
Tari, Zahir 197
Telang, Pankaj R. 426
Thies, Hans 243
Tluczek, Marek 122, 706
Toai, Tefo James 708
Torino, Maria Emilia 649

Trivedi, Shashank 731
Tuosto, Emilio 396
Turetken, Oktay 17

Vadacca, Salvatore 663, 715
Vaida, Mircea 670
van Beest, Nick R.T.P. 47
van den Heuvel, Willem-Jan 17
van der Aalst, W.M.P. 699
Varner, Danny 649
Versteeg, Steve 587
Vorwerk, Corren 702
Vukovic, Maja 733

Wagner, Florian 686
Wang, Hongbing 92
Warriach, Ehsan Ullah 167, 726
Weber, Ingo 702
Weidlich, Matthias 1
Wetzstein, Branimir 365
Wilde, Erik 61
Wolf, Karsten 32, 612
Wortmann, Hans 47
Wu, Jemma 704
Wutke, Daniel 303

Yang, Yong 213
Yan, Yuhong 152
Ye, Fan 682

Zapf, Michael 441
Zemni, Mohamed Anis 596
Zeng, Liangzhao 571
Zhang, Liang 213
Zhao, Ludeng 152
Zheng, Liangliang 702
Zhou, Ruoyi 501
Zhou, Xiang 92
Zhou, Xuan 92, 704
Zirpins, Christian 713

	Title Page
	Preface
	Organization
	Table of Contents
	Research Papers
	Service and Business Process Modeling (1)
	Business Process Model Abstraction Based on Behavioral Profiles
	Introduction
	Background
	Business Process Model Abstraction
	Preliminaries

	Abstract Model Synthesis
	Deriving Behavioral Relations from a Process Model
	Abstract Model Behavioral Profile Construction
	Behavioral Profile Consistency Validation
	Abstract Model Synthesis from a Consistent Behavioral Profile

	Related Work
	Conclusion and Future Work
	References

	Root-Cause Analysis of Design-Time Compliance Violations on the Basis of Property Patterns
	Introduction
	Design-Time Compliance Management
	Running Scenario
	Compliance Patterns and Compliance Constraints Taxonomy
	Root-Cause Analysis of Design-Time Compliance Violations
	Current Reality Trees for Atomic Patterns
	Current Reality Trees for Composite Patterns
	Current Reality Trees for the New Compliance Patterns
	Current Reality Trees of the Internet Reseller Scenario
	Implementation of the Root Cause Analysis Approach

	Related Work
	Conclusions and Outlook
	References

	Artifact-Centric Choreographies
	Introduction
	Modeling Artifacts
	Location-Aware Artifacts
	Categorization of Location Information
	Choreography Construction
	Goal States and Controller Synthesis
	Policies

	Related Work
	Conclusion
	References

	Service and Business Process Modeling (2)
	Resolving Business Process Interference via Dynamic Reconfiguration
	Introduction
	Related Work
	A Case Study: Business Process for the Dutch WMO Law
	Dependency Scopes and Intervention Patterns
	Case Study: Repairing the WMO Process
	Implementation
	Conclusion
	References

	Linked Data and Service Orientation
	Introduction
	Narrow Linked Data World View
	Wide Linked Data World View
	Data Model Issues
	Metamodel Bias
	Data Granularity
	Data Processing

	Service Orientation
	Which One Is Better?
	Conclusions
	References

	Risk Sensitive Value of Changed Information for Selective Querying of Web Services
	Introduction
	Scenario: Risk Sensitive Supply Chain
	Background: Web Service Composition and VOC
	WS Composition Using Markov Decision Processes
	VOC for Selective Querying

	Risk Sensitive VOC
	Experiments
	Impact of Risk Preferences on Composition
	Impact of Risk Preferences on Adaptation

	Related Work
	Discussion and Future Work
	References

	Service Management (1)
	Adaptive Service Composition Based on Reinforcement Learning
	Introduction
	A MDP Model for Service Composition
	Reinforcement Learning for Service Composition
	Q-Learning
	Applying Q-Learning to WSC-MDP

	Experimental Evaluation
	Simulation Setup
	Efficiency of Learning
	Adaptivity to Changes

	Related Work
	Conclusion
	References

	A Service Execution Control Framework for Policy Enforcement
	Introduction
	Scenario
	System Architecture
	Adaptation Using Execution Control
	Execution State Control
	Business Logic Control
	Adaptation Example

	Verification during Execution
	Updating Model
	Reducing Execution State Space

	Related Works
	Conclusion
	References

	An Integrated Solution for Runtime Compliance Governance in SOA
	Introduction
	Related Work
	Motivating Scenario: Advanced Telecom Services
	Compliance Governance Lifecycle
	Runtime Compliance Governance Framework
	Runtime Compliance Governance Architecture
	Compliance Governance in the Advanced Telecom Services

	Conclusion and Future Work
	References

	Service Management (2)
	A Differentiation-Aware Fault-Tolerant Framework for Web Services
	Introduction
	Related Work
	A Differentiation-Aware Fault-Tolerant Framework
	LAMB
	Sandbox
	Fault Tolerance Protocols

	Case Study – Trading Floor System
	Performance Monitoring
	FT Configuration
	Normal Operation Scenario
	Runtime Reconfiguration Scenario (Differentiation-Awareness)
	Concurrent Fail-Stop Scenario
	Byzantine Scenario

	Conclusions
	References

	Repair vs. Recomposition for Broken Service Compositions
	Introduction and Motivating Example
	Preliminaries
	Models
	Repairing Service Compositions
	Change Modelling
	Repair Algorithm

	Implementation and Experimental Evaluation
	Evaluation Criteria
	Implementation and Benchmark
	Experiment Results

	Related Work
	Conclusions and Future Work
	References

	Interoperation, Composition and Simulation of Services at Home
	Introduction
	Getting a Beer
	Architecture
	Simulation and Visualization
	Evaluation
	Related Work
	Concluding Remarks
	References

	Quality of Service
	Efficient QoS-Aware Service Composition with a Probabilistic Service Selection Policy
	Introduction
	SOA
	Composition Problem
	Contribution

	Related Work
	Approach
	Formal Definition
	Relaxation
	Result

	Application
	Original Problem
	Relaxed Problem
	Refined Relaxed Problem
	Computer-Aided Decision Process

	Evaluation
	Settings
	Performance and Scalability
	Utility
	Original Problem

	Conclusion
	References

	Using Real-Time Scheduling Principles in Web Service Clusters to Achieve Predictability of Service Execution
	Introduction
	Background
	Real-Time Dispatching Algorithms for Web Service Clusters
	Dispatching Algorithms

	Implementation
	Empirical Evaluation
	Related Work
	Conclusion
	References

	Aggregate Quality of Service Computation for Composite Services
	Introduction
	Background
	Orchestration Model
	Quality of Service Model

	Anatomizing Service Orchestration
	Orchestration Component
	Single-Entry-Multi-Exit Loop Component
	DAG Component

	Quality of Service Aggregation
	Aggregation of Orchestration Component
	QoS of Composite Services

	Implementation and Evaluation
	Dataset
	Results

	Related Work
	Conclusion
	References

	Service Science and Design
	Creating Context-Adaptive Business Processes
	Introduction
	Motivation and Challenges
	Background
	Complex Event Processing
	Business Process Execution Language
	Component-Oriented Programming

	Events Definitions and the SBPL
	Event Definitions
	Standard Business Process Language

	The CEVICHE Framework
	Overview and Architecture
	Process Adaptation

	Discussion and Validation
	Related Work
	CEP and BPEL
	Business Process Adaptation
	BPEL Context Adaptation

	Conclusions and Future Work
	References

	Statistical Quality Control for Human-Based Electronic Services
	Introduction
	Fundamentals
	Statistical Quality Control for People Services
	Assumptions
	Acceptance Sampling for pServices
	Sample Inspection Process - The Weighted Majority Vote (WMV) Approach

	Evaluation
	Experimental Design
	Qualification Testing
	Execution Performance
	Full Inspection
	Acceptance Sampling

	Related Work
	Conclusion and Future Work
	References

	A Requirement-Centric Approach to Web Service Modeling, Discovery, and Selection
	Introduction
	Intentional Services Modeling
	Representing Users' Requirements with Maps
	Specifying Intentional Services
	Eliciting Intentional Services from Maps

	Discovering Operational Services
	Selecting Relevant and High QoS Operational Services
	Introducing FCA
	Using Concept Lattices to Select Relevant and High Quality Operational Services

	Experiments
	Related Work
	Conclusion
	References

	Service Development and Run-Time Management
	Spreadsheet as a Generic Purpose Mashup Development Environment
	Introduction
	Reference Scenario
	Contributions

	Overview of Spreadsheet-Based Mashup Tools
	MashSheet Overview
	MashSheet Application Model
	MashSheet's Mashup Operators
	Life Cycle Operators
	Process Operators
	Data Operators
	Visualization Operators

	Building and Executing MashSheet Application
	MashSheet Benchmark
	Conclusions and Future Works
	References

	Combining Enforcement Strategies in Service Oriented Architectures
	Introduction
	Motivating Example
	SOA Enforcement: Current Approaches versus Our Approach
	Different Architectural Approaches
	BPEL Engine Enforcement Capabilities
	ESB Enforcement Capabilities
	Enforcement Policy Model

	Combination of Enforcement Capabilities
	Implementation Considerations
	Related Work
	Conclusion and Future Work
	References

	Fault Handling in the Web Service Stack
	Introduction
	Related Work
	Fault Classification
	Communication Layer Faults
	Transport Layer Faults
	Messaging Layer Faults
	Quality of Service Layer Faults
	Component Layer Faults

	Implemented Fault Propagation
	Apache ODE
	Apache Axis2

	Conclusions and Future Work
	References

	High-Level Description Languages
	Conjunctive Artifact-Centric Services
	Introduction
	Framework
	Artifact Data Schema
	Artifact Tasks
	Artifact Lifecycle
	Artifact Executions

	Verification Formalism
	Results
	Skolem Transition System
	Decidability

	Conclusions
	References

	Diagnosis of Service Failures by Trace Analysis with Partial Knowledge
	Introduction
	Example
	Process Model
	Diagnosis Model
	Symbolic Representation
	Diagnosis Computation and Evaluation
	Related Work
	Conclusion
	References

	Automatic Fragment Identification in Workflows Based on Sharing Analysis
	Introduction
	Structuring Fragments with Lattices
	Derivation of Control and Data Dependencies
	Workflow Representation
	Validity of Control Dependencies

	Translation and Analysis
	Workflows as Horn Clauses
	Sharing Analysis
	Deriving Fragment Identification Information from Sharing

	An Example of Application to Data Privacy
	Conclusions
	References

	Service Level Agreements
	Preventing SLA Violations in Service Compositions Using Aspect-Based Fragment Substitution
	Introduction
	Case Study and Motivation
	Aspect-Based Adaptation
	Adaptation Triggers
	Composition Fragments
	Generic Fragments
	Dynamic Weaving
	Impact Model and Advice Selection

	Prototype Implementation
	Evaluation
	Coverage of Adaptation Patterns
	Performance Analysis

	Related Work
	Conclusions and Future Work
	References

	Adaptive Management of Composite Services under Percentile-Based Service Level Agreements
	Introduction
	System Architecture
	Composite Service
	SLA Negotiation
	Admission Control
	Service Selection Model

	Composite Service QoS Model
	Optimization Problem
	Simulation Model and Experiments
	Simulation Model
	Experimental Results

	Conclusions
	References

	BPMN Modelling of Services with Dynamically Reconfigurable Transactions
	Introduction
	Background
	The Business Process Modeling Notation
	EJB Transactional Attributes
	The Car Repair Case Study

	Modelling Transactional Processes with BPMN and Attributes
	Modelling Attribute-Based Services Invocation and Instantiation
	Concluding Remarks and Related Work
	References

	Service Engineering Methodologies
	Programmable Fault Injection Testbeds for Complex SOA
	Introduction
	Motivation

	Genesis2 Testbed Generator Framework
	Programmable Multi-level Fault Injection Testbeds
	Message Faults
	Service Execution Faults
	Low-Level Network Faults

	Implementation and Practical Application
	Implementation and Extensibility of Genesis2 Prototype
	Practical Application in Testing of SOA Prototypes
	Managing Large-Scale Testbeds
	Open-Source Prototype

	Related Research
	Conclusion
	References

	Abstracting and Applying Business Modeling Patterns from RosettaNet
	Introduction
	Background
	RosettaNet
	Business Metamodel

	Business Patterns from PIPs
	Request Quote (PIP 3A1)
	Request Purchase Order (PIP 3A4)
	Request Purchase Order Change (PIP 3A8)
	Request Shipping Order (PIP 3B12)
	Notify of Advance Shipment (PIP 3B2) and Notify of Remittance Advice (PIP 3C6)
	Distribute Inventory Report (PIP 4C1), Notify of Shipment Receipt (PIP 4B2), and Notify of Invoice (PIP 3C3)

	Evaluation: Order to Cash Process
	Discussion
	Related Work
	Future Directions

	References

	Heuristic Approaches for QoS-Based Service Selection
	Introduction
	Service Selection Algorithms
	OPTIM_S Algorithm
	OPTIM_HWeight Algorithm
	OPTIM_PRO Algorithm
	GA_CAN Algorithm

	Evaluation
	Related Work
	Conclusion
	References

	Service Security, Privacy, and Trust
	From Quality to Utility: Adaptive Service Selection Framework
	Introduction
	Related Work
	Problem Description and Scope
	Approach
	Describe Service Consumers: Utility Functions
	Describe Service Providers: Quality Distributions
	Calculate Expected Utility of Providers
	Select Services: Exploration vs. Exploitation
	Selecting Services for Composition

	Experiments
	Two Consumers, Three Providers, One Quality, No Selection
	Two Consumers, Three Providers, One Quality, Selection
	Contracts as a Means to Approximate Pareto Optimality

	Conclusions and Directions
	References

	Trust Assessment for Web Services under Uncertainty
	Introduction
	Statistical Cloud Model
	Statistical Cloud-Based Trust Model
	Experiments
	Related Work
	Conclusion
	References

	Incorporating Expectations as a Basis for Business Service Selection
	Introduction
	Understanding Expectations
	Expectation and Reputation Profiles
	Analyzing Feedback to Infer Expectations
	Buyer-Buyer Profile Match
	Buyer-Seller Profile Match

	Evaluation
	Dataset
	Result: Robustness of Expectations as a Well-Formed Concept
	Result: Effectiveness of Negative Feedback in Indicating Expectations
	Result: Effectiveness of Automatically Computing Expectations
	Result: Buyer-Buyer Profile Match
	Result: Buyer-Seller Profile Match

	Conclusions and Discussion
	Threats to Validity
	Relevant Literature
	Future Work

	References

	Industry Papers
	Enhancing Collaboration with IBM’s Rational Jazztm
	Introduction
	Relevant Software Development Research
	Narrative Observations
	Jazz Usage Measurements
	Conclusions and Future Research in This Area
	References

	Discovering Business Process Similarities: An Empirical Study with SAP Best Practice Business Processes
	Introduction
	Background and Related Work on Process Similarity
	Empirical Study Setup and Discussion
	Data Analysis
	Discussions and Conclusions
	References

	A Scalable and Highly Available Brokering Service for SLA-Based Composite Services
	Introduction
	Overview of the MOSES Architecture
	MOSES Design
	MOSES within the JBI Environment
	MOSES Components
	MOSES Clustered Architecture

	Experimental Results
	MOSES WS
	Experimental Setup
	Closed-Model Experiments
	Open-Model Experiments
	Performance of MOSES ESB Clustered

	Conclusions
	References

	Short Papers
	Business Service Modeling
	Business Artifacts Discovery and Modeling
	Introduction
	Our Method
	Data Perspective
	Operation Perspective
	Connection Perspective
	Proof of Concept Implementation

	Conclusion
	References

	Carbon-Aware Business Process Design in Abnoba
	Introduction
	A Framework for Dealing with Green QoS Measures
	Green QoS Measures
	Combining C-Semirings
	QoS Measure Accumulation

	Green Process Improvement
	Conclusion
	References

	On Predicting Impacts of Customizations to Standard Business Processes
	Introduction
	Process Difference and Impact Representations
	Delta Tree
	Impact Trees

	Impact Prediction Algorithm
	Related Work
	Conclusion
	References

	Extended WS-Agreement Protocol to Support Multi-round Negotiations and Renegotiations
	Introduction
	The Original WS-Agreement Specification
	Extended WS-Agreement Protocol
	Modifications of Port Types
	Operations in Detail
	Renegotiation
	Compatibility with the Original Specification

	Related Work
	Conclusions
	References

	Run-Time Service Management
	Event-Driven Virtual Machine for Business Integration Middleware
	Introduction
	ICE Language
	Overview
	Instruction Set

	ICE Machine
	Component Architecture
	Components
	Compilers

	Implementation Aspects
	Related Work
	Conclusion
	References

	Consistent Integration of Selection and Replacement Methods under Different Expectations in Service Composition and Partner Management Life-Cycle
	Introduction
	Framework for Integration of Selection and Replacement Methods
	Classification of Expectations in Service Composition and Partner Management Life-Cycle
	Implementation according to the Classification

	Case Studies
	Discussion and Concluding Remarks
	References

	Optimizing the Configuration of Web Service Monitors
	Introduction
	Monitoring Optimization
	Performance Evaluation
	Results

	Related Work
	Conclusions and Future Work
	References

	Formal Methods
	A Soft Constraint-Based Approach to QoS-Aware Service Selection
	Introduction
	Soft Constraints in a Nutshell
	Soft Service Level Agreement and SCSPs
	Extending SCSP Using Penalties
	An Example
	Mapping SSLA onto SCSP Solvers

	Conclusion
	References

	Timed Conversational Protocol Based Approach for Web Services Analysis
	Introduction
	Modeling Timed Behaviour of Web Services
	From Conversational Protocols to UPPAAL Timed Automata
	Abstraction of Data Constraints

	Formal Asynchronous Compatibility Checking
	Perfect Full Compatibility
	Non-perfect Full Compatibility
	Partial But Non-perfect Compatibility
	Partial and Perfect Compatibility
	Full Incompatibility

	Conclusion
	References

	Service Discovery Using Communication Fingerprints
	Introduction
	Compatibility of Services
	Communication Fingerprints
	Case study
	Conclusion
	References

	Quantifying Service Compatibility: A Step beyond the Boolean Approaches
	Introduction
	Service Model
	Unspecified Receptions Compatibility
	Measuring Protocol Compatibility
	Static Compatibility
	Behavioural Compatibility
	Analysis of Compatibility Measures

	Prototype Tool
	Concluding Remarks
	References

	Quality of Service
	Consistency Benchmarking: Evaluating the Consistency Behavior of Middleware Services in the Cloud
	Background and Motivation
	Approach
	Consistency-Availability Trade-off Challenges
	Consistency Behavior
	Consistency Benchmarking of SQS

	Experiment and Evaluation
	Benchmarking Test Setup
	Test Case Algorithm
	Data and Discussion

	Related Work
	Conclusion and Future Work
	References

	Service Composition with Pareto-Optimality of Time-Dependent QoS Attributes
	Introduction
	The Timed Service Composition Problem
	Workflow Model
	Solution of the Timed-Composition Problem
	Monotone Quality of Service Attributes

	Partial Composition Plan Search Tree
	Use Case with Multi-objective Search Based Composition

	Related Work
	Conclusion
	References

	QoS-Based Optimization of Service Compositions for Complex Workflows
	Introduction
	Related Work
	System Model
	Recursive Workflow Pattern Interlacing
	Optimization Problem
	Conclusion and Outlook
	References

	Privacy-Aware Device Identifier through a Trusted Web Service
	Introduction
	Requirements
	Architecture
	Security Protocol
	Implementation
	Case Study: A Device Reputation Example
	Conclusions
	References

	Service Applications
	Towards Mitigating Human Errors in IT Change Management Process
	Introduction
	System Overview
	Change Plan Creation
	Change Plan Execution

	Design Choices and Implementation
	TexExpeditor: Design and Implementation
	Facade: Change Plan Execution Engine

	Results and Observations
	Conclusion
	References

	A Service-Based Architecture for Multi-domain Search on the Web
	Introduction
	Architecture
	Client Tier
	Server Tier
	Services Tier

	Distribution Issues
	On-Line Query Processing
	Off-Line Data Indexing and Analysis

	Experimental Evaluation
	Conclusion
	References

	Natural Language Service Composition with Request Disambiguation
	Introduction
	Proposed Solution
	From a Natural Language Request to a Service Prototype
	Semantic Matching
	Service Composition and Dealing with Request Incompleteness

	Evaluation and Results
	Related Work
	Conclusion and Perspectives
	References

	Posters
	Families of SOA Migration
	Introduction
	SOA Migration Families

	An Ontology Based Approach for Cloud Services Catalog Management
	Introduction
	Ontology Model for Services Catalog
	References

	A Scalable Cloud-Based Queueing Service with Improved Consistency Levels
	Exploring Simulation-Based Configuration Decisions
	References

	PhD Symposium Posters
	Efficient, Failure-Resilient Semantic Web Service Planning
	Introduction
	Problem Statement
	Proposed Approach
	Pre-clustering of Services
	Planning Algorithm Outline
	Expected Outcome

	Related Work
	Conclusion and Future Work
	References

	Integrated Service Process Adaptation
	Introduction
	Control Flow Adaptation Based on Message Interaction Graph
	Message Adaptation
	Related Work and Conclusion
	References

	Contract Based, Non-invasive, Black-Box Testing of WebServices
	Introduction
	Contract-Based Testing
	An Example: Bookflight

	Summary
	References

	Demonstration Papers
	Managing Process Model Collections with AProMoRe
	Introduction
	System Overview
	Demo Script
	Reference

	Managing Long-Tail Processes Using FormSys
	References

	Managing Web Services: An Application in Bioinformatics
	Introduction of WSMS
	The Application Scenario
	The Demonstration
	References

	An Integrated Solution for Runtime Compliance Governance in SOA
	Introduction and Contributions
	Demonstration Storyboard

	Event-Driven Privacy Aware Infrastructure for Social and Health Systems Interoperability: CSS Platform
	Introduction and Contributions
	Demonstration Storyboard
	Reference

	Mashups with Mashlight
	Mashlight
	Demo Proposal
	Reference

	A Service Mashup Tool for Open Document Collaboration
	Introduction
	Concept, Implementation and Benefits of MoSaiC
	Demonstration Overview
	Reference

	Panta Rhei: Optimized and Ranked Data Processing over Heterogeneous Sources
	Introduction and Contributions
	Demonstration Storyboard
	Reference

	RnR: A System for Extracting Rationale from Online Reviews and Ratings
	Introduction
	Architecture and Operation of the RnR System
	References

	Liquid Course Artifacts Software Platform
	Introduction
	Architecture
	Demo Routine
	References

	A Programmble Fault Injection Testbed Generator for SOA
	Motivation
	Fault Injection Testbed Generator Framework
	Prototype Demonstration
	References

	BPEL’n’Aspects&Compensation: Adapted Service Orchestration Logic and Its Compensation Using Aspects
	System Overview
	Functions to Be Demonstrated
	Reference

	A Tool for Integrating Pervasive Services and Simulating Their Composition
	References

	BPEL4Pegasus: Combining Business and Scientific Workflows
	System Overview
	Functions to Be Demonstrated

	Tutorial Abstracts
	Multidisciplinary Views of Business Contracts
	Quantitative Service Analysis
	Scalable Services: Understanding Architecture Trade-off
	Crowd-Driven Processes: State of the Art and Research Challenges

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

