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Abstract. Model-based software development processes often force
their users to translate instances of one modeling language into related
instances of another modeling language and vice-versa. The underlying
data structure of such languages usually are some sort of graphs. Triple
graph grammars (TGGs) are a formally founded language for describing
correspondence relationships between two graph languages in a declara-
tive way. Bidirectional graph language translators can be derived from a
TGG, which maps pairs of related graph instances onto each other. These
translators must fulfill certain compatibility properties with respect to
the correspondence relationships established by their TGG. These prop-
erties are guaranteed for the original TGG approach as published 15
years ago. However, its expressiveness is pushed to the limit in most real
world scenarios. Furthermore, the original approach relies on a parsing
algorithm with exponential runtime complexity. In this contribution, we
study a more expressive class of TGGs with negative application condi-
tions and show for the first time that derived translators with a polyno-
mial runtime complexity still preserve the above mentioned compatibility
properties. For this purpose, we introduce a new characterization of well-
formed TGGs together with a new translation rule scheduling algorithm
that considers dangling edges of input graphs.

Keywords: triple graph grammars, bidirectional model transformation,
negative application conditions, dangling edge condition.

1 Introduction

Languages in general and computer languages in particular are used to describe
artifacts and processes of the real world. These descriptions can be thought of
as models of the real world or in a very general term as data. Languages have
specific rules to form these models and model elements are mostly typed to
assign semantics to a category of elements. Specific domains of the world require
specific languages which are nowadays often called domain specific languages
(DSL). These DSLs are tailored to the specific needs of a group of people which
should benefit from using these DSLs. But, two languages that refer to the same
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domain and share the same artifacts of the real world, may though have different
representations. There are various reasons for the concurrent usage of different
languages in engineering projects. Domain experts (humans or computers) do
not “speak” one language but different ones. Or, one language might be more
adequate to express domain specific facts than the other. So, it is a common
scenario that an engineer manually translates an instance of one language into
an instance of another language and spends a lot of time to keep these language
instances then in a consistent state. But, translation between languages is time-
consuming and requires experts in both languages. Therefore, it is reasonable to
facilitate this process. Accordingly, (semi-)automated translators are needed that
assist their users in keeping related instances of languages in a consistent state.
Due to the reasons listed above, it seems to be quite natural to develop a language
for the language translation domain, too. Triple graph grammars (TGGs) are a
formally founded language that is used to build bidirectional translators easily.

In the following section, we briefly introduce the reader to the world of TGGs
and state the challenges the designers of TGG-based languages have to face:
(1) TGGs must be expressive enough for the specification of complex relation-
ships between pairs of languages and (2) they must allow for the derivation of
efficiently working translators that are compatible with the related TGG specifi-
cation. Subsequently, we show in Sect. 3 that we can improve the expressiveness
of TGGs by introducing negative application conditions (NACs) and neverthe-
less still derive compatible translators for a certain family of TGGs. In Sect. 4
we add the concept of checking dangling edge conditions (DECs) to our graph
translation algorithms. DEC-checks resolve rule application conflicts, prevent the
construction of illegal graphs, and thus guarantee a polynomial runtime behavior
of the derived translators. Based on these achievements we present an efficient
translation algorithm in Sect. 5 that is still compatible with TGGs of the for-
merly defined family of TGGs. Section 6 analyzes how related approaches deal
with the challenges of bidirectional model transformation languages in general
and TGG-based languages in particular. Finally, we conclude this contribution
in Sect. 7 and state open challenges to be solved in future work.

2 TGGs with Negative Application Conditions

In 1994 the first publication appeared that introduced the concept of triple graph
grammars [1]. It allows for the specification of correspondence relationships be-
tween two languages of graphs. TGGs are grammars that generate graph triples
by applying productions of the grammar to an input graph triple (axiom). The
three graphs are often called source and target graph representing the elements
of the related languages, and correspondence graph containing correspondence
links. The correspondence links are elements of a language, too—the correspon-
dence language that relates elements of the source and target language. TGGs
have been invented to support translation of documents based on related graph-
like data structures. Related documents are, e.g., design documents of a piece
of software (e.g., class diagrams) and design documents of a data management
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environment (e.g., relational database schema) that persists the data which is
processed by the software. Class diagrams and database schemata are closely
related as we will see later on. TGGs enable to explicitly establish mappings
between documents by means of traceability links that contain additional infor-
mation about the transformation process. TGGs are used to build bidirectional-
working formal language translators. In addition, they allow to check consistency
of related documents and to efficiently propagate changes in one document to
restore consistency in the corresponding document.

In the context of the model driven architecture (MDA) [2,3] TGGs are used for
the declarative specification of bidirectional model transformations. One TGG
serves as input for the derivation of a pair of model translators that transform a
model of one language into a corresponding model of the other language and vice
versa. The correspondence relations are needed for traceability purposes and they
encode additional information about the translation process itself. This allows
for the realization of incremental updates that are required if changes occur in
the involved models. In this contribution we will use the terms “graph”, “node”,
etc. of the graph grammar world, but a translation of all definitions and theorems
to the MDA world simply requires the replacement of the introduced terms by
their MDA counterparts like “model”, “object”, . . . [4].

Now, we will explain TGGs by example and afterwards describe how trans-
lators are derived from a TGG. Finally, we will summarize the fundamental
properties of TGGs and derived translators as stated in [5]. The example used
throughout this contribution is the well-known mapping between class diagrams,
also referred to as “source domain”, and relational database schemata, also re-
ferred to as “target domain”. This example is discussed in numerous publications
of the model and graph transformation domain [6,3]. We have reduced the exam-
ple to a core part that is used to explain the ideas presented in this contribution.
We will now start building the triple graph grammar TGGCDDS that specifies
the mapping between class diagrams and database schemata.

2.1 TGG Schema

TGGs consist of a TGG schema which describes the structural dependencies
between the elements of the two related languages and the correspondence lan-
guage. Figure 1 shows the TGG schema of the triple graph grammar TGGCDDS .
The schema defines the structural correspondences of the source and target do-
main. The domain of class diagrams defines classes and attributes. Classes may
have subclasses and contain zero to many attributes. Attributes are ordered
by the successor/predecessor relationship “Precedes”. Multiple inheritance is not
supported in this example, so each subclass may have only one superclass. The
domain of relational database schemata defines tables and columns. Each table
may contain a number of columns. Columns are ordered by the successor/pre-
decessor relationship “Precedes”.

The elements of both domains are related via so called correspondence link
types which are located in the link domain. Link types are denoted as hexagonal
elements. Throughout this contribution we call instances of link types (TGG)
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Fig. 1. TGG schema of TGGCDDS that relates class diagrams and database schemata

links. The link type CT (class-table-relation) maps classes to tables, whereas
the link type AC (attribute-column-relation) maps attributes to columns. Let us
have a closer look at the graph constraints of the given schema. Graph triples
must fulfill these constraints in order to be valid. Successors of attributes and
columns are realized via the “Precedes” edge type. The multiplicity “0..1” of the
edge type’s end “next” denotes that each attribute and column respectively may
have a successor, but need not. These are multiplicity constraints that might be
expressed by OCL invariants invCD:P :n:mult and invDS:P :n:mult. In addition, the
OCL invariants shown in Fig. 1 constrain the number of elements without suc-
cessor. A class with attributes must have exactly one attribute without successor
(invCD:C). Similarily, tables and columns are constrained by invDS:T .

2.2 TGG Productions

In addition to the TGG schema, a set of TGG productions is specified. TGG
productions are often called TGG rules. However, we stick to the term TGG
productions to avoid clashes with derived translation rules. Productions define
a language of consistent graph triples, i.e., they describe how related triples of
graphs may evolve simultaneously. Each production consists of a graph pattern—
its left-hand side L—that looks for a corresponding match (redex) in a graph
triple. Applied to a redex a TGG production adds a copy of the elements of its
right-hand side R that are not already part of L to the regarded graph triple.

The TGG productions of TGGCDDS are depicted in Fig. 2 using a shorthand
notation for graph productions. Instead of showing both left-hand and right-
hand side as two separate parts of a production, both sides are merged [7]. The
elements contained in the left-hand and in the right-hand side of the production
L ∩ R are denoted as black elements without any additional markup. These
elements are context elements that define a pattern that matches the redex in a
host graph triple to which the production is then applied. The elements contained
in the right-hand side only R\L are denoted as green elements with an additional
++ markup. These elements are created during the application of a production
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to its redex. Nodes of a TGG production that are created by the production and
attached to a TGG link that is created by the production are called primary
nodes. In general, TGG productions may create additional secondary nodes (i.e.,
non-primary nodes) that are directly or transitively connected with the primary
node. As the TGG formalism does not allow for the deletion of elements, elements
that are contained in the left-hand side only L\R need not to be visualized
in TGG productions. Groups of elements that form a NAC are crossed-out.
No match for these elements must be found in the host graph; otherwise the
matching NAC blocks the application of its production.

t1:Tablec1:Class l1:CT
++ ++ ++

(1)

c1:Class t1:Table

a1:Attr l2:AC
++ ++

l1:CT

o1:Column
++

a2:Attr o2:Column

c1:Class t1:Table

a1:Attr l2:AC
++ ++

l1:CT

o1:Column
++

o2:Column

o3:Column

next

next

a2:Attr

++

++

++

++

(4)

(3)

++

c1:Class

t1:Table

super

c2:Class l2:CT
++ ++

l1:CT

++

(2)

c1:Class t1:Table

a1:Attr l2:AC
++ ++

l1:CT

o1:Column
++

o2:Column

o3:Column

next

next

a2:Attr

a3:Attr
next

next ++ ++

(5)

++ ++

Fig. 2. TGG productions (1) and (2) that relate classes and tables. TGG productions
(3), (4), and (5) that relate attributes and columns.

Productions (1) and (2) produce classes and tables, whereas productions (3),
(4), and (5) produce attributes and columns. Production (1) is applicable in any
situation, as it has no required context elements. It creates a new class in the
source domain, a new table in the target domain, and a new CT link in the
link domain. Furthermore, the new CT link relates the just created elements of
source and target domain. Production (2) creates a new class c1 and a new CT
link l2 if a class c1 and a table t1 exist that are already related via a CT link
l1. The new class is added to the inheritance structure of c1 and the new CT
link relates c2 and t1. The following productions are more interesting as they
make use of NACs, which guarantee that no invalid graph triples are produced
by the productions. An invalid graph triple would either violate a multiplicity
constraint or an OCL invariant of the TGG schema (cf. Fig. 1).
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Production (3) is used to create the first attribute in a class of an inheritance
structure and the corresponding column in a table. Due to the NACs present in
both domains, this production is applicable only if the matched class and table
do not already contain an attribute or a column. So, the NACs ensure that at
most one attribute and column are created per class and table respectively that
has no successor and, therefore, prohibit a violation of invCD:C and invDS:T .

Production (4) creates the first attribute of a class of an inheritance structure,
when another class of the inheritance structure already has an attribute. In
this case the corresponding table already contains at least one column and,
as columns are ordered, the new column o1 must be the successor of one of
the existing columns. The NAC in the target domain ensures that the created
column o1 is the successor of a column that does not have a successor yet. So,
it ensures that the multiplicity constraint invDS:P :n:mult of the endpoint “next”
in the target domain holds after production application. The NAC in the source
domain has the same effect as the NAC in production (3). The new column o1
has no successor and so enables the production to be applied for other classes
that are part of the inheritance structure that have no attribute yet.

Production (5) is applicable in situations where a class and a table have at
least one attribute and column respectively, i.e., productions (3) or (4) have
been applied earlier on. The effect of both NACs is similar to the NAC of the
target domain in production (4). They ensure that the multiplicity constraints
invCD:P :n:mult and invDS:P :n:mult hold, by assigning the just created elements
a1 and o1 as next element of elements that do not have successors yet.

2.3 Simultaneous Evolution of Graph Triples

We will now discuss the simultaneous evolution of graph triples by applying the
TGG productions of TGGCDDS to an empty graph triple. The resulting graph
triple GT6 (cf. Fig. 3 (a)) is an element of the language of the just introduced
TGG. The graph triple is produced by applying production (1) to the empty
graph triple and afterwards production (2) to the resulting graph triple. Finally,
the following productions are applied: (3), (4), (5), and (5) again. Thus, GT6 is
produced by sequence SEQ6 = (p(1), p(2), p(3), p(4), p(5), p(5)).

Production (1) simultaneously creates a class c1 and a table t1 and relates
them via link l1, whereas production (2) creates the subclass c2 and relates it
with the already existing table t1 via link l2. Note that the context in which
productions are applied is important (cf. Sect. 5). The context in which produc-
tion (3) can be applied is either (c1, l1, t1) or (c2, l2, t1). In our example, we
first choose subclass c2 as context. Production (3) is applicable in the context
of c2 because neither class c2 nor table t1 contain elements at this moment.
As a consequence attribute a3 and column o3 together with their link l3 are
created. From now on, p(3) is neither applicable in the context of class c1 nor
c2 due to the NAC in the target domain that blocks because table t1 already
contains column o3. In addition, its NAC in the source domain blocks in the
context of class c2 because c2 contains attribute a3. In the next step we apply
production (4) in the context of class c1. It is applicable because no attribute
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a2:Attr
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next
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Fig. 3. Schema compliant graph triples GT6 and GT ∗
6 produced by TGGCDDS

is currently present in class c1 and one column o3 that has no successor yet, is
present in table t1. So, attribute a1 and column o1 are created and related via
link l4 and column o1 is set as successor of column o3. The next two applications
of production (5) are again possible in the context of class c1 and c2. We decide
to first apply p(5) in the context of c1 and afterwards in the context of c2. This
leads to sequence SEQ6 = (p(1)@∅, p(2)@c1, p(3)@c2, p(4)@c1, p(5)@c1, p(5)@c2)
and the final situation depicted in Fig. 3 (a).

The order of columns located in the target domain of GT6 is o3, o1, o2, and
o4. This order is determined by the sequence of production applications in a
particular context as described above. If the example above is changed such that
production (3) is applied in the context of class c1 and production (4) in the
context of class c2 then SEQ∗

6 = (p(1), p(2), p(3)@c1, p(4)@c2, p(5)@c1, p(5)@c2).
The order of the columns would be o1, o3, o2, and o4 leading to graph triple GT ∗

6

(cf. Fig. 3 (b)). We consider these graph triples semantically equivalent according
to TGGCDDS because the relative order of attributes in the inheritance structure
of classes c1 and c2 is not destroyed and the relative order of columns of a
relational database does not matter in a “pure” relational calculus.

2.4 Language Translators Based on TGGs

A TGG can be compiled into a pair of forward and backward graph translators
(FGTs/BGTs). The generated translators take a graph of the input domain,
either source or target, and produce a graph triple that consists of the given
input graph, the corresponding graph of the output domain, either target or
source, and the correspondence graph which connects the related source and
target graph elements. A translator mainly consists of a set of graph translation
rules and an algorithm that controls the stepwise translation of a given input
graph into the related output graph. Each forward/backward graph translation
rule (FGT/BGT rule), often called operational rule, is directly derived from a
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single TGG production1. Therefore, TGG productions are split into sets of local
rules and the aforementioned translation rules [1]. Local rules generate graphs
of the input domain ensuring that only valid graphs are produced. Hence, local
rules are applicable only if NACs are not violated.

t1:Tablec1:Class l1:CT
++ ++

(1)

c1:Class t1:Table

a1:Attr l2:AC
++

l1:CT

o1:Column
++

o2:Column

c1:Class t1:Table

a1:Attr l2:AC
++

l1:CT

o1:Column
++

o2:Column

o3:Column

next

next

++

++

(4)

(3)

++

c1:Class

t1:Table

super

c2:Class l2:CT
++

l1:CT(2)

c1:Class t1:Table

a1:Attr l2:AC
++

l1:CT

o1:Column
++

o2:Column

o3:Column

next

next
a3:Attr

next

++

(5)

++

Fig. 4. Forward translation rules derived from TGGCDDS

Figure 4 shows the forward translation rules derived from the productions of
TGGCDDS. Translation rules contain elements of source, correspondence, and
target domain. The elements of the input domain are readonly as they have
been created earlier by a corresponding local rule. Consequently, translation
rules only produce elements of the output and correspondence domain. Empty
checkboxes denote that the elements next to them are not yet translated, i.e.,
no corresponding elements in the output domain have been created by another
translation beforehand. A translator will mark all elements of the input domain
as “translated”, right after a translation rule has been applied successfully. El-
ements that were context elements in a TGG production must be translated
before a rule is applicable. This is denoted as enabled checkboxes placed next
to or inside these elements. NACs of the input domain may be omitted under
certain conditions, as we will learn in Sect. 3.2, whereas NACs of the output
domain are retained.

A translation algorithm applies the operational rules to the input graph such
that it simulates the simultaneous evolution of the computed graph triple with
1 For a detailed description of the derivation process we refer to [8].
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respect to the given set of TGG productions. Therefore, a translator must be
able to determine the order in which elements of the input graph would have
been created by a sequence of TGG productions. Guessing the proper choice is
one of the difficulties that arise when the simultaneous evolution of graph triples
is simulated by a translator. In general, this computation of an appropriate se-
quence of rules requires a graph grammar parsing algorithm with exponential
runtime behavior [9]. Interleaved with the stepwise computation of a sequence
of TGG productions and the resulting derivation of the input graph the corre-
sponding sequence of operational rules is executed to generate the related output
and correspondence graph instances. For further details concerning a formaliza-
tion of this process the reader is referred to [1,10]. An example that shows how
an FGT translates an input graph is presented in Sect. 5.

2.5 Fundamental Properties of TGGs and Translators

As stated in previous work TGGs should not violate certain design principles in
order to be “useful” in practice [5]. Derived translators should be efficient and
they must be compatible with their TGG which in addition must be expressive
enough. According to [5], efficient translators have polynomial space and time
complexity O

(
m× nk

)
with m = number of rules, n = size of input graph,

and k = maximum number of elements2 of a rule. This requirement is based on
two worst case assumptions: (1) nk is the worst-case complexity of the pattern
matching step of a graph translation rule with k elements. (2) Without starting
the pattern matching process for a selected rule we cannot determine whether
this rule can be used to translate a just regarded element. As a consequence we
require that derived translators do somehow process the elements of an input
graph in a given order such that no element has to be regarded and translated
more than once. Selecting always somehow the “right” translation rules we do
not have to explore multiple translation alternatives using, e.g., a depth-first
backtracking algorithm for that purpose. Compatible translators are consistent
and complete with respect to their TGG. Consistency is guaranteed if a translator
translates an input graph into a graph triple GT that is always an element of
the language L(TGG) defined by the TGG. Completeness demands that for
every graph triple GT that is an element of L(TGG), a translator is able to
produce this graph triple (or an equivalent one) given the graph of the graph
triple, which belongs to the translator’s input domain. Expressiveness finally
requires that the TGG formalism is able to capture all important consistency
relationships between studied pairs of graph languages.

As a consequence the original TGG approach is continously extended such
that it supports, e.g., handling of attributed typed graphs as well as the def-
inition of productions with NACs. We have learned that NACs are additional
preconditions that must be satisfied so a production is applicable. They are, e.g.,
used to prohibit the construction of graph triples that violate constraints defined
in the schema of the source and target domain. But, after more than 15 years
2 In [5] it is nodes. We expand this to elements which means nodes and edges.
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of TGG research activities we still have problems to handle TGGs with NACs
appropriately, i.e., to find the right compromise between expressiveness of TGG
productions on the one hand and the introduced consistency, completeness, and
efficiency properties of derived translators on the other hand. This contribution
introduces, therefore, for the first time a subclass of TGGs with NACs in Sect. 3
that allow for the derivation of efficiently working compatible graph transla-
tors. Essentially, the definition and application of TGG productions is restricted
in such a way that the here introduced rule application control algorithm (cf.
Sect. 5) never has to resolve rule application conflicts by making an arbitrary
choice. For this purpose we first replace NACs on the input graph side of a
translation by graph constraints, thereby avoiding positive/negative rule appli-
cation conflicts3. Positive/positive rule application conflicts are then eliminated
by inspecting the context of those nodes more closely that are just translated
by a given rule (cf. Sect. 4)4. Inspired by the definition of the double-pushout
(DPO) graph grammar approach [11] a new kind of “dangling edge condition” is
introduced that blocks the translation of nodes with afterwards still untranslated
incident edges under certain conditions.

3 Formalization of Constrained TGGs with NACs

In the preceding section we have informally introduced TGGs with NACs. Fur-
thermore, we already mentioned that [5] does already guarantee consistency but
not completeness for the derived translators without introducing a backtracking
algorithm, i.e., without trading efficiency for completeness. We will now identify
a sort of TGG productions with NACs which do not lead to positive/negative
FGT/BGT rule application conflicts for any input graph. This is a first step to-
wards our goal to eliminate all kinds of FGT/BGT rule application conflicts and
thereby to guarantee completeness of derived translation functions. For this pur-
pose we extend the TGG formalism as introduced in [1] by NACs that are used to
preserve the integrity of graph triples (i.e., resulting graph triples never violate
constraints—neither temporary) without destroying the fundamental proposi-
tions proved in [1]. Therefore, TGGs will operate on typed constrained graphs
and support NACs in a way that derived translators do not violate the men-
tioned compatibility properties. Permitted NACs will be ignored on the input
graph of translation rules assuming that integrity violations of input graphs are
captured before a translation process starts.

3.1 Constrained and Typed Graph Grammars with NACs

We start with the basic definitions of constrained, typed graphs on the basis
of [11], which are then used for the definition of TGGs that generate triples of
typed and constrained graphs in Sect. 3.2.
3 A positive/negative rule application conflict of two operational rules r and r’ w.r.t.

specific redexes exists if r creates a graph element that is forbidden by a NAC of r’.
4 Two operational rules w.r.t. to specific redexes constitute a positive/positive rule

application conflict if both rules compete to translate the same graph element.
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Definition 1. Graphs, Graph Morphisms, and Graph Operators.

A quadruple G := (V, E, s, t) is a graph with elements(G) := V ∪E, where
(1) V is a finite set of nodes (or vertices), E is a finite set of edges, and
(2) s, t : E → V are functions assigning sources and targets to edges.
Let G := (V, E, s, t), G′ := (V ′, E′, s′, t′) be two graphs.
A pair of functions h := (hV , hE) with hV : V → V ′ and hE : E → E′ is a
graph morphism from G to G′, i.e., h : G→ G′, iff
(3) ∀e ∈ E : hV (s(e)) = s′(hE(e)) ∧ hV (t(e)) = t′(hE(e))

Furthermore, the operators ⊆ for subgraph, ∪ for union of graphs with gluing of
nodes and edges (with same identifiers), and \ for the deletion of the removal of
graph elements, are defined as usual, and with h : G → G′ being a morphism,
h(G) ⊆ G′ denotes that subgraph in G′ which is the image of h.

Definition 2. Typed Graph and Type Preserving Graph Morphisms.
A type graph is a distinguished graph TG := (VTG, ETG, sTG, tTG).
VTG and ETG are called the node and the edge type alphabets, respectively.
A tuple (G, type) of a graph G together with a graph morphism type : G→ TG

is called typed graph. G is called instance of TG and TG is called type of G.
Given typed graphs G, G′ a typed graph morphism g : G→ G′ is type preserv-

ing iff the diagram shown in Fig. 5 (a) commutes.
L(TG) is the set of all graphs of type TG.

In the following we assume that all graphs with suffix “S”, “C”, and “T” have
type graphs TGS , TGC , and TGT , respectively. Furthermore, we assume that
all morphisms between graphs of the same type are type preserving.

Definition 3 introduces constrained graphs. The regarded constraints are typed
graph constraints (e.g., OCL invariants) in the spirit of [11], i.e, Boolean formu-
lae over atomic typed graph constraints. A typed graph G fulfills a typed graph
constraint c, e.g., if c is evaluated to true.

Definition 3. Constrained Typed Graph.
A type graph TG with a set of constraints C defines a subset L(TG, C) ⊆

L(TG) of the set of all graphs of type TG that fulfill the given set of constraints
C. The empty graph G∅ ∈ L(TG, C). Furthermore, L(TG, C) := L(TG)\L(TG, C)
denotes the set of all graphs of type TG that violate a constraint in C.
Based on this definition of constraints we will now define graph productions with
NACs and graph rewriting. An important property of these productions is that
they do not delete any graph elements, i.e, left-hand side L is a subset of right-
hand side R. Therefore, they are called monotonic productions.

Definition 4. Monotonic Graph Productions with NACs.
The set of all monotonic productions P(TG, C) with negative application con-

ditions N for a type graph TG with a set of constraints C is defined as follows:
(L, R,N ) ∈ P(TG, C) iff
(1) L, R ∈ L(TG, C) ∧ L ⊆ R
(2) N ⊆ L(TG) ∧ ∀N ∈ N : N ⊇ L
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type type´

g

TG

G G´

(a)

G G´

L RN

POg g´n

(b) (c) (d)

G G´

L RN

POg g´n

Gi Gi+1

L RN
g g´n

p

Fig. 5. Diagrams used in Def. 2, Def. 5, Def. 6, and in proof of Corollary 3

Definition 5. Graph Rewriting for Monotonic Productions with NACs.
A production p := (L, R,N ) ∈ P(TG, C) rewrites a graph G ∈ L(TG) into a

graph G′ ∈ L(TG) with a redex (match) g : L→ G, i.e., G
p@g� G′ iff

(1) g′ : R→ G′ is defined by building the pushout diagram presented in Fig. 5 (b)
(2) ¬(∃N ∈ N , n : N → G : n|L = g), i.e., there exists no N such that mapping

n is identical to g w.r.t. the left-hand side graph L
(3) all morphisms are type preserving

We will limit productions with NACs to so-called integrity-preserving productions
in Def. 6 such that NACs are only used to prevent the creation of graphs which
violate the set of constraints C. These productions have the important properties
that (1) given a valid input graph, a valid output graph is produced, (2) if
productions where NACs are eliminated produce a valid graph then the input
graph is also valid, and (3) a production that would block due to a NAC otherwise
would always produce an invalid graph. Due to contraposition of (1) all invalid
output graphs are derived from invalid input graphs. So, integrity-preserving
productions produce only invalid output graphs if the input graph was already
invalid. Moreover, contraposition of (2) (i.e, (2∗)) states that invalid input graphs
result in invalid output graphs even if NACs are eliminated from a production;
i.e., productions with or without NACs do not repair invalid graphs.

Definition 6. Integrity-Preserving Productions.
Let p be a production (L, R,N ) ∈ P(TG, C) and p− := (L, R, ∅) being the

corresponding production of p where all negative application conditions have been
eliminated. Then, p is integrity-preserving iff
(1) ∀G, G′ ∈ L(TG) ∧G

p� G′ : G ∈ L(TG, C)⇒ G′ ∈ L(TG, C)
(2) ∀G, G′ ∈ L(TG) ∧G

p−
� G′ : G′ ∈ L(TG, C)⇒ G ∈ L(TG, C)

(3) ∀N ∈ N : the existence of the diagram depicted in Fig. 5 (c) with type
preserving morphisms n|L = g = g′|L implies G′ ∈ L(TG, C)

Now, we show for TGGCDDS that the source and target production components
satisfy the conditions of Def. 6. We will limit the discussion to the source domain
as situations in the target domain are almost identical. All productions satisfy
condition (1), i.e., given a valid graph, productions with NACs produce only
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valid graphs (discussed already in Sect. 2.2). If productions (3), (4), and (5) with-
out NACs produce valid output graphs under certain conditions then the input
graph was also valid due to the fact that none of the productions is able to repair
invalid graphs even if their NACs are ignored. Productions (3) and (4) would
produce even more (invalid) attributes without successor. Production (5) does
not increase the number of attributes without successors that violate multiplic-
ity constraint invCD:P :n:mult, but preserves the number of attributes that violate
invCD:P :n:mult. Therefore, condition (2) is satisfied. Condition (3) of Def. 6 is
satisfied because a blocking NAC of productions (3) and (4) prevents the produc-
tion of an additional attribute without successor. Therefore, violation of invCD:C

is prevented. In addition, a blocking NAC in production (5) prevents violation
of the multiplicity constraint of a “Precedes” edge invCD:P :n:mult. Therefore, the
set of productions of TGGCDDS is integrity-preserving.

Finally, Def. 7 states how graph grammars produce constrained typed graphs.

Definition 7. Language of Typed and Constrained Graph Grammars.
A graph grammar GG := (TG, C,P) over a type graph TG, a set of constraints

C, and a finite set of integrity-preserving productions P ⊆ P(TG, C), with G∅
being the empty graph, generates the following language of graphs
L(GG) := {G ∈ L(TG, C)|G∅

p1� G1
p2� ...

pn� Gn = G with p1, ..., pn ∈ P}
The language that is generated by a graph grammar GG as defined in Def. 7
(i.e., the graphs that are producible by the grammar) is a subset of the set of
graphs of type TG that fulfill the given set of constraints C.
Corollary 1. L(GG) ⊆ L(TG, C)
Proof. Follows from Def. 6 and directly from Def. 7. �
Furthermore, the language L(GG−) generated by a graph grammar where NACs
of productions have been eliminated contains at least the same graphs as the
language L(GG) generated by this graph grammar with NACs.

Corollary 2. Let GG− be a graph grammar derived from a graph grammar GG,
where all negative application conditions of productions have been eliminated.
Then L(GG−) ⊇ L(GG).

Proof. Due to the fact that a valid application of a production p with NACs is
also a valid application of the production p− where NACs are ignored, L(GG−)
is at least as large as L(GG). �
Moreover, L(GG) is the intersection of the graphs producible by L(GG−) and
the set of graphs of type TG that fulfill the given set of constraints C.
Corollary 3. Let GG− be a graph grammar derived from a graph grammar GG
as defined in Def. 7, where all negative application conditions of productions have
been eliminated. Then L(GG) = L(GG−) ∩ L(TG, C).
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Proof. Due to Corollary 1 and Corollary 2 the intersection of sets of graphs de-
fined by L(TG, C), L(TG, C), L(GG), and L(GG−) looks like depicted:

),( CTGL

),( CTGL

)(TGL

)(GGL

)(GGL
B

Therefore, we only have to show that B := L(GG−)∩L(TG, C)\L(GG) is empty.
Let G ∈ B, i.e., G is generated by a sequence of production applications

G∅ � . . . � Gi
p−
� Gi+1 � . . . � G

with p = (L, R,N ) being a production of GG and p− = (L, R, ∅) being the
corresponding production of GG− such that ∃N ∈ N so the diagram shown in
Fig. 5 (d) commutes, i.e., p is blocked by N , but p− rewrites Gi into Gi+1.
⇒ Gi+1 ∈ L(TG, C). This is a direct consequence of Def. 6 (3), which requires
that the application of p− produces a graph Gi+1, which violates at least one
constraint if the application of p is blocked by its NAC N .
⇒ G ∈ L(TG, C). This is a direct consequence of Def. 6 (2∗) because all graphs
on the derivation path from Gi+1 to G (including G) are invalid due to the fact
that productions of GG− preserve the property of a graph to violate some con-
straint. This leads to contradiction. �
As a consequence of Def. 6 and due to Corollary 3, we can either check NACs
during the execution of a (TGG) production to prohibit the violation of graph
constraints immediately or check potentially violated graph constraints after a
sequence of graph rewriting steps that simply ignore NACs; for a more detailed
discussion of the relationship of (positive) pre- and postconditions of graph trans-
formation rules and graph constraints we refer to [12].

3.2 Constrained and Typed Triple Graph Grammars with NACs

Having introduced definitions and properties of graph grammars with NACs
for languages of typed constrained graphs we now present the corresponding
definitions of TGGs with NACs for typed constrained graph triples. For this
purpose we have to replace the definitions of simple graphs and graph grammars
in [1] by the more elaborate definitions given in Sect 3.1.

Definition 8 describes the conditions typed graph triples must satisfy. A graph
triple consists of three graphs. Each graph is in the set of graphs of a particular
language, i.e., conforms to a graph schema defined by a certain type graph. In
addition, two morphisms hS and hT relate elements of the correspondence graph
with elements of the source and target graph. Constraints for correspondence
graphs are disregarded in Def. 8, but can be added easily if needed.
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Definition 8. Constrained Typed Graph Triple.
Let L(TGS, CS) and L(TGT , CT ) be languages of source and target graphs with

constraints, whereas L(TGC) defines a language of correspondence graphs that
relate pairs of source and target graphs.

GT := (GS
hS← GC

hT→ GT ) ∈ L(TGG) is a properly typed graph triple iff
(1) GS ∈ L(TGS , CS), (2) GC ∈ L(TGC), (3) GT ∈ L(TGT , CT )
(4) hS : GC → GS , (5) hT : GC → GT

Definition 9. Type Preserving Graph Triple Morphisms.
A type graph triple TGT := (TGS

hS← TGC
hT→ TGT ) is a distinguished graph

triple. TGT together with morphisms typeS : GS → TGS, typeC : GC → TGC,
typeT : GT → TGT is called type of GT . A graph triple morphism (gS , gC , gT )
with gS : GS → G′

S, gC : GC → G′
C , gT : GT → G′

T is type preserving iff the
so-called “toblerone” diagram

TGS

TGT

TGC
typeS type´S

gS

typeT type´T

gT

typeC type´C

gCGS

GT

GC

G´S

G´T

G´C

commutes. L(TGT ) is the set of all graphs of type TGT .

Now, we are ready to lift graph rewriting (cf. Def. 5) based on monotonic pro-
ductions (cf. Def. 4) and integrity-preserving productions (cf. Def. 6) to graph
triple rewriting in Def. 10.

Definition 10. Integrity-Preserving Graph Triple Rewriting.
Let p := (pS

hS← pC
hT→ pT ) be a production triple with NACs and

(1) pS := (LS , RS ,NS) ∈ P(TGS , CS) be an integrity-preserving production
(2) pC := (LC , RC , ∅) ∈ P(TGC , ∅) be a simple production
(3) pT := (LT , RT ,NT ) ∈ P(TGT , CT ) be an integrity-preserving production
(4) hS : RC → RS, hS|LC : LC → LS and (5) hT : RC → RT , hT |LC : LC → LT

The application of such a production triple to a graph triple GT produces another
graph triple GT ′, i.e., GT

p� GT ′, which is uniquely defined (up to isomorphism)
by the existence of the following “pair of cubes” diagram:

G´C

NS

gS g´SnS

GT G´T

NT

gT g´TnT

gC g´C

GS G´S

GC

LC

LS

LT

RC

RT

RS
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This diagram consists of commuting square-like subdiagrams only and contains
a pushout subdiagram for each application of a production component (i.e, pS,
pC, and pT ) to its corresponding graph component.

For the details of the definition and the proof that production triples applied
to graph triples at a given redex always produce another graph triple uniquely
defined up to isomorphism, cf. [1]. NACs introduced here do not destroy the
constructions and proofs introduced in [1] due to the fact that they do not (fur-
ther) influence the application of a production to a given graph (triple) after all
NAC applicability checks have been executed. Based on the presented definitions
we introduce typed triple graph grammars and their languages. For reasons of
readability we omit the prefix “typed” throughout the rest of this contribution.

Definition 11. Triple Graph Grammar and Triple Graph Grammar Language.
A triple graph grammar TGG over a triple of type graphs (TGS , TGC , TGT )
is a tuple (P, GT∅), where P is the set of its TGG productions and GT∅ is the
empty graph triple. The language L(TGG) is the set of all graph triples that
can be derived from GT∅ := (G∅

ε← G∅
ε→ G∅) using a finite number of TGG

production rewriting steps.

We can now show that a triple graph grammar TGG−, where all NACs (that
prevent the creation of graph triples that violate graph constraints) are removed
from TGG productions, produces the same set of constrained graph triples that
is produced by the unmodified triple graph grammar TGG.

Theorem 1. With L(TGG) being the language of graph triples generated by a
triple graph grammar TGG over (TGS, TGC , TGT ) we can show:
(1) for all (GS ← GC → GT ) ∈ L(TGG) :

GS ∈ L(TGS , CS), GC ∈ L(TGC), GT ∈ L(TGT , CT )
(2) with TGG− being the triple graph grammar derived from TGG

where all NACs of productions have been removed:
(GS ← GC → GT ) ∈ L(TGG) ⇔ (GS ← GC → GT ) ∈ L(TGG−) ∧
(GS , GC , GT ) ∈ L(TGS , CS)× L(TGC)× L(TGT , CT )

Proof. Follows from Def. 10 (which lifts graph to graph triple rewriting) and
Corollaries 1 and 2. The proof is analogous to the proof of Corollary 3. �
It is a direct consequence of Theorem 1 that checking of NACs can be replaced
by checking integrity of generated graphs with respect to their sets of constraints
and vice versa. This observation directly affects translators derived from a given
TGG as follows: According to [1], a production triple p may be split into pairs
of production triples (rI , rIO), where rI is an (input-) local rule and rIO its
corresponding (input-to-output domain) translation rule, with GT

p� GT ′ ⇔
GT

rI� GTI
rIO� GT ′. Forward translation is based on (rS , rST ), whereas (rT , rTS)

is used in the reverse direction. To rewrite the source graph only, the source-
local production triple, i.e., source-local rule rS := (pS

ε← (∅, ∅, ∅) ε→ (∅, ∅, ∅)) is
applied. The source-to-target domain translating production triple, i.e., forward
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graph translation rule rST keeps the source graph unmodified but adjusts the
correspondence and target graph as follows: the effect of applying first rS and
then rST to a given graph triple is the same as applying p itself if (and only
if) we keep the source domain redex, i.e., the morphism g′S , fixed. Thanks to
Theorem 1 the source component of rST does not have to check any NACs on
the source graph as long as any regarded source graph does not violate any
graph constraints, i.e., as long as it has been constructed by means of integrity-
preserving productions only. As a consequence, we need no longer care about
positive/negative rule application conflicts on the source side when translating
a source graph into a related target graph.

Definition 12. Forward Graph Translation Rules.
With p being constructed as listed above in Def. 11 the derived forward graph

translation rule (FGT rule) is rST := (p−S,id

hS← pC
hT→ pT ) with components:

(1) p−S,id := (RS , RS , ∅), i.e., the source component pS of p without any NACs
that matches and preserves the required subgraph of the source graph only

(2) pC := (LC , RC , ∅), i.e., the unmodified correspondence component of p
(3) pT := (LT , RT ,NT ), i.e., the unmodified target component of p

For a detailed definition of rST that includes the morphisms between its rule
components as well as for the definition of rS/rT and the definition of a backward
graph translation rule (BGT rule) rTS the reader is referred to [1]. The definitions
presented there can be adapted easily to the scenario of integrity-preserving
graph triple rewriting as done here for the case of FGT rules rST .

Definition 13 introduces the so-called local completeness criterion of the source
domain which must be satisfied by the productions of a TGG. Essentially the def-
inition requires that any sequence SEQn

i=1(rS,i) can be completed to a sequence
SEQn

i=1(rST,i) of derivation steps of a graph triple GT that exactly mimics the
derivation of its source graph GS . This criterion will be used later on in Sect. 5
to prove the completeness of the introduced algorithm that translates a given
source graph GS into a compatible target graph GT together with a graph GC

that connects GS and GT appropriately.
A similar criterion of the target domain can be defined accordingly. The pro-

ductions of TGGCDDS satisfy both source and target criterions.

Definition 13. Source-Local Completeness Criterion.
A triple graph grammar TGG fulfills the source-local completeness criterion iff

for all GTi := (GS ← GC → GT ) ∈ L(TGG) and p := (pS ← pC → pT ) ∈ P

with GS
pS@gS� G′

S exists p∗ := (p∗S ← p∗C → p∗T ) ∈ P , g∗ := (g∗S , g∗C , g∗T ), and

GT ∗
i+1 := (G′

S ← G′
C → G′

T ) ∈ L(TGG) such that GTi
p∗@g∗
� GT ∗

i+1.

The local completeness criterions demand that for each local graph (GS or GT )
of all graph triples GT ∈ L(TGG), which is rewritten by the local component
of a production p, there must be at least one production p∗ (p∗ may equal p)
which rewrites GT . Therefore, each match g′I(RI\LI) of an input component
p−I,id of a translation rule rIO that identifies not yet translated elements in an
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input graph can be completed to a full match on the correspondence and output
graphs. This is due to the fact that at least one local rule rI (derived from a
production p) exists that has created the matched yet untranslated elements in
the input graph. According to the local completeness criterion a production p∗

exists from which a local rule r∗I is derived that creates the same elements as
rI . Hence, a translation rule r∗IO exists that has an equivalent input component
to rIO which is able to translate the matched not yet translated elements. As
a consequence, derived translation rules are complete, i.e., they can be used to
translate any given input graph of a TGG language into a properly related graph.
Furthermore, Theorem 1 guarantees the consistency of derived translation rules
even if NACs are omitted. Consequently, derived rules never translate input
graphs of a TGG language into output graphs such that the resulting graph
triple is not an element of the just regarded TGG language.

Due to these achievements we are able to build translators that are consistent
and complete with respect to their TGG. During the translation process a trans-
lator parses a given input graph in order to find a valid sequence of translation
rules that mimics the derivation of the input graph. Although the TGG pro-
ductions contain NACs these can be safely ignored in the parsing process in the
case of integrity-preserving productions. Therefore, positive/negative rule appli-
cation conflicts are prevented on the input graph. Positive/negative conflicts on
the output graph will not lead to dead-ends (i.e., wrong translation alternatives
which require backtracking) during parsing because the local completeness crite-
rion guarantees that for each remaining untranslated element in the input graph,
created by a local rule, a translation rule exists that is able to translate these el-
ements. Unfortunately, we still have to solve one problem: in general we are only
able to guarantee the completeness of a derived graph translator if we explore an
exponential number of derivation paths (w.r.t. the size of a given input graph)
due to the remaining positive/positive rule application conflicts. The following
section will solve this efficiency problem for a sufficiently large class of TGGs
(from a practical point of view) by introducing a new application condition for
translation rules. This condition rules out any situation, where more than one
rule can be used to translate a just regarded node of the input domain in a
related subgraph of the output domain.

4 Dangling Edge Condition (DEC)

Translators derived from a TGG face certain difficulties concerning the selection
of an appropriate sequence of translation rules in the presence of positive/posi-
tive rule application conflicts. Reconsider our triple graph grammar TGGCDDS

from Sect. 2. An FGT derived from TGGCDDS translates class diagrams to
database schemata. Figure 6 (a) depicts a graph that consists of two classes c1
and c2. The empty checkboxes5 denote that the elements next to them are not
yet translated. The graph is valid, as it is derivable by applying productions (1)
and afterwards (2) of TGGCDDS to the empty graph triple. The graph is given
5 Fig. 6 uses an alternative representation of (not) translated nodes.
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as input graph to the FGT. First, the translator applies the FGT rule derived
from production (1), which translates class c1. Next, both rules (1) and (2) are
applicable in the context of class c2. If the translator chooses to translate class
c2 via rule (1) the source graph would contain two translated classes with an
untranslated edge between them (cf. Fig. 6 (b)). Unfortunately, no rule exists
that is able to translate the remaining untranslated edge e1. So, the translator
produced a so-called dangling edge in the source graph. Consequently, the trans-
lator states at the end of the translation process that it is not able to translate
the (valid) input graph completely due to this dangling edge.

c2:Classc1:Class
super

(a)
e1:Inherits

c2:Classc1:Class
super

(b)
e1:Inherits

Fig. 6. (a) Input graph given to the FGT, (b) Input graph with two translated nodes

Whenever constellations in the input graph appear, where two or more rules
are applicable that translate overlapping sets of input graph elements, transla-
tion algorithms are demanding for help to select the appropriate rule. We propose
an extension that is inspired by building parsers for compilers and related tech-
niques for parsing words that are passed to the compiler. Typically, top-down
and bottom-up parsers decide on more information than just the recent input:
they take a look-ahead into account. In the following subsection we introduce a
so-called dangling edge condition (DEC) that prevents the application of a rule
if the rule would produce a dangling edge. TGG translators produce dangling
edges if an edge is still untranslated at the end of the translation process. So,
translators must ensure that before applying a rule another translation rule ex-
ists that is able to translate this currently “dangling” edge later on. This DEC
is inspired by an analogous condition in DPO approaches, which explicitly pro-
hibits deleting a node without deleting all incident context edges as part of the
same rule application step. This way, our DEC eliminates positive/positive rule
application conflicts. We restrict our focus to forward translators in the sequel,
but all concepts and ideas can be transferred to backward translators as well.

The core idea of the DEC is that several productions may be applicable such
that their matches overlap in some node. If the production with the smaller
match is applied, incident edges cannot be translated later on. The DEC resolves
conflicts where context-sensitive productions create one primary node that is
connected via new edges to at least one context node. It does not offer a solution
for those cases where the created nodes are not connected. In the following,
we regard TGG productions that create only one primary node on each side
and do not contain additional secondary elements6. Primary nodes of context-
sensitive productions must be connected to at least one context node. The graphs
6 Allowing additional secondary elements would require in depth discussions and spe-

cial handling in Algorithm 1 which we had to omit due to lack of space.
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that result by applying such productions are either graph structures that are not
connected to other structures (in case of applying initial context-free productions
like production (1) of TGGCDDS) or connected graph structures (in case of
applying context-sensitive productions (2) to (5) of TGGCDDS).

4.1 Formal introduction to LNCC and DEC

As shown at the beginning of Sect. 4, application of certain translation rules may
lead to invalid graph triples since some edges in the graph of the input domain
remain untranslated. Based on this observation we define for the source graph
of a TGG the so-called Legal Node Creation Context relation with a look-ahead
of one LNCCS(1)7 that will be used to control the selection and application
of FGT rules. A relation LNCCT (1) used by BGTs is constructed similarily.
TGG productions can be broken down to certain fragments, where at most two
nodes make up a part of the production. Elements of LNCCS(1) are 4-tuples
that represent certain kinds of source graph production fragments. The first and
third component of a tuple represent the type of the node that is the source
and target of an edge e created by a production, respectively. The type of this
edge e is used as second component. The fourth component denotes whether the
source node, target node, or both nodes are used as context in the production
fragment. Tuples of LNCCS(1) are derived from a given TGG as follows:

Definition 14. Legal Node Creation Context with a look-ahead of 1.
LNCCS(1) ⊆ VTGS × ETGS × VTGS × {s, t, st} is the smallest legal node

creation context relation for the source graph of a given TGG such that
(vts, et, vtt, c) ∈ LNCCS(1) iff

(1) ∃ TGG production ((LS , RS ,NS) hS← pC
hT→ pT ) that creates edge e ∈ RS\LS

with at least one incident already existing context node s(e) or t(e) ∈ LS

(2) vts = type(s(e)), (3) et = type(e), (4) vtt = type(t(e))
(5) c ∈ {s, t, st}, with the following semantics:
(5.1) s: s(e) ∈ LS, t(e) ∈ RS\LS

(5.2) t: t(e) ∈ LS, s(e) ∈ RS\LS (5.3) st: s(e), t(e) ∈ LS

Figures 7 (a), (b), and (c) identify all possible node and edge constellations that
contribute tuples to LNCCS(1). In addition, Figs. 7 (d), (e), and (f) depict those
production fragments that do not contribute any tuples to LNCCS(1).

The motivation behind the definition of LNCCS(1) is to block a translation
of a node of the source graph that has incident edges that are not translated
in the same step and that cannot be translated later on (i.e., to avoid dangling
edges). This situation occurs if a TGG contains overlapping productions (e.g.,
productions p(1) and p(2) of TGGCDDS). These productions are applicable in the
same context and create a node of the same type (both p(1) and p(2) create nodes
of type “Class”) but at least one production creates an edge that relates the new

7 We plan to introduce LNCCS(n) with a look-ahead of n > 1 that also takes indi-
rectly referenced nodes into account in future work.
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c:C

d:D d:D

(d) (e) (f)

c:C

d:D

++
e:E ++ e:E

++

++

c:C

d:D

++
++

c:C

d:D

c:C

d:D

++
e:E ++ e:E ++ e:E

(a)  (D, E, C, t) (b)  (C, E, D, s) (c)  (D, E, C, st)

Fig. 7. TGG production fragments relevant and irrelevant for LNCCS(1)

node to an already existing node (p(2) creates an edge from the new subclass to
its superclass). Therefore, a translator that applies one of the rules derived from
these productions would destroy the match of the other rule and potentially leave
an untranslatable edge. In order to identify such dangling edge situations, TGG
production fragments must be inspected which create edges where the source
or the target of the edge already exists, i.e., is used as context (cf. Figs. 7 (a),
(b), and (c)). Translation rules derived from TGG productions containing these
fragments have the potential to translate edges of the input graph using one
or two already translated incident nodes as context. As patterns (d) to (f) do
not translate such edges they can be neglected. Pattern (a) depicts a production
fragment in which node c is the already existing context for the new node d and
d is the source of the new edge e (s(e) = d). In production fragment (b) the
direction of the edge is changed: s(e) = c. Pattern (c) depicts a situation where a
new edge between nodes c and d is created, i.e., both nodes are used as context.

c1:C

«not translatable»
translated
not translated

e1:E

d1:D

c1:C

e1:E

d1:D

c1:C

e1:E

d1:D

(a) )1(),,,( SLNCCtCED (b) )1(),,,( SLNCCsDEC (c) )1(),,,( SLNCCstCED

«not translatable» «not translatable»

Fig. 8. Patterns in input graph that violate DEC(1)

Whenever we encounter a not translated edge with an already translated
incident node, we will use the relation LNCCS(1) to check whether an FGT rule
exists that can be used later on to translate the regarded edge. If LNCCS(1)
does not contain an appropriate tuple then the just regarded edge cannot be
translated. On the other hand, the existence of an appropriate tuple does not
guarantee that the edge is translatable. This is due to the fact that FGT rules
rST containing a tuple are only applicable if a match of a rule’s complete left-
hand side (RS ← LC → LT ) is found in the host graph triple and no NAC
in the target domain blocks. In general we have to restrict the application of
translation rules such that the situations depicted in Fig. 8 are avoided:
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(a) Node d1 is not translated yet but c1 (the target of e1) is and there exists no
rule with production fragment (D, E, C, t) that may translate e1 later on.

(b) Node d1 is not translated yet but c1 (the source of e1) is and there exists no
rule with production fragment (C, E, D, s) that may translate e1 later on.

(c) Nodes d1 (source) and c1 (target) are both translated and there exists no
rule with production fragment (D, E, C, st) that may translate e1 later on.

Therefore, the application of a translation rule must satisfy certain application
conditions given in Def. 15 including the Dangling Edge Condition (DEC(1)).

Definition 15. Rule application conditions for FGTs with a look-ahead of 1.
Let TX be the set of already translated elements of the source graph GS, e ∈ ES,

and p be a TGG production ((LS , RS ,NS) hS← pC
hT→ pT ). Thus, for each match g′S

of translation rule rST in GS the rule application conditions (1) to (3) must hold
including the dangling edge condition DEC(1) that consists of the subconditions
DEC1(1), DEC2(1), and DEC3(1) in order to apply rST to (GS ← . . .→ . . .):

(1) g′S(LS) ⊆ TX (context elements are already translated)
(2) ∀x ∈ g′S(RS\LS) : x /∈ TX (no element x shall be translated twice)
(3) TX ′ := TX ∪ g′S(RS\LS) (TX is extended with translated elements)

(DEC1(1)) ∀e /∈ TX ′ where s(e) ∈ TX ′, t(e) /∈ TX ′ :
(type(s(e)), type(e), type(t(e)), s) ∈ LNCCS(1)

(DEC2(1)) ∀e /∈ TX ′ where t(e) ∈ TX ′, s(e) /∈ TX ′ :
(type(s(e)), type(e), type(t(e)), t) ∈ LNCCS(1)

(DEC3(1)) ∀e /∈ TX ′ where s(e), t(e) ∈ TX ′ :
(type(s(e)), type(e), type(t(e)), st) ∈ LNCCS(1)

Def. 15 thus introduces a rather straightforward way to decide if a translation
rule shall be applied or not just by looking at the 1-context of a to-be-translated
node. By adding this condition to the translation algorithm defined in [5] (cf. Al-
gorithm 1 in Sect. 5), we are able to reduce the number of situations significantly,
where we were forced to choose one of the applicable rules nondeterministically
and run into dead-ends due to the wrong choice. In general, Def. 15 is not able
to resolve all positive/positive conflicts, i.e., there may be multiple rules that
are able to translate a node using different matches, i.e., matches containing dif-
ferent to-be-translated elements. Therefore, Algorithm 1 will abort in this case.
Alternatively, the user could be asked which of these elements should be trans-
lated or rule priorities [8] can be used to reduce the number of different matches
if more than one rule is applicable by filtering matches of rules with low priority.

Though, the algorithm permits multiple locally-applicable rules, i.e., rules that
translate the same elements. A locally-applicable rule is either applicable also
on the whole graph triple or its application is prevented, e.g., due to NACs in
the output component. The set of productions of TGGCDDS contains multiple
locally-applicable rules. FGT rules (3) and (4) are both applicable in the context
of the first attribute of a class. Likewise, BGT rules (4) and (5) are both appli-
cable in the context of the non-first column of a table. These rules are disjoint
applicable, i.e., only one of the locally-applicable rules is applicable on the whole
graph triple (cf. forward translation example in Sect. 5). In general, multiple
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locally-applicable rules need not to be disjoint applicable because they translate
the same elements. Executing one of the locally-applicable rules nondeterminis-
tically does not lead into dead-ends due to the local completeness criterion and
the same reason why positive/negative conflicts on the target side do not lead
into dead-ends (cf. Def. 13 and subsequent discussion).

4.2 Dangling Edge Condition by Example

Now, we show by example that checking for dangling edges helps deciding which
rule should be applied by translators derived from a TGG if multiple rules are
applicable at overlapping matches. Therefore, we consider again the FGT derived
from TGGCDDS and the input graph depicted in Fig. 6 (a) already discussed at
the beginning of Sect. 4. As we have already shown, both translation rules (1)
and (2) are applicable after applying rule (1) to this input graph. Based on the
classification scheme of Fig. 7 and Def. 14 we construct the set of tuples from
the TGG productions of TGGCDDS which results in LNCCS(1) =
{(Class, Inherits,Class, t), (Class,Contains, Attr, s), (Attr, Precedes,Attr, s)}.

Next, we pretend to apply rule (1) in the context of class c2. Then, we calculate
the set inc(c2) = {e1} which contains incident edges of c2 that are not yet
translated. We must check whether all edges in inc(c2) are translatable by further
rewriting steps, i.e., whether DEC(1) is satisfied. As both source and target
of e1 are already translated, a tuple must exist in LNCCS(1) that satisfies
subcondition DEC3(1). Therefore, the tuple (Class, Inherits, Class, st) must
be in LNCCS(1) which is not the case. As a consequence, we do not apply
FGT rule (1), because this would result in a dangling edge (cf. Fig. 6 (b)) and
proceed pretending to apply rule (2). In this case inc(c2) = ∅. So, the rule
application conditions given in Def. 15 are satisfied, i.e., there are no dangling
edges. Concluding, we were able to translate the input graph completely due to
the fact that the DEC prohibited selecting a wrong translation rule match.

5 Extended Translation Algorithm with DEC

In this section we extend the algorithm presented in [5] so it handles NACs as
presented in Sect. 3 and checks the dangling edge condition (cf. Sect. 4). We
discuss the extended algorithm (cf. Algorithm 1) by translating the graph triple
shown in Fig. 10 (a) with the FGT derived from TGGCDDS. Each translator
implements procedure evolve : GTin �∗ GTout which simulates the simulta-
neous evolution of a given graph triple GTin. The input graph triple GTin is
either (GS ← G∅ → G∅) in case of an FGT or (G∅ ← G∅ → GT ) in case of
a BGT8. The input graph Ginput is either GS or GT depending on the type of
translator (FGT/BGT), whereas the output graph Goutput is either GT or GS .
Procedure evolve assumes that the underlying TGG is integrity-preserving and
that the input graph GTin was produced by a sequence of input-local rules rI ,
8 In the general case, when incremental updates are performed with a translator, the

correspondence graph and the graph of the opposite domain need not to be empty.
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i.e., Ginput ∈ L(GGI). Evolve is able to cope with situations where the un-
derlying TGG or the input is invalid. It throws errors if it detects an invalid
TGG specification and exceptions in case of invalid inputs. A valid translation
produces an output graph triple GTout = (GS ← GC → GT ) ∈ L(TGG). There-
fore, evolve calls subroutine translate(GraphTriple) which in turn calls procedure
translate(Node) for all nodes in the input graph Ginput. Resulting graph triples of
invalid translations are undefined. Algorithm 1 uses so-called core rules (cf. [5])
to determine matches of translation rules in the input graph. A core rule is closely
related to the input component p−I,id (either p−S,id or p−T,id) of a translation rule
(cf. Def. 12). Fig. 9 shows the core rules derived from TGGCDDS which are used
by the forward translator. A core rule looks up the context elements of a given
primary element in Ginput, which may or may not be translated already but
must be translated so the primary element is translatable (cf. Def. 15 (1)). Core
rules only contain elements of the input graph. NACs are not contained in a core
rule. The primary element and additional incident edges must not be translated
yet. This is indicated by the empty checkboxes next to these elements.

«context»
c1:Class

«primary»
a1:Attr

(3)
+

(4)

«context»
c1:Class

«primary»
a1:Attr

«context»
a3:Attr

next

(5)«primary»

c1:Class
(1) «context»

c1:Class
super

«primary»
c2:Class

(2)

Fig. 9. Core rules of the FGT derived from TGGCDDS

The algorithm starts translating Ginput (cf. Fig. 10 (a)) with node c1. It may
start with any other node as well because it recursively translates the context of
the current node before it translates the node itself. First, the algorithm deter-
mines appropriate rules from the set of candidate rules. A rule is a candidate if its
primary node in the input domain is type compatible with the to-be-translated
primary node. An appropriate rule has at least one core match which contains
the primary node. A core match satisfies Def. 15 (2), i.e., all to-be-translated
elements are not translated yet. If multiple matches of one rule in the input
graph exist9, the algorithm checks for every match if the rule is appropriate.
In order to be appropriate, every context node required by the primary node is
recursively translated. But, the context is only translated if the dangling edge
condition would be satisfied afterwards (cf. Def. 15 DEC(1)). Next, the algorithm
determines applicable rules from the set of appropriate rules. The application
condition Def. 15 DEC(1) has to be reassured because it might have been invali-
dated due to potential competing recursive context translations. In addition, the
core match of an applicable rule must be completed in the rule’s left-hand side

9 In TGGCDDS at most one core match exists for any rule in a valid input graph.
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(i.e., input, link, and output domain) and the NACs in the output domain must
not block. If no applicable rule is determined then either a match exists in the
input domain but it may not be completed or the to-be-translated node is not
even locally translatable. In the first case the set of TGG productions violates
the local completeness criterion (cf. Def. 13), in the latter case the input graph is
invalid. If multiple rules are applicable at some completed match, the algorithm
ensures that their to-be-translated elements in the core match are identical. Oth-
erwise it aborts with an error as this might lead into dead-ends (cf. Sect. 4.1).
It is up to the developer of a set of TGG productions to guarantee that this will
never happen in practice. Finally, the algorithm translates the primary node. It
selects one entry from the set of applicable rules, applies the rule at its match,
and extends the set of translated elements (cf. Def. 15 (3)).

c2:Class

a2:Attr

a3:Attr

a4:Attr

c1:Class

a1:Attr

(a)

e1:Inherits

e2:Contains

e4:Precedes

e7:Precedes

e3:Contains

e5:Contains

e6:Contains

l1:CT t1:Table

l2:CT

o3:Columnl3:AC

(b)

c2:Class

a2:Attr

a3:Attr

a4:Attr

c1:Class

a1:Attr

e1:Inherits

e2:Contains

e4:Precedes

e7:Precedes

e3:Contains

e5:Contains

e6:Contains

Fig. 10. Snapshots of the translation process during forward translation

FGT rule (1) (i.e., r
(1)
ST ) is the only candidate that has the capability to trans-

late c1 because no match exists for the other candidate rule (2). The algorithm
checks whether application of rule (1) satisfies DEC(1). Therefore, it determines
the elements in Ginput created by the corresponding local rule r

(1)
S (i.e., {c1})

and joins these elements, the required context elements (i.e., ∅), and the set of
currently translated elements (i.e., ∅) which results in set TX ′ := {c1} . Then,
it checks whether condition DEC(1) is satisfied for all not translated incident
edges of node c1, i.e., inc(c1) := {e1, e2, e3}. According to Def. 15, the required
tuples for inc(c1) are (Class, Inherits, Class, t) and (Class, Contains, Attr, s).
So, DEC(1) is satisfied because LNCCS(1) contains these tuples (cf. Sect. 4.2).
Since c1 does not have any context, no additional elements need to be translated
and rule (1) is marked appropriate. Moreover, its core match can be completed
to a full match. Therefore, r

(1)
ST is an applicable rule. As it is the only applicable
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1 procedure GraphTriple evolve(inputGraphTriple: GraphTriple) { // GTin

2 global inputGraph: Graph = Translator.getInputGraph(inputGraphTriple); // Ginput

3 global translatedElements: ElementSet = inputGraph.getTranslatedElements(); // TX
4 global justRegardedElements: ElementSet = ∅;
5 inputValid: boolean = inputGraph.verifyConstraints(); // Def.8(1)/(3) satisfied?
6 outputGraphTriple: GraphTriple = translate(inputGraphTriple); // produce GTout

7 outputValid:boolean= Translator.getOutputGraph(outputGraphTriple).verifyConstraints();
8 translated: boolean = inputGraph.isCompletelyTranslated();
9 if (inputValid && outputValid && translated)

10 return outputGraphTriple; // successfully produced GTout

11 else if (inputValid && !outputValid) // Def.10(3) violated!
12 throw TGGContainsIntegrityDestroyingProductionsError(outputGraphTriple, translated);
13 else throw InputGraphNotPartOfDerivableGraphTripleException( // user-error: ...
14 outputGraphTriple, inputValid, outputValid, translated); // ...Ginput �∈ L(GGI)
15 }
16 procedure GraphTriple translate(graphTriple: GraphTriple) {
17 forall (node ∈ inputGraph) { translate(node); }
18 return graphTriple;
19 }
20 prodecure translate(n: Node) {
21 if (n ∈ translatedElements) return;
22 else if (n ∈ justRegardedElements)
23 throw CycleInRecursiveContextTranslationError(n, justRegardedElements);
24 else { justRegardedElements.add(n);
25 nodeLocallyTranslatable: boolean = false;
26 appropriateRules, applicableRules: PairSet<Rule, Match> = ∅;
27 candidateRules: RuleSet = select rules where r.primaryInputNode.type equals n.type;
28 forall (rule ∈ candidateRules) { // collect appropriate rules and core matches
29 compute core matches of rule in inputGraph with n as primary node;
30 forall (cm ∈ core matches) { // Def.15(2): g′

I(RI\LI) ∩ TX = ∅ satisfied!
31 if (not isDECSatisfied(n, join(cm.toBe, cm.context))) // g′

I(RI\LI) ∪ g′
I(LI)

32 { continue; } // do not translate context if Def.15(DEC(1)) would be violated
33 forall (contextNode ∈ context elements of core match)
34 { translate(contextNode); } // recursively translate required context
35 if (all context elements of core match are translated)
36 { appropriateRules.add(rule, cm); } // Def.15(1): g′

I (LI) ⊆ TX satisfied!
37 } } // end of appropriate rule at core match with n as primary node calculation
38 forall ((rule, cm) ∈ appropriateRules) { // collect rules applicable at full match
39 // reassure Def.15(DEC(1)): may be violated due to competing context translation
40 if (not isDECSatisfied(n, cm.toBe)) { continue; }
41 nodeLocallyTranslatable = true; // now n must be translatable due to Def.13
42 if (cm can be completed in other domains and NACs in output domain don’t block)
43 { applicableRules.add(rule, full match); }
44 } // end of applicable rule at full match with n as primary node calculation
45 if (applicableRules.isEmpty()) { // node is not translatable
46 if (nodeLocallyTranslatable) // match could not be completed in other domain(s)
47 throw LocalCompletenessCriterionError(n, appropriateRules); // Def.13 violated!
48 else
49 throw InputGraphNotPartOfDerivableGraphTripleException(n); // Ginput �∈ L(GGI)
50 }
51 if (not applicableRules.matches->forAll(m1, m2 | m1 <> m2 implies
52 m1.cm.toBe = m2.cm.toBe)) throw CompetingCoreMatchesError(n, applicableRules);
53 select one rule/match pair from applicableRules;
54 apply rule at match; // evolve GT � GT ′ with rIO@gIO

55 translatedElements.add(elements of inputGraph translated by rule); // g′
I(RI\LI)

56 justRegardedElements.remove(n);
57 } }
58 procedure boolean isDECSatisfied(node: Node, toBeTranslated: ElementSet) {
59 translatedElements’ = translatedElements ∪ toBeTranslated; // TX′ (cf. Def.15(3))
60 select all incident edges e of node where (e �∈ translatedElements’)
61 and (s(e) or t(e) ∈ translatedElements’)
62 forall (e ∈ selected incident edges)
63 { if (not (DEC(1) satisfied for e)) { return false; } } // ensure Def.15(DEC(1))
64 return true; // all edges translatable
65 }

Algorithm 1. Algorithm that handles NACs and checks for dangling edges.
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rule it is applied at the complete match which translates node c1 and creates
a corresponding table in the target domain. The algorithm proceeds translat-
ing by selecting node a3 from the set of remaining nodes {c2, a1, a2, a3, a4}.
FGT rules (3), (4), and (5) are candidate rules for translating a3. But a core
match, which requires c2 as context, exists only for rules (3) and (4). First, the
core match of rule r

(3)
ST is examined. DEC(1) is satisfied for inc(a3) = {e7} as

(Attr, Precedes, Attr, s) ∈ LNCCS(1). Now, the context c2 is translated by a
recursive call to translate(Node). The candidate rules for translating c2 are r

(1)
ST

and r
(2)
ST . The algorithm randomly selects r

(2)
ST to be checked first. DEC(1) is not

violated (cf. Sect. 4.2) and the context of c2 (i.e., c1 ) is already translated. The
algorithm does not translate c1 again because it notices that c1 is already trans-
lated. After marking rule (2) as appropriate, candidate rule r

(1)
ST is checked. It

would violate DEC(1) and therefore it is not added to the set of applicable rules.
As the match of r

(2)
ST can be completed it is the only applicable rule and used

to translate c2. The algorithm returns from the recursion and resumes in the
context of a3. It marks r

(3)
ST as appropriate and proceeds with r

(4)
ST which is also

appropriate. Though, the only applicable rule is r
(3)
ST because, contrary to r

(4)
ST ,

its match can be completed. Consequently, both locally-applicable rules r
(3)
ST and

r
(4)
ST are disjoint applicable in this case (cf. discussion in Sect. 4.1). Therefore,

r
(3)
ST is used to translate a3. Right now, the remaining nodes are {a1, a2, a4} and

the current graph triple looks like depicted in Fig. 10 (b). The following trans-
lation steps are rather similar to the preceding steps so we will abbreviate the
explanation. Next, attribute a1 is translated. Its context {c1} is already trans-
lated. Rule candidates with a core match are r

(3)
ST and r

(4)
ST , which both satisfy

DEC(1), but r
(3)
ST is blocked due to the NAC in the output domain. FGT rule (4)

is applicable as a match of the LHS is found and the NAC does not block. Fi-
nally, attributes a2 and a4 are translated in this order. Their context is already
translated and the rule candidates are r

(3)
ST , r

(4)
ST , and r

(5)
ST . FGT rules (3) and (4)

are neglected as their application both would violate DEC(1) for inc(a2) = {e4}
and inc(a4) = {e7} because (Attr, Precedes, Attr, st) /∈ LNCCS(1). Hence, ap-
plication of r

(5)
ST would not violate DEC(1). Therefore, both attributes a2 and

a4 are translated by r
(5)
ST .

So, the algorithm has successfully translated all nodes and edges of the input
graph to a corresponding output graph. The sequence of applied FGT rules
SEQ(rST ) = (r(1)

ST @∅, r(2)
ST @c1, r

(3)
ST @c2, r

(4)
ST @c1, r

(5)
ST @c1, r

(5)
ST @c2) constructed

in this example translates the primary nodes in this order: (c1, c2, a3, a1, a2, a4).
In conjunction with the also constructed correspondence graph a graph triple
GTout was produced which is equivalent to graph triple GT6 (cf. Fig. 3 (a)) that
was derived from TGG production sequence SEQ6 (cf. Sect. 2.3) starting with
the empty graph triple. Therefore, the FGT sequence exactly mimics SEQ6.

The next theorems state that translators based on Algorithm 1 are efficient
as well as consistent and complete with respect to their TGG if the algorithm
never aborts for any given valid input graph. If the algorithm aborts then either
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Ginput �∈ L(GGI ) or the TGG specification is erroneous, i.e., does not satisfy
the conditions stated throughout this contribution.

Theorem 2. Efficiency of Graph Translation.
Algorithm 1 has worst case runtime complexity of O(nk) with n being the num-

ber of nodes of Ginput and k being a constant that depends on the regarded TGG.

Proof.
Sketch:

(1) The algorithm just loops through the set of all n nodes of the input graph;
the implicit reordering of the translation of input graph elements in the loop
for not yet translated context elements of a just regarded graph element does
not affect its runtime complexity.

(2) The book keeping overhead of the algorithm is neglectible and the execution
time for basic graph operations like traversing an edge or creating a new
graph element is bounded by a constant (otherwise we should add a loga-
rithmic or linear term depending on the implementation of the underlying
graph data structure).

(3) The worst case execution time of all needed rules applied to a given (primary)
input graph node is (n+n′)k−1, where n′ is the number of nodes of the output
graph, and k is the maximum number of elements of any applicable rule. In
the worst case the match of the primary node is extended by testing all
possible (n + n′)k−1 permutations of source/target graph elements.

(4) Furthermore, n′ ≤ c ∗ n for a given constant c that is the maximum number
of new nodes of the output component of any TGG production. �

In the case of TGGCDDS , the complexity of a forward translation is O(n2) for
the following reasons: The worst case execution time of its rules (cf. Fig. 4)
is O(n′) ≤ O(n) due to the fact that rules (1), (2), and (3) have a constant
execution time, whereas rules (4) and (5) have to determine the last column
node of a table node. Assuming that all nodes of the output graph are columns
of the just regarded table n′ ≤ n nodes have to be inspected in the worst case.

Theorem 3. Consistency of Graph Translation.
Let GI ∈ L(TGI , CI) be an input graph (either GS or GT ) and GO be an

output graph (either GT or GS). If
FGT (GS ← G∅ → G∅) = (GS ← GC → GT ) and
BGT (G∅ ← G∅ → GT ) = (GS ← GC → GT ), respectively,

is a not aborting complete translation of GI with Algorithm 1 then:
(1) (GS ← GC → GT ) ∈ L(TGG) and (2) GO ∈ L(TGO, CO).

Proof.
Sketch:

(1) (GS ← GC → GT ) ∈ L(TGG) is a direct consequence of Theorem 1 and
the fact that GI ∈ L(TGI , CI). As a consequence the simulated application
of TGG productions without NACs in the input domain does not have any
effect concerning the applicability of translation rules.
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(2) The behavior of translation rules on the output side is identical with the
behavior of the related TGG production: i.e., a rule finds a match on the
output side iff the related TGG production has the same match.

GO ∈ L(TGO, CO) is then a direct consequence of (1). �

Theorem 4. Completeness of Graph Translation.
Let (GS ← GC → GT ) ∈ L(TGG) and let us assume that the execution of

Algorithm 1 does not abort with any error. Then, we can guarantee that graphs
G∗

C , G∗
T and G∗

S, G∗
C , respectively, exist such that:

FGT (GS ← G∅ → G∅) = (GS ← G∗
C → G∗

T ) ∈ L(TGG) and
BGT (G∅ ← G∅ → GT ) = (G∗

S ← G∗
C → GT ) ∈ L(TGG), respectively;

i.e., the algorithm terminates without throwing any exception.

Proof.
(by induction) Sketch:
Let GTout ∈ L(TGG) be a graph triple that has been derived using a se-
quence of derivation steps SEQn

i=1(pi) = ((p@g)1, . . . , (p@g)n) of length n and
let SEQn

i=1(rI,i) = ((rI@gI)1, . . . , (rI@gI)n) be the projection of the regarded
sequence of graph triple derivation steps on its input graph. Furthermore, let
SEQm

i=0(rIO,i) with 0 ≤ m ≤ n be the sequence of the first m translation rule
applications ((rIO@gIO)1, . . . , (rIO@gIO)m) generated by the algorithm that ex-
actly mimics the derivation of GTout.

Case 1, m = 0: A translation rule sequence of length 0 trivially mimics the
derivation of the empty graph triple GT∅.

Case 2, 0 < m < n: We have to show that the algorithm extends the given
sequence of rule applications of length m to a sequence of length m+1 such that it
simulates either the original sequence of TGG productions SEQ(p) or a slightly
modified sequence SEQ(p∗) that still generates the same input graph. Let (vI)i

be the primary node of the input graph of each rule application (rIO@gIO)i and
TGG production application (p@g)i with 1 ≤ i ≤ m. Let v be the next to-be-
translated primary node which is selected by the algorithm. Furthermore, we
assume that the algorithm has already translated successfully the context nodes
of all rules that might be able to translate node v.

Case 2.1, v = (vI)m+1: Due to the fact that the algorithm does not throw
a CompetingCoreMatchesError we can safely assume that there exists at most
one set of translation rules with the same to-be-translated elements in their
core match including node v. Furthermore, we know that there exists at least
one rule with p−I,id (that is the input component of the translation rule derived
from pm+1) that matches node v = (vI)m+1. The local completeness criterion
(cf. Def. 13) guarantees that the algorithm finds a TGG production application
p∗@g∗ that corresponds to one of the translation rules r∗IO that is able to handle
the translation of the selected node v. Applying Def. 13 multiple times we can
generate a new sequence of TGG production applications SEQn

i=1(p
∗
i ) such that:

1 ≤ i ≤ m: (p∗@g∗)i = (p@g)i

i = m + 1: (p∗@g∗)i = p∗@g∗

m + 1 < i ≤ n: (p∗@g∗)i is a new production application that mimics (p@g)i



170 F. Klar et al.

As a consequence the algorithm is able to create a sequence of translation steps
SEQ(r∗IO) of length m + 1 that has the same properties as the given sequence
of translation steps SEQ(rIO) of length m w.r.t. the new sequence SEQn

i=1(p
∗
i )

that replaces SEQn
i=1(pi).

Case 2.2, v �= (vI)m+1: Due to the fact that the selected node v is not yet
translated and that (vI)1, ..., (vI)n is the complete set of all primary nodes of
the given input graph (generated by the given sequence of TGG production
applications) there exists an index k > m + 1 such that v = (vI)k. Let (p−I,id)k

be the input component of the translation rule derived from (p@g)k. We know
that all context nodes potentially required by (p−I,id)k are already translated.
Again relying on the fact that the algorithm does not throw any error and on
Def. 13 we know that a rule r∗IO exists, derived from a production p∗, which is
able to translate the given primary node v. Using the same line of arguments as
in case 2.1 we can construct a new sequence of TGG productions p∗ of length n
with the same properties as listed above. As a consequence the algorithm is again
able to create a sequence of translation steps SEQ(r∗IO) of length m + 1 that
has the same properties as the given sequence of translation steps of length m.

Case 3, m = n: The translation rule sequence mimics the complete derivation
of the input graph, i.e., generates a valid translation into a graph triple GT ∗

out

that has the same input graph as GTout but may have different correspondence
and output graphs then GTout. �
The consequence of the proof sketches is as follows. If we are able to show for a
given TGG that derived translators never abort with an error then:

(1) The presented algorithm can be executed efficiently (polynomial complexity)
as long as the matches of all translation rules can be computed efficiently.

(2) Forward and backward translation results are consistent, i.e., do only pro-
duce graph triples that belong to the language of the regarded TGG.

(3) Forward and backward translations will always produce a result for a given
input graph if the language of the regarded TGG contains a graph triple
that has this input graph as a component.

Finally, our running example shows that in the general case the result of a
graph translation is not uniquely determined up to isomorphism, i.e., sets of
TGG productions needed in practice often do not satisfy any (local) confluence
criteria. Therefore, it was of importance to develop an efficiently working graph
translation algorithm that does not rely on (local) confluence criteria of TGG
productions or translation rules, but nevertheless fulfills the initially presented
expressiveness, consistency, and completeness properties, too!

6 Related Work

Based on the characterization of “useful” TGGs in Sect. 2 we proposed exten-
sions to triple graph grammars in Sects. 3, 4, and 5. Now, we are prepared to
evaluate and assess various forms of declarative bidirectional model or graph
transformations that have been published in the past.
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The first TGG publication [1] introduced a rather straight-forward construc-
tion of translators. It relied on the existence of graph grammar parsing algorithms
with exponential worst-case space and time complexity. As a consequence a first
generation of follow-up publications [13,14] all made the assumption that the
regarded graphs have a dominant tree structure and that the components of a
TGG production possess one and only one primary node. Based on these as-
sumptions an algorithm is used that simply traverses the tree skeleton of an
input graph node by node and selects an arbitrary matching FGT/BGT rule for
a regarded node that has a node of this type as its primary node. This algo-
rithm defines translation functions that are neither consistent nor complete in
the general case. Both properties are endangered by the fact that the selected
tree traversal order does not guarantee that rules are applied in the appropriate
order. It may happen that the application of a rule fails because one of its con-
text nodes has not been processed yet or that a rule is applied despite of the fact
that one of its context nodes has not been matched by another rule beforehand.

As a consequence, [8] introduces an algorithm that still relies on a tree traver-
sal, but keeps track of the set of already processed nodes and uses a waiting
queue to delay the application of rules if needed. This algorithm defines con-
sistent translators, but has an exponential worst-case behavior concerning the
number of re-applications of delayed rule instances. Another class of TGG ap-
proaches (cf. [15]) attacked the rule ordering problem in a rather different way.
These approaches introduce a kind of controlled TGGs, where each rule explic-
itly creates a number of child rule instances that must be processed afterwards.
Thus, one of the main advantages of a rule-based approach is in danger that
basic rules can be added and removed independently of each other and that it
is not necessary to encode a proper graph traversal algorithm explicitly.

All publications mentioned so far refrained from the usage of NACs that where
introduced in [16] in the context of model transformation approaches based on
graph transformation. Some of them even argued that NACs cannot be added
to TGGs without destroying their fundamental properties! But, rather recently
some application-oriented TGG publications simply introduced NACs without
explaining how derived translation rules and their rule application strategies
have to be adapted precisely. The publications even give the reader the im-
pression that NACs can be evaluated faithfully on a given input graph without
regarding the derivation history of this graph with respect to its related TGG.
[17], e.g., explicitly makes the proposal to handle complex graph constraints in
this way, whereas [18] and [4] ignore the problems associated with the usage
of NACs completely. Despite these TGG approaches that already introduced
NACs to TGGs without a guarantee for consistency and completeness, we pro-
posed translators in [5] that guarantee consistency. Nevertheless, we could not
guarantee completeness of these translators.

We have to reference [19] as the first publication that studied useful properties
of translators including “invertibility” from a formal point of view. The authors of
this paper are interested in pairs of translation relations that are inverse to each
other. As a consequence they have to impose hard restrictions on TGGs in order
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to be able to construct their proofs. Furthermore, [19] has a main focus on con-
sistency, whereas efficiency, expressiveness, and completeness are out-of-scope.
In addition, [19] extends the concept of triple graphs based on simple graphs to
triple graphs based on typed, attributed graphs. Follow-up publications (e.g., [20]
and [10]) then introduced NACs in an appropriate way and proved that trans-
lators may be derived from a TGG with NACs that are compatible with their
TGG. Unfortunately, both [20] and [10] trade efficiency for completeness. That
is, neither [20] nor [10] present an algorithm that is able to find an appropriate
sequence of translation rules in polynomial time which is necessary to create effi-
ciently working translators. Compared to both approaches, we showed here that
we are able to derive compatible translators—from a precisely defined subset of
TGGs with NACs—which are still efficient.

Other bidirectional model/graph translation approaches either suffer from
similar deficiencies or circumvent the efficiency versus completeness tradeoff
problem as follows: QVT Relational [3] as a representative of this sort of model
transformation approaches simply applies all matches of all translation rules to
a given input model in parallel and merges afterwards elements of the gener-
ated output model based on key attributes. This approach is rather error-prone
and requires a deep insight of the QVT tool developer as well as its users how
rules match and interact which each other. As a consequence, [21] shows that
today existing QVT Relational tools may produce rather different results when
processing the same input. For a more comprehensive survey of bidirectional
transformation approaches the reader is referred to [22].

7 Conclusion and Future Work

In this contribution we presented a “useful” class of triple graph grammars to-
gether with translators that comply to the four design principles stated in the
“Grand Research Challenge of the Triple Graph Grammar Community” intro-
duced in [5]: the development of a consistent, complete, and efficient graph trans-
lation algorithm for a hopefully still sufficiently expressive class of triple graph
grammars (TGGs). For this purpose we combined (a) restrictions for negative
application conditions of TGG productions with (b) a dangling edge condition
for graph translation rules that was inspired by "look ahead" concepts of parsing
algorithms. As a consequence, graph translators derived from the thus restricted
class of TGGs no longer have to take care of rule application conflicts by either
using a depth-first backtracking parsing algorithm or a breadth-first computa-
tion of all possible derivations of a given input graph. Therefore, the presented
new graph translation algorithm has a polynomial runtime complexity of O(nk)
for a rather small k in practice that is determined by the worst-case complexity
of computing matches for all needed graph translation rules.

Promising directions for future work are, e.g., the adaptation of the conflu-
ence checking algorithms of AGG [23], which are based on critical pair analysis,
as well as the model checking approach for graph grammars of GROOVE [24]
to the world of TGGs. Confluence checking techniques should offer the right
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means for the detection and classification of potential rule application conflicts
at compile time. In this way we would be able to guarantee already at compile
time that a graph translator derived from a specific class of TGGs will not stop
its execution with an error instead of generating an existing output graph for a
given input graph. Furthermore, constraint verification techniques of GROOVE
should allow to check the here introduced requirements already at compile time:
(a) TGG productions never create graph triples that violate graph constraints
of the related schema, (b) NACs are only used to block graph modifications that
would violate a graph constraint, (c) TGG productions never repair constraint
violations by rewriting an invalid graph into a valid graph, and (d) TGGs fulfill
the local completeness criterion. Until then, TGG developers have to design and
test their TGGs carefully such that TGG productions do not violate the pre-
sented conditions of integrity-preserving productions. Moreover, the presented
algorithm has to be extended to cope with secondary elements and to perform
incremental updates in order to also synchronize changes in source and target
domain models. In addition, the limited class of TGGs with NACs presented
in this contribution has to be enlarged but compatibility and efficiency proper-
ties of derived translators have to be ensured. We are currently evaluating the
here presented class of TGGs with NACs in research cooperations with indus-
trial partners, where TGGs are used to ensure consistency of design artifacts.
Time will show whether our claim is true that the here introduced new class of
TGGs is still expressive enough for the specification of a sufficiently large class
of bidirectional model/graph translations that are needed in practice.
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