
G. Engels et al. (Eds.): Nagl Festschrift, LNCS 5765, pp. 249–273, 2010.
© Springer-Verlag Berlin Heidelberg 2010

The Architecture Description Language MoDeL

Peter Klein

pk@pk-1.de

Abstract. This paper is devoted to the topic of architecture modeling for soft-
ware systems. The architecture describes the structural composition of a system
from components and relationships between these components. Thereby, it pro-
vides a basis for the system’s realization on technical as well as on organiza-
tional level.

We present some key concepts of the architecture description language
MoDeL (Modular Design Language). By selecting and combining modeling
elements which proved to be helpful for the design of software systems, this
approach is integrative and pragmatic: It allows the definition of “clean” logical
structures as well as adaptations necessary due to implementation constraints.
Both the logical architecture as well as concrete architectures reflecting respec-
tive modifications are considered as individual results of architecture modeling.
Even more, the transformation steps describing the changes induced by a par-
ticular realization constraint contain valuable modeling knowledge as well.

1 Introduction

The observation that the structure of a software system as defined by its architecture
is a crucial aspect in the development and maintenance process is almost as old as the
software engineering discipline itself. The reasons for this are obvious: The main
expenditure during the development process concerning manpower, time, and money
is still Programming in the Small (PiS). A good design makes PiS easy in that the
programmer can concentrate on a problem with a comprehensible complexity. Errors
made in the implementation can be found and eliminated more easily because realiza-
tion details are encapsulated. For the same reason, software systems are more adapt-
able, reusable, and portable than before. On the other hand, errors made in the design
may lead to an enormous waste of implementation efforts. One may argue that the
same dependency holds for requirements specification and architecture, but a good
and adaptable architecture always represents a set of similar requirements. To a cer-
tain extent, changes in the requirements are readily integrated into a good design.

Specifically with the advent of object-oriented specification approaches, however,
there has been an overall tendency to focus more strongly on analysis activities and
consider architecture modeling more as a mapping of “classes and objects found in
the vocabulary of the object domain” [1] to an implementation view – something
which might or might not make sense from a structural perspective. Although lan-
guages like UML [2], [3] most certainly can be used to describe software architec-
tures in the above sense, they do not specifically encourage architects to design a
robust framework structure for the PiS phase.

250 P. Klein

As a language naturally influences the way the speaker thinks when he communi-
cates in that language, it should neither restrict nor overtax the speaker with its vo-
cabulary and rules. For an architecture description language (ADL), this means that it
should noticeably …

1. … be easy to use and to understand.
2. … provide the necessary detail to allow the definition of independent working

packages for implementation, documentation, and testing, but not more.
3. … not impose a certain style or methodology by preferring or neglecting certain

kinds of abstractions.
4. … be independent of the programming language to be used for implementation.
5. … allow for different levels of abstraction.

Based on a long history of preceding work (cf. e.g. [4], [5], [6], [7], [8], [9]), [10]
suggests an ADL called MoDeL (Modular Design Language) developed adhering the
above requirements. Although retaining the general approach that an architecture, in
the first place, needs to define structure, it provides additional views allowing the
architect to communicate design decisions. This paper summarizes the main concepts
of this language; examples of its use can be found in [10].

2 Architecture Views

One of the basic ideas of the MoDeL language is the distinction of two dimensions
with respect to what and how the architecture is modeled, cf. fig. 1. In the top-left
corner, a system’s static structure is defined with its components and their interfaces.
To describe the dynamic behavior of the system, one or more interaction diagrams
(top-right corner) may be used. Both specifications are restricted to the logical level,
i.e. they strictly adhere to the concepts of modularity and encapsulation. Declarative
semantics may be defined formally in the static part and informal operational seman-
tics in the dynamic part as considered appropriate by the architect.

Fig. 1. MoDeL Views

However, there are many potential reasons why an architecture cannot be imple-
mented exactly the way it is specified on logical level. Furthermore, there might be
additional information the architect wants to specify beyond the logical structure.
Some examples are:

Log-
Model

Inter-
Model

DisCo-
Model

Inter/DisCo-
Model

Consistency Relationships

Static Level Dynamic Level

Logical
Level

Concrete
Level

 The Architecture Description Language MoDeL 251

1. Annotation of concurrency properties of components, like which components com-
prise a process, synchronization semantics of interface operations etc.

2. Introduction of components to handle distribution, e.g. for parameter marshaling,
finding a service provider etc.

3. Extension or adaptation of the architecture in order to integrate components with a
different architectural structure, e.g. if external libraries or components generated
by external tools are used.

4. Specification of the implementation of usability relationships, e.g. via (remote)
procedure calls, exceptions, interrupts, event-triggering, or other forms of callback
mechanisms.

5. “Opening up” an abstract data type to increase efficiency.

In some cases, there are dependencies between the corresponding realization deci-
sions: As an example, the architect might want to separate a data object (e.g. a data-
base) from the rest of an application to make it remotely accessible by different users.
He could implement the incoming usability relationships as RPCs (cf. 4). This also
requires corresponding components as those mentioned in 2 to be introduced. These
components might use existing data conversion libraries and generated stubs, so he
may have to make some changes to the logical architecture as in 3. Consequently, he
might want to denote the synchronization semantics necessary due to the concurrent
access to the data object as in 1 etc.

All of these activities require changes to the architecture of the system as interfaces
change, new components are introduced, or implementation details are added. The
resulting architecture though has a different quality than the logical architecture: It
does not aim at the best possible structure with respect to maintainability etc., instead
it describes a step towards a concrete implementation of the system. In this sense, we
call it a concrete architecture in the following.

To some extent, this idea is similar to the distinction between Platform Independ-
ent and Platform Specific Models in Model Driven Architecture [11] and its evolu-
tions. However, logical architectures in MoDeL are not necessarily platform inde-
pendent – this will depend, on a case by case basis, on the nature of the system to be
described (cf. section 6).

It should also be noted that different concrete architectures for one logical architec-
ture can exist. These may reflect a sequence of possibly interdependent decisions as
sketched above, a set of independent decisions, or different realization variants. Even
more, in the context of re- and reverse engineering, the existing system to be analyzed
can be considered an implementation of some concrete architecture which has to be
derived from the source code or other documentation. Then, the logical architecture
can be distilled from the concrete architecture which, in turn, will probably be the
basis for restructuring the system and respective new concrete architectures.

Although logical and concrete architectures of a system are naturally related, they
should be treated as individual results of the design process. The logical architecture
is necessary to understand the system’s structure and it remains the central document
for implementation and maintenance activities. The aspects described by the concrete
architecture are an important step towards the realization of the system, but they
should not undermine its logical structure. In other words, each of the architectures
represents a set of orthogonal design decisions which should be made, described, and

252 P. Klein

maintained separately. The integration of these architecture views and checking their
consistency can be supported by tools.

And finally, also the transformation steps leading from one architecture to another
contain important design knowledge. For many existing systems, only either the ini-
tial (and typically logical) architecture is kept or the latest instance of the concrete
architecture is maintained. However, both the original design decisions as well as how
and why modifications were made are necessary to understand a system’s structure,
and an explicit transformation step offers a convenient place to document differences
between the logical and concrete level. Furthermore, if a specific transformation
occurs frequently, it can be possible to formalize it and provide tool support for its
application. In this sense, the design knowledge concerning how to modify an archi-
tecture to meet some certain purpose can be formally specified and, in consequence,
communicated, reused, and possibly supported automatically by tools. Generally
formalizing and even automating such transformations, as in [11], has however not
been our ambition.

From the wide range of possible uses of concrete architectures, we particularly
focus on the specification of concurrency and distribution. These important as-
pects of a software system require some additional architecture language elements
to be described properly; we summarize the respective extensions in the
Dis(tributed)Co(ncurrent)MoDeL sublanguage. At the bottom of fig. 1, we have
therefore introduced a concrete level which allows such specifications. As on the
logical level, static (left box) and dynamic (right box) properties can be defined.

Though fig. 1, at first sight, closely resembles approaches like the 4+1 view model
as described in [12], the distinction between the views in MoDeL follows a different
pattern: It is not our aim to serve different stakeholder’s requirements, but to facilitate
communication between the architectural and the “programming” level of a software
project. So, for example, the logical view in [12] would remain, in our approach, in
the analysis part of the project, whereas the physical view might or might not be de-
scribed in a concrete MoDeL architecture – depending on whether the distribution of
processes across nodes is part of the design or part of the implementation, i.e. whether
it is relevant for the overall structure of the system or not.

3 Abstraction Types

As far as its basic abstractions are concerned, MoDeL is mostly motivated by pro-
gramming language concepts. Apart from being well-known to architects and pro-
grammers, this particularly facilitates implementing a design in some programming
language. However, all of these concepts have to be reconsidered on architectural
level. Of course, implementing a design is more or less problematic depending on the
expressiveness of the programming language to be used, but generally always possi-
ble. As an example, a module or package concept as can be found in languages like
Modula-2, Modula-3, and Ada makes the translation of architectural modules into
programming language constructs easier, but a module/package in one of these lan-
guages is not necessarily a module on architecture level. Vice versa, an architectural

 The Architecture Description Language MoDeL 253

module can be translated into programming languages without explicit support for
such a concept as well.

On component level, MoDeL distinguishes module types in two dimensions:

• Functional and Data Abstraction: Whereas traditional design methods like Struc-
tured Design [13] tend to produce hierarchies of functional components in a top-
down fashion, object-oriented methods like Object-Oriented Design [1] focus on a
loosely coupled set of abstract data types/classes. Meanwhile, it is commonly
agreed upon (cf. e.g. [14]) that both kinds of abstractions are necessary. This con-
clusion is essentially based on Parnas’ salient observation that each design decision
should be encapsulated by a module and vice versa [15]. Such a design decision
can be expressed in MoDeL, according to its nature, either as an abstraction from
operation or from state.

• Type and Instance Abstraction: Unlike most other approaches, MoDeL allows mod-
ules encapsulating a state or control flow and modules offering a template/type to
dynamically create a state/control flow at runtime in one architecture description.
Using modules on instance level, the designer can introduce global (i.e. system-
wide) state in the architecture without the need to define a data type and additionally
assuring that exactly one instance of that type will be instantiated (cf. the Singleton
pattern in [16]). Furthermore, this allows a clean model of situations close to the
hardware boundaries of the system where concrete devices (e.g. “the keyboard”,
“the heat sensor”) are involved.

Concerning component relationships, the following concepts are supported:

• Locality: Derived from block-structured programming languages as can be found
e.g. in the ALGOL family, the concept of locality together with a corresponding set
of visibility/usability rules is equally important on architecture level. It denotes that
some component is designed to fulfill its purpose in a special context only and that
it should not be accessible from outside this context.

• Generality: To introduce components with a general character into an architecture,
a corresponding general usability relationship may be used. As an unspecific way
to make interface resources of one component usable by another component, this
relationship is comparable to an import or use construct in programming languages
with a module concept like Modula-2, Modula-3, or Ada.

• Specialization: Object-oriented programming languages like C++, Smalltalk, or
Eiffel offer inheritance between data types/classes as a special notion of similarity.
Although some of the potential of inheritance depends on using a programming
language which supports inclusion polymorphism (in the sense of [17]) in its type
system, the concept of modeling some data type as a specialization of another data
type is generally useful on architecture level.

Finally, MoDeL supports parametric polymorphism (as defined in [17]) in the form
of generic components. Although genericity can be simulated using inheritance on
programming language level, these concepts are rather different on architecture level.
Whereas specialization is used to model the similarities and differences between data
types, genericity allows arbitrary parameterization of arbitrary components.

254 P. Klein

4 The Static View

MoDeL’s key elements can be informally defined as follows:

• Interface: A collection of resources like operations, types, constants etc. Basically,
we use the term as known from programming languages with a module concept. In
contrast to other approaches, we do not assign descriptions of dynamic aspects to
operations; consequently, there is no execution model for (a collection of) inter-
faces.

• Module: A module is a logical unit of a software system with a clearly defined
purpose in a given context. It consists of an export interface defining which re-
sources the module offers to the rest of the system, an import interface defining
which resources from other modules the module may use to realize its export inter-
face, and an implementation in some programming language. The term interface of
a module, without further qualification, refers to the export interface.

• Subsystem: A collection of components (see below). Subsystems have, like mod-
ules, interfaces. The import interface of a subsystem is the union of all import in-
terfaces of the contained components, minus the resources defined by components
in the same subsystem. The export interface of a subsystem is an explicitly defined
subset of the union of all export interfaces of the contained components.

• Component: A module or a subsystem.
• (Component, Module, Subsystem) Relationship: A dependency between compo-

nents resulting from the fact that some resource contained in the export interface of
one component (the resource provider) is usable by another component (the re-
source employer) by appearing in its import interface.

• Architecture: The structural building plan for a software system. It defines all of
the system’s components and their relationships in the form of their import and ex-
port interfaces, but not their implementations.

MoDeL distinguishes between different module and relationship types based on the
different abstractions introduced in section 3.

4.1 Functional Abstraction

In general, functional abstraction is at hand if a module has some kind of transforma-
tion character. This means that an interface resource transforms some kind of input
data into corresponding output data. Functional abstraction facilitates the hiding of
algorithmic details of this transformation.

An important property of functional modules is that they may not contain memory
unless some code inside the module’s body is executed. In other words, as soon as the
execution of an interface resource of the module is finished, the module has no
knowledge about previous calls. The reason for this restriction is that a functional
module with a state commonly contains two implementation decisions in one module:
one for the actual functionality of the module and one for the state of the module,
which should be modeled as a separate data abstraction module instead. This is no
conceptual restriction because any module with an internal memory can be made
stateless if the state is stored elsewhere and either read by the functional module or
passed to respective operations by the resource employer.

 The Architecture Description Language MoDeL 255

This restriction does not mean that the body of a functional module may not have
any global variables: it is acceptable if e.g. a module computing trigonometric func-
tions uses an internal table of key values, or if a text-processing module uses a buffer
of cached characters. This is no violation of the principle that the mapping of input to
output values is independent of the runtime “history” of the module (though it may
depend on the history of data abstraction modules used by the functional module). In
fact, as the architect defines only interfaces, he cannot keep the implementation from
using global variables for whatever purpose as long as the semantic restrictions men-
tioned above are adhered to.

Regarding the distinction between type and instance level abstraction, we note that
the logical level only requires function object modules. Function type modules come
into the picture in the context of concurrency, cf. section 6.2.

4.2 Data Abstraction

Data abstraction is present if the module encapsulates the access to some kind of
“memory” or “state”. The module hides the realization of the data representation. The
module’s interface only shows how the data can be used, not how it is mapped onto
the underlying storage.

In MoDeL, data abstraction is supported by two module types, namely data object
and data type modules.

Data object modules represent global state in the architecture which can be imple-
mented by global variables inside the module, i.e. directly mapped onto some struc-
tures of the programming language, and/or other data object modules or instances of
data type modules. The interface of a data object module exports operations to ma-
nipulate the state of the module.

Data type modules export exactly one type identifier (although trivial “helper”
types are allowed as well) and access operations for instances of this type. Other
modules may use the interface to create instances of the data type and manipulate it
with the given operations. Data type modules are templates for the creation of mem-
ory and may not contain a global state: The execution of an interface resource on an
identical instance of the type always modifies this instance in the same way. As with
function object modules, this does not mean that the body of the module may not
contain global information, but operations on one instance of the type may not have
visible side-effects on other instances.

For reasons of clarity, we always treat types introduced by abstract data type mod-
ules as reference types. This does not necessarily require such a type to be mapped
onto a “pointer” in the programming language: A CORBA object identifier, an inte-
ger-valued handle etc. have reference semantics as well. Important consequences of
this restriction are:

• Instances of the type always have to be created (and possibly destroyed) explicitly,
be it on the heap provided by the programming language runtime system or within
some other component of the software system. Noticeably, assignment (explicit or
by parameter passing) or variable declaration never create a new instance of the
type. Means to copy instances, if required, have to be specified as an operation.
This allows the architect to specify whether copying is possible at all and, if so,

256 P. Klein

what semantics (deep, shallow, or anything intermediate) is used. Multiple copy
operations with different semantics can be specified as well.

• Comparison is reference comparison. As above, the specification may define if
comparison of values is possible and what semantics apply by defining respective
operations.

• Using reference semantics makes it sensible to think of self, the parameter de-
noting the object on which the operation is applied, as an input parameter: Whether
or not the operation modifies the instance’s state, self as a reference is never
changed by the operation.

4.3 Interface Extensions and Export Control

Frequently, the necessity arises to give some employers of a module more visibility
on its realization than others. A common example is that an employer defining a sub-
type of some data type requires more control over the attributes of its supertype than
“ordinary” employers of that module. Exactly this situation is covered in many object-
oriented modeling and programming languages by introducing a separation between
public, protected, and private resources of a data type.

Although the public/private/protected scheme meets many basic requirements, it
has some major drawbacks:

• The separation is only usable in the context of data types and inheritance. There is
no good reason why a similar mechanism should not be available for other module
types or other module relationships as well. In object-oriented literature, this is
typically solved by using the “friend” concept. However, when using friend rela-
tionships, export control is given up altogether as complete access to the realization
details is granted.

• Even under the above restriction, there are situations that cannot be described ap-
propriately with only three layers of accessibility. This results from the approach to
define the accessibility of a feature as an inherent property of the feature itself: In
the interface of the module, the feature is generally classified as being public, pro-
tected, or private – regardless of the employer. Conceptually, this is not quite cor-
rect as its accessibility has something to do with how the feature is used in the
overall design of the system, i.e. the actual pair of provider and employer.

Consequently, we take on a more general approach that allows one or more views
on a module to be specified. Some views might provide more control over the mod-
ule’s internals than others by relieving certain abstractions. To provide such views,
we use the concept of interface extensions: the architect may define an arbitrary num-
ber of additional so-called view interfaces for the module. A view interface may con-
tain additional operations and helper types for data object and functional modules.
Furthermore, for data object modules, some or all of the internal representation of the
module’s state may be exposed. For data type modules, additional features (including
attributes) may be defined.

4.4 Module Relationships

After presenting the different kinds of basic design units, we now introduce the means
MoDeL provides to describe interactions between these units. First of all, some modules

 The Architecture Description Language MoDeL 257

want to make use of resources offered by other modules. We distinguish three different
logical levels on which such dependencies can be discussed:

1. The first prerequisite for the interaction between an employer and a provider mod-
ule is that the design allows the employer to access the resources offered by the
provider. We call this the usability level.

2. If the architecture allows some module to access another module (on the usability
level), the employer may make use of this by actually using some of the provider’s
resources (e.g. if the employer’s implementation contains a call of a procedure of-
fered by the provider). This use is static, i.e. it can be determined by looking at the
implementation of the employer. Therefore, it is on the static uses level.

3. If a static use of some provider resource is executed during the runtime of the pro-
gram, we say that this is on the dynamic uses level.

Since we are considering the static view on the architecture, it cannot be deter-
mined whether the employer’s implementation makes use of a resource or not. It can
only allow some module to use another module’s resources. So, if we talk about some
module importing another module, this is always on usability level. The uses level,
however, plays a role in a dynamic view of the system, cf. section 5.

Besides the usability relationships from above, we also have structural relation-
ships between modules. These are used to express structural design concepts and
allow or forbid certain usability relationships.

4.4.1 Local Containment/Usability
We start our discussion with a relationship called local containment. This is a struc-
tural relationship describing that some module is contained in another module. From
this containment, some rules derived from the block-structuring idea present in many
programming languages follow. This relationship forms a local containment tree in
the module dependency graph. Placing a module in such a tree means that the module
can only be accessed from certain parts inside this tree. In this sense, it introduces
information hiding on architecture level.

The following usability relationships are possible in a local containment tree: A
module can use itself, its direct successors, its predecessors, and direct successors of
all predecessors (especially its brothers). This is completely analogous to the rules of
locality and visibility in block-structured programming languages. We say that poten-
tial local usability exists between the module and its above mentioned relatives in the
containment tree.

One problem with the relationship of potential local usability is that many relation-
ships are made possible between modules which are not necessary. We therefore
introduce the local usability relationship. Local usability is a relationship which is
explicitly specified in the architecture, although such a relationship may only be de-
fined between modules for which a potential local usability exists. In other words, the
local usability relationships are a subset of the potential local usabilities defined by
the designer.

4.4.2 General Usability
The local usability relationship introduced so far is not suited for all situations where
one module wants to use resources from another module. This is particularly the case

258 P. Klein

if some module should be usable by arbitrary employers, possibly from different con-
tainment structures.

With the general usability relationship, the architect has means to express that a
module exports general resources which can be accessed from all other modules for
which a corresponding general usability relationship exists.

There is no structural relationship directly connected to general usability: General
usability edges from any part of the system can end in one module (which, itself, must
not be contained in another module). On the other hand, it is not unusual that only one
employer uses some provider module through general usability. Whether or not a
module is generally or locally usable is a question of the kind of provider module. If a
module offers general services to employers, it should be inserted using the general
usability. If it offers services which are only useful in a certain context, it should be
inserted using the local containment and local usability relationships.

4.4.3 Specialization/Specialization Usability
The other structural relationship in MoDeL besides local containment is the speciali-
zation relationship. Although the concept of specialization is influenced by ideas from
object-oriented programming languages, it denotes a relationship between modules on
the design level here. Whether the actual implementation language’s type system
supports specialization in some way should not influence the logical architecture
(though it might influence a concrete architecture).

The specialization relationship can only exist between data type (and function type,
cf. section 6.2) modules. If some data type is a specialization of another data type, this
implies that every instance of the special type has at least all the properties of an in-
stance of the general type. As usual, we call the special type a subtype of the general
type, which is vice versa referred to as the supertype of the special type. This termi-
nology extends to arbitrary ancestors and predecessors of a data type module in the
specialization hierarchy.

An important characteristic of the specialization relationship is that the set of fea-
tures offered by the subtype is a superset of the set of features of the supertype. We
therefore do not have to repeat these features in the subtype’s interface.

As with local containment and local usability, the structural specialization relation-
ship is accompanied by a usability relationship, the specialization usability. By defini-
tion, a specialized module needs to import the module it specializes.

It should be noted that the structural relationship of generalization implies no us-
ability relationships. In MoDeL, a subtype module may not use some supertype’s
operation just because it is a subtype: All usability relationships have to be introduced
explicitly by the designer. On the other hand, the structural relationship again deter-
mines the set of possible usability relationships. This leads to a strong correlation
between architectural usability relationships and the common notion of an “import”:
A subtype module needs to import the supertype module’s interface in order to use
the corresponding type identifier in the declaration of the subtype identifier. Further-
more, if some subtype wants to call an implementation of an operation as defined for
some specific supertype (in contrast to whatever implementation is dynamically
bound to the operation, see below), it has to address this module directly. Obviously,

 The Architecture Description Language MoDeL 259

every subtype module must have a specialization usability edge to its immediate su-
pertype module and may have additional specialization usability edges to arbitrary
predecessors in the specialization hierarchy.

Apart from these definitions on module level, we also have to consider the connec-
tion between specialization as a module relationship and the consequences for the
types and their operations exported by corresponding modules. Unfortunately, this
affects issues which are related to Programming in the Small. On one hand, defining
them on architectural level makes a few (possibly unwelcome) assumptions concern-
ing the implementation. On the other hand, in the context of specialization, a data type
module’s interface cannot be properly defined and understood if these questions re-
main open.

• As usual in object-oriented modeling approaches, we consider variables of an ab-
stract data type as polymorphic, i.e. any variable or formal parameter of some type
can be assigned/passed a value of some subtype of this type.

• A supertype operation’s implementation can be redefined for a subtype. Syntacti-
cally, this is not visible in the interface, but an informal (comment) or formal (cf.
section 4.7) semantics specification can indicate this.

• In the context of polymorphism, a variable’s or parameter’s dynamic type at run-
time can be a subtype of its static type (according to the declaration). If the subtype
has redefined operations, we always consider the dynamic type decisive for the se-
lection of the implementation (late binding, dynamic dispatching). In this case,
there may be transfers of program control from one module to another module
without an explicit usability relationship between them: An employer module can
call a data type’s operation according to the (supertype) interface it is aware of,
whereas at runtime, some code within another provider module (defining a subtype
of the type in question) is executed. Conceptually, however, the employer is inde-
pendent of the subtype interface and only depends on the supertype interface.
Therefore, a usability relationship between employer and subtype module is not
required.

• We allow operations to be redefined in subtypes, i.e. a subtype may supply a new
(new in the sense of a different signature and different semantics) operation with
the same name as an inherited operation. It should be noted that redefining an op-
eration is something different than redefining an operation’s implementation as
discussed above. Although operation redefinition is not unproblematic with respect
to polymorphism, it is frequently the case that some subtype operation is “more
complex” than a very similar operation in a supertype, consequently, it will want to
raise more exceptions, might need more input parameters, produce more complex
results etc. Some of these points can be relieved by stating co- and contravariance
rules for parameters, but this introduces additional complexity without completely
solving the problem.

It should be noted that redefining an operation, in contrast to redefining the imple-
mentation, does not replace the existing operation’s implementation. As far as the
selection of the implementation in the context of polymorphic variables is concerned,
we consider the static type of the variable as decisive: This is necessary as an
employer can only provide the input and handle the output of an operation as it is
specified in the interface it knows and by which it declares the variable/parameter.

260 P. Klein

Frequently, if a subtype redefines an operation, it also redefines the implementation of
the inherited operation of the same name to sensibly handle attempts of operation
calls which are not appropriate for the dynamic type of an instance.

4.5 Subsystems

Obviously, the module level introduced so far is too fine-grained for the description
of large software systems. We therefore need design units which allow a hierarchical
specification of the architecture. Subsystems allow the designer to express such units
which are “greater” than modules: they may contain an arbitrary number of modules
and other subsystems.

Most of the characterizations given for modules at the beginning of this chapter
can be applied to subsystems as well: first of all, subsystems are units of abstraction.
They have an interface which describes the resources which can be accessed from the
outside. The interface of a subsystem is a composition of explicitly selected modules
and/or subsystems inside the subsystem. Furthermore, subsystems are units of work,
units of testing, and units of reusability. For this reason, subsystems should – just like
modules – obey the rules of low coupling and high cohesion: the modules and subsys-
tems should not interact more than necessary with other units on the same design
level. On the other hand, a module or subsystem should only contain logically related
resources.

However, it still makes sense to distinguish between modules and subsystems as
the former are directly linked to the PiS level in the sense that they involve implemen-
tation work, whereas the latter start out purely as a design concept which might not
materialize in program code at all.

As stated above, the designer decides explicitly which interfaces in the subsystem
contribute to the subsystem’s interface. An immediate consequence is that we cannot
assign each subsystem a unique type as we could with modules. We therefore do not
distinguish different subsystem types. Nevertheless, we sometimes talk about func-
tional or data type subsystems if the subsystem’s interface consists of one or more
modules of the corresponding type.

Of course, being part of a subsystem is a structural relationship between the corre-
sponding components. Accordingly, we already introduced a natural candidate for
subsystems in the previous chapter, namely local containment trees. Containment
trees are a special sort of subsystems where the interface is implicitly given by the
root of the tree. However, apart from isolating components within the subsystem from
components outside, containment trees additionally introduce the locality/visibility
restrictions as described above.

4.6 Generics

MoDeL supports a reuse mechanism commonly known as genericity (or parametric
polymorphism according to the more precise terminology introduced in [17]). The
main idea of genericity is to write (generic) templates for system components. In the
template, an arbitrary number of details is not wired into the code, instead the tem-
plate code refers to these details using formal parameter names. The programmer can
then create a concrete component by supplying the missing details in the template.

 The Architecture Description Language MoDeL 261

We call these details (generic) parameters, and the process of creating a component
using a generic template and generic parameters (generic) instantiation. Accordingly,
the resulting component is called a (generic) instance.

Ideally, the process described above is directly or indirectly supported by the pro-
gramming language or the development environment. But even if not, it allows the
architect to indicate that for different physical modules the same code should be used.

A common example for generic templates is a collection (container) of instances
of an entry type. The generic parameter for the template is the entry type for the
collection. The reason for this approach is that the implementation of the collection
is more or less independent of the type of objects it can store, i.e. neither interface
nor implementation of the collection refer to special properties of the entry type.
MoDeL therefore allows a generic specification of the container, making the entry
type a generic parameter. The designer can then use this template to instantiate arbi-
trary concrete containers by providing respective entry types from data type modules
in the architecture.

We can readily extend the concept of generics from modules to subsystems. Con-
ceptually, generic subsystems are just as important as generic modules, e.g. in a situa-
tion where some collection is built on top of one or more other collections. For exam-
ple, a generic module offering a table data structure might be implemented using a
generic data type module for dynamic arrays. In this case, it would be natural to in-
stantiate a generic subsystem consisting of a generic table and a generic array module.

Of course, a generic subsystem may also contain non-generic components. From
the viewpoint of the instantiation process, they can be thought of as generic compo-
nents without generic parameters. Furthermore, in order to make sense, a generic
parameter of the subsystem must be generic parameter for at least one generic com-
ponent within the subsystem. Vice versa, a generic parameter of a contained compo-
nent must be a generic parameter of the subsystem unless the component is already
instantiated within the subsystem.

4.7 Specifying Semantics

Up to now, the MoDeL language contains constructs to define components, their
interfaces, and their relationships. Such descriptions, however, are worthless if the
architect has no way to attach some “meaning” to the respective specification ele-
ments. In general, there are two levels on which the architect will have to consider
such semantic issues:

• On the level of single interface definitions, the architect will have certain semantics
in mind when specifying operations. Depending on the context, he will add e.g. a
corresponding informal comment to the operation describing the desired behavior.

• On the level of components and their interaction, the architect influences the possi-
ble implementations by the static structure he uses. Considering the example of
implementing some table module on top of a module for dynamic arrays, a sugges-
tion for the implementation of the table has already been provided. To some extent,
this can be considered as a violation of the abstraction boundary between Pro-
gramming in the Large and Programming in the Small, but it is inherent to the no-
tion of software architectures as a building plan [18].

262 P. Klein

Consequently, the architect should have means to specify what he had in mind
when defining an architecture in a certain way. We can distinguish two dimensions
for such additional information:

• Black-Box vs. White-Box View: The black-box view defines the semantics of
interface operations in terms of interfaces only. It makes no assumptions concern-
ing the implementation of an operation and if or how an operation could be real-
ized (in general using interfaces of other components). A white-box view, some-
times called glass-box view, defines the behavior of operations in the context of the
overall system, i.e. it does include interactions between components. In short, the
black-box view is concerned with what an operation/component does and the
white-box view with how it is done.

• Formal vs. Informal/Semiformal Notations: In practice, it is common to use infor-
mal plain text comments in natural language to describe the semantics of interface
operations. This is probably sufficient in many situations, but certainly lacks the
preciseness necessary in others. The most important reason for taking a more for-
mal approach is to avoid misunderstandings between architect and programmer,
but it may serve other purposes as well: A formal specification can be subjected to
formal consistency and completeness checks, it can be used to simulate/prototype
the specified system (parts), to formally prove the correctness of hand-coded im-
plementations against the specification, or to generate test cases for such an im-
plementation.

It should be noted that, according to whether a black-box or white-box view is
taken, the term “semantics” as used above takes on two different meanings: In a
black-box view, it generally denotes a mapping of input to output values of each op-
eration. Accordingly, we call this the declarative semantics of a component. In a
white-box view, on the other hand, the architect might specify a specific sequence of
steps that needs to be taken inside the implementation. This kind of definition is gen-
erally called the operational semantics of a component/operation. Both declarative
and operational semantics can be defined formally or informally.

Another property which can be assigned to the definition of a component’s seman-
tics is whether it is complete or not. By complete we mean that the semantics of the
component (as the sum of all of its operations) is specified for all possible input val-
ues and states. Noticeably, the definition of the component’s semantics may cover
only “some” (important, frequent, critical etc.) cases. In practice, interface comments
mention only the intended “usual” behavior. The behavior in other cases is undefined.
Typically, informal specifications tend to leave missing details to the intuition of the
reader.

In the following, we will mainly use the term semantics as referring to declarative
semantics. Since the declarative semantics of a component and its operations are static
properties, they will be discussed next. Operational semantics are concerned with the
runtime behavior of the system; they will therefore be a topic in section 5. It should be
noted that this distinction is not always clear; the terms semantics and behavior are
indeed closely related. Consequently, other authors use different definitions and clas-
sifications in this context. For our purpose, it is sufficient to bundle the terms static
specification (or, to be more precise, specification of static properties) and declarative

 The Architecture Description Language MoDeL 263

semantics on one hand and behavior specification (specification of behavioral proper-
ties) and operational semantics on the other. Typically, operational specifications in
our sense include information about the interplay of components whereas declarative
specifications are “context-free”, i.e. do not refer to the specification of (operations
of) other components. Another characteristic property of operational specifications is
that, if the specification is sufficiently complete and formalized, it can be used to
prototype or simulate the system.

As far as corresponding specification languages are concerned, it is frequently not
a question of language constructs but of how the language is used in order to deter-
mine whether they specify what is done or how it is done. However, formal or semi-
formal languages for operational specifications often have some execution semantics
which, itself, may be defined formally or semi-formally. Taking the term “specifica-
tion” in a broad sense, a high-level imperative programming language can be consid-
ered an operational specification language where the language and its execution se-
mantics are mostly defined semi-formally.

Informal semantics specifications are widely used, e.g. in the form of comments.
These specifications take, in general, a black-box view on the component, are more
declarative than operational, and are almost always incomplete in the above sense.
For obvious reasons, they do not need further discussion here.

More interesting is the question of what approach should be taken if a formal
specification is required. Since we focus on architecture modeling, it is neither possi-
ble nor sensible to discuss this question in the general context of formal system speci-
fications. Analyzing comparative case studies (cf. e.g. [19]) shows that it is hardly
possible to judge the expressiveness of formalisms without a specific intention in
mind. To clarify the key requirements for a formalism suitable for our purpose, we
can state the following:

1. The formalism should be able to express the semantics of (elements of) MoDeL
component interfaces. Noticeably, there should be a clear mapping between inter-
face resources and specification elements.

2. Specifications should be static by nature, we are not (yet, cf. section 5) considering
control flow issues, component interaction, or algorithms.

3. We are not (yet, cf. section 6.1) considering a possibly concurrent and/or distrib-
uted realization of the system. Terms like processes/tasks, synchronization, timeout
etc. play no role in our logical architecture view and should therefore be avoided in
a corresponding specification.

4. It should be possible, but not a requirement to formally specify the complete system.

We can inductively conclude:

• As given by 1, we mainly want to describe the semantics of operations in a compo-
nent’s interface. From 2 follows that we can describe an operation only in terms of
states. The state space should provide means to define the applicability of an opera-
tion (preconditions), an operation’s impact (if any) on the current state (postcondi-
tions), and an operation’s result. These states must be abstract in the sense that they
are meaningful with respect to the interface. Since the interface, in turn, consists of
operations, nothing should be in the state space which is not necessary for the
specification of operations in the above sense.

264 P. Klein

• Considering MoDeL’s module types as introduced above, it is obvious for data
object and data type modules that the abstract states which can be used in a formal
specification are equivalence classes of physical states of corresponding data ob-
jects and data type instances. For specification purposes, a data abstraction module
(being specified as abstract states and operations on these states) is frequently
viewed as an abstract machine. For functional components, a more difficult situa-
tion arises since there is no associated state. There is no general solution to this
problem: If, for example, a functional component’s operation computes the square
root of a positive real number, it is probably not necessary at all to provide a for-
mal specification: An informal appeal to mathematical intuition will sufficiently
explain the input/output relation of this operation. If the component is used to make
complex transformations on a data object/data type instance or to transform one
data object/data type instance into another, it could be desirable to specify its se-
mantics in terms of the related input/output data structures. Finally, if the compo-
nent’s purpose is to set up a certain control flow among subtasks, static specifica-
tions are by definition not appropriate.

Especially points 2 and 3 from the above list show that the intention behind many
existing formal approaches like CSP, Esterel, FOCUS, Estelle, LOTOS, or SDL is not
quite in line with our intended purpose. For the remaining formalisms, we have to
answer the question of how states are represented. We consider two options:

• In algebraic approaches ([20]), states are expressed implicitly, i.e. the state change
induced by some operation is defined by how it affects subsequent operations.

• Model-based approaches like Z, VDM-SL, or B/AMN explicitly define the state
space, usually in terms of typed set theory.

Basically, both approaches fulfill the requirements from the above list. However, in
practice, model-based approaches tend to be easier to understand: Defining states
explicitly allows the reader to focus on one operation at a time instead of having to
understand an operation in the context of the other operations in an interface.

Eventually, among the model-based formalisms, we have chosen a systematic
use of Z [21] to accompany MoDeL interface definitions. The main reason for this
decision was that all other formalisms with a broader acceptance include imperative
constructs to cover operational aspects of semantics (so-called wide-spectrum formal-
isms). For our purposes, this is not required and might even lead to “overspecified”
interfaces.

5 The Dynamic View

As was pointed out in the previous section, it is necessary to document the semantics
of a software system on two levels: Declarative semantics to understand the purpose
of a component and its interface resources and operational semantics to understand
the relationships between components and their interplay. Formal and informal de-
clarative semantics definitions can be used in MoDeL in the form of Z specifications
and comments, respectively, augmenting interface specifications with the correspond-
ing information. Here, we take up the discussion of specifying operational semantics.

 The Architecture Description Language MoDeL 265

A variety of specification languages for the semantics of software systems and
their components have been developed over the past years. One major direction origi-
nates in the structured approach to requirements analysis and design with its data,
functional, and control model of a system ([22]). From the respective languages ER
(and its many extensions), SA, and SA/RT, the latter two can be allocated to behav-
ioral descriptions. The second direction emerged under the collective term object-
oriented modeling and produced a wide variety of approaches [23] adopting and rede-
fining structured concepts as well as adding new notations. In particular, we have
considered the Object Modeling Technique (OMT) [24], the Object-Oriented Analy-
sis/Design (OOA/D) method proposed by [1], and the Unified Modeling Language
UML [2], [3].

Based on this work, we have defined an approach similar to Collaboration Dia-
grams as in OOA/D for the MoDeL sublanguage InterMoDeL for describing opera-
tional semantics of architectures. InterMoDeL specifications are called interaction
diagrams. Like CDs, interaction diagrams allow the description of exemplary behav-
ior. However, InterMoDeL is based on interacting components, not on interacting
objects. This noticeably means that instances of data type modules are not shown as
nodes in interaction diagrams (although they may appear as parameters in operation
calls).

Interaction diagrams are composed of the following elements:

• Nodes in the diagram are components (modules or subsystems) as defined for ar-
chitecture diagrams.

• Components may be connected with uses relationships. Uses relationships indicate
the call of an operation offered by the resource provider. Obviously, for a direct
uses relationship to be legal, a corresponding usability relationship in the architec-
ture diagram must exist. Every uses relationship features one or more labels which,
in turn, consist of a sequence number and an operation name with a signature.

Every label reflects a call of the operation as indicated by the label. The “actual pa-
rameters” shown with the call must match the formal parameter signature as given in
the textual interface specification of the called component. Sequence numbers in
InterMoDeL interaction diagrams are hierarchical as in UML.

It should be noted that, by assuming reference semantics for data type modules,
there can be no “hidden” calls to a module. As an example, complex data types fre-
quently require a used-defined implementation to copy an instance of this type. Using
value semantics, this operation may be called implicitly by an assignment operator or
by passing a variable of that type by value in a procedure call. In contrast, with refer-
ence semantics, every call inducing the execution of code within the data type module
refers to an operation with a name and signature explicitly defined in the features part
of the interface. This enhances the readability of corresponding interaction diagrams
and makes consistency checks between architecture diagrams, interaction diagrams,
and module implementations easier.

Interaction diagrams may also contain indirect uses relationships. They feature the
same kind of label as direct uses relationships have. An indirect uses relationship
indicates an operation call where the resource employer is not aware of the compo-
nent in which the operation is implemented. This occurs e.g. when some component
calls an operation in another component via a callback (procedure pointer) which

266 P. Klein

itself has been passed to the calling component previously. For an indirect uses rela-
tionship, there need not be a parallel usability relationship. In fact, it frequently hap-
pens that indirect uses appear in the reverse direction to a “corresponding” usability
relationship.

Another (technically closely related) example for indirect uses relationships ap-
pears in the context of specialization/polymorphism. When a component calls an
operation of a data type, the implementation actually executed by this operation call
might be located in a specialized data type module. According to the intended seman-
tics of the diagram, the architect may use either a direct uses relationship to the opera-
tion of the supertype the calling component statically imports or an indirect uses rela-
tionship to the subtype operation which is actually called.

6 Concrete Architectures

As was already mentioned, there is a number of reasons which make it reasonable to
modify a logical architecture described with LogMoDeL and InterMoDeL as a first
step towards an implementation. We have introduced the term concrete architecture to
reflect the results of such steps. The specific transformations from logical to concrete
architecture are driven by specific needs, and they may or may not be applicable in-
dependently. As a consequence, the concrete architecture will evolve in a sequence of
incremental transformation steps from the logical architecture. All of these steps se-
lect a realization variant for some abstract situation given by the logical architecture.
In this sense, a logical architecture contains the logical essence of a host of concrete
architectures describing special realization choices.

Introducing logical and concrete architectures allows us to model a software sys-
tem on a pure structural level without having to implement it exactly that way. On the
other hand, adaptations or extensions of the architecture necessary to fulfill certain
realization constraints are still planned and prepared during the design process (and
not, as frequently found in practice, as an “on-the-fly” activity during the implementa-
tion phase). Furthermore, logical and concrete architectures as well as the dependen-
cies and differences between them are described and documented separately: Both
architectures as well as their correspondences represent individual design decisions
made by the architect.

Still open, though, is the question of which architectural concepts are on logical
level and which are on concrete level. There is no general answer to this question;
what is considered “logical” or “concrete” strongly depends on the respective soft-
ware system and its properties. A rough guideline results from distinguishing between
“inherent” and “derived” properties of the system:

• We can characterize a property of a software system as “inherent” if it is tightly
connected to the problem to be solved. For example, a business administration sys-
tem will always store its data in some sort of database, a CAD tool will always
have a graphical user interface, a screenshot capturing tool will refer to some par-
ticular window system, and a telecommunications switching system will always be
a concurrent system. In general, it is not very useful to leave corresponding design
decisions to the concrete level as this overloads the logical level with abstractions
of no practical use.

 The Architecture Description Language MoDeL 267

• “Derived” properties are not introduced by the problem itself but by a particular
solution. Taking up the examples from above, we can state that the choice of a
concrete database system and an appropriate database schema are derived design
decisions for the architecture of a business administration system. The same holds
for the selection of a particular GUI for a CAD tool or a certain window system
version for the screenshot capturing tool. Corresponding architecture modifications
should be made on the concrete level.

So, for example, being a concurrent system is probably an inherent property of e.g.
a telecommunications switching system while it would be a derived property of e.g. a
compiler. Accordingly, respective specifications will occur on logical level for the
former and on concrete level for the latter type of software.

6.1 Concurrency

Although, in this sense, architecture language concepts for concurrency and distribu-
tion are not generally allocated to logical or concrete level, we discuss them in the
context of concrete architectures. As our approach origins more from the area of
main-stream application systems than from embedded or real-time systems, concur-
rency and distribution are typical derived properties: They are introduced to increase
performance or to allow different users access to shared information, but they are not
part of the problem domain. The respective modeling concepts to be introduced in the
following, however, can be used on logical level as well.

If we now want to describe concurrency on architecture level, we first have to de-
cide what a concurrent component actually is. The notion of active objects is fre-
quently used in current literature to introduce concurrency on design level. Since the
term active generally appears in different semantics, we sketch some definitions here.

1. [1] defines active objects as objects which encompass an own thread of control.
This definition and others closely relate threads or processes with single compo-
nents, noticeably data type or data object modules (classes/objects). A similar ap-
proach, although not restricted to data abstraction components, can be found in the
task concept of the Ada programming.

2. Functional modules are abstractions of operations; they have no state and serve
transformation or controlling purposes. Data abstraction modules encapsulate state
or a template for state; they hide the internal representation of this state and allow
access to it only via a set of corresponding operations preserving the abstraction’s
semantics. In this sense, functional components act and data abstraction compo-
nents are acted upon, and it seems natural to apply the term active to functional and
passive to data abstraction components.

3. When two components interact, e.g. by a procedure call from one component into
the other, the called component performs some action on behalf of the caller. Like
under point 2, the calling component acts and the called component is acted upon,
so we may apply the terms active and passive accordingly. We can readily general-
ize this scenario to all situations where one component induces some activity in
another, be it directly (e.g. procedure call) or indirectly (e.g. event triggering).

268 P. Klein

4. A special variant of 3 concerns the situation when two components interact for
execution control purposes, i.e. one component manipulating the thread of control
of another component (start, terminate, suspend, resume etc.). Semantically, this is
on a different level as 3, although it may be realized in just the same way (e.g. by
procedure calls). Therefore, we distinguish the corresponding notions of active and
passive in the thread controlling sense from those concerning the actual abstraction
of a component.

Obviously, 1 directly introduces concurrency on design level. 2 and 3 describe
definitions which can be applied to sequential systems as well. Point 4 is a rather
complicated case because the passive component in this sense has to have a thread for
the definition to make sense; therefore it is an active component in the sense of 1. The
active component in 4 might or might not be active in the sense of 1. Be this as it
may, the definition in 4 already requires some notion of concurrency. To avoid confu-
sion with other semantics of active and passive, we use the term acting component for
a component which has an own thread of control and reacting component for a com-
ponent which has not.

Choosing the semantics described in 1 as the foundation for our terminology does
not mean that the other semantics for active and passive play no role in the design of
an architecture description language for concurrent systems. In fact, relating the no-
tions of acting and reacting components to active and passive components in the sense
of 2 to 4 yields some valuable ideas presented in the following.

Comparing the definitions of acting and reacting to those of functional and data ab-
straction components shows that there is an intuitive relationship between the prop-
erty of owning a thread of execution and the abstraction decision represented by a
module’s type. If a data abstraction component’s purpose is to hide the details of
some state’s internal representation, to define what operations are semantically sensi-
ble on the state, and to map these operations onto some manipulation of the internal
representation, we observe that there is no need for such a component to own a thread
of control. The execution of access operations of the component is always (possibly
indirectly) triggered by some functional component and can therefore be performed in
the corresponding thread of control. On the other hand, the execution of transforma-
tion or controlling activities may or may not happen concurrently. Therefore, we
restrict acting components to functional abstractions, i.e. functional components may
or may not be acting, while data abstraction components are always reacting.

Relating our definitions to the active/passive semantics described by 3 leads to the
question whether an acting component can be acted upon in the sense of (directly or
indirectly) calling one of its interface operations. A negative answer would result in
the restriction that an acting component may have no interface. In the reverse direc-
tion, we see that a component with an empty interface surely has to be acting: If it has
no own thread of control and no other control flow can enter through the interface, the
component is obviously useless. But may an acting component have an interface and
be passive in the sense of 3? The intuitive notion that a component either does some-
thing of its own or it acts on behalf of other components leads to the conclusion that
this is not the case.

Considering some typical examples of functional abstractions, we observe that there
are indeed some sensible interface operations for acting components. But we also note
that these are operations which directly or indirectly manipulate the component’s

 The Architecture Description Language MoDeL 269

thread of control. We therefore allow exactly such thread controlling operations in the
interface of acting components, even though the control semantics of an interface op-
eration might be implicit.

6.2 Function Type Modules

We can now come back to the question of function type components. It may seem
trivial at first sight that it is possible for an operation in an acting component’s inter-
face to create a new thread of control instead of manipulating a thread encapsulated
by a function object. Up to now, we have considered acting components on instance
level, i.e. equipped with exactly one thread of control. But just like we do for data
abstraction components, we can shift the concepts for functional components to type
level. This allows us to distinguish between function object and function type compo-
nents: The former represent a single (set of) computation(s), and the latter are tem-
plates for instantiating such computations at runtime. In sequential systems, we do not
need to bother with function types because a single instance of every function is suffi-
cient. However, in a concurrent system, function types are necessary since their in-
stantiation is the logical counterpart of the creation of a new thread of control.

Considering the similarities between data and function type modules, the question
arises how far the analogy between these component types goes. More precisely, on
architectural level, we have to define whether function type instances are allowed as
parameters in operation signatures and whether there is a useful meaning for speciali-
zation relationships between function type modules.

We can readily resolve this issue with a simple construction: Data type module in-
stances carry a state and operations manipulating this state. Function objects may
have no state, so function type instances have no state as well. However, the thread of
control attached to a function type instance represents a state with respect to the un-
derlying execution engine, e.g. an execution point, a call stack etc. This thread state
can be interpreted as the counterpart of a data type instance state.

6.3 Synchronization

To consider the implications of having several acting components in a software sys-
tem, we first have to define more clearly what is meant by a thread of control and a
process. Without being precise about this term so far, we have implied some inde-
pendence concerning their execution. However, taking a closer look, different degrees
of independence can be identified.

According to the extent of context information carried along with a thread of
control, we distinguish three levels of processes:

• A thread of control consists of an execution point (“program counter”), a call stack,
and an address space. In this case, the terms task, heavy-weight process, or simply
process are frequently used. For a heavy-weight process, all state information, be it
local (in a procedure) or global, can be accessed only using the control flow of that
process.

• A thread of control consists of an execution point and a call stack. This is generally
denoted as a light-weight process or thread. Local state information, as it is stored
in the call stack, is uniquely instantiated and associated with every thread. Global
state, however, is accessible by all threads, possibly at once.

270 P. Klein

• A thread of control exists of an execution point only. All state information is
shared amongst all “processes”. This case is rather rare in mainstream application
systems, though it may occur in embedded real-time systems.

In the following, we use the term process as referring to any of these forms.
Whatever approach is taken, at certain points in time, some processes will gener-

ally have to cooperate in some way. Cooperation involves one or more of the follow-
ing aspects:

1. Passing of information between processes may occur with a call of an interface
operation. The details of what information is exchanged (input/output/exception
parameters with their respective types) are covered by the signature of the opera-
tion and therefore already part of the architecture specification of an interface as
introduced so far. For light-weight processes, arbitrary data may be communicated.
Heavy-weight processes may not exchange references to data inside their address
spaces, i.e. only values of atomic types or references to function type instances can
be passed. Several techniques exist to handle the communication of more complex
data structures by “flattening” the information into a stream of atomic values (mar-
shalling) on employer side and recomposing the complex value on provider side
(unmarshalling).

2. Synchronization of access to shared data, i.e. which operations of a component
may be called concurrently and which may not, is not apparent from the interface
so far. Furthermore, it has to be denoted whether the employer or the provider is
responsible for ensuring that the synchronization rules are followed. We will ex-
tend interface specifications to express this information below. Note that this is not
relevant for heavy-weight processes. For light-weight processes, the corresponding
information must be given for data abstraction components. In the context of fly-
weight processes, functional component specifications might be subject to syn-
chronization extensions as well.

3. For control flow organization, we make the assumption that some process interac-
tion in which the provider process is not able to accept a request will suspend the
employer process until the request can be handled. For heavy-weight processes,
this may occur if the thread of control in the provider process is currently executing
some other code. For light-weight processes, the same may happen if the provider
component has the responsibility of synchronizing access to its state and another
control flow currently holds access to resources which may not be used concur-
rently with the requested resources. In both cases, we assume that the request is
queued, the requesting process suspended, and the queued requests are handled in
the respective order by the provider process, thereby resuming the control flows of
the requesting processes.

To specify synchronization constraints as required by point 2 above, we have in-
troduced a virtual resource model akin to the concept of monitors [25]. This model
provides means to abstract from the state of a data object or data type instance in the
form of so-called mutexes (this terminology is derived from the threading facility of
the Modula-3 programming language). Synchronization requirements can be ex-
pressed as dependencies of operations from these mutexes.

 The Architecture Description Language MoDeL 271

A mutex can be declared in an interface. It represents a resource or set of resources
which can be accessed by at most one process at a time. An operation may depend on
a resource on two levels: If the execution of an operation demands that the resources
represented by a mutex should be made available to one process only, we interpret
this as the operation “locking” the mutex. Every mutex can be locked by at most one
process. To be more precise, only one process at a time may execute an operation
which locks a certain mutex. Other processes needing access to the same mutex have
to wait for the locking process to end the execution of the respective operation. Fre-
quently, however, a process does not have to lock a mutex, it is sufficient for the op-
eration’s execution that it is not locked by any other process. In this case, we say that
the operation “requires” the lock. Locking a mutex is a stronger condition than requir-
ing it, i.e. an operation locking a mutex requires it as well. Finally, a process cannot
lock a mutex as long as an operation is executed which requires it. MoDeL further-
more allows the architect to specify whether the provider module or the employer
component(s) is responsible for protecting the mutex.

A noticeable advantage of the explicit modeling of virtual resources with mutexes,
apart from the possibility to specify fine-grained access control, is the ability to ex-
press inter-module synchronization schemes. Mutexes, as anything else in a compo-
nent’s interface, can be imported by other interfaces and may be used to formulate
synchronization requirements there.

7 Summary

This paper summarizes some of the key concepts of the architecture description lan-
guage MoDeL as introduced in [10]. Its basic properties are:

• The understanding of the contents and purpose of a software architecture is
that of a blueprint for the system under consideration. Its core abstraction re-
sults from the distinction between an interface and its realization.

• The basic unit of modeling is a component that may range in size and com-
plexity between a module and a complete software system. The abstraction
provided by a component depends on its logical characteristics and purpose
in the context of the system.

• The language itself is multiparadigmatic. It supports different kinds of ab-
stractions for components and relationships, modeling on different levels of
the logical hierarchy, and multiple levels of detail between pure logical struc-
ture and actual realization structure.

• Different views concerning static and dynamic as well as logical and physi-
cal properties are supported. The relationships between (elements of) these
views are precisely defined.

References

1. Booch, G.: Object Oriented Analysis and Design with Applications. Benjamin/Cummings,
Redwood City (1994)

2. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide.
Addison-Wesley, Reading (1999)

272 P. Klein

3. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Man-
ual. Addison-Wesley, Reading (1999)

4. Altmann, W.: A New Module Concept for the Design of Reliable Software. In: Raulefs, P.
(ed.) Workshop on Reliable Software, pp. 155–166. Hanser-Verlag, Munich (1979)

5. Gall, R.: Structured Development of Modular Software Systems – The Module Graph as
Central Data Structure. In: Proceedings of the Workshop on Graphtheoretic Concepts in
Computer Science 1981, pp. 327–338. Hanser-Verlag, Munich (1982)

6. Lewerentz, C., Nagl, M.: Incremental Programming in the Large: Syntax-Aided Specifica-
tion Editing, Integration, and Maintenance. In: Shriver, B. (ed.) Proceedings of the 18th
Hawaii International Conference on System Sciences, Honolulu, vol. II, pp. 638–649
(1985)

7. Lewerentz, C.: Extended Programming in the Large within a Software Development Envi-
ronment. ACM SIGSOFT Software Engineering Notes 13(5), 173–182 (1988)

8. Nagl, M.: Softwaretechnik: Methodisches Programmieren im Großen. Springer, Berlin
(1990)

9. Börstler, J.: Programmieren-im-Großen: Sprachen, Werkzeuge, Wiederverwendung. Umeå
University Report UMINF 94.10, Doctoral Dissertation, Aachen University of Technol-
ogy, Umeå University (1994)

10. Klein, P.: Architecture Modeling of Distributed and Concurrent Software Systems. Doc-
toral Dissertation, Aachener Beiträge zur Informatik, Band 31, Wissenschaftsverlag Mainz
in Aachen, Aachen (2001)

11. Kleppe, A.: MDA Explained, The Model Driven Architecture: Practice and Promise. Ad-
dison-Wesley, Reading (2003)

12. Kruchten, P.: Architectural Blueprints—The “4+1” View Model of Software Architecture.
IEEE Software 12(6), 42–50 (1995)

13. Stevens, W., Myers, G., Constantine, L.: Structured Design. IBM Systems Journal 13(2),
115–139 (1974)

14. Perry, D., Wolf, A.: Foundations for the Study of Software Architecture. ACM SIGSOFT
Software Engineering Notes 17(4), 40–52 (1992)

15. Parnas, D.: On the Criteria to be Used in Decomposing Systems into Modules. Communi-
cations of the ACM 15(12), 1053–1058 (1972)

16. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object Oriented Software. Addison-Wesley, Reading (1995)

17. Cardelli, L., Wegner, P.: On Understanding Types, Data Abstraction, and Polymorphism.
Computing Surveys 17(3), 471–522 (1985)

18. Kiczales, G.: Towards a New Model of Abstraction in Software Engineering. In: Yo-
nezawa, A., Smith, B. (eds.) Proceedings of the International Workshop on New Models
for Software Architecture 1992; Reflection and Meta-Level Architecture, Tokyo, pp. 1–11
(1992)

19. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press,
Cambridge (1996)

20. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 2 – Module Specifications
and Constraints. Springer, Berlin (1990)

21. Spivey, J.: The Z Notation – A Reference Manual, 2nd edn. Prentice Hall, New York
(1992)

22. Kohring, C.: Ausführung von Anforderungsdefinitionen zum Rapid Prototyping – Re-
quirements Engineering und Simulation (RESI). Doctoral Dissertation, Aachen University
of Technology. Shaker-Verlag, Aachen (1996)

 The Architecture Description Language MoDeL 273

23. Hutt, A. (ed.): Object Analysis and Design – Description of Methods. Wiley, New York
(1994)

24. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object-Oriented Mod-
eling and Design. Prentice Hall, Englewood Cliffs (1991)

25. Hoare, C.: Monitors: An Operating System Structuring Concept. Communications of the
ACM 17(10), 549–557 (1974)

	The Architecture Description Language MoDeL
	Introduction
	Architecture Views
	Abstraction Types
	The Static View
	Functional Abstraction
	Data Abstraction
	Interface Extensions and Export Control
	Module Relationships
	Subsystems
	Generics
	Specifying Semantics

	The Dynamic View
	Concrete Architectures
	Concurrency
	Function Type Modules
	Synchronization

	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

