
Workflow-Driven Tool Integration Using
Model Transformations �

András Balogh3, Gábor Bergmann1, György Csertán3, László Gönczy1,
Ákos Horváth1, István Majzik1, András Pataricza1, Balázs Polgár1, István Ráth1,

Dániel Varró1, and Gergely Varró2

1 Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

H-1117 Magyar tudósok krt. 2, Budapest, Hungary
{bergmann,gonczy,ahorvath,majzik,pataric,polgar,rath,varro}@mit.bme.hu

2 Department of Computer Science and Information Theory,
H-1117 Magyar tudósok krt. 2, Budapest, Hungary

gervarro@cs.bme.hu
3 OptxWare Research and Development LLC,

H-1137 Katona J. u. 39.
{andras.balogh,gyorgy.csertan}@optxware.com

Abstract. The design of safety-critical systems and business-critical services ne-
cessitates to coordinate between a large variety of tools used in different phases
of the development process. As certification frequently prescribes to achieve jus-
tified compliance with regulations of authorities, integrated tool chain should
strictly adhere to the development process itself. In order to manage complex-
ity, we follow a model-driven approach where the development process is cap-
tured using a precise domain-specific modeling language. Each individual step
within this process is represented transparently as a service. Moreover, to carry
out individual tasks, systems engineers are guided by semi-automated transfor-
mation steps and well-formedness constraint checking. Both of them are formal-
ized by graph patterns and graph transformation rules as provided by the VI-
ATRA2 framework. In our prototype implementation, we use the popular JBPM
workflow engine as orchestration means between different design and verification
tools. We also give some insights how this tool integration approach was applied
in recent projects.

1 Introduction

Complex development projects, especially, in the field of safety-critical systems, ne-
cessitate the use of a multitude of software tools throughout the entire life-cycle of the
system under design for requirements eliciation, design, implementation, verification
and validation as well as change management activities.

However, in order to ensure safety, the verification of tool output is mandated by in-
dustrial certification standards (like DO-178B [1] for avionics systems), which requires

� This work was partially supported by the European Union as part of the MOGENTES (STREP-
216679), the DIANA (AERO1-030985) and the SENSORIA (IST-3-016004) projects.

G. Engels et al. (Eds.): Nagl Festschrift, LNCS 5765, pp. 224–248, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Workflow-Driven Tool Integration Using Model Transformations 225

enormous efforts. Software tool qualification aims at reducing or even eliminating such
efforts to obtain certification credit for the tool itself by ensuring that a tool always
produces deterministic and correct output.

Standards differentiate between verification tools that cannot introduce errors but
may fail to detect them, and development tools whose output is part of the critical system
and thus can introduce errors. According to the standard, a development tool needs
to be qualified to at least the same level of scrutiny as the application it is used to
develop. The main functionality of a software development tool is thus to correctly and
deterministically transform an input artifact into output.

Unfortunately, the qualification of software tools is extremely costly, even minor
changes would require re-certification efforts [2] resulting in several man-years of work.
Furthermore, qualified tools are almost exclusively relying upon closed, internal tech-
nologies of a company [3], without using external components, as vendors of safety-
critical tools are unable to control the development of external components with the
level of preciseness required by certification standards. Finally, the tool integration costs
for building a uniform tool chain can frequently exceed the total costs of the individual
tools themselves.

The extreme costs of certification and tool qualification are largely due to the fact that
integration between different tools is carried out in an ad hoc way in the industry [4]. It
is still a very common scenario that the output of one tool is ported manually to serve
as the input of another tool. Moreover, the chaining of different tools is completely
decoupled from the rigorous development processes necessitated by the standards.

In the current paper, we propose to use model transformation services organized into
complex model transformation chains. These transformation chains are closely aligned
with the designated development process as driven by precise workflow models where
workflow activities comprise of individual development steps carried out by some tool,
which creates some output artifacts (models and code, configuration files) from some
input artifacts. Moreover, each step in a tool integration chain can be hierarchically
refined later on by using workflows for capturing the main steps of individual develop-
ment tools.

Formalizing design processes with workflow allows formal adherence checks with
certification guidelines. Moreover, workflow-dirven tool integration aligns development
and V&V toolchains with the actual development process itself.

Individual development steps of the transformation chain are treated as black-box
components, where functionalities carried out by the tool are precisely captured by
contracts formalized as graph patterns. This black-box approach enables that both au-
tomated and user-driven development steps can be integrated in a uniform way to the
tool chain. Furthermore, automated tool integration or development steps can be cap-
tured by model transformations formalized by means of graph transformation rules.

This approach has been successfully applied to developing individual tools (as in the
DECOS [5] and DIANA [6] EU projects) as well as for complete tool integration chains
(as in SENSORIA [7], MOGENTES [8] and GENESYS [9] projects) in the context of
safety-critical systems. Further industrialization of the framework is being carried out
as part of the ARTEMIS project INDEXYS [10].

226 A. Balogh et al.

The rest of the paper is structured as follows. Section 2 summarizes the main steps
and challenges of tool integration scenarios. In Sec. 3, we propose a workflow-driven
approach for driving tool integration scenarios. Section 4 introduces a tool integration
challenge taken from an avionics context. Section 5 discusses how graph patterns and
graph transformation rules can be used in automating the development of the tool in-
tegration process. Then, in Sec. 6, we also demonstrate how such a tool integration
framework has been implemented using state-of-the-art open source technologies. Fi-
nally, Section 7 discusses related work and Section 8 concludes our paper.

2 The Architecture of Tool Integration Chains

2.1 Classification of Development Activities

Complex development processes make use of a multitude of development, design, ver-
ification and documentation tools. The wide spectrum of underlying technologies, data
representation formats and communication means has called for tool integration frame-
works to address the need for a common underlying tool integration platform. Such
middleware is typically designed to allow for various tools to be integrated as services,
so that the integration process can be designed by concentrating on the tasks that are to
be performed, rather than the underlying technological peculiarities.

On the conceptual level, the main functionality of each step (task) is to transform an
input artifact into one or more output artifacts. This transformation view on develop-
ment and tool integration tasks does not have a direct impact on the level of automation.
For example, certain tasks can be either (fully) automated, such as compiling source
code from an executable model like statecharts or running a model analysis task to re-
veal conceptual flaws in the design. Other development tasks are inherently user guided
(or user driven) where a development step is completed in close interaction with the
systems engineers. User guided steps typically include those where design decisions
need to be made and recorded, such as modeling. While full automation is impossible
(or impractical) for user guided steps, the step itself can still be interpreted using this
transformational view. Moreover, automation may still implant design intelligence into
such tools be performing on-the-fly validation of certain design constraints, which can
reduce costs.

Development steps can also be categorized on the basis of comparing the information
between the source and the target formalisms of the step.

– Synthesis steps (carried out by using textual or graphical editors, and even certain
automated tools like schedulers, optimizers) add new information to the system
under design during the completion of the step.

– Analysis steps (also known as verification and validation steps), on the contrary,
typically abstract from existing information in order to enable checking for certain
correctness properties to reveal errors in the design.

– Derivation steps (like code generation or model export and import with format con-
version) do not add or remove information, however, they change the representation
of the information.

Workflow-Driven Tool Integration Using Model Transformations 227

Fig. 1. Process activity types

A summary of these categories are shown in Fig. 1. It is important to stress that the
mode of execution and design information handling aspects are practically orthogonal,
so relevant examples for all combinations can be easily given (in the table cells in
Fig. 1).

2.2 Synthesis

Synthesis activities are typically carried out by off-the-shelf development tools such
as programming environments, documentation tools, modeling editors etc. By these
means, engineers create and manipulate the artefacts of the design process using manual
or semi-automated procedures.

Along with design information, most (critical and expensive) errors (e.g. design
flaws, anti-patterns) are introduced into the system-under-design in these activities. To
reduce the impact of these faults, advanced tools offer checking facilities, ranging from
light-weight approaches (such as syntax analysis for source code, domain-specific well-
formedness checking in model editors) to more advanced features (e.g. static code anal-
ysis, model simulation by in-place execution [11]).

The quality of design synthesis output can also be improved by using semi-automated
tools for design-time optimization. For instance, in embedded architecture design, auto-
matic schedulers may be used to calculate the timing of a message bus communication
protocol, or resource allocation tools may be used to optimally assign software tasks to
hardware nodes.

2.3 Analysis

Figure 2 shows a typical approach to early analysis using model-based techniques. In
model-driven development, system requirements and design are captured by high-level,
visual engineering models (using popular and standardized modeling languages like
UML, SysML, AADL). In critical systems, where the system under design must con-
form to high quality and reliability standards, early systematic formal analysis of design
models plays an increasingly important role to reveal design flaws as early as possible.
In general, this can be carried out by generating appropriate mathematical models by
automated model transformations. Formal analysis then retrieves a list of problems,
which can be fixed by refinement corrections prior to investing in manual coding for
implementation. Finally, these refined models may serve as input to code generators
and deployment configuration generation, which create the runnable source code of the

228 A. Balogh et al.

Fig. 2. Analysis by formal techniques

application as well as parametrize auxiliary deployment infrastructure services such as
monitoring.

Analysis steps may include (i) to investigate functional correctness of the design
by verifying safety or liveness properties (e.g. by model checking statecharts [12, 13]),
(ii) to assess the effects of error propagation (e.g. using fault modeling and analysis
techniques [14]), (iii) to evaluate non-functional characteristics of the system such as
performance, availability, reliability or security (e.g. by deriving stochastic models from
engineering models [15, 16, 17]) and many more. A commonality in these approaches
is the extensive use of automated model transformations to carry out the abstraction
necessitated by the formal analysis.

2.4 Derivation

Derivation steps primarily include automated code generation tasks, or to chain up sev-
eral development steps by importing and exporting models in different tools.

Derivation steps can frequently be fully automated as all information required for
code generation is available prior to initiating the step. Of course, such code generators
may still combine the information embedded in different models to derive the desig-
nated output, or to mark the platform independent models by design decisions. Any-
how, in both cases, the actual derivation step is completed using existing information
implanted by synthesis steps.

Code generators may derive the source code or the target application (see code gen-
erators of statecharts [18]), yield deployment descriptors for the target reliable plat-
form [19, 20], or generate runtime monitors [21].

As a summary, complex tool integration frameworks should be closely aligned with
development processes by taking a transformation-based view on individual develop-
ment steps. Moreover, they need to simultaneously provide support to integrated au-
tomated as well as interactive, user-guided development steps where the starting point
and the completion of each step needs to be precisely identified. Finally, the framework

Workflow-Driven Tool Integration Using Model Transformations 229

should enable to integrate arbitrary kind of development steps including synthesis, anal-
ysis and derivation tasks.

3 Process-Driven Tool Integration

Based on the experience in tool integration summarized in Sec. 2, we propose an inte-
grated approach for designing and executing tool integration processes for model driven
development. As a proof-of-concept, we describe a case study developed for the DI-
ANA [6] research project (Sections 4, 5 and 6).

By our approach, development processes are formally captured by workflow mod-
els, which (i) specify the temporal macro structure of the process as a task-oriented,
hierarchic workflow model; (ii) precisely map the steps of the process to the develop-
ment infrastructure, consisting of human resources (roles), tools, supporting technolo-
gies available as services and development artefacts as entities in the data repository;
(iii) define high-level contracts to each step, which specify constraints that help to verify
and trace the correctness of outcomes and activities.

These process models are deployed to a software infrastructure, which serves as an
automated execution and monitoring platform for the development process. It provides
support for running automated and user-guided activities in a distributed environment
consisting of heterogeneous software tools, and a model bus-like [22] data repository.

In this section, we describe the specification language of the workflow models in the
tool integration domain in detail.

3.1 Process Metamodel

Macro structure. For the specification of the temporal macro structure of develop-
ment processes, we follow the notions and concepts of well known process descrip-
tion languages such as BPMN or XPDL. As the metamodel in Fig. 3 shows, processes
are constructed from workflow steps (corresponding to distinct activities carried out
during development), and may use standard control flow features such as sequences
(ProcessNode.next), concurrency (fork-join) and decision points.

More advanced constructs, such as waiting states are intentionally omitted from this
language, since this is intended to be a very high level description, where only the order
(precedence or concurrence) of activities is important; for execution, this language is
mapped to a lower level jPDL representation which may be customized and augmented
with more advanced behavioral properties.

Hierarchy. It is important to stress the hierarchical nature of the process descrip-
tion: through the Step.subNodes relation, workflow steps may be embedded into each
other to create a hierarchical breakdown. This allows the process designer to map the
”birds-eye-view” structure development processes (such as phases and iterations) to
our language; additionally, it supports ”drill-up-drill-down”-style navigation through a
complicated workflow, which is important to reduce design complexity for large-scale
processes.

230 A. Balogh et al.

Fig. 3. Integration process macro structure metamodel

Development infrastructure. Besides the causality breakdown, the language features
the following notions of the development infrastructure:

– Artefacts represent data structures of the process (e.g. documentation, models,
code, generated files, metadata, traceability records).

– Roles correspond to the participants of the process, humans and external entities
who are involved in executing the user-guided activities.

– Components are either Tools or Services which are used by the participants or
invoked automatically during development, to complete a specific step.

These concepts enable the precise mapping of the development workflow to the actual
execution infrastructure.

Mapping to the execution infrastructure. As shown in Fig. 4, our language can be
used to precisely specify the execution of the development process. During process
modeling, workflow steps are first assigned into the Activity or Invocation cate-
gories, depending on the type of interaction (activities are user-guided while invoca-
tions are automated). For user-guided tasks, the language adopts the basic role-based
assignment method (taken from BPMN), and optionally supports two basic types of re-
lations (responsible and executor) to indicate which group of users may supervise
and actually carry out a task.

Activities may make use of Tools, while invocations refer to Services. From the
workflow system’s perspective, both tools and services are external software compo-
nents, which are accessible through interface adaptors. These are represented in the
language as Interfaces (Fig. 4(b)), which may be connected to artefacts to indicate
data flow (input/output). At run-time, both tools and services shall be triggered by
the process execution engine, with parameters referring to data repository automatically
supplied, so that the user does not have to care about managing data and files.

Workflow-Driven Tool Integration Using Model Transformations 231

(a) Steps and contracts, services, tools (b) Component-
artefact integration

Fig. 4. Integration process metamodel: auxiliary elements

Contracts. In order to guarantee that the result of a step is acceptable and the process
can continue, the definition of contracts [23] is a well known paradigm. The idea is
to guard both the input and output of a step by specific constraints. Thus, a contract
is composed of a precondition and a postcondition. A precondition defines con-
straints that needs to be fulfilled by the input of the step in order to allow its execution,
while the postcondition guarantees that the process can continue only if its constraints
are satisfied by the output. This general definition of a contract allows to use arbitrary
formalism (e.g., OCL, JML, etc.) to capture the pre- and postconditions, but could re-
quire further refinement of the metamodel with the additional elements of the used
formalism.

A detailed example of configuration generation using our graph pattern based contract
definition in the context of avionics domain (as part of our case study) can be found in
Sec. 4.2.

4 Case Study: The DIANA Toolchain

DIANA (Distributed, equipment-Independent environment for Advanced avioNics
Applications [6]) is an aeronautical research and development project. It aims at the
definition of an advanced avionics platform named AIDA (Architecture for Independent
Distributed Avionics), supporting (i) execution of object-oriented applications over vir-
tual machines [24], (ii) high-level publish subscribe based communication, and (iii) the
applicability of model driven system development (MDSD) in the avionics development
domain.

The DIANA project aims to create an MDSD based tool chain for the analysis
and generation of ARINC653 [25] real-time operating system (RTOS) configuration
files from high-level specifications. Transforming these high-level models into RTOS-
specific configuration artefacts is a complex task, which needs to bridge a large ab-
straction gap by integrating various tools. Moreover, critical design decisions are also
made at this stage. For this reason, the use of intermediate domain specific models is
advantageous to subdivide the process into well-defined steps and precisely define the
interactions and interfaces among the tools used.

232 A. Balogh et al.

In order to introduce the DIANA approach Section 4.1 focuses on the models and
metamodels used through the mapping process, while Section 4.2 gives an overview on
the actual steps of the workflow.

4.1 Models

In the DIANA project the aim of the high-level Platform Independent Model (PIM) is to
capture the high-level architectural view of the system along with the definition of the
underlying implementation platform, while the Platform Specific Model (PSM) focuses
on the communication details and service descriptions.

Platform Independent Models. In order to support already existing modeling tools
and languages (e.g., Matlab Simulink, SysML, etc.) we use a common architecture
description language called Platform Independent Architecture Description Language
(PIADL) for architectural details by extracting relevant information from supported
common off-the-shelf models. As for capturing the underlying platform (in our case
ARINC653) we use a Platform Description model (PD) capable of describing common
resource elements.

– PIADL aims to provide a platform independent architectural-level description of
event-based and time-triggered embedded systems using message and publish/sub-
scribe based communication between jobs, having roots in the PIM metamodel of
the DECOS research project [26].

– The Platform Description (model) describes the resource building blocks, which
are available in an AIDA Module to assemble the overall resources of an AIDA
component. This mainly includes ARINC653 based elements such as modules, par-
titions, communication channels, etc. A small part of the metamodel is detailed in
Section 5.2.

– In the context of the DIANA project we support Matlab Simulink as a source COTS
language. We supports only a fraction of the language that conforms with the ex-
pressiveness of our PIADL to describe the high-level architecture of the system.

Platform Specific Models. The platform specific models are encapsulated in the AIDA
Integrated System Model that contains all relevant low-level details of the modelled
system. Essentially based on ARINC653, the integrated model provides extensions and
exclusions to support the publish/subscribe communication and service based invoca-
tions. Its main parts are the following:

– The Interface Control Document (ICD) is used to describe data structures and low-
level data representation of AIDA systems, interfaces and services to ease inte-
gration of the described element with other parts of the system. It supports both
high-level (logical) and low-level (decoding) descriptions and was designed to be
compatible with the ARINC653 and ARINC825 data and application interface
descriptions.

Workflow-Driven Tool Integration Using Model Transformations 233

– The AIDA System Architecture model identifying and describing the relations
among all elements related to the AIDA system. More precisely the model focuses
on the (i) details of the proposed publish/subscribe based communication, (ii) the
multi-static configuration of the AIDA middleware and (iii) the detailed inner de-
scription of the partitions allocated for the AIDA system.

In order to support traceability – an essential requirement of DO-178B [1] certifica-
tion –, a trace element is saved in the Trace model for all model elements of the PSM
created during the mapping process. Such an element saves all PIM model segments
that were used for the creation of a PSM model element. Additionally, trace informa-
tion is also serialized into separate XMI files for each generated configuration file. In
the current implementation traceability is hand-coded separately into each step of the
development workflow.

4.2 Overview of the DIANA System Modeling Process

An extract of the defined workflow for the DIANA System modeling process is depicted
in Figure 5, using a graphical concrete syntax of the process metamodel presented in
Figure 3 and Figure 4.

The process starts with the definition of a complete PIADL model as the task of
the System architect (represented by a human symbol). It can be either manually

Fig. 5. Overview of the DIANA development process

234 A. Balogh et al.

defined using the (i) external PIADL editor (depicted by a wrench icon) as part of the
PIADL review step or (ii) derived from a Simulink model.

The near one-to-one derivation is supported by the Simulink/PIADL Converter
external tool used in the PIADL Review step. It has an input and an output interface
figured by a grey and white socket symbol for the Simulink and the PIADL model, re-
spectively. However, as some AIDA specific parameters cannot be directly derived it
requires additional clarification from the system architect. For example, a subsystem
block in the Simulink model is mapped to a job in the PIADL, but its modular redun-
dancy value (how many instances of the job are required) is not present in the Simulink
model.

The complete PIADL is then imported into the PIM/PSM mapping editor respon-
sible for the analysis and definition of configuration tables interface descriptions. This
work is done by the Modeling Engineer. Without going into more details it consists
of 25 steps organized into the following main categories:

1. Application allocation: contains the PIM imports followed by the allocation of ap-
plication instances to partitions and steps that define additional constraints on the
allocation. It relies on the VIATRA2 framework and depicted by an invocation
step.

2. AIDA ICD definition: steps related to the description of interfaces and services pro-
vided and required by applications. These are user driven mapping steps, where
PIM types, messages, topics and services are refined with platform specific infor-
mation like encoding, default value, etc. It is supported by the PIM/PSM mapping
editor.

3. Communication allocation: involves steps in the PIM/PSM Mapping editor that
carry out the allocation of inter-partition communication channels and the specifi-
cation of ports residing on each end of these channels.

4. Artefact generation: contains steps that carry out the generation of AIDA
middleware model, ARINC653 configuration files for the VxWorks real-time
OS and the AIDA ICD descriptor.

Additionally, as a cross cutting aspect traceability information - depicted by the
Trace model - is saved during the mapping process.

5 Graph Transformation in the DIANA Tool Chain

This section gives an overview how we successfully applied graph transformation based
technology in various parts of the tool chain. Section 5.1 introduces a graph pattern
based contract notation used to define conditions for steps, along with an example de-
tailed in Section 5.2. Section 5.3 highlights how graph transformation is used for AR-
INC configuration generation.

5.1 Contracts as Graph Patterns

During a development process certain steps require external COTS tools (e.g., Matlab,
SAL, etc.) or user interaction to perform their task. As mentioned in Section 3.1 we use

Workflow-Driven Tool Integration Using Model Transformations 235

contracts to ensure that both the input and output of these steps satisfy their require-
ments. In our approach we used graph patterns to capture such contracts [27, 28] as
we used on-the-fly evaluation based on incremental pattern matching [29]. However,
it is important to note, that it would be possible to define these contracts by OCL and
transform a large subset directly to the graph pattern formalism [30].

Graph patterns are frequently considered as the atomic units of model transforma-
tions [31]. They represent conditions (or constraints) that have to be satisfied by a part
of the underlying instance model. In the following, we use the pattern language of the
VIATRA2 framework [32]. In our interpretation a basic graph pattern consists of graph
elements corresponding to the metamodel. As an addition for more complex pattern
specification the language of VIATRA2 allows to define alternate (OR) pattern bodies
for a pattern, with a meaning that the pattern is fulfilled if at least one of its bodies
is fulfilled. A negative application condition (NAC) prescribes contextual conditions
for the original pattern which are forbidden in order to find a successful match. Nega-
tive conditions can be embedded into each other in an arbitrary depth (e.g. negations of
negations), where the expressiveness of such patterns converges to first order logic [33].

Contracts are composed of a pre- and a postcondition. Both conditions are the con-
junction of subconditions described by graph patterns, where a graph pattern is a dis-
junction of alternate pattern bodies [31]. A subcondition described by the graph pattern
is either a positive or negative condition. A negative condition is satisfied by a model if
it does not have a match in the underlying model. While a positive one is satisfied if its
representing graph pattern has a match in the model. A further restriction on positive
condition can be formulated by stating that they are satisfied iff their representing graph
pattern has a predefined positive number (Cardinality) of matches.

5.2 Example

To demonstrate how contracts can be formulated using the defined approach consider
the simplified job allocation step of the Application Allocation category (See in Sec-
tion 4.2) using an external tool (the VIATRA2 framework). In this step the task is to
allocate an IMA system defined by its jobs and partitions over a predefined cabinet
structure and to minimize the number of modules used. An integrated modular avionics
(IMA) system is composed of Jobs (also referred as applications), Partitions, Mod-
ules and Cabinets. Jobs are the atomic software blocks of the system defined by their
memory requirement. Based on their criticality level, jobs are separated into two sets:
critical and simple (non-critical). For critical jobs, double or triple modular redundancy
is applied while for simple ones only one instance is allowed. Partitions are complex
software components composed of jobs with a predefined free memory space. Jobs can
be allocated to the partition as long as they fit into its memory space. Modules are SW
components capable of hosting partitions. Finally, Cabinets are HW storages for maxi-
mum (in our example) two modules used to physically distribute elements of the system.
Additionally a certain number of safety related requirements will also have to be sat-
isfied: (i) a partition can only host jobs of one criticality level and (ii) instances of a

236 A. Balogh et al.

Fig. 6. Metamodel of an IMA architecture

certain critical job can not be allocated to the same partition. An excerpt of the Platform
Description metamodel describing the detailed IMA system is depicted in Figure 6.

Based on this metamodel we defined the pre- and the postcondition of this step as
depicted in Figure 7 and Figure 8, respectively. All subconditions in the pre- and the
postcondition are defined as positive and negative conditions depicted with with + and
- markings, respectively.

Precondition. For the definition of the precondition we rely only on that the model
has at least one cabinet, one partition with its free memory defined and one job with
an instance. These simple requirements are captured by the cabinet, partition and job
graph patterns depicted in Figure 7.

Fig. 7. Precondition of the DIANA application allocation step

Postcondition. The jobInstancewithoutPartition, partitionwithoutModule and module-
withoutCabinet subconditions describe that in a solution model each JobInstance, Par-
tition and Module is allocated to a corresponding Partition, Module and Cabinet, re-
spectively. For example, the jobInstancewithoutPartition subgoal captures its require-
ment using a double negation (NAC and negative constraint) stating that there is no
unallocated job instance JI in the solution model. As the declarative graph pattern for-
malism has an implicit existential quantification, nested (double) negation is required to
quantify elements universally. Similar double negation is used in case of the other two
subgoals.

The rest formulates safety and memory requirements. The partitionMemoryHigh-
erThan0 pattern captures the simple memory constraint that all partitions must have
higher than zero free memory. The safety requirement stating that a partition can only

Workflow-Driven Tool Integration Using Model Transformations 237

Fig. 8. Postcondition of the DIANA application allocation step

host jobs of one criticality level is captured by the partitionCriticalityLevelSimilar pat-
tern. As it is a negative constraint it describes the (positive) case where the P1 parti-
tion holds two job instances J1 and J2 of a simple and a critical job Job1 and Job2,
respectively. The criticalInstanceonSamePartition and criticalInstanceonSameModule
patterns restrict in a similar way that no job instances J1 and J2 of a critical job Job can
be allocated to the same partition P1 or module M1.

Guarding the application allocation using this contract ensures that all applications
are properly allocated and all safety requirements are fulfilled by the output model. As
constraints are defined by graph patterns it gives rise to adapting constraint satisfaction
programming techniques over graph transformation as in [34].

5.3 Configuration Generation by Graph Transformation

Model transformation based automatic code or configuration generation is one of the
main driving forces [35,36] of model driven system development. It offers many advan-
tages including the rapid development of high quality code, reduced number of errors
injected during development and the consistency between the design and the code is
retained, in comparison with a purely manual approach.

One aim of the DIANA project is to generate ARINC653 [25] XML based con-
figuration files for VxWorks 653 RTOS from the created PSMs. A configuration file
describes the internal structure of a module, namely: (i) allocated partitions and their
memory layout, (ii) communication channels over sampling and queueing ports and (iv)
health monitor tables for error detection and handling. During the PIM-PSM mapping
process all relevant information required for the generation are specified and stored in
the AIDA Integrated System model.

An example ARINC653 configuration snipplet is depicted in Figure 9. It captures
the details of the flight management non-system partition, which has the highest Level A
criticality as defined in [1], one queueing and four sampling ports and separate memory
blocks for code and data. A port is defined with its direction, maximum message size

238 A. Balogh et al.

and name, where the sampling and the queuing ports have additionally refresh rate
or maximum number of messages parameters, respectively. Finally, a memory block is
defined by its access mode (e.g, read or write), type (code or data) and size.

Fig. 9. Example ARINC653 descriptor

Configuration Generation. To generate the required XML format we based our code
generator on the VIATRA2 framework, where configuration file templates are defined
using graph transformation (GT) rules. This way GT rules define both the GT pattern
that matches to the required elements in the model and generate code as a side effect.
These GT rules do not modify the underlying model and thus their right and left hand
sides are the same.

Without going into details, a part of the code generator responsible for the generation
of the Partition Memory XML subtree is depicted in Figure 10 and Listing 1.1.

The partitionMemory GT rule defines the template for the Memory Requirements
XML element. Its pattern matches to the partition P that has a memory M as its memory
block. A memory has three attribute defined as memorySize MS, memoryType MT and
memoryAccess MA. The print block defines the template that is printed out when the
rule is applied. All three parameters value are retrieved using the value keyword.

The partitionID is an auxiliary pattern used to get the ID PID of the partition P.
To control the execution of the GT rules and define complex generators the VIA-

TRA2 language [32] uses abstract state machines ASM [37]. ASMs provide complex
model transformations with all the necessary control structures including the sequencing

(a) GT rule for memory block genera-
tion

(b) Partition with ID

Fig. 10. Example GT patterns and rules used for configuration generation

Workflow-Driven Tool Integration Using Model Transformations 239

operator (seq), ASM rule invocation (call), variable declarations and updates (let and up-
date constructs), if-then-else structures, non-deterministically selecting (random) con-
structs, iterative execution (applying a rule as long as possible (ALAP) iterate), the si-
multaneous rule application at all possible matches (locations) (forall) and single rule
application on a single matching (choose).

The example code shown in Listing. 1.1 demonstrates how we defined our code
generator using the partitionMemory rule and the partitionID pattern.

The outer forall rule is used to find all partitons P with their id PID in the model as
defined by the partitionID pattern, and then execute its inner sequence on all matches
separately. For each partition separate Partition Memory XML elements are emitted
out with their additional PartitionIdentifier and PartitionName parameters. As for the
Memory Requirements XML elements a forall rule invoking the partitionMemory GT
rule is defined. The rule is invoked for all memory blocks M of partition P, where P is
(at that point) already bound to a concrete partition by the outer forall.

The whole code generator is built up using similar snipplets.

... //memory block generation
forall P, PID with find partitonID(P, PID) do seq{

println("<Partition_Memory PartitionIdentifier=\"+value(PID)
+\" PartitionName=\"+name(P)+\">");

forall M with apply partitionMemory(P,M); // GT rule as template
println("</Partition_Memory>");

}
...

Listing 1.1. Partition Memory code generator snipplet

6 Implementation of the Tool Integration Framework

To support the application of the high-level process modeling language presented in
Sec. 3, we have created a prototype implementation for the tool integration framework.
This framework provides the software infrastructure on which the case study of Sec-
tions 4 and 5 is executed. A main design goal was to integrate our solution to existing
off-the-shelf tools that are used in industry practice; thus, both the process modeling
infrastructure, as well as the execution environment rely on standard technologies as
much as possible.

6.1 Execution Architecture

The execution of the process is facilitated by a service-oriented architecture, based on
the jBoss jBPM [38] workflow execution engine and the Rational Jazz platform [39],
as an integration middleware between tools, services, and the data repository. Building
on this software environment, we have implemented a lightweight API that provides
essential components, the overall architecture is shown in Fig. 11.

Tool management. A Tool or Service represents an external executable program that
performs one or more tasks during the development. In order to be easily integrated,
especially in the case of services, these software components should ideally be pro-
grammatically invocable, i.e., have the business functionality exposed to a well-defined

240 A. Balogh et al.

Fig. 11. Framework architecture

interface which is externally accessible (ranging from command line interfaces to li-
brary functions or even web services).

Connectors. Connectors are the components that provide uniform interface of the tools
for the framework. The connector is also responsible for facilitating data flow between
the tool and the artefact repository (optionally, support for explicit traceability may also
be implemented in the Connector). The Tool Manager together with the Tool Reposi-
tory serve as a service directory for available tools and services. It relies on the under-
lying service facilities of the Rational Jazz and OSGi platforms. These components are
responsible for the lifecycle management (initialization, disposal) of integrated tools.

Data management. Models and artefacts of the development process are described
(on a high abstraction level) in the Process Model. From this, a storage metamodel
is generated, which contains dependency references between artefact classes, and in-
cludes metadata (such as creation timestamps, ownership and access control flags) as
attributes. Traceability information is also handled as storage metamodel classes. The
Artefact Manager is responsible for providing access through a service-oriented API
(implemented as a tool/service interface) to data records stored in the Data Repository
component.

Process execution. The executing processes can be managed and supervised using
the Process Execution User Interface. In our prototypical implementation, it provides
a control panel where (i) execution of tasks defined in the platform-specific process
model can be initiated, (ii) the state of execution (i.e. the current process node, and the
process variable values) can be observed, and (iii) versions of artefact instances and
their related metadata can be managed.

The Process Execution Engine is responsible for the execution of the steps defined
in the Process Model. The process model is mapped to a low-level executable language
(jBoss jPDL [38]), which is executed in a customized jBPM instance. The jPDL de-
scription contains auxiliary information that is processed by handler plugins, so that

Workflow-Driven Tool Integration Using Model Transformations 241

the process executor is able to invoke the integrated tools, services, and access the data
repository.

6.2 Process Modeling Languages for Tool Integration

In practice, the domain-specific language of Sec. 3 is not the only means of designing
a development process; in fact, several modeling languages may be involved on two
levels of abstraction (Fig. 12).

Fig. 12. Models and their relations used in process modeling and execution

High-level process models. In today’s industrial practice, development processes are
frequently captured in process description languages with a focus on methodology-
compliance (i.e. enforcing design principles so that the actual development conforms
to standard methods such as the Unified Process, or modern agile approaches such as
XP or SCRUM). To address this need from a metamodeling perspective, the Software
Process Engineering Metamodel (SPEM) [40] has been developed by the OMG. Since
then, a number of SPEM-based tools have emerged, and IBM Rational’s Method Com-
poser is one of the most well-known of them. Along with its open-source version, the
Eclipse Process Framework Composer [41] (shown in Fig. 13), they are based on pattern
re-use by allowing to design according to process libraries that incorporate deep knowl-
edge of both standard methodologies (e.g. OpenUP) and also organization-specific
customizations.

Fig. 13. The DIANA process in the EPF Composer

As EPF’s language includes support for the high level enumeration of roles and arte-
facts, with lightweight associations (such as responsibility, input-output), a ”platform-
independent” representation of development processes may be designed. Note that in

242 A. Balogh et al.

these models, all activities appear as tasks (Fig. 13), so there is no information present
about which elements are used-guided and which are automated.

Thus, this high level model can mapped to our DSML by a VIATRA2 transformation,
preserving the macro structure of the process, and importing an enumeration of roles,
tools and artefacts. This domain-specific model has to be augmented manually to pre-
cisely specify how activities interact with artefacts, tools, services, and their interfaces.

Storage models. Two types of deployment models are generated from the platform-
specific model: (i) the Workflow Model contains the description of the tool-chain to be
executed in the format (augmented jPDL) that can be executed by the Process Execution
Engine, and (ii) the Storage Model, which is the description of the data structure in a
format that is needed to configure the Rational Jazz Data Repository.

In Jazz, storage models [42] are EMF/Ecore-compliant metamodels that define an
object-oriented database schema in which artefacts can be stored. Inter-class references
indicate cross-references between repository elements (for instance, such cross refer-
ences may be used to determine which document instances need to be manipulated
synchronously to maintain consistency).

Fig. 14. Storage metamodel for the DIANA process

A sample storage model extract for the DIANA case study is shown in Fig. 14.
Classes, tagged with the Auditable stereotype, are under versioning persistence man-
agement, and can store metadata as attributes. These attributes can be queried and pro-
cessed without retrieving the artefacts in their entirety. Note that in this example, we
do not record any traceability information between the Simulink model and the rest of
artefacts, hence it is shown as a separate auditable entity in the storage metamodel.

Metadata attributes typically include lightweight traceability information (e.g. cre-
ation timestamps, creator IDs which may refer to a particular user or the ID of an au-
tomated service), and may also incorporate logs and traces (such as, for instance, the
generation warn error log attribute for the VxWorks configuration document, which
contains the warning and error log emitted by the code generator during generation).

Workflow-Driven Tool Integration Using Model Transformations 243

These auxiliary records, together with a complete trace model (also represented as a
persistent and versioned artefact) play an important role in achieving end-to-end trace-
ability.

Based on this storage model, a persistence plug-in is generated for the Jazz reposi-
tory, which allows the tool connectors (as well as external components) to interact with
the database on the artefact level. This interface currently only provides basic access
functionality (queries and manipulations):

– getter functions for all document types and their metadata (e.g.getVxWorks confi-
gurations(), .getGenerator config() etc.), which directly retrieve data
records from the artefact database and wrap them into EMF objects;

– getter functions for complex queries involving storage classes with cross references
(e.g. getTrace model transitive(String traceModelId), which fetches a par-
ticular trace model document together with all its referenced document instances);

– manipulation (setter) functions for all document types and their metadata attributes,
which take EMF objects as data transfer parameters (e.g. storeVxWorks confi-
guration(VxWorksConfigurationModel)).

7 Related Work

The problem of tool integration has already been studied in many different research
projects whose relationships to our proposed approach are now surveyed.

The UniForM WorkBench [43] can be considered as one of the earliest attempts
for tool integration due to its built-in support for type safe communication between
different tools, version and configuration management. Though system models can be
interchanged in a type safe manner by the workbench, it cannot be considered as a
model-based approach as a whole.

Several technology dependent approaches have already been proposed for tool inte-
gration purposes. One valuable representative of this group is R-OSGi [44], which sup-
ports the deployment of distributed applications on computers having the OSGi frame-
work installed. Though the underlying OSGi framework has many advanced services,
the centralized management (i.e., loading and unloading) of modules is an inconvenient
property of R-OSGi. Another representative is the jETI system [45], which is a result of
redesign and Java-based reimplementation of the Electronic Tool Integration platform,
is an approach based on the Eclipse Plugin architecture whose technology dependency
has been reduced by its Web Services support. The jABC submodule of the jETI system
enhances Java development environments with remote component execution, high-level
graphical coordination and dedicated control via formal methods.

The use of workflows for describing the tool integration process, which is a technique
also employed in our approach, has been introduced in the bioinformatics domain in
[46]. In this paper, the authors proposed to describe the cooperation of computational
tools and data management modules by workflows.

The first form of metamodel-based tool integration appears in [22], which presents
two orthogonal design patterns as well. The first pattern suggests the storage of metadata
on a server, and the development of a model bus, on which tools can transfer models via
a common model interface protocol. The other pattern proposes the use of workflows
for describing the tool integration process in the ESML language.

244 A. Balogh et al.

Model transformations in tool integration. In the followings, tool integration solutions
with model transformation support are presented.

In the authors’ experience, VIATRA2, positioned as a dedicated model transformer,
has been successfully applied both in scenarios where the abstraction gap (between
source and target languages) was relatively small (such as code generation from MDA-
style platform-specific models [19,47,48,49], or abstract-concrete syntax synchroniza-
tion in domain-specific languages [50]), as well as mappings with strong abstractions
(e.g., the generation of mathematical analysis models from design artefacts, for formal
analysis purposes).

The IPSEN approach [51] outlined probably the first integration related scenario,
where model transformation techniques played a key role. The aim of IPSEN was to
construct an integrated software development environment (SDE) tool, which helped
capturing both context-free (i.e., syntactic) and context-sensitive (i.e., graph-based) as-
pects of languages by textual and graphical editors, respectively. The technique of graph
transformation has been heavily used for the development of the tool especially for
specifying constraints and translations in the context-sensitive domain.

ModelCVS [52] employs (i) semantic technologies in forms of ontologies to partly
automate the integration process, and (ii) QVT transformations, which are generated
from these ontology descriptions. As distinctive features, ModelCVS uses Subver-
sion for versioning, EMF and MOF-based metamodels for model representation, and
a generic workflow ontology for defining processes. In contrast to our approach, Mod-
elCVS prepares adapters for tools and not for models as these latters are stored in a
central repository. Additionally, model transformations are used in ModelCVS for the
synchronization of models, and not for the definition of the integration process.

From the model transformation point of view, a similar setup can be found in
MOFLON [53, 54]. Transformations are again used for model synchronization, but in
this case, they are defined by triple graph grammars. MOFLON operates on JMI and
MOF 2.0 based models.

TopCased (”The Open source toolkit for Critical Systems”) [55] is a software envi-
ronment primarily dedicated to the realization of critical embedded systems including
hardware and/or software. Topcased promotes model-driven engineering and formal
methods as key technologies, such as a model bus-based architecture supporting stan-
dard modeling technologies such as EMF, AADL, UML-MARTE, and SysML. For
model transformations, TopCased uses ATL [56].

The recent EU projects of ModelWare [57] and MODELPLEX [58] outline tech-
niques that show certain similarity to our approach. ModelWare aimed at defining and
developing the complete infrastructure required for large-scale deployment of MDD
strategies and validating it in several business domains. It can (i) provide transparent
integration across model, tool, platform, machine boundaries; (ii) support the creation
of distributed, multi-user tool chains; (iii) handle many metamodels and artefacts; (iv)
integrate interactive and non-interactive tools; and (v) use different technologies for
communication. ModelWare offers a process modeling framework, and a model bus for
exchanging high-level data that are either Java-based or described by Web Services.
On the other hand, it lacks model transformation support, which has only been added
in its successor MODELPLEX project. MODELPLEX has a SPEM2 based toolset for

Workflow-Driven Tool Integration Using Model Transformations 245

supporting the enactment and execution of processes and is integratable with workflow
and project management tools as well.

The clear separation of PIMs and PSMs, which specify tool integration processes
with different levels of details can only be found in research projects GENESYS [9]
and DECOS [5], which propose a cross-domain architecture for embedded systems,
and a model-driven development process for avionics systems, respectively. As dis-
tinctive features, GENESYS supports (i) different modeling languages including UML
and many of its profiles, (ii) a service-oriented development of subsystems, (iii) both
uni- and bidirectional model transformations with manual, semi-automatic, automatic
execution.

8 Conclusion

In the paper, we proposed a tool integration framework, which is centered around a
high-level domain-specific language for process modeling to closely align tool integra-
tion and development scenarios. With this approach, model-driven development pro-
cesses can be described precisely, in detail that is sufficient to capture what can and
should be automated, but also flexible enough to support user-guided steps as well.

Based on our experience in designing and implementing tool chains primarily in the
embedded and service-oriented domains, a key issue is to precisely specify and validate
the individual elementary steps of the development tool chain. For this purpose, we
adapted graph patterns to formally specify contracts for each step. Furthermore, model
transformations provided by graph transformation techniques were responsible for fully
automating certain steps in the tool chain (like code generation or model analysis tasks).

In addition to the process-driven specification of tool integration chains, we have
also presented an execution framework, which is rooted on various research projects at
the group. This framework is built to accommodate a wide spectrum of Eclipse-based
or external) tools, and automatically execute development processes designed with our
modeling language.

As future work, we primarily aim at including support for advanced model bus
services, such as versioning, model merge, and automatic traceability information gen-
eration. Additionally, we are planning to integrate advanced support for automated
traceability based on change-driven transformations introduced in [50].

References

1. RTCA - Radio Technical Commission for Aeronautic: Software Considerations in Airborne
Systems and Equipment Certification, DO-178B (1992),
https://www.arinc.com/cf/store/catalog_detail.cfm?item_id=633

2. Rushby, J.: Runtime Certification. In: Leucker, M. (ed.) RV 2008. LNCS, vol. 5289, pp.
21–35. Springer, Heidelberg (2008)

3. Kornecki, A.J., Zalewski, J.: The Qualification of Software Development Tools from the DO-
178B Perspective. Journal of Defense Software Engineering (April 2006),
http://www.stsc.hill.af.mil/crosstalk/2006/04/0604KorneckiZalewski.html

4. Miller, S.P.: Certification Issues in Model Based Development Rockwell Collins

https://www.arinc.com/cf/store/catalog_detail.cfm?item_id=633
http://www.stsc.hill.af.mil/crosstalk/2006/04/0604KorneckiZalewski.html

246 A. Balogh et al.

5. The DECOS Project: DECOS - Dependable Embedded Components and Systems,
http://www.decos.at/

6. The DIANA Project Consortium: DIANA (Distributed, equipment Independent environment
for Advanced avioNic Application) EU FP6 Research Project, http://dianaproject.com

7. The SENSORIA Project: The SENSORIA website, http://www.sensoria-ist.eu
8. The MOGENTES Project : MOGENTES (Model-based Generation of Tests for Dependable

Embedded Systems) EU FP7 Research Project, http://mogentes.eu
9. The GENESYS Project: GENESYS - GENeric Embedded SYStem,

http://www.genesys-platform.eu/
10. The INDEXYS Project: INDEXYS - INDustrial EXploitation of the genesYS cross-domain

architecture, http://www.indexys.eu/
11. Ráth, I., Vágó, D., Varró, D.: Design-time Simulation of Domain-specific Models By In-

cremental Pattern Matching. In: 2008 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC) (2008)

12. Pintér, G., Majzik, I.: Runtime Verification of Statechart Implementations. In: de Lemos, R.,
Gacek, C., Romanovsky, A. (eds.) Architecting Dependable Systems III. LNCS, vol. 3549,
pp. 148–172. Springer, Heidelberg (2005)

13. Sisak, Á., Pintér, G., Majzik, I.: Automated Verification of Complex Behavioral Models Us-
ing the SAL Model Checker. In: Tarnai, G., Schnieder, E. (eds.) Formal Methods for Au-
tomation and Safety in Railway and Automotive Systems (Proceedings of the FORMS-2008
Conference), Budapest, Hungary, LH́armattan (2008)

14. Partaricza, A.: Systematic generation of dependability cases from functional models. In: Pro-
ceedings of Formal Methods for Automation and Safety in Railway and Automotive Systems
(FORMAT 2008), Budapest, Hungary (2007)

15. Majzik, I., Pataricza, A., Bondavalli, A.: Stochastic dependability analysis of system archi-
tecture based on uml models. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architect-
ing Dependable Systems. LNCS, vol. 2677, pp. 219–244. Springer, Heidelberg (2003)

16. Schoitsch, E., Althammer, E., Eriksson, H., Vinter, J., Gönczy, L., Pataricza, A., Csertán, G.:
Validation and Certification of Safety-Critical Embedded Systems - the DECOS Test Bench.
In: Górski, J. (ed.) SAFECOMP 2006. LNCS, vol. 4166, pp. 372–385. Springer, Heidelberg
(2006)

17. Balogh, A., Pataricza, A., Ráth, I.: Automated verification and validation of domain specific
languages and their applications. In: Proceedings of the 4th World Congress for Software
Quality, Bethesda, USA, pp. 1–6 (2009)

18. Pintér, G., Majzik, I.: Model Based Automatic Code Generation for Embedded Systems.
In: Proceedings of the Regional Conference on Embedded and Ambient Systems (RCEAS
2007), Budapest, Hungary, pp. 97–106 (2007)

19. Gönczy, L., Ávéd, J., Varró, D.: Model-based Deployment of Web Services to Standards-
compliant Middleware. In: Isaias, P., Miguel Baptista Nunes, I.J.M. (eds.) Proc. of the Iadis
International Conference on WWW/Internet 2006 (ICWI 2006), Iadis Press (2006)

20. Kövi, A., Varró, D.: An eclipse-based framework for ais service configurations. In: Malek,
M., Reitenspieß, M., van Moorsel, A. (eds.) ISAS 2007. LNCS, vol. 4526, pp. 110–126.
Springer, Heidelberg (2007)

21. Pintér, G., Majzik, I.: Automatic Generation of Executable Assertions for Runtime Checking
Temporal Requirements. In: Dal Cin, M., Bondavalli, A., Suri, N. (eds.) Proceedings of the
9th IEEE International Symposium on High Assurance Systems Engineering (HASE 2005),
Heidelberg, Germany, October 12-14, pp. 111–120 (2005)

22. Karsai, G., Lang, A., Neema, S.: Design Patterns for Open Tool Integration. Software and
Systems Modeling 4(2), 157–170 (2004)

23. Meyer, B.: Applying ”design by contract”. IEEE Computer 25(10), 40–51 (1992)

http://www.decos.at/
http://dianaproject.com
http://www.sensoria-ist.eu
http://mogentes.eu
http://www.genesys-platform.eu/
http://www.indexys.eu/

Workflow-Driven Tool Integration Using Model Transformations 247

24. Locke, C.D.: Safety critical javaTMtechnology. In: JTRES 2006: Proceedings of the 4th Inter-
national Workshop on Java Technologies for Real-Time and Embedded Systems, pp. 95–96.
ACM, New York (2006)

25. ARINC - Aeronautical Radio, Incorporated: A653 - Avionics Application Software Standard
Interface, https://www.arinc.com/cf/store/catalog_detail.cfm?item_id=633

26. DECOS - Dependabe Embedded Components and Systems consortium : The DECOS
Platform Independent Metamodel, public deliverable,
http://www.inf.mit.bme.hu/decoscd/deliverables/DECOS_deliv_PIM_
Metamodel.pdf

27. Baar, T.: OCL and graph-transformations - A Symbiotic Alliance to Alleviate the Frame
Problem. In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 20–31. Springer, Hei-
delberg (2006)

28. Azab, K., Habel, A.: High-level programs and program conditions. In: Ehrig, H., Heckel,
R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 211–225. Springer,
Heidelberg (2008)

29. Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.: Incremental pattern matching in the
VIATRA transformation system. In: GRaMoT 2008, 3rd International Workshop on Graph
and Model Transformation, 30th International Conference on Software Engineering (2008)

30. Winkelmann, J., Taentzer, G., Ehrig, K., Küster, J.M.: Translation of restricted OCL con-
straints into graph constraints for generating meta model instances by graph grammars. Elec-
tron. Notes Theor. Comput. Sci. 211, 159–170 (2008)

31. Varró, D., Balogh, A.: The model transformation language of the VIATRA2 framework.
Science of Computer Programming 68(3), 214–234 (2007)

32. Balogh, A., Varró, D.: Advanced Model Transformation Language Constructs in the VIA-
TRA2 Framework. In: ACM Symposium on Applied Computing — Model Transformation
Track (SAC 2006) (2006) (in press)

33. Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels, G., Parisi-
Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335. Springer,
Heidelberg (2004)

34. Horváth, Á., Varró, D.: CSP(M): Constraint Satisfaction Programming over Models. In:
Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 107–121. Springer, Hei-
delberg (2009)

35. Hemel, Z., Kats, L.C.L., Visser, E.: Code generation by model transformation. In: Vallecillo,
A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp. 183–198. Springer,
Heidelberg (2008)

36. Ehrig, K., Ermel, C., Hänsgen, S., Taentzer, G.: Towards graph transformation based gen-
eration of visual editors using eclipse. Electr. Notes Theor. Comput. Sci. 127(4), 127–143
(2005)

37. Börger, E., Stärk, R.: Abstract State Machines. A method for High-Level System Design and
Analysis. Springer, Heidelberg (2003)

38. Koenig, J.: JBoss jBPM White Paper. Technical report, The JBoss Group / Riseforth.com
(2004), http://jbossgroup.com/pdf/jbpm_whitepaper.pdf

39. IBM Rational: Jazz Community Site, http://jazz.net/
40. The Object Management Group: Software Process Engineering Metamodel, version 2.0

(2008), http://www.omg.org/technology/documents/formal/spem.htm
41. The EPF Project: The Eclipse Process Framework website,

http://www.eclipse.org/epf/
42. Haumer, P.: Increasing Development Knowledge with Eclipse Process Framework Com-

poser. Eclipse Review (2006), http://haumer.net/rational/publications.html
43. Einar W. Karlsen: The UniForM WorkBench: A Higher Order Tool Integration Framework.

Lecture Notes in Computer Science 1641 (1999) 266–280

https://www.arinc.com/cf/store/catalog_detail.cfm?item_id=633
http://www.inf.mit.bme.hu/decoscd/deliverables/DECOS_deliv_PIM_Metamodel.pdf
http://www.inf.mit.bme.hu/decoscd/deliverables/DECOS_deliv_PIM_Metamodel.pdf
http://jbossgroup.com/pdf/jbpm_whitepaper.pdf
http://jazz.net/
http://www.omg.org/technology/documents/formal/spem.htm
http://www.eclipse.org/epf/
http://haumer.net/rational/publications.html

248 A. Balogh et al.

44. Rellermeyer, J.S., Alonso, G., Roscoe, T.: R-OSGi: Distributed Applications Through Soft-
ware Modularization. In: Cerqueira, R., Campbell, R.H. (eds.) Middleware 2007. LNCS,
vol. 4834, pp. 1–20. Springer, Heidelberg (2007)

45. Margaria, T., Nagel, R., Steffen, B.: jETI: A Tool for Remote Tool Integration. LNCS,
vol. 2440, pp. 557–562. Springer, Heidelberg (2005)

46. Corradini, F., Mariani, L., Merelli, E.: An Agent-based Approach for Tool Integration. Inter-
national Journal on Software Tools for Technology Transfer 6(3), 231–244 (2004)

47. Gönczy, L., Déri, Z., Varró, D.: Model Driven Performability Analysis of Service Config-
urations with Reliable Messaging. In: Proc. of Model Driven Web Engineering Workshop
(MDWE 2008) (2008)

48. Gönczy, L., Déri, Z., Varró, D.a.: Model transformations for performability analysis of ser-
vice configurations, pp. 153–166 (2009)

49. Ráth, I., Varró, G., Varró, D.: Change-driven model transformations. In: Schürr, A., Selic, B.
(eds.) MODELS 2009. LNCS, vol. 5795, pp. 342–356. Springer, Heidelberg (2009)

50. Ráth, I., Ökrös, A., Varró, D.: Synchronization of abstract and concrete syntax in domain-
specific modeling languages. Journal of Software and Systems Modeling (2009) (accepted)

51. Klein, P., Nagl, M., Schürr, A.: IPSEN Tools. In: [59], pp. 215–266. World Scientific, Singa-
pore (1999)

52. Kapsammer, E., Kargl, H., Kramler, G., Reiter, T., Retschitzegger, W., Wimmer, M.: On
Models and Ontologies – A Layered Approach for Model-based Tool Integration. In: Pro-
ceedings of the Modellierung 2006, pp. 11–27 (2006)

53. Klar, F., Rose, S., Schürr, A.: A Meta-model Driven Tool Integration Development Process.
Lecture Notes in Business Information Processing, vol. 5, pp. 201–212 (2008)

54. Amelunxen, C., Klar, F., Königs, A., Rötschke, T., Schürr, A.: Metamodel-based Tool Inte-
gration with MOFLON. In: International Conference on Software Engineering, pp. 807–810.
ACM, New York (2008)

55. The TOPCASED Project: TOPCASED - The Open-Source Toolkit for Critical Systems,
http://www.topcased.org/

56. Canalsm, A., Le Camus, C., Feau, M., et al.: An Operational Use of ATL: Integration of
Model and Meta Model Transformations in the TOPCASED Project. In: Ouwehand, L. (ed.)
Proc. of the DASIA 2006 - Data Systems in Aerospace Conference, European Space Agency,
p. 40 (2006), http://adsabs.harvard.edu/abs/2006ESASP.630E.40C

57. The ModelWare Project: ModelWare - MODELling solution for softWARE systems,
http://www.modelware-ist.org/

58. The MODELPLEX Project: MODELPLEX - Modeling Solution for Complex Systems,
http://www.modelplex-ist.org/

59. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.): Handbook on Graph Grammars
and Computing by Graph Transformation. Applications, Languages and Tools, vol. 2. World
Scientific, Singapore (1999)

http://www.topcased.org/
http://adsabs.harvard.edu/abs/2006ESASP.630E.40C
http://www.modelware-ist.org/
http://www.modelplex-ist.org/

	Workflow-Driven Tool Integration Using Model Transformations
	Introduction
	The Architecture of Tool Integration Chains
	Classification of Development Activities
	Synthesis
	Analysis
	Derivation

	Process-Driven Tool Integration
	Process Metamodel

	Case Study: The DIANA Toolchain
	Models
	Overview of the DIANA System Modeling Process

	Graph Transformation in the DIANA Tool Chain
	Contracts as Graph Patterns
	Example
	Configuration Generation by Graph Transformation

	Implementation of the Tool Integration Framework
	Execution Architecture
	Process Modeling Languages for Tool Integration

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

