
Model Synchronization at Work:

Keeping SysML and AUTOSAR Models
Consistent

Holger Giese, Stephan Hildebrandt, and Stefan Neumann

Hasso Plattner Institute for Software Systems Engineering
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

{Holger.Giese,Stephan.Hildebrandt,Stefan.Neumann}@hpi.uni-potsdam.de

Abstract. During the overall development of complex engineering sys-
tems different modeling notations are employed. For example, in the
domain of automotive systems system engineering models are employed
quite early to capture the requirements and basic structuring of the entire
system, while software engineering models are used later on to describe
the concrete software architecture. Each model helps in addressing the
specific design issue with appropriate notations and at a suitable level
of abstraction. However, when we step forward from system design to
the software design, the engineers have to ensure that all decisions cap-
tured in the system design model are correctly transferred to the soft-
ware engineering model. Even worse, when changes occur later on in
either model, today the consistency has to be reestablished in a cumber-
some manual step. In this paper, we present how model synchronization
and consistency rules can be applied to automate this task and ensure
that the different models are kept consistent. We also introduce a gen-
eral approach for model synchronization. Besides synchronization, the
approach consists of tool adapters as well as consistency rules covering
the overlap between the synchronized parts of a model and the rest. We
present the model synchronization algorithm based on triple graph gram-
mars in detail and further exemplify the general approach by means of
a model synchronization solution between system engineering models in
SysML and software engineering models in AUTOSAR which has been
developed for an industrial partner.

1 Introduction

The development of complex engineering systems involves different modeling no-
tations from different disciplines. Taking the domain of automotive systems as
an example, SysML (System Modeling Language) [1] models are employed quite
early to capture the requirements and basic structuring of the whole system
by system engineers, while AUTOSAR (Automotive Open System ARchitec-
ture)1 models are used later in the software development process to describe the
1 http://www.autosar.org

G. Engels et al. (Eds.): Nagl Festschrift, LNCS 5765, pp. 555–579, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

556 H. Giese, S. Hildebrandt, and S. Neumann

concrete software architecture and its deployment. Using these different models
helps in addressing each specific design issue with an appropriate notation and
at a suitable level of abstraction.

For example, when going from the system design with SysML to the software
design stage with AUTOSAR, today the engineers have to ensure manually that
all relevant decisions captured in the SysML model are correctly transferred to
the AUTOSAR model. When changes occur later on either in the AUTOSAR
or SysML model, the situation is even worse: The consistency has to be reestab-
lished in a cumbersome manual step that inspects both models and transfers
all detected changes. Otherwise, the integration of the different system parts as
captured by the SysML model and refined in the AUTOSAR model may fail.

Model-Driven Engineering (MDE) with its support for model transformation
and model consistency checking is a promising direction to approach the sketched
model consistency problems, which result as the models describe the system un-
der development from different viewpoints and on different levels of abstraction
capturing only partially overlapping information (cf. [35]).

Triple graph grammars (TGGs) are a formalism to declaratively describe cor-
respondence relationships between two types of models. They were introduced
in [29] and are one option to specify the required model transformations using a
declarative transformation specification. In several contexts, different variants of
TGGs have already been employed for model synchronization such as the inte-
gration of SysML models with Modelica simulation models [22], keeping models
from the domain of chemical engineering consistent [4] and transformations from
SDL models to UML models and vice versa [7].

In this paper, we report about our approach to tackle the outlined model syn-
chronization problem. Built on top of techniques from model-driven engineering
such as meta-models, consistency rules, and bidirectional model transformations
resp. model synchronizations specified by TGGs, a general architecture has been
developed, which allows to automate the task of keeping models consistent. We
only require that the TGG rule set is deterministic and that only one of the
models is changed at a time. Like described in [13], in many cases managing
and tolerating inconsistencies (e.g., by allowing to manipulate different models
concurrently) instead of directly removing them is desirable. In the case of the
automotive domain, consistency plays a crucial role, e.g., caused by the reason
that inconsistencies between previously defined requirements and the later im-
plementation can lead to catastrophic failures. Thus, a more rigorous handling
of inconsistencies like requested in [13] is adequate for our application example.

In a project with the automotive industry, we could demonstrate that our
approach can be employed for model synchronization between the SysML tool
TOPCASED and the AUTOSAR tool SystemDesk. Firstly, the model trans-
formation derived from TGGs permits to automatically generate the initial AU-
TOSAR model from the SysML model. Secondly, consistency between both mod-
els in case of changes in one of them can be maintained by a TGG-based model

Model Synchronization at Work 557

synchronization system[19]. Thus, we can synchronize both models such that
changes within one are automatically transferred to the other.2

By making manual transformation and synchronization steps obsolete, the
automatic synchronization of models reduces costs and time. This applies to
the initial transitions, for example, from the SysML model to the AUTOSAR
model, as well as the re-establishment of consistency in case of changes in one
model. In addition, such automated synchronization steps are less error prone
than manual steps as employed today. They further enable employing iterative
and more flexible development processes as the costs for iterations or changes
are dramatically reduced as long as parallel changes do not occur.

The structure of the paper is as follows: The current state of the art and its
limitations compared to our outlined new approach are discussed in Section 2.
The considered application example for our approach for synchronizing SysML
and AUTOSAR models is introduced in Section 3. The new approach, its archi-
tecture, and its components are first sketched in Section 4. Then the constituent
parts are presented in detail. The technique for model synchronization is ex-
plained in Section 5. The tool adapter and the techniques for consistency checks
follow in Section 6 and Section 7. At the end, we discuss the suitability of our ap-
proach by looking into several typical usage scenarios, such as the initial transfer
of information or change propagation, and close the paper with a final conclusion
and an outlook on planned future work.

2 State of the Art

In this section, we discuss related approaches for model transformation and
synchronization, and related work in the context of Model-Driven Engineering,
that make use of model transformations.

2.1 Model Synchronization

An overview of model transformation and synchronization systems can be found
in [9]. The paper categorizes existing approaches and briefly explains them.

As outlined in the introduction, MDE requires a bidirectional solution, which
preserves model contents when synchronizing as much as possible. However,
many available model transformation approaches only support classical one-way
batch-oriented transformations [16]. The QVT implementations [6] and [15], and
some graph transformation-based approaches such as Viatra [33,5], the GreAT
model transformation system [34], Agg [12], the core Progres tool [28] or the
core Fujaba tool [32] are only unidirectional but partly incremental. The avail-
able relational QVT implementations [21,31] as well as BOTL [25] are bidirec-
tional but only support a batch-oriented processing and, thus, fail to be scalable.
2 It has to be noted that the required restriction concerning no parallel changes in

the models does not result in any additional limitations in the considered applica-
tion domain, as the processes currently try to exclude changes at all to avoid the
cumbersome manual step to reestablish consistency.

558 H. Giese, S. Hildebrandt, and S. Neumann

Other existing TGG-based approaches also do not provide a comparable au-
tomatic and computational incremental solution (for a detailed discussion see
[19]): The TGG transformation algorithm based on the Progres environment
[4] is also incremental, but operates interactively, and is therefore inappropriate
for the transformation of large models. In the incremental TGG transforma-
tion approach supported by AToM3 [20], updates are triggered by user actions
like creating, editing or deleting elements and the specification of updates for
all possible user actions is required. Thus, the consistency of the approach is
difficult to guarantee and initial complete model transformations are not sup-
ported. Another TGG realization based on [32] is Moflon [10]. It focuses on
model integration and transformation for the MOF 2.0 standard [26] rather than
incremental model synchronization.

Incremental model synchronization can also be seen as an inconsistency res-
olution problem. [11] describes an incremental solution for the related problem
of inconsistency checking. The presented system allows a check to be made to
quickly determine whether a modification has caused inconsistencies, and pro-
poses solutions to the user. For a more detailed discussion of such solutions for
model synchronization we refer to [19].

2.2 Model Integration

Model-Driven Engineering is a development paradigm, where models are the
primary development artifacts. In [23] this idea is described. Models are used to
describe the system under development from different viewpoints and on different
levels of abstraction. During the development process, models are refined and
ultimately source code is generated from these models. The use of different kinds
of models leads to the problem of keeping those models consistent to each other.
At this point, model transformation systems play a central role. In practice an
additional challenge is that different kinds of models are normally supported
by different tools and these tools use diverse technologies for representing these
models. So at first models need to be accessed in an appropriate way to be able
to apply model transformation techniques.

In the MATE project [30] an adapter has been realized to access MAT-
LAB/Simulink models in such a way that model transformation rules can be
applied, e.g., for checking guidelines while model consistency like in case of model
synchronization is not the main focus.

In the ModelBus project [2] a framework has been developed, which is able to
integrate different model-based development tools into a service-oriented middle-
ware. The purpose of the ModelBus project is to provide a framework allowing
several tools to be connected within a single environment. Model transformation
and synchronization techniques can be potentially applied using this framework.
When access to the different models is provided in an adequate form, the in-
tegration of different models using model transformation and synchronization
techniques can be realized.

An approach for the integration of SysML models with Modelica simulation
models has been described in [22]. The approach is also based on triple graph

Model Synchronization at Work 559

grammars but uses VIATRA [8] to implement the transformation. In contrast to
the system presented in this paper, synchronization of models is not supported.

3 Application Example

We have evaluated the approach presented in this work within a project orga-
nized with our industrial partner, dSPACE GmbH. dSPACE provides, besides
other products, several tools for the development of embedded systems, espe-
cially for the automotive domain. Within this project we used two different
modeling languages commonly used for the development of automotive embed-
ded systems, namely the System Modeling Language (SysML) and the AUTo-
motive Open System ARchitecture (AUTOSAR). We used the tool SystemDesk,
a professional tool for the development of complex automotive embedded sys-
tems according to the AUTOSAR standard, and TOPCASED, an open-source
toolkit for supporting the modeling of SysML models. Both modeling languages
(AUTOSAR and SysML) are subsequently described in more detail.

3.1 SysML

A widely used language for system engineering is SysML (System Modeling
Language), which is currently available in version 1.1 (see [1]). SysML supports
the design and analysis of complex systems including hardware (HW), software
(SW), processes and more. SysML reuses a subset of the UML and adds some
additional parts (e.g., the Requirement and Parametric Diagram) to facilitate
the engineering process by providing several improvements compared to UML
concerning system engineering. UML itself tends to be more software-centric
while the topic of SysML is clearly set to the analysis and design of complex
systems (not only SW).

In our application example the existing SysML profile provided by the OMG
has been used, which utilizes the generic extension mechanisms of UML to cus-
tomize UML elements using the concept of stereotypes. Such stereotypes can
be applied to UML elements3 and extend as well as define constraints on these
elements. For expressing constraints also the Object Constraint Language (OCL)
can be used, which not only allows the description of structural properties, but
also the specification of additional constraints on the values and/or types of
attributes and so on. For more information about OCL see [27]. Instances of
the stereotyped UML elements must fulfill the properties defined by the applied
stereotypes. The SysML profile (like any other UML profile) contains a set of
stereotypes, which are applied to a UML model. In the following we explain
relevant SysML stereotypes for a small application example.

In SysML, system blocks are used to specify the structure of the system4.
For this purpose the UML meta model element Class is extended by the stereo-
type <<block>>. A block describes a logical or physical part of the system
3 Elements of the UML meta model.
4 A block describes a part of the structure of an interconnected system.

560 H. Giese, S. Hildebrandt, and S. Neumann

(e.g., SW or HW). Multiple of these blocks can be used for representing the
structure of a system. An example for the additional capabilities of SysML is
the possibility to model the flow of objects between different system elements
(which are specified in form of SysML blocks) by using <<flow ports>>. <<flow
port>> is a stereotype for the UML element Port and allows the modeling of
an object flow between SysML blocks. For the specification of objects and data,
which flow over a flow port, the stereotype <<flow specification>> is applied
to the UML element Interface in SysML. Ports can be connected via connectors
provided by the UML meta model. The elements required to connect different
ports (the UML Connector and ConnectorEnd) as well as a part of the SysML
meta model describing blocks, flow ports and flow specifications are shown in
Figure 1 in a simplified way.

Fig. 1. Extract of the SysML metamodel

When analyzing and designing automotive systems, the HW/SW-structure
can be described using SysML blocks, ports (e.g., flow ports) and appropriate
interfaces (e.g., flow specifications). In this paper, we use a simplified version
of the structural constituents taken from an application example of an engine-
fuel control system consisting of actuators and sensors for the throttle position
and the control software. The control software evaluates the sensor values, com-
putes appropriate throttle position values and sends them to the actuator of the
throttle.

The system structure including HW and SW parts has been modeled using
the tool TOPCASED5 and the resulting SysML model of the engine fuel con-
trol system is shown in Figure 2. The example consists of six different types of
blocks, three of them represent hardware parts like the engine, a HW actuator
and a HW sensor for setting and measuring the throttle position of the engine.

5 http://www.topcased.org/

Model Synchronization at Work 561

Fig. 2. Application example of an SysML model created in Topcased

The HW sensor (HWSensor8Bit) is connected to a SW block (ASWCSensor),
which reads data from the HW (e.g., by using driver functionality) and sends
these measured values to a SW block, which realizes the control functionality
(ASWCThrottleControl) and computes an output signal. This output signal is
send to a SW block (HWActuator), which realizes the access to the HW actua-
tor, which is represented through the block HWActuator8Bit. The HWActuator
interacts with the representation of the physical engine.

When such a system is designed, several restrictions have to be considered
concerning the used HW sensor blocks in combination with the software blocks.
A typical restriction is that a connector can only connect ports, which implement
the same interface. In the shown example, e.g., the flow ports of the blocks
ASWCSensor and HWSensor8Bit, over which these two blocks are connected,
have to implement the same interface. Such a constraint can be expressed in the
form of the following OCL constraint for the type connector:

context Connector inv:
self.end->forAll(e:self.end->get(0).role.type = e.role.type)

Only three of the blocks (ASWCThrottleControl, ASWCSensor and ASWC-
Actuator) described above are relevant for the SW architecture. In our implemen-
tation, stereotypes are defined for identifying, e.g., the definition of SW blocks
(<<atomicSoftwareComponent>>) as well as for the usage of the defined SW
blocks (<<componentPrototype>>) like shown in Figure 2. In the following sec-
tion, we show how these constituents can be represented in AUTOSAR.

3.2 AUTOSAR

AUTOSAR (Automotive Open System ARchitecture) is a framework for the de-
velopment of complex electronic automotive systems. The purpose of AUTOSAR
is to improve the development process for ECUs (Electronic Control Units) and
whole systems by defining standards for the system and software architecture.
The AUTOSAR standard defines a meta model, which describes a DSL for the
development of automotive embedded systems. The part of the meta model rel-
evant for the present work is described in [3] in the form of a UML profile. We
use a stand-alone meta model for AUTOSAR, which is realized accordingly.

562 H. Giese, S. Hildebrandt, and S. Neumann

As defined by the AUTOSAR meta model (an excerpt is shown in Figure 3),
the software architecture is built from components (e.g., AtomicSoftwareCompo-
nents (ASWC)). These ASWC are derived from the type ComponentType and
can communicate using two different categories of ports: required and provided
ports (represented through RPortPrototype and PPortPrototype). Both types
are derived from the same abstract class PortPrototype. An RPortPrototype only
uses data or events, which are provided by other ports of type PPortPrototype.
A port of type RPortPrototype or PPortPrototype can implement an interface
of type PortInterface. This PortInterface is refined by ClientServerInterface and
SenderReceiverInterface.

The SW blocks (ASWCSensor, ASWCActuator and ASWCThrottleControl)
defined within the SysML model described above can also be specified within
an AUTOSAR model. The blocks shown in Figure 2 can also be described using
ASWCs, ports and interfaces, which are defined within the extract of the AU-
TOSAR meta model shown in Figure 3. Figure 4 shows the same SWCs modeled
with the tool SystemDesk6.

In case of the SysML example, the SW blocks, ports and connectors can be
described directly within such an AUTOSAR model in the form of ASWCs.
In case of the blocks describing HW, such a mapping is not desired by our
industrial partner. HW components in AUTOSAR are represented on completely
different levels of abstraction than in SysML. Therefore, the blocks, ports and
connectors concerning HW in the SysML model have not been reflected in the
AUTOSAR model in our application example. Also the connectors, which exist
in the SysML model between the ports of a SW block and a HW block have not
been transformed to AUTOSAR.

Fig. 3. Extract of the AUTOSAR meta model

3.3 Common Constituents

The elements in Figure 2 are tagged with stereotypes, e.g., <<senderPort>>
and <<receiverPort>>. This is necessary because there are different types of
ports in AUTOSAR but only one type in SysML. Another example are software
components. AUTOSAR supports atomic and composite software components.
6 http://www.dspace.com/ww/en/pub/home/products/sw/

system architecture software/systemdesk.cfm

Model Synchronization at Work 563

Fig. 4. AUTOSAR model derived from the SysML model

Both are represented as blocks in SysML. To distinguish both types, the stereo-
types <<atomicSoftwareComponentType>> and <<compositionType>> have
to be used. These stereotypes have been defined in a small profile for SysML,
which we created for this purpose. In the remainder of this work we describe
how to support consistency of such semantically identical elements in different
models using transformation and synchronization techniques.

4 Approach

4.1 General Architecture

The generic architecture to integrate model transformation and synchronization
with existing modeling tools is shown in Figure 5. The transformation system
only supports EMF-compatible (Eclipse Modeling Framework 7) models. There-
fore, the source and target models need to be provided in that format. This is
done by tool adapters, which translate the models from and to EMF if necessary.
If the modeling tool itself is based on EMF, such an adapter can be realized eas-
ily. If the modeling tool is not based on EMF, the tool adapter has to provide
an EMF representation on the fly that the transformation system can modify,
and has to synchronize it with the actual model in the modeling tool. More
information on how such an adapter could be realized can be found in Section 6.

Fig. 5. General Architecture

7 http://www.eclipse.org/modeling/emf/

564 H. Giese, S. Hildebrandt, and S. Neumann

4.2 Architecture Example

In the project realized with our industrial partners, we have established an archi-
tecture like described above, which integrates the tools TOPCASED and Sys-
temDesk. For each tool an adapter has been realized, that provides an EMF
representation of the model to the transformation system. Figure 6 shows the
concrete architecture developed in that project.

Fig. 6. Integration architecture for TOPCASED-SystemDesk integration

The transformation system, the tool adapters, and TOPCASED are based on
the Eclipse platform. TOPCASED already uses EMF as its underlying modeling
infrastructure. Therefore, access to these models from the transformation sys-
tem can be realized without great effort. SystemDesk is a stand-alone Windows
application that provides a COM interface for access to its models. Access-
ing SystemDesk’s models is more difficult, because the technology gap between
Eclipse/EMF and SystemDesk/COM must be bridged. For this purpose, we have
developed a dedicated adapter. While the transformation system creates and
modifies an AUTOSAR model in EMF representation, the SystemDesk adapter
takes care of reading and writing the model to and from SystemDesk. For more
details concerning the realization of the SystemDesk adapter see Section 6.

5 Model Synchronization System Based on Triple Graph
Grammars

The model transformation system is based on triple graph grammars [29]. It is
able to perform model transformations in both directions, i.e. create a target
model from a source model and vice versa. Furthermore, it can synchronize both
models after modifications have occurred. In the following sections, triple graph
grammars are briefly introduced and the transformation and synchronization
algorithm is explained.

Model Synchronization at Work 565

5.1 Triple Graph Grammars

Triple graph grammars combine three conventional graph grammars to describe
the correspondence relationships between elements of two types of models. Two
graph grammars describe the two models and a third grammar describes a cor-
respondence model. Figure 7 shows a TGG rule for the transformation of a
SysML block to an atomic software component in AUTOSAR. This illustration
also combines the left-hand side (LHS) and right-hand side (RHS) of the rule.
The black elements belong to the LHS and the RHS of the rule, i.e. they form
the application context. The elements marked with ++ (and printed green)
belong only to the RHS and are created when the rule is applied. Rules that
delete elements are not used in the context of model transformation with TGGs
(cf. [29]). The correspondence model is used to explicitly store correspondence
relationships between corresponding source and target elements. It allows the
target model elements corresponding to a given source model element to be
found quickly. The correspondence nodes are connected to each other and form
a directed acyclic graph. Although, there is no link visible in Figure 7 between
CorrPackage and CorrASWC, that link is created implicitly and is not shown
in the TGG rule to ease modeling of TGG rules.

Fig. 7. TGG rule for the transformation of a block to an atomic software component

Fig. 8. Axiom of the triple graph grammar for the transformation from SysML to
AUTOSAR

Like every other graph grammar, a triple graph grammar has a start graph
which serves as the starting point of the transformation. In the context of TGGs
it is called axiom. Figure 8 shows the axiom for the transformation from SysML
to AUTOSAR. The whole grammar for this transformation contains many more
rules, which are not shown here due to space limitations.

566 H. Giese, S. Hildebrandt, and S. Neumann

5.2 Model Transformation

TGG rules are declarative by nature. To execute them they can be either inter-
preted by a dedicated TGG interpreter like presented in [24], or other executable
artifacts can be derived. In our case, Story Diagrams [14]8 are generated, which
are executed by a Story Diagram interpreter [18].

Fig. 9. Operational rule for the forward transformation of a block to an atomic software
component

The transformation system consists of two major parts, the transformation
engine and the operational transformation rules. The engine is independent from
specific source or target models and invokes the rules. The transformation system
supports both transformation directions, i.e. creating the right model from the
left model and vice versa. Furthermore, synchronization of models is also sup-
ported. This is explained in Section 5.3. Therefore, separate operational rules for
each direction are required. Conceptually, the operational rules are derived by
adding all elements on the source model side to the rule’s application context.
Figure 9 shows the conceptual forward transformation rule derived from the rule
in Figure 7. In practice, the operational rules have to do much more. Therefore,
four separate operations are generated for each rule and for each direction, that
perform

1. transformation of elements (transformation())
2. synchronization of elements (synchronization())
3. synchronization of attributes (synchronizeAttributes(), called by 2)
4. reconstruction of broken structures (repairStructure(), called by 2)

The overall operation principle of the transformation engine and the trans-
formation() operation is explained in the following, the others are described in
the next section.

The operation principle of the transformation engine is depicted in Figure 10.
To execute a model transformation, the engine is started with the root ele-
ments of the source and target models as parameters, as well as the desired
transformation direction (i.e. forward or backward). First, the axiom is executed
to transform the root node (1). The correspondence node that was created by
8 Story Diagrams combine UML activity diagrams with graph transformation rules to

describe behavior.

Model Synchronization at Work 567

Fig. 10. Operation principle of the model transformation engine

the axiom is put into the transformation queue of the engine (2). This step is
done by the axiom itself. The transformation queue contains the correspondence
nodes that need to be processed. After that, the first correspondence node in
the queue is removed (3) and all transformation rules are executed that expect
such a correspondence node in their application contexts (4). If a rule has suc-
cessfully transformed an element, the associated correspondence node is put into
the transformation queue (5). Steps 3 to 5 are repeated until the transformation
queue runs empty. Then the transformation is complete.

Fig. 11. Operation principle of the transformation() operation

Figure 11 shows the operation principle of the transformation operation9. The
operation’s parameter is the parent correspondence node (in case of the rule in
Figure 9, the CorrPackage node). This node is the starting point of the search for
other elements of the application context of the rule (PackageSYSML, ARPack-
age and Block in Figure 9). If these elements can be found and if they were
9 Axioms are only special kinds of rules. Therefore, the operation principle of axioms

is virtually the same.

568 H. Giese, S. Hildebrandt, and S. Neumann

not transformed before (1), the correspondence node and target elements are
created according to the TGG rule (2). After that the newly created correspon-
dence node is added to the transformation queue of the transformation engine
(3). This process is repeated as long as new matches for the rule’s application
context can be found. After that, the control flow returns to the transformation
engine as described above.

5.3 Model Synchronization

The model transformation system can also perform a synchronization between
the models after an initial transformation. For efficiency, the system only visits
those nodes that were actually modified. To detect modifications, an event lis-
tener is registered at each element of the source and target models. If an element
is modified, its associated correspondence node is put into the transformation
queue. There is an additional flag associated with each node in the queue10,
that marks whether the consistency of a correspondence node should be checked
(flag is true), or new elements should be transformed (flag is false) when this
correspondence node is processed by the engine. The notification listener always
sets this flag to true. The transformation rules (see Section 5.2, step 3) always
set it to false.

Therefore, the actual operation principle of the transformation engine is
slightly more complicated than described in Figure 10. In step 4 of Figure 10,
first the flag is checked. If the flag is false, the transformation operations are
executed. If the flag is true, only the synchronization operation (see below)
is executed that belongs to the rule that created the current correspondence
node. The synchronization rule is responsible for re-establishing consistency be-
tween the associated source and target model elements. Furthermore, in case of
synchronization, the axiom is not executed beforehand because the root model
elements already exist.

The synchronization operations are used in an attempt to preserve existing
target elements as far as possible. Many modifications, like moving elements, can
be synchronized by adjusting some links in the target model instead of deleting
and retransforming elements. This reduces the number of necessary modifications
in the target model and allows even large models to be synchronized very quickly
in many cases.

Figure 12 depicts the operation principle of a synchronization rule. First, the
rule checks if the structure of the source, target and correspondence elements
complies with the rule. If the structure is valid, the synchronizeAttributes() op-
eration is called (1). This operation compares the attribute values, synchro-
nizes them if necessary, and returns whether attribute synchronizations were
performed. If attribute values were actually modified, the subsequent correspon-
dence nodes are put into the queue with their flags set to true to check their
consistency as well (2). If no attribute synchronizations were necessary, the sub-
sequent correspondence nodes do not need to be checked. In any case, the current

10 For simplicity, this has been omitted in Section 5.2.

Model Synchronization at Work 569

Fig. 12. Operation principle of the synchronization() operation

correspondence node is also added to the transformation queue with its flag set
to false to search for new elements to transform (3).

In case the rule pattern does not match, a check is made to determine whether
all source elements of the correspondence node were deleted from the model.
Then the correspondence node and the target model elements are obsolete and
can be deleted, as well (4). Note that this implies that all subsequent correspon-
dence nodes and their target elements have to be deleted, too. If at least one of
the source elements is still part of the model, a repair is attempted. First, the
repairStructure() operation (see below) belonging to the same rule is executed
(5). In case the repair is successful, the operation is finished. If it fails, the repair
operations of the other rules are tried (6). As soon as one of them succeeds, the
operation terminates. Note that the repairStructure() operation adds correspon-
dence nodes to the transformation queue if necessary. Should all repair attempts
fail, the correspondence and target elements are deleted (7). The modified source
element cannot be synchronized with the available transformation rules.

The repairStructure() operation is the key to minimizing the number of write
operations on the target model to re-establish consistency. Its general operation
principle is shown in Figure 13. Prerequisites for a successful repair are that

570 H. Giese, S. Hildebrandt, and S. Neumann

Fig. 13. Operation principle of the repairStructure() operation

the source model and application context elements exist (1) and that the source
model elements are not connected to any other correspondence nodes (2).11 If
these conditions are met, the target element pattern is checked (3). If it complies
with this rule, consistency can be re-established easily by re-adjusting the links
to the elements of the application context of the rule (4). For the rule in Figure
7 this means to delete the existing link between aswc and the ARPackage it
is currently linked to, and create a new link between aswc and the ARPackage
that was matched in step 1. Moved elements can be synchronized mostly with
this simple repair action.

More complex modifications can lead to the applicability of a different rule.
In this case, the target elements do not meet the expected pattern because they
were created by another rule. Then the correspondence node and target elements
11 If connected, this means that these elements were already transformed by a different

rule.

Model Synchronization at Work 571

have to be created according to that rule (5). The links to subsequent correspon-
dence nodes are rerouted to the newly created correspondence node (6), and the
obsolete correspondence node and target elements are deleted (7). Finally, the
current (or newly created) correspondence node is added to the transformation
queue with its flag set to false to search for new elements to transform. Also
the subsequent correspondence nodes are added to the transformation queue
with their flags set to true to check their consistency. Depending on whether the
structure could be repaired or not, true or false is returned by this operation.

This synchronization algorithm has some major advantages. First, the repair
of broken structures minimizes the number of required write operations on the
target model to synchronize modifications. While the previous version of our
algorithm ([19]) would discard the target elements and retransform them, ad-
ditional details that are not reflected in the source model would be discarded,
as well. By preserving target elements, those details are preserved, too. This is
important if the connected models have different levels of detail. Of course, also
the performance is much higher if only links are changed and elements are not
recreated. Second, the synchronization starts directly at those correspondence
nodes where a modification took place. Those parts of the models that were not
changed are not checked by the system. In addition, the synchronization stops
checking correspondence nodes if a modification does not have any effects on
them. For example, moving an element in the model usually does not influence
its child elements. The algorithm first synchronizes the movement of the parent
element. Then, its direct children are checked. If they have not been affected by
the modification, the remaining indirect children are not checked. All in all, these
optimizations make synchronization effort mostly independent from the overall
model sizes. The size of the modifications (number and severity of modifications)
has the largest impact on synchronization performance.

6 Tool Adapter

The tool adapter already mentioned in Section 4 is responsible for providing
access to a modeling tool’s in-memory model to the transformation system. Of
course, the modeling tool has to provide a means to access its model, e.g. a COM
interface. This allows models to be synchronized without indirection via files.

The transformation system works only on EMF-based models. Therefore, the
tool adapter has to provide an EMF-based model. If the modeling tool is also
based on EMF, like TOPCASED, such an adapter is quite simple. It only has to
get the model’s root element from the model editor and provide it to the trans-
formation system (left side of Figure 6). The transformation and synchronization
take place directly on the model.

If the modeling tool is not based on EMF or not even on the Eclipse platform,
a tool adapter becomes much more complicated. It has to provide an EMF-based
version of the model to the transformation system in addition to the model of
the modeling tool. Before and after the transformation system reads or writes
the EMF-based model, the adapter has to synchronize it with the model in the

572 H. Giese, S. Hildebrandt, and S. Neumann

Fig. 14. Structure of the SystemDesk adapter

external modeling tool. This problem is explained in the following using dSPACE
SystemDesk as an example.

dSPACE SystemDesk is a proprietary modeling tool for AUTOSAR model-
ing. It offers a COM/.NET interface to access the model that is currently loaded
in SystemDesk. Therefore, a special Java/COM adapter is required to connect
the Java-based transformation system to SystemDesk. The architecture of the
SystemDesk adapter is shown in Figure 14. Another problem is SystemDesk’s
meta model, which is different from the AUTOSAR meta model. For example,
SystemDesk provides a Project Library that contains the types of software com-
ponents, ports, etc. Instances of these types can be used in the system model.
However, it is also possible to create a type directly in the system model. Fur-
thermore, a SystemDesk model contains several predefined root packages for
the software, hardware and system configurations. These correspond to ordinary
compositions in AUTOSAR which are not contained in any other composition.
This problem is aggravated because SystemDesk’s meta model was not available
to us, and had to be reconstructed from the COM interface specification.

The tool adapter has to handle these SystemDesk specific issues and produce
a standard-conformant EMF-based AUTOSAR model. First, we have tried to do
the translation directly in the adapter code [17]. However, this has led to a very
complex and hardly maintainable adapter code. While this transformation is es-
sentially a model transformation from a SystemDesk to an AUTOSAR model, we
have now used the model transformation system a second time to perform this
transformation. The COM interface is used to synchronize SystemDesk’s model
with a corresponding EMF-based model. The model transformation system syn-
chronizes this model with the AUTOSAR model that the adapter provides to the
transformation system. This solution makes maintenance of the adapter much
easier. Most of the adapter’s logic is encoded in model transformation rules that
can easily be adapted and extended. Maintainability is an important issue due

Model Synchronization at Work 573

to the enormous complexity of the AUTOSAR meta model and its constant
advancement.

We have encountered another problem, which regards object identity. It is not
possible to directly reference an object in SystemDesk’s memory. Instead a cor-
responding Java object has to be created. In an earlier version, SystemDesk did
not support UUIDs. Therefore, it was hard to match Java objects to SystemDesk
objects. This problem has been circumvented by always creating a second EMF-
based copy of the current SystemDesk model, comparing it to the first copy,
and merging the differences into the first copy using EMF Compare12. However,
EMF Compare does not work very reliably without UUIDs. Now, SystemDesk
supports UUIDs and matching corresponding objects in Java and SystemDesk
is easy.

7 Model Consistency

Model consistency plays an important role, not only regarding consistency be-
tween different models or model elements of different models, but also between
the elements of one model. In the following, we describe why model consistency is
a crucial aspect, especially when model synchronization techniques are applied.

When model synchronization techniques are used, normally several model
elements of two different synchronized models describe the same thing. These
model elements can be synchronized using model synchronization techniques
like TGGs. Model consistency concerning these semantically identical elements
of different modeling languages is supported by the synchronization itself, as
changes of model elements included in one model are carried over to the other
model.

In most cases where synchronization techniques are used, the property holds
that not all elements of a model are also reflected in a corresponding synchro-
nized model. Normally, this is the case because different modeling languages,
and consequently also different types of models, are synchronized. Such mod-
eling languages have a specific purpose and, thus, different properties with dif-
ferent semantics are expressed by different languages. Therefore, dependencies
or other properties can exist within the same model between synchronized and
non-synchronized elements, which are not reflected by the synchronization mech-
anism itself.

In Figure 15, the two big circles on the left and right side represent two
different models. In each model, a subset (represented through a cloud) is syn-
chronized via a model synchronization system with the semantically identical
elements of the corresponding model. Thus, consistency between elements from
the cloud of the left side and on the right side is maintained by the synchroniza-
tion system itself. Like denoted by the arrow with the exclamation mark on top,
dependencies can also exist within the same model between synchronized and
non-synchronized elements. Such properties can be invalidated when a model
element is updated by a synchronization activity.
12 http://www.eclipse.org/modeling/emft/

574 H. Giese, S. Hildebrandt, and S. Neumann

Fig. 15. Synchronization of parts of the models can lead to inconsistencies with other
parts

An example of such a situation, where additional properties need to be checked
is described subsequently. The SysML model shown in Figure 2 consists of six
SysML blocks, but only the three lower blocks represent software. In Figure 4,
these three SysML blocks are reflected in the form of semantically identical ele-
ments of an AUTOSAR model. The other three SysML blocks, which represent
hardware, are not present in the AUTOSAR model. In case these two models
are synchronized, only the constituents representing software are synchronized
between the SysML and AUTOSAR model. Changing the bit width of the IO
port of the ASWCSensor of Figure 4 is a valid operation in the AUTOSAR
model, but applying these changes via the synchronization to the corresponding
SysML model leads to a violation of a property of the SysML model. This is
the case, because connectors in SysML are only allowed to connect ports with
the same bit width. Changing the bit width of the IO port of the SysML block
ASWCSensor to 16 bits, e.g. by a synchronization, without changing the bit
width of the corresponding port of the block HWSensor8Bit leads to a violation
of this property while the AUTOSAR model is still consistent.

Fig. 16. Screenshot of the OCL validation dialog in TOPCASED

Ideally, the modeling tool should provide a mechanism to check models for
syntactical and semantical correctness, not only to check models after synchro-
nizations, but also to aid the user. TOPCASED, respectively EMF, provides
such a validation mechanism. Validating the situation described above results in
an error message like shown in Figure 16.

Model Synchronization at Work 575

Currently, these constraint checks are not invoked automatically, but only on
the user’s request. The reason is that constraint evaluation in TOPCASED can
take a very long time, because it always analyzes the whole model. Of course,
it is desirable to check a model immediately after a synchronization for better
usability.

8 Usage Scenarios

The described architecture supports several scenarios where, e.g., an initial AU-
TOSAR model is derived from an existing SysML model.

Additionally, the described architecture allows the synchronization of existing
models by updating only changed model elements in the target model without
overwriting the whole model each time changes occur. Such a synchronization
can be executed in both directions. In the following, we describe different us-
age scenarios in which the shown architecture allows an enhanced development
process using model transformation and synchronization techniques.

8.1 Transformation from SysML to AUTOSAR

After the SysML model has been constructed, it needs to be transformed into
an AUTOSAR model to get from the system design to an initial model for the
software design. Design decisions concerning the software defined in the SysML
model have to be taken over to the AUTOSAR model. With the presented sys-
tem such an initial AUTOSAR model can be automatically derived by a forward
transformation. The automatic transformation is much faster than a manual
transformation and there is less risk of introducing errors into the AUTOSAR
model. A transformation in the other direction is also possible (backward trans-
formation).

8.2 Repeated Forward Synchronization from SysML to AUTOSAR

After the AUTOSAR model has been derived from the SysML model, modifi-
cations can still be made to the SysML model. These modifications have to be
transferred to the AUTOSAR model, too. While the AUTOSAR model already
exists, a complete retransformation is unnecessary. Therefore, only the modifi-
cations are synchronized. Furthermore, the AUTOSAR model might also have
been modified, e.g., by changing the type of the IO port of the ASWC ASWC-
Sensor as described in Section 7. A complete retransformation would discard
these modifications.

8.3 Backward Synchronization from AUTOSAR to SysML

However, modifications may also be made to the AUTOSAR model in order to
adjust the structure during refinement of the software architecture, e.g., to reuse

576 H. Giese, S. Hildebrandt, and S. Neumann

an already existing component. Therefore, modifications also have to be propa-
gated back to the SysML model. While many model transformation approaches
only permit unidirectional transformations, our approach works bidirectionally
and incrementally. Additional details in the SysML model are preserved which
would otherwise be lost.

How such a propagation of changes using bidirectional transformation tech-
niques supports the development process is demonstrated by the following sce-
nario. When the type of the IO port of the ASWC ASCWSensor from Figure 4 is
changed in the AUTOSAR model, the transformation system updates the corre-
sponding SysML IO port shown in Figure 2 accordingly without overwriting the
whole SysML model. When the SysML model is updated, the OCL constraint
described in Section 3.1 is violated (see Figure 16) because the SysML connector
is connected to ports, that have different types.

When elements have been added to the AUTOSAR model that are not rel-
evant for the SysML model (e.g., on a more detailed abstraction level), these
elements are ignored by the transformation system. This is the case, because no
transformation rules have been defined for these elements.

8.4 Iterative and Flexible Processes

The usage scenarios outlined in Sections 8.1, 8.2 and 8.3 demonstrate that our
approach can handle changes occurring in either model in any order. Therefore,
the approach enables not only a strict sequential ordering, i.e. the SysML model
is specified first and the AUTOSAR model is derived from it (Section 8.1). It also
allows, that changes in the SysML model are propagated to an already existing
AUTOSAR model (Section 8.2) and that necessary changes in the AUTOSAR
model are also accordingly adjusted in the SysML model (see 8.3). Therefore,
instead of a rigid sequential process, also iterative and more flexible processes
can be supported. Later changes of the AUTOSAR model will be reflected back
to the SysML model after a synchronization. Such changes in an AUTOSAR
model can lead to the violation of constraints of the SysML model like described
before.

9 Conclusion and Future Work

During the development of complex engineering solutions, several models are
employed to capture the design decisions of different disciplines. We have pre-
sented an approach that supports synchronizing these models when they overlap
with regard to the captured information. The solution enables that the interplay
between the different development activities in different disciplines and the over-
arching system engineering can be kept consistent at minimal costs even though
we do not forbid changes in the different models, which might impact each other
or could lead to inconsistencies. The only limitation is that parallel changes in
the different models are not supported. Although the underlying transformation

Model Synchronization at Work 577

system can only synchronize two models, chains of transformations can be built
to connect more than two models.13

We have further demonstrated that SysML models employed early on by sys-
tem engineers and AUTOSAR models employed later on in the software devel-
opment process can be kept consistent using our approach thanks to the use of
model synchronization techniques and additional consistency rules. It has been
further outlined that flexible usage scenarios, and in particular iterative devel-
opment, become manageable when employing our approach.

As future work, we plan to further extend the coverage and also address other
development artifacts than models. We also want to investigate how multiple
models connected via model synchronization and consistency rules can be effi-
ciently managed as a whole.

Acknowledgement

We would like to thank dSPACE GmbH for their support in developing the
presented results and Oliver Niggemann, Joachim Stroop, Dirk Stichling and
Petra Nawratil for their support in setting up and running the project.

References

1. Systems Modeling Language v. 1.1 (November 2008), http://www.sysml.org
2. Aldazabal, A., Baily, T., Nanclares, F., Sadovykh, A., Hein, C., Ritter, T.: Auto-

mated model driven development processes (2008)
3. AUTOSAR: UML Profile for AUTOSAR (January 2007), aUTOSAR GbR
4. Becker, S., Herold, S., Lohmann, S., Westfechtel, B.: A graph-based algorithm for

consistency maintenance in incremental and interactive integration tools. Software
and Systems Modeling (SoSyM) 6(3), 287–315 (2007),
http://dx.doi.org/10.1007/s10270-006-0045-5

5. Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.: Incremental pattern
matching in the viatra model transformation system. In: GRaMoT 2008: Proceed-
ings of the Third International Workshop on Graph and Model Transformations,
pp. 25–32. ACM, New York (2008)

6. Borland Together Architect, http://www.borland.com/
7. Burmester, S., Giese, H., Niere, J., Tichy, M., Wadsack, J.P., Wagner, R.,

Wendehals, L., Zündorf, A.: Tool Integration at the Meta-Model Level within
the FUJABA Tool Suite. International Journal on Software Tools for Technology
Transfer (STTT) 6(3), 203–218 (2004),
http://www.upb.de/cs/ag-schaefer/Veroeffentlichungen/Quellen/Papers/

2004/STTT-BGN+04.pdf

8. Csertán, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A., Varró, D.: VIATRA:
Visual Automated Transformations for Formal Verification and Validation of UML
Models. In: Richardson, J., Emmerich, W., Wile, D. (eds.) Proc. ASE 2002: 17th
IEEE International Conference on Automated Software Engineering, September
23, pp. 267–270. IEEE Press, Edinburgh (2002)

13 An example is the chain SysML model=>AUTOSAR model=>SystemDesk model,
although this chain of transformations was not originally intended.

http://www.sysml.org
http://dx.doi.org/10.1007/s10270-006-0045-5
http://www.borland.com/
http://www.upb.de/cs/ag-schaefer/Veroeffentlichungen/Quellen/Papers/2004/STTT-BGN+04.pdf
http://www.upb.de/cs/ag-schaefer/Veroeffentlichungen/Quellen/Papers/2004/STTT-BGN+04.pdf

578 H. Giese, S. Hildebrandt, and S. Neumann

9. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM System Journal 45(3) (July 2006)

10. Darmstadt, T.U.: Moflon (2007), http://www.moflon.org
11. Egyed, A.: Fixing Inconsistencies in UML Design Models. In: Proceedings of the

29th International Conference on Software Engineering (ICSE), Minneapolis, MN,
USA, pp. 292–301. IEEE Computer Society, Los Alamitos (May 2007)

12. Ermel, C., Rudolf, M., Taentzer, G.: The AGG Approach: Language and Envi-
ronment. In: Handbook of Graph Grammars and Computing by Graph Transfor-
mation: Applications, Languages, and Tools, vol. 2. World Scientific Publishing,
Singapore (1999)

13. Finkelstein, A.: A Foolish Consistency: Technical Challenges in Consistency Man-
agement. In: Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873,
pp. 1–5. Springer, Heidelberg (2000)

14. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A new Graph
Rewrite Language based on the Unified Modeling Language. In: Ehrig, H., Engels,
G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp.
296–309. Springer, Heidelberg (2000),
http://www.upb.de/cs/ag-schaefer/Veroeffentlichungen/Quellen/Papers/

1998/TAGT1998.pdf
15. France Telecom: SmartQVT, http://smartqvt.elibel.tm.fr/
16. Gardner, T., Griffin, C., Koehler, J., Hauser, R.: Review of OMG MOF 2.0

Query/Views/Transformations Submissions and Recommendations towards final
Standard. OMG, 250 First Avenue, Needham, MA 02494, USA (2003),
http://www.omg.org/docs/ad/03-08-02.pdf

17. Giese, H., Hildebrandt, S., Neumann, S.: Towards Integrating SysML and AU-
TOSAR Modeling via Bidirectional Model Synchronization. In: 5th Workshop on
Model-Based Development of Embedded Systems (MBEES) (2009)

18. Giese, H., Hildebrandt, S., Seibel, A.: Improved Flexibility and Scalability by Inter-
preting Story Diagrams. In: Magaria, T., Padberg, J., Taentzer, G. (eds.) Proceed-
ings of the Eighth International Workshop on Graph Transformation and Visual
Modeling Techniques (GT-VMT 2009) (2009)

19. Giese, H., Wagner, R.: From model transformation to incremental bidirectional
model synchronization. Software and Systems Modeling 8(1) (February 1, 2009),
http://www.springerlink.com/content/j716245824112n27/

20. Guerra, E., de Lara, J.: Event-Driven Grammars: Towards the Integration of Meta-
Modelling and Graph Transformation. In: Ehrig, H., Engels, G., Parisi-Presicce, F.,
Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 54–69. Springer, Heidelberg
(2004)

21. ikv++ technologies ag: medini QVT (2007), http://www.ikv.de
22. Johnson, T., Paredis, C., Burkhart, R.: Integrating Models and Simulations of

Continuous Dynamics into SysML (2008)
23. Kent, S.: Model driven engineering. In: Butler, M., Petre, L., Sere, K. (eds.) IFM

2002. LNCS, vol. 2335, pp. 286–298. Springer, Heidelberg (2002)
24. Kindler, E., Rubin, V., Wagner, R.: An Adaptable TGG Interpreter for In-Memory

Model Transformation. In: Proc. of the Fujaba Days 2004, Darmstadt, Germany,
pp. 35–38 (September 2004)

25. Marschall, F., Braun, P.: Model Transformations for the MDA with BOTL. In:
Proceedings of the Workshop on Model Driven Architecture: Foundations and Ap-
plications. Technical Report TR-CTIT-03-27, Univeristy of Twente (June 2003)

26. Object Management Group: Meta Object Facility (MOF) 2.0 Core Specification
(January 2006), document ptc/06-11-01

http://www.moflon.org
http://www.upb.de/cs/ag-schaefer/Veroeffentlichungen/Quellen/Papers/1998/TAGT1998.pdf
http://www.upb.de/cs/ag-schaefer/Veroeffentlichungen/Quellen/Papers/1998/TAGT1998.pdf
http://smartqvt.elibel.tm.fr/
http://www.omg.org/docs/ad/03-08-02.pdf
http://www.springerlink.com/content/j716245824112n27/
http://www.ikv.de

Model Synchronization at Work 579

27. OMG, O.M.G.: Object Constraint Language (May 2006),
http://www.omg.org/spec/OCL/2.0/PDF

28. Schürr, A., Winter, A.J., Zündorf, A.: The PROGRES Approach: Language and
Environment. In: Handbook of Graph Grammars and Computing by Graph Trans-
formation: Applications, Languages, and Tools, vol. 2, pp. 487–550. World Scientific
Publishing Co., Inc., River Edge (1999)

29. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903. Springer,
Heidelberg (1995)

30. Stürmer, I., Kreuz, I., Schäfer, W., Schürr, A.: Enhanced Simulink Stateflow Model
Transformation: The MATE Approach. In: Proc. of MathWorks Automotive Con-
ference (MAC 2007). Dearborn (MI), USA (2007)

31. Tata Consultancy Services: ModelMorf (2007),
http://www.tcs-trddc.com/ModelMorf/index.htm

32. University of Paderborn. Fujaba Tool Suite, Germany, http://www.fujaba.de/
33. Varró, D., Varró, G., Pataricza, A.: Designing the Automatic Transformation of

Visual Languages. Science of Computer Programming 44(2), 205–227 (2002)
34. Vizhanyo, A., Agrawal, A., Shi, F.: Towards Generation of Efficient Transforma-

tions. In: Karsai, G., Visser, E. (eds.) GPCE 2004. LNCS, vol. 3286, pp. 298–316.
Springer, Heidelberg (2004)

35. Windpassinger, H.: Modellierungssprache für die Kfz-Software Entwicklung. Elek-
tronik Praxis (2007),
http://www.elektronikpraxis.vogel.de/themen/

embeddedsoftwareengineering/analyseentwurf/articles/95528/

http://www.omg.org/spec/OCL/2.0/PDF
http://www.tcs-trddc.com/ModelMorf/index.htm
http://www.fujaba.de/
http://www.elektronikpraxis.vogel.de/themen/embeddedsoftwareengineering/analyseentwurf/articles/95528/
http://www.elektronikpraxis.vogel.de/themen/embeddedsoftwareengineering/analyseentwurf/articles/95528/

	Model Synchronization at Work: Keeping SysML and AUTOSAR Models Consistent
	Introduction
	State of the Art
	Model Synchronization
	Model Integration

	Application Example
	SysML
	AUTOSAR
	Common Constituents

	Approach
	General Architecture
	Architecture Example

	Model Synchronization System Based on Triple Graph Grammars
	Triple Graph Grammars
	Model Transformation
	Model Synchronization

	Tool Adapter
	Model Consistency
	Usage Scenarios
	Transformation from SysML to AUTOSAR
	Repeated Forward Synchronization from SysML to AUTOSAR
	Backward Synchronization from AUTOSAR to SysML
	Iterative and Flexible Processes

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

