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Manfred Nagl



Preface

Manfred Nagl has been a very active, productive researcher with great impact
in a number of different areas, e.g., graph transformations and their applications
to a wide range of disciplines, software engineering environments, engineering
design processes, and software architectures. We — five of his numerous academic
descendants — were influenced deeply by Manfred’s work. For this reason, we
decided to prepare this volume, which was edited in his honor on the occasion of
his 65th birthday. A “pre-release” (book of abstracts) was presented to Manfred
at a celebration at RWTH Aachen University in June 2009. The complete volume
followed when Manfred received an honorary doctorate from the University of
Paderborn in November 2010.

Altogether, we collected 30 papers. The types of papers vary significantly,
including classic research papers in the style of journal articles, surveys of fo-
cused research areas, essays reflecting on certain research topics, and papers
summarizing long-term work conducted by Manfred Nagl.

All papers were subject to a thorough quality control process involving at
least two reviews for each paper. The editors were assisted by numerous addi-
tional reviewers, whose work is gratefully acknowledged.

The volume is structured into five parts, each of which was managed by one
of the editors:

– Graph Transformations — Theory and Applications (Andy Schürr, Darm-
stadt University of Technology)

– Software Architectures and Reengineering (Claus Lewerentz, Brandenburg
University of Technology)

– Process Support (Gregor Engels, University of Paderborn)
– Embedded Systems Engineering (Wilhelm Schäfer, University of Paderborn)
– Engineering Design Applications (Bernhard Westfechtel, University of Bay-

reuth)

We would like to thank all authors for contributing to the high quality of this
volume. Special thanks to Bernhard Rumpe, who inspired and motivated us to
edit a Festschrift in honor of Manfred Nagl.

November 2010 Gregor Engels
Claus Lewerentz
Wilhelm Schäfer

Andy Schürr
Bernhard Westfechtel
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René Wörzberger

An Extensible Modeling Language for the Representation of Work
Processes in the Chemical and Process Industries . . . . . . . . . . . . . . . . . . . . 655

Ri Hai, Manfred Theißen, and Wolfgang Marquardt

Integration Tools for Consistency Management between Design
Documents in Development Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683

Simon M. Becker and Anne-Thérèse Körtgen
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4 Real-Time Systems Lab, Darmstadt University of Technology, Darmstadt, Germany
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1 Short CV

Manfred was born in 1944 in Landskron, Czechia. In 1963, he enrolled for math-
ematics and physics at the University of Erlangen-Nuremberg, from which he
received a master degree in 1969. Subsequently, he worked at a research lab of
Siemens AG in the area of graphics software. In 1971, he returned to the Uni-
versity of Erlangen-Nuremberg. At the chair of programming languages headed
by Hans-Jürgen Schneider, he focused on graph grammars and graph rewrit-
ing systems. Manfred received a doctoral degree in 1974 and a habilitation de-
gree in 1979, both from the Engineering Faculty of the University of Erlangen-
Nuremberg.

In 1979, Manfred obtained his first position as a professor at the University of
Koblenz-Landau, where he worked as an associate professor of computer science
until 1981. He then moved to the University of Osnabrück, where he held the
chair of applied computer science as a full professor until 1986. From then on,
Manfred held a chair of computer science at RWTH Aachen University until he
retired in July 2009.

2 Research

In 1971, Manfred started working on graph transformations (graph grammars
and graph rewriting systems), which was a very young field at that time. In fact,
the first publications on graph grammars (by Manfred’s advisor, Hans-Jürgen
Schneider, and John Pfaltz) appeared around 1970. The first years of research
were dominated by work on theoretical foundations. Manfred contributed to the
theory of graph transformations by developing the set-theoretic approach, which
significantly differs from the categorical approach of Hans-Jürgen Schneider. Fur-
thermore, Manfred put strong emphasis on implementations and applications,
as it is documented by his habilitation thesis “Graph Grammars: Theory, Ap-
plications, Implementation”, which was published as a text book in 1979.

G. Engels et al. (Eds.): Nagl Festschrift, LNCS 5765, pp. 1–5, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 G. Engels et al.

Graph transformations constitute the most important thread of research
which Manfred has been constantly developing up to the present. Around 1980,
the field of integrated software engineering environments emerged. While pro-
grams were developed traditionally with separate tools such as text editors,
compilers, and debuggers, an integrated software engineering environment was
envisioned consisting of tightly integrated tools operating on a common program
representation. While abstract syntax trees and attribute grammars were em-
ployed in most other projects, Manfred favored graphs for the internal program
representation and graph transformation systems for specifying operations on
program graphs. Manfred launched the IPSEN project, where pioneering work
on implementing and applying graphs and graph transformations in integrated
software engineering environments was accomplished. The IPSEN project was
started at the University of Osnabrück in 1982 and was continued at RWTH
Aachen University until 1996, when it was finally documented in an LNCS vol-
ume (LNCS 1170).

The IPSEN environment is a complex software system, the development of
which required a thoroughly devised and well-structured software architecture.
This research field emerged as a hot topic only around 1995, although Manfred
started working on software architecture much earlier (around 1980). Several
doctoral dissertations performed under his supervision were devoted to software
architecture. In 1990, Manfred published — to the best of our knowledge — the
first text book on software architecture.

Conceptually, the IPSEN environment was based on graph transformations.
However, graph transformation systems had to be written by hand and had to
be converted manually into an implementation on top of a graph-based database
management system. At the end of the 1980s, the development of PROGRES
was started. PROGRES is both a language for specifying graph transformation
systems and an integrated development environment, which was built with the
help of IPSEN. Phrased in current terms, PROGRES supports model-driven en-
gineering with graph transformations. Again, Manfred initiated pioneering work
in an area which became a hot topic much later. A fully functional version of
PROGRES was available around 1996, and PROGRES was used for many re-
search projects under the supervision of Manfred and his descendants until his
retirement. Nowadays, numerous languages and tools for model-driven engineer-
ing are available, partly inspired by work on graph transformations, and are
starting to impact industrial software development.

RWTH Aachen is a university with strong emphasis on engineering disciplines.
In 1990, Manfred launched a joint project with mechanical engineers which was
concerned with process support for engineering design. From the very beginning,
Manfred had a unified view on design processes in engineering disciplines and
software processes. In 1997, he managed to set up a large research project — the
Collaborative Research Council IMPROVE — which was dedicated to models
and tools for improving design processes in chemical engineering. The results
of this project were documented in an LNCS volume (LNCS 4970), which ap-
peared in 2008. Within the IMPROVE project, a series of research prototypes
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Fig. 1. Descendants of Manfred Nagl
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of integrated process support environments was developed. These environments
were partly based on the graph transformation technology described above.

3 Students

Manfred has created a large number of scientific descendants, who are listed
in Figure 1 (without any guarantee for completeness). Up to now, 45 Ph.D.
students obtained their doctoral degrees; they constitute the first-level branches
of the “family tree”. Among them, 6 researchers currently hold full professorship
positions in software engineering at universities in Germany (shown in bold face).
In addition, there are 8 descendants holding positions as associate professors,
professors at universities of applied sciences, or assistant professors (emphasized
in italics). The figure also shows 56 “grand children” (among them 5 professors)
and even 7 “great-grand children”. Altogether, the “family tree” provides an
impressive demonstration of Manfred’s impact.

4 Publications

Manfred has produced an impressive list of publications, which currently com-
prises 24 authored and edited books and 126 refereed articles for journals, confer-
ences, and workshops. Below, only the books are listed. Among them, we would
like to emphasize

– the first text book on graph transformations [3],
– the first German text book on Ada [4],
– the first text book on software architecture [10],
– the LNCS volume on the IPSEN project [13],
– the LNCS volume on the IMPROVE project [22], and
– proceedings of various workshops and conferences related to graphs and

graph transformations [2,5,6,7,9,12,17,20,21,23].
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terstützung von Entwicklungsprozessen. John Wiley VCH Verlag, Weinheim (2003)
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Abstract. The title of this paper, besides being a pun, can be taken to mean either
the frontier of research in graph transformation, or the advantage of using graph
transformation. To focus on the latter: Why should anyone not already educated
in the field adopt graph transformation-based methods, rather than a mainstream
modelling language or a process algebra; or vice versa, what is holding poten-
tial users back? These questions can be further refined by focusing on particular
aspects like usability (available tools) or power (available theory).

In this paper, we take a fresh and honest look at these issues. Our perspective is
the use of graph transformation as a formalism for the specification and analysis
of system behaviour. There is no question that the general nature of graphs is at
once their prime selling point (essentially everything can be specified in terms
of graphs) and their main drawback (the manipulation of graphs is complex, and
many properties that are useful in more specialised formalisms no longer hold for
general graphs).

The outcome of this paper is a series of recommendations that can be used to
outline a research and development programme for the coming decade. This may
help to stimulate the continued and increasing acceptance of graph transforma-
tion within the rest of the scientific community, thereby ensuring research that is
relevant, innovative and on the edge.

1 Background

In this paper we take a look at the advantages and disadvantages of graph transformation
as an underlying formalism for the specification and analysis of system behaviour. For
this purpose we review criteria for such a basic formalism, and we discuss how well
graph transformation meets them in comparison with other formalisms.

We will start with a couple of observations. First of all, the field of graph trans-
formation is quite broad: there are many formalisms that differ in philosophy as well
as technical details, and yet all fall under the header of graph transformation — for
an overview see the series of handbooks [65,23,26]. One often used classification dis-
tinguishes the algorithmic approach, pioneered by Nagl [53] among others, from the
algebraic approach, pioneered by Ehrig among others [27]. We do not claim to be com-
prehensive in this paper; although we will not always state so explicitly, in our own
research we are leaning towards the algebraic interpretation as the one closest to other,
non-graph-based formalisms for behavioural specification, such as process algebra and
Petri nets. Our findings are undoubtedly coloured by this bias.

G. Engels et al. (Eds.): Nagl Festschrift, LNCS 5765, pp. 6–32, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The next observation is that the phrase “graph transformation for the specification of
system behaviour” is up for more than one interpretation.

Graph transformation as a modelling language. In this approach, system states are
directly captured through graphs, and system behaviour through graph transfor-
mation rules. Thus, graph transformation is on the interface with the user (design-
er/programmer). This is the approach assumed by many graph transformation tools:
prime examples are FUJABA [30], which has an elaborate graphical front-end for
this purpose, and AUGUR2 [44], which requires rather specialised graph transfor-
mation rules as input.

Graph transformation for operational semantics. In this interpretation, system be-
haviour is captured using another modelling language, for which there exists a
graph transformation-based semantics. Thus, graph transformation is hiding “un-
der the hood” of the other modelling language. There has been quite some research
in the definition of such operational semantics: for instance, for statecharts [45],
activity diagrams [35,28] and sequence diagrams [36,11] and for object-oriented
languages [12,41,64].

Note that this distinction can also be made outside the context of behavioural speci-
fication: for instance in model transformation, where again there are proposals to use
graph transformation as a modelling language, for instance in the form of Triple Graph
Grammars [70], or to define a semantics for QVT [47].

Both scenarios have their attractions; however, the criteria for the suitability of the
underlying formalism do depend on which of them is adhered to. For instance, in
the first scenario (graph transformation as a modelling language), the visual nature of
graphs is a big advantage: in fact, many articles promoting the use of graph transfor-
mation stress this point. On the other hand, this criterion is not at all relevant in the
second scenario (graph transformation for operational semantics) — at least not to the
average user of the actual modelling language, though it may still be important to par-
ties that have to draw up, understand or use the operational semantics. Instead, in this
second scenario, graph transformation is competing with formalisms with far less in-
tuitive appeal but more efficient algorithms, for instance based on trees (as in ordinary
Structural Operational Semantics) or other data structures. In this paper we consider
both scenarios.

In the next section, we first discuss some of the existing variations on graphs, em-
phasising their relative advantages. In Section 3 we proceed to step through a number
of criteria that are (to a varying degree) relevant in a formalism for behavioural speci-
fication and analysis, and we evaluate how well graph transformation does in meeting
these criteria. In Section 4, we evaluate the results and come to some recommendations
on topics for future research.

Disclaimer. It should perhaps be stressed that this paper represents a personal view,
based on past experience of the author, not all of which is well documented. Where
possible we will provide evidence for our opinions, but elsewhere we do not hesitate to
rely on our subjective impressions and intuitions.
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2 A Roadmap through the Graph Zoo

Whatever the precise scenario in which one plans to use graph transformation, the first
decision to take is the actual notion of graphs to be used. There are many possible
choices, and they can have appreciable impact. In this section we discuss some of the
dimensions of choice. In this, our perspective is coloured in favour of the so-called al-
gebraic approach. A related discussion, which distinguishes between glueing and con-
necting approaches, can be found in [6].

We limit ourselves to directed graphs, as these are ubiquitous in the realm of graph
transformation. In addition, essentially all our graphs are edge-labelled, though in some
cases the labels are indirectly assigned through typing. True node labels will only appear
in the context of typing, though a poor man’s substitute can be obtained by employing
special edges.1 We will not bother about the structure of labels: instead, a single set Lab
will serve as a universe of labels for all our graphs.

We will refrain from formally defining graph morphisms for all the notions of graph
under review, as the purpose of this section is not to give an exhaustive formal overview
but rather to convey intuitions.

2.1 Nodes for Entities, Edges for Relations

The natural interpretation of a graph, when drawn in a figure, is that the nodes represent
entities or concepts in the problem domain. Thus, each node has an identity that has
a meaning to the reader. In the context of the figure, the identities are determined by
the two-dimensional positions of the nodes, but obviously these are not the same as
the identities in the reader’s mind: instead, the reader mentally establishes a mapping
from the nodes to the entities in his interpretation. Typically, though not universally, this
mental mapping is an injection; or, if we think of the mental model as encompassing
only those entities that are depicted in the graph, it is a bijection.

The edges play quite a different role in such a natural interpretation. Edges serve to
connect nodes in particular ways: every edge stands for a relation between its end nodes,
where the edge label tells what kind of relation it is. Thus, one particular difference with
nodes is that edges do not themselves have an identity. This is reflected by the fact that,
in this interpretation, it does not make sense for two nodes to be related “more than
once” in the same way: in other words, there cannot be parallel edges, with the same
end nodes and the same label. One may also think of this as a logical interpretation,
in the sense that the collection of edges with a given label is analogous to a binary
predicate over the nodes.

This “natural” or “logical” interpretation is captured by the following definition.

Definition 1 (simple graph). A simple graph is a tuple 〈V, E〉, where V is an arbitrary
set of nodes and E ⊆ V × Lab × V is a set of edges. There are derived functions
src, tgt : E→V and lab: E→Lab projecting each edge onto, respectively, its first, third
and second component.

1 Note that this is not necessarily true outside our context of using graphs for behavioural mod-
elling: for instance, in the field of graph grammars, explicit node labels may be necessary to
distinguish non-terminals.
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Choosing this notion of graphs has important consequences for the corresponding no-
tion of transformation.

– Simple graphs do not fit smoothly into the algebraic framework. (This is not re-
ally surprising, as simple graphs are relational models rather than algebraic ones.)
Unless one severely restricts the addition and deletion of edges (namely, to rules
where an edge is only added or deleted if one of its end nodes is at the same time
also added or deleted), the theory of adhesive categories that is the flagship of alge-
braic graph transformation does not apply. Instead, algebraically the transformation
of simple graphs is captured better by so-called single pushout rewriting, which is
far less rich in results. See Section 2.7 below for a more extensive discussion on
these issues.

– Adding a relation may fail to change a graph. One of the basic operations of a graph
transformation rule is to add an edge between existing nodes. In simple graphs, if
an edge with that label already exists between those nodes, the rule is applicable but
the graph is unchanged. This is in some cases counter-intuitive. It may be avoided
by including a test for the absence of such an edge.

– Node deletion removes all incident edges. In the natural notion of simple graph
(single-pushout) rewriting mentioned above, nodes can always be deleted by a rule,
even if they have incoming or outgoing edges that the rule does not explicitly delete
as well. From the edges-are-relations point of view this can indeed be reasonable,
as the fact that there exist relations to a certain entity should not automatically
prevent that entity from being deleted; nevertheless, this means that the effect of a
rule cannot be predicted precisely without knowing the host graph as well. Again,
this may be avoided by including a test for the absence of such edges into the rule.

The closest alternative to simple graphs, which does not share the above characteristics,
is the following.

Definition 2 (multigraph). A multigraph is a tuple 〈V, E, src, tgt , lab〉, where V is an
arbitrary set of nodes, E an arbitrary set of edges, src, tgt : E → V are source and
target function and lab: E → Lab an edge labelling function.

Thus, in comparison to simple graphs, the source, target and labelling functions are now
explicitly given rather than derived from E, and E itself is no longer a Lab-indexed
binary relation but rather an arbitrary set. Thus, edges have their own identity, and
parallel edges are automatically supported.

In the algebraic approach, multigraphs (in contrast to simple graphs) fall smoothly
into the rich framework of adhesive categories and double-pushout rewriting. Among
other things, this ensures that rule application is always reversible, which implies that
the phenomena listed under the last two bullets above do not occur: if a rule adds an
edge then the graph always changes under rule application (an edge is always added,
possibly in parallel to an existing edge); and a node cannot be deleted unless all incident
edges are explicitly deleted as well.

2.2 Nodification

Ordinary graphs, be they simple or multi, have very little structure in themselves. If they
are used to encode models with rich structure, such as (for instance) design diagrams,
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Fig. 1. A UML association type and its graph representation

then it may occur that the entity/relation intuition discussed above cannot be rigorously
upheld. In particular, complex relationships, which should conceptually be represented
by edges, may very well contain more information than what can be expressed by a
single (binary) edge.

Example 1. For example, an association in a class diagram is conceptually a relation
between two classes, but in addition to a name it typically has multiplicities and other
modifiers (such as the fact that it is indexed or ordered). This is illustrated in Figure 1.

In such a case, the only solution is to introduce an additional node to capture the relation,
with edges to the original source and target node, as well as additional edges to capture
the remaining structure. We call this process nodification. Usually, one would prefer
to avoid nodification, as it blows up the graphs, which has an adverse effect on visual
appeal, understandability and complexity. This may be partially relieved by introducing
a concrete syntax layer (syntactic graph sugar, such as edges with multiple labels) on top
of the “real” graph structure, but that in itself also adds complexity to the framework.

Another context in which nodification occurs is in modelling relations among edges;
for instance, if typing or traceability information is to be added to the graph. Rather than
allowing “edges over edges”, i.e., edges whose source or target is not a node but another
edge, into the formalism itself, the typical solution is to nodify the edges between which
a relation is to be defined.

Clearly, to minimise nodification it is necessary to move to a graph formalism with
more inherent structure. A good candidate is hypergraphs.

2.3 Edges for Structure, Nodes for Glue

A hypergraph is a graph in which edges may have a different number of end nodes
than two. Hypergraphs come in the same two flavours as binary graphs: simple and
multi. However, especially multi-hypergraphs open up an intriguing alternative to the
entity/relation intuition explored in Section 2.1, which has been exploited for instance
in [2,3].2

2 To complicate matters further, one can also extend simple graphs to n-ary rather than just
binary relations. Though this is not a very popular model in graph transformation research, it
is a faithful representation of, for instance, higher-degree relations in UML [55].
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Definition 3 (hypergraph). A hypergraph is a tuple 〈V, E, con , lab〉, where con : E →
V ∗ is a connection function mapping each edge to its sequence of tentacles, and
lab: E → Lab is an edge labelling function. A node in a hypergraph is called isolated if
it does not occur in the images of con .

Usually, labels are used to determine the arity, i.e., the number of tentacles, of edges;
that is, there is assumed to be an arity function α: Lab → Nat such that |con(e)| =
α(lab(e)) for all e ∈ E. Though there is not an explicit notion of edge source, we can
designate the first tentacle to be the source (which due to the possibility of nullary edges
implies that src is a partial function).

Obviously, a binary (multi)graph is just a special case of a hypergraph in which all
arities are 2. Edges with arity 0 and 1 are also potentially useful, to encode global
state attributes and node labels, respectively. For instance, a 0-ary edge labelled Error
(with no attached node) could be used to signify that the state is erroneous in some
way; 1-ary edges Student (with source nodes only) can be used to label nodes that
represent students. It is in the edges with higher arity, however, that extra structure
can be encoded. For instance, the association edge of Figure 1 can be represented by a
single, 7-ary edge, as shown in Figure 2. (In this figure we have followed the convention
to depict hyperedges also as rounded rectangles, with numbered arrows to the tentacles.
Thus, hyperedges look quite a bit like nodes.)

The shift in interpretation mentioned above lies in the fact that we may now regard
edges to be the primary carrier of information, rather than nodes as in the entity/relation
view. In particular, the entities can be thought of as represented by singular edges, like
the Course- and Student-edge in Figure 2. The nodes then only serve to glue together
the edges; in fact, they may be formally equated to the set of edge tentacles pointing to
them. In particular, in this interpretation, an isolated node is meaningless and may be
discarded (“garbage collected”) automatically.

One of the attractions in this new interpretation is that it is no longer necessary
to delete nodes: instead, it suffices to delete all incident edges, after which the node
becomes isolated and is garbage collected. Thus, a major issue in the algebraic graph
transformation approach becomes moot. (Formally speaking, for a rule that does not
delete nodes, pushout complements are ensured to exist always.)

Example 2. One of the main sources of programming errors in C that is difficult to cap-
ture formally is the manual deallocation of memory. It is easy to erroneously deallocate
memory cells that are still being pointed to from other parts of a program. However,
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a graph transformation rule that attempts to delete such a cell will either remove all
incident edges or be inapplicable altogether, depending on the way node deletion is
handled. Neither captures the desired effect.

Using the interpretation discussed above (the glue/structure view, as opposed to the
entity/relation view), however, this becomes straightforward to model: deallocation re-
moves the singular edge encapsulating the value of a memory cell, but this does not
give rise to node deletion as long as there is another (“stale”) edge pointing to the node.
However, any rule attempting to match such a stale edge and use its target node will fail
(because the target node no longer carries the expected value edge) and hence give rise
to a detectable error. The reallocation of improperly freed memory can be captured in
this way as well.

Summarising: the special features of hypergraphs (coming at the cost of a more com-
plex relation between edges and nodes) are:

– Nodification can be avoided in many cases, as hyperedges are rich enough to en-
code fairly complex structures.

– Node deletion can be avoided altogether if one follows the idea of garbage collect-
ing isolated nodes, called the glue/structure interpretation above.

2.4 The Awkwardness of Attributes

Graphs are great to model referential structures, but do not model associated data of
simple types (such as numbers, booleans and strings), usually called attributes, as con-
veniently. At first sight there is actually no problem at all: data values can easily be
incorporated into graphs by treating them as nodes, and an attribute corresponds to an
edge to such a data node. The problem is, however, that data values do not behave in
all respects like nodes: they are not created or deleted, instead every data value always
“exists” uniquely; moreover, the standard algebraic operations on these types can yield
values from an infinite domain, which therefore formally must be considered part of
every graph, even if it is not visualised.

Note that we have already implicitly used the representation of data values as nodes
in Figures 1 and 2, which contain instances of natural numbers, booleans and strings.

In the last few years, the algebraic approach has converged on a formalisation (see
[21]) in which data values are indeed special nodes, which are manipulated not through
ordinary graph rules but through an extension relying on the standard algebras of the
data types involved. Though satisfactory from a formal point of view, we still feel that
the result is hybrid and conceptually somewhat awkward. This is to be regretted espe-
cially since competing formal verification techniques all concentrate on the manipula-
tion of primitive data with very few higher-order structures (typically just arrays and
records), which are then used to encode referential structures. This makes the compari-
son of strengths and weaknesses very skewed.

Edge attributes and nodification. Another issue is whether attributes should be re-
stricted to nodes, or if edges should also be allowed to carry attributes. This is, in fact,
connected to the choice of simple graphs versus multigraphs: only in multigraphs does
the concept of edges with attributes make sense. Indeed, this capability in some cases
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Fig. 3. Edge attributes or hyperedges for ordered edges

helps to avoid nodification, as we will show on an example below. However, the only
way to capture edge attributes formally is to allow (attribute) edges to start at (non-
attribute) edges. This makes the graph model more complex and less uniform, which
feels like a heavy price to pay.

Example 3. A concept that comes up quite often in graph modelling is that of a list or
sequence. For instance, the association shown in Figure 1 specifies that every Course has
an associated ordered set of enrolled students. This means that an instance model may
feature one Course with multiple associated Students, which are, moreover, ordered in
the context of that Course.

One way to capture the ordering is to use indexing of the elements; and for this, edge
attributes can be used. Apart from the label, every edge would receive a unique natural
number-valued attribute, say i, as depicted by the left hand graph in Figure 3. The right
hand side shows that the same effect can be achieved in hypergraphs.

The algorithmic alternative. The entire discussion above is driven by the intuition that
attributes are just edges, albeit pointing to nodes with some special characteristics. An-
other point of view entirely is that attributes are distinct enough from edges to merit a
different treatment altogether. For instance, attributes are not deleted and created, but
are read and assigned; in the same vein, the concept of multiplicity typically does not
apply to attributes.

In the algorithmic approach, there is in fact little objection to a separate treatment of
edges and attributes: the latter are typically treated as local variables of a node. It is only
in the algebraic approach that this meets objections. Depending on one’s perspective,
this can obviously be interpreted as a weakness of the algebraic approach, rather than
the awkwardness of attributes.

Summarising: regarding attributes, we find that

– The state-of-the-art algebraic formalisation of attributes feels awkward and cannot
compete with the ease of data manipulation in other verification techniques. On the
other hand, there is no alternative that shares the same theoretical embedding, so if
one values the algebraic approach then this is the only game in town.
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– Edge attributes come at a high conceptual cost, which may be justified because
they can help to avoid nodification. However, hypergraphs provide a more uniform
way to achieve the same thing.

– The algorithmic approach has no such difficulties in incorporating attributes: they
can be regarded as local variables of the nodes. This is a very pragmatic viewpoint,
justification for which may be found in the fact that it reflects the practice in other
modelling formalisms.

2.5 To Type or Not to Type

The graphs presented up to this point are not restricted in the way edges or edge labels
can be used. In practice, however, the modelling domain for which graphs are used
always constrains the meaningful combinations of edges. For instance, in the example
of Figure 3 it would not make sense to include enrolled-edges between Student-nodes.

Such constraints are usually formulated and imposed through so-called type graphs.
A type graph — corresponding to a metamodel in OMG terminology, see [54] — is itself
a graph, typically in the same formalism as the object graphs, but often with additional
elements in the form of inheritance and multiplicities (a formal interpretation of which
can be found in [5,80]). In the presence of a type graph, a given object graph G is only
considered to be correct if there exists a structure-preserving mapping τ , a typing, to the
type graph T . Structure preservation means (among other things) that τ maps G-nodes
to T -nodes and G-edges to T -edges.

In fact, we can include the typing itself into the definition of a graph. If, in addition,
we select the nodes and edges of the type graph T from the set of labels (i.e., VT ∪ET ⊆
Lab), then the typing subsumes the role of the edge labelling function: τ assigns a label
not only to every edge of G but to every node as well.

Inheritance. Normally, a typing must map every edge consistently with its source and
target node: that is, τ(srcG(e)) = srcT (τ(e)) and τ(srcG(e)) = srcT (τ(e)) for all
e ∈ EG. However, this can be made more flexible by including node inheritance. Node
inheritance is typically encoded as a partial order over the nodes of the type graph.
That is, there is a transitive and antisymmetric relation � ⊆ VT × VT ; if v � w
then we call v a subtype of w. Now it is sufficient if τ(srcG(e)) � srcT (τ(e)) and
τ(srcG(e)) � srcT (τ(e)).

Since the purpose is to ensure that we are only dealing with correctly typed graphs,
the matching as well as the application of transformation rules has to preserve types.
Without going into formal detail (for which we refer to [5]), the intuition is that the type
of a node in the rule’s left hand side must be a supertype of the type of the matching host
graph node. Thus, the rule can be defined abstractly (using general types) and applied
concretely (on concretely typed graphs).

Example 4. Figure 4 shows a type graph (on the left), where the open triangular arrow
visualises the subtyping relation B � A. Of the four graphs on the right, both (i) and (ii)
are correctly typed, and if (i) is the left hand side of a rule then it has two valid matches
into (ii). (iii) is incorrect because the source type of the b-edge (A) is not a subtype of
b’s source (B).
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The above deals with node type inheritance only. In addition one may also consider a
subtype or inheritance relation over edges. There is far less consensus on the usefulness
and, indeed, meaning of edge type inheritance; see, for instance, [80] for one possible
formalisation. In [42] we have shown that UML has three different notions of edge
subtyping (subsets, redefinitions and unions). We therefore think of edge subtyping as
a kind of special constraint, some more examples of which are briefly reviewed below.

Multiplicities. Also very common in type graphs are edge multiplicities. For instance,
Figure 4 shows outgoing edge multiplicities, expressing that every A-node has at most
one outgoing a-edge, and every B-node has exactly one outgoing b-edge. Graph (iv) is
incorrect because it does not satisfy the multiplicity constraint on the b-edge.

Multiplicities can be attached both to outgoing and to incoming edges, and they
specify “legal” ranges for the number of such edges in an object graph. In contrast to
node inheritance, however, in general it is not decidable whether all graphs that can
be constructed by a given transformation system are correct with respect to the edge
identities. In such cases, the multiplicity constraint must be regarded as a property of
which the correctness must be established through further analysis.

Special constraints. In general, as we have stated at the beginning of this subsection,
typing is a way to impose constraints on graphs. Inheritance allows to refine these con-
straints, and multiplicities provide a way to strengthen them. However, the story does
not end here: in the course of the years many special types of constraints have been
proposed that can be seen as type enrichments. One has only to look at the UML stan-
dard [55] to find a large collection of such special constraints: abstractness, opposition,
composition, uniqueness, ordering, as well as the edge subtype-related notions already
mentioned above. An attempt to categorise these and explain them in terms of the con-
straints they impose can be found in [42]. Ultimately one can resort to a logic such as
OCL to formulate application-specific constraints. It is our conviction that, where node
inheritance and multiplicities have long proved their universal applicability and added
value, one should be very reticent in adopting further, special type constraints.

Summarising: Regarding type graphs, we find that

– Type graphs impose overhead on the formalism as they have to be created, checked
and maintained while creating an actual transformation system. Small prototype
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graphs and rules can be developed faster if it is not a priori necessary to define a
type graph and maintain consistency with it.

– Type graphs strengthen the formalism as they allow to document and check repre-
sentation choices and provide a straightforward way to include node labels. More-
over, inheritance is a convenient mechanism for the generalisation of rules.

2.6 Special Graphs for Special Purposes

The classes of graphs we have discussed above impose very few artificial restrictions
on the combinations of nodes and edges that are allowed. In fact, the only restriction is
that in simple graphs parallel edges are disallowed. This lack of restrictions is usually
considered to be part of the appeal of graphs, since it imparts flexibility to the formal-
ism. (Of course, type graphs also impose restrictions, but those are user-defined rather
than imposed by the formalism.)

However, there is a price to pay for this flexibility, in terms of time and memory:
the algorithms and data structures for general graphs are more expensive than those
for more dedicated data structures such as trees and arrays. If, therefore, the modelling
domain at hand actually does not need this full generality, it makes sense to restrict to
special graphs. Here we take a look at deterministic graphs.

Definition 4 (determinism). We call a graph G deterministic if there is a Lab-indexed
family of partial functions (fa: NG ⇀ EG)a∈Lab, such that

labG(e) = a ∧ srcG(e) = v ⇔ fa(v) = e (1)

In other words, a graph is deterministic if, for every label a, every node has at most
one outgoing a-labelled edge. Note that this is meaningful for all types of graphs we
have discussed here (even hypergraphs) as they all have edge sources and edge labels.
In terms of type graphs (Section 2.5), determinism corresponds to the specification of
outgoing edge multiplicity 1 for all edges.

Advantages of determinism. Deterministic graphs offer advantages in time and memory
consumption:

– There are cheaper data structures available. For instance, every node we can keep
a fixed-sized list of outgoing edges, with one slot per edge label, holding the target
node identity. The slot defaults to a null value if there is no outgoing edge with that
label. For general graphs, instead we have to maintain a list of outgoing edges of
indeterminate length.

– There are cheaper algorithms available. For instance, matching an outgoing edge
will not cause a branch in the search space, as has been investigated in [16]. The
same point has been made in [17], where so-called V-structures are introduced
which share some characteristics of deterministic graphs.

Deterministic graphs in software modelling. In the domain of software modelling,
edges typically stand for fields of structures or objects. Every field of a given object
holds a value (which can be a primitive data value or a reference to another object).
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Fig. 5. (i) is a deterministic graph representing an object with fields a and b; (ii) is a non-
deterministic edge-attributed graph modelling an array a; (iii) is a deterministic node-attributed
graph, and (iv) a δ-deterministic hypergraph modelling the same array.

Such fields have names that are unique in the context of their holder (the structure or
object); the field names are used as edge labels. Thus, the resulting graphs are naturally
deterministic.

On the other hand, another common data structure is the array, which has indexed
slots also holding values. Deterministic graphs are not very suitable to model such struc-
tures: the natural model of an array with local name a is a node with multiple outgoing
a-edges, one for each slot of the array. A deterministic graph representation can be ob-
tained by using a linked-list principle, possibly with backpointers. Both solutions are
shown in Figure 5.

Maybe the most satisfactory solution is to use hypergraphs (in which the index is one
of the tentacles, as in Figure 3) and broaden the concept of determinism.

Definition 5 (δ-determinism). Let δ: Lab→Nat be a degree function such that δ(a) ≤
α(a) for all a ∈ Lab. A hypergraph G is called δ-deterministic if there is a Lab-indexed

family of functions (fa: V δ(a)
G → EG)a∈Lab such that for all e ∈ EG:

labG(e) = a ∧ con(e)↓δ(a) = v ⇔ fa(v) = e

Here v denotes a sequence of nodes, and−↓i for i ∈ Nat projects sequences to their first
i elements. Thus, edges are no longer completely determined by their label and source
node, but by their label and an initial subsequence of their tentacles (of length given by
δ). Though this needs further investigation, we believe that some of the advantages of
(strictly) deterministic graphs can be salvaged under this more liberal notion.

The standard notion of determinism (Definition 4) corresponds to degree 1 (δ(a) = 1
for all a ∈ Lab); graph (iv) in Figure 5 is δ-deterministic for δ(a) = 2 (and all other
δ-values equal to 1).



18 A. Rensink

2.7 The Pushout Scare

We feel it to be necessary to devote some words to an issue that, in our opinion, stands
in the way of a broader acceptance of graph transformation, namely the intimate and
inescapable connection of the algebraic approach to category theory. The only gener-
ally understood and accepted way to refer to the mainstream algebraic approach is the
double pushout approach; the main alternative is called the single pushout approach.
This automatically pulls the attention to the non-trivial pushout construction, a proper
understanding of which requires at least a week of study to grasp only the bare essential
concepts from category theory.

For those who stand above this theory, having mastered it long ago, it may be diffi-
cult to appreciate that this terminology repels potential users. In order to give more of
an incentive to researchers from other areas to investigate graph transformation as a po-
tentially useful technique, an alternative vocabulary must be developed, which does not
suggest that knowing category theory is a prerequisite for using graph transformation.
We propose the following:

Conservative graph transformation as an alternative term for the double pushout-
approach. The term “conservative” refers to the fact that the deletion of graph ele-
ments carries some implicit application conditions, namely that all incident edges
of deleted nodes are also explicitly deleted at the same time, and that the nodes and
edges a rule attempts to delete are disjoint from those it intends to preserve. Thus,
a rule may fail to be applicable even though a match exists.

Radical graph transformation as an alternative term for the single pushout-approach.
The term “radical” refers to the fact that rules are always applicable (in a category
where all pushouts exist, as they do for simple graphs) but the effect may go be-
yond what the rule explicitly specifies: dangling edges are deleted, and case of
non-injective matches, nodes and edges may deleted that the rule appears to pre-
serve.

2.8 Summary

In Table 1 we have summarised the five dimensions of the graph zoo discussed above.
The dimensions are orthogonal: all combinations can be defined — however, some
combinations make more sense than others. For instance, edge attribution in hyper-
graphs does not seem very useful, as additional tentacles provide a more uniform way
to achieve the same modelling power. Other unlikely combinations are node attribution
for hypergraphs, and edge attribution for simple graphs. Finally, note that the distinction
between simple and multigraphs disappears if we restrict to deterministic graphs.

It should be noted that, again, we do not claim comprehensiveness of this overview.
One dimension that we have omitted altogether is the notion of hierarchy, which by
many researchers is considered to be an important enough notion to deserve a direct en-
coding into graphs; see, for instance [19,56], but also the distributed graphs of Taentzer
[79,76] and Milner’s bigraphs [51,52]. No doubt there are other dimensions we have
missed.
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Table 1. Dimensions of the graph zoo

Dimension Value Meaning Advantages
Edge encoding simple no edge identity edges are relations; simple

multi edges have own identity better algebraic properties
Arity standard binary edges only uniform, simple

hyper arbitrary tentacle count avoids nodification
Attribution none no data attributes simple

nodes only node attributes necessary in practice
all node and edge attributes avoids nodification

Typing no no explicit typing simple, no overhead
yes type graph documentation, node labels, inheritance

Determinism no general graphs flexible
yes deterministic graphs more efficient

3 Criteria for Behavioural Specification and Analysis

We will now step through a number of criteria for any formalism that is intended for
specifying and analysing system behaviour. Behavioural analysis, in the sense used in
this paper, at least includes some notion of state space exploration, be it partial, com-
plete, abstract, concrete, guided, model checked, explicit, symbolic or a combination
of those. Graph transformation tools that offer some functionality of this kind are, for
instance, AUGUR2 [44], FUJABA [30] and GROOVE [58]; we want to stress, however,
that we are more interested in the potential of the formalism than in actual tools.

As announced in the introduction, we will make a distinction based on whether the
formalism is to be directly used as a modelling language, or as an underlying semantics
for another language. For each of the criteria, we judge how well graph transformation
does in comparison to other techniques — where we are thinking especially of SPIN

[38], a state-of-the-art explicit-state model checker that uses a special-purpose language
Promela for modelling.

3.1 Learning Curve

This term refers to the expected difficulties in learning to read and write specifications
in a formalism or calculus. Another term might be “conceptual complexity.” This in
itself depends on a number of factors, not the least of which is editor tool support;
but also general familiarity with the concepts of the formalism is important. Thus, a
language like Promela, with concepts that are at least partly familiar from everyday
programming languages, has a shallower learning curve than languages that heavily
rely on more esoteric mathematical concepts.

The learning curve of graph transformation. Given adequate tool support for graph
editing (which most graph transformation tools offer), the visual nature of specifica-
tions can appeal to intuition and make the first acquaintance with the formalism easy.
However, there are several complications that require a more thorough understanding
from the user, prime among which is the treatment of data attributes — see Section 2.4
for a more extensive discussion about this.
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In general, we believe that the learning curve is directly related to the simplicity of
the graph formalism: see Table 1 for our evaluation on this point. In particular, we have
observed many times that novice users are very fast in creating prototype specifica-
tions (in a wide variety of domains) using GROOVE [58], which has about the simplest
graph formalism imaginable. Hypergraphs, on the other hand, although offering several
benefits (as argued in the previous section) definitely have a steeper learning curve.

Though we have complained above (Section 2.7) about the intimate connection with
category theory, actually for the use of graph transformation in specifications an under-
standing of the underlying theory is not necessary; so we find that this does not put a
burden on the learning curve.

Relevance. The learning curve of a formalism is, of course, very relevant if it is to
be used directly as a modelling language: all users then have to be versed in reading
and writing specifications in that language. However, the learning curve is less relevant
if the formalism is to be used to define operational semantics. In the latter case, only
a limited number of users will have to understand the formalism, namely those who
have to understand or implement the semantics; and even fewer will have to write in it,
namely those who define the semantics.

3.2 Suitability

It seems very obvious that a formalism to be used for specifying the behaviour of soft-
ware systems should be especially suitable for capturing the specific features of soft-
ware. For instance, the dynamic nature of memory usage (both heap and stack) and the
referential (object) structures that are ubiquitous in most modern software should be
natively supported by the formalism.

Yet it turns out that even formalisms that are not at all suitable in this sense, for
instance because they only support fixed-size or very primitive data structures (like
Promela), nevertheless do quite well in software verification. A prime example is the
use of SAT-solvers for (bounded) software model checking (see [49,40]): the formulae
being checked are extremely primitive and only finite behaviour can be analysed, but
because the tools can deal with truly enormous datasets (they are very scalable, see
Section 3.4 below), the results are quite good.

Suitability of graph transformation. Precisely the dynamic nature of software and its
stress on referential structures make graph transformation an excellently suitable for-
malism. Indeed, this is one of it strongest points.

Relevance. Though, as pointed out above, there is a balance between suitability and
scalability, there is no question that suitability (in the sense used here) is a very relevant
criterion in judging a formalism.

3.3 Flexibility

Flexibility refers to the ease of modelling an arbitrary problem using a given formal-
ism, without having to resort to “coding tricks” to make it fit. That is, if the model
captures the problem without introducing extraneous elements, we call it suitable for
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the modelling domain (as in Section 3.2 above), whereas if it does so for a broad range
of domains, we call it flexible.

Flexibility of graph transformation. The flexibility of graph transformation is another
of its strong points. Indeed, besides software analysis we have seen uses for GROOVE

in the context of network protocol analysis, security scenarios, aspect-oriented software
development, dynamic reconfiguration and model transformation.3

Relevance. In the dedicated domain of behavioural specification and analysis, the (gen-
eral) flexibility of a formalism is less important than its (specific) suitability. Still, if the
formalism is directly to be used as a modelling language, the ability to model concepts
natively is very attractive. If, on the other hand, it is to be used for operational seman-
tics, the importance of being flexible goes down, as the domain of application is then
quite specialised.

3.4 Scalability

Scalability refers to the ability of a formalism to deal with large models. We typically
call a formalism highly scalable if its computational complexity is a small polynomial in
the model size. However, another notion of scalability refers to the understandability of
larger models, i.e., their complexity to the human mind. We call this “visual scalability.”

Visual scalability. Though small graphs (in the order of ten to twenty nodes) are typ-
ically easy to grasp and may provide a much more concise and understandable model
than an equivalent textual description, this advantage is lost for larger graphs. Indeed,
as soon as graphs start to be non-planar, even the best layouting algorithms cannot keep
them from becoming very hard to understand. The typical solution in such a case is to
decompose the graph into smaller ones, and/or to resort to a more text-based solution
by introducing identifiers instead of edges.

Computational scalability. This is another term for computational or algorithmic com-
plexity, which is a huge field of study on its own. In the context of behavioural analysis,
algorithmic complexity is of supreme importance, as the models tend to become very
large — this is the famous “state space explosion problem,” which refers to the fact that
state space tends to grow exponentially in the number of independent variables and in
the number of independent components. Virtually all of the work in model checking
is devoted to bringing down or cleverly representing the state space (through abstrac-
tion, compositionality or symbolic representation) or improving performance (through
improved, concurrent algorithms).

Scalability of graph transformation. In general, graph transformation does not scale
well, either visually or computationally. The former we have already argued above;
for the latter, observe that the matching of left hand sides into host graphs, which is a

3 As an aside, it should be mentioned that the flexibility of the graph transformation formalism
does not only lie in the graphs themselves but also in the transformation rules and their com-
pososition into complete system specifications. In the current paper we have decided to omit
this aspect altogether.
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necessary step in rule application, is an NP-complete problem in the size of the left hand
side, and polynomial in the size of the host graph where the size of the LHS (regarded
as a constant) is the exponent. However, there are two alleviating factors:

– By using incremental algorithms, the complexity of matching becomes constant, at
the price of more complex updating (i.e., part of the problem is shifted to the actual
transformation). In [9] it is shown that this improves performance dramatically.
Investigations in the context of verification are underway.

– In modelling software behaviour, typically matches do not have to be found: they
are already determined by the context — as should be expected, given that program-
ming languages are mostly deterministic (except for the effects of concurrency). In
this setting, the complexity of matching may also be constant time: see [16].

In the context of state space exploration, another issue is the identification of previously
encountered states. In general, this involves isomorphism checking of graphs, which is
another (probably) non-polynomial problem. However, in [59,15] it has been shown
that in practice isomorphism checking is feasible, and may give rise to sizable state
space reduction in case the model has a lot of symmetry.

Relevance. Visual scalability is very relevant if the users need to visualise large models.
Unless good decomposition mechanisms are available, this is indeed the case when the
formalism is used as a modelling language, but less so if it is used for operational
semantics.

As indicated above, computational scalability is supremely important, regardless of
the embedding of the formalism.

3.5 Maturity

With maturity we refer to the degree in which all questions pertaining to the use of a
formalism in the context of behavioural specification and analysis have been addressed
and answered. We distinguish theoretical and practical maturity.

Theoretical maturity. We have already referred above (see Section 3.4) to the many
existing techniques to combat the state space explosion problem: compositionality, ab-
straction and symbolic representations. We call a formalism theoretically mature if it is
known if and how these techniques are applicable in the context of the formalism.

Practical maturity. Practical maturity, in this context, refers to the degree to which
algorithms and data structures enabling the actual, efficient implementation of the for-
malism and corresponding analysis techniques have been investigated. Thus, we call a
formalism practically mature if there is literature describing and evaluating such algo-
rithms and data structures.

Maturity of graph transformation. Despite the impressive body of theoretical results in
algebraic graph rewriting (recently collected in [22]), we think the formalism is not yet
theoretically mature for the purpose of behavioural specification and analysis. Many of
the concepts mentioned under Section 3.4 have hardly been addressed so far.
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– Abstraction. Without some form of abstraction, it will never be possible to analyse
arbitrary graph transformation systems, as these are typically infinite-state. Since it
is not even decidable whether a given graph transformation system is finite-state,
this is a severe restriction. Thus, we regard the existence of viable abstraction tech-
niques as an absolute necessity for graph transformation to realise its full poten-
tial as a technique for behavioural specification and analysis. Consider: if all we
can analyse is a finite, bounded fragment of the entire state space, then there is
no advantage over existing model checking techniques in which the infinite-state
behaviour cannot even be specified.

The only fully worked out approach for abstraction, apart from several more
isolated attempts described in [61,7], is the abstraction refinement work of [43],
which is part of the Petri graph approach briefly mentioned in the discussion of
hypergraphs (Section 2.3). Although the results are impressive, the rule systems that
can be analysed are rather specialised (for instance, only rules that delete all edges
of the left hand side are allowed). There is much more potential for abstraction
techniques, as for instance the work on shape analysis (e.g., [66]) shows.

– Compositionality. This is another effective technique to combat state space explo-
sion, which finds its origin in process algebra (see, e.g., [50]). A formalism is com-
positional if specifications of large, composed systems can be themselves obtained
by composing models of subsystems (for instance, parallel components or individ-
ual objects). Those smaller models can then be analysed first; the results can be
used to draw conclusions about the complete system without having to construct
the entire state space explicitly.

Graph transformation is, by nature, non-compositional. Instead it typically takes
a whole-world view: the host graph describes the entire system. Though several
approaches have been studied to glue together rules, most notably the work on
rule amalgamation [75] (with the offshoot of distributed graph transformation in
[79]), the best studied approach we know in which the host graph may be only
partially known is the borrowed context work of [4]. This, however, falls short of
enabling compositionality, since the host graph always grows, and never shrinks, by
including a borrowed context; thus this does not truly reflect the behaviour of a sin-
gle component. A very recent development on compositional graph transformation
is [60].

– Symbolic representation. This refers to the implicit representation of a state space
through a formula that holds on all reachable states and fails to hold on all un-
reachable ones. It has been shown that, by representing such formulae as Binary
Decision Diagrams (BDDs), an enormous reduction with respect to an explicit state
space representation can be achieved; see, e.g., [10].

To the best of our knowledge, there have been no attempts whatsoever to de-
velop similar symbolic representations for graphs. Clearly, the difficulties are great,
as one of the main heuristics in the success of BDDs is finding a suitable ordering
of the state vector; it is not at all easy to see how this translates to graph transfor-
mation, where the states are graphs which do not give rise to an unambiguous lin-
earisation as vectors. For another thing, the graphs are not a priori bounded, which
is a requirement for standard BDDs. Nevertheless, observing the success of BDDs
in state-of-the-art model checking, they are certainly worth a deeper investigation.
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As for practical maturity, fairly recently there has been increased attention for fast al-
gorithms and data structures, especially for graph matching; for instance, see [32,39,9].
Another issue is isomorphism checking, which was studied in [59]. Furthermore, below
we report on tool support for graph transformation, in the context of which there are
continuous efforts to improve performance, stimulated by a series of tool contests.

Relevance. As we have indicated above, we believe that the theoretical maturity of the
field is one of the prime criteria for the success of graph transformation for behavioural
specification and analysis. It does not make a difference whether the formalism is to
be used directly as a specification language or as an underlying operational semantics.
As for practical maturity, this is also important, but it partially follows the theoretical
insights.

3.6 Tooling

The final criterion we want to scrutinise is tooling. We discuss two aspects.

Tool support. In order to do anything at all with graph transformation in practice, as
with any other formalism it is absolutely necessary to have tool support, in the sense
of individual tools to create graphs and rules and perform transformations. Such tools
should satisfy the normal usability requirements; in particular, they should be well
enough supported for “external users” to work with them, and there should be some
commitment to their stability and maintenance.

Standardisation. If we want to employ tools for graph transformation in a larger con-
text, where the results are also used for other purposes, it is vital to have a means to
communicate between tools. This requires a measure of interoperability, which in turn
requires standardisation.

In fact one may distinguish two types of interoperability: one involves the inter-
change of graphs and rules, and the other involves communicating with other tools that
are not graph-based. For the second type, the main issue is to adhere to externally de-
fined formats; this can be solved on an individual bases by each tool provider. We will
concentrate on the first type, which is a matter for the graph transformation community
as a whole.

Tooling for graph transformation. Starting with PROGRES [69] and AGG [29] in the
mid-80s, tool support for graph transformation has become increasingly available. We
know of at least ten groups involved in a long-lasting, concerted effort to produce and
maintain generally usable tools for graph transformation. Moreover, recently we have
started a series of tool contest with the primary aim of comparing existing tools, and
the secondary aim of creating a set of available case studies which can be used to try
out and compare new tools or new functionality; see [62,63,48]. All this points to an
extensive investment in tool support for graph transformation in general.

On the other hand, for the more specific purpose of behavioural specification and
(especially) analysis, we find that the situation is less encouraging. The main special
feature that is needed in this context is the ability to reason about all reachable graphs,
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usually by exploring and analysing the state space systematically, rather than to effi-
ciently apply a single sequence of rules (possibly with backtracking). Some (relatively)
early work exists in the form of CHECKVML [68] and Object-Based Graph Grammars
[18], both of which rely on a translation to the standard model checking tool SPIN [38]
for the state space exploration. Our own tool GROOVE [58] has a native implementation
of this functionality. A more recent development is AUGUR2 [44], which uses advanced
results from Petri net theory to create a finite over-approximation (called an unfolding),
already mentioned in the discussion on abstraction in Section 3.5, which can also cope
with infinite state spaces. A more small-scale effort, also based on over-approximation,
is reported in [8]. Yet another approach, based on backwards exploration and analysis,
is implemented in the tool GBT [31]; see [67] for some results. Finally, [57] uses as-
sertional (weakest-precondition) reasoning rather than state space exploration, which is
also capable of dealing with infinite-state systems.

The (relative) scarcity of graph transformation tools for analysis is borne out by the
fact that, in the last transformation tool contest [48], the “verification case” (concerning
the correctness of a leader election protocol) received only 4 submissions.

The situation with respect to standardisation is not so good. In the past there have been
serious attempts to define standards for the interchange of graphs (GXL , see [37]) and
of graph transformation systems (GTXL , see [77,46]), both of which are XML-based
standards; however, an honest assessment shows that there has not been much much
activity of late, and the standards are not supported by many tools. We do not know of a
single instance of such a standard being used to communicate between different tools.

A similar point is made in [34], where it is argued that the level on which GTXL has
attempted to standardise is too low-level.

Relevance. It goes without saying that tool support is absolutely necessary for the suc-
cess of graph transformation, if it is to be a viable formalism for behavioural specifica-
tion and analysis. It may be less immediately obvious that the same holds for standard-
isation, in the sense used here (restricted to graph and rule standards). Yet it should be
realised that there is a multitude of mature tools around, most of which are specialised
towards one particular goal. A common, agreed-upon standard would enable tool chain-
ing in which the strengths of each individual tool can be exploited to the maximum.

3.7 Summary

In Table 2 we summarise the results of this section, by scoring graph transformation on
the criteria discussed above, and also rating the relevance of the criteria. We have used
a scale consisting of the following five values, with a slightly different interpretation in
the first two and the last two columns:

−− “Very weak”, respectively “irrelevant.”
− “Meagre”, respectively “less relevant.”
0 “Reasonable”, respectively “partially relevant.”
+ “Good”, respectively “relevant.”

++ “Excellent”, respectively “very relevant.”
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Table 2. Summary of criteria

Criterion General
graphs

Special
graphs

Other
techniques

(SPIN)

Relevance
for use as
modelling
language

Relevance
for use as

operational
semantics

Learning curve 0 0 + + −
Suitability ++ + − + 0

Flexibility ++ 0 − + −
Scalability Visual −− − + −−

Computational − + ++ ++ ++

Maturity Theoretical 0 0 ++ ++ ++

Practical + + ++ + +

Tooling Support + + ++ ++ +

Standardisation − − − + ++

We have divided the criteria into those that are intrinsic to the formalism of graph trans-
formation (the top five) and those that can be improved by further effort (the bottom
four). We stress again that the scores are subjective.

Special graphs. The column “special graphs” in the table refers to the possibility of
limiting graphs to a subclass with better computational properties. Here we are think-
ing especially of deterministic graphs (see Section 2.6). In Section 3.4 we have already
cited [16] who point out that matching can be much more efficient for such graphs, in
particular if it is already known where in the graph the next transformation is to take
place, as is often the case when modelling software. Further evidence for the increased
performance for special graphs is provided by the tool FUJABA [30], where the graph
formalism is tuned for compilation to Java. For instance, the Sierpinski case study de-
scribed in [78] shows that this can give rise to extremely high-performance code.

Other techniques. As stated at the start of this section, we have taken SPIN (see [38])
as a prototypical example of an “other technique” for the specification and analysis of
system behaviour, because it is a well-known, mature tool that is actually being used
successfully in practice. To our opinion, the qualities of SPIN are rather complimentary
to those of graph transformation: it is not at all trivial to encode the desired behavioural
aspects of a system into Promela, which is built upon a fixed set of primitives such as
threads, channels and primitive data domains; however, once this task is done, the tool
performs amazingly well. Surprisingly, SPIN , too, suffers from a lack of standardisa-
tion; it gets by because Promela itself is, in effect, an “industrial” standard.

Evaluation. There is no single strong conclusion to be drawn from this table. Here are
some observations:

– Two of the criteria on which graph transformation does especially well, namely
suitability and flexibility, are much less relevant when using graph transformation
as an underlying semantics than when using it as a modelling language. The same
holds for a criterion in which graph transformation does especially badly, namely
visual scalability.
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– Though theoretical maturity and standardisation are rated as average or worse, im-
proving this is a matter of further research; the poor scalability, on the other hand,
is intrinsic to graphs.

– The improved computational scalability of deterministic graphs may be enough to
prefer those over arbitrary graphs, in the context of behavioural specification and
analysis, also given that their suitability is hardly less than for general graphs. This
is especially true if the formalism is to be used for operational semantics, since
there the loss of flexibility is less relevant.

4 Recommendations

In this section we formulate a series of personal recommendations, based on the obser-
vations made in this paper.

The right graphs. Though the overview in Section 2 is primarily intended (as the section
title says) to provide a roadmap through the possibly bewildering set of graph variations,
one can also use it for another purpose, namely to select the “right” graph formalism,
meaning the kind of graphs with the most advantages.

For us, the winner is hypergraphs (Section 2.3), based on the following observations:

+ Hypergraphs make nodification (see Section 2.2) unnecessary in many cases. Thus,
graphs can remain simpler (in terms of node and edge count), which directly helps
visual and computational scalability.

+ Using hypergraphs, node deletion can be avoided; instead, nodes can be “garbage
collected” whenever they have become isolated. Thus, in terms of the algebraic
approach, all pushout complements exist: in other words, the only condition for
rule applicability is the existence of a matching.

+ Hyperedges can combine data-valued and node-values tentacles, and thus provide
an elegant extension to attributed graphs.

− The variable arity of hyperedges is an added complication, both for the development
of theory and for tool support. (We believe that this is outweighed by the fact that
nodification can often be avoided.)

− The usual graphical convention for hypergraphs, where edges are depicted as node-
like boxes and their tentacles as arrows from those to the “real” nodes, is cumber-
some and unattractive. (We believe that alternative, more intuitive notations can be
devised.)

Terminology. In Section 2.7, we have made some recommendations for alternatives to
the scary category theoretical terminology of algebraic graph transformation: conser-
vative transformation for the double pushout approach, and radical transformation for
the single pushout approach. Even if these suggestions are not themselves taken up, we
hope to inspire a discussion on this point.

Theoretical maturity. In Section 3.5 we have identified several open issues, the solution
of which we believe to be of prime importance for the success of graph transformation
in the area of behavioural specification and analysis. To reiterate, they are abstraction,
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compositionality and symbolic representation. No doubt there are more such issues;
however, we propose to address these in the coming years.

Standardisation. Standardisation efforts in the past have led to an XML-based standard
for graph exchange, GXL (see [37]) and a related standard for the exchange of graph
transformation systems, GTXL (see [77,46]). However, as noted in Section 3.6, these
standards have not made as much impact as one would wish.

A good standard can bring many benefits:

– Each individual tool or application can use the standard for storing its own data
structures; there is no need for repeating the difficult process of defining a storage
format. (Note that this is only a benefit if the standard does not impose overhead
that is unnecessary from the perspective of the tool or application at hand.)

– In the same vein, standards can be used as a basis for the exchange of data be-
tween different tools; in other words, for the interoperability of tools. This, in fact,
is typically the main driving force behind the definition of standards. However, in-
teroperability is not automatically achieved even between tools that use a given
standard for storage, as they may fail to support the entire standard. Also, the task
of making a tool compliant to a standard is one that will be undertaken only if the
concrete benefits are clear; in practice it turns out that this is only rarely the case.

– If standards are human-readable, rather than just digestible to computers, then they
may serve understandability. A person would need only to get versed in one nota-
tion, used across formalisms or tools, to easily read and interpret all models and
specifications. Note, however, that the requirement of human-readability rules out
XML-based formats.

We propose to revive the standardisation effort; if not on the grand scale of GXL and
GTXL (which essentially have the ambition of encapsulating arbitrary graphs and graph
transformation systems), then possibly among a small set of tools whose creators share
the willingness to invest the necessary effort.

Cooperation. The last point we wish to make does not follow from any of the discussion
in this paper, but is rather a call, or challenge. From approximately 1990 onwards, there
has been almost continuous European level funding for graph transformation-based re-
search, in the form of COMPUGRAPH [20], SEMAGRAPH [74], APPLIGRAPH [1], GET-
GRATS [33], SEGRAVIS [72] and SENSORIA [73]. Though some of these projects have
a more theoretical focus and others a more practical, there seems little doubt that they
have together fostered strong ties within the community and benefited both theory and
practice of graph transformation.

However, the last of these projects (SENSORIA) is due to end in 2010. It is therefore
high time to take a new initiative. As should be clear from this paper, we strongly feel
that only by combining the best of theory and practice we can progress further. At least
in the area of behavioural specification and analysis, graph transformation will only be
able to prove its added value if we do not hesitate to tackle the open theoretical issues
and at the same time continue working on tool support and standardisation.

Who will take up this gauntlet?
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Abstract. The categorical approach is well-suited for concise definitions

of graph transformation concepts. At the same time, it allows for elegant

proofs of their properties. We show that these categorical concepts also

allow for a similarly simple and modular implementation of graphs and

graph transformations by following Rydeheard and Burstall’s idea of

Computational Category Theory. We first present an implementation of

some categorical definitions and constructions, e.g., colimits, in Java,

and we demonstrate how this language supports the genericity of the

categorical approach. We then show that applying the constructions to

the category of sets as well as the category of graphs already provides

an implementation of graph transformations that can be used as the

foundation of an extensible graph transformation language.

1 Introduction

Graphs are the most frequently used complex data structure in computer science.
Typical examples are simple list structures, trees, Petri nets, and even the visual
languages of the Uml. These data structures are usually not fixed, but are contin-
uously modified and transformed. Graph transformation is the field of computer
science that examines such transformations of graphs in a more general setting;
it considers systems that are described by graphs that can be transformed by a
selected set of transformation rules only. Such graph transformation systems are
used as abstract models of concrete systems (e.g., programming and software
development systems [15], compilers, visual editors [14]). Using graph transfor-
mation systems as abstract models has several benefits: Graph transformation
is a powerful modeling approach, it can be effectively used to model non-trivial
systems. Graph transformation systems can thus be used for defining the se-
mantics of the concrete system or for proving its properties. On the other hand,
the modeled systems can be implemented – at least in a prototypical way – if
there is an implementation of the graph transformation system. This was and
is the main motivation for many tools that are based on graph transformations,
e.g., Progres [21], Agg[9], DiaGen [14] to mention just a few. However, each
of those tools is based on a specific type of graphs (e.g., directed node labeled
graphs or hypergraphs) which was selected during design of the tool; the tool
cannot be applied to different kinds of graphs.
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This paper describes a different way to implement graph transformations.
Instead of selecting a specific version of graphs, we have selected the categori-
cal approach to graph transformations [4,6,7,19], which is highly generic: All the
proofs and constructions are valid for various types of graphs (unlabeled, node la-
beled, edge labeled, different ways of labeling, etc.). Since modern programming
languages like Java support generic concepts, it is a promising idea to present
the categorical approach to graph transformations in such a language. We can
implement the general definitions and constructions without referring to special
versions of graphs. If we subsequently consider a special type of graphs, we have
to define only some basic operations in detail. All the other stuff is inherited
from the generic modules, i.e., it must be implemented only once. This allows
for rapidly prototyping new graph transformation approaches. Closeness of cat-
egorical constructions and their implementation makes the presented approach
well suited for education purposes, too.

A related concept for implementing concepts of category theory, but with-
out application to graph transformation, has been published by Rydeheard
and Burstall using ML [18]. Their approach is mainly based on polymorphism,
whereas we can take advantage of the object-oriented paradigm which allows for
a more modular implementation.

The following section introduces the mathematical concept of categories with
objects and morphisms. A very general representation of those concepts in Java
is presented and demonstrated using the example of Set , the category of finite
sets and total functions on them. Section 3 introduces colimits and their general
realization in Java, again demonstrated using the example of Set . Colimits are of
particular interest for the categorical approach to graph transformations because
it is based on pushouts, a specific kind of colimit. Sections 4 and 5 represent
unlabeled and labeled graphs and their categories that are then used in Section 6
to realize the categorical approach to graph transformations for unlabeled and
labeled graphs following the single-pushout approach. Section 7 concludes the
paper.

Please note that we assume that the reader is familiar with basic category
theory, Java, and Java generics in particular.

2 Categories

A category is a very general concept in mathematics; each category consists of
a class of objects and a class of morphisms between objects. The class of mor-
phisms is closed under composition, and the existence of identities and the law
of associativity for the composition operation are assumed. We use the definition
given by Herrlich and Strecker [10]:

Definition 2.1. A category is a quintuple C=(ObjC , MorC , domC , codomC , ·C)
with the total functions domC , codomC : MorC → ObjC and the partial function
·C : MorC ×MorC → MorC with the following properties:

– g ·C f exists if and only if codomC(f) = domC(g)
– domC(g ·C f) = domC(f) and codomC(g ·C f) = codomC(g)



Graph Transformation by Computational Category Theory 35

public interface Cat<O, M extends Mor<O, M>> {
M id(O obj);

}

public interface Mor<O, M> {
O dom();
O codom();
M comp(M o);

}
Fig. 1. Basic type definitions for implementing categories and morphisms

– Associativity: (h ·C g) ·C f = h ·C (g ·C f) for all morphisms f, g, h ∈ MorC

with codomC(f) = domC(g) and codomC(g) = domC(h).
– Identities: For each object A ∈ ObjC , there exists a morphism idA ∈ MorC

such that idB ·C f = f = f ·C idA for each morphism f ∈ MorC and A =
dom(f) and B = codom(f).

In the following, we write f : A → B for a morphism f ∈ ObjC and objects
A = domC(f), B = codomC(f).

An object-oriented representation of a category with its objects and mor-
phisms requires three collaborating classes, one class for the category, one for its
objects, and one for its morphisms. Fig. 1 shows the fundamental Java types that
provide a basis for such implementations: The generic Java interface1 Cat<O,M>

specifies a class representing a category; its type parameters O and M represent
the corresponding object and morphism types. M is a bounded type parameter
with Mor<O,M> as an upper bound, i.e., each morphism class must be derived
from the generic interface Mor<O,M> which uses the same type parameters. This
interface provides methods dom() and codom() for the corresponding functions
in Def. 2.1. Moreover, it specifies method M comp(M mor). The concrete mor-
phism class must provide the implementation of the composition operation for
this method such that calling m1.comp(m2) computes the composition m1 · m2.
The return type which is also the type parameter M of Cat<O,M> makes sure
that the types of the composed morphisms and the computed morphisms match.
The concrete category class implementing Cat<O,M>, finally, must provide an
implementation of the method M id(O obj) that computes the identity morphism
for each passed Java object representing a categorical object. Note that the type
parameter O is not bounded; this allows to use any Java type for representing
objects. Only the choice of types for categories and morphisms is restricted by
the presented Java types Cat<O,M> and Mor<O,M>.

As an example, we implement the well-known category Set , which has all finite
sets as objects and all total functions from finite sets to finite sets as morphisms.
A morphism f : A → B, hence, is a total function f : A → B. Java already pro-
vides several set implementations in its API; all of them implement the interface

1 For a description of generic Java data types, see, e.g., [2,22].
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public class SetCat implements Cat<Set<?>, SetMor> {
public static final SetCat SET = new SetCat();
private SetCat() {}

public SetMor id(Set<?> o) {
SetMor mor = new SetMor(o, o);
for (Object elem : o) mor.map(elem, elem);
return mor;

}
}

public class SetMor implements Mor<Set<?>, SetMor> {
private final Map<Object, Object> map = new HashMap<Object, Object>();
private final Set<?> from, to;
public SetMor(Set<?> from, Set<?> to) { this.from = from; this.to = to; }

public Object applyTo(Object o) { return map.get(o); }
public void map(Object f, Object t) { map.put(f, t); }
public Set<?> codom() { return to; }
public Set<?> dom() { return from; }
public SetMor comp(SetMor m) {

assert dom().equals(m.codom());
SetMor mor = new SetMor(m.dom(), codom());
for (Object o : m.dom()) mor.map(o, applyTo(m.applyTo(o)));
return mor;

}
}

Fig. 2. Abstract implementation of category Set and its morphisms

Set<E> where E represents the type of all set elements.2 The type Set<?> with
unknown element type, therefore, is an obvious choice for representing objects of
category Set . The wildcard ? allows to have finite sets of arbitrary Java objects.
This definition allows to use instances of any class implementing Set<E> as Set
objects.

Fig. 2 shows the corresponding classes representing category Set and its mor-
phisms. Class SetMor implements the morphism interface Mor<O,M>; the object
type parameter O is bound to the type Set<?> of all Set objects whereas the mor-
phism type parameter is bound to class SetMor itself. The domain and codomain
sets of a total function are passed as constructor parameters. Member attribute
map contains the (initially empty) value table of the function which gets popu-
lated using the map method. The applyTo method allows for value table lookup.
Note that method SetMor comp(SetMor m) implements method M comp(M mor).
The assertion makes sure that only functions with appropriate domain and

2 Interface Set<E> has actually the fully qualified name java.util.Set<E>. We omit

all package names in this paper for the sake of simplicity.
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codomain, respectively, get composed.3 The composition of two functions is com-
puted in the obvious way by iterating over all elements of the domain set and
computing the resulting function values in the usual way.4

Class SetCat implements interface Cat<O,M> with the type parameters being
bound in the same way as for SetMor. SetCat is realized as a singleton class since
there is only one category Set ; the only SetCat instance can be accessed through
class variable SET. Method SetMor id(Set<?> o) provides an implementation of
method M id(O o) of interface Cat<O,M> and computes the identity function for
the set being passed as parameter.

Class SetCat as shown in Fig. 2 is going to be extended in the next section
where we use category Set again as an example for demonstrating the realization
of colimit constructions.

The presented implementation of category Set is rather straightforward, but
not very efficient. Every function application, e.g., requires a hash map lookup.
A more efficient solution could represent sets by simple arrays that hold the set
elements. Elements would be mapped to elements of another set by mapping their
positions in the corresponding arrays. This mapping could again be represented
by an array, i.e., function application would be more efficient as long as the index
position of an element is known. However, we have refrained from presenting
this solution here since it is more technical and less straightforward than the
presented one.

3 Colimits

An advantage of category theory is that it provides us with general constructions
applicable in different areas, e.g., we can construct all finite colimits in any cat-
egory that has initial object, coproduct, and coequalizer, and this construction
does not depend on the special category. We implement the colimits as inter-
faces as shown in Fig. 3. We can define the interfaces by simply looking at the
corresponding definitions, e.g., [18]: The initial object of a category, if it exists,
is an object such that there is a unique morphism to any object of the category.
This requirement of the existence of a unique morphism is the so-called uni-
versal property of the initial object. We represent initial objects by the generic
interface InitialObj<O,M> where the type parameters O and M again represent
the types used for objects and morphisms, respectively. The actual initial object
can be retrieved by method O obj(). The universal property is represented by a
method, too. Method M univ(O o) returns the unique morphism to an object when
this object is passed as parameter o. Hence, implementations of this interface
must provide a constructive proof of the existence of the unique morphism. The
3 Trying to compose two inappropriate functions means a programming error. The

Java runtime environment then throws an exception. Assertion checking can be

switched off completely when starting the Java environment. Time-consuming checks

are then avoided, but errors may get missed that way.
4 We have omitted implementations of the equals and hashCode methods which are

actually required later.
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public interface InitialObj<O, M> {
O obj();
M univ(O o);

}

public interface Coproduct<O, M> {
O obj();
M mor1();
M mor2();
M univ(M m1, M m2);

}

public interface Coequalizer<O, M> {
O obj();
M mor();
M univ(M m);

}

public interface Pushout<O, M> {
O obj();
M mor1();
M mor2();
M univ(M m1, M m2);

}

Fig. 3. Abstract representation of some colimits

public interface CatWithInitialObj<O, M extends Mor<O, M>>
extends Cat<O, M> {

InitialObj<O, M> initialObj();
}

public interface CatWithCoproduct<O, M extends Mor<O, M>>
extends Cat<O, M> {

Coproduct<O, M> coproduct(O o1, O o2);
}

public interface CatWithCoequalizer<O, M extends Mor<O, M>>
extends Cat<O, M> {

Coequalizer<O, M> coequalizer(M g, M h);
}

public interface CatWithPushout<O, M extends Mor<O, M>>
extends Cat<O, M> {

Pushout<O, M> pushout(M f, M g);
}

public interface CatWithColimits<O, M extends Mor<O, M>>
extends CatWithInitialObj<O, M>, CatWithCoproduct<O, M>,

CatWithCoequalizer<O, M>, CatWithPushout<O, M> {}

Fig. 4. Representation of categories that have specific colimits

implementation of a category that has an initial object must implement interface
CatWithInitialObj<O,M> (see Fig. 4). Its method initialObj() computes the initial
object of the category, which on its part, contains the method to compute the
universal property.

Other colimits are (binary) coproducts, coequalizers, and pushouts. The (bi-
nary) coproduct of two objects o1, o2 ∈ Obj is an object o ∈ Obj with two
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morphisms m1 : o1 → o and m2 : o2 → o such that for any object o′ ∈ Obj
and morphisms m′

1 : o1 → o′ and m′
2 : o2 → o′, there is a unique morphism

u : o → o′ such that m′
1 = u · m1 and m′

2 = u · m2. The coequalizer of two mor-
phisms f, g : o1 → o2 with common domain o1 ∈ Obj and common codomain
o2 ∈ Obj is an object o ∈ Obj together with a morphism m : o2 → o such that
m · f = m · g and for any object o′ ∈ Obj and morphism m′ : o2 → o′ with
m′ · f = m′ · g, there is a unique morphism u : o → o′ such that m′ = u · m.
Finally, the pushout of two morphisms f : o0 → o1 and g : o0 → o2 with common
domain o0 ∈ Obj consists of an object o ∈ Obj together with two morphisms
m1 : o1 → o and m2 : o2 → o such that m1 ·f = m2 ·g and for any object o′ ∈ Obj
and morphisms m′

1 : o1 → o′ as well as m′
2 : o2 → o′ such that m′

1 · f = m′
2 · g

there is a unique morphism u : o → o′ such that m′
1 = u · m1 and m′

2 = u · m2.
We say that (m1, m2) is the pushout of (f, g).

Similar to initial objects, we represent coproducts, coequalizers, and pushouts
by generic interfaces as shown in Fig. 3. They provide methods for retrieving
the object of the colimit as well as the corresponding morphisms. Again, the
universal properties, i.e., the existence of a unique morphism with the specified
property, can be calculated using a method univ(. . .) that receives as parameters
the morphisms that the unique morphism is calculated for. The implementation
of a category that has coproducts, coequalizers, or pushouts must implement the
corresponding interfaces as shown in Fig. 4. For instance, the implementation of
a category with coequalizers must implement the method coequalizer(M g, M h)
that computes the coequalizer for the morphisms that are passed as arguments g
and h. We provide the generic interface CatWithColimits<O, M> as a convenience
interface for implementations of categories that have all four kinds of colim-
its. Actually, the existence of initial objects and pushouts is sufficient for the
existence of any finite colimit in this category [18]. Similarly, the existence of
pushouts follows from the existence of (binary) coproducts and coequalizers. We
will use this fact below to compute pushouts based on coproduct and coequalizer
calculations.

Set is an example category that has all colimits. The implementing class SetCat
(Fig. 2), therefore, must implement CatWithColimits<Set<?>, SetMor> (which in-
cludes interface Cat<Set<?>, SetMor>, too) and the additional methods required
by CatWithColimits<Set<?>, SetMor>. Fig. 5 shows their implementation for Set
as described below:

The initial object of Set is the empty set, and the unique morphism to
any object is the empty function. The empty set can be represented by
Collections.EMPTY SET of the Java API; the empty function is created by just
instantiating SetMor with the corresponding domain and codomain.

The (binary) coproduct of two sets o1 and o2 is their disjoint union together
with their natural injections. Fig. 6 shows this implementation. The constructor
populates member variable union with the disjoint union of the sets being passed
as parameters. Each element of set1 and set2 is wrapped in a Pair object (Class
Pair is simply a data class that is not shown here). The second component of the
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public InitialObj<Set<?>, SetMor> initialObj() {
return new InitialObj<Set<?>, SetMor>() {

public Set<?> obj() { return EMPTY SET; }
public SetMor univ(Set<?> o) { return new SetMor(obj(), o); }

};
}

public Coproduct<Set<?>, SetMor> coproduct(Set<?> o1, Set<?> o2) {
return new DisjointUnion(o1, o2);

}

public Coequalizer<Set<?>, SetMor> coequalizer(SetMor f, SetMor g) {
assert f.dom().equals(g.dom()) && f.codom().equals(g.codom());
Partition partition = new Partition(f.codom());
for (Object x : f.dom())

partition.sameSubset(f.applyTo(x), g.applyTo(x));
return partition;

}

Fig. 5. Computing initial objects, binary coproducts, and coequalizers in class SetCat

pair allows to distinguish elements of the one set from elements of the other.5 The
universal property, finally, is computed by method univ(SetMor n1, SetMor n2). If
m1 : o1 → o and m2 : o2 → o are the natural injections of the coproduct, and
n1 : o1 → o′ and n2 : o2 → o′ two morphisms, it has to compute a morphism u
such that n1 = u ·m1 and n2 = u · m2. It is easy to see that u : o → o′ must be
defined as follows:

u(e) =
{

n1(x) if m1(x) = e
n2(x) if m2(x) = e

which is realized by the univ method. Note the assertions in this method that
make sure that morphisms n1 and n2 have appropriate domains and codomains.

The coequalizer of two functions f, g : a → b with common domain a and
codomain b (note the assertions in Fig. 5) is a set of equivalence classes of b.
These equivalence classes are defined by the finest equivalence relation containing
the relation ∼ on b with f(x) ∼ g(x) for any x ∈ a. Determining this equivalence
relation is the well-known union-find problem [13] that is implemented by class
Partition. The equivalence relation is built up by iterating over all elements x of
dom(f) and building the union of the subsets of f(x) and g(x). Class Partition is
not presented here, but its implementation is straightforward [3,13].

The methods for calculating initial objects, (binary) coproducts, and coequal-
izers must be implemented for every category that has all finite colimits. How-
ever, pushouts need not be implemented anew since there is a canonical construc-
tion of pushouts that makes use of coproducts and coequalizers [18] as shown
in Fig. 7: When constructing the pushout of two morphisms f : o → o1 and
g : o → o2, we first build the coproduct cp of o1 and o2 and then the coequalizer
5 Using numbers is an approach that can easily be extended to n-ary coproducts.
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class DisjointUnion implements Coproduct<Set<?>, SetMor> {
private final SetMor m1, m2;
private final Set<Pair> union;

public DisjointUnion(Set<?> set1, Set<?> set2) {
union = new HashSet<Pair>();
m1 = new SetMor(set1, union);
m2 = new SetMor(set2, union);
for (Object o : set1) {

Pair p = new Pair(o, ”1”);
union.add(p);
m1.map(o, p);

}
for (Object o : set2) {

Pair p = new Pair(o, ”2”);
union.add(p);
m2.map(o, p);

}
}

public Set<?> obj() { return union; }
public SetMor mor1() { return m1;}
public SetMor mor2() { return m2; }

public SetMor univ(SetMor n1, SetMor n2) {
assert n1.codom().equals(n2.codom());
assert n1.dom().equals(m1.dom()) && n2.dom().equals(m2.dom());
SetMor u = new SetMor(union, n1.codom());
for (Object o : n1.dom())

u.map(m1.applyTo(o), n1.applyTo(o));
for (Object o : n2.dom())

u.map(m2.applyTo(o), n2.applyTo(o));
return u;

}
}

Fig. 6. Computing the binary coproduct in Set by the disjoint union

ce of the morphisms m1 · f and m2 · g where m1 and m2 are the coproduct mor-
phisms. The pushout morphisms are mor1 = m · m1 and mor2 = m · m2 where
m is the coequalizer morphism. The universal property can be constructed from
the universal properties of the coproduct and the coequalizer: Given two mor-
phisms n1 : o1 → o′ and n2 : o2 → o′ such that n1 · f = n2 · g, one can find
the unique morphism u1 : cp → o′ such that u1 · m1 = n1 and u1 · m2 = n2 by
the coproduct’s universal property, hence u1 · (m1 · f) = u1 · (m2 · g). Therefore,
we can find a unique morphism u2 : ce → o′ such that u2 · m = u1 by the
coequalizer’s universal property. It is easy to see that u2 satisfies the conditions
of a pushout’s universal property [19].
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Fig. 7. Pushout construction from (binary) coproduct and coequalizer

public class CPCEPushout<O, M extends Mor<O, M>,
C extends CatWithCoproduct<O, M> &

CatWithCoequalizer<O, M>>
implements Pushout<O, M> {

private final Coproduct<O, M> cp;
private final Coequalizer<O, M> ce;
private final M m1, m2;

public CPCEPushout(C cat, M f, M g) {
assert f.dom().equals(g.dom());
cp = cat.coproduct(f.codom(), g.codom());
ce = cat.coequalizer(cp.mor1().comp(f), cp.mor2().comp(g));
m1 = ce.mor().comp(cp.mor1());
m2 = ce.mor().comp(cp.mor2());

}

public O obj() { return ce.obj(); }
public M mor1() { return m1; }
public M mor2() { return m2; }
public M univ(M n1, M n2) { return ce.univ(cp.univ(n1, n2)); }

}

Fig. 8. Computing the pushout in a category that has coproducts and coequalizers

A generic implementation of this canonical construction of pushouts is shown
in Fig. 8. The presented class implements the Pushout<O,M> interface. The
existence of coproducts and coequalizers and, hence, the corresponding meth-
ods for constructing them, is enforced by the bounded type parameter C with
upper bounds CatWithCoproduct<O,M> as well as CatWithCoequalizer<O,M>. An
instance of a corresponding Java class representing the category in use is passed
to the constructor; its methods coproduct(. . .) and coequalizer(. . .) are used for
constructing coproduct, coequalizer, and the universal property of the pushout
as described above.
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public abstract class CocoCat<O, M extends Mor<O, M>>
implements CatWithColimits<O, M> {

public Pushout<O, M> pushout(M f, M g) {
return new CPCEPushout<O, M, CatWithColimits<O, M>>(this, f, g);

}
}

Fig. 9. Implementation of a category with pushouts based on the canonical construc-

tion shown in Fig. 8

We can make use of the canonical construction of pushouts in any class
that has all binary coproducts and coequalizers. Fig. 9 shows the abstract
class CocoCat<O,M>6 that has all finite colimits as described in Fig. 4. How-
ever, the pushout functionality is already implemented based on the canoni-
cal construction using coproducts and coequalizers. Therefore, concrete sub-
classes of this class already have the pushout(. . .) method available without
being forced to implement it. Class SetCat (Fig. 2) can make use of it: in-
stead of implementing Cat<Set<?>, SetMor> as shown in Fig. 2, it can ex-
tend CocoCat<Set<?>, SetMor> and, together with the colimit implementations
shown in Fig. 5, can then be used to compute pushouts in Set .

4 Graphs

This and the following sections consider unlabeled and labeled graphs. This sec-
tion starts with unlabeled graphs that are extended by labeling in the following
section. Formally, a directed graph G is a quadruple G = (NG, EG, sG, tG) where
NG is a finite set of nodes, EG a finite sets of edges, and sG, tG : EG → NG are
total functions assigning a source and a target node to each edge. A graph mor-
phism m : G → H is a pair m = (mN, mE) of total functions mN : NG → NH

and mE : EG → EH that map nodes and edges, respectively, and preserve the
structure of graphs, i.e., sH ·mE = mN · sG and tH · mE = mN · tG.

Following these definitions, it is straightforward to represent graphs and graph
morphisms by Java interfaces as shown in Fig. 10. Finite sets and total functions
on finite sets are represented by type parameters S and F, respectively. These
parameters can be bound, e.g., to Set<?> and SetMor as defined in the last
sections.

Directed graphs make up a category Graph with directed graphs as objects
and graph morphisms as morphisms. Graph is based on Set since each graph
consists of two finite sets as well as two total functions on these sets, and each
graph morphism consists of two total functions on finite sets, too. We have used

6 The name CocoCat stands for cocomplete category which is a category having all

colimits. A category having initial object, all binary coproducts, and all coequalizers

actually has all finite colimits. However, the implementation of class CocoCat<O,M>
in Fig. 9 does not show the general construction of all finite colimits.
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public interface Graph<S, F> {
S nodes();
S edges();
F source();
F target();

}

public interface GraphMor<F> {
F nodeMor();
F edgeMor();

}

Fig. 10. Representing graphs and graph morphisms
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Fig. 11. Constructing coequalizers in Graph

this fact in the definition of the corresponding interfaces in Fig. 10. Graph , ac-
tually, “inherits” the property of having all colimits from Set ; colimits in Graph
can be constructed by creating the corresponding colimits for the node and edge
sets separately, and then using the universal properties of colimits in Set for con-
structing source and target functions as well as graph morphisms [18]. We demon-
strate this construction for Graph coequalizers. We will then use this and similar
constructions for other colimits when implementing Graph with its colimits.

Fig. 11 shows two graphs G1 = (N1, E1, s1, t1) and G2 = (N2, E2, s2, t2) with
graph morphisms g, h : G1 → G2. The sets nCE and eCE together with the
functions morN : N2 → nCE and morE : E2 → eCE are the Set coequalizers
of the function pairs gN, hN : N1 → N2 and gE, hE : E1 → E2, respectively.
These coequalizers are simply called nCE and eCE in the following. GCE =
(nCE , eCE , src, tgt) together with the graph morphism mor = (morN,morE)
is the Graph coequalizer of g and h. The universal property of coequalizer eCE
allows for computing functions src and tgt for morN·s2 and morN·t2, respectively.
Given a graph G = (N, E, s, t) and a graph morphism m : G2 → G with m · g =
m · h, we compute the universal property of Graph coequalizer GCE , i.e., the
unique graph morphism u : GCE → G by constructing the pair (uN, uE) of
functions using the universal properties of nCE and eCE .
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public abstract class GraphCat<SO, SM extends Mor<SO, SM>,
GO extends Graph<SO, SM>,
GM extends GraphMor<SM> & Mor<GO, GM>>

extends CocoCat<GO, GM> {
private final CatWithColimits<SO, SM> setCat;
public GraphCat(CatWithColimits<SO, SM> setCat) { this.setCat = setCat; }

public abstract GM makeMor(GO from, GO to, SM nodeMor, SM edgeMor);
protected abstract GO initialObj(InitialObj<SO, SM> cIO);
protected abstract GO coproduct(GO o1, GO o2,

BinCoproduct<SO, SM> nCP,
BinCoproduct<SO, SM> eCP);

protected abstract GO coequalizer(GM g, GM h,
Coequalizer<SO, SM> nCE,
Coequalizer<SO, SM> eCE);

public GM id(GO o) {
SM nm = setCat.id(o.nodes());
SM em = setCat.id(o.edges());
return makeMor(o, o, nm, em);

}
public InitialObj<GO, GM> initialObj() {

return new GraphInitialObj();
}
public BinCoproduct<GO, GM> coproduct(GO o1, GO o2) {

return new GraphBinCoproduct(o1, o2);
}
public Coequalizer<GO, GM> coequalizer(GM g, GM h) {

return new GraphCoequalizer(g, h);
}
. . .

}
Fig. 12. Implementation of category Graph

All categorical constructions in Graph are similar to this coequalizer construc-
tion; all of them are based on Set and its colimits. This observation gives rise
to the implementation of Graph by the generic class GraphCat<SO,SM,GO,GM>

as shown in Fig. 12 as an abstract base-class for representing graph-based cat-
egories. This class is not only used for representing the category Graph of all
unlabeled graphs, but also category LGraph of labeled graphs in the next sec-
tion. The categorical constructions for computing colimits are encapsulated in
inner classes GraphInitialObj, GraphBinCoproduct, and GraphCoequalizer, which are
omitted in Fig. 12, indicated by the ellipsis “. . . ”. Class GraphCoequalizer is de-
scribed later. Creation of colimit objects is specific for the concrete kind of graphs
(e.g., unlabeled graphs or labeled graphs). Abstract methods initialObject(. . .),
coproduct(. . .), and coequalizer(. . .) are provided for that purpose.

The type parameters SO and SM represent the object and morphism types of
the chosen Set implementation. One can bind those parameters to Set<?> and
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SetMor in order to use the Set implementation presented in the previous sections
(see derived class UGraphCatImpl in Fig. 15). As already noted, this Set imple-
mentation has been selected for presentation reasons and is less efficient than
other possible implementations. Providing type parameters SO and SM allows for
using this Graph implementation with other, more efficient Set implementations
without any modification.

GraphCat is also generic with respect to the actual implementations of graphs
and graph morphisms that are represented by type parameters GO and GM. Up-
per bounds require to implement the interfaces shown in Fig. 10. The actual
graph morphism class, however, must also implement Mor<GO,GM>, required
by superclass CocoCat<GO,GM> (Fig. 9). Note that interface GraphMor<S,F>

(Fig. 10) does not extend Mor<GO,GM>. It would have been possible to ex-
tend Mor<GO,GM> by GraphMor<S,F>, but that would have required to pro-
vide GraphMor with the same set of type parameters like GraphCat. Keeping
GraphMor<S,F> separate from Mor<GO,GM> simplifies data types and reduces
coupling. Concrete implementations simply have to implement both interfaces
(e.g., see class GraphMorImpl in Fig. 15).

The colimit constructions make use of the chosen Set implementation. A
GraphCat<SO,SM,GO,GM> instance must have access to an instance of the
class implementing category Set that is passed as a constructor parameter
and made available by method setCat(). Note that the type of this instance is
CatWithColimits<SO,SM>, i.e., the implementation of any category with colimits
could be used. It is the client’s responsibility to use an implementation that goes
with Set .

Each GraphCat<SO,SM,GO,GM> instance must be able to create new graph
objects and morphisms as instances of the type being bound to GO and GM.
Morphisms are created using factory method makeMor(. . .). This method is used,
e.g., by method GM id(GO o) that creates the identity morphism of the specified
graph by first computing the identity morphisms of the graph’s node and edge
sets, and then calling the morphism factory method.

In GraphCat<SO,SM,GO,GM>, there is no factory method for creating graph
objects because it is used as base-classnot only for representing the categoryGraph
of unlabeled graphs, but also for labeled graphs and, possibly, other graphs, too.
Graph objects require different methods for each different graph kind: Unlabeled
graphs can be created by just passing a source and a target function; labeled
graphs require additional parameters. Object factory methods, therefore, cannot
belong to GraphCat<SO,SM,GO,GM>, but must be specified in subclasses repre-
senting specific categories. Fig. 13 shows subclass UGraphCat<SO,SM,GO,GM> for
the category Graph of unlabeled graph and its object factory method makeObj(. . .).
This method is abstract because the object type GO is generic in this class. A con-
crete implementation is shown later in Fig. 15.

Graph objects are created, e.g., during the construction of colimits. Imple-
mentations of these constructions are split into two parts: The general construc-
tion being independent of the concrete kind of graph-based category is imple-
mented in inner classes GraphInitialObj, GraphBinCoproduct, and GraphCoequalizer
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public abstract class UGraphCat<SO, SM extends Mor<SO, SM>,
GO extends Graph<SO, SM>,
GM extends GraphMor<SM> & Mor<GO, GM>>

extends GraphCat<SO, SM, GO, GM> {
public UGraphCat(CatWithColimits<SO, SM> setCat) { super(setCat); }

public abstract GO makeObj(SM source, SM target);

protected GO coequalizer(GM g, GM h,
Coequalizer<SO, SM> nCE,
Coequalizer<SO, SM> eCE) {

SM src = eCE.univ(nCE.mor().comp(g.codom().source()));
SM tgt = eCE.univ(nCE.mor().comp(g.codom().target()));
return makeObj(src, tgt);

}
. . .

}
Fig. 13. Abstract class representing the category Graph of unlabeled graphs

private class GraphCoequalizer implements Coequalizer<GO, GM> {
private final Coequalizer<SO, SM> nCE, eCE;
private final GO obj;
private final GM mor;

private GraphCoequalizer(GM g, GM h) {
nCE = setCat.coequalizer(g.nodeMor(), h.nodeMor());
eCE = setCat.coequalizer(g.edgeMor(), h.edgeMor());
obj = coequalizer(g, h, nCE, eCE);
mor = makeMor(g.codom(), obj, nCE.mor(), eCE.mor());

}
public GO obj() { return obj; }
public GM mor() { return mor; }
public GM univ(GM m) {

SM nm = nCE.univ(m.nodeMor());
SM em = eCE.univ(m.edgeMor());
return makeMor(obj, m.codom(), nm, em);

}
}

Fig. 14. Inner class of GraphCat<SO,SM,GO,GM> computing coequalizers in graph-

based categories

in GraphCat<SO,SM,GO,GM>. Fig. 14 shows class GraphCoequalizer; the others
are very similar. The construction of the coequalizer morphism and the univer-
sal property directly follow from the description at the beginning of this section
and shown in Fig. 11. However, the construction of the actual coequalizer ob-
jects differs for the different specific graph-based categories and, therefore, is
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public class GraphImpl implements Graph<Set<?>, SetMor> {
private final SetMor source, target;
public GraphImpl(SetMor source, SetMor target) {

assert source.dom().equals(target.dom());
assert source.codom().equals(target.codom());
this.source = source; this.target = target;

}
public Set<?> nodes() { return source.codom(); }
public Set<?> edges() { return source.dom(); }
public SetMor source() { return source; }
public SetMor target() { return target; }

}

public class GraphMorImpl
implements GraphMor<SetMor>, Mor<GraphImpl, GraphMorImpl> {

private final SetMor nodeMor, edgeMor;
private final GraphImpl from, to;
public GraphMorImpl(GraphImpl from, GraphImpl to,

SetMor nodeMor, SetMor edgeMor ) {
assert nodeMor.dom().equals(from.nodes());
assert nodeMor.codom().equals(to.nodes());
assert edgeMor.dom().equals(from.edges());
assert edgeMor.codom().equals(to.edges());
this.from = from; this.to = to;
this.nodeMor = nodeMor; this.edgeMor = edgeMor;

}
public SetMor edgeMor() { return edgeMor; }
public SetMor nodeMor() { return nodeMor; }
public GraphImpl dom() { return from; }
public GraphImpl codom() { return to; }
public GraphMorImpl comp(GraphMorImpl o) {

SetMor nm = nodeMor().comp(o.nodeMor());
SetMor em = edgeMor().comp(o.edgeMor());
return new GraphMorImpl(o.dom(), codom(), nm, em);

}
}

public class UGraphCatImpl
extends UGraphCat<Set<?>, SetMor, GraphImpl, GraphMorImpl> {

public static final UGraphCatImpl GRAPH = new UGraphCatImpl();

private UGraphCatImpl() { super(SET); }
public GraphImpl makeObj(SetMor source, SetMor target) {

return new GraphImpl(source, target);
}
public GraphMorImpl makeMor(GraphImpl from, GraphImpl to,

SetMor nodeMor, SetMor edgeMor) {
return new GraphMorImpl(from, to, nodeMor, edgeMor);

}
}

Fig. 15. Concrete implementation classes for category Graph
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left to the abstract method coequalizer(. . .) that must be implemented by con-
crete subclasses of GraphCat<SO,SM,GO,GM>. Fig. 13 shows its implementation
in class UGraphCat<SO,SM,GO,GM> for unlabeled graphs. It follows directly the
description at the beginning of this section and shown in Fig. 11. Note that the
coequalizer object is actually created by calling the object factory method of
UGraphCat<SO,SM,GO,GM>.

Fig. 15 completes a prototype implementation of Graph by implementing
classes for graph objects as well as graph morphisms, and a concrete subclass of
UGraphCat<SO,SM,GO,GM>. Set<?> and SetMor are used as representations of
Set objects and morphisms. Note that class GraphMorImpl implements both the
graph morphism interface GraphMor<SetMor> and the categorical morphism in-
terface Mor<GraphImpl,GraphMorImpl> and , thus, fulfills the constraints for type
parameter GM of class GraphCat<SO,SM,GO,GM>. Class UGraphCatImpl provides
the actual bindings for type parameters SO, SM, GO, as well as GM, and con-
crete factory methods. Class UGraphCatImpl is actually a singleton class. Its only
instance is accessible through class variable GRAPH.

5 Labeled Graphs

We now extend graphs to labeled directed graphs where nodes are labeled with
elements of a labeling alphabet LN and edges with elements of a labeling alpha-
bet LE. A labeled directed graph over labeling alphabets (LN, LE), formally, is
G = (N, E, s, t, lN, lE) where (N, E, s, t) is a directed graph and lN : N → LN as
well as lE : E → LE are total functions that assign labels to nodes and edges,
respectively. A labeled directed graph G, hence, is fully defined by its four func-
tions s, t, lN, lE as shown in the upper part of Fig. 16. This also gives rise to the
representation of labeled graphs by interface LGraph<SO,SM> as an extension
of the interface Graph<SO,SM> by just adding two labeling functions. A graph
morphism m : G1 → G2 for labeled directed graphs is simply a plain graph
morphism consisting of two functions m = (mN, mE) mapping nodes and func-
tions with the additional property that node and edge labels are preserved, i.e.,
lN2 ·mN = lN1 and lE2 ·mE = lE1 in Fig. 16. The same representation GraphMor<F>

(Fig. 10) as for unlabeled graphs can be used.
Labeled graphs together with graph morphisms form a category LGraph

that has all colimits. LGraph “inherits” all colimits from Set like category
Graph of unlabeled graphs. The same constructions apply as for Graph. We
describe the constructions of coequalizers. Fig. 17 shows labeled graphs G1 =
(N1, E1, s1, t1, l

N
1 , lE1 ) and G2 = (N2, E2, s2, t2, l

N
2 , lE2 ) together with graph mor-

phisms g, h : G1 → G2 similar to Fig. 11. The unlabeled coequalizer graph
GCE = (nCE , eCE , src, tgt) is constructed in the same way as described at the
beginning of the previous section from the coequalizer sets nCE and eCE . The
node labeling function for GCE is constructed as follows: lN2 · gN = lN1 = lN2 · hN

holds since g and h are graph morphisms preserving labeling. The node label-
ing function for GCE is the unique Set morphism uN : nCE → LN such that
uN · morN = lN2 . Morphism uN is computed using the universal property of the
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public interface LGraph<S, F> extends Graph<S, F> {
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Fig. 16. Labeled directed graphs and their morphisms

Set coequalizer of gN and hN. The edge labeling of GCE is constructed in a
similar way.

Class GraphCat<SO,SM,GO,GM> (Fig. 12) is also an appropriate base-class of
an implementation of category LGraph. Type parameter GO, which represents
graph objects, has to implement LGraph<SO,SM> now. Fig. 18 shows such an
abstract subclass LGraphCat<SO,SM,GO,GM>. Each instance of the class is pro-
vided with the labeling alphabets of node and edge labels. Their sets are passed
as constructor parameters and used for creating initial objects (not shown here).
LGraphCat<SO,SM,GO,GM> provides an abstract factory method makeObj(. . .) for
labeled graphs. Note that this method differs from the corresponding method in
class UGraphCat<SO,SM,GO,GM> (Fig. 13) since it requires the labeling func-
tions nodeLabel and edgeLabel as additional parameters. Finally, it provides
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Fig. 17. Constructing coequalizers in LGraph
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public abstract class LGraphCat<SO, SM extends Mor<SO, SM>,
GO extends LGraph<SO, SM>,
GM extends GraphMor<SM> & Mor<GO, GM>>

extends GraphCat<SO, SM, GO, GM> {
private final SO nodeLabels, edgeLabels;
public LGraphCat(CatWithColimits<SO, SM> setCat,

SO nodeLabels, SO edgeLabels) {
super(setCat);
this.edgeLabels = edgeLabels;
this.nodeLabels = nodeLabels;

}

public abstract GO makeObj(SM source, SM target,
SM nodeLabel, SM edgeLabel);

protected GO coequalizer(GM g, GM h,
Coequalizer<SO, SM> nCE,
Coequalizer<SO, SM> eCE) {

SM src = eCE.univ(nCE.mor().comp(g.codom().source()));
SM tgt = eCE.univ(nCE.mor().comp(g.codom().target()));
SM nLabel = nCE.univ(g.codom().nodeLabel());
SM eLabel = eCE.univ(g.codom().edgeLabel());
return makeObj(src, tgt, nLabel, eLabel);

}
. . .

}
Fig. 18. Abstract class representing the category LGraph of labeled graphs

methods for computing colimit objects. Only the coequalizer computing method
is shown in Fig. 18: Source and target morphism are computed in the same way
as by the corresponding method in factory class UGraphCat<SO,SM,GO,GM>.
The labeling functions are constructed in the same way as described above.

We omit the presentation of concrete classes for LGraph here. They can be
easily built similar to or on top of the classes shown in Fig. 15 for Graph.

6 Graph Transformations

The algebraic approach to graph transformation actually consists of two ap-
proaches, the so-called double-pushout (DPO) approach [7] and the single-
pushout (SPO) approach [11].

A graph transformation rule p of the DPO approach (Fig. 19) consists of two
total graph morphisms l : K → L and r : K → R. If graph L can be found within
the so-called host graph G, represented by the match morphism m : L → G,
then G can be derived to a graph H by applying p at m, written G

p,m
=⇒H , if

one can find a graph D and total graph morphisms d : K → D, l∗ : D → G,
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Fig. 19. Algebraic approach to graph transformation: DPO (left) and SPO (right)

r∗ : D → H , and m∗ : R → H such that (m, l∗) is the pushout of (l, d) and
(m∗, r∗) is the pushout of (r, d).

The SPO approach, on the other hand, is based on the concept of partial graph
morphisms. We introduce partial functions first. A partial function f : A ⇀ B
on finite sets is a total function def(f) → B for a subset def(f) ⊆ A; function
f is not defined for any value x ∈ A \ def(f). A total function f : A → B is
a partial function with def(f) = A. Partial functions can be easily modeled by
total functions by introducing the “undefined” value ⊥ as a new value. Whenever
a function f is actually undefined for a value x, we define f(x) = ⊥. Moreover,
we require f(⊥) = ⊥ for each function f . In the following, we actually use total
functions with the undefined value ⊥ when considering partial functions.

A partial graph morphism m : G → H from a graph G to a graph H is a pair
m = (mN, mE) of partial functions mN : NG ⇀ NH and mE : EG ⇀ EH that
map nodes and edges, respectively, and preserve the structure of graphs, i.e.,
sH ·mE(e) = mN · sG(e) and tH ·mE(e) = mN · tG(e) for each edge e ∈ def(mE).

The class of all graphs together with partial graph morphisms is again a cate-
gory, called GraphP , which has all colimits. We will discuss an implementation of
this category in the following, based on the concepts presented in the previous
sections. However, we have to define the SPO approach first:

A graph transformation rule p of the SPO approach (Fig. 19) consists of a
single, but partial graph morphism p : L → R. If graph L can be found within
host graph G, represented by the total match morphism m : L → G, then G can
be derived to a graph H by applying p at m, written G

p,m
=⇒H , by constructing

the pushout (m∗, p∗) of (p, m). Graph H is then just the pushout graph.
Every realization of the DPO approach requires the construction of the so-

called pushout complement : Instead of computing the pushout (m, l∗) of the
morphisms (l, d), one has to compute (d, l∗) from (l, m) such that (m, l∗) is the
pushout of (l, d). This is a non-trivial operation that even may have several non-
isomorphic results [19]. The SPO approach, on the other hand, only requires con-
structing a pushout in GraphP . The following shows that implementing GraphP
is straightforward based on the concepts presented in the previous sections. We,
therefore, present a realization of the SPO approach by realizing GraphP in the
following. However, we do not present a solution for finding a match morphism of
a production’s left-hand side graph L to the host graph G; we rather assume that
such a match morphism is provided, either manually, implicitly by the problem
domain [19, Ch. 1], or by an existing graph matching algorithm (e.g., [1]).
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Fig. 20. Pushout construction by creating the pushout of node and edges sets sepa-

rately in SetP

Since the categories Graph and LGraph of unlabeled and labeled graphs with
total graph morphisms are built upon the category Set of finite sets with total
functions, we can try to build GraphP and LGraphP of unlabeled and labeled
graphs with partial graph morphisms upon SetP , the category of finite sets
with partial functions. However, this construction is not completely correct: The
constructions of coequalizers as described in the previous two sections and in
Fig. 11 as well as Fig. 17 create also partial functions as source and target
functions, i.e., the coequalizer “graph” may be no graph at all because it may
contain dangling edges that do not have a source and/or target node. This is
demonstrated by Fig. 20: (m1, m2) is the pushout of (f, g) where f maps node
a in G1 to node a in G2, and g maps G1 to the empty graph G3, i.e., the node
mapping of g is undefined for node a. We obtain structure G4 when creating the
pushouts of node and edge sets separately; the source function of G4 is undefined
for edge s, i.e., G4 is not a graph. The correct solution in GraphP would be G4

without dangling edge s. In the following, we call such “graphs” with partial
source and target functions pseudo graphs. Of course, each graph is a pseudo
graph, too. Morphisms between pseudo graphs are also very much like graph
morphisms except that domains and codomains are pseudo graphs instead of
graphs.

The solution to the problem of dangling edges, i.e., just deleting all dangling
edges, is actually also the solution of building GraphP and all other graph-based
categories on top of SetP . It is sufficient to have initial object, binary coproducts
and coequalizers in a category in order to have all finite colimits [18]; we used
this for computing pushouts from binary coproducts and coequalizers (Fig. 7
and 8). Based on this construction, we have to remove dangling edges only when
computing coequalizers because initial object and binary coproducts cannot pro-
duce dangling edges. Fig. 21 shows the resulting coequalizer construction: Pseudo
graph G is constructed based on SetP by computing coequalizers of node and
edge sets separately for morphisms g and h. Hence, G may contain dangling
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Fig. 21. Coequalizer construction in GraphP based on SetP

edges. Graph G′ is obtained from G by just deleting those dangling edges, i.e.,
it is a substructure of G, indicated by embedding morphism f : G′ → G. The
partial morphism t : G → G′ is its inverse. It is easy to show that G′ together
with morphism t · m is the coequalizer of morphisms g and h in GraphP . The
universal property construction of this coequalizer can also be derived: If H is
a graph and p : G2 → H a (partial) graph morphism such that p · g = p · h,
there is a unique (partial) morphism u : G → H such that u · m = p because of
the universal property of the coequalizer construction of G. Moreover, there is a
graph morphism u′ : G′ → H such that u′ · t ·m = p, and u′ = u · f .

We use this construction to realize GraphP and any other graph-based category
with all finite colimits. The first step is realizing SetP , the category of finite sets
with partial functions. We can actually use the implementation of Set discussed
in Sec. 2 and 3 and introduce a special value UNDEF as a representation of ⊥.
Classes SetMor and in particular Partition for the implementation of coequalizers
(Fig. 5) are modified such that f(⊥) = ⊥ holds for each function f .

The next step is realizing the construction of coequalizers in GraphP and
all other graph-based categories. Pseudo graphs are represented by the generic
interface PseudoGraph<GO,GM> (Fig. 22). Type parameters GO and GM stand
for the Java types of objects and morphisms in the corresponding category.
Method isProperGraph() checks whether the represented pseudo graph is actually
a graph, i.e., whether it does not contain any dangling edges. The other three
methods represent the construction shown in Fig. 21 where G is the pseudo graph
being represented by interface PseudoGraph<GO,GM>: properGraph() computes
graph G′ by just deleting all dangling edges from G; methods toProperGraph() and
fromProperGraph() return morphisms t : G → G′ and f : G′ → G, respectively.

The actual coequalizer construction as described above is represented by
generic class ProperGraphCat<GO,GM>. Type parameters GO and GM stand
for the Java types of objects and morphisms in the corresponding category
of pseudo graphs. Note that GO is actually a bounded type parameter with
PseudoGraph<GO,GM> being its upper bound, i.e., GO stands for any pseudo
graph type. ProperGraphCat<GO,GM> realizes a category with colimits since it
is a subclass of CocoCat<GO,GM>. Initial object and binary coproducts of this
category are actually computed using the category being passed as construc-
tor parameter. Coequalizers, however, are computed following the construction
shown in Fig. 21 and using methods of PseudoGraph<GO,GM>.
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public interface PseudoGraph<GO, GM> {
boolean isProperGraph();
GO properGraph();
GM toProperGraph();
GM fromProperGraph();

}

public class ProperGraphCat<GO extends PseudoGraph<GO, GM>,
GM extends Mor<GO, GM>>

extends CocoCat<GO, GM> {
private final CatWithColimits<GO, GM> cat;
public ProperGraphCat(CatWithColimits<GO, GM> cat) { this.cat = cat; }

public GM id(GO obj) { return cat.id(obj); }
public InitialObj<GO, GM> initialObj() { return cat.initialObj(); }
public Coproduct<GO, GM> coproduct(GO o1, GO o2) {

return cat.coproduct(o1, o2);
}
public Coequalizer<GO, GM> coequalizer(GM f, GM g) {

final Coequalizer<GO, GM> ce = cat.coequalizer(g, h);
if (ce.obj().isProperGraph()) return ce;
final GO obj = ce.obj().properGraph();
final GM mor = ce.obj().toProperGraph().comp(ce.mor());
return new Coequalizer<GO, GM>() {

public GM mor() { return mor; }
public GO obj() { return obj; }
public GM univ(GM m) {

return ce.univ(m).comp(ce.obj().fromProperGraph());
}

};
}

}
Fig. 22. Creating graph-based categories on top of SetP using pseudo graphs

Using these concepts, we can represent category GraphP of unlabeled graphs
with partial morphisms as follows: we assume that the realization of Set has
already been extended to SetP as described above. The Java class of graph
objects must be extended to implement interface PseudoGraph<GO,GM>,
too, i.e., our example class GraphImpl (Fig. 15) must additionally implement
PseudoGraph<GraphImpl,GraphMorImpl>. The actual implementation of the re-
quired methods is straightforward and omitted here. Category GraphP is then
represented by an object obtained by creating a ProperGraphCat<GO,GM>

instance:

new ProperGraphCat<GraphImpl, GraphMorImpl>(UGraphCatImpl.GRAPH)

where UGraphCatImpl.GRAPH is the instance of singleton class UGraphCatImpl
(Fig. 15). Therefore, GraphP is actually implemented as described in Sec. 4.



56 M. Minas and H.J. Schneider

Special actions, however, are taken if pseudo graphs with dangling edges are
constructed. Those pseudo graphs are transformed into graphs by simply deleting
dangling edges.

The same procedure is applicable to the category LGraphP of labeled graphs
with partial morphisms: ProperGraphCat<GO,GM> simply must be instantiated
with an instance of a class implementing LGraphCat<SO,SM,GO,GM>.

7 Conclusions

In this paper, we have presented how concepts of category theory can be repre-
sented and implemented in Java. Compared to the original implementation by
Rydeheard and Burstall using the functional programming language ML, a much
more modular implementation is provided using object-oriented implementation
techniques and generic type parameters. Using these techniques, a complete im-
plementation of the single-pushout approach to graph transformation has been
presented. A graph matcher that finds occurrences of a graph within another
graph is the only missing aspect for a complete graph transformation machine.
However, one can easily make use of existing graph matching implementations
to this end.

We have not touched the question of efficiency of the presented approach.
Comparing it with other graph transformation implementations is worthwhile
since other approaches like Progres and Fujaba have been realized with effi-
ciency being one of their primary goals. Our primary goal was not efficiency, but
an implementation technique that follows categorical definitions, constructions,
and proofs as closely as possible. Yet, efficiency does not necessarily suffer. All
of our implementations are generic in such a way that concrete implementations
can be replaced by more efficient ones without much or even without any ef-
fort. The implementation of category Set is an example: We have presented a
very simple and straightforward implementation, but we have actually imple-
mented7 (but not presented here) a much more efficient solution. For instance,
the presented Set morphism composition in class SetMor (Fig. 2) has a runtime
complexity that is linear in the size of the involved objects, even if assertion
checking is switched off. We have realized an alternative implementation that
maps set elements based on its position in an array. That allows for function
composition and even building binary coproducts of sets as well as graphs in
constant time. However, complexity of less trivial operations like coequalizers
or pushouts and, hence, graph transformations are more expensive, even when
not taking into account the most expensive operation – graph matching. One of
the essential concepts of computational category theory is to not modify exist-
ing objects; morphisms being related to modified objects would become invalid
otherwise. Performing graph transformations, hence, requires the construction
of new graph objects. This is at least of linear complexity8 in the size of the
7 An extended version of the presented Java class library can be downloaded from

www.unibw.de/inf2/CatProg
8 Constructing the Set coequalizer based on the solution of the union-find problem

has a complexity slightly worse then linear.

www.unibw.de/inf2/CatProg
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graphs involved, whereas an efficient graph transformation implementation like
Fujaba modifies graphs in-place.

This paper has presented a realization of unlabeled as well as labeled graphs
and graph transformations on them. Realization of further graph classes like
structurally labeled graphs [16,20] or attributed graphs [6] is rather straight-
forward. Moreover, we will continue to represent other graph transformation
approaches, e.g., Adaptive Star Grammars [5].

Acknowledgments. We thank the anonymous reviewers for their constructive
reviews of this paper.
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4. Corradini, A., Ehrig, H., Heckel, R., Löwe, M., Montanari, U., Rossi, F.: Algebraic

approaches to graph transformation, part I: Basic concepts and double pushout

approach. In: Rozenberg [17], ch. 3, pp. 163–245

5. Drewes, F., Hoffmann, B., Janssens, D., Minas, M., Eetvelde, N.V.: Adaptive star

grammars. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G.

(eds.) ICGT 2006. LNCS, vol. 4178, pp. 77–91. Springer, Heidelberg (2006)
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21. Schürr, A., Winter, A., Zündorf, A.: The PROGRES approach: Language and

environment. In: Engels et al. [8], ch. 13, pp. 487–550

22. Zakhour, S., Hommel, S., Royal, J., Rabinovitch, I., Risser, T., Hoeber, M.: The

Java Tutorial: A Short Course on the Basics, 4th edn. Prentice Hall PTR, Engle-

wood Cliffs (2006)

http://www2.informatik.uni-erlangen.de/staff/schneider/gtbook


On GS-Monoidal Theories

for Graphs with Nesting

Roberto Bruni1, Andrea Corradini1, Fabio Gadducci1,
Alberto Lluch Lafuente2, and Ugo Montanari1

1 Dipartimento di Informatica, Università di Pisa, Italy
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Abstract. We propose a sound and complete axiomatisation of a class of

graphs with nesting and either locally or globally restricted nodes. Such

graphs allow to represent explicitly and at the right level of abstraction

some relevant topological and logical features of models and systems,

including nesting, hierarchies, sharing of resources, and pointers or links.

We also provide an encoding of the proposed algebra into terms of a

gs-monoidal theory, and through these into a suitable class of “well-

scoped” term graphs, showing that this encoding is sound and complete

with respect to the axioms of the algebra.

1 Introduction

The use of graphs or diagrams of various kinds is pervasive in Computer Science,
as they are very handy for describing in a two-dimensional space the logical
or topological structure of systems, models, states, behaviours, computations,
and several other entities of interest; the reader might be familiar, for example,
with the graphical presentations of entity-relationship diagrams, of finite state
automata, of static and behavioural UML diagrams (like class, message sequence
and state diagrams), of computational formalisms like Petri nets, and so on.

The advantage of using graphs or diagrams, rather than a linear syntax based
on terms or strings, lies in the fact that graphs can represent in a direct way
relevant topological features of the systems/models they describe, including nest-
ing, hierarchies, sharing of structures, and pointers or links, among others, mak-
ing such features easily understandable also to non-specialists. In several cases
graphs provide a representation of models or systems at the “right” level of
abstraction: often a single graph corresponds to an equivalence class of terms,
up to an axiomatic specification equating systems considered as topologically
indistinguishable. Furthermore, as drawings are always understood “up to iso-
morphism”, if the concrete identities of certain syntactical entities are irrelevant
(for example, the name of the states of a finite state automata), it is sufficient
to avoid depicting them in the drawing (a state is uniquely identified by the
graphical components it is represented with).
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Another interesting case where a graphical syntax allows one to get rid of
irrelevant information from the linear syntax is the representation of terms or
formulæ of languages with binding operators (like first-order formulæ with quan-
tifiers, λ-terms with abstractions, terms of process calculi with name restriction
operators, among others). In all such cases, the classical linear syntax actually
considers terms up to α-conversion (i.e., non-capturing renaming of bound vari-
ables or names): a graphical syntax can easily handle this, by representing a
bound variable/name with an unlabelled node and references to it with edges.

Unfortunately, though, graphical representations are much more difficult to
handle and to analyse than linear ones. In general, a graphical model needs to
be encoded into a linear syntax, in order to exploit tools like theorem provers
or model checkers to verify certain properties on it. Typically, a linear syntax
can be defined by introducing an equational signature, whose operator symbols
are interpreted as operations on graphs and where the axioms formalise suit-
able properties of these operators: then the terms of the initial algebra can be
interpreted as graphs.

In this paper we are concerned with graphical notations that treat as first-class
citizens the sharing of possibly bound names as sketched above, as well as the
nesting of structures, a feature emerging as a recurrent pattern in the conceptual
modelling of systems: on the informatics side, one may think of file systems,
composite diagrams, networks, sessions, transactions, locations, structured state
machines, or even XML documents, among others; or one may consider natural
models of computations, like those arising in bioinformatics, equating nesting
with the presence of membranes for molecules in chemical compounds.

As a main contribution, we introduce in Section 2 a visual modelling frame-
work suited for representing systems exhibiting nesting of structures and sharing
of atomic, named resources, as well as both local and global restriction. This
framework consists not only of a class of hierarchical graphs, called NR-graphs,
which allow to represent such systems in a direct, intuitive way, but also of a
standard algebraic presentation, made of a signature and a set of axioms, defin-
ing the algebra of graphs with nesting, called AGN. The two components are
related by a formal result stating that the proposed axiomatisation is sound and
complete, i.e., that equivalence classes of terms of the algebra are in bijective
correspondence with NR-graphs taken up to isomorphism: this relationship is
represented by the top horizontal arrow of the next diagram.

AGN(S, B)/≡A� �

Sec. 4
��

�� �� NR-Graphs over (S, B)� �

Sec. 5
��

GS(Σ•
B) ��

[10]
�� Term Graphs over Σ•

B

This result is not proved directly, but it is obtained, indirectly, by relating the
newly introduced framework of NR-graphs to the well-developed theory of term
graphs. Roughly, term graphs, presented in Section 3, are directed acyclic graphs
over a signature Σ, and they intuitively represent “terms with shared sub-terms”
over Σ: therefore they are inherently simpler than our NR-graphs (they feature
neither nesting nor restriction). An algebraic, equational characterisation of term
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graphs was proposed in [10] exploiting the so-called gs-monoidal theories: it is
analogous to the characterisation of terms built over a signature Σ as arrows
of a cartesian category, the Lawvere theory of Σ, freely generated from the
signature. The bijective correspondence between term graphs and equivalence
classes of gs-monoidal terms is represented by the bottom arrow of the above
diagram.

To relate the two formalisms, we first present in Section 4 an encoding of
the terms of the algebra AGN into terms of the gs-monoidal theory (the left
vertical arrow above): this translation is shown to be sound and complete, i.e.,
two terms are mapped to equivalent gs-monoidal terms if and only if they are
equivalent. Intuitively, this is possible because the nesting of nodes and edges
is encoded faithfully by exploiting a new sort of the signature of term graphs,
introduced to represent locations ; furthermore, global and local restriction are
represented with suitable operators. Next in Section 5 we show that there is a
bijective correspondence between NR-graphs and “well-scoped” term graphs (the
right vertical arrow above): through the composition of this bijection with the
encoding of AGN terms as gs-monoidal terms we obtain the bijection between
the terms of the algebra and NR-graphs.

The bridge between the theories of graphs with nesting and of term graphs
established by the proposed encoding can be used to exploit in the newly intro-
duced framework the rich theory and pragmatics developed for term graphs and
term graph rewriting along the years: we sketch some possible developments in
Section 6. We conclude by reviewing some relevant related works in Section 7
and by proposing some topics of future research in Section 8.

2 An Algebra for Graphs with Nesting and Restrictions

Many notions of hierarchically structured graphs were proposed in the literature
(see Section 7), mostly defined set-theoretically as (hyper-)graphs whose nodes
and edges can be related to other graphs (e.g., by suitable containment mor-
phisms or adjacency relations). Rarely such graphs come equipped with a handy
syntax for representing and manipulating them algebraically, a topic on which
we recently made some progress, building on previously developed notations like
CHARM [11] and other syntactic formalisms for representing plain graphs with
interfaces [14]. We have been also influenced by the notation used in nominal
calculi.

In the present section we introduce the graphs with nesting and restriction,
briefly NR-graphs, as well as an equational axiomatisation for them: the main re-
sult states that equivalence classes of terms of the algebra modulo the axioms are
in bijective correspondence with isomorphism classes of graphs. The hierarchi-
cal graphs we present are based on the following rationale: 1) for flexibility and
visual expressiveness we prefer to deal with hyper-graphs instead of ordinary
two-ended arcs; 2) nesting is seen according to a classical boxes-within-boxes
scheme and applied to edges, while nodes are seen mainly as attaching points
without further containment; 3) nodes can be localised within a single edge, in
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which case they are made private and not visible “outside”; 4) nodes can also
be globally available to allow connections across the nesting hierarchy.

2.1 Graphs with Nesting and Restriction

Let us introduce some formal notation. Given a set M we denote by M∗ the
free monoid over M , i.e., the set of finite lists of elements drawn from M , often
denoted by an over-lined letter. The unit of M∗ is denoted by ε. Depending
on the context, we can find it more convenient to denote concatenation just by
juxtaposition (like in e = e1e2...en) or with commas (like in e = e1, e2, ..., en).
Given a list e we denote by e|i its i-th element and by |e| the underlying set of
list elements. For an ordinal n, we write n for the set {1, . . . , n}. We overload
# to denote both the length of a list and the cardinality of a set. We use the
symbol � for the disjoint union of sets. We write s ∈ e as a shorthand for s ∈ |e|.
If f : A → B is a function, we denote by f∗ its obvious monoidal extension
f∗ : A∗ → B∗ and by f itself the power-set extension f : 2A → 2B.

All along this section, let S be a set of sorts, B be a ranked set of box labels
with rnk(b) ∈ S∗ for all b ∈ B, and X be a countable set of names. A node is
a pair x : s ∈ X × S, and the operator τ : (X × S)∗ → S∗ applied to a list of
nodes returns the list of their sorts. Note that nodes with the same name but
with different sorts are kept distinct, e.g., x : s1 �= x : s2 if s1 �= s2.

We introduce now the formal definition of our hierarchical graphs. We define
the set NR-Graph of graphs with nesting and restriction and, for a set X of
nodes, the set NR-Graph[X ] of such graphs with external nodes X .

Definition 1 (NR-graphs). An NR-graph G ∈ NR-Graph is a tuple G =
〈FN, GR, H〉, where FN is a set of free nodes, GR is a set of globally restricted
nodes with FN ∩ GR = ∅, and H ∈ NR-Graph[FN ∪ GR]. The set of global
nodes of G is given by FN ∪GR.

An NR-graph H with external nodes X, H ∈ NR-Graph[X ], is a tuple
H = 〈LR, E, l, c, ρ〉, where LR is a set of locally restricted nodes (satisfying
LR ∩ X = ∅), E is a set of (hyper-)edges, l : E → B labels each edge with
an element of B, c : E → (X ∪ LR)∗ is the connection function (satisfying
τ(c(e)) = rnk(l(e)) for all e ∈ E), and ρ : E → NR-Graph[X ∪LR] maps each
edge to a graph nested within it.

The depth of an NR-graph with external nodes H = 〈LR, E, l, c, ρ〉 is 0 if E is
empty, and depth(H) = 1 + maxe∈E{depth(ρ(e))} otherwise. The depth of an
NR-graph G = 〈FN, GR, H〉 is the depth of H . We will consider only graphs of
finite depth and with finite sets of edges and nodes.

Figure 1 shows a sample NR-graph of depth 3 which represents a network
system comprising different subnets (net-labelled edges) and workstations (st)
connected through links according to different patterns: each subnet has a sin-
gle access point, while each workstation is attached to two connection hubs (s-
labelled nodes). The top level of the graph is defined as G = 〈{x : s}, {y : s}, H0〉,
with H0 = 〈∅, {e}, {e �→ net}, {e �→ y}, {e �→ H1}〉. G and H0 define the global
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Fig. 1. A sample NR-graph, called G

nodes and the outer net-labelled edge, while H1, which is going to be defined
immediately below, represents the graph internal to edge e.

Note that the global nodes are depicted, with a round shape, at the top of
the graph, as conceptually they do not pertain to any particular location. Also
the name is depicted for free nodes (only x : s, in this case), but not for globally
restricted nodes (like y). All nodes are sorted: the sort is indicated by the inside
label, and in this example all nodes have the same sort s, therefore sometimes
we will omit it. Here is part of the definition of graph H1:

〈{z1, z2, z3}, {f1, f2, f3, f4, f5}, {f1 �→ st, . . .}, {f1 �→ x · y, . . .}, {f1 �→ ∅NR, . . .}〉

For the sake of brevity, we omit the rest of the definition of the NR-graph, but it
should be clear from the drawing. H1 has three locally restricted nodes, that are
depicted as diamonds: they are private to the immediately enclosing edge e and
cannot be referenced from the outside, but they can be shared by the subgraphs
nested within the edge. H1 also contains five edges: f1 is the one labelled by
st, connected to the two global nodes, and not containing anything, which is
represented by ρ(f1) = ∅NR (∅NR is the empty NR-graph). Notice that edges
are represented as ranked boxes, possibly nested, with a label in the upper-right
corner. The rank information consists of the list of sorted tentacles attached to
the box (where the sort of the tentacle is the sort of the node it is attached
to). The ordering of the tentacles is left implicit by counting in clockwise order,
starting from the leftmost tentacle. Nesting of edges and nodes within other
edges is given by spatial containment.

Actually, Fig. 1 does not show precisely the above defined NR-graph G, but
rather its isomorphism class, according to the definition that follows.

Definition 2 (NR-Graph isomorphism). Let G = 〈FN, GR, H〉 and G′ =
〈FN ′, GR′, H ′〉 be two NR-graphs. We say that G and G′ are isomorphic, written
G ∼= G′, if FN = FN ′, there is an isomorphism φ : FN∪GR → FN ′∪GR′ such
that φ(x) = x for all x ∈ FN , and H is φ-isomorphic to H ′, written H ∼=φ H ′.

Let X and X ′ be two sets of nodes, and φ : X → X ′ be an isomorphism. Fur-
thermore, let H =〈LR, E, l, c, ρ〉 be in NR-Graph[X ] and H ′=〈LR′, E′, l′, c′, ρ′〉
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be in NR-Graph[X ′]. Then H ∼=φ H ′ if there exist isomorphisms φL : LR →
LR′ and φE : E → E′ such that, calling φ̂ : X∪LR → X ′∪LR′ the isomorphism
induced by φ and φL, for all e ∈ E it holds

– l′(φE(e)) = l(e),
– c′(φE(e)) = φ̂∗(c(e)), and
– ρ′(φE(e)) ∼=φ̂ ρ(e).

Thus isomorphisms preserve the identity of free nodes, but not the one of re-
stricted nodes and edges: this explains why only the identities of free nodes are
depicted in Fig. 1.

2.2 The Algebra for Graphs with Nesting

Even if the graphical representation of a system like the one of Fig. 1 is pretty
intuitive and easy to understand for human beings, it might not be usable, e.g.,
as the input of a verification tool needed to analyse it. On the other hand,
the set-theoretical presentation according to Definition 1 does provide a linear
syntax for such graphs, but it is quite involved, as it emerges from the (partial)
definition given by the graphs G, H and H1 above. The main motivation of the
graph algebra we are going to introduce is to provide a much more compact and
intuitively understandable linear syntax for NR-graphs.

Definition 3 (algebra for graphs with nesting and restrictions, AGN).
The terms of the algebra for graphs with nesting (or nested graphs) are gener-
ated according to the following grammar

G ::= 0 | x : s | b[G](y) | G | G | (ν x : s)G | (μ x : s)G

where x : s is a node, b ∈ B, and y ∈ (X × S)∗ is a list of nodes such that
rnk(b) = τ(y).

Roughly, 0 denotes the empty graph; x : s is a discrete graph with a single node
named x of sort s; b[G](y) is a hyper-edge labelled b, whose tentacles are attached
to nodes y and enclosing the graph G; G | H is the disjoint union of graphs G
and H up to common (free) nodes; finally, (ν x : s)G and (μ x : s)G denote the
graph G after making node x : s not visible from the outside (borrowing nominal
calculus jargon, we say that the node x : s is restricted). An AGN term where
no edge b[G](y) appears is called discrete and usually denoted by D. Recall that
each label b ∈ B has a fixed rank rnk(b) ∈ S∗: we only allow well-sorted graphs,
where for any sub-term b[G](y) we have that the (lists of) sorts of b and y coincide
(as required by the constraint rnk(b) = τ(y) in Definition 3).

Notably, we distinguish two kinds of restrictions: (μ x : s)G is called localised
restriction, meaning that the node x : s resides together with the topmost edges
of G, while (ν x : s)G is called global restriction, meaning that the location of
x : s is immaterial. The key difference is that when a graph is enclosed within an
edge, its globally restricted nodes can traverse up the hierarchy (see axiom A8
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(ν x)G (μ y)G b[G](y, z)

Fig. 2. Restrictions and nesting illustrated schematically

in Definition 5), while this is not the case for locally restricted nodes. When it
is not necessary to distinguish which kind of restriction is considered, we write
(ω x : s) using the wildcard ω ∈ {ν, μ}. An AGN term where global restriction
does not occur is called ν-free. Restrictions (ν x:s)G and (μ x:s)G act as binders
for x : s in G, leading to the ordinary notion of free nodes.

Definition 4 (free nodes). The set of free nodes of an AGN term G, denoted
fn(G), is defined inductively as follows:

fn(0) � ∅ fn(x : s) � {x : s} fn(b[G](y)) � fn(G) ∪ |y|

fn(G | H) � fn(G) ∪ fn(H) fn((ω x : s)G) � fn(G) \ {x : s}

As useful shorthands, we shall write b(y) instead of b[0](y) and b[G] instead of
b[G](): intuitively, the former denotes a plain edge, while the latter denotes a
“floating” box (not anchored to any node). Moreover, we write

∏n
i=1 Gi as a

shorthand for G1 | (G1 | (. . . | Gn) . . .)) and we let (ω y)G stand for the term
(ω y|1)(ω y|2)...(ω y|m)G, where m = #y.

Figures 2 and 3 show the general idea for interpreting the operators of our
algebra. We depict a graph as a large oval (see Fig. 2, top-left), with separated
sectors for free nodes (top sector), globally (ν-) restricted nodes (left sector), top-
level locally (μ-) restricted nodes (right sector) and all other nodes and edges
(central sector). This is exemplified by a schematic graph drawn in Fig. 2, top-
right, with a single edge attached to a few representative nodes (at least one of
each kind, omitting their sorts): let us call it G. The second line of Fig. 2 shows
the graphs (ν x)G (node x is moved from the sector of free nodes to that of
globally restricted nodes), (μ y)G (node y is moved from the sector of free nodes
to that of locally restricted nodes) and b[G](y, z) (free nodes are shared between
the enclosing edge and graph G, globally bound nodes are preserved, localised
nodes are enclosed in the top edge, leaving the right sector empty). Figure 3
shows the parallel composition of two generic graphs, obtained by taking the
union of their free nodes and the disjoint union of all the other elements.
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G H G | H

Fig. 3. Parallel composition illustrated schematically

Example 1. Figure 4 shows some graphs corresponding to simple terms of our
algebra. Starting from top-left and in left-to-right reading direction we find the
discrete graph x : s, the ordinary plain graphs st(x : s, y : s) and G1 � st(x, y) |
st(y, z), the graphs with restricted nodes (ν y)G1 and (μ y)G1, and the graphs
with nesting net[(ν y)G1](z) and net[(μ y)G1](z).

Fig. 4. Simple examples: x :s (top-left), st(x :s, y :s) (top-centre), G1 � st(x, y) | st(y, z)

(top-right), (ν y)G1 (mid-left), (μ y)G1 (mid-right), net[(ν y)G1](z) (bottom-left),

net[(μ y)G1](z) (bottom-right)

The terms of our algebra are too concrete, in the sense that different terms
may intuitively correspond to the same nested graph (for example, the order in
which we list the edges is obviously immaterial in the graph). Next we provide
an axiomatisation equating those terms that define essentially the same graph.

The axiomatisation includes the structural graph axioms of [11] such as as-
sociativity and commutativity for | with identity 0 (axioms A1–A3) and node
restriction binding (A4–A6). It additionally includes axioms to α-rename bound
nodes (A7), an axiom for the extrusion of globally bound, nested nodes (A8)
that marks the distinction between global restriction ν and local restriction μ,
an axiom for making immaterial the addition of a node to a graph where that
same node is already free (A9) and an axiom ensuring that global nodes are not
localised in lower layers (A10).
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Definition 5 (structural congruence ≡A). The structural congruence ≡A
over nested graphs is the least congruence satisfying

G | H ≡ H | G (A1)

G | (H | I) ≡ (G | H) | I (A2)

G | 0 ≡ G (A3)

(ω1 x : s)(ω2 y : t)G ≡ (ω2 y : t)(ω1 x : s)G if x : s �= y : t (A4)

(ω x : s)0 ≡ (ω x : s)x : s (A5)

G | (ω x : s)H ≡ (ω x : s)(G | H) if x : s �∈ fn(G) (A6)

(ω x : s)G ≡ (ω y : s)(G{y:s/x:s}) if y : s �∈ fn(G) (A7)

b[(ν x : s)G](y) ≡ (ν x : s)b[G](y) if x : s �∈ |y| (A8)

x : s | G ≡ G if x : s ∈ fn(G) (A9)

b[x : s | G](y) ≡ x : s | b[G](y) (A10)

where {y:s/x:s} denotes the capture-avoiding substitution of x : s by y : s and
ω, ω1, ω2 range over {ν, μ}.

It is immediate to observe that structural congruence respects free nodes, i.e.,
G ≡A H implies fn(G) = fn(H) for any G, H.

Next statement establishes the soundness and the completeness of the pro-
posed axiomatisation: the proof is based on the results presented in later sections.

Theorem 1. The equivalence classes of terms of algebra AGN modulo ≡A are
in bijective correspondence with the isomorphism classes of NR-graphs.

Proof. The statement will follow from Propositions 2, 3 and 4.

The translation of AGN terms into NR-graphs is sketched above in Figs. 2
and 3. Vice versa, the intuitive way to express a nested graph as an AGN
term is to start writing the discrete term corresponding to the free nodes of the
graph, then to add arbitrary distinct names for the top-level unnamed nodes,
with the corresponding ν- and μ-restrictions, and finally to list all the top-level
edges, properly attached to the available nodes, and with this procedure applied
inductively to the contents of each edge.

To conclude this section, let us show how the proposed algebra meets the goal
of providing a concise and intuitive linear syntax for NR-graphs.

Example 2. The graph G in Fig. 1 corresponds to the following term GG (where
we omit the node sorts, all equal to s)

(ν y)net[ st(x, y) | (μ z1, z2, z3)( st(z3, z1) | st(z1, z2) | st(z2, z3) |
net[ (μ z4)( st(z2, z4) | st(z4, z3) ) ](z2) ) ](y)

2.3 A Normalised Form for Terms of AGN

The axioms we just presented allow us to standardise the term-like representation
of nested graphs, by transforming them into an equivalent normalised form. This
form is not unique in general, but the equivalence among terms in this form can
be characterised precisely by the existence of a structural bijection among them,
as explained below.
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Definition 6 (normalised form). A term G is in normalised form if either
it is 0, or it has the shape

(ν y)(μ z)(
n∏

i=0

xi : si |
m∏

j=0

bj [Gj ](yj) )

where n + m > 0, all nodes in y and z are pairwise distinct, all terms Gj for
j ∈ m are ν-free and normalised themselves and, letting X �

⋃n
i=1{xi : si}, we

have #X = n, fn(G) ∪ |y| ∪ |z| = X, and fn(Gj) = X for all j ∈ m.

Proposition 1 (normalised form). For any AGN term G it is possible to
find a ≡A-equivalent term H in normalised form.

Proof (sketch). Roughly, the normalisation proceeds by first α-renaming all the
restricted nodes so to make them pairwise distinct and also distinct from all
the free nodes (axiom A7). Then all the restrictions are moved towards the top
by applying axioms A4–A6 and A8. Note that while any ν-restriction can reach
the top of the term (by A8), μ-restrictions cannot escape from their enclosing
edge. Then, axioms A9–A10 are used to “saturate” each subgraph with all nodes
available. For this task, we point out that (ω x : s)G ≡A (ω x : s)(x : s | G): in
fact, this property is trivial if x : s ∈ fn(G) (by axiom A9), while otherwise it
follows from

(ω x : s)G ≡A (ω x : s)(G | 0) (by axiom A3)
≡A G | (ω x : s)0 (by axiom A6)
≡A G | (ω x : s)x : s (by axiom A5)
≡A (ω x : s)(G | x : s) (by axiom A6)
≡A (ω x : s)(x : s | G) (by axiom A1)

Finally, we exploit axioms A1–A3 to properly rearrange the order of subgraphs
composed in parallel, according to the shape of the normalised form. ��

Example 3. The graph in Fig. 1 can be written in normalised form as the AGN
term (ν y)( x | y | net[(μ z1, z2, z3)(D′

1 | G′
1)](y) ), where

D′
1 � x | y | z1 | z2 | z3

G′
1 � st[D′

1](x, y) | st[D′
1](z3, z1) | st[D′

1](z1, z2) | st[D′
1](z2, z3) | net[G2](z2)

G2 � (μ z4)( D′
2 | st[D′

2](z2, z4) | st[D′
2](z4, z3) )

D′
2 � x | y | z1 | z2 | z3 | z4

Clearly, the normalised form of a term is not unique, not only because of α-
conversion (axiom A7) but also because of the AC axioms for | (A1 and A2)
and of axiom A4, which allows to switch restrictions of the same type in an
arbitrary way; nevertheless, it can be shown that these are the only sources of
non-uniqueness. In fact, it is tedious but not difficult to prove that two terms
G and H in normalised form are equivalent if and only if they have the same
free nodes, and a suitable partial bijection φ can be established between the
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sets of nodes of their corresponding syntax trees. Quite informally, φ must relate
nodes with corresponding B-labelled boxes and μ- and ν-restrictions, preserving
the nesting w.r.t. B-labelled boxes: essentially it records the permutations that
can be applied to μ- and ν-restrictions of G (using A4) and to B-labelled boxes
(using A1 and A2) in order to transform G into H (up to α-conversion).

The characterisation of the ≡A-equivalence by the existence of a partial bi-
jection is exploited in Section 4 when arguing about the completeness of the
encoding of nested graphs into term graphs.

3 Term Graphs and GS-Monoidal Theories

This section introduces term graphs over a signature Σ as models of the gs-
monoidal theory over Σ, by slightly generalising the main result of [10]: in fact,
we shall consider many-sorted signatures instead of standard one-sorted ones.

Term graphs are defined as isomorphism classes of (ranked) directed acyclic
graphs. Our main concern here is to stress the underlying algebraic structure,
hence the presentation of term graphs slightly departs from the standard defini-
tion. With respect to the way term graphs are defined in the seminal paper [2],
the main differences consist in the restriction to the acyclic case and the handling
of empty nodes. A discussion about the relationship between the categorical and
the traditional definition of term graphs can be found in [10].

Definition 7 (signature). Given a set S of sorts, a signature Σ over S is a
family {Σu,s}u∈S∗,s∈S of sets of operator symbols. For an operator f ∈ Σu,s, we
call u its arity and s its coarity; sometimes we shall denote it as f : u → s.

Definition 8 (labelled graphs). Let Σ be a signature over a set of sorts S.
A labelled (hyper-)graph d (over Σ) is a tuple d = 〈N, E, lN , lE , src, trg〉, where
N is a finite set of nodes, E is a finite set of edges, src : E → N∗, trg : E → N
are the source and target connection functions, and lN : N → S, lE : E → Σ
are the labelling functions, colouring nodes with sorts and edges with operator
symbols. Furthermore, the following conditions must be satisfied

1. the connection functions are required to be consistent with the labelling, i.e.,
for all e ∈ E, lE(e) ∈ Σu,s ⇔ l∗N(src(e)) = u ∧ lN (trg(e)) = s;

2. each node is the target of at most one edge, i.e., for all e1, e2 ∈ E, trg(e1) =
trg(e2) ⇒ e1 = e2.

A node n is empty if there is no edge e ∈ E such that n = trg(e); we shall
denote by N∅ and NΣ the sets of empty and non-empty nodes, respectively (thus
N = NΣ �N∅). A labelled graph d is discrete if E = ∅. A path in d is a sequence
〈n0, e0, n1, . . . , em−1, nm〉, where m ≥ 0, n0, . . . , nm ∈ N , e0, . . . , em−1 ∈ E, and
nk ∈ src(ek), nk+1 = trg(ek) for k ∈ {0, . . . , m − 1}. The length of this path is
m, i.e., the number of traversed edges; if m = 0, the path is empty. A cycle is a
path like above where n0 = nm.

Definition 9 (directed acyclic graphs, dags). A directed acyclic graph or
dag (over Σ) is a labelled graph which does not contain any non-empty cycle.
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Fig. 5. Some sample term graphs

In the next definition we equip dags with some attaching points or interfaces,
which will be used later to define suitable operations on them. We assume that
an arbitrary but fixed signature Σ over a set of sorts S is given.

Definition 10 (ranked dags). A (u, w)-ranked dag, with u, w ∈ S∗ (a dag of
rank (u, w)) is a triple g = 〈v, d, r〉, where d = 〈N, E, lN , lE , src, trg〉 is a dag
with exactly #u empty nodes, v : #u → N∅ is a bijection between #u and the
empty nodes of d, called the variable mapping, and satisfying lN (v(j)) = u|j for
all j ∈ #u, and r : #w → N is a function, called the root mapping, satisfying
lN (r(i)) = w|i for all i ∈ #w.

Two (u, w)-ranked dags g = 〈v, d, r〉 and g′ = 〈v′, d′, r′〉 are isomorphic if there
exists a ranked dag isomorphism φ : g → g′ between them, i.e., a pair of bijections
φN : Nd → Nd′ and φE : Ed → Ed′ preserving connections, labels, roots and
variables in the expected way.

Definition 11 (ranked term graphs). A (u, w)-ranked term graph is an iso-
morphism class T = [g] of (u, w)-ranked dags. We write T u

w to recall that T has
rank (u, w).

Figure 5 illustrates the graphical conventions we use by showing three term
graphs over the set of sorts S = {•, s} and the signature Σ = {nu : ε →
s, mu : • → s, net : • s → •, st : •ss → •}. Nodes are depicted as small circles
and edges as rounded boxes, each with the corresponding label inside, but for
•-labeled nodes which are drawn as black circles. For each edge, the nodes in
its source connection are linked with plain lines coming from above and they
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are ordered from left to right, while a down-going arrow connects an edge to its
target node. Clearly, the connection functions are consistent with the labelling;
for example each edge labeled by st is linked from above to three nodes labeled
•, s and s, in this order. By condition 2 of Definition 8 every node has at most
one incoming arrow.

The outer dashed rounded boxes conceptually represent the interfaces of the
term graphs. The top border, on which all the empty nodes are placed, encodes
the variable mapping: an empty node m is in the i-th position (from left to right)
if and only if v(i) = m. The bottom border depicts instead the root mapping:
each “fake” node on it represents an index, and it is connected with a dashed line
to its image. Therefore the three term graphs G, H and K have rank (•ss, •s),
(•ss, •sss) and (•sss, •s), respectively.

It is fair to notice that these graphical conventions are not standard: in other
papers the direction of arrows is reversed, and/or the drawing is flipped vertically.
Our choice is consistent with a data-flow interpretation of such graphs, where
data flows from top to bottom: every node represents a value that is either
produced along the only arrow pointing to it, or that will become available from
the environment if the node is empty (and thus it is a variable). Each value
“stored” within a node can be used several times along the (possibly dashed)
lines that leave downwards. Each edge processes the inputs coming from above
and produces one result in its target node. The data-flow orientation is the
most appropriate one for presenting the encoding of algebra AGN in Section 4,
following the intuitive drawing of hierarchical structures.

We introduce now two operations on term graphs. The composition of two
ranked term graphs is obtained by gluing the variables of the first one with the
roots of the second one, and it is defined only if they correspond in number and
sorts. The union of term graphs instead is always defined, and it is a kind of
disjoint union where roots and variables are suitably concatenated.

Definition 12 (composition and union of ranked term graphs).
Composition. Let T u

w = [〈v, d, r〉] and T ′w
z = [〈v′, d′, r′〉] be ranked term

graphs. Their composition is the ranked term graph Su
z = T u

w; T ′w
z defined as

[〈ind ◦ v, d′′, ind′ ◦ r′〉], where d′′ is obtained from d � d′, the disjoint union of
d and d′ (component-wise on edges and on nodes), modulo the least equivalence
relation such that r(i) = v′(i) for all i ∈ #w (i.e., by identifying the i-th root of
T with the i-th variable of T ′), and ind, ind′ are the inclusions of d, d′ into d′′.

Union. Let T u
w = [〈v, d, r〉] and T ′x

y = [〈v′, d′, r′〉] be ranked term graphs. Their
union or parallel composition is the ranked term graph Sux

wy = T u
w⊗T ′x

y defined as
[〈v′′, d�d′, r′′〉], where v′′ : #(ux) → N∅�N ′

∅ is defined as v′′(i) = v(i) if i ∈ #u,
and v′′(i) = v′(i−#u) if i ∈ {#u + 1, . . . , #(ux)}; and r′′ : #(wy) → N �N ′ is
defined similarly.

Figure 5 depicts G = H ; K, i.e., the term graph G•ss
•s is the composition of H•ss

•sss

and K•sss•s . The operations of composition and union on ranked term graphs
satisfy various algebraic laws, but we refrain from listing them here because
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(op)
f ∈ Σu,s

f : u → s
(id)

u ∈ S∗

idu : u → u
(bang)

u ∈ S∗

!u : u → ε
(dup)

u ∈ S∗

∇u : u → uu

(sym)
u, v ∈ S∗

ρu,v : uv → vu
(seq)

t : u → v t′ : v → w

t; t′ : u → w
(par)

t : u → v t′ : u′ → v′

t ⊗ t′ : uu′ → vv′

Fig. 6. Inference rules of gs-monoidal theories

they will follow from the result reported in the next section, showing that term
graphs form the initial model of gs-monoidal theories (see Theorem 2).

3.1 GS-Monoidal Theories

As anticipated in the Introduction, inspired by the seminal work on flownomial
algebras in [12], a sound and complete axiomatisation of ranked term graphs has
been proposed in [10]. This result is analogous to the characterisation of (tuples
of) terms over a signature Σ as arrows of the Lawvere theory of Σ, considered
as the free cartesian category generated by Σ.

However, the categorical framework where such results have been proved is
not relevant here, because we are not interested in the details of the proofs, but
just in the axiomatisation itself, which allows us to represent every ranked term
graph as an expression using suitable operators. The properties of such operators
are described by a set of axioms, and the main fact is that equivalence classes of
expressions with respect to the axioms are one-to-one with ranked term graphs.

The expressions of interest are generated by the rules depicted in Fig. 6: they
are obtained from some basic (families of) terms by closing them with respect
to sequential (seq) and parallel (par) composition. By rule (op), the basic terms
include one generator for each operator of the signature: these are the elementary
bricks of our expressions, and conceptually correspond to the hyper-edges of the
term graphs. All other basic terms define the wires that can be used to build our
graphs: the identities (id), the dischargers (bang), the duplicators (dup) and the
symmetries (sym). Every expression t : u → v generated by the inference rules is
typed by a source and by a target sequence of sorts (u and v, respectively), which
are relevant only for the sequential composition, which is a partial operation. The
next definition presents the axioms imposed on such expressions.

Definition 13 (gs-monoidal theory). Given a signature Σ over a set of sorts
S, the gs-monoidal theory GS(Σ) is the category whose objects are the elements
of S∗ and whose arrows are equivalence classes of gs-monoidal terms, i.e., terms
generated by the inference rules in Fig. 6 subject to the following conditions

– identities and sequential composition satisfy the axioms of categories
[identity] idu ; t = t = t ; idv for all t : u → v;
[associativity] t1 ; (t2 ; t3) = (t1 ; t2) ; t3 whenever any side is defined,
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Fig. 7. The term graphs corresponding to the basic arrows of the gs-monoidal theory

– ⊗ is a monoidal functor with unit idε, i.e., it satisfies
[functoriality] iduv = idu ⊗ idv, and
(t1 ⊗ t2) ; (t′1 ⊗ t′2) = (t1 ; t′1) ⊗ (t2 ; t′2) whenever both sides are defined,
[monoid] t ⊗ idε = t = idε ⊗ t t1 ⊗ (t2 ⊗ t3) = (t1 ⊗ t2) ⊗ t3

– ρ is a symmetric monoidal natural transformation, i.e., it satisfies
[naturality] (t⊗t′) ; ρv,v′ = ρu,u′ ; (t′⊗t) for all t : u → v and t′ : u′ → v′

[symmetry] (idu ⊗ ρv,w) ; (ρu,w ⊗ idv) = ρu⊗v,w ρu,v ; ρv,u = idu⊗v

ρε,u = ρu,ε = idu

– ∇ and ! satisfy the following axioms
[unit] !ε = ∇ε = idε

[duplication] ∇u ; (idu ⊗∇u) = ∇u ; (∇u ⊗ idu) ∇u ; (idu⊗!u) = idu

∇u ; ρu,u = ∇u

[monoidality] ∇uv ; (idu ⊗ ρv,u ⊗ idv) = ∇u ⊗∇v !uv =!u⊗!v

A wiring is an arrow of GS(Σ) which is obtained from the rules of Fig. 6
without using rule (op).

Notice that the definition of wiring is well-given, because any operator symbol
introduced by rule (op) is preserved by all the axioms of the theory.

Given the above definition, the main result of [10] is summarised as follows.

Theorem 2 (axiomatisation of ranked term graphs [10]). Let Σ be a
signature over a set of sorts S and let u, v ∈ S∗. Then there is a bijective
correspondence between term graphs over Σ of rank (u, v) and arrows of the gs-
monoidal theory of Σ, GS(Σ), from u to v. In particular, wirings from u to v
are in bijective correspondence with discrete term graphs of rank (u, v).

Just to give a feeling on how the correspondence stated by the theorem works, the
term graph denoted by a gs-monoidal term generated by the rules of Fig. 6 can be
built by structural induction: Fig. 7 shows the ranked term graphs corresponding
to the basic terms introduced by rules (op), (id), (bang), (dup) and (sym),
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assuming that u = x1, x2, · · · , xn and v = z1, z2, · · · , zm; instead, rules (seq) and
(par) correspond to the operations of composition and of union as introduced in
Definition 12. For example, the (equivalence classes of) terms tH � [((∇•⊗ids) ;
(id•⊗ρ•,s) ; (net⊗mu⊗nu))⊗ ids] : •ss → •sss and tK � [(((∇•⊗ids⊗∇s) ;
(id• ⊗ ρ•,ss ⊗ ∇s)) ⊗ ids) ; (st ⊗ ((id•s ⊗ ρs,s) ; ((st ;!•) ⊗ ids)))] : • sss → •s
denote, respectively, the term graphs H and K from Fig. 5, while G corresponds
to tH ; tK .

In the following we shall assume that ⊗ has precedence over ;, hence in the
example above we can write for example tH � [(∇•⊗ ids ; id•⊗ρ•,s ; net⊗mu⊗
nu)⊗ ids] : •ss → •sss, omitting several brackets.

An easy corollary of Theorem 2, that we will need later on, states that each
wiring of GS(Σ) denotes a suitable sort-preserving function.

Corollary 1. Let u, v ∈ S∗. Then the wirings of GS(Σ) from u to v are in
bijective correspondence with the set of functions {k : #v → #u | u|k(i) =
v|i for all i ∈ #v}.

In fact, each wiring from u to v denotes a discrete term graph of rank (u, v),
which is uniquely determined by its root function.

4 From AGN Terms to Term Graphs

In this section we define a translation from the terms of the algebra AGN
introduced in Section 2 to equivalence classes of terms of the gs-monoidal theory
of a suitable signature, and therefore, by Theorem 2, to term graphs over that
signature. Disregarding for the moment the technical details, the intuition behind
the translation is quite simple: the nesting of edges is rendered in a term graph
by a tree-like structure made of nodes of a special sort, representing locations;
free nodes are mapped to variables; and each restricted node is encoded as the
target node of a special constant.

As a first step, we introduce the signature over which the term graphs obtained
by the translation of the terms of AGN are defined.

Definition 14 (signature Σ•
B). Given the set of sorts S• = S∪{•}, assuming

that • �∈ S, the signature Σ•
B over S• is defined as follows

Σ•
B = {b : •, rnk(b) → • | b ∈ B} ∪ {νs : ε → s, μs : • → s | s ∈ S}

Intuitively, each box label b ∈ B corresponds to an operator symbol, having as
arity the rank of b preceded by •, and • as coarity. The new sort • has a special
role in our encoding, because it represents the locations in a graph with nesting.
An edge labelled with the operator b will be connected (by its first source) to the
node representing the location where it lies, and it will “offer” a new location
(the target connection), conceptually corresponding to its interior. Furthermore,
the signature includes the operator symbols νs and μs for each sort s: these
will be connected through their target connection to the node they restrict; μs
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additionally has one source of type •, which matches with the intuitive definition
of “localised restriction”.

A term G of the algebra AGN has a set of
free nodes fn(G) which are used as an interface
to the environment, as seen in Section 2. Instead,
the “interface” of a term graph is a pair of lists
of sorts, forming its rank. Each term G will be
translated to a term graph having an empty list
of roots, and a linearisation of the free nodes of
G as variables (as exemplified in the figure on
the right): therefore the translation is paramet-
ric w.r.t. an assignment, i.e., a function which
assigns a positional index to each free node of
the term.

A generic term G of AGN as

a term graph (with fn(G) =

{x1 : s1, · · · , xn : sn})

Definition 15 (Assignment). An assignment is a function σ ∈
⋃

n∈N
{f : n →

X×S | f is injective}. An assignment σ : n → X×S for a given n ∈ N is uniquely
determined by a list of nodes without repetitions (because it is injective), namely
σ(1), σ(2), . . . , σ(n): we shall often represent it this way and write x : s ∈ σ as a
shorthand for x : s ∈ img(σ), the image of σ.

In the following, by τ(σ) we denote τ(σ(1), σ(2), . . . , σ(n)), i.e., the sequence of
sorts of the nodes in img(σ). Furthermore, for a given list of nodes y ∈ (X ×S)∗

and an assignment σ such that |y| ⊆ img(σ), we let kσ
y : #y → #σ be the

function such that kσ
y (i) = σ−1(y|i) for all i ∈ #y.

Definition 16 (Encoding AGN into gs-monoidal terms). Let G be a term
of AGN over sorts S, box labels B and names X , and let σ = x1 : s1, . . . , xn : sn

be an assignment. We say that �G�σ is well-defined if fn(G) ⊆ img(σ); in this
case, �G�σ is a term graph of rank ((•, τ(σ)), ε) over the signature Σ•

B, defined
by structural induction as follows (recall that ⊗ has precedence over ;)

– �0�σ = [!•,τ(σ)] : •, τ(σ) → ε

– �x : s�σ = [!•,τ(σ)] : •, τ(σ) → ε

The encodings �0�σ and �xi : si�σ, graphically,

assuming σ = x1 : s1, . . . , xn : sn and i ∈ n.

– �b[G](y)�σ = [id• ⊗ ∇τ(σ) ; (id• ⊗ wir(k) ; b) ⊗ idτ(σ)] ; �G�σ : •, τ(σ) → ε,
where the gs-term wir(k) : τ(σ) → rnk(b) is any representative of the
wiring uniquely determined (according to Corollary 1) by the function k �
kσ

y : #rnk(b) → #σ defined above (see also Fig. 8)

– �G|G′�σ = [∇•,τ(σ)] ; �G�σ ⊗ �G′�σ : •, τ(σ) → ε
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�b[G](y)�σ

�G|G′�σ

�(ν x : s)G�σ

�(μ x : s)G�σ

Fig. 8. The encoding of the terms of algebra AGN, graphically

– �(ν x : s)G�σ = [id•,τ(σ) ⊗ νs] ; �G{y:s/x:s}�σ,y:s : •, τ(σ) → ε
where y : s = fresh

G
(x : s, σ)

– �(μ x : s)G�σ = [(∇• ; id• ⊗ μs)⊗ idτ(σ)] ; �G{y:s/x:s}�y:s,σ : •, τ(σ) → ε
where y : s = freshG(x : s, σ)

In the last two rules, fresh
G
(x:s, σ) is a function returning x:s itself if x:s �∈ σ, and

returning a fresh s-sorted node (not appearing neither in σ nor in G) otherwise.
Notice that �0�σ and �x : s�σ are defined in the same way, but the first is defined
for any σ, while the second one is defined only if x : s ∈ σ.

Our first main result shows that the encoding is sound w.r.t. the equivalence
≡A, i.e., that ≡A-equivalent AGN terms are mapped to the same term graph.
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Theorem 3 (soundness). Let G and H be two terms of algebra AGN over
sorts S, box labels B and names X such that G ≡A H. Then, for any assignment
σ: 1) �G�σ is well-defined iff �H�σ is such; 2) �G�σ = �H�σ when well-defined.

Proof (sketch). Item 1) follows by the fact that G ≡A H implies fn(G) = fn(H).
To prove item 2), one should show that each axiom A1–A10 from Definition 5

is preserved by the encoding, i.e., that the encoding of the left-hand side of each
axiom can be proved equal to the encoding of the right-hand side by exploiting
the axioms of gs-monoidal theories (see Definition 13). Note that for axioms
A4–A7 one has to consider separately the cases for ν and μ. The detailed proof
is omitted for space constraints. ��

The second main result of this section states that the encoding is complete w.r.t.
the equivalence ≡A, i.e., that any two AGN terms mapped to the same term
graph must be ≡A-equivalent.

Theorem 4 (completeness). Let G and H be two terms of algebra AGN
over node sorts S, box labels B and variables X . If for all assignments σ it holds
�G�σ = �H�σ, then G ≡A H.

Proof (sketch). Let us assume, without loss of generality, that terms G and H
are in normalised form, and that for all assignments σ it holds �G�σ = �H�σ.
Then they must have the same free nodes, because if fn(G) �= fn(H), then it
is immediate to find a σ for which only one between �G�σ and �H�σ is defined,
contradicting the hypothesis. Next, taken a generic σ such that fn(G) ⊆ img(σ),
it can be shown that the rules for the encoding � �σ induce a suitable partial
bijection between the nodes of the syntax tree of G and the edges of the term
graph �G�σ (see also Fig. 8). Since �G�σ = �H�σ, these partial bijections can be
composed obtaining a partial bijection between the nodes of G and those of H,
which allows us to conclude that they are ≡A-equivalent, by the considerations
at the end of Section 2.3. ��

We conclude this section by showing in Fig. 9 the term graph �GG�σ, obtained by
applying the encoding of Definition 16 to the NR-graph of Fig. 1 (see Example 2
for the defining expression of GG), with substitution σ = {x : s}. Because of
layout constraints, the term graph is rotated counter-clockwise, exposing the
variable mapping on the left border.

5 From Term Graphs to Graphs with Nesting

In this section we prove that there is a one-to-one correspondence between the
term graphs obtained by encoding terms of the algebra AGN and the NR-graphs
introduced in Section 2: this will conclude the proof of Theorem 1.

The first point we address is whether or not the encoding presented in the
previous section is surjective, i.e., if any term graph in GS(Σ•

B) is the image of
some term of the algebra AGN (for some σ). As our encoding maps to term
graphs of rank (•u, ε) only (with u ∈ S∗), the answer is clearly negative in
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Fig. 9. The term graph �GG�σ (see Example 2 and Fig. 1)

general. However, even if we restrict to consider term graphs of rank (•u, ε),
where u ∈ S∗, the mapping is not surjective. The crucial fact is that the scoping
discipline of μ-restriction restricts the visibility of a locally restricted node x : s
in such a way that it cannot be used from edges outside the one where (μ x : s)
appears, but such a node scoping discipline has no counterpart in term graphs.

Example 4. Let us consider the algebra for our running example of
network systems. Then for the term graph t � [∇•⊗ids ; id•⊗(net ;
μs ; ∇s) ; st ; !•] : • s → ε (see the figure to the right) there is
no AGN term G such that �G�x:s = t. In fact, among the natural
candidates: the term net[(μ y)st(y, y)](x) would be encoded as [net ;
∇• ; id•⊗(μs ; ∇s) ; st ; !•] with st lying “under” net (and not being
a “sibling” of net like in t); the term net(x)|(μ y)st(y, y) would be
encoded as [∇• ⊗ ids ; (∇• ; id• ⊗ (μs ; ∇s) ; st ; !•) ⊗ (net ; !•)]
with net and st siblings, but the restriction appearing “outside” net
(and not “inside” net, as in t); the term net[(μ y)0](x)|st(y) would
have y : s as a free node.

The above counterexample suggests that the algebra AGN can serve to charac-
terise exactly those term graphs with well-scoped references to nodes. These are
defined as follows.

Definition 17 (well-scoped term graphs). Let T = [〈v, d, r〉] be a term graph
of rank ((•, τ(σ)), ε) over the signature Σ•

B, with d = 〈N, E, lN , lE , src, trg〉. We
say that T is well-scoped if for all e ∈ E, for all n ∈ src(e), if there exists e′ ∈ E
such that n = trg(e′) and lE(e′) = μ, then src(e′) is on a •-path (i.e., a path
where all nodes are of sort •) from src(e)|1 to v(1).

Informally, this means that in a well-scoped term graph, every edge referring to
a locally restricted node n must lie inside the location where n is restricted.
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Proposition 2 (AGN terms and well-scoped term graphs). Given a set of
sorts S, a set of ranked labels B and a set of variables X , for each assignment σ =
x1 : s1, . . . , xn : sn there is a one-to-one correspondence between the equivalence
classes w.r.t. ≡A of AGN terms with free names in {x1, . . . , xn} and well-scoped
term graphs of rank ((•, τ(σ)), ε) over signature Σ•

B.

Proof (sketch). By structural induction it is possible to show that the result of
the encoding of Definition 16 is a gs-monoidal term corresponding to a well-
scoped term graph; furthermore, by structural induction on the gs-monoidal
normal form of well-scoped term graphs, it can be shown that every well-scoped
term graph can be obtained as the result of the encoding of a suitable AGN
term. By Theorem 3 the encoding is consistent with ≡A-equivalence classes, and
by Theorem 4 it is injective on term graphs. ��

Well-scoped term graphs can be considered just as an alternative, graphical rep-
resentation of NR-graphs, where the nesting is represented by a tree of locations,
i.e., the •-sorted nodes. Formally, this relationship is captured by the next defi-
nition and the following result.

Definition 18 (from term graphs to NR-graphs). Let T = [〈v, d, r〉] be a
term graph of rank ((•, τ(σ)), ε) over signature Σ•

B, with d=〈N, E, lN , lE, src, trg〉.
For a •-sorted node n ∈ N , let NRG(n) be the NR-graph defined as NRG(n)

= 〈LR, D, l, c, ρ〉, with

– LR = {trg(e) : s | e ∈ E ∧ src(e)|1 = n ∧ lE(e) = μs}
– D = {e ∈ E | src(e)|1 = n ∧ lE(e) ∈ B}
– l(e) = lE(e) for all e ∈ D
– c(e) = u when src(e) = •u, for all e ∈ D
– ρ(e) = NRG(trg(e)) for all e ∈ D.

Furthermore, let NR(T ) = 〈FN, GR,NRG(v(1))〉, with

– FN = {v(i) : lN (v(i)) | 1 < i ≤ #τ(σ)}
– GR = {trg(e) : s | e ∈ E ∧ lE(e) = νs}.

Proposition 3 (correctness of the encoding). In the hypotheses of Defini-
tion 18, NR(T ) is a NR-graph if and only if T is well-scoped. Furthermore, the
encoding does not depend on the choice of 〈v, d, r〉 in the equivalence class T (in
the sense that the same NR-graph is obtained, up to isomorphism).

Proof (sketch). By Definition 1 the main fact to prove is that in every NR-graph
inside NR(T ) the edges are connected only to available external nodes, i.e.,
either to global nodes, or to those locally restricted in an enclosing edge. But
this is exactly the property ensured by being well-scoped. ��

An encoding in the opposite direction, from NR-graphs to well-scoped term
graphs, can be defined as well, but it requires more care. In fact, the naive
approach of “flattening” the nested structure of the NR-graph by rearranging
all its nodes and edges in a single structure might not work, because locally
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restricted nodes or edges in different sub-graphs could have the same identity.
Therefore starting with an NR-graph G, one should first obtain an isomorphic
G′ with all node and edge identities distinct, and then one can proceed with the
flattening. We do not present here the technical details of this construction, but
we state its existence, and that it is inverse to NR.

Proposition 4 (from NR-graphs to term graphs). There exists an encod-
ing T G such that if σ is an assignment and G is an NR-graph with free nodes in
img(σ), then T G(G, σ) is a well-scoped term graph of rank ((•, τ(σ)), ε). Further-
more, for each well-scoped term graph T of rank ((•, τ(σ)), ε), T G(NR(T ), σ) =
T , and for each NR-graph G with free nodes in img(σ), NR(T G(G, σ)) ∼= G.

Note that the equality is strict in T G(NR(T ), σ) = T , because the NR-graph
NR(T ) obtained from T has all nodes and edges distinct by construction,
whereas the equality is only up to isomorphism in NR(T G(G, σ)) ∼= G because
T G may involve the renaming of some nodes and edges.

6 Towards an Enhanced Modelling Framework

In the previous sections we presented the main technical results, which can be
summarised by the following diagram, already presented in the introduction.

AGN(S, B)/≡A� �

Sec. 4
��

�� �� NR-Graphs over (S, B)� �

Sec. 5
��

GS(Σ•
B) ��

[10]
�� Term Graphs over Σ•

B

Therefore we established a one-to-one correspondence between AGN terms up
to equivalence, and well-scoped term graphs and NR-graphs up to isomorphism.
In this section we first discuss how the relationship with term graphs can be
exploited to enrich the visual framework of NR-graphs with a notion of rewriting
and with existing analysis techniques. Next we discuss possible generalisations
of the proposed framework

6.1 On Rewriting NR-Graphs

In order to equip our models with behavioural specifications, a natural way is to
look for a suitable notion of graph transformation over NR-graphs. For example,
one could consider the following transformation rule, intended to model the fact
that two local sub-networks can be merged into a single one, which will include
the contents of both.
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Clearly, one should formalise this notion of rule, as well as its operational
meaning, i.e., when it can be applied to a given NR-graph and what the result
is. For example, one should clarify the meaning and the role of the variables Y
and Z, which are intended to denote the whole content of an edge.

The one-to-one correspondence with term graphs, for which a notion of rewrit-
ing is well-understood, can be helpful in this respect. For example, we can trans-
late the left- and the right-hand side of the rule into term graphs, and we can
introduce a third term graph in the middle and two morphisms in order to relate
the items that have to be preserved, obtaining the double-pushout rule

Quite naturally, through this translation the variables correspond to •-labelled
nodes, i.e., to locations. This encoding of NR-graph rules into term graph rules
can be exploited directly by lifting the definition of term graph rewriting to NR-
graphs, or can be used to check the consistency of an original notion of rewriting
over NR-graphs. In both cases, it provides a direct link to the rich theory of
concurrency and parallelism developed for the algebraic approaches to graph
transformation, as well as to the verification techniques developed for them [1]:
how far these results can be applied to NR-graphs and their transformations is
a subject of future work.

6.2 Edges with Inner Rank: From Term Graphs to GS-Graphs

The distinguishing feature of NR-graphs is the fact that edges are regarded as
containers of nested subgraphs. A natural generalisation of this idea would be to
equip each edge also with a sorted inner interface: while the ordinary “outer in-
terface” is induced by the nodes where the box is attached to, the inner interface
would introduce a dual view of local nodes provided by the edge to the nested
graph. Such an inner interface could be partly modelled using μ-restriction, but
with two main differences: 1) the sorting of the inner interface would be fixed
at the signature level, while μ-restricted nodes of any sort can always occur
inside a box; 2) the order of nodes provided by the inner interface would be
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fixed, while μ-restrictions can commute thanks to axiom A4. For example, by
equipping each edge with an inner interface having the same rank of the outer
interface would provide a straight modelling of modules (each edge) with formal
parameters (the nodes provided by the inner interface) and actual parameters
(the nodes attached to the outer interface), the correspondence between actual
and formal parameters being implicit in the sorting of outer and inner interfaces.
Inner interfaces can also be handy for encoding polyadic input prefixes of process
calculi, where the input variables are just local place-holders for the values to
be received dynamically upon communication.

At the level of AGN syntax, this generalisation would correspond to introduce
an inner rank for each b ∈ B and to introduce terms like b[z.G](y), where z are
the nodes provided by the inner interface of b, whose sorting must match the
inner rank of b. At the level of axiomatisation, the nodes provided by the inner
interface should be α-convertible (z acts as a binder in b[z.G](y), with scope G)
and correspondingly extended versions of axioms A8 and A10 should be given
with suitable side-conditions (the notion of free nodes should also be updated).

At the level of the encoding in gs-monoidal theories, this would correspond
to move from signatures to hyper-signatures, where operators f ∈ Σu,w with
u, w ∈ S∗ are allowed. Interestingly enough, gs-monoidal theories are quite stable
and such an extension is seamless, as no additional axiom is required. This is not
the case for term graphs, that are tailored to ordinary signatures. This could be
annoying, because while we have seen that gs-monoidal theories over ordinary
signatures play for term graphs the role played by Lawvere theories for ordinary
terms (i.e., they neatly emphasise the essential algebraic structure underlying
the set-theoretical presentation of term graphs), the gs-monoidal syntax itself
can be hard to follow without the corresponding drawings, even for small terms
(see for example Definition 16).

Nevertheless, in the case of hyper-signatures we can resort to consider an
alternative model to term graphs, called gs-graphs [15], that is defined in terms
of concrete (multi-)sets of assignments. More precisely, two kinds of assignment
are allowed in gs-graphs: a proper assignment has the form x′

1 : s′1 . . . x′
k : s′k :=

f(x1 : s1, . . . , xh : sh) (for f ∈ Σs1···sh,s′
1···s′

k
), while an auxiliary assignment has

either the form x′ : s := x : s (aliasing) or !(x : s) (name disposal). Given a set of
assignments A, when a name appears in the left member of an assignment we
say that it is assigned, when it appears in the right member we say that it is
used and write x : s �A x′ : s′ if A contains an assignment where x : s is used
and x′ : s′ is assigned (meaning that, to some extent, x′ : s′ depends on x : s).
Like term graphs, also gs-graphs come equipped with top and bottom interfaces:
implicitly, the top interface is given by all names that are used but not assigned
in A (called leaves in [15]), while the bottom interface contains all names x′ : s′

assigned via an aliasing x′ :s := x :s in A (called roots). Each interface is ordered
according to a fixed total order ≤ on sorted names.

A gs-graph A is valid if it satisfies all of the following: (1) every name is
assigned at most once in A; (2) the transitive closure �+

A of �A is acyclic;
(3) every x′ : s such that x′ : s := x : s belongs to A is a maximal element of �+

A;
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(4) for each name n not assigned in A (exactly) one disposal !(n) is present in
A; (5) for each name n assigned in A no disposal !(n) can be present in A. Then
it can be shown that valid gs-graphs on the hyper-signature Σ (taken up to the
intuitive notion of isomorphism induced by any injective name substitution that
respects the total ordering ≤ on the names in the interfaces) are the arrows of
the freely generated gs-monoidal category GS(Σ).

In summary, we are confident that the results of the previous sections can be
generalised seamlessly by allowing edges with an inner rank in NR-graphs and
in the terms of the algebra, and by exploiting gs-graphs rather than term graphs
for the encoding.

7 Related Works

As recalled in the Introduction, graphs are widely used in Computer Science
for a visual, intuitive representation of systems and models of any kind. Several
notions of hierarchical graphs have been introduced along the years in various
areas, often as a useful structuring mechanism to cope with the modelling of
systems of realistic size. One of the earliest proposals are Harel’s higraphs [18],
used first for modelling database structures and next as a basis for statecharts.
Several other such models have been proposed since then, for modelling database
systems, object-oriented systems and hyper-media applications, among others
(see, e.g., the recap in Section 7 of [9]).

In the realm of Graph Transformation Systems, the use of hierarchical graphs
dates back to Pratt [21], who used them to represent data structures of pro-
gramming languages. Several other models have been proposed since them, till
the most recent and elaborated ones in [13,9]. The graphs of [13] share with our
NR-graphs the fact that subgraphs are encapsulated in (hyper-)edges, but they
do not allow arcs to cross edge boundaries. The approach of [9] is instead much
more general than ours, because they provide separated representations of a sys-
tem (given by a “flat” graph) and of its hierarchical structure (an acyclic graph),
relating them with a “connection graph”. Both these approaches will be sources
of inspiration for the definition of graph transformation over our NR-graphs, but
none of them provides an algebraic presentation.

More closely related to our proposal, and at the same time direct sources of
inspiration for us, are some graph formalisms developed for modelling process
calculi. They range from the several approaches based on flat graphs (see, e.g.
[16]), with which we share the modelling of name restriction ν, to Milner’s bi-
graphs [20]. Basically, a bigraph is given by the superposition of two graphs,
representing the locality and the connectivity structure of a system, respectively,
having the nodes in common. In our words, the first specifies the hierarchical
structure of the system, while the second the naming topology. So, we do be-
lieve that the two approaches have essentially the same expressiveness, even if
a precise comparison goes beyond the scope of this paper. It is worth noting,
nevertheless, that the two approaches are in a sense dual to each other: bigraphs
represent locations of a system as nodes (instead of hyper-edges) and names
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as hyper-edges (instead of nodes): when designing our modelling framework we
preferred to introduce the notion of NR-graph rather than to stick to bigraphs,
because NR-graphs allow for a more intuitive representation of systems and have
a much simpler definition w.r.t. bigraphs. During the revision of the present pa-
per, we learned that an algebra for bigraphs has been proposed in [17]: we intend
to study the precise relationship between this algebra and ours, to understand if
the greater complexity of the former is balanced by a greater expressive power.
Moreover, the algebra given in [17] is “fine-grained” and closer to the gs-monoidal
algebra than to the AGN algebra, hence we think the result in this paper is an
important step for relating NR-graphs and bigraphs.

Concerning the axiomatisation, several (sound and complete) axiomatisations
of various families of graphs exist, and each of them provides a suitable linear syn-
tax for the corresponding graphs. Most of the axiomatisation explicitly address
node sharing, possibly following the seminal work on flownomial algebras [12].
It is not possible to mention here all the contributions to this field, but it seems
noteworthy that all these structures, including the one discussed in Section 3
and proposed in [10], can be seen as enrichments of symmetric monoidal cate-
gories, which thus reasonably provide the basis for the description of distributed
environments in terms of wire-and-box diagrams: see the survey [22] and the
meta-formalism in [4].

Finally, it is worth stressing that the AGN algebra and the corresponding
NR-graphs are very close to the algebra introduced in [7], whose semantics is
defined set-theoretically over a suitable domain of hierarchical graphs with in-
terfaces. Besides presenting a few technical differences (the hyper-edges of the
algebra of [7] also offer an inner interface, like the one discussed in Section 6.2;
edges without a nested graph are treated differently; there is only one type of
(localised) restriction, and the extrusion of restricted names is handled with
optional axioms) a formal encoding of that algebra into term graphs is not avail-
able yet, but should not be difficult with the formal background presented here.
Instead, that algebra has been used in [5,6,7] to encode several process calculi
featuring sophisticated notions of nesting and of restriction (including the π-
calculus [19], Sagas [8], and CaSPiS [3], among others).

8 Conclusion and Further Works

In this paper we presented a simple model of hierarchical graphs featuring nest-
ing of subgraphs within hyper-edges and two kinds of restrictions of nodes, which
are suited for representing in a direct way a wide class of systems and models.
In order to provide a linear, term-like syntax for such graphs, an axiomatisation
has been proposed, the main result being that such axiomatisation is sound and
complete. The result was proved by encoding such nested structures (both the
algebra and the graphs) into a simpler model (term graphs) where the nesting is
represented explicitly with a tree of locations, and by exploiting an existing ax-
iomatisation of term graphs as gs-monoidal theories. Finally possible extensions
of the presented framework are sketched, including the definition of a notion of
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rewriting over nested graphs, and the generalisation of the graphical model to
allow for edges with inner interfaces.

As topics of future research, besides those just mentioned we intend to clarify
the formal relationship between our NR-graphs and Milner’s bigraphs [20], and
of our algebra with the one recently proposed in [17]. In parallel to this, we
intend to test the adequacy of our modelling framework by encoding suitable al-
gebraic formalisms (typically process calculi), which would automatically obtain
a graphical representation, as well as visual modelling formalisms, for which we
could obtain a handy linear syntax.
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Abstract. Distributed systems with mobile components are naturally

modelled by graph transformations. To formalise and predict properties

such as performance or reliability of such systems, stochastic methods

are required. Stochastic graph transformations allow the integrated mod-

elling of these two concerns by associating with each rule and match a

probability distribution governing the delay of its application. Depend-

ing on the nature of these distributions, different techniques for analysis

are available, ranging from stochastic model checking for exponential

distributions to simulation for systems with general distributions.

In this paper we explore further the second notion, adding a model of

global time to avoid the overhead of frequent local clock updates. We also

transfer the notion of stochastic graph transformation system from an

algebraic to a general background, allowing an arbitrary graph transfor-

mation approach to be used for the underlying system. We present a cor-

respondingly extended semantic model, simulation algorithm and tool.

The concepts are justified and illustrated by an accident management

scenario which requires a model of physical mobility and sophisticated

transformation concepts.

Keywords:mobile systems, stochastic simulation, graph transformation.

1 Introduction

To understand or design complex systems we are used to building models. Ab-
stracting from irrelevant details of the subject systems, models render it intel-
lectually and technically feasible to analyse them. However, since in this process
information is lost, individual occurrences of events may become unpredictable,
resulting in models that are nondeterministic both in the selection of actions
and their timing. Stochastic methods allow us to make up for this lack of detail,
analysing behaviour in terms of statistical aggregations instead of individual
occurrences.

Graphs are among the simplest and most universal models for a variety of
systems, not just in computer science, but throughout engineering and life sci-
ences. When systems evolve, we are generally interested in the way they change,
to predict, support, or react to evolution. Graph transformations combine the
idea of graphs as a universal modelling paradigm with a rule-based approach

G. Engels et al. (Eds.): Nagl Festschrift, LNCS 5765, pp. 87–101, 2010.
� Springer-Verlag Berlin Heidelberg 2010
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to specify the evolution of systems. Supported by an established mathematical
theory and a variety of tools for execution and analysis, graph transformation
systems have been an object of study for more than 30 years.

As one of the early fathers and main promoters of this theory, Manfred Nagl
started his studies on the expressive power of graph grammars and correspond-
ing classes of formal languages of graphs in the early seventies [1]. In the late
eighties and early nineties, Manfred Nagl pioneered the application of graph
transformation in software engineering, specifically for the generation of soft-
ware engineering tools [2]. The graph transformation language PROGRES [3]
developed in this context provided one of the first scalable implementations of
graph transformation and led to a wealth applications. It also provided a testbed
for some of the advanced transformation concepts used in this paper, such as
multi-objects and derived attributes. It turns out that these concepts are crucial
for raising the level of abstraction of our models, and thus improving readability
of specifications and scalability of analysis techniques. It is therefore only fitting
to dedicate this paper to Manfred Nagl in appreciation of his contributions, on
which we still rely today.

As motivated above, this paper uses graph transformation to model systems by
a combination of structural changes and with stochastic time. This combination
becomes more significant with the event of distributed and mobile systems, where
volatile bandwidth and fragile connectivity as well as physical mobility make
non-functional properties such as performance and reliability more and more
important. To formalise, measure, and predict these properties, stochastic graph
transformation systems have been introduced in [4].

They associate with each rule (and match) a probability distribution govern-
ing the delay of its application. Depending on the nature of these distributions,
different techniques for analysis are available. In the case of exponential distri-
butions, continuous-time Markov chains can be derived, which allow to verify
stochastic properties through model checking.

In [5] we have illustrated this approach by an example of a P2P network. The
property of interest here was the probability of finding the network in a condition
where each participant could communicate with every other one, i.e., of the
network graph being connected. A simple graph transformation model of network
reconfigurations was used to generate the state space, bounded by an upper
limit to the number of peers in the network. The resulting transition system was
transformed into a Markov chain by associating rates with rule names.

This approach, while in line with existing practice, has a number of weaknesses.

– Model checking with explicit states is not suitable for models with large or
infinite state space. Since performance and reliability may well depend on
the overall scalability of the system, this is a serious limitation for verifying
non-functional properties.

– Exponential distributions do not always provide the best abstraction for
the timing of actions. For example, the time it takes to make a phone call
or perform a communication handshake is more likely to follow a normal
distribution.
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– There are situations where the distributions would not only depend on the
rules, but also on the graphs and matches they are applied to. For example,
the time it takes to deliver a message may depend on the distance it has to
travel, which may be an attribute of the connection.

Generalised stochastic graph transformation systems [6,7] allow for general
distributions dependent on rules - match pairs (events, rather than just rules).
Generalised semi-Markov processes provide a semantic model for such systems.
Monte Carlo-style simulation allows for analysis, based on the execution of sys-
tem runs probabilistically determined through the generation of pseudo-random
numbers, rather than the full exploration of the state space. The results of
stochastic analysis are statistical in nature, with confidence levels depending
on the number of simulation runs. Thus, with respect to the validation of soft
performance targets in large-scale systems, simulation based on semi-Markov
processes may provide a more flexible tradeoff than model checking between
analysis effort and confidence in the result.

However, in order for a component to measure, e.g., response time, local clocks
had to be introduced. A local clock is represented by an attribute chronos for
storing the current value and a clock tick rule such as the one in Fog. 1 to
advance the attribute by one unit of time. The rule is to be used with a normal
distribution, with mean given by one unit of time and variance the average
deviation of the clock in one step. This approach, while sound, is unsuitable for
simulating larger systems. Imagine, for example, a system of 100 components,
each equipped with a local clock, and assume milliseconds as the relevant unit of
time. In this case it would take 100,000 applications of rule clock tick to simulate
the passing of one second of real time.

Fig. 1. Rule for advancing the local clock of a component

In this paper we will avoid this overhead by using a global notion of time.
More precisely, whenever a rule is applied it will have access to the present
simulation time to compute values assigned to attributes in the right-hand side
of the rule. The need for such an extension, as well as for a number of other
advanced features, is illustrated by the scenario of an accident management
system deploying emergency vehicles to serve accidents. We also discuss how
this extension of the semantic model impacts on the simulation algorithm and
present a simulation tool developed in Java-Eclipse as an extension of the graph
transformation tool VIATRA [8].

The paper is organised as follows. Section 2 below discusses related work on
stochastic simulation. Then, Section 3 presents our application scenario and de-
rives requirements for both the underlying graph transformation approach and
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its stochastic extension. Section 4 introduces formally stochastic graph trans-
formation system before Section 5 describes their semantics and simulation and
Section 6 concludes the paper.

2 Related Work

The definition of generalised stochastic graph transformation systems that we are
presenting here, with their semi-Markov process semantics based on a translation
to generalised semi-Markov schemes, generalises previous proposals presented
in [6,7]. Stochastic graph transformation systems (SGTS) as introduced in [9]
allow only for exponential distributions associated with rule names, and have a
semantics based on Markov chains. We depart from [6] by making the probability
distribution dependent on the event (rule name and match) rather than just on
the rule name — therefore drawing a closer parallel with the representation of
semi-Markov processes as generalised semi-Markov schemes we rely on for the
semantic interpretation [10].

At a technical level, our approach relies on a choice of a deterministic rule
application operator, giving it a distinctly implementation-oriented flavour. On
the other hand, in [6] the set of events is provided abstractly by a global name
space given by the unfolding of the graph transformation system. Unlike [7], we
introduce a notion of global time, leading to synchronous features comparable
to null-delay transitions in generalised stochastic Petri nets [11].

Rule-based modelling based on graph transformation has been proposed as
basis for stochastic simulation of biochemical systems [12]. Stochastic simula-
tion based on the Gillespie algorithm [13] uses exponential distributions and
is closely associated to multiset rewriting. Related approaches to simulation of
stochastic Petri nets allow for transitions associated with probabilistic values
[11]. Semi-Markov Petri-nets [14] allow for non-exponential distributions, too.
Graph rewriting is more general than multiset rewriting, i.e., graphs can be seen
as multisets of nodes with edges between them. However, [15] gives a method
to map graph transformations into Petri-net transitions for a limited class of
systems.

A probabilistic rewriting logic with rule matches associated to generic prob-
abilistic values has been implemented in Maude [16], allowing for the simula-
tion. While rewriting logic can encode graph transformation, the model does
not describe time but probabilities of different outcomes of decisions. High-level
implementations of stochastic simulation based on process algebra have been
given, with PEPA [17] and stochastic π-calculus [18], allowing for exponential
rates to be associated to actions. Semi-Markov PEPA [19] and the extended
stochastic π-calculus presented in [20] allow for non-exponential distributions.
While PEPA models are limited to finite-state systems, π-calculus has a similar
level of expressive power like graph transformation. The main difference is in the
style of specification, i.e., graph transformation as a high-level visual language
vs. π-calculus as a programming-oriented process calculus.
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3 Case Study and Requirements

In order to justify and illustrate our requirements we are considering a case
study of an accident management system loosely based on a scenario developed
in the IST FP6 project Sensoria on Software Engineering for Service-Oriented
Overlay Computers. The objective of the case study is to study the interplay
of dynamic reconfiguration in the system with quality attributes and physical
mobility.

We assume that vehicles may be subscribed to a service that, in the case of
an accident (e.g., when the airbag is triggered) alerts the emergency services.
They will check the alert by contacting the driver of the car on their mobile
phone and, in case of need, dispatch an ambulance and/or recovery services. To
minimise the impact of the accident, the car should be removed as quickly as
possible in order to prevent other cars travelling behind from being stopped or
slowed down.

The model has to account for a divers range of activities such as the physical
movement of vehicles on the road network, the occurrence of accidents and send-
ing of alerts to emergency services, and the assignment of emergency vehicles. A
typical question to be asked is, what is the best strategy for serving accidents:
Should they be served in chronological order, based on their distance from the
nearest available emergency vehicle, or based on their perceived urgency, e.g.,
the number of cars caught up in tailback, etc? Another question is if, based on
certain assumptions in the model, service-level guarantees can be given, such as
“95% of accidents will have an emergency vehicle arriving at the scene within
20min”.

We will describe and model the case study in more detail below. However, this
informal description is already sufficient to identify a number of characteristic
features of our modelling approach. We will use graphs to represent system states,
i.e., the road network, vehicles and their current, as well as logical relationships
between them, such as a car having suffered an accident on a road, or an emer-
gency vehicle being assigned to serve an accident. To record the exact position
of a car or the number of cars caught up in a tailback we will require attributed
graphs. While the road network should be static, vehicles and their relationships
are subject to change. This change is best modelled by graph transformation.

We will further require a model of time. However since, e.g., the time between
two occurrences of accidents in a certain area is not deterministic, a stochas-
tic model of time is required. Moreover, different types of probability distri-
butions will be required. For example, the time between two (consecutive but
independent) accidents is governed by an exponential distribution whose rate is
reciprocal of the average time between two accidents, while the time it takes an
emergency vehicle to arrive at the scene of an accident should have a normal
distribution with the average delay as mean. In some cases, the parameters of
these distributions will depend on the graphs and matches, i.e., the arrival time
could depend on the lengths of the shortest route to be travelled. Moreover,
attribute assignments and conditions will need access to the current simulation
time, e.g., to record the time when an accident happened.
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In order to determine shortest routes in the road network, e.g., to guide ve-
hicles or find the nearest one to an accident, complex computations will have to
be carried out on the graph representing the state. Modelling these at the same
level as, e.g., the movement of cars or the sending of alerts, we would run the risk
of obfuscating the model with details that are better addressed by employing
standard algorithmic solutions. We will have to provide an interface to “invoke”
such solutions without cluttering our rules. In general, since we are interested
in a model that can be analysed for the kinds of quality-of-service properties
described above, so we should avoid increasing the state space of our model by
complex computations.
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Fig. 2. Attributed type graph with inheritance, derived attributes and edges

The type graph of our model is shown in Fig 2. Beside node and edge types,
it contains node attribute declarations such as the average speed of a road,
its length, or cars-in, the number of cars that have entered it. Edges can be
attributed as well, e.g., the edge representing the location of a car on a road
records the point in time since the car has entered it.

The model uses inheritance of node types to distinguish special emergency
vehicles that are assigned to accidents by emergency services. In general, vehicles
can be involved in accidents or blocked by them.

Finally, we make use of derived attributes such as the distance of the car
from the start of the road it is travelling on, and derived associations such as
the closest available emergency vehicle for an accident. The former is computed
by evaluating the following definition whenever the attribute is accessed

on.dist = on.Road.speed ∗ (now− on.since)

with the constant now referring to the current simulation time. The derived link,
which points to the emergency vehicle with the quickest route to the accident,
is calculated on demand based on a standard shortest path computation.

Such derived attributes are well known in PROGRES [3]. They can be eas-
ily encoded, albeit with a loss of elegance, in graph transformation languages
providing control flow constructs that allow invocation of rules from other rules.



Stochastic Modelling and Simulation of Mobile Systems 93

We prefer the abstract and declarative notation of derived attributes and links
at the model level, but will have to rely on a corresponding encoding when
implementing the rule in VIATRA.

4 Generalised Stochastic Graph Transformation

In this section, we provide the basic notions of stochastic graph transforma-
tion together with their semantic model of generalised semi-Markov processes.
While we present general definitions with respect to a generic attributed graph
transformation approach, examples will be based on typed attributed graph
transformation with SPO-like semantics, allowing for node type inheritance and
negative application.

4.1 The Base: Graph Transformation, Generically

In existing axiomatic descriptions of graph transformation [21], a graph transfor-
mation approach is given by a class of graphs G, a class of rules R, and a family
of binary relations ⇒r: G × G representing transformations by rules r ∈ R.

We refine this presentation as follows. First, we assume an R× G-indexed
family of sets of rule matches Mr,G and extend ⇒r to a partial function ⇒r,m:
G → G, such that ⇒r,m (G) is defined if and only if m ∈ Mr,G. This captures the
idea that rule application is well-defined and deterministic once a valid match m
for r in G is found. In case r is equipped with application conditions, the match
is deemed to satisfy them. As usual, we write G ⇒r,m H for ⇒r,m (G) = H .

We denote by Mr the set of all matches for a rule r, and by MR =
⋃

r∈R Mr

the union of all such sets of matches for all rules in R ⊆ R. Similarly, MR,G is
the subset of MR of matches into a graph G ∈ G only.

In general however, and in contrast to the strongly typed notion of match in
the categorical presentation of matches as morphisms favoured in the algebraic
approaches [22,23], we assume that a match depends on the rule, but not strictly
on the target graph. Indeed, a match for a rule r may only use a part of a graph
G. In this case, the same match can also be defined into a graph G′ if G′ shares
the part of G used by m. This is important, for example, if a match for a rule r
has already been established, but an application of another rule r′ is scheduled
to take place first. If the applications of r and r′ are independent, the match
for r will still be valid after the application of r′, even if the graph has changed
outside the scope of this match.

Such a general concept of match is required to define a notion of event as a
rule-match pair transcending individual states. In [6,7] such a goal was achieved
by introducing an equivalence relation on matches. Two matches m and m′ for
the same rule r are equivalent if they define the same occurrence of r’s left-
hand side in graphs G, G′ related by a transformation G ⇒ G′ preserving the
occurrence. In this way, events can be associated to equivalence classes of rule
matches, and thus outlive the target graph of the match if the change does not
affect the elements in the codomain.
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Moreover, for algebraic approaches based on categorical constructions, where
rule application is only defined up to isomorphism, further assumptions have
to be made in order to make rule application deterministic: To capture the
idea of a concrete and deterministic implementation of graph transformation,
a choice of direct transformations is made such that the result of applying a
rule to a match is unique, and names are chosen consistently in consecutive
transformations preserving the identities of nodes and edges where possible and
never reusing names from the past.

In its simplest form, a graph transformation system G = 〈R, G0〉 consists of
a set R ⊆ R of rules and an initial graph G0 ∈ G. A transformation in G is a
sequence of rule applications G0 ⇒r1,m1 G1 ⇒r2,m2 · · · ⇒rn,mn Gn using rules
in G with all graphs Gi ∈ G. The set of graphs reachable from G0 by rules in R
is denoted by L(〈R, G0〉).
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Fig. 3. Rules for moving

4.2 The Topping: Stochastic Modelling with Global Time

We can intuitively rely on standard notions of stochastic process and discrete
event system [10], and treat a graph transformation system as a discrete event
systems where events are rule matches. The stochastic aspect can be introduced
by associating each event with a distribution function governing the delay in the
application of the corresponding transformation step.

Transformations will be aware of the passage of time, so that attribute val-
ues can be computed using the current time as parameter. For this purpose, we
define a notion of timed execution of a graph transformation system. Given a
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Fig. 4. Accidents happen and get reported
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Fig. 5. Assigning the closest emergency vehicle

transformation sequence s = G0 ⇒r1,m1 G1 ⇒r2,m2 · · · ⇒rn,mn Gn, a timed
execution of s is a sequence

G0 ⇒r1,m1,t1 G1 ⇒r2,m2,t2 · · · ⇒rn,mn,tn Gn

such that ti < tj for 1 ≤ i < j ≤ n. In practice, the times ti for will be
provided by the simulation environment in such a way that, statistically, they
are consistent with the distribution of delays specified by the stochastic graph
transformation systems.

For a set of rules R, by ER = {〈r, m〉 | m ∈ Mr, r ∈ R} we denote the set
of events, given by pairs of rules and matches. Then S = 〈G, F 〉 is a stochastic
graph transformation system (SGTS) where G is a graph transformation system
and F : ER → R → [0, 1] is a function which associates with every match for a
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rule in G a probability distribution function. We assume F (e)(0) = 0 (null delay
condition).

The behaviour of a stochastic graph transformation system can be described
as a stochastic process over continuous time, where reachable graphs form a dis-
crete state space, the application of transformation rules defines state transitions
as instantaneous events, and interevent times, determined by the application
of transformation rules, are dominated by continuous probability distributions.
More precisely, we associate each rule, as it becomes enabled by a match, with
an independent random variable (timer), which represents the time expected
to elapse (scheduled delay) before the rule match is applied, and is associated
with a cumulative distribution function (cdf ). At runtime, the timer is randomly
assigned a value according to its cdf.

Note that, in order to avoid cyclic dependencies, distribution functions and
rule matches are independent of the current simulation time, i.e., the value of
now is only used to determine attribute values in the new state. This happens,
for example, in rule moveFromJunction with the assignment on.since := now
and indirectly in rule accident with a.loc := v.dist due to the computation of
time-dependent derived attribute v.dist.

Let us consider the distributions to be assigned to the rules in our case study.

– Rule moveToJunction should be governed by a normal distribution with
mean = r.length/r.speed, the expected time taken to travel the length of
the road. The variance should reflect the expected average deviation. Note
that this is an example where the distribution’s parameters depend on the
match.

– Rule moveFromJunction should be controlled by a normal distribution, with
fixed mean and deviation.

– Rule accident is a typical example of an event that is exponentially dis-
tributed, its rate reciprocal to the average time between two accidents.

– Rules alert and assign represent computation and communication actions,
which should be distributed normally with fixed parameters.

Such definitions provide the data for function F : ER → R → [0, 1] in the notion
of stochastic graph transformation system above.

5 Stochastic Simulation

Next, we introduce the semantic model as well as operational interpretation of
stochastic graph transformation systems in terms of suitable generalisations of
semi-Markov processes and stochastic simulation.

5.1 From SGTS to Generalised Semi-Markov Processes

We rely on discrete event semantics of stochastic processes, which essentially
consists of finite state systems with probabilistic transitions associated with
timed events [10]. In generalised semi-Markov processes (GSMP), timers as well
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as the resulting interevent times can be generally distributed. This corresponds
to a model in which events are generally independent of the past states but,
unlike Markov processes, they may depend on interevent times. More formally,
a GSMP can be defined as a process generated by a generalised semi-Markov
scheme (GSMS) [24]. Here we define a notion which actually extends that of
GSMS. A timed GSMS (TGSMS) is a structure

P = 〈 Z, E, active : Z → ℘E, new : Z × E → R → Z,

Δ : E → R → [1, 0], s0 : Z 〉

where Z is a set of system states; E is a set of implicitly timed events; active
is the activation function, so that active(s) is the finite set of active events
associated with s; new is the transition function depending on states, events
and time values; Δ is the distribution assignment, so that Δ(e) is the general
cumulative distribution function associated with the scheduled delay of event e;
and s0 is the initial state.

Unlike the notion defined in [24], where new : Z×E → Z, we assume that that
new is a timed function — taking also the scheduled time of the state transition
(corresponding to the value of now) as a parameter. This might be regarded as
an extension to cover the case in which there are functions R → Z instead of
states. Notice, however, that active ignores this dependency, i.e., the activation
of events is not affected by time scheduling — this goes together with the fact
that in the graph transformation systems, now is used to determine the value of
attributes in the new state, but never in application conditions that determine
activation.

GSMPs are generalisations of continuous-time Markov chains — they can be
regarded as Markov processes with generally distributed timers [25]. Indeed, a
process generated by a GSMS where all timers are exponentially distributed
variables is stochastically equivalent to a continuous-time Markov chain — this
follows from the memoryless property enjoyed by exponential distributions

P (X > x + z|X > z) = P (X > x)

and therefore from the fact that, from the point of view of stochastic analysis,
exponentially distributed timers can be restarted at each step — which means
that no matter how long an event has been scheduled for, until it does not
happen, the probability of experiencing a further delay remains the same.

Given a stochastic graph transformation system S = 〈R, G0, F 〉, we can define
its translation as a TGSMS

Π(S) = 〈S, E, active, new, Δ, G0〉

where

– S = L(〈R, G0〉) is the set of graphs reachable from G0 via rules in R;
– E = ER is the set of possible events for R;
– active(G) = {〈r, m〉 | m ∈ Mr,G} ⊆ E is the set of all events enabled in

graph G;
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– the transition function is defined by new(G, 〈r, m〉)(t) = H if G ⇒r,m,t H ;
– distributions Δ(〈r, m〉) are given by F (〈r, m〉);
– G0 is the initial graph in S.

The embedding of SGTS into TGSMS can be used as theoretical framework
for the definition of a simulation algorithm that is adequate with respect to
system runs. In fact, given an SGTS S and its translation P = Π(S), it is not
difficult to see, reasoning by induction on the number of steps, that for each
transformation from G0 in S, this can be simulated by a sequence of transitions
in P — and vice-versa.

5.2 Algorithm and Tool for Stochastic Simulation

Given a TGSMS P = 〈Z, E, active, new, Δ, s0〉 with global time, an algorithm
for its simulation can be described as follows, based on the general scheduling
scheme given in [10].

– For the initial step
1. The simulation time is initialised to 0.
2. The set of the activated events A = active(s0) is computed.
3. For each event e ∈ A, a scheduling time te is computed by adding 0 to

a random delay value de given by the random number generator (RNG)
depending on the probability distribution function Δ(e)(0);

4. The active events with their scheduling times are collected in the sched-
uled event list ls0 = {(e, te)|e ∈ A}, ordered by the time values.

– For every other step — given the current state s ∈ S and the associated
scheduled event list ls = {(e, t)|e ∈ active(s)}
1. the first element k = (e, t) is removed from ls;
2. the simulation time tS is updated by increasing it to t;
3. the new state s′ is computed as s′ = new(s, e)(now);
4. the list ms′ of the surviving events is computed, by removing from ls all

the elements become inactive, i.e. all the elements (z, x) of ls such that
z /∈ active(s′);

5. a list ns′ of the newly activated events is built, containing a single ele-
ment (z, t) for each event z such that z ∈ active(s′)\active(s) and has
scheduling time t = tS + dz, where dz is a random delay value given by
the RNG depending on the distribution function Δ(z)(tS);

6. the new scheduled event list ls′ is obtained by reordering the concatena-
tion of ms′ and ns′ with respect to the time values

Based on this scheduling scheme and the embedding of SGTS into GSMS
with global time, a simulation tool has been developed supporting the analysis of
stochastic graph transformations. The implementation of stochastic simulation
based on graph transformation poses computational challenges — the biggest
one being the computation of the set of all matches at each step. We rely on
the incremental pattern-matching [26] as implemented in VIATRA to cope with
this problem.
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VIATRA [8] is a graph transformation tool available as Eclipse plug-in, which
supports attributes, negative conditions, and all the other advanced transforma-
tion concepts required. VIATRA’s RETE-style incremental pattern-matching
approach consists of storing pre-computed pattern matching information in a
tree structure that gets updated at each transformation step, rather than com-
puting matches from scratches at each step. This approach allows to compute
matches in constant time with respect to the graph size, for the penalty of in-
creased memory consumption.

The simulation tool is based on the integration between this graph trans-
formation engine and an implementation of the general scheduling scheme. For
the latter we rely on the SSJ stochastic libraries [27] for both random number
generation and statistic functions.

Like VIATRA itself, the simulation tool is implemented as Eclipse plugin.
While the underlying graph transformation system is encoded as a textual VIA-
TRA model transformation, probability distributions and their parameters are
specified as model elements, such as the number of runs, their limit in either
time or number of steps, the name of the rule set with associated stochastic pa-
rameters, and a distinguished value to allow running a suite of simulations with
varying parameters. Experiments based on a logically simpler but computation-
ally as demanding model are encouraging as far as performance is concerned.

6 Conclusion

This paper introduces generalised stochastic graph transformation with global
time as a technique to model stochastic processes with dynamic reconfiguration.
These systems can be translated into generalised semi-Markov schemes with
time, an embedding which is useful in two respects. From the theoretical point
of view it gives a semantical framework for SGTS. From the application point
of view it provides a general algorithm to implement simulation.

Instantiating and specialising this algorithm, a simulation environment has
been developed based on the VIATRA graph transformation tool which provides
an efficient implementation of an expressive language suitable to create models
at a high level of abstraction. We are presently in the process of evaluating the
performance of this tool on large and more complex case studies.
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SENSORIA, IST-2005-016004. We are indebted to István Ráth for his help with
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Abstract. Communities of autonomous units are rule-based and graph-

transformational devices to model processes that act and interact, move

and communicate, cooperate and compete in a common environment.

The autonomous units are independent of each other, and the environ-

ment may be large and structured in such a way that a global synchro-

nization of process activities is not reasonable or not feasible. To reflect

this assumption properly, a concurrent-process semantics of autonomous

units is introduced and studied in this paper employing the idea of true

concurrency. In particular, causal dependency between actions of au-

tonomous units is compared with shift equivalence known from graph

transformation, and concurrent processes in the present approach are

related to canonical derivations.

1 Introduction

In this paper, we introduce and investigate the concurrent semantics of au-
tonomous units. Communities of autonomous units are proposed in [7] as rule-
based and graph-transformational devices to model interactive processes that
run independently of each other in a common environment. An autonomous
unit has a goal that it tries to reach, a set of rules the applications of which
provide its actions, and a control condition which regulates the choice of actions
to be performed actually. Each autonomous unit decides about its activities on
its own right depending on the state of the environment and the possibility of
rule applications, but without direct influence of other ongoing processes.

In [9], the sequential as well as the parallel semantics of autonomous units is
studied. In the sequential case, a single unit can act at a time while all other units
must wait. This yields sequences of rule applications interleaving the activities
of the various units. Typical examples of this kind are board games with several
players who can perform their moves in turn. In the parallel case, the process
steps are given by the application of parallel rules that are composed of the rules
of the active units. In this way, units can act simultaneously providing a kind
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of parallelism which is known from Petri nets, cellular automata, multi-agent
systems, and graph transformation.

The sequential and the parallel semantics of communities of autonomous units
are based on sequential and parallel derivations respectively. Both are composed
of derivation steps. In other words, the semantics assumes implicitly the existence
of a global clock to cut the run of the whole system into steps. But this is not
always a realistic assumption, because the environment may be very large and
– more important – the idea of autonomy conflicts with the regulation by a
global clock. For example, trucks in a large transport network upload, move,
and deliver asynchronously, and do not operate in simultaneous steps and even
less in interleaved sequential steps.

The concurrent semantics avoids the assumption of a global clock. The ac-
tions of units are no longer totally ordered or simultaneous, but only partially
ordered. The partial order reflects causal dependencies meaning that one ac-
tion takes place before another action if the latter needs something that the
former provides. The causal dependency relation of the concurrent semantics of
autonomous units is compared with shift equivalence known from graph transfor-
mation, and concurrent processes in the present approach are related to canonical
derivations (see also [11,3,2]).

The paper is organized as follows. Section 2 contains some preliminaries con-
cerning multisets and graphs. In Section 3, concurrent graph transformation
approaches are introduced which provide the basic ingredients of autonomous
units. In Section 4, communites of autonomous units are presented and a concur-
rent semantics is defined for them. Section 5 is dedicated to canonical derivations
which constitute a kind of representantives for the concurrent runs in a commu-
nity. The introduced concepts are illustrated with a running example solving
a generalization of the well-known Hamiltonian path problem. The last section
contains the conclusion.

2 Preliminaries

In this section, we recall some basic notions and notations concerning multisets
and graphs as far as they are needed in this paper.

Multisets. Given some basic domain D, the set of all multisets D∗ over D with
finite carriers consists of all mappings m: D → N such that the carrier car(m) =
{d ∈ D | m(d) �= 0} is finite. For d ∈ D, m(d) is called the multiplicity of d
in m. The union or sum of multisets can be defined by adding corresponding
multiplicities, i.e., m + m′(d) = m(d) + m′(d) for all m, m′ ∈ D∗ and d ∈ D. D∗
with this sum is the free commutative monoid over D where the multiset with
empty carrier is the null element, i.e. 0: D → N with 0(d) = 0 for all d ∈ D.
Note that the elements of D correspond one-to-one to singleton multisets, i.e.
for d ∈ D, d̂: D → N with d̂(d) = 1 and d̂(d′) = 0 for d′ �= d. These singleton
multisets are the generators of the free commutative monoid. This means in
particular that, for every m ∈ D∗, there are d1, . . . , dk ∈ D with m =

∑k
i=1 d̂i.
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Graphs. A (directed edge-labeled) graph is a system G = (V, E, s, t, l) where
V is a set of nodes, E is a set of edges, s, t: E → V assign to every edge its
source s(e) and its target t(e), and the mapping l assigns a label to every edge
in E. The components of G are also denoted by VG, EG, etc. As usual, a graph
M is a subgraph of G, denoted by M ⊆ G if VM ⊆ VG, EM ⊆ EG, and sM ,
tM , and lM are the restrictions of sG, tG, and lG to EM . A graph morphism
g: L → G from a graph L to a graph G consists of two mappings gV : VL → VG,
gE : EL → EG such that sources, targets and labels are preserved, i.e. for all
e ∈ EL, gV (sL(e)) = sG(gE(e)), gV (tL(e)) = tG(gE(e)), and lL(e) = lG(gE(e)).
In the following we omit the subscript V or E of g if it can be derived from
the context. In order to represent also graphs that contain labeled as well as
unlabeled edges, we assume the existence of a special symbol �. Every edge
labeled with � is then regarded as an unlabeled edge. All other edges are labeled
edges. An edge is called a loop if its source and target coincide. In graphical
representations we omit the loops, i.e., their labels are placed next to their
sources. If the labeled loops of a node is the set {e1, . . . , ek} where for i = 1, . . . , k
the label of ei is xi (xi �= �), the node will be called a {x1, . . . , xk}-node. In the
case where k = 1, the node is called an x1-node. A node without any labeled
loop is called a λ-node.

3 Concurrent Graph Transformation Approaches

Graph transformation (see, e.g., [18,6,1]) constitutes a formal specification frame-
work that supports the modeling of the rule-based transformation of graph-like,
diagrammatic, and visual structures. The ingredients of graph transformation
are provided by so-called graph transformation approaches. In this section, we
recall the notion of a graph transformation approach as introduced in [12], but
modified with respect to the purposes of this paper.

Two basic components of every graph transformation approach are a class
of graphs and a class of rules that can be applied to these graphs. In many
cases, rule application is highly nondeterministic – a property that is not always
desirable. Hence, graph transformation approaches can also provide a class of
control conditions so that the degree of nondeterminism of rule application can
be reduced. Moreover, graph class expressions can be used in order to specify
sets of initial and terminal graphs of graph transformations. In the following,
transformations from initial to terminal graphs via rule applications according
to control conditions are called (graph transformation) processes.

The basic idea of parallelism in a rule-based framework is the application of
many rules simultaneously and also the multiple application of a single rule.
To achieve these possibilities, we assume that multisets of rules can be applied
to graphs rather than single rules. If R is a set of rules, r ∈ R∗ comprises a
selection of rules each with some multiplicity. Therefore, an application of r to
a graph yields a graph which models the parallel and multiple application of
several rules.
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If there is no global clock and no synchronization mechanism that cuts the
actions (i.e., the rule applications) of processes into steps, then the process ac-
tions are not totally ordered, but only partially. An action occurs necessarily
before another action if the former one generates something that the latter one
needs. Moreover, an action that removes something that is needed by another
action prohibits the latter one to occur if the former one is performed first. Both
situations describe causal dependencies. In all other cases, it may be impossible
to establish the order of time of two actions: They may occur one after the other
in any order or even in parallel. This is the idea of true concurrency which we
employ to define concurrent graph transformation.

Definition 1 (Concurrent graph transformation approach). A concur-
rent graph transformation approach is a system A = (G,R,X , C) the components
of which are the following.

– G is a class of graphs.
– R is a class of graph transformation rules such that every r ∈ R∗ specifies a

binary relation on graphs SEM (r) ⊆ G×G, which is subject to the following
true-concurrency condition: (G, G′′) ∈ SEM (r1 + r2) for r1, r2 ∈ R∗ implies
(G, G′) ∈ SEM (r1) and (G′, G′′) ∈ SEM (r2) for some G′ ∈ G. Moreover, we
assume that (G, H) ∈ SEM (0) implies G = H for the null element 0 ∈ R∗.

– X is a class of graph class expressions such that each x ∈ X specifies a set
of graphs SEM (x) ⊆ G.

– C is a class of control conditions such that each c ∈ C specifies a set of graph
pairs SEMAR,P (c) ⊆ G × G for every set AR ⊆ R∗ and every set P ⊆ R.

Remarks.

1. The multisets of rules in R∗ are called parallel rules. A pair of graphs
(G, G′) ∈ SEM (r) for some r ∈ R∗ is an application of the parallel rule
r to G with the result G′. It may be also called a direct parallel derivation
or a parallel derivation step denoted by G=⇒

r
G′. Accordingly, a sequence

of parallel derivation steps G = G0 =⇒
r1

G1 =⇒
r2

· · ·=⇒
rk

Gk = G′ for k ∈ N de-

fines a parallel derivation (of length k) from G to G′, which may be denoted
by G

∗=⇒
P

G′ if r1, · · · , rk ∈ P∗ for P ⊆ R.

2. The control conditions are meant to restrict the nondeterminism of rule
applications so that some reference is needed to the rules in considera-
tion. Hence, the semantics of control conditions has two rules parameters
which are used in the definition of the semantics of autonomous units in
the next section. On one hand, the semantics of a control condition c of an
autonomous unit may depend on the rule set P of the unit itself. On the
other hand, it depends on a set AR of active rules typically being the set of
parallel rules that can be composed of the rules of all units in a community.
Hence, the set AR specifies all parallel derivations that can be constructed
with the rules of a community, and the rule set P indicates which of these
rules belong to the unit with the control condition c.



106 H.-J. Kreowski and S. Kuske

3. Due to the true-concurrency condition, each direct parallel derivation d =
(G =⇒

r1+r2
G′′) gives rise to a parallel derivation G=⇒

r1
G′ =⇒

r2
G′′ which is called

a sequentialization of d. The two parallel derivation steps are called inde-
pendent (of each other). Note that there is a second sequentialization of the
form G=⇒

r2
Ĝ=⇒

r1
G′′ because of the commutativity in R∗. A parallel deriva-

tion step and its sequentialization can be considered as equivalent w.r.t. true
concurrency. If this relation is closed under sequential composition of par-
allel derivations as well as reflexivity, symmetry, and transitivity, one gets
the true-concurrency equivalence on parallel derivations, which is denoted
by ≡ . This is made explicit in the following definition.

Definition 2 (True-concurrency equivalence). Let A = (G,R,X , C) be a
concurrent graph transformation approach, and let DER(A) be the set of all
parallel derivations over A. Then the true-concurrency-equivalence is recursively
defined on DER(A) as follows:

1. Let d = (G =⇒
r1+r2

G′′) be a direct parallel derivation and let

d′ = (G=⇒
r1

G′ =⇒
r2

G′′)

be its sequentialization. Then d ≡ d′.
2. Let d = (G ∗=⇒

P
G), d′ = (G ∗=⇒

P
G), c = (F ∗=⇒

P
G), and e = (G ∗=⇒

P
H) be

parallel derivations for some P ⊆ R. If d ≡ d′, then c ◦ d ≡ c ◦ d′ and
d ◦ e ≡ d′ ◦ e.1

3. d ≡ d for all d ∈ DER(A).
4. If d ≡ d′, then d′ ≡ d for all d, d′ ∈ DER(A).
5. If d ≡ d′ and d′ ≡ d′′, then d ≡ d′′ for all d, d′, d′′ ∈ DER(A).

For technical simplicity we assume in the following that A = (G,R,X , C) is an
arbitrary but fixed concurrent graph transformation approach.

Examples

In the following we present some instances of the components of concurrent
graph transformation approaches which are partly used in the examples of the
following sections. Further examples of graph transformation approaches can be
found in, e.g., [18].

Graphs. A well-known instance for the class G is the class of all directed edge-
labeled graphs as defined in Section 2. Other classes of graphs are trees, undi-
rected graphs, hypergraphs, etc.

Rules. As a concrete example of rules we consider the so-called DPO rules each
of which consists of a triple r = (L, K, R) of graphs such that L ⊇ K ⊆ R
(cf. [3]). The application of a rule to a graph G yields a graph G′, if one proceeds
according to the following steps:
1 Here, ◦ denotes the sequential composition of derivations.
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1. Choose a graph morphism g: L → G so that for all items x, y (nodes or
edges) of L with x �= y, g(x) = g(y) implies that x and y are in K.

2. Delete all items of g(L)−g(K) provided that this does not produce dangling
edges. (In the case of dangling edges the morphism g cannot be used.) The
resulting graph is denoted by D.

3. Add R to the graph D.
4. Glue D and R by identifying the nodes and edges of K in R with their

images under g.

The conditions of (1) and (2) concerning g are called gluing condition.
Graph transformation rules can be depicted in several forms. In the following

they are shown by drawing only its left-hand side L and its right-hand side R
together with an arrow pointing from L to R, i.e. L → R. The nodes of K are
distinguished by different shapes and fill-styles occurring in L and R as well.

Figure 1 shows an example of a rule. To interpret the drawing properly, one
should remember that loops are not drawn, but the labels of the loops are placed
next to the nodes which the loops are incident with. In particular, a v-node is
a node with a v-labeled loop and a {b, e}-node a node with two loops labeled
with b and e, respectively. The left-hand side of the rule in Figure 1 consists of
a v-node, the intermediate graph K is equal to the left-hand side, and the right-
hand side consists of the same v-node, a new {b, e}-node, and a new edge labeled
with v. The edge points from the v-node to the {b, e}-node. Hence, the rule can
be applied to a graph with a v-node with the effect that a new {b, e}-node and
a v-labeled edge from the v-node to the {b, e}- node are generated.

v

−→
v

b e

v

Fig. 1. A rule

Given two rules ri = (Li, Ki, Ri) (i = 1, 2), their parallel composition yields
the rule r1+r2 = (L1+L2, K1+K2, R1+R2) where + denotes the disjoint union
of graphs. In the same way, one can construct a parallel rule from any multiset
r ∈ R∗. For every pair (G, G′′) ∈ SEM (r1 + r2) there exists a graph G′ such
that (G, G′) is in SEM (r1) and (G′, G′′) is in SEM (r2). This means that the
applications of DPO rules are truly concurrent. (see, e.g., [3] for more details).

Graph class expressions. Every subset M ⊆ G is a graph class expression that
specifies itself, i.e. SEM (M) = M . A single graph G can also serve as a graph
class expression specifying all graphs G′ with G ⊆ G′. This type of graph class
expressions is called subgraph condition. Moreover, every set L of labels specifies
the class of all graphs in G the labels of which are elements of L. Every set
P ⊆ R∗ of (parallel) graph transformation rules can also be used as a graph
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class expression specifying the set of all graphs that are reduced w.r.t. P where
a graph is said to be reduced w.r.t. P if no rules of P can be applied to the
graph. The least restrictive graph class expression is the term all specifying the
class G.

Control conditions. The least restrictive control condition is the term free that
allows all pairs of graphs, i.e. SEMAR,P (free) = G × G for all AR ⊆ R∗ and
all P ⊆ R. This is the only control condition used in our running example. A
much more restrictive control condition is a single rule r ∈ P . Its semantics
SEMAR,P (r) consists of the initial and final graphs of all parallel derivations
G0 =⇒

r1
· · ·=⇒

rn

Gn (n > 0) where r1, . . . , rn ∈ AR, exactly one ri contains at

least one copy of r, and no other rule of P is applied.2 More formally, this is
expressed as follows:

– There is an i ∈ {1, . . . , n} such that ri(r) > 0.
– For j = 1, . . . , n, rj(r′) = 0, for all r′ ∈ P \ {r}.
– For all j ∈ {1, . . . , n} with j �= i, rj(r) = 0.

A more general control condition is a set M ⊆ P where SEMAR,P (M) specifies
the initial and terminal graphs of all parallel derivations G0 =⇒

r1
· · ·=⇒

rn

Gn such

that for i = 1, . . . , n, ri ∈ AR, and ri(r) = 0 if r ∈ P \ M . This means that in
the applied parallel rules no copy of a rule in P \ M may occur.

Since the semantics of control conditions are binary relations, they can be
sequentially composed. For control conditions c and c′, their sequential compo-
sition is denoted by c ; c′ with SEMAR,P (c ; c′) = SEMAR,P (c) ◦ SEMAR,P (c′).
Other useful control conditions are regular expressions, as long as possible, as
well as priorities (cf. [14]).

4 Communities of Autonomous Units

Autonomous units interact in a common environment which is modeled as a
graph. As a basic modeling device, an autonomous unit consists of a set of graph
transformation rules, a control condition, and a goal. The graph transformation
rules contained in an autonomous unit aut specify all transformations the unit
aut can perform. Such a transformation comprises for example a movement of the
autonomous unit within the current environment, the exchange of information
with other units via the environment, or local changes of the environment. The
control condition regulates the application process. For example, it may require
that a sequence of rules be applied as long as possible. The goal of a unit is a
graph class expression determining how the transformed graphs should look like
eventually.

2 We assume that identical rules of different autonomous units can be distinguished

in AR. This can be achieved by considering named rules. For technical simplicity,

this is not further regarded in this paper.
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Definition 3 (Autonomous unit). An autonomous unit is a system aut =
(g, P, c) where g ∈ X is the goal, P ⊆ R is a set of graph transformation rules,
and c ∈ C is a control condition. The components of aut are also denoted by
gaut , Paut , and caut , respectively.

An autonomous unit modifies an underlying environment while striving for its
goal. In the setting of a concurrent graph transformation approach, its seman-
tics consists of a set of equivalence classes of parallel derivations w.r.t. the true-
concurrency equivalence. This concerns parallel derivations which comprise the
parallel application of local rules of the considered unit as well as of rules per-
formed by other autonomous units that are working in the same environment.
In a concurrent setting, environment changes performed by other units must be
possible while a single autonomous unit applies its rules. To cover this in the
definition of the semantics, we assume a variable set of active rules that de-
scibes all possibilities of coexisting units. Moreover, autonomous units regulate
their transformation processes by choosing only those rules that are allowed by
their control condition. A transformation process is called successful if its last
environment satisfies the goal of the unit.

Definition 4 (Parallel and concurrent semantics).

1. Let aut = (g, P, c) be an autonomous unit, let AR ⊆ R∗ be a set of parallel
rules, called active rules, and let d = (G ∗=⇒

AR
G′) ∈ DER(A) be a parallel

derivation over A. Then d is a parallel run of aut if (G, G′) ∈ SEMAR,P (c).
2. The set of parallel runs of aut is denoted by PARAR(aut).
3. The derivation d is called a successful parallel run if G′ ∈ SEM (g).
4. Let d ∈ PARAR(aut). Then [d] is a concurrent run of aut where [d] denotes

the equivalence class of d w.r.t. the true-concurrency equivalence ≡, i.e.,
[d] = {d′ | d ≡ d′}.

5. The set of concurrent runs of aut is denoted by CONCURAR(aut).
6. A concurrent run [d] is successful if it contains a successful parallel run.

Remarks.

1. A parallel run of an autonomous unit depends on its rules and its control
condition as the pair of the start graph and the result graph must be accepted
by the control condition semantics with respect to the rules of the unit.
Moreover, it depends on the set AR of active rules that reflects the context
of the considered unit. The definition of the parallel and concurrent semantics
does not fix the set AR. This means that one can choose any set of parallel
rules as active. Nevertheless, as mentioned before, the typical case is to
choose AR as the set of all parallel rules composed of the rules of a set of
units that interact with each other in the common environment. The rules
of the considered unit may occur as single rules or as components of parallel
rules in AR.
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2. All parallel and concurrent runs contain only derivations that apply active
rules. Moreover, each such derivation is only accepted if its initial and result
graph are allowed by the control condition. Moreover, each concurrent run
contains at least one accepted parallel run. Hence, the set of concurrent runs
is the quotient set of the parallel runs with respect to the true equivalence
relation. This is reflected in the following observation the proof of which is
straightforward and hence omitted.

Observation 1. Let aut = (g, P, c) be an autonomous unit, let AR ⊆ R∗, and
let d = (G ∗=⇒

AR
G′) be a derivation. Then the following statements are equivalent.

1. (G, G′) ∈ SEMAR,P (c)
2. d ∈ PARAR(aut)
3. [d] ∩ PARAR(aut) �= ∅
4. [d] ∈ CONCURAR(aut)

Examples

Two examples of autonomous units are depicted in Fig. 2. Both contain a single
rule that – according to the control condition free – can be applied arbitrarily
often. The goal of both units is equal to all which means that all parallel and
concurrent runs of the units are successful.

vertex copy
goal: all
rules:

cv:

v

−→

v

b e

v

cond: free

edge copy
goal: all
rules:

ce:

e b

v v′

v v′ −→

v v′

v v′

cond: free

Fig. 2. The units vertex copy and edge copy

Given a directed edge-labeled graph G and a set V such that every node in G
is a v-node, for some v ∈ V , the unit vertex copy on the left-hand side of Fig. 2
copies a node of G by generating a {b, e}-node and a v-labeled edge from the
original node to its newly generated copy. The unit edge copy on the right side
copies one unlabeled edge e′ of G provided that s(e′) and t(e′) are already copied
by two executions of vertex copy. It erases the e-loop at the copy of s(e′) and
the b-loop at the copy of t(e′) in order to guarantee that b and e cannot be used



Autonomous Units and Their Semantics – The Concurrent Case 111

by other applications of the rule ce. The label b indicates that the corresponding
node is the beginning of a simple path and the label e indicates the end of such
a path, respectively. Hence, b is removed if a new edge ends at that node, and e
is removed if a new edge starts at that node. Multiple concurrent applications of
vertex copy and edge copy generate simple paths from b-nodes to e-nodes that
are copies of simple paths of G. Moreover, the units generate copies of simple
cycles of G.

Applications of both rules depend on each other only in some cases. Con-
cretely, an application of ce is causally dependent on the two copies of its nodes
and on any edge copy that tries to use the same b- or e-loop. All other cases are
independent so that all vertex copies can be done in parallel followed by all edge
copies in parallel in the extreme case.

Autonomous units are meant to work within a community of autonomous
units that modify the common environment together. Every community is com-
posed of an overall goal that should be achieved, an environment specification
that specifies the set of initial environments the community may start working
with, and a set of autonomous units. The overall goal may be closely related to
the goals of the autonomous units in the community. Typical examples are the
goals admitting only graphs that satisfy the goals of one or all autonomous units
in the community.

Definition 5 (Community). A community is a triple

COM = (Goal , Init ,Aut),

where Goal , Init ∈ X are graph class expressions called the overall goal and
the initial environment specification, respectively, and Aut is a set of au-
tonomous units. The components of COM are denoted as GoalCOM , InitCOM ,
and AutCOM , respectively.

In a community, all units act on the common environment in a self-controlled
way by applying their rules. The active rules integrated in the semantics of au-
tonomous units make it possible to define a concurrent semantics of a community
in which every autonomous unit may perform its transformation processes. From
the point of view of a single autonomous unit, the changes of the environment
that are not caused by itself must be activities of the other units in the commu-
nity. Hence, in every transformation step in a community, a multiset of the rules
occurring in the autonomous units of the community is applied to the environ-
ment. All these multisets constitute the active rules of the community. This is
reflected in the following definition.

Definition 6 (Active rules). Let COM = (Goal , Init ,Aut) be a community.
Then the set of its active rules is defined by

AR(COM ) = (
⋃

aut∈Aut

Paut )∗.
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Every concurrent run of a community must start with a graph specified as an
initial environment of the community. Moreover, it must be a concurrent run
of every autonomous unit participating in the community. Successful runs of
communities are defined analogously to the successful runs of autonomous units.

Definition 7 (Concurrent community semantics).

1. Let COM = (Goal , Init ,Aut) be a community of autonomous units. Let
daut ∈ PARAR(COM )(aut) for every aut ∈ Aut with daut ≡ daut′ for all
aut , aut ′ ∈ Aut. Let the common start graph of these equivalent derivations
be in SEM (Init). Then the common equivalence class is a concurrent run of
COM .

2. The set of all concurrent runs of COM is denoted by CONCUR(COM ).
3. A concurrent run is successful if the common result graph is specified by

SEM (Goal ).

As the definition of the community semantics shows, there is a strong connec-
tion between the semantics of a community COM = (Goal , Init ,Aut) and the
semantics of an autonomous unit aut ∈ Aut. The concurrent semantics of COM
is a subset of the semantics of aut with respect to the active rules of COM . Con-
versely, one may take the intersection of the concurrent runs of all autonomous
units with respect to the active rules and restrict it to the derivations starting in
an initial environment. Then one gets the concurrent semantics of the commu-
nity. This reflects the autonomy because no unit can be forced to do anything
that is not admitted by its own control. The following observation makes the
described connection precise.

Observation 2. Let COM = (Goal , Init ,Aut) be a community. Then

CONCUR(COM ) =
{[G ∗=⇒

AR(COM )
G′] ∈

⋂
aut∈Aut CONCURAR(COM )(aut) | G ∈ Init}.

Proof. Let d = (G ∗=⇒
AR(COM )

G′) be a derivation. Then by Definition 7, the

class [d] is in CONCUR(COM ) if and only if G ∈ SEM (Init) and for each
aut ∈ Aut , there is a derivation daut ∈ PARAR(COM )(aut) such that daut ≡ d,
i.e., [daut ] = [d]. By Definition 4, this means that [d] ∈ {[G ∗=⇒

AR(COM )
G′] ∈⋂

aut∈Aut CONCURAR(COM )(aut) | G ∈ Init}.

If the control conditions satisfy certain properties, the preceding definitions es-
tablish a nice relation between the community semantics and the semantics of
the single autonomous unit which is composed of the goal of the community, the
union of all rules occurring in the autonomous units of the community and a
control condition that, specifies the intersection of the semantics of the control
conditions of the units. This is stated in the following observation.
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Observation 3. Let COM = (Goal , Init ,Aut) be a community and let union =
(Goal ,

⋃
aut∈Aut Paut , c) such that

SEMAR(COM ),Punion
(c) =

⋂
aut∈Aut

SEMAR(COM ),Paut
(caut).

Then CONCURAR(COM )(union) =
⋂

aut∈Aut CONCURAR(COM )(aut).

Proof. Let d = (G ∗=⇒
AR(COM )

G′) be a derivation. By Observation 1, we have that

[d] ∈ CONCURAR(COM )(union) if and only if (G, G′) ∈ SEMAR(COM ),P (c). By
assumption, this is the case if and only if

(G, G′) ∈
⋂

aut∈Aut

SEMAR(COM ),Paut
(caut ),

and by Observation 1, this is equivalent to

[d] ∈
⋂

aut∈Aut

CONCURAR(COM)(aut).

It should be noted that the condition in Observation 3 can be satisfied if the
following holds.

1. For each aut ∈ Aut the semantics of the control condition caut does not
depend on the parameter Paut , i.e.,

SEMAR(COM ),P (caut ) = SEMAR(COM ),P ′(caut),

for all P, P ′ ⊆ R.
2. The class C is closed under intersection, i.e., for all c, c′ ∈ C we have c∧c′ ∈ C

with SEMAR,P (c ∧ c′) = SEMAR,P (c) ∩ SEMAR,P (c′).

In this case, the condition c of the unit union can be defined as
∧

aut∈Aut caut .

Examples

The community V-paths shown in Fig. 3 solves a generalized form of the Hamil-
tonian path problem. More precisely, for some set V = {v1, . . . , vr}, V-paths
searches for copies of V -paths which are simple paths, that consist of r nodes
and contain exactly one vi-node for every i = 1, . . . , r. Hence, these paths are
Hamiltonian w.r.t. the set V and, consequently, if V coincides with the node
set of the initial environment, the community solves the Hamiltonian path prob-
lem. This is done in a concurrent way with the four autonomous units V-checker,
vertex copy, edge copy, and check. The initial component of the community spec-
ifies the set of V-graphs comprising all directed graphs with unlabeled edges and
nodes, but where to each node a v-loop is added for some v ∈ V The goal of
V-paths is a subgraph condition specifying the set of all graphs that contain a
heureka-node indicating that a V -path is found.
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V-paths
goal: heureka
init: V -graphs
aut: V-generator, vertex copy,

edge copy, check

Fig. 3. The community V-paths

The autonomous unit V-checker generates a set of (V ∪{check})-nodes where
check /∈ V . This node is used later on for analysing copies of simple paths. It is
depicted in Fig. 4. The nodes generated by V-checker will be called checkers in
the following.

V-checker
rules:

gen: empty −→
v1, . . . , vr

check

Fig. 4. The unit V-checker

The autonomous units vertex copy and edge copy are depicted in Fig. 2. As
stated in Section 4, they copy simple paths of the initial graph and label their
start nodes with a b-loop and their end nodes with an e-loop, each.

The unit check is depicted in Fig. 5 and contains the rules start, go, and
stop. It searches for a copy of a simple path of the initial environment. The rule
start begins the search at a b-node. It inserts a go-edge from the b-node to a
(V ∪ {check})-checker and deletes both the v-loop and the check -loop from the
latter. The check -loop is deleted to avoid that the checker can be used for another
path, and the v-loop is deleted in order to remember that the path has already
passed through a copy of a v-node. The application of the rule go changes the
source of the go-edge to the next node, say n, in the copy of a simple path.
Moreover, it deletes the corresponding loop at the checker of the path, i.e., it
deletes that loop at the target of the go-edge which has the same label as the
loop of the node of which n is a copy. Hence, the rule go cannot move the source
of the go-edge to an already visited node. The rule stop can be applied if there
doesn’t remain any labeled loop at the corresponding checker. Moreover the copy
of the path ends which is indicated by the e-loop. The application of the rule
deletes the go-edge and adds a heureka-loop to its target. Please note that the
symbol λ at the checker in the left-hand side of the rule means that the checker
has no labeled loop. Technically, this can be expressed by the rule with negative
context condition (NC, L, K, R) where L consists of an e-node, a checker, and a
go-edge from the e-node to the checker, NC consists of L plus a v-loop at the
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checker where v ∈ V , K is obtained from L by deleting the go-edge, and R is
obtained from K by adding a heureka-loop to the checker.

The control condition is satisfied if the unit check applies in its last step
a parallel rule composed of the rule stop only. Before the application of stop,
parallel rules composed of start and go can be applied arbitrarily often. Hence,
the unit finishes transforming graphs after the first application of the rule stop.

check
rules:

start:

v

b

v check

v −→

v

b

v go stop :

e

λ

go −→

e

heureka

go :

v

vgo −→ vgo

cond: {start , go} ; stop

Fig. 5. The unit check

With respect to causal dependency, the following holds. The application of the
rule of V-checker is independent of all other rule applications. The application
of start must wait for the generation of its node copy and its checker. The rule
go can be applied after a start application sequentially traversing a copy of a
simple path. The rule stop is only applicable at the end of the path if at all. The
applications of the check -rules are independent of each other if they concern
different copies of simple paths. In particular, the check of a single copy of a
simple path is never longer than r steps if r is the number of elements of V . It
needs exactly r steps in the successful case of finding a V -path. Because of the
control condition of the autonomous unit check, we get that all concurrent runs
of the community V -paths are successful.

5 Canonical Derivations

The definition of concurrent runs of autonomous units reflects the principle of
true concurrency meaning that the order of time of two rule applications is only
fixed if the derivation steps are causally dependent. The disadvantage of the
equivalence classes as concurrent runs is that they may contain an exponen-
tial number of equivalent derivations. This follows from the fact that a parallel
derivation step applying n rules is equivalent to all iterated sequentializations
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including all n! permutations of the n rule applications. There is a complete
enumeration of each equivalence class starting with a parallel run in the class
by iterated sequentializations and inverse sequentializations. But one may ask
whether there is a more efficient method to check the equivalence of parallel runs.
How and how fast equivalence can be checked, is often a fundamental question.
In the case of concurrent runs of autonomous units, it is of particular interest
because an equivalence class of parallel runs satisfies the control condition con-
ditions if one member does. Therefore, the satisfaction of control conditions can
only be checked up to equivalence.

In this section, we show that each equivalence class of parallel runs contains
canonical derivations which are reduced forms with respect to a shift operator
and which can be constructed from an arbitrary run by a quadratic number
of shifts at most. A shift is a composition of a sequentialization followed by
an inverse sequentialization moving some part of a parallel derivation step to
the preceding step. In other words, one gets a quadratic equivalence check in
this way if the canonical derivation is a unique representative of a concurrent
run. Furthermore, it turns out that the canonical derivation is unique if the
shift operator is confluent which applies in the DPO approach for example. For
technical purposes, we also introduce the delay of a parallel derivation as the
sum of the numbers of steps each atomic rule must wait before it is applied as
well as the number of applied atomic rules.

The following notions and results can be found in [11] (cf. also [3]) for the
DPO approach to graph transformation. They are adapted here to the case of
concurrent runs in communities of autonomous units.

Definition 8 (Shift operator).

1. A parallel derivation F =⇒
p+q

G′ =⇒
r

H with p �= 0 �= q is the shift of the par-

allel derivation F =⇒
p

G=⇒
q+r

H if there is a derivation F =⇒
p

G=⇒
q

G′ =⇒
r

H

such that the first two steps are the sequentialization of F =⇒
p+q

G′ and the

last two steps the sequentialization of G=⇒
q+r

H.

2. The shift operator is closed under sequential composition of parallel deriva-
tions, i.e., a parallel derivation E

∗=⇒
P

F =⇒
p+q

G′ =⇒
r

H
∗=⇒
P

I is a shift of the

parallel derivation E
∗=⇒
P

F =⇒
p

G′ =⇒
q+r

H
∗=⇒
P

I if F =⇒
p+q

G′ =⇒
r

H is a shift of

F =⇒
p

G=⇒
q+r

H .

3. A parallel derivation is canonical if no shift is possible.

4. Let s = (G0 =⇒
r1

G1 =⇒
r2

· · ·=⇒
rm

Gm) be a parallel derivation with ri =
ni∑

j=1

rij ,

rij ∈ R, ni ≥ 1 for i = 1, · · · , m. Then the delay of s is defined by

delay(s) =
m∑

i=1

(i− 1) · ni

and the number of atomic rules applied in s by nar(s) =
m∑

i=1

ni.
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Theorem 1. Let s = (G0 =⇒
r1

G1 =⇒
r2

· · ·=⇒
rm

Gm) be a parallel derivation with

ri =
ni∑

j=1

rij , rij ∈ R, ni ≥ 1 for i = 1, · · · , m. Let s′ be a shift of s. Then the

following holds.

1. s ≡ s′.
2. delay(s′) < delay(s).
3. 0 ≤ delay(s) ≤ n·(n−1)

2 for n = nar(s).
4. Let s = s0, s1, · · · , sk be a sequence of parallel derivations such that si is a

shift of si−1 for i = 1, · · · , k. Then k ≤ delay(s).
5. The equivalence class [s] contains canonical derivations where some of them

are obtained by iterating shifts as long as possible starting with s.
6. The canonical derivation in [s] is unique if the shift operator is confluent, i.e.,

if s1 and s2 are shifts of some parallel derivation s0, then there is a parallel
derivation s3 which is obtained from s1 and s2 by iterated shifts.

7. Let the canonical derivation in [s] be unique. Then s ≡ s for some parallel
derivation s if and only if iterated shifts as long as possible starting in s and
s yield the same result.

Proof. 1. A shift is a composition of a sequentialization and an inverse sequen-
tialization and yields equivalent derivations, therefore.

2. A shift moves at least one atomic rule to the preceding step such that it is
delayed one step less while no rule must wait longer than before.

3. As the shift decreases the delay, a sequentialization increases it. Therefore,
the worst case is a purely sequential derivation with one applied atomic rule
per step. The delay of such a derivation is the sum of the first n− 1 natural
numbers which is n·(n−1)

2 .
4. As the delay cannot be negative and decreases with each shift, delay(s) is

an upper bound of the number of iterated shifts starting in s.
5. Accordingly, the iteration of shifts as long as possible terminates always

yielding a canonical derivation.
6. It is well-known that a relation yields unique results by iterated application

if it is confluent and terminating.
7. Let ŝ be the result of the iterated shifts starting in s and s. Then s ≡ ŝ ≡ s

according to Point 1. Conversely, there is only one canonical derivation in [s].

Examples

Let [s] be a successful concurrent run of the community V-paths. Without loss
of generality, one can assume that s is canonical (otherwise shifts as long as
possible yield one). Due to the dependency analysis, all node copies and all
checker generations are done in the first step and all edge copies and applications
of start are done in the second step. The following r − 2 steps are parallel
applications of the rule go where r is the number of elements of the label set V.
The last step consists of all parallel applications of the rule stop which is applied
at least once because this is the only way to end successfully. This means that a
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successful run finds a V -path (and hence a Hamiltonian path as a special one)
in r + 1 steps.

If enough node and edge copies are made in a fair way, then one gets copies
of all simple paths. If enough checkers are generated, then it can be checked
whether there is a V -path among all simple paths. In other words, the concurrent
semantics of V-paths can solve the V -path problem in a linear number of steps
with high probability depending on the number of copies. To make this true, one
must assure that concurrent steps are not delayed for too long. The canonical
derivation does the job because all possible rule applications are performed as
early as possible. But less strict runs will also work if the number of shifts that
transform them into the canonical derivation is small.

This result is quite significant as it shows that an NP -complete problem can
be solved by a parallel run in a polynomial number of steps. This holds for con-
current runs, too, if there is not much unnecessary delay. Clearly, it is well-known
that parallelism is a way to overcome the P=NP -problem. The message here is
that autonomous units do the job if they are many enough and interact properly.
To keep the example simple, we do not employ any kind of heuristics. Neverthe-
less, autonomous units are suitable candidates to model heuristic methods (see
e.g. [20,15].)

6 Related Work

The present investigation is mainly related to work in three areas. With respect to
the concurrent semantics, it contributes to the theory of concurrency. Petri nets
are shown to be special cases of communities of autonomous units (cf. [9]). The
relation to other models of concurrent processes is still an open research topic.

Concerning autonomy, our approach is closely related to multiagent systems.
In [19], it is sketched that communities of autonomous units are a kind of rule-
based realization of the axiomatic definition of multiagent systems in the sense of
Wooldridge and others (see,e.g., [21]). How our concept is related to other graph-
transformational approaches to agent and actor systems like [10,5,4], should be
investigated in the future.

Last but not least, communities of autonomous units are devices to model
interactive processes and distributed systems. Within the area of graph trans-
formation, the approach is closely related to Manfred Nagl’s and others’ work
on the IPSEN Project and the IMPROVE Project (see, e.g., [16,17]). While we
start from a theoretical base and try to expand the concepts to reach practical
use, the Nagl school is rooted in the software engineering point of view from
the beginning. It would be of great interest to investigate the relations in more
details because quite some synergy may emerge from a common framework.

7 Conclusion

This is the third paper on the semantics of autonomous units. After the sequen-
tial semantics in [8] and the parallel semantics in [13], we have introduced the
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concurrent semantics based on the idea of true concurrency. A concurrent run is
an equivalence class of parallel runs w.r.t. the true-concurrency equivalence. It
can be represented by canonical derivations where a derivation is canonical if no
shift is possible meaning that each rule application is in the first step or causally
dependent of the preceding step. The example shows that an NP -hard problem
can be solved by linear concurrent runs of a community of autonomous units
where a concurrent run is linear if it contains a parallel run of linear length.

The paper provides the very first investigation of the concurrent semantics
of autonomous units. Further studies are needed to get a better insight into
the matter. This includes a thorough comparison with other approaches to con-
currency like communicating sequential processes, calculus of communicating
systems, traces, bigraphs, etc. W.r.t. Petri nets, the relation is already quite
clear. In [13], it is shown that a place/transition system can be seen as a com-
munity of autonomous units where each transition is the single rule of a unit and
the firing of a multiset of transitions satisfies the true-concurrency condition so
that these communities of place/transition systems fit into the framework of this
paper. Moreover, it should be thoroughly studied what are of the consequences
of requiring that an equivalence class must contain a single successful run.
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Abstract. The theory of algebraic graph transformation has proven to

be a suitable underlying formal framework to reason about the behav-

ior of model transformations. In order to model an arbitrary number

of actions at different places in the same model, the concept of amal-

gamated graph transformation has been proposed. Rule applications of

certain regularity are described by a rule scheme which contains multi-

rules modeling elementary actions and a common kernel rule for their

synchronization (amalgamation). The amalgamation theorem by Böhm

et al. ensures that for two multi-rules, the application of the amalga-

mated rule yields the same result as two iterative rule applications, re-

specting their common kernel rule application. In this paper, we propose

an extension of the amalgamation theorem to an arbitrary finite number

of synchronous rule applications. The theorem is used to show parallel

independence of amalgamated graph transformations by analyzing the

underlying multi-rules. As example, we specify an excerpt of a model

transformation from Business Process Models (BPM) to the Business

Process Execution Language (BPEL).

1 Introduction

Model transformation is one of the key activities in model-driven software de-
velopment. The theory of algebraic graph transformation has proven to be a
suitable underlying formal framework to reason about the behavior of model
transformations, e.g. showing termination and confluence [1].

Although graph transformation is an expressive, graphical and formal means
to describe computations on graphs, single rules are not always sufficient to
express complex actions. In that case, a specification of either sequential or
parallel rule application is needed to define a potentially infinite set of rule
apllications in a finite way. Often, the problem arises to model an arbitrary
number of similar parallel actions at different places in the same model. One
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way to transform multiple recurring structures (multi-object structures) is the
sequential application of rules by explicitly encoding an iteration over all the
actions to be performed. Often, this solution is not as declarative as it could be,
since we have to care about the stepwise execution of a forall operation on a
collection.

Hence, we propose the use of amalgamated graph transformation concepts,
based on parallel graph transformation introduced in [2] and extended to syn-
chronized transformations in [3,4], to define model transformations with multi-
object structures. The essence of amalgamated graph transformation is that
(possibly infinite) sets of rules with some regularity can be described by a finite
set of multi-rules modeling the elementary actions, amalgamated at a kernel rule.
The synchronization of rules along kernel rules in so-called interaction schemes
allows a transformation step to be maximally parallel in the following sense: An
amalgamated rule, induced by an interaction scheme, is constructed by a number
of multi-rules being synchronized at the kernel rule. The number of multi-rules
is determined by the number of different multi-rule matches found such that
they all overlap in the match of the kernel rule. Hence, the transformation of
multi-object structures can be described in a general way though the number of
actually occurring objects in the instance model is variable.

The amalgamation theorem by Böhm et al.[3] ensures that for two instances
of a multi-rule the application of the amalgamated rule yields the same result
as the iterative application of these two rules, where their common kernel is
transformed only once. In this paper, we propose an extension of the amalgama-
tion theorem to an arbitrary finite number of multi-rules. Using this extension,
the transformation of models with variably many multi-object structures can be
handled in a general way. An additional result allows to analyze parallel inde-
pendence of amalgamated graph transformations by analysing the underlying
multi-rules. The concept of amalgamation is useful for several kinds of model
transformation between visual models. In this paper, we present the theoretical
results without proofs, while the theory with proofs is presented in the categor-
ical framework of weak adhesive HLR categories in [5].

The main aim of this paper is to show how amalgamated graph transformation
can be applied to model transformation. For this purpose, the theoretical results
are applied to a model transformation translating simple business process models
written in the Business Process Modeling Notation (BPMN) to executable pro-
cesses formulated in the Business Process Execution Language for Web Services
(BPEL). BPMN models allow to split the control flow in an arbitrary number
of branches which are rejoined later. An analogous transformation step is the
translation of fork-join structures. We use this excerpt of the model translation
to motivate our amalgamation concept. The independence result of this paper
can be used to check if several applications of these amalgamated transformation
steps are independent of each other and can be executed in parallel.

We assume that the reader is familiar with the basic concepts of algebraic
graph transformation and basic constructions like pushouts and pullbacks which
are used in Sections 3 and 4. For an introduction to these concepts we refer to [1].
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The paper is structured as follows: In the next section, our running example,
an excerpt of a model transformation from BPMN to BPEL, is introduced.
Amalgamated graph transformation is reviewed in Section 3 where also the new
extended amalgamation theorem is presented. This theorem is used in Section 4
to show parallel independence of amalgamated graph transformations. Finally,
Section 5 considers related approaches (including tool-based approaches) and
Section 6 concludes the paper.

2 Example: Model Transformation from BPMN to BPEL
by Amalgamated Graph Transformation

In this section, we describe our running example, an excerpt of a model transfor-
mation from the Business Process Modeling Notation (BPMN) to the Business
Process Execution Language for Web Services (BPEL) according to the trans-
lation by Van der Aalst et al. in [6].

BPMN is a standard notation for modeling business processes used for busi-
ness analysis. In addition, BPEL is introduced as a notation to define executable
processes, i.e. processes that can be loaded into an execution engine which will
then coordinate the activities specified in the process definitions. Since both
languages are quite complex, we will consider subsets of the BPMN and BPEL
notations only. In addition, we use a reference structure to connect BPMN el-
ements with their newly constructed BPEL counterparts. During the transfor-
mation, the BPMN is modified as well because structures are collapsed (similiar
to parsing) while being transformed to BPEL.

In this paper, we concentrate on the translation of BPMN And and Xor
constructs to the corresponding BPEL language elements Flow and Switch via
amalgamated graph transformations. Translating those constructs with ordinary
graph transformation rules would require a complex control structure for guid-
ing the rule application process. Other BPMN language constructs like While
or Repeat can be handled by normal graph transformation rules. The complete
model transformation case study is described in [7] from a practical point of
view. The model transformation is implemented using AGG [8], a development
environment for attributed graph transformation systems supporting the alge-
braic approach to graph transformation [1]. AGG has been extended recently
by support for defining and applying amalgamated graph transformation. All
screenshots in this paper are taken from the AGG editors for rules and interac-
tion schemes.

2.1 Type Graphs

We define type graphs of the source language BPMN and the target language
BPEL. Furthermore, in order to define transformation rules, relations between
source and target meta-models are given by reference nodes of type F2ARef. The
type graph integrating the BPMN source model (left-hand part), the reference
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Fig. 1. BPMN2BPEL type graph

part (the node type F2ARef and its adjacent edge types bpmn and bpel) and the
target model (right-hand part) is shown in Fig. 1.

For the BPEL type graph, the parent-child relation on activities has been
modeled as a child relation. This leads to a structure similar to the XML repre-
sentation of the BPEL language in [6].

2.2 A BPMN Instance Graph: ATM Machine

As an example we consider a BPMN diagram which models a person’s interaction
with an ATM (see Fig. 2 where the concrete and abstract syntax of the diagram
are depicted). In the upper part, the ATM machine accepts and holds the card of
the person while simultaneously contacting the bank for the account information.
(The language elements AndSplit and AndJoin are used to model parallel actions.)
Afterwards, the display prompts the user for the PIN. Depending on the user’s
input there are three possible outcomes:

– the user enters the correct PIN and can withdraw money,
– the user enters the wrong PIN (a message is displayed),
– the user aborts the operation (an alarm signal is given).

For modelling alternative actions, the language elements XOrSplit and XOrJoin

are used. Any further interaction with the ATM (like returning the card to the
user) is not modelled here. Next nodes without conditions have an empty string
as ”cond” attribute. For simplicity, in Fig. 2 (b), these Next nodes are shown
without their attributes.

In the following, we will use the abstract syntax only where the source BPMN
model like the ATM machine in Fig. 2, the corresponding target BPEL model
and all intermediate models of the model transformation are typed over the type
graph in Fig. 1.
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Fig. 2. ATM machine in BPMN in concrete syntax (a) and abstract syntax (b)

2.3 Transformation Rules

Basically, the transformation from BPMN to BPEL is modelled in two phases:

1. translate all simple activities from BPMN to BPEL,
2. collapse all complex structures to new activities in the source model while

creating the corresponding structure in the target model, e.g. sequences,
switch or flow structures.

Rule CreateSimpleActivity in Fig. 3 models the translation of a simple activity
from BPMN to BPEL. Note that the negative application condition (NAC) takes
care that a corresponding BPEL SimpleActivity is created only if its BPMN Activity

has not already been translated before. Similar rules model the translation of
Alarm and Message events which are changed to an activity with a corresponding
SimpleActivity as translation. This eases the succeeding steps of the translation,
because these events are handled like activities in BPEL.

While translating structures from BPMN to BPEL, reference nodes are cre-
ated connecting source model flow objects to BPEL activities in the target model.

The translation of a chain of BPMN activities is done by two rules shown in
Figs. 4 and 5: Rule CreateSequence creates a new sequence in the BPEL model
and inserts the first two activities into this sequence. Rule CreateSequence2 deals
with the case that the sequence has already been created in the BPEL model.
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Fig. 3. Rule CreateSimpleActivity

Then, the current activity is added to the existing sequence. The negative ap-
plication condition (NAC) of each rule ensures that activities in a sequence are
translated from top to bottom, i.e. there are no other untranslated activities in
the sequence above the current ones, and that the order from the BPMN struc-
ture is preserved in the BPEL model. Note that we do not show all NACs in the
figures, but only a representative.

Fig. 4. Rule CreateSequence

Fig. 5. Rule CreateSequence2
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In Fig. 6, the result after applying rules CreateSimpleActivity and CreateSe-
quence as long as possible to the BPMN model in Fig. 2 is shown where all
activities and (simple) sequences are translated into the corresponding BPEL
objects. The next step is to translate the And and Xor constructs.

Fig. 6. Intermediate result of the model transformation

An And construct (a number of branches surrounded by an AndSplit and And-

Join element) is translated to a Flow container node which contains a child for
each branch emerging from the AndSplit. Since the number of branches can be ar-
bitrary, a normal graph transformation rule or any finite number of rules would
not be sufficient to express this situation. Therefore, we use amalgamated graph
transformation to express maximal parallel execution in the following sense: A
common subaction is modelled by the application of a common kernel rule of all
additional actions (modelled by multi-rules). For example, in order to process an
And construct, the common subaction processes one branch only. Independent
of the number of additional branches, this is the kernel action which will always
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happen. Hence, we model this action by the kernel rule in the upper part of
Fig. 7 where one branch surrounded by an AndSplit and AndJoin is translated to
a BPEL Flow node with one child. The NAC takes care that there are no other
branches with sequences of activities within the And construct (i.e. sequences
should be collapsed into single activities before translating the And construct).

Fig. 7. Interaction scheme CreateFlow

Additional subactions now are modelled by multi-rules. Each multi-rule con-
tains at least the kernel rule and specifies an additional action which is executed
as many times as matches for this additional part can be found in the host
graph. The multi-rule for processing And constructs is shown in the bottom part
of Fig. 7. It extends the kernel rule by one more branch. Formally, the syn-
chronization possibilities of kernel and multi-rules are defined by an interaction
scheme consisting of a kernel rule and a set of rules called multi-rules such that
the kernel rule is embedded in each of the multi-rules. The kernel morphism from
the kernel rule to the multi-rule is indicated in Fig. 7 by single node mappings
shown by corresponding numbers of some of the graph objects. Note that all
missing node and edge mappings can be uniquely determined from the given
ones.
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The application of an interaction scheme, i.e. of multi-rules synchronized at
their kernel rule is twofold: At first, a match of the kernel rule is selected. Then,
multi-rule instances are constructed, one for each new match of a multi-rule in
the current host graph such that it overlaps with the kernel match only. Then, all
multi-rule instances are glued at their corresponding kernel rule objects which
leads to a new rule, the amalgamated rule. The application of the amalgamated
rule at the amalgamated match consisting of all multi-rule matches glued at the
kernel match is called amalgamated graph transformation.

For the handling of Xor constructs (a number of branches surrounded by an
XorSplit and an XorJoin element), we have an analogous interaction scheme Cre-
ateSwitch which also consists of a kernel rule processing one branch, and one
multi-rule taking care of additional branches (see Fig. 8). Here, a BPEL Switch

node with corresponding children is created, where the condition in the Next

node is translated to a Case distinction.

Fig. 8. Interaction scheme CreateSwitch

The application of the CreateSwitch interaction scheme to the Xor construct
depicted in the bottom part of Fig. 6 yields an amalgamated rule where the
kernel rule is glued with two instances of the multi-rule (since we have three
branches between the XorSplit and the XorJoin).
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Fig. 9. Amalgamated rule of CreateSwitch for the ATM model

Fig. 10. Rule DeleteXor

The amalgamated rule (shown in Fig. 9) is then used to process the three
branches in one step by applying it to the graph in Fig. 6. The NAC shown in
Fig. 9 originates from the kernel rule and is simply copied from it. NACs of multi-
rules would require shifting to preserve their meaning as is explained in [5]. After
the application of the amalgamated rule, the rule DeleteXor in Fig. 10 removes
the XorSplit and XorJoin which are only connected by a single branch with a single
acitivity after the application of the amalgamated rule. A similar rule DeleteAnd

removes the AndSplit and AndJoin after the successful Flow construction.
If we apply our transformation rules in a suitable order starting with the

BPMN model ATM in Fig. 2, we get the resulting integrated graph shown in
Fig. 11 (b). Here, some elements of the BPMN notation still exist, comprising
a sort of stop graph of the parsing process because no transformation rule can
be applied anymore. If a pure BPEL graph is desired, this remaining BPMN
structure can be deleted by an additional rule. The abstract syntax of the BPEL
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expression is the tree with root node Sequence which is the target of the bpel edge
from the F2ARef node. The XML syntax of the BPEL model corresponding to
this tree is shown in Fig. 11 (a).

Fig. 11. ATM machine as transformation result in concrete BPEL syntax (a) and in

abstract syntax (b)

3 Amalgamated Graph Transformation

In this section, we give the formal foundations of amalgamated graph transfor-
mation based on graph transformation in the well-known double-pushout ap-
proach. We assume the reader to be familiar with this approach (see [1] for an
introduction and a large number of theoretical results). We concentrate on the
presentation of new concepts and results. The formal proofs of our results can
be found in [5]. For simplicity, we present the theory without negative appli-
cation conditions and without attributes, but it has been extended already to
this more general case which is used in our example. In fact, the theory in [5]
is presented in the categorical framework of weak adhesive HLR categories [1]
for rules with nested application conditions in the sense of Habel-Pennemann [9]
where negative application conditions are a special case.

Formally, a kernel morphism describes how the kernel rule is embedded into
a multi-rule. We need some more technical preconditions to make sure that the
embeddings of the L-, K-, and R-components are consistent.

Definition 1 (Kernel Morphism). Given rules p0 = (L0
l0←− K0

r0−→ R0)
and p1 = (L1

l1←− K1
r1−→ R1) with injective morphisms li, rifor i ∈ {0, 1}, a

kernel morphism s : p0 → p1, s = (sL, sK , sR) consists of injective morphisms
sL : L0 → L1, sK : K0 → K1, and sR : R0 → R1 such that in the following
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diagram (1) and (2) are pullbacks, and (1) has a pushout complement for sL ◦ l0.
p0 is then called kernel rule and p1 multi-rule.

L0 K0 R0

L1 K1 R1

p0 :

p1 :

l0 r0

l1 r1

sL sK sRs (1) (2)

Example 1. The kernel rule and the multi-rule of CreateFlow in Fig. 7 are linked
by a kernel morphism, which is indicated in Fig. 12 by equal numbering of se-
lected elements. The mapping of all remaining elements can be induced uniquely.
Fig. 12 shows that we have pullbacks (1) and (2). A pullback of two injective
graph morphisms can be considered as intersection of two graphs embedded in
a common graph. E.g. pullback (1) models the intersection K0 of L0 and K1

in L1. Morphisms sL and l1 indicate how K0 and L0 are embedded in L1. The
pushout complement for sL ◦ l0 adds the graph part which is needed to complete
L0 over K0 such that L1 is the result. Note that the pushout complement is not
the graph K1 in Fig. 12, but looks like the left-hand side of the rule in Fig. 13.

Fig. 12. Kernel morphism of interaction scheme CreateFlow
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For a given kernel morphism, the complement rule is the remainder of the multi-
rule after the application of the kernel rule, i.e. it describes what the multi-
rule does in addition to the kernel rule. The following lemma is an important
construction which is used in Theorem 1.

Lemma 1 (Complement Rule). Given rules p0 = (L0
l0←− K0

r0−→ R0) and
p1 = (L1

l1←− K1
r1−→ R1) and a kernel morphism s : p0 → p1 then there exists a

complement rule p1 = (L l←− K
r−→ R) such that each transformation G =

p1=⇒ H

can be decomposed into a transformation sequence G =
p0=⇒ G′ =

p1=⇒ H.

Proof Idea: Intuitively, the complement rule is the smallest rule that extends K0

such that it creates and deletes all these parts handles by the multi but not by
the kernel rule.

Example 2. For the kernel rule and the multi-rule of CreateFlow in Fig. 7, the
complement rule is shown in Fig. 13. It handles the transformation of the ad-
ditional branch which has to be added as an activity to the already existing
flow.

Fig. 13. Complement rule of CreateFlow

According to Fact 1, each transformation by the multi-rule of CreateFlow
(Fig. 7) applied to the graph in Fig. 6 can be decomposed into a transformation
sequence applying first the kernel rule of CreateFlow (Fig. 7) to the graph in
Fig. 6 and then the complement rule of CreateFlow in Fig. 13 to the resulting
graph.

A bundle of kernel morphisms over a common kernel rule forms an interaction
scheme.

Definition 2 (Interaction Scheme). Given rules pi = (Li
li←− Ki

ri−→ Ri)
for i = 0, . . . , n, an interaction scheme is a bundle of kernel morphisms s = (si :
p0 → pi)i=1,...,n.
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Given an interaction scheme which describes the basic actions in its kernel rule
and a set of multi-rules, we need to construct a graph-specific interaction scheme
for a given graph and kernel match. This specific interaction scheme contains
a certain number of multi-rule copies for each multi-rule of the basic scheme.
To do so, we search all different multi-rule matches which overlap in the kernel
match. The number of different multi-rule matches determines how many copies
are included in the graph-specific interaction scheme which is the starting point
for the amalgamated rule construction defined in Def. 3.

Consider Fig. 14 as an example. The basic interaction scheme is given on the
left. It consists of kernel rule r0 which adds a loop. Moreover, it contains one
multi-rule r1 modeling that object 2 being connected to object 1 is deleted and
a new object is created and connected to object 1 which has a loop now. Note
that there is a bundle of kernel morphisms which embed the kernel rule into
the multi-rules. Given graph G, there are obviously three different matches from
multi-rule r1 to G which overlap in the match of the kernel rule to G. Hence, the
multi-rule can be applied three times. Thus, we need three copies of the multi-
rule in the graph-specific interaction scheme, all with kernel morphisms from
kernel rule r0. In our example, the graph-specific interaction scheme is shown on
the right. Gluing all multi-rules in the graph-specific interaction scheme at their
common kernel rule, we get the amalgamated rule with respect to G, shown at
the bottom of Fig. 14.

In the following definition, we clarify the construction of amalgamated rules
from interaction schemes which are intended to be graph-specific already.

Fig. 14. Construction of an amalgamated rule
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Definition 3 (Amalgamated Rule). Given rules pi = (Li
li←− Ki

ri−→ Ri)
for i = 0, . . . , n and an interaction scheme s = (si : p0 → pi)i=1,...,n, then the

amalgamated rule p̃s = (L̃ l̃←− K̃
r̃−→ R̃) is constructed componentwise over si

as stepwise pushouts over i.

L0 K0 R0

Li Ki Ri

L̃ K̃ R̃

p0 :

pi :

p̃s :

l0 r0

li ri

si,L si,K si,R

l̃ r̃

ti,L ti,K ti,R

si

ti

(1) (2)

(3) (4)

Remark 1. We sketch the idea how to construct the componentwise pushout for
n = 3 for the L-component:

1. Construct the pushout (1a) of s1,L and s2,L.
2. Construct the pushout (1b) of s1 ◦ s1,L and s3,L.
3. L3 is the resulting left-hand side L̃ for the amalgamated rule.

L0 L1

L2 L2

L0 L2

L3 L3

s1,L

s2,L

s2

s1

s1◦s1,L

s3,L(1a) (1b)

This construction is unique, independent of the order of i, and can be done
similarly for the K- and R-components. By pushout properties (see [1]), we
obtain unique morphisms l̃ and r̃.

Example 3. In our example transformation for the ATM machine from BPMN
in Fig. 2 to BPEL in Fig. 11 we can use two different amalgamated rules - one
for the transformation of the And construct and one for the Xor construct. For
the And construct, the multi-rule in Fig. 7 is applied once which means that
n = 1 and the amalgamated rule is isomorphic to the multi-rule itself. For the
Xor construct, the same multi-rule is applied twice, leading to the amalgamated
rule shown in Fig. 9.

The application of an amalgamated rule to a graph G is called an amalgamated
transformation. Since an amalgamated rule is a normal transformation rule,
an amalgamated graph transformation step at an amalgamated rule and an
amalgamated match is a normal graph transformation step. If we have a bundle
of direct transformations of a graph G, where for each transformation one of the
multi-rules is applied, we want to analyse if the amalgamated rule is applicable
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to G combining all the single transformation steps. These transformations are
compatible, i.e. multi-amalgamable, if the matches agree on the kernel rules, and
are independent outside.

Definition 4 (Multi-Amalgamable). Given an interaction scheme s = (si :
p0 → pi)i=1,...,n, a bundle of direct transformations steps (G =

pi,mi===⇒ Gi)i=1,...n

is multi-amalgamable over s, if

– it has consistent matches, i.e. mi◦si,L = mj◦sj,L =: m0 for all i, j = 1, . . . , n
and

– it has weakly independent matches, i.e. mi(Li) ∩ mj(Lj) ⊆ m0(L0) ∪
(mi(li(Ki)) ∩ mj(lj(Kj))) for all 1 ≤ i �= j ≤ n which means that the
elements in the intersection of the matches mi and mj are either preserved
by both transformations, or are also matched by m0.

L0

LiKi Lj Kj

G

si,L sj,L

mi mj

m0
li lj

Remark 2. The concepts of consistent matches and weakly independent matches
have been used already for the case n = 2 in [3].

If a bundle of direct transformations of a graph G is multi-amalgamable, then
we can apply the amalgamated rule directly to G leading to a parallel execution
of all the changes done by the single transformation steps.

Theorem 1 (Multi-Amalgamation). Given a bundle of multi-amalgamable
transformations (G =pi,mi===⇒ Gi)i=1,...,n over an interaction scheme s then there is
an amalgamated transformation G =

p̃s,m̃
===⇒ H and transformations Gi =

qi=⇒ H over
some rule qi such that G =

pi,mi===⇒ Gi =
qi=⇒ H is a decomposition of G =

p̃s,m̃
===⇒ H.

Note that qi is the complement rule of the kernel morphism ti : pi → p̃s and
can be constructed as a gluing of the complement rules p1, . . . , pn of p1, . . . , pn

over K0.

H

Gi

G p̃s,m̃

pi,mi qi

Proof Idea: Basically, p̃s is applicable to G because the bundle is multi-
amalgamable. Then we can apply Lemma 1 which implies the decomposition.

Example 4. The multi-rule of the interaction scheme CreateSwitch (Fig. 8) can
be applied two times to the graph in Fig. 6 with the same kernel rule match



Independence of Amalgamated Graph Transformations 137

(Fig. 8). In fact, the interaction scheme CreateSwitch leads to multi-amalgamable
transformations G =

pi,mi===⇒ Gi, i = 1, 2. By Theorem 1, we can apply the amal-
gamated rule (Fig. 9) to the same graph G, leading to G =p̃s,m̃

===⇒ H , and for
G =

pi,mi===⇒ Gi we have Gi =
qi=⇒ H with q1 = p2 and q2 = p1 where p1 and p2 are

the complement rules of p1 and p2, respectively.

4 Parallel Independence of Amalgamated Graph
Transformations

In this section, we want to analyze when two amalgamated graph transformations
of a graph are parallel independent which means that they can be sequentially
applied in any order. Of course, we could check parallel independence of the
two transformations directly based on the definition and using the amalgamated
rules. But even if we only know the underlying bundles of transformation steps
via the multi-rules, we can analyze parallel independence of the amalgamated
transformations based on these single transformation steps.

Theorem 2 (Parallel Independence). Given two interaction schemes s and
s′ and two bundles of multi-amalgamable transformations (G =

pi,mi===⇒ Gi)i=1,...,n

over s and (G =
p′

j ,m′
j===⇒ G′

j)j=1,...,n′ over s′ such that G =pi,mi===⇒ Gi and G =
p′

j ,m′
j===⇒

G′
j are parallel independent for all pairs i, j. Then also the corresponding amal-

gamated transformations G =
p̃s,m̃
===⇒ H and G =

p̃s′ ,m̃′
====⇒ H ′ are parallel independent.

Proof Idea: For parallel independence, there have to exist morphisms from
the gluing objects of the one rule to the result of the second transformation and
vice versa. If these morphisms exist for the single transformation steps, we can
combine them to morphisms from the gluing objects of the amalgamated rules to
the resulting objects of the amalgamated transformations.

Moreover, the Local Church–Rosser Theorem leads to an object X with amal-

gamated transformations H =
p̃s′ ,ñ′
===⇒ X and H ′ =

p̃s,ñ
==⇒ X.

H

Gi

G

H ′

G′
j

X

p̃s,m̃
qi

pi,mi

p̃s′ ,m̃′ q′
j

p′
j ,m′

j

p̃s,ñ

p̃s′ ,ñ′

Example 5. In the intermediate model in Fig. 6, we find a match for the kernel
rule of CreateFlow (Fig. 7) using the left branch of the And construct, and an
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extension of this match for the multi-rule of CreateFlow covering also the right
branch. This means that we get a bundle consisting of one transformation with
the multi-rule of CreateFlow.

Similarly, we can find a match for the kernel rule of CreateSwitch (Fig. 8)
using the left branch of the Xor construct which can be extended to two different
matches of the corresponding multi-rule, one using the middle branch and one
using the right branch. This leads to a bundle consisting of two transformations
with two instances of the multi-rule of CreateSwitch.

If we apply all these multi-rules via the above defined matches, we obtain a
transformation G =

p1=⇒ H1 handling the transformation of the And construct, and

two transformations G =
p′
1=⇒ H ′

1 and G =
p′
2=⇒ H ′

2 handling the transformation of
the left and middle resp. left and right branches of the Xor construct. For the first
transformation, the multi-rule is isomorphic to the amalgamated rule because
we have n = 1. Moreover, the last two transformations are multi-amalgamable
because they agree on the kernel rule match and the matches are disjoint outside
the kernel. This means that we can apply the amalgamated rule of CreateSwitch
which is depicted in Fig. 9, directly to the graph in Fig. 6 transforming the
complete Xor construct.

The used matches of p1 and p′1 as well as of p1 and p′2 are disjoint which means
that the corresponding transformations are parallel independent. Therefore we
can apply Theorem 2 to these amalgamated transformations which means that
the amalgamated transformations of the And and the Xor constructs are parallel
independent and can be applied in any order to G leading to the same result X .

5 Related Work

There are several graph transformation-based approaches which realize the trans-
formation of multi-object structures. PROGRES [10] and Fujaba [11] feature so-
called set-valued nodes which can be duplicated as often as necessary. These two
approaches handle multi-objects in a pragmatic way. Object nodes are indicated
to be matched optionally once, arbitrarily often, or at least once. Object nodes
that are not indicated as mulit-objects are matched exactly once. Adjacent arcs
are treated accordingly. These two approaches are more restricted than ours,
since they focus on multiple instances of single nodes instead of graph parts.

Furthermore, PROGRES allows to embed the right-hand side of a rule in
a flexible way by specifying an embedding clause. This clause considers the
embedding of the corresponding left-hand side and declares for each type of arc
running between the left-hand side and the context graph how it is replaced by
an arc between the right-hand side and the context graph. Such an embedding
clause cannot be defined in our approach. Instead we have to specify a multi-rule
for each arc type used in the embedding clause. Since the context graph can be
an arbitrary one, so can be the embedding. This is reflected by constructing an
amalgamated rule suitable for the actual context and embedding.
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Further approaches that realize amalgamated graph transformation are
AToM3, GReAT and GROOVE. AToM3 supports the explicit definition of inter-
action schemes in different rule editors [12] whereas GROOVE implements rule
amalgamation based on nested graph predicates [13]. The GReAT tool can use
a group operator to apply delete, move or copy operations to each match of a
rule [14].

A related conceptual approach aiming at transforming collections of similar
subgraphs is presented in [15]. The main conceptual difference to our approach is
that we amalgamate rule instances whereas Grønmo et al. replace all collection
operators (multi-objects) in a rule by the mapped number of collection match
copies. Similarly, Hoffmann et al. define a cloning operator in [16] where cloned
nodes roughly correspond to multi-objects.

None of the aforementioned approaches so far investigate the formal analysis
of amalgamated graph transformation. Here, to the best of our knowledge the
amalgamation theorem in [3] has been the only formal result up to now. In
this paper, we extend the amalgamation theorem to an arbitrary finite number
of multi-rules. We implemented our approach in AGG (used for modeling the
sample model transformation in this paper), and in our EMF transformation
tool EMF Henshin [7,17]. Here, graph transformation concepts are transferred
to model transformations in the Eclipse Modeling Framework (EMF).

6 Conclusions and Future Work

In this paper, we recall the concept of amalgamated graph transformations from
[3], extend it to multi-amalgamation and apply it to model transformation. In
fact, the amalgamation concept is very useful for this application area, because it
allows to define graph transformation systems more compactly. Parallel actions
which shall be performed on a set of similar object structures can be described
by interaction schemes. An amalgamated graph transformation applies an inter-
action scheme, i.e. a set of parallel actions with the kernel rule as synchronization
point, to a specific graph as one atomic step.

Although amalgamated graph transformations are useful for specifying model
transformations more naturally and more efficiently, the theory is not fully de-
veloped and thus, cannot be used to verify model transformations yet. Our paper
can be considered as an essential contribution towards a theory of amalgamated
graph transformations. Due to the multi-amalgamation theorem, the central
technical result in this paper, we are able to characterize parallel independent
amalgamated graph transformations. If we can show that two alternative steps
in a model transformation sequence are parallel independent, we can apply them
in any order. This result on parallel independence is essential to show confluence
results for amalgamated graph transformations in future work. In [5], the theory
of amalgamated graph transformation is formulated already in the framework of
weak adhesive HLR categories such that it can be applied to typed attributed
graph transformations with suitable application conditions. Moreover, we plan
to extend the amalgamation concept to triple graph grammars [18] which are
well-known for the specification of model transformations.
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10. Schürr, A., Winter, A., Zündorf, A.: The PROGRES-approach: Language and envi-

ronment. In: Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.) Handbook

of Graph Grammars and Computing by Graph Transformation. Applications, Lan-

guages and Tools, vol. 2, pp. 487–550. World Scientific, River Edge (1999)

11. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: A new graph

rewrite language based on the Unified Modeling Language. In: Ehrig, H., Engels,

G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 296–

309. Springer, Heidelberg (2000)

12. de Lara, J., Ermel, C., Taentzer, G., Ehrig, K.: Parallel graph transformation for

model simulation applied to timed transition Petri nets. ENTCS 109, 17–29 (2004)
13. Rensink, A., Kuperus, J.H.: Repotting the geraniums: On nested graph transfor-

mation rules. ECEASST 18 (2009)

14. Balasubramanian, D., Narayanan, A., Neema, S., Shi, F., Thibodeaux, R., Karsai,

G.: A subgraph operator for graph transformation languages. ECEASST 6 (2007)

15. Grønmo, R., Krogdahl, S., Møller-Pedersen, B.: A collection operator for graph

transformation. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 67–82.

Springer, Heidelberg (2009)
16. Hoffmann, B., Janssens, D., van Eetvelde, N.: Cloning and expanding graph trans-

formation rules for refactoring. ENTCS 152, 53–67 (2006)

17. Biermann, E., Ermel, C., Taentzer, G.: Lifting parallel graph transformation con-

cepts to model transformation based on the Eclipse modeling framework. EC-

EASST 26 (2010), http://journal.ub.tu-berlin.de/index.php/eceasst/issue/view/36
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Abstract. Model-based software development processes often force
their users to translate instances of one modeling language into related
instances of another modeling language and vice-versa. The underlying
data structure of such languages usually are some sort of graphs. Triple
graph grammars (TGGs) are a formally founded language for describing
correspondence relationships between two graph languages in a declara-
tive way. Bidirectional graph language translators can be derived from a
TGG, which maps pairs of related graph instances onto each other. These
translators must fulfill certain compatibility properties with respect to
the correspondence relationships established by their TGG. These prop-
erties are guaranteed for the original TGG approach as published 15
years ago. However, its expressiveness is pushed to the limit in most real
world scenarios. Furthermore, the original approach relies on a parsing
algorithm with exponential runtime complexity. In this contribution, we
study a more expressive class of TGGs with negative application condi-
tions and show for the first time that derived translators with a polyno-
mial runtime complexity still preserve the above mentioned compatibility
properties. For this purpose, we introduce a new characterization of well-
formed TGGs together with a new translation rule scheduling algorithm
that considers dangling edges of input graphs.

Keywords: triple graph grammars, bidirectional model transformation,
negative application conditions, dangling edge condition.

1 Introduction

Languages in general and computer languages in particular are used to describe
artifacts and processes of the real world. These descriptions can be thought of
as models of the real world or in a very general term as data. Languages have
specific rules to form these models and model elements are mostly typed to
assign semantics to a category of elements. Specific domains of the world require
specific languages which are nowadays often called domain specific languages
(DSL). These DSLs are tailored to the specific needs of a group of people which
should benefit from using these DSLs. But, two languages that refer to the same
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domain and share the same artifacts of the real world, may though have different
representations. There are various reasons for the concurrent usage of different
languages in engineering projects. Domain experts (humans or computers) do
not “speak” one language but different ones. Or, one language might be more
adequate to express domain specific facts than the other. So, it is a common
scenario that an engineer manually translates an instance of one language into
an instance of another language and spends a lot of time to keep these language
instances then in a consistent state. But, translation between languages is time-
consuming and requires experts in both languages. Therefore, it is reasonable to
facilitate this process. Accordingly, (semi-)automated translators are needed that
assist their users in keeping related instances of languages in a consistent state.
Due to the reasons listed above, it seems to be quite natural to develop a language
for the language translation domain, too. Triple graph grammars (TGGs) are a
formally founded language that is used to build bidirectional translators easily.

In the following section, we briefly introduce the reader to the world of TGGs
and state the challenges the designers of TGG-based languages have to face:
(1) TGGs must be expressive enough for the specification of complex relation-
ships between pairs of languages and (2) they must allow for the derivation of
efficiently working translators that are compatible with the related TGG specifi-
cation. Subsequently, we show in Sect. 3 that we can improve the expressiveness
of TGGs by introducing negative application conditions (NACs) and neverthe-
less still derive compatible translators for a certain family of TGGs. In Sect. 4
we add the concept of checking dangling edge conditions (DECs) to our graph
translation algorithms. DEC-checks resolve rule application conflicts, prevent the
construction of illegal graphs, and thus guarantee a polynomial runtime behavior
of the derived translators. Based on these achievements we present an efficient
translation algorithm in Sect. 5 that is still compatible with TGGs of the for-
merly defined family of TGGs. Section 6 analyzes how related approaches deal
with the challenges of bidirectional model transformation languages in general
and TGG-based languages in particular. Finally, we conclude this contribution
in Sect. 7 and state open challenges to be solved in future work.

2 TGGs with Negative Application Conditions

In 1994 the first publication appeared that introduced the concept of triple graph
grammars [1]. It allows for the specification of correspondence relationships be-
tween two languages of graphs. TGGs are grammars that generate graph triples
by applying productions of the grammar to an input graph triple (axiom). The
three graphs are often called source and target graph representing the elements
of the related languages, and correspondence graph containing correspondence
links. The correspondence links are elements of a language, too—the correspon-
dence language that relates elements of the source and target language. TGGs
have been invented to support translation of documents based on related graph-
like data structures. Related documents are, e.g., design documents of a piece
of software (e.g., class diagrams) and design documents of a data management
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environment (e.g., relational database schema) that persists the data which is
processed by the software. Class diagrams and database schemata are closely
related as we will see later on. TGGs enable to explicitly establish mappings
between documents by means of traceability links that contain additional infor-
mation about the transformation process. TGGs are used to build bidirectional-
working formal language translators. In addition, they allow to check consistency
of related documents and to efficiently propagate changes in one document to
restore consistency in the corresponding document.

In the context of the model driven architecture (MDA) [2,3] TGGs are used for
the declarative specification of bidirectional model transformations. One TGG
serves as input for the derivation of a pair of model translators that transform a
model of one language into a corresponding model of the other language and vice
versa. The correspondence relations are needed for traceability purposes and they
encode additional information about the translation process itself. This allows
for the realization of incremental updates that are required if changes occur in
the involved models. In this contribution we will use the terms “graph”, “node”,
etc. of the graph grammar world, but a translation of all definitions and theorems
to the MDA world simply requires the replacement of the introduced terms by
their MDA counterparts like “model”, “object”, . . . [4].

Now, we will explain TGGs by example and afterwards describe how trans-
lators are derived from a TGG. Finally, we will summarize the fundamental
properties of TGGs and derived translators as stated in [5]. The example used
throughout this contribution is the well-known mapping between class diagrams,
also referred to as “source domain”, and relational database schemata, also re-
ferred to as “target domain”. This example is discussed in numerous publications
of the model and graph transformation domain [6,3]. We have reduced the exam-
ple to a core part that is used to explain the ideas presented in this contribution.
We will now start building the triple graph grammar TGGCDDS that specifies
the mapping between class diagrams and database schemata.

2.1 TGG Schema

TGGs consist of a TGG schema which describes the structural dependencies
between the elements of the two related languages and the correspondence lan-
guage. Figure 1 shows the TGG schema of the triple graph grammar TGGCDDS .
The schema defines the structural correspondences of the source and target do-
main. The domain of class diagrams defines classes and attributes. Classes may
have subclasses and contain zero to many attributes. Attributes are ordered
by the successor/predecessor relationship “Precedes”. Multiple inheritance is not
supported in this example, so each subclass may have only one superclass. The
domain of relational database schemata defines tables and columns. Each table
may contain a number of columns. Columns are ordered by the successor/pre-
decessor relationship “Precedes”.

The elements of both domains are related via so called correspondence link
types which are located in the link domain. Link types are denoted as hexagonal
elements. Throughout this contribution we call instances of link types (TGG)
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Attr
prev

next

sub

super

Table

Column
prev

next

0..1
0..*

0..1

0..1 0..1

0..1

CT

AC

attr0..* column0..*
Contains Contains

Precedes Precedes

Inherits

inv: attr size()>0 implies attr select(next size()=0) size()=1

inv: column size()>0 implies column select(next size()=0) size()=1

Class

Fig. 1. TGG schema of TGGCDDS that relates class diagrams and database schemata

links. The link type CT (class-table-relation) maps classes to tables, whereas
the link type AC (attribute-column-relation) maps attributes to columns. Let us
have a closer look at the graph constraints of the given schema. Graph triples
must fulfill these constraints in order to be valid. Successors of attributes and
columns are realized via the “Precedes” edge type. The multiplicity “0..1” of the
edge type’s end “next” denotes that each attribute and column respectively may
have a successor, but need not. These are multiplicity constraints that might be
expressed by OCL invariants invCD:P :n:mult and invDS:P :n:mult. In addition, the
OCL invariants shown in Fig. 1 constrain the number of elements without suc-
cessor. A class with attributes must have exactly one attribute without successor
(invCD:C). Similarily, tables and columns are constrained by invDS:T .

2.2 TGG Productions

In addition to the TGG schema, a set of TGG productions is specified. TGG
productions are often called TGG rules. However, we stick to the term TGG
productions to avoid clashes with derived translation rules. Productions define
a language of consistent graph triples, i.e., they describe how related triples of
graphs may evolve simultaneously. Each production consists of a graph pattern—
its left-hand side L—that looks for a corresponding match (redex) in a graph
triple. Applied to a redex a TGG production adds a copy of the elements of its
right-hand side R that are not already part of L to the regarded graph triple.

The TGG productions of TGGCDDS are depicted in Fig. 2 using a shorthand
notation for graph productions. Instead of showing both left-hand and right-
hand side as two separate parts of a production, both sides are merged [7]. The
elements contained in the left-hand and in the right-hand side of the production
L ∩ R are denoted as black elements without any additional markup. These
elements are context elements that define a pattern that matches the redex in a
host graph triple to which the production is then applied. The elements contained
in the right-hand side only R\L are denoted as green elements with an additional
++ markup. These elements are created during the application of a production
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to its redex. Nodes of a TGG production that are created by the production and
attached to a TGG link that is created by the production are called primary
nodes. In general, TGG productions may create additional secondary nodes (i.e.,
non-primary nodes) that are directly or transitively connected with the primary
node. As the TGG formalism does not allow for the deletion of elements, elements
that are contained in the left-hand side only L\R need not to be visualized
in TGG productions. Groups of elements that form a NAC are crossed-out.
No match for these elements must be found in the host graph; otherwise the
matching NAC blocks the application of its production.

t1:Tablec1:Class l1:CT
++ ++ ++

(1)

c1:Class t1:Table

a1:Attr l2:AC
++ ++

l1:CT

o1:Column

++

a2:Attr o2:Column

c1:Class t1:Table

a1:Attr l2:AC
++ ++

l1:CT

o1:Column

++

o2:Column

o3:Column

next

next

a2:Attr

++

++

++

++

(4)

(3)

++

c1:Class

t1:Table

super

c2:Class l2:CT
++ ++

l1:CT

++

(2)

c1:Class t1:Table

a1:Attr l2:AC
++ ++

l1:CT

o1:Column

++

o2:Column

o3:Column

next

next

a2:Attr

a3:Attr
next

next ++ ++

(5)

++ ++

Fig. 2. TGG productions (1) and (2) that relate classes and tables. TGG productions
(3), (4), and (5) that relate attributes and columns.

Productions (1) and (2) produce classes and tables, whereas productions (3),
(4), and (5) produce attributes and columns. Production (1) is applicable in any
situation, as it has no required context elements. It creates a new class in the
source domain, a new table in the target domain, and a new CT link in the
link domain. Furthermore, the new CT link relates the just created elements of
source and target domain. Production (2) creates a new class c1 and a new CT
link l2 if a class c1 and a table t1 exist that are already related via a CT link
l1. The new class is added to the inheritance structure of c1 and the new CT
link relates c2 and t1. The following productions are more interesting as they
make use of NACs, which guarantee that no invalid graph triples are produced
by the productions. An invalid graph triple would either violate a multiplicity
constraint or an OCL invariant of the TGG schema (cf. Fig. 1).
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Production (3) is used to create the first attribute in a class of an inheritance
structure and the corresponding column in a table. Due to the NACs present in
both domains, this production is applicable only if the matched class and table
do not already contain an attribute or a column. So, the NACs ensure that at
most one attribute and column are created per class and table respectively that
has no successor and, therefore, prohibit a violation of invCD:C and invDS:T .

Production (4) creates the first attribute of a class of an inheritance structure,
when another class of the inheritance structure already has an attribute. In
this case the corresponding table already contains at least one column and,
as columns are ordered, the new column o1 must be the successor of one of
the existing columns. The NAC in the target domain ensures that the created
column o1 is the successor of a column that does not have a successor yet. So,
it ensures that the multiplicity constraint invDS:P :n:mult of the endpoint “next”
in the target domain holds after production application. The NAC in the source
domain has the same effect as the NAC in production (3). The new column o1
has no successor and so enables the production to be applied for other classes
that are part of the inheritance structure that have no attribute yet.

Production (5) is applicable in situations where a class and a table have at
least one attribute and column respectively, i.e., productions (3) or (4) have
been applied earlier on. The effect of both NACs is similar to the NAC of the
target domain in production (4). They ensure that the multiplicity constraints
invCD:P :n:mult and invDS:P :n:mult hold, by assigning the just created elements
a1 and o1 as next element of elements that do not have successors yet.

2.3 Simultaneous Evolution of Graph Triples

We will now discuss the simultaneous evolution of graph triples by applying the
TGG productions of TGGCDDS to an empty graph triple. The resulting graph
triple GT6 (cf. Fig. 3 (a)) is an element of the language of the just introduced
TGG. The graph triple is produced by applying production (1) to the empty
graph triple and afterwards production (2) to the resulting graph triple. Finally,
the following productions are applied: (3), (4), (5), and (5) again. Thus, GT6 is
produced by sequence SEQ6 = (p(1), p(2), p(3), p(4), p(5), p(5)).

Production (1) simultaneously creates a class c1 and a table t1 and relates
them via link l1, whereas production (2) creates the subclass c2 and relates it
with the already existing table t1 via link l2. Note that the context in which
productions are applied is important (cf. Sect. 5). The context in which produc-
tion (3) can be applied is either (c1, l1, t1) or (c2, l2, t1). In our example, we
first choose subclass c2 as context. Production (3) is applicable in the context
of c2 because neither class c2 nor table t1 contain elements at this moment.
As a consequence attribute a3 and column o3 together with their link l3 are
created. From now on, p(3) is neither applicable in the context of class c1 nor
c2 due to the NAC in the target domain that blocks because table t1 already
contains column o3. In addition, its NAC in the source domain blocks in the
context of class c2 because c2 contains attribute a3. In the next step we apply
production (4) in the context of class c1. It is applicable because no attribute
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c2:Class

a2:Attr

a3:Attr

a4:Attr

next

c1:Class l1:CT t1:Table
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l4:AC
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l3:AC
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l6:AC

next

next
super

(b)

Fig. 3. Schema compliant graph triples GT6 and GT ∗
6 produced by TGGCDDS

is currently present in class c1 and one column o3 that has no successor yet, is
present in table t1. So, attribute a1 and column o1 are created and related via
link l4 and column o1 is set as successor of column o3. The next two applications
of production (5) are again possible in the context of class c1 and c2. We decide
to first apply p(5) in the context of c1 and afterwards in the context of c2. This
leads to sequence SEQ6 = (p(1)@∅, p(2)@c1, p(3)@c2, p(4)@c1, p(5)@c1, p(5)@c2)
and the final situation depicted in Fig. 3 (a).

The order of columns located in the target domain of GT6 is o3, o1, o2, and
o4. This order is determined by the sequence of production applications in a
particular context as described above. If the example above is changed such that
production (3) is applied in the context of class c1 and production (4) in the
context of class c2 then SEQ∗

6 = (p(1), p(2), p(3)@c1, p(4)@c2, p(5)@c1, p(5)@c2).
The order of the columns would be o1, o3, o2, and o4 leading to graph triple GT ∗

6

(cf. Fig. 3 (b)). We consider these graph triples semantically equivalent according
to TGGCDDS because the relative order of attributes in the inheritance structure
of classes c1 and c2 is not destroyed and the relative order of columns of a
relational database does not matter in a “pure” relational calculus.

2.4 Language Translators Based on TGGs

A TGG can be compiled into a pair of forward and backward graph translators
(FGTs/BGTs). The generated translators take a graph of the input domain,
either source or target, and produce a graph triple that consists of the given
input graph, the corresponding graph of the output domain, either target or
source, and the correspondence graph which connects the related source and
target graph elements. A translator mainly consists of a set of graph translation
rules and an algorithm that controls the stepwise translation of a given input
graph into the related output graph. Each forward/backward graph translation
rule (FGT/BGT rule), often called operational rule, is directly derived from a
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single TGG production1. Therefore, TGG productions are split into sets of local
rules and the aforementioned translation rules [1]. Local rules generate graphs
of the input domain ensuring that only valid graphs are produced. Hence, local
rules are applicable only if NACs are not violated.

t1:Tablec1:Class l1:CT
++ ++

(1)

c1:Class t1:Table

a1:Attr l2:AC
++

l1:CT

o1:Column

++

o2:Column

c1:Class t1:Table

a1:Attr l2:AC
++

l1:CT

o1:Column

++

o2:Column

o3:Column

next

next

++

++

(4)

(3)

++

c1:Class

t1:Table

super

c2:Class l2:CT
++

l1:CT(2)

c1:Class t1:Table

a1:Attr l2:AC
++

l1:CT

o1:Column

++

o2:Column

o3:Column

next

next
a3:Attr

next

++

(5)

++

Fig. 4. Forward translation rules derived from TGGCDDS

Figure 4 shows the forward translation rules derived from the productions of
TGGCDDS. Translation rules contain elements of source, correspondence, and
target domain. The elements of the input domain are readonly as they have
been created earlier by a corresponding local rule. Consequently, translation
rules only produce elements of the output and correspondence domain. Empty
checkboxes denote that the elements next to them are not yet translated, i.e.,
no corresponding elements in the output domain have been created by another
translation beforehand. A translator will mark all elements of the input domain
as “translated”, right after a translation rule has been applied successfully. El-
ements that were context elements in a TGG production must be translated
before a rule is applicable. This is denoted as enabled checkboxes placed next
to or inside these elements. NACs of the input domain may be omitted under
certain conditions, as we will learn in Sect. 3.2, whereas NACs of the output
domain are retained.

A translation algorithm applies the operational rules to the input graph such
that it simulates the simultaneous evolution of the computed graph triple with
1 For a detailed description of the derivation process we refer to [8].
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respect to the given set of TGG productions. Therefore, a translator must be
able to determine the order in which elements of the input graph would have
been created by a sequence of TGG productions. Guessing the proper choice is
one of the difficulties that arise when the simultaneous evolution of graph triples
is simulated by a translator. In general, this computation of an appropriate se-
quence of rules requires a graph grammar parsing algorithm with exponential
runtime behavior [9]. Interleaved with the stepwise computation of a sequence
of TGG productions and the resulting derivation of the input graph the corre-
sponding sequence of operational rules is executed to generate the related output
and correspondence graph instances. For further details concerning a formaliza-
tion of this process the reader is referred to [1,10]. An example that shows how
an FGT translates an input graph is presented in Sect. 5.

2.5 Fundamental Properties of TGGs and Translators

As stated in previous work TGGs should not violate certain design principles in
order to be “useful” in practice [5]. Derived translators should be efficient and
they must be compatible with their TGG which in addition must be expressive
enough. According to [5], efficient translators have polynomial space and time
complexity O

(
m× nk

)
with m = number of rules, n = size of input graph,

and k = maximum number of elements2 of a rule. This requirement is based on
two worst case assumptions: (1) nk is the worst-case complexity of the pattern
matching step of a graph translation rule with k elements. (2) Without starting
the pattern matching process for a selected rule we cannot determine whether
this rule can be used to translate a just regarded element. As a consequence we
require that derived translators do somehow process the elements of an input
graph in a given order such that no element has to be regarded and translated
more than once. Selecting always somehow the “right” translation rules we do
not have to explore multiple translation alternatives using, e.g., a depth-first
backtracking algorithm for that purpose. Compatible translators are consistent
and complete with respect to their TGG. Consistency is guaranteed if a translator
translates an input graph into a graph triple GT that is always an element of
the language L(TGG) defined by the TGG. Completeness demands that for
every graph triple GT that is an element of L(TGG), a translator is able to
produce this graph triple (or an equivalent one) given the graph of the graph
triple, which belongs to the translator’s input domain. Expressiveness finally
requires that the TGG formalism is able to capture all important consistency
relationships between studied pairs of graph languages.

As a consequence the original TGG approach is continously extended such
that it supports, e.g., handling of attributed typed graphs as well as the def-
inition of productions with NACs. We have learned that NACs are additional
preconditions that must be satisfied so a production is applicable. They are, e.g.,
used to prohibit the construction of graph triples that violate constraints defined
in the schema of the source and target domain. But, after more than 15 years
2 In [5] it is nodes. We expand this to elements which means nodes and edges.
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of TGG research activities we still have problems to handle TGGs with NACs
appropriately, i.e., to find the right compromise between expressiveness of TGG
productions on the one hand and the introduced consistency, completeness, and
efficiency properties of derived translators on the other hand. This contribution
introduces, therefore, for the first time a subclass of TGGs with NACs in Sect. 3
that allow for the derivation of efficiently working compatible graph transla-
tors. Essentially, the definition and application of TGG productions is restricted
in such a way that the here introduced rule application control algorithm (cf.
Sect. 5) never has to resolve rule application conflicts by making an arbitrary
choice. For this purpose we first replace NACs on the input graph side of a
translation by graph constraints, thereby avoiding positive/negative rule appli-
cation conflicts3. Positive/positive rule application conflicts are then eliminated
by inspecting the context of those nodes more closely that are just translated
by a given rule (cf. Sect. 4)4. Inspired by the definition of the double-pushout
(DPO) graph grammar approach [11] a new kind of “dangling edge condition” is
introduced that blocks the translation of nodes with afterwards still untranslated
incident edges under certain conditions.

3 Formalization of Constrained TGGs with NACs

In the preceding section we have informally introduced TGGs with NACs. Fur-
thermore, we already mentioned that [5] does already guarantee consistency but
not completeness for the derived translators without introducing a backtracking
algorithm, i.e., without trading efficiency for completeness. We will now identify
a sort of TGG productions with NACs which do not lead to positive/negative
FGT/BGT rule application conflicts for any input graph. This is a first step to-
wards our goal to eliminate all kinds of FGT/BGT rule application conflicts and
thereby to guarantee completeness of derived translation functions. For this pur-
pose we extend the TGG formalism as introduced in [1] by NACs that are used to
preserve the integrity of graph triples (i.e., resulting graph triples never violate
constraints—neither temporary) without destroying the fundamental proposi-
tions proved in [1]. Therefore, TGGs will operate on typed constrained graphs
and support NACs in a way that derived translators do not violate the men-
tioned compatibility properties. Permitted NACs will be ignored on the input
graph of translation rules assuming that integrity violations of input graphs are
captured before a translation process starts.

3.1 Constrained and Typed Graph Grammars with NACs

We start with the basic definitions of constrained, typed graphs on the basis
of [11], which are then used for the definition of TGGs that generate triples of
typed and constrained graphs in Sect. 3.2.
3 A positive/negative rule application conflict of two operational rules r and r’ w.r.t.

specific redexes exists if r creates a graph element that is forbidden by a NAC of r’.
4 Two operational rules w.r.t. to specific redexes constitute a positive/positive rule

application conflict if both rules compete to translate the same graph element.
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Definition 1. Graphs, Graph Morphisms, and Graph Operators.

A quadruple G := (V, E, s, t) is a graph with elements(G) := V ∪E, where
(1) V is a finite set of nodes (or vertices), E is a finite set of edges, and
(2) s, t : E → V are functions assigning sources and targets to edges.
Let G := (V, E, s, t), G′ := (V ′, E′, s′, t′) be two graphs.
A pair of functions h := (hV , hE) with hV : V → V ′ and hE : E → E′ is a
graph morphism from G to G′, i.e., h : G → G′, iff
(3) ∀e ∈ E : hV (s(e)) = s′(hE(e)) ∧ hV (t(e)) = t′(hE(e))

Furthermore, the operators ⊆ for subgraph, ∪ for union of graphs with gluing of
nodes and edges (with same identifiers), and \ for the deletion of the removal of
graph elements, are defined as usual, and with h : G → G′ being a morphism,
h(G) ⊆ G′ denotes that subgraph in G′ which is the image of h.

Definition 2. Typed Graph and Type Preserving Graph Morphisms.
A type graph is a distinguished graph TG := (VTG, ETG, sTG, tTG).
VTG and ETG are called the node and the edge type alphabets, respectively.
A tuple (G, type) of a graph G together with a graph morphism type : G → TG

is called typed graph. G is called instance of TG and TG is called type of G.
Given typed graphs G, G′ a typed graph morphism g : G → G′ is type preserv-

ing iff the diagram shown in Fig. 5 (a) commutes.
L(TG) is the set of all graphs of type TG.

In the following we assume that all graphs with suffix “S”, “C”, and “T” have
type graphs TGS , TGC , and TGT , respectively. Furthermore, we assume that
all morphisms between graphs of the same type are type preserving.

Definition 3 introduces constrained graphs. The regarded constraints are typed
graph constraints (e.g., OCL invariants) in the spirit of [11], i.e, Boolean formu-
lae over atomic typed graph constraints. A typed graph G fulfills a typed graph
constraint c, e.g., if c is evaluated to true.

Definition 3. Constrained Typed Graph.
A type graph TG with a set of constraints C defines a subset L(TG, C) ⊆

L(TG) of the set of all graphs of type TG that fulfill the given set of constraints
C. The empty graph G∅ ∈ L(TG, C). Furthermore, L(TG, C) := L(TG)\L(TG, C)
denotes the set of all graphs of type TG that violate a constraint in C.

Based on this definition of constraints we will now define graph productions with
NACs and graph rewriting. An important property of these productions is that
they do not delete any graph elements, i.e, left-hand side L is a subset of right-
hand side R. Therefore, they are called monotonic productions.

Definition 4. Monotonic Graph Productions with NACs.
The set of all monotonic productions P(TG, C) with negative application con-

ditions N for a type graph TG with a set of constraints C is defined as follows:
(L, R,N ) ∈ P(TG, C) iff
(1) L, R ∈ L(TG, C) ∧ L ⊆ R
(2) N ⊆ L(TG) ∧ ∀N ∈ N : N ⊇ L
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type type´

g

TG

G G´

(a)

G G´

L RN

POg g´n

(b) (c) (d)

G G´

L RN

POg g´n

Gi Gi+1

L RN

g g´n

p

Fig. 5. Diagrams used in Def. 2, Def. 5, Def. 6, and in proof of Corollary 3

Definition 5. Graph Rewriting for Monotonic Productions with NACs.
A production p := (L, R,N ) ∈ P(TG, C) rewrites a graph G ∈ L(TG) into a

graph G′ ∈ L(TG) with a redex (match) g : L → G, i.e., G
p@g� G′ iff

(1) g′ : R → G′ is defined by building the pushout diagram presented in Fig. 5 (b)
(2) ¬(∃N ∈ N , n : N → G : n|L = g), i.e., there exists no N such that mapping

n is identical to g w.r.t. the left-hand side graph L
(3) all morphisms are type preserving

We will limit productions with NACs to so-called integrity-preserving productions
in Def. 6 such that NACs are only used to prevent the creation of graphs which
violate the set of constraints C. These productions have the important properties
that (1) given a valid input graph, a valid output graph is produced, (2) if
productions where NACs are eliminated produce a valid graph then the input
graph is also valid, and (3) a production that would block due to a NAC otherwise
would always produce an invalid graph. Due to contraposition of (1) all invalid
output graphs are derived from invalid input graphs. So, integrity-preserving
productions produce only invalid output graphs if the input graph was already
invalid. Moreover, contraposition of (2) (i.e, (2∗)) states that invalid input graphs
result in invalid output graphs even if NACs are eliminated from a production;
i.e., productions with or without NACs do not repair invalid graphs.

Definition 6. Integrity-Preserving Productions.
Let p be a production (L, R,N ) ∈ P(TG, C) and p− := (L, R, ∅) being the

corresponding production of p where all negative application conditions have been
eliminated. Then, p is integrity-preserving iff
(1) ∀G, G′ ∈ L(TG) ∧ G

p� G′ : G ∈ L(TG, C) ⇒ G′ ∈ L(TG, C)

(2) ∀G, G′ ∈ L(TG) ∧ G
p−
� G′ : G′ ∈ L(TG, C) ⇒ G ∈ L(TG, C)

(3) ∀N ∈ N : the existence of the diagram depicted in Fig. 5 (c) with type
preserving morphisms n|L = g = g′|L implies G′ ∈ L(TG, C)

Now, we show for TGGCDDS that the source and target production components
satisfy the conditions of Def. 6. We will limit the discussion to the source domain
as situations in the target domain are almost identical. All productions satisfy
condition (1), i.e., given a valid graph, productions with NACs produce only
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valid graphs (discussed already in Sect. 2.2). If productions (3), (4), and (5) with-
out NACs produce valid output graphs under certain conditions then the input
graph was also valid due to the fact that none of the productions is able to repair
invalid graphs even if their NACs are ignored. Productions (3) and (4) would
produce even more (invalid) attributes without successor. Production (5) does
not increase the number of attributes without successors that violate multiplic-
ity constraint invCD:P :n:mult, but preserves the number of attributes that violate
invCD:P :n:mult. Therefore, condition (2) is satisfied. Condition (3) of Def. 6 is
satisfied because a blocking NAC of productions (3) and (4) prevents the produc-
tion of an additional attribute without successor. Therefore, violation of invCD:C

is prevented. In addition, a blocking NAC in production (5) prevents violation
of the multiplicity constraint of a “Precedes” edge invCD:P :n:mult. Therefore, the
set of productions of TGGCDDS is integrity-preserving.

Finally, Def. 7 states how graph grammars produce constrained typed graphs.

Definition 7. Language of Typed and Constrained Graph Grammars.
A graph grammar GG := (TG, C,P) over a type graph TG, a set of constraints

C, and a finite set of integrity-preserving productions P ⊆ P(TG, C), with G∅
being the empty graph, generates the following language of graphs
L(GG) := {G ∈ L(TG, C)|G∅

p1� G1
p2� ...

pn� Gn = G with p1, ..., pn ∈ P}

The language that is generated by a graph grammar GG as defined in Def. 7
(i.e., the graphs that are producible by the grammar) is a subset of the set of
graphs of type TG that fulfill the given set of constraints C.

Corollary 1. L(GG) ⊆ L(TG, C)

Proof. Follows from Def. 6 and directly from Def. 7. ��

Furthermore, the language L(GG−) generated by a graph grammar where NACs
of productions have been eliminated contains at least the same graphs as the
language L(GG) generated by this graph grammar with NACs.

Corollary 2. Let GG− be a graph grammar derived from a graph grammar GG,
where all negative application conditions of productions have been eliminated.
Then L(GG−) ⊇ L(GG).

Proof. Due to the fact that a valid application of a production p with NACs is
also a valid application of the production p− where NACs are ignored, L(GG−)
is at least as large as L(GG). ��

Moreover, L(GG) is the intersection of the graphs producible by L(GG−) and
the set of graphs of type TG that fulfill the given set of constraints C.

Corollary 3. Let GG− be a graph grammar derived from a graph grammar GG
as defined in Def. 7, where all negative application conditions of productions have
been eliminated. Then L(GG) = L(GG−) ∩ L(TG, C).
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Proof. Due to Corollary 1 and Corollary 2 the intersection of sets of graphs de-
fined by L(TG, C), L(TG, C), L(GG), and L(GG−) looks like depicted:

),( CTGL

),( CTGL

)(TGL

)(GGL

)(GGL
B

Therefore, we only have to show that B := L(GG−)∩L(TG, C)\L(GG) is empty.
Let G ∈ B, i.e., G is generated by a sequence of production applications

G∅ � . . . � Gi
p−
� Gi+1 � . . . � G

with p = (L, R,N ) being a production of GG and p− = (L, R, ∅) being the
corresponding production of GG− such that ∃N ∈ N so the diagram shown in
Fig. 5 (d) commutes, i.e., p is blocked by N , but p− rewrites Gi into Gi+1.
⇒ Gi+1 ∈ L(TG, C). This is a direct consequence of Def. 6 (3), which requires
that the application of p− produces a graph Gi+1, which violates at least one
constraint if the application of p is blocked by its NAC N .
⇒ G ∈ L(TG, C). This is a direct consequence of Def. 6 (2∗) because all graphs
on the derivation path from Gi+1 to G (including G) are invalid due to the fact
that productions of GG− preserve the property of a graph to violate some con-
straint. This leads to contradiction. ��

As a consequence of Def. 6 and due to Corollary 3, we can either check NACs
during the execution of a (TGG) production to prohibit the violation of graph
constraints immediately or check potentially violated graph constraints after a
sequence of graph rewriting steps that simply ignore NACs; for a more detailed
discussion of the relationship of (positive) pre- and postconditions of graph trans-
formation rules and graph constraints we refer to [12].

3.2 Constrained and Typed Triple Graph Grammars with NACs

Having introduced definitions and properties of graph grammars with NACs
for languages of typed constrained graphs we now present the corresponding
definitions of TGGs with NACs for typed constrained graph triples. For this
purpose we have to replace the definitions of simple graphs and graph grammars
in [1] by the more elaborate definitions given in Sect 3.1.

Definition 8 describes the conditions typed graph triples must satisfy. A graph
triple consists of three graphs. Each graph is in the set of graphs of a particular
language, i.e., conforms to a graph schema defined by a certain type graph. In
addition, two morphisms hS and hT relate elements of the correspondence graph
with elements of the source and target graph. Constraints for correspondence
graphs are disregarded in Def. 8, but can be added easily if needed.
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Definition 8. Constrained Typed Graph Triple.
Let L(TGS, CS) and L(TGT , CT ) be languages of source and target graphs with

constraints, whereas L(TGC) defines a language of correspondence graphs that
relate pairs of source and target graphs.

GT := (GS
hS← GC

hT→ GT ) ∈ L(TGG) is a properly typed graph triple iff
(1) GS ∈ L(TGS , CS), (2) GC ∈ L(TGC), (3) GT ∈ L(TGT , CT )
(4) hS : GC → GS , (5) hT : GC → GT

Definition 9. Type Preserving Graph Triple Morphisms.
A type graph triple TGT := (TGS

hS← TGC
hT→ TGT ) is a distinguished graph

triple. TGT together with morphisms typeS : GS → TGS, typeC : GC → TGC,
typeT : GT → TGT is called type of GT . A graph triple morphism (gS , gC , gT )
with gS : GS → G′

S, gC : GC → G′
C , gT : GT → G′

T is type preserving iff the
so-called “toblerone” diagram

TGS

TGT

TGC
typeS type´S

gS

typeT type´T

gT

typeC type´C

gCGS

GT

GC

G´S

G´T

G´C

commutes. L(TGT ) is the set of all graphs of type TGT .

Now, we are ready to lift graph rewriting (cf. Def. 5) based on monotonic pro-
ductions (cf. Def. 4) and integrity-preserving productions (cf. Def. 6) to graph
triple rewriting in Def. 10.

Definition 10. Integrity-Preserving Graph Triple Rewriting.
Let p := (pS

hS← pC
hT→ pT ) be a production triple with NACs and

(1) pS := (LS , RS ,NS) ∈ P(TGS , CS) be an integrity-preserving production
(2) pC := (LC , RC , ∅) ∈ P(TGC , ∅) be a simple production
(3) pT := (LT , RT ,NT ) ∈ P(TGT , CT ) be an integrity-preserving production
(4) hS : RC → RS, hS|LC : LC → LS and (5) hT : RC → RT , hT |LC : LC → LT

The application of such a production triple to a graph triple GT produces another
graph triple GT ′, i.e., GT

p� GT ′, which is uniquely defined (up to isomorphism)
by the existence of the following “pair of cubes” diagram:

G´C

NS

gS g´SnS

GT G´T

NT

gT g´TnT

gC g´C

GS G´S

GC

LC

LS

LT

RC

RT

RS
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This diagram consists of commuting square-like subdiagrams only and contains
a pushout subdiagram for each application of a production component (i.e, pS,
pC, and pT ) to its corresponding graph component.

For the details of the definition and the proof that production triples applied
to graph triples at a given redex always produce another graph triple uniquely
defined up to isomorphism, cf. [1]. NACs introduced here do not destroy the
constructions and proofs introduced in [1] due to the fact that they do not (fur-
ther) influence the application of a production to a given graph (triple) after all
NAC applicability checks have been executed. Based on the presented definitions
we introduce typed triple graph grammars and their languages. For reasons of
readability we omit the prefix “typed” throughout the rest of this contribution.

Definition 11. Triple Graph Grammar and Triple Graph Grammar Language.
A triple graph grammar TGG over a triple of type graphs (TGS , TGC , TGT )
is a tuple (P, GT∅), where P is the set of its TGG productions and GT∅ is the
empty graph triple. The language L(TGG) is the set of all graph triples that
can be derived from GT∅ := (G∅

ε← G∅
ε→ G∅) using a finite number of TGG

production rewriting steps.

We can now show that a triple graph grammar TGG−, where all NACs (that
prevent the creation of graph triples that violate graph constraints) are removed
from TGG productions, produces the same set of constrained graph triples that
is produced by the unmodified triple graph grammar TGG.

Theorem 1. With L(TGG) being the language of graph triples generated by a
triple graph grammar TGG over (TGS, TGC , TGT ) we can show:
(1) for all (GS ← GC → GT ) ∈ L(TGG) :

GS ∈ L(TGS , CS), GC ∈ L(TGC), GT ∈ L(TGT , CT )
(2) with TGG− being the triple graph grammar derived from TGG

where all NACs of productions have been removed:
(GS ← GC → GT ) ∈ L(TGG) ⇔ (GS ← GC → GT ) ∈ L(TGG−) ∧
(GS , GC , GT ) ∈ L(TGS , CS)× L(TGC) × L(TGT , CT )

Proof. Follows from Def. 10 (which lifts graph to graph triple rewriting) and
Corollaries 1 and 2. The proof is analogous to the proof of Corollary 3. ��

It is a direct consequence of Theorem 1 that checking of NACs can be replaced
by checking integrity of generated graphs with respect to their sets of constraints
and vice versa. This observation directly affects translators derived from a given
TGG as follows: According to [1], a production triple p may be split into pairs
of production triples (rI , rIO), where rI is an (input-) local rule and rIO its
corresponding (input-to-output domain) translation rule, with GT

p� GT ′ ⇔
GT

rI� GTI
rIO� GT ′. Forward translation is based on (rS , rST ), whereas (rT , rTS)

is used in the reverse direction. To rewrite the source graph only, the source-
local production triple, i.e., source-local rule rS := (pS

ε← (∅, ∅, ∅) ε→ (∅, ∅, ∅)) is
applied. The source-to-target domain translating production triple, i.e., forward
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graph translation rule rST keeps the source graph unmodified but adjusts the
correspondence and target graph as follows: the effect of applying first rS and
then rST to a given graph triple is the same as applying p itself if (and only
if) we keep the source domain redex, i.e., the morphism g′S , fixed. Thanks to
Theorem 1 the source component of rST does not have to check any NACs on
the source graph as long as any regarded source graph does not violate any
graph constraints, i.e., as long as it has been constructed by means of integrity-
preserving productions only. As a consequence, we need no longer care about
positive/negative rule application conflicts on the source side when translating
a source graph into a related target graph.

Definition 12. Forward Graph Translation Rules.
With p being constructed as listed above in Def. 11 the derived forward graph

translation rule (FGT rule) is rST := (p−S,id

hS← pC
hT→ pT ) with components:

(1) p−S,id := (RS , RS , ∅), i.e., the source component pS of p without any NACs
that matches and preserves the required subgraph of the source graph only

(2) pC := (LC , RC , ∅), i.e., the unmodified correspondence component of p
(3) pT := (LT , RT ,NT ), i.e., the unmodified target component of p

For a detailed definition of rST that includes the morphisms between its rule
components as well as for the definition of rS/rT and the definition of a backward
graph translation rule (BGT rule) rTS the reader is referred to [1]. The definitions
presented there can be adapted easily to the scenario of integrity-preserving
graph triple rewriting as done here for the case of FGT rules rST .

Definition 13 introduces the so-called local completeness criterion of the source
domain which must be satisfied by the productions of a TGG. Essentially the def-
inition requires that any sequence SEQn

i=1(rS,i) can be completed to a sequence
SEQn

i=1(rST,i) of derivation steps of a graph triple GT that exactly mimics the
derivation of its source graph GS . This criterion will be used later on in Sect. 5
to prove the completeness of the introduced algorithm that translates a given
source graph GS into a compatible target graph GT together with a graph GC

that connects GS and GT appropriately.
A similar criterion of the target domain can be defined accordingly. The pro-

ductions of TGGCDDS satisfy both source and target criterions.

Definition 13. Source-Local Completeness Criterion.
A triple graph grammar TGG fulfills the source-local completeness criterion iff

for all GTi := (GS ← GC → GT ) ∈ L(TGG) and p := (pS ← pC → pT ) ∈ P

with GS
pS@gS� G′

S exists p∗ := (p∗S ← p∗C → p∗T ) ∈ P , g∗ := (g∗S , g∗C , g∗T ), and

GT ∗
i+1 := (G′

S ← G′
C → G′

T ) ∈ L(TGG) such that GTi
p∗@g∗
� GT ∗

i+1.

The local completeness criterions demand that for each local graph (GS or GT )
of all graph triples GT ∈ L(TGG), which is rewritten by the local component
of a production p, there must be at least one production p∗ (p∗ may equal p)
which rewrites GT . Therefore, each match g′I(RI\LI) of an input component
p−I,id of a translation rule rIO that identifies not yet translated elements in an
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input graph can be completed to a full match on the correspondence and output
graphs. This is due to the fact that at least one local rule rI (derived from a
production p) exists that has created the matched yet untranslated elements in
the input graph. According to the local completeness criterion a production p∗

exists from which a local rule r∗I is derived that creates the same elements as
rI . Hence, a translation rule r∗IO exists that has an equivalent input component
to rIO which is able to translate the matched not yet translated elements. As
a consequence, derived translation rules are complete, i.e., they can be used to
translate any given input graph of a TGG language into a properly related graph.
Furthermore, Theorem 1 guarantees the consistency of derived translation rules
even if NACs are omitted. Consequently, derived rules never translate input
graphs of a TGG language into output graphs such that the resulting graph
triple is not an element of the just regarded TGG language.

Due to these achievements we are able to build translators that are consistent
and complete with respect to their TGG. During the translation process a trans-
lator parses a given input graph in order to find a valid sequence of translation
rules that mimics the derivation of the input graph. Although the TGG pro-
ductions contain NACs these can be safely ignored in the parsing process in the
case of integrity-preserving productions. Therefore, positive/negative rule appli-
cation conflicts are prevented on the input graph. Positive/negative conflicts on
the output graph will not lead to dead-ends (i.e., wrong translation alternatives
which require backtracking) during parsing because the local completeness crite-
rion guarantees that for each remaining untranslated element in the input graph,
created by a local rule, a translation rule exists that is able to translate these el-
ements. Unfortunately, we still have to solve one problem: in general we are only
able to guarantee the completeness of a derived graph translator if we explore an
exponential number of derivation paths (w.r.t. the size of a given input graph)
due to the remaining positive/positive rule application conflicts. The following
section will solve this efficiency problem for a sufficiently large class of TGGs
(from a practical point of view) by introducing a new application condition for
translation rules. This condition rules out any situation, where more than one
rule can be used to translate a just regarded node of the input domain in a
related subgraph of the output domain.

4 Dangling Edge Condition (DEC)

Translators derived from a TGG face certain difficulties concerning the selection
of an appropriate sequence of translation rules in the presence of positive/posi-
tive rule application conflicts. Reconsider our triple graph grammar TGGCDDS

from Sect. 2. An FGT derived from TGGCDDS translates class diagrams to
database schemata. Figure 6 (a) depicts a graph that consists of two classes c1
and c2. The empty checkboxes5 denote that the elements next to them are not
yet translated. The graph is valid, as it is derivable by applying productions (1)
and afterwards (2) of TGGCDDS to the empty graph triple. The graph is given
5 Fig. 6 uses an alternative representation of (not) translated nodes.
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as input graph to the FGT. First, the translator applies the FGT rule derived
from production (1), which translates class c1. Next, both rules (1) and (2) are
applicable in the context of class c2. If the translator chooses to translate class
c2 via rule (1) the source graph would contain two translated classes with an
untranslated edge between them (cf. Fig. 6 (b)). Unfortunately, no rule exists
that is able to translate the remaining untranslated edge e1. So, the translator
produced a so-called dangling edge in the source graph. Consequently, the trans-
lator states at the end of the translation process that it is not able to translate
the (valid) input graph completely due to this dangling edge.

c2:Classc1:Class
super

(a)
e1:Inherits

c2:Classc1:Class
super

(b)
e1:Inherits

Fig. 6. (a) Input graph given to the FGT, (b) Input graph with two translated nodes

Whenever constellations in the input graph appear, where two or more rules
are applicable that translate overlapping sets of input graph elements, transla-
tion algorithms are demanding for help to select the appropriate rule. We propose
an extension that is inspired by building parsers for compilers and related tech-
niques for parsing words that are passed to the compiler. Typically, top-down
and bottom-up parsers decide on more information than just the recent input:
they take a look-ahead into account. In the following subsection we introduce a
so-called dangling edge condition (DEC) that prevents the application of a rule
if the rule would produce a dangling edge. TGG translators produce dangling
edges if an edge is still untranslated at the end of the translation process. So,
translators must ensure that before applying a rule another translation rule ex-
ists that is able to translate this currently “dangling” edge later on. This DEC
is inspired by an analogous condition in DPO approaches, which explicitly pro-
hibits deleting a node without deleting all incident context edges as part of the
same rule application step. This way, our DEC eliminates positive/positive rule
application conflicts. We restrict our focus to forward translators in the sequel,
but all concepts and ideas can be transferred to backward translators as well.

The core idea of the DEC is that several productions may be applicable such
that their matches overlap in some node. If the production with the smaller
match is applied, incident edges cannot be translated later on. The DEC resolves
conflicts where context-sensitive productions create one primary node that is
connected via new edges to at least one context node. It does not offer a solution
for those cases where the created nodes are not connected. In the following,
we regard TGG productions that create only one primary node on each side
and do not contain additional secondary elements6. Primary nodes of context-
sensitive productions must be connected to at least one context node. The graphs
6 Allowing additional secondary elements would require in depth discussions and spe-

cial handling in Algorithm 1 which we had to omit due to lack of space.
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that result by applying such productions are either graph structures that are not
connected to other structures (in case of applying initial context-free productions
like production (1) of TGGCDDS) or connected graph structures (in case of
applying context-sensitive productions (2) to (5) of TGGCDDS).

4.1 Formal introduction to LNCC and DEC

As shown at the beginning of Sect. 4, application of certain translation rules may
lead to invalid graph triples since some edges in the graph of the input domain
remain untranslated. Based on this observation we define for the source graph
of a TGG the so-called Legal Node Creation Context relation with a look-ahead
of one LNCCS(1)7 that will be used to control the selection and application
of FGT rules. A relation LNCCT (1) used by BGTs is constructed similarily.
TGG productions can be broken down to certain fragments, where at most two
nodes make up a part of the production. Elements of LNCCS(1) are 4-tuples
that represent certain kinds of source graph production fragments. The first and
third component of a tuple represent the type of the node that is the source
and target of an edge e created by a production, respectively. The type of this
edge e is used as second component. The fourth component denotes whether the
source node, target node, or both nodes are used as context in the production
fragment. Tuples of LNCCS(1) are derived from a given TGG as follows:

Definition 14. Legal Node Creation Context with a look-ahead of 1.
LNCCS(1) ⊆ VTGS × ETGS × VTGS × {s, t, st} is the smallest legal node

creation context relation for the source graph of a given TGG such that
(vts, et, vtt, c) ∈ LNCCS(1) iff

(1) ∃ TGG production ((LS , RS ,NS) hS← pC
hT→ pT ) that creates edge e ∈ RS\LS

with at least one incident already existing context node s(e) or t(e) ∈ LS

(2) vts = type(s(e)), (3) et = type(e), (4) vtt = type(t(e))
(5) c ∈ {s, t, st}, with the following semantics:
(5.1) s: s(e) ∈ LS, t(e) ∈ RS\LS

(5.2) t: t(e) ∈ LS, s(e) ∈ RS\LS (5.3) st: s(e), t(e) ∈ LS

Figures 7 (a), (b), and (c) identify all possible node and edge constellations that
contribute tuples to LNCCS(1). In addition, Figs. 7 (d), (e), and (f) depict those
production fragments that do not contribute any tuples to LNCCS(1).

The motivation behind the definition of LNCCS(1) is to block a translation
of a node of the source graph that has incident edges that are not translated
in the same step and that cannot be translated later on (i.e., to avoid dangling
edges). This situation occurs if a TGG contains overlapping productions (e.g.,
productions p(1) and p(2) of TGGCDDS). These productions are applicable in the
same context and create a node of the same type (both p(1) and p(2) create nodes
of type “Class”) but at least one production creates an edge that relates the new

7 We plan to introduce LNCCS(n) with a look-ahead of n > 1 that also takes indi-
rectly referenced nodes into account in future work.
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c:C

d:D d:D

(d) (e) (f)

c:C

d:D

++
e:E ++ e:E

++

++

c:C

d:D

++
++

c:C

d:D

c:C

d:D

++
e:E ++ e:E ++ e:E

(a)  (D, E, C, t) (b)  (C, E, D, s) (c)  (D, E, C, st)

Fig. 7. TGG production fragments relevant and irrelevant for LNCCS(1)

node to an already existing node (p(2) creates an edge from the new subclass to
its superclass). Therefore, a translator that applies one of the rules derived from
these productions would destroy the match of the other rule and potentially leave
an untranslatable edge. In order to identify such dangling edge situations, TGG
production fragments must be inspected which create edges where the source
or the target of the edge already exists, i.e., is used as context (cf. Figs. 7 (a),
(b), and (c)). Translation rules derived from TGG productions containing these
fragments have the potential to translate edges of the input graph using one
or two already translated incident nodes as context. As patterns (d) to (f) do
not translate such edges they can be neglected. Pattern (a) depicts a production
fragment in which node c is the already existing context for the new node d and
d is the source of the new edge e (s(e) = d). In production fragment (b) the
direction of the edge is changed: s(e) = c. Pattern (c) depicts a situation where a
new edge between nodes c and d is created, i.e., both nodes are used as context.

c1:C

«not translatable»
translated
not translated

e1:E

d1:D

c1:C

e1:E

d1:D

c1:C

e1:E

d1:D

(a) )1(),,,( SLNCCtCED (b) )1(),,,( SLNCCsDEC (c) )1(),,,( SLNCCstCED

«not translatable» «not translatable»

Fig. 8. Patterns in input graph that violate DEC(1)

Whenever we encounter a not translated edge with an already translated
incident node, we will use the relation LNCCS(1) to check whether an FGT rule
exists that can be used later on to translate the regarded edge. If LNCCS(1)
does not contain an appropriate tuple then the just regarded edge cannot be
translated. On the other hand, the existence of an appropriate tuple does not
guarantee that the edge is translatable. This is due to the fact that FGT rules
rST containing a tuple are only applicable if a match of a rule’s complete left-
hand side (RS ← LC → LT ) is found in the host graph triple and no NAC
in the target domain blocks. In general we have to restrict the application of
translation rules such that the situations depicted in Fig. 8 are avoided:
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(a) Node d1 is not translated yet but c1 (the target of e1) is and there exists no
rule with production fragment (D, E, C, t) that may translate e1 later on.

(b) Node d1 is not translated yet but c1 (the source of e1) is and there exists no
rule with production fragment (C, E, D, s) that may translate e1 later on.

(c) Nodes d1 (source) and c1 (target) are both translated and there exists no
rule with production fragment (D, E, C, st) that may translate e1 later on.

Therefore, the application of a translation rule must satisfy certain application
conditions given in Def. 15 including the Dangling Edge Condition (DEC(1)).

Definition 15. Rule application conditions for FGTs with a look-ahead of 1.
Let TX be the set of already translated elements of the source graph GS, e ∈ ES,

and p be a TGG production ((LS , RS ,NS) hS← pC
hT→ pT ). Thus, for each match g′S

of translation rule rST in GS the rule application conditions (1) to (3) must hold
including the dangling edge condition DEC(1) that consists of the subconditions
DEC1(1), DEC2(1), and DEC3(1) in order to apply rST to (GS ← . . . → . . .):

(1) g′S(LS) ⊆ TX (context elements are already translated)
(2) ∀x ∈ g′S(RS\LS) : x /∈ TX (no element x shall be translated twice)
(3) TX ′ := TX ∪ g′S(RS\LS) (TX is extended with translated elements)

(DEC1(1)) ∀e /∈ TX ′ where s(e) ∈ TX ′, t(e) /∈ TX ′ :
(type(s(e)), type(e), type(t(e)), s) ∈ LNCCS(1)

(DEC2(1)) ∀e /∈ TX ′ where t(e) ∈ TX ′, s(e) /∈ TX ′ :
(type(s(e)), type(e), type(t(e)), t) ∈ LNCCS(1)

(DEC3(1)) ∀e /∈ TX ′ where s(e), t(e) ∈ TX ′ :
(type(s(e)), type(e), type(t(e)), st) ∈ LNCCS(1)

Def. 15 thus introduces a rather straightforward way to decide if a translation
rule shall be applied or not just by looking at the 1-context of a to-be-translated
node. By adding this condition to the translation algorithm defined in [5] (cf. Al-
gorithm 1 in Sect. 5), we are able to reduce the number of situations significantly,
where we were forced to choose one of the applicable rules nondeterministically
and run into dead-ends due to the wrong choice. In general, Def. 15 is not able
to resolve all positive/positive conflicts, i.e., there may be multiple rules that
are able to translate a node using different matches, i.e., matches containing dif-
ferent to-be-translated elements. Therefore, Algorithm 1 will abort in this case.
Alternatively, the user could be asked which of these elements should be trans-
lated or rule priorities [8] can be used to reduce the number of different matches
if more than one rule is applicable by filtering matches of rules with low priority.

Though, the algorithm permits multiple locally-applicable rules, i.e., rules that
translate the same elements. A locally-applicable rule is either applicable also
on the whole graph triple or its application is prevented, e.g., due to NACs in
the output component. The set of productions of TGGCDDS contains multiple
locally-applicable rules. FGT rules (3) and (4) are both applicable in the context
of the first attribute of a class. Likewise, BGT rules (4) and (5) are both appli-
cable in the context of the non-first column of a table. These rules are disjoint
applicable, i.e., only one of the locally-applicable rules is applicable on the whole
graph triple (cf. forward translation example in Sect. 5). In general, multiple
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locally-applicable rules need not to be disjoint applicable because they translate
the same elements. Executing one of the locally-applicable rules nondeterminis-
tically does not lead into dead-ends due to the local completeness criterion and
the same reason why positive/negative conflicts on the target side do not lead
into dead-ends (cf. Def. 13 and subsequent discussion).

4.2 Dangling Edge Condition by Example

Now, we show by example that checking for dangling edges helps deciding which
rule should be applied by translators derived from a TGG if multiple rules are
applicable at overlapping matches. Therefore, we consider again the FGT derived
from TGGCDDS and the input graph depicted in Fig. 6 (a) already discussed at
the beginning of Sect. 4. As we have already shown, both translation rules (1)
and (2) are applicable after applying rule (1) to this input graph. Based on the
classification scheme of Fig. 7 and Def. 14 we construct the set of tuples from
the TGG productions of TGGCDDS which results in LNCCS(1) =
{(Class, Inherits,Class, t), (Class,Contains, Attr, s), (Attr, Precedes,Attr, s)}.

Next, we pretend to apply rule (1) in the context of class c2. Then, we calculate
the set inc(c2) = {e1} which contains incident edges of c2 that are not yet
translated. We must check whether all edges in inc(c2) are translatable by further
rewriting steps, i.e., whether DEC(1) is satisfied. As both source and target
of e1 are already translated, a tuple must exist in LNCCS(1) that satisfies
subcondition DEC3(1). Therefore, the tuple (Class, Inherits, Class, st) must
be in LNCCS(1) which is not the case. As a consequence, we do not apply
FGT rule (1), because this would result in a dangling edge (cf. Fig. 6 (b)) and
proceed pretending to apply rule (2). In this case inc(c2) = ∅. So, the rule
application conditions given in Def. 15 are satisfied, i.e., there are no dangling
edges. Concluding, we were able to translate the input graph completely due to
the fact that the DEC prohibited selecting a wrong translation rule match.

5 Extended Translation Algorithm with DEC

In this section we extend the algorithm presented in [5] so it handles NACs as
presented in Sect. 3 and checks the dangling edge condition (cf. Sect. 4). We
discuss the extended algorithm (cf. Algorithm 1) by translating the graph triple
shown in Fig. 10 (a) with the FGT derived from TGGCDDS. Each translator
implements procedure evolve : GTin �∗ GTout which simulates the simulta-
neous evolution of a given graph triple GTin. The input graph triple GTin is
either (GS ← G∅ → G∅) in case of an FGT or (G∅ ← G∅ → GT ) in case of
a BGT8. The input graph Ginput is either GS or GT depending on the type of
translator (FGT/BGT), whereas the output graph Goutput is either GT or GS .
Procedure evolve assumes that the underlying TGG is integrity-preserving and
that the input graph GTin was produced by a sequence of input-local rules rI ,
8 In the general case, when incremental updates are performed with a translator, the

correspondence graph and the graph of the opposite domain need not to be empty.
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i.e., Ginput ∈ L(GGI). Evolve is able to cope with situations where the un-
derlying TGG or the input is invalid. It throws errors if it detects an invalid
TGG specification and exceptions in case of invalid inputs. A valid translation
produces an output graph triple GTout = (GS ← GC → GT ) ∈ L(TGG). There-
fore, evolve calls subroutine translate(GraphTriple) which in turn calls procedure
translate(Node) for all nodes in the input graph Ginput. Resulting graph triples of
invalid translations are undefined. Algorithm 1 uses so-called core rules (cf. [5])
to determine matches of translation rules in the input graph. A core rule is closely
related to the input component p−I,id (either p−S,id or p−T,id) of a translation rule
(cf. Def. 12). Fig. 9 shows the core rules derived from TGGCDDS which are used
by the forward translator. A core rule looks up the context elements of a given
primary element in Ginput, which may or may not be translated already but
must be translated so the primary element is translatable (cf. Def. 15 (1)). Core
rules only contain elements of the input graph. NACs are not contained in a core
rule. The primary element and additional incident edges must not be translated
yet. This is indicated by the empty checkboxes next to these elements.

«context»

c1:Class

«primary»

a1:Attr

(3)
+

(4)

«context»

c1:Class

«primary»

a1:Attr
«context»

a3:Attr
next

(5)«primary»

c1:Class
(1) «context»

c1:Class

super

«primary»

c2:Class

(2)

Fig. 9. Core rules of the FGT derived from TGGCDDS

The algorithm starts translating Ginput (cf. Fig. 10 (a)) with node c1. It may
start with any other node as well because it recursively translates the context of
the current node before it translates the node itself. First, the algorithm deter-
mines appropriate rules from the set of candidate rules. A rule is a candidate if its
primary node in the input domain is type compatible with the to-be-translated
primary node. An appropriate rule has at least one core match which contains
the primary node. A core match satisfies Def. 15 (2), i.e., all to-be-translated
elements are not translated yet. If multiple matches of one rule in the input
graph exist9, the algorithm checks for every match if the rule is appropriate.
In order to be appropriate, every context node required by the primary node is
recursively translated. But, the context is only translated if the dangling edge
condition would be satisfied afterwards (cf. Def. 15 DEC(1)). Next, the algorithm
determines applicable rules from the set of appropriate rules. The application
condition Def. 15 DEC(1) has to be reassured because it might have been invali-
dated due to potential competing recursive context translations. In addition, the
core match of an applicable rule must be completed in the rule’s left-hand side

9 In TGGCDDS at most one core match exists for any rule in a valid input graph.
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(i.e., input, link, and output domain) and the NACs in the output domain must
not block. If no applicable rule is determined then either a match exists in the
input domain but it may not be completed or the to-be-translated node is not
even locally translatable. In the first case the set of TGG productions violates
the local completeness criterion (cf. Def. 13), in the latter case the input graph is
invalid. If multiple rules are applicable at some completed match, the algorithm
ensures that their to-be-translated elements in the core match are identical. Oth-
erwise it aborts with an error as this might lead into dead-ends (cf. Sect. 4.1).
It is up to the developer of a set of TGG productions to guarantee that this will
never happen in practice. Finally, the algorithm translates the primary node. It
selects one entry from the set of applicable rules, applies the rule at its match,
and extends the set of translated elements (cf. Def. 15 (3)).

c2:Class

a2:Attr

a3:Attr

a4:Attr

c1:Class

a1:Attr

(a)

e1:Inherits

e2:Contains

e4:Precedes

e7:Precedes

e3:Contains

e5:Contains

e6:Contains

l1:CT t1:Table

l2:CT

o3:Columnl3:AC

(b)

c2:Class

a2:Attr

a3:Attr

a4:Attr

c1:Class

a1:Attr

e1:Inherits

e2:Contains

e4:Precedes

e7:Precedes

e3:Contains

e5:Contains

e6:Contains

Fig. 10. Snapshots of the translation process during forward translation

FGT rule (1) (i.e., r
(1)
ST ) is the only candidate that has the capability to trans-

late c1 because no match exists for the other candidate rule (2). The algorithm
checks whether application of rule (1) satisfies DEC(1). Therefore, it determines
the elements in Ginput created by the corresponding local rule r

(1)
S (i.e., {c1})

and joins these elements, the required context elements (i.e., ∅), and the set of
currently translated elements (i.e., ∅) which results in set TX ′ := {c1} . Then,
it checks whether condition DEC(1) is satisfied for all not translated incident
edges of node c1, i.e., inc(c1) := {e1, e2, e3}. According to Def. 15, the required
tuples for inc(c1) are (Class, Inherits, Class, t) and (Class, Contains, Attr, s).
So, DEC(1) is satisfied because LNCCS(1) contains these tuples (cf. Sect. 4.2).
Since c1 does not have any context, no additional elements need to be translated
and rule (1) is marked appropriate. Moreover, its core match can be completed
to a full match. Therefore, r

(1)
ST is an applicable rule. As it is the only applicable
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1 procedure GraphTriple evolve(inputGraphTriple: GraphTriple) { // GTin

2 global inputGraph: Graph = Translator.getInputGraph(inputGraphTriple); // Ginput

3 global translatedElements: ElementSet = inputGraph.getTranslatedElements(); // TX
4 global justRegardedElements: ElementSet = ∅;
5 inputValid: boolean = inputGraph.verifyConstraints(); // Def.8(1)/(3) satisfied?
6 outputGraphTriple: GraphTriple = translate(inputGraphTriple); // produce GTout

7 outputValid:boolean= Translator.getOutputGraph(outputGraphTriple).verifyConstraints();
8 translated: boolean = inputGraph.isCompletelyTranslated();
9 if (inputValid && outputValid && translated)

10 return outputGraphTriple; // successfully produced GTout

11 else if (inputValid && !outputValid) // Def.10(3) violated!
12 throw TGGContainsIntegrityDestroyingProductionsError(outputGraphTriple, translated);
13 else throw InputGraphNotPartOfDerivableGraphTripleException( // user-error: ...
14 outputGraphTriple, inputValid, outputValid, translated); // ...Ginput 
∈ L(GGI)
15 }
16 procedure GraphTriple translate(graphTriple: GraphTriple) {
17 forall (node ∈ inputGraph) { translate(node); }
18 return graphTriple;
19 }
20 prodecure translate(n: Node) {
21 if (n ∈ translatedElements) return;
22 else if (n ∈ justRegardedElements)
23 throw CycleInRecursiveContextTranslationError(n, justRegardedElements);
24 else { justRegardedElements.add(n);
25 nodeLocallyTranslatable: boolean = false;
26 appropriateRules, applicableRules: PairSet<Rule, Match> = ∅;
27 candidateRules: RuleSet = select rules where r.primaryInputNode.type equals n.type;
28 forall (rule ∈ candidateRules) { // collect appropriate rules and core matches
29 compute core matches of rule in inputGraph with n as primary node;
30 forall (cm ∈ core matches) { // Def.15(2): g′

I(RI\LI) ∩ TX = ∅ satisfied!
31 if (not isDECSatisfied(n, join(cm.toBe, cm.context))) // g′

I(RI\LI) ∪ g′
I(LI)

32 { continue; } // do not translate context if Def.15(DEC(1)) would be violated
33 forall (contextNode ∈ context elements of core match)
34 { translate(contextNode); } // recursively translate required context
35 if (all context elements of core match are translated)
36 { appropriateRules.add(rule, cm); } // Def.15(1): g′

I (LI) ⊆ TX satisfied!
37 } } // end of appropriate rule at core match with n as primary node calculation
38 forall ((rule, cm) ∈ appropriateRules) { // collect rules applicable at full match
39 // reassure Def.15(DEC(1)): may be violated due to competing context translation
40 if (not isDECSatisfied(n, cm.toBe)) { continue; }
41 nodeLocallyTranslatable = true; // now n must be translatable due to Def.13
42 if (cm can be completed in other domains and NACs in output domain don’t block)
43 { applicableRules.add(rule, full match); }
44 } // end of applicable rule at full match with n as primary node calculation
45 if (applicableRules.isEmpty()) { // node is not translatable
46 if (nodeLocallyTranslatable) // match could not be completed in other domain(s)
47 throw LocalCompletenessCriterionError(n, appropriateRules); // Def.13 violated!
48 else
49 throw InputGraphNotPartOfDerivableGraphTripleException(n); // Ginput 
∈ L(GGI)
50 }
51 if (not applicableRules.matches->forAll(m1, m2 | m1 <> m2 implies
52 m1.cm.toBe = m2.cm.toBe)) throw CompetingCoreMatchesError(n, applicableRules);
53 select one rule/match pair from applicableRules;
54 apply rule at match; // evolve GT � GT ′ with rIO@gIO

55 translatedElements.add(elements of inputGraph translated by rule); // g′
I(RI\LI)

56 justRegardedElements.remove(n);
57 } }
58 procedure boolean isDECSatisfied(node: Node, toBeTranslated: ElementSet) {
59 translatedElements’ = translatedElements ∪ toBeTranslated; // TX′ (cf. Def.15(3))
60 select all incident edges e of node where (e 
∈ translatedElements’)
61 and (s(e) or t(e) ∈ translatedElements’)
62 forall (e ∈ selected incident edges)
63 { if (not (DEC(1) satisfied for e)) { return false; } } // ensure Def.15(DEC(1))
64 return true; // all edges translatable
65 }

Algorithm 1. Algorithm that handles NACs and checks for dangling edges.
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rule it is applied at the complete match which translates node c1 and creates
a corresponding table in the target domain. The algorithm proceeds translat-
ing by selecting node a3 from the set of remaining nodes {c2, a1, a2, a3, a4}.
FGT rules (3), (4), and (5) are candidate rules for translating a3. But a core
match, which requires c2 as context, exists only for rules (3) and (4). First, the
core match of rule r

(3)
ST is examined. DEC(1) is satisfied for inc(a3) = {e7} as

(Attr, Precedes, Attr, s) ∈ LNCCS(1). Now, the context c2 is translated by a
recursive call to translate(Node). The candidate rules for translating c2 are r

(1)
ST

and r
(2)
ST . The algorithm randomly selects r

(2)
ST to be checked first. DEC(1) is not

violated (cf. Sect. 4.2) and the context of c2 (i.e., c1 ) is already translated. The
algorithm does not translate c1 again because it notices that c1 is already trans-
lated. After marking rule (2) as appropriate, candidate rule r

(1)
ST is checked. It

would violate DEC(1) and therefore it is not added to the set of applicable rules.
As the match of r

(2)
ST can be completed it is the only applicable rule and used

to translate c2. The algorithm returns from the recursion and resumes in the
context of a3. It marks r

(3)
ST as appropriate and proceeds with r

(4)
ST which is also

appropriate. Though, the only applicable rule is r
(3)
ST because, contrary to r

(4)
ST ,

its match can be completed. Consequently, both locally-applicable rules r
(3)
ST and

r
(4)
ST are disjoint applicable in this case (cf. discussion in Sect. 4.1). Therefore,

r
(3)
ST is used to translate a3. Right now, the remaining nodes are {a1, a2, a4} and

the current graph triple looks like depicted in Fig. 10 (b). The following trans-
lation steps are rather similar to the preceding steps so we will abbreviate the
explanation. Next, attribute a1 is translated. Its context {c1} is already trans-
lated. Rule candidates with a core match are r

(3)
ST and r

(4)
ST , which both satisfy

DEC(1), but r
(3)
ST is blocked due to the NAC in the output domain. FGT rule (4)

is applicable as a match of the LHS is found and the NAC does not block. Fi-
nally, attributes a2 and a4 are translated in this order. Their context is already
translated and the rule candidates are r

(3)
ST , r

(4)
ST , and r

(5)
ST . FGT rules (3) and (4)

are neglected as their application both would violate DEC(1) for inc(a2) = {e4}
and inc(a4) = {e7} because (Attr, Precedes, Attr, st) /∈ LNCCS(1). Hence, ap-
plication of r

(5)
ST would not violate DEC(1). Therefore, both attributes a2 and

a4 are translated by r
(5)
ST .

So, the algorithm has successfully translated all nodes and edges of the input
graph to a corresponding output graph. The sequence of applied FGT rules
SEQ(rST ) = (r(1)

ST @∅, r(2)
ST @c1, r

(3)
ST @c2, r

(4)
ST @c1, r

(5)
ST @c1, r

(5)
ST @c2) constructed

in this example translates the primary nodes in this order: (c1, c2, a3, a1, a2, a4).
In conjunction with the also constructed correspondence graph a graph triple
GTout was produced which is equivalent to graph triple GT6 (cf. Fig. 3 (a)) that
was derived from TGG production sequence SEQ6 (cf. Sect. 2.3) starting with
the empty graph triple. Therefore, the FGT sequence exactly mimics SEQ6.

The next theorems state that translators based on Algorithm 1 are efficient
as well as consistent and complete with respect to their TGG if the algorithm
never aborts for any given valid input graph. If the algorithm aborts then either
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Ginput �∈ L(GGI ) or the TGG specification is erroneous, i.e., does not satisfy
the conditions stated throughout this contribution.

Theorem 2. Efficiency of Graph Translation.
Algorithm 1 has worst case runtime complexity of O(nk) with n being the num-

ber of nodes of Ginput and k being a constant that depends on the regarded TGG.

Proof.
Sketch:

(1) The algorithm just loops through the set of all n nodes of the input graph;
the implicit reordering of the translation of input graph elements in the loop
for not yet translated context elements of a just regarded graph element does
not affect its runtime complexity.

(2) The book keeping overhead of the algorithm is neglectible and the execution
time for basic graph operations like traversing an edge or creating a new
graph element is bounded by a constant (otherwise we should add a loga-
rithmic or linear term depending on the implementation of the underlying
graph data structure).

(3) The worst case execution time of all needed rules applied to a given (primary)
input graph node is (n+n′)k−1, where n′ is the number of nodes of the output
graph, and k is the maximum number of elements of any applicable rule. In
the worst case the match of the primary node is extended by testing all
possible (n + n′)k−1 permutations of source/target graph elements.

(4) Furthermore, n′ ≤ c ∗ n for a given constant c that is the maximum number
of new nodes of the output component of any TGG production. ��

In the case of TGGCDDS , the complexity of a forward translation is O(n2) for
the following reasons: The worst case execution time of its rules (cf. Fig. 4)
is O(n′) ≤ O(n) due to the fact that rules (1), (2), and (3) have a constant
execution time, whereas rules (4) and (5) have to determine the last column
node of a table node. Assuming that all nodes of the output graph are columns
of the just regarded table n′ ≤ n nodes have to be inspected in the worst case.

Theorem 3. Consistency of Graph Translation.
Let GI ∈ L(TGI , CI) be an input graph (either GS or GT ) and GO be an

output graph (either GT or GS). If
FGT (GS ← G∅ → G∅) = (GS ← GC → GT ) and
BGT (G∅ ← G∅ → GT ) = (GS ← GC → GT ), respectively,

is a not aborting complete translation of GI with Algorithm 1 then:
(1) (GS ← GC → GT ) ∈ L(TGG) and (2) GO ∈ L(TGO, CO).

Proof.
Sketch:

(1) (GS ← GC → GT ) ∈ L(TGG) is a direct consequence of Theorem 1 and
the fact that GI ∈ L(TGI , CI). As a consequence the simulated application
of TGG productions without NACs in the input domain does not have any
effect concerning the applicability of translation rules.
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(2) The behavior of translation rules on the output side is identical with the
behavior of the related TGG production: i.e., a rule finds a match on the
output side iff the related TGG production has the same match.

GO ∈ L(TGO, CO) is then a direct consequence of (1). ��

Theorem 4. Completeness of Graph Translation.
Let (GS ← GC → GT ) ∈ L(TGG) and let us assume that the execution of

Algorithm 1 does not abort with any error. Then, we can guarantee that graphs
G∗

C , G∗
T and G∗

S, G∗
C , respectively, exist such that:

FGT (GS ← G∅ → G∅) = (GS ← G∗
C → G∗

T ) ∈ L(TGG) and
BGT (G∅ ← G∅ → GT ) = (G∗

S ← G∗
C → GT ) ∈ L(TGG), respectively;

i.e., the algorithm terminates without throwing any exception.

Proof.
(by induction) Sketch:
Let GTout ∈ L(TGG) be a graph triple that has been derived using a se-
quence of derivation steps SEQn

i=1(pi) = ((p@g)1, . . . , (p@g)n) of length n and
let SEQn

i=1(rI,i) = ((rI@gI)1, . . . , (rI@gI)n) be the projection of the regarded
sequence of graph triple derivation steps on its input graph. Furthermore, let
SEQm

i=0(rIO,i) with 0 ≤ m ≤ n be the sequence of the first m translation rule
applications ((rIO@gIO)1, . . . , (rIO@gIO)m) generated by the algorithm that ex-
actly mimics the derivation of GTout.

Case 1, m = 0: A translation rule sequence of length 0 trivially mimics the
derivation of the empty graph triple GT∅.

Case 2, 0 < m < n: We have to show that the algorithm extends the given
sequence of rule applications of length m to a sequence of length m+1 such that it
simulates either the original sequence of TGG productions SEQ(p) or a slightly
modified sequence SEQ(p∗) that still generates the same input graph. Let (vI)i

be the primary node of the input graph of each rule application (rIO@gIO)i and
TGG production application (p@g)i with 1 ≤ i ≤ m. Let v be the next to-be-
translated primary node which is selected by the algorithm. Furthermore, we
assume that the algorithm has already translated successfully the context nodes
of all rules that might be able to translate node v.

Case 2.1, v = (vI)m+1: Due to the fact that the algorithm does not throw
a CompetingCoreMatchesError we can safely assume that there exists at most
one set of translation rules with the same to-be-translated elements in their
core match including node v. Furthermore, we know that there exists at least
one rule with p−I,id (that is the input component of the translation rule derived
from pm+1) that matches node v = (vI)m+1. The local completeness criterion
(cf. Def. 13) guarantees that the algorithm finds a TGG production application
p∗@g∗ that corresponds to one of the translation rules r∗IO that is able to handle
the translation of the selected node v. Applying Def. 13 multiple times we can
generate a new sequence of TGG production applications SEQn

i=1(p
∗
i ) such that:

1 ≤ i ≤ m: (p∗@g∗)i = (p@g)i

i = m + 1: (p∗@g∗)i = p∗@g∗

m + 1 < i ≤ n: (p∗@g∗)i is a new production application that mimics (p@g)i
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As a consequence the algorithm is able to create a sequence of translation steps
SEQ(r∗IO) of length m + 1 that has the same properties as the given sequence
of translation steps SEQ(rIO) of length m w.r.t. the new sequence SEQn

i=1(p
∗
i )

that replaces SEQn
i=1(pi).

Case 2.2, v �= (vI)m+1: Due to the fact that the selected node v is not yet
translated and that (vI)1, ..., (vI)n is the complete set of all primary nodes of
the given input graph (generated by the given sequence of TGG production
applications) there exists an index k > m + 1 such that v = (vI)k. Let (p−I,id)k

be the input component of the translation rule derived from (p@g)k. We know
that all context nodes potentially required by (p−I,id)k are already translated.
Again relying on the fact that the algorithm does not throw any error and on
Def. 13 we know that a rule r∗IO exists, derived from a production p∗, which is
able to translate the given primary node v. Using the same line of arguments as
in case 2.1 we can construct a new sequence of TGG productions p∗ of length n
with the same properties as listed above. As a consequence the algorithm is again
able to create a sequence of translation steps SEQ(r∗IO) of length m + 1 that
has the same properties as the given sequence of translation steps of length m.

Case 3, m = n: The translation rule sequence mimics the complete derivation
of the input graph, i.e., generates a valid translation into a graph triple GT ∗

out

that has the same input graph as GTout but may have different correspondence
and output graphs then GTout. ��

The consequence of the proof sketches is as follows. If we are able to show for a
given TGG that derived translators never abort with an error then:

(1) The presented algorithm can be executed efficiently (polynomial complexity)
as long as the matches of all translation rules can be computed efficiently.

(2) Forward and backward translation results are consistent, i.e., do only pro-
duce graph triples that belong to the language of the regarded TGG.

(3) Forward and backward translations will always produce a result for a given
input graph if the language of the regarded TGG contains a graph triple
that has this input graph as a component.

Finally, our running example shows that in the general case the result of a
graph translation is not uniquely determined up to isomorphism, i.e., sets of
TGG productions needed in practice often do not satisfy any (local) confluence
criteria. Therefore, it was of importance to develop an efficiently working graph
translation algorithm that does not rely on (local) confluence criteria of TGG
productions or translation rules, but nevertheless fulfills the initially presented
expressiveness, consistency, and completeness properties, too!

6 Related Work

Based on the characterization of “useful” TGGs in Sect. 2 we proposed exten-
sions to triple graph grammars in Sects. 3, 4, and 5. Now, we are prepared to
evaluate and assess various forms of declarative bidirectional model or graph
transformations that have been published in the past.
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The first TGG publication [1] introduced a rather straight-forward construc-
tion of translators. It relied on the existence of graph grammar parsing algorithms
with exponential worst-case space and time complexity. As a consequence a first
generation of follow-up publications [13,14] all made the assumption that the
regarded graphs have a dominant tree structure and that the components of a
TGG production possess one and only one primary node. Based on these as-
sumptions an algorithm is used that simply traverses the tree skeleton of an
input graph node by node and selects an arbitrary matching FGT/BGT rule for
a regarded node that has a node of this type as its primary node. This algo-
rithm defines translation functions that are neither consistent nor complete in
the general case. Both properties are endangered by the fact that the selected
tree traversal order does not guarantee that rules are applied in the appropriate
order. It may happen that the application of a rule fails because one of its con-
text nodes has not been processed yet or that a rule is applied despite of the fact
that one of its context nodes has not been matched by another rule beforehand.

As a consequence, [8] introduces an algorithm that still relies on a tree traver-
sal, but keeps track of the set of already processed nodes and uses a waiting
queue to delay the application of rules if needed. This algorithm defines con-
sistent translators, but has an exponential worst-case behavior concerning the
number of re-applications of delayed rule instances. Another class of TGG ap-
proaches (cf. [15]) attacked the rule ordering problem in a rather different way.
These approaches introduce a kind of controlled TGGs, where each rule explic-
itly creates a number of child rule instances that must be processed afterwards.
Thus, one of the main advantages of a rule-based approach is in danger that
basic rules can be added and removed independently of each other and that it
is not necessary to encode a proper graph traversal algorithm explicitly.

All publications mentioned so far refrained from the usage of NACs that where
introduced in [16] in the context of model transformation approaches based on
graph transformation. Some of them even argued that NACs cannot be added
to TGGs without destroying their fundamental properties! But, rather recently
some application-oriented TGG publications simply introduced NACs without
explaining how derived translation rules and their rule application strategies
have to be adapted precisely. The publications even give the reader the im-
pression that NACs can be evaluated faithfully on a given input graph without
regarding the derivation history of this graph with respect to its related TGG.
[17], e.g., explicitly makes the proposal to handle complex graph constraints in
this way, whereas [18] and [4] ignore the problems associated with the usage
of NACs completely. Despite these TGG approaches that already introduced
NACs to TGGs without a guarantee for consistency and completeness, we pro-
posed translators in [5] that guarantee consistency. Nevertheless, we could not
guarantee completeness of these translators.

We have to reference [19] as the first publication that studied useful properties
of translators including “invertibility” from a formal point of view. The authors of
this paper are interested in pairs of translation relations that are inverse to each
other. As a consequence they have to impose hard restrictions on TGGs in order
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to be able to construct their proofs. Furthermore, [19] has a main focus on con-
sistency, whereas efficiency, expressiveness, and completeness are out-of-scope.
In addition, [19] extends the concept of triple graphs based on simple graphs to
triple graphs based on typed, attributed graphs. Follow-up publications (e.g., [20]
and [10]) then introduced NACs in an appropriate way and proved that trans-
lators may be derived from a TGG with NACs that are compatible with their
TGG. Unfortunately, both [20] and [10] trade efficiency for completeness. That
is, neither [20] nor [10] present an algorithm that is able to find an appropriate
sequence of translation rules in polynomial time which is necessary to create effi-
ciently working translators. Compared to both approaches, we showed here that
we are able to derive compatible translators—from a precisely defined subset of
TGGs with NACs—which are still efficient.

Other bidirectional model/graph translation approaches either suffer from
similar deficiencies or circumvent the efficiency versus completeness tradeoff
problem as follows: QVT Relational [3] as a representative of this sort of model
transformation approaches simply applies all matches of all translation rules to
a given input model in parallel and merges afterwards elements of the gener-
ated output model based on key attributes. This approach is rather error-prone
and requires a deep insight of the QVT tool developer as well as its users how
rules match and interact which each other. As a consequence, [21] shows that
today existing QVT Relational tools may produce rather different results when
processing the same input. For a more comprehensive survey of bidirectional
transformation approaches the reader is referred to [22].

7 Conclusion and Future Work

In this contribution we presented a “useful” class of triple graph grammars to-
gether with translators that comply to the four design principles stated in the
“Grand Research Challenge of the Triple Graph Grammar Community” intro-
duced in [5]: the development of a consistent, complete, and efficient graph trans-
lation algorithm for a hopefully still sufficiently expressive class of triple graph
grammars (TGGs). For this purpose we combined (a) restrictions for negative
application conditions of TGG productions with (b) a dangling edge condition
for graph translation rules that was inspired by "look ahead" concepts of parsing
algorithms. As a consequence, graph translators derived from the thus restricted
class of TGGs no longer have to take care of rule application conflicts by either
using a depth-first backtracking parsing algorithm or a breadth-first computa-
tion of all possible derivations of a given input graph. Therefore, the presented
new graph translation algorithm has a polynomial runtime complexity of O(nk)
for a rather small k in practice that is determined by the worst-case complexity
of computing matches for all needed graph translation rules.

Promising directions for future work are, e.g., the adaptation of the conflu-
ence checking algorithms of AGG [23], which are based on critical pair analysis,
as well as the model checking approach for graph grammars of GROOVE [24]
to the world of TGGs. Confluence checking techniques should offer the right
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means for the detection and classification of potential rule application conflicts
at compile time. In this way we would be able to guarantee already at compile
time that a graph translator derived from a specific class of TGGs will not stop
its execution with an error instead of generating an existing output graph for a
given input graph. Furthermore, constraint verification techniques of GROOVE
should allow to check the here introduced requirements already at compile time:
(a) TGG productions never create graph triples that violate graph constraints
of the related schema, (b) NACs are only used to block graph modifications that
would violate a graph constraint, (c) TGG productions never repair constraint
violations by rewriting an invalid graph into a valid graph, and (d) TGGs fulfill
the local completeness criterion. Until then, TGG developers have to design and
test their TGGs carefully such that TGG productions do not violate the pre-
sented conditions of integrity-preserving productions. Moreover, the presented
algorithm has to be extended to cope with secondary elements and to perform
incremental updates in order to also synchronize changes in source and target
domain models. In addition, the limited class of TGGs with NACs presented
in this contribution has to be enlarged but compatibility and efficiency proper-
ties of derived translators have to be ensured. We are currently evaluating the
here presented class of TGGs with NACs in research cooperations with indus-
trial partners, where TGGs are used to ensure consistency of design artifacts.
Time will show whether our claim is true that the here introduced new class of
TGGs is still expressive enough for the specification of a sufficiently large class
of bidirectional model/graph translations that are needed in practice.
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Abstract. Model-to-model transformation is a central activity in Model-

Driven Engineering that consists of transforming models from a source to

a target language. Pattern-based model-to-model transformation is our

approach for specifying transformations in a declarative, relational and

formal style. The approach relies on patterns describing allowed or forbid-

den relations between two models. These patterns are compiled into oper-

ational mechanisms to perform forward and backward transformations.

Inspired by QVT-Relations, in this paper we incorporate into our

framework the so-called check-before-enforce semantics, which checks

the existence of suitable elements before creating them (i.e. it promotes

reuse). Moreover, we enable the use of keys in order to describe when two

elements are considered equal. The presented techniques are illustrated

with a bidirectional transformation between Web Services Description

Language and Enterprise Java Beans models.

1 Introduction

Model-Driven Engineering (MDE) [28] proposes the construction of software
systems using models as primary artefacts. In this paradigm, models are used
to specify, reason, generate code, document, test, analyse and maintain the final
application. Hence, model transformation becomes a key enabling technology for
MDE, and is being subject of intensive research nowadays. The Model-Driven
Architecture [17] (MDA) is a particular incarnation of MDE promoted by the
OMG, which proposes the use of its standard languages, like MOF for meta-
modelling and QVT [23] (Query/View/Transformation) for transformations.

Model-to-Model (M2M) transformation involves transforming models from a
source to a target language. In the context of MDE, M2M transformations are
used e.g. to migrate between language versions, to refine a model, or to trans-
form a model into a semantic domain for analysis. Several usage scenarios can
be identified. Source-to-target (resp. target-to-source) transformations assume
the existence of a source (resp. target) model and create a target (resp. source)
model from scratch. Incremental transformations optimize the former, so that
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if the source (resp. target) model is changed after being transformed, the target
(resp. source) is updated but not regenerated. A further step is model synchro-
nization, where both models can be modified at any time, and the changes are
propagated to the other model to recover consistency. Hence, a sensible approach
is to define a unique specification establishing when two models are consistent,
and then generate specific lower-level operational mechanisms to solve the sce-
nario of interest. This has the advantage that the transformation is specified
only once, but it requires using a bidirectional, declarative style of specification.
Moreover, the synthesis of operational mechanisms may imply complex algebraic
manipulations of the declarative attribute conditions appearing in the transfor-
mation specification.

Even though many transformation languages have been proposed in the lit-
erature [23,25], there is a need for expressive, high-level, and formal languages
able to precisely express the M2M consistency problem and enabling the anal-
ysis of the transformation specifications. Following the ideas of [25], but aimed
at a relational style of specifications in the lines of [23,27], in [4] we developed
a new approach for specifying M2M transformations. The approach is based
on patterns describing positive or negative conditions that are to be satisfied
by two models in order to be considered consistent. Patterns have a high-level
(i.e. independent of the operational mechanism), algebraic semantics enabling
the decision of whether two models are consistent, or to find the discrepancies
with respect to the specification. These patterns are then compiled into opera-
tional mechanisms, based on triple graph grammar rules [4,12], but in which no
algebraic manipulation of attribute formulae is necessary.

We believe our framework can be used to formalise other transformation lan-
guages, especially QVT-Relations (QVT-R). The purpose of this paper is to ad-
vance in this direction. With this aim, we extend our previous works [4,12,21] by
bringing into our framework two concepts of QVT-R: the Check-Before-Enforce
(CBE) semantics and the keys. CBE semantics is a way to promote element reuse
in transformations, and to enable many-to-one relations between elements across
models. In particular, before creating an element, it is checked whether an exist-
ing one can be reused. Keys allow specifying when two elements are considered
equal. Moreover, in order to promote the use of our techniques in MDE, we pro-
pose a way to enrich the transformation specification with integrity constraints
of the source and target meta-models, in particular the association cardinality
constraints. Finally, we extend our patterns by allowing abstract objects. These
features are illustrated through a transformation between Web Service Descrip-
tion Language [29] (WSDL) models and Enterprise Java Beans [19] (EJBs).

Paper organization. Section 2 introduces related work. Section 3 presents the
case study we will use throughout the paper. Section 4 recalls the necessary
background for subsequent sections. Section 5 reviews our notion of patterns,
and Section 6 the generation of source-to-target and target-to-source operational
mechanisms. Then, Section 7 incorporates the CBE semantics and keys into
our framework. Section 8 presents further details of the case study and, finally,
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Section 9 ends with the conclusions. An appendix presents some of the proofs of
the main claims and propositions.

2 Related Work

Bidirectional transformation languages are receiving increasing attention in
MDE, as they are able to capture consistency relations between two models
in a direction-independent way. In this approach, a unique specification is used
to derive operational mechanisms solving the different synchronization scenarios
mentioned in the introduction (see also [16]).

A prominent example of this kind of languages is QVT-R [23], a part of the
QVT family of transformation languages sponsored by the OMG. A QVT-R
specification is made of relations, each consisting of two or more domains (i.e.
models). Relations can be top or non-top level, and include when and where
clauses that may be used to express dependencies between relations. The exe-
cution of a transformation requires that all its top-level relations hold, whereas
the non-top level ones only need to hold when invoked from the where section
of other relations. The standard specifies that QVT-R models are enforced by
its compilation into QVT-core, a lower-level language. While QVT-R has no ex-
plicit notion of traces (i.e. relations between the model elements involved in the
transformation), the compilation to QVT-core creates them automatically.

In [1], transformations are expressed through declarative relations made of
positive patterns, heavily relying on OCL constraints, but no operational mech-
anism is given to enforce such relations. In BOTL [2], the mapping rules use a
UML-based notation that allows reasoning about applicability or meta-model
conformance. In our approach we can reason both at the specification and op-
erational levels. In [6], the authors rely on completely relational transformation
units and infer the order of execution by studying their dependencies. They use
attribute grammars as (uni-directional) transformation language. This kind of
grammars is made of textual relations where the order of execution of rules is
not given, but it is automatically calculated in accordance with the dependency
relations that arise between attributes. In the MTF language from IBM [18],
transformations are made of textual relations expressed in RDL (the Relations
Definition Language) that do not impose a direction of the transformation, but
this is selected when invoking the transformation engine. Similar to QVT-R,
MTF relations must be invoked from other relations in order to be executed,
whereas in our approach we query the trace model.

TGGs [25] formalize the synchronized evolution of two graphs through declar-
ative rules. The language spawned by these rules contains the pairs of models
considered consistent. From this specification, low-level operational rules are
derived to solve different synchronization scenarios. Interestingly, our patterns
define a language of valid consistent models by means of constraints instead of
rules (even though the operational mechanisms are implemented through oper-
ational rules) and hence we admit negative constraints too. The work in [15]
included in this volume improves previous works on TGGs by considering TGG
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schemas (meta-model triples in our jargon) with so called monotonic constraints
(which if satisfied by a model, are satisfied by any submodel). These constraints
are similar to our notion of N-patterns, but our N-patterns are not necessarily
monotonic. Also, they propose a guiding mechanism for applying the operational
rules by a so called dangling edge condition, which before applying one transfor-
mation rule checks if some edge in the source will not get translated. In our case,
we assume that not every element in the source needs to be translated, but the
fact that we generate several rules for each pattern permits obtaining all valid
target models, if more than one exists [21]. An attempt to bridge TGGs and
QVT-R is [10], where QVT-R is both compiled into operational TGGs (instead
of using QVT-core) and translated into declarative TGGs.

An interesting issue in these languages is how to handle and express object
reuse. This aspect has been tackled in QVT-R by the CBE semantics, where
the operational mechanism checks which objects exist and can be reused before
creating them. In order to specify when two elements are considered equal, one
can set keys (similar to keys in databases). Reuse has to be handled explicitly
in TGGs by including the objects to be reused in the left-hand side (LHS) of
the declarative rules. Up to now, our patterns followed a similar approach by
defining the objects to reuse as positive pre-conditions. It is interesting how-
ever to decouple the specification of the reusing policy (keys in QVT) from the
specification of the transformation itself, which potentially leads to more flexible
and reusable transformations. In this paper we incorporate these ideas into our
framework.

3 The Example Case Study

In this section we introduce the case study that we will use throughout the
paper, namely the transformation between WSDL documents and EJBs, both
represented as models. WSDL [29] is an XML-based language for describing web
services, endorsed by the W3C. Here we use the last version 1.1, which is the
most widely used by tools. Fig. 1 shows a simplified meta-model for WSDL we
have developed taking as a basis the XML syntax described in [29].

A WSDL model includes the definition of services as collections of network
endpoints, or ports (class Port in the meta-model). Ports and messages are de-
scribed in an abstract way through classes PortType and Message, independently
from their concrete usage. Then, a binding provides the concrete information (ad-
dresses, protocols – normally HTTP – and so on) to use the services through their
ports. The binding is usually done through SOAP [30], although for simplicity
we have omitted the classes for the binding from the meta-model. A PortType
defines a number of operations (similar to functions in programming languages)
that the service exposes, modelled by class Operation. There are four types of
operation, defining a protocol for exchanging messages. For example, while op-
erations of type OneWay just receive one message, RequestResponse operations
in addition send a response back. The operations refer to the messages involved,
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Service

-name:String

Port

-name:String*

Binding

-name:String

binding+

PortType

-name:String

type+

OperationBinding

operation+*

Message

-name:String

Operation

-name:String

input+

0..1

output+0..1

fault+

0..1

OneWay

RequestResponse

SolicitResponse

Notification * operation+

MessageBinding

message+

input+ output+ fault

Definitions

-targetNamespace:URI
-name:String *

*

Fig. 1. WSDL meta-model (simplified)

either input, output or fault. A Message has a structure made of several logical
parts, omitted here for simplification.

Enterprise JavaBeans (EJBs) [24] is a Java API that defines a component ar-
chitecture to build server-side enterprise applications. Its specification provides a
number of services commonly found in these applications, like persistence, trans-
action processing, concurrency control, security and exposing business methods
as web services, among others. Fig. 2 shows a simplification of its meta-model we
have developed taking [19] as a basis. An EJB container (class EJBJar) can hold
a number of beans (i.e. Java components), the most important types of which
are Session and Entity. The former are distributed objects that can have a
state or not, depending on whether their attribute sessionType takes the value
stateful or stateless, respectively. Stateful beans keep track of the calling
process through a session, and hence a different bean instance is created for
each customer. On the contrary, stateless beans enable concurrent access. Entity
beans (class Entity) represent persistent data maintained in a database1. For
simplicity, we have omitted the details of this kind of beans.

EJBs are deployed in an application server. Each EJB has to provide a Java
implementation class, and two interfaces called Home and Remote. The meta-
model in Fig. 2 contains a high-level Java meta-model that reflects the depen-
dency of EJBs to Java.

In our case study, we are interested in specifying a bidirectional transforma-
tion between WSDL and EJB models. This is useful as, when building EJB
applications, it is sometimes needed to expose them as web services, and hence
to generate a WSDL file with the service description. The generated opera-
tional (backward) transformation would do this automatically. The opposite is
also common, sometimes a WSDL file with the description of a service needs
to be implemented. The generated operational (forward) transformation would

1 We use the EJB1.1 specification; in the EJB3.0 specification Entity Beans were

superseded by the Java Persistence API.
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EJBJar

-displayName:String

EnterpriseBean

-displayName:String

enterpriseBeans+

1..*

Session

-transactionType:TransType

-sessionType:SessType

Entity

-isReentrant:Boolean

JavaContainer

-isPublic:Boolean
0..1 remoteInterface+

0..1 homeInterface+

0..1 ejbClass+

0..1

primaryKey+

JavaPackage
*

Method

*

JavaInterface

JavaClass

-isFinal:Boolean

-isAbstract:Boolean

JavaEntity

-name:String

implements+ *

parent+
0..1

child+
*

<< enumeration >>

SessType

+stateful:int=1

+stateless:int=2

<< enumeration >>

TransType

+Bean:int=1

+Container:int=2

Fig. 2. EJB meta-model (simplified)

synthesize an EJB model containing skeletons of the necessary Java classes and
interfaces. There are already available tools that perform these tasks. For exam-
ple, the Oracle Containers for J2EE (OC4J) [20] has a tool called wsdl2ejb that
generates an EJB from a WSDL file. Similarly, the IBM Websphere application
server [13] provides the EJB2WebService tool to create a web service (including
the WSDL file) from EJBs. Note however that both tools are not incremental
and overwrite existing files. Our method has the potential to be incremental and
moreover it would generate both tools starting from a single specification.

4 Preliminaries

In this section we introduce the basic theoretical concepts (triple graphs and
constraint triple graphs) that we will use in our M2M specification language.

In order to perform M2M transformations, it is useful to consider structures
made of a source and a target model, related through a trace model. This struc-
ture is called triple graph [25]. As we can provide nodes and edges in graphs
with attributes and types (called E-graphs in [8]), models can be naturally en-
coded with graphs. An E-graph is a tuple G = (V G, DG, EG, EG

NA, EG
EA, (srcG

j ,

tarG
j )j∈{G,NA,EA}), where V G and DG are sets of graph and data nodes, EG is a

set of graph edges, EG
NA and EG

EA are sets of edges modelling attributes for both
nodes and edges, functions srcG

G : EG → V G and tarG
G : EG → V G are the graph

edge source and target functions, srcG
NA : EG

NA → V G and tarG
NA : EG

NA → DG

are the source and target functions for node attributes, and srcG
EA : EG

EA → EG,
tarG

EA : EG
EA → DG are the functions for edge attributes. Even though we use

E-graphs in our triple graphs, any other type of graph could also be used. Graphs
can be typed by a type graph TG (similar to a meta-model) [8] becoming objects
of the form (G, type : G → TG), where type is a typing function.

Hence, triple graphs are made of three graphs: source (S), target (T ) and cor-
respondence (C). Nodes in the correspondence graph relate nodes in the source
and target graphs by means of two graph morphisms [7].
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Definition 1 (Triple Graph and Morphism). A triple graph TrG = (S cS←
C

cT→ T ) is made of three E-graphs S, C and T s.t. DC = ∅, and two graph
morphisms cS and cT called the source and target correspondence functions.

A triple morphism m = (mS , mC , mT ) : TrG1 → TrG2 is made of three E-
morphisms mX for X = {S, C, T }, s.t. mS◦c1

S = c2
S◦mC and mT ◦c1

T = c2
T ◦mC,

where cx
S and cx

T are the correspondence functions of TrGx (for x={1, 2}).

Remark. The correspondence graph is restricted to be unattributed (i.e. DC =
∅), but not necessarily discrete. This is so because otherwise, in general, we could
not take cS and cT to be graph morphisms, as the conditions for attributes fail.

We use the notation 〈S, C, T 〉 for a triple graph made of graphs S, C and T .
Given TrG = 〈S, C, T 〉, we write TrG|X for X ∈ {S, C, T } to refer to a triple
graph where only the X graph is present, e.g. TrG|S = 〈S, ∅, ∅〉. Triple graphs
and morphisms form the category TrG.

Example. The left of Fig. 3 shows a triple graph relating a WSDL model and
an EJB model. The graph nodes are depicted as rectangles, and the data nodes
in DS and DT as rounded rectangles. We only draw the used data nodes, as they
may be infinite. We have represented the types of nodes after a semicolon. In
fact, a triple graph is typed by a type triple graph (or meta-model triple [11]),
where the typing morphism is a triple graph morphism. The right of the same
figure shows the triple graph in UML notation, which we will use throughout
the paper.

s : Service

d : Definitions

: String b1 : Session

e : EJBJardj : D2J

sb : S2B

String

String

name

name

name

name

S TC

cS cT

http://exp.com: 
URI

targetNamespace

Container:
transType

stateless:
sessType

session
Type

transactionType
s : Service

d : Definitions

targetNamespace=http://exp.com

b1 : Session

transactionType = Container
sessionType = stateless

e : EJBJar

name StockQuotedj : D2J

sb : S2B

WSDL EJB

Fig. 3. Triple graph example in theoretical (left) and compact notations (right)

Next, we present the notion of constraint triple graph [12]. It will be used
later as a building block of our patterns, as a way to express desired relations
between the source and target models, and also in the left and right hand sides of
the generated TGG operational rules. Constraint triple graphs are triple graphs
attributed over a finite set ν of variables, and equipped with a formula on this set
(i.e., a Σ(ν)−formula, where Σ is a signature) to constrain the possible attribute
values of source and target elements.

Definition 2 (Constraint Triple Graph). Given an algebra A over signature
Σ = (S, OP ), a constraint triple graph CTrGA = (TrG, ν, α) consists of a triple
graph TrG = 〈S, C, T 〉, a finite set of S-sorted variables ν = DS � DT (with �
denoting disjoint union) and a Σ(ν)−formula α in conjunctive or clausal form.
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Before defining morphisms between constraints, we need an auxiliary operation
for restricting Σ(ν)−formulae to a smaller set of variables ν′ ⊆ ν. This will be
useful for example when restricting a constraint triple graph to the source or
target graph only. Thus, given a Σ(ν)-formula α, its restriction to ν′ ⊆ ν is
given by α|ν′ = α′, where α′ is like α, but with all clauses with variables in
ν − ν′ replaced by true. Thus, for example (x = 3)∧¬(y = 7)|{x} = (x = 3), as
we substitute ¬(y = 7) by true.

Given a constraint CTrGA = (TrG, ν, α), we write αS for the restriction
to the source variables α|DS , and αT for the restriction to the target variables
α|DT . Given a variable assignment f : ν → A, we write A |=f α to denote that
the algebra A satisfies the formula α with the value assignment induced by f.
Note that if A |=f α, then A |=f α|ν′ ∀ν′ ⊆ ν.

Morphisms between constraint triple graphs are made of a triple graph mor-
phism and a mapping of variables (i.e. a set morphism). In addition we require
an implication from the formula of the constraint in the codomain to the one in
the domain, and also implications from the source and target restrictions of the
formula in the codomain to the restrictions of the formula in the domain. This
means that the formula in the domain constraint should be weaker or equivalent
to the target (intuitively, the codomain may contain “more information”).

Definition 3 (Constraint Triple Graph Morphism). A constraint triple
graph morphism m = (mTrG, mν) : CTrGA

1 → CTrGA
2 is made of a triple mor-

phism mTrG : TrG1 → TrG2 and a mapping mν : ν1 → ν2 s.t. the diagram to
the left of Fig. 4 commutes, and ∀f : ν2 → A s.t. A |=f α2, then A |=f (αS

2 ⇒
mν(αS

1 )) ∧ (αT
2 ⇒ mν(αT

1 )) ∧ (α2 ⇒ mν(α1)), where mν(α) denotes the formula
obtained by replacing every variable X in α by the variable mν(X).

D
TrG1
S ��

��

mT rG
D,S

��

=

D
TrG2
S ��

��
ν1 mν ��

=

ν2

D
TrG2
T

� �

��

mT rG
D,T

�� DTrG2
T

� �

�� : D
: F

: E

e = w

: A

a = x0
: C

: B

b = y0

d = z

x0 = 4
z > x0

x0 > y0
w > x0 y0 >= 1

B

: C
: A

a = x

: B

b = y

y <> xx > 0 y > 0

A

Fig. 4. Condition for CTrG-morphisms (left). Example (right).

Remark. Note that α2 ⇒ mν(α1) does not imply αS
2 ⇒ mν(αS

1 ) or αT
2 ⇒

mν(αT
1 ). For technical reasons we require (αS

2 ⇒ mν(αS
1 ))∧ (αT

2 ⇒ mν(αT
1 )), as

we need to build source and target constraint restrictions (see below) and obtain
a morphism from the restricted constraint to the full constraint.

Example. The right of Fig. 4 shows a constraint triple graph morphism. Con-
cerning the formula, if we assume some variable assignment f : νB → A satisfying
αB (i.e. s.t. A |=f αB), then such f makes A |=f [(x0 = 4 ∧ z > x0) ⇒ (x0 >
0)]∧ [(y0 >= 1) ⇒ (y0 > 0)]∧ [(x0 = 4∧z > x0∧x0 > y0∧w > x0∧y0 >= 1) ⇒
(x0 > 0 ∧ y0 <> x0 ∧ y0 > 0)]. Thus, the formula in A (the morphism domain)
is weaker or equivalent to the formula in B (the morphism codomain).
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From now on, we restrict to injective morphisms (for simplicity, and because
our patterns are made of injective morphisms). Given Σ and A, constraint triple
graphs and morphisms form the category CTrGA. As we will show later, we
need to manipulate objects in this category through pushouts and restrictions.
A pushout is the result of gluing two objects B and C along a common subobject
A, written B +A C. Pushouts in CTrGA are built by making the pushout of the
triple graphs, and taking the conjunction of their formulae.

Proposition 1 (Pushout in CTrGA). Given the span of CTrGA-morphisms
BA b←− AA c−→ CA, its pushout is given by DA = (B +A C, νB +νA νC , c′(αB)∧
b′(αC)), and morphisms c′ : BA → DA and b′ : CA → DA induced by the
pushouts in triple graphs (B +A C) and sets (νB +νA νC).

Proof. In appendix.

Example. Fig. 5 shows a pushout, where the pushout object D is the result of
gluing the constraint triple graphs B and C along the constraint triple graph A,
written B +A C. In particular, the resulting constraint has the common nodes
A, B and C, whereas graph B adds node D, and graph C adds node E. The
formula of D αD includes the conjunction of the formulas of graphs B and C,
and note that αD ⇒ c′(b(αA)) ≡ b′(c(αA)).

c’

: D : A

zd > xd
xd = 4

xd >= 0 wd > xd
xd > yd

: C
: B : E

yd >= 1
yd = 3

D

d = zd a = xd b = yd e = wd

: A

a = x1
: C

y1 = 3

: B : E

C

w > x1x1 >= 0

b = y1 e = w

: D : A
: C

: B

b = y0

x0 = 4
z > x0

B

d = z a = x0

x0 > y0 y0 >= 1: B

b = y
: C

: A

a = x

y > 0y <> xx > 0

A b

c

P.O.

b’

Fig. 5. Pushout example

Sometimes, we have to consider the source or the target parts of a constraint
triple graph. The source restriction of a constraint triple graph CTrGA, written
CTrGA|S , is made of the source graph and the source formula, and similarly for
the target restriction. Hence, CTrGA|S = (TrG|S = 〈S, ∅, ∅〉, DS, α|DS = αS).
The source restriction CTrGA|S of a constraint induces a morphism CTrGA|S ↪→
CTrGA. Also, given a morphism q : CTrGA

1 → CTrGA
2 , we can construct mor-

phism qS : CTrGA
1 |S → CTrGA

2 |S and similarly for the target. This restriction
operation will be used later to consider only the source or target models in a con-
straint, when such constraint is evaluated source-to-target or target-to-source.

An attributed triple graph can be seen as a constraint triple graph whose for-
mula is satisfied by a unique variable assignment, i.e. ∃1f : ν → A with A |=f α.
We call such constraints ground, and they form the GroundCTrGA full sub-
category of CTrGA. We usually depict ground constraints with the attribute
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values induced by the formula in the attribute compartments and omit the for-
mula. The equivalence between ground constraints and triple graphs is useful as,
from now on, we just need to work with constraint triple graphs.

5 Pattern-Based Model-to-Model Transformation

Now we use the previous concepts to build our M2M specification language.
Specifications in our language are made of so called triple patterns. These are
similar to graph constraints [8], but made of constraint triple graphs instead of
graphs. This allows interpreting them both source-to-target and target-to-source.

We consider two kinds of pattern: positive (called P-patterns) and negative
(N-patterns). While the former express allowed relations between source and
target models, the latter describe forbidden scenarios. A P-pattern has a main
constraint (written P (Q)), a (possibly empty) positive pre-condition C (written←−
P (C)), a set of negative pre-conditions (written

←−
N (Ci)), and a set of negative

post-conditions (written N(Cj)). The main constraint of a P-pattern only needs
to hold when the positive pre-condition and no negative pre-condition of the
pattern hold. If such is the case, then no negative post-condition of the pattern
should hold. An N-pattern is a particular case of P-pattern where C and Q are
empty, and there is only one negative post-condition N(Cj) which is forbidden
to occur (as any negative post-condition). Next definition formalises the syntax
of patterns, while Definition 5 describes their semantics.

Definition 4 (Triple Pattern). Given the injective CTrGA-morphism C
q→

Q and the sets of injective CTrGA-morphisms NPre = {Q ci→ Ci}i∈Pre, NPost =
{Q cj→ Cj}j∈Post of negative pre- and post-conditions:

–
∧

i∈Pre

←−
N (Ci) ∧

←−
P (C) ⇒ P (Q)

∧
j∈Post

N(Cj) is a positive pattern (P-pattern).

– N(Cj) is a negative pattern (N-pattern).

Remark. The notation
←−
P (·), ←−N (·), N(·) and P (·) is just syntactic sugar to indi-

cate a positive pre-condition (that we call parameter), a negative pre-condition,
a negative post-condition and the main constraint respectively.

The simplest P-pattern is made of a main constraint Q restricted by negative
pre- and post-conditions (Pre and Post sets). In this case, Q has to be present
in a triple graph (i.e. in a ground constraint) whenever no negative pre-condition
Ci is found; and if Q is present, no negative post-condition Cj can be found for
the pattern to be satisfied. In this way, while negative pre-conditions express
restrictions for the constraint Q to occur, negative post-conditions describe for-
bidden graphs. If a negative pre-condition is found, it is not mandatory to find
Q, but still possible. P-patterns can also have positive parameters, specified with
a non-empty C. In such a case, Q has to be found only if C is also found. Finally,
an N-pattern is made of one negative post-condition forbidden to occur, and C
and Q are empty.
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Example. Fig. 6 shows some patterns specifying the consistency between WSDL
and EJB models. The P-pattern P(Definitions-EJBJar) declares that each
Definitions object has to be related with an EJBJar with same name. This
means that the service described in a WSDL document will be handled by a set
of related EJBs, bundled in the same jar container. The P-pattern P(Service-
SessionBean) states that each WSDL Service is managed by a Session bean,
made of home and remote interfaces and an implementation class, and with
methods to create and initialize the bean. The attribute condition enforces some
naming conventions for these. Note that some attribute details (e.g. whether
the bean is stateful or stateless) are left open. The pattern has a positive pre-
condition C, which we show in compact notation using param tags.

: Definitions

name = n1

: EJBJar

displayName = n2

: D2J

n1 = n2

P(Definitions-EJBJar)

: Service

name = ns

: Session

displayName = nb

: S2B

ns = nr

P(Service-SessionBean)

: Definitions : D2J : EJBJar
: JavaInterface

name = nh

: JavaInterface

name = nr

: JavaClass

name = nc

:home
Interface

:remote
Interface

:ejbClass

nb = nr+”Bean”
nh = nr+”Home”
nc = nr+”Impl”
mh = “create”
mc = “init”

: Method

name = mh

: Method

name = mc

: PortType : P2B

<<param>> <<param>> <<param>>

N(SharedService)

: Service

: Definitions

: Definitions

: Operation

name = n1

: Method

name = n2

: O2M

n1 = n2

P(Operation-Method)

: Enterprise
Bean

: P2B

: JavaClass

:ejbClass

: PortType
<<param>>

<<param>>
<<param>>

n2 <> “init”

N(TwoClasses)

: Enterprise
Bean

: JavaClass

: JavaClass

:ejbClass

:ejbClass

N(SharedBean)

: Enterprise
Bean

: EJBJar

: EJBJar

Fig. 6. Some patterns for the WSDL-EJB transformation

The P-pattern P(Operation-Method) declares that each Operation in a given
port type is to be implemented as an EJB Method with same name in the bean
implementing the port type. The target attribute condition n2<>“init” avoids
translating the special init method created by pattern P(Service-SessionBean)
back into an operation. In addition, the pattern uses abstract objects of types
EnterpriseBean and Operation. This is allowed and, intuitively, it is equiva-
lent to the disjunction of the eight patterns that result from the substitution
of the abstract objects by all its concrete subtypes. Thus, the PortType may
be connected either with a Session or with an Entity, and the method with
any subtype of Operation. Finally, three N-patterns forbid Services to belong
to two Definitions, and an EnterpriseBean to belong to two EJBJars and
have two JavaClasses. Later we will see that in fact these N-patterns can be
automatically derived from the meta-models, and also that there is no need to
manually specify the parameters in the P-patterns P(Service-SessionBean) and
P(Operation-Method).

Next, we define pattern satisfaction. Since N-patterns are a special case of
P-patterns, a unique definition is enough. Satisfaction is checked on constraint
triple graphs, not necessarily ground. This is so because, during a transformation,
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the source and target models do not need to be ground. When the transformation
finishes a solver can find an attribute assignment satisfying the formulae.

We define forward and backward satisfaction. In the former we check that the
main constraint of a pattern is found in all places where the pattern is source-
enabled. That is, roughly, in all places where the pre-conditions for enforcing
the pattern in a forward transformation hold. The separation between forward
and backward satisfaction is useful because if we transform forwards (assuming
an initial empty target) we just need to check forward satisfaction. Full satis-
faction implies both forward and backward satisfaction and is useful to check if
two graphs are actually synchronized. For simplicity, we only enunciate forward
satisfaction, see the full definition in [12].

Definition 5 (Satisfaction). A constraint triple graph CTrG satisfies CP =
[

∧
i∈Pre

←−
N (Ci) ∧

←−
P (C) ⇒ P (Q)

∧
j∈Post

N(Cj)], written CTrG |= CP , iff:

– CP is forward satisfiable, CTrG |=F CP : [∀mS : PS → CTrG s.t. (∀i ∈ Pre
s.t. NS

i � PS , �nS
i : NS

i → CTrG with mS = nS
i ◦ aS

i ), ∃m : Q → CTrG
with m ◦ qS = mS, s.t. ∀j ∈ Post �nj : Cj → CTrG with m = nj ◦ cj], and

– CP is backward satisfiable, CTrG |=B CP , see [12]

with Px = C +C|x Q|x, Nx
i = C +C|x Ci|x and Nx

i

ax
i←− Px

qx

−→ Q (x ∈ {S, T }),
see left of Fig. 7. C +C|x Q|x is the pushout object of C and Q|x through C|x.

Remark. We use the notation A ∼= B to denote that A and B are isomorphic,
and A � B to denote that A and B are not isomorphic.

d : Definitions

name = n1

e : EJBJar

displayName = n2

m : D2J

n1 = n2

Q

d : Definitions

PS

d : Definitions

targetNamespace = http://exp.com

e : EJBJarm : D2J

CTrG

: Service

: PortType

: Session

displayName StockQuoteServiceBean
transactionType = Container
sessionType = stateless

: S2B

d : Definitions

Q |S

P.O.

C |S

C

Ci|S

dS
i

��

P.O.

C|S
�
�

�����
�� qS

�����
��

bi
S��

C
=

eS
i

����
�� cS

		����� P.O. Q|S
pS



�����

NS
i

/
nS

i

��

PS

=

aS
i

��

mS ��

qS �� Q
= =

cj ��

m�����
���

Cj

/
nj

CTrG

Fig. 7. Forward satisfaction (left). Example (right).

Example. The right of Fig. 7 shows an example of forward satisfaction of pat-
tern P(Definitions-EJBJar) by a ground constraint triple graph CTrG. There is
one occurrence of the source restriction of the pattern in CTrG, which can be
extended to the whole pattern. In addition, CTrG also backward-satisfies the
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pattern and hence it satisfies it. Note however that CTrG does not forward-
satisfy pattern P(Service-SessionBean) as the session bean does not define the
required java classes and interfaces. The satisfaction checking of a pattern with
abstract objects is the same as that of a pattern without them, thus enabling
the usual allowed substitution of abstract types by concrete ones.

We can distinguish several kinds of pattern satisfaction. In trivial satisfaction,
a pattern is satisfied because no morphism mS exists (i.e. there is no occurrence
of the source restriction of the pattern). This is for example the case of pattern
P(Operation-Method) in the constraint CTrG of Fig. 7, as there is no Operation
object in the source of the constraint. In vacuous satisfaction, a pattern is sat-
isfied because mS exists but some of its negative pre-conditions are also found.
In this case, the main constraint Q of the pattern is not demanded to occur in
CTrG. Finally, in positive satisfaction, mS and m exist and the negative pre- and
post-conditions are not found. All these three cases are handled by Definition 5.

One M2M specification is a conjunction of patterns, and hence a constraint
triple graph satisfies a specification if it satisfies all its patterns.

5.1 Considering the Meta-model Integrity Constraints

A transformation specification cannot be oblivious of the meta-model integrity
constraints. The simplest ones are the maximum cardinality constraints in as-
sociation ends. These induce N-patterns that in this paper we automatically
derive and include in the transformation specification. This is useful to prevent
the operational mechanisms from generating syntactically incorrect models, as
N-patterns will be transformed into post-conditions of the operational rules.

The generation procedure is simple: if a class A is restricted to be connected
to a maximum of j objects of type B, then we build an N-pattern made of an A
object connected to j+1 B objects. As an example, Fig. 6 showed three N-patterns
that were derived from the WSDL and EJB meta-model constraints.

Note that additional (but restricted) forms of OCL could also be transformed,
and here we can benefit from previous works on translating OCL into graph
constraints [31]. Interestingly, once the meta-model constraints are expressed
in the form of patterns, we can analyse their consistency with the rest of the
specification. For example, if we find a morphism from some of the generated N-
patterns to an existing P-pattern, then we can conclude that the transformation
is incorrect, as it could try to create models violating the cardinality constraints.
We plan to develop further static analysis techniques, similar to those of [22].

6 Generation of Operational Mechanisms

This section describes the synthesis of TGG operational rules implementing
forward and backward transformations from pattern-based specifications. In
forward transformation, we start with an initial constraint triple graph with
correspondence and target empty, and the other way round for backward trans-
formation. Moreover, we also assume that the source or target initial models
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do not violate any N-pattern of the specification. Recall that some of these N-
patterns are derived from the maximum association cardinality constraints in
meta-models, and hence it is reasonable to assume syntactically correct starting
models.

The synthesis process derives one rule from each P-pattern, made of triple
constraints in its LHS and RHS. In particular, PS = C +C|S Q|S is taken as
the LHS for the forward rule, and the main constraint Q as the RHS. As an
example, Fig. 8 shows the LHS and RHS of the forward rule derived from pattern
P(Definitions-EJBJar).

d : Definitions

name = n1

e : EJBJar

displayName = n2

m : D2J

n1 = n2

Q=R

d : Definitions

PS=L

d : Definitions

Q |SC

P.O.

C |S

Fig. 8. Forward rule generation example

If a rule creates objects having a type with defined subtypes, we generate a set
of rules resulting from substituting the type by all its concrete subtypes in the
graph created by the rule, i.e. the nodes in RHS \LHS. This substitution is not
necessary in the elements of the LHS as they are not created, and it is not done
in the NACs either in order to obtain the expected behaviour of disjunction.
Using an optimization similar to [3], one could also work directly with abstract
rules, but we would have to modify the notion of morphism and it is left for
future work.

The negative pre- and post-conditions of a P-pattern are used as negative pre-
and post-conditions of the associated rule(s). All N-patterns are converted into
negative post-conditions of the rule(s), using the well-known procedure to con-
vert graph constraints into rule’s post-conditions [8]. Finally, additional NACs
are added to ensure termination. For simplicity, we only show the generation of
the forward rules, the backward rules are generated analogously [12].

Definition 6 (Derived Forward Rule). Given specification SP and P =
[
∧

i∈Pre

←−
N (Ci) ∧

←−
P (C) ⇒ P (Q)

∧
j∈Post N(Cj)] ∈ SP , the set of forward rules

−→rP = {((L = C +C|S Qn|S rn

→ Rn = Qn), pren(P ), postn(P ))}n∈Conc(P ) is de-

rived, where {L rn

→ Qn}n∈Conc(P ) is the set of rules L → Qn resulting from all
valid substitutions of types by concrete subtypes in nodes belonging to V Q\r(V L).
The set pren(P ) of NACs is defined as the union of the following two sets:
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– NAC(P ) = {L aS
i→ NS

i |L � NS
i }i∈Pre is the set of NACs derived from P ’s

negative pre-conditions, with NS
i
∼= Ci|S +C|S C. See the left of Fig. 7, where

PS is L in this definition.
– TNACn(P ) = {L mk→ Tk} is the set of NACs ensuring termination, where

Tk is built by making mk injective and jointly surjective with Qn f→ Tk, s.t.
the diagram shown below commutes.

Qn|S ��

��
=

Qn

f
��

L �� Tk

and the set postn(P ) is defined as the union of the following two sets of negative
post-conditions:

– POST n(P ) = {mj : Rn → Cj}j∈Post is the set of rule’s negative post-
conditions, derived from the set of P ’s post-conditions.

– NPAT n(P ) = {Rn → D|[N(Ck)] ∈ SP , Rn → D ← Ck is jointly surjective,
and (Rn \ L) ∩ Ck �= ∅} is the set of negative post-conditions derived from
each N-pattern N(Ck) ∈ SP .

Remarks. In the previous definition, we have used function Conc(P), which
given a pattern P , calculates the set of all valid node type substitutions {Qn}
of its main constraint Q. Slightly abusing the notation, we have used Conc(P )
as an index set.

The set NPAT n(P ) contains the negative post-conditions derived from the
N-patterns of the specification. This is done by relating each N-pattern with the
rule’s RHS in each possible way. Moreover, the requirement that (Rn \L)∩Ck �=
∅ reduces the size of NPAT n(P ), because we only need to consider possible
violations of N-patterns due to created elements by the RHS, as we start with
an empty target model, and the source already satisfies all N-patterns.

Example. The upper row of Fig. 9 shows the operational forward rule generated
from pattern P(Service-SessionBean), which does not contain abstract objects.
There are three NACs for termination, TNAC1, TNAC2 and TNAC3, the former
equal to R. TNAC3 is not shown in the figure, but is like TNAC1 with an additional
node of type D2J in the correspondence graph, connecting nodes d and e. Note
that we do not do any algebraic manipulation of formulae to generate the rule,
hence demonstrating the advantages of using constraint triple graphs in our
approach. The figure also shows a direct derivation where both G and H are
ground constraints. Constraint H is obtained by a pushout, and hence according
to Prop. 1 is calculated by a pushout on triple graphs and the conjunction of
the formulae of R and G. When the transformation ends, a constraint solver can
be used to resolve attribute values. We will present further generated rules in
Section 8.

According to [21], the generated rules are terminating and, in absence of N-
patterns, correct: they produce only valid models of the specification. However,
the rules are not complete: not all models satisfying the specification can be
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Fig. 9. Generated forward rule and derivation

produced. For example, assume we have a starting model with two Definitions
objects with same name. Then, the synthesized forward rules are able to generate
the model to the left of Fig. 10, but not the one to the right of the same figure,
which also satisfies the specification. The model to the right would be generated
if we could synthesize rules reusing elements created by previous applications of
rules. Next subsection describes a method, called parameterization, that ensures
completeness of the rules generated from a specification without N-patterns (and
therefore it makes possible to find both solutions in the figure). The main idea
is to generate additional patterns with increasingly bigger parameters, which
enables the generated rules to reuse previously created elements.

: Definitions

name = “StockQuote”

: EJBJar

displayName = “StockQuote”

: D2J

Generated graph

: Definitions

name = “StockQuote”

: EJBJar

displayName = “StockQuote”

: D2J

: Definitions

name = “StockQuote” : EJBJar

displayName = “StockQuote”

: D2J

Non-generated graph

: Definitions

name = “StockQuote”

: D2J

Fig. 10. Reachable (left) and unreachable (right) models for the specification without

parameterization

Please note that the resulting constraint of a forward transformation forward-
satisfies the specification, but does not necessarily backward-satisfies it. This is
also noticed in QVT-R [23], where check-only transformations are directed as
well (either forwards or backwards). Thus, the result of an enforcing forward
transformation does not necessarily satisfy the same transformation when exe-
cuted backwards in mode check-only, and vice versa.
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If a specification contains arbitrary N-patterns, these are added as negative
post-conditions for the rules, preventing the occurrence of N-patterns in the
model. However, they may forbid applying any rule before a valid model is found,
thus producing graphs that may not satisfy all P-patterns. In this case, some
terminal graphs – to which no further rule can be applied – may not be models
of the specification. Note however that if the specification admits solutions, our
operational mechanisms are still able to find all of them, but in this case not all
terminal models with respect to the grammar satisfy the specification.

6.1 Parameterization and Heuristics for Rule Derivation

In order to obtain completeness, we apply an operation called parameterization
to every P-pattern in the specification. In this way, the resulting rules are able
to generate all possible models of the specification [12,21]. The parameterization
operation takes a P-pattern and generates additional ones, with all possible
positive pre-conditions “bigger” than the original pre-condition, and “smaller”
than the main constraint Q. This allows the rules generated from the patterns
to reuse already created elements.

Definition 7 (Parameterization). Given T =
∧

i∈Pre

←−
N (Ci)∧

←−
P (C) ⇒ P (Q)∧

j∈Post N(Cj), its parameterization is Par(T ) = {
∧

i∈Pre

←−
N (Ci) ∧

←−
P (C′) ⇒

P (Q)
∧

j∈Post N(Cj)|C
i1
↪→ C′ i2

↪→ Q, C � C′, C′ � Q}.

Remark. The formula αC′ can be taken as the conjunction of αC for the vari-
ables already present in νC , and αQ for the variables not in νC (i.e. in ν′

C\i1(νC)).
Formally, αC′ = αC ∧ αQ|i2(νC′\i1(νC)) (assuming no renaming of variables).

Example. Fig. 11 shows some of the parameters generated by parameteriza-
tion for a pattern like P(Operation-Method) in Fig. 6 but without parameters.
Parameterization generates 123 patterns in total. The pattern with parameter←−
P (1) is enforced when the port is already mapped to an EJB with a Java class,
and in forward transformation avoids generating a rule that creates a bean and
a Java class with arbitrary names. Parameter

←−
P (3) reuses an operation with the

same name as the method, and in backward transformation allows generating
just one operation from a number of methods with the same name but different
number of parameters. However,

←−
P (2) is potentially harmful as it may lead to

reusing a method that already belongs to a different bean, and thus to an in-
correct model. Note however that this is not possible as an N-pattern generated
from the maximum cardinality constraints of the meta-model forbids methods
to belong to two different JavaClasses. This shows that including the cardinal-
ity constraints of the meta-models as N-patterns in the transformations allows
controlling the level (and correctness) of reuse.

As the example shows, parameterization generates an exponential number of
patterns with increasingly bigger parameters, resulting in an exponential number
of rules. However one does not need to generate these rules beforehand, but they
can be synthesized “on the fly”. Moreover, some of these forward rules generated
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Fig. 11. Parameterization example

from the parameterized pattern will actually be equal, namely, those generated
from parameters with same target and correspondence graph. Although param-
eterization ensures completeness, we hardly use it in practice due to the high
number of generated rules, and we prefer using heuristics to control the level
of reuse. However, as previously stated, generating fewer patterns can make the
rules unable to find certain models of the specifications (those “too small”).

In order to reduce the number of rules, we propose two heuristics. The first
one is used to derive only those parameters that avoid creation of elements with
unconstrained attribute values. The objective is to avoid synthesizing rules that
create elements whose attributes can take any value. Instead, we prefer that
these elements are generated by some other rule that assigns them a value, if it
exists. Note that some transformations may not provide a unique value for each
attribute thus being “loose”.

Heuristic 1. Given a pattern P , replace it by a new pattern that has as param-
eter all elements with some attribute not constrained by the formula in P but
constrained by some other pattern, as well as the mappings and edges between
these elements. We do not apply the heuristic if the obtained parameter is equal
to Q.

Example. In the pattern in Fig. 11, the heuristic generates just one pattern
with parameter

←−
P (1). Thus, the generated forward rules do not create beans

or classes with arbitrary names. Note that the heuristic replaces the original
pattern with the generated one. This example shows that there is no need to set
this parameter explicitly a priori as we did in the initial specification of Fig. 6.

In Fig. 12 we present to the left an extended version of the pattern
P(Definitions-EJBJar) which maps WSDL definitions to a jar but also to a
package. In the backward direction, a definitions object will be created for each
package and its container jar (this is known because the package contains an
interface that belongs to a bean inside the jar), and we use the name of the
package to give value to the targetNamespace attribute. However, in the for-
ward direction we want to avoid the creation of beans with undefined name,
therefore we apply the presented heuristic and obtain the pattern to the right,
where the positive pre-condition is annotated with the key 〈〈param〉〉 and high-
lighted. In addition, we need to ensure that there are no two Definitions with
same name and targetNamespace, otherwise the operational mechanisms would
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create different Definition objects for each JavaInterface inside a package.
This can be done using one N-pattern, or as we will see later, using the CBE
semantics.
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n1 = n2
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Fig. 12. Applying heuristic 1 to a pattern

The next heuristic generates only those parameters that avoid duplicating a
graph S1, forbidden by some N-pattern of the form N(S1 +U S1). This ensures
the generation of rules producing valid models for the class of specifications with
N-patterns of this form (called FIP in [4]), and which include the N-patterns
generated by the maximum cardinality constraints in meta-models. The way to
proceed is to apply heuristic 2 to each P- and N-pattern of the form N(S1+U S1),
and repeat the procedure with the resulting patterns until no more different
patterns are generated.

Heuristic 2. Given a P-pattern [
∧

i∈Pre

←−
N (Ci)∧

←−
P (C) ⇒ P (Q)] ∈ SP , if there

is an N-pattern [N(S)] ∈ SP with S ∼= S1+U S1, and ∃s : S1 → Q, u : U → C s.t.
s ◦ u1 = q ◦ u (see left of Fig. 13), and �s′ : S1 → C all injective s.t. q ◦ s′ = s,
then we generate additional patterns with parameters all C′

j s.t. q1 and qs in
Fig. 13 are jointly surjective, and the induced C′

j → Q is injective.
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Fig. 13. Condition for heuristic 2 and generated parameters (left and center). Decom-

position of N-pattern (right).

The rationale of this heuristic is that if a P-pattern has a parameter C that
contains U but not S1, and its main constraint Q contains S1, then applying the
pattern creates a new structure S1 glued to an existing occurrence of U . This
heuristic enlarges the parameter to include S1 and thus avoid its publication.
The way to proceed is to apply the heuristic for each P- and N-pattern of the
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form N(S1 +U S1), and repeat the procedure with the resulting patterns until
no more different patterns are generated.

Example. The right of Fig. 13 shows that N-pattern N(SharedBean) satisfies
the conditions demanded by heuristic 2. The pattern forbids an EnterpriseBean
to belong to two EJBJars. Fig. 14 shows the application of heuristic 2 to the P-
pattern P(Definitions-EJBJar&Package.h1) previously obtained by heuristic 1,
and to the N-pattern N(SharedBean) decomposed in Fig. 13. The generated
parameter C′

1 includes the EJBJar so that it is not created in forward transfor-
mation. In this way, it avoids the creation of the model fragment forbidden by
the N-pattern. Note that the initial pattern with parameter C is also kept in the
specification.
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name = n1
targetNamespace = n3

: JavaPackage

name = n4

: D2P

n1 = n2
n3.authority = n4

: D2J
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: JavaInterface

C

S1

1

Fig. 14. Applying heuristic 2

7 Check-Before-Enforce Semantics

Even though the presented heuristics help controlling the level of reuse, in an
M2M transformation it is useful to control whether an element has to be cre-
ated in the generated domain or whether it already exists and can be reused.
This avoids creating duplicated objects. This control mechanism has been in-
corporated to approaches like QVT and is called Check-Before-Enforce (CBE)
semantics. In this section we incorporate it to our framework.

The idea is to generate N-patterns forbidding two objects of the same type
with the same attribute values. Then, our Heuristic 2 takes each P-pattern in
the specification and generates new ones with appropriate parameters reusing
the objects whenever possible.

Example. The left of Fig. 15 shows the N-pattern that the CBE semantics gen-
erates for class Definitions, which forbids two Definitions objects with same
attribute values in the WSDL model. The center of the same figure presents the
pattern generatedbyheuristic 2 frompatternP(Definitions-EJBJar&Package.h1)
shown in Fig. 12 due to the newly introduced N-pattern. The new pattern adds a
Definitions object to the previous parameter.

To allow for a better control of reuse, and to permit the specification of
when two objects are to be considered equal, QVT includes the concept of Key.
Keys allow us, for example, to neglect certain attributes when comparing if two
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Fig. 15. N-pattern generated by CBE semantics (left). Pattern generated by heuristic

2 (center). N-pattern generated from the key of PortType.

objects are the same, or include further connected objects in the comparison.
Again, such a concept can be easily incorporated into our framework by an ap-
propriate generation of N-patterns. For instance, we can set that the key for
PortTypes is their name and owner service. This would be specified in QVT
as Key PortType{name, Service}, from which our procedure generates the N-
pattern to the right of Fig. 15.

8 Specification Process and Back to the Case Study

Fig. 16 summarises the steps needed to engineer a pattern-based transformation
specification and obtain the operational mechanisms. The process is shown as a
SPEM model [26], similar to an activity diagram, where activities are numbered
in dots and represented as arrow-like icons. The model distinguishes the level at
which the activity is performed (language, specification or operational) and who
performs it (language engineer, transformation engineer or automated process).

First, the language engineer designs the source and target meta-models or
reuse them if already available (step 1). Next, the transformation engineer de-
signs the allowed traces between the elements in the source and target languages,
obtaining a meta-model triple as a result (step 2). Once this is available, sev-
eral activities can start in parallel. On the one hand, the engineer builds the
transformation specification (step 3a) and sets the keys (step 3b1). On the other
hand, our automatic mechanisms generate the N-patterns derived from the meta-
model constraints (step 3c), as well as those for the CBE semantics and keys
(step 3b2). Then, we apply the heuristics to the transformation specification and
N-patterns synthesized by the previous activities (step 4). This results in an
enriched specification that is used to generate the TGG operational rules, once
the transformation direction is chosen (step 5).

If we apply this engineering process to our case study, the first step is to
build the WSDL and EJB meta-models, which were shown in Figs. 1 and 2. The
trace meta-model defines four types of nodes: (i) D2J connecting Definitions
and EJBJar objects, (ii) S2B connecting Service and Session objects, (iii) P2B
connecting PortType and Session objects, and (iv) O2M connecting Operation
and Method objects.
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Fig. 16. Our transformation engineering process

Next, we have to design the transformation specification. This is made
of the three P-patterns shown in Fig. 6: P(Definitions-EJBJar), P(Service-
SessionBean) and P(Operation-Method), all of them without parameters.
For simplicity we do not consider Java packages, and thus omit pattern
P(Definitions-EJBJar&Package) shown in Fig. 12.

Meanwhile, step 3c generates one N-pattern for each association end in the
meta-model with bounded upper cardinality. Three of these N-patterns were
shown in Fig. 6. In its turn, step 3b2 generates additional N-patterns due to
the CBE semantics and according to the specified keys. This results in one N-
pattern for each class in the meta-models. In case we chose the direction of the
transformation first, it would be enough to generate N-patterns from one of the
meta-models: the target in forward transformations and the source in backwards.
Fig. 15 showed some of the N-patterns generated due to CBE semantics. Then,
applying the heuristic 1 replaces some P-patterns by others with parameters,
and applying the heuristic 2 adds new patterns to the specification.

Finally, we choose the operational scenario to be solved and generate the TGG
operational rules. Two of the generated forward rules are shown in Fig. 17. The
rule to the left is generated from the P(Definitions-EJBJar) pattern and creates an
EJBJar object for each Definitions object in the WSDL model. The rule has one
termination NAC equal to the RHS, and two post-conditions coming from the N-
pattern N(SharedBean) that was derived by a meta-model cardinality constraint.
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Fig. 17. Some of the generated forward rules for the case study

The right of the same figure shows the rule generated from pattern
P(Operation-Method.h1), pattern that replaced pattern P(Operation-Method) af-
ter applying the heuristic 1. The rule creates one Method for each Operation in
a PortType. Note that objects o and b have abstract type. The rule has three
termination NACs, as well as several negative post-conditions that are omitted
for simplicity.

The generated forward rules can be applied to WSDL models in order to ob-
tain the EJB model. Fig 18 shows one example where we start with a WSDL
containing one Service owning a PortType with two Operations. After ap-
plying the four rules shown in the figure, we obtain the constraint triple graph
to the right, to which no more rules can be applied. Note that in this final
model not all attributes are constrained, for example the transactionType and
the sessionType of the Session object (these attributes are not considered by
the transformation specification). Hence, a constraint solver could give arbitrary
values to these attributes, or the user could be asked to give one. Also, for this
starting model the transformation is confluent (in the sense that we obtain a
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unique constraint triple graph, from which we can however derive several mod-
els by assigning different attribute values), but this is not necessarily so for other
models, as already noted in [12,21]. This is actually a good behaviour, as one
obtains all terminal models that satisfy the transformation specification.

9 Conclusions and Future Work

In this paper we have incorporated the CBE semantics and keys concepts of
QVT-R into our pattern-based M2M framework in order to control object reuse
in M2M transformations. This is achieved by adding N-patterns to the spec-
ification so that they forbid the existence of two objects that are considered
equal, thus making the operational mechanism to reuse such objects whenever
possible. We have also shown that the meta-model inheritance hierarchy and the
integrity constraints have to be considered by the transformation specification.
In particular, we have discussed how to generate N-patterns from the maximum
cardinality constraints in associations, as well as how to handle abstract objects
in patterns. Finally, we have illustrated these concepts with a transformation
between WSDL and EJB models.

There are many open lines for further research. For example, one could consider
the benefits of adding relations between the nodes in the correspondence graph
instead of having a discrete graph there. These have been exploited in [9] for im-
plementing incremental transformations, but note that our theory demands graph
morphisms between the correspondence and the other two graphs, hence posing
some restrictions. We are also starting to investigate more complex operational
scenarios, like incremental transformations and model synchronization. On the
theoretical side, it is worth investigating analysis methods for specifications, as
well as simplifications of the current formalism. For example, in our experience, it
seems possible to get rid of parameters in the initial specification, and express the
restrictions with N-patterns so that one ends up with equivalent specifications.
However, this is still an open question. We would also like to explore higher-level
means of specifications, by (i) omitting the correspondence graph at the speci-
fication level (and automatically generating the traces at the operational level,
as in [10,14]), and (ii) making possible the specification of pattern dependencies
and parameter passing, similar to when or where clauses in QVT. These two steps
would allow us to express the semantics of QVT-R with our framework. We also
plan to perform a detailed study of the expressivity of different mechanisms for
reuse of other bidirectional languages, like TGGs and QVT-R, by using realistic
examples. Finally, we are also investigating other languages for the operational
mechanisms, like Coloured Petri Nets, in the style of [5].
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Appendix

Proof of Proposition 1.

Proof. We have to prove that if diagrams (1) and (2) are pushouts then diagram
(3) is also a pushout, where DA = (D, νD, c′(αB) ∧ b′(αC)).

A

(1)

bTrG
��

cT rG

��

B

c′T rG

��

νA

(2)

bν
��

cν

��

νB

c′ν

��

AA

(3)

b ��

c

��

BA

c′

��
C

b′T rG

�� D νC
b′ν

�� νD CA
b′

�� DA

First, it may be noted that diagram (3) is indeed a diagram in CTrGA, since
(c′(αB)∧b′(αC)) ⇒ c′(αB) and (c′(αB)∧b′(αC)) ⇒ b′(αC) are tautologies, which
means that b′ and c′ are indeed morphisms in CTrGA. Moreover, we know that
if diagram (3’) commutes:

AA

(3′)

b ��

c

��

BA

c′′

��
CA

b′′
�� D′A
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then also diagrams (1’) and (2’) commute:

A

(1′)

bT rG
��

cT rG

��

B

c′′T rG

��

νA

(2′)

bν
��

cν

��

νB

c′′ν

��
C

b′′T rG

�� D′ νC
b′′ν

�� ν′
D

which means that there are unique morphisms eTrG : D → D′ and eν : νD → νD′

satisfying eTrG ◦ b′TrG = b′′TrG, eTrG ◦ c′TrG = c′′TrG, eν ◦ b′ν = b′′ν , and
eν ◦ c′ν = c′′ν . But this means that e : (D, νD, c′(αB) ∧ b′(αC)) → (D′, νD′ , αD′)
is a morphism, since if A |= αD′ ⇒ c′′(αB) and A |= αD′ ⇒ b′′(αC) then
A |= (αD′ ⇒ (c′′(αD) ∧ b′′(αC))). But we know that c′′(αB) ∧ b′′(αC) = (e ◦
c′)(αB) ∧ (e ◦ b′)(αC) = e(c′(αB) ∧ b′(αC))) and this means that A |= (αD′) ⇒
e(c′(αB) ∧ b′(αC)). Finally, if e′ : (D, νD, c′(αB) ∧ b′(αC)) → (D′, νD′ , αD′) is a
morphism satisfying that e′ ◦ b′ = b′′ and e′ ◦ c′ = c′′ then, by the uniqueness of
eTrG and eν , we have that e = e′.
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Abstract. Model-driven software development is a language- and transforma-
tion-based paradigm, where the various development tasks of engineers are cast 
in this framework. During the past decade we have developed, evolved, and ap-
plied in practical projects a manifestation of this principle through a suite of 
tools we call the Model-Integrated Computing suite. Graph transformations are 
fundamental to this environment and tools for constructing model translators, 
for the specification of the semantics of languages, for the evolution of model-
ing languages, models, and their transformations have been built. Designing and 
building these tools have taught us interesting lessons about graph transforma-
tion techniques, language engineering, scalability and abstractions, pragmatic 
semantics, verification, and evolutionary changes in tools and designs. In the 
paper we briefly summarize the techniques and tools we have developed and 
used, and highlight our experience in constructing and using them.  

Keywords: model-driven development, integrated development environments, 
graph transformations, model transformations. 

1   Introduction 

Model-driven software development is a language- and transformation-based para-
digm, where the various development tasks of engineers are cast in this framework 
[35]. Models are used in every stage of the software product’s lifecycle and the 
model-oriented thinking about the product permeates every aspect of the software 
engineer’s work. Models are used to capture requirements and designs, assist in the 
implementation, verification, testing, deployment, maintenance, and evolution.  

As there is no single language or tool that solves all these problems in software 
production no single modeling language or modeling tool can solve them either - 
hence a multitude of models is needed. Models are the artifacts of software produc-
tion, and there are dependencies among these models: some models are closely related 
to each other (e.g. design models to requirement models), while some models (and 
other, non-model artifacts) are automatically generated from models. Two examples 
for the latter include ‘analysis models’ that are suitable for verification in some auto-
mated analysis tool (e.g. SMV) and executable code (e.g. in C); both of them are 
derived from the same source model (e.g. UML State Machines).  
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For a model-driven development process model transformations are essential: these 
transformations connect the various models and other artifacts, and they need to be 
executed frequently by the developers, or by some automated toolchain. Hence, con-
structing model transformation tools is of great importance for the builders of devel-
opment toolchains. The model transformations have to be correct, reliable, robust, and 
provide high performance; otherwise the productivity of developers is reduced.  

The advantages of using domain-specific approaches to software development and 
modeling are well recognized [1]. Using domain-specific modeling languages neces-
sitates the development of custom, domain-specific model transformations – that are 
subject to the same quality requirements as any other transformations in a toolchain.  

In the past 15+ years, our team has created and evolved a tool-suite for model-
driven software development that we call ‘Model-Integrated Computing’ (MIC) suite 
[24]. The toolsuite is special in the sense that emphasizes (and encourages) the use of 
domain-specific models (and thus modeling languages), as opposed to focusing on a 
single general purpose approach (like UML). Hence model transformations (and es-
pecially domain-specific model transformations) play an essential role in the MIC 
suite. Another specialty of the suite is that it is a ‘meta-toolsuite’ as it allows defining 
and constructing domain-specific toolchains with dedicated domain-specific modeling 
languages.  

The development of the MIC toolsuite involved creating the technology for all as-
pects of a domain-specific model-driven toolchain, including language definition 
(including concrete and abstract syntax, as well a semantics), model editing, specify-
ing model transformations, the verification of models and model transformations, 
code generation, the evolution of models and model transformations. In this paper we 
focus on the model transformation aspects of the toolsuite and present what interest-
ing lessons have been learned about graph transformation techniques, language engi-
neering, scalability and abstractions, pragmatic semantics, verification, and evolution-
ary changes in tools and designs. In the text we will indicate important lessons using 
the mark [L].  

The paper is organized as follows. First, we discuss the fundamental concepts re-
lated domain-specific modeling languages. Next, the main ideas used in model trans-
formations are introduced; followed by the discussion on four selected problem do-
mains: efficiency, practical use of transformations, verification of transformations, 
and the role of transformations in evolution and adaptation. The paper concludes with 
a summary and topics for further research.  

2   Foundations: Metamodels  

The first problem in constructing a domain-specific model-driven toolchain one faces 
is the specification and definition of domain-specific modeling languages (DSML) 
[24]. Formally, a DSML L is a five-tuple of concrete syntax (C), abstract syntax (A), 
semantic domain (S) and semantic and syntactic mappings (MS, and MC):   

L = < C, A, S, MS, MC> 

The concrete syntax (C) defines the specific (textual or graphical) notation used to 
express models, which may be graphical, textual or mixed. The abstract syntax (A) 
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defines the concepts, relationships, and well-formedness constraints available in the 
language. Thus, the abstract syntax determines all the (syntactically) correct “sen-
tences” (in our case: models) that can be built. It is important to note that the abstract 
syntax includes semantic elements as well. The integrity constraints, which define 
well-formedness rules for the models, are frequently identified as “static semantics”. 
The semantic domain (S) is usually defined by means of some mathematical formal-
ism in terms of which the meaning of the models is explained. The mapping MC: 
A→C assigns concrete syntactic constructs (graphical, textual or both) to the elements 
of the abstract syntax. The semantic mapping MS: A→S relates syntactic constructs to 
those of the semantic domain. The definition of the (DSM) language proceeds by 
constructing metamodels of the language (to cover A and C), and by constructing a 
metamodel for the semantics (to cover MC and MS).  

One key aspect of the model-driven development (and in particular, MIC) is that 
model-driven concepts should be recursively applied [L]. This means that one should 
use models (and modeling languages) to define the DSMLs, and the transformations 
on those languages, and thus models should be used not only in the (domain-specific) 
work, but also in the engineering of the development tool suite itself. In other words, 
models should drive the construction of the tools. This recursive application of the 
model-driven paradigm leads to a unifying approach, where the tools are built using 
the same principles and techniques as the (domain) applications. Furthermore, one can 
create generic, domain-independent tools that could be customized (via models) to 
become domain-specific tools, in support of domain-specific models.  

Models that define DSML-s are metamodels, and thus a metamodeling approach 
should support the definition of the concrete and abstract syntax, as well as the two 
mappings mentioned above. Obviously, the metamodels have a language, with an 
abstract and concrete syntax, etc. and this language is recursively defined, using itself. 
Thus, the metamodeling language is defined by a metamodel, in the metamodeling 
language – thus closing the recursion.  

Through experience we have learned that the primary issue one has to address in 
defining a DSML is that of the abstract syntax [L]. It is not surprising, as abstract 
syntax is closely related to database schemas, conceptual maps, and alike that specify 
the core concepts, relationships and attributes of systems. Note that the abstract syn-
tax imposes the inherent organizational principles of the domain and all other ingredi-
ents of a DSML are related to it.  

We have chosen the concrete syntax of UML class diagrams to define the abstract 
syntax, as it is widely known, well-documented, and sufficiently precise. When choos-
ing a concrete syntax for a DSML it is important to use one that is familiar to the 
domain engineers [L], in this particular case the language developers. A UML class 
diagram defines a conceptual organization for the domain, but also the data structures 
that can hold the domain models. This mapping from the class diagrams to data 
(class) structures has been implemented in many systems.  

As discussed above, the definition of abstract syntax must include the specification 
of well-formedness rules for the models. We have chosen the well-documented OCL 
approach here: OCL constraints could be attached to the metamodel elements and 
they constrain the domain models. Note the difference: in conventional UML con-
straints restrict the object instances; here the meta-level DSML constraints restrict the 
models (which are, in effect, instances of the classes of the abstract syntax) [L].  
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One important issue with constraints is when and how they are used. As our con-
straints refer to the domain models, they are evaluated when those domain models are 
constructed and manipulated. At the time when domain models are constructed the 
modeler can invoke a ‘constraint checker’ that verifies whether the domain models 
comply with the well-formedness specified in the metamodel. Occasionally these 
checks are automatically triggered by specific editing operations, but most often the 
modeler has to invoke them. Often the checks are made just before a model transfor-
mation is executed on the models. As these checks may involve complex computa-
tions, it is an interesting research question when exactly to activate them [L]; after 
every editing operation, upon a specific modeler command, when the models are 
transformed, etc.   

The concrete syntax defines the rendering of the domain model in some textual or 
graphical form. Obviously, the abstract syntax can be rendered in many different 
concrete forms [L], and different forms could be effective for different purposes. A 
purely diagrammatic form is effective for human observation, but an XML form is 
better for automated processing. Choosing a concrete syntax has a major impact on 
the usability of a DSML [L]. 

There have been a number of successful research efforts to make the concrete syn-
tax highly flexible [17][37]. These techniques typically provide a (frequently declara-
tive) specification for rendering the abstract syntax into concrete syntax as well as 
interpreting elementary editing events as specific operations that manipulate the un-
derlying data structures of models. Alternatively, one can generate diagram editors 
from specifications [35]. These techniques are very flexible and general and can be 
used to create very sophisticated model editing environments. In effect, these tech-
niques operationalize the mapping MC above.  

We have chosen a different approach that is less flexible but allows rapid experi-
mentation with DSML-s; we call this ‘idiomatic specification of concrete syntax’ 
[25]. In our previous work, we have created a number of graphical modeling envi-
ronments (graphical model editors) that have used a few model organization princi-
ples coupled together with a few visual rendering and direct manipulation techniques. 
For example, hierarchical containment, simple associations between model elements, 
associations between elements of disparate models that are contained within higher 
order models, and indirect referencing are such model organization principles that 
could be visualized using hierarchical diagrams, edges between icons, edges between 
ports of icons, and icons that act as pointers to distant model elements, respectively. 
Each such model organization principle is represented with a visual idiom. In our 
metamodeling language, each metamodel element has a stereotype that indicates the 
visual idiom to be used when rendering the corresponding domain model element. 
This approach, while much more limited than the approaches to relating concrete 
syntax to abstract syntax mentioned above, gives a rapid feedback for the designer of 
a DSML: the designer constructs UML class diagrams using predefined classes and 
associations with predefined stereotypes (e.g. <<Atom>>, <<Model>>, <<Connec-
tion>>, <<Reference>>, <<Set>>, etc.) and the resulting diagram immediately speci-
fies not only the abstract syntax of the DSML, but also the concrete syntax. With the 
help of a generic visual modeling environment, one can experiment with the new 
DSML literally within seconds. This experience has shown that choosing a simple 
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technique for specifying the visualization of models could be very effective, although 
much less general than a full realization of the mapping MC: A→C [L]. 

Defining the semantics of a domain-specific modeling language is a complex prob-
lem, and it is the subject of active research. In our MIC suite we have chosen a trans-
formation based approach that we will discuss in a subsequent section.  

Related work: Model-driven development is outlined in the Model-Driven Architec-
ture vision of OMG, and it is an active area of research as illustrated by the series of 
conferences on ‘Model-Driven Engineering Languages and Systems’. However, soft-
ware engineering environments for model-driven systems development have evolved 
from classical integrated development environments [32], and many of the same prob-
lems appear (and are re-solved) in a newer setting. Arguably, the novelty in 
MDA/MDE is the use of codified modeling languages for object-oriented design 
(UML) and the increasing use of domain-specific abstractions and dedicated, visual, 
domain specific modeling languages [26]. As such, the focus in the model-driven 
approach is moving away from the classical (textual) ‘document’ oriented approach 
towards to (graphical) ‘model’ oriented approach. This has an implication on how the 
development artifacts are stored and manipulated: in classical text-oriented environ-
ments parsing and un-parsing are important steps, while in model-driven environ-
ments (graphical) models are often rendered graphically and manipulated directly. 
Interestingly, one can draw parallels between the data model for abstract syntax trees 
(for source code) and the metamodels: they capture the concepts, relationships, and 
attributes of a ‘language’ (for programming and modeling, respectively).  

3   Model Transformations 

Model transformations play an essential role in any model-driven development tool-
chain, as discussed above [35]. They integrate different tools, they are used in refac-
toring and evolving model-based designs, they were used to specify code generators, 
and they are used in everyday work, for rapid development activities. Additionally, 
their efficiency, quality, and robustness are of great importance for pragmatic reasons: 
inefficient transformations lengthen development iterations, poor quality transforma-
tions produce inefficient models or code, and brittle transformations can cause great 
frustrations among developers.  

It is widely recognized in the model transformation community that graph trans-
formations serve as a suitable foundation for building model transformation systems. 
Graph transformations are not the only approach, but because of their long history and 
solid mathematical foundations they provide a solid background upon which model 
transformation systems can be built.  

3.1   Model Transformations via Efficient Graph Transformations  

Graph transformations are specified in the form of graph rewriting rules, where each 
rule contains a left-hand-side graph (LHS) and right-hand-side graph (RHS) [39]. 
When a rule is applied, an isomorphic occurrence of the LHS in the input graph is  
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sought and when found it is replaced by the RHS of the rule. Typically a transforma-
tion consists of more than one rule and these are applied in some order, according to 
some specification (either implicit or explicit). Note that the input and the output of 
the transformation are typed graphs, where each node has a specific type, and a rule 
matches only if node types match between the LHS (the pattern) and the input (host) 
graph.  

Graph rewriting rules offer a very high-level formalism for defining transformation 
steps. It is easy to see that the procedural code that performs the same function as a 
rewriting rule could be quite complex. In fact, every graph rewriting rule execution 
involves a subgraph isomorphism search, followed by the manipulation of the target 
(output) graph. The efficiency of the graph transformation is thus highly dependent on 
the efficiency of the graph isomorphism search [L].  

 

 
Fig. 1. Model transformation rule example 

The worst-case run-time complexity of graph isomorphism test is exponential in 
the size of the graphs involved,  but in graph transformations we only search for a 
fixed pattern, and the worst case time complexity for is O(nk), where n is the size of 
the graph and k is the size of the pattern. In our graph transformation-based model 
transformation system, called GReAT [2], we further reduced this by using localized 
search. The host graph is typically much larger than the pattern graph, and the pattern 
matches in a local neighborhood of a relative small number of nodes. Such localized 
search can be achieved by pre-binding some of the nodes in the pattern to specific 
nodes in the host graph. As shown on Fig. 1, the State and NewState nodes of the 
pattern are bound to two nodes in the graph (In and In1, respectively), before the rest 
of the pattern is matched. In other words, the pattern is not matched against all nodes 
in the host graph, rather only in the neighborhood of selected, specific nodes. When 
the rule is evaluated, the pattern matcher produces a set of bindings for the pattern 
nodes Rel, Data, NData, and OrState, given the fixed binding of the nodes 
State and NewState. Starting the search from ‘pivot’ nodes leads to significant 
reduction in the complexity of the pattern matching process as the size of the local 
context is typically small (provided one avoids the so-called V-structures [11]).   
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Localized search, however, necessitates the determination of the locale, i.e. the 
binding of the State and NewState nodes in the example. This problem was 
solved by recognizing the need for a traversal path in the input graph. General pur-
pose graph transformation approaches perform graph matching on the entire graph, 
and this has serious implications on the execution speed of such systems. In our sys-
tem, similarly to some other systems like PROGRES [41] and Fujaba [25], we require 
the developer to explicitly provide a traversal path that sets how the rewriting rules 
are applied in the input graph. In practical systems model graphs have a well-known 
‘root’ node where traversal can start form, and the first step in the transformation 
must have a rule that binds that root to one of the pattern nodes. A rewriting rule can 
also ‘hand over’ a node (existing, i.e. matched or newly created) to a subsequent rule 
(this is indicated on the example by the connection from the State to the Out port 
of the rule). Note that the patterns expressed in the rewriting rules and the sequencing 
of the rules (i.e. connecting the output ports of rules to input ports of other rules) 
implicitly specify how the input graph is traversed (and thus how the rewriting opera-
tions are sequenced). The sequencing can be combined with a hierarchy, as shown on 
Fig. 2.  

While the approach appears to be more complex (and ‘lower-level’ compared to 
general graph transforms), in practice it is quite manageable. Depth-first and breadth-
first traversals, traversals using arbitrary edge types, even fixpoint iterations over the 
graph are straightforward to implement. In our experience, trading off generality and 
developer’s effort for efficiency in the resulting transformation results in transforma-
tions that are not only reasonably fast (on large graphs) but also easier to under-
stand, debug, and verify [L].  

In our research, we wanted to build ‘industrial strength’ model transformations that 
operate on large models. Our first implementation of the model transformation engine 
was completely ‘interpreted’: the engine executed the rewriting rule sequence on the 
input graph; exhibiting expected performance shortcomings. Once the semantics of 
the transformation rules and programs was clear and stabilized, we have developed a 
code generator that produced executable code from the transformation models. The 
generator was implemented using the well-known partial evaluator technique and it 
produced code based on the partial evaluation of the transformation program with 
respect to the transformation interpreter semantics. For practical applications, such a 
‘compilation-based’ approach to enhancing the performance of model transforma-
tions is essential [L].  

Related work: PROGRES [41] is arguably the first widely used tool for specifying 
transformations on structures represented as graphs. PROGRES has sophisticated 
control structures for controlling the rewriting the process, in GReAT we have used a 
similar, yet different approach: explicitly sequenced rules that form control flow dia-
grams. PROGRES also supports representing type systems for graphs; in GReAT we 
use UML diagrams for this purpose. The very high-level notion of graph transforma-
tions used in PROGRES necessitates sophisticated techniques for efficient graph 
matching ([10] [39]); in GReAT we mitigate this problem by using less powerful 
rules and (effectively) performing a local search in the host graph.  
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Fig. 2. Sequencing and hierarchy of rewriting rules 

Fujaba [25] is similar to GREAT in the sense that it relies on UML (the tool was 
primarily built for transforming UML models) and uses a technique for explicitly 
sequencing transformation operations. Fujaba follows the state-machine-like “story 
diagram” approach [13] for scheduling the rewriting operations; a difference from 
GReAT.  

AGG [43] is a graph transformation tool that relies on the use of type graphs, simi-
lar to UML diagrams but does not support all UML features (e.g. association classes). 
Recent work related to AGG introduced a method for handling inheritance, as well as 
a sophisticated technique for checking for confluence (critical pair analysis). In 
GReAT, inheritance is handled in the pattern matching process, and the confluence 
problem is avoided by using explicit rule sequencing. AGG has support for control-
ling the parsing process of a given graph in the form of layered grammars; a problem 
solved differently in GReAT.  

VIATRA [5] is yet another graph transformation tool with interesting capabilities 
for controlling the transformations (state machines), and the composition of more 
complex transformations.  In GReAT similar problems were addressed via the explicit 
control flow across rules and the formulation of blocks. Higher-order transformations 
were also introduced in VIATRA; there is no similar capability in GReAT currently.  

GReAT can also be compared to the recent QVT specification [39] of the OMG 
MDA standardization process. However, we should emphasize that GReAT was 
meant to be a research tool and not an industry standard. With respect to the QVT, the 
biggest difference between GReAT and QVT is in the highly declarative nature of the 
QVT: it focuses on relation mappings. This is a very high-level approach, and it is far 
from the pragmatic, lower-level, efficiency-oriented approach followed in GReAT. 
We conjecture that describing a transformation in QVT is probably more compact, but 
the same transformation in GReAT is more efficient.  
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In a more general setting, we should compare GReAT and the tool environment it 
belongs to, i.e. the MIC tools including GME and UDM. Honeywell’s DOME [13], 
MetaCASE’s MetaEdit [25], and the ATOM3 [28] environment are the most relevant 
examples that support domain-driven development. The main difference between 
them and the MIC tools is in the use of UML and OCL for metamodeling and the way 
the metamodels are (also) used for instantiating a visual modeling environment. Also, 
our transformations follow a high-level method for describing the transformation 
steps expressed in the context of the metamodels. With exception of ATOM3, all the 
above tools use a scripting language, in contrast. 

3.2   Practical Use of Model Transformations 

The model transformation environment we have created has been used in a number of 
academic and practical projects.  Students, researchers, and developers have used it to 
create practically useful transformations ranging from converting between modeling 
formalisms to generating code from models. Some of the transformations were of the 
‘once-only’ (or ‘throw-away’) type; some of them are in daily use in tools. In these 
efforts we have learned a few important lessons discussed below. 
 

1. Reusable patterns. Given a model transformation language, developers often 
discover important and useful transformation patterns that are worth docu-
menting and reusing [L]. These patterns are essentially generic transformation 
algorithms that are usable across a number of domain specific modeling lan-
guages. Conceptually, they are like C++ template libraries that provide generic 
data structures and algorithms over domain-specific types. Practically, they 
provide a reusable solution to a recurring transformation problem. Such pat-
terns are rarely implemented by a single rule, rather, by a sequence or group of 
rules. 

To increase the reusability of such transformation patterns, a model trans-
formation language should support templates [L], which are rules or rule se-
quences that are parameterized with types. When the transformation designer 
wishes to use a transformation template, s/he can bind the type parameters to 
concrete, domain-specific model element types and the tool environment 
should instantiate the pattern.  

2. Cross-domain links. In model transformations the source and target models 
typically (but not always) belong to different metamodels (i.e. different type 
systems). During the transformation process it is often necessary to create a link 
between two model elements that belong to different domains (metamodels), 
but this brings up the question: which metamodel does the association belong 
to? Neither of the source or target metamodels ‘owns’ such an association, the 
association belongs to the cross-product space of the two. Hence, the model 
transformation system should be able to allow such ‘cross-domain’ links [L]; at 
least temporarily, while the transformation is being executed [2].  

3. Global context. The localized rewriting approach described above has a prac-
tical shortcoming: the context of the rewriting has to be always present during 
the execution of a rule [41]. That is, a rule cannot just create an ‘orphan’ target 
model element – the element has to be inserted into an appropriate container, 
which is in the target context. In other words, the state of the transformation 
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often has to be incrementally built and passed from rule to rule. This leads to 
rules that have superfluous input and output ports, just for passing the context 
through; and a large number of connections between rules. The simplicity of 
the transformation model is important, and such ‘accidental complexity’ con-
fuses developers [L].  We have introduced the concept of a ‘global container,’ 
where new temporary model elements can be created and latter found via 
search. In other words, a rule can create a model element in this container and 
a subsequent rule can refer to it simply referring to the container and using the 
pattern matcher to find the element. Note that such global containers are use-
ful, although somewhat ‘unhygienic’ tools for implementing model transfor-
mations [L]. 

4. Multiple matches and sorting. A model transformation rule often matches to 
multiple isomorphic subgraphs in an input graph, and even a localized rewriting 
rule could generate multiple, consistent matches with different bindings to pat-
tern nodes. In general, the order of such matches is nondeterministic as it de-
pends on how the underlying ‘model database’ is implemented. We chose to 
process these matches sequentially, and for every match we execute the right 
hand side of the rule, which leads to non-deterministic results. We found that in 
many applications the order of processing of such matches does matter [L]. To 
solve this problem we have introduced an optional ‘sort’ function for the rewrit-
ing rule that the designer can specify [41]. This function is applied to the result 
of the pattern matcher before the rule is actually executed, and the function can 
sort the results in any order of interest. How the matches need to be sorted is 
domain-specific, hence it is better left in the hands of the developer [L].  

5. Multiple matches and grouping. When the pattern matcher generates a col-
lection of matches (each one with a distinct set of bindings of input graph 
nodes to pattern nodes), the rewriting rule processes them one by one. The ma-
jor limitation with this simple algorithm is the inability to apply a single rule 
action across multiple matches [L]. After all matches are computed, the rule’s 
action (RHS) is executed individually, on each match; furthermore, there ex-
ists no mechanism by which one can access information about an earlier match 
while processing a specific match. This can sometimes pose a severe limita-
tion to the types of transformations one can write. For instance, the user may 
need the ability to operate on an entire subgraph (composed from multiple 
matches) as a whole rather than on individual elements. If this subgraph may 
contain an arbitrary number of elements, then the graph pattern cannot be 
specified as a simple rule. 

We have introduced a higher-order ‘subgroup’ operator that allows forming 
groups from the matches during rule execution [3] [4]. The operator has a 
number of attributes the designer can specify, including functions that are 
evaluated to determine whether a match belongs to a group or not. The opera-
tor extends the rule execution semantics as follows: (1) the pattern matcher 
produces a set of matches; (2) matches are used to form groups, based on func-
tions supplied with the operator, (3) the rule is executed for each group 
formed. Note that a group may contain one or more matches.  The subgroup 
operator has demonstrated the value of higher-order operators in rewriting 
rules that can operate across multiple individual rewriting steps [L].  
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The above extensions have come up in practical transformation problems, and they 
showed that while graph transformations provide a powerful theory, when applied to 
model transformations they need to be specialized and adapted to pragmatic goals.  

3.3   The Issue of Verification 

The quality of a model-driven software development toolchain is determined by the 
quality of the tools it includes and the model transformations that connect together 
these tools. Considering that elements in the toolchain could support verification (on 
the code or on the model level), the verification of the transformations, i.e. graph 
transformations, is of great importance [L]. Simply, the correctness of the transfor-
mation is necessary in order to decide that the result of an automated verification 
applies to the original input (model), and to the code generated from the model.  

Our goal was to decide the correctness of a model transformation through some 
verification process. The verification of model transformations is closely related to 
the verification of compilers – one of the great challenges of computer science. Ar-
guably, the verification of model transformations is simpler, as the domain-specific 
modeling languages are often simpler and have a simpler semantics than general pur-
pose programming languages.  

One important observation is that the notion of correctness is not absolute, but it 
has to be defined with respect to some specific domain property, which is of interest 
to the users of the toolchain. For example, a model transformation can be called cor-
rect with respect to the behaviors generated by the source and the target models. For 
instance, the transformation is correct if the source model (with its own source seman-
tic domain) generates the same behaviors as the target model (with its own target 
semantic domain). Alternatively, a transformation is correct when a property of the 
source model holds if and only if another property holds for the target model. 

Practical model transformations are often very complex and the formal proof of 
correctness requires a major effort. Note that a formal proof shows that the given 
model transformation is correct (w.r.t. some property), for any input. Another feasible 
approach is that the proof is constructed for a particular run (or ‘instance’) of the 
transformation, i.e. for a given input. This, instance-based verification of the trans-
formation appears to be much simpler and feasible [L].  While the concept has been 
developed in the context of program generators [5], we have successfully applied it to 
model transformations [13].  

Constructing the verification for a transformation instance requires building a tool 
that checks what the transformation did and verifies it independently. These checks 
must be simple and easily verifiable. Note that this concept is similar to provers and 
proof checkers: the proof checking is typically much simpler than constructing the 
proof. For a model transformation one needs (1) to choose the property the correct-
ness is defined for, (2) to discover how this property can be verified from data col-
lected during the run of the transformation, (3) to modify the model transformation to 
generate the data during the run, and (4) to develop (and verify) the algorithm that 
checks the data and thus verifies the property [L].  
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One example for such transformation and verification property includes a trans-
formation between two transition system formalisms and a state reachability property. 
In this case the transformation needs to generate a map that links source and target 
states, and the checking algorithm must verify that there is a correspondence: a strong 
bisimilarity between the two transition systems, hence reachability properties verified 
for one do hold for the other [13].  

Related work: The MOF 2.0 Query / View / Transformation specification [39] pro-
vides a language for declaratively specifying transformations as a set of relations that 
must hold between models. A relation is defined by two or more domains, and is 
declared either as Checkonly, meaning that the relation is only checked, or Enforced, 
meaning that the model is modified if necessary to satisfy the relation. It is augmented 
by a when clause that specifies under what conditions the relation must hold, and a 
where clause that specifies a condition that must be satisfied by all the model ele-
ments participating in the relation. Our approach provides a solution similar to the 
Checkonly mode of QVT relations. The main difference is our use of pivot nodes to 
define correspondence conditions and the use of cross links. This allows us to use a 
look up table to match corresponding nodes. Our approach takes advantage of the 
transformation framework to provide a pragmatic and usable verification technique 
that can ensure that there are no critical errors in model instances produced by auto-
mated transformations. Triple Graph Grammars [41] can be used to represent the 
evolution of a model graph by applying graph transformation rules. The evolving 
graph must comply with a graph schema at all times. This graph schema consists of 
three parts, one describing the source metamodel, one describing the target metamodel, 
and one describing a correspondence metamodel which keeps track of correspondences 
between the other two metamodels. Triple graph grammar rules are declarative, and 
operational graph grammar rules must be derived from them. The correspondence  
metamodel can be used to perform a function similar to the cross links used here. This 
provides a framework in which a map of corresponding nodes in the instance models 
can be maintained, and on which the correspondence conditions can be checked. This 
makes it suitable for our verification approach to be applied. Some ideas on validating 
model transformations are presented in [28] and [29]. In [28], the authors present a 
concept of rule-based model transformations with control conditions, and provide a 
set of criteria to ensure termination and confluence. In [29], the authors focus on the 
syntactic correctness of rule-based model transformations. This validates whether the 
source and target parts of the transformation rule are syntactically correct with respect 
to the abstract syntax of the source and target languages. These approaches are  
concerned with the functional behavior and syntactic correctness of the model  
transformation. We focus on the semantic correctness of model transformations,  
addressing errors introduced due to loss or misrepresentation of information  
during a transformation. It is possible for a transformation to execute completely and 
produce an output model that satisfies all syntactic rules, but which may still not  
have accomplished the desired result of porting essential information from the  
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source model to the output model. Our approach is directed at preventing such seman-
tic errors. Ehrig et. al. [13] study bidirectional transformations as an approach for 
preserving information across model transformations. They use triple graph grammars 
to define bidirectional model transformations, which can be inverted without specify-
ing a new transformation. Our approach offers a more relaxed framework, which will 
allow some loss of information (such as by abstraction), and concentrates on the cru-
cial properties of interest. We also feel that our approach is better suited for transfor-
mations involving multiple models and attribute manipulations. 

3.4   Transformations in Evolution and Adaptation 

One of the crucial properties of software systems is the need for their evolution and 
adaptation. Software must evolve, as new requirements arise, as flaws need to be 
fixed, and as the system must grow in its capabilities. Model-driven development 
toolchains are also software systems, and hence the same requirement applies: they 
need to evolve and adapt [L]. The problem is especially acute for tools that use do-
main-specific modeling languages, as the DSML-s may evolve not only from project 
to project, but often during the lifetime of one project.  

The issue of evolution for a DSML is not only how the language changes, but also 
what effect this has on the already existing models. Specifically, if a large number of 
models have already been built with a DSML of version n, how do we use these mod-
els with DSML version n+1, etc.? The problem is related to schema evolution (i.e. 
how we evolve database content when the schema evolves), but modeling languages 
typically have much richer semantics and consistency constraints than typical data-
base schemata. For DSML-s the language evolution problem is essentially a model 
migration problem, i.e. how to migrate models when the DSML evolves [L]. 

The problem can be cast as a model transformation problem, i.e. how can one cre-
ate model transformations that automatically migrate the models from one DSML 
version to the next. To analyze this problem we need to recall how a DSML is de-
fined; i.e. the metamodels. In this paradigm, the DSML evolves via changes applied 
to the metamodels; i.e. changes in the abstract and concrete syntax, in the well-
formedness constraints, and in the semantic mapping. As model transformations are 
anchored in the abstract syntax of the DSML it is natural to consider the metamodel 
changes on that level. Changes in the concrete syntax do not affect the models (until a 
syntax-free realization of the models exists), while changes in the well-formedness 
constraints and semantic mapping could possibly be also formulated as a model trans-
formation problem. These latter two cases could be formulated as posing the question: 
how shall the models be transformed that they comply with the updated well-
formedness constraints (if at all) and how they shall be transformed such that they 
preserve their semantics under the updated semantic mapping?  

Changes in the abstract syntax part of the metamodel involve changing the UML 
class diagrams representing that.  Such changes can be captured as elementary editing 
operations on the diagram, including adding, removing, and modifying classes and 
associations, etc. But focusing on these low-level changes makes it exceedingly hard to 
discover the (meta-) modeler’s intent. For instance removing a class called Failure 
and adding a class Fault may miss the point that this is a simple renaming of a class  
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without changing the semantics. Hence, evolution in the abstract syntax cannot be 
dependably deduced by observing editing changes on the metamodels; the modeler 
needs to provide guidance or explanations for such changes [L]. For pragmatic rea-
sons, naturally, only the changes need to be documented (or discovered by some auto-
mation, if feasible) – parts of the metamodels that did not change should not become 
subject to model transformations [L]. 

Such analysis lead us to a simple (graphical) language that allows the modeler to 
document the metamodel changes by capturing how ‘old’ metamodel elements are 
related to ‘new’ metamodel elements [32]. Note that the modeler essentially supplies 
rewriting rules that proscribe how a model migration engine should convert ‘old’ 
models into ‘new’ models. In this graphical language, called Model Change Language 
(MCL), we have defined a number of idioms for representing prototypical cases for 
metamodel changes (and thus model migration). Fig. 3 illustrates the major idioms of 
the language – these have been discovered through practical experience with model 
migration problems. While the use of these idioms has been proven useful in specific 
model migration problems, the formal semantics of MCL is subject of active research. 
Naturally, model evolution is not a solved problem yet, but transformations appear to 
offer interesting opportunities.   

A migration rule specified in MCL describes a migration step which is centered on 
a single, specific ‘old’ metamodel element that dominates the rule. The semantics of 
the migration rule is as follows: whenever the dominant model element is found in the 
‘old’ model and the left-hand side of the rule matches; then execute the migration as 
specified (e.g. create a ‘new’ model element, etc.). If an ‘old’ model element is en-
countered that is not mapped by a migration rule then check if there is a ‘new’  
metamodel element with the same name and create that in the ‘new’ model,  if there is 
none then give a warning that an ‘old’ model element was encountered but could not 
be mapped. Note that there are explicit rules for saying that some ‘old’ model ele-
ments need to be removed because there are no corresponding ‘new’ model elements 
– this allows detecting that the migration of some model elements was not specified 
correctly by migration rules.  

In MCL we faced the problem of limiting the scope of the search and we found a 
solution that appears to work well. The solution is based on the observation that 
model databases mostly follow a tree structure, and a dominant spanning tree can be 
found for the model graph [L], often via the model containment hierarchy. Hence, we 
first use a depth-first traversal on the model tree, visiting every node in the graph and 
trying to find a migration rule. The rule semantics briefly described above is applied, 
when possible. However, there could be rules that are not applicable yet, because they 
depend on model elements that have not been visited and processed yet. These rules 
are pushed onto a queue of delayed rules and the traversal continues. Once the depth 
first traversal terminates, we keep processing the delay queue until it becomes empty. 
This simple, fixed traversal strategy works surprisingly well. Arguably, for practical 
model-driven systems that use hierarchical organization model transformations can 
efficiently be performed using a depth-first traversal, followed by the processing of 
rewriting steps that had to be delayed during the first traversal [L]. 
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Fig. 3. Some idioms of the Model Change Language 

 
Related work: Our work on model migration has its origins in techniques for database 
schema evolution [5]. More recently, though, even traditional programming language 
evolution has been shown to share many features of model migration. Drawing from 
experience in very large scale software evolution, [15] uses several examples to estab-
lish analogies between tradition programming language evolution and metamodel and 
model co-evolution. Using two industrial metamodels to analyze the types of common 
changes that occur during metamodel evolution, [17] gives a list of four major re-
quirements that a model migration tool must fulfill in order to be considered  effective: 
(1) Reuse of migration knowledge, (2) Expressive, custom migrations, (3) Modularity, 
and (4) Maintaining migration history. The first, reusing migration knowledge is ac-
complished by the main MCL algorithm: metamodel independent changes are auto-
matically deduced and migration code is automatically generated. Expressive, custom 
migrations are accomplished in MCL by (1) using the metamodels directly to describe  
 
 



 Lessons Learned from Building a Graph Transformation System 217 

the changes, and (2) allowing the user to write domain-specific code with a well-
defined API. Our MCL tool also meets the last two requirements of [17]: MCL is 
modular in the sense that the specification of one migration rule does not affect other 
migration rules, and the history of the metamodel changes is persistent and available to 
facilitate model migration. [8] performs model migration by first examining a differ-
ence model that records the evolution of the metamodel, and then producing ATL code 
that performs the model migration. Their tool uses the difference model to derive two 
model transformations in ATL: one for automatically resolvable changes, and one for 
unresolvable changes. They note that the generated transformation that deals with the 
unresolvable changes must be refined by the user, but details of how to accomplish this 
refinement are not provided. Also, [7] does not specify exactly how the difference 
models are calculated, only that they can be obtained by using a tool such as EMFCom-
pare. MCL, on the other hand, uses a difference model explicitly defined by the user, 
and uses its core algorithm to automatically deduce and resolve the breaking resolvable 
changes. Changes classified as breaking and unresolvable are also specified directly in 
the difference model, which makes dealing with unresolvable changes straightforward: 
the user defines a migration rule using a graphical notation that incorporates the two 
versions of the metamodel and uses a domain-specific C++ API for tasks such as que-
rying and setting attribute values. In [7], the user has to refine ATL transformation 
rules directly in order to deal with unresolvable changes. [17] describes the benefits of 
using a comparison algorithm for automatically detecting the changes between two 
versions of a metamodel, but says they cannot use this approach because they use 
ECore-based metamodels, which do not support unique identifiers, a feature needed 
by their approach. Rather than have the changes between metamodel versions defined 
explicitly by the user, they slightly modify the ChangeRecorder facility in the 
EMF tool set and use this to capture the changes as the user edits the metamodel. Their 
migration tool then generates a model migration in the Epsilon Transformation Lan-
guage (ETL). In the case that there are metamodel changes other than renaming, user 
written code in ETL to facilitate these changes cannot currently be linked with the ETL 
code generated by their migration tool. In contrast to this, MCL allows the user to 
define complex migration rules with a straightforward graphical syntax, and then gen-
erates migration code to handle these rules and links it with the code produced by the 
main MCL algorithm. [10] presents a language called COPE that allows a model mi-
gration to be decomposed into modular pieces. They note that because metamodel 
changes are often small, using endogenous model transformation techniques (i.e., the 
metamodels of the input and output models of the transformation are exactly the same) 
can be beneficial, even though the two metamodels are not identical in the general 
model migration problem. This use of endogenous techniques to provide a default 
migration rule for elements that do not change between metamodel versions is exactly 
what is done in the core MCL algorithm. However, in [19], the metamodel changes 
must be specified programmatically, as opposed to MCL, in which the metamodel 
changes are defined using a straightforward graphical syntax. Rather than manually 
changing metamodels, the work in [45] proposes the use of QVT relations for evolving 
metamodels and raises the issue of combining this with a method for co-adapting mod-
els. While this is an interesting idea, our MCL language uses an explicit change lan-
guage to describe metamodel changes rather than model transformations.  
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Evolution of a DSML (and the subsequent migration of domain models) is not the 
only activity the toolchain users face. They often need to evolve, adapt their designs 
by changing models. In object-oriented software development perhaps the most pow-
erful concept for design adaptation is the use of design patterns. By definition, design 
pattern is a general reusable solution to a commonly occurring problem in software 
design. When developers use a design pattern they modify their designs according to 
the pattern, in other words they instantiate the design pattern in the context of their 
work. If the design is captured in a model, then a design pattern is a particular ar-
rangement of newly built or existing model elements, possibly with some new  
features added. Arguably, a design pattern can be modeled as a specialized model 
transformation rule that rewrites a design into a new design with the design pattern 
features (model elements, attributes, etc.) added [L]. Note also that design patterns 
applied in domain-specific modeling languages will have domain-specific elements 
hence they can be called as ‘domain-specific design patterns’.  
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Fig. 4. The Composite Pattern as a model transformation rule 

One example for realizing a design pattern as a transformation rule is shown on 
Fig. 4. Here the well-known ‘Composite’ design pattern is used. When the designer 
wants to introduce this pattern into a design, s/he will either just copy it into the 
model and modify it, or bind it to existing model elements (say, Compound and 
Primitive, shown on the left) which will result in a modified model that contains the 
original as well as new elements (shown on Fig. 5).  

Note that the application of design patterns becomes an interactive activity this 
way that the modeler performs at model construction time. Design patterns can be 
applied to existing design, and they can extend or even refactor those designs. Design 
patterns can be highly domain specific hence they can be applied in any DSML.  
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Fig. 5. Composite pattern applied 

We have created a set of tools to support the definition and application of design 
patterns in arbitrary DSML-s that are defined by a metamodel [32]. One tool is used 
(once) to extend the metamodel of a given DSML such the patterns can be built from 
existing model elements. Another tool is available to the modeler that uses the 
DSML: this tool applies the pattern as a local model transformation. The modeler can 
bind existing model elements to elements of the pattern and the applicator tool ex-
tends and modifies the model as specified by the pattern.  

Related work: There are several mainstream tools that support UML design patterns, 
or describe design patterns using general-purpose languages, as opposed to using the 
metamodel of the DSMLs. Moreover, there are several approaches for pattern formal-
ization. Here, we reference the closest related work only. Previous work [32] has 
justified the demand for Domain-Specific Model Patterns by contributing several 
DSMLs. Moreover, it describes relaxation conditions for the metamodels in order to 
make metamodeling environments support the editing of incomplete models. As op-
posed to the approach introduce above, it deals with static model patterns only. In our 
approach, relaxations can be made on the metamodel of the pattern environment. The 
multiplicities can be substituted with the upper bound of the multiplicity set, dangling 
edges can be defined with ignored end nodes and transitive containment can be solved 
with ignored containers. Incomplete attributes can be implemented the same way. [17] 
describes a UML-based language, namely, the Role-Based Metamodeling Language 
(RBML), which is able to specify domain-specific design patterns. This approach 
treats domain patterns as templates, where the parameters are roles, and a tool gener-
ates models from this language. Compared to our approach, the paper [22] proposes a 
formal way to specify the pattern embedding for the static aspect. The behavioral 
formalization is closely coupled with design patterns defined in UML. The work de-
scribed in [5] formalizes the embedding, tracing, and synchronization between several 
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pattern aspects that may be defined in different languages. These results constitute an 
excellent theoretical formalization of the tracing aspects for model patterns defined in 
the static aspect. 

4   Summary and Conclusions 

The model-driven development approach has significantly changed how software is 
built and evolved, and new development environments are coming equipped with 
model-driven support. The techniques and the tools we have developed in the past 
decade indicate that model-driven development works, but the complexity of the 
development tools (and the effort to build them) is increasing as well. In this paper we 
have outlined a few of the lessons that we have learned during building and using our 
tools on non-trivial projects. Building tools to build software is essential to solve the 
software development problem and the effort put into constructing a good tool (-suite) 
pays off in developer’s productivity. The lessons described in this paper show steps in 
an evolutionary process, and by no means should be considered the final word on 
model-driven development. As tools and techniques evolve, we need to learn new 
lessons, and enable the developers to benefit from them.    
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Abstract. The design of safety-critical systems and business-critical services ne-
cessitates to coordinate between a large variety of tools used in different phases
of the development process. As certification frequently prescribes to achieve jus-
tified compliance with regulations of authorities, integrated tool chain should
strictly adhere to the development process itself. In order to manage complex-
ity, we follow a model-driven approach where the development process is cap-
tured using a precise domain-specific modeling language. Each individual step
within this process is represented transparently as a service. Moreover, to carry
out individual tasks, systems engineers are guided by semi-automated transfor-
mation steps and well-formedness constraint checking. Both of them are formal-
ized by graph patterns and graph transformation rules as provided by the VI-
ATRA2 framework. In our prototype implementation, we use the popular JBPM
workflow engine as orchestration means between different design and verification
tools. We also give some insights how this tool integration approach was applied
in recent projects.

1 Introduction

Complex development projects, especially, in the field of safety-critical systems, ne-
cessitate the use of a multitude of software tools throughout the entire life-cycle of the
system under design for requirements eliciation, design, implementation, verification
and validation as well as change management activities.

However, in order to ensure safety, the verification of tool output is mandated by in-
dustrial certification standards (like DO-178B [1] for avionics systems), which requires
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enormous efforts. Software tool qualification aims at reducing or even eliminating such
efforts to obtain certification credit for the tool itself by ensuring that a tool always
produces deterministic and correct output.

Standards differentiate between verification tools that cannot introduce errors but
may fail to detect them, and development tools whose output is part of the critical system
and thus can introduce errors. According to the standard, a development tool needs
to be qualified to at least the same level of scrutiny as the application it is used to
develop. The main functionality of a software development tool is thus to correctly and
deterministically transform an input artifact into output.

Unfortunately, the qualification of software tools is extremely costly, even minor
changes would require re-certification efforts [2] resulting in several man-years of work.
Furthermore, qualified tools are almost exclusively relying upon closed, internal tech-
nologies of a company [3], without using external components, as vendors of safety-
critical tools are unable to control the development of external components with the
level of preciseness required by certification standards. Finally, the tool integration costs
for building a uniform tool chain can frequently exceed the total costs of the individual
tools themselves.

The extreme costs of certification and tool qualification are largely due to the fact that
integration between different tools is carried out in an ad hoc way in the industry [4]. It
is still a very common scenario that the output of one tool is ported manually to serve
as the input of another tool. Moreover, the chaining of different tools is completely
decoupled from the rigorous development processes necessitated by the standards.

In the current paper, we propose to use model transformation services organized into
complex model transformation chains. These transformation chains are closely aligned
with the designated development process as driven by precise workflow models where
workflow activities comprise of individual development steps carried out by some tool,
which creates some output artifacts (models and code, configuration files) from some
input artifacts. Moreover, each step in a tool integration chain can be hierarchically
refined later on by using workflows for capturing the main steps of individual develop-
ment tools.

Formalizing design processes with workflow allows formal adherence checks with
certification guidelines. Moreover, workflow-dirven tool integration aligns development
and V&V toolchains with the actual development process itself.

Individual development steps of the transformation chain are treated as black-box
components, where functionalities carried out by the tool are precisely captured by
contracts formalized as graph patterns. This black-box approach enables that both au-
tomated and user-driven development steps can be integrated in a uniform way to the
tool chain. Furthermore, automated tool integration or development steps can be cap-
tured by model transformations formalized by means of graph transformation rules.

This approach has been successfully applied to developing individual tools (as in the
DECOS [5] and DIANA [6] EU projects) as well as for complete tool integration chains
(as in SENSORIA [7], MOGENTES [8] and GENESYS [9] projects) in the context of
safety-critical systems. Further industrialization of the framework is being carried out
as part of the ARTEMIS project INDEXYS [10].



226 A. Balogh et al.

The rest of the paper is structured as follows. Section 2 summarizes the main steps
and challenges of tool integration scenarios. In Sec. 3, we propose a workflow-driven
approach for driving tool integration scenarios. Section 4 introduces a tool integration
challenge taken from an avionics context. Section 5 discusses how graph patterns and
graph transformation rules can be used in automating the development of the tool in-
tegration process. Then, in Sec. 6, we also demonstrate how such a tool integration
framework has been implemented using state-of-the-art open source technologies. Fi-
nally, Section 7 discusses related work and Section 8 concludes our paper.

2 The Architecture of Tool Integration Chains

2.1 Classification of Development Activities

Complex development processes make use of a multitude of development, design, ver-
ification and documentation tools. The wide spectrum of underlying technologies, data
representation formats and communication means has called for tool integration frame-
works to address the need for a common underlying tool integration platform. Such
middleware is typically designed to allow for various tools to be integrated as services,
so that the integration process can be designed by concentrating on the tasks that are to
be performed, rather than the underlying technological peculiarities.

On the conceptual level, the main functionality of each step (task) is to transform an
input artifact into one or more output artifacts. This transformation view on develop-
ment and tool integration tasks does not have a direct impact on the level of automation.
For example, certain tasks can be either (fully) automated, such as compiling source
code from an executable model like statecharts or running a model analysis task to re-
veal conceptual flaws in the design. Other development tasks are inherently user guided
(or user driven) where a development step is completed in close interaction with the
systems engineers. User guided steps typically include those where design decisions
need to be made and recorded, such as modeling. While full automation is impossible
(or impractical) for user guided steps, the step itself can still be interpreted using this
transformational view. Moreover, automation may still implant design intelligence into
such tools be performing on-the-fly validation of certain design constraints, which can
reduce costs.

Development steps can also be categorized on the basis of comparing the information
between the source and the target formalisms of the step.

– Synthesis steps (carried out by using textual or graphical editors, and even certain
automated tools like schedulers, optimizers) add new information to the system
under design during the completion of the step.

– Analysis steps (also known as verification and validation steps), on the contrary,
typically abstract from existing information in order to enable checking for certain
correctness properties to reveal errors in the design.

– Derivation steps (like code generation or model export and import with format con-
version) do not add or remove information, however, they change the representation
of the information.
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Fig. 1. Process activity types

A summary of these categories are shown in Fig. 1. It is important to stress that the
mode of execution and design information handling aspects are practically orthogonal,
so relevant examples for all combinations can be easily given (in the table cells in
Fig. 1).

2.2 Synthesis

Synthesis activities are typically carried out by off-the-shelf development tools such
as programming environments, documentation tools, modeling editors etc. By these
means, engineers create and manipulate the artefacts of the design process using manual
or semi-automated procedures.

Along with design information, most (critical and expensive) errors (e.g. design
flaws, anti-patterns) are introduced into the system-under-design in these activities. To
reduce the impact of these faults, advanced tools offer checking facilities, ranging from
light-weight approaches (such as syntax analysis for source code, domain-specific well-
formedness checking in model editors) to more advanced features (e.g. static code anal-
ysis, model simulation by in-place execution [11]).

The quality of design synthesis output can also be improved by using semi-automated
tools for design-time optimization. For instance, in embedded architecture design, auto-
matic schedulers may be used to calculate the timing of a message bus communication
protocol, or resource allocation tools may be used to optimally assign software tasks to
hardware nodes.

2.3 Analysis

Figure 2 shows a typical approach to early analysis using model-based techniques. In
model-driven development, system requirements and design are captured by high-level,
visual engineering models (using popular and standardized modeling languages like
UML, SysML, AADL). In critical systems, where the system under design must con-
form to high quality and reliability standards, early systematic formal analysis of design
models plays an increasingly important role to reveal design flaws as early as possible.
In general, this can be carried out by generating appropriate mathematical models by
automated model transformations. Formal analysis then retrieves a list of problems,
which can be fixed by refinement corrections prior to investing in manual coding for
implementation. Finally, these refined models may serve as input to code generators
and deployment configuration generation, which create the runnable source code of the
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Fig. 2. Analysis by formal techniques

application as well as parametrize auxiliary deployment infrastructure services such as
monitoring.

Analysis steps may include (i) to investigate functional correctness of the design
by verifying safety or liveness properties (e.g. by model checking statecharts [12, 13]),
(ii) to assess the effects of error propagation (e.g. using fault modeling and analysis
techniques [14]), (iii) to evaluate non-functional characteristics of the system such as
performance, availability, reliability or security (e.g. by deriving stochastic models from
engineering models [15, 16, 17]) and many more. A commonality in these approaches
is the extensive use of automated model transformations to carry out the abstraction
necessitated by the formal analysis.

2.4 Derivation

Derivation steps primarily include automated code generation tasks, or to chain up sev-
eral development steps by importing and exporting models in different tools.

Derivation steps can frequently be fully automated as all information required for
code generation is available prior to initiating the step. Of course, such code generators
may still combine the information embedded in different models to derive the desig-
nated output, or to mark the platform independent models by design decisions. Any-
how, in both cases, the actual derivation step is completed using existing information
implanted by synthesis steps.

Code generators may derive the source code or the target application (see code gen-
erators of statecharts [18]), yield deployment descriptors for the target reliable plat-
form [19, 20], or generate runtime monitors [21].

As a summary, complex tool integration frameworks should be closely aligned with
development processes by taking a transformation-based view on individual develop-
ment steps. Moreover, they need to simultaneously provide support to integrated au-
tomated as well as interactive, user-guided development steps where the starting point
and the completion of each step needs to be precisely identified. Finally, the framework
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should enable to integrate arbitrary kind of development steps including synthesis, anal-
ysis and derivation tasks.

3 Process-Driven Tool Integration

Based on the experience in tool integration summarized in Sec. 2, we propose an inte-
grated approach for designing and executing tool integration processes for model driven
development. As a proof-of-concept, we describe a case study developed for the DI-
ANA [6] research project (Sections 4, 5 and 6).

By our approach, development processes are formally captured by workflow mod-
els, which (i) specify the temporal macro structure of the process as a task-oriented,
hierarchic workflow model; (ii) precisely map the steps of the process to the develop-
ment infrastructure, consisting of human resources (roles), tools, supporting technolo-
gies available as services and development artefacts as entities in the data repository;
(iii) define high-level contracts to each step, which specify constraints that help to verify
and trace the correctness of outcomes and activities.

These process models are deployed to a software infrastructure, which serves as an
automated execution and monitoring platform for the development process. It provides
support for running automated and user-guided activities in a distributed environment
consisting of heterogeneous software tools, and a model bus-like [22] data repository.

In this section, we describe the specification language of the workflow models in the
tool integration domain in detail.

3.1 Process Metamodel

Macro structure. For the specification of the temporal macro structure of develop-
ment processes, we follow the notions and concepts of well known process descrip-
tion languages such as BPMN or XPDL. As the metamodel in Fig. 3 shows, processes
are constructed from workflow steps (corresponding to distinct activities carried out
during development), and may use standard control flow features such as sequences
(ProcessNode.next), concurrency (fork-join) and decision points.

More advanced constructs, such as waiting states are intentionally omitted from this
language, since this is intended to be a very high level description, where only the order
(precedence or concurrence) of activities is important; for execution, this language is
mapped to a lower level jPDL representation which may be customized and augmented
with more advanced behavioral properties.

Hierarchy. It is important to stress the hierarchical nature of the process descrip-
tion: through the Step.subNodes relation, workflow steps may be embedded into each
other to create a hierarchical breakdown. This allows the process designer to map the
”birds-eye-view” structure development processes (such as phases and iterations) to
our language; additionally, it supports ”drill-up-drill-down”-style navigation through a
complicated workflow, which is important to reduce design complexity for large-scale
processes.
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Fig. 3. Integration process macro structure metamodel

Development infrastructure. Besides the causality breakdown, the language features
the following notions of the development infrastructure:

– Artefacts represent data structures of the process (e.g. documentation, models,
code, generated files, metadata, traceability records).

– Roles correspond to the participants of the process, humans and external entities
who are involved in executing the user-guided activities.

– Components are either Tools or Services which are used by the participants or
invoked automatically during development, to complete a specific step.

These concepts enable the precise mapping of the development workflow to the actual
execution infrastructure.

Mapping to the execution infrastructure. As shown in Fig. 4, our language can be
used to precisely specify the execution of the development process. During process
modeling, workflow steps are first assigned into the Activity or Invocation cate-
gories, depending on the type of interaction (activities are user-guided while invoca-
tions are automated). For user-guided tasks, the language adopts the basic role-based
assignment method (taken from BPMN), and optionally supports two basic types of re-
lations (responsible and executor) to indicate which group of users may supervise
and actually carry out a task.

Activities may make use of Tools, while invocations refer to Services. From the
workflow system’s perspective, both tools and services are external software compo-
nents, which are accessible through interface adaptors. These are represented in the
language as Interfaces (Fig. 4(b)), which may be connected to artefacts to indicate
data flow (input/output). At run-time, both tools and services shall be triggered by
the process execution engine, with parameters referring to data repository automatically
supplied, so that the user does not have to care about managing data and files.
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(a) Steps and contracts, services, tools (b) Component-
artefact integration

Fig. 4. Integration process metamodel: auxiliary elements

Contracts. In order to guarantee that the result of a step is acceptable and the process
can continue, the definition of contracts [23] is a well known paradigm. The idea is
to guard both the input and output of a step by specific constraints. Thus, a contract
is composed of a precondition and a postcondition. A precondition defines con-
straints that needs to be fulfilled by the input of the step in order to allow its execution,
while the postcondition guarantees that the process can continue only if its constraints
are satisfied by the output. This general definition of a contract allows to use arbitrary
formalism (e.g., OCL, JML, etc.) to capture the pre- and postconditions, but could re-
quire further refinement of the metamodel with the additional elements of the used
formalism.

A detailed example of configuration generation using our graph pattern based contract
definition in the context of avionics domain (as part of our case study) can be found in
Sec. 4.2.

4 Case Study: The DIANA Toolchain

DIANA (Distributed, equipment-Independent environment for Advanced avioNics
Applications [6]) is an aeronautical research and development project. It aims at the
definition of an advanced avionics platform named AIDA (Architecture for Independent
Distributed Avionics), supporting (i) execution of object-oriented applications over vir-
tual machines [24], (ii) high-level publish subscribe based communication, and (iii) the
applicability of model driven system development (MDSD) in the avionics development
domain.

The DIANA project aims to create an MDSD based tool chain for the analysis
and generation of ARINC653 [25] real-time operating system (RTOS) configuration
files from high-level specifications. Transforming these high-level models into RTOS-
specific configuration artefacts is a complex task, which needs to bridge a large ab-
straction gap by integrating various tools. Moreover, critical design decisions are also
made at this stage. For this reason, the use of intermediate domain specific models is
advantageous to subdivide the process into well-defined steps and precisely define the
interactions and interfaces among the tools used.
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In order to introduce the DIANA approach Section 4.1 focuses on the models and
metamodels used through the mapping process, while Section 4.2 gives an overview on
the actual steps of the workflow.

4.1 Models

In the DIANA project the aim of the high-level Platform Independent Model (PIM) is to
capture the high-level architectural view of the system along with the definition of the
underlying implementation platform, while the Platform Specific Model (PSM) focuses
on the communication details and service descriptions.

Platform Independent Models. In order to support already existing modeling tools
and languages (e.g., Matlab Simulink, SysML, etc.) we use a common architecture
description language called Platform Independent Architecture Description Language
(PIADL) for architectural details by extracting relevant information from supported
common off-the-shelf models. As for capturing the underlying platform (in our case
ARINC653) we use a Platform Description model (PD) capable of describing common
resource elements.

– PIADL aims to provide a platform independent architectural-level description of
event-based and time-triggered embedded systems using message and publish/sub-
scribe based communication between jobs, having roots in the PIM metamodel of
the DECOS research project [26].

– The Platform Description (model) describes the resource building blocks, which
are available in an AIDA Module to assemble the overall resources of an AIDA
component. This mainly includes ARINC653 based elements such as modules, par-
titions, communication channels, etc. A small part of the metamodel is detailed in
Section 5.2.

– In the context of the DIANA project we support Matlab Simulink as a source COTS
language. We supports only a fraction of the language that conforms with the ex-
pressiveness of our PIADL to describe the high-level architecture of the system.

Platform Specific Models. The platform specific models are encapsulated in the AIDA
Integrated System Model that contains all relevant low-level details of the modelled
system. Essentially based on ARINC653, the integrated model provides extensions and
exclusions to support the publish/subscribe communication and service based invoca-
tions. Its main parts are the following:

– The Interface Control Document (ICD) is used to describe data structures and low-
level data representation of AIDA systems, interfaces and services to ease inte-
gration of the described element with other parts of the system. It supports both
high-level (logical) and low-level (decoding) descriptions and was designed to be
compatible with the ARINC653 and ARINC825 data and application interface
descriptions.
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– The AIDA System Architecture model identifying and describing the relations
among all elements related to the AIDA system. More precisely the model focuses
on the (i) details of the proposed publish/subscribe based communication, (ii) the
multi-static configuration of the AIDA middleware and (iii) the detailed inner de-
scription of the partitions allocated for the AIDA system.

In order to support traceability – an essential requirement of DO-178B [1] certifica-
tion –, a trace element is saved in the Trace model for all model elements of the PSM
created during the mapping process. Such an element saves all PIM model segments
that were used for the creation of a PSM model element. Additionally, trace informa-
tion is also serialized into separate XMI files for each generated configuration file. In
the current implementation traceability is hand-coded separately into each step of the
development workflow.

4.2 Overview of the DIANA System Modeling Process

An extract of the defined workflow for the DIANA System modeling process is depicted
in Figure 5, using a graphical concrete syntax of the process metamodel presented in
Figure 3 and Figure 4.

The process starts with the definition of a complete PIADL model as the task of
the System architect (represented by a human symbol). It can be either manually

Fig. 5. Overview of the DIANA development process
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defined using the (i) external PIADL editor (depicted by a wrench icon) as part of the
PIADL review step or (ii) derived from a Simulink model.

The near one-to-one derivation is supported by the Simulink/PIADL Converter
external tool used in the PIADL Review step. It has an input and an output interface
figured by a grey and white socket symbol for the Simulink and the PIADL model, re-
spectively. However, as some AIDA specific parameters cannot be directly derived it
requires additional clarification from the system architect. For example, a subsystem
block in the Simulink model is mapped to a job in the PIADL, but its modular redun-
dancy value (how many instances of the job are required) is not present in the Simulink
model.

The complete PIADL is then imported into the PIM/PSM mapping editor respon-
sible for the analysis and definition of configuration tables interface descriptions. This
work is done by the Modeling Engineer. Without going into more details it consists
of 25 steps organized into the following main categories:

1. Application allocation: contains the PIM imports followed by the allocation of ap-
plication instances to partitions and steps that define additional constraints on the
allocation. It relies on the VIATRA2 framework and depicted by an invocation
step.

2. AIDA ICD definition: steps related to the description of interfaces and services pro-
vided and required by applications. These are user driven mapping steps, where
PIM types, messages, topics and services are refined with platform specific infor-
mation like encoding, default value, etc. It is supported by the PIM/PSM mapping
editor.

3. Communication allocation: involves steps in the PIM/PSM Mapping editor that
carry out the allocation of inter-partition communication channels and the specifi-
cation of ports residing on each end of these channels.

4. Artefact generation: contains steps that carry out the generation of AIDA
middleware model, ARINC653 configuration files for the VxWorks real-time
OS and the AIDA ICD descriptor.

Additionally, as a cross cutting aspect traceability information - depicted by the
Trace model - is saved during the mapping process.

5 Graph Transformation in the DIANA Tool Chain

This section gives an overview how we successfully applied graph transformation based
technology in various parts of the tool chain. Section 5.1 introduces a graph pattern
based contract notation used to define conditions for steps, along with an example de-
tailed in Section 5.2. Section 5.3 highlights how graph transformation is used for AR-
INC configuration generation.

5.1 Contracts as Graph Patterns

During a development process certain steps require external COTS tools (e.g., Matlab,
SAL, etc.) or user interaction to perform their task. As mentioned in Section 3.1 we use
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contracts to ensure that both the input and output of these steps satisfy their require-
ments. In our approach we used graph patterns to capture such contracts [27, 28] as
we used on-the-fly evaluation based on incremental pattern matching [29]. However,
it is important to note, that it would be possible to define these contracts by OCL and
transform a large subset directly to the graph pattern formalism [30].

Graph patterns are frequently considered as the atomic units of model transforma-
tions [31]. They represent conditions (or constraints) that have to be satisfied by a part
of the underlying instance model. In the following, we use the pattern language of the
VIATRA2 framework [32]. In our interpretation a basic graph pattern consists of graph
elements corresponding to the metamodel. As an addition for more complex pattern
specification the language of VIATRA2 allows to define alternate (OR) pattern bodies
for a pattern, with a meaning that the pattern is fulfilled if at least one of its bodies
is fulfilled. A negative application condition (NAC) prescribes contextual conditions
for the original pattern which are forbidden in order to find a successful match. Nega-
tive conditions can be embedded into each other in an arbitrary depth (e.g. negations of
negations), where the expressiveness of such patterns converges to first order logic [33].

Contracts are composed of a pre- and a postcondition. Both conditions are the con-
junction of subconditions described by graph patterns, where a graph pattern is a dis-
junction of alternate pattern bodies [31]. A subcondition described by the graph pattern
is either a positive or negative condition. A negative condition is satisfied by a model if
it does not have a match in the underlying model. While a positive one is satisfied if its
representing graph pattern has a match in the model. A further restriction on positive
condition can be formulated by stating that they are satisfied iff their representing graph
pattern has a predefined positive number (Cardinality) of matches.

5.2 Example

To demonstrate how contracts can be formulated using the defined approach consider
the simplified job allocation step of the Application Allocation category (See in Sec-
tion 4.2) using an external tool (the VIATRA2 framework). In this step the task is to
allocate an IMA system defined by its jobs and partitions over a predefined cabinet
structure and to minimize the number of modules used. An integrated modular avionics
(IMA) system is composed of Jobs (also referred as applications), Partitions, Mod-
ules and Cabinets. Jobs are the atomic software blocks of the system defined by their
memory requirement. Based on their criticality level, jobs are separated into two sets:
critical and simple (non-critical). For critical jobs, double or triple modular redundancy
is applied while for simple ones only one instance is allowed. Partitions are complex
software components composed of jobs with a predefined free memory space. Jobs can
be allocated to the partition as long as they fit into its memory space. Modules are SW
components capable of hosting partitions. Finally, Cabinets are HW storages for maxi-
mum (in our example) two modules used to physically distribute elements of the system.
Additionally a certain number of safety related requirements will also have to be sat-
isfied: (i) a partition can only host jobs of one criticality level and (ii) instances of a
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Fig. 6. Metamodel of an IMA architecture

certain critical job can not be allocated to the same partition. An excerpt of the Platform
Description metamodel describing the detailed IMA system is depicted in Figure 6.

Based on this metamodel we defined the pre- and the postcondition of this step as
depicted in Figure 7 and Figure 8, respectively. All subconditions in the pre- and the
postcondition are defined as positive and negative conditions depicted with with + and
- markings, respectively.

Precondition. For the definition of the precondition we rely only on that the model
has at least one cabinet, one partition with its free memory defined and one job with
an instance. These simple requirements are captured by the cabinet, partition and job
graph patterns depicted in Figure 7.

Fig. 7. Precondition of the DIANA application allocation step

Postcondition. The jobInstancewithoutPartition, partitionwithoutModule and module-
withoutCabinet subconditions describe that in a solution model each JobInstance, Par-
tition and Module is allocated to a corresponding Partition, Module and Cabinet, re-
spectively. For example, the jobInstancewithoutPartition subgoal captures its require-
ment using a double negation (NAC and negative constraint) stating that there is no
unallocated job instance JI in the solution model. As the declarative graph pattern for-
malism has an implicit existential quantification, nested (double) negation is required to
quantify elements universally. Similar double negation is used in case of the other two
subgoals.

The rest formulates safety and memory requirements. The partitionMemoryHigh-
erThan0 pattern captures the simple memory constraint that all partitions must have
higher than zero free memory. The safety requirement stating that a partition can only



Workflow-Driven Tool Integration Using Model Transformations 237

Fig. 8. Postcondition of the DIANA application allocation step

host jobs of one criticality level is captured by the partitionCriticalityLevelSimilar pat-
tern. As it is a negative constraint it describes the (positive) case where the P1 parti-
tion holds two job instances J1 and J2 of a simple and a critical job Job1 and Job2,
respectively. The criticalInstanceonSamePartition and criticalInstanceonSameModule
patterns restrict in a similar way that no job instances J1 and J2 of a critical job Job can
be allocated to the same partition P1 or module M1.

Guarding the application allocation using this contract ensures that all applications
are properly allocated and all safety requirements are fulfilled by the output model. As
constraints are defined by graph patterns it gives rise to adapting constraint satisfaction
programming techniques over graph transformation as in [34].

5.3 Configuration Generation by Graph Transformation

Model transformation based automatic code or configuration generation is one of the
main driving forces [35,36] of model driven system development. It offers many advan-
tages including the rapid development of high quality code, reduced number of errors
injected during development and the consistency between the design and the code is
retained, in comparison with a purely manual approach.

One aim of the DIANA project is to generate ARINC653 [25] XML based con-
figuration files for VxWorks 653 RTOS from the created PSMs. A configuration file
describes the internal structure of a module, namely: (i) allocated partitions and their
memory layout, (ii) communication channels over sampling and queueing ports and (iv)
health monitor tables for error detection and handling. During the PIM-PSM mapping
process all relevant information required for the generation are specified and stored in
the AIDA Integrated System model.

An example ARINC653 configuration snipplet is depicted in Figure 9. It captures
the details of the flight management non-system partition, which has the highest Level A
criticality as defined in [1], one queueing and four sampling ports and separate memory
blocks for code and data. A port is defined with its direction, maximum message size
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and name, where the sampling and the queuing ports have additionally refresh rate
or maximum number of messages parameters, respectively. Finally, a memory block is
defined by its access mode (e.g, read or write), type (code or data) and size.

Fig. 9. Example ARINC653 descriptor

Configuration Generation. To generate the required XML format we based our code
generator on the VIATRA2 framework, where configuration file templates are defined
using graph transformation (GT) rules. This way GT rules define both the GT pattern
that matches to the required elements in the model and generate code as a side effect.
These GT rules do not modify the underlying model and thus their right and left hand
sides are the same.

Without going into details, a part of the code generator responsible for the generation
of the Partition Memory XML subtree is depicted in Figure 10 and Listing 1.1.

The partitionMemory GT rule defines the template for the Memory Requirements
XML element. Its pattern matches to the partition P that has a memory M as its memory
block. A memory has three attribute defined as memorySize MS, memoryType MT and
memoryAccess MA. The print block defines the template that is printed out when the
rule is applied. All three parameters value are retrieved using the value keyword.

The partitionID is an auxiliary pattern used to get the ID PID of the partition P.
To control the execution of the GT rules and define complex generators the VIA-

TRA2 language [32] uses abstract state machines ASM [37]. ASMs provide complex
model transformations with all the necessary control structures including the sequencing

(a) GT rule for memory block genera-
tion

(b) Partition with ID

Fig. 10. Example GT patterns and rules used for configuration generation
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operator (seq), ASM rule invocation (call), variable declarations and updates (let and up-
date constructs), if-then-else structures, non-deterministically selecting (random) con-
structs, iterative execution (applying a rule as long as possible (ALAP) iterate), the si-
multaneous rule application at all possible matches (locations) (forall) and single rule
application on a single matching (choose).

The example code shown in Listing. 1.1 demonstrates how we defined our code
generator using the partitionMemory rule and the partitionID pattern.

The outer forall rule is used to find all partitons P with their id PID in the model as
defined by the partitionID pattern, and then execute its inner sequence on all matches
separately. For each partition separate Partition Memory XML elements are emitted
out with their additional PartitionIdentifier and PartitionName parameters. As for the
Memory Requirements XML elements a forall rule invoking the partitionMemory GT
rule is defined. The rule is invoked for all memory blocks M of partition P, where P is
(at that point) already bound to a concrete partition by the outer forall.

The whole code generator is built up using similar snipplets.

... //memory block generation
forall P, PID with find partitonID(P, PID) do seq{

println("<Partition_Memory PartitionIdentifier=\"+value(PID)
+\" PartitionName=\"+name(P)+\">");

forall M with apply partitionMemory(P,M); // GT rule as template
println("</Partition_Memory>");

}
...

Listing 1.1. Partition Memory code generator snipplet

6 Implementation of the Tool Integration Framework

To support the application of the high-level process modeling language presented in
Sec. 3, we have created a prototype implementation for the tool integration framework.
This framework provides the software infrastructure on which the case study of Sec-
tions 4 and 5 is executed. A main design goal was to integrate our solution to existing
off-the-shelf tools that are used in industry practice; thus, both the process modeling
infrastructure, as well as the execution environment rely on standard technologies as
much as possible.

6.1 Execution Architecture

The execution of the process is facilitated by a service-oriented architecture, based on
the jBoss jBPM [38] workflow execution engine and the Rational Jazz platform [39],
as an integration middleware between tools, services, and the data repository. Building
on this software environment, we have implemented a lightweight API that provides
essential components, the overall architecture is shown in Fig. 11.

Tool management. A Tool or Service represents an external executable program that
performs one or more tasks during the development. In order to be easily integrated,
especially in the case of services, these software components should ideally be pro-
grammatically invocable, i.e., have the business functionality exposed to a well-defined
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Fig. 11. Framework architecture

interface which is externally accessible (ranging from command line interfaces to li-
brary functions or even web services).

Connectors. Connectors are the components that provide uniform interface of the tools
for the framework. The connector is also responsible for facilitating data flow between
the tool and the artefact repository (optionally, support for explicit traceability may also
be implemented in the Connector). The Tool Manager together with the Tool Reposi-
tory serve as a service directory for available tools and services. It relies on the under-
lying service facilities of the Rational Jazz and OSGi platforms. These components are
responsible for the lifecycle management (initialization, disposal) of integrated tools.

Data management. Models and artefacts of the development process are described
(on a high abstraction level) in the Process Model. From this, a storage metamodel
is generated, which contains dependency references between artefact classes, and in-
cludes metadata (such as creation timestamps, ownership and access control flags) as
attributes. Traceability information is also handled as storage metamodel classes. The
Artefact Manager is responsible for providing access through a service-oriented API
(implemented as a tool/service interface) to data records stored in the Data Repository
component.

Process execution. The executing processes can be managed and supervised using
the Process Execution User Interface. In our prototypical implementation, it provides
a control panel where (i) execution of tasks defined in the platform-specific process
model can be initiated, (ii) the state of execution (i.e. the current process node, and the
process variable values) can be observed, and (iii) versions of artefact instances and
their related metadata can be managed.

The Process Execution Engine is responsible for the execution of the steps defined
in the Process Model. The process model is mapped to a low-level executable language
(jBoss jPDL [38]), which is executed in a customized jBPM instance. The jPDL de-
scription contains auxiliary information that is processed by handler plugins, so that



Workflow-Driven Tool Integration Using Model Transformations 241

the process executor is able to invoke the integrated tools, services, and access the data
repository.

6.2 Process Modeling Languages for Tool Integration

In practice, the domain-specific language of Sec. 3 is not the only means of designing
a development process; in fact, several modeling languages may be involved on two
levels of abstraction (Fig. 12).

Fig. 12. Models and their relations used in process modeling and execution

High-level process models. In today’s industrial practice, development processes are
frequently captured in process description languages with a focus on methodology-
compliance (i.e. enforcing design principles so that the actual development conforms
to standard methods such as the Unified Process, or modern agile approaches such as
XP or SCRUM). To address this need from a metamodeling perspective, the Software
Process Engineering Metamodel (SPEM) [40] has been developed by the OMG. Since
then, a number of SPEM-based tools have emerged, and IBM Rational’s Method Com-
poser is one of the most well-known of them. Along with its open-source version, the
Eclipse Process Framework Composer [41] (shown in Fig. 13), they are based on pattern
re-use by allowing to design according to process libraries that incorporate deep knowl-
edge of both standard methodologies (e.g. OpenUP) and also organization-specific
customizations.

Fig. 13. The DIANA process in the EPF Composer

As EPF’s language includes support for the high level enumeration of roles and arte-
facts, with lightweight associations (such as responsibility, input-output), a ”platform-
independent” representation of development processes may be designed. Note that in
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these models, all activities appear as tasks (Fig. 13), so there is no information present
about which elements are used-guided and which are automated.

Thus, this high level model can mapped to our DSML by a VIATRA2 transformation,
preserving the macro structure of the process, and importing an enumeration of roles,
tools and artefacts. This domain-specific model has to be augmented manually to pre-
cisely specify how activities interact with artefacts, tools, services, and their interfaces.

Storage models. Two types of deployment models are generated from the platform-
specific model: (i) the Workflow Model contains the description of the tool-chain to be
executed in the format (augmented jPDL) that can be executed by the Process Execution
Engine, and (ii) the Storage Model, which is the description of the data structure in a
format that is needed to configure the Rational Jazz Data Repository.

In Jazz, storage models [42] are EMF/Ecore-compliant metamodels that define an
object-oriented database schema in which artefacts can be stored. Inter-class references
indicate cross-references between repository elements (for instance, such cross refer-
ences may be used to determine which document instances need to be manipulated
synchronously to maintain consistency).

Fig. 14. Storage metamodel for the DIANA process

A sample storage model extract for the DIANA case study is shown in Fig. 14.
Classes, tagged with the Auditable stereotype, are under versioning persistence man-
agement, and can store metadata as attributes. These attributes can be queried and pro-
cessed without retrieving the artefacts in their entirety. Note that in this example, we
do not record any traceability information between the Simulink model and the rest of
artefacts, hence it is shown as a separate auditable entity in the storage metamodel.

Metadata attributes typically include lightweight traceability information (e.g. cre-
ation timestamps, creator IDs which may refer to a particular user or the ID of an au-
tomated service), and may also incorporate logs and traces (such as, for instance, the
generation warn error log attribute for the VxWorks configuration document, which
contains the warning and error log emitted by the code generator during generation).
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These auxiliary records, together with a complete trace model (also represented as a
persistent and versioned artefact) play an important role in achieving end-to-end trace-
ability.

Based on this storage model, a persistence plug-in is generated for the Jazz reposi-
tory, which allows the tool connectors (as well as external components) to interact with
the database on the artefact level. This interface currently only provides basic access
functionality (queries and manipulations):

– getter functions for all document types and their metadata (e.g.getVxWorks confi-
gurations(), .getGenerator config() etc.), which directly retrieve data
records from the artefact database and wrap them into EMF objects;

– getter functions for complex queries involving storage classes with cross references
(e.g. getTrace model transitive(String traceModelId), which fetches a par-
ticular trace model document together with all its referenced document instances);

– manipulation (setter) functions for all document types and their metadata attributes,
which take EMF objects as data transfer parameters (e.g. storeVxWorks confi-
guration(VxWorksConfigurationModel)).

7 Related Work

The problem of tool integration has already been studied in many different research
projects whose relationships to our proposed approach are now surveyed.

The UniForM WorkBench [43] can be considered as one of the earliest attempts
for tool integration due to its built-in support for type safe communication between
different tools, version and configuration management. Though system models can be
interchanged in a type safe manner by the workbench, it cannot be considered as a
model-based approach as a whole.

Several technology dependent approaches have already been proposed for tool inte-
gration purposes. One valuable representative of this group is R-OSGi [44], which sup-
ports the deployment of distributed applications on computers having the OSGi frame-
work installed. Though the underlying OSGi framework has many advanced services,
the centralized management (i.e., loading and unloading) of modules is an inconvenient
property of R-OSGi. Another representative is the jETI system [45], which is a result of
redesign and Java-based reimplementation of the Electronic Tool Integration platform,
is an approach based on the Eclipse Plugin architecture whose technology dependency
has been reduced by its Web Services support. The jABC submodule of the jETI system
enhances Java development environments with remote component execution, high-level
graphical coordination and dedicated control via formal methods.

The use of workflows for describing the tool integration process, which is a technique
also employed in our approach, has been introduced in the bioinformatics domain in
[46]. In this paper, the authors proposed to describe the cooperation of computational
tools and data management modules by workflows.

The first form of metamodel-based tool integration appears in [22], which presents
two orthogonal design patterns as well. The first pattern suggests the storage of metadata
on a server, and the development of a model bus, on which tools can transfer models via
a common model interface protocol. The other pattern proposes the use of workflows
for describing the tool integration process in the ESML language.
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Model transformations in tool integration. In the followings, tool integration solutions
with model transformation support are presented.

In the authors’ experience, VIATRA2, positioned as a dedicated model transformer,
has been successfully applied both in scenarios where the abstraction gap (between
source and target languages) was relatively small (such as code generation from MDA-
style platform-specific models [19,47,48,49], or abstract-concrete syntax synchroniza-
tion in domain-specific languages [50]), as well as mappings with strong abstractions
(e.g., the generation of mathematical analysis models from design artefacts, for formal
analysis purposes).

The IPSEN approach [51] outlined probably the first integration related scenario,
where model transformation techniques played a key role. The aim of IPSEN was to
construct an integrated software development environment (SDE) tool, which helped
capturing both context-free (i.e., syntactic) and context-sensitive (i.e., graph-based) as-
pects of languages by textual and graphical editors, respectively. The technique of graph
transformation has been heavily used for the development of the tool especially for
specifying constraints and translations in the context-sensitive domain.

ModelCVS [52] employs (i) semantic technologies in forms of ontologies to partly
automate the integration process, and (ii) QVT transformations, which are generated
from these ontology descriptions. As distinctive features, ModelCVS uses Subver-
sion for versioning, EMF and MOF-based metamodels for model representation, and
a generic workflow ontology for defining processes. In contrast to our approach, Mod-
elCVS prepares adapters for tools and not for models as these latters are stored in a
central repository. Additionally, model transformations are used in ModelCVS for the
synchronization of models, and not for the definition of the integration process.

From the model transformation point of view, a similar setup can be found in
MOFLON [53, 54]. Transformations are again used for model synchronization, but in
this case, they are defined by triple graph grammars. MOFLON operates on JMI and
MOF 2.0 based models.

TopCased (”The Open source toolkit for Critical Systems”) [55] is a software envi-
ronment primarily dedicated to the realization of critical embedded systems including
hardware and/or software. Topcased promotes model-driven engineering and formal
methods as key technologies, such as a model bus-based architecture supporting stan-
dard modeling technologies such as EMF, AADL, UML-MARTE, and SysML. For
model transformations, TopCased uses ATL [56].

The recent EU projects of ModelWare [57] and MODELPLEX [58] outline tech-
niques that show certain similarity to our approach. ModelWare aimed at defining and
developing the complete infrastructure required for large-scale deployment of MDD
strategies and validating it in several business domains. It can (i) provide transparent
integration across model, tool, platform, machine boundaries; (ii) support the creation
of distributed, multi-user tool chains; (iii) handle many metamodels and artefacts; (iv)
integrate interactive and non-interactive tools; and (v) use different technologies for
communication. ModelWare offers a process modeling framework, and a model bus for
exchanging high-level data that are either Java-based or described by Web Services.
On the other hand, it lacks model transformation support, which has only been added
in its successor MODELPLEX project. MODELPLEX has a SPEM2 based toolset for
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supporting the enactment and execution of processes and is integratable with workflow
and project management tools as well.

The clear separation of PIMs and PSMs, which specify tool integration processes
with different levels of details can only be found in research projects GENESYS [9]
and DECOS [5], which propose a cross-domain architecture for embedded systems,
and a model-driven development process for avionics systems, respectively. As dis-
tinctive features, GENESYS supports (i) different modeling languages including UML
and many of its profiles, (ii) a service-oriented development of subsystems, (iii) both
uni- and bidirectional model transformations with manual, semi-automatic, automatic
execution.

8 Conclusion

In the paper, we proposed a tool integration framework, which is centered around a
high-level domain-specific language for process modeling to closely align tool integra-
tion and development scenarios. With this approach, model-driven development pro-
cesses can be described precisely, in detail that is sufficient to capture what can and
should be automated, but also flexible enough to support user-guided steps as well.

Based on our experience in designing and implementing tool chains primarily in the
embedded and service-oriented domains, a key issue is to precisely specify and validate
the individual elementary steps of the development tool chain. For this purpose, we
adapted graph patterns to formally specify contracts for each step. Furthermore, model
transformations provided by graph transformation techniques were responsible for fully
automating certain steps in the tool chain (like code generation or model analysis tasks).

In addition to the process-driven specification of tool integration chains, we have
also presented an execution framework, which is rooted on various research projects at
the group. This framework is built to accommodate a wide spectrum of Eclipse-based
or external) tools, and automatically execute development processes designed with our
modeling language.

As future work, we primarily aim at including support for advanced model bus
services, such as versioning, model merge, and automatic traceability information gen-
eration. Additionally, we are planning to integrate advanced support for automated
traceability based on change-driven transformations introduced in [50].
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49. Ráth, I., Varró, G., Varró, D.: Change-driven model transformations. In: Schürr, A., Selic, B.
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51. Klein, P., Nagl, M., Schürr, A.: IPSEN Tools. In: [59], pp. 215–266. World Scientific, Singa-
pore (1999)

52. Kapsammer, E., Kargl, H., Kramler, G., Reiter, T., Retschitzegger, W., Wimmer, M.: On
Models and Ontologies – A Layered Approach for Model-based Tool Integration. In: Pro-
ceedings of the Modellierung 2006, pp. 11–27 (2006)
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Abstract. This paper is devoted to the topic of architecture modeling for soft-
ware systems. The architecture describes the structural composition of a system 
from components and relationships between these components. Thereby, it pro-
vides a basis for the system’s realization on technical as well as on organiza-
tional level. 

We present some key concepts of the architecture description language 
MoDeL (Modular Design Language). By selecting and combining modeling 
elements which proved to be helpful for the design of software systems, this 
approach is integrative and pragmatic: It allows the definition of “clean” logical 
structures as well as adaptations necessary due to implementation constraints. 
Both the logical architecture as well as concrete architectures reflecting respec-
tive modifications are considered as individual results of architecture modeling. 
Even more, the transformation steps describing the changes induced by a par-
ticular realization constraint contain valuable modeling knowledge as well. 

1   Introduction 

The observation that the structure of a software system as defined by its architecture 
is a crucial aspect in the development and maintenance process is almost as old as the 
software engineering discipline itself. The reasons for this are obvious: The main 
expenditure during the development process concerning manpower, time, and money 
is still Programming in the Small (PiS). A good design makes PiS easy in that the 
programmer can concentrate on a problem with a comprehensible complexity. Errors 
made in the implementation can be found and eliminated more easily because realiza-
tion details are encapsulated. For the same reason, software systems are more adapt-
able, reusable, and portable than before. On the other hand, errors made in the design 
may lead to an enormous waste of implementation efforts. One may argue that the 
same dependency holds for requirements specification and architecture, but a good 
and adaptable architecture always represents a set of similar requirements. To a cer-
tain extent, changes in the requirements are readily integrated into a good design. 

Specifically with the advent of object-oriented specification approaches, however, 
there has been an overall tendency to focus more strongly on analysis activities and 
consider architecture modeling more as a mapping of “classes and objects found in 
the vocabulary of the object domain” [1] to an implementation view – something 
which might or might not make sense from a structural perspective. Although lan-
guages like UML [2], [3] most certainly can be used to describe software architec-
tures in the above sense, they do not specifically encourage architects to design a 
robust framework structure for the PiS phase. 
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As a language naturally influences the way the speaker thinks when he communi-
cates in that language, it should neither restrict nor overtax the speaker with its vo-
cabulary and rules. For an architecture description language (ADL), this means that it 
should noticeably … 

1. … be easy to use and to understand. 
2. … provide the necessary detail to allow the definition of independent working 

packages for implementation, documentation, and testing, but not more. 
3. … not impose a certain style or methodology by preferring or neglecting certain 

kinds of abstractions. 
4. … be independent of the programming language to be used for implementation. 
5. … allow for different levels of abstraction. 

Based on a long history of preceding work (cf. e.g. [4], [5], [6], [7], [8], [9]), [10] 
suggests an ADL called MoDeL (Modular Design Language) developed adhering the 
above requirements. Although retaining the general approach that an architecture, in 
the first place, needs to define structure, it provides additional views allowing the 
architect to communicate design decisions. This paper summarizes the main concepts 
of this language; examples of its use can be found in [10]. 

2   Architecture Views 

One of the basic ideas of the MoDeL language is the distinction of two dimensions 
with respect to what and how the architecture is modeled, cf. fig. 1. In the top-left 
corner, a system’s static structure is defined with its components and their interfaces. 
To describe the dynamic behavior of the system, one or more interaction diagrams 
(top-right corner) may be used. Both specifications are restricted to the logical level, 
i.e. they strictly adhere to the concepts of modularity and encapsulation. Declarative 
semantics may be defined formally in the static part and informal operational seman-
tics in the dynamic part as considered appropriate by the architect. 

Fig. 1. MoDeL Views 

However, there are many potential reasons why an architecture cannot be imple-
mented exactly the way it is specified on logical level. Furthermore, there might be 
additional information the architect wants to specify beyond the logical structure. 
Some examples are: 
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1. Annotation of concurrency properties of components, like which components com-
prise a process, synchronization semantics of interface operations etc. 

2. Introduction of components to handle distribution, e.g. for parameter marshaling, 
finding a service provider etc. 

3. Extension or adaptation of the architecture in order to integrate components with a 
different architectural structure, e.g. if external libraries or components generated 
by external tools are used. 

4. Specification of the implementation of usability relationships, e.g. via (remote) 
procedure calls, exceptions, interrupts, event-triggering, or other forms of callback 
mechanisms. 

5. “Opening up” an abstract data type to increase efficiency. 

In some cases, there are dependencies between the corresponding realization deci-
sions: As an example, the architect might want to separate a data object (e.g. a data-
base) from the rest of an application to make it remotely accessible by different users. 
He could implement the incoming usability relationships as RPCs (cf. 4). This also 
requires corresponding components as those mentioned in 2 to be introduced. These 
components might use existing data conversion libraries and generated stubs, so he 
may have to make some changes to the logical architecture as in 3. Consequently, he 
might want to denote the synchronization semantics necessary due to the concurrent 
access to the data object as in 1 etc. 

All of these activities require changes to the architecture of the system as interfaces 
change, new components are introduced, or implementation details are added. The 
resulting architecture though has a different quality than the logical architecture: It 
does not aim at the best possible structure with respect to maintainability etc., instead 
it describes a step towards a concrete implementation of the system. In this sense, we 
call it a concrete architecture in the following. 

To some extent, this idea is similar to the distinction between Platform Independ-
ent and Platform Specific Models in Model Driven Architecture [11] and its evolu-
tions. However, logical architectures in MoDeL are not necessarily platform inde-
pendent – this will depend, on a case by case basis, on the nature of the system to be 
described (cf. section 6). 

It should also be noted that different concrete architectures for one logical architec-
ture can exist. These may reflect a sequence of possibly interdependent decisions as 
sketched above, a set of independent decisions, or different realization variants. Even 
more, in the context of re- and reverse engineering, the existing system to be analyzed 
can be considered an implementation of some concrete architecture which has to be 
derived from the source code or other documentation. Then, the logical architecture 
can be distilled from the concrete architecture which, in turn, will probably be the 
basis for restructuring the system and respective new concrete architectures. 

Although logical and concrete architectures of a system are naturally related, they 
should be treated as individual results of the design process. The logical architecture 
is necessary to understand the system’s structure and it remains the central document 
for implementation and maintenance activities. The aspects described by the concrete 
architecture are an important step towards the realization of the system, but they 
should not undermine its logical structure. In other words, each of the architectures 
represents a set of orthogonal design decisions which should be made, described, and 
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maintained separately. The integration of these architecture views and checking their 
consistency can be supported by tools. 

And finally, also the transformation steps leading from one architecture to another 
contain important design knowledge. For many existing systems, only either the ini-
tial (and typically logical) architecture is kept or the latest instance of the concrete 
architecture is maintained. However, both the original design decisions as well as how 
and why modifications were made are necessary to understand a system’s structure, 
and an explicit transformation step offers a convenient place to document differences 
between the logical and concrete level. Furthermore, if a specific transformation  
occurs frequently, it can be possible to formalize it and provide tool support for its 
application. In this sense, the design knowledge concerning how to modify an archi-
tecture to meet some certain purpose can be formally specified and, in consequence, 
communicated, reused, and possibly supported automatically by tools. Generally 
formalizing and even automating such transformations, as in [11], has however not 
been our ambition. 

From the wide range of possible uses of concrete architectures, we particularly 
focus on the specification of concurrency and distribution. These important as-
pects of a software system require some additional architecture language elements 
to be described properly; we summarize the respective extensions in the 
Dis(tributed)Co(ncurrent)MoDeL sublanguage. At the bottom of fig. 1, we have 
therefore introduced a concrete level which allows such specifications. As on the 
logical level, static (left box) and dynamic (right box) properties can be defined. 

Though fig. 1, at first sight, closely resembles approaches like the 4+1 view model 
as described in [12], the distinction between the views in MoDeL follows a different 
pattern: It is not our aim to serve different stakeholder’s requirements, but to facilitate 
communication between the architectural and the “programming” level of a software 
project. So, for example, the logical view in [12] would remain, in our approach, in 
the analysis part of the project, whereas the physical view might or might not be de-
scribed in a concrete MoDeL architecture – depending on whether the distribution of 
processes across nodes is part of the design or part of the implementation, i.e. whether 
it is relevant for the overall structure of the system or not. 

3   Abstraction Types 

As far as its basic abstractions are concerned, MoDeL is mostly motivated by pro-
gramming language concepts. Apart from being well-known to architects and pro-
grammers, this particularly facilitates implementing a design in some programming 
language. However, all of these concepts have to be reconsidered on architectural 
level. Of course, implementing a design is more or less problematic depending on the 
expressiveness of the programming language to be used, but generally always possi-
ble. As an example, a module or package concept as can be found in languages like 
Modula-2, Modula-3, and Ada makes the translation of architectural modules into 
programming language constructs easier, but a module/package in one of these lan-
guages is not necessarily a module on architecture level. Vice versa, an architectural  
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module can be translated into programming languages without explicit support for 
such a concept as well. 

On component level, MoDeL distinguishes module types in two dimensions: 

• Functional and Data Abstraction: Whereas traditional design methods like Struc-
tured Design [13] tend to produce hierarchies of functional components in a top-
down fashion, object-oriented methods like Object-Oriented Design [1] focus on a 
loosely coupled set of abstract data types/classes. Meanwhile, it is commonly 
agreed upon (cf. e.g. [14]) that both kinds of abstractions are necessary. This con-
clusion is essentially based on Parnas’ salient observation that each design decision 
should be encapsulated by a module and vice versa [15]. Such a design decision 
can be expressed in MoDeL, according to its nature, either as an abstraction from 
operation or from state. 

• Type and Instance Abstraction: Unlike most other approaches, MoDeL allows mod-
ules encapsulating a state or control flow and modules offering a template/type to 
dynamically create a state/control flow at runtime in one architecture description. 
Using modules on instance level, the designer can introduce global (i.e. system-
wide) state in the architecture without the need to define a data type and additionally 
assuring that exactly one instance of that type will be instantiated (cf. the Singleton 
pattern in [16]). Furthermore, this allows a clean model of situations close to the 
hardware boundaries of the system where concrete devices (e.g. “the keyboard”, 
“the heat sensor”) are involved. 

Concerning component relationships, the following concepts are supported: 

• Locality: Derived from block-structured programming languages as can be found 
e.g. in the ALGOL family, the concept of locality together with a corresponding set 
of visibility/usability rules is equally important on architecture level. It denotes that 
some component is designed to fulfill its purpose in a special context only and that 
it should not be accessible from outside this context. 

• Generality: To introduce components with a general character into an architecture, 
a corresponding general usability relationship may be used. As an unspecific way 
to make interface resources of one component usable by another component, this 
relationship is comparable to an import or use construct in programming languages 
with a module concept like Modula-2, Modula-3, or Ada. 

• Specialization: Object-oriented programming languages like C++, Smalltalk, or 
Eiffel offer inheritance between data types/classes as a special notion of similarity. 
Although some of the potential of inheritance depends on using a programming 
language which supports inclusion polymorphism (in the sense of [17]) in its type 
system, the concept of modeling some data type as a specialization of another data 
type is generally useful on architecture level. 

Finally, MoDeL supports parametric polymorphism (as defined in [17]) in the form 
of generic components. Although genericity can be simulated using inheritance on 
programming language level, these concepts are rather different on architecture level. 
Whereas specialization is used to model the similarities and differences between data 
types, genericity allows arbitrary parameterization of arbitrary components. 
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4   The Static View 

MoDeL’s key elements can be informally defined as follows: 

• Interface: A collection of resources like operations, types, constants etc. Basically, 
we use the term as known from programming languages with a module concept. In 
contrast to other approaches, we do not assign descriptions of dynamic aspects to 
operations; consequently, there is no execution model for (a collection of) inter-
faces. 

• Module: A module is a logical unit of a software system with a clearly defined 
purpose in a given context. It consists of an export interface defining which re-
sources the module offers to the rest of the system, an import interface defining 
which resources from other modules the module may use to realize its export inter-
face, and an implementation in some programming language. The term interface of 
a module, without further qualification, refers to the export interface. 

• Subsystem: A collection of components (see below). Subsystems have, like mod-
ules, interfaces. The import interface of a subsystem is the union of all import in-
terfaces of the contained components, minus the resources defined by components 
in the same subsystem. The export interface of a subsystem is an explicitly defined 
subset of the union of all export interfaces of the contained components. 

• Component: A module or a subsystem. 
• (Component, Module, Subsystem) Relationship: A dependency between compo-

nents resulting from the fact that some resource contained in the export interface of 
one component (the resource provider) is usable by another component (the re-
source employer) by appearing in its import interface. 

• Architecture: The structural building plan for a software system. It defines all of 
the system’s components and their relationships in the form of their import and ex-
port interfaces, but not their implementations. 

MoDeL distinguishes between different module and relationship types based on the 
different abstractions introduced in section 3. 

4.1   Functional Abstraction 

In general, functional abstraction is at hand if a module has some kind of transforma-
tion character. This means that an interface resource transforms some kind of input 
data into corresponding output data. Functional abstraction facilitates the hiding of 
algorithmic details of this transformation. 

An important property of functional modules is that they may not contain memory 
unless some code inside the module’s body is executed. In other words, as soon as the 
execution of an interface resource of the module is finished, the module has no 
knowledge about previous calls. The reason for this restriction is that a functional 
module with a state commonly contains two implementation decisions in one module: 
one for the actual functionality of the module and one for the state of the module, 
which should be modeled as a separate data abstraction module instead. This is no 
conceptual restriction because any module with an internal memory can be made 
stateless if the state is stored elsewhere and either read by the functional module or 
passed to respective operations by the resource employer. 
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This restriction does not mean that the body of a functional module may not have 
any global variables: it is acceptable if e.g. a module computing trigonometric func-
tions uses an internal table of key values, or if a text-processing module uses a buffer 
of cached characters. This is no violation of the principle that the mapping of input to 
output values is independent of the runtime “history” of the module (though it may 
depend on the history of data abstraction modules used by the functional module). In 
fact, as the architect defines only interfaces, he cannot keep the implementation from 
using global variables for whatever purpose as long as the semantic restrictions men-
tioned above are adhered to. 

Regarding the distinction between type and instance level abstraction, we note that 
the logical level only requires function object modules. Function type modules come 
into the picture in the context of concurrency, cf. section 6.2. 

4.2   Data Abstraction 

Data abstraction is present if the module encapsulates the access to some kind of 
“memory” or “state”. The module hides the realization of the data representation. The 
module’s interface only shows how the data can be used, not how it is mapped onto 
the underlying storage. 

In MoDeL, data abstraction is supported by two module types, namely data object 
and data type modules. 

Data object modules represent global state in the architecture which can be imple-
mented by global variables inside the module, i.e. directly mapped onto some struc-
tures of the programming language, and/or other data object modules or instances of 
data type modules. The interface of a data object module exports operations to ma-
nipulate the state of the module. 

Data type modules export exactly one type identifier (although trivial “helper” 
types are allowed as well) and access operations for instances of this type. Other 
modules may use the interface to create instances of the data type and manipulate it 
with the given operations. Data type modules are templates for the creation of mem-
ory and may not contain a global state: The execution of an interface resource on an 
identical instance of the type always modifies this instance in the same way. As with 
function object modules, this does not mean that the body of the module may not 
contain global information, but operations on one instance of the type may not have 
visible side-effects on other instances. 

For reasons of clarity, we always treat types introduced by abstract data type mod-
ules as reference types. This does not necessarily require such a type to be mapped 
onto a “pointer” in the programming language: A CORBA object identifier, an inte-
ger-valued handle etc. have reference semantics as well. Important consequences of 
this restriction are: 

• Instances of the type always have to be created (and possibly destroyed) explicitly, 
be it on the heap provided by the programming language runtime system or within 
some other component of the software system. Noticeably, assignment (explicit or 
by parameter passing) or variable declaration never create a new instance of the 
type. Means to copy instances, if required, have to be specified as an operation. 
This allows the architect to specify whether copying is possible at all and, if so, 
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what semantics (deep, shallow, or anything intermediate) is used. Multiple copy 
operations with different semantics can be specified as well. 

• Comparison is reference comparison. As above, the specification may define if 
comparison of values is possible and what semantics apply by defining respective 
operations. 

• Using reference semantics makes it sensible to think of self, the parameter de-
noting the object on which the operation is applied, as an input parameter: Whether 
or not the operation modifies the instance’s state, self as a reference is never 
changed by the operation. 

4.3   Interface Extensions and Export Control 

Frequently, the necessity arises to give some employers of a module more visibility 
on its realization than others. A common example is that an employer defining a sub-
type of some data type requires more control over the attributes of its supertype than 
“ordinary” employers of that module. Exactly this situation is covered in many object-
oriented modeling and programming languages by introducing a separation between 
public, protected, and private resources of a data type. 

Although the public/private/protected scheme meets many basic requirements, it 
has some major drawbacks: 

• The separation is only usable in the context of data types and inheritance. There is 
no good reason why a similar mechanism should not be available for other module 
types or other module relationships as well. In object-oriented literature, this is 
typically solved by using the “friend” concept. However, when using friend rela-
tionships, export control is given up altogether as complete access to the realization 
details is granted. 

• Even under the above restriction, there are situations that cannot be described ap-
propriately with only three layers of accessibility. This results from the approach to 
define the accessibility of a feature as an inherent property of the feature itself: In 
the interface of the module, the feature is generally classified as being public, pro-
tected, or private – regardless of the employer. Conceptually, this is not quite cor-
rect as its accessibility has something to do with how the feature is used in the 
overall design of the system, i.e. the actual pair of provider and employer. 

Consequently, we take on a more general approach that allows one or more views 
on a module to be specified. Some views might provide more control over the mod-
ule’s internals than others by relieving certain abstractions. To provide such views, 
we use the concept of interface extensions: the architect may define an arbitrary num-
ber of additional so-called view interfaces for the module. A view interface may con-
tain additional operations and helper types for data object and functional modules. 
Furthermore, for data object modules, some or all of the internal representation of the 
module’s state may be exposed. For data type modules, additional features (including 
attributes) may be defined. 

4.4   Module Relationships 

After presenting the different kinds of basic design units, we now introduce the means 
MoDeL provides to describe interactions between these units. First of all, some modules 
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want to make use of resources offered by other modules. We distinguish three different 
logical levels on which such dependencies can be discussed: 

1. The first prerequisite for the interaction between an employer and a provider mod-
ule is that the design allows the employer to access the resources offered by the 
provider. We call this the usability level. 

2. If the architecture allows some module to access another module (on the usability 
level), the employer may make use of this by actually using some of the provider’s 
resources (e.g. if the employer’s implementation contains a call of a procedure of-
fered by the provider). This use is static, i.e. it can be determined by looking at the 
implementation of the employer. Therefore, it is on the static uses level. 

3. If a static use of some provider resource is executed during the runtime of the pro-
gram, we say that this is on the dynamic uses level. 

Since we are considering the static view on the architecture, it cannot be deter-
mined whether the employer’s implementation makes use of a resource or not. It can 
only allow some module to use another module’s resources. So, if we talk about some 
module importing another module, this is always on usability level. The uses level, 
however, plays a role in a dynamic view of the system, cf. section 5. 

Besides the usability relationships from above, we also have structural relation-
ships between modules. These are used to express structural design concepts and 
allow or forbid certain usability relationships. 

4.4.1   Local Containment/Usability 
We start our discussion with a relationship called local containment. This is a struc-
tural relationship describing that some module is contained in another module. From 
this containment, some rules derived from the block-structuring idea present in many 
programming languages follow. This relationship forms a local containment tree in 
the module dependency graph. Placing a module in such a tree means that the module 
can only be accessed from certain parts inside this tree. In this sense, it introduces 
information hiding on architecture level. 

The following usability relationships are possible in a local containment tree: A 
module can use itself, its direct successors, its predecessors, and direct successors of 
all predecessors (especially its brothers). This is completely analogous to the rules of 
locality and visibility in block-structured programming languages. We say that poten-
tial local usability exists between the module and its above mentioned relatives in the 
containment tree. 

One problem with the relationship of potential local usability is that many relation-
ships are made possible between modules which are not necessary. We therefore 
introduce the local usability relationship. Local usability is a relationship which is 
explicitly specified in the architecture, although such a relationship may only be de-
fined between modules for which a potential local usability exists. In other words, the 
local usability relationships are a subset of the potential local usabilities defined by 
the designer. 

4.4.2   General Usability 
The local usability relationship introduced so far is not suited for all situations where 
one module wants to use resources from another module. This is particularly the case 
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if some module should be usable by arbitrary employers, possibly from different con-
tainment structures. 

With the general usability relationship, the architect has means to express that a 
module exports general resources which can be accessed from all other modules for 
which a corresponding general usability relationship exists. 

There is no structural relationship directly connected to general usability: General 
usability edges from any part of the system can end in one module (which, itself, must 
not be contained in another module). On the other hand, it is not unusual that only one 
employer uses some provider module through general usability. Whether or not a 
module is generally or locally usable is a question of the kind of provider module. If a 
module offers general services to employers, it should be inserted using the general 
usability. If it offers services which are only useful in a certain context, it should be 
inserted using the local containment and local usability relationships. 

4.4.3   Specialization/Specialization Usability 
The other structural relationship in MoDeL besides local containment is the speciali-
zation relationship. Although the concept of specialization is influenced by ideas from 
object-oriented programming languages, it denotes a relationship between modules on 
the design level here. Whether the actual implementation language’s type system 
supports specialization in some way should not influence the logical architecture 
(though it might influence a concrete architecture). 

The specialization relationship can only exist between data type (and function type, 
cf. section 6.2) modules. If some data type is a specialization of another data type, this 
implies that every instance of the special type has at least all the properties of an in-
stance of the general type. As usual, we call the special type a subtype of the general 
type, which is vice versa referred to as the supertype of the special type. This termi-
nology extends to arbitrary ancestors and predecessors of a data type module in the 
specialization hierarchy. 

An important characteristic of the specialization relationship is that the set of fea-
tures offered by the subtype is a superset of the set of features of the supertype. We 
therefore do not have to repeat these features in the subtype’s interface. 

As with local containment and local usability, the structural specialization relation-
ship is accompanied by a usability relationship, the specialization usability. By defini-
tion, a specialized module needs to import the module it specializes. 

It should be noted that the structural relationship of generalization implies no us-
ability relationships. In MoDeL, a subtype module may not use some supertype’s 
operation just because it is a subtype: All usability relationships have to be introduced 
explicitly by the designer. On the other hand, the structural relationship again deter-
mines the set of possible usability relationships. This leads to a strong correlation 
between architectural usability relationships and the common notion of an “import”: 
A subtype module needs to import the supertype module’s interface in order to use 
the corresponding type identifier in the declaration of the subtype identifier. Further-
more, if some subtype wants to call an implementation of an operation as defined for 
some specific supertype (in contrast to whatever implementation is dynamically 
bound to the operation, see below), it has to address this module directly. Obviously,  
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every subtype module must have a specialization usability edge to its immediate su-
pertype module and may have additional specialization usability edges to arbitrary 
predecessors in the specialization hierarchy. 

Apart from these definitions on module level, we also have to consider the connec-
tion between specialization as a module relationship and the consequences for the 
types and their operations exported by corresponding modules. Unfortunately, this 
affects issues which are related to Programming in the Small. On one hand, defining 
them on architectural level makes a few (possibly unwelcome) assumptions concern-
ing the implementation. On the other hand, in the context of specialization, a data type 
module’s interface cannot be properly defined and understood if these questions re-
main open. 

• As usual in object-oriented modeling approaches, we consider variables of an ab-
stract data type as polymorphic, i.e. any variable or formal parameter of some type 
can be assigned/passed a value of some subtype of this type. 

• A supertype operation’s implementation can be redefined for a subtype. Syntacti-
cally, this is not visible in the interface, but an informal (comment) or formal (cf. 
section 4.7) semantics specification can indicate this. 

• In the context of polymorphism, a variable’s or parameter’s dynamic type at run-
time can be a subtype of its static type (according to the declaration). If the subtype 
has redefined operations, we always consider the dynamic type decisive for the se-
lection of the implementation (late binding, dynamic dispatching). In this case, 
there may be transfers of program control from one module to another module 
without an explicit usability relationship between them: An employer module can 
call a data type’s operation according to the (supertype) interface it is aware of, 
whereas at runtime, some code within another provider module (defining a subtype 
of the type in question) is executed. Conceptually, however, the employer is inde-
pendent of the subtype interface and only depends on the supertype interface. 
Therefore, a usability relationship between employer and subtype module is not  
required. 

• We allow operations to be redefined in subtypes, i.e. a subtype may supply a new 
(new in the sense of a different signature and different semantics) operation with 
the same name as an inherited operation. It should be noted that redefining an op-
eration is something different than redefining an operation’s implementation as 
discussed above. Although operation redefinition is not unproblematic with respect 
to polymorphism, it is frequently the case that some subtype operation is “more 
complex” than a very similar operation in a supertype, consequently, it will want to 
raise more exceptions, might need more input parameters, produce more complex 
results etc. Some of these points can be relieved by stating co- and contravariance 
rules for parameters, but this introduces additional complexity without completely 
solving the problem. 

It should be noted that redefining an operation, in contrast to redefining the imple-
mentation, does not replace the existing operation’s implementation. As far as the 
selection of the implementation in the context of polymorphic variables is concerned, 
we consider the static type of the variable as decisive: This is necessary as an  
employer can only provide the input and handle the output of an operation as it is 
specified in the interface it knows and by which it declares the variable/parameter. 
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Frequently, if a subtype redefines an operation, it also redefines the implementation of 
the inherited operation of the same name to sensibly handle attempts of operation 
calls which are not appropriate for the dynamic type of an instance. 

4.5   Subsystems 

Obviously, the module level introduced so far is too fine-grained for the description 
of large software systems. We therefore need design units which allow a hierarchical 
specification of the architecture. Subsystems allow the designer to express such units 
which are “greater” than modules: they may contain an arbitrary number of modules 
and other subsystems. 

Most of the characterizations given for modules at the beginning of this chapter 
can be applied to subsystems as well: first of all, subsystems are units of abstraction. 
They have an interface which describes the resources which can be accessed from the 
outside. The interface of a subsystem is a composition of explicitly selected modules 
and/or subsystems inside the subsystem. Furthermore, subsystems are units of work, 
units of testing, and units of reusability. For this reason, subsystems should – just like 
modules – obey the rules of low coupling and high cohesion: the modules and subsys-
tems should not interact more than necessary with other units on the same design 
level. On the other hand, a module or subsystem should only contain logically related 
resources. 

However, it still makes sense to distinguish between modules and subsystems as 
the former are directly linked to the PiS level in the sense that they involve implemen-
tation work, whereas the latter start out purely as a design concept which might not 
materialize in program code at all. 

As stated above, the designer decides explicitly which interfaces in the subsystem 
contribute to the subsystem’s interface. An immediate consequence is that we cannot 
assign each subsystem a unique type as we could with modules. We therefore do not 
distinguish different subsystem types. Nevertheless, we sometimes talk about func-
tional or data type subsystems if the subsystem’s interface consists of one or more 
modules of the corresponding type. 

Of course, being part of a subsystem is a structural relationship between the corre-
sponding components. Accordingly, we already introduced a natural candidate for 
subsystems in the previous chapter, namely local containment trees. Containment 
trees are a special sort of subsystems where the interface is implicitly given by the 
root of the tree. However, apart from isolating components within the subsystem from 
components outside, containment trees additionally introduce the locality/visibility 
restrictions as described above. 

4.6   Generics 

MoDeL supports a reuse mechanism commonly known as genericity (or parametric 
polymorphism according to the more precise terminology introduced in [17]). The 
main idea of genericity is to write (generic) templates for system components. In the 
template, an arbitrary number of details is not wired into the code, instead the tem-
plate code refers to these details using formal parameter names. The programmer can 
then create a concrete component by supplying the missing details in the template. 
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We call these details (generic) parameters, and the process of creating a component 
using a generic template and generic parameters (generic) instantiation. Accordingly, 
the resulting component is called a (generic) instance. 

Ideally, the process described above is directly or indirectly supported by the pro-
gramming language or the development environment. But even if not, it allows the 
architect to indicate that for different physical modules the same code should be used. 

A common example for generic templates is a collection (container) of instances 
of an entry type. The generic parameter for the template is the entry type for the 
collection. The reason for this approach is that the implementation of the collection 
is more or less independent of the type of objects it can store, i.e. neither interface 
nor implementation of the collection refer to special properties of the entry type. 
MoDeL therefore allows a generic specification of the container, making the entry 
type a generic parameter. The designer can then use this template to instantiate arbi-
trary concrete containers by providing respective entry types from data type modules 
in the architecture. 

We can readily extend the concept of generics from modules to subsystems. Con-
ceptually, generic subsystems are just as important as generic modules, e.g. in a situa-
tion where some collection is built on top of one or more other collections. For exam-
ple, a generic module offering a table data structure might be implemented using a 
generic data type module for dynamic arrays. In this case, it would be natural to in-
stantiate a generic subsystem consisting of a generic table and a generic array module. 

Of course, a generic subsystem may also contain non-generic components. From 
the viewpoint of the instantiation process, they can be thought of as generic compo-
nents without generic parameters. Furthermore, in order to make sense, a generic 
parameter of the subsystem must be generic parameter for at least one generic com-
ponent within the subsystem. Vice versa, a generic parameter of a contained compo-
nent must be a generic parameter of the subsystem unless the component is already 
instantiated within the subsystem. 

4.7   Specifying Semantics 

Up to now, the MoDeL language contains constructs to define components, their 
interfaces, and their relationships. Such descriptions, however, are worthless if the 
architect has no way to attach some “meaning” to the respective specification ele-
ments. In general, there are two levels on which the architect will have to consider 
such semantic issues: 

• On the level of single interface definitions, the architect will have certain semantics 
in mind when specifying operations. Depending on the context, he will add e.g. a 
corresponding informal comment to the operation describing the desired behavior. 

• On the level of components and their interaction, the architect influences the possi-
ble implementations by the static structure he uses. Considering the example of 
implementing some table module on top of a module for dynamic arrays, a sugges-
tion for the implementation of the table has already been provided. To some extent, 
this can be considered as a violation of the abstraction boundary between Pro-
gramming in the Large and Programming in the Small, but it is inherent to the no-
tion of software architectures as a building plan [18]. 
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Consequently, the architect should have means to specify what he had in mind 
when defining an architecture in a certain way. We can distinguish two dimensions 
for such additional information: 

• Black-Box vs. White-Box View: The black-box view defines the semantics of 
interface operations in terms of interfaces only. It makes no assumptions concern-
ing the implementation of an operation and if or how an operation could be real-
ized (in general using interfaces of other components). A white-box view, some-
times called glass-box view, defines the behavior of operations in the context of the 
overall system, i.e. it does include interactions between components. In short, the 
black-box view is concerned with what an operation/component does and the 
white-box view with how it is done. 

• Formal vs. Informal/Semiformal Notations: In practice, it is common to use infor-
mal plain text comments in natural language to describe the semantics of interface 
operations. This is probably sufficient in many situations, but certainly lacks the 
preciseness necessary in others. The most important reason for taking a more for-
mal approach is to avoid misunderstandings between architect and programmer, 
but it may serve other purposes as well: A formal specification can be subjected to 
formal consistency and completeness checks, it can be used to simulate/prototype 
the specified system (parts), to formally prove the correctness of hand-coded im-
plementations against the specification, or to generate test cases for such an im-
plementation. 

It should be noted that, according to whether a black-box or white-box view is 
taken, the term “semantics” as used above takes on two different meanings: In a 
black-box view, it generally denotes a mapping of input to output values of each op-
eration. Accordingly, we call this the declarative semantics of a component. In a 
white-box view, on the other hand, the architect might specify a specific sequence of 
steps that needs to be taken inside the implementation. This kind of definition is gen-
erally called the operational semantics of a component/operation. Both declarative 
and operational semantics can be defined formally or informally. 

Another property which can be assigned to the definition of a component’s seman-
tics is whether it is complete or not. By complete we mean that the semantics of the 
component (as the sum of all of its operations) is specified for all possible input val-
ues and states. Noticeably, the definition of the component’s semantics may cover 
only “some” (important, frequent, critical etc.) cases. In practice, interface comments 
mention only the intended “usual” behavior. The behavior in other cases is undefined. 
Typically, informal specifications tend to leave missing details to the intuition of the 
reader. 

In the following, we will mainly use the term semantics as referring to declarative 
semantics. Since the declarative semantics of a component and its operations are static 
properties, they will be discussed next. Operational semantics are concerned with the 
runtime behavior of the system; they will therefore be a topic in section 5. It should be 
noted that this distinction is not always clear; the terms semantics and behavior are 
indeed closely related. Consequently, other authors use different definitions and clas-
sifications in this context. For our purpose, it is sufficient to bundle the terms static 
specification (or, to be more precise, specification of static properties) and declarative  
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semantics on one hand and behavior specification (specification of behavioral proper-
ties) and operational semantics on the other. Typically, operational specifications in 
our sense include information about the interplay of components whereas declarative 
specifications are “context-free”, i.e. do not refer to the specification of (operations 
of) other components. Another characteristic property of operational specifications is 
that, if the specification is sufficiently complete and formalized, it can be used to 
prototype or simulate the system. 

As far as corresponding specification languages are concerned, it is frequently not 
a question of language constructs but of how the language is used in order to deter-
mine whether they specify what is done or how it is done. However, formal or semi-
formal languages for operational specifications often have some execution semantics 
which, itself, may be defined formally or semi-formally. Taking the term “specifica-
tion” in a broad sense, a high-level imperative programming language can be consid-
ered an operational specification language where the language and its execution se-
mantics are mostly defined semi-formally. 

Informal semantics specifications are widely used, e.g. in the form of comments. 
These specifications take, in general, a black-box view on the component, are more 
declarative than operational, and are almost always incomplete in the above sense. 
For obvious reasons, they do not need further discussion here. 

More interesting is the question of what approach should be taken if a formal 
specification is required. Since we focus on architecture modeling, it is neither possi-
ble nor sensible to discuss this question in the general context of formal system speci-
fications. Analyzing comparative case studies (cf. e.g. [19]) shows that it is hardly 
possible to judge the expressiveness of formalisms without a specific intention in 
mind. To clarify the key requirements for a formalism suitable for our purpose, we 
can state the following: 

1. The formalism should be able to express the semantics of (elements of) MoDeL 
component interfaces. Noticeably, there should be a clear mapping between inter-
face resources and specification elements. 

2. Specifications should be static by nature, we are not (yet, cf. section 5) considering 
control flow issues, component interaction, or algorithms. 

3. We are not (yet, cf. section 6.1) considering a possibly concurrent and/or distrib-
uted realization of the system. Terms like processes/tasks, synchronization, timeout 
etc. play no role in our logical architecture view and should therefore be avoided in 
a corresponding specification. 

4. It should be possible, but not a requirement to formally specify the complete system. 

We can inductively conclude: 

• As given by 1, we mainly want to describe the semantics of operations in a compo-
nent’s interface. From 2 follows that we can describe an operation only in terms of 
states. The state space should provide means to define the applicability of an opera-
tion (preconditions), an operation’s impact (if any) on the current state (postcondi-
tions), and an operation’s result. These states must be abstract in the sense that they 
are meaningful with respect to the interface. Since the interface, in turn, consists of 
operations, nothing should be in the state space which is not necessary for the 
specification of operations in the above sense. 
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• Considering MoDeL’s module types as introduced above, it is obvious for data 
object and data type modules that the abstract states which can be used in a formal 
specification are equivalence classes of physical states of corresponding data ob-
jects and data type instances. For specification purposes, a data abstraction module 
(being specified as abstract states and operations on these states) is frequently 
viewed as an abstract machine. For functional components, a more difficult situa-
tion arises since there is no associated state. There is no general solution to this 
problem: If, for example, a functional component’s operation computes the square 
root of a positive real number, it is probably not necessary at all to provide a for-
mal specification: An informal appeal to mathematical intuition will sufficiently 
explain the input/output relation of this operation. If the component is used to make 
complex transformations on a data object/data type instance or to transform one 
data object/data type instance into another, it could be desirable to specify its se-
mantics in terms of the related input/output data structures. Finally, if the compo-
nent’s purpose is to set up a certain control flow among subtasks, static specifica-
tions are by definition not appropriate. 

Especially points 2 and 3 from the above list show that the intention behind many 
existing formal approaches like CSP, Esterel, FOCUS, Estelle, LOTOS, or SDL is not 
quite in line with our intended purpose. For the remaining formalisms, we have to 
answer the question of how states are represented. We consider two options: 

• In algebraic approaches ([20]), states are expressed implicitly, i.e. the state change 
induced by some operation is defined by how it affects subsequent operations.  

• Model-based approaches like Z, VDM-SL, or B/AMN explicitly define the state 
space, usually in terms of typed set theory. 

Basically, both approaches fulfill the requirements from the above list. However, in 
practice, model-based approaches tend to be easier to understand: Defining states 
explicitly allows the reader to focus on one operation at a time instead of having to 
understand an operation in the context of the other operations in an interface. 

Eventually, among the model-based formalisms, we have chosen a systematic  
use of Z [21] to accompany MoDeL interface definitions. The main reason for this 
decision was that all other formalisms with a broader acceptance include imperative 
constructs to cover operational aspects of semantics (so-called wide-spectrum formal-
isms). For our purposes, this is not required and might even lead to “overspecified” 
interfaces. 

5   The Dynamic View 

As was pointed out in the previous section, it is necessary to document the semantics 
of a software system on two levels: Declarative semantics to understand the purpose 
of a component and its interface resources and operational semantics to understand 
the relationships between components and their interplay. Formal and informal de-
clarative semantics definitions can be used in MoDeL in the form of Z specifications 
and comments, respectively, augmenting interface specifications with the correspond-
ing information. Here, we take up the discussion of specifying operational semantics. 
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A variety of specification languages for the semantics of software systems and 
their components have been developed over the past years. One major direction origi-
nates in the structured approach to requirements analysis and design with its data, 
functional, and control model of a system ([22]). From the respective languages ER 
(and its many extensions), SA, and SA/RT, the latter two can be allocated to behav-
ioral descriptions. The second direction emerged under the collective term object-
oriented modeling and produced a wide variety of approaches [23] adopting and rede-
fining structured concepts as well as adding new notations. In particular, we have 
considered the Object Modeling Technique (OMT) [24], the Object-Oriented Analy-
sis/Design (OOA/D) method proposed by [1], and the Unified Modeling Language 
UML [2], [3]. 

Based on this work, we have defined an approach similar to Collaboration Dia-
grams as in OOA/D for the MoDeL sublanguage InterMoDeL for describing opera-
tional semantics of architectures. InterMoDeL specifications are called interaction 
diagrams. Like CDs, interaction diagrams allow the description of exemplary behav-
ior. However, InterMoDeL is based on interacting components, not on interacting 
objects. This noticeably means that instances of data type modules are not shown as 
nodes in interaction diagrams (although they may appear as parameters in operation 
calls). 

Interaction diagrams are composed of the following elements: 

• Nodes in the diagram are components (modules or subsystems) as defined for ar-
chitecture diagrams. 

• Components may be connected with uses relationships. Uses relationships indicate 
the call of an operation offered by the resource provider. Obviously, for a direct 
uses relationship to be legal, a corresponding usability relationship in the architec-
ture diagram must exist. Every uses relationship features one or more labels which, 
in turn, consist of a sequence number and an operation name with a signature. 

Every label reflects a call of the operation as indicated by the label. The “actual pa-
rameters” shown with the call must match the formal parameter signature as given in 
the textual interface specification of the called component. Sequence numbers in 
InterMoDeL interaction diagrams are hierarchical as in UML. 

It should be noted that, by assuming reference semantics for data type modules, 
there can be no “hidden” calls to a module. As an example, complex data types fre-
quently require a used-defined implementation to copy an instance of this type. Using 
value semantics, this operation may be called implicitly by an assignment operator or 
by passing a variable of that type by value in a procedure call. In contrast, with refer-
ence semantics, every call inducing the execution of code within the data type module 
refers to an operation with a name and signature explicitly defined in the features part 
of the interface. This enhances the readability of corresponding interaction diagrams 
and makes consistency checks between architecture diagrams, interaction diagrams, 
and module implementations easier. 

Interaction diagrams may also contain indirect uses relationships. They feature the 
same kind of label as direct uses relationships have. An indirect uses relationship 
indicates an operation call where the resource employer is not aware of the compo-
nent in which the operation is implemented. This occurs e.g. when some component 
calls an operation in another component via a callback (procedure pointer) which 
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itself has been passed to the calling component previously. For an indirect uses rela-
tionship, there need not be a parallel usability relationship. In fact, it frequently hap-
pens that indirect uses appear in the reverse direction to a “corresponding” usability 
relationship. 

Another (technically closely related) example for indirect uses relationships ap-
pears in the context of specialization/polymorphism. When a component calls an 
operation of a data type, the implementation actually executed by this operation call 
might be located in a specialized data type module. According to the intended seman-
tics of the diagram, the architect may use either a direct uses relationship to the opera-
tion of the supertype the calling component statically imports or an indirect uses rela-
tionship to the subtype operation which is actually called. 

6   Concrete Architectures 

As was already mentioned, there is a number of reasons which make it reasonable to 
modify a logical architecture described with LogMoDeL and InterMoDeL as a first 
step towards an implementation. We have introduced the term concrete architecture to 
reflect the results of such steps. The specific transformations from logical to concrete 
architecture are driven by specific needs, and they may or may not be applicable in-
dependently. As a consequence, the concrete architecture will evolve in a sequence of 
incremental transformation steps from the logical architecture. All of these steps se-
lect a realization variant for some abstract situation given by the logical architecture. 
In this sense, a logical architecture contains the logical essence of a host of concrete 
architectures describing special realization choices. 

Introducing logical and concrete architectures allows us to model a software sys-
tem on a pure structural level without having to implement it exactly that way. On the 
other hand, adaptations or extensions of the architecture necessary to fulfill certain 
realization constraints are still planned and prepared during the design process (and 
not, as frequently found in practice, as an “on-the-fly” activity during the implementa-
tion phase). Furthermore, logical and concrete architectures as well as the dependen-
cies and differences between them are described and documented separately: Both 
architectures as well as their correspondences represent individual design decisions 
made by the architect. 

Still open, though, is the question of which architectural concepts are on logical 
level and which are on concrete level. There is no general answer to this question; 
what is considered “logical” or “concrete” strongly depends on the respective soft-
ware system and its properties. A rough guideline results from distinguishing between 
“inherent” and “derived” properties of the system: 

• We can characterize a property of a software system as “inherent” if it is tightly 
connected to the problem to be solved. For example, a business administration sys-
tem will always store its data in some sort of database, a CAD tool will always 
have a graphical user interface, a screenshot capturing tool will refer to some par-
ticular window system, and a telecommunications switching system will always be 
a concurrent system. In general, it is not very useful to leave corresponding design 
decisions to the concrete level as this overloads the logical level with abstractions 
of no practical use. 
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• “Derived” properties are not introduced by the problem itself but by a particular 
solution. Taking up the examples from above, we can state that the choice of a 
concrete database system and an appropriate database schema are derived design 
decisions for the architecture of a business administration system. The same holds 
for the selection of a particular GUI for a CAD tool or a certain window system 
version for the screenshot capturing tool. Corresponding architecture modifications 
should be made on the concrete level. 

So, for example, being a concurrent system is probably an inherent property of e.g. 
a telecommunications switching system while it would be a derived property of e.g. a 
compiler. Accordingly, respective specifications will occur on logical level for the 
former and on concrete level for the latter type of software. 

6.1   Concurrency 

Although, in this sense, architecture language concepts for concurrency and distribu-
tion are not generally allocated to logical or concrete level, we discuss them in the 
context of concrete architectures. As our approach origins more from the area of 
main-stream application systems than from embedded or real-time systems, concur-
rency and distribution are typical derived properties: They are introduced to increase 
performance or to allow different users access to shared information, but they are not 
part of the problem domain. The respective modeling concepts to be introduced in the 
following, however, can be used on logical level as well. 

If we now want to describe concurrency on architecture level, we first have to de-
cide what a concurrent component actually is. The notion of active objects is fre-
quently used in current literature to introduce concurrency on design level. Since the 
term active generally appears in different semantics, we sketch some definitions here. 

1. [1] defines active objects as objects which encompass an own thread of control. 
This definition and others closely relate threads or processes with single compo-
nents, noticeably data type or data object modules (classes/objects). A similar ap-
proach, although not restricted to data abstraction components, can be found in the 
task concept of the Ada programming. 

2. Functional modules are abstractions of operations; they have no state and serve 
transformation or controlling purposes. Data abstraction modules encapsulate state 
or a template for state; they hide the internal representation of this state and allow 
access to it only via a set of corresponding operations preserving the abstraction’s 
semantics. In this sense, functional components act and data abstraction compo-
nents are acted upon, and it seems natural to apply the term active to functional and 
passive to data abstraction components. 

3. When two components interact, e.g. by a procedure call from one component into 
the other, the called component performs some action on behalf of the caller. Like 
under point 2, the calling component acts and the called component is acted upon, 
so we may apply the terms active and passive accordingly. We can readily general-
ize this scenario to all situations where one component induces some activity in 
another, be it directly (e.g. procedure call) or indirectly (e.g. event triggering). 
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4. A special variant of 3 concerns the situation when two components interact for 
execution control purposes, i.e. one component manipulating the thread of control 
of another component (start, terminate, suspend, resume etc.). Semantically, this is 
on a different level as 3, although it may be realized in just the same way (e.g. by 
procedure calls). Therefore, we distinguish the corresponding notions of active and 
passive in the thread controlling sense from those concerning the actual abstraction 
of a component. 

Obviously, 1 directly introduces concurrency on design level. 2 and 3 describe 
definitions which can be applied to sequential systems as well. Point 4 is a rather 
complicated case because the passive component in this sense has to have a thread for 
the definition to make sense; therefore it is an active component in the sense of 1. The 
active component in 4 might or might not be active in the sense of 1. Be this as it 
may, the definition in 4 already requires some notion of concurrency. To avoid confu-
sion with other semantics of active and passive, we use the term acting component for 
a component which has an own thread of control and reacting component for a com-
ponent which has not. 

Choosing the semantics described in 1 as the foundation for our terminology does 
not mean that the other semantics for active and passive play no role in the design of 
an architecture description language for concurrent systems. In fact, relating the no-
tions of acting and reacting components to active and passive components in the sense 
of 2 to 4 yields some valuable ideas presented in the following. 

Comparing the definitions of acting and reacting to those of functional and data ab-
straction components shows that there is an intuitive relationship between the prop-
erty of owning a thread of execution and the abstraction decision represented by a 
module’s type. If a data abstraction component’s purpose is to hide the details of 
some state’s internal representation, to define what operations are semantically sensi-
ble on the state, and to map these operations onto some manipulation of the internal 
representation, we observe that there is no need for such a component to own a thread 
of control. The execution of access operations of the component is always (possibly 
indirectly) triggered by some functional component and can therefore be performed in 
the corresponding thread of control. On the other hand, the execution of transforma-
tion or controlling activities may or may not happen concurrently. Therefore, we 
restrict acting components to functional abstractions, i.e. functional components may 
or may not be acting, while data abstraction components are always reacting. 

Relating our definitions to the active/passive semantics described by 3 leads to the 
question whether an acting component can be acted upon in the sense of (directly or 
indirectly) calling one of its interface operations. A negative answer would result in 
the restriction that an acting component may have no interface. In the reverse direc-
tion, we see that a component with an empty interface surely has to be acting: If it has 
no own thread of control and no other control flow can enter through the interface, the 
component is obviously useless. But may an acting component have an interface and 
be passive in the sense of 3? The intuitive notion that a component either does some-
thing of its own or it acts on behalf of other components leads to the conclusion that 
this is not the case. 

Considering some typical examples of functional abstractions, we observe that there 
are indeed some sensible interface operations for acting components. But we also note 
that these are operations which directly or indirectly manipulate the component’s  
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thread of control. We therefore allow exactly such thread controlling operations in the 
interface of acting components, even though the control semantics of an interface op-
eration might be implicit. 

6.2   Function Type Modules 

We can now come back to the question of function type components. It may seem 
trivial at first sight that it is possible for an operation in an acting component’s inter-
face to create a new thread of control instead of manipulating a thread encapsulated 
by a function object. Up to now, we have considered acting components on instance 
level, i.e. equipped with exactly one thread of control. But just like we do for data 
abstraction components, we can shift the concepts for functional components to type 
level. This allows us to distinguish between function object and function type compo-
nents: The former represent a single (set of) computation(s), and the latter are tem-
plates for instantiating such computations at runtime. In sequential systems, we do not 
need to bother with function types because a single instance of every function is suffi-
cient. However, in a concurrent system, function types are necessary since their in-
stantiation is the logical counterpart of the creation of a new thread of control. 

Considering the similarities between data and function type modules, the question 
arises how far the analogy between these component types goes. More precisely, on 
architectural level, we have to define whether function type instances are allowed as 
parameters in operation signatures and whether there is a useful meaning for speciali-
zation relationships between function type modules. 

We can readily resolve this issue with a simple construction: Data type module in-
stances carry a state and operations manipulating this state. Function objects may 
have no state, so function type instances have no state as well. However, the thread of 
control attached to a function type instance represents a state with respect to the un-
derlying execution engine, e.g. an execution point, a call stack etc. This thread state 
can be interpreted as the counterpart of a data type instance state. 

6.3   Synchronization 

To consider the implications of having several acting components in a software sys-
tem, we first have to define more clearly what is meant by a thread of control and a 
process. Without being precise about this term so far, we have implied some inde-
pendence concerning their execution. However, taking a closer look, different degrees 
of independence can be identified. 

According to the extent of context information carried along with a thread of  
control, we distinguish three levels of processes: 

• A thread of control consists of an execution point (“program counter”), a call stack, 
and an address space. In this case, the terms task, heavy-weight process, or simply 
process are frequently used. For a heavy-weight process, all state information, be it 
local (in a procedure) or global, can be accessed only using the control flow of that 
process. 

• A thread of control consists of an execution point and a call stack. This is generally 
denoted as a light-weight process or thread. Local state information, as it is stored 
in the call stack, is uniquely instantiated and associated with every thread. Global 
state, however, is accessible by all threads, possibly at once. 



270 P. Klein 

• A thread of control exists of an execution point only. All state information is 
shared amongst all “processes”. This case is rather rare in mainstream application 
systems, though it may occur in embedded real-time systems. 

In the following, we use the term process as referring to any of these forms. 
Whatever approach is taken, at certain points in time, some processes will gener-

ally have to cooperate in some way. Cooperation involves one or more of the follow-
ing aspects: 

1. Passing of information between processes may occur with a call of an interface 
operation. The details of what information is exchanged (input/output/exception 
parameters with their respective types) are covered by the signature of the opera-
tion and therefore already part of the architecture specification of an interface as 
introduced so far. For light-weight processes, arbitrary data may be communicated. 
Heavy-weight processes may not exchange references to data inside their address 
spaces, i.e. only values of atomic types or references to function type instances can 
be passed. Several techniques exist to handle the communication of more complex 
data structures by “flattening” the information into a stream of atomic values (mar-
shalling) on employer side and recomposing the complex value on provider side 
(unmarshalling). 

2. Synchronization of access to shared data, i.e. which operations of a component 
may be called concurrently and which may not, is not apparent from the interface 
so far. Furthermore, it has to be denoted whether the employer or the provider is 
responsible for ensuring that the synchronization rules are followed. We will ex-
tend interface specifications to express this information below. Note that this is not 
relevant for heavy-weight processes. For light-weight processes, the corresponding 
information must be given for data abstraction components. In the context of fly-
weight processes, functional component specifications might be subject to syn-
chronization extensions as well. 

3. For control flow organization, we make the assumption that some process interac-
tion in which the provider process is not able to accept a request will suspend the 
employer process until the request can be handled. For heavy-weight processes, 
this may occur if the thread of control in the provider process is currently executing 
some other code. For light-weight processes, the same may happen if the provider 
component has the responsibility of synchronizing access to its state and another 
control flow currently holds access to resources which may not be used concur-
rently with the requested resources. In both cases, we assume that the request is 
queued, the requesting process suspended, and the queued requests are handled in 
the respective order by the provider process, thereby resuming the control flows of 
the requesting processes. 

To specify synchronization constraints as required by point 2 above, we have in-
troduced a virtual resource model akin to the concept of monitors [25]. This model 
provides means to abstract from the state of a data object or data type instance in the 
form of so-called mutexes (this terminology is derived from the threading facility of 
the Modula-3 programming language). Synchronization requirements can be ex-
pressed as dependencies of operations from these mutexes. 
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A mutex can be declared in an interface. It represents a resource or set of resources 
which can be accessed by at most one process at a time. An operation may depend on 
a resource on two levels: If the execution of an operation demands that the resources 
represented by a mutex should be made available to one process only, we interpret 
this as the operation “locking” the mutex. Every mutex can be locked by at most one 
process. To be more precise, only one process at a time may execute an operation 
which locks a certain mutex. Other processes needing access to the same mutex have 
to wait for the locking process to end the execution of the respective operation. Fre-
quently, however, a process does not have to lock a mutex, it is sufficient for the op-
eration’s execution that it is not locked by any other process. In this case, we say that 
the operation “requires” the lock. Locking a mutex is a stronger condition than requir-
ing it, i.e. an operation locking a mutex requires it as well. Finally, a process cannot 
lock a mutex as long as an operation is executed which requires it. MoDeL further-
more allows the architect to specify whether the provider module or the employer 
component(s) is responsible for protecting the mutex. 

A noticeable advantage of the explicit modeling of virtual resources with mutexes, 
apart from the possibility to specify fine-grained access control, is the ability to ex-
press inter-module synchronization schemes. Mutexes, as anything else in a compo-
nent’s interface, can be imported by other interfaces and may be used to formulate 
synchronization requirements there. 

7   Summary 

This paper summarizes some of the key concepts of the architecture description lan-
guage MoDeL as introduced in [10]. Its basic properties are: 

 

• The understanding of the contents and purpose of a software architecture is 
that of a blueprint for the system under consideration. Its core abstraction re-
sults from the distinction between an interface and its realization. 

• The basic unit of modeling is a component that may range in size and com-
plexity between a module and a complete software system. The abstraction 
provided by a component depends on its logical characteristics and purpose 
in the context of the system. 

• The language itself is multiparadigmatic. It supports different kinds of ab-
stractions for components and relationships, modeling on different levels of 
the logical hierarchy, and multiple levels of detail between pure logical struc-
ture and actual realization structure. 

• Different views concerning static and dynamic as well as logical and physi-
cal properties are supported. The relationships between (elements of) these 
views are precisely defined. 
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Abstract. Software architectures are key enabling assets within organi-

zations that develop complex software systems. Among other purposes,

software architectures are useful to maintain intellectual control over

a software product. We propose a method to continuously check the

consistency between a specified architecture model and structural in-

formation reverse engineered from the code. We develop criteria that a

design language for architectures should fulfill and show that an ontol-

ogy based description has substantial benefits over the standard mod-

eling languages MOF/UML/OCL. Using ontologies allows the explicit

modelling of architectural styles as well as concrete system structures

in a single architecture design language. The resulting specifications are

modular, compositional and evolvable. Using ontologies we can apply an

ontology reasoner to implement consistency checks. Our method inte-

grates previously separate checks such as checking for allowed dependen-

cies and coding style into a single framework and enables more powerful

and flexible analyses.

1 Introduction

Software architecture centric development processes have been proposed to over-
come the tremendous gap between requirements and system implementation [3].
A software architecture is the first available consistent set of design decisions
that describe a solution for the stated and implied requirements on a yet ab-
stract level [3]. Among many other purposes, it serves as a reference throughout
the entire system lifecycle. It defines the fundamental, high-impact structures of
a system, the implementation platform and prescribes patterns and rules that
allow developers to implement the functionality using the platform.

This intended use of an architecture can only be successful, if the specified
architecture is consistent in itself and is eventually followed throughout the entire
development process. Brooks pointed out that conceptual integrity is the most
important goal in system design [9]. In brief, conceptual integrity means that
recurring types of problems are solved in a similar and consistent way. This
applies to both, the end-user perceivable properties of a system (e.g. the way
system functions are presented to the user), as well as to the internal system
structures (e.g. the way the system is structured and how cross-cutting services
are integrated).
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1.1 Architecture Centric Development Processes

In order to motivate our approach and to illustrate its relationships to other
development approaches this section provides a brief overview of architecture
centric software development.

Process Phases and Important Artifacts of Software Architecture. Fig-
ure 1 shows the role of software architecture in the context of an architecture-
centric development process and the constituent parts of a software architecture.
The system analysis phase identifies and records the set of requirements a system
should fulfill, identifies the major business objects and captures them in a do-
main model. This initial activity is also to discover possible design constraints1.
The architecting phase creates a software architecture description. It specifies the
fundamental abstractions, the system structures and an ‘implementation plan’
according to the specific requirements and known design constraints. The imple-
mentation phase eventually creates the executable software system and through
tests it delivers evidence that the initially stated requirements have been met.

Fig. 1. Process elements of an architecture-centric development process

In literature there is consensus that software architectures are best described
using multiple views [15, 3, 18]. Typical such views comprise a static view show-
ing the static structures of a system, and a runtime view showing the processes
and objects existing at runtime (see architecture views in figure 1).

The static view is probably the most common view for developers and archi-
tects as it decomposes the system in a way that is relevant for their work. For
example, such a view shows modules, interfaces and relationships between them.
Developing the static view has two aspects. First, the functionality stated as

1 Design decisions with a pre-determined outcome.
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requirements has to be subdivided into coherent chunks. In the application ar-
chitecture, the architect specifies which concrete components the system consists
of and assigns responsibilities and relationships to them.

A second, sometimes implicit decision regards the language which is used to
express the application architecture. There are two major options: one may use a
general-purpose language such as the UML [10] or develop a domain specific con-
cepts language that suits the particular requirements [33]. Concepts are types of
things from which a system is constructed. Architectural concepts are technically
motivated. Examples of concepts are component, layer, process, message queue,
filter or persistent entity. We and others [8, 23, 33] argue that clarifying the con-
cepts is an integral part of developing a software architecture. Concepts are
specific for a system or a family thereof, because they result out of requirements
which are specific for a system or a system family. Dealing with them consciously
and capturing them in a (formal) language supports the processes that need to
deal with concepts (such as system design, knowledge transfer, code generation,
code quality assurance). We also argue that concepts and a concepts language
are not only a useful utility to design new systems, but they can also be recon-
structed for existing systems. Concepts are naturally used by software engineers
and programmers to design solutions to recurring design problems. However,
very often concept properties are not clearly defined or communicated or get
lost over time such that the code only roughly reflects the design ideas of the
original concepts. For example, according to our experience [5], many systems
have a claimed layered architecture, but the actual dependency structure found
in the code only roughly reflects this idea.

The architecture concepts language is a domain specific language (DSL) with
limited generality which provides the architect just with the concepts needed
to describe the system’s application architecture. It also contributes to the es-
tablishment of a clearly defined design terminology that transports design ideas
within the development team. When a new system is created, an architect should
ponder about useful concepts that can help to realize the requirements. Architec-
tural styles, patterns, previous designs are sources of concepts to be included in
the language. Sometimes they also arise bottom up, when for a system currently
under development, a recurring solution pattern emerges. Despite some concepts
appear to be generally applicable (such as interface), it is important to reconsider
and explicitly state the structural and behavioral semantics of every concept for
the current context. For example, regarding interfaces the architect may have
to think about whether a call-by-reference or call-by-value semantics is needed,
whether a component offers one or several interfaces, whether an interface al-
lows for synchronous or asynchronous communication, how error situations are
communicated consistently and much more.

Various authors underline that the essence of an architecture should be de-
cided upon and described without assuming a particular platform [23, 28, 32].
This makes the architecture transferable to new platforms an makes the design
decisions embodied in the architecture explicit, comprehensible and traceable.
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Because this platform independent description (encompassing a platform inde-
pendent application architecture and a platform independent conceptual archi-
tecture) eventually has to be implemented using a concrete platform, a platform
mapping is needed. The architect needs to decide about

1. a suitable platform and
2. a strategy to implement the so-far abstract architecture using the platform

The mapping specifies how the platform-independent elements translate into
platform-specific elements and which services of the platform should be used
to implement the application architecture. OMG’s Model Driven Architecture
vision [23] also follows such a distinction between platform-independent models
(PIM) and platform-specific models (PSM).

The three artifacts concepts language, application architecture and platform
mapping are commonly considered to be architectural artifacts [32] (cf. figure 3).

Fig. 2. Relationships between architectural models, code and software products in

different development approaches

Implementing an Architecture Centric Development Process. Opposed
to e.g. agile development processes, architecture centric development processes
accept that in order to efficiently build high-quality software products, a model2

of the future product is needed.
Figure 2 shows how the relationship between architecture models, code and

the finished product can be set up in different development approaches. In our
view, each of these options has benefits and bears some risks depending on the
particular situation. The ‘separate models and code’ approach is very flexible but
has the drawback that the produced code tends to drift away from the model
over time disqualifying the model as a useful documentation of the system. Model
driven development enables great efficiency improvements but can only play to
this strength, if a stable concepts language can be identified early such that
2 Abstract representation of an existing or envisioned object or process using either

non-formal or formal language.
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the cost of creating the necessary language infrastructure (editors, generators)
breaks even for the number of systems built with it. Also, the models need to
be made sufficiently detailed to allow for comprehensive code generation.

In this text we focus on the ‘consistency checked code’ approach that creates
and maintains architecture models and program code in separate processes and
aligns them only through analytical measures. The observation that code tends
to drift away from a once specified architecture is a well known phenomenon.
The reasons are manifold and range from lack of communication, quick fixes built
under time pressure and lack of time for re-documenting a deliberate deviation.
However, allowing temporary inconsistencies also has its benefits, because it
allows solutions to unexpected design problems to be explored before a rather
long-term architecture or code generator change is complete. Especially in new
domains it is difficult to design an appropriate concepts language in a ‘big bang’
approach as required by generative model driven development.

In such contexts it is important to clean up inconsistencies regularly because
otherwise long-term goals such as maintainability, conceptual integrity, compre-
hensibility, reusability and system evolvability are at stake. Automated consis-
tency analyses support such clean-up activities. Consistency analyses can also
be combined with generative model driven development, because the still neces-
sary hand-written code can potentially drift away from the intended architecture
as easily as in the ‘separate models and code’ approach. Eventually consistency
analyses can help in restructuring a legacy system where control over the system
structures has been lost.

1.2 Requirements for an Architecture Design Language to Support
the Consistency Checked Code Approach

Independent of the development approach chosen (cf. figure 2), a software archi-
tecture needs to be developed and specified. Requirements for the specification
documents itself depend on the organizational and development process activi-
ties that shall be supported by them. In the following, we derive requirements
for an architecture design language from these groups of impact factors. Figure
3 shows that some requirements for such a language apply generally – to any
approach depicted in figure 2. Others are specific for the consistency checked
approach we like to address.

Analyses to be supported. In a consistency checked code approach we under-
stand a software architecture model as a template which guides other activities
but which is not used to create other artifacts directly. Generally, the models
should serve the tool supported analysis for several types of inconsistencies. This
alone entails the need for a formal, machine-processable architecture design lan-
guage. Besides that, formal modeling tremendously increases the accuracy of
specifications and, therefore, contributes to the quality of specifications.

Figure 1 indicates that in architecture centric development processes, sev-
eral types of feedback loops are important for product quality and development
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Fig. 3. Overview of terms used in section 1.2

efficiency. In every process phase, the created results should be evaluated for
correctness and consistency3. In the architecture development phase the concepts
language, the application architecture and a platform mapping are specified.
Each of these parts specifies a set of constraints that the eventually implemented
system should fulfill. Especially for complex systems and in the presence of reuse
and composition of specification modules, there are good chances that constraints
make contradictory statements. Hence, the architecture design language should
support the architecture development phase by enabling the following two types
of analyses.

– Concepts consistency: Analyze the concepts language for inconsistencies.
– Application architecture consistency: Analyze the application architecture

for inconsistencies with respect to the concepts language.

As an example for concepts consistency suppose a concepts language with the
terms repository, business component, report component, a use relationship and
the following set of constraints:

1. a repository is only used by business components
2. a report component uses at least one repository
3. something cannot be both a business component and a report component

This constraint set is inconsistent, because the first two constraints force an
asserted report component to use a repository, which in turn may only be used
by a business component. This is only satisfiable, when the assumed component
is both a business component and a report component. On the other hand, con-
straint 3 states just the opposite.

As an example of an inconsistent application architecture suppose the above
concepts language and the following application architecture specification

report component(reportgen), repository(data), uses(reportgen, data)

This specification is inconsistent because is forces a report component to use a
repository which is illegal according to constraint 1.

The second type of inconsistency indicated by figure 1 regards inconsistencies
between artifacts created in different development phases. In the consistency
3 Being free of contradictory statements.
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checked code approach the architecture design language must particularly enable
the third type of analysis

– Architecture-code consistency Analyze the source code for inconsistencies
with respect to the application architecture and the concepts language.

Architecture-code consistency can only be checked with the help of a platform
mapping and a code model. The code model represents the structural information
found in source code, i.e. in Java classes, packages, method calls or inheritance re-
lationships. The platform mapping describes how source code elements and their
relationships relate to their architectural counterparts. To continue the above
example assume a mapping to the Java platform where the repository(data) is
implemented by a Java class(DataRepository) and report component(reportgen)
is by the classes of a Java package(reportgen). Furthermore the platform map-
ping translates every code-level dependency (e.g. method call, class inheritance
relationships, access to attributes) into the architectural use relationship. We
call the result of applying the (reverse) platform mapping to an extracted code
model, the extracted application architecture. Then, the following extracted code
model would be considered inconsistent with the concepts language, because it
translates into the same (erroneous) extracted application architecture as above.

package(reportgen), class(DataRepository), call(reportgen, DataRepository)

Eventually a code model is inconsistent with a specified application architec-
ture, when the extracted application architecture misses some of the elements
or relationships specified in the application architecture.

Requirements originating from system modeling and analysis. The
syntax and semantics of language constructs are always driven by the domain
that shall be described using the language. In the case of a software architec-
ture design language the domain consists of all conceivable concepts languages,
application architectures and platform mappings.

To capture all three aspects a very expressive design language or set of lan-
guages is needed. In particular, the design language must allow for the speci-
fication of a language (the concepts language) and sentences in that language
(the application architecture) at the same time. For example, we want to be
able to describe that a system has a component concept and at the same time
that it has the concrete components a and b. Furthermore, the comprehensive
specification of architectural constraints must be supported. Example types of
constraints are participation of concepts in relationship types (the provides re-
lationship type connects a component and an interface), cardinality restrictions
(a component provides at least one interface) and restrictions on primitive data
types such as strings (a class implementing an entity must follow the regular
expression ’.*Entity’).

Our consistency checked code approach shall be much more lightweight than
a generative model driven approach. We want to support situations where the
concepts language part of the specification can be changed by the architect
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easily. This would make the method applicable to reverse and reengineering
situations where the architect starts with an initial hypothetical architecture and
adjusts it as he learns about the system. In generative model driven development
the concepts language is well supported by a language infrastructure (editors,
generators), which however cannot be changed easily. Depending on the concrete
technology, the cycle of changing the concepts language is long. Favre has also
noticed that when a system evolves, the languages used to describe it evolve too
[12]. We need a lightweight language infrastructure (editor, constraint checker)
that supports short evolution cycles.

Organizations that build many different software products should try to stan-
dardize and reuse the architectures of their systems in order to increase their
efficiency. The design language should allow specification packages to be cre-
ated independently and to be composed into new specification packages. Every
specification package is a collection of constraints. For example, a specification
package A could define the properties of component based architectures. Such
a specification package would introduce the concepts component and interface.
Another specification package B could define the properties of layered architec-
tures. A third package C could reuse the previous both packages A and B to
define a concrete application architecture that is both a component based and a
layered architecture.

Furthermore we require support for abstraction and refinement. When build-
ing a concepts language it is helpful to be able to express hierarchies of concepts.
A refined concept has to fulfill all the constraints defined for the related abstract
concept but may have additional constraints associated. For example a specifica-
tion package to describe ‘component based’ architectures introduces the concept
of a general purpose component with an interface and an implementation part
(cf. figure 4). In a specification package for ‘distributed information systems’
the business component concept inherits all properties of the general purpose
component but has additional constraints. Having available such a refinement
hierarchy of specification packages opens up the chance for package-based con-
sistency checks. The result of a consistency check would not only be ‘yes’ or ’no’,
but ’no, it is not consistent with the online shopping reference architecture, but
consistent with the distributed systems architecture’.

As a final requirement the consistency checker must be able to apply open
and closed world semantics for analyzing the correctness of models. Suppose a
concepts language that incorporates an Entity concept and a Repository concept
(cf. top part of figure 5). Entities are business objects persisted in a database.
Repositories implement basic database operations for entities (create, read, up-
date, delete). An architectural constraint is that every entity must be man-
aged by one repository that implements the operations (cf. cardinalities of the
association).

The bottom left part of figure 5 shows a concrete application architecture
consisting of only one Entity a. Applying standard UML closed world semantics,
this would be an invalid model, because the Entity a needs a reference to exactly
one Repository which is missing. However, as a specification this application
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Fig. 4. Example refinement hierarchy of software architecture specification packages

Fig. 5. Example concepts language and two models expressed in the language

architecture model makes sense and should be accepted. From the architect’s
perspective it is sensible to specify all the concrete entities the system should
have, but leave the definition of repositories to developers (repositories are not
‘defined’ by programmers in the model, but directly created and implemented in
the code). The reason for this distinction is that entities represent information
which is essential for the system’s overall functionality, which is not the case
for repositories. Hence, the application architecture model must be evaluated
using so-called open-world semantics which flags an error in a model only when
the model contains contradictory statements but not when some statements are
missing.

The bottom right part of figure 5 shows the same model. Consider this model
as the result of extracting the actually implemented architecture from the code
(the extracted application architecture). There, we have an Entity with no asso-
ciated Repository which means that Entity objects cannot be persisted. In this
situation the missing association should indeed be interpreted as an error. Apply-
ing so-called closed-world semantics to this analysis would yield the desired alert.
We will come back to the difference between open- and closed-world semantics
in section 3.
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Section Summary. To summarize this section, we require an architectural
design language with the following characteristics. The following requirements
apply to all development approaches.

1. The specification must be modular.
2. The design language must be sufficiently expressive. It must enable the spec-

ification of a concepts language, an application architecture and a platform
mapping.

3. The following analyses are to be supported: language consistency, application
architecture consistency.

4. The analyses shall consider the composition of all specification packages
relevant for one system.

5. There must be support to factor out common abstractions and to reuse them
in new contexts.

The following items are specific for the consistency checked code approach we
like to address in particular.

6. The language must be formal and machine processable.
7. The analysis for code-architecture consistency must be supported (i.e. there

must be support for ‘executing’ a platform mapping).
8. We would like to express constraints about the existence of elements (e.g.

there must be a component(reportgen)) and about element properties (e.g.
a repository is only used by business components).

9. The co-evolution of the concepts language and the application architecture
shall be supported by a lightweight language infrastructure.

10. There must be support for different semantics during analysis (closed versus
open world semantics).

2 An Example System

The purpose of this section is to introduce the software architecture of a small
but sufficiently complex system that will be used to illustrate our approach. This
section presents the example using mostly natural language and ad-hoc graphical
notations.

The example system is an information system that supports the business pro-
cesses of a library. The system should enable library staff to manage library users
(create/update/remove account for users), enable staff to maintain a media cata-
log (enter new items, handling of lost or damaged books), provide comprehensive
search capabilities with various criteria for library users, and support the pro-
cess of loaning media (make reservations, borrow a copy, return a copy, create
reminders for overdue copies).

The system is to be implemented as a distributed system with local client
applications accessing a central server.
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2.1 Concepts Language and Application Architecture

As part of architectural design, two models have to be developed simultaneously:
the concepts language in order to make the types of things the system is com-
posed from explicit as well as the concrete application architecture in terms of
the concepts language.

Fig. 6. Concepts language and application architecture for the library system

Figure 6 (left) shows the basic concepts and relationship types of the con-
cepts language for the server-side part of the library system. The semantics
of the concepts is as follows: The library system shall be structured as a
component-based system that consists of a flat structure of Components. We
distinguish application domain specific BusinessComponents and general-purpose
TechnicalComponents. A component provides at most two but at least one type of
interfaces: an ExtInterface (external interface) with call-by-value semantics and
an IntInterface (internal interface) with call-by-reference semantics. A compo-
nent may also require some Interfaces of arbitrary kind to access the services
of other components. It is assumed that the components run under control of
an application container that adds container-managed transaction behaviour to
the component interface methods. Each BusinessComponents contains at least
one LogicUnit. A LogicUnit implements the core business logic. The logic is im-
plemented with the help of Entities (persistable business data structures) and
Repositories (modules that implement database create, read, update operations
for some entities). A structural constraint is that Repositories and Entities must
both reside inside the same BusinessComponent (not expressed in the figure).
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Figure 6 (right) shows a part of the concrete application architecture of the
library system. Some relevant Entities are user, address, medium, copy, and
loan. The system consists of the BusinessComponents users (user management),
catalogue (functions to maintain the catalogue of media) and loans (functions
related to loans) as well as a TechnicalComponents email (for sending emails).
The figure also shows the planned relationships between components (e.g. loans
may access the IntInterface of users but not vice versa).

It should be noted that the application architecture is deliberately incomplete,
because the architect specifies only those parts which are architecturally rele-
vant. Only the sets of Components and Entities are completely specified, because
defining Components is important to divide the overall functionality into coher-
ent subsets to which programmers can add detail. The definition of Entities is
important because they represent the business data of the application which is a
precondition for a detailed specification of functionality, e.g. as use cases. On the
other hand, the Repositories are not completely specified because they are rather
technically necessary and can be neglected for discussing functionality. Never-
theless, they represent an important architectural concept that is necessary to
implement data persistency.

2.2 Platform Mapping

The definition of a platform mapping goes hand in hand with the decision for a
particular platform. A platform may be used ‘as is’, but very often it is useful to
extend it with constructs that implement the basic behavior of the architecture
concepts. For example, an AbstractEntity class may provide common services
required for all persistent data entities. The generation of unique identifiers, and
operations for cloning and equality tests are examples of such behavior. For the
Component concept a late binding of required Interfaces is indispensible to enable
component exchangeability and for component testing. A late binding would
allow a Component to be bound to mock implementations of other Components
without changing the production code.

Such extensions to an existing platform as the Java language and its standard
libraries influence the platform mapping because certain conventions need to be
followed for using the APIs. Second, the demand for a human comprehensible
source code also contributes to the mapping. Ideally, architectural concepts are
not lost in the code perspective but are visible to the reader. Choosing speaking
source code identifiers or using a standardized organization scheme through di-
rectories, libraries, packages are options to make architectural concepts visible
in the code.

In the library example, the concept of an Entity maps to a Java class

– inheriting from AbstractEntity class – the platform extension for entities
– with a name ending with Entity
– being contained in the package of the BusinessComponent with which the

architecture specifies a contains relationship, i.e. if the BusinessComponent’s
package is library.business.x (due to a BusinessComponent mapping rule),
the Entity must be library.business.x.common.
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Figure 7 (left) lists more example mapping rules for some of the previously de-
fined architectural concepts. The right hand side of the figure displays a fragment
of the physical source code layout for the library system that results from apply-
ing the platform mapping to the application architecture given in section 2.1.

Concept,

Relation-

ship

Mapping rules Example structure

component a Java package below library.X.Y

where X indicates the module type

(business or technical) and Y the

component name. All Java types

within this package belong to the

component.

internal
component
interface

all Java types which are located in

the subpackage common.locapi of

the components’s package

external
component
interface

all Java types which are located in

the subpackage common.remapi of

the components’s package

component
implemen-
tation

all Java types which are located in

the subpackage impl of the compo-

nents’s package

entity a Java class whose name matches

the pattern .*Entity and which is

located in the subpackage common of

the component’s package

use any form of cross references in the

code in the direction from using

a program element (method, class,

package) to the location of its dec-

laration.

provides the Java containment relation-

ship between the containing

Component’s package and the

Interface package.

Fig. 7. Some mapping rules for concepts and relationship types of the library system’s

concepts

3 Ontologies as an Architecture Design Language

The previous section has outlined the requirements for an ‘architecture de-
sign language’ and the operations necessary for the models expressed with this
language.
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In the domain of software engineering the OMG set of languages is the stan-
dard approach to modeling. In fact, concepts can be expressed with a meta-model
implemented as an UML profile or MOF extension. An application architecture
then becomes an instance model that instantiates the elements of the meta-
model. Rules can be implemented as OCL constraints. Relationships between
different models may be expressed with the help of a model transformation lan-
guage such as QVT [24] or ATL [16].

3.1 Benefits of Ontology-Based Modeling

However, we propose to use ontology and rule languages originally developed for
the Semantic Web [6] because they have three major advantages with respect to
the consistency checked code approach we like to address.

1. Ontology languages and ontology tools allow modelers to easily express meta
models and models in a single formalism and within one tool context, which
is not the case for the OMG languages. There exist comprehensive ontology
development suites such as Protégé [31] and TopBraid Composer [30]. Both
of these properties enable the lightweight language infrastructure we need.

2. Ontology languages are based on formal description logics which are a sub-
set of first-order predicate logic with the tremendous advantage of being
decidable. All ontology interpreters (reasoners) support the concepts lan-
guage consistency check out of the box. They even offer explanations for
the constraints that cause an inconsistency. Reasoners also work with an
open world assumption by default. Closed world behavior can be enforced
through specific description logic constructs (cf. section 1.2 why both kinds
of semantics are needed).

3. Ontologies can be specified as modules and there is a standard import-
statement which fulfills our modularity and compositionality requirements.
The module concept allows expressing the architecture specification packages
as ontology modules. One can choose to put schema and instance information
into a single or in several modules. The same applies to abstract and more
concrete concepts. This allows the modeller to freely subdivide an overall
specification into modules as needed in order to make them comprehensible
and reusable.

The use of ontology technology in software engineering is increasing [11] but
far from commonplace and particularly there is no ontology-based approach
known to the authors in the realm of architecture-code-consistency checking.

3.2 Ontologies and Rule Systems

Ontologies and rule systems are logic-based semantic web technologies that en-
able the modeling of knowledge [1]. A principal goal of both is to enable reasoning
about the stated knowledge, i.e. to allow specific correctness checks to be per-
formed and to infer new facts from the given ones. A major application area
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of ontologies is to describe terminologies of an application domain and to sup-
port correctness checks for such terminologies. For example the GALEN project
maintains an ontology describing a huge medical terminology [25].

The development of ontology languages and rule systems is driven by the
need for an expressive modeling language that is at the same time logically
decidable. Unfortunately, decidability limits the structure of facts that can be
expressed with either an ontology or a rule system. On the other hand, there are
properties that can only be modeled with ontology constructs or only with a rule
system. Therefore, both knowledge modeling approaches have been integrated
to increase the overall expressivity and enable integrated inference. Expressing
the architectural constraints we like to address is also only possible using rules
and ontologies. Hence, this section presents a brief overview of both.

Ontologies. Informally, an ontology describes a domain of discourse [1]. It con-
sists of a set of terms and relationship types between terms. The terms represent
sets of objects called concepts. The objects are called individuals. In a business
domain concepts are Product, Customer, Employee or Invoice. The relationship
types denote semantically meaningful associations between concepts. Example
relationship types are pays (a Customer pays an Invoice) and name (a Customer
has a name denoted by a String data type). Besides defining such terms, an
ontology more importantly describes constraints. Different kinds of constraints
are supported such as

– subset relationships: a Book is a Product (written Book � Product)
– constraints about participation in relationships: an Invoice can only be paid

by a Customer (expressed as: Invoice � ∀ pays−1.Customer).
– disjunction statements: the sets of individuals of Customer and of Employee

are disjoint (expressed as: Customer � Employee � ⊥)
– value restrictions: the name or a Customer must not be empty (expressed as:

Customer � ∀ name.String[pattern "[a-z]+"]).

More formally, an ontology O is a set of so-called axioms and assertions over
disjoint sets of concept names NC , role names NR and individual names NI .
An interpretation I is a tuple (ΔI , ·I) of a non-empty domain ΔI and an in-
terpretation function ·I . The interpretation function assigns to each concept
name C ∈ NC a set CI ⊆ ΔI , to each role name r ∈ NR a binary relation
rI ⊆ ΔI × ΔI and to each individual name i ∈ NI an element iI ∈ ΔI .

Axioms are constraints that characterize the concepts and relationship types
(the so called TBox or the schema part) and assertions denote concrete individ-
uals and relations (the ABox or instance part) of a knowledge base. The most
important types of axioms are general concept inclusions (GCIs) of the form

C � D

A GCI informally reads as a logical implication (‘anything that is a C is also
a D’). The C and D can be names for concepts (elements of NC), but also more
complex so-called concept descriptions. For example, the concept description

≥ 2 provides.Interface
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denotes all individuals that have two or more provides relationships with dis-
tinct individuals of the concept Interface. Assertions state the existence or non-
existence of concrete individuals and relations. For example Component(x) ex-
presses that x is a Component and provides(x, y) states a concrete tuple of the
provides relationship type.

The formal background behind ontologies are description logics (DLs) [2]. The
main purpose of a description logic is to enable inferences (reasoning) according
to the semantics of the axioms and assertions. For example, if we have a DL
program (an ontology) with the statements

Component �≥ 2 provides.Interface, Component(x)

then we can infer the following facts

Interface(y1), Interface(y2), provides(x, y1), provides(x, y2)

A specific description logic allows for specific types of axioms to be used.
There is a general tradeoff between the expressivity description logics and the
complexity of the reasoning tasks performed in such a logic. The description
logic community has developed a convention to briefly denote classes of expres-
sivity (see table 1). For example, a SHIN DL does not allow an axiom of the
form Component �≥ 2 provides.Interface but only Component �≥ 2 provides,
i.e. one cannot express cardinality restrictions and participating concepts at the
same time. For other forms of axioms and assertions occurring in different de-
scription logics, please refer to literature (e.g. [2]). For our examples, we use the
SHROIQ(D) description logic [13] that underlies the most recent Web Ontol-
ogy Language (OWL) 2.0 [19]. For brevity we use the description logic notation
instead of one of the OWL syntaxes.

For practical applications of ontologies it is important to discuss their sat-
isfiability. A given interpretation I satisfies a concept description C (written
I |= C), iff C has a non-empty extension under I, i.e. CI 
= ∅. An interpretation
I satisfies a GCI C � D, iff CI ⊆ DI . Eventually an interpretation I satisfies
an ontology O (written I |= O), iff I satisfies all axioms from O.

This notion of satisfiability lays the ground for practical ontology reasoners
such as Pellet [29] and HermiT [21] to provide a number of inference services
which are held to be key for most applications of ontologies.

– Consistency Checking verifies the consistency of an ABox with respect to
a TBox, i.e. the operation ascertains whether both contain contradictory
statements.

– Satisfiability Checking is the operation to check whether a concept or all
concepts occurring in an ontology have a non-empty satisfying interpretation.

– Classification, which calculates the subset relationships � between all named
concepts of an ontology.

– Realization computes the instance − of relationship with the most specific
concept for every individual. Realization can only be done after classification
because the concept hierarchy must be known.
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Table 1. Syntax and semantics of various description logic constructs (from [14])

Construct Syntax Semantics DLs

Expression Axiom

universe concept � �I = ΔI

S

empty concept ⊥ ⊥I = ∅
atomic concept A AI ⊆ ΔI

atomic role r rI ⊆ ΔI × ΔI

transitive role Trans(r) Trans(r)I ≡ rI ◦ rI ⊆ rI

conjunction C � D CI ∩ DI

disjuction C 
 D CI ∪ DI

negation ¬C ΔI \ CI

exists restriction ∃R.C {x|RI(x,C) = ∅}
value restriction ∀R.C {x|RI(x,¬C) = ∅}
GCI C � D (C � D)I ≡ CI ⊆ DI

concept assertion (C(i)) (C(i))I ≡ iI ∈ CI

role assertion (r(i, j) (r(i, j))I ≡ 〈
iI , jI

〉 ∈ rI

role hierarchy R � S (R � S)I ≡ RI ⊆ SI H
inverse roles r− (r−)I = {〈y, x〉 | 〈x, y〉 ∈ rI} I
number � nR {x| |RI(x,�)| ≥ n} N
restrictions � nR {x| |RI(x,�)| ≤ n}
qualifying ≥ nR.C {x| |RI(x, C)| ≥ n}

Qnumber ≤ nR.C {x| |RI(x, C)| ≤ n}
restrictions

nominals {i} ({i})I = {iI} O
functional roles Func(R) Func(R)I ≡ ID(ΔI , 2) ⊆ RI ◦ (RI)−1 F

In general, the semantics of reasoning with ontologies applies the so-called
open world assumption (OWA). In brief, the open world assumption means that
a fact cannot be assumed to be false, only because it is not explicitly stated
to be true. Instead, such facts are assumed to be unknown until contradictory
evidence is found in the stated facts or derived from them. A second unexpected
property for those used to UML models is that individual names are interpreted
as pointers to the actual individuals. Two distinct individual names may refer
to the same individual. In fact, special inequality axioms have to be added to an
ontology, if this behavior should be avoided.

Eventually one should note that modeling with ontologies does not follow
the frame-based paradigm [13]. A frame specification acts as a statement that
something exists (a declaration) and it collects all relevant properties of the
object in one place. For example, in UML a class declaration enumerates all
relations of the class with other classes. Once the frame specification is finished,
there is no way to alter the properties of the declared object, i.e. no relations
can be added to the same class at a later time. In description logics, axioms
are the fundamental modeling concept. Axioms ‘talk’ about objects but they do
not declare them. If no axioms are given, an individual of a particular concept
may have relationships with any other individuals. These relationships may be
limited by axioms added in an importing ontology at a later time.
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Rule Systems. As initially stated, rule systems add to the expressivity of
ontology languages. Informally, class descriptions in OWL can only describe
tree-like structures. It is not possible to model the concept uncle in ‘the uncle y
of x is the brother of z where x is also the child of z’ because the induced graph
with y, x, z as nodes and uncle, brother and child are relationship types is not
a tree.

Generally, a rule has the form

A1, A2, . . . , An → D

and a rule system is a set of rules. The Ai are the rule conditions, the comma
reads as a logical conjunction, and the D is the head. A rule can be processed
with various semantics. The most frequently used ones are [1, 26]:

(Integrity) Constraint Rule. If the conditions A1, A2, . . . , An hold over some
fixed domain of discourse, verify that the condition D also holds and output
true or false.

Deductive Rule. If the conditions A1, A2, . . . , An hold over an initial domain
of discourse, then verify the condition D also holds in the domain. If not,
try to extend the domain such that D holds. Otherwise output failure.

Reactive Rule. If the conditions A1, A2, . . . , An hold over a domain of dis-
course then carry out action D (which may or may not change the domain).

Ontology reasoners that can also reason about rules apply the deductive rule
semantics. Using a deductive rule, the above uncle concept can be easily modeled
as

brother(y, x), child(x, z) → uncle(y, z)

In an integrated ontology and rule system, rules cannot have arbitrary form,
if decidability shall not be sacrificed. In fact, the above rule leads to undecidabil-
ity. So called DL-safe rules avoid undecidability by restricting them to known
individuals [20]. This means, every variable of a rule must occur in a non-DL
concept in the rule conditions. It is possible to make the above rule DL-safe by
adding three non-DL atoms

O(x), O(y), O(z), brother(y, x), child(x, z) → uncle(y, x)

The O is an artifical non-DL concept. It contains the facts O(i) for every indi-
vidual i ∈ NI . The atoms can be added automatically by the reasoner. Hence we
do not explicitly specify the O(xi) in our examples. For practical applications
this means that rules cannot be used to induce new individuals during reasoning
as a DL ∃ concept description would do.

3.3 Ontology Specification Packages for Architecture Modeling

In this section we outline how ontologies can be used to support the ‘consistency
checked code approach’. Figure 8 displays the various ontologies that need to
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be created and their roles with respect to the parts of an architecture model
specification.

Every box in the figure represents a set of constraints over a shared vocabu-
lary expressed using ontology language constructs. The info ontology takes the
role of the concepts language – it introduces the architecture concepts and rela-
tionships and specifies the constraints for their composition. The library.info
ontology represents the application architecture – it defines the individuals and
relations by referring to the same concepts and relationship names as the info
ontology. The java ontology is a necessary prerequisite for the specification of
the platform mapping. It takes a similar role as the info ontology – it defines
a schema but not that of the architecture but the schema of the platform. The
library.java ontology represents a model of the code of the actually imple-
mented system in terms of the platform concepts. Eventually, the info2java
ontology specifies the mapping between concepts of the architecture and con-
cepts offered by the platform.

Fig. 8. Basic setup of ontologies to model the library system architecture and check

the source code for consistency with the models

To conduct the various checks mentioned in section 1.2, the standard ontology
reasoning services have to be invoked in different contexts as shown in figure 9.
The import-relationship between two ontologies has the effect that all axioms
of the imported ontology are also considered when a reasoning task is invoked
for an importing ontology (union of statements).

Figure 9 shows how the initially stated architecture analyses (cf. section 1.2)
can be implemented with the basic ontology setup from figure 8.

The following paragraphs briefly explain how ontology reasoners can be used
to implement the required analyses. A more concrete illustration of an analysis
of the library system introduced in chapter 2 (also cf. figure 6) will be given in
chapter 4.

3.4 Concepts Consistency Analysis

The concepts consistency analysis translates straight forward into a satisfia-
bility check invoked with the architecture concepts ontology (info in the li-
brary example). An ontology reasoner can be used to verify whether all concepts
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Fig. 9. Reasoning contexts for implementing several types of consistency checks

explicitly named in this ontology are satisfiable. In case they are not, a reasoner
can

– output which concepts of an ontology are unsatisfiable
– output the axioms that are contradictory and, therefore, lead to unsatisfia-

bility.

This information is a practically necessary feedback to the architect to enable
him correcting his specification.

3.5 Application Architecture Consistency Analysis

This kind of analysis can also be covered by one of the standard ontology rea-
soning services. It can be implemented as a consistency check invoked with
the library.info ontology. In this case, the architecture concepts ontology
info contributes the TBox axioms and the application architecture ontology
library.info provides the ABox assertions for the check. The open world se-
mantics applied for reasoning also just meets what is required in this situation
because the application architecture only incompletely specifies the system (see
section 2.1). The concepts language of the library example requires that every
Component provides at least one Interface. An application architecture specified
by the single assertion

Component(users)

would be considered illegal using closed world reasoning because there is no
specified Interface for the users component. With the open world assumptions,
a reasoner just adds an anonymous individual such as

Interface(i1)

and continues drawing inferences. Contradictions can only occur, if inferred facts
contradict one of the explicitly stated facts. As in the case of the concepts
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consistency analysis, reasoners can provide feedback about which statements
of the involved ontologies are inconsistent.

3.6 Architecture-Code Consistency Analysis

This type of analysis is more complex and requires some post-processing of the
inferences produced by the reasoner. Given the setup in figure 9, the analysis
starts with an invocation of a realization operation for the library.asserted
ontology. This ontology represents the union of all other ontologies in the figure
but does not necessarily contain additional axioms or assertions. Particularly, it
unites axioms and rules defined in the platform mapping ontology info2java (a
TBox) with the assertions that model the to-be-checked source code from the
library.java ontology (the ABox). Applying the realization operation on this
ontology has several effects:

– The mapping rules are applied by the reasoner. This leads to computing the
instance− of relationships between architecturally relevant elements of the
platform and the architecture concepts from the info ontology. This means
that the code structure is represented in terms of the architecture concepts
language (inferred application architecture).

– The inferred ‘implemented’ application architecture is consistency checked
against the TBox axioms of info using an open world assumption. This can
detect unexpected relationships between source code elements that are not
allowed according to the concepts language (provided appropriate axioms
are given there). Given an appropriate axiomatization of the mapping rules,
this step can also uncover unexpected source code elements which have no
correspondence in the application architecture (e.g. a second LogicUnit within
a Component would be such an unexpected element).

– The open world semantics can generate application architecture individuals
(individuals with a instance − of relation to a concept from the info on-
tology) which are not part of the specified application architecture. Equally,
it can also generate platform individuals which logically follow from the as-
serted application architecture but which are missing in the actual code.

A reasoner can be asked to output the set of all inferred axioms and assertions
in an additional library.inferred ontology. By post-processing this informa-
tion we can achieve a closed world behavior and at the same time generate
explanations about further inconsistencies with respect to such a semantics. We
will given an example of how to use this information when we discuss analyzing
the library example for architecture-code consistency (see section 4.5).

4 Modeling the Example with Ontology and Rule
Languages

This section illustrates the models and analyses introduced earlier with the help
of the library system.
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4.1 Modeling the Concepts Language and Checking for Satisfiability

Figure 6 has shown the basic concepts for the library system. We can readily
express these architectural concepts as axioms in an info ontology as shown in
figure 8.

info Ontology

NC := {Component, BusinessComponent, TechnicalComponent, Interface,
IntInterface, ExtInterface, LogicUnit, Repository, Entity}
NR := {contains, provides, requires, use, name}
Axioms

(1) BusinessComponent � Component, TechnicalComponent � Component
(2) IntInterface � Interface, ExtInterface � Interface
(3) � � ∀name.String
(4) InverseFunctional(contains)
(5) Entity 
 Repository 
 LogicUnit � ∀contains−.BusinessComponent
(6) Repository � ∃use.Entity
(7) Repository � ∀use−.LogicUnit
(8) Entity � ∀use−.(LogicUnit 
 Repository)
(9) BusinessComponent � 1 contains.LogicUnit
(10) BusinessComponent�TechnicalComponent �⊥, LogicUnit�Repository �⊥, . . .
(11) Component ≡ TechnicalComponent 
 BusinessComponent, . . .

Fig. 10. Concepts language ontology for the library system

The ontology shown in figure 10 models the concepts language as depicted in
figure 6. The concept and relationship names are given in the header of the figure
(sets NC , NR). Restrictions on the use of concepts and relationship types can be
expressed using either OWL axioms. Some of the relationships shown in figure
6 are mapped to specific OWL constructs. The extends relationship between
concepts translates to a GCI axiom � between the OWL concept names (see
lines 1 and 2 in figure 10).

The ontology is more precise than the initial figure 6 because it adds
more accurate constraints to the concepts and relationship types. For exam-
ple, the contains relationship type occurs between a BusinessComponent and
Entity, Repository and LogicUnit. In general, there should only be one contain-
ing BusinessComponent for every Entity, Repository or LogicUnit. In OWL this
property can be expressed

– by declaring contains to be an inverse functional property (see line 4 in
figure 10).

– by limiting the ‘parent’ role of the contains relation to BusinessComponents
(line 5)

The expressivity of OWL is very suitable for our purpose, because of the con-
structs to quantify participation in relationships and to derive ad-hoc relation-
ships and concept sets when formulating axioms. Most axioms make quantified
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statements about a single class and either state the constraints focusing on the
subject (line 6: a repository ‘must use some’ Entity) or focusing on the object
(line 7: a Repository or Entity ‘may be used only by a’ LogicUnit). According to
our experience, these are very common type of architectural constraints found
in practice.

The ontology of figure 10 is satisfiable and one may verify this property even
without the help of an ontology reasoner. As an inconsistent example, suppose
the architect reuses the info ontology and extends it into a reportinfo ontology
(figure 11) with a concept ReportLogicUnit – units of functionality related to
report creation. A ReportLogicUnit is considered a different concept than the
already existing LogicUnit. Since a ReportLogicUnit requires access to some data
to fill in reports he states that a ReportLogicUnit has to use a Repository which
provides access to persistent Entities (line 1).

reportinfo Ontology imports info

NC := {ReportLogicUnit}
Axioms

(1) ReportLogicUnit � ∃uses.Repository
(2) (ReportLogicUnit � LogicUnit � ⊥)

Fig. 11. An unsatisfiable extension of the info ontology

When the reportinfo ontology is checked for satisfiability (for now without
line 2), the reasoner reports that the ontology is consistent but also infers that
the concept ReportLogicUnit is a subconcept of LogicUnit (written as an axiom:
ReportLogicUnit � LogicUnit). This is not what the architect intended. The
problem can be solved by declaring ReportLogicUnit and LogicUnit to be dis-
joint (line 2). After this change, the ontology reportinfo is unsatisfiable, which
signals to the architect that he made a modeling error.

This example is still very limited in size and the inconsistency might be spot-
ted without the help of an ontology reasoner. However, for larger ontologies,
possibly composed from different modules and having undergone several itera-
tions, such analyses are certainly very valuable.

4.2 Modeling the Application Architecture and Checking for
Consistency

Figure 12 states the ontology assertions to model the application architecture of
the library system as depicted in figure 6. The assertions state that four compo-
nents exist in the library system – three business components users, catalogue
and loans and one technical component called log. Concrete relationships be-
tween component instances can be modeled with role assertions. For example,
the loans component is expected to depend on the users and catalogue compo-
nents in order to link its contained loan Entity with the borrowing Customer and
the borrowed Medium.
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library.info Ontology imports info

NI := {users, catalogue, loans, log, loan,
user, copy, loans, medium, address, userRepo,
mediaRepo, userService, userAccess, logInterface, catalogueAccess}
Assertions

BusinessComponent(users), BusinessComponent(catalogue),
BusinessComponent(loans), TechnicalComponent(log)

Entity(loan), Entity(user), Entity(copy), Entity(medium), Entity(address)
Repository(userRepo), Repository(mediaRepo), LogicUnit(userService)
IntInterface(logInterface), provides(log, logInterface)
IntInterface(userAccess), provides(users, userAccess)
IntInterface(catalogueAccess), provides(catalogue, catalogueAccess)
requires(loans, userAccess), requires(loans, catalogueAccess),
requires(users, logInterface), requires(catalogue, logInterface)

Fig. 12. Instance ontology that defines the application architecture of the library

system

As previously said checking the application architecture for consistency can be
implemented by a standard consistency check provided by ontology reasoners.
Due to the open world assumption, the consistency check will not fail when
the application architecture is incompletely specified. In the example, line (9)
from the info ontology demands that every BusinessComponent contains exactly
one LogicUnit. On the other hand, the library.info ontology does not specify a
LogicUnit conained within the catalogue BusinessComponent. As long as no other
asserted constrains disallow it, the reasoner will infer a missing LogicUnit in an
attempt to satisfy all axioms.

4.3 Modeling the Target Platform

To implement an ontology based architecture-code consistency check, a model
of the code to be checked is needed as well. Similarly to the architecture con-
cepts language, every platform provides concepts to implement a system. The
difference it that these concepts are technology-driven while the architectural
concepts are requirements-driven.

In case of the library system the Java platform is used. Hence, the relevant
properties of Java source code need to be captured in a model. Figure 13 shows
an ontology describing the structure of Java code. The ontology captures the ma-
jor structural elements (Package, JavaClass, JavaInterface, JavaEnum, Method and
attribute) along with their names (see jname property), and nesting (see parent
relationship type) structure. Cross-references between elements are captured as
either inheritance relationships (extends relationship type) or general dependen-
cies (depends relationship type). To avoid undesired inferences at a later time we
have to state that all concepts are pair wise disjoint (line (4) illustrates some of
the axioms for enforcing disjunctness). Second, in case subconcept relationships
are used it is sometimes necessary to state that a superconcept is the disjoint
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java Ontology

NI := {JavaType, JavaClass, JavaInterface, JavaEnum, Package}
NR := {parent, depends, extends, jname}
Axioms

(1) JavaClass � JavaType, JavaInterface � JavaType, JavaEnum � JavaType
(2) Method � Member, Attribute � Member
(3) JavaType ≡ JavaClass 
 JavaEnum 
 JavaInterface
(4) JavaClass � JavaInterface � ⊥, JavaClass � JavaEnum � ⊥
JavaEnum � JavaInterface � ⊥, Attribute � Method � ⊥ · · ·
(5) Func(jname), Func(parent)
(6) extends � depends

Fig. 13. Simple schema ontology for the Java Programming Language

union of its subconcepts. Without such a constraint the superconcept could be
concluded to have additional individuals. Line (3) shows a so-called covering ax-
iom for the subconcepts of JavaType to enforce this behavior. Line (5) states that
the two properties parent and jname are functional, i.e. an individual representing
a Java element can have at most one parent and at most one identifier.

The java ontology describes the schema of a Java program. To create an in-
stance model, a Java parser can be used to create the ABox assertions according
to the above schema. For example, the Java fragment

package library;

class CatalogueRepository extends AbstractRepository {
Connection conn;

}

results in the following assertions:

Package(i1), jname(i1, "library"), JavaClass(i2),
jname(i2, "CatalogueRepository"), JavaClass(i3),
jname(i3, "AbstractRepository"), extends(i2, i3), parent(i2, i1),
JavaClass(i4), jname(i4, "Connection"), Attribute(i5),
jname(i5, "conn"), parent(i5, i2), depends(i5, i4)

4.4 Expressing the Platform Mapping

We are now in the position to formalize the platform mapping given in figure
7. The goal of the mapping is to describe how the individuals and relations
expressed in a source ontology relate to individuals and relations expressed in
a target ontology. In our case the source consists of the schema ontology java
and the instance ontology library.java. The target schema ontology is info.
The goal is to infer the instance − of relationships of some individuals to the
concepts named in the library.info ontology.
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To express the mapping we use another ontology info2java which depends
upon both schema ontologies (i.e. it includes info and java). We express the
mappings using axioms and rules.

Mapping of Concepts. The strategy to express a mapping for a concept or
set of concepts is

1. Define a concept name for every atomic property occurring in the mapping
rule.

2. Formalize the property as either a axioms or DL-safe SWRL rules where the
new concept occurs in the rule head (i.e. the rule will generate instances of
the concept by adding instanceof relations)

3. State the necessary and sufficient criteria by relating the introduced con-
cepts.

We will describe our approach with the help of the following example rule:

An Entity maps to a JavaClass whose name ends with XEntity and
which is located in the subpackage common of the component’s package.

Each such mapping rule describes different properties the individuals must
have, if they should be related. For example, in the destination info ontology the
mapping rule requires an individual that is a member of the Entity architectural
concept. In the source ontology java there are more criteria to be considered

1. Property 1: individuals that are members of the JavaClass concept
2. Property 2: individuals that have a jname property value that ends with

Entity
3. Property 3: individuals that have a parent relationship to a Java package

whose name is common and whose parent is a component’s package.

For each property one has to decide whether it is a necessary or sufficient or
necessary and sufficient condition for the mapping. The following figure illus-
trates the most likely correct interpretation of the example rule.

In the figure, the arrows indicate the logical implications that should apply.
The following must hold

1. If something is an Entity, it must also be a member of the JavaClass concept
and have a jname property value that ends with Entity

2. Conversely, if something is a member of the JavaClass concept and has a
jname property value that ends with Entity, then it must also be an Entity.

3. If something is an Entity, it must also have a parent relationship to a Java
package whose name is common and whose parent is a component’s package.
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The lower P3 property is only a necessary condition related to the Q1 property,
because not any class inside a component’s common subpackage should be an
Entity.

Figure 14 shows the formalization of the example mapping rule about en-
tities. The two properties P1 AND P2 and P3 are captured by the concepts
MappedEntityByName and MappedEntityByLocation. The axiom (a2) states that
being an member of MappedEntityByName is a necessary and sufficient condition
for an individual to be a member of Entity (the A ≡ B is equivalent to the two
GCIs A � B and B � C and therefore expresses concept equality). The axiom
(a3) states that being a member of MappedEntityByLocation is only a necessary
condition for Entity.

The rule (r1) does the actual selection of appropriate Java classes from
the code. The rule expresses that every JavaClass c with a jname cn and
whose cn ends with the string Entity, is inferred to be a member of the
MappedEntityByName concept. In the rule language SWRL basic functions such
as the shown testing for string suffixes are available. By the axiom (a2) the con-
cept MappedEntityByName is equal to the concept Entity which allows a reasoner
to conclude which individuals originally asserted in the library.java ontology
are also a member of the architectural Entity concept (i.e. such individuals belong
to two concepts at the same time).

info2java Ontology imports info, java

NI := {MappedEntityByName, MappedEntityByLocation
PackageByNameCommon}
NR := {}
Axioms

(a1) MappedEntityByLocation � JavaClass � ∀parent.(PackageByNameCommon�
∀parent.Component)
(a2) Entity ≡ MappedEntityByName, MappedEntityByName � JavaClass
(a3) Entity � MappedEntityByLocation
Rules

(r1) JavaClass(c), jname(c, cn), swrl : endsWith(cn, "Entity")
→ MappedEntityByName(c),name(c, cn)

(r2) Package(p), jname(p, "common") → PackageByNameCommon(p)

Fig. 14. Formalized Mapping for Entity

According to this scheme, mappings for all architectural concepts can be for-
malized. The properties to select individuals that take part in a mapping depend
on the information present in the code models. Types of rules to link architec-
tural information to source code elements commonly found in practice are:

– Naming conventions : all entities (in the sense of an architectural concept)
are implemented as a single Java class with the name suffix Entity.

– Base classes or interfaces: all entities implement the IEntity interface
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– Location conventions : all entities of a component reside in the subpackage
common.entities within the component package.

– Java annotation: all entity classes are marked with an @Entity annotation.

Mapping of Relationship Types. Besides mapping of individuals, we also
have to define and formalize mappings for relationships, because only then we can
eventually check how stated architectural relationship constraints are fulfilled
in the code. The basic idea is to translate code-level relations into architectural
relations by stating the conditions of such mappings as rules. Figure 15 shows two
such rules for inferring the architectural use and provides relationships from the
code. This formalization follows the natural language description of the mapping
shown in figure 7.

Rule (r1) simply states that individuals related by an asserted or inferred
depends relationship are also related by a use relationship. The rule selects
all individuals related by a depends relationship from the library.java on-
tology. Because the mapping for concepts ‘reuses’ the individuals asserted in the
library.java ontology to also express their membership with concepts from
library.info, it is sufficient to add a relation assertion for the same individu-
als x and y. Rule (r2) illustrates a conditional mapping of a relationship. The
provides relation is only inferred for two individuals c and i, if

– c is a Component (for which we know it is mapped to a Java Package),
– i is an Interface (whch is also mapped to a Java Package)
– i’s parent is comm and comm’s parent is c and comm is a Package named

common (see figure 14)

info2java Ontology (continued)

Rules

(r1) depends(x, y) → use(x, y)

(r2) Component(c), Interface(i), parent(i, comm),
PackageByNameCommon(comm), parent(comm,c) → provides(c, i)

Fig. 15. Formalized Mapping for relationship types use and provides

4.5 Checking for Architecture-Code Consistency

With the previous mapping formalization we are eventually in the position to
verify the correctness of the code with respect to architectural constraints. We
illustrate two basic kinds of constraints stated in the concepts language ontology
info together with code-level assertions from library.java that eventually
violate the constraints.

The first type of constraint is of the form

(1) A concept X can only be related to a concept Y with a relation r.

where X, Y and r are constrained in the concepts language ontology. In the library
example, the axioms in lines (5) and (7) from the info ontology (cf. figure 10)
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belong to this type. With the shown mapping of Entity and a similar mapping
for Repository the Java fragment

class MediumEntity {
MediumRepository rep;

}

would be inconsistent because a relationship use(e, r) would be inferred (with
e being the Entity called MediumEntity and r being the Repository called
MediumRepository). This relationship violates the axiom in line (7)

Repository � ∀use−.LogicUnit

from the info ontology. The only way the reasoner could satisfy this axiom is
to infer LogicUnit(r) as well which on the other hand contradicts line (10):

LogicUnit � Repository �⊥

The concepts of the info ontology have been declared to be disjoint to avoid
such unintended inferences.

The second type of constraint is of the form

(2) A concept X must be related to a concept Y with a relation r.

In the example info ontology, the line (6) states such a constraint – a Repository
must use at least one Entity. What happens for a Repository(r) inferred from the
source code which does not fulfill this constraint? The realization operation in-
voked with the library.asserted ontology will create an anonymous individual
Entity( e) asserted in the library.inferred ontology. Through the mapping
axioms (a2) (cf. figure 14)

Entity ≡ MappedEntityByName, MappedEntityByName � JavaClass

the reasoner also concludes the assertions MappedEntityByName( e) and
JavaClass( e). This new individual e occurs because of the open world as-
sumption. These inferences are problematic in this case because we would actu-
ally expect an output of the type ‘an Entity for the Repository r is missing in the
code’. We can deal with this problem in two ways:

1. Restrict the set of Entity individuals to the ones present in the code
2. Compute a difference between the asserted individuals and relations in

the library.java ontology and the additionally inferred ones in the
library.inferred ontology.

Option 1 can be achieved by adding a general inclusion axiom with a nominal
expression (explicit enumerations of the members of a concept) on the right hand
side as follows:

Entity � {i1, i2, i3, . . . in}
With such an addition (e.g. to the library.info ontology) the reasoner cannot
infer Entity( e) and therefore outputs the entire library.asserted ontology to
be inconsistent.



Towards Managing Software Architectures with Ontologies 303

Option 2 can be easily implemented as a post-processing step after realization.
It is easy to select the inferred assertions of individuals that are not already
present in the library.java ontology. To output only missing code elements
the search should be limited to individuals that are inferred members of any of
the platform concepts.

5 Related Work

The idea of analyzing existing source code for consistency with a given architec-
ture model is not new and goes back to the reflexion models described by Mur-
phy et al. in 1995 [22]. In the method, the architect defines a high level model
representing the architecturally relevant modules and the assumed dependen-
cies between those modules. For each high-level module, a mapping defines with
source code elements correspond to this module. Based on this information, a
tool extracts the actual dependency graph from the source code and presents
the differences with the defined module dependency graph.

This basic idea has been refined over the years resulting in research proto-
types and commercial tools [22, 17, 7, 27, 4, 34]. All of these tools focus on the
identification of illegal dependencies between source code elements, based on a
specification of the planned dependencies on a higher abstraction level. They
do not consider checking for existence of elements and they do not include the
checking of properties (such as naming conventions captured in our mapping
rules).

A fundamental problem of all the named approaches is that the architect is
very limited in specifying the planned architecture. All tools either force the
architect to specify dependency constraints either directly on the code level
(which provides no abstraction) or the architect has to express this architecture
in terms of a fixed concepts language, which however misses the point that such
a language must be adaptable to the specific requirements. Therefore, often
architects cannot express their architectures in a natural form or cannot express
certain constraints at all or the maintenance of the constraints is effortful.

As an example, consider the problem of mapping the architectural concepts
of the library system (see figure 6) to the concept language shown in figure 16.
We could opt to map our concept Component to SonarJ’s concept of a Slice and
express some of the Component-internal structures with the help of SonarJ’s
Layers. A reasonable choice would be to introduce the two layers businesslogic
and persistence and assign Entities and Repositories to the persistence layer.
SonarJ’s default semantics of layers would provide us with the desired effect that
which this choice every piece of the businesslogic-layer can access the entities but
not vice versa. Although for many systems this rough translation of concepts
may succeed, this is not an ideal solution. The main disadvantage is that the
original concepts language is no longer visible in the tool. Analysis results cannot
be reported in the original concepts language.
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Fig. 16. Concepts language and possible platform mappings of the tool SonarJ [34]

Besides this fundamental problem, there are a number of technical problems

– The tools require the architect to thoroughly define all elements of the ap-
plication architecture and their mapping to the source code. This means,
whenever new elements are added to the source code, the architecture spec-
ification and the platform mapping in the tool have to be extended in order
to include the new elements in the analysis. It would be desirable to let a tool
discover the instances of a specific concept from the code, and have the rules
associated with the concept applied automatically. This is particularly useful
for concepts whose instances are not completely specified in the application
architecture.

– The tools focus on checking the consistency of the dependencies alone. How-
ever, a platform mapping also includes storage and naming conventions such
as those shown in figure 7.

6 Conclusion

In this article we have worked out the ‘consistency checked code approach’ as
a practical option to implement an architecture centric development process.
Compared to ‘separate models and code’ it prevents the drift between architec-
ture and code by regular analysis and correction cycles. Compared to generative
model driven development, this approach is more lightweight as is does not re-
quire a comprehensive language infrastructure. It is also suitable for less mature
domains where it is difficult to design a detailed architecture initially and it
particularly applicable to existing software systems as a support during restruc-
turing activities.

Second, we have discussed and demonstrated with the help of an example that
the structural specification of a software architecture includes a domain specific
concepts language, an application architecture and a platform mapping. We have
derived requirements to implement the ‘consistency checked approach’ from this
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understanding of a software architecture. In our view, particularly important
requirements are

1. the comprehensive support of different types of analyses
2. a lightweight infrastructure to specify and evolve architectural models,
3. and support for modularity and composition.

The major message of our paper is that ontologies and rule systems can be
used as a design language for software architectures (items 2 and 3 in the list).
We further argue and demonstrate with the help of an example that an ontology
and rule system reasoner provides the necessary analyses (item 1).

More specifically a reasoner can be used to check the satisfiability of the archi-
tecture concepts language, the consistency of the application architecture with
respect to the concepts language and it can be used to implement architecture-
code consistency checks. We have also given a few examples for how each analysis
can identify errors in the architecture specification and the code.

Compared to other architecture-code consistency checking methods such as
those described in [22, 17, 7, 27, 4, 34] our method has the following benefits

– It allows the architect to directly describe a software architecture in a struc-
tured way in suitable models. There is no need to manually translate ar-
chitectural constraints into a predefined metamodel or to the code level to
enable architecture-code consistency analyses.

– It integrates previously distinct kinds of analyses (architectural conformance
of dependencies, conformance with rules for code organisation, conformance
with some low level programming style guide rules such as naming con-
ventions) into a common framework. This enables us to express and verify
interactions between different properties.

– It prevents the architect from specifying unsatisfiable models
– It supports modular specifications, reuse and composition of specifications.

Admittedly and mostly for space reasons we have not thoroughly discussed
limitations and drawbacks. Some of the issues we see are

– Ontologies and ontology-integrated rule systems so far only support so-
called monotic reasoning. This and the open world assumption are rea-
sons why negative facts cannot be expressed easily. For example, we can-
not state ‘a TechnicalComponent cannot use a BusinessComponent’. Instead
we have to put this into a positive form and enumerate all concepts a
TechnicalComponent can only use. This is particularly problematical if the
family of component types shall be extended in the future.

– The open world assumption and the property that an individual can be-
long to several concepts, sometimes require lengthy and numerous axioms
that just prevent unintended inferences, but not model architecture. The
disjointness and covering axioms in the java ontology are examples of such
axioms.



306 M. Bennicke and C. Lewerentz

– We have not discussed how larger grain concepts, their mapping and
architecture-code consistency checks can be modeled and analyzed using on-
tologies. For example our Component concept maps to a set of Java classes
contained in a package. To infer the use relationships of a Component, the
depends relationships between classes would have to be lifted to the Java
package level. This in turn would require a transitive parent role in the java
ontology. Unfortunately, the use of transitive roles badly interacts with other
description logic constructs [21] and therefore further limits expressivity.

The procedure we have described is implemented as a prototype tool built
around the Pellet OWL reasoner [29] and the Protégé ontology workbench [31].
In their latest versions, both support OWL 2 and reasoning with DL-safe rules
encoded in SWRL. We plan to extend our research as follows: The validation of
the approach in realistic settings is still an open issue. We intend to investigate
whether the expressivity provided by OWL 2 and SWRL are sufficient to capture
the structural properties of industrial-strength architectures. We also expect the
performance of inference services to become more critical as the size of the
evaluated systems increases. In order to enable the actual use of our approach
we also like to integrate the described procedure as a plugin for the Eclipse
integrated development environment.
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Using Role-Play Diagrams to Improve Scenario
Role-Play

Jürgen Börstler

Umeå University, Sweden

Abstract. CRC-cards are a common lightweight approach to collabo-
rative object-oriented analysis and design. They have been adopted by
many educators and trainers to teach object-oriented modelling. In our
experience, we have noticed many subtle problems and issues that have
largely gone unnoticed in the literature. Two of the major issues are re-
lated to the CRC-card role-play as described in the literature. Although
CRC-cards are representing classes, they are also utilized as substitutes
for the actual objects during the scenario role-play. Furthermore, it is
quite difficult to document or trace the scenario role-play. We propose
using Role-Play Diagrams (RPDs) to overcome these problems. Our ex-
perience so far is quite positive. Novices have fewer problems with role-
play activities when using these diagrams. Teaching and learning the new
type of diagram adds only little overhead to the overall CRC-approach.
Although our improvements specifically target the teaching and learning
of object-oriented modelling, we believe that RPDs can be successfully
applied in professional software development.

1 Introduction

The usage of an object-oriented language does not in itself guarantee that the
software developed will actually be object-oriented. Employing an appropriate
modelling approach, supported by suitable tools, will support the development
of object-oriented systems.

CRC-cards [1,2] are an informal yet powerful tool for supporting object-
oriented modelling that was developed as a tool for teaching object-oriented
thinking to (experienced) programmers [1]. Many educators and trainers have
adopted CRC-cards as an approach to teach object-oriented technology and con-
vey a bigger picture of (systematic) objected-oriented development [3,4,5,6,7,8].
CRC-cards are also used widely outside the educational context, in particular to
support responsibility driven design approaches [2,9,10,11] or architecture eval-
uation [12]. They are also used in areas not directly related to software develop-
ment, like for example product modelling and maintenance [13,14] or information
behavior studies [15].

The power of the CRC-card approach lies in its associated scenario role-play
activities that support collaborative design and active collaborative learning [16].
Role-playing scenarios is an effective way to simulate or explore hypothetical
situations [17]. The role-play participants are assigned roles they enact according
to a predefined scenario, much as actors following a script when playing the

G. Engels et al. (Eds.): Nagl Festschrift, LNCS 5765, pp. 309–334, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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characters in play. In object-oriented development, the characters are the objects
in a (software) system and the scenarios are hypothetical but concrete situations
of system usage. During the role-play the participants learn a lot about the roles
they play. The interactivity of the role-playing supports creativity and sharing
of knowledge. Since the roles and scenarios can be easily varied, it is possible to
explore many design alternatives without actually building any prototypes.

The remainder of this paper is organized as follows. After a brief discussion
of object-oriented modelling, we introduce CRC-cards (Section 3) and a new
type of diagram, called Role-Play Diagrams (RPDs, Section 4). In Section 5–6,
we describe an analysis and design process that utilizes CRC-Cards and RPDs.
Section 7 presents an example step-by-step, followed by a brief discussion of
possible improvements to our approach. Our experience from using CRC-cards
together with role-play diagrams in our introductory programming courses is
summarized in Section 9.

2 Modelling Object-Oriented Software

The goal of modelling is to develop an as simple as possible model of a problem
or domain that still correctly reflects all relevant aspects we are interested in.
That makes it easier to focus on the essential properties and phenomena, without
being distracted by irrelevant details or aspects [18].

The modelled software objects will frequently have real world counterparts
in the problem domain. This can make modelling a straightforward activity,
but also lead to some confusion. The modelled software objects should not be
confused with their real world counterparts. Although the software objects will
often reflect properties of their real world counterparts, will also have properties
that their real world counterparts never can have. A physical book for example is
removed from the library, when it is checked out. A book object in a (software)
model however stays in the library and is only marked as on loan. In a “real
world” library, we would never make the borrowers responsible for keeping track
of their unpaid overdue fines. In a (software) model however, this might be a
good design choice, since trust is no issue there.

It should also be noted that there are several levels of modelling. Aspects, prop-
erties, or details that are irrelevant during analysis might very well be important
during design or implementation. There usually is no single correct model. Real
world aspects can be modelled quite differently, depending on the actual prob-
lem. People for example will be modelled quite differently in a course registration
system for a university compared to a journal system for a hospital.

3 CRC-Cards

CRC stands for Class, Responsibilities and Collaborators [19]1. A CRC-card is
a standard index card that has been divided into regions, as shown in figure 1.
1 Candidates, Responsibilities and Collaborators according to [10] and Class,

Responsibility, Collaboration according to Beck and Cunningham’s original pa-
per [1].
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Fig. 1. Example CRC-card (front, at top, and back) for a Book class in a library system

A CRC-card corresponds to a class, i.e. a description of objects of the same
kind. The objects are the things of interest in the problem or application domain.
The class name is written across the top of the CRC-card. A class should have
a single and well-defined purpose that can be described briefly and clearly. It
should be named by a noun, noun phrase, or adjective that adequately describes
the abstraction.

A responsibility is a service the objects of a class provide for other objects.
A responsibility can be to know something or to do something. A book object in
a library might, for example, be responsible for checking itself out and knowing
its title and due date (see Figure 1). The responsibilities of (the objects of) a
class are written along the left side of the card.

A collaborator is an object of another class “helping” to fulfil a specific
responsibility. A collaborator can for example provide further information, or
take over parts of the original responsibility (by means of its own responsibilities).
A book object, for example, can only know whether it is overdue, if it also knows
the current date (in Figure 1 this information is provided by a collaborator object
of class Date). The class names of collaborators are written along the right side
of the card in the same row as the corresponding responsibility.

The back of the card can be used for a brief description of the class’ purpose,
comments and miscellaneous details.

CRC-cards are particularly well-suited for collaborative design and active
learning. It forces participants to reason about models and explain design de-
cisions to their peers. It also enables participants to reflect on their modelling
activities. This helps participants to build up a common vocabulary and under-
standing of the problem and possible solutions (and the modelling process as
well).

A group size of 4–6 people seems to work best. Smaller groups usually lack the
right blend of different backgrounds. In larger groups, it becomes too difficult
to reach a consensus. It is important not to get bogged down in discussions
about implementation details. The goal is to develop, discuss, evaluate and test
different object-oriented models.
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One goal with CRC-card usage is “to immerse the learner in the ‘object-ness’
of the material” [1, p 1]. The CRC approach is an anthropomorphic approach.
Objects are interpreted as living entities that can act on their own behalf. Objects
take a self-centered view. It should not be necessary to ask a third party object
about things a particular object naturally should know by itself. This object-as-
person metaphor [20] supports the kind of object thinking we want to teach our
students. However, it is very important to carefully distinguish the properties
of the model objects from the properties of their “real world” counterparts, as
discussed above.

4 Role-Play Diagrams

Common role-play approaches use the CRC-cards as the “characters” in the role-
play [2]. This gives the CRC-cards a double role: they represent classes and
“stand in” for the actual objects [1]. This can be very confusing for novices, since
the concepts of class and object are not clearly distinguished. We therefore devel-
oped role-play diagrams (RPDs) to reinforce this distinction. RPDs furthermore
provide excellent support for documentation of the role-play. They can also eas-
ily be used to keep track of the role-play as it unfolds and support recovery of
the latest consistent state of the role-play.

Role-Play Diagrams (RPDs) are used to document object interaction. The
objects in a RPD are instances of the classes modelled by CRC-cards. The RPD is
a new type of diagram that covers the most important aspects from UML object
and collaboration diagrams [21]. However, RPDs are simpler and less formal
than their UML counterparts and therefore better suited for recording scenarios
in parallel to the role-play activities. Our experience has shown that drawing
sequence diagrams “on the fly” is infeasible. Their prescribed structure makes
them difficult to change and extend. Sequence diagrams also lack structural
information, which is quite important for describing a scenario’s state in detail.

Objects in RPDs are represented by object cards. An object card is an instance
of a CRC-card showing its name, class and properties relevant for the current
scenario. In Figure 2, for example, we have an object aBook, which is an instance
of our CRC-card (class) Book from Figure 1. Usually, we use large post-it notes
for the object cards and develop the RPD successively on the whiteboard or a
large sheet of paper.

Objects that “know” each other (i.e. are in the same scope) are connected
by a line. Two objects a:A and b:B can, however, only be connected when
(at least) one of the corresponding CRC-cards for A and B lists the other as a
collaborator. During the role-play, communication is only possible between con-
nected object cards. Please note that being collaborators only means that there
can be communication. In an actual scenario, communication paths must often
first be established explicitly, before connecting lines can be drawn. Requests
(messages sent) are documented on the connecting lines between the communi-
cating objects. A request corresponds to an actual service requested by an object
and must correspond to a responsibility listed on the CRC-card corresponding
to the serving object.
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1: on loan?
aBook: Book

title: 1984
on loan: no

no
: Librarian

: Librarian

2: check out

1: on loan?
aBook: Book

title: 1984
on loan: no yes

no

2: check out return date: aDate: Date

Fig. 2. Steps of a scenario “borrowing book ‘1984” ’ (slightly simplified)

In Figure 2 the requests on loan? and check out correspond to Book’s
responsibilities knows whether on loan and check out, respectively (see Fig-
ure 1). A small arrow denotes the direction of a request2. A simple numbering
scheme is used to keep track of the ordering of requests. Requests can be anno-
tated with data flow for example to document information that is returned.

We do not prescribe any specific notation for the parameters of requests or
the object properties. Our main design goal was simplicity. The usage of RPDs
should add as little as possible overhead to the role-playing.

As soon as the knowledge of an object changes, the corresponding object card
is updated accordingly. In Figure 2 the request on loan? returns a no and af-
ter checking out aBook its property on loan is changed to yes. Furthermore,
we add a new Date object, since Book objects also have a responsibility knows
return date. Please note that this was only possible, since Date is a collabo-
rator for responsibility check out. At the end of a scenario role-play, the RPD
documents exactly what happened, including relevant state changes. If necessary,
this information could be easily translated into a UML sequence diagram, for
example.

5 The CRC/RPD-Process: Object-Oriented Analysis

The CRC-card approach is particularly well suited, when the problem is not well
defined. During Object-Oriented Analysis, the problem and application domains
are analysed to understand the problem at hand and identify the things that
actually should be done and those that are outside the system that should be
developed.

A typical process includes the following steps [2,5]:

– identify candidate classes (see Section 5.1),
– filter the list of candidates (see Section 5.2),

2 This particular notation is borrowed from the Booch notation’s object diagrams [22],
that did not make it into the UML standard.
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– create CRC-cards for the remaining candidates (see Section 5.3),
– allocate responsibilities to CRC-cards/classes (see Section 5.4),
– define scenarios to test/evaluate the model (see Section 5.5),
– prepare the scenario role-play (see Section 5.6),
– perform the actual role-play (see Section 5.7),
– record scenarios (see Section 5.8), and
– update CRC-cards and scenarios (see Section 5.9).

Please note that these steps are not performed in strict sequence. Discussing
responsibilities, for example, needs to be done to make informed decisions about
the meaningfulness of candidate classes. The last three steps are always per-
formed in parallel.

5.1 Identify Candidate Classes

The purpose of this first step is to generate a list of candidate classes that might
be of interest for the problem at hand; classes that potentially take “responsibil-
ity” for some part of the functionality the system. Good candidates should have
properties and behaviour. If objects differ only in the values of their properties,
we consider them as objects of the same class. All books in a library for example
would be considered as objects of the class Book (see Figure 1).

Classes should be named by a noun, noun phrase or adjective in singular form.
Anything that cannot be named given these restrictions is most probably not a
suitable candidate for a class (but maybe a responsibility).

An initial list of candidates can be generated in a brainstorming session. A
simple approach to support this step is the noun extraction approach; to under-
line all nouns and noun phrases in the problem statement. One should keep in
mind that brainstorming is an idea-generating technique, not an idea-evaluating
technique. During the brainstorming session there should be little or no discus-
sion on the suitability of candidate classes. All candidates should be recorded.
Discussions should be deferred until the next step (Filter Candidates). It is rec-
ommended to take turns (give every voice a chance) and collect all candidates
visibly for all participants for later evaluation.

5.2 Filter Candidates

The goal of this step is to cut down the number of candidates to a manageable
size, preferably no more than ten. All candidates irrelevant for the problem at
hand are discarded. According to Wirfs-Brock and Kean, “[c]andidates generally
represent work performed by your software, things your software affects, infor-
mation, control and decision making, ways to structure and arrange groups of
objects, and representations of things in the world that your software needs to
know something about” [10, p 106]. It should be noted that it is not necessary
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to find all candidates at once. Further candidates will likely be uncovered during
later steps.

The following guidelines can be useful for the filtering process:

– Merge synonyms into the candidate with the most suitable name.
– Merge candidates with largely overlapping responsibilities; if possible into a

single abstraction that covers all candidates. In a library system, for example,
there might be different kinds of entities that can be borrowed, like books,
music, films, and software. If these are handled in exactly the same way by
the system, it might be better to merge them into a new candidate, like
for example “Lendable” and treat them as of the same kind (the original
candidates might also be subclasses of the new common candidate).

– Discard candidates that cannot be properly named by a noun, noun phrase,
or adjective. One should look particularly for noun-verbs describing services.
Such candidates are often responsibilities of other candidates.

– Discard candidates that seem insignificant or vague, especially if their pur-
pose cannot be described properly.

– Discard candidates that describe user interfaces or implementation details.
Usually such details are not important to understand the problem. Consid-
ering them too early might constrain our solution space.

– Discard candidates that model (simple) properties of other candidates.
– Discard candidates that do not have any responsibilities.
– Discard candidates that are outside the system, like users or external systems.

They are only needed, if the system’s behaviour depends on their properties.
– Discard candidates that are outside the actual problem space. Candidates

should only be based on actual or highly probable requirements. Although
it might be important to foresee changes, one should focus on the problem
at hand. Otherwise the model might become unnecessarily complex or even
solve the wrong problem.

– Discard candidates that refer to the system itself, like “the system” or “the
application”.

– Discard candidates that represent objects, but make sure there is a candidate
representing a corresponding class. Such a class is needed even when there
only is a single instance (Singleton).

5.3 Create CRC-Cards

For each remaining candidate class a CRC-card is produced, according to the
description in Section 3. Class names should be chosen carefully. A good name
is specific and descriptive and can therefore easily be associated with a class’
responsibilities. In a library system, for example, Borrower is a much better
class name for the library end users than User, Person, or Client.

The back of the card should be used to briefly and clearly describe the pur-
pose of the class to make sure that the class name is interpreted correctly. If this
is not possible using a sentence or two, the class’ purpose might be unclear or it
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has too many of them. In the latter case, it should be split up to get classes with
single unambiguous purposes.

5.4 Allocate Responsibilities

Responsibilities belong to the service providers and are listed on the CRC-cards
that provide the services. Responsibilities should be evenly distributed among
classes. There should be no single class responsible for all knowledge or all be-
haviour, so-called data or behavioural “god classes” [23].

Some responsibilities are obvious from the problem description or application
domain. In a library system, for example, there need to be a responsibility for
lending books. It seems therefore sensible to add a responsibility check out to
the Book card, since books have some knowledge relevant for this responsibility
(knows whether on loan, see Figure 1). Further responsibilities could be found
by looking for verbs or adjectives in the problem description, similar to the noun
extraction approach for finding candidate classes. Again, it is not at all necessary
to identify all responsibilities up front. It is sufficient to identify a number of key
responsibilities sufficient for a meaningful scenario role-play.

“[R]esponsibility denotes both duty and power . . . an object should fulfil its
obligations, and should have the ability to accomplish them” [3, p 203]. For each
responsibility, it must be considered whether the objects need collaborators to
fulfil their obligations. If collaborators are needed, their names must be entered
on the CRC-card. This “delegation” of sub-responsibilities might also imply new
responsibilities for the collaborators and their collaborators, etc. Quite often,
several classes have similar or even identical responsibilities. This is a sign for
close collaboration. However, there should not be too many overlapping respon-
sibilities; in such cases classes should be merged (see Section 5.2). On the other
hand, one must also avoid having a single class responsible for everything im-
portant in the model. In a library system, for example, borrowing a book is a
quite complex responsibility that will likely require close collaboration of many
objects.

At this stage it is very important to avoid discussing implementation details.
They might lead to premature design decisions that prevent the team from iden-
tifying alternative distributions of responsibilities.

5.5 Define Scenarios

Scenarios are the test cases for the CRC-card model. Each scenario represents
a specific example of system usage. It is like a script in a play that is enacted
by the objects defined in the CRC-card model. When enacting a scenario the
team follows the responsibilities and collaborations defined on the CRC-cards to
validate whether the model can handle this particular test case.

Scenarios must be concrete and clearly defined. The combinatorial explosion of
possible decisions will otherwise make the role-playing unmanageable. A scenario
like A user borrows a book involves numerous special cases, like the following:
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the borrower might not be user or not allowed to borrow books for some other
reason; the library might not have the book or if it has it might be on loan; how
will borrowing affect the “state” of the borrower and the book, etc.

A good scenario compares quite well to a traditional system test case and
comprises (1) the functionality to be “tested”, (2) actual test data (assumptions),
and (3) expected result(s). A scenario for a library system could be the following:

John Doe will borrow the book 1984; John Doe is a registered borrower
and has never borrowed anything before; the book 1984 is available. After
borrowing, John Doe will be registered as borrower of 1984 and 1984 will have
a valid return date.

To fully validate a model, very many scenarios are needed. For example to test
what happens when John Doe is not a registered borrower, has outstanding fines,
or overdue books. What if the book 1984 is on loan, etc? It is important to define
a limited number of scenarios that nevertheless cover all interesting situations.

Scenarios need not cover a complete system function, like the example above.
It is meaningful to split long or complex scenarios into parts that can be handled
separately. When role-playing complex scenarios, the parts that have been tested
already can then be skipped over.

5.6 Prepare Scenario Role-Play

A CRC-team should consist of about 4–6 people with different backgrounds.
During analysis it is for example useful to have domain experts, customer repre-
sentatives or end users in the team. This helps to uncover missing requirements
and helps team members to learn more about the domain, the actual system and
its usage environment.

Before commencing the actual role-playing, the group members should make
sure that they agree on all CRC-card descriptions. One team member should act
as a scribe. The scribe records the role-play as it unfolds and helps the team to
stay on the track of a scenario.

Each team member is responsible for a selection of CRC-cards assigned to him
or her. This means that he or she is also responsible for all object cards that are
instances of these CRC-cards and will therefore act out all objects corresponding
to those cards.

Before a role-play is started an initial RPD is drawn that models the starting
“state” of the scenario. All assumptions of the selected scenario must be reflected
in this initial RPD. For the example scenario in Section 5.5, the initial RPD
could look like the one in Figure 3. In this RPD, we have assumed two books
and two borrowers. We have assumed a Librarian object that “knows” all books
and all borrowers. We furthermore assume that there is some userAgent object
that knows about the :Librarian object. The active object is marked by an
asterisk.
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book2: Bookbook2: Book
title: The Hitchhiker's guide to the 
Galaxy
on loan: no book1: Book

titl 1984

userAgent

title: 1984
on loan: no

: Librarian

borrower1: Borrower

borrower2: Borrower
name: Jane Smith
borrowed books: none

bo o e o o e
name: John Doe
borrowed books: none
total fines: 0

borrowed books: none
total fines: 0

Fig. 3. Possible starting situation for scenario John Doe will borrow the book 1984 with
object userAgent marked as active

5.7 The Actual Role-Play

By means of role-playing scenarios the team kind of simulates how the future
system would work, assumed it is build according to the CRC-card model.

Acting out a scenario is done by saying aloud what a certain object will do
upon a request. All acting is restricted to the responsibilities noted on the CRC-
cards and one must act only when it is one’s “turn”. The scribe can step in when
user interaction or interaction with external systems is required.

During the first role-plays, many missing details will be uncovered and it will
usually take a few scenarios before the model stabilises. It is strongly recom-
mended to start with a very simple scenario for a “normal” case. Otherwise,
there is a high risk of getting lost in discussions about large numbers of missing
details.

What does John Doe will borrow the book 1984 mean for our CRC-card model?
How would this scenario translate into object responsibilities?

– Which object will start up the scenario? The corresponding object card in
the RPD is marked as “active” and “control” is given to the holder of the
corresponding CRC-card (the scribe in case of interface objects).

– What does the active object need to know to perform the requested work?
Does it have the necessary responsibilities to fulfil the request? The active
object says aloud all actions the active object would perform. Upon the
request “are you on loan”, the team member for the book1 object might act
as follows

OK, I should know whether I am on loan (since there is a corresponding
responsibility on the Book CRC-card). Currently, I am not on loan (since
the entry on the corresponding object card shows on loan: no).
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After a request has been successfully handled, control goes back to the re-
quester.

If responsibilities are missing on the corresponding CRC-card, the team
discusses whether they should be added or if some alternative path should
be tested. When CRC-cards are updated, their corresponding object cards
are updated accordingly. If too much is missing to continue the role-play, the
role-play is stopped.

– Are further collaborators needed to fulfil the request? Are their object cards
present in the current RPD? Are their object cards connected to the cur-
rent object’s object card? Note that communication is only possible between
connected object cards and to establish a connection with another object, it
must know who the actual collaborator is.

Object cards can be added to the RPD as necessary and connected to the
objects that know about them. For dynamically created objects it is impor-
tant to know which object is responsible for its creation. An object always
knows the objects it created. Other objects must be somehow “introduced” to
it. This can for example be done through a request carrying this information
(a “parameter” as in request 4: borrow book1 in Figure 4). Collaborators
can also be obtained as a result of a request. A search request for a book for
example might return a specific book object.

– It is important to carefully walk through a scenario step by step. Sometimes
however, it can be necessary to skip over certain details to be able to come to
an end with a scenario. In such cases it is important to address these details
later, for example by defining additional scenarios.

5.8 Record Scenarios

The scribe records scenarios as they unfold during the role-play. The scribe keeps
track of all activities and updates the RPD accordingly. Recording scenarios in
this way is very useful in several ways.

– During the role-play, the CRC team can easily check the current knowledge
of the involved objects or whether two objects actually can communicate.
This keeps the role-play on track and minimises the number of details the
CRC team needs to memorise.

– Completed scenarios can be easily replayed after changes to the CRC model
to verify whether they still work.

– They can be used to explain to others how the system works.
– It is easy to backtrack a few steps after a problem or after changing some

decisions and resume the role-play from a consistent state.
– They can guide the implementation of the system.
– They can be used as system documentation.

Figure 4, shows the resulting RPD after completion of the scenario John Doe will
borrow the book 1984 from Section 5.5. It should be noted that the connecting line
between book1 and borrower1 was not available at scenario start (see Figure 3).
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It is drawn as an effect of request 4, after the :Librarian object has identified
the actual objects and can “tell” borrower1 which actual book object it has to
“talk to”.

Fig. 4. RPD from Figure 3 after completion of scenario John Doe will borrow the book
1984

5.9 Update CRC-Cards and Scenarios

The scenario role-plays will likely uncover many problems in the CRC-card model.
Whenever problems are detected, they need to be discussed and solved properly.
All changes to the model must be made in a consistent way. Whenever a CRC-
card is changed, scenarios and RPDs must be updated accordingly. Extensive
changes might make it necessary to add scenarios covering the new or changed
parts.

Missing responsibilities or collaborators can be added to suitable CRC-cards
during the role-play. However, one should keep in mind that responsibilities
should be distributed evenly and classes should have a clear single responsibility.
Whenever there is no room left on a CRC-card, it should be considered to split
it up.

6 The CRC/RPD-Process: Object-Oriented Design

The CRC/RPD approach can also be successfully applied in the design phase.
The models from the analysis phase are refined and extended by addressing
high-level implementation issues, like for example the actual organisation, man-
agement and storage of objects. One can also start considering programming
language issues, like for example typing, visibility, packaging, or the usage of
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library classes. Language dependencies should, however, be kept at a minimum
to make the design as general as possible.

In the design phase, responsibilities will gradually be refined into actual at-
tributes and methods. For the collaborators it has to be discussed how actual
collaborations are established. This can be done by object creation, passing ar-
guments, or receiving results.

In a good design classes should have single and well-defined purposes. As much
information as possible should be hidden within the classes. Classes should com-
municate with as few as possible other classes and all communication should be
explicit (no hidden collaborators). If communication must take place, as little as
possible information should be exchanged. Following these principles minimises
dependencies between classes and changes will propagate to few other classes, if
at all.

The CRC/RPD approach can be applied for design exactly as described for
analysis. The only difference is that more attention is given to solution domain
issues. Evaluating designs in this way has many advantages.

– Models are easy to change; many design alternatives can be tested.
– Design decisions and the interactions between objects are well documented.
– It is less likely that implementation will run into problems caused by bad

design decisions.
– The resulting designs will be less vulnerable to changes, since many alterna-

tives have already been tested.

7 An Example Step-by-Step

In this section, we present a small case study for the application of our approach.
We are modelling a library system for a university department, which is a slightly
revised version of the CRC case study presented by Wilkinson [9].

This application will support the operations of a technical library for a
university department. This includes the searching for and lending of technical
library materials, including books, videos, and technical journals. All library
items have a registration code (research area code + running number).

Each borrower can borrow up to 10 items. Each type of library item can be
borrowed for a different period of time (books 6 weeks, journals 3 days, videos
1 week). If returned after their due date, the employee will be charged a fine,
based on the type of item (books 5:-/day, journals and videos 20:-/day).

Materials will be lent to employees only if they have (1) no overdue lendable
items, (2) fewer than 10 articles out, and (3) total fines less than 100:-.

In the following subsections, we apply the CRC/RPD approach step by step
as described in Sections 5.

7.1 Find Candidate Classes

Using the noun extraction approach, we underline all noun phrases in our prob-
lem description.
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This application will support the operations of a technical library for a
university department. This includes the searching for and lending of technical
library materials, including books, videos, and technical journals. All library
items have a registration code (research area code + running number).

Each borrower can borrow up to 10 items. Each type of library item can be
borrowed for a different period of time (books 6 weeks, journals 3 days, videos
1 week). If returned after their due date, the employee will be charged a fine,
based on the type of item (books 5:-/day, journals and videos 20:-/day).

Materials will be lent to employees only if they have (1) no overdue lend-
ables, (2) fewer than 10 articles out, and (3) total fines less than 100:-.

Discarding the most obvious duplicates and synonyms, we get the follow-
ing initial list of candidates: application, operations, technical library,
university department, searching for, lending of, technical library ma-
terials, books, videos, technical journals, library items, registration
code, research area code, running number, employee, type of library item,
period of time, due date, borrower, total fines, users, overdue lendable
items, articles.

After further brainstorming, the CRC team might propose librarian as a
further candidate and recognise further items that a library might need to handle,
like for example software and audio.

7.2 Filter Candidates

It is important that the team members agree on a candidate’s description and
purpose. To start the discussion, the team member who proposed a candidate
should explain his or her motives for doing so. In the following, we will briefly
discuss all candidates from the list above.

– Application; refers to the system itself =⇒ Discard.
– Operations; irrelevant noise =⇒ Discard.
– Technical library; might also refer to the system itself. However, in this

case it seems to refer to the stock or collection of things available for lending
in the library. In a library system, we would need a class responsible for
keeping track of the stock =⇒ keep as Library.

– University department; outside the problem domain =⇒ Discard.
– Searching for and lending of; verbs used as nouns =⇒ responsibilities

=⇒ Discard.
– Technical library materials; the stock of the library. Important, but we

have already chosen Library as responsible for that =⇒ Discard.
– Books, videos, technical journals, software, and audio; the objects in

the library that represent books, videos, etc. They seem to be very similar
with respect to borrowing. However, the problem description lists two dif-
ferences; overdue fines and lending. A discussion might also reveal further
differences in responsibilities. Videos and audio objects, for example, might
have knowledge about playing times and software object need knowledge
about system requirements =⇒ keep them all, but focus on the most impor-
tant one (Book) first.



Using Role-Play Diagrams 323

– Library items; a general term for books, videos, etc. Useful for keeping to
keep the responsibilities that are common for all library items irrespective
of their actual type in one place =⇒ keep Library Item as superclass for
Book, Video, etc.

– Registration code, research area code, and running number; these are
needed in our system, but there are no specific responsibilities connected to
them. They are just properties of Library Item objects. This might however
be different, if the system is responsible for assigning these codes in some
automatic way. According to the current problem description, this is not the
case =⇒ Discard.

– Employee; these are the borrowers in the library system. However, there are
also borrower and users in the present list of candidates. From the problem
statement it is not clear whether it is the responsibility of our system to
check, if a borrower actually is an employee. For now, we assume that this
responsibility is outside the scope of the present library system and the
system only needs information about actual borrowers (whoever they are).
In this case, borrower would be the best and most specific term to name a
class responsible for borrower information and activities =⇒ keep Borrower
and discard Employee and User.

– Type of library item; this information is already encoded in the different
classes for the different types of library items =⇒ Discard.

– Period of time; the maximum time a certain type of library item can be
borrowed. This is just a property of library items =⇒ Discard.

– Due date; this seems quite similar to Period of time. However, in contrast
to Period of time there are actual responsibilities for due dates. Somehow,
we need to check whether a due date has been passed. We also need a class
responsible for the generation of due dates, when library items are borrowed
=⇒ keep Date.

– Fine; there are different kinds of fines. Each type of library item has a poten-
tially different fine per day to compute the fine for late returns. Borrowers
have a total fine that must not exceed a certain amount. This amount is
another kind of fine. However, all these fines are simple properties in differ-
ent classes and do not have any specific responsibilities on their own =⇒
Discard.

– Overdue lendable items; knowing about overdue lendable items is a re-
sponsibility of borrowers. There are no specific responsibilities for overdue
lendable items =⇒ Discard.

– Articles; used here as a synonym for library items =⇒ Discard.
– Librarian; this could be the class responsible for taking user requests,

like checking in, checking out, and searching for library items. However, if
Librarian is responsible for checking in, checking out, and searching, there
is nothing left for Library, which already is responsible for the stock of
library items. On the other hand, merging Library and Librarian into a
single class might lead to a class with too many responsibilities =⇒ keep
both Librarian and Library.



324 J. Börstler

When reconsidering this list, Lendable is a much better class name than
Library Item. This gives us the following list of candidates: Lendable, Library,
Librarian, Book, Video, Journal, Software, Audio, Borrower, and Date.

7.3 Create CRC-Cards and Allocate Responsibilities

The responsibilities for Lendable, Book, Video, Journal, Software, and Audio
are almost identical. To simplify the role-play, it is sufficient to start with one
“representative” (Book). This will simplify our further activities considerably. Our
initial set of CRC-cards will comprise six cards Lendable, Library, Librarian,
Book, Borrower, and Date (see Figure 5).

Fig. 5. CRC-cards for the Library Example

7.4 Define Scenarios

Scenarios are like test cases, we need a situation we want to test, specific test data
to perform the actual test and a definition of the expected outcome. Without
defining expected results, we cannot know whether the role-play actually was
successful. As described in Section 5.5, we cannot start with a general scenario,
like “what happens when an employee borrows a book”. We would very likely get
lost in making decisions about irrelevant details.
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We will start with scenarios that cover the most basic and important func-
tionality of the system, like checking out books. Furthermore, we take the non-
problematic cases first to establish a stable working model. For the library ex-
ample, we start with the following scenario:

John Doe will borrow the book 1984. John Doe is a registered borrower in
the system. Currently he has not borrowed any items and has no outstanding
fines. The book 1984 is available and not on loan. After borrowing, John Doe
will (still) be registered as borrower of 1984 and 1984 will have a valid return
date.

Following this scenario, it is sensible to try some variations of this scenario
for example where 1984 is on loan or John Doe has borrowed 10 books already
(and therefore is not allowed to borrow more). Another important key scenario
is returning books, like for example:

John Doe returns the book 1984 on time. John Doe is a registered borrower
in the system. Currently he has no outstanding fines. After borrowing, John
Doe will no longer be registered as borrower of 1984. 1984 will no longer be
on loan.

7.5 Prepare Group Session

A scribe is appointed and the six main CRC-cards are distributed among the
other team members. Considering the scenario John Doe will borrow the book
1984 from Section 7.4 and the CRC-cards in Figure 5, we define the initial RPD
for our role-play (the starting “state”).

Fig. 6. Initial RPD for the scenario John Doe will borrow the book 1984
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Close examination of our model reveals that there is no responsibility for
keeping track of the borrowers. However, we have two classes that seem suitable
for that; Library or Librarian. Since Library is already responsible for keeping
track of all lendable items, it seems reasonable to add the responsibilities knows
all borrowers and search for borrower (with collaborator Borrower) to the
Library CRC-card.

For the role-play, it is sufficient to assume there are two books and two bor-
rowers in the library. This results in the RPD shown in Figure 6. The currently
active object is marked by a star. Please note that the Book objects do not know
anything about the Borrower objects.

When role-playing a scenario, the following activities are carried out for each
step in the scenario.

– Identify the currently active object and the current request it has to serve.
– If the request cannot be fulfilled directly, determine a reasonable (sub-) task

to support the request.
• Identify the object in the current RPD that has a responsibility matching

this (sub-) task.
If there is no such object, check whether there is a CRC-card with a

matching responsibility. If so, evaluate why a corresponding object card is
missing and create it eventually. If not, add the required responsibility to
a suitable CRC-card and update the corresponding objects cards accord-
ingly. Missing objects can indicate a problem with the model and/or sce-
nario. Sometimes these problems cannot be solved easily and the model
and/or scenario must be revised before the role-play can be continued.

• Check whether the object in question is known to the currently active
object. If not “announce” it somehow to enable communication (e.g. by
providing a parameter).

• The currently active object can now request the (sub-) task from another
object and control is transferred to the object that provides the requested
service;

• The team member responsible for this object describes aloud (in first
person) how the object provides this service.

– When the request is completed, control is transferred back to the requesting
object.

7.6 Carry Out and Record the Actual Role-Play

The role-play starts at userAgent where we assume that someone has input
the name of the borrower and the book title. We “translate” that into the first
request 1: check out ‘1984’ to ‘John Doe’.

In the remainder of this subsection, we present a transcript of a hypotheti-
cal but realistic role-play for the example scenario. The commentary illustrates
problems that would typically be voiced by the scribe or another team member.
Due to space limitations transcript is shortened slightly. The full transcript can
be found in [5].
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userAgent: I request from theLibrarian that the book with title “1984” is
checked out to borrower “John Doe”. I ask theLibrarian, since this is the
only object I know.

Commentary: Control is transferred to theLibrarian object and the request is
recorded in the RPD (see Figure 7).

Fig. 7. RPD after the first step

theLibrarian: Fine, I actually have a responsibility check out lendable. To
check out a book to a borrower, I have to check whether the book is available
and whether the borrower is allowed to borrow. First, I ask the book whether
it is on loan.

Commentary: How would you ask the book? You don’t even know whether the book
is in the library stock. Furthermore, you can only ask the particular book if you
“know it” (i.e. are connected to it in the actual RPD).

theLibrarian continues: OK. I do not know anything about books in stock. My
check out lendable responsibility has collaborators Lendable and Borrower.
However, I cannot ask them, since I do not know the actual objects yet. I
should probably ask theLibrary, since Library is the class that keeps track
of the stock.

Commentary: The group discusses the problem. The Library CRC-card already has
a suitable responsibility (search for lendable) and it is therefore reasonable to
add Library as a collaborator to the check out lendable responsibility of the
Librarian CRC-card. The Librarian CRC-card is updated and the role-play is
resumed.

theLibrarian continues: I request from theLibrary object to search for
lendable with the title “1984”.

theLibrary: I can do that. I have responsibilities knows all available lend-
ables and search for lendable. I go through all lendable items in stock
and check if there is one with title “1984”. I can do that, since I have Lendable
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as a collaborator for search for lendable and each Lendable object knows
its title. When I’m done, I know that book1 is the Book object you are
looking for.

Commentary: Now theLibrary has “introduced” book1 to theLibrarian, which can
now communicate with book1 directly. The scribe draws a line between object
cards book1 and theLibrarian (see Figure 8). Control goes back to the requester
(theLibrarian). Please note that we did not discuss in detail how the search is
actually carried out. It is sufficient to know that it could easily be done by compar-
ing titles of all known lendable items. We have also made a small “optimization”
and did not explicitly ask all lendable items for their titles.

Fig. 8. RPD after book1 has “answered” no on the request on loan from theLibrarian

theLibrarian: Now I can ask book1 whether it is available.
book1: I have a responsibility knows whether on loan and my object card cur-

rently says no, i.e. I’m not on loan.
theLibrarian: Now I can continue with the check out. I also need to check

whether “John Doe” is allowed to borrow. As with the book, we first have to
get the actual borrower object. I request from theLibrary object to get me
the borrower with the name “John Doe”.

Commentary: This would work exactly as for looking up “1984” and we’ll skip over
the details.

theLibrarian: Now I need to check whether borrower1 is allowed to borrow.
However, I don’t know how. I do not know anything about the rules for
borrowing. Therefore, I ask borrower1 directly; are you allowed to borrow?

borrower1: I don’t know. I know my borrowed items and my overdue fines, but
I don’t know the rules for borrowing.

Commentary: The CRC team interrupts the role-play to discuss that problem. Who
should have the responsibility to know whether a borrower is allowed to borrow?
In the real world, this would be the librarian. However, in the software world the
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borrower itself keeps track of its borrowed items and overdue fines3. A borrower
could therefore easily check whether it is allowed to borrow without any need to
collaborate with other objects. We add the responsibility checks whether allowed
to borrow to the Borrower CRC-card. The role-play is resumed.

borrower1 continues: I still do not know the rules for borrowing.
Commentary: The team decides to add another responsibility knows rules for

borrowing. How this is actually realised is an implementation detail that will be
discussed in the design phase. The role-play is resumed.

borrower1 continues: OK. My object card says that I have not borrowed any
books and that I do not have any overdue fines. Therefore, I can answer yes,
I am allowed to borrow.

theLibrarian: Now we can finally check out book1 to borrower1. First, I re-
quest book1 to check itself out.

book1: I actually have a responsibility check out. When I check out myself, I
must also take care of my responsibility knows due date. However, I do not
know how to compute dates. I do not even know how long I can be borrowed.

Commentary: The rules for computing return dates differ for different types of
Lendable. It is therefore reasonable to let the different types of Lendable be re-
sponsible for that. However, since all lendable items must have this responsibility,
we add knows maximum borrowing time to Lendable. The role-play is resumed.

book1 continues: I request Date to create a new return date 6 weeks from now.
Commentary: To create new objects it is sufficient to have the corresponding class

as a collaborator. We can therefore create a new Date object and connect it to
book1 (see step 7 in Figure 9).

Date: I can do that. I have responsibilities knows current date and compute
new dates.

Commentary: The scribe adds a new object card returnDate to the RPD and con-
nects it to book1. Property on loan on book1’s object card can now be changed
to yes.

theLibrarian: Now I can finally request borrower1 to remember that it has
borrowed book1.

Commentary: Now, we can draw a line between borrower1 and book1, since theLi-
brarian has “announced” book1 to borrower1. Since there are no responsibilities
for adding and deleting lendable items, we must first add those to the Borrower
card.

borrower1: Now I can add book1 to my borrowed items.
theLibrarian: Now I’m done.
userAgent: I’m done too.

As pointed out earlier, there is no single correct way to model a system. In the
role-play above, theLibrarian is the most active part, since it “executes” most
of its check out responsibility on its own. However, this could have been done
in many different ways. For example, theLibrarian could have delegated more

3 Please note that a borrower cannot cheat in the software world. In the real world the
librarian keeps own records about all borrowers’ status. In the software world, these
records are the actual borrower objects. There is no need for double bookkeeping.
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Fig. 9. Final RPD for the scenario John Doe will borrow the book 1984

sub-responsibilities to borrower1. The only necessary change to our earlier CRC-
model would be to add a responsibility borrow item with collaborator Lendable
to the Book card. The final RPD for this new model is shown in Figure 10.

This alternative way to model the system would have several advantages. The
model would be less Librarian-centric and the responsibilities would be dis-
tributed more evenly throughout the system. On the other hand, this alternative
seems less “natural” and therefore more difficult to understand.

Fig. 10. Final RPD for the scenario John Doe will borrow the book 1984 . . . for an
alternative distribution of responsibilities
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8 Possible Extensions or Improvements

Currently, we use simple connecting lines to express that two objects “know”
each other. Adding semantic details to these associations (for example using
UML syntax) could easily be done. However, we refused to do so to minimize
the complexity of the diagrams. If more detailed information is needed we suggest
using the RPDs as a starting point for documenting scenarios in full-scale UML
interaction diagrams.

We have tried certain “syntactic sugar” to make the diagrams more expressive.
Colour can for example be used to support the distinction between a scenario’s
starting state and the information that is added or changed during the role-play.
The numbering scheme can for example be extended to also include the changes
to object properties. That makes it easier to identify the changes that correspond
to a certain requests. We leave such improvements to the CRC-teams, who are
free to adapt the notation to their current needs. It is important to keep the
diagrams as simple and flexible as possible (i.e. in the spirit of the CRC-cards
themselves). The diagrams must support and not hinder the role-play activities.

9 Experience

We have started introducing CRC-cards in our introductory programming courses
2002 and added RPDs 2004. Our experience so far is quite promising. Teachers and
TAs report fewer student problems with role-play activities, since we introduced
RPDs.

Incorporating RPDs into the overall approach is no problem. The actual role-
playing works exactly as without RPDs. The CRC-cards are distributed and the
group members act out the scenario. The difference is that we now make a clear
difference between classes and instances; CRC-cards represent classes and object
cards represent their instances. The RPDs help students to actually record sce-
narios as they evolve. This makes them an excellent tool for consistency control
and recovery. In addition they provide an excellent tool for the documentation
of scenarios.

We have also analysed data from the student evaluations of all our intro-
ductory programming course offerings between fall 2001 and spring 2005. The
syllabus during this time has been quite stable with one major exception. Since
spring 2003, we no longer teach GUIs in the first course. A compilation of re-
sults can be found in Table 1. We have grouped the 12 offerings into four over-
lapping groups; courses covering neither CRC-cards nor RPDs, but including
GUIs (column GUI, 2 offerings); courses covering either CRC-cards or RPDs
(column CRC/RPD, 9 offerings); courses covering “pure" CRC-cards (column CRC,
6 offerings); and courses using RPDs to complement CRC-cards (column RPD,
3 offerings). One course teaching GUIs and CRC-cards was dropped from the
compilation, since it did not fit any of the categories. More details about our
experience can be found in [24].
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Table 1. Student evaluations for 11 (of 12) courses spring 2001–spring 2005

Course category GUI CRC/RPD CRC RPD
sample size 126 267 156 111
course quality 4.04 3.34 3.26 3.51
student effort 3.52 3.60 3.46 3.89
positive/negative
CRC/RPD

n.a. 2.55 2.78 2.25

%-age of students
reporting problems

55.61 54.23 61.91 38.87

In Table 1, sample size is the number of students who submitted an eval-
uation form. On average 45.34% of the registered students of a course submit-
ted a form. Course quality and student effort are measured on a Likert
scale (1..5), where 1 means very low, 3 means average, and 5 means very high.
Positive/negative CRC/RPD is the number of students clearly positive divided
by the students clearly negative towards using CRC and/or RPDs4.

As we can see from table 1, the %-age of students reporting problems has
dropped since we introduced RPDs. Introducing CRC-cards and even more in-
troducing RPDs also had an impact on the passing rates of our introductory
programming courses. Figure 11 shows that passing rates largely followed the
number of students applying for each seat in our Computer Science programs,
except for two years; 2001, when we introduced CRC-cards and 2004, when we
introduced RPDs. Since 2004, it furthermore seems that we could sustain our
improved passing rates.

We have also taught several industry courses using this approach. However,
we do not have actual data about its usage in industry.
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Fig. 11. Key data for the introductory programming course 1997–2006

4 The actual question was “Have the CRC exercises been rewarding"?
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10 Summary

CRC-cards are a simple yet powerful tool for collaborative object-oriented mod-
elling. They help to explore a problem space and to better understand the prob-
lem at hand. Using scenario role-play, different object-oriented models can be
evaluated in an early stage of software development. The approach described
here gives a good understanding of the objects, responsibilities, and interactions
involved in a solution for the problem.

The main advantages of the approach can be summarised as follows.

– The approach is low-tech and independent of programming languages. This
makes it well suited for collaborative modelling in teams with people with
very different backgrounds.

– The CRC-cards and RPDs form an excellent documentation of system anal-
ysis and initial design of a system. Using the RPDs one can easily see how
the classes are supposed to work.

– Through scenario role-play, one can easily and systematically test alternative
models using different sets of CRC-cards and varying responsibilities. This
supports meaningful testing long before any code needs to be written.

– CRC-cards have shown to be useful in educational as well as in professional
settings.

– Supporting the role-playing with RPDs has shown to be useful in educational
settings.
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Abstract. Software Reverse Engineering is the process of extracting

(usually more abstract) information from software artifacts. Graph-based

engineering tools work on fact repositories that keep all artifacts as

graphs. Hence, information extraction can be viewed as querying this

repository. This paper describes the graph query language GReQL and

its use in reverse engineering tools.

GReQL is an expression language based on set theory and predicate

logics including regular path expressions (RPEs) as first class values.

The GReQL evaluator is described in some detail with an emphasis on

the efficient evaluation of RPEs for reachability and path-finding queries.

Applications for reverse engineering Java software are added as sample

use cases.

1 Introduction

In software engineering, modeling is the process of abstracting parts of reality
into a representation that abstracts from unnecessary details and allows auto-
matic processing. Models may be either descriptive, if they represent existing
artifacts, or prescriptive, if they are used as a blueprint for artifacts to be con-
structed.

In the domain of software engineering tools, a modeling approach for software
engineering artifacts has to be chosen. The earliest tools for handling software
artifacts were compilers which extracted tree models from program artifacts by
a combined procedure of scanning and parsing, leading to abstract syntax trees
as program models. Trees are easily representable in main memory, and there
are many efficient algorithms for handling trees.

In general, trees are not powerful enough to keep all the necessary informa-
tion about software engineering artifacts in an integrated form. As an example,
definition-use chains or other additional links between the vertices of a syntax
tree lead to more general graph-like structures. As a consequence of these short-
comings of trees Manfred Nagl [29] proposed to use graphs to represent source
code in compilers and beyond that for all other artifacts in software engineering
environments.

In this paper, the TGraph approach to graph-based modeling [15] is used
to model software artifacts in software engineering tools. The generic graph
query language GReQL is introduced which supports information extraction

G. Engels et al. (Eds.): Nagl Festschrift, LNCS 5765, pp. 335–362, 2010.
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from graph repositories. An overview on GReQL is given and its central feature,
the regular path expressions, is described in more detail. The focus is on the
evaluation of path expressions to derive reachability and path information.

Section 2 describes the use of TGraphs as software models, Section 3 summa-
rizes the necessary definitions on graphs and regular expressions, and Section 4
introduces the query language GReQL. In Section 5 the range of regular path
expressions supported by GReQL is introduced, and the algorithms for evaluat-
ing these expressions are described in detail. Section 6 gives some examples of
GReQL queries in reverse engineering, Section 7 discusses related work including
some performance data, and Section 8 concludes the article.

2 Software

A software system does not only consist of its source code, but also of all other ar-
tifacts that are constructed and deployed during its development and its usage.
These additional artifacts comprise a wide range of documents from require-
ments specifications, design and architecture models, to test cases and instal-
lation scripts. These artifacts are written in many different languages, some of
them being of textual form others being visual diagrams. Some of them have a
formal semantics others remain completely informal.

Graph Representation. To treat such a heterogeneous set of artifacts simulta-
neously in one tool environment, a common technological space is needed which
is equally well-suited for storing, analyzing, manipulating and rendering them.
Furthermore, it should be possible to also handle inter-artifact links, such as
traceability information.

Regarding the work of Manfred Nagl and others, graphs form a good basis for
such a technological space, since they are simultaneously able to model structure
in a generic way and to also keep application-specific additional knowledge in
supplementary properties like e.g. attributes.

Generally, every relevant entity in a software artifact can be modeled by a
representative vertex that represents this entity inside a graph. Then, every
(binary) relationship between entities can be modeled by an edge that carries all
information relevant for this relationship. Note that the occurrence of an object
o in some context c is a relationship in this sense, whereas o and c themselves
are entities. Thus, occurrences of software entities in artifacts can be modeled
by edges between respective vertices.

Example. As an example for the representation of a software artifact as a graph,
the following listing shows a simple Java data structure for binary trees. Using a
parser, this code can be transformed into an abstract syntax graph (ASG), which
consists of about 75 vertices and 100 edges for the code shown, if a fine-granular
model is built.
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Listing 1.1. ”Java implementation of a binary tree”
� �

1 class Node {
2 String data;
3 Node left, right;
4

5 public Node(String s) { data = s; }
6

7 public void add(String s) {
8 if (s.compareTo(data) < 0) {
9 if (left != null) left.add(s);

10 else left = new Node(s);
11 } else ...
12 }
13 }

�� �

Fig. 1. Extract of the ASG for the class Node from listing 1.1

For brevity reasons, Figure 1 shows only a part of this graph, namely the
definition of the class and its data attribute as well as the add-method with
its outer if statement. The representation of the class Node itself is vertex v8
at the bottom of the figure. It has the type ClassDefinition and holds the
class name in its attribute called name. Methods and attributes of the class are
grouped in a block represented by the vertex v10, which is connected to the class
definition by the edge e32. In the same way, other elements of the source code are
represented by vertices and edges connecting them. Analogically to vertex v8,
all other vertices and edges are typed and may have attributes. For the sake of
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clarity, the edge attributes keeping e.g. the position of the occurrences in the
source code are omitted. Here, the ASG is a directed acyclic graph (and not
only a tree). Every entity is represented only once but may occur several times
(e.g. vertex v13).

Fig. 2. Extract of the Graph Schema for the Java language

Graph schema. The types and names of the attributes depend on the types of
the vertices and edges of the graph. These types can be described by a graph
schema which acts as a metamodel of the graph. Since the Meta Object Facility
(MOF) [30] is a widely accepted standard for metamodeling, Figure 2 shows a
small part of a metamodel for ASGs representing Java programs depicted as a
MOF compatible UML class diagram. The classes denote vertex types while the
associations between classes denote edge types. Thus, class diagrams may be
used to describe graph schemas.

The vertex type ClassDefinition mentioned above is depicted at the left
border of the diagram. It is a specialization of the vertex type Type and inherits
the name-attribute from this class. Every class consists of a Block, which is
connected to the class by a IsClassBlockOf edge as it was depicted in the
example graph above. A Block is a special kind of a Statement and groups other
Statements. The edge type IsStatementOf represents the general occurrence of
one statement in another and is the generalization of all other edge types which
group statements in each other. These generalizations are omitted in the diagram
for reasons of brevity but are important in the queries shown later in this paper.
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Graph-based Tools. Schemas can be defined for all kinds of languages. There are
schemas for textual programming languages, and there are schemas for visual
languages. Schemas can be derived on all levels of granularity from fine-granulare
abstract syntax over middle level abstractions to coarse architecture descriptions
depending on their purpose. Different schemas can also be combined to larger
integrated schemas. Metamodel Engineering is the discipline that deals with
topic.

Given a graph schema, tools can work on graphs conforming to it. These tools
extract the relevant facts from software engineering artifacts (e.g. by parsing) and
store them as graphs in a graph repository. Several services on the repository (like
enrichment, analysis, abstraction, and transformation) help to use these graphs
for solving software engineering problems. These services may be application
specific or generic.

One of the services to gather information from the repository is querying. In
the following, this paper focuses on the generic query language GReQL. GReQL
works on TGraphs, which are introduced in the following section.

3 Terminology

To describe the graph-based approach to build reengineering tools in more detail,
an appropriate terminology is needed. This section introduces TGraphs and a
suitable notation for algorithms on TGraphs. Furthermore, some facts about
regular languages are enumerated, which are needed later for the treatment of
regular path expressions.

3.1 Graphs

To establish a comprehensive graph technology on a formal basis, a precise def-
inition of its underlying concepts is essential. In this paper, TGraphs are used.

TGraphs. TGraphs are a powerful category of graphs which are able to model not
only structural connections, but also all type and attribute information needed
for an object-based view on the represented model. TGraphs are typed, at-
tributed, and ordered directed graphs, i.e. all graph elements (vertices and edges)
are typed and may carry type-dependent attribute values. Furthermore, there
are orderings of the vertex and the edge sets of the graph and of the incidences
at all vertices. Lastly, all edges are assumed to be directed.

Definition: TGraph

Let
– Vertex be the universe of vertices,
– Edge be the universe of edges,
– TypeId be the universe of type identifiers,
– AttrId be the universe of attribute identifiers, and
– Value be the universe of attribute values.
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Assuming two finite sets,
– a vertex set V ⊆ Vertex and
– an edge set E ⊆ Edge,

be given. G = (Vseq,Eseq, Λseq, type, value) is a TGraph iff
– Vseq ∈ iseqV is a permutation of V ,
– Eseq ∈ iseqE is a permutation of E ,
– Λseq : V → iseq(E × {in, out}) is an incidence function where

∀ e ∈ E : ∃!v ,w ∈ V : (e, out) ∈ ranΛseq(v) ∧ (e, in) ∈ ranΛseq(w),
– type : V ∪ E → TypeId is a type function, and
– value : V ∪ E → (AttrId � �→ Value) is an attribute function where

∀ x , y ∈ V ∪E : type(x )= type(y) ⇒ dom(value(x ))=dom(value(y)).

Thus, a TGraph consists of an ordered vertex set V and an ordered edge set E .
They are connected by the incidence function Λseq which assigns the sequence
of its incoming and outgoing edges to each vertex. For a given edge e, α(e)
and ω(e) denote its start vertex and target vertex, respectively. Furthermore, all
elements (i.e. vertices and edges) have a type and carry a type dependent set of
attribute-value pairs. Figure 1 visualizes an example TGraph.

Further Graph Properties. Given a TGraph G, paths are used to describe how
a given vertex w may be reached from a vertex v .

Definition: Path

A path from v0 to vk in a TGraph G is an alternating sequence
C =< v0, e1, v1, ..., ek , vk >, k ≥ 0,

of vertices and edges, where
∀ i ∈ N, 1 ≤ i ≤ k : α(ei ) = vi−1 ∧ ω(ei) = vi .

v0 is called the start vertex α(C ) and vk the target vertex ω(C ) of the path.
A path is called a proper path, if all its vertices are distinct.

Definition: Derived Edge Type Sequence

Given a path C the corresponding sequence of edge types
< type(e1), type(e2), ..., type(ek ) >

is called its derived edge type sequence.

The existence of an edge from v to w is denoted by v → w , and the existence
of a path by v →∗ w . Furthermore, v →∗ denotes the set of all vertices reachable
from v by any path.

3.2 Pseudocode

Given an appropriate data structure for TGraphs [12], graph algorithms can be
implemented in a such a way that graph traversals are efficient. There is a Java-
API called JGraLab1 that allows a convenient and concise notation of algorithms
which is very near to pseudo code.
1 http://www.ohloh.net/p/jgralab

http://www.ohloh.net/p/jgralab
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The pseudo code used in this article adheres to JGraLab’s conventions. There
is a type Graph, and graph elements are instances of the types Vertex and Edge,
respectively. A few of the API operations are listed here:

� �

1 interface Vertex {
2 /∗∗ @return the sequence of outgoing edges at this vertex ∗/
3 Iterable<Edge> getAllOutEdges ();
4 ...
5 }

�� �

� �

1 interface Edge {
2 /∗∗ @return the start vertex of this edge ∗/
3 Vertex getAlpha ();
4

5 /∗∗ @return the end vertex of this edge ∗/
6 Vertex getOmega ();
7 ...
8 }

�� �

According to these interfaces, the edges incident to a vertex v can be traversed
in the order defined by Λseq(v) using a for-loop like

� �

1 for (Edge e: v.getAllOutEdges()) {
2 // process edge e
3 }

�� �

3.3 Regular Expressions and Automata

Since regular expressions are in center of the query language described in this
article, some basic facts about finite automata and regular expressions are com-
piled here ([20]).

Definition: Regular Expression

Given some alphabet Σ, the regular expressions (REs) over Σ are defined
inductively as follows:
(1) Φ is a regular expression and denotes the empty set ∅.
(2) ε is a regular expression and denotes the set {ε}.
(3) For each a ∈ Σ, a is a regular expression and denotes the set {a}.
(4) If r and s are regular expressions denoting the languages R and S , re-

spectively, then concatenation (rs), choice (r + s), and closure r∗ are
regular expressions that denote the sets RS , R∪S , and R∗, respectively.

The set of strings denoted by a regular expression r is called L(r), the lan-
guage described by r .

Languages described by regular expressions can also be described by deter-
ministic finite automata.
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Definition: Deterministic Finite Automaton (DFA)

A deterministic finite automaton (DFA) dfa = (S , Σ, δ, s0,F ) over Σ consists
of
– a set S of states,
– a transition function δ : S × Σ → S ,
– a start state s0, and
– a set F ⊆ S of terminal states.

DFAs can be visualized as graphs, where the vertices are the states of the
automaton and where there are edges e = s1 →a s2 iff δ maps (s1, a) to s2. An
example is shown in figure 4.

To use automata in software, they may be implemented as graphs, as well.
Only a few methods on automata are used in this paper:

� �

1 interface Automaton extends Graph{
2 /∗∗ @return the state state
3 Vertex getStartState ();
4

5 /∗∗ @return true iff s is a terminal state
6 boolean isTerminal (Vertex s);
7

8 /∗∗ @return the sequence of all enabled transitions of type t out of state s ∗/
9 Iterable<Edge> getAllEnabledTransitions (Vertex s, Type t);

10 ...
11 }

�� �

An automaton dfa accepts a string l over an alphabet Σ by a state s ∈ S iff l
is the derived type sequence of a path from s0 to s in the graph of dfa. The set
of strings accepted by s is called L(dfa, s). Consequently, the language accepted
by an automaton dfa is L(dfa) := ∪s∈FL(dfa, s), where F is the set of terminal
states.

It is well known that every language accepted by some finite automaton is
also describable by a regular expression and vice versa [20]. It is possible to
construct an equivalent automaton dfa(r) from a given regular expression r
using Thompson’s construction [35] followed by Myhill’s algorithm [28].

Though in theory the size of the deterministic finite automaton built from
a given regular expression r of size n can be of the order 2n , this ’explosion’
does not occur frequently in practice [1]. Experience shows that DFA-acceptors
for regular languages have usually only about twice the size of their regular
expressions.

4 Querying

Since graphs are subject to algorithms, all decidable problems on graphs can
in principle be solved by respective graph algorithms. This approach affords
a lot of effort on the user side, since each request for information about the
model represented by a graph leads to a specific problem which has to be solved
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algorithmically. Much of this work can be avoided in practice by supplying the
users with a powerful querying facility that allows easy end user retrieval for a
large class of information needs.

GReQL. In the case of TGraphs, the Graph Repository Query Language GReQL
supplies such a powerful facility for end user querying. GReQL was developed
in the GUPRO project [14] at the University of Koblenz-Landau. The current
version GReQL 2 was defined by Marchewka [25]. There is a full optimizing
evaluator for GReQL available on JGraLab implemented by Bildhauer and Horn
[7,21].

GReQL can be characterized as a schema-sensitive expression language with
dynamic types. It gives access to all graph properties and to the schema infor-
mation. GReQL queries may be parameterized. Its most valuable feature is an
elaborated concept for path expressions.

Since GReQL is an expression language, its semantics is self-evident. Every
GReQL query is a GReQL expression e which is either atomic or recurs to some
partial expressions e1, ..., ek whose evaluation is used to compose the resulting
value of e. Thus, using mathematical expressions as building blocks (see below)
the value of a GReQL expression is precisely defined.

The type-correctness of GReQL expressions is checked at evaluation time.
The type system itself is encapsulated in a composite Java class called JValue
(see below) in the context of JGraLab.

Querying. The goal of querying is to extract information from graph-based mod-
els and to make the extracted information available to clients, such as software
engineers or software engineering tools.

Querying is a service on TGraphs that - given a graph g and a GReQL query
text q - delivers a (potentially composite) object, that represents the query’s
result. The universe of possible query results is given by JValue.

Specification: Querying

Signature:
query : TGraph × String �→ JValue

Pattern:
s = query(g, q)

Input:
a TGraph g and a valid GReQL query q

Output:
a JValue s which contains the result of evaluating q on g
(according to the semantics of GReQL)

Types. The types of GReQL values are defined by the Java class JValue, since the
values delivered by GReQL queries are usually passed on to Java software, e.g. for
rendering the result. JValue is a union type which comprises all possible types
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that a GReQL result may have. Its structure is that of a composite, i.e. there
are some basic (atomic) types and some composite types that allow structured
values.

Basic types are integer, double, boolean, and string, and also a concept
for enumeration types is supplied. Some graph constituents are also supported
as types, namely vertex, edge and type, the former referring to vertex or edge
types in the schema.

Composite types allow structured data (tuples, lists, sets, bags, tables, maps,
and records). Also paths, path-systems (see below) and graphs are supported as
types as well as path expressions.

Expressions. Since GReQL is an expression language the whole language can be
explained and implemented along its different kinds of expressions:

� �

1 0, 123 // integer literals
2 0.0, -2.1e23 // double literals
3 true, false // boolean literals
4 "hugo", "ab\n" // string literals
5 v // variable expression
6 let x := 3 in x + y // let-expression
7 x + y where x := 3 // where-expression
8 sqr(5) // function application
9 not true // unary operator expression

10 b and c, x > 0 // binary operator expressions
11 v.name // value access
12 x > 5 ? 7 : 9 // conditional expression
13

14 // quantified expressions
15 exists v:V{MethodDeclaration} @ outDegree(v)=0
16 forall e:E{IsCalledByMethod} @ alpha(e) = omega(e)
17

18 // FWR expression
19 from caller, callee:V{MethodDeclaration} //(1)
20 with caller <--{IsBodyOfMethod} <--{IsStatementOf}* //(2)
21 <--{IsDeclarationOfInvokedMethod} callee
22 report caller, callee end //(3)

� �

For all basic types (integer, double, boolean, string, enum) appropriate
notations for literals are defined (lines 1 to 4). Variables stand for the value which
is bound to them (line 5). Since GReQL is a single assignment language, variables
may be bound only once in a given scope. All attribute and type identifiers from
the schema are predefined variables. Local scopes may be formed using let- or
where-constructs (lines 6 and 7).

Composite expressions may be constructed using function applications (line
8) or using unary or binary operators (lines 9 to 10), including a conditional
clause . (Besides the usual operators known for the basic types, there are also
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special operators, called regular path descriptions (RPEs) which are themselves
expressions. RPEs and their usage are described in more detail in Section 5.)
Attributes of graph elements are accessed using a dot notation (line 11).

Since GReQL is heavily based on set-like expressions, also quantified expres-
sions can be used using exists- and forall-quantifiers (lines 15 to 16). Here
the restriction holds that the domains of the bound variables have to be finite.

The last form of expressions supplied by GReQL is the from-with-report(FWR)
expression (lines 19 to 22). Its result is a bag of values (or of tuples of values, de-
pending on the length of the report list) containing the results of the expressions
in the report clause (line 22) evaluated for each variable binding in the declaration
(line 19) which fulfills the condition of the with clause (lines 20 and 21) . Alterna-
tively the result may also have the form of a table, a set or a map.

Function Library. The GReQL types go along with a set of operations that can
be applied on their instances. Besides the usual standard operations on basic
types, there is also a long list of operations on graph elements (like degree(),
alpha(), omega(), etc.) and aggregation operations (like avg(), count(), etc.).
These operations are kept in an editable function library which can be extended
easily. At present it contains about 100 functions.

Assuming that all functions in the library are polynomial in the size of the
graph, all GReQL expressions can be evaluated in polynomial time, if all vari-
ables in quantified and FWR expressions are bound to sets whose size is also
polynomial in the graph size.

5 Path Expressions

The language described up to now supports the evaluation of expressions in
the usual domains of arithmetics, boolean values, and strings and thus gives a
framework for extracting information from graph elements. But it does not yet
give enough support for structure dependent information extraction.

Support for such a kind of information extraction is given by GReQL’s so-
called regular path expressions. To exploit the knowledge encoded in the struc-
tural part of a TGraph, connection patterns can be described by regular expres-
sions over the set of element types.

5.1 Definitions

Simplified Syntax. Path expressions allow the comprehensive description of the
sets of all edges that have the same derived edge type sequence. GReQL uses
regular path expressions as a means to support navigation in queries.

Definition: Regular Path Expressions (simplified)

A regular path expression (rpe) is a non-empty regular expression over the
set EdgeTypeID ⊆ TypeID of all edge types, according to the following rules
(i) Given t ∈ EdgeTypeID , -->{t} is an rpe.
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(ii) Given two rpes rpe1 and rpe2, (rpe1rpe2) is an rpe. [concatenation]
(iii) Given two rpes rpe1 and rpe2, (rpe1 | rpe2) is an rpe. [choice]
(iv) Given an rpe rpe, (rpe∗) is an rpe. [closure]

According to subsection 3.3, a regular path expression rpe defines a language
L(rpe) over EdgeTypeID . Assuming the usual precedences (concatenation before
choice before closure) unnecessary parentheses may be skipped.

This definition is simplified in the sense that only forward arrows --> are
used which describe edges in their original direction. There are several other
edge notations which may be used, as well:

<-- describes an edge traversed in the opposite direction.
<-> describes an edge traversed in any direction.
<>-- describes an aggregation edge traversed from its aggregate’s side.
--<> describes an aggregation edge traversed from its component’s side.

Semantics of Path Expressions. The semantics of a regular path expression rpe
is the set of all paths, whose derived edge type sequence conforms to the language
defined by the rpe.

Path descriptions are used as abstract operators. Assuming that rpe is a
regular path expression and v ,w are vertices, there are several ways to apply
rpe:

– v rpe is the set of vertices reachable from v according to rpe.
– rpe w is the set of vertices from which w is reachable according to rpe.
– v rpe w is the condition that w is reachable from v according to rpe.
– path(v,rpe,w) is a path from vertex v to vertex w if it exists.
– pathSystem(v,rpe) is a path system containing exactly one path for every

vertex reachable from v according to rpe.
– pathSystem(rpe,w) is a path system containing exactly one path from every

vertex from which w is reachable according to rpe.

All these applications can be evaluated by search algorithms on vertices which
are explained in more detail in the next subsections.

Full Syntax. Besides the simplified definition above, there are several other nota-
tions which are also allowed in GReQL path expressions. They all can be handled
as well inside the search algorithms to be described below.

(1) Restrictions to the vertex types of a path can be added by using an & sign
in front of a type in braces, e.g. &{MethodDeclaration} states that only
MethodDeclaration-vertices are allowed.

(2) For vertices and edges also boolean expressions are allowed instead of type re-
strictions, where the current element is denoted by thisVertex or thisEdge
respectively.

(3) A specific edge can be attached to an edge symbol by embedding any expres-
sion that evaluates to an edge, as in --e-> where e is a variable containing
an edge. Similarly vertex variables like v can be used to denote a special
vertex.
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(4) Role names defined in the schema can be used instead of or additional to
edge types. E.g. <->{@member} restricts the set of edges to those which are
incident to a vertex with role member

(5) There are further operations on regular path expressions such as transitive
closure (rpe+), exponentiation (rpe^n), option ([rpe]) and transposition
(rpe^T).

Example. As an example, the query below denotes the set of all classes containing
a method which calls a method of class c in a graph according to the schema of
Figure 2.

� �

1 c <--{IsClassBlockOf} <--{IsMemberOf} &{MethodDeclaration}
2 -->{IsDeclarationOfInvokedMethod} <--{IsMethodContainerOf}
3 -->{IsStatementOf}* -->{IsBodyOfMethod}
4 -->{IsMemberOf} -->{IsClassBlockOf} &{thisVertex <> c}

� �

Here, all vertices reachable from a class c via paths according to the regular
path expression are returned. These paths have the following structure: They
lead from c to some member m of type MethodDeclaration (line 1). Starting
from m, they find some call expression (line 2) where m is called. Then, the
method m1 is determined that this call expression belongs to (line 3). Finally,
the class of m1 is derived, and it is assured that this class is different from c.

5.2 Search Algorithms

Regular path expressions can be evaluated efficiently by search algorithms on the
given graph. This holds for all features of regular path expressions described.

In the following, the algorithms needed for the simplified syntax are explained
in detail. It should be obvious how these algorithms can be extended to handle
the full syntax.

Search Algorithms. Search algorithms are traversal algorithms, i.e. they visit ev-
ery graph element of (a part of) a graph exactly once. Search algorithms mark
every vertex they visit to avoid double visits and use a collection object (usually
called a work list) to control the spreading of this marking over the graph.

The set of marked vertices can be kept in a set structure according to the
interface Set:

� �

1 interface Set<E> {
2 /∗∗ @return true iff this set contains no elements ∗/
3 boolean isEmpty ();
4

5 /∗∗ inserts the element x into this set ∗/
6 void insert (E x);
7

8 /∗∗ @return true iff the element x is a member of this set ∗/
9 boolean contains (E x);

10 }
�� �
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The work list can be stored in any list-like structure, described by the interface
WorkList:

� �

1 interface WorkList<E> {
2 /∗∗ @return true iff this worklist contains no elements ∗/
3 boolean isEmpty ();
4

5 /∗∗ inserts the element x into this worklist (possibly multiple times) ∗/
6 void insert (E x);
7

8 /∗∗ returns (and deletes) an arbitrary element from the list ∗/
9 E extractAny ();

10 }
�� �

Reachability. Given implementations for the interfaces Set and WorkList, a
simple search algorithm can be given that visits all vertices in

reachG(i) := {v ∈ V | ∃C : Path • α(C ) = i ∧ ω(C ) = v}
i.e. the set of all vertices reachable from a given vertex i .

In the following pseudocode ”visiting” a vertex v or an edge e is expressed by
action points, which are noted as pseudo-comments like

// process vertex v or
// process edge e,

respectively. At these action points, potential visitor objects may be called to
execute some action on the respective element:

� �

1 Algorithm: SimpleSearch:
2 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
3 // vertex−oriented search starting at vertex i
4

5 Set<Vertex> m = new ...;
6 WorkList<Vertex> b = new ...;
7

8 void reach(Vertex i) {
9 m.insert(i);

10 // process vertex i
11 b.insert(i);
12 while (! b.isEmpty()) {
13 // inv: set(b) ⊆ m ⊆ i →∗

14 v = b.extractAny();
15 for (Edge e: v.getAllOutEdges ()) {
16 // process edge e
17 w = e.getOmega();
18 if (! m.contains(w)) {
19 // process tree edge e
20 m.insert(w);
21 // process vertex w
22 b.insert(w);
23 } } } }

�� �
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During the while-loop the work list b invariantly contains only marked ver-
tices that are reachable from i . This is expressed by the invariant in line 13,
where set(b) denotes the set of all elements contained in b. Thus, all marked
vertices are reachable. Conversely, any vertex reachable from i will eventually
be included into b. Since insertion into m is only done for non-marked vertices
and a vertex inserted into b is marked simultaneously, no vertex is inserted twice
into b.

Every vertex is extracted at most once from b and the inner for-loop traverses
its outgoing edges only. Thus, the body of the inner loop is executed at most
once for each edge. Together this leads to a time complexity of O(max (n,m))
for a graph with n vertices and m edges.

Reachability Tree. It is well-known that the spreading of the marking over the
graph defines a spanning tree of the marked part. This tree is rooted in i and
contains an incoming edge for every other vertex reachable from i .

Such a tree can be represented by a predecessor function

parentEdge : V �→ E ,

which assigns its incoming edge to each non-root vertex. Such a tree is called
reachability tree for i →∗.

Partial functions like parentEdge on the vertices can be stored in a map-like
data structure, according to the interface VertexMarker which stores at most
one value at every vertex:

� �

1 interface VertexMarker<E> {
2 /∗∗ stores the value x at the vertex v ∗/
3 void setValue (Vertex v, E x);
4

5 /∗∗ @return the value stored at the vertex v ∗/
6 E getValue (Vertex v);
7 }

�� �

Given such a vertex marker, the computation of parentEdge can be done in
the algorithm SimpleSearch by refining the action point where the tree edges
are processed. Here, e is the current edge and w is the newly marked vertex:

� �

1 VertexMarker<Edge> parentEdge = new ...;
2

3 process tree edge e:
4 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
5 parentEdge.setValue(w,e);

�� �

Paths. Given parentEdge, as computed by the algorithm Simple Search, a
corresponding path i →∗ v is implicitly given for every vertex v reachable from
i . Such a path can be issued in reverse order by backtracing over the tree edges
starting at v .
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� �

1 process path i →∗ v :
2 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
3 z := v;
4 //process path vertex z;
5 while (z != i) do {
6 e := parentEdge.getValue (z);
7 // process path edge e;
8 z := e.alpha();
9 // process path vertex z;

10 }
�� �

Shortest Paths. The work list used in search algorithms can be implemented
in various ways. It is well-known, that a queue-like implementation leads to a
breadth-first search (BFS) approach, whereas a stack-like implementation implies
a depth-first search (DFS) of the graph.

The breadth-first implementation of graph traversal is particularly interesting,
since it implies that the path-tree is a shortest path-tree, i.e. all paths in the path
tree have a minimum number of edges. Thus, GReQL uses breadth-first-search
for the evaluation of regular path expressions.

Example. Figure 3(a) contains the sketch of a TGraph to demonstrate the effect
of Algorithm SimpleSearch and the computation of parentEdge. Assume that
the vertex set {A,B ,C ,D ,E} and the edge set {1,2,3,4,5,6,7} as well as the
incidences are ordered according to their identifiers. The edge types {a, b} are
also shown.

(a) TGraph (b) BFS Tree

Fig. 3. Sample TGraph and its BFS tree

Using a breadth-first search starting in vertex A, the tree shown in Figure 3(b)
is derived. It shows that all vertices are reachable from A. E.g. a path for vertex
E can be derived by backtracing from E :

< A, 1,B , 5,D , 7,E >.

5.3 Automaton-Driven Search Algorithms

Algorithm SimpleSearch explores parts of the graph in order to find all vertices
that are reachable from the start vertex i by traversing paths from i to v for
every v ∈ i →∗.
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To explore paths whose edge type sequence conforms to a regular path ex-
pression rpe in a search algorithm, the traversal of edges must be pre-checked
according to the derived edge type sequence language defined by the expression
rpe. Only paths whose derived edge type sequence conforms to rpe are to be
allowed.

As cited in subsection 3.3 there is an accepting deterministic finite automaton
dfa(rpe) for every regular path expression rpe with L(dfa) = L(rpe). Using
Thompson’s and Myhill’s algorithms such an automaton can be computed easily.

rpe-reachability. Let dfa be a DFA for the edge type sequence of rpe, let s be
some state in Sdfa , and let G be a graph with a given vertex i ∈ VG . Then

reachG,dfa (i , s) :=
{v ∈ V | ∃C : Path • α(C ) = i ∧ ω(C ) = v ∧ typeSeq(C ) ∈

L(dfa, s)}
is the set of all vertices reachable from i by a path whose derived edge type
sequence is accepted by the state s in Sdfa .

Then, the problem of finding all vertices v which are reachable by a path
conforming to some regular path expression rpe reduces to the derivation of all
vertices in some set reachG,dfa (i , st ), where dfa = A(rpe) and st ∈ Fdfa is a
terminal state.

The simple algorithmic approach described above in Algorithm SimpleSearch
for reachability problems can easily be generalized to solve rpe-reachability. To
achieve this, the finite automaton dfa(rpe) for L(rpe) is used to guide the traver-
sal procedure.

Instead of a boolean marking of the vertices, now the vertices are marked with
the states of dfa, i.e. a vertex set marker

marking : Vertex �→ P Vdfa

is assumed. Here, a vertex v gets marked by all states s such that v ∈
reachG,dfa (i , s).

� �

1 interface VertexSetMarker<E> {
2 /∗∗ inserts value x into the set at vertex v ∗/
3 void addValue (Vertex v, E x);
4

5 /∗∗ @return true iff the value x is in the set at vertex v ∗/
6 boolean hasValue (Vertex v, E x);
7 }

�� �

Using this generalized marker, which assigns sets of automaton states to the
vertices of the graph, a vertex v gets marked by a state s if and only if v ∈
reachG,dfa (i , s), i.e. if there is a path from i to v whose derived type sequence is
accepted by s .
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� �

1 Algorithm: AutomatonDrivenSearch:
2 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
3 // vertex−oriented search starting at vertex i guided by the automaton a
4

5 VertexSetMarker<State> m = new ...;
6 WorkList<Vertex x State> b = new ...;
7 VertexMarker<Edge x State> parentEdge = new ...;
8

9 void reach(Vertex i, Automaton dfa);
10 s := dfa.getStartState ();
11 m.addValue(i, s);
12 // process vertex i in state s;
13 b.insert(i,s);
14 while (! b.isEmpty()) {
15 // set(b, s) ⊆ {v ∈ V | v .isMarked(s)} ⊆ reachG,dfa (i , s)
16 (v, s) := b.extractAny();
17 for (Edge e: v.getAllOutEdges()) {
18 // process edge e
19 w := e.getOmega();
20 for (Edge t: dfa.getAllEnabledTransitions(s, e.getType());
21 s1 := t.getOmega();
22 if (! m.hasValue(w,s1)) {
23 parentEdge.setValue((w,s1), (e,s));
24 m.addValue(w,s1);
25 b.insert(w,s1);
26 if (dfa.isTerminal (s1))
27 // process vertex w in state s1
28 } } } } }

�� �

The correctness arguments for Algorithm AutomatonDrivenSearch can be re-
duced to those of Algorithm SimpleSearch. Assume that the automaton dfa con-
sists of the states Vdfa = {s0, ..., sk}. Then, Algorithm AutomatonDrivenSearch
corresponds to a search on a layered graph (Figure 5) with the vertex set
VG × Vdfa where an edge from (v , s) to (w , s1) exists if and only if
– there is an edge e = v → w in G and
– there is an edge s →t s1 in A, where t = type(e).
Algorithm AutomatonDrivenSearch terminates and visits exactly those ver-

tices that are reachable from i via paths conforming to rpe in the layered graph.
If k is the number of states and l is the number of transitions of the automaton

dfa, the inner loop (lines 20-28) is executed l ×m times and its if-statement is
executes k×n times at most, leading to an overall time complexity of O(max (k×
n, l ×m). Since in practice k and l are small multiples of the size of the regular
expression rpe (Subsection 3.3) the algorithm is practically feasible.

Using a breadth-first approach, the algorithm delivers shortest paths also in
this case. But it should be noted, that these are paths in the layered graph. In
the orgininal graph, the paths themselves are not necessarily proper paths any
more, i.e. vertices and edges may occur more than once on them.
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Example. If the TGraph of Figure 3(a) is searched from A according to the
GReQL path expression in A (-->{a}-->{b})*-->{b}, the automaton shown
in Figure 4 can be used to drive the search. Here, s0 is the start state, and s2 is
the (only) terminal state.

Fig. 4. DFA

Given this automaton, the resulting graph can be visualized using exactly
one layer for each state (Figure 5(a)). Its breadth-first search tree is shown in
Figure 5(b). Since s2 is accepting, there are apparently three vertices in the result
set {B ,D ,E} and back tracing delivers three paths:

< A, 1,B , 2,B , 2,B >
< A, 1,B , 2,B , 5,D >
< A, 1,B , 5,D , 7,E >

All of these paths have minimum length, but only the third one is a proper path.

(a) Layered Graph (b) BFS Tree

Fig. 5. Search driven by automaton

Paths. The method to extract paths for each vertex found by Algo-
rithm Automaton-DrivenSearch can also be generalized accordingly. Given a
partial function

parentEdge : VG × VA �→ E × VA

the paths can be enumerated, as well.
Assuming that st is a terminal state of A, and assuming that v is a vertex

which is marked by st , i.e. st ∈ m(v), a path can be computed by backward
traversal in the layered graph:
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� �

1 process path i →∗ v :
2 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
3 (z,s) := (v,st);
4 // process vertex z in state s;
5 while ((z,s) = (i,s0)) {
6 (e,s) = z.parentEdge(z,s);
7 // process edge e in state s;
8 z = e.this();
9 // process vertex z in state s

10 }
�� �

Since parentEdge contains the complete information about all paths starting
in i , this function is used as a representation of path systems in JValue.

6 Applications of Querying

The TGraph approach was developed in the course of tool development projects.
Kogge [16] was a metaCASE tool, where TGraphs were used to realize an
adaptable visual editor using a bootstrapping approach. Gupro [14] makes use
of TGraphs as representations of software artefacts and supplies an integrated
querying and browsing facility on code. Here, GReQL is the generic language
used to extract information from source code. TGraphs together with GReQL
are also used as the basic repository technology for artefact comparison and
retrieval in ReDSeeDS [13].

Using a query language like GReQL, a lot of program analysis and program
understanding tasks can be solved in a uniform manner. A query may deliver
data for generic graph algorithms or can even replace a graph algorithm.

Examples for tasks that can be done using a query are

– complementing the graph by additional information that can be inferred,
e.g., as a preprocessing step for other tasks,

– derivation of new views on the graph, e.g., derivation of the call graph, or
– computation of metrics.

In the following, we present some example GReQL queries to calculate some
of this information on software represented as graphs according to the schema
described in Figure 2 on page 338.

6.1 Edge Inference

The size and complexity of queries depends on the structure and completeness
of the graphs and thus on the meta model and the parsers which are used for
extracting the graphs from the source code.

Assume the parsers that extract the graph according to Figure 2 do not resolve
all method invocations to their definitions but only the invocations of methods
defined in the same class. Instead of computing the missing links in each query
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where they are needed, the work on the graph can be simplified by querying this
information once and materializing the result as edges in the graph.

GReQL itself is not meant to create edges, but it can be used to determine
the respective set of vertex pairs which are to be connected. Then, the query
is embedded into an algorithm that uses the query result and materializes the
edges.

The query listed below finds the appropriate method declaration for every
method invocation which is not yet properly linked to its declaration by the
parser. Since GReQL is a declarative language, the query simply denotes which
pairs are to be connected. (The GReQL optimizer assures an efficient evaluation
of the query.)

� �

1 from inv:V{MethodInvocation}, def:V{MethodDeclaration}
2 with isEmpty(inv <--{IsDeclarationOfInvokedMethod})
3 and theElement(inv <--{IsNameOfInvokedMethod}).name
4 = theElement(def <--{IsNameOfMethod}).name
5 and inv <--{IsMethodContainerOf}
6 ( <--{IsDeclarationOfInvokedMethod} <--{IsReturnTypeOf}
7 | <--{IsDeclarationOfAccessedVariable} <--{IsTypeOfVariable})
8 <--{IsTypeDefinitionOf}<--{IsClassBlockOf}<--{IsMemberOf} def
9 report inv, def end

� �

The first and the last line state that pairs of MethodInvocation and Method-
Declaration vertices should be reported. The lines in between impose some
constraints on the pairs to be reported by describing exactly the connection
path between them. Line 2 excludes those invocations that are already linked to a
declaration. Lines 3-4 force the names of the invoked method and the declaration
to be equal. Method overloading is not considered here for reasons of brevity but
can be included in the same way.

The most interesting part of the query is the path expression in lines 5-8.
This path expression describes a path starting at the invocation and ending
at the declaration. The first IsMethodContainerOf edge leads to the expres-
sion that returns the object on which the method is called. In the example
s.compareTo(data) from page 337 the edge connects the call of compareTo to
the variable access s. The following path alternative in lines 6-7 describes the
path leading to the type of the object on which the method is called. The last
part of the path in line 8 denotes the connection of this type with the method
defined as a member of the main block of the class defining the type.

While the links are computed by the parser for invocations of methods defined
in the same class, a proper linking of methods of other classes is possible only
if the class whose method is called is known. For methods of objects which are
returned by other method invocations or variable accesses, this class is obviously
only known if the invocation or access is properly linked to the appropriate
definition. This is a recursive problem which can either be solved in the query
itself or by iterating the query in the embedding algorithm, which seems to be
more elegant in this case.
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6.2 Call Graph Computation

Similarly to the calculation of missing information that was not yet provided by
the parser, it is also possible to calculate and materialize further information in
the graph which enables a higher-level view. This is reverse engineering in the
stronger sense, where more abstract information is derived from concrete data.

The query listed below computes the ”call graph” of a given graph, i.e. it
determines pairs of methods which call each other. This is done by looking at
all method invocations contained in the body of a method. The query result can
again be manifested as edges, in this case with edges of type IsCalledByMethod.

� �

1 from caller, callee:V{MethodDeclaration}
2 with caller <--{IsBodyOfMethod} <--{IsStatementOf}*
3 <--{IsDeclarationOfInvokedMethod} callee
4 report caller, callee end

� �

6.3 Metrics Computation

Metrics constitute a quite natural application of querying. As an example, one
of the metrics of the Chidamber&Kemerer metrics suite [10] is shown in the
following: The CBO (coupling between object classes) metric assigns a natural
number to each class, depicting the number of other classes it is coupled with.
Here coupling means usage of variables or methods of the other class. Given a
graph preprocessed as shown above, this metric can be calculated directly.

� �

1 from c:V{ClassDefinition}
2 report
3 c.name as "Class",
4 count(
5 c<--{IsClassBlockOf} <--{IsMemberOf}
6 (<--{IsCalledByMethod} |
7 <--{IsBodyOfMethod,IsVariableCreationOf} <--{IsStatementOf}*
8 <--{IsDeclarationOfAccessedVariable}-->{IsVariableCreationOf})
9 -->{IsMemberOf} -->{IsClassBlockOf} &{thisVertex<>c}

10 ) as "CBO"
11 end

� �

For every class, the set of elements is computed that are reachable by a path
that leads to an invocation of a method or an access of a variable of a different
class. The size of this set is counted by the GReQL-function count and reported
as the CBO for this class. The result of this query will be a table with two
columns, named “Class” and “CBO” containing the class name and the number
of classes this class is coupled with.
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7 Related Work

Graphs as repository structures in software engineering tools and querying of
these graphs is an enabling technology [24] in software reengineering. The def-
inition of GXL [19] (which is inspired by TGraphs) as an interchange format
for reengineering data gives further evidence that graphs are an appropriate
abstraction used by many reengineering tools.

Graph Repositories. There are libraries for graphs which keep them in memory
and provide a set of predefined algorithms on them, e.g., LEDA (The Library of
Efficient Data Types and Algorithms) [26] and the Boost Graph Library (BGL)
[33]. The latter provides different implementation variants for graph such as edge
lists or adjacency lists and matrices.

GRAS [22] is a graph repository developed in the IPSEN project since 1985.
A GRAS database is a graph pool that may contain several directed and typed
graphs. (GRAS graphs have only vertex attributes and no edge ordering.) The
structure of the graphs can be meta modeled by graph schemas and composition
of graphs to hierarchical graphs is possible. GRAS supports direct main memory
storage as well as storage in a relational database. DRAGOS (Database Reposi-
tory for Applications using Graph Oriented Storage) [9], the successor of GRAS,
is inspired by the graph exchange language GXL and overcomes the restrictions
on edge attributes of GRAS. Additionally, DRAGOS allows the usage of di-
rected hyper edges which may run between vertices as well as edges or endpoints
of edges. Similarly to GRAS, DRAGOS also supports nesting of graphs.

JGraLab keeps the repository in memory and provides the modeling power
of full TGraphs, which are kept in a data structure designed to support graph
traversal efficiently. Edges are first class objects and may be traversed in any
direction without additional costs.

Graph Query Languages. Apart from the XML query languages XQuery [8] and
XPath [4] and the SPARQL RDF Query Language [31], there are also some
languages that work on graph models directly. One such language is Gram [3]
which includes walks and hyperwalks as a concept similar to paths and path
systems. GOQL is an extension of the Object Query Language OQL used to
query object-oriented databases enriched with constructs to query typed graphs.
GOQL bears some syntactical analogy to GReQL as its queries are usually select-
from-where statements and it allows to formulate simple path queries including
constraints on the elements in a path. All these languages follow the idea of
querying depicted in section 4, i.e. given a graph and a query, a value possibly
containing graph elements is computed as the query result, which may also
contain graph elements.

Languages like GraphQL [17] follow a different paradigm. Here, not only the
data, but also the query and the query result are graphs. Then, query evaluation
is a matching of graph patterns combined with graph rewrite rules, either trans-
forming the given graph or creating a new one. Also G+ [27] and its successor
GraphLog [11] represent the query and the result as a graph and support regular
path expressions and an evaluation by an automaton-driven search similar to
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the one used in GReQL. These kinds of languages lead to graph transformation
languages in general, like PROGRES [32], which may be interpreted as query
languages in wider sense.

Compared to these languages, GReQL supports the most powerful form of
regular path expressions, and only GReQL computes also paths and path systems
as first class values.

Query languages for software re-engineering. Besides graph query languages,
several other kinds of languages based on predicate logic or relational calculus
are established in software re-engineering. [2] presents a detailed comparison of
re-engineering languages based on their features. There are two main differences
between all those languages and GReQL. The first refers to the representation
of data, since edges as first class objects may directly represent occurrences of
vertices in different places without artificial extra-nodes. The second is related
to evaluation, which is search-based and does not compute and materialize rela-
tions, but explores only that part of the graph that is needed for query answering.

CrocoPat [5,6] is a relational programming language based on first-order pred-
icate calculus. It uses Binary Decision Diagrams (BDDs) for internal storage of
relations. Like many other tools in software reengineering, CrocoPat uses the
Rigi Standard Format (RSF) to store relations in files. CrocoPat programs are
written in the RML (Relation Manipulation Language) and consist of n-ary
relational expressions. RML is an imperative language whose statements are ex-
ecuted sequentially, embedded in control structures such as IF, FOR and WHILE.

Supplying different ways to define n-ary relations and to combine existing rela-
tions to new ones, CrocoPat provides powerful means of data manipulation and re-
trieval. Regular path expressions can be simulated by logical operators to combine
and by existential quantifiers to concatenate relations. E.g., the path expression

caller <--{IsBodyOfMethod} <--{IsStatementOf}*
<--{IsDeclarationOfInvokedMethod} callee

used in Section 6.2 can be translated to the CrocoPat expression

calls(caller,callee) :=
EX(body, IsBodyOfMethod(body,caller)
& EX(statement, TC(IsStatementOf(statement,body))
& IsDeclarationOfInvokedMethod(callee,statement))).

A language based on Tarski’s relational calculus is Grok [18]. Grok is an
untyped language, where all basic elements are represented as strings, but logical
and mathematical operations can be applied to these elements. Sets and binary
relations, which are just sets of tuples, are supported by Grok. Grok’s operators
generally apply across entire relations and not just to single entities.

The simulation of regular path expressions is possible by the concatenation
of relations using the ◦ operator. As an example,

(inv IsBodyOfMethod) o (inv(IsStatementOf)*)
o (inv IsDeclarationOfInvokedMethod)
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represents the path expression used above. The result of applying this Grok
operation is again a relation, which is stored to main memory to allow a fast
access.

RScript [23] is statically typed in contrast to Grok. RScript reflects its primary
application domain, the software analysis, in its features and data types. As an
example, a data type location is provided, which represents a source locations
as a combination of a filename and the position in the file. Besides the basic
types boolean, integer, string, RScript provides the composite types tuples,
sets and relations as well as user-defined types. Sets as well as relations can be
nested and also a light version of n-ary relation is also supported in RScript.
Similarily to Grok and CrocoPat, the combination of relations can be used to
simulate regular path expressions.

All these languages look at graphs as sets of vertices and relations between
vertices whereas GReQL has a focus on paths and traversals of graphs.

Comparison. While e.g. Alves et al. [2] have compared the main features of
re-engineering query languages including the ones described above, there is no
comparison of their performance up to now. Below, such a comparison is done
exemplarily for CrocoPat and Grok, which seem to be the best established ones.
and whose interpreters are publicly available. Two of the queries depicted in sec-
tion 6, namely the calculation of the call-relation (Section 6.2) between methods
and the CBO metrics (Section 6.3) are used for comparison. They were applied
to the ASGs of four software systems, whose source code is freely available. Two
small systems, the parser generator AntLR2 and the test-environment JUnit3

were used as well as two bigger systems, the Build-Tool Apache Ant4 and the
TGraph library JGraLab itself.

The abstract syntax graphs of the systems were extracted from the source code
using a fact-extractor from Java to TGraphs, which makes use of edge attributes
and ordering. The TGraphs were converted to the Rigi Standard Format (RSF),
which can be imported by CrocoPat and Grok. Neither Grok nor CrocoPat allow
for attributed relationships but require artificial relation-objects to represent
such attributes. To keep the graphs and queries simple, we decided to use simple
links instead of relation-objects and to accept, that the attributes of the edges
were lost. While the attributes are not used in the queries below, they may be
necessary for more complex analyses.

The evaluation times of both queries are shown in the table below for all three
languages and all ASGs. Note, that CrocoPat and Grok are interpreters whose
interpretation time is included in the overall result, whereas GReQL queries are
parsed and optimized before evaluation. Since GReQL queries can be precom-
piled into a query library and reused for different graphs, the net evaluation time
is given, as well.

The table shows that GReQL performs quite well in comparison to CrocoPat
and Grok for the examples used.
2 www.antlr.org
3 www.junit.org
4 ant.apache.org
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AntLR JUnit Apache Ant JGraLab
90 classes 110 classes 1400 classes 700 classes
73k elements 42k elements 1.1m elements 1.7m elements

Calls-
Query
CrocoPat 1.9s 1.9s 62s 70s
Grok 0.3s 0.1s 7.0s 6.7s
GReQL 0.9s 0.8s 3.7s 3.5s

(0.13s eval) (0.08s eval) (2.7s eval) (2.4s eval)
CBO-
Query
CrocoPat 2s 1s 2m 40s 1m 30s
Grok 1.0s 0.5s 9.6s 10.1s
GReQL 1.1s 1.1s 6.7s 3.8s

(0.16s eval) (0.15s eval) (5.8s eval) (2.9s eval)

8 Conclusion

This paper showed how knowledge from graph algorithms can be used to con-
struct efficient software engineering tools. It presented GReQL as an efficient
and convenient graph query language. The efficient evaluation of regular path
expressions in GReQL by search algorithms was explicated in detail.

GReQL can be used to query, enrich, abstract or analyze the graph repre-
sentation of software engineering artifact. A few example applications in reverse
engineering were shown. GReQL querying is also an enabling technology for soft-
ware engineering tools in general since many kinds of information can be easily
be extracted from graph-based models using queries [24], including information
needed by the tool itself.

The usage of GReQL as a key technology in the reengineering tool GUPRO is
presented in more detail in [14]. GUPRO is a generic tool that supports schema
dependent browsing and querying of source code, using GReQL as its query
language.

GReQL has been extended to include context-free path descriptions by Stef-
fens [34]. Currently ongoing work aims at the extension of GReQL and the
TGraph approach to more general distributed and hierarchical hyper-TGraphs
(DHHTGraphs).
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9. Böhlen, B.: Ein parametrisierbares Graph-Datenbanksystem für Entwick-

lungswerkzeuge. Shaker Verlag, Aachen (December 2006)

10. Chidamber, S.R., Kemerer, C.F.: Towards a metrics suite for object oriented de-

sign. In: OOPSLA 1991: Conference Proceedings on Object-Oriented Programming

Systems, Languages, and Applications, pp. 197–211. ACM, New York (1991)

11. Consens, M.P., Mendelzon, A.O.: Graphlog: a visual formalism for real life recur-

sion. In: PODS 1990: Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, pp. 404–416. ACM, New York

(1990)

12. Ebert, J.: A Versatile Data Structure For Edge-Oriented Graph Algorithms. Com-

munications ACM 30(6), 513–519 (1987)

13. Ebert, J., Bildhauer, D., Riediger, V., Schwarz, H.: Using the TGraph Approach

for Model Fact Repositories. In: Proceedings of the International Workshop on

Model Reuse Strategies (MoRSe 2008) (May 2008)

14. Ebert, J., Kullbach, B., Riediger, V., Winter, A.: GUPRO. Generic Understand-

ing of Programs - An Overview. Electronic Notes in Theoretical Computer Sci-

ence 72(2) (2002), http://www.elsevier.nl/locate/entcs/volume72.html

15. Ebert, J., Riediger, V., Winter, A.: Graph Technology in Reverse Engineering,

the TGraph Approach. In: Gimnich, R., et al. (eds.) 10th Workshop Software

Reengineering (WSR 2008), Bonn. GI Lecture Notes in Informatics, vol. 126, pp.

67–81. GI (2008)
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André Marburger1 and Bernhard Westfechtel2

1 DSA Daten- und Systemtechnik GmbH, Pascalstr. 28, D-52076 Aachen

andre.marburger@gmx.de
2 Applied Computer Science I, University of Bayreuth, D-95440 Bayreuth

bernhard.westfechtel@uni-bayreuth.de

Abstract. Many methods and tools for the reengineering of software

systems have been developed so far. However, the domain-specific re-

quirements of telecommunication systems have not been addressed suf-

ficiently. The E-CARES project is dedicated to reverse engineering of

complex legacy telecommunication systems by providing graph-based

tools. With E-CARES, the software architecture of a telecommunication

system is recovered in two steps. In the first step (program analysis),

the source code is parsed to build a structure graph which uses the ab-

stractions of the underlying programming language and describes the

internals of program units (blocks) as well as their communication via

exchange of signals. In the second step, a software architecture descrip-

tion is abstracted from the structure graph. The software architecture

is described in ROOM, a real-time object-oriented modeling language

for embedded systems design. Both program analysis and architecture

recovery are based on graphs and graph transformations. In both steps,

domain-specific knowledge — referred to as methods of use — is ex-

ploited which refers to the ways how language constructs are used to

realize processing concepts of telecommunication systems.

Keywords: Reverse Engineering, Structural Analysis, Telecommunica-

tion System, Graph Transformation.

1 Introduction

Reengineering of large and complex software systems has proved a difficult task.
According to the “horseshoe model of reengineering” [1,2], reengineering is di-
vided into three phases. Reverse engineering is concerned with step-wise ab-
straction from the source code and system comprehension. In the restructuring
phase, changes are performed on different levels of abstraction. Finally, forward
engineering introduces new parts of the system (from the requirements down to
the source code level).

For reengineering, many methods and tools have been developed. To a large
extent, however, previous work has been data-centered since it focuses on struc-
turing the data maintained by an application. In particular, numerous approaches
have addressed the migration of legacy business applications — written, e.g., in

G. Engels et al. (Eds.): Nagl Festschrift, LNCS 5765, pp. 363–392, 2010.
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COBOL — to an object-based or object-oriented architecture [3,4]. This task
requires the grouping of data and functions into classes with corresponding at-
tributes and methods. Another stream of research has dealt with programming
languages such as C++ and Java which already provide language support for
object-oriented programming [5].

Reengineering of process-centered applications has been addressed less exten-
sively so far [6]. For example, a telecommunication system is composed of a
set of distributed communicating processes which are instantiated dynamically
for handling calls requested by its users. Such a system is designed in terms of
services provided by entities which communicate according to protocols. Under-
standing a telecommunication system requires the recovery of this conceptual
world from the actual source code and other sources of information.

The E-CARES 1 research cooperation between Ericsson Eurolab Deutschland
GmbH (EED) and Department of Computer Science III, RWTH Aachen Uni-
versity, has been established to develop methods, concepts, and tools for the
reengineering of complex legacy telecommunication systems. E-CARES has been
driven strongly by the requirements of software engineers who are involved in
the design and implementation of GSM networks for mobile communication. The
object of study is Ericsson’s Mobile-service Switching Center (MSC) for GSM
networks called AXE10. The AXE10 software system comprises approximately
10 million lines of code spread over about 1,000 executable units, and has an es-
timated lifetime of about 40 years. Thus, there is an urgent need for tool support
to improve program evolution and maintenance.

This paper deals with the reverse engineering environment developed within
the E-CARES project, as presented comprehensively in [8]; see [9] for restructur-
ing. Moreover, we confine the presentation to structural analysis, i.e., recovery of
the structure of the system under study. For the sake of modularity and reuse,
structural analysis is decomposed into two major steps. The first step, which
builds a suitable abstraction of the source code, is called program analysis. The
resulting representation still depends on the underlying programming language
(PLEX, a proprietary language which was developed at Ericsson in the 1970s).
In contrast, the second step — architecture recovery — delivers a representation
in a modeling language which is not specific to the programming language any
more. For architecture recovery, we selected ROOM [10] as the target language,
since it was applied extensively to the development of telecommunication sys-
tems and — by and large — provides appropriate concepts and abstractions for
this domain (see [11] for further extensions to ROOM to improve the modeling of
telecommunication systems). However, we could have alternatively used another
language, e.g., SDL [12] or the UML component model [13].

To recover meaningful abstractions of the program source code, domain-
specific knowledge is exploited heavily in structural analysis. In the context of the
E-CARES project, this knowledge was summarized under the term methods of
use: Telecommunication experts at Ericsson use the programming language and
the runtime system in systematic ways in order to realize processing concepts

1 Ericsson Communication ARchitecture for Embedded Systems [7].
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and paradigms. For example, the AXE-10 system follows a signaling paradigm
of processing, where instances of blocks (program units in PLEX) cooperate to
operate calls by passing signals along a link chain between the originator of a
call and its receiver. The way how the signaling paradigm is mapped onto PLEX
results in domain-specific code patterns which are subsequently transformed into
design patterns at the architectural level.

The E-CARES reverse engineering environment is graph-based, since recov-
ered structures are represented as graphs. Graphs serve as a general, natural,
and expressive data model which is frequently used in many other reengineer-
ing environments, as well. However, E-CARES differs from other reengineering
environments because it relies on graph transformations : Large parts of the E-
CARES environment are generated from a formal specification based on a graph
transformation system. In this way, the effort for developing the reverse engi-
neering environment has been reduced significantly.

The remainder of this paper is structured as follows: Section 2 provides some
background knowledge from the telecommunication domain. Section 3 gives a
brief overview of the E-CARES environment. Sections 4 and 5 are devoted to
program analysis and architecture recovery, respectively. Section 6 is concerned
with the realization of the E-CARES environment. Section 7 discusses related
work. Finally, Section 8 concludes the paper.

2 Background

2.1 GSM Basics

The mobile-service switching centers are the heart of a GSM network (Figure 1).
An MSC provides the services a person can request by using a mobile phone,
e.g., a simple phone call, a phone conference, or a data call, as well as ad-
ditional infrastructure like authentication. Each MSC is supported by several
Base Station Controllers (BSC), each of which controls a set of Base Station
Transceivers (BTS). The interconnection of MSCs and the connection to other
networks (e.g., public switched telecommunication networks) is provided by gate-
way MSCs (GMSC). In fact, the MSC is the most complex part of a GSM net-
work. An MSC consists of a mixture of hardware (e.g., switching boards) and
software units. In our research we focus on the software part of this embedded
system.

Figure 2 illustrates how a mobile originating call is handled in the MSC. The
figure displays logical rather than physical components according to the GSM
standard; different logical components may be mapped onto the same physical
component. The mobile originating MSC (MSC-MO) for the A side (1) passes
an initial address message (IAM) to a GMSC which (2) sends a request for
routing information to the home location register (HLR). The HLR looks up the
mobile terminating MSC (MSC-MTE) and (3) sends a request for the roaming
number. The MSC-MTE assigns a roaming number to be used for addressing
during the call and stores it in its visitor location register (VLR, not shown).
Then, it (4) passes the roaming number back to the HLR which (5) sends the
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Fig. 1. Simplified sketch of a GSM network

Fig. 2. Mobile originating call

requested routing information to the GMSC. After that, the GMSC (6) sends a
call request to the MSC-MTE. The MSC-MTE (7) returns an address complete
message (ACM) which (8) is forwarded to the MSC-MO. Now, user data — e. g.,
the two participants’ voices — may be transferred between A and B as indicated
by the dashed line in the figure.

2.2 The Programming Language PLEX

The application part of the AXE10 software is implemented in a non-standard
programming language called PLEX (Programming Language for EXchanges),
which was developed at Ericsson. PLEX is an asynchronous concurrent real-
time language designed for programming of telecommunication systems. This
programming language has a “signaling paradigm” as the top execution level.
That is, only events can trigger code execution. Events are programmed as
signals.
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A PLEX program is composed of a set of blocks (designated by the keyword
DOCUMENT) which serve as units of compilation. Blocks have data encapsula-
tion, that is, a block’s data cannot be accessed by other blocks. PLEX has a
COBOL-like syntax with blocks being divided into multiple sectors. Only two of
these are of interest within the scope of this paper, namely the declare sector for
the declaration of local variables, and the program sector for the control logic.
As an example, Figure 3 shows cutouts of several blocks being involved in the
processing of a mobile originating call as illustrated in Figure 2.

The declare sector defines variables for elementary data types such as e.g.
integers, strings, and symbols, as well as structured data such as arrays and
records. Data may be marked as persistent by a corresponding keyword in the
declaration. A record which is marked as persistent stands for a file storing
instances of records of this type. Typically, a record instance holds data for a
specific call. For example, the record MSCMO in block MSCMO holds — among
other data — the telephone number of the telephone of the B side, the so-called
BNUMBER.

Blocks communicate via signals which are declared in separate signal descrip-
tion tables (not shown). The SEND statement serves to send a signal. In the
case of a unique signal, the recipient is not specified as it may be identified by
a simple name match of the signal name in the reception statements of other
blocks. In the case of a multiple signal, the SEND statement contains a reference
to a variable which stores the recipient at runtime. Here, the name match alone
is ambiguous as it only provides possible pairs of senders and receivers. Data
may be transferred along with a signal via the WITH clause. By default, signals
realize asynchronous communication (single signals). In the case of synchronous
communication (combined signals), the SEND statement specifies the set of alter-
native signals which are expected as backward signals (WAIT FOR clause). Single
and combined (forward) signals are received by ENTER and RECEIVE statements,
respectively. In the latter case, backward signals are sent via RETURN statements
and received by RETRIEVE statements.

The control flow of a block is described in its program sector. Execution starts
with the reception of a signal and continues until an EXIT statement is reached.
Typically, a GOTO statement is executed in response to a signal which trans-
fers the control flow to a labeled statement sequence. A DO statement calls a
parameter-less subroutine which is embraced by BEGIN and END statements. Pa-
rameters can be passed only with local signals which are processed by the sending
block itself. This is achieved via a TRANSFER statement which performs an un-
conditional jump and optionally passes parameters to the target code fragment
(starting with an ENTRANCE statement).

As presented so far, a block is a fairly unstructured program unit. Unfor-
tunately, PLEX does not offer language constructs to decompose blocks into
more fine-grained logical units. At a conceptual level, however, such units do
exist (and need to be recovered by structural analysis). First, since execution
is driven by signals, the code of the program sector may be decomposed into
functions, i.e., pieces of code being executed in response to some signal. Second,
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control flow resulting from jumps (GOTO, CALL)

control flow resulting from a direct signal

control flow resulting from a buffered signal

DECLARE;
  GLOBAL NSYMB MSCMTE (99);

  VARIABLE TMSCMOP;
  VARIABLE TBNUMBER;
  VARIABLE TFREE;

  RECORD GMSC;
    VARIABLE MSCMOP DS;
    VARIABLE MSCMTEP DS;
    VARIABLE BNUMBER DS;
    VARIABLE ROAMNR DS;

  POINTER GMSCP (GMSC);
  END RECORD;

END DECLARE;

PROGRAM; PLEX;
  ! Interface !
  ENTER IAM WITH TMSCMOP, TBNUMBER;
  GOTO IAM001;

  ENTER IAMGMSCACC WITH GMSCP;
  GOTO IAMACC001;
  ...

  ! Body !
  IAM001)
    DO SEIZE;
    GMSCP.MSCMP = TMSCMOP;
    GMSCP.BNUMBER = TBNUMBER;

                 WITH GMSCP, GMSCP.BNUMBER
    SEND GETROAMNR

                 WAIT FOR ROAMNR IN IAM002;

  IAMACC001)

                 WITH GMSCP.MSCMOP,
                 BUFFER;

    SEND IAMMSCMOACC

    EXIT;
  ...

  ! Search for free record !
  BEGIN SEIZE;
    ...
    GMSCP = TFREE;
  END SEIZE;
END PROGRAM;

  IAM002)

                        WITH GMSCP, GMSCP.RAOMNR;
    RECEIVE GETROAMNRR

    SEND IAM REFERENCE MSCMTE
                          WITH GMSCP, GMSCP.ROAMNR,
                          BUFFER;
    EXIT;

DOCUMENT GMSC;

DECLARE:
  GLOBAL NSYMB GMSC (99);

  VARIABLE TBNUMBER;
  VARIABLE TFREE;

  ! Search for free record !
  BEGIN SEIZE;
    ...
    MSCMOP = TFREE;
  END SEIZE;
END PROGRAM:

  ! Body !
  DIAL001)
    DO SEIZE;
    MSCMOP.BNUMBER = TBNUMBER;
    SEND IAM REFERENCE GMSC

    EXIT;
  ...

                 WITH MSCMOP, MSCMOP.BNUMBER,
                 BUFFER;

  RECORD MSCMO;
    VARIABLE BNUMBER DS;
    ...
  END RECORD;
  POINTER MSCMOP (MSCMO);
END DECLARE;

PROGRAM; PLEX;
  ! Interface !
  ENTER DIAL WITH BNUMBER;
  GOTO DIAL001;

  ENTER IAMMSCMOACC WITH MSCMOP;
  GOTO IAMACC001;

DOCUMENT MSCMO;

DECLARE;
  VARIABLE TGMSCP;
  VARIABLE TROMNR;
  VARIABLE TFREE;

PROGRAM; PLEX;
  ! Interface !
  ENTER IAM WITH TGMSCP, TROAMNR;
  GOTO IAM011;

  ! Search for free record !
  BEGIN SEIZE;
    ...
    MSCMTEP = TFREE;
  END SEIZE;
END PROGRAM;

  ! Body !
  IAM011)
    DO SEIZE;
    MSCMTEP.GMSCP = TGMSCP;
    MSCMTEP.ROAMNR = TROAMNR;
    ...

                 WITH MSCMTEP.GMSCP,
                BUFFER;

    SEND IAMGMSCACC

    SEND RING WITH MSCMTEP;
    EXIT;
  ...

  RECORD MSCMTE;
    VARIABLE GMSCP DS;
    VARIABLE ROAMNR DS;
    ...
  END RECORD;
  POINTER MSCMTEP (MSCMTE);
END DECLARE;

DOCUMENT MSCMTE;

DECLARE;
  VARIABLE TSENDERP;
  VARIABLE TBNUMBER;
  VARIABLE TDHLRP;
  VARIABLE TDBNUMBER;

  RECORD HLR;
    VARIABLE GMSCP DS;

    ...
    VARIABLE ROAMNR DS;

  END HLR;
  POINTER HLRP (HLR);

  RECORD DBA;

    ...
    VARIABLE DHLRP DS;

  END DBA;
  POINTER DBAP (DBA);

PROGRAM; PLEX;
  ! Interface !
  RECEIVE GETROAMNR WITH TGMSCP, TBNUMBER;
  GOTO GETROAMNR001;

  ! Body Module HLR !
  GETROAMNR001)
    DO SEIZEHLR;
    HLRP.GMSCP = TGMSCP;
    TRANSFER GETNR WITH HLRP,TBNUMBER;
    EXIT;

  ...

    ENTRANCE GETNRACC 
                            WITH HLRP, HLRP.ROAMNR;

                      WITH HLRP.GMSCP, HLRP.ROAMNR;
    RETURN GETROAMNRR

  ! Body Module DBA !
    ENTRANCE GETNR
                            WITH TDHLRP, TDBNUMBER;
    DO SEIZEDBA;
    DBAP.DHLRP = TDHLRP;
    ...
    TRANSFER GETRNRACC

    EXIT;
                           WITH DBAP.HLRP, DBA.ROAMNR;

  ! Search for free individual !
  BEGIN SEIZEHLR;
    ...
    HLRP = TFREE;
  END SEIZEHLR;

DOCUMENT HLR;

END DECLARE;

    ...
    DBAP = TFREE;
  END SEIZEDBA;
END PROGRAM;

  BEGIN SEIZEDBA;

5

6

14

4

13

1

2

3
7

11

9

8

10

12

Fig. 3. PLEX blocks and their communication

multiple functions may be aggregated into modules, which provide logically co-
herent “mini-services”. For example, the block HLR consists of two modules —
the main module HLR and the subordinate module DBA (data base access).
The latter serves as a wrapper that provides a standardized interface to a
specific physical database to decouple the application from a specific database
implementation.

2.3 Execution Model

Program systems written in PLEX must be run on top of an operating system
whose main task is signal handling. Single signals are managed in priority queues
called job buffers. The runtime system selects a signal from a queue and delivers it
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to the receiving block. Direct signals (for local and synchronous communication)
are executed immediately rather than stored in job buffers. Within a block,
memory is usually managed statically. If resources are exhausted, further space
may be allocated via size alteration events.

At runtime, telecommunication systems handle thousands of different tele-
phone calls at the same time. Each call — as e.g. illustrated in Figure 2 —
represents a service request to the telecommunication system. The numerous
services are realized by re-combining and re-connecting sets of small services,
provided by respective blocks. Thus, a telephone call is realized by numerous
mini-services spontaneously linked together. Telecommunication experts call the
interconnected services for a single telephone call a link chain.

Conceptually, a link chain is composed of a set of interconnected block in-
stances, each of which holds data for a specific call. Since PLEX does not provide
language support for dynamic instantiation of blocks, block instances have to be
managed “manually” by the respective block, i.e., the PLEX programmer has to
simulate dynamic instantiation by writing code for allocating and deallocating
memory units, etc. If a block consists of multiple modules, instantiation has to
be performed at the module level, resulting in module instances. For the sake
of simplicity, however, we will use the term “block instance” in the description
below.

Figure 3 shows a cutout of the processing of a mobile originating call as an
example for the dynamic creation of a link chain. The figure covers part of the
mobile originating call scenario of Figure 2, namely those steps in which the
blocks MSC-MO, GMSC, and HLR are involved. Processing starts with the recep-
tion of a DIAL event (1), which causes a jump to a labeled statement sequence
for processing this event (2). An idle MSC-MO record is occupied through the
call of the subroutine SEIZE (3). After that, the signal IAM is sent to block GMSC

(step (4), which corresponds to step 1 in Figure 2). The recipient in turn jumps
to a labeled statement sequence (5) and allocates a record for the link chain (6).
Subsequently, it sends a request for a roaming number to block HLR (step 7, cor-
responding to (2) in Figure 2). After a jump to the processing labeled statement
sequence (8) and seizing of a record for the new call (9), a local signal is sent
(10) which triggers the allocation of another record in the subordinate module
DBA (11). Then, another local signal is sent (12) whose associated data contains
the roaming number for the call. The roaming number is passed back to GMSC

(step 13, corresponding to (5) in Figure 2), from which it is finally forwarded to
MSC-MO (step 14, corresponding to (8) in Figure 2).

3 The E-CARES Environment

Within the E-CARES project, a reengineering environment for telecommuni-
cation systems has been developed. The system architecture of the E-CARES
environment is illustrated in Figure 4. In this paper, we are concerned only with
reverse engineering (solid lines). The components displayed with dashed lines
deal with restructuring and forward engineering; see [9].



370 A. Marburger and B. Westfechtel

Fig. 4. Architecture of the E-CARES environment

Reverse engineering involves different kinds of analysis: Structural analysis —
the focus of this paper — refers to the static system structure, while behavioral
analysis is concerned with the system’s dynamic behavior. Thus, the attributes
“structural” and “behavioral” denote the outputs of analysis. In contrast, static
analysis denotes any analysis which can be performed on the source code (or
structure document, respectively), while dynamic analysis requires information
from program execution. Thus, “static” and “dynamic” refer to the inputs of
analysis.

For the static analysis of the structure of a PLEX system, we base our system
on three sources of information. The first one is the source code of the system. It
is considered to be the core information as well as the most reliable one. Via code
analysis (parsing) a number of structure documents is generated from the source
code, one for each block. These structure documents form a kind of textual graph
description. The second and the third source of information are miscellaneous
documents (e.g., product hierarchy description, signal database) and the sys-
tem documentation. As far as the information from these sources is computer
processable, we use parsers and scripts to extract additional information. This
additional information is stored in structure documents, as well.

The static analysis tool processes the graph descriptions of individual blocks
and extends the structure graph which represents the overall application by cre-
ating corresponding subgraphs. The subgraphs are then connected by performing
global analyses in order to bind signal send statements to signal entry points.
Moreover, the subgraphs for each block are reduced by performing simplifying
graph transformations. The static analysis tool also creates views of the sys-
tem at different levels of abstraction. In addition to structure, static analysis is
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concerned with behavior (e.g., extraction of state machines or of potential link
chains from the source code).

The graph produced by the static analysis tool depends on the programming
language (PLEX) in which the source code is written. Therefore, we will use the
term program analysis (Section 4) to denote this step of processing. The architec-
ture extraction tool transforms the structure graph into elements of a modeling
language which does no longer use abstractions specific to the programming
language. This results in an architecture graph that can be used to review and
(re-)document the currently implemented architecture or to perform architec-
tural changes. As modeling language, we selected ROOM; other languages —
e.g., SDL or the UML component model — could be supported in an analogous
way (see also Section 7 on related work).

Dynamic information originates from using an emulator or querying a running
AXE10, resulting in a list of events plus additional information in a temporal
order in both cases. Such a list constitutes a trace which is fed into the dynamic
analysis tool. Interleaved with trace simulation, dynamic analysis creates a graph
of interconnected block instances that is connected to the static structure graph.
This helps software architects to identify components of a system that take part
in a certain traffic case. At the user interface, traces are visualized by collabora-
tion and sequence diagrams. In E-CARES, dynamic analysis is performed only
for recovering the behavior; therefore, it goes beyond the scope of this paper.
For further information on dynamic analysis, the reader is referred to [8,14].

4 Program Analysis

Program analysis builds a structure graph which still depends on the underlying
programming language PLEX. However, program analysis does not exploit only
the syntactic structure of PLEX programs. In addition, it takes advantage of
methods of use, i.e., coding conventions and programming patterns which are
applied by software developers at Ericsson. These methods of use constitute in-
dispensable expert knowledge which assists in building program representations
with appropriate domain-specific abstractions.

4.1 Building the Structure Graph

The structure graph is created by parsing diverse sources. The most impor-
tant information is the source code of PLEX blocks. In addition, global signals
are declared in signal description tables. Furthermore, information about the
coarse-grained system structure above the level of blocks is given in product
configuration files. In the following, we will primarily focus on parsing of PLEX
blocks.

The design of the structure graph was driven heavily by the requirements of
telecommunication experts at Ericsson. From the very beginning, the experts
were more interested in the coarse-grained structure of the system under study
rather than in detailed code analysis. Therefore, the structure graph contains
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Fig. 5. Example of a structure graph

only the information which is required for the purposes of reverse engineering.
In particular, the structure graph has to reveal the interfaces of blocks (processed
signals), the actions performed in response to received signals, and the inter-block
communication.

For this reason, the structure graph is more compact than an abstract syntax
graph, which would provide a detailed syntactic representation of the source
code. From the structure graph alone, it would not be possible to reconstruct
the source code. However, the structure graph contains references to text lines
in the source code. Thus, for each element of the structure graph the source code
fragment may be retrieved from which this element was derived.

An example of a (cut-out of a) structure graph is presented in Figure 5. Par-
tially, this structure graph is created from the code fragments shown in Figure 3.
The nodes represented by rounded rectangles on the top do not correspond to
language constructs of PLEX. Rather, they are created by parsing a configura-
tion file which decomposes the AXE10 system into subsystems and blocks (as
leaves of the composition hierarchy).

The PLEX parser processes each block independently, resulting in a block
graph (shaded regions) which is embedded into its context in a subsequent phase.
The figure shows only parts created from the program sector. In addition, a
block graph contains further elements created from other sectors, e.g., nodes for
variable declarations.
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The program sector is represented in such a way that the computational be-
havior of blocks is reflected. Thus, it contains nodes for signal entries, which
constitute the export interface of a block. The coding conventions at Ericsson
state that a GOTO statement — represented by an edge — is executed in re-
sponse to the signal reception. Its target is a label (nodes displayed as ellipses)
which marks the start of some statement sequence. Within this sequence, sub-
routines may be called. Furthermore, a statement sequence may contain an EXIT

statement which returns control to the dispatcher of the operating system.
The notion of labeled statement sequence constitutes an example of the meth-

ods of use mentioned above. A labeled statement sequence does not correspond
to a syntactic unit of the PLEX programming language. Rather, a labeled state-
ment sequence is defined as a code fragment starting with some label and ending
before the next label. Labeled statement sequences constitute a useful abstrac-
tion which reflects the way in which PLEX programs operate: They execute
statement sequences in response to signals. The internals of these sequences are
not important; therefore, they are not represented in the structure graph.

After building initial subgraphs for each block, several steps of postprocessing
have to be performed. For example, the control flow has to be completed by
postprocessing. Like in COBOL, execution of a labeled statement sequence may
fall through to a consecutive statement sequence if the preceding sequence is not
terminated by an EXIT statement. In this case, the labeled statement sequences
are connected by a control flow edge. This kind of processing is a prerequisite
for the recovery of functions to be discussed in the next subsection.

Furthermore, after initial local analysis blocks are isolated and need to be
connected by binding global signal sending statements to signal entry points.
Local analysis prepares the binding by creating virtual signal entry points acting
as temporary target nodes (not shown in Figure 5). Global analysis searches for
matching entry points in other blocks, creates inter-block edges for representing
the sending of signals, and removes the temporary virtual signal entry points. For
example, this binding step inserts an edge from the labeled statement sequence
DIAL001 in block MSCMO to the signal entry point IAM in block GMSC. In the
case of single signals, the binding is unique. In the case of multiple signals, the
actual receiver is determined only at run time; static analysis creates an edge to
the entry point of each potential receiver.

In the binding step, it is crucial to take the following method of use into ac-
count: In AXE10, each block is responsible for returning control to the operating
system within a maximal time slice. For efficiency reasons, there is no interrupt
handling built into the operating system. But the processing of an incoming sig-
nal may consume more than one time slice. Thus, the processing is divided into
multiple phases where each but the last phase sends a CONTINUE signal to the
block itself and terminates. This mode of processing is known as phase division.

CONTINUE signals have to be excluded from the binding step; otherwise, the
structure graph would be cluttered with many erroneous edges (recall that in
the case of multiple signals edges are created to all potential receivers). Rather,
these signals are handled specially by a phase division analysis. All phases which
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are executed in response to a certain signal are connected by control flows. In
this way, artificially separated computation fragments are joined together.

After having created connections between signal sending statements and sin-
gle entry points, the communications are lifted to the block level. For example,
lifting results in the block communication edge from MSCMO to GMSC. Further-
more, lifting is continued to the subsystem level by connecting subsystems with
mutually communicating blocks.

4.2 Recovering Functions and Modules

Functions and modules are conceptual abstractions rather than syntactic units
of the PLEX programming language. Several methods of use are exploited to
recover these abstractions from the structure graph built up so far. Since the
recovery of modules is concerned with the grouping of functions, the recovery of
functions is described first.

Recovery of Functions. A function represents the set of code fragments which
are uniquely executed as a reaction to the reception of a certain signal. Conse-
quently, each function contains exactly one signal entry. The remaining nodes
of the structure graph that belong to a function are determined through control
flow analysis.

Figure 6 illustrates the recovery of functions (and modules, see below) by an
example. In this example, we start with a block structure graph comprising two
signal entries (nodes 1 and 3), three labeled statement sequences (nodes 2, 4, and
5), and two subroutines (nodes 6 and 7). Furthermore, some data elements, one
record and two atomic data elements (Var1 and Var2), are depicted. The further
structuring of the record has been omitted for the sake of brevity. Therefore, the
data access edges, represented by arrows with open heads, normally accessing
some data element in the record have been redirected to the record node.

For function recovery, all graph elements are determined that can be reached
from the given signal entry via a transitive closure of control flow edges. The
preceding postprocessing steps ensure that the control flow is represented com-
pletely in the structure graph; consider e.g. processing of fall-through execution
and phase divisions as explained in the previous subsection. With respect to the
example in Figure 6, the transitive closure returns a set consisting of nodes 2, 6,
and 7 when starting at signal entry 1. Furthermore, all data elements accessed
from these nodes are determined. For example, in the case of signal entry 1 the
variable Var1 is accessed. Starting from signal entry 3, we obtain the variables
Var1 and Var2 as well as the record.

Next, graph elements shared by at least two transitive closures are removed
from the respective sets in order to obtain only uniquely assignable graph ele-
ments. In Step 2 of Figure 6, all uniquely assignable graph elements are shown
in regions with a light gray background. The subroutine 7, the variable Var1, and
the record — which is also accessed from another function not displayed in the
figure — are located outside these regions because they are shared by multiple
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functions. On the other hand, subroutine 6 and variable Var2 have been identified
as local elements.

The graph shown in Step 2 also includes the function nodes (F1 and F2) which
have been created to represent the results of the recovery in the structure graph.
These nodes are inserted in between the block node and the nodes representing
local graph elements. Furthermore, outgoing control flow and data flow edges
have been lifted to the function node. In this way, the “imports” of each function
are represented.

Recovery of Modules. Recovery of functions serves to identify the interface
of a block. As already mentioned at the end of Subsection 2.2, blocks may be
decomposed into more fine-grained units called modules. A module groups data
and functions. For example, the block HLR consists of two modules — the main
module HLR and the subordinate module DBA (data base access).

As we have explained in Subsection 2.3, telephone calls are handled by build-
ing up link chains. A link chain is composed from instances of participating
blocks. If a block is decomposed into multiple modules, instantiation has to be
performed on the level of modules. For each instance, its data are typically held
in a single record.

This domain knowledge is exploited in module recovery. In contrast to function
recovery, which is based on control flow analysis, module recovery analyzes ac-
cesses to data elements. However, we do not consider all data elements declared
in a block. Rather, we confine the scope of analysis to records holding instance
data. These records are discovered by applying some heuristic rules described
below.

A record indicating that there is a module contained in a PLEX block satisfies
certain requirements. First of all, instance records are stored records. They are
stored in a file and are referenced by a similarly named pointer variable. In
addition, instance records have to contain an enumeration type variable defining
a list of symbolic state values. According to a coding rule, the name of this
variable contains the substring STATE. Therefore, a string match is sufficient for
its identification. Another good hint that a record is an instance record is its
size. Instance records tend to be much larger than other records in a block.

Since modules are grouped around an instance record, we use a data centered
algorithm for the calculation of the module candidate. A well-known algorithm
of this class has first been proposed by Liu and Wilde in [15]. An adaption of
this algorithm to graphs can be found in [16]. Originally, the idea of the algo-
rithm is to identify object candidates in procedural code. The idea bases on the
observation that software has already been developed in an object-based manner
long before object-oriented design has become popular. Thus, it is assumed that
object candidates in a conventional programming language can be identified as
a collection of routines, (global) data types and/or (global) data elements. That
is, an object candidate is a triple (F, T, D), where F is a set of functions, T a
set of data types, and D a set of data elements.

Adapted to the facts of E-CARES, object candidates conform to module can-
didates. Furthermore, the set of data types will always be empty as there are
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no user defined data types in PLEX. Also, the data elements used as an input
to the algorithm can be limited to records only. Therefore, the procedure of the
module candidature for PLEX code according to Liu and Wilde reads as follows:

1. For each instance record x, let P (x) be the set of routines which directly use
x. Moreover, x should be shared by at least two different routines. Routines
can correspond to functions (if present2) but also to any other kind of multi-
statement structure object inside a block (signal entry, statement sequence,
subroutine).

2. Considering each P (x) as a node, construct a graph G = (V, E) such that

V = { P (x) | x is shared by at least two routines} is a set of nodes,

E = { P (x1)P (x2) | P (x1) ∩ P (x2) 
= ∅} is a set of undirected edges.

3. Construct a module candidate (F, T, D) from each strongly connected com-
ponent Gcand = (Vcand, Ecand) in G such that

F =
⋃

P (x)∈Vcand
P (x)

T = ∅

D =
⋃

P (x)∈Vcand
{x}

4. Complete each module candidate by adding all data elements which are ac-
cessed only locally.

Applied to the graph shown in Step 2 of Figure 6, the algorithm selects the
only record as its starting point (assuming that the heuristic rules described
above are satisfied). This record is accessed by the function F1 and another
function not shown in the figure (say F3). The module candidate comprises the
selected record, the functions F1 and F3 (Step 3).

Please note that in general a module may comprise multiple records (e.g., if
F3 accesses another record matching the heuristic rules). However, in the case of
the AXE10 system each module is typically grouped around a single record.

What would have happened if we had neglected the domain knowledge on the
realization of modules and if we had just used the Liu and Wilde algorithm as
proposed? In that case, Step 1 of the algorithm would refer to all global data ele-
ments and any kind of routines. By consequence, the algorithm would determine
two sets P (Var1) = {2, 3, F1, F2} and P (Record) = {3, 4, F1, F3}. Because these
two sets have a non-empty intersection, the corresponding module candidate
would comprise the contents of both P (Var1) and P (Record). Thus, all elements
of the sample graph would be assigned to a single module.

2 If function recovery has not been performed, the algorithm will work anyway.
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5 Architecture Recovery

5.1 Motivation

So far, we have been concerned with the creation of a structure graph from
the source code and other auxiliary documents. The structure graph strongly
depends on the syntax of the underlying programming language (PLEX). In ad-
dition, it contains conceptual abstractions such as functions and modules which
do not occur as syntactic units in the PLEX language.

Architecture recovery creates an architectural description of the system under
study from the structure graph. The underlying architecture description language
(ADL) has to meet the following requirements:

– The ADL has to be independent from the programming language(s) in which
the system is written. In particular, language independence is important
when different parts of the system under study are written in different pro-
gramming languages. In the case of AXE10, which has originally been writ-
ten exclusively in PLEX, more and more parts are being added in C++,
resulting in a hybrid system.

– The ADL must support domain-specific abstractions and must be accepted
widely by telecommunication experts.

The second requirement rules out general-purpose ADLs to which the world
of processes communicating by exchanging signals via protocols defined by state
machines cannot be mapped adequately. On the other hand, there are still mul-
tiple candidate languages meeting the stated requirements. In particular, the
domain experts at Ericsson have applied both SDL [12] and ROOM [10] to the
modeling of telecommunication systems. In the end, it was decided to use ROOM
as the ADL in the E-CARES project, primarily because it provides clean con-
cepts for modeling components interacting via ports along which messages are
sent and received.

However, ROOM was not a clear winner over SDL. Furthermore, the UML
component model [13] constitutes another candidate ADL which could be consid-
ered in future work3. For these reasons, we were aware that the target language
for architectural recovery may be changed later on.

Therefore, we decided to decompose structural analysis into two phases : pro-
gram analysis (as presented in Section 4) and architectural recovery. Further-
more, the architecture is represented separately from the structure in an archi-
tecture graph (with mappings into the structure graph). This design provides
modularity of the E-CARES reverse engineering environment. Thus, the map-
ping to ROOM described below could be replaced easily with a similar mapping
to SDL or to the UML components.

5.2 Real-Time Object-Oriented Modeling Language

The Real-Time Object-Oriented Modeling language [10] was designed for mod-
eling asynchronous, concurrent, and distributed real-time systems. ROOM is
3 When architectural recovery was realized in the E-CARES project, the UML 2.0

component model was still in flux.
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Fig. 7. ROOM diagram for the mobile originating call scenario (simple mapping)

the outcome of the authors’ and their colleagues’ combined practical experi-
ence in developing a variety of real-time systems in different industries including
robotics, aerospace, and telecommunications. They claim that especially the de-
velopment of a large distributed telecommunication system had a significant
impact on the ROOM language.

A ROOM model consists of two parts: structural models and behavioral mod-
els. ROOM structure models are a kind of component inter-connection and com-
ponent refinement diagrams. Behavior is modeled by means of extended state
machines. Since this paper is concerned only with structural analysis, we will
not discuss behavioral modeling below.

A simple example of a ROOM structure diagram is given in Figure 74. Ar-
chitectural components are represented by actor classes. Each actor class is dis-
played as a rectangle (e.g., MSCMO). The interfaces of actor classes are defined by
ports, which are shown as small squares (with nested circles) placed on the bor-
der of the rectangle of the respective actor class. An actor communicates with
its environment by sending and receiving messages via these ports. For each
port, a protocol defines its incoming and outgoing messages. For some protocol
p, its conjugated protocol is constructed by inverting the direction of messages.
Finally, ports are connected by bindings. The ports connected by a binding must
be compatible, the port at one end must be able to receive the messages sent via
the port at the other end. This requirement is satisfied if the ports are associated
to conjugated protocols.

4 The legend refers to Figure 8, as well.
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Figure 8 shows a more complex structure diagram which makes use of fur-
ther language constructs provided by ROOM. Actor classes may be refined into
a subdiagram, which is shown within the rectangle for the actor class. Nodes
of a subdiagram stand for actor references, i.e., references to instances of actor
classes. In general, actor classes may be reused in different parts of the overall
architecture; their instances are plugged into their respective context by connect-
ing ports with bindings. In the case of double-shaped actor references, multiple
instances may be created at run time (replicated references). The multiplicity is
given in the upper right corner of the rectangle; * denotes an unbounded number
of instances.

Furthermore, the diagram illustrates some generalizations and refinements
concerning the modeling of ports. Analogously to replicated actor references,
replicated ports are shown as double-shaped squares. In addition to external
ports, an actor class may have internal ports which do not belong to its interface
and therefore are shown inside (but near the border of) the respective rectangle.
Furthermore, a distinction is made between class end ports and relay ports. Class
end ports, which were shown already in Figure 7, are processed by the actor
class itself; they are represented by squares with nested circles. In contrast, relay
ports (nested squares) are used to pass messages upwards or downwards in the
hierarchy without processing.

So far, we have introduced merely those elements of the ROOM language
which are needed in the context of this paper. Further important language con-
structs such as inheritance on actor classes and layers are not exploited by the
mapping algorithms below. Inheritance cannot be applied in architecture re-
covery since telecommunication systems programmed in PLEX are object-based
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Fig. 9. Example mapping of a simple PLEX structure graph to a ROOM graph

rather than object-oriented. Layers are an important concept in telecommunica-
tion architectures. Unfortunately, no machine processable sources are available
from which the layering of the AXE10 system could be inferred.

5.3 A Simple Mapping Algorithm

In general, the basic idea of the E-CARES approach to architecture recovery is
to identify elements in the structure graph that can be considered to correspond
to elements of the ROOM language. More precisely, this means that we have to
identify elements in the PLEX structure graph that can be thought of as realiza-
tions of actors, ports, protocols, messages, bindings, etc. The identified structure
graph elements are then mapped to newly created elements of an architecture
graph.

First, we have defined a simple approach for mapping elements of the structure
graph to ROOM elements (Figure 9) as follows:

1. PLEX blocks are mapped onto actor classes. Blocks are the active entities
of a PLEX software system while actor classes are the active elements of a
ROOM model.

2. Each block communication is mapped onto a corresponding binding. Before
creating the binding, the ports to be connected have to be created. Thus,
ports bundle all messages sent to or received from one destination.
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3. Signals are mapped onto messages.
4. The protocol class attached to a port is derived from signal entries and

signal sending statements, i.e., from the fine-grained communications which
are aggregated into a block communication.

With respect to the running example of a mobile originating call and the
participating blocks MSCMO, MSCMTE, GMSC, and HLR (see Figures 2 and 3), the
architecture diagram resulting from this simple mapping algorithm is depicted in
Figure 7. The diagram shows some characteristics typical for the type of ROOM
structure diagrams produced by the simple mapping algorithm. Obviously, the
diagrams consists of actor classes only. Furthermore, there is always a single
communication contract between a pair of communicating actor classes. The
ports bound to one of these communication contracts have conjugated protocols
in the sense that no port is able to receive messages which cannot be produced
by the other port. Finally, the port MSCMO EP1 symbolizes that there might be
ports that have no connection to any communication path. This may indicate
dead code (received signals which are not sent) or may result from a constrained
scope of program analysis (confined e.g. to some subsystem).

Comparing the results of this first and simple mapping algorithm with the
information already provided by the structure graph, the improvement is quite
small. The simple algorithm can be considered an unparsing algorithm that con-
verts the block communication level of the structure graph into a standardized
notation. The only improvement is that interfaces are now clearly visible in
terms of ports and that the signals sent and received by a block are associated
to different protocols that can be named, described and compared easily.

5.4 An Improved Mapping Algorithm

So far, we have merely performed a syntactic transformation from PLEX into
ROOM. In the following, we will present a more elaborate algorithm which
exploits methods of use. Once again, this mapping demonstrates the importance
of domain knowledge beyond the language level.

The simple mapping algorithm presented so far does not consider any decom-
position of blocks and actor classes, respectively. But, as already elaborated,
most blocks in a PLEX software system contain at least one module (which is
a conceptual rather than a syntactical unit). In addition, there can be several
instances of a block or, more precisely, of its modules being the active entities of
a PLEX system at runtime (see Subsection 2.3). Furthermore, we have already
mentioned that the instances of a block are created, managed, and destroyed by
the block itself.

Consequently, the actor classes resulting from architecture recovery should
show a decomposition into several actors representing the module objects con-
tained in the corresponding block. In addition, there should be a possibility to
access the actors in the decomposition frame of an actor class from its behav-
ior component that represents the control interface for instance management.
Taking these considerations into account, our mobile originating call scenario is
mapped into the refined structure diagram shown in Figure 8.
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The improved mapping algorithm proceeds as follows:

1. Each block is mapped onto a complex actor class. In our example, the actor
classes named MSCMO, GMSC, MSCMTE, and HLR are created.

2. Each module is mapped onto an an atomic actor class. In Figure 8, only the
actor class Mod HLR is shown as an example in the lower left corner.

3. Since as many module instances as needed are created at runtime, replicated
references with multiplicity * are placed inside in the actor class for the
surrounding block. In the example, the actor classes MSCMO, GMSC, and
MSCMTE contain references to only one nested actor class because each of
the corresponding blocks contains only one module. Since the block HLR

contains two modules (one implementing the application logic of the block
and one for the database), the corresponding actor class contains references
to two nested actor classes.

4. For each block, a class end port is added to the interface of its corresponding
actor class. This port represents the management interface of the block. In
particular, the management interface handles SEIZE signals requesting the
creation of link chains.

5. Similarly, a class end port is created for each actor class representing a
module. For example, EP10 represents the interface which is in charge of
managing the instances of module Mod HLR.

6. For connecting to the management ports of nested modules, corresponding
internal class end ports are generated within the respective actor classes
(e.g., port EP11 in HLR).

7. For each pair of communicating modules (locally or across different blocks),
class end ports are created on either side. For example, the port EP7 of actor
class Mod HLR is created for the connection to Mod GMSC, and EP8 is going
to be connected to a corresponding port of Mod DBA.

8. For local communication among modules of the same block, bindings are
created among the ports of actor class references. In this way, the binding
between ports P8 and P9 within the actor class HLR is created.

9. If communication is performed between two modules belonging to different
blocks, bindings cannot connect references to actor classes for modules di-
rectly because direct connections would break encapsulation. Rather, com-
munication is routed via relay ports attached to the actor classes of the
respective surrounding blocks. For example, for the communication between
Mod GMSC and Mod HLR the relay ports RP5 and RP6 are created and con-
nected with each other. Furthermore, they are connected to the ports of the
respective actor class references acting as source or sink of the communica-
tion (ports P4 and P7, respectively).

Let us briefly sketch how a link chain would be set up at run time: First, the
block MSCMO receives a request for setting up a link chain via its management
port (lower port on the left-hand edge of the rectangle). Through its internal
class end port (close to the upper edge), it delegates the request to its nested
module Mod MSCMO via its management port (located on the upper edge of the
rectangle). In response to this request, an instance of this module is created.
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To embed this instance, instances of relay ports of the surrounding block are
created and connected to the respective ports of the module instance. Via the
lower port shown on the right-hand edge, a message is request is sent to the next
block in the link chain (GMSC). The reply returns a reference to a new instance
of Mod GMSC, and subsequent communication with this instance is performed
via the new instances of the upper relay ports on the left-hand side of MSCMO

and the right-hand side of GMSC, respectively.
Altogether, the improved algorithm constructs an architecture diagram which

makes heavy use of domain-specific design patterns. In this way, the architecture
diagram reflects the methods of use employed as design guidelines at Ericsson.

6 Realization

An overview of the E-CARES environment has been given in Section 3. To re-
duce the effort of implementing the E-CARES environment, we made extensive
use of generators and reusable frameworks [17]. Scanners and parsers are gener-
ated with the help of JLex and jay, respectively. Graph algorithms are realized
in PROGRES [18], a specification language based on programmed graph trans-
formations. From the specification, code is generated which constitutes the ap-
plication logic of the E-CARES environment. The user interface is implemented
with the help of UPGRADE [19], a framework for building interactive tools for
visual languages. Project specific extensions to the framework have been realized
in Java.

A core part of the E-CARES environment consists of a (large and complex)
PROGRES specification of structural and behavioral analysis. In this paper, we
have given an informal presentation of structural analysis in E-CARES, mainly
focusing on the construction of domain-specific abstractions for telecommuni-
cation systems. Due to the lack of space, we cannot elaborate in depth on the
PROGRES specification for E-CARES. Rather, the reader is referred to [8,17,20]
for detailed information in this area.

In the sequel, we present a small example from program analysis which demon-
strates the application of PROGRES in the E-CARES environment. The graph
transformation rule shown in Figure 10 is used to connect signal sending state-
ments to matching signal entries. This rule is invoked after isolated structure
graphs have been built by parsing PLEX blocks separately. For example, the
application of this rule is used to generate the connection labeled SignalIAM in
the structure graph of Figure 5.

Please note that Figure 5 shows a user-friendly, simplified representation of
the structure graph. In particular, the connection SignalIAM is represented inter-
nally by a node and two adjacent edges rather than by a single edge. This way
of representation is necessary because the underlying data model (attributed
graphs) does not allow to attach attributes to edges (which is required in the
case of the connection to be created).

The graph transformation rule is supplied with a parameter which determines
the node for the signal sending statement to be connected (signalNode). Due to
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production Connect_Signal_to_Entries( signalNode : ACTUAL_SIGNAL)
* =

‘4 : PLEX_Virtual_Signal_Entry

‘3 : PLEX_Signal_Entry

from_source

to_target
‘2 = signalNode

spec_signal_path ( ‘2.SignalName, ‘2.StartLine )

‘1 : CODE_OBJECT

::=

4’ = ‘4

3’ = ‘3

from_source

to_target
2’ = ‘2

from_source
1’ = ‘1

to_target
5’ : ‘2.type

condition ‘2.SignalName # "CONTINUEB";
‘2.SignalName # "CONTINUEC";
‘3.Name = ‘2.SignalName;

transfer 5’.SignalName := ‘2.SignalName;
5’.Comment := ‘2.Comment;
5’.ExecCondition := ‘2.ExecCondition;
5’.SignalParameter := ‘2.SignalParameter;
5’.SentOnState := ‘2.SentOnState;

end;

Fig. 10. Graph transformation rule for connecting sent signals to signal entries

the operator * (second line), the rule is applied to all matching subgraphs rather
than just once. This is essential for handling multiple signals, which have to be
connected to all potential recipients.

On the left-hand side (upper dashed box), which specifies the subgraph to be
replaced, node ‘2 is fixed by the input parameter signalNode. When processing a
single block without context information, the signal sending is connected to a
virtual signal entry (‘4), which acts as a placeholder for the final receiver(s). Both
nodes are removed later in a clean-up phase; therefore, they are not contained in
the sample graph of Figure 5. Node ‘1 represents the surrounding code object to
which the signal sending statement will be lifted (statement sequence DIAL001 cs

in Figure 5). Node ‘3 represents the signal entry to which the signal sending
statement will be connected. Candidate nodes are retrieved by name matching
(see the last line in the condition part which compares names attributes). In
addition, a connection must not have been established yet, i.e., the (crossed out)
path from ‘1 to ‘3 must not exist.

The right-hand side (lower dashed box) describes the transformation to be
executed when a match of the left-hand side has been found (satisfying also the
condition part of the rule). Here, the node 5’ and two adjacent edges are created
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(corresponding to the connection SignalIAM in Figure 5). The transfer part assigns
values to various attributes attached to the node (SignalName, Comment, . . .). All
other parts of the graph remain unaffected.

It is interesting to note that methods of use have been taken into account in
the specification of this graph transformation rule. As already mentioned at the
end of Subsection 4.1, telecommunication experts at Ericsson employ the phase
division idiom if processing of a signal requires more than a single time slice.
Thus, CONTINUE signals have to be ignored when connecting single sending
statements to single entries. For this reason, the condition part of the graph
transformation rule requires that the name of the signal must not be equal to
CONTINUEB or CONTINUEC (more than three cycles are never needed).

Architecture recovery does not augment the structure graph. Rather, it builds
a new representation (an architecture graph). This allows for a clean separation
of program analysis and architecture recovery, and it also permits multiple alter-
native architectural representations in different ADLs. Technically, architecture
recovery is realized by a triple graph transformation system which is based on
triple graph grammars [21,22]. A triple graph grammar is composed of rules oper-
ating on three graphs – a source graph (the structure graph), a target graph (the
architecture graph) and a correspondence graph storing the mappings between
the elements of the source and the target graph. In the original triple graph
grammar approach, synchronous rules (extending all graphs simultaneously) are
specified first, and directed rules (e.g., source-to-target transformations) are gen-
erated from synchronous rules. In our work, we specified directed transformations
from the structure graph into the architecture graph immediately without coding
the synchronous rules first (only one direction of transformation was needed in
the E-CARES reverse engineering environment). For further details, the reader
is referred to [8].

7 Related Work

The E-CARES prototype is a reengineering environment designed for telecom-
munication systems. In particular, it is based on domain-specific architectural
concepts. A telecommunication system is modeled as a set of active components
which communicate by sending and receiving signals. Thus, modeling is process-
centered. Since the static system structure is still strongly dependent on the
syntax of the underlying programming language (PLEX), additional conceptual
abstractions such as functions and modules have been added. From the struc-
ture graph, a programming language independent architectural description of
the system under study is created. As telecommunication systems are designed
in terms of layers, planes, services, protocols, etc., it has been crucial to choose
an ADL which supports domain specific abstractions.

While E-CARES also considers the behavior of the system under study [14],
many other reengineering tools such as e.g. Rigi [23] or KOGGE [24] primarily
focus on the static system structure. Moreover, they are typically data-centered;
consider e.g. tools for the reengineering of COBOL programs as described in
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[3,4,25]. Here, recovery of units of data abstraction and migration to an object-
oriented software architecture play a crucial role [26]. More recently, reengineer-
ing has also been studied for object-oriented programming languages such as
C++ and Java. E.g., TogetherJ or Fujaba [27] generate UML class diagrams
from source code.

The phases extraction, post-processing, and inspection can be found in a
similar form in different reverse or reengineering approaches. A typical exam-
ple is the extract-abstract-view metaphor described in [28], which consists of
three phases that occur in terms of activities in our process, too. In this ab-
stract form, the metaphor also serves as a kind of reference architecture for
reverse engineering tools. In particular, integrated reverse engineering tools like
DALI [29], GUPRO [30], PBS [31], ReForDi [3], Rigi [23,32], Bauhaus [33],
ANAL/SoftSpec [28], and SWAGKit [34] follow this reference architecture. The
E-CARES reengineering environment does so, too.

Architecture recovery means to bridge the gap between implementation and
architecture specification using appropriate reverse engineering techniques and
tools. Basically all of these approaches employ some kind of information retrieval
facility that extracts information artifacts from the subject system’s source code.
The techniques used there range from parsers [33] to string pattern matchers like
the UNIX-tool grep or ESPaRT [35,36].

In general, we identified two different classes of approaches to solve this prob-
lem – approaches using any kind of domain information, e. g. in terms of pat-
terns, and approaches employing more general-purpose complex flow analysis
techniques. For example, Fiutem et al extract information on systems, pro-
grams or modules by means of architectural recognizers [37] working on the
Abstract Syntax Tree (AST).

Another architecture reconstruction method that employs patterns to identify
architectural components and connectors is described by Guo et al [38]. Their
ARM method first obtains knowledge on the as-designed architecture. Then,
this knowledge is used to define queries for potential patterns which are applied
automatically to extracted and fused source model views. ARM uses lower-level
patterns to build higher-level patterns and supports composite patterns as well.
Similar work has been described in [36]. In contrast to the former approach, this
approach by Pinzger and Gall also considers the knowledge of systems experts
in pattern definition.

If the formulation of suitable patterns is impossible for any reason, approaches
using elaborate control and data flow analysis are more suited and produce bet-
ter results. Such approaches recover architectural components and connectors
based on other criteria like low coupling and strong cohesion [15,16,39]. In this
context, strongly cohesive code artifacts are considered to belong to the same
component while the relationships between the different groups of cohesive ar-
tifacts become connectors of the resulting architecture. A possible technique to
identify architectural components is, for example, program slicing and concept
lattices as described in [33].
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Comparing these approaches with the E-CARES approach, a significant dif-
ference to the majority of approaches is that we clearly separate architecture
recovery specific activities from activities generally performed in structural or
behavioral analysis. To the best of our knowledge, our approach is the only one
that considers domain specific modeling languages and notations in architecture
recovery and thus provides a flexible approach that allows to consider differ-
ent of such architectural styles in the same tool environment. The separation of
general structural and behavioral analysis from architecture recovery allows to
share major parts of the existing functionality in different recoveries.

The E-CARES approach does incorporate patterns on different levels as well
as control and data flow analysis. In structural analysis, the patterns in E-
CARES are domain-specific code patterns in most cases rather than high-level or
general purpose design patterns. In architecture recovery, design patterns above
code level have been used. An approach to introduce high-level connectors in
E-CARES as defined by Herzberg can be found in [11]. Instead of utilizing de-
sign patterns, we currently combine knowledge on code patterns (idioms) with
control-flow analysis and data flow analysis to create abstractions in the struc-
ture graph. Then, elements of the structure graph are mapped to corresponding
elements of an architectural representation. We agree with the pattern-using
community that existing knowledge obtained from experts and (design) docu-
ments is mandatory in architecture recovery — but also in program analysis.

8 Conclusion

We have presented the E-CARES approach for reengineering of telecommunica-
tion systems. In this paper, the focus has been on the reverse engineering tools
of the E-CARES prototype, specifically on structural analysis (program analysis
and architecture recovery). In addition to structural analysis, E-CARES sup-
ports behavioral analysis to enrich the results of structural analysis with addi-
tional information. These reverse engineering tools aid in system understanding
but not yet in system restructuring. Recently, the E-CARES prototype has been
extended to also cover re-design and code transformation [9]. Multi-language
support as well as extensions to the ROOM architecture description language
have been elaborated in subprojects.

Methods of use have played an important role in structural analysis. In pro-
gram analysis, conceptual units such as labeled statement sequences, functions,
and modules are recovered which do not correspond to syntactic units of the
PLEX language. For example, modules group functions which access a common
data record for managing an instance of a block (for serving a specific call). Fur-
thermore, in architectural recovery ROOM diagrams are constructed which in-
corporate instances of domain-specific design patterns. For example, an actor
class for a block is connected to its environment via two ports which handle mes-
sages at different levels of operation (ports for creating/deleting block instances
and ports for communicating with specific instances, respectively). Altogether,
domain-specific knowledge has proved indispensable in constructing domain-
specific abstractions which are meaningful to telecommunication experts.
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Thus, all tools in E-CARES were developed in close cooperation with telecom-
munication experts from Ericsson. We followed an evolutionary approach to tool
development, i.e., functionality was added incrementally in response to the re-
quirements stated by the telecommunication experts. In this way, we took a step
towards an environment which is based on domain-specific concepts. Though
domain knowledge was widely used in extraction logic, the E-CARES prototype
is a modular reengineering system such that major parts can be reused when
analysing software from other domains.

To date, approximately 2.5 million lines of PLEX code plus several ten thou-
sands of lines of additional documents have successfully been processed, ana-
lyzed, visualized, and inspected on different levels of abstraction. Understand-
ably, the exact and detailed results are confidential and cannot be discussed
here. According to the telecommunication experts, the E-CARES prototype al-
lows to visualize the AXE10 software system in terms of their daily use, e.g.,
block dependencies, state diagrams, link chains and sequence diagrams. For that,
no tools have been available so far. In particular, the dynamic analysis tool and
the architecture extraction have proved their value for system analysis and sys-
tem understanding. Therefore, we believe that only the combination of static
and dynamic as well as structural and behavioral analysis – integrated in an
interactive reengineering framework – allows to obtain best possible results.
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Abstract. Since approximately 20 years process management is regarded as in-
novative technology both for the description of complex applications and for 
supporting their execution. Soon after the beginning of this process era, an in-
flation of process management systems started to flood the market. However, 
many users were very frustrated when they had to experience that these process 
management systems did not support their applications properly. One of the 
main causes for failing process applications was that process management was 
totally underestimated. In this contribution we try to get to the bottom of proc-
ess management, i.e. we reconstruct the real requirements of process manage-
ment which are the basis for the construction of working process solutions. 

Keywords: Process Management, Process Modeling, Process Execution, Work-
flow Management. 

1   Introduction 

Since approximately 20 years, process management is regarded as innovative tech-
nology both for the description of complex applications and for supporting their exe-
cution. Soon after the beginning of this process era, an inflation of process manage-
ment systems started to flood the market. However, many users were very frustrated 
when they had to experience that these process management systems did not support 
their applications properly.  

One of the main causes for failing process applications was that process manage-
ment was totally underestimated. Defining processes is more than painting "bubbles-
and-arcs" pictures. Developing processes requires both a profound methodology and a 
powerful and expressive process modeling language. Executing processes is more 
than executing steps in a fixed and predefined order like jobs in a batch queue. Sup-
porting process execution requires an infrastructure that definitely reflects mandatory 
restrictions imposed by applications but also sufficient flexibility must be provided 
such that users are not limited in their creativity. 

The contribution of this paper is not a new method for process management; rather 
it intends to reveal fundamental issues of process management (process modeling and 
process execution). This investigation should inspire researchers to contemplate cur-
rent developments and research areas; it should foster to develop new concepts for 
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process management that are better coping with the requirements of process based 
applications. Especially, it will stimulate researchers to more thoroughly analyze 
requirements of process based applications. It will therefore not focus on the introduc-
tion of a new technical framework to deal with process management; rather, it wants 
to illustrate unconventional ways of process modeling and execution which foster 
flexible process management.  

Section 2 identifies problems with process modeling and execution. Section 3 then 
introduces possible solutions to those problems. Section 4 closes the paper with a 
short conclusion and recommendation. 

2   Requirements Analysis 

As said before, process management is good for the support of complex application 
systems. We assume certain complexity since without that the usage of process man-
agement might be too much of a good thing. It is like with database systems: if just 50 
to 100 data items have to be managed it might not to be recommended to deploy a 
database system. The effort and the cost that would have to be put into the develop-
ment of a database application would not pay off for such a small application. The 
real benefit of database systems appears when a huge number of data items have to be 
managed in a very flexible way.  

The comparison of process management with database management shows some 
interesting parallelisms. Therefore, we will analyze the area of process management 
by leaning on database management. Also, we will distinguish two issues when deal-
ing with data and processes, respectively. First, things are defined; then, these things 
are used. Hence, two major tasks of database management are "data definition" and 
"data usage". The former means to define a database schema, the latter means to work 
with the data that are stored in a database system (inserting, modifying, deleting, and 
reading them). Analogous, we identify the two tasks "process definition" and "process 
usage". Process definition means to define process models that show how (process 
oriented) applications are structured. Process usage usually aims at the enactment of 
processes, i.e. processes have to be applied or used in applications. Often, process 
enactment is equal to "process execution", i.e. a system is (more or less) strictly exe-
cuting a process step by step. However, we will discuss that this perspective is rather 
too narrow. To analyze both process modeling and process usage, we compare these 
tasks to the corresponding tasks in data management. 

2.1   Process Modeling 

First, the topics data definition and process definition, respectively, are discussed. 
There are many ways to define data structures for database applications. ER modeling 
is one of the most popular ones [15] and therefore we want to concentrate on it. With-
out going into the discussion of "unconventional" applications, the ER modeling 
method has proved its worth. This statement holds for "conventional" applications 
like in administration, production management, banking and insurance applications. 
We are well aware that ER approach shows limitation when "unconventional" appli-
cations like CAD or scientific applications (e.g. modeling a DNA) has to be enacted. 
Nevertheless, the comparison of conventional database applications is good enough to 
encounter requirements for process management applications. 
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What are the characteristics of conventional applications and why does ER model-
ing fulfill their requirements? Applications are characterized by data. It is necessary to 
define them first and then to define relationships between them. Data and relation-
ships have to be characterized by certain individual features. All this is possible by 
applying the ER method. 

The strength of ER modeling lies in its simplicity. There are two major concepts: 
entities and relationships. Entities describe data and relationships show how they are 
depending on each other. Due to these simple concepts almost any arbitrary data and 
relationships can be defined.  

Due to the elementary character of the ER modeling concepts, almost any data struc-
ture can be defined. Most notably, there is no prescription how to model application 
data. For instance, it is not prescribed how to model a data structure for project man-
agement. For one application, there might be a project entity having 20 attributes; for 
another application, the project entity might have 30 attributes, etc. The relationship 
between projects and project managers might be n:1 in the first application and n:m in 
the second application. Nobody would buy a database system with a fixed project table, 
showing certain "burned-in" attributes and relationships. This would be like a "universal 
database scheme" for all applications which would not be acceptable of course. It might 
even look ridiculous to discuss this feature here. Nevertheless, this freedom with respect 
to modeling data structures is the key benefit of database systems. This observation 
becomes obvious when we look into the area of process modeling. 

In the area of process modeling there is no consensus on what information to in-
clude into a process model, e.g. for the Travel Claim Reimbursement Process. (By the 
way, a process model is a complex data structure defining how process participants - 
e.g. process steps, documents, tools - are related to each other.) As a consequence, an 
all-embracing process modeling language does not exist. At a first glance, this is not a 
problem. It is comparable to the fact that database systems do not have predefined 
"burned-in" tables for projects etc. However, database systems offer elementary mod-
eling primitives to construct individual, application specific tables for any application, 
i.e. also for project descriptions. Yet, this capability is not given for process manage-
ment systems (i.e. for process modeling languages). These languages do not offer 
modeling primitives to define individual process models. Because they don't do it, it 
might again be interesting to have an all-embracing process modeling language by 
which any process model can be derived. Now, the lack of it becomes an issue indeed.  

Consequently, the main question now is whether it is more appropriate  

• to offer an all-embracing process modeling language or 
• to offer elementary modeling primitives (by a process modeling language) for the 

definition of arbitrary process models? 

Let us first pursue the issue of an all-embracing process modeling language. From a 
historical perspective there are approaches like CPM (Critical Path Method, [2]) or 
PERT (Program Evaluation and Review Technique, [1]) that are suggesting what to 
include into a process model. However, there are many more approaches and not all 
of them are compatible with each other. These days, the BPMN standard (Version 1.2 
[5], Version 2.0 [6]) becomes very popular, although it is not applicable to arbitrary 
applications [19]. So, what to include into a standard process model?  
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All the proposals for a common process modeling language mentioned above are 
not "complete", i.e. there are features which are not supported. For example, the CPM 
method does not allow modeling the organizational perspective of a process, i.e. or-
ganizational policies which determine who should execute a process. Other methods 
do not support well the modeling of data or applications that are needed to describe a 
process step (e.g. BPMN, before Version 2.0).  

In principle all these approaches assume a certain template for processes which 
comprises a concrete, pre-determined set of concepts. However, these templates are 
not "generally applicable" but are all developed from a certain perspective and for a 
certain application domain. Thus, they comprise certain process features, and neglect 
others. In contrast, different application domains normally require different modeling 
features. Two examples support this thesis. 

• The product development process of a car manufacturer must be modeled. One 
major issue here is to exactly model persons that are responsible for the execution 
of process steps. In order to do so, powerful organizational relationships between 
responsible persons must be expressed. For example, it must be defined that a part 
release step must be executed by the project manager who is responsible for the de-
sign of the car the part is made for.  This latter policy assignment is a rather tricky 
one. 

• In a health care application it might be required to model the legal regulations for 
medical treatments. This means that corresponding process steps must be associ-
ated with those legal regulations, i.e. there must be a link attribute between process 
steps and legal regulations. 

Obviously, the car manufacturer and the healthcare application request different proc-
ess modeling languages. We do not want to criticize any of these approaches men-
tioned above (e.g. BPMN, CPM). They might be very valuable for the application 
domain they are stemming from and they are made for. However, we criticize when 
providers of those approaches claim to have "the" generally applicable process model-
ing template. This is definitely not the fact and it is not possible since not all features 
of all applications can be incorporated into such a process modeling language. There-
fore, we see the approach of having a "one-fits-all" process modeling language as not 
achievable. Consequently, we see the adoption of the data modeling approach as 
much more eligible. This means that a set of elementary process modeling primitives 
should be defined. Those primitives can be applied by domain experts to construct 
their customized process models comprising all features a process must show from 
their perspective. 

As a summary for the requirements analysis for process modeling we identify the 
following: The definition of process modeling primitives is required that can be used 
to construct domain specific process models. This approach works similar as the ER 
data modeling approach; there the data modeling primitives are sufficient to define 
individual domain specific data structures. 

2.2   Process Execution 

Second, the topics data usage and process usage, respectively, are discussed. Before 
data can be used the database has to be prepared for it, i.e. data definition must take 
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place and data structures must be defined. To simplify the discussion and concentrate 
on the essential, there are two principle usages of data: data retrieval and data modifi-
cation. Data retrieval is very clear: data are read and presented. Data modification 
comprises inserting, modifying and deleting data. 

Nevertheless, not in all databases data modification occurs according to the same 
pattern, i.e. different database applications need different kinds of data modification 
operations. We want to differentiate between "normal" databases and data warehouses 
– i.e. OLTP vs. OLAP databases [4]. In normal databases an update operation is one 
of the normal operations: one or many tuples have to be updated. In contrast, in data 
warehouses update operations are more crucial. Normally, data warehouses are "ap-
pend-only" databases: new tuples are inserted; existing tuples are not changed. Only 
in cases of errors (e.g. wrong data are corrected or missing data are completed) tuples 
are updated. While there are no special follow-on operations necessary in databases, 
in data warehouses complex and complicated follow-on operations are required. 
Typically, pre-aggregated data marts have to be re-compiled. Since these are very 
cumbersome tasks optimizations should be applied [3].  

A similar observation holds for data retrieval. While data are normally retrieved 
from base tables in databases, in data warehouses pre-aggregations (e.g. in form of 
data marts) are necessary to efficiently process the queries. Additionally, while nor-
mal databases applications are mostly working on base data, data warehouse applica-
tions work on aggregated data. 

In summary, we see that the usage of data is quite different in databases. It is so di-
verse that even two different implementation concepts are necessary (normal data-
bases vs. data warehouses). The same observation holds for process management. Not 
all kinds of usage are the same.  We will discuss this observation in the following. 

After having modeled processes they can be used. What does that mean? We 
shortly want to present the recent development of the process management area and 
want to show that this development led into a wrong direction. 

It was at the beginning of the nineties. Process management became very popular, 
especially due to Hammer's and Champy's publication [13]. In reaction to that, a huge 
number of process execution systems evolved. They were mostly called workflow 
management systems. Their common characteristic is that processes are strictly exe-
cuted according to their definition, i.e. according to the underlying process model. 
What does that mean? Process models describe a certain order of process steps. A 
workflow management system then takes the process definition and interprets it 
strictly, i.e. one step after the other is executed. Experiences with that way of process 
execution were very disappointing. Mostly it was criticized that workflow management 
systems are too inflexible and therefore not applicable. We can follow this argument 
since we are convinced that this kind of process execution is much too restrictive. 
Nevertheless, it might be absolutely adequate in certain application scenarios. In order 
to argue that the strict execution semantics of workflow management systems is not 
generally applicable we illustrate how processes are executed in real life. 

For example, we look into an administrational application. In order to prepare a 
meeting, a manager's secretary is writing its agenda and an invitation letter which 
includes the list of people who should be invited to that meeting. This list strongly 
depends on the topics on the agenda. The invitation letter has to be signed by the  
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manager. The invitation letter should not be signed by the manager before both the 
agenda and the list of participants is complete since he is responsible for them. In 
principle the corresponding process looks as shown in Fig. 1: 

write letter

(secretary)

review letter

(manager)

write agenda

(secretary)

review agenda

(manager)

sign letter

(manager)

 

Fig. 1. Sample process 

The process model in Fig. 1 seems to be correct. However, it is not practicable at all. 
In real life it will not be executed as shown in the figure since that would be too re-
strictive. The following situations might happen: 

• After the manager has reviewed positively the letter or the agenda, one of these has 
to be changed again; 

• After the manager has signed the letter, it must be corrected. 

These are only two out of many "exceptional" executions that might happen. The 
question arises: why have those execution flows not been included into the process 
model before. We want to mention two reasons for that: 

• The two above mentioned "exceptional" flows through the process are not the only 
ones. More are conceivable. To model all of them would increase drastically the 
complexity of the process model. Therefore, they are neglected; 

• The two above mentioned "exceptional" flows are not modeled since they are not 
preferred and therefore they should not be offered. 

Interpreting all of these arguments encounters a dilemma: on the one side, it cannot be 
avoided that "exceptional" executions like the above mentioned are relevant. If they 
are not modeled the process is much too restrictive and will most probably not be 
accepted by the users. On the other side, those executions should not be modeled 
since they are not recommended. Besides, to model all of them would enormously 
blow up the process model which then is not readable any more. How to resolve this 
dilemma? 

Some consequences or requirements can be derived from the above observation: 

• It is necessary to model "recommended" and "not recommended but nevertheless 
possible" paths in a process model. This is the only way to offer execution flexibility; 
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• In order to model these different kinds of execution paths, new modeling con-
structs are necessary. Just to use the conventional ones would make a process 
model unreadable. 

As conventional modeling constructs we regard sequence, alternative and parallel 
executions and loops. These are the constructs which are borrowed from program-
ming languages. Advanced modeling constructs also are able to model – among other 
things – recommended and exceptional paths.  

To introduce new process modeling constructs defines new tasks for both process 
modeling and process execution. Therefore, we discuss this issue both in Section 3.2 
and Section 3.3, respectively. 

Another consequence of the scenario above should be considered that cannot be di-
rectly derived from the example. Why to restrict process execution to the way work-
flow management systems are doing it? Are there alternative ways of execution, i.e. 
usage of a process model? We think so. In Section 3.3 we will present such alternative 
interpretations. 

3   Supporting Domain Specific Process Modeling and Execution 

In Section 2.1 a few requirements for process modeling are identified. First, we look 
for modeling primitives. These modeling primitives can be used to define customized 
modeling constructs. Additionally, in Section 2.2 the need for new modeling con-
structs with new semantics has been identified. They are needed to express execution 
semantics beyond the usual execution semantics of workflow management systems. 
In this section we demonstrate how all these requirements can be met by a multi layer 
meta modeling approach. Presenting this approach does not mean that it is the optimal 
one; it just acts as a proof of concept. In the cited papers related approaches are dis-
cussed; this discussion should not be repeated here. 

3.1   Process Modeling Primitives 

At first, the issue of identifying modeling primitives is tackled. Therefore, we present 
the POPM (Perspective Oriented Process Modeling) approach; it is capable of offer-
ing process modeling primitives.  

The POPM approach was first presented about 15 years ago in [16] and [17]; in 
[18] its conceptual backbone is reconstructed in detail. We refer to this publication 
throughout the following discussion.  

The fundamental idea of POPM is not to offer process modeling constructs di-
rectly, but to offer a method for defining process modeling constructs. The enactment 
of the POPM method relies on a so called meta model stack. The basic idea of a meta 
model stack is the following: on level x (abstract) modeling elements are offered that 
can be used at level x-1 to define (concrete) modeling constructs. This approach re-
sembles the rationale of MOF (Meta Object Facility, [5]). However, our approach 
heavily leverages on advanced modeling concepts like powertypes, deep instantiation, 
materialization, and clabjects which are not supported by the MOF approach (see [18] 
for details). Fig. 2 presents the POPM approach at a glance: 
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Process Model
Describes a domain specific application

Process Model
Describes a domain specific application

M3

M2

M1

M0

Abstract Process Meta Meta Model (APM2M)
Definition of the abstract syntax of a general process modeling language

Abstract Process Meta Model 
(APMM)

Syntax of a general process modeling language

Domain Specific Process Meta Model 
(DSPMM)

Syntax of domain specific modeling language

Type library
Expressed in a domain specific syntax

Process Model
Describes a domain specific application

<<instanceOf>>

<<references>>

<<references>>

<<references>>

Process Model
Describes a domain specific application

Process Model
Describes a domain specific application

Process Instance
Process which is currently executed

 

Fig. 2. Meta layer stack of POPM 

Process models are defined on the modeling layer M1 (right boxes). A process model 
uses process (and data, organization etc.) modeling constructs which are accumulated in 
the “Type library” on M1 (left box). These modeling constructs are provided domain 
specifically; they are defined on the next upper level M2. 

All process definitions on M1 are defined using the process modeling constructs 
offered by a process modeling language which is specified at level M2. Such a proc-
ess modeling language is defined as a so called Domain Specific Process Meta Model 
(DSPMM). M2 further contains the definition of an abstract process meta model 
(APMM) defining a set of general language features for processes, data flow or con-
trol flow. These features are relevant for almost all process modeling languages; 
therefore they are collected in the APMM. All modeling elements on level M2 are 
process modeling primitives: They can be combined arbitrarily to set up domain spe-
cific process modeling languages. For instance, process modeling languages for the 
two examples in Section 2.1 (car manufacturer, health care application) can be de-
fined. Each DSPMM defines an individual (we often say: domain specific) process 
modeling language (DSL: domain specific language). Thus, the above mentioned 
requirement is fulfilled.  

Fig. 2 shows two further levels: M3 and M0. Level M3 offers generic modeling 
elements (boxes, arcs, etc.) which are used to define modeling primitives on level M2. 
Further, level M0 contains running instances of processes defined on M1 (right 
boxes).  

It is not in the scope of this paper to prove that the modeling constructs offered on 
level M2 allow defining arbitrary process modeling constructs. We rather want to 
refer to [10] and [11] that describe various applications which all require specific 
process modeling languages; all of them could be provided by the POPM approach. 
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As a first resume, we can state that it is possible to offer individual process model-
ing constructs as requested in Section 2.1. Therefore, the lack of a one-fits-all stan-
dard process modeling language is not so critical. Especially, it does not prevent proc-
ess modeling to be a broadly applicable method. 

3.2   Domain Specific Process Modeling Constructs 

Since the POPM approach supports the definition of new modeling constructs (as-
sembled out of modeling primitives offered by layer M2) it is possible to define proc-
ess modeling constructs with customized, individual semantics. This feature can be 
utilized to model compact modeling constructs or modeling constructs with specific 
execution semantics. These modeling constructs can be used, among other things, to 
support scenarios as presented in Section 2.2 (recommended execution paths). Never-
theless, just to offer new modeling constructs is not sufficient. Also new execution 
semantics must be provided. This will be done in Section 3.3. 

Why introduce new process modeling constructs? There are principally two reasons:  

• To represent certain scenarios with conventional modeling constructs would lead to 
unreadable and incomprehensible process models. Thus, new (e.g. compact) proc-
ess modeling constructs are defined that model complex situations with plain 
means (i.e. the resulting process models are easy to read); 

• In some scenarios specific execution semantics are necessary. To express this, new 
modeling constructs are needed. 

Again as a proof of concept we introduce a piece of research work that successfully is 
coping with the two issues above. It is introduced in [19] and is called ESProNa. The 
ESProNa approach aims at process based applications with huge variability. Again, 
this is not to say that this research is best, it is just to present a successful feasibility 
study. Related approaches are discussed in the cited literature. 

In [19] three new modeling constructs are introduced: two of them, namely two 
kinds of arrows will be presented in the following. The challenge for ESProNa is to 
present process applications as presented in Fig. 1 in an easy, readable way. Such 
process applications are characterized by showing a huge number of alternative exe-
cution paths. Although all of them should be offered, some of them should explicitly 
be marked as recommended; others should be marked as exceptional. 

The following discussion only focuses on the control flow perspective of a process 
model, which this is absolutely sufficient for the purpose of this paper. ESProNa 
basically introduces two special process modeling constructs for control flow. The 
first process modeling construct is the normal arrow. The semantic of the well known 
arrow symbol in process modeling is that if an arrow directs from process A to proc-
ess B then process B has to be performed after process A. Accordingly, if process B is 
connected with an arrow to process C then C may start after process B has finished. 
We also say: B requires the execution of A before it can run; C requires the execution 
of B (and consequently of A, too) before it can run. This arrow is represented by solid 
lines since it strictly prescribes an execution order (Fig. 3). 
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A

(…)

B

(…)

C

(…)
 

Fig. 3. The solid arrow 

Beside this arrow construct depicted by a solid line we want to add an arrow de-
picted by a dashed line; this dashed arrow holds a different meaning. Two processes 
that are connected through a dashed arrow can – in principle – be executed in any 
order. For instance, if process A and process B are connected by a dashed arrow A 
can be performed before B or vice versa, B can be performed before A. Nevertheless, 
having defined a dashed arrow from process A to process B expresses a preference 
(recommendation) that process A should be performed before process B. This feature 
can be utilized when processes are put on a work list for execution. If more than two 
processes are connected through a dashed line then a permutation of all process exe-
cutions is feasible, e.g. ABC, BCA, CBA (Fig. 4).  

The introduction of the dashed arrow is a fundamental step with respect to the ex-
pressiveness of a process model. The interpretation of solid arrows is borrowed from 
classical logics [24]. There the "tertium non datur" holds; this is the principle of the 
excluded third. That means that if a proposition S holds (it is true) the inverse propo-
sition ¬S does not hold (it is false); there are no other states than these two. In con-
trast, the interpretation of the dashed arrows more stems from constructive logics [22] 
[23]. There, only the principle of the "exclusion of contradictions" holds which is less 
strict than the "tertium non datur". It means that everything holds but those things that 
are explicitly excluded; in other words, no proposition can be true and false at the 
same time.  

Also this is just a short and informal discussion it already reveals that by applying 
concepts of the constructive logics a much wider spectrum of execution paths result 
from a process model. The step from classical to constructive logics could be com-
pared with the step from algorithm based computing to interactive computing that was 
discussed by Wegener [21]. It is not that this research work is directly comparable 
with our ideas it is just to say that a similar kind of design rationale lies behind these 
two research approaches. 

Fig. 4. The dashed arrow 

It is certainly possible to combine the solid and dashed arrows. For example, process 
A and B are connected through a dashed arrow; process B and process C are connected 
through a solid arrow. This means that there is flexible ordering between processes  
A and B while process B must always be executed before process C. This semantics 
results in the following three execution orders: ABC, BAC and BCA (Fig. 5). 

A

(…)

B

(…)

C

(…)
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Fig. 5. Combination of dashed and strict arrow 

Of course it is not enough that only new process modeling constructs are defined. 
Also an adequate execution infrastructure must be made available. ESProNa supports 
such an infrastructure. We will discuss this issue in Section 3.3. 

Having available these two new process modeling constructs the example of Fig. 1 
can be modeled as depicted in Fig. 6. 

write letter

(secretary)

review letter

(manager)

write agenda

(secretary)

review agenda

(manager)

sign letter

(manager)
 

Fig. 6. The example of Fig. 1 – remodeled 

At a first glance the revised process model does not look much simpler than the 
original process model from Fig. 1. However, we could argue that we have reduced 
the number of arrows from six to four. Although, this 33% reduction is a phenomena 
of the "statistics of small numbers" there is some truth with it. The process model 
from Fig. 6 is much more powerful than the process model from Fig. 1. Especially, all 
"exceptions" reported in Section 2.1 are covered by this revised process model. Addi-
tionally, the recommended path clearly appears in Fig. 6. The latter two arguments are 
the decisive ones. Besides, the process model is more readable. The attentive reader 
might have recognized that in the remodeled process also a review step can be per-
formed before the corresponding write step is done. This is definitely intended: some-
times people want to bring forward a specific piece of work although they know that 
they cannot complete it. Nevertheless, they want to pre-executed the step since they 
want to adhere to a specific information in order not to forget it afterwards when they 
really complete the step. 

In summary, we want to note that new, domain specific modeling constructs have 
the ability to model complex application scenarios with compact, well-arranged proc-
ess models. Though, the process management community is requested to put more 
research into this issue since process models are the communication means between 
domain experts and (technical) process experts. 

A

(…)

B

(…)

C

(…)
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At the end of this section about domain specific process modeling we want to discuss 
alternative approaches. Of course, UML as the classical modeling language must be 
discussed. Since pure UML does not offer constructs that are sufficient for process 
modeling we look at extensibility mechanism of UML. The UML provides an extension 
mechanism that allows for creating Domain Specific Languages as well. Extensions are 
encapsulated within so-called Profiles which can be loaded into UML modeling tools 
[8][9]. These Profiles may not only specify language constructs but also a (graphical) 
notation for these constructs. However, with Profiles only such adaptations can be per-
formed which do not alter or break the semantic of constructs contained within the 
UML. Therefore, language features that harm basic concepts of the UML such as Clab-
jects or Deep Instantiation cannot be put into a profile. Under the assumption that Clab-
jects and Deep Instantiation are fundamental for our approach, UML Profiles could not 
be taken to fully implement it. 

3.3   Supporting Process Execution 

In Section 2.2 the strict execution of processes through workflow management sys-
tems was criticized. Besides, it was motivated to think about alternative execution 
semantics. Thus, we want to go more into the direction of "process usage" than "proc-
ess execution" – the latter always more or less directly directs to computer based 
enactment. Nevertheless, also computer based enactment strategies can provide flexi-
bility that is needed by process users. In the following discussion we will stepwise 
"macerate" the strict execution semantics of workflow management systems. 

We do regard the execution semantics as one very valuable interpretation of "proc-
ess usage". There are application scenarios where this very strict execution strategy 
fits well. For example, when new construction drawings, CAD models, etc. have to be 
released within a design process, this has to be done according to fixed and strict 
rules. Responsible people have to release these artifacts, the latter have to be regis-
tered in corresponding repositories, and finally they have to be stored at predefined 
and predetermined locations. Each step within such a process must occur exactly in 
the right order. Thus, a workflow management system can perfectly support such a 
scenario.  

However, it is obvious that the workflow management support is not suitable for 
other phases of a design process. For instance, in the more creative phases of a design 
process, no one wants to be strictly guided by a workflow management system. 
Rather, designers want to be free in their decision what to do next since design is a 
creative and non-predictable process. Nevertheless, designers would like to be disbur-
dened by a system that helps them to find the right documents, tools, etc. when they 
are working on a specific step in the design process. For instance, when they want to 
do an FEM computation they want to be provided with all relevant documents (e.g. 
CAD model) and want to get offered the adequate tool for this computation. Also, 
they want to see whether all relevant documents are already available and might even 
want to get an overview about former occurrences of this design situation. Novice 
designers also are content when they are accommodated with an overview of the de-
sign process such that they get an idea what process steps to do next. Altogether, we 
call a system that supports all these mentioned issues a process navigator: it shows 
where a user stands in the process, depicts what resources (documents, tools, etc.) are  
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Fig. 7. The ProcessNavigator 

currently available or needed, provides an outlook on what to do next and even allows 
browsing the history of former process executions. Again, as a proof of concept we 
will introduce a system that supports this special kind of process support: it is called 
ProcessNavigator [20]. We shortly present the ProcessNavigator in the following in 
terms of presenting a feasibility study, i.e. a systems that copes with the requirements 
posted so far. 

The ProcessNavigator is depicted in Fig. 7. The left part of the ProcessNavigator 
provides different sorts of worklists. The upper worklist determines the process steps 
that – according to an underlying process model – should be executed next. However, 
the second worklists offers process steps that are – most probably – also relevant for 
the current situation. A third worklist acts as fall back and offers all process steps 
available in the process model. The user interprets the three worklists as follows:  
in the first worklists the highly recommended process steps are listed; the second 
worklist offers process steps that are fine but not really recommended. In order to 
cope with more exceptional situations the process steps from the third worklist can be 
selected. 

Through the separation of different worklists the ProcessNavigator offers both guid-
ance and flexibility for process execution. It is interesting to know that the Process-
Navigator is based upon the ESProNa method. Through its logic based implementation 
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not only recommendations about process steps can be given, also the ProcessNavigator 
can provide hints about effects of process executions. For example, if the process step 
"sign letter" is performed, no other process steps can further be executed. This func-
tionality allows executing so-called what-if-games and again helping users to better 
navigate through a process. 

The right part of the ProcessNavigator provides situation specific information. 
Among other things, it is depicted what documents are available for the execution of a 
specific process step, what tools could be applied, etc. Besides, historical data, i.e. 
data about former executions of the process can be retrieved. Altogether this informa-
tion helps users to easier, faster and more consistently execute process steps. 

Both the workflow execution mode and the ProcessNavigator execution mode are 
closely oriented to the underlying process model. Also, both execution modes take a 
process model and offer a user interface that allows a user to navigate – with more or 
less freedom – through a process model. In a project in the administration department 
of a university we found that alternative execution modes are also relevant. We call 
this new execution mode checklist method. 

A second example once more stems from an administrational application. Again, a 
large process model is defined (> 250 process steps). Again, the variability of execu-
tion is huge. And what is more important, most of the process steps are so called 
manual tasks. We call a process step a manual task when it has to be worked upon 
mostly without computer support. For example, a paper document has to be signed 
and has to be sent to a following station. Nevertheless, the domain experts want to 
somehow be able to track and supervise process executions. Therefore, they devel-
oped the following concept.  

First, all processes are modeled as usual. Then, for each process a so called check-
list was defined. A checklist comprises the main process steps including documents 
that must be produced and agents that are responsible to perform the corresponding 
process. Agents had to sign it (electronically) when they have finished a certain proc-
ess step. Through this method it was possible to track the execution of a process al-
though most parts of the process were performed external to a computer system. 

 

 
Main Process 

Process 
A 

Documents: 
IN:     Doc 1 
OUT: Doc 2 

Comment: 
 

Agent:   Y 
 
Signature: ____________ 

Process 
B 

Documents: 
IN:      Doc 3 
IN:      Doc 4 

Comment: Agent:   X 
 
Signature: ____________ 

Fig. 8. Checklist 

Fig. 8 depicts the principle structure of a sample checklist. It serializes the process 
steps of a process model and additionally shows what input sources could be used 
(Documents "IN"), what results are expected (Documents "OUT"), comments on the 
execution (Comment; that is very important to track experience), and who is eligible 
to perform the process steps (Agent). A signature – it can be either electronic or paper 
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based – confirms the execution of a process step. It has to be mentioned that the 
checklist method offers even more flexibility as the ProcessNavigator. In principle the 
one important statement is that at the end of the process all signatures are on the 
checklist. So it is completely output oriented. Nevertheless, the checklist method 
describes a very interesting and valuable form of process usage and widens its spec-
trum towards non-computer based and extremely flexible process execution. 

Last but not least we want to introduce another form of process usage. It com-
pletely neglects computer support for process execution but only relies on process 
modeling. We motivate this approach with an example. 

In a project with a sports and fashion company the production process for shoes 
has to be defined. The outcome of the modeling phase is a large process model com-
prising more than 200 process steps. Up to this point the project is absolutely conven-
tional in the course of project management, i.e. conventional process modeling is 
encountered. However, the process "usage" is quite different to conventional process 
"execution". The company is recognizing that although the modeled production proc-
ess is correct as a template, each concrete production process (for each production lot) 
is special and is deviating in many small places from the template process. Due to this 
variability it is not possible to model all these variants. Although there was no need to 
apply a tool like the ProcessNavigator since this kind of direct project control is not 
required. For the process is mainly used by the central headquarter department to 
supervise the process on an abstract level. Nevertheless, the company wants to make 
use of the production process model. Therefore, they choose the following kind of 
execution: The production process model is printed out whereby the process steps are 
arranged in a special way. Then this process model is stuck onto a wall as wall paper. 
With little colored flags the managers are indicating the progress of each concrete 
production process instance. So, deviations can easily be tackled with since just the 
little flags had to be rearranged accordingly.  

The company is profiting enormously from this unconventional way of process us-
age since they always can keep an overview onto all production processes and could 
track and supervise them. 

This example shows that process "execution" should more appropriately be inter-
preted as process "usage". It also shows that not only the complete automation of 
process execution is useful. We call this kind of process usage external tracking. 

External tracking and the checklist method are two unconventional ways of execut-
ing process models. Nevertheless, they fully fulfill their purpose to take advantage 
from process models. 

At the end of this section it should be mentioned that there is a whole bunch of ap-
proaches that aim at the improvement of flexibility in process execution. [20] dis-
cusses and classifies some of them. Additionally, there are powerful approach to cope 
with dynamic development processes [14]. Also these approaches deal with some 
special kind of flexibility, among other things the flexibility of dynamically changing 
processes. We do not want to ignore all these approaches; they are very valuable and 
improve the flexibility of (conventional) process execution. However, in this paper we 
do not want to discuss approaches for flexible process execution alone but want to 
show that there are alternatives to (conventional) process execution approaches. These 
mostly stem from the introduction of domain specific, compact process modeling 
constructs. 
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3.4   Classification 

Although we have introduced new interpretations of process execution and have 
shown how they could be enacted, it must be mentioned that the conventional process 
execution modes as they are supported by workflow management systems is still a 
valid candidate. There are processes that require a strict execution order which must 
not be violated. In such cases conventional workflow management systems provide a 
valuable platform for process execution. 

Altogether, this section should show that other process usages than running them 
on workflow management systems is feasible and relevant. It will typically be the 
case that in one application domain a mixture of all these process execution modes 
will be relevant. Although we have investigated all four usage modes in detail, the 
remaining challenge is to combine them in one comprehensive application system. 
This could also be a motivation for researchers in general to think about alternative 
execution modes for processes. 

In summary we want to depict the four introduced execution modes on a scale; this 
shows a broad spectrum of execution modes and should trigger researchers to look for 
more in order to more adequately meet the requirements of process applications. Fig. 
9 shows the spectrum of the usage modes presented in this section. We span two di-
mensions: a first dimension distinguishing between strictness and flexibility with 
respect to process execution; a second dimension distinguishing between usages 
within a computer system (internal) and outside of a computer system (external). By 
"internal" we mean that most of the applications and the usage of the system take 
place on a computer system; "external" means that many/some actions occur com-
pletely outside a computer system (e.g. the wallpaper approach). 

 

strict flexible

internal

external

workflow
management

systems

external
tracking

checklist

Process
Navigator

 

Fig. 9. Spectrum of process usage 

Of course, workflow management systems are the handling process execution 
within a computer system and prescribe very strictly what to do. The ProcessNaviga-
tor relaxes the execution of processes but mainly aims at process executions within a 
computer system. The external tracking approach is most flexible and also leaves the 
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technical environment; however it is also possible to implement it on a computer 
system. The checklist approach can be configured both flexible and strict, and both 
intern and extern. So, it allows most degrees of freedom, depending on how it is  
implemented. 

4   Conclusion and Outlook 

At the end of this paper we want to summarize its main contribution. The purpose of 
this paper was not to introduce another piece of research. Rather, we wanted to stimu-
late the process management community to think about alternative and more powerful 
approaches to process modeling and execution.  

Through presenting a couple of feasibility studies we already could show that there 
are valuable alternatives that are worth to be investigated further. We are convinced 
that these approaches are just the starting points for more appropriate ways of process 
management.  

In detail, we want to motivate to contemplate the following research issues:  

• Is there a set of elementary process modeling elements? 
• How to develop domain specific models effectively and efficiently?  
• How to find out which domain specific modeling primitives are optimal for a spe-

cific domain? 
• What does "enactment" of a process model mean? Is it more than execution? 
• How to make process execution more flexible? 

These questions point to research issues which altogether aim at more adjustable and 
customizable process modeling language, since we regard adjustability and custom-
izability as two of the key factors for the acceptance of process management. 
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Abstrac .t  Today’s software systems demand for sophisticated software 
engineering processes and methods. Especially the globally distributed 
development of large software systems requires precise and documented 
methods, but also lightweight and agile methods need to have a precise 
foundation. Effort that is invested once in the methods can be systematically 
reused in projects. We describe MetaME, a meta-method for modeling and 
tailoring software engineering methods. It builds on a meta-model of software 
engineering concepts. MetaME combines ideas from meta-modeling and 
method engineering. The meta-method comprises a product dimension and a 
process dimension. When the meta-method is applied, software development 
concepts are paired with languages for their representation to form artifact 
types. In the process dimension of the software engineering method, software 
development tasks are described as operations that act upon the artifacts. These 
tasks are performed as activities in the method’s process workflow model. 
Tools can then be built that use the artifact model as the foundation of their 
repository structure and the task and workflow models as the basis for the 
supported functionality. 
 
Keywords:  Method Engineering, Software Engineering Method, Meta-Model.

1 Introduction 

Software systems such as business information systems are constantly growing in size 
and complexity. At the same time, they need to be produced in dependable quality 
while their development shall be cost and resource effective. To meet all these 
requirements, the development of software systems demands for sophisticated 
software engineering methods and processes.  

In this work we use the term software engineering method to denote the full set of 
elements needed to describe a software development endeavor, such as a software 
development project, in all relevant aspects. This does not only cover the software 
development process and its contained activities, but also the artifacts that are to be 
produced, the tasks that need to be performed to achieve the development goals, the 
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roles in an organization that participate in the development, the tools, techniques and 
utilities that are employed, as well as relationships between these concepts. 



 

To obtain such software engineering methods, their own development should be 
done systematically and have a sound methodical foundation. This is the objective of 
method engineering [Bri96]. Method engineering is an engineering discipline that 
deals with the development of methods, techniques, and tools for the development of 
software systems. It started in the area of information systems in the 1990s (e.g. 
[Gut94, Bri96]), but was taken up by software engineering in the following (see e.g. 
[NFK94, Rol09, HR10]). Method engineering aims at providing a framework for 
defining and tailoring system and software engineering (SE) methods. It allows us to 
model and analyze even complex software engineering methods in a systematic way.  

Different software engineering methods and processes have been proposed and are 
in use for different purposes, such as the Rational Unified Process (RUP) [IBM07] or 
agile methods like SCRUM [SB02] and many more. However, it is widely recognized 
that such standards are often too generic to be directly applicable and thus must be 
tailored to the problem at hand (see e.g. [Wie03]) before they can effectively be 
employed. It becomes also necessary to develop new methods due to the advent of 
new development paradigms; or domain-specific methods that account for the 
specifics of a certain domain like business information systems or business 
intelligence systems; or for a particular delivery model such as global software 
development [SSEB10]. Hence there is still a need to derive, evolve and develop new 
software engineering methods. 

Tailoring of methods is necessary since there exists no standard method that 
perfectly suites all types of projects in all domains. It is also not reasonable to develop 
a new method every time when a context-specific method is needed. It is much more 
economic to tailor existing methods to the current development context and situation. 

A number of method engineering approaches have been proposed that especially 
deal with the development of methods for a particular situation, which is known as 
situational method engineering (see e.g. [RBH07, BKPJ07, HR10]). Mechanisms for 
reuse and adaptation play an important role in this field. In addition, component-like 
concepts that support modularity of methods are often used, such as viewpoint 
templates [NFK96], method fragments [Bri96], or method chunks [Rol09]. In recent 
publications, even the use of method services and the notion of method-as-a-service 
are discussed [Rol09].  

Another line of research has been focusing on the use of meta-modeling for the 
representation of method contents. A number of meta-models have been developed in 
result, see e.g. [HG05, GMH05, BG08, JJM09]. With the Object Management 
Group’s (OMG) Software & Systems Process Engineering Meta-Model (SPEM) 
[OMG08] and the ISO/IEC 24744 Software Engineering – Metamodel for 
Development Methodologies [ISO07] even two standards for describing the content 
of software engineering methods arrived. 

The advantages of a meta-model-based approach are manifold: First, meta-
modeling provides a formal and precise foundation for the specification of software 
engineering methods. Secondly, software engineering methods can be compared on 
the formal basis provided by the meta-model, acting as a reference framework. Third, 
the formalization provides a precise foundation for the development of tools and 
utilities that support the use of the method. Fourth, the meta-model can be employed 
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for analyzing a software engineering method for certain properties such as 
consistency, conformance, etc. Last but not least, the meta-model provides a formal 
basis for tailoring. Changes to software engineering methods can be traced back to the 
meta-model and checked for their conformance and consequences, since methods are 
instances of the meta-model. 

In our analysis we have observed a number of reasons why the current approaches 
still have some shortcomings. The first and most obvious point is the lack of a process 
definition that specifies how to develop a software engineering method based on the 
meta-modeling approach; in other words, how a method engineer should instantiate 
the meta-model. Neither do they define the tasks that are needed for method 
engineering nor a process workflow to follow. Strictly speaking, meta-models like 
SPEM do not define a meta-model for software engineering methods, but a meta-
model for method descriptions. That means, they define a modeling language for 
software engineering methods.  

Secondly, most approaches lack a sound integration of the product and the process 
aspect of a software engineering method in a coherent, yet manageable meta-
modeling architecture. For example, the OMG favors to complement SPEM 
[OMG08] with the UML meta-model for the definition of the models to be produced, 
and some behavior modeling formalism like BPMN to define the behavior of the 
methods process part. ISO 24744 proposes to combine the different aspects by the use 
of powertype patterns and clabjects [ISO07, GH08]. ISO thus provides a 
sophisticated, yet challenging formal approach to address the integration issues that 
contrasts the ideas of strict meta-modeling as discussed in [AK01]. 

Additionally, although most approaches offer some means to interrelate the process 
and product aspects at least on a high level of abstractions – such as products that are 
used or created by tasks and activities in the process model, or roles that are 
responsible for products or perform tasks – they lack the possibility to model complex 
patterns of interlinked structural and behavioral models. For example, SPEM allows 
the method engineer to define work products (artifacts) and work elements such as 
tasks, processes, activities, and steps of tasks. Furthermore, state models can be 
assigned to work product definitions; and the states and transitions of the work 
products’ state models can be related to work elements. But this linking is restricted to 
the work product lifecycle of individual work products. What cannot be expressed in 
a formal way is the effect of work elements on the artifact object structure, i.e. the 
network of interrelated work product instances. Instead of coding this by states, we 
wish to have an explicit mechanism for defining such transformations. 

Based on this observation, it is the objective of our work to combine method 
engineering, meta-modeling and ideas from language engineering for the 
development of software engineering methods and to present a concise meta-method 
in this paper for defining and tailoring software engineering methods. The meta-
method is designed to support the definition of software engineering methods as well 
as the tailoring of software engineering methods for particular domains and projects, 
i.e., as an approach for situational method engineering. 

The meta-method must cover both the product and the process dimension of the 
software engineering method. In the product dimension, the method engineer must 
specify which artifacts are to be produced in the course of applying the method and 
how these artifacts are related. In the process dimension, it must be defined how to 
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proceed for producing the artifacts and what needs to be accomplished – and by 
whom – in getting from one artifact to the other. The former can be covered by 
process or workflow models. The latter can be achieved by the use of transformations. 
Such transformations can be executed as manual development tasks or by automated 
tasks as part of the software development process. Thus, we define the product part of 
the software engineering method in an artifact model and the process part of the 
method by workflow models and task models. The effect of task execution will be 
modeled by the use of transformations that operate on the artifact model. 

We propose transformation rules that operate on instances of the product model. 
These rules can also make reference to the state model of individual work product 
elements, but show also their attribute values and links in the pre- and post-conditions 
of the transformation rule. 

We use the same set of general specification means also to define the meta-method, 
being itself a method for the development of methods. We use a product meta-model 
from which software engineering methods are instantiated. The process dimension of 
method engineering is described by the workflow model and the task model of the 
meta-method. The workflow model defines how to proceed in order to define a 
software engineering method. The task model defines the tasks that need to be 
accomplished, again in the form of transformations. 

The remainder of this paper is structured as follows: In Sect.  2 we give a very brief 
introduction to the core concepts of software engineering methods. Meta-modeling is 
introduced in Sect. 3 as a methodological means for developing software engineering 
methods. In Sect. 4, we deal with the domain of method engineering and present 
OMG’s SPEM [OMG08] in some detail. Section 5 constitutes the core of this paper 
where we present our meta-method for method engineering of software engineering 
methods. We present the product meta-model as a general information model of 
method engineering as well as a process for developing software engineering 
methods. Steps 3 and 4 of that process that are concerned with the development of an 
artifact meta-model and the software process model are looked at in detail. There we 
also introduce the idea of specifying software engineering tasks as transformation 
rules on the product model. The issue of tailoring in the framework of our meta-
method for the engineering of software engineering methods is described in Sect. 6. 
Section 7 concludes this paper with a summary and outlook. 

2 Core Concepts of Software Engineering Methods 

In order to manifest a common understanding of the fundamental concepts and central 
technical terms that are used throughout this paper, we will introduce these terms in 
this section. We look in the domain of software engineering, being the domain of the 
software engineering methods, and the domain of method engineering, being the 
domain of the meta-method. 

From the software engineering perspective, the central concept of our approach is the 
software engineering method. We define software engineering method as a systematic 
procedure or technique of doing work in software engineering in order to reach a 
certain goal and/or produce a defined set of software artifacts. Software engineering 
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methods structure, coordinate and document the development processes and activities 
as well as the produced artifacts (also called work products or work items). Software 
engineering methods are often also called software process models by other authors. 
However, we think the term process may lead to misunderstandings, since a software 
engineering method contains more than just a process definition. Rather, the software 
engineering method is concerned with the processes and products of software 
engineering. Such products are e.g. different kinds of software models that themselves 
may have a complex structure that needs to be specified in a comprehensive software 
engineering method. 

Software development processes are defined by IEEE Standard 610.12 as follows 
[IEEE90]: “The process by which user needs are translated into a software product.” 
The process involves activities such as translating user needs into software 
requirements, transforming the software requirements into design, implementing the 
design in code, testing the code, and sometimes, installing and checking out the 
software for operational use. Activities may overlap or be performed iteratively. From 
this definition we can derive the understanding, that processes are made from 
activities that are executed in some order. In accordance with [OMG08], we define 
that the processes of a software engineering method are hierarchically composed from 
activities. More specific concepts may be defined to capture specific kinds of sub-
hierarchies on intermediate layers such as iterations and phases of development 
processes, like they are defined in RUP [IBM07]. These compositional structures can 
be seen as specific kinds of (composite) activities. Processes and activities thus define 
the the process structure and workflow of a software engineering method. 

Two other terms that are closely related to the process are software development 
cycle and software life cycle. They refer to the temporal aspect of the software 
engineering process. According to IEEE Standard 610.12 [IEEE90], a software 
development cycle is “the period of time that begins with the decision to develop a 
software product and ends when the software is delivered.” The development cycle 
typically includes phases such as a requirements phase, design phase, implementation 
phase, test phase, and sometimes, installation and checkout phase. The phases of the 
cycle – alike the activities of a process – may overlap or be performed iteratively, 
depending on the software development approach that is employed. In contrast, the 
software life cycle is defined as “the period of time that begins when a software 
product is conceived and ends when the software is no longer available for use.” The 
software life cycle thus goes beyond the software development cycle. It extends the 
development cycle with additional phases: The software life cycle typically also 
includes a concept phase upfront, and subsequent to development an installation and 
checkout phase, operation and maintenance phase, and, sometimes, retirement phase. 
Again, these phases may overlap or be performed iteratively.  

A complete set of software engineering methods ideally covers the full software 
life cycle, at least it should cover the full software development cycle. If it only 
covers the software development cycle, the term software development method is as 
well appropriate. 

A software engineering method comprises a set of concepts that are required for its 
definition. It is commonly agreed that a software engineering method has to cover at 
least three main aspects by its provided concepts (see e.g. [GH08]): the work products 
that are created and used, the process to follow, and the producers that are involved. 
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Although different authors define different sets of concepts, some of them are 
commonly used (although sometimes using different terms with varying semantics) 
and can be seen as the agreed minimal set (sometimes further differentiated): roles 
(and/or people), processes and activities (and/or tasks), work products (or artifacts), 
tools (software tools and other utilities). The authors of the Unified Software 
Development Process [JBR99], for example, identify five main entity types for 
software development methods: process, people, project, product, and tools (as 
depicted in Figure 1), thus adding the concept of project explicitly. 

 

Process

ProjectPeople

Product

Tools

Result

Participants

Template

Automation

 

Fig. 1. The core concepts that make up the Unified Software Development Process (redrawn 
from [JBR99]) 

Gutzwiller [Gut94] has developed a meta-model for development methods and 
process models. It requires five general elements for describing a method: activities, 
roles, work products, techniques, and an information model (termed ‘meta-model’ in 
the original work), see Figure 2.  
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Fig. 2. The core concepts of a software engineering method according to [Gut94] 
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According to [Bal98], a software engineering method defines the following 
aspects: 

 workflow of development process, 
 activities that are to be executed, 
 definition of work products (or product parts) with respect to content and 

structure/layout, 
 completion criteria for work products (or product parts), 
 required skills for performing tasks, 
 responsibilities and capabilities of workers, 
 standards, guidelines, techniques and tools that are to be employed. 

 
The Rational Unified Process [IBM07] distinguishes between the static and the 

dynamic aspect of a software development process. The static aspect describes the 
process structure that is built from activities, workflows, artifacts, and workers. The 
dynamic aspect of the process as it is enacted covers the temporal domain by the 
concepts lifecycle, phase, iteration, and milestone. Workflows group activities 
logically. Activities comprise activity steps. Artifacts are models, model elements, 
documents, source code, and executable software. Deliverables are a kind of artifact. 
Workers are a role concept for people and resources, having a responsibility relation 
with artifacts. 

SPEM [OMG08] distinguishes between the method content and the process of a 
systems and software engineering method. The core concepts defined in SPEM 
[OMG08] for the method content are: work product, task, role, tool. The core 
concepts of the process are: activity, milestone, work product use, task use, and role 
use. Processes are defined in a general hierarchical breakdown structure with inner 
nodes being activities. The workflow is defined with temporal relationships, called 
work sequences. Work product use, task use, and role use are used to make reference 
to the corresponding method content elements. 

ISO 24744 [ISO07] distinguishes between ten key concepts. Five of them are 
assigned to the method domain: language, notation, constraint, guideline, and 
outcome. The other five are assigned to the endeavor domain: stage, work unit, work 
product, model unit, and producer. Action is used to relate tasks to work products. 

Stage is further specialized in instantaneous stage (e.g. milestone) and stage with 
duration (e.g. time cycle, phase, build). Specializations of work unit are task, 
technique, and process. Subtypes of work product are composite work product, 
software item, hardware item, document, and model. The elements of models are 
captured by model unit. Role, person, team as well as tool are subtypes of producer. 

Guidelines can be associated with any methodology element. The observable 
results of performing any kind of work unit are given by the class Outcome. 
Constraints are aggregated by action kinds and are specialized in preconditions and 
post-conditions. Notation is associated with both document kind and language. The 
relation with document kind denotes that a document kind uses one or more notations. 
The association between notation and language states that multiple notations can 
depict a language and, vice versa, a notation can depict multiple languages. Language 
aggregates model unit kind to denote that any model unit kind is always defined in the 
context of at least one language, while a language can be the context for one or more 
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model unit kinds. A direct association between model kind and language allows a 
method engineer to express which language is used for one or model kinds. 

From this brief discussion of concepts provided in different meta-models or 
employed in software engineering methods one can already see the ontological 
diversity of the approaches. In an attempt to bring them closer together we have 
contrasted a selected set of core concepts of the different approaches in Table 1. In the 
last column we have added the matching concepts of our approach that is named 
MetaME – meta-method for method engineering. They will be further discussed in 
Sect. 5.2. 

Table 1. Comparison of core concepts for software engineering methods 

SPEM ISO24744 RUP MetaME 

 Stage Discipline 
Domain 
Discipline 

   Concept 

Work Product 
Definition,  
Work Product Use 

Work Product (Model, 
SoftwareItem, 
HardwareItem, 
Document) 
ModelUnit 

Artifact (Model, 
ModelElement, 
Document, 
SourceCode, 
Executable) Artifact 

Work Definition WorkUnit Work Work 

Activity Process 
Workflow 
Activity 

Process 
Activity 

Task Definition, Task 
Use Task Task Task 
Step Action ActivityStep ActionStep 
   Transformation 

(Phase, Iteration) as 
Kind 

TimeCycle, Phase, 
Build 

Lifecycle, Phase, 
Iteration Phase 

Milestone Milestone Milestone Milestone 
Role Definition, Role 
Use Role Worker Role 

Tool Definition Tool  
Tool 
Utility 

 Language, Notation  Notation 
Guidance Guildeline  Guidance 
 Technique  Technique 
 Constraint  Constraint  

Comparable meta-models can also be derived from existing software engineering 
methods, and of course, there exist many more of such meta-models for software 
engineering methods, like the one mentioned in Sect. 1. From the literature and our 
own project experience, we have derived the meta-model for software engineering 
methods that will be presented in Sect. 5.2. Some fundamentals of modeling and 
meta-modeling will be discussed in the next section. 
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3 Meta-Modeling for Software Engineering Methods 

A promising approach towards the systematic and structured development of software 
engineering methods is the use of meta-modeling techniques for specifying the 
software engineering methods.  

A model is, according to scientific theory, a representation of a natural or artificial 
original that focuses on those characteristics and properties of the original that are 
relevant for the given purpose of modeling, and abstracts from irrelevant properties. 
The purpose depends on both the creator and user of the model, and the intended use 
of the model. In an engineering process, models are used for specification, 
documentation, and communication. They are themselves objects of processing and 
transformation, and are a foundation for decision making, analysis, validation, 
verification, and testing. Models can be built upfront or retrospective in terms of 
forward engineering or reverse engineering, respectively.  

A meta-model is a model of a model. Meta-modeling is, according to [GH08], “the 
act and science of creating meta-models, which are a qualified variant of models.” 
The specialty of a meta-model is that the information it represents is itself a model. 
The meta-model’s concern is the modeling itself. In the domain of method 
engineering, the meta-model is a model of a software engineering method. 

In object-oriented meta-modeling, a model conforms to its meta-model in the way 
that it is an instance of the meta-model. A software engineering method can then be 
understood as a model that is an instance of this meta-model. The meta-model 
together with the definition of the semantics of software engineering concepts that are 
contained in the meta-model define an ontology for software engineering methods. 

Meta-models are commonly used for defining modeling languages. However, they 
may also be used for defining in a wider sense the process of modeling (compare 
[Str98]). Meta-modeling is already widely used for defining software modeling 
languages as well as models of for software development methods, e.g. in the case of 
UML [OMG09a, OMG09b] and SPEM [OMG08] or ISO 24744 [ISO07], 
respectively. UML is a standard language for modeling software systems. SPEM and 
ISO 24744 are languages for describing software development methods and process 
models, i.e., meta-models for method descriptions.  

For the domain of method engineering, we adopt the definition from [GH08]: A 
meta-model is a domain-specific language that is intended to represent software 
development methods. ISO 24744 defines the meta-model in the context of method 
engineering to be the “specification of the concepts, relationships and rules that are 
used to define a methodology” [ISO07]. (Note: methodology is synonymously used to 
method here, denoting the “specification of the process to follow together with the 
work products to be used and generated, plus the consideration of the people and tools 
involved” [ISO07].) 

The OMG has defined a four-layer meta-model reference architecture in the Meta 
Object Facility (MOF) [OMG06] that builds on the concepts of object-orientation and 
is commonly used in meta-modeling (see Fig. 3). According to this meta-model 
hierarchy, we can characterize the levels for the domain of method engineering as 
follows: 

M0 (Runtime layer) – M0 denotes the lowest level of the MOF 4-layer meta-
model hierarchy. In this layer, objects of the real world are denoted that exist at 
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execution time of the modeled system. More generally, M0 represents the area of 
concern, which may be business, software engineering, or method engineering. In the 
domain of method engineering these are the concrete objects that are produced or 
modified during the lifecycle of a concrete software engineering endeavor.  

M1 (Model layer) – M1 is the layer where user models are located. Reality is 
modeled in a modeling language, such that elements of M0 are instances of elements 
in M1. In the domain of method engineering, the model of the method is allocated on 
this level. 

M2 (Meta-model layer) – M2 is the layer where meta-modeling takes place. It 
contains meta-models (models of models) such as the UML meta-model or SPEM 
which define modeling languages for describing the user models of layer M1. 
Elements of user models from M1 are then instances of meta-model elements of layer 
M2. This level holds the meta-method’s model in the domain of method engineering. 

M3 (Meta-meta-model layer) – M3 is the highest level of the 4-layer meta-model 
hierarchy. Meta-meta-models are defined at this layer. They are used to describe the 
meta-models on layer M2. In the MOF hierarchy, the Meta Object Facility itself is 
defined on this level. Defining method engineering within an object-oriented meta-
model hierarchy, we use MOF for the domain of method engineering on this level as 
well.  

 
M3

M2

M1

M0

<<metamodel>>
UML

<<metamodel>>
UML

<<metamodel>>
MOF

<<metamodel>>
MOF

<<instanceOf>>

ModelModel

<<instanceOf>>

Runtime
Instances
Runtime
Instances

<<instanceOf>>

 

Fig. 3. General 4-layer MOF meta-model hierarchy 

Based on this meta-model hierarchy and the characterization of software 
engineering methods, we define the meta-model of our meta-method (M2). It contains 
the meta-classes for the important concepts that are required to model a software 
engineering method. We will build on this four-layer meta-modeling architecture as 
the guiding principle in the definition of our meta-method’s architecture. This will be 
explained in Sect. 5.1. 
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4 Method Engineering 

After having introduced the basic ideas of meta-modeling in the previous section, 
we will now continue with the topic method engineering, and then show how meta-
modeling has been applied for method engineering in this section. SPEM will be 
briefly explained as an example meta-model. 

4.1 Introduction to Method Engineering 

Method engineering has been an active research area in the field of information 
systems engineering since the early 1990s. Method engineering is concerned with the 
systematic construction of software development methods [Gut94]. [Hey95] defines 
method engineering as the systematic and structured process of development, 
modification and adaptation of methods by describing the components of the method 
and their relationships. In general, it is the objective of method engineering to 
formalize the use of methods for systems development [HR10]. More precisely, 
method engineering can be defined as the engineering discipline to design, construct 
and adapt methods, techniques and tools for the development of (information) systems 
[Bri96, HR10].  The objective of method engineering is to develop a methodical 
approach for systems development in a given context (and situation) such as an 
organization or project.  

Method engineering mainly addresses two perspectives: a) the systematic 
development of methods and b) the enactment and execution of methods. Both 
aspects may themselves be supported by dedicated tools, such as a method 
development environment or a workflow engine. 

Applying method engineering to the domain of software engineering methods 
provides a number of advantages: 

 method engineering provides a methodological framework and conceptual 
infrastructure for method knowledge, 

 method engineering supports a systematic development of SE methods, 
 by providing specific means for method adaptation, methods can be adapted to 

a particular situation and context of use (cf. situational method engineering, 
see [HR10] for a recent survey), 

 concepts of method modularization, reuse and configuration [BKPJ07] can be 
used to assemble methods from methodical building blocks, such as viewpoint 
templates [NFK96], method fragments [Bri96], method chunks or method 
services [Rol09], 

 the meta-models that are used for the definition of methods enable analysis 
and comparison of methods, even quantitatively, by the use of an 
accompanying quality model and metrics, 

 method engineering can ease reuse and provide means for compositional 
method development, and method integration,  

 method engineering builds a sound basis for tool support, e.g. computer-aided 
software engineering (CASE) tools that may be built by using Meta-CASE 
tools. 
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The product of a method engineering process is a method. In the context of this 

work, the users of this product are software engineers who develop software-based 
systems. 

The lifecycle of a method is similar to the lifecycle of a software system. We can 
interpret a method as a conceptual system for system development. Method 
engineering manages and controls this method lifecycle and may even itself be 
computer-supported by its own software system, a computer-aided method 
engineering (CAME) tool [Bri96]. The general overall lifecycle model of method 
engineering is depicted in Fig. 4. Once the domain of discourse has been identified 
(being software engineering in our case), the requirements for the method are 
analyzed. It follows a multi-stage development process. Then the method is deployed, 
used, and evaluated in order to start another evolution cycle. 

 
Ev aluate MethodDeploy & Use MethodElicit Method 

Requirements
Dev elop Method

 

Fig. 4. Lifecycle of a software engineering method 

4.2 Meta-Modeling for Method Engineering 

Meta-modeling has been identified as a promising means for method engineering. 
Several meta-models have been defined in the literature by different authors, see e.g. 
[JJM09], [BG08], [GMH05], [HG05]. Two standards also exist that use meta-models 
for the definition of software development methods: ISO 24744:2007 Software 
Engineering  Metamodel for Development Methodologies [ISO07] and SPEM, 
OMG’s Software & Systems Process Engineering Meta-Model Specification 
[OMG08]. The latter provides a meta-model as well as a UML profile for the 
specification of software development methods. We present SPEM as the most 
acknowledged meta-model as an example in the following.  

The engineering of software engineering methods happens within three domains: 
meta-method engineering, method engineering, and software engineering. Each of 
them corresponds to a distinct level of abstraction. These levels of abstraction 
correspond to the layers of the meta-modeling hierarchy depicted in Fig. 3. Different 
tasks of SE method engineering have to be performed in the three domains for 
producing the required products on the different levels of the meta-model hierarchy. 
These tasks are performed by dedicated roles according to our meta-method (see 
Figure 5). The meta-method engineer is responsible for defining the meta-method for 
method engineering (M2) in the meta-method engineering domain. This meta-method 
is applied by the method engineer in the method engineering domain in order to 
develop a concrete software engineering method (M1). The software engineering 
method is then used by software engineers in the software engineering domain for 
developing the software system in a real software development project (M0). 
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Fig. 5. Dedicated roles are responsible for producing the work products on the different layers 
of the meta-model hierarchy 

4.3 SPEM 

The Software & Systems Process Engineering Meta-Model (SPEM) [OMG08] is 
intended for defining software and system development processes. The OMG 
characterizes SPEM as “a process engineering meta-model as well as conceptual 
framework, which can provide the necessary concepts for modeling, documenting, 
presenting, managing, interchanging, and enacting development methods and 
processes“ [OMG08].  
SPEM is a meta-model that is based on MOF and UML. Objective of SPEM is to 
provide description elements for software development methods that are independent 
of parameters such as the development paradigm being deployed (e.g. agile, 
architecture-centric or code-centric, test-driven or model-driven software 
development), the degree of formalization or the cultural background. The set of 
language elements is intended to be minimal for this purpose.  

SPEM thus really is a meta-model for describing software engineering methods, 
and not a method engineering method, since it does not contain a method engineering 
process definition. Furthermore, SPEM has not been intended to be a process 
modeling language for software development processes nor does it even provide its 
own behavior modeling mechanisms. It provides neither a concrete process modeling 
language nor guidance for selecting such a process model. It only provides the 
interface for docking a complementary behavior modeling mechanisms. Hence, 
SPEM is just a description language for software engineering methods.  

An important concept of SPEM is the separation of the method content and the 
development process. Method content denotes descriptions of how to achieve 
particular development goals. Such contents are independent of their use in a specific 
development process. The method contents are then applied within a process and 
brought into a temporal order. 
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Fig. 7. Separation of method content and development process in SPEM 

Figure 7 visualizes the separation of method content and process. It shows four 
meta-model packages of SPEM including the meta-classes for the most relevant 
concepts. It can be seen that elements such as work products, tasks, and roles are 
defined as method contents (highlighted on the right-hand side) and then applied in 
the process part by work product use, task use, and role use (highlighted in the two 
packages on the left-hand side). What can be seen from this meta-model excerpt is 
that the package ProcessWithMethods actually integrates process structure and 
method content by its respective merge dependencies. Furthermore, guidance and 
metric from the package ManagedContent are available as general concepts in the 
merging packages too. 

After having presented the foundations from meta-modeling, method engineering 
and the use of meta-modeling in method engineering – using SPEM as an example – 
we will now present our meta-method for the definition of software engineering 
methods in the next section. 

 

5 MetaME – A Meta-Method for Software Engineering Methods 

Based on the foundations of method engineering and meta-modeling, we have 
developed MetaME, a meta-method for the engineering of software engineering 
methods. We deploy a four-layer meta-model architecture in order to define the meta-
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engineering process, i.e., the method description, and the process that is used to build 
a software engineering method. We first present the meta-model architecture that we 
use for integrating the product models and the process models across the different 
meta-modeling layers in Sect. 5.1. We then describe the respective meta-models on 
the meta-modeling layer M2 and their integration (Sects. 5.2 to 5.4). Sections 5.5 and 
5.6 exemplify the artifact and the process model on the method level M1 that 
instantiate the meta-model from M2.  Finally, the use of transformation rules in the 
work model is shown in Sect. 5.7. 

5.1 Meta-Model Architecture of the Meta-Method 

We build on meta-modeling in the definition of our meta-method for method 
engineering. However, we have discovered that simply employing object-oriented 
meta-modeling in the sense of the Meta Object Facility has some shortcomings (see 
also Sect. 1). MOF is restricted to defining the structure (abstract syntax) of a 
modeling language. It does not comprise any means for modeling behavior. 
Furthermore, it only allows an object-oriented type-instance relationship between 
classes and objects of directly adjacent meta-modeling layers.  

 

Product Model Process Model
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Method
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Fig. 8. A method consists of a product model and a process model; this applies to the meta-
method on level M2 as well as to the software engineering methods on level M1 

To define a method, we combine the method’s product model (shaded in Figs. 8 
and 9) with its process model. The process model is composed of a work model that 
defines work elements such as activities and tasks and a workflow model that defines 
the temporal ordering of activities. We apply this method pattern on the meta-method 
level and the method level as shown in Fig. 8. 

However, while the meta-method process model (M2) must be an instance of a 
process meta-model (M3) to have execution semantics (see Fig. 9), all parts of the 
method (M1) are defined as instances of the meta-method product model (M2), since 
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the complete method is the product of the method engineering process. Yet, the 
method process model (M1) must also be an instance of the process meta-model 
(M3), since it is a process model itself. Yet, this instantiation relationship skips the 
M2 level and thus is not compliant with strict meta-modeling as described in [AK01]. 

We solve this problem by bootstrapping the process meta-model into the meta-
method product model with a <<merge>> relationship (see [OMG06]), like this was 
done for MOF and UML too. Thereby, we also convert between ontological and 
linguistic meta-modeling, since the meta-method product model on M2 as well 
defines the method modeling language. The method is engineered and modeled by 
instantiating the meta-method product model (M2) and enacting the meta-method’s 
process model. This relation is represented by the dependency of type 
<<producedBy>> between the method and the instance of the meta-method process 
model (in level M1). The same pattern applies in the M0 level for the production of 
the development project’s software artifacts.  
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Fig. 9. Applying the meta-modeling approach for the engineering of methods 

Figure 10 shows a focused view of the product model dimension across the layered 
architecture. It can be seen, that we distinguish between the method engineering 
domain (left-hand side) and the software engineering domain (right-hand side). The 
former is concerned with the engineering of software engineering methods, the latter 
with the engineering of software systems. Nevertheless, these two hierarchies are 
interrelated. First, both hierarchies are founded in the Meta Object Facility in their 
respective M3 layers. Secondly, the software engineering methods that are developed 
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in the method engineering discipline are applied in the software engineering 
discipline. For example, the product model of the software engineering method (M1 
of method engineering domain) contains an artifact model in which the artifact types 
of the method such as Task and Class are defined. Instances of these artifact types 
are created as the concrete objects in a software development project. Additionally, 
these artifact types are transferred to the software engineering domain where they are 
deployed in the software system meta-model (M2 of software engineering domain) as 
the elements of a modeling language for the software system model (M1 of software 
engineering domain). Figure 10 shows an example. Such a software system model is 
produced in a concrete software development project (M0 of method engineering 
domain) which in turn instantiates the software engineering method. As a 
consequence, the two domains coincide (with a switch of layers) and must be either 
integrated or coupled. 
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Fig. 10. Example for the relationship between the artifact model of a software engineering 
method (M1, left) and the meta-model of a modeling language (e.g. UML) used in software 
development (M2, right) 

Based on this integrated meta-modeling architecture of product and process 
models, we describe in the following which constituents make up the meta-method in 
the different parts of the meta-model hierarchy. We start on the meta-method level 
M2 (Sects. 5.2 to 5.4) and will then exemplify its instantiation on the method level 
M1 in the remaining sub-sections of Sect. 5. 

5.2 Method Engineering Meta-Method: Product Model 

The meta-method for method-engineering on layer M2 of the SE method 
engineering domain is a method itself. Therefore, all relevant aspects for defining a 
method need to be defined for the meta-method as well: product model and process 
model. The product model (see Fig. 11) of the meta-method defines the fundamental 
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types of elements within software engineering methods. They can basically be boot-
strapped to the method engineering meta-method as well. In addition, we will briefly 
explain the process of how to develop a software engineering method according to the 
product model in the next section. 
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Fig. 11. Core domain concepts of software engineering methods defined in the meta-model of 
our meta-method 

Figure 11 depicts the core concepts that are required for describing a software 
engineering method (Note: it is not the complete model). We have graphically 
structured the meta-class diagram for the core aspects that have to be covered (see 
Sect. 2). In the upper right, one can find the method content defining the structure of 
the method (domain, discipline, artifact, concept (semantics), notation (syntax)), and 
the general concept of constraint. On the left-hand side, the process dimension is 
covered by the concepts process, activity, task, action step, role, transformation, 
phase, milestone, etc.). At the bottom end, techniques, tools, and practices of the 
methods that provide guidance on how to accomplish the tasks and produce the work 
products are depicted (technique, tool, utility, guidance, etc.). 

428 G. Engels and S. Sauer 



Domain captures the engineering or application domain for which a method is to 
be specified. Domains can be further decomposed into a set of disciplines. Artifact 
types are assigned to disciplines in which they are created or used. Each artifact type 
combines a concept and a set of notation elements. The lifecycle of an artifact can be 
modeled with a state model. Techniques are associated with methods to which they 
belong and/or to activities and tasks in which they are used. Tools, utilities, and 
guidance are assigned to techniques.  

Work elements are specialized into tasks and activities. They can be further 
decomposed into atomic action steps. Work is also related with role to indicate its 
responsible performer as well as participants. Roles can be part of organizations. 
Transformations are associated with work elements as well, but also relate to the 
artifacts they use (source) or produce (target).  

Processes are hierarchically composed from activities and can also include 
milestones (not shown is the relation between milestone and the corresponding 
artifacts that need to be finished to reach the milestone). Finally, the temporal domain 
of the endeavor is modeled by the project being associated with phases.  

5.3 Method Engineering Meta-Method: Process Model 

In Fig. 12, the fundamental process of the meta-method for developing software 
engineering methods is defined. This process model belongs to the meta-method 
process model (M2) in Fig. 9. It refines the composite activity “Develop Method” in 
the method lifecycle process depicted in Fig. 4. The numbers in Fig. 12 correspond to 
the steps (activities) of the meta-method process in order to produce a software 
engineering method by instantiating the meta-method’s product model. The process 
model is thus typed over the product model. Steps 1 to 5 correspond to the steps that 
we have described in [ESS08]. The first step is of foundational character: 

 
0. Define domain and disciplines: The domain is software engineering methods in 

our case, and disciplines are used to further structure the software engineering 
method into areas of concern, such as the disciplines of the Unified Software 
Development Process [JBR99] (compare Fig. 12). 
 
In [ESS08] we have proposed a meta-method for defining software development 

methods based on domain models of software engineering concepts and artifact types. 
While the development of the domain models (steps 1 to 3, see [ESS08] for details) is 
the focus of that article, the definition of the process and the assignment of tools on 
top of these models are only sketched. The meta-method in [ESS08] has been applied, 
analyzed and extended in [Sta09]. We have revised those five development steps in 
the course of this work: 

 
1. Produce domain model of software engineering concepts: In the sense of a 

product model, the domain model of software engineering concepts is set up and 
organized according to the identified disciplines (in the form of packages that may 
be hierarchically nested). Such disciplines may as well correspond to levels of 
abstraction (requirements, analysis, design, etc.) or views (partial models) of the 
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system (requirements model, analysis model, design model, etc.) Core activities are 
the definition of SE concepts and assigning them to disciplines.  

The concepts can be further classified according to the aspect they model, for 
example, structure, behavior, or context. Concepts can be engineering or 
management related.  

Relationships between concepts are added such as composition and aggregation 
relationships, dependencies, and associations. Refinement is an important type of 
relationship for describing forward engineering methods: a set of concept instances 
on a lower level of abstraction (partially) refines a set of concept instances on a 
higher level of abstraction. For example, a business use case can be refined by a 
system use case, and the system use case can be refined by a set of activities. 
Another example is a conceptual component in a system specification that is 
refined into a set of logical components within a software design. 

The meta-model representation is accompanied by a glossary that contains an entry 
for each meta-model class. Each entry holds a description of the semantics, 
purpose and properties of the concept and relationships to other concepts. 

 

1  Produce domain model of 
software engineering concepts

0  Define domain and disciplines

2  Select notations

3  Define artifact types

5  Select tools, techniques and 
utilities

4  Define the software engineering 
process models

  

Fig. 12. The fundamental process of the meta-method 

2. Select notations: In order to represent the software engineering concepts 
appropriately, notations for their representation are required. Languages, together 
with possible sub-languages (e.g., UML diagram types) and language elements 
must be identified (either by newly defining them or by reusing existing notations) 
and enumerated as candidates. Among them are typically languages for modeling, 
documentation and implementation of software engineering concepts. 
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3. Define artifact types: Candidate notations, i.e., languages and language elements 
that have been identified in step 2 are assigned to SE concepts from step 1 
according to the properties of the software engineering concepts that need to be 
expressed. While the domain model of software engineering concepts can be 
interpreted as the semantic domain of the software engineering method, languages 
define the syntax for denoting them (notation particularly refers to the concrete 
syntax). The domain model of software engineering artifacts then defines the 
semantics of the languages by linking language elements (and particularly their 
syntactic representation) with SE concepts. Consequently, the given semantics of 
the proposed candidate notations must be conformant with the semantics imposed 
by the composition of step 3, and the semantics of each language element shall still 
be unambiguous. Composition hierarchies in the domain models of SE concepts 
and artifacts must be compatible.  
 

4. Define the software engineering process models: The definition of the software 
engineering process reifies the definition of a roadmap through the network of 
development artifacts. Tasks and activities are defined and ordered into workflows 
that produce the required artifacts in the specified order. Sequential, parallel, 
iterative, incremental, evolutionary and agile development processes shall be 
supported. The process model is composed from work models and workflow 
models. 

We need to define activities for accomplishing tasks of software engineering in a 
software development project and the process structure, comparable to the work 
breakdown structure in [OMG08]. The process structure contains activities, 
milestones and control-flow elements. The definition of tasks and activities can be 
extended by object flows of used and produced work items (of the given artifact 
types) and roles that are responsible for executing activities or participate in the 
activities’ execution (the responsibility for an artifact is a structural issue, that is 
modeled separately; a role model is also provided separately). For defining the 
process, the following sub-activities need to be performed, which will be explained 
in more detail with the M1-level examples in Sect. 5.6 and Sect. 5.7: 

a)  identify tasks and activities, 
b) define the process structure (workflow) including processes, activities, and 

milestones, 
c) specify work element structures for tasks, activities and possibly workflow 

patterns including roles and work products, 
d) define the temporal course using phases and possibly other kinds of time 

period concepts such as iterations, releases, builds, 
e) describe transformations and constraints. 

 
5. Select tools, techniques and utilities: The selection of tools, techniques, and 

utilities as well as the provision of concepts of use for these tools are required for 
guiding and simplifying the software engineering work and producing the required 
software artifacts. Tools, utilities, and guidance are assigned to techniques. 
Techniques are in turn related with methods to which they belong and/or to 
activities and tasks in which they are used. Guidance on how to proceed in an 
activity or task to produce the artifacts of a particular type shall be explicitly 
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provided, e.g. in the form of guidelines, good and best practices, whitepapers, 
checklists, templates, examples, or roadmaps. However, even the assignment of 
languages to software engineering concepts in step 3 can be interpreted as partly 
associating a technique for the development artifact. Both languages and tools 
typically have implications on how to produce an artifact. Eventually, tools and 
utilities are thus related to the activities of the software engineering process model 
as well. By this, it is shown which activities are supported by tools and utilities 
and, in turn, which of them are to be used when accomplishing the task of the 
activity. 

 
Enacting this process in the M1 level of the method engineering domain, we 

systematically create a software engineering method as an instance of the meta-
methods M2 product meta-model. 

5.4 Integrating the Views of the Meta-Method 

As can be seen from the description of the product and process models of the meta-
method in the last two sections, a number of consistency issues arise from the 
different views on the software engineering method’s elements: 

 consistency of artifacts as defined in the artifact model and their use as work 
products in the process, 

 conformance of hierarchical composition structures of the domain model of 
software engineering concepts and the artifact model, 

 consistent composition of process structures from activities, obeying all given 
constraints such as the hierarchical composition of activities and flow 
relationships (predecessor) between activities, or the linking of roles and work 
products, 

 consistency between work product use in activities and processes and the 
artifact lifecycle model. 

 
Such issues need to be resolved in the method engineering domain when a software 

engineering method is defined. In addition to the method’s conformance with the 
meta-methods product meta-model, it is also possible to define additional constraints 
for software engineering methods as instances of the Constraint meta-model 
class.  

Yet, a common meta-model for software engineering methods does not only 
provide a common language for describing software engineering methods; it can also 
be used as a standardized and unified reference model for software engineering 
methods. Different methods can be analyzed, compared and exchanged on this basis.  

In addition to the definition of activities and process structures (e.g. depicted as 
UML activity diagrams holding the different process elements and specifying the 
workflow of activities), we deploy collaborations in the work model defining the 
effect of work elements, i.e., tasks and activities, on the artifact structure (which can 
be interpreted as graph transformation rules that are typed over the artifact model). 
Such models of the dynamics of a method can for instance be used for reasoning or 
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analyzing certain properties of a process. These transformation rules are explained in 
more detail in Sect. 5.7. 

Following this general discussion of the meta-method level, we will present the 
artifact model (result of step 3) and the software process model (step 4) in more detail 
in the following two sections. They represent instances of the meta-method product 
and process models (M2) on the method level (M1). 

5.5 Defining the Artifact Model of Software Engineering Method 

The result of step 3 of our meta-method is a domain model of software engineering 
artifacts. The objective of this model is to establish a common understanding of the 
software artifacts that are to be produced in a software development project. This 
comprises the purpose and meaning of each artifact type and its relevant properties as 
well as the relationships, associations, dependencies, and generalizations between 
artifact types. The artifact model is a type model that is used in the role of a meta-
model in the software engineering domain and thus instantiated for describing a 
software system in a software development project (compare Fig. 10). It defines the 
set of software engineering artifacts that are produced, edited, and used throughout a 
software development project as part of the software engineering method. It thus 
constitutes the product model of the software engineering method (M1 in the method 
engineering domain) and acts as the backbone of a family of methods where it can be 
combined with dedicated process models, languages and tools.  

Figure 13 shows as an example an excerpt from the artifact model for system 
specifications in the disciplines business modeling and analysis that has been 
developed together with an industrial partner. 

For each artifact type, we can specify an artifact lifecycle model (state model, see 
Fig. 11) which defines the lifecycle of artifacts that are instances of this artifact type. 

5.6 Software Process Modeling in the Software Engineering Method 

The workflow structure of the process defines an ordered and hierarchically nested 
structure of activities and milestones. Ordering relations, i.e., direct predecessor 
dependencies between elements, are explicitly specified. They may be marked e.g. as 
dependencies of the appropriate temporal relationship kind (such as typical interval 
relations startToStart, startToFinish, finishToStart, finishToFinish, compare 
[OMG08]). Transitive dependencies need to be computed for scheduling the 
activities. Other properties of the work elements that are relevant for the ordering an 
execution may be indicated by meta-attributes, such as “hasMultipleOccurences “, „
isOptional “, 

„
isRepeatable “, 

„
isOngoing “ and „isEventDriven “ (compare [OMG08]). 
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The flow of activities can also be represented in UML activity diagrams or other 
process languages such as BPMN, Petri Nets, etc. The flow diagrams can contain 
activity elements (as actions) as well as control flow patterns and nodes such as 
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Fig. 13. Excerpt from the artifact model for system specification in the discipline analysis with 
reference to elements from the discipline business modeling 
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Fig. 14. Flow of high-level activities for the Unified Software Development Process 

sequential, alternative and parallel execution, conditional flows and iteration. Thus it 
is possible to specify different kinds of software engineering processes.  

Figure 14 shows an example of an activity diagram depicting the flow of high-level 
activities according to the disciplines of the Unified Software Development Process 
[JBR99]. In each iteration of the process, the engineering activities on the left-hand 
side are executed sequentially. The three activities corresponding to the supporting 
disciplines on the right-hand side run across the whole development lifecycle. 

Constraints may be defined that restrict the possible flow of activity. For example, 
we can use temporal expressions to define that each activity for specifying a use case 
must eventually be followed by an activity specifying a test case. 

Roles and work products (artifacts) shall be related to activities and milestones. 
Therefore, they are to be included in the work model. (Within this task, one may 
finally select from alternative artifact types, by defining the references to the artifact 
types of the information model.) For activities, we can indicate whether work 
products are used as parameters of kind „input/output/inoutput“. For milestones, we 
can indicate which work products are required results that have to be completed for 
achieving that milestone (responsibility assignment). For all elements reference roles 
and work products, it may be specified whether they are mandatory or optional by a 
meta-attribute „isOptional“. 

Activity diagrams with object flows can be used to depict the input and output 
work items of each activity. Work product uses are represented as object flows 
according to their parameter kind: in, out, inout. One can use ObjectNodes, Pins 
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ActivityParameterNodes of UML activity diagrams for this purpose. Roles can be 
integrated by the use of ActivityPartitions (aka. “swimlanes”) for assigning activity 
elements to the corresponding roles, representing the relationship between activity 
and role use. Figure 14 shows an example how the activity pattern for structuring the 
use case-model according to the Unified Software Development Process [JBR99] can 
be represented. This diagram shows the activity together with role use and work 
product uses as well as the deployment of the tool Enterprise Architect according to 
step 5 of the meta-method. 
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Requirements
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Fig. 15. Activity pattern for the activity “Structure the use-case model” according to [JBR99] 

Consequently, the following relationships are represented in such a model: 

 a role is responsible for performing an activity, 
 a work product is used or produced by an activity as input, output or input-

output parameter, 
 if a relationship of type performs exists between an activity and a role use 

and a parameter relationship of kind out or in-out exists between the same 
activity and a work product use, then there also exists a relationship of type 
responsible (responsibility assignment) between the work product use and 
the role use. 

5.7 Defining Work of Software Engineering Methods as Transformations 

As can be seen from Fig. 15, the representation of the effects of work elements on the 
artifact model can only be expressed in a limited way by using activity diagrams or 
composite structures. Even if object flows are represented, they can only make 
reference to the state of individual objects (such as the states “outlined” and 
“structured” for the use-case model and the state “described” for use case in Fig. 15). 
We therefore include transformations that are depicted as UML collaborations (i.e., 
the structural part of UML 2 interaction diagrams) that are interpreted as graph 
transformation rules on the type graph of the artifact model (as introduced in [HS01]).  

Figure 16 gives an example of such a transformation rule. It states for the activity 
“Identify system use cases” that for each occurrence of the pattern on the left-hand 
side in an instance of the artifact model, the structure on the right-hand side must be 
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produced by the activity. In particular it states that if a business process has an action 
step that shall be supported by the software system being modeled (property 
“isManual” = false), then a system use case needs to be included in the system model 
that realizes this action step and whose primary actor is the same actor who is 
responsible for executing the action step of the business process. The rule can be 
interpreted as a visual contract [LSE05] stating pre- and post-conditions of the 
activity.  

 

:Business Process

:Action Step

isManual = false

:Actor

participates in

:Business Process

:Action Step

isManual = false

:Actor

participates in

:System Use Case

status = identified

participates in

<<transformation>> Identify system use case

 

Fig. 16. Transformation rule for activity “Identify system use case” 

With this example of a transformation rule that specifies the effect of a work 
element in a method we conclude our tour of how to develop software engineering 
methods with MetaME. So far we have focused on how to create new software 
engineering methods, but we can distinguish between initial development of a 
software development and its modification. Modification can have different causes 
such as the need to evolve, tailor, specialize or extend the software engineering 
method. We will exemplify tailoring scenarios in the next section. 

6 Tailorable Software Engineering Methodology 

Software engineering methods evolve over time due to changing requirements, new 
achievements in software engineering – such as new process models and development 
practices – and experience from software engineering projects. However, each 
software development project is individual too, at least to some notable degree. This 
results in at least slightly different requirements for every software development 
project. Thus, software engineering methods must be tailorable. Such tailoring is a 
possibility to implement situational method engineering (see Sect. 1). It happens on 
the M1 level of our meta-modeling hierarchy. We will not discuss changes to the 
meta-method on the M2 level here, since they should only appear in a controlled 
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evolution process within the meta-method engineering domain, and are not part of the 
method engineering domain. 

Changes on the M1 level, where the software engineering method is located, can 
be manifold and will occur rather often. For example, if a project is of limited size 
and budget, it may not be appropriate to execute all activities in full and to produce all 
the work products that are defined in the general method. If a method engineer (or a 
project leader who is responsible for the tailoring of the software engineering method) 
wants to change the artifact types, their properties or relationships, she has to adapt 
the software engineering artifacts model. The consequences of such modifications on 
the network of artifact types can be directly observed from the artifacts model. For 
example, if a project decides to specify the software system without use cases and to 
use a combination of business processes, business rules, dialogue specifications and 
application functions instead, this will have an impact on numerous artifact types that 
are typically related to use cases. 

Changes to the artifacts model will typically also affect the defined activities in the 
process dimension, since tasks and activities use artifacts from the artifacts model as 
their input and output objects. If use cases are no longer produced, the work elements 
producing use cases are no longer required. Work elements that typically depend on 
the provision of use cases as input need to be altered for using the other supplied 
artifacts that are available as work products. Maybe even the flow of activity must be 
altered due to changes in the parameter object types. For example, if dialogue 
specifications are to be used in an activity instead of use cases, but dialogues were 
only specified later in the process so far, the activity of specifying dialogues will have 
to be moved upfront before the dependent activity. 

A number of other changes to the software engineering method are also quite 
common: 

 changes of techniques how to produce a work product, 
 change of notations for representing the content of artifacts, 
 changes of tools, e.g. due to the wish of a customer, to enable tool chaining with 

another tool, or to interoperate with development partners using a common tool 
basis, 

 addition of roles and responsibilities, and many more. 
 
The advantage of the formal meta-model based approach of method engineering that 
we have presented in this work is that its parts and their relationships within and 
among each other are precisely and explicitly modeled. Thus tailoring can as well 
be executed and described in a systematic way. 

7 Conclusion 

In this paper, we have presented MetaME, a meta-method for method engineering of 
software engineering methods. It builds on a four layer meta-model hierarchy which 
combines the two domains method engineering and software engineering. We 
described a meta-model as a general product model of method engineering as well as 
a process for developing software engineering methods that consists of 5+1 steps. 
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Together they cover the product and the process dimension of the meta-method. The 
most important steps 3 and 4 of that process, which are concerned with defining an 
artifact model and software process modeling, respectively, are shown and discussed 
in detail. There we also introduce the idea of specifying software engineering tasks as 
transformation rules that are typed over the artifact model. The issue of tailoring in 
our meta-method for the engineering of software engineering methods is briefly 
discussed in Sect. 6.  

Although method engineering of software engineering methods is not a new 
domain, there is still work to be done. The integration of the different aspects and 
views of such a method is not yet complete. Especially the use of constraints and 
patterns in a meta-model-based approach still needs to be better understood. 
Furthermore, we have made a first step towards the integration of structural and 
behavioral meta-modeling of software engineering methods. This integration needs to 
be continued and evaluated. The integrated meta-modeling architecture underlying the 
method engineering and software engineering domains appears to be a basis for this. 
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Abstract. Models of software development processes have many uses such as 
an aid to understanding, composing, assessing, improving and automating 
workflows. However, eliciting descriptive models from actual work environ-
ments can be quite complex due to multiplicity of roles, activities, artefacts, 
conditions, distributivity, locations and others. One way to manage this com-
plexity is to elicit, from different sources, partial models (called views) of the 
subject process and then merge them into a coherent whole. In this paper, we 
describe “view-merging” algorithms, which form a core part of a view-based 
model elicitation system. The algorithms aid in identifying overlaps and incon-
sistencies and in presenting possible resolutions which, by interacting with the 
model elicitor, leads towards an incrementally built, unified, coherent process 
model. These algorithms have been implemented in a system called V-elicit, 
which has been validated empirically.  

Keywords: software process models, views, view merging, component match-
ing, inconsistencies. 

1   Introduction 

Software process improvement is often performed by first creating a model of  
the current process and then analysing it to find improvement opportunities (see, e.g., 
[1, 9, 29]. The task of gathering information about the process, modelling this infor-
mation, analysing the model for consistency and completeness, and validating it, is 
called process model elicitation [26]. 

For such a task, one may need to use multiple sources of information (different 
people, documents, observations, etc.) in order to obtain a comprehensive picture of 
the process being modelled. The reason is that, quite often, no single person in a large 
                                                           
* This work was supported in part by the Natural Science and Engineering Research Council of 

Canada (NSERC). 
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organisation has innate knowledge about the entire process to the extent of the details 
needed to make improvements [11, 29, 38]. From our own experience (see details in 
Section 7 below), the percentage of overlap found across two different people’s de-
scription of the same process was between 4% and 54%.  

However, a wicked problem caused by using multiple sources of information is 
that the descriptive fragments from different sources (called views) may have conflicts 
among them [20, 29, 38] with respect to details such as: types and instances of the 
activities and artefacts captured, conditions associated with model elements, timing 
information, the semantics of similarly named elements, differing terminology used 
for the same semantics, presence or not of certain relationships among the defined 
entities, structural differences in the way development tasks and artefacts are grouped 
to form the model (or view) hierarchies, the level of details represented, and others. 
These conflicts are there due to stakeholders’ personal perceptions and level of under-
standing of the entities, relationships, conditions, timing, resources and other values 
involved in the software processes being conducted in a project. Also, in many cases 
such conflicts are inevitable when there is no single defined and followed process 
organisation-wide, e.g., organisations low on process maturity scale. Even once ma-
ture organisation can relegate to this problem due to corporate mergers and acquisi-
tions, or market impact on survivability and personnel attrition, before it has uplifted 
itself again to a more mature state. Not only it is recognized that different people may 
see the process in different – conflicting – ways, such information (i.e., the inconsis-
tencies found) is even used in [1, 7] as a starting point for identifying improvement 
opportunities.  

We take a position that for many investigative or improvement efforts, there is a 
need for a comprehensive and consistent descriptive process model so that it can be 
trusted for making subsequent decisions. Failing to adequately understand the descrip-
tive process can lead to problems in defining the requirements for process improve-
ment which, in turn, can result in poorly changed processes or in improvement project 
failures. Quoting Humphrey [18], “if you don’t know where you are, a map won’t 
help”. This is supported by Hardgrave and Armstrong [16]: simply trying to imple-
ment the CMM key process areas in Level 2 lead to an improvement failure. How-
ever, once they put their emphasis on obtaining the descriptive process model and 
using it to identify improvement opportunities, they succeeded in attaining CMM 
Level 2 certification.  

Building a coherent model from multiple views is non-trivial because it requires 
that these views are merged in a systematic manner. This task includes identification 
of the overlapping components across the views, and detection and resolution of the 
described types of inconsistencies. In the past, view merging was mostly carried out 
manually [11, 20, 29]. In a large project, there are many disadvantages to such an 
approach however. For example, the size and complexity of the processes can be a 
factor in overlooking some overlaps and inconsistencies across different views. The 
amount, structure and semantics of the information that the elicitor has to deal with 
from each view (easily hundreds of items) are difficult to manage. Yet, it is important 
to examine all the views when identifying overlaps and inconsistencies.  
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In the case study described in [13], a team of subjects used a manual view-based 
approach for building a requirements model from multiple views. This team failed to 
build a merged model because of the difficulty in reconciling conflicts manually.  

Also, the need for tool support for view-merging was evident from an experiment we 
had conducted [37] on comparing view-based approaches against traditional ones. The 
subjects using a traditional approach to process modelling dealt with multiple views by 
first modelling what they considered to be the most central view of the process, and then 
by incrementally adding information from the other views. In our analysis of the resul-
tant models, we could trace back most of the completeness or consistency problems to 
the traditional approach used (i.e., the information from the central view was modelled 
quite well compared to the information from other views). These problems suggest that 
an appropriate tool support is needed for identifying overlaps, detecting inconsistencies 
and for merging different views into a coherent whole. To our knowledge, such a tool 
support is not currently available – at least not for the types of models to be dealt with in 
the software process modeling area (see Section 6 where we discuss tools for merging 
models in domains such as ontology merging and version control management). 

To overcome this shortfall, in [33, 36], we describe a view-based elicitation ap-
proach with tool support (the V-elicit system). In this approach, the elicitation effort is 
first planned (through identification of the purpose and scope of the model to be elic-
ited, and the possible sources of information), and views are then elicited from dispa-
rate sources and each is checked internally for consistency and completeness. These 
views are then analysed for overlaps and inconsistencies across them. While these are 
being resolved, a merged model is synthesised automatically in the background.  

Since the publication of these papers [33, 36], we have improved the internal algo-
rithms used, and validated these algorithms further. What is new in this paper is that 
we have augmented our previous work on view-based elicitation, by giving additional 
algorithmic details. So the focus and novelty here is on the description of two algo-
rithms used for merging the views: (i) component matching and (ii) inconsistency 
management. The details on other elicitation steps (e.g., planning, view elicitation, 
and consistency checking of the individual views), described in earlier papers [33, 36] 
are not repeated here. 

The component matching algorithm is used to identify overlaps between two given 
views. The inconsistency management algorithm detects inconsistencies across views, 
categorising them, and presenting the possible solutions of the inconsistency to the 
elicitor. In order to help select the right solution, appropriate context information 
(such as the solution implemented in each view) is provided as well. Together, these 
two algorithms (called “merging algorithms”) aim at synthesising a unified, coherent 
merged model. Their automation, as described in this paper, makes view-based elici-
tation practical by ensuring that all the identified overlaps and inconsistencies are 
considered, and by reducing the amount of work that the elicitor has to perform 
manually. 

This paper is organised as follows: Section 2 gives an overview of our approach 
through an example. Sections 3 and 4 describe the algorithms used. Discussions on 
various issues related to the modelling notation and the scalability of the approach 
follows in Section 5. Section 6 presents related work and comparisons. Section 7 
describes the validation performed. Finally Section 8 concludes the paper. 
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2   View Merging – The Basic Idea 

Prior to delving into the two core algorithms (Sections 3 and 4), we first consider a 
simple, yet illustrative, example of merging so as to obtain a feel for the issues in-
volved in merging a set of disparate views of a given process. 

Consider, for example, two1 views describing a document review process from dif-
ferent angles: Bob’s view (Figure 1) as a reviewer and Peter’s view (Figure 2) as a 
document writer.  For ease of understanding, we limit the views to activity decompo-
sition and dataflows. However, in a large or complex process, there could as well 
exist several different views for a particular sub-process, and possibly other kinds of 
information such as agents’ roles, timing, entry/exit criteria, etc. Let us also assume 
that, as a prerequisite, each of the views is internally consistent and complete2 before 
entering the view merging process. 

The views are specified as entity-relationship diagrams3, with user-defined types 
assigned to entities (e.g., activity, artefact, role) and to relationships (e.g., activity is-
composed-of activity, activity produces artefact, activity is-performed-by role). Enti-
ties can also have attributes attached to them (e.g., duration and frequency for activi-
ties, reference number and time of final approval for artefacts). 

The first step in the merging process is component matching, to detect overlapping 
elements across the views. This can detect, for example, that “do_first_version” in 
Bob's view and “deliverable_production” in Peter's view refer to the same activity. 
This task is not obvious due to terminology differences and due to the fact that the 
elements may not mean exactly the same thing (e.g., whether or not the activity of the 
production includes the activity of modification of deliverables). Thus, we need to 
examine the descriptions of the entities (i.e., their relationships with other entities and 
their attributes), and the terminology used in order to match them.   

Our approach is to compute a similarity score ([0..1]) for each pair of entities in 
each pair of views, based on the information related to these entities (i.e., name, rela-
tionships and attributes). For our working example, the scores computed by the algo-
rithm are indicated in Table 1. From these, the matching activities are identified as the 
ones above a certain threshold provided by the elicitor (e.g., 0.5)4. The potential 
matches are indicated by a score in bold in Table 1.  

 

                                                           
1 The V-elicit system [33] can handle multiple views and has undergone validation using indus-

trial case studies. 
2 These quality factors can be evaluated through a set of rules based on the syntax and static-

semantics of the modeling language used (e.g., for completeness: ensure that each defined 
activity has at least one input and one output associated with it; for consistency: ensure that 
dependencies among artifacts do not form a cycle). The V-elicit system has such rules for 
intra-view analysis, which are described in [33, 35] and are not repeated here. 

3 We discuss later, in Section 5, that this choice does not limit the generality of the approach. 
4 This threshold would typically come from past experience. Our own experience suggests that 

0.5 is a reasonable value, which typically discriminates between right and wrong matches, 
while limiting the set of matching pairs presented to the elicitor. Since the values computed 
are always available for analysis, this threshold is just used to ease the initial analysis of the 
matches found. 
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Notation used: 
The activity decomposition (top part of the figure) shows the activities involved, at different 
levels of details, and the composition relationships among them. The dataflow and sequencing 
aspect (bottom part of the figure) is a combined one, showing activities in rectangles and re-
lated artefacts in ellipses. The dataflow relationships are the ones involving artefacts, and they 
represent the relationships of type "activity produces artefact" and "artefact is-consumed-by 
activity". The sequencing between activities is shown in two different types of relationships 
among activities: "activity precedes activity" is shown as regular arrows, and "activity iterates-
with activity" is shown as arrows with two arrowheads. 

Fig. 1. Bob’s view (reviewer) 

 
 

 
Notation used: see Figure 1. 

Fig. 2. Peter’s view (document writer) 
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Table 1. Similarity scores between activities in Bob's and Peter's view 

With a threshold set to 0.5, potential matches of activities between the two views (those 
above the threshold) are highlighted to the elicitor for analysis. Note that the matches 
are not always one-to-one. 

Peter  
 
 

deliverable 
production 

deliverable 
validation 

do_ITteam
_ QA 

modify_ 
deliverable 

document_ 
production 

 
0.229 

 
0.298 

 
0 

 
0.298 

do_first_version 0.620 0 0 0 

do_modifications 0 0.298 0 0.705 

review 0 0.298 0.593 0 

ITteam_review 0 0.298 0.714 0 

B
ob

 

client_review 0 0 0.376 0 

 
As one can see, there could be more than one potential match presented, associated 

with a single entity (e.g., with “do_ITteam_QA” here), and the elicitor should be in-
volved in this case to choose the right match (typically based on his/her understanding 
of the elicited information). Such situation may already indicate an inconsistency 
across views, which can be dealt with at this point or later during the inconsistency 
management phase. In the case the elicitor prefers to make modifications at this point, 
the tool provides suggestions to fix the problem in one view, such as adding a more 
abstract or more detailed entity, or changing the position of an entity in the decomposi-
tion view. The danger in handling such case at this point is that a decision is taken 
without a proper analysis of the impact in all other views (which is handled in the next 
step – inconsistency management). In our example, assuming that the elicitor chooses 
to match “do_ITteam_QA” with “ITteam_review”, then Table 2 shows the result of 
this component matching step of the merging process i.e., the list of matches identified. 
The top-level activity (“project”) is not considered here in the matches, as it is sup-
posed to be the same for all the views since it represents the entire process modelled. 

Table 2. Final matches between two given views 

Bob Peter 
- do_first_version - deliverable_production 
- do_modifications - modify_deliverable 
- ITteam_review - do_ITteam_QA 

 
It should be noted that at this point, the elicitor’s involvement should not be re-

stricted to analyzing cases where more than one match was found, but also to review 
the matches found and accept them or reject them, possibly proposing better ones. As 
described in [33], Table 1 above is not presented “as is” to the user, but the user is 
presented with the probable matches (in a format similar to Table 2) and help is pro-
vided for making the proper selection of matches – same as in the special case above 
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where multiple matches to a single entity are found. At first, such a check might seem 
time consuming. However, this is greatly reduced by the use of the calculated similar-
ity scores: in fact, the elicitor just needs to consider the entities with higher scores and 
the other entities in close proximity in order to perform such a check. Thus, not all 
possible pairs of entities need to be checked, as would be required in a completely 
manual approach.   

Knowing where the overlaps are in the views, we can now attempt to detect incon-
sistencies across the views, if any, and resolve them (i.e., inconsistency management).  
The first key step is to ensure that all elements are captured once, and only once, in 
the merged model, with a proper “definition” of each of them in terms of the set of 
sub-entities composing them in the entity decomposition5 (i.e., eliminating all incon-
sistencies related to the entity decomposition). In our example, we have the following 
inconsistencies: 

 

1. “do_first_version” and “deliverable_production” are at different levels in the 
model decomposition 

2. “client_review” is not in Peter's view 
3. “do_modifications” (or “modify_deliverable”)  is grouped with the document 

production activities in Bob’s view, but grouped with the review activities in 
Peter’s view. 

 

For this task, the V-elicit tool works in a top-down fashion, presenting each incon-
sistency as they are discovered, with possible solutions (see [33] for an example with 
screen shots). The elicitor simply needs to select the correct alternative from the solu-
tions provided. For example, in the case of inconsistency #1 listed above, the elicitor 
would have to decide whether or not to keep the “document_production” activity in 
the merged model and make appropriate command choices in the V-elicit tool. The 
list of all the views implementing each of these two solutions is also provided (not 
only the two views where the inconsistency is originally found), so that the elicitor can 
perform a better analysis of which solution is best. Once the set of entities is fixed, 
inconsistencies related to differences in names and attribute values, as well as non-
decomposition relationships missing in some views, can be handled easily (still with 
each of them presented together with contextual information in order to ease the se-
lection of the proper alternative). 

The final result of applying these two mechanisms (component matching and in-
consistency management) on the given set of views is one merged model. For our 
example, one possible merged model is as shown in Figure 3. This final model should 
also be checked for consistency. Especially, we should check that the final model 
does not contain unconnected parts. This would indicate that the views were describ-
ing adjacent sub-processes (or orthogonal views) without specifying the interface 
between them. In such circumstances, additional information from the related views 
has to be elicited to solve this problem. Of course, it would be preferable to prevent 
such a situation by properly planning the scope of each view prior to their elicitation 
(handled in the planning step of V-elicit [35]).  
                                                           
5 The decomposition (or hierarchical) structure is chosen to assess this quality attribute because 

this view lends itself to the analysis of the existence of elements in a given process model and 
how these elements are related to other elements in forming the more abstract elements. Other 
views, e.g., data-flow, role-activity, etc., do not readily serve this purpose. 
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The component matching algorithm and the inconsistency management algorithm 
are described in Section 3 and Section 4 respectively. 

 

Notation used: see Figure 1.

activity decomposition project

deliverable_ 
production 

review

ITteam_review client_review 

 modify_ 
deliverable 

 deliverable_ 
production 

modify_ 
deliverable 

ITteam_review client_review 

deliverable 

feedback 

modified_deliverable 

dataflow and sequencing 

 

Fig. 3. Final model (merging of Bob’s view and Peter’s view) 

3   Component Matching Algorithm 

As we saw in the example, in order to merge the views we need to identify the infor-
mation (e.g., entities and relationships) that overlaps across the views. This is accom-
plished by computing similarity scores for all the pairs of entities from different 
views. The similarity score is a number between 0 and 1, where 1 represents entities 
that are exactly the same. 

The general idea in computing a similarity score between two given entities is to 
compare the elements related to these entities (i.e., name, relationships and attributes). 
For example, if we look at Bob's activity “do_first_version” (Figure 1), there are four 
related elements: the name of the entity, and the relationships “document_production 
is-composed-of do_first_version”, “do_first_version produces deliverable”, and 
“do_first_version precedes ITteam_review”. When comparing this activity to Peter's 
activity “deliverable_production” (Figure 2), we need to check whether the latter 
activity also contains these four related elements. 

It is straightforward to compare entity names and related attributes, but not rela-
tionships because they involve other entities, which may not have been matched as 
yet. For example, how can we know that Bob's relationship “do_first_version pre-
cedes ITteam_review” is the same as Peter's relationship “deliverable_production 
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precedes do_ITteam_QA”, if we have not yet compared the activities “IT-
team_review” and “do_ITteam_QA”? 

The approach we have taken is to match the entities one type at a time (i.e., say, ar-
tefacts first and then activities), and to use the results of the previous iterations for 
comparing the related components of the entities in the current comparison. This 
choice (order in which the entity types – artefacts or activities – are handled) is made 
by the elicitor, considering such factors as the expected terminology similarity be-
tween similar elements (e.g., role names would probably be the same across views if 
they are commonly-known people’s title in the organisation), and the potential use of 
attribute values as a way to identify common elements (e.g., when the main artefacts 
are kept under configuration management, with an ID – as attribute – associated with 
them).  

In our example, artefacts are matched first, using solely the name similarity. Then, 
activities are matched using name similarity, relationships to the matched artefacts, 
and relationships with other activities. Since the first case (artefact matching) is rather 
obvious, we focus below on the, structurally more complex, activity matching. The 
algorithm used for activities, however, can also be used for artefacts (or any other 
entity type) when terminology differences are expected. 

In order to be able to use as much information as possible in the similarity compu-
tation, two passes are used. The first pass computes a partial score using information 
that we are certain about (name, attributes, and relationships to entities already 
matched). This partial score can provide some indication of the similarity between the 
entities of the same type (although not perfectly). The computed partial scores can 
then be used, in the second pass, to assess the similarity between the relationships 
involving these entities. In essence, the second pass uses the indicative information 
from the first pass to refine the scores resultant from the first pass. 

The two-pass feature is particularly useful, for example, when matching artefacts 
when no other entities have yet been matched: deliverables are usually simple to 
match because they generally have a title known to its users (especially if configura-
tion management is used), but intermediate process artefacts are not as simple. Thus, 
by using artefact dependency relationships in the similarity computation, it becomes 
possible to find such non-obvious matches. 

The algorithms used for each of these two passes are described in Sections 3.1 and 
3.2 respectively. A general discussion of the algorithms is then provided in Section 3.3. 

3.1   First Pass Score Computation  

The first pass (resulting in one score per pair of entities compared) involves one sub-
pass per type of information used in assessing the similarity. For example, assuming 
that a given pair of activities (A and B) has related elements as “name” and “relation-
ship with artefacts” then we would need two sub-passes: one for the name similarity, 
and one for the similarities in the relationships with artefacts. In general, there could 
be other sub-passes corresponding to other elements such as attributes (which are all 
handled in a single sub-pass), or relationships involving roles of agents in the process.  
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Regardless, for each sub-pass, a similarity score ([0..1]) is computed, stored, and then 
combined using weights. For our example (Figures 1 and 2), two sub-passes are re-
quired for matching activities, which are then combined as follows: 

6FirstPassScore(A,B) = W1 * NameScore(A,B) + W2 * ArtefactScore(A,B) 

where NameScore(A,B) is the score computed between the activities A and B in the 
sub-passes related to name similarity; ArtefactScore(A,B) is the score denoting the 
similarity in relationships with the artefacts of activities A and B; and W1 and W2 are 
the respective weights applied.  

The weights used, which can be any positive number, indicate the relative trust we 
have in the information used in each sub-pass, in terms of our confidence that the type 
of information used in that sub-pass is a good discriminator for identifying similar 
elements. For example, if the elicitor feels that the terminology used (entity names) 
could be different for the same entities in different views, but would rarely be over-
loaded (i.e., giving a similar name to two different entities), then a higher weight can 
be applied to the pass related to names. In the case of relationships to artefacts, if in 
general the artefacts seem to be linked to very few (e.g., one or two) activities, a 
higher weight can be used than when the artefacts seem to be linked to many activi-
ties: in the latter case, the chances that two activities having similar links in two dif-
ferent views are in fact the same are reduced. 

The computation of the score in each sub-pass is done in a similar way: two lists of 
related elements (one for A and one for B) are generated and compared. In the case of 
relationship-based sub-passes, the list contains all other entities linked to the entity 
being assessed, together with the type of relationship involved (e.g., for “cli-
ent_review” in Bob’s view (Figure 1), the generated list would be {modi-
fied_deliverable (consumes relationship), feedback (produces relationship)}). In the 
case of the name sub-pass, the list represents the set of words in the entity’s name 
(e.g., for “client_review” in Bob’s view, the generated list would be {“client”, “re-
view”}). Comma, hyphen and underscore are the characters used as word separators. 
The common prepositions and conjunctions in the English language (such as “the”, 
“of”, “for”, “from”, etc.) are disregarded. Furthermore, suffixes (such as “s”, “es”, 
“y”, “ies”, “ation”, etc.) are removed from the words to obtain their roots (so that, for 
example, “modify” and “modifies” are considered the same). Both the prepositions 
and the suffixes are handled using a simple list of keywords to be checked. 

For computing the similarity between the two lists generated, we use the formula in 
Figure 4. It has been adapted from the “Tripartite Similarity Index” [34], to meet our 
specific needs. Basically, the first cost function (U) concentrates on the similarity in 
the size of the two lists, and the second one (R) considers the proportion of similar 
elements in the two lists. Those were important requirements in our choice of similar-
ity index, due to the heavy use of decomposition relationships in the views. For ex-
ample, the similarity index had to clearly differentiate between a low-level activity 
producing a single document, and another activity (ancestor of the first one) produc-
ing the same document as well as five others. This is why the size of the lists matters 
here. A thorough analysis of 20 other similarity indices described in [34] shows that 
                                                           
6 Remark: FirstPassScore(A,B) = FirstPassScore(B,A). This also holds for all other scores 

computed. 
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they had a problem of sensitivity to the variation in the size of the lists, in particular 
when the two lists compared were of different sizes. The examples used for analysis 
could arise in our domain. Thus, we rejected these indices in favour of Bipartite Simi-
larity Index. Other requirements satisfied by this chosen index are the linearity and 
invariance properties (discussed later in section 3.3).  

 

 

Fig. 4. Bipartite Similarity Index for comparing two lists 

3.2   Second Pass Score Computation  

Once all first pass scores are computed for each pair of activities between given two 
views, these scores are improved in the second pass. But first, an initial screening of 
the computed results is performed: all scores below a certain threshold7 are disre-
garded by resetting them to zero. From our experience, this is necessary for reducing 
the number of false matches found.  

In the calculation of the second pass score, an activity score8 is first computed us-
ing relationships to other activities. The computation needs to consider the position of 
the activity nodes (i.e., A and B in ActivityScore(A,B)) in the respective tree decom-
positions. The three possible cases are: 

 

(a) Leaf / Leaf activity comparison (i.e., both A and B are leaves)              
(b) Leaf / Non-leaf activity comparison (i.e., A or B is a leaf, the other is not) 
(c) Non-leaf / Non-leaf activity comparison (i.e., both A and B are not leaves) 
 

Figures 5, 6 and 7 show the algorithms used for these three cases respectively. No-
tice that for a given pair of entities A and B, only one of these situation would apply, 
and thus the computation of ActivityScore(A,B) would use only one of the 3 ap-
proaches. The computation of all scores is performed bottom-up (as upward traversal 
of the activity decomposition trees in each view), and all the scores are stored. All 
leaf/leaf comparisons are performed first, followed by all leaf/non-leaf cases, and 
finally all non-leaf/non-leaf cases. 

 

                                                           
7 The threshold value, provided by the elicitor, is based on experience. This value shall repre-

sent approximately a value that could be obtained by chance. 
8 Notice here that we are describing an “activity score”, but it is actually a score based on the 

type of entity currently being matched. For example, if we were in the second pass of match-
ing artefacts, then we would use an artefact score here, using relationships among artefacts. 

Let: a = number of elements common in the two lists 
 b = number of elements in the first list that are not in the second list 
 c = number of elements in the second list that are not in the first list 
 
The two cost functions, which use these contributing factors, are as follows: 

U = log2 (1 + (min (b,c) + a) / (max(b,c) +a)) 
R = log2 (1 + a / (a + b)) * log2 (1 + a / (a + c)) 

And the resulting similarity score is:   
score = √ U * R 
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Fig. 5. Case (a) -- Leaf/Leaf comparison algorithm (activity score) 

 

 

Fig. 6. Case (b) Leaf/Non-leaf comparison algorithm (activity score) 

 

The activity scores are then combined with the result of the first pass comparisons 
using the following formula:  

SecondPassScore(A,B) = FirstPassScore(A,B) + Wi * ActivityScore(A,B) 

where FirstPassScore(A,B) is the score computed using the formula in Section 3.1; 
ActivityScore(A,B) is the score computed using the algorithms in Figures 5, 6, and 7; 
and Wi is the weight attached to the activity score (defined in a similar way as for the 
weights used in the computation of the FirstPassScore – see section 3.1). 
 

Assuming that the entities compared are A (leaf) from the first view, and B (non-
leaf) from the second view, the steps are: 
1. Calculate the average of the Activity pass scores between A and the children 

activities of B. 
2. If both the parent of activity A and the parent of activity B are not the root 

activity, add the First pass score between their parents to get the final  
Activity pass score between the two. 

Assuming that the entities compared are A from the first view, and B from the 
second view, the steps are: 
1. RA = list of relationships starting from entity A 

RB = list of relationships starting from entity B 
Remark: if a relationship arrives to A (or B), the relationship is inversed first, 

including its type (e.g., “X precedes A” becomes “A follows X”) 
2. TA = list of relationship types used in RA 

TB = list of relationship types used in RB 
3. T = TA ∩  TB 
4. Initialize score to zero 
5. For all element t in T    

5.1. SA = list of entities (other than A) involved in the relationships of type t 
from RA 

SB = same as SA, for B and RB 
5.2. Smax = longest list between SA and SB 

Smin = shortest list between SA and SB 

(arbitrarily assigned if same length) 
5.3. For each element e in Smax 

Add to score the highest FirstPassScore between e and any element 
of Smin 

6. If (parent of A ≠ root) and (parent of B ≠ root) 
Add FirstPassScore(parent of A, parent of B) to score 
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Fig. 7. Case (c) -- Non-leaf/Non-leaf comparison algorithm (activity score) 

But since the activity score is not in the same range as the sub-pass scores from the 
first pass9, it has to be scaled down to the regular [0..1] range. This is performed by β–
conversion (see Figure 8). The final score (SecondPassScore) also has a similar prob-
lem of range, and the β–conversion is used as well in the last step of computing the 
final similarity score. 

 

 
Formula used to convert a set of values in no particular range (SecondPassScore) into the 
range [0..1], as described in [31]. 

Fig. 8. Formula for β–conversion 

 

The final similarity scores provided in Table 1 were computed using the following 
values (chosen from our experience with real-world process fragments used when 
developing this algorithm)10: 

W1=1.25, W2=1, Wi=1, cut-off=1 (end of first pass)  

Such calculation is performed for each entity type used in the pair of views under 
consideration. 

3.3   Summary and Discussion of Component Matching  

In summary, there are two computational passes for matching the components across 
the views. The first one uses information that we are certain about for assessing the 
                                                           
9  The activity score is basically the sum of a number of first pass scores, one per relationship used. 
10 An empirical analysis for those weights is provided at the end of Section 7.2. 

Let β = 1 / D where D is the average of all non-zero values to be converted. 
Then for each value v to be converted to the [0..1] range: 
 Scaled-down value = (β * v) / (β * v + 1) 

Assuming that the entities compared are A from the first view, and B from the 
second view, the steps are: 
1. Extract two sets S1 and S2, containing the children activities of A and B 

respectively. 
2. Initialize set finalS  ←  φ 
3. For each activity a in S1 

3.1. Finds the activity b in S2 which gives the best activity score with a 
3.2. Add Activity_pass_score(a,b) to finalS  

4. Repeat Step 3 with S2 instead, storing results in finalS  

5. Activity_pass_score(A,B) = average of scores in finalS  
6. If both the parent of activity A and the parent of activity B are not the root 

activity, add the First pass score between their parents to get the final  
Activity pass score between the two. 
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similarity (one sub-pass per type of information used), and the second one improves the 
score obtained by looking at the similarity of relationships across the entities of the 
same type (activities here). The scores computed are first used to identify the truly simi-
lar entities (matches), in a semi-automatic way by providing a list of probable matches 
to the elicitor and then letting him/her analyse the scores computed to select the best 
matches. Then, once the matches are found for a given type (e.g., artefacts), these can be 
used in the calculation of the similarity scores between entities of another type.  

In the example provided, the artefacts were matched simply by associating arte-
facts with the same name (for simplicity). In reality, there would have been some 
similar artefacts with different names (not the commonly-known deliverables, but the 
temporary artefacts used such as memos or drafts). In this case, the similarity compu-
tation could have used names and attributes (title, time of creation or modification, 
etc., if such information is available) in the first pass, and then dependency relation-
ships across artefacts in the second pass. Activities, which are not matched at the time 
of the artefact matching process, are not considered at all in the calculation. It should 
be noted that attribute values do not need to be perfectly equal to each other in order 
to be considered the same: a percentage of error can be accommodated, as specified 
by the elicitor (e.g., in a project lasting few months, one task of 4 days in duration is 
considered of approximately the same length as one lasting one week). 

Two variants of the algorithms presented above are possible. First, for any of the 
sub-pass scores, the elicitor may decide to allow the score to take the values 0 or 1 
only (i.e., considering a similarity only when the two lists compared are exactly the 
same). This could be useful for example when considering relationships to roles, 
where only few roles are used and many activities are performed by the same roles: 
the discriminating factor here would be to have exactly the same set of people (team) 
performing the activity.  

The second variant is to perform the algorithms above iteratively: once some 
matches are found (using the first and second passes as described in Sections 3.1 and 
3.2) and approved by the elicitor, the second pass scores are re-computed, using a 
score of 1 instead of the partial (first pass) score for entities matched during previous 
iterations. This helps in finding the more obscure matches based on the obvious ones. 
Note that this approach could also be applied in the case that some initial matches 
were found manually – and easily – by the elicitor. There are no fixed set of criteria 
for choosing the right number of matches at a given iteration, but as a rule of thumb, 
one should choose the matches corresponding to the top scores which are considered 
to be distinctively higher than the other scores. During our investigation, we never 
used more than two iterations, as the later iterations would include matches of entities 
that are not exactly the same11, which would then render the recalculated scores mis-
leading when choosing other matches (in the subsequent iterations).  

                                                           
11 Recall that, as explained in Section 2, the idea of matches is not to detect only entities that 

are perfectly similar. A match can be on entities that are “almost” the same. For example, in 
one view the document validation phase could include the modifications to the document, 
while the second view could see the validation phase as only the review process. In such a 
case, the two validation phases could still be considered as matched. The difference in their 
definition can either be resolved while finding the matches (component matching algorithm) 
or while dealing with the inconsistencies across views (inconsistency management algo-
rithm, as described in Section 4). 
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The chances of finding the right matches could possibly be improved through the 
use a suitable ontology12 (or any other document providing standardized terms and 
definitions, e.g., the ISO/IEC 12207 standard) while modeling views separately, 
whenever possible. For example, if a given activity modeled in a view is declared to 
be representing a certain term in a given ontology, then an appropriate link could be 
specified in an attribute of this activity. A high weight could then be assigned to such 
an attribute in the calculation of the First Pass Score, thus easing the matching of 
entities across views which have a common link in the ontology. It should be noted 
though that it may not be possible to always designate such a link (i.e., not all activi-
ties in a given view would definitively have a corresponding term in the ontology). 
Even the ISO/IEC 12207 standard, with its large set of development activities de-
scribed, indicates that such a set should be tailored to the particular needs of an or-
ganization or a particular project.  

The algorithms described in Sections 3.1 and 3.2 have been developed through a 
thorough analysis of real-world examples (different from the ones used for validation) 
with many approaches tried in order to find the best ones. The validation of these 
algorithms includes their use in eliciting three different processes from various indus-
trial settings (as described in Section 7). The Bipartite Similarity Index used for com-
paring lists (see Figure 4) has also been tested for invariance and linearity13. Overall, 
we ensured that the various scores returned (overall ones or individual ones returned 
by the Bipartite Similarity Index) intuitively made sense in various typical scenarios 
we looked at. Our experience shows however that these algorithms should be used as 
a heuristic only, for identifying the overlapping elements of the model. They may 
sometimes fail to identify some of the matches, especially when there is not much 
information available to be used in the similarity score calculation. However, in the 
examples and industry-scale models tested in this investigation, the results given by 
the system were satisfactory, with approximately 80% of the matches correctly found, 
and the computed scores (especially those lower than the threshold but still high 
enough to indicate some possible similarity) helping to identify the remaining ones.  

The result of the matching algorithm presented above (including the final analysis 
of the computed scores by the elicitor in order to confirm all matches) is the list of all 
pairs of components, between two views, that are considered similar (for example, see 
Table 2). However, in any given elicitation exercise, there can be more than two 
views. In such a case, each pair of views should independently go through the same 
process of matching components between the two views (i.e., for N views, there 
would be a need to perform N*(N-1) times the matching algorithm above). This 

                                                           
12 Note that we are not aware of the existence of any ontology that covers the whole set of 

software development activities, and which is universally adhered to.  
13 Let BSI(a,b,c) be the score computed using the formula in Figure 4 (with a, b, and c – the 

“contributing factors” – as described in Figure 4). Invariance means that the relative magni-
tude of the contributing factors would not influence the result of the score computation (i.e., 
for any combination of contributing factors (a,b,c) and any arbitrary factor n, 
BSI(a,b,c)=BSI(n*a, n*b, n*c) ). Linearity means that for an equal amount of change in the 
combination of the contributing factors (a,b,c), there should be a change in the value of the 
score computed (i.e., BSI(a+2,b-2,c-2) – BSI(a+1,b-1,c-1) = BSI(a+1,b-1,c-1) – BSI(a,b,c) ). 
The result of these tests shows that the BSI (Bipartite Similarity Index) is perfectly invariant 
and almost linear. These are important properties for similarity indices. 
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should be done before performing the next algorithm (“inconsistency management 
algorithm”), as this one identifies the inconsistencies across all views at once, and 
requires the list of matches found. 

4   Inconsistency Management Algorithm 

Having identified the matching entities and relationships14 across a set of views, in the 
second phase we attempt to identify and resolve any inconsistencies across the views. 
For each inconsistency detected, a separate window with a set of possible resolutions 
is presented to the elicitor to obtain his/her choice. 

Four categories of inconsistencies are handled in turn corresponding to the follow-
ing: (i) entity decomposition (including structural differences and differences in the 
details provided), (ii) entity names, (iii) values of the attributes, and (iv) relationships 
to other entities. The first category identifies the entities that should be represented in 
the final model. It should be performed first because it has an impact on the other 
categories. Following this, other categories can be performed in any order. 

When detecting and resolving the inconsistencies related to entity decomposition, 
the V-elicit system works with one entity type at a time (e.g., activities first, then 
artefacts - the order here is not important). Within that entity type, the ordering of the 
inconsistencies dealt with is top-down, from the root to the leaves of the decomposi-
tion tree, in a recursive manner. In the case that there is no single root, a temporary 
one is added. As the inconsistencies are resolved, the final model is built concur-
rently. A copy of each view is also maintained, modified as the inconsistencies are 
resolved, to reflect the previous decisions taken regarding the solutions chosen. This 
is useful for avoiding detection of inconsistencies that no longer exist. 

The first step in this algorithm is to make sure that all the views contain the same 
root. If that is not the case, an inconsistency is flagged, and a common root should be 
identified by the elicitor. This common root is added to the final model, and to all the 
copies of the views. In our working example (Figures 1 and 2), this is not necessary 
for the activities because both views have the same activity “project” as the root, but 
the artefacts, which are not structured, would need one. 

We then recursively detect and solve the inconsistencies related to each node, start-
ing at the common root. Before recursively checking the children of a node, we have 
to make sure that in each view we have the same children for this node, and that the 
subtrees under these children contain the same matched entities. Once this is done, the 
children of a node are all copied in the final model being built, and in the copies of the 
views not containing it, before recursion. The traversal through each entity is thus 
made on all views at the same time. 

Again in our working example, starting at the “project” activity, a first problem de-
tected would be that the activities are not grouped in the same way: the 
“do_modifications” (or “modify_deliverable”) activity is not under the same subtree 
in both views. Upon provision of the possible resolutions by the system, the elicitor 
can then choose to keep it under any of the two subtrees, or as a direct child of the 
                                                           
14 Two relationships are matched if they have the same type (e.g., an activity producing an 

artefact) and if the two entities involved in the relationship are also matched in the other 
view. 
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“project” activity. Assuming that the elicitor chooses the last option, then the modifi-
cation activity would be included in the final model, as well as the “review” / “deliv-
erable_validation” activities, which are now considered as matched since they contain 
the same set of matched activities. Before adding “do_first_version” too, a second 
inconsistency should be dealt with: keeping or not keeping the “docu-
ment_production” as an extra level of abstraction. Let’s assume here that it is not 
kept. A recursive call would then be made on the “review” activity (or “deliver-
able_validation”), where a new type of inconsistency would be found: Bob’s view 
contains a sub-activity (“client_review”), which does not appear in Peter’s view. The 
elicitor would then have the choice of whether or not to keep this activity. Figure 3 
shows the resulting merged model based on the decisions taken above. 

The list of inconsistencies presented to the elicitor is built by merging all inconsis-
tencies detected when analysing each pair of views. The detection of inconsistencies 
is performed by evaluating a set of boolean characteristics on each child of the node 
being visited, in each view, with respect to every other view. These characteristics 
define the different types of inconsistencies. Table 3 shows the different inconsisten-
cies handled, how they are detected, and the possible resolutions to the inconsisten-
cies as presented to the elicitor.  

This set of criteria was developed using an approach similar to the one used for the 
component matching algorithm (i.e., through a thorough analysis of real-world exam-
ples). It should be noted that during the validation of our work (see Chapter 7), we did 
not find additional cases not already covered here. Also, when creating the set of 
inconsistency cases, we ensured that no other cases could be discovered in theory, by 
ensuring that all possible combinations of values for C1 to C8 were addressed: each 
possible combination is mapped to one and only one case, and the impossible combi-
nations are rejected (e.g., it is impossible to have the combination ¬C1 ^ C5, because 
if M does not exist, it cannot be a leaf). 

After the entity decomposition for each type of entity is resolved, we can then do 
the other kinds of inconsistency resolution (i.e., the ones related to entity names, rela-
tionships, and attributes, introduced earlier). For these other types of inconsistency, 
the approach taken is similar to entity decomposition resolution. The difference is in 
the complexity of the basic types. In the case of the entity names, there are only two 
cases: the names are either the same or they are different. Similarly, we have only two 
cases for inconsistencies related to relationships: the relationship is either in all  
the views or not in some of the views. The same apply for inconsistencies related to 
attributes.  

For inconsistencies related to names and attributes, important information to take 
into account in this resolution is the number of modifications made to the initial view 
during the entity decomposition resolution (number of subentities or subtrees 
added/deleted). For example, the “review” activity in Bob’s view (see Figure 1) is 
exactly the same as in the final model (see Figure 3): it contains two levels of review, 
one with the IT team and one with the client. In Peter’s view however, the similar 
entity (“deliverable_validation”) has a different meaning in the sense that it contains 
the “modify_deliverable” activity as well, but not the “client_review”. This difference 
makes the name “review” probably a better choice to be used in the final model. This 
information (about the number of modifications with the original view) is displayed in 
the window presenting the inconsistency to the elicitor. 
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Table 3. Types of inconsistencies related to “entity decomposition” 

This table shows the types of inconsistencies that can occur between the decomposi-
tions of the given two views, indicates the criteria for detecting these inconsistencies, 
and suggests possible resolutions. 

Inconsistency types  
(and cases with no  
inconsistencies) 

Criteria to detect it  
(see legend below for details) 

Possible solutions 

Case 1: missing element ¬C1 ∧ ¬C2 ∧ C3 Element added or not 

Case 2: detail missing (C1 ∧ C4 ∧ ¬C5 ∧ ¬C7)  
∨ (C1 ∧ ¬C2 ∧ ¬C4 ∧ C5) 

Decomposition (details) 
added or not 

Case 3: finer decomposition ¬C1 ∧ C2 ∧ C6 Extra level of decomposi-
tion added or not 

Case 4: different grouping ¬C1 ∧ C2 ∧ ¬C6 Take any of the grouping 
proposed by one view, or 
give a new one 

Case 5: different  
decomposition 

C1 ∧ C2 ∧ C7 ∧ ¬C8 For each element not  
always under the same 
parent, choose its parent 

Case 6: all details taken from 
outside (leaf) 

(C1 ∧ C2 ∧ C5)  
∨ (C1 ∧ C4 ∧ C7) 

(see case 5) 

Case 7: all details taken from 
outside (non-leaf) 

(C1 ∧ C2 ∧ ¬C5 ∧ ¬C7)  
∨ (C1 ∧ ¬C2 ∧ ¬C4 ∧ C7) 

(see case 5) 

Case 8: different details ¬C1 ∧ ¬C2 ∧ ¬C3 Take any of the decompo-
sition proposed by one 
view, or give a new one 

Case 9: no inconsistency 
(leaf) 

C1 ∧ C4 ∧ C5 N.A. 

Case 10: no inconsistency 
(non-leaf) 

C1 ∧ ¬C4 ∧ ¬C5 ∧ C8 N.A. 

Legend: 
Assuming that:  X is the element currently under investigation 
  M is the element matched to X in the second view (if it exists) 
  L is the depth of X in the tree decomposition 
  S(E) is the set of all elements matched, that are under the subtree  
           rooted at the element E given (including E if it is matched) 
The criteria are: 
C1 – X is matched (i.e., M exists) 
C2 – X has at least one descendant that is matched 
C3 – X has at least one sibling or descendant of a sibling that is matched 
C4 – X is a leaf 
C5 – M is a leaf 
C6 – S(X) can be composed exactly by taking the union of one or more S(Ai),  

where Ai in any element of the second view at depth L 
C7 – M has at least one descendant that is matched 
C8 – S(X) = S(M) 
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As these inconsistencies are resolved, the information (proper name, attribute val-
ues, and relationships) is added to the merged model at the same time. 

5   Discussion 

A couple of key issues arise from the algorithms described above: (i) the suitability of 
the modeling notation used, and (ii) the scalability of the overall approach. These are 
discussed in the following subsections. 

5.1   Modeling Notation  

The algorithms have been implemented in a general way using entity-relationship 
diagrams (ERD), augmented with mandatory type specification for entities and rela-
tionships. This is only the underlying data structure. Models in other notations (e.g., 
dataflow, STD, UML, etc.) could be mapped into ERD, thus facilitating wider appli-
cability of the underlying system (V-elicit). For example, a class diagram in the UML 
notation could be easily mapped to the ERD notation, using the following entity 
types: “class”, “attribute”, “method”, etc15. Relationships of the following types could 
be used: “class contains attribute”, “class is-associated-with class”, “class inherits-
from class”, etc. In general, any graphical notation containing nodes, arcs, and attrib-
utes, can be stored in the ERD structure. The versatility of the ERD notation was the 
primary reason for its selection as our core data structure.  

One drawback with the ERD notation is its limited set of “advanced” modeling 
concepts. For example, the ERD does not have a special notation for entity decompo-
sition or entity generalisation. In such cases, special keywords for types have to be 
used (“is-composed-of” and “is-a” respectively here), and the merging algorithms 
have to deal with such types as special cases. In the description of the algorithms 
above, the entity decomposition aspect has clearly been handled through leaf and non-
leaf comparisons when computing activity scores (matching algorithm in Section 3.2), 
and through a specific set of inconsistency types related to entity decomposition (in-
consistency management algorithm in Section 4). 

For the case of generalisation relationships, we suspect that an approach similar to 
the entity decomposition case would have to be used in the merging algorithms. How-
ever, we cannot be certain just yet because thus far we have not come across such a 
situation in our studies in the area of software processes. During our case studies for 
validating our methods and tool, the people we interviewed were rarely using gener-
alization concepts for describing their tasks. The only case we found in practice was 
the use of the word “document” to refer to any kind of document produced (e.g., re-
quirement document is a document, design document is a document, etc.). This is 
insufficient to devise a proper algorithm for such cases and validate it, and thus it is 
left as future work. 

Other advanced modeling concepts (e.g., tertiary or n-ary relationships) suffered 
from the same problem: we did not find occurrences of them in practice (experience 
or validation work), and thus we could not justify their inclusion in the algorithms 
presented.   
                                                           
15 Note that, here, we refer to a class diagram being mapped to ERD, but in the case that nodes 

(such as activities) represent specific instances instead of general types of entities, an object 
diagram used in this case could be mapped to ERD just as easily as a class diagram. 
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One major advantage of using such a flexible data structure (ERD augmented with 
mandatory user-definable types) is that it is possible to adapt the notation in a way 
that could help improve the algorithms (when possible). This can be achieved, for 
example, by specifying a better set of types to be used in the views. For instance, by 
replacing the type “activity” with the finer-grained types (say, “production activity”, 
“management activity”, and “quality assurance activity”) the matching algorithm can 
be performed more efficiently by never comparing activities that are of completely 
different types. However, when defining such fine-grained types, it is important to 
ensure that their definition is clear and non-ambiguous (i.e., different elicitors would 
not categorize a given entity into different types), as this could result in erroneous 
results from the matching algorithm. 

Our assumption is that the elicitors16 are trained appropriately in the notation de-
fined for modelling views, to increase the chances of having the views modelled in a 
consistent way. Also, it is assumed that when choosing the types of entities and rela-
tionships to be used in a particular elicitation effort, these are well defined prior to 
their use (both the syntax and the semantics), to facilitate their consistent use across 
elicitors. Some of the errors could be caught when checking views for consistency 
and completeness prior to the launch of the merging algorithms (through the checking 
of user-defined rules for intra-view analysis [33, 35]), but their power is limited for 
semantics analysis. Such feature is out of scope of this paper. 

It should be noted that our algorithms could be implemented directly using another 
underlying data structure (e.g., UML-based), as long as such data structure meets the 
requirements specified above (especially the versatility in type definition, and adapta-
bility to other notations if needed).  The choice of the underlying data structure, how-
ever, does not invalidate the concepts proposed and demonstrated. 

5.2   Scalability  

Our approach, as presented, assumes that each person is interviewed independently in 
order to build one related view, and that all views are merged together at the end. 
Variations on this approach would have to be taken however, when the size of the 
process being modelled is large. One approach could be, for example, to decompose 
the process into relatively independent phases, and apply the view-based approach 
independently to each phase. Another approach would be to first elicit the model at a 
high level of abstraction (using the view-based approach), and then use iterations to 
add more details to it (by adding detailed views, and integrating them using the gen-
eral view-based approach described above).  

One could argue that an iterative approach, if also used with smaller views, could 
simplify the task of matching components and merging views. However, this is gen-
erally not a practical approach. People with appropriate knowledge are not always 
available, let alone repeatedly, due to other priorities. Thus the elicitation approach 
should generally avoid the use of numerous meetings with the same person, as this is 
not time efficient for that person.  

                                                           
16 Note that an obvious assumption here is that an elicitor or a team of elicitors would be re-

sponsible for the view modelling, not others (e.g., practitioners or managers) who are not 
usually trained for this task.  
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It should be noted that our algorithms have been developed directly with the scal-
ability issue in mind. To this end, we have attempted to automate the elicitation tasks 
as much as possible, keeping the elicitor’s involvement to the minimum possible 
(when decisions require contextual / semantics information that the tool cannot have). 
Additional ideas for automating some of the decision-making tasks (currently per-
formed manually) have been investigated, but they were considered too risky and 
error-prone, potentially leading to lower quality models or to the need for extensive 
reviews of the decisions taken. 

Let us now shift our attention to related work and validation. 

6   Related Work and Comparisons  

In the software process area, only few elicitation approaches deal with the merging of 
multiple views. This type of work started in the early 1990’s, with completely manual 
approaches. In Rombach’s approach [29], for example, different views are first mod-
elled independently, and then a cycle of reviews and modifications of the views is 
performed until the conflicts are resolved. However, no tool support existed for the 
identification of the matches and conflicts, or to help resolve conflicts and merge 
views into a single model. This could pose scalability problems when dealing with 
large process models. 

In the same spirit of the use of a manual approach, Ahonen et.al. [1] relied on 
group sessions for capturing process information on wall-charts from appropriate 
stakeholders. The sessions typically lasted 3 to 5 hours, with possibility for additional 
sessions for major components identified requiring additional details (possibly involv-
ing a different set of experts). An advantage of group sessions is that it offers the 
possibility of identifying diverse opinions during the same session; however, there is 
also the disadvantage that people with stronger personality may affect inaccurately the 
outcome of an inconsistency resolution [10].  

These manual approaches were soon followed by attempts to automate elicitation 
from multiple stakeholders [36, 38]. For example, Verlage [38] developed a similarity 
analysis function to help detect common components across the views, specified in 
the MVP-L language. The similarity analysis function does use information other than 
names (such as attribute values or names of objects involved in a relationship with the 
entity analysed – emphasizing terminology similarity though), and different weights 
might be used in combining scores depending on whether the views are supposed to 
have a significant overlap or not. The views are then compared two-by-two, for iden-
tifying inconsistencies (using a tentative set of rules). However, the user has to manu-
ally resolve these inconsistencies. Also, inconsistencies related to the abstraction 
hierarchies (i.e., aggregations) are not dealt with. Such hierarchies are instead kept 
separate, so that individuals referring back to the final process model could retain 
their own view of how activities are organized (or aggregated).  

To our knowledge, our work, described in [36, 33], was the forerunner in the 
automation of view-based elicitation approaches. It involved seven key steps to the 
elicitation of process models: planning, view elicitation, intra-view consistency 
checking, identifying commonality across the views, view merging, model modifying, 
and quality checking. The “V elicit” tool, that supports these steps, is described  
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in [33]. One of its key advantages is its emphasis on a user-definable modeling nota-
tion17, making all related features and algorithms versatile. First, the tool allow the 
specification of “constraints” (in first-order logic) to define what constitutes an inter-
nal inconsistency or an external validity issue. These are checked on the views prior 
to merging as well as on the final merged model. Second, the component matching 
algorithm uses all possible pieces of information (including any additional type the 
user may have defined) in order to calculate the similarity between entities across 
views. Finally, the inconsistency identification feature not only highlights problems 
related to name similarity and missing relationships (as in [38]), but also handles a 
comprehensive set of decomposition-based types of inconsistencies. From our experi-
ence, such decomposition-based inconsistencies are the most difficult ones to handle, 
because they cannot be solved simply by a yes/no decision (i.e., whether to keep 
something or not), and because various causes of the differences in activity organiza-
tion require different approaches in their resolution. Overall, all of the V-elicit fea-
tures were designed so that the amount of effort spent by the elicitor is reduced as 
much as possible. 

View merging is also important in requirements engineering, where diverse views 
of requirements models need to be analysed. We focus on the approaches that provide 
tool support for either detecting overlap across views or for identifying inconsistencies. 

In Lamsweerde's work [24], goals and requirements (derived from the goals) are 
formally defined in a temporal logic notation, and then analysed for detecting “diver-
gences” (i.e., when there exists a boundary condition that makes a set of assertions 
conflicting if conjoined to it). Techniques such as backward chaining, and some heu-
ristics and patterns, are used for such detection, which can be performed both within 
views and across views. They also propose ways to resolve the divergences found, 
such as avoiding boundary conditions, conflict anticipation, or goal weakening 
(mainly adding assertions to the definitions). These are implemented in the KAOS 
tool. Although Lamsweerde recognizes the existence of terminology clashes and 
structure clashes, the proposed approach does not attempt to deal with such types of 
clashes. 

In the approach by Finkelstein, et al. [14] and Easterbrook and Nuseibeh [12], re-
quirements from different views are first elicited in the ViewPoints framework (typi-
cally in a graphical notation) and translated into a formal (temporal logic) notation. 
Each view also contains a set of rules (specified in a logic notation) expressing what 
an inconsistency can be, and the action to be taken in the case one is found (e.g., tool 
invocation, or just a request for some manual work). The inconsistencies are not nec-
essarily resolved upon discovery (instead, a history for each of them is maintained): 
they may be used as an indication that additional information should be elicited. It 
should be noted that not resolving the inconsistencies found is not an option in our 
case, where there is a need for a merged model free of inconsistencies. Also, it should 
be noted that the problem of component matching and terminology differences is not 
handled at all in their approaches. 

                                                           
17 The V-elicit system allows the definition of the types to be used for entities and relationships, 

as well as the attributes the entities are allowed to contain. The “is-composed-of” and “is-a” 
relationship types are predefined though, in order to be treated appropriately in the different 
algorithms.  
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In [14, 12], the work focused solely on inconsistency detection, and not on match-
ing components. At the other extreme, Leite and Freeman [25] have worked on an 
algorithm for matching rules. In their approach, views (specified in a rule-based lan-
guage) are analysed for finding discrepancies, which are then discussed with partici-
pants for integration of views. A heuristic is presented for finding matching rules: 
similarity scores for facts are derived by comparing each word of the facts, and a 
combined score for rules is then computed using weights on facts. Our work on simi-
larity score calculations (see Section 3) was influenced by this work. 

Various other works in the area of requirements engineering focused on both as-
pects of view merging, namely the identification of matches and the identification and 
resolution of inconsistencies (not all automated though). First, Spanoudakis and 
Finkelstein [32] proposed the "reconciliation" method for finding overlaps between 
object-oriented specifications from different stakeholders, and for guiding them in the 
modification of the separate specifications to remove inconsistencies. Their approach 
is to compute the distance (similarity) between each pair of elements in the specifica-
tions and then let the user modify the specifications to reduce the distance between 
the similar components. Actions (manual checks) are proposed upon the analysis of 
the difference between the view mapping proposed by the tool and the mapping pro-
posed by the user. In order to create a proposed mapping, the similarity score (“dis-
tance”) is calculated between pairs of entities, taking into account various information 
structured as per the related meta-model: (a) equality of element names (or identifi-
ers); (b) differences in classes and superclasses from which the element is an instance 
of (giving a higher weight for instances of classes which are higher in the abstraction 
hierarchy); and (c) the minimum overall distance of the entities’ attributes, taken over 
all possible mappings of attributes. Those distances are combined into an overall 
distance using a given quadratic formula. It should be noted that both the distance 
calculation and the help provided for modifying views does not deal with decomposi-
tion relationships, which are critical in the software process area. 

Barragans-Martinez et al. [4] have developed the MultiSpec methodology for 
merging views of software requirements expressed in state-transition diagrams. They 
have formally defined four merging operators: IImax (result is the union of the views 
– this is the type of merge required for our problem), IImin (result is the intersection 
of the views), IImaj (result is the set of elements found in the majority of the views), 
and IImaj+inc (same as IImaj but overspecified – or conflict – elements are flagged, 
through the use of multi-valued logic). In all cases, the first step is to identify the 
similar states based on the graph characteristics and on the related transitions (the 
transitions being mapped by name similarity only, and the states having IDs only, no 
name to be matched). The merging process itself checks for the presence of some 
graph elements but not abstraction differences across views. The inconsistencies iden-
tified can be assessed for their extent or impact. This work has been extended to pri-
oritized views in [5]. 

Sabetzadeh and Easterbrook [30] present a framework for merging views ex-
pressed as general graphs in any kind of notation (e.g., i*, ERD, and state machines). 
In this framework, cycles of view merging and view evolution are performed, until all 
problems are handled. A trace is kept from each element in the merged model to the 
view(s) where it comes from, to help in analyzing solutions to the inconsistencies. 
The merging algorithm starts with the manual detection of the common elements 
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across the views, and the definition of interconnection diagrams that contain the map-
pings between the common elements. The merging process  itself (or the calculation 
of the “colimit” of the interconnection diagram) is automated, by first building the 
“disjoint union” as the largest possible merged set (i.e., union of all elements of each 
view, as if they were all different), and then reducing this set by grouping elements 
that are mapped to each other in the interconnection diagram. Elements in each view 
are annotated with a “knowledge order” that represents the degree to which the stake-
holder providing this view is knowledgeable about the given element, and such in-
formation is merged as well. The merged model created still contains the inconsisten-
cies already present across the views, and should thus be analysed (manually) to iden-
tify such inconsistencies and resolve them. 

Finally, the work by Sabetzadeh and Easterbrook on merging general graphs has 
been applied to Statecharts specifically in [27] (not covering parallel states though), 
with additional techniques provided for automatically identifying common elements 
across views. The approach used in their paper for matching model elements has 
many aspects common to ours: (a) they use a matching algorithm that computes, in 
two passes, similarity scores between pairs of entities, using various scores combined 
using weights; and (b) the matches are identified by highlighting the similarity scores 
above a given threshold, and then an expert is required to examine these matches. 
However, our approach contains a number of different features that make it more 
suitable for the process modeling area: (a) our name similarity function uses the fact 
that names (especially for activities and artefacts) are generally composed of multiple 
words (see Section 3.1); (b) their approach tries to match states only (with potential 
name differences), and assumes that transitions will always have similar names, 
whereas our approach is applicable to any type of model entity, which are matched 
one type at a time (refer to the introduction of Section 3); (c) they assume that the 
depth of a state is an important attribute when matching it to a state in another view, 
an assumption that does not hold in the process modeling area because some stake-
holders or information sources see their world as a (almost) flat set of activities while 
others tend to use multiple levels of decomposition when organizing their activities; 
(d) their second pass score is computed iteratively until the similarity scores converge, 
while we propose not to use more than two such iterations because the use of more 
iterations in the views we merged lead to misleading results in the identification of 
proper matches (see Section 3.3); and (e) our approach uses a larger set of related 
information (e.g., artifacts produced or consumed by an activity, and roles associated 
with the performance of each activity) when computing similarity scores; such infor-
mation is just not available in the statechart notation.   

The area of ontology merging has also been examined for similarities with our 
work, although the “views” here (or different ontologies to be merged) would nor-
mally be described at a higher level than the view descriptions we have described for 
process models. We focus here on only the two references found which provide tool 
support at least as equivalent as in our method.  

First, the PROMPT system [28] uses a framework similar to ours, with a matching 
phase involving similarity analysis followed by an inconsistency resolution phase in 
which inconsistencies are identified and solutions are proposed. The main difference 
is that in their approach the inconsistency resolution may start as soon as a few 
matches are identified; whereas, in our approach all matches are identified prior to the 
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inconsistency identification and resolution phase. The identification of matches in 
PROMPT though is based only on linguistic similarity of the overall element descrip-
tion (i.e., the identification of common terms in the concept’s name and description, 
including synonyms), and does not take into account pre-defined types of relation-
ships (e.g., activities producing artifacts in the process modeling area, where activities 
and artifacts would be considered as concepts in an ontology).  Also, besides the 
name conflict detection performed in PROMPT, the conflicts detected are related to 
generalization relationships only, which do not appear much in a software process 
description (from our experience). Object composition (for example the activity de-
composition aspect in the process modeling domain), the aspect considered one of the 
most difficult one to handle in process model merging, is not dealt with in PROMPT. 

In [15], a fully automated system (OM) is described for merging a set of ontolo-
gies. This merging process contains also the same two phases as ours: a matching 
phase followed by a merging one where inconsistencies are identified and dealt with. 
Matches are identified mostly through linguistic similarity (as in PROMPT) but gen-
eralization relationships are also considered when finding matches. The authors of 
[15] admit that the matching algorithm could be improved by taking into account 
more types of relationships such as composition (as in our system described above). 
For the inconsistency resolution part, since the approach is fully automated (so no 
human intervention is possible to solve conflicts), an ordering of ontologies is as-
sumed – from fundamental ones to specialized ones – and ontologies are added one 
by one to the most fundamental one in this order. Then, when trying to add a new 
concept to the merged ontology, the concept is just discarded in the case where it 
would lead to an inconsistency. The only inconsistencies truly dealt with are differ-
ences in abstraction levels. This assumption of being able to order views does not 
hold in the software process domain because amongst the set of elicited views being 
merge into a coherent whole model, in general, there are no priorities in terms of 
"levels of trust" the modeller can put in them -- they are in essence treated equally -- 
and that any view could contain parts (elements, relationships, semantics, etc.) that 
are not agreed upon to by the majority of the views. In fact, from our experience, the 
use of one view as the central one and adding the others to it is the source of most of 
the completeness problem found in a manual approach for view merging [35].  

In the area of version control management, there may be, say, two developers modi-
fying the same design diagram (e.g., UML class diagram) at the same time, which then 
have to be combined prior to being checked in the version control repository. These 
parallel modifications of the same original model may be conflicting if they were ap-
plied on the same graph elements, and so such conflicts should be detected and re-
solved. A number of approaches (with tool support) have been proposed for such a 
problem (see, for example, [2, 3, 6, 8]). These typically match common elements by 
names or IDs, and use the “difference models” (set of operations performed to trans-
form the original model into one of the modified models) to find conflicts and con-
struct the merged model (once conflicts are resolved). Unfortunately, none of these 
assumptions (i.e., matched elements having common names, and the existence of a 
common ancestor model) are valid in the area of process models because views are 
normally developed independently of each other, with possible mismatches in the 
vocabulary used. This implies that such an approach is not applicable in the merging of 
process models. A similar approach has also been used in the maintenance of business 
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process models (i.e., updating generic models to conform to the new reality, as pro-
gressively adapted in individual processes) [23], in which a set of specific executable 
models derived from a common high-level model are merged by reconstructing the 
change log for each of the executable models. 

One exception (in the area of version control management) is the work by Kelter 
et.al. [21], in which they propose a way to match elements of different UML models 
without assuming common names or common IDs for matched elements (graph merg-
ing is not handled though). Their approach assumes that the elements are organized 
into an ordered hierarchy, such as classes containing operations, which in turn contain 
parameters (the ordering of the parameters being taken into account). A bottom-up 
approach is then used for comparing elements using similarity scores, redoing the 
work in the subtree when a match is found. The similarity score calculation resembles 
ours (see Section 3.1), in the sense that a weighted average of lower-level scores  
(associated with the links to related elements, for example the ratio of matched pa-
rameters for an operation) is used. However, they are not using entity decomposition 
information in this process. In particular, they are assuming that no element under the 
subtree of one matched element can be found under a different subtree in the other 
diagram, which is not a valid assumption in our case. Also, they indicate that links to 
elements not considered for matches yet (such as transitions between states in a state-
chart diagram) could be handled simply by reapplying the score calculations itera-
tively until the matches are found. However, from our experience with views from our 
domain (see the second variant of our algorithm described in Section 3.3), such an 
approach tends to produce poor results when many iterations are used. For the pur-
pose indicated above though, many iterations would be necessary, thus limiting the 
use of relationships among entities of the same type in the matching process. So, the 
approach in [21] does not use as much related information on the elements being 
compared as in our method.     

We also examined the work in the area of the merging of database schemas; how-
ever, the components being merged in this case (i.e., the fields within each table, and 
possibly the integrity constraints) were considered too different to the process model 
entities and relationships to be described and compared against.  

Finally, in the area of model engineering, Kolovos et al. [22] propose a generic 
model merging operation consisting of the same merging phases as ours [33, 36]. 
However, the key difference with our work is that, whereas we define algorithms for 
finding a match or a conflict (see Sections 3 and 4), Kolovos et al. give a rule-based 
language (called EML) and tool support with which users are able to specify how to 
detect matches and how to transform the matched elements into a merged conflict-
free model. 

7   Validation 

As described earlier, the algorithms in Sections 3 and 4 have been implemented in a 
system called V-elicit [33, 35]. The system was validated through two empirical stud-
ies, one a controlled study to compare our approach against existing ones, and the 
other to test its efficacy with industrial-scale processes. 
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7.1   Comparison Against Other Tools  

The goal of the first study was to objectively compare V-elicit to third party model-
ling tools. We were particularly interested in comparing the quality of the resultant 
process models using these systems. This study is published in detail in [37], but we 
summarise it here for ease of access.  

The conducted controlled study involved six graduate students, familiar with the 
area of software process technology. Three used V-elicit; whereas three others each 
used a different commercial tool. The tools had various modelling notations, from 
dataflow and control flow to state transition diagrams. The subjects all elicited and 
modelled the same three different processes in which they had adequate background. 
They were proficient in the use of the tool assigned to them, through training prior to 
the study. The processes were from unbiased sources: the ISPW6 example [19], and 
two from a priori and independently modelled third-party industry projects at McGill 
University. These processes were presented to the subjects as three different views, 
described in plain English. 

The first quality factor investigated was “model completeness”, using the follow-
ing metric:  

Completeness = (1 – (EM/TE)) *(1 – (RM/TR)) 

where: EM = number of entities missing; TE = total number of entities to be mod-
elled; RM = number of relationships missing; and TR = total number of relationships 
to be modelled within the scope (entities) actually modelled (i.e., relationships with 
entities missing were not considered in that ratio). 

Table 4. Controlled study results - completeness 

Tool used 
(each student) 

Completeness for each of 
the three processes 

Mean completeness 
over the 3 processes 

V-elicit 0.925 1.000 0.918 0.948 
V-elicit 0.860 0.857 0.838 0.852 
V-elicit 0.698 1.000 0.869 0.856 
Tool 1 0.613 0.612 0.808 0.678 
Tool 2 0.618 0.844 0.667 0.709 
Tool 3 0.562 0.854 0.752 0.723 

 
The results are shown in Table 4. Using a 2-way ANOVA test [17] for factors 

“subject” (column “tool used” in Table 4) and “process”, we conclude that the results 
are statistically significant, with a p-value of 0.025. Additional tests on means (using 
the Student-Newman-Keuls range test [17]) revealed that the models produced using 
V-elicit were significantly more complete than the ones produced using other tools 
(using non-view-based elicitation approach). However, no significant difference was 
observed among the subjects using V-elicit, or among subjects using the other tools. 
The significance level used for this test was 0.05. 

Other quality factors were investigated such as model consistency and accuracy, 
but the large differences in the completeness of the models meant that our analysis 
could only be qualitative. We noticed that the more incomplete models resultant from 
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the use of third party tools generally had much poorer consistency and accuracy com-
pared to those developed using V-elicit.  

Since the conclusion of this study, we have improved the underlying algorithms in 
V-elicit, but this has not changed the general view-based approach used, and the kind 
of interactions between the elicitor and the tool. Also, to our knowledge, none of the 
currently available commercial tools use a dramatically different elicitation approach 
(and none of them uses a view-based approach). We are thus confident that the con-
clusions of this controlled study still holds, implying that a view-based approach still 
results in higher quality process models. 

It should be noted that a similar study performed more recently by Easterbrook 
[13] (comparing view-based vs traditional approaches for merging views, in the con-
text of requirements engineering however) led to a similar set of findings than ours: 
(a) a view-based approach helps detecting all inconsistency problems; (b) a view-
based approach improves the understanding of the problem domain; (c) the model 
built tend to be closer to what was said in the interviews (especially in the wording 
used); and (d) using such an approach is significantly more time-consuming however. 

7.2   Industrial-Scale Elicitation  

The V-elicit tool (with its improved algorithm) has also been validated through the 
elicitation of three industrial-scale process models from various domains, with various 
view sizes, and with various amount of overlap between the views.  

The first one of these elicitation efforts involved a preliminary analysis process (a 
part of requirement engineering). The information source included interview data 
from three different agents: an analyst, a manager, and a client representative. The 
entire process contained approximately: 90 activities, 36 artefacts, and 8 roles. Each 
view contained only a subset of the entire process, where 14% of the activities and 
17% of the artefacts overlapped across the views. The roles modelled were similar in 
all the views however. 

V-elicit was successfully used to create a coherent, merged, model from the three 
described views. The algorithm for identifying common components across the views 
did necessitate elicitor involvement in some cases, and the use of similarity scores 
computed (e.g., see Table 1) reduced the search for the best matches from a large 
number of entities across the three views to only few possible solutions per match. 
Manually, this would have been an arduous and error-prone task. The inconsistency 
identification algorithm identified properly all the inconsistencies: 74 of them related 
to missing entities in some views (non-overlapping information), and 13 of them 
related to structural differences across the views (with no new type of inconsistency 
found – only the ones already identified in Table 3). In addition, the name and attrib-
ute differences, as well as missing relationships, were also identified properly. The 
resultant model was validated by three researchers intimately involved with the mod-
elled process18. 

Similarly, V-elicit was used successfully in two more elicitation efforts, the first 
one involving a review process, and the second one involving a web interface devel-
opment process. In both cases, three views were used, ranging from 24 to 48 activities 

                                                           
18 The large size of the final model does not permit it to be included in the paper. 
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per view, and with various percentage of commonality across views (from 4% to 
54%). For the first case, the data source was again interview transcripts from a previ-
ous project. For the second one, we gathered data through interviews. On average, 
78% of the expected matches were found (88%, 68%, and 78% respectively for each 
of the elicitation efforts), and 22% of reported matches were incorrect (25%, 18%, 
and 23% respectively for each of the elicitation efforts). The remaining matches were 
easily found through the analysis of few of the similarity scores. It should be noted 
that in all three case studies, no “tuning” of our approach or algorithm were required. 

After these studies had been conducted, we used the views gathered to assess 
whether improved results of the matching algorithm (see Section 3) could have been 
achieved using different weights in the calculation of the similarity scores. In essence, 
for each weight, we recomputed the similarity scores (see Sections 3.1 and 3.2) using 
different values for that weight (while keeping the other weights constant), and re-
corded the number of correct matches found. Table 5 shows the range of optimum 
values (i.e., resulting in the highest numbers of correct matches found) for each 
weight, obtained from the assessment of the views resultant from the three studies. It 
should be noted that the weights used during the studies, chosen intuitively, did fall in 
these ranges. In a similar way, we also determined that the best cut-off value at the 
end of the First-pass score is 1.5, and that the best cut-off value for the selection of 
matches (at the end of the matching algorithm) is 0.5. It should be noted however that 
these are only suggestions from the three industrial case studies, and that confirmatory 
investigations are a subject of future studies. 

Table 5. Suggested weight ranges 

Pass Weight range
Name 1-3 
Roles 0-2 
Artefacts 0-2 
Activities 0-1 
Attributes 0-2 

8   Conclusion 

In the realm of modelling large, complex process models, seeking views of the object 
processes from different sources are one way to elicit the full model in a piecemeal 
manner. However, views add a new level of complexity in terms of overlaps and 
inconsistency across the views, which need to be addressed, preferably, with the aid 
of automated tools to make the tasks more manageable. 

This paper describes “view-merging” algorithms, which form a core part of a view-
based model elicitation system [36, 35, 33]. In our investigations, the models were 
those of software processes, captured as entity-relationships diagrams augmented with 
type information. The described algorithms aid in identifying overlaps and inconsis-
tencies across a set of views and in presenting possible resolutions. By interacting 
with the model elicitor (using the V-elicit system [33] that implements these algo-
rithms), the described algorithms help in incrementally building a unified, coherent, 
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process model. We expect that any tool embodying the described algorithms would 
typically be used in a larger context for process elicitation, which would include such 
tasks as human-oriented negotiations and conflict resolution requiring human input. 
These human-oriented issues are not discussed in this paper though examples can be 
found in [33].  

While there were two parallel efforts to ours [38, 29] in the early to mid-90s, when 
we actually implemented the embodying V-elicit system [36], more recently, there 
has been such interest in the area of requirements engineering (RE) [4, 30], where the 
concept of view-based requirements has long been embraced by the RE community 
though it lacked system implementation. Furthermore, approaches have been pro-
posed in other areas such as ontology merging [28, 15] and version control manage-
ment [2, 3, 6, 8, 21]. However, these are not suitable for merging process models. 
Reasons include certain assumptions and restrictions assumed in these areas, that are 
not valid when dealing with: (i) diverse process views (with potentially inconsistent 
use of vocabulary), and (ii) views built individually rather than from a common an-
cestor model. In this respect, our effort is the most comprehensive to date both in 
terms of technical details in the algorithms (see Sections 3 and 4) for merging process 
models as well as system implementation (see [33]). Section 6 describes related work 
and specific comparisons. For future work, one might consider enhancing view-based 
modelling into a new dimension, that of linking specific (instance) models to more 
generalised models in a variety of application domains. 

References 

1. Ahonen, J.J., Forsell, M., Taskinen, S.-K.: A Modest but Practical Software Process Mod-
eling Technique for Software Process Improvement. Journal of Software Process Im-
provement and Practice 7(1), 33–44 (2002) 

2. Alanen, M., Porres, I.: Difference and Union of Models. In: Stevens, P., Whittle, J., Booch, 
G. (eds.) UML 2003. LNCS, vol. 2863, pp. 2–17. Springer, Heidelberg (2003) 

3. Altmanninger, K.: Models in Conflict - Towards a Semantically Enhanced Version Control 
System for Models. In: Giese, H. (ed.) MODELS 2008. LNCS, vol. 5002, pp. 293–304. 
Springer, Heidelberg (2008) 

4. Barragáns-Martínez, A.B., Arias, J.J.P., Vilas, A.F., Duque, J.G., Nores, M.L., Redondo, 
R.P.D., Blanco-Fernández, Y.: Composing Multi-perspective Software Requirements 
Specifications. Int. J. Software Engineering and Knowledge Engineering 18(1), 119–153 
(2008) 

5. Barragáns-Martínez, A.B., Arias, J.J.P., Vilas, A.F., Duque, J.G., Nores, M.L., Redondo, 
R.P.D., Blanco-Fernández, Y.: Composing Requirements Specifications from Multiple Pri-
oritized Sources. J. Requirements Engineering 13, 187–206 (2008) 

6. Brosch, P., Langer, P., Seidl, M., Wimmer, M.: Towards End-User Adaptable Model Ver-
sioning: The By-Example Operation Recorder. In: ICSE Workshop on Comparison and 
Versioning of Software Models, pp. 55–60. IEEE CS Press, Los Alamitos (2009) 

7. Bush, M.W.: Process Assessments in NASA. In: 13th Int. Conf. on Software Engineering, 
pp. 299–304. IEEE CS Press, Los Alamitos (1991) 

8. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: Managing Model Conflicts in Distributed 
Development. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) 
MODELS 2008. LNCS, vol. 5301, pp. 311–325. Springer, Heidelberg (2008) 



 Techniques for Merging Views of Software Processes 471 

9. Curtis, B., Kellner, M.I., Over, J.: Process Modeling. Communications of the ACM 35(9), 
75–90 (1992) 

10. Dalkey, N., Helmer, O.: An Experimental Application of the Delphi Method to the Use of 
Experts. Management Science 9(3), 458–467 (1963) 

11. Deiters, W., Gruhn, V.: Software Process Technology Transfer - A Case Study Based on 
FUNSOFT Nets and MELMAC. In: 8th Int. Software Process Workshop, pp. 50–52. IEEE 
CS Press, Los Alamitos (1993) 

12. Easterbrook, S., Nuseibeh, B.: Using Viewpoints for Inconsistency Management. Software 
Engineering Journal 11(1), 31–43 (1996) 

13. Easterbrook, S., Yu, E., Aranda, J., Fan, Y., Horkoff, J., Leica, M., Qadir, R.A.: Do view-
points lead to better conceptual models? An exploratory case study. In: 13th IEEE Interna-
tional Conference on Requirements Engineering, pp. 199–208. IEEE CS Press, Los Alami-
tos (2005) 

14. Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., Nuseibeh, B.: Inconsistency Handling 
in Multi-Perspective Specifications. IEEE Trans. on Software Engineering 20(8), 569–578 
(1994) 

15. Guzman-Arenas, A., Cuevas, A.-D.: Knowledge accumulation through automatic merging 
of ontologies. Expert Systems with Applications 37(3), 1991–2005 (2010) 

16. Hardgrave, B.C., Armstrong, D.J.: Software Process Improvement: It’s a Journey, Not a 
Destination. Communications of the ACM 48(11), 93–96 (2005) 

17. Hicks, C.R.: Fundamental concepts in the design of experiments, 4th edn. Saunders Col-
lege Publishing, Philadelphia (1993) 

18. Humphrey, W.S.: Managing the Software Process. Addison-Wesley, Reading (1989) 
19. Kellner, M.I., Feiler, P.H., Finkelstein, A., Katayama, T., Osterweil, L.J., Penedo, M.H., 

Rombach, H.D.: ISPW-6 Software Process Example. In: First Int. Conf. on the Software 
Process, pp. 176–186. IEEE CS Press, Los Alamitos (1991) 

20. Kellner, M.I., Hansen, G.A.: Software Process Modeling: A Case Study. In: 22nd Annual 
Hawaii Int. Conf. on System Sciences. Software Track, vol. II, pp. 175–188. IEEE CS 
Press, Los Alamitos (1989) 

21. Kelter, U., Wehren, J., Niere, J.: A Generic Difference Algorithm for UML Models. In: 
Liggesmeyer, P., Pohl, K., Goedicke, M. (eds.) Software Engineering 2005. LNI, vol. 64, 
pp. 105–116. GI (2005) 

22. Kolovos, D.S., Paige, R., Polack, F.: Merging Models with the Epsilon Merging Language 
(EML). In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, 
vol. 4199, pp. 215–229. Springer, Heidelberg (2006) 

23. Küster, J.M., Gerth, C., Förster, A., Engels, G.: Detecting and Resolving Process Model 
Differences in the Absence of a Change Log. In: Dumas, M., Reichert, M., Shan, M.-C. 
(eds.) BPM 2008. LNCS, vol. 5240, pp. 244–260. Springer, Heidelberg (2008) 

24. van Lamsweerde, A., Darimont, R., Letier, E.: Managing Conflicts in Goal-Driven Re-
quirements Engineering. IEEE Trans. on Software Engineering 24(11), 908–926 (1998) 

25. Leite, J.C., Freeman, P.A.: Requirements Validation Through Viewpoint Resolution. IEEE 
Trans. on Software Engineering 17(12), 1253–1269 (1991) 

26. Madhavji, N.H., Holtje, D., Hong, W., Bruckhaus, T.: Elicit: A Method for Eliciting Proc-
ess Models. In: 3rd Int. Conf. on the Software Process, pp. 111–122. IEEE CS Press, Los 
Alamitos (1994) 

27. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and Merging 
of Statecharts Specifications. In: 29th International Conference on Software Engineering, 
pp. 54–64. IEEE CS Press, Los Alamitos (2007) 



472 J. Tassé, N.H. Madhavji, and A. Azad 

28. Noy, N.F., Musen, M.A.: PROMPT: Algorithm and Tool for Automated Ontology Merg-
ing and Alignment. In: 17th National Conf. on Artificial Intelligence, Austin, TX, pp. 450–
455. American Association for Artificial Intelligence (2000) 

29. Rombach, H.D.: Practical use of formal process models: first experiences. In: 8th Int. 
Software Process Workshop, pp. 132–134. IEEE CS Press, Los Alamitos (1993) 

30. Sabetzadeh, M., Easterbrook, S.: View Merging in the Presence of Incompleteness and In-
consistency. J. Requirements Engineering 11, 174–193 (2006) 

31. Spanoudakis, G., Constantopoulos, P.: Elaborating Analogies from Conceptual Models. 
Int. Journal of Intelligent Systems 11(11), 917–974 (1996) 

32. Spanoudakis, G., Finkelstein, A.: Reconciling requirements: a method for managing inter-
ference, inconsistency and conflict. In: Annals of Software Engineering, vol. 3, pp. 433–
457. Springer, Heidelberg (1997) 

33. Tassé, J., Madhavji, N.H.: View-Based Process Elicitation: a User’s Perspective. Journal 
of Software Process Improvement and Practice 6(3), 125–139 (2001) 

34. Tullos, R.E.: Assessment of Similarity Indices for Undesirable Properties and a new Tri-
partite Similarity Index Based on Cost Functions. In: Palm, M.E., Chapela, I.H. (eds.) My-
cology in Sustainable Development: Expanding Concepts, Vanishing Borders. Parkway 
Publishers (1997) 

35. Turgeon, J.: A View-Based System for Eliciting Software Process Models. Ph.D. Thesis, 
McGill University (1999) 

36. Turgeon, J., Madhavji, N.H.: A Systematic, View-Based Approach to Eliciting Process 
Models. In: Montangero, C. (ed.) EWSPT 1996. LNCS, vol. 1149, pp. 276–282. Springer, 
Heidelberg (1996) 

37. Turgeon, J., Madhavji, N.H.: View-based vs Traditional Modeling Approaches: Which is 
Better? In: Conradi, R. (ed.) EWSPT 2000. LNCS, vol. 1780, pp. 131–137. Springer, Hei-
delberg (2000) 

38. Verlage, M.: An Approach for Capturing Large Software Development Processes by Inte-
gration of Views Modeled Independently. In: 10th Int. Conf. On Software Engineering and 
Knowledge Engineering. Knowledge Systems Institute, Skokie (1998) 



Model Checking Programmable Router

Configurations

Luca Zanolin1, Cecilia Mascolo2, and Wolfgang Emmerich3

1 Google UK Ltd

76 Buckingham Palace Road

London SW1W 9TQ, UK

lucazanolin@gmail.com
2 Computer Laboratory

University of Cambridge

15 JJ Thomson Avenue

Cambridge CB3 0FD, UK

cecilia.mascolo@cl.cam.ac.uk
3 Dept. of Computer Science

University College London

Gower Street

London WC1E 6BT, UK

we@acm.org

Abstract. Programmable networks offer the ability to customize router

behaviour at run time, thus increasing flexibility of network administra-

tion. Programmable network routers are configured using domain-specific

languages. In this paper, we describe our approach to defining the syntax

and semantics of such a domain-specific language. The ability to evolve

router programs dynamically creates potential for misconfigurations. By

exploiting domain-specific abstractions, we are able to translate router

configurations into Promela and validate them using the Spin model

checker, thus providing reasoning support for our domain-specific lan-

guage. To evaluate our approach we use our configuration language to

express the IETF’s Differentiated Services specification and show that

industrial-sized DiffServ router configurations can be validated using

Spin on a standard PC.

1 Introduction

Most routers in use in the current Internet are rather simple; they receive pack-
ets from one network interface, investigate the packet header that encodes the
target IP address and forward them to a router that is closer to the target. Most
current routers implement the so-called best-effort model, which implies that
all packets are equal citizens ; they are all processed in the same manner. There
are, however, applications, such as audio-conferencing or video-on-demand, that
could be improved by quality of service (QoS) guarantees provided by the net-
work. Moreover, there are different classes of users; companies might be prepared
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to pay a premium for performance and bandwidth guarantees. These guarantees
cannot be given with the current best-effort model of the Internet.

To address this question, a relatively novel strand of network research inves-
tigates programmable networks [2], which give up the assumption that every
network packet is handled in the same way by a router. Instead, the router exe-
cutes a program that controls more intelligently how network packets are to be
handled and forwarded to other networks. Such programmable routers can then
be used to implement QoS Internet standards, such as the Differentiated Services
model (DiffServ) [1]. DiffServ suggests marking packets in order to identify their
service class at boundary routers so that then network traffic can be shaped by
delaying low class packets or even dropping them. The identification of service
classes, conditions on shaping and dropping, and traffic management can then be
implemented in router programs and thus different qualities of network services
can be provided by a set of programmable routers.

The rise of programmable routers implies a number of interesting software
engineering research questions. Firstly, it is desirable to provide a high-level and
application specific programming language to allow network administrators to
write router programs at appropriate levels of abstractions. At the same time,
this language must be efficiently executed in order to avoid compromising net-
work and routing performance. Secondly, router programs need to be changed on
a regular basis in order to introduce new services without having to shut down
the routers. Thirdly, the network typically contains a large number of routers
that might be quite heterogeneous and we would like to hide this heterogeneity
from network administrators. Finally, prior to updating a single router or a set of
routers with a new router program, network administrators may want to check
that their programs do not compromise network performance and reliability.

The main contribution of this paper is a solution to the last question. We
describe a high-level router programming language that can be used to define
the packet processing performed by a programmable router. We define the se-
mantics of the language in an operational manner by mapping it to Promela, the
specification language defined for Spin [8]. We then show how linear temporal
logic (LTL) [13] can be used to specify safety and liveness properties for a router
and demonstrate that Spin can efficiently and effectively check whether a given
router program meets these properties. We discuss an evaluation of our approach
using a set of DiffServ router programs and show how the model checking sup-
port is integrated into a network administration environment. By focusing on the
software engineering aspect of this inter-disciplinary project, this paper presents
an interesting case study for the systematic engineering of an application-specific
configuration language whose definition has been inspired by graphical architec-
ture description languages, the definition of its operational semantics and the
provision of reasoning support using model checking techniques.

The paper is structured as follows. In Section 2, we briefly introduce the no-
tion of programmable routers and describe our router configuration language.
We define the operational semantics of the configuration language in Section 3
by mapping it to Promela. In Section 4 we show how we use that mapping to
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prove router properties with Spin. In Section 5, we present the architecture and
the implementation of our tool and we evaluate it in Section 6. Section 7 com-
pares our approach to related work and in Section 8 we discuss future research
directions of this project.

2 Programmable Routers

A programmable router can be configured in order to exploit the network re-
sources according to different requirements. There are many applications of pro-
grammable routers, including firewalls that can rapidly respond to denial of
service attacks, virtual private networks, traffic shaping, and provision of con-
figurable quality of services.

We have implemented a programmable router, called Promile [12]. Promile
is composed of two layers: the Router Kernel and the XML-bAsed Middleware
(XAM). The kernel deals with packet forwarding, while XAM manages the router
configuration. XAM presents the administrators with an abstraction of the rout-
ing machine, allowing them to modify the router to provide new services or mod-
ify old ones. We call the router abstraction configuration because it configures
how the router manages packets. The configuration is a high level abstraction,
described by a set of modules.

When a packet is received by the router, it is given to a module, that, after
applying a function, sends it to the next module. When the packet reaches
the last module, the packet is re-injected into the network and forwarded to
the next hop. According to its class and its header, a packet can go through
different modules allowing the router to provide different services to different
packet flows.

In order to implement qualities of service at the network level, the IETF has
recommended the Differentiated Services (DiffServ) model [1]. In this paper, we
use DiffServ to illustrate our approach to model checking programmable routers.
DiffServ assigns a class to each packet and DiffServ routers handle and forward
packets according to the class of the packet. The class of the packets is not used
as a priority, but it identifies the type of service required for handling the packet.

Figure 1 is a simple example of a DiffServ router configuration. In this sce-
nario, we suppose that the router is able to provide only two kinds of services:
video conference and file download. Briefly, the first service has to guarantee
the packet delivery with a given fixed bandwidth (the service is not interested
into infinitely increasing throughput, as this would not improve the quality of
a video conferencing application). The second service is interested in maximiz-
ing the packet transmission. As a consequence, we can delay packets from a
video conference only if they are above the bandwidth requirement, while if the
network is congested, we can delay or even drop the packets from a download
session. Using a DiffServ architecture, each service is mapped into a different
class, which is recorded in the IP packet header.

As shown in Figure 1, the Receiver module receives packets from the network
and forwards them to the Marker module. According to the fields stored inside
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Router
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DropperShaper

Shaper

ClassifierMarkerReceiver

Net Net

Fig. 1. Router Configuration

the packet header, the Marker assigns packets to a particular class. In this
example, we can argue that Marker assigns the class according to the source
host; we assume that Marker knows which hosts are downloading data and
which are in a video conference session; obviously, this is a big simplification,
but showing how to set up a DiffServ network is beyond the scope of this paper.
More details are provided in [12].

When packets have been dealt with by Marker, they are sent to the Classifier
module that, according to their class, routes them into the upper path, that
is, the video conference/first class path, or into the lower path, that is, the
download/second class path. When the packets are routed into the upper path,
they go through the Shaper module, that is able to delay them. Otherwise,
the packets can be routed into the lower path and go through the Shaper and
Dropper modules where the packets can be delayed (Shaper) or even dropped
(Dropper) in order to reduce network congestion. We now use this example to
briefly introduce the concept of our application-specific language.

2.1 Modules

Modules are the basic building blocks of router configurations. By interconnect-
ing modules and parameterizing their behaviour, we define the configuration of
the router that provides the desired services.

A module (Figure 2) is a black box that applies a function to incoming packets.
Modules communicate with other modules through gates. A packet is received
from an input gate and sent through an output gate. A module can have multiple
input gates in order to distinguish different kinds of packets. Most modules have
both input and output gates, with two exceptions. A module with only output
gates receives incoming packets from the network; this kind of module is called
source module and usually describes an input network interface. Similarly, a
module that only has input gates forwards packets into the network and is called
sink module and it models an output network interface. When a packet reaches
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Rules

Input gate Output gate

Fig. 2. A Promile Module

the router, it is firstly managed by a source module and, after being processed
by a configuration, is sent to the next router or its destination by a sink module.

2.2 Rules

A module can be configured through a set of rules. According to these rules,
the module applies its internal functionalities only to a sub-set of the incoming
packets and it routes them through its output gates. A rule identifies packets
through a set of fields related to the packet header and to the environment. The
field sets may be different depending on the module’s behaviour; this flexibility
allows to precisely identify when a module functionality should be applied.

Table 1. Rules

Num Source Destination Class
TCP IP TCP IP

1. 10 128.16.8.57 20 128.16.10.27 1

2. 10 128.16.10.27 * * 2

3. 1000 * 1000 * 10

4. 1200 * * * 10

Table 1 shows a sample rule set of the Marker module. It describes how
classes (last column) are assigned to packets based on source and destination IP
addresses. The first rule identifies the packet class by specifying both source and
destination packet address and assigns it to the first class. The second, third
and fourth rules specify only a sub-set of the fields. The third rule, for instance,
specifies that packets that are sent from TCP port 1000 to any destination on
TCP port 1000 will be marked with class 10. Using these rules, we can flexibly
parameterise the behaviour of individual module instances.

2.3 Connections

Connections start from an output gate and lead into an input gate describing
the packet flow among the modules. Connections can describe complex module
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graphs that should comply with the following properties. Firstly, any output
gate must be connected to an input gate to fully specify the packet forwarding
from module to module. Secondly, only one connection can start from an output
gate. This ensures that the packet forwarding is deterministic. Finally, multiple
connections may end in the same input gate and they may define elaborated
router configuration with loops.

2.4 Configuration Update

The module instances, their interconnections, as well as the rules that have
been used to parameterise the behaviour of module instances determine the
configuration of a router. The management of these configurations for a Promile
router is an important aim of the work described in this paper. The network
administrator is able to change the router configuration without stopping it
and, moreover, without any traffic disruption; as a consequence, the network can
quickly react to changes in its environment, updating its configuration according
to the application requirements.

When a network administrator, or an automatic tool, wants to update the
router configuration, they have to deal only with the router abstraction provided
by Promile. Prior to defining a new configuration, the administrator wants to
be sure that the new configuration is meaningful. In order to do so, we have to
support the definition of invariant properties.

2.5 Properties

The properties that network administrators might want to prove can be divided
into three groups: routing, service, and performance properties.

Routing properties are concerned with the router and they define how the
packet should be managed independently from provided services (i.e. video con-
ference support); these properties guarantee that the router always works cor-
rectly and it is eventually able to handle new incoming packets. As these prop-
erties are not service-specific, they are almost the same for all the routers in
the network and they are usually defined by the router developers. For instance,
a routing property could be concerned with the module graph; as we have de-
scribed, the module connections may be cyclic and this might cause packets to
loop infinitely in the graph if this behaviour is not prevented by the configuration
rules of modules contained in the cycle.

Service properties are concerned with the services that are to be implemented
with a router configuration. With these properties, we want to guarantee that
the configuration provides the services correctly. As these properties are service
dependent, they can change from router configuration to router configuration. In
general, they can be defined by administrators. For instance, an administrator
can require that some functions are never applied to particular packets (i.e, never
drop packets of premium users).
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Performance properties are concerned with the router performance and they
try to maximize router throughput through an optimisation of the configuration.
Both service and routing properties are necessary, while performance properties
are not vital. However, as optimal performance is an important feature for any
router, we argue that a router has also to satisfy this kind of properties. Perfor-
mance properties may be defined by the network administrator, but also by the
router developer. A performance property, for example, may want to forbid that
a packet is first marked and then dropped by the router, as this would make the
router wasting time marking the packet that, instead, should have been dropped
straight away.

Another performance property that should be checked is concerned with rules
and modules. According to the router packet flow, some rules could be irrelevant,
as no packets match them. In order to increase the router speed these should be
removed. We should also check if all the modules are reachable by at most one
packet, otherwise we should remove them.

3 Operational Semantics

In order to prove that the router satisfies desired properties, we translate the
router configuration into a formal specification. We can then apply model check-
ing techniques to validate the router configuration against the desired properties.
By defining this translation, we give an operational semantics to the router con-
figuration language.

We split this translation into two steps. The first step translates the router
configuration into an intermediate representation, which describes each module
through a set of components ; the second step produces a Promela specification
that defines the operational semantics and can be model checked by Spin. We
assume that the Promile module types may be developed by third parties. In
order to enable model checking of router configurations that instantiate such
third party module types, module developers have to define the semantics of
their module types. The first advantage of our two stage mapping is that we
have defined the intermediate representation in such a way that it is relatively
straightforward for a module developer to define the semantics of a module type
using that intermediate representation.

We now describe the intermediate representation and its mapping to the
Promela language.

3.1 Intermediate Representation

The intermediate representation supports four component types: source (SO),
selector (SE), executor (EX), and sink (SI) (Figure 3). A source (Figure 3a)
forwards new packets to the next component; this component does not actually
create packets, but it directly takes them from the network. A selector (Fig-
ure 3b) receives packets and routes them to one of possibly several components
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SO SE EX SI

(a) (b) (c) (d)

Fig. 3. Components

according to selection rules that it applies. The selector is working as a multi-
plexer, where the rules describe how the incoming packet must be forwarded to
the next component. A selector has one input and a list of numbered outputs; if
a received packet matches no rules, it is sent through the default output (0). An
executor (Figure 3c) receives packets and forwards them after applying a func-
tion. An executor applies the same function to all packets that it processes. A
sink (Figure 3d) defines the end of the packet path. Arrows denote connections
between components and they determine packet flows.

Third party module developers have to provide translations between their
module types and this intermediate representation in order to provide semantics
for their modules. For instance, a DiffServ module of type Dropper could be
mapped into the intermediate representation shown in Figure 4. The semantics
of this module type is described using a selector component (SE) that chooses the
packets that should be dropped and forwards them to the executor component
(EX) that applies the module specific function (i.e., drops packets) and sends
them to the sink component (SI) where the packet disappears and it is not
forward any further.

SE
EX SI

Dropper

Fig. 4. Translation of a Dropper Module

Figure 5 shows how the router configuration in Figure 1 is mapped using the
four component types that we have introduced. The rules defined in Table 1
need to be incorporated into the model as they define the specific behaviour
of the different modules. This operation is trivially done importing them into
the selector component of each module. The selector is the only component
containing rules.

The next step is to translate this intermediate representation into a formal
specification language (i.e., Promela) in order to be able to model check the
router configuration.



Model Checking Programmable Router Configurations 481

SIEX
SE

SO SE SIEX

Receiver

Classifier

Dropper

Forwarder

Shaper

SE
EX

Marker

SE
EX

Shaper

SE
EX

Net Net
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3.2 Promela Specification

The Promela specification that is automatically derived from an intermediate
representation is composed of a set of processes that can communicate with each
other. Each process corresponds to a component and it formally describes how a
packet is dealt with and how it is forwarded to the next process; there is a one to
one relationship between the intermediate component types and Promela process
types (process source, process selector, process executor, and process sink).

Promela processes communicate with each other through a set of global vari-
ables, that describe the packet properties. These global variables are accessible
by all processes that can read and modify them. We have introduced some extra
variables for modelling the packet forwarding and the environment; one of them
is the variable exec that describes the functions that are applied to packets; by
monitoring the value of this variable, we can check which functions are applied
and in which order.

All processes have a similar structure; a process waits until it receives a packet,
then executes its statement, such as routing packets to different processes, or
applying functions to them (i.e., dropping). For instance, Figure 6 shows a sim-
plified version of the Promela code for a selector process that corresponds to
a selector component; the selector process chooses the process to handle the
incoming packet; through a sequence of if statements, the process checks the
value of the packet fields and identifies the next process (setting the variable
next_proc). The else statement is executed if the packet fields do not match
any of the other conditions (line 6). We assume that at most one condition is true
for a particular value of the packet fields, avoiding a non-deterministic evolution
of the process.

A subset of rules defined in Table 1 are mapped into this selector process. For
instance, the rule on line 4 corresponds to the rule on line 3 in Table 1, where
the rule describes packets from TCP source port 1000 going to TCP destination
port 1000.
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1. proctype p_2() {

2. (next_proc==p_id_2);

3. if

4. ::(TCPS==1000 && TCPD==1000)->next_proc=p_id_3;

5. ::(TCPS==1200) -> next_proc=p_id_3;

6. ::else -> next_proc=p_id_4;

7. fi;}

Fig. 6. Selector Process

The router model, which is translated into the Promela specification, handles
one packet at a time. This simplification of the model does not limit the anal-
ysis of a real router, as we can assume that the presence of a packet does not
influence the management of other packets inside the physical router; in fact,
the concurrent management of packets speeds up only the router throughput
without any influence in the packet handling.

4 Model Checking Promile

Given the Promela specification we can now prove properties on the router con-
figuration using the Spin model checker.

4.1 Abstractions to Reduce the State Space

The router model must be checked exhaustively to guarantee that the router
configuration is acceptable. This implies checking that all packets reaching the
router are handled correctly.

To attain this goal, we cannot generate the set of all possible packets, with
all possible header field settings, as this would lead to exponential growth of the
state space; even considering only the field values referenced by the rules, the
packet growth is still exponential. In fact, if we call P the set of the packets that
we need to inject into the router model, and we consider the worst-case scenario
where all the rules refer to different field values, the cardinality of this set is
shown in (1), where r is the average number of the rules in each module, m the
number of modules, and f the number of fields in each rule.

|P| = (m ∗ r)f (1)

|P| <=
k∑

i=1

(
m

i

)
∗ ri + 1 (2)

k = min(maxpath, f)

However, the cardinality of P can be limited considering groups of packets,
which we will call packet flows, instead of single packets, observing the structure
of the router configuration and exploiting the relationships among the rules.
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Following this idea, we can generate less packet flows and reduce the cardinality
of the set P as shown in (2). The cardinality of P still grows exponentially, but
the base is reduced from m ∗ r to r; the exponent is also reduced and is the
minimum between the number of fields and the maximum number of the router
modules that a packet can traverse (maxpath). Moreover, the cardinality of P
is described by an upper bound, reached only in the worst-case. We now prove
that (2) is an improvement over (1), that is we prove that:

k∑
i=1

(
m

i

)
∗ ri + 1 < (m ∗ r)f (3)

We approximate assuming the difference between the two terms is bigger than 1:

k∑
i=1

(
m

i

)
∗ ri < (m ∗ r)f (4)

With:

m, r, f, k > 0, m ≥ k, f ≥ k

k = min{f, maxpath} (5)

k∑
i=1

(
m

i

)
∗ ri <

k∑
i=1

(
m

i

)
∗ rf < (m)f ∗ rf (6)

k∑
i=1

(
m

i

)
< (m)f (7)

The first term of (7) is indeed less than mf because:

k∑
i=1

(
m

i

)
≤

f∑
i=1

(
m

i

)
= m +

f∑
i=2

(
m

i

)
(8)

m +
f∑

i=2

(
m

i

)
≤ m +

m!
(m − f)!

f∑
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1
i!

(9)

m +
f∑
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(
m

i

)
≤ m +

m!
(m − f)!
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1
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+
1

2 ∗ 3
... +

1
2 ∗ 3 ∗ ... ∗ f

) (10)

m +
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(
m
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≤ m +
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(
1
2

+
1

2 ∗ 2
... +

1
2 ∗ 2 ∗ ... ∗ 2

) (11)
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As the last term in (11) is less than 1 we can approximate:

m +
f∑

i=2

(
m

i

)
≤ m +

m!
(m − f)!

(12)

and for f larger than 2:

m +
f∑

i=2

(
m

i

)
≤ mf (13)

4.2 Flow Generation

In this section we show how reasoning on packet flows instead of single packets
allows us to limit the exponential growth of our model. In Section 6, we will then
show that flows sufficiently abstract the state space to enable model checks of
real-life router configurations.

As packets are identified by a set of fields, a flow can be described by a sub-
set of fields. Following this approach, we group together packets that have some
of the fields set to the same value, ignoring the other fields that can assume
potentially all the possible values. For instance, if the rules inside the router use
only two fields (the TCP ports of source (TCPS) and destination (TCPD)), a
flow can be described as in (14). Flow f1 contains all the packets, with fields
set to specific values of TCPS and TCPD. In this case, the flow is said to be
fully-defined, as all fields have a value. On the other hand, flow f2 is undefined
as the value of TCPD is not set; we say that flow f1 is more defined than f2, as
it is a subset of f2 (16).

f1 = {(TCPS, TCPD)|TCPS = 1 ∧ TCPD = 1} (14)

f2 = {(TCPS,TCPD)|TCPS = 1 ∧ TCPD = null} (15)

f1 ⊂ f2 (16)

In order to prove that the router behaves correctly, we check the router con-
figuration against a set of flows that cover all different paths inside the router.
We need to simulate the generation of enough flows so that all the rules inside
the modules are matched by at least one flow. By injecting all these flows into
the router, the model checker can validate the configuration and pinpoint any
router undesired behaviours.

Flows are generated using a Promela specification derived from the interme-
diate representation of the router. Each component of the intermediate repre-
sentation is translated into Promela process and, in order to distinguish these
processes from the ones that describe the router configuration, we call processes
that describe flow generation network processes, while router processes those that
describe the physical router. The connections among the network processes are
the same as in the router processes.
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The source component is translated into a network process that generates
a fully-undefined flow that represents the packets that can reach the router.
This flow will be defined more accurately while traversing the selector network
processes; the selector network processes correspond to selector components and
redefine the packet flow according to their rules. We say that a flow matches
a rule when all fields have a compatible value; a flow field is compatible with
a rule field if it has the same value or if it is undefined. When a packet flow
matches a rule, the selector network process redefines the setting of fields to the
value described in the rule. As a flow can match more than one rule, the selector
network process randomly chooses one of them.

A simplified network process of a selector component is shown in Figure 7. At
line 4 the rule has two fields (TCP source and destination port of the packet);
in order to match this rule, the flow has to have the fields undefined or set to
same values of the rule.

1.proctype np_2() {

2. (next_proc==np_id_2);

3. if

4. ::((TCPS==1000||TCPS==null)

&&(TCPD==1000||TCPD==null))->

TCPS=1000;TCPD=1000;next_proc=np_id_3;

5. ::(TCPS==1200||TCPS==null)->

TCPS=1200;next_proc=np_id_3;

6. ::else -> next_proc=np_id_4;

7. fi;}

Fig. 7. Selector Network Process

The sink component is mapped into a network process that behaves as a
bridge between the network and the router processes; when it receives a flow, it
simply forwards it to the router processes. An executor component is mapped
into a forwarding process that receives a flow and forwards it to the next process;
the functions applied by this component are irrelevant for the flow generation
and they are not modelled.

The number of different flows determines the state space of model checker.
The formula in (2) describes the upper bound of the flow set cardinality for
the following reason. Consider a simple scenario where packets have only one
relevant field (A), and where each module has the same number of rules r. The
network source process defines a flow where the field A is set to null (i.e., a fully-
undefined flow). This flow then traverses the other modules and arrives at the
network sink process. We can argue that a fully-defined flow (i.e., where all fields
have values) can evolve only through deterministic steps, as there is at most one
rule that can match it; on the contrary, a flow where the field is undefined can
match all the r rules and then can evolve in r different ways; moreover, when a
flow matches a rule it becomes fully-defined, as the field is being set by the rule
(and there is only one field per packet in the example). As a consequence, if a
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non-defined flow reaches every process that has r rules, we obtain (17), where
m is the number of modules in our model.

P <= r ∗ m (17)

If we want to fully validate the router configuration, we need to also generate
a flow matching no rules, so in reality we need to generate r ∗m + 1 flows. This
corresponds to the formula in (2) with f = 1.

The scenario with f = 1 can be extended for a generic value of f . A flow that
has f fields can match f different rules in the worst-case, i.e., each rule sets the
value of only one field of the flow. For instance, let us consider a flow that is
described by two fields, A and B, and a router configuration composed of two
modules that have r rules each; moreover, we also assume that the rules inside
the first module refer to field A, while the ones in the second module to field
B. We now inject a fully-undefined flow; as field A has no value, the flow can
match any rule and its field may be set to the value described in one of the rules.
The evolution of the flow is non-deterministic and can evolve in r + 1 different
ways (matching r different rules or matching none). When this set of r + 1 flows
reaches the second module, the flow evolution is more complex. Each flow can
match any of the rules, as field B is undefined. Moreover, the flow can traverse
the module without matching any rule. Therefore, the r + 1 flows can match all
the rules, and we obtain (r + 1) ∗ r flows, or they do not match any rule and we
are left with r + 1 flows. Then we can deduce the formula:

(r + 1) ∗ r + r + 1 = r2 + 2 ∗ r + 1 =
(

2
2

)
∗ r2 +

(
2
1

)
∗ r + 1

This formula is formula (2) with f = 2. The idea can be extended considering
m modules and f fields obtaining formula (2) .

4.3 Proving Router Properties

We can prove that the router configuration complies with a set of defined prop-
erties. The property validation is based on a simplification of the router model;
the router model is able to manage only one packet flow at a time, and moreover,
after that, it is turned off. Obviously this behaviour is not the same of a physical
router, but, if we can prove that the router model is able to handle correctly a
single packet flow, then the real router will be also able to handle a sequence of
packets.

The prove of some properties is embedded into the specification; for instance,
we can deduce which rules are not used by reasoning about the unreachable
code of the Promela specification, and find out which rules or modules should be
removed from the router configuration. Moreover, through the assertion mech-
anism supported by Spin and embedded in the specification, we can verify that
no packet is going to loop inside the router simply asserting that no module will
receives two or more packet flows.
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Finally, we can define generic properties using Linear Temporal Logic (LTL).
Through LTL, we can define the sequences of functions that have to be applied to
every packet and forbidden sequences. In this way, we can formalize the router,
service, and performance properties, as defined in Section 2.5. For instance, a
service property is described in (18). This property requires that the packet that
belongs to a particular host will never be dropped; the packets are identified
through the term fromHost(A). The other LTL property (19) is concerned with
router performance. This property forbids dropping a packet that was previously
marked inside the same router.

�(fromHost(A) =⇒ �(¬dropPacket())) (18)
�(markPacket() =⇒ �(¬dropPacket())) (19)

5 Implementation

In Section 2 we have introduced the architecture of Promile, that is composed
of two layers: an Xml-bAsed Middleware (XAM) and the Router Kernel. The
Router Kernel manages the packet forwarding process, while XAM is the middle-
ware that manages updates to the configuration of the router. The requirements
of these two layers are different as they have different goals. XAM is portable and
flexible to run on different hardware platforms, while the kernel maximizes router
throughput. XAM is designed to work on different Programmable Routers. XAM
interfaces the network administrator with the router kernel. The model checker
is a separate component and is supposed to run on a different processor, for per-
formance reasons. The administrator can use a visual tool, shown in Figure 8,
to set up a new configuration that is then model checked prior to being sent to
the kernel. These steps are completely transparent to the network administra-
tor, who only deals with the graphical router configuration language and uses a
wizard to define service-specific router properties.

Fig. 8. Administrator Visual Tool

XAM stores the router configuration as an XML document that can be ma-
nipulated using open source libraries that implement the WWW consortium’s
Document Object Model (DOM) and XPath. XAM has also to prove that the
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new configuration complies with a set of defined properties and, in order to
achieve that, it has to transform the configuration into the intermediated repre-
sentation and then into the Promela specification that can be analysed by the
model checker. The router configuration is stored as an XML document and
through a style sheet transformation (XSLT), XAM translates the configura-
tion into the intermediate representation. We use style sheets to enable third
party module designers to provide a semantics mapping of their modules to the
intermediate representation (Figure 9).

3rd Party

XML 
Router Spec. XSLT

Engine Intermediate 
Representation

Compiler Promela
Specification

XML
Schema

XSLT
Stylesheet

Fig. 9. Translation Steps

The second translation step into Promela is implemented in Java for perfor-
mance reasons. If Spin finds an erroneous configuration, the error is shown to
the administrator via the visual tool. A full description of the architecture of
XAM and the Router Kernel can be found in [12].

6 Evaluation

Our work aims at minimizing the validation time of a router configuration. This
operation must be flexible enough to accommodate any network change and must
be relatively fast to be used interactively with the graphical administration tool.
According to the requirements of the network administrator, the validation can
be done on-line before applying the operation, or off-line if the router update
cannot be delayed (e.g. during a denial of service attack).

We have tested several realistic router configurations and in particular we have
used two different configurations: a 1-level tree and a sequence of modules. We
have chosen these two configurations so that our approach reaches the best and
the worse performance, respectively. In fact, the number of generated packet
flows is related to the number of modules that a packet can traverse; in the
first case, there are only 2, the root and the leaf, while in the second case all
the modules. The two configurations have the same number of modules (seven),
and the rules concern the same fields (three), while the number of rules goes
from 7 to 8,500. We have chosen to change the number of rules, as, from our
experience, the number of modules or fields is usually three or four orders of
magnitude lower than the number of rules; it is then more relevant to prove how
our approach scales according to rules, instead of other parameters. As these two
configurations produce the worse and the best performance of our tool, they also
represent an upper and a lower performance bound for a router configuration
with the same number of modules, rules, and fields.
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Fig. 10. Model Checker Performance

In Figure 10, the lower and the upper performance bounds are enclosed in the
gray area. Interpolating the result, we have obtained the two equations shown
in (20) and in (21). Both of them have a small coefficient of the second order
and in particular (20) can be approximated to a line.

y = 0.2609 ∗ x2 − 0.3319 ∗ x + 8.4093 (20)
y = 0.7653 ∗ x2 − 4, 6192 ∗ x + 56, 287 (21)

These tests have been performed on a PC equipped with a Xeon@1.7GHz
processor and with 1 GB of RAM. Note that a configuration with seven modules
and a total of 8,500 rules is a rather complex one for this specific application
domain. We consider it remarkable that on a relatively small off-the-shelf PC we
are able to validate the worst case configuration in less than 20 minutes.

7 Related Work

The related work to this project belong to two different research areas: network-
ing and software engineering. From the networking research area, there are two
interesting projects: Click [9] and Router Plugins [5]. Click and Router Plugins
are implementations of programmable routers, where the packet paths inside the
router (i.e, the modules and their connections) can be configured; the abstrac-
tion provided by Click is more complex than our kernel, as there are more port
types in order to describe the behaviour of the module more precisely. Further-
more, Click and Router Plugins do not provide a middleware layer to support
the network administrator during the configuration process. However, we believe
that the principles outlined in this paper could also be applied to these projects.
From the software engineering perspective, model checking techniques, as data
and model abstraction, are been investigated in [3]. The Bandera toolset [4] can
verify that generic Java code complies with a set of properties defined by users;
this is achieved through model slicing and abstraction; in particular, the abstrac-
tion is manually driven by users through a graphic interface. In our approach,
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the abstraction of the model is provided by the middleware, that shows to the
model checker tool a graph of modules; as the domain of our tool is always the
same, we have implemented an automatic abstraction of the input data (i.e.,
the packets) that is completely transparent for the network administrator and
provides better performance than a general purpose one; however this approach
is domain specific and cannot be applied to generic scenarios.

Model checking techniques are also used in networking protocol research [7].
In this domain, the system is distributed and it is relevant to cope with its
embedded concurrency; through model checking as shown in [6], the network
protocol is specified using Promela and validated through Spin. The advantages
of this approach are mainly two. Firstly, the network protocol is designed using a
specification language (i.e. Promela). Secondly, the specification can be validated
using a model checker (i.e., Spin). Spin is used to check the correctness of the
network protocol, but it does not cope with the network configuration. In fact, it
assumes that the network topology is correct and that it should work correctly
also if there are some errors. Spin checks the robustness of the protocol, but it
does not check the network environment. The aim of our work is complementary:
we do not manage the router life-cycle, but we model check its configuration in
order to guarantee that it will work correctly and that it will comply with the
required properties.

Our work has been influenced by graphical ADLs, and in particular by Dar-
win [10], which describes a system configuration through components, ports, and
connectors. Like Darwin, we are able to dynamically update a configuration and
apply model checking techniques to it. The difference is that our configuration
language has been explicitly geared toward its application domain and is di-
rectly executed by our programmable router’s forwarding engine. Also, Darwin
uses reachability analysis of labelled transition systems for model checking [11],
while we use Spin, a more powerful model checker that allows us to check any
LTL formula.

8 Conclusions and Future Work

In this paper we have described an approach to management of programmable
networks that takes advantage of model checking techniques in order to prove
that router configurations are consistent and safe. The model checker is inte-
grated into a visual tool that allows the network administrator to manage a
network, confidently update configurations at run time. The tool is based on a
formal description that can be translated into Promela, the specification lan-
guage of Spin. Exploiting the model checker Spin, we can prove that the router
configuration is correct or, report errors to the network administrator through
a visual tool. In terms of analysis, we are currently able to prove that a router
is providing the right services in the right way, but we cannot check that the
whole network is working as required.

The work presented in this paper shows how application-specific languages
can be designed by applying software engineering principles, how their semantics
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can be defined and most importantly that it becomes possible to apply model
checking to real-life problems by exploiting domain-specific abstractions.

The next steps of this work will go in two different directions; through the
visual tool, the network administrator will be able to draw the router properties
instead of writing LTL formulas; moreover, the extension of the tool domain is
relevant in order to move the verification from a single router to a network of
routers.
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Abstract. Pervasive systems are often made out of distributed soft-

ware components that run on different computational units (appliances,

sensing and actuating devices, computers). Such components are often

developed, maintained, and even operated by different parties. Applica-

tions are increasingly built by dynamically discovering and composing

such components in a situation-aware manner. By this we mean that

applications follow some strategies to self-organize themselves to adapt

their behavior depending on the changing situation in which they op-

erate, for example the physical environment. They may also evolve au-

tonomously in response to changing requirements. Software architectures

are considered a well-suited abstraction to achieve situational adaptation.

In this paper, we review some existing architectural approaches to self-

adaptation and propose a high-level meta-model for architectures that

supports dynamic adaptation. The meta-model is then instantiated in

a specific ambient computing case study, which is used to illustrate its

applicability.

Keywords: Pervasive Systems, Software Architecture, Software Evolu-

tion, Context-aware Adaptation.

1 Introduction

Many modern advanced applications are developed as pervasive systems that
support ubiquitous, continuous and smart interactions among humans, autono-
mous devices, and the environment, to realize what is often called ambient in-
telligence. Such systems, sometimes also called open-world systems [1], are char-
acterized by a highly dynamic software architecture: both the components that
are part of the architecture and their interconnections may change dynamically,
while applications are running. New components may in fact be created by com-
ponent providers and made available dynamically. Components may then be
discovered, deployed, and composed at run time, removing pre-existing bindings
to other components. Applications are often highly distributed, i.e., components
are deployed and run on different computational units that may not just be
traditional computers, but also appliances, sensing and actuating devices of dif-
ferent kinds. In many cases, the components that constitute an application are
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also operated and run by decentralized and autonomous entities. It has become
common to use the terms services for such components and service-oriented
architecture (SOA) to indicate the architectural style. In the SOA case, applica-
tions do not have a single ownership and coordination point. Services can only
be invoked remotely through their interface. They are otherwise seen from other
parts of an application only as black-boxes [13].

Dynamic architectures of the kind we described above are created to support
the adaptive and evolutionary situation-aware behaviors that characterize perva-
sive systems. Sometimes it may be useful to distinguish between adaptation and
evolution. Adaptation refers to the actions taken at run time and affecting the
architectural level, to react to the changing environment in which these systems
operate. In fact, changes in the physical context may often require the software
architecture to also change. As an example, a certain service used by the appli-
cation may become unaccessible as a new physical environment is entered during
execution and a new service may instead become visible. Or a certain service
may be changed unexpectedly by the owner of the service and the change may be
incompatible with its use from other parts of the application. Evolution instead
refers to changes that are the consequence of requirements changes. For exam-
ple, a 3-D interface becomes available and must be used instead of a previously
used traditional interface. In the rest of this paper, most of our examples refer to
adaptation, although our approach can also work for certain kinds of evolution.
In general, long-lived pervasive systems require that applications should follow
some strategies to

– detect the relevant changes in the situation in which they operate, such as
the physical environment (or even the changing requirements), and

– react by self-organizing themselves and adapting their behavior in response
to such changes.

Adaptive pervasive systems raise many challenges to software engineering. They
stress the known methods, techniques, and best practices to their extreme and
introduce new difficult problems for which new solutions are needed. The no-
tions of variability and adaptation must permeate all phases, from requirements
to design and validation, and even run time. Indeed, the clear and clean tra-
ditional separation between development time and run time becomes blurring.
Traditionally, changes are handled off-line, during the maintenance phase. In the
new setting, they must be also handled autonomously at run time, as the appli-
cation is running and providing service. To achieve that, software systems must
be able to reason about themselves and their state as they operate, through ade-
quate reflective features available at run time. They must be able to monitor the
environment, compare the data they gather against an expected model, and de-
tect possible situational changes. Whenever a deviation is found, an adaptation
step must be performed, which modifies the software architecture. For example,
the adaptation step might simply perform a new deployment and re-bindings to
different components, or re-binding to different external services. In other cases,
the adaptation strategies may be more complex.
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This paper focuses on software architectures that support run-time adapta-
tion. More specifically, it illustrates a general, high-level reference meta-model
and then illustrates how it can be instantiated and adapted to develop a specific
case-study in the domain of assisted living.

The paper is structured as follows: Section 2 describes related work. Section 3
illustrates a practical hypothetical example of an adaptive system that serves
as a case-study in a pervasive computing setting. Section 4 introduces the most
important features of the proposed meta-architecture. Section 5 describes how
the concepts of the meta-architecture are instantiated in the proposed solution
for the case-study. Finally, Section 6 provides some conclusions and outlines
future work directions.

2 Related Work

Research on dynamically adaptable and evolvable software systems became very
active in recent years. In the early 2000s, IBM promoted a vision, called auto-
nomic computing [10], which focuses on a new generation of software systems
that can manage themselves to achieve their goals in a changing world, through
self-configuration, self-optimization, self-healing, and self-protection. Although
an overview of autonomic computing is out of our scope, and would clash with
space reasons, we will narrow down the focus of our analysis of related work to
architectural solutions enabling self-management. Research in this area has been
focusing on two main issues. On the one side, there has been an exploration of
the architectural styles that best support evolution, due to intrinsic character-
istics of the style. On the other, research has focused on the mechanisms that
can be exploited to achieve adaptation, given a specific architectural model or
a specific style. According to [17], “An architectural style defines a vocabulary
of components and connector types, and set of constraints on how they can be
combined.” By focusing on architectural styles, it is possible to focus on evo-
lution from an abstract and high-level viewpoint which may enable systematic
and even formal reasoning.

Let us first observe that in the general case, if no specific constraints are
assumed on an architecture, a run-time change that requires dynamic updates
of components or connectors may require suspension of (parts of) an application
to achieve some desirable level of consistency. Managing suspensions can be very
complex. This problem has been faced elsewhere in the literature [11,23].

There are styles, however, that facilitate dynamic adaptation. C2 [14] is a
well known example of an architectural style that achieves this goal. C2 intro-
duces a sharp distinction between computation and communication and strictly
constrains how the application can be built. In particular, every communication
among computational units (components) occurs via bus-like connectors, thus
minimizing component interdependency. The style also imposes topological con-
straints: components can consume data from only one connector and produce
output data only on one connector. Connectors, instead, can accommodate any
number of components or other connectors. Thus every communication is carried
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out in an asynchronous way through messages put on and read from connectors.
The C2 style is well suited to supporting dynamic adaptation and evolution.
The application can be easily modified through the addition and/or removal of
components, which can be carried out without suspending any computation.

Other styles than C2 have been scrutinized by Taylor et al. [21] . In that
paper, a number of architectural styles used by state-of-art software systems are
evaluated according to following criteria:

– How and how much the system’s behavior can be changed;
– How long the system’s evolution takes to be effective;
– How the state of the system is changed when that system evolves;
– In which environment the system is executing;

Examples of examined styles and corresponding systems are: the publish-sub-
scribe style [7], implemented for example by Siena; the REST style [8] used for
web browsing; the CREST style [6] adopted by AJAX and other JavaScript-
based technologies.

Regarding the mechanisms that can be superimposed to an architectural
model or style to achieve dynamic adaptation, two main research lines emerged
so far. The former is about all the approaches that exploit planning techniques
to cope with unexpected situations, and the second one is based on reactive rule
systems. An early example of planning-based approach has been proposed by
Traverso and Pistore [22], which synthesizes plans starting from OWL-S process
models and a set of prioritized goals. These plans cope with non-deterministic
outputs of services by synthesizing if-then-else constructs to cover all the pos-
sible outputs prescribed by the OWL-S process model [12]. Another planning-
based approach is described by Sykes et al. [19,20], where a plan is synthesized
starting from goals and available operations. The difference lies in that the non-
deterministic output of actions is handled by synthesizing a reactive plan. A
reactive plan is a plan that for each logical state of the system from which the
goal can be reached, prescribes the action to be taken to move towards the goal.
In this way, even if the system should deviate from the expected behavior, as
long as the goal is reachable by the current state the plan can still suggest a way
to achieve the goal.

The other main approach to adaptation is rule-based, e.g., the Rainbow frame-
work [9]. Rainbow is based on the use of a run-time architectural model. Logical
probes can be deployed on the running system to gather data useful to enable
system evolution and adaptation. Data coming from probes can be aggregated
and then used to update the run-time model. To accomplish this task ad-hoc
components called gauges are introduced. Invariants can be stated about the run-
time model and reactive rules can be written to try to enforce them. Reactive
rules directly manipulate the run-time architectural model and these changes
are automatically reflected in the controlled application.

Another rule-based approach has been developed in our group. It introduces
an autonomic element called SelfLet [3] , its model and its developing framework.
A SelfLet is characterized by a goal and by a course of action (specified through a
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finite state machine) to achieve it, called behavior. In a world populated by Self-
Lets, each of them tries to achieve its goal by exploiting functionalities available
locally or requesting the needed functionalities to other SelfLets. Such request
can be fulfilled both by a SelfLet providing the functionality as a service or by a
SelfLet teaching the requestor how to solve the problem. SelfLets are also able
to evolve and adapt on the basis of their internal state and the environment they
work in. To do so, an autonomic policy is specified through reaction rules. Rules
can manipulate a SelfLet’s behavior by:

– changing the way a service is offered or requested;
– installing a new local service;
– modifying a behavior by adding, deleting or replacing states and transitions

in the finite state machine describing the SelfLet.

Combining local behaviors and reactive rules, a software architect can design
a system able to achieve a global goal relying on a SelfLet population mak-
ing only local decisions. Rule-based approaches are in general computationally
lighter than planning-based approaches, but offer only little support to handling
unforeseen situations since no reactive rule has been written for them.

An approach, the A3 framework, that cannot be classified neither as planning-
based nor as rule-based has also been developed in our group by Baresi and
Guinea [2]. A3 is a component-based framework where components are orga-
nized in groups, created by application designer to decompose the global task
into local sub-tasks. Each group elects a supervisor which both handles commu-
nication from and to the group and monitors the group itself. Groups are dynam-
ically created and destroyed and no constraint is imposed on their topology. The
grouping dynamism allows to cope with changed situations(e.g., a group with too
many components to be effectively handled by a single supervisor). The absence
of topological constraints enables the creation of overlapping groups or even hi-
erarchies to more effectively share information among groups. Thus centralized
systems’ pitfalls are avoided and at the same time the grouping mechanisms
make the framework scale very well even for a large number of components.

The approach we illustrate here differs from most of the related work in that it
aims at providing a meta-architecture through which the proposed architectural
styles and the adaptation mechanisms may be instantiated.

3 Scenario

This section introduces a scenario describing an adaptive embedded system. In
particular, it addresses functional evolution of devices embedding on-demand
software, namely smart set-top boxes for pay-per-view television. The scenario
is further used subsequently to describe the proposed approach.

A set-top box is a device that, connected to a source of signal (e.g., telephone
line or TV cable) and a television, decodes the signal into contents to be dis-
played on the television screen. Next generation set-top boxes will also connect
to TCP/IP networks by enabling users to browse the web, as well as to access
and consume services on-demand.
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Fig. 1. Scenario

Figure 1 shows a typical scenario where the smart set-top box (1) accesses
the contents broadcast by the TV provider, (2) accesses and browses a trusted
Service Repository (also published by the TV provider) listing the available ser-
vices, and (3) interacts with the selected services by connecting with the relevant
Service Providers. When the set-top box is switched on for the first time, it must
be configured by the user by selecting the required features. Hence, a basic fa-
cility provided by the set-top box supports connection with the TV provider’s
Service Repository (dashed line in Figure 1), a catalog from which the user may
select the set of services he or she want to access. As we will see, the Service
Repository behaves both as a Registry, which contains the full descriptions of
the services, and as a Repository of components that may be downloaded and
services provided by the TV provider that can be invoked remotely from the
set-top box.

In this setting, possible use cases are: (i) TV on-demand, where the user
chooses which type of contents he or she is interested in, and (ii) Service on-
demand, where the user selects the set of services offered by third-party providers.

3.1 TV On-Demand: Pay-Per-View Home Cinema

The set-top box can access both free and pay-per-view TV contents. While free
contents can be directly accessed, in order to consume pay-per-view contents, a
user must possess the rights to access the selected channels. In particular, let the
user be interested in the “Home Cinema” channel. Then, the actions performed
are:

1. User accesses the Service Repository, browses the list of available channels
and selects the “Home Cinema” pay-per-view channel.

2. Once chosen the channel and paid for it, the set-top box automatically down-
loads from the Service Repository the software component needed to decode
the desired contents (e.g., HC), which is broadcast in an encrypted format.
Indeed, this component is chosen by taking into account both the subscribed
channel and the context of the set-top box (e.g., television properties, user
requirements).

3. The HC component is then deployed into the set-top box.
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In this scenario, the set-top box might be reconfigured to support both soft-
ware evolution and context-aware adaptation. As an example of evolution, con-
sider a scenario in which a component is downloaded and deployed to improve
service fruition (e.g., new codec version, component bug-fix). As an example of
adaptation, consider instead the ability of reconfiguring the set-top box with re-
spect to the actual context (e.g., different type of television, server side updates).

3.2 Service On-Demand: eHealth Emergency Management System

As stated above, the set-top box can be used not only to download new contents,
but also to access third-party services. For instance, an e-health service might
be available to manage health alarms from its subscribers. The user may in
this case use the set-top box to send a “health alarm” to the nearest hospital.
Let us assume that the service of interest, namely the “eHealth Emergency
Management” service (HEM), is available in the Service Repository. HEM is
a composite service whose workflow is shown in Figure 2. Namely, it involves
a number of standalone activities: (i) a Hospital Yellow Pages activity (HYP)
that, given a geographical location, returns a list of the nearest hospitals, (ii) the
eHealth Management (HM) provided by the hospital and, (iii) a Display Result
(DR) that notifies the workflow results to the final user.

Fig. 2. The “eHealth Emergency Management” workflow

More precisely, the following sequence of steps is performed:

1. User accesses Service Repository, browses the list of available services in the
entire registry and selects “eHealth Emergency Management” (HEM).

2. HEM is implemented as a composite service, where the activities mentioned
above are provided by means of either local components (e.g., DR) or third-
party remote services (e.g., HYP and HM). Hence the Service Repository
sends to the set-top box the code that implements the workflow of Figure 2
through which both local components and external services are invoked when
the user presses a certain button of the remote control.

Also in the case of service on-demand, the set-top box may reconfigure its
architecture to achieve both software evolution and context-aware adaptation.
As an example of evolution, consider a scenario in which an activity is updated
(e.g., a new requirement is added or the activity interaction protocol is modified).
On the other hand, as an example of adaptation, consider a scenario in which
the set-top box is moved from a location to a different one. By changing the
set-top box location (i.e., context) the list of the nearest hospitals returned by
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HYP changes accordingly and, in turn, the alarm must be sent to a new HM.
Since the new HM could rely on a different interaction protocol – e.g., by means
of dial-up – the set-top box needs to be reconfigured in order to adapt to the
new environment (further discussed in Section 5).

4 A Reference Meta-architecture

In this section we describe the fundamental concepts and properties that char-
acterize software architectures for adaptive pervasive systems. In particular, we
crystallize them as a reference high-level meta-architecture that specifies the
main distinctive concepts upon which we can define architectural models of self-
adaptive systems. Further, Section 5 illustrates a possible architectural solution
for the scenario presented in Section 3 and will show how the architectural model
conforms to the meta-architecture defined herein. Indeed, the proposed meta-
architecture can be instantiated in different ways and even partially in other
practical scenarios.

The meta-architecture illustrated in Figure 3 is reminiscent of, and an enrich-
ment of, the abstract structure of an autonomic element [10]. In fact, it defines
the main features that characterize a software architecture of applications that
may evolve and adapt their functionalities with respect to a change of either
their requirements or their surrounding environment.
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Fig. 3. Meta architecture for self-adaptive systems

The cornerstone of the proposed meta-architecture is the Requirement entity,
which defines the initial input steering the application assembly, as well as the
application run-time behavior. Indeed, it defines the set of properties that an
application must satisfy at run time. It is worth to note that in this context,
evolution refers to the ability of changing requirements at run time, whereas
adaptation refers to the ability of satisfying the requirements in spite of changes
within the execution environment. This twofold role of requirements demands
for (i) a Decision Maker that assembles an abstract description of the appli-
cation able to satisfy the requirements, and (ii) a Monitor that is in charge of
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collecting data about the application’s run-time behavior to verify whether the
requirements are satisfied or not during the execution.

The Decision Maker is an entity that, relying on Requirements, is able to syn-
thesize and assemble an abstract description of the application. The description
is abstract in the sense that it does not deal with implementation details but it
is a process-like description of the application’s behavior specifying (i) which ac-
tivities must be executed to accomplish the task specified by Requirements, (ii)
how the activities interact with one other, and (iii) the logic needed to assemble
the activities – e.g., referring to the service on-demand scenario in Section 3.2,
the Decision Maker is in charge of synthesizing the workflow in Figure 2. Fur-
thermore, since these operations must be accomplished also at run time, Decision
Maker must consider the application’s run-time situation to analyze on-the-fly if
the application’s behavior adheres to the requirements. Specifically, a situation is
a composite view of both the current state of the application and its surround-
ing environment. Decision Maker retrieves such data by querying Application
Run-time Model and Environment Run-time Model, respectively. If the situation
does not satisfy the requirements (e.g., when the set-top box is moved to a new
location, the health alarm must be sent to a new hospital), a new abstract de-
scription is synthesized and passed to the Actuator, which in turn is responsible
for assembling and deploying the actual application (Current Application – CA).
Specifically, Actuator interprets the abstract description provided by Decision
Maker and handles all the technological means needed to build and bootstrap
the new application – e.g., locating and accessing the software artifacts imple-
menting the workflow activities in Figure 2. Such separation of concerns makes
abstract descriptions technology-agnostic by effectively decoupling the general
description of the application from technology-specific actuation. Hence, abstract
descriptions generated by Decision Maker can be stored and subsequently reused
every time they are required, irrespectively of the technology-specific execution
environment. As an example, given an abstract description we can generate two
equivalent applications, implemented by means of two different technologies, by
providing such an abstract description to two different and technology-specific
actuators.

Furthermore, to properly make decisions about the run-time reconfigurations,
Decision Maker needs to query both the application and the environment run-
time models. In order to be effective, such models should reflect reality as faith-
fully as possible. The monitor collects run-time data from the environment;
specifically, data gathered from External Services/Components that are not part
of Current Application and sensor data that provide relevant information about
the physical environment – e.g., the set-top box position. The result of monitor-
ing can be an update of Environment Run-time Model or of Current Application
Run-time Model. In Figure 4 Sensor denotes an abstraction of a device that
provides physical context information. Figure 4 also distinguishes between the
Current Application (CA) and the other External Services/Components it inter-
acts with, which may change over time.
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5 Scenario Implementation

As introduced in Section 4, the proposed architectural-model for run-time soft-
ware evolution is centered around the use of a run-time model as an abstraction
of the evolving application and the surrounding environment. Further, several
entities, making use of such a model, are devised in order to accomplish run-time
software evolution. In this section, we apply such a reference meta-architecture
to the scenario described in Section 3 and, in particular, we describe how its
entities are mapped to this specific use case.

5.1 Application and Environment Run-Time Models

As mentioned earlier, to properly make decisions concerning the dynamic recon-
figurations to accomplish, the system must be able to reason about itself and
the state of the environment it operates in. To this extent, Current Application
Run-time Model and Environment Run-time Model provide the means through
which a reflective behavior may be achieved.

In order to describe a model for the scenario presented in Section 3, we exploit
a three layer architectural model (depicted in Figure 4) where (i) the description
layer describes both the application’s functionality as a workflow containing a
sequence of virtual basic actions and the environment as a set of monitorable
virtual elements, and (ii) the implementation layer encapsulates the concrete
implementations to which virtual entities may be mapped. Indeed, the proxy
layer provides a virtualization layer that we use to introduce a further degree of
indirection, thus enabling loosely-coupled relations between virtual objects (i.e.,
basic actions and sensors) and their implementation.

As shown in Figure 4, description layer describes both the application model
and the environment model. The application model comprises the run-time en-
tities that support the enactment of the behavioral model corresponding to the
workflow of the currently active functionality of the set-top box. Since the func-
tionality must be adapted with respect to the actual context, the workflow itself
is not directly bound to the concrete implementations of its actions. Rather, dy-
namic adaptation is achieved by decoupling the virtual basic actions of the work-
flow at the description level from their concrete implementation, thus achieving
the required flexibility supported through dynamic binding.

The implementation layer contains the set of all possible components (called
implementation components) implementing the virtual basic actions specified
within the workflow, as well as other companion components that might be used
to support the computation. Each virtual basic action might be implemented
by several implementation components that vary from each other in terms of
extra-functional properties – e.g., security, performance and reliability. That is,
following the Product Line Architecture (PLA) approach [5], the component-
based model exploited by both proxy layer and implementation layer enables
components to be specified as “variant”, although in our case variant selection
is performed at run time. This allows for specifying the alternatives to consider
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Fig. 4. The three layer run-time model of the application

while mapping virtual basic actions to implementation components. Indeed, al-
ternatives represent the variation points within the run-time model, where the
dynamic adaptation of functionality, with respect to the actual needs (i.e., soft-
ware evolution or context-aware adaptation), can be applied.

In this context, the proxy layer plays the role of filtering layer. That is, the
components belonging to this layer (called proxy components) do not implement
the needed functionality themselves. Rather, they implement the logic for vari-
ant selection, i.e., they choose among the available components the one that
provides the needed functionality and best-fits the requirements – e.g., the most
secure, the most efficient, the most reliable. Furthermore, it is worth noticing
that no assumption is made about how implementation components are actually
implemented. For example, as we will show next, implementation components
can be implemented as clients of external and remotely accessible third-party
Web Services.

In Figure 4, the environment model describes the run-time environment in
which the application is executed. In particular, it specifies the set of monitorable
virtual elements constituting the environment and the data they can provide.
The next section describes how such data are made available by means of proxy
sensors through implementation sensors.

5.2 Monitor

Context-aware behaviours and self-reconfiguration require applications to be able
to sense the environment and reason about it. Following the meta-architecture
presented in Figure 3, the Monitor entity is in charge of (i) collecting context data
coming from the Environment constituents (namely Sensor and Application) and
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(ii) updating Current Application Run-time Model and Environment Run-time
Model accordingly.

The Environment Run-time Model of Figure 3 maps to Environment model of
Figure 4, in the description layer. This model describes the set of monitorable
virtual elements constituting the environment and the data they can provide. As
shown in the previous section for virtual basic actions, also virtual sensors are
mapped to their corresponding entities in the proxy layer in order to decouple
their description from the actual implementations (see Figure 4). That is, each
virtual element within the environment is monitored by a proxy sensor belonging
to proxy layer.

The workflow specified by the application model in Figure 4, is not
environment-agnostic but relies on the set of virtual sensors which constitute
the environment model. Indeed, each virtual basic action in the workflow can
specify the set of virtual sensors (if needed) to be considered for accomplishing its
task. Hence, such a relation must be kept and reflected also at proxy layer where
proxy components rely on environmental context data for selecting the specific
implementation component to bind with. Hence, each proxy component relates
to the proxy sensor needed to gather the environmental context data relevant for
selecting the proper implementation component, as well as for computing their
tasks.

Furthermore, as done for proxy components, also proxy sensors are imple-
mented as implementation components adhering to the three-layer structure of
Figure 4. Also in this case, the separation between proxy sensors and implemen-
tation components allows proxy sensors to be implemented by several different
implementation components, then allowing them to be dynamically downloaded
and deployed when needed.

The next section, describes how such context data, retrieved through Monitor
and stored within Environment Run-time Model, is further queried by Decision
Maker and used for actuating the application reconfiguration process.

5.3 Decision Maker and Actuator

So far, we have described the entities used by Decision Maker to achieve its
decisions about run-time reconfigurations, namely those that reify the run-time
models. In this section we are going to explain how such decisions are made by
Decision Maker and further actuated by Actuator.

Specifically, referring to the three-layer model described in Section 5.1, de-
cisions that must be made by Decision Maker concern the binding (rebinding)
between a virtual basic action and the proper implementation component. The
proxy component implementing the specific virtual basic action is responsible
for this task. The proxy component therefore plays the role of a decision maker.
Hence, Decision Maker is implemented as the set of proxy components deployed
at the proxy layer, where each proxy component makes decisions regarding the
specific virtual basic action it represents.

While Decision Maker retrieves data about the Environment Run-time Model
through the proxy sensors (see Section 5.2), information about Application
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Run-time Model are kept by the proxy components themselves and represented
as the current binding (i.e., between virtual basic action and implementation
component) and the data that have steered the selection of such a binding. That
is, every proxy component must know:

– which implementation component has been used during previous executions
– which inputs were received (both by the context and by the previous element

in the workflow) that caused that specific binding to be chosen.

The former information is needed to improve performance. In fact, should two
identical execution should take place, there would be no binding overhead. The
latter information is needed to let proxy components be aware of the fact that
a reconfiguration is required. In fact, every change in either the context or the
workflow computation will lead to checking if the actual binding is still valid
or, otherwise change the binding. Validity of a binding ranges from the mere
existence of a target entity that can be reached through the binding, to the fact
that the target meets some optimality criteria for quality attributes.

Specifically, a reconfiguration decision might be made to face the following
three different cases:

1. A proxy component must select a binding for the corresponding virtual basic
action for the first time.

2. A binding between a virtual basic action and its implementation component
is no longer valid.

3. The implementation component fails during the execution.

In case no bindings are in place between virtual basic actions and imple-
mentation components. The proxy components are in charge of selecting the
proper implementation component. The choice is made according to a policy
that may take into account extra-functional properties of the available imple-
mentation components. In the second case Decision Maker must reconfigure the
application, to try to still meet the requirements. That is, a new binding must
be found in order to accomplish the required task. Finally, in the third case the
corresponding proxy component can automatically change the binding using a
substitutable implementation component and restarting the computation from
scratch for the corresponding virtual basic action. Clearly, if no alternatives are
available or all the alternatives fail, the computation specified by the workflow
cannot be carried out and an error message is reported to the user.

Following the meta-architecture presented in Section 4, which sharply sepa-
rates the abstract description of the reconfiguration from its actuation, once the
reconfiguration description has been made by Decision Maker, it must be passed
to the Actuator, which in turn will apply it to the current instance of the appli-
cation. Indeed, in our specific instantiation of the meta-architecture, the proxy
component chooses the implementation component that must be used and then
passes its reference to the Actuator which will perform the following activities:

1. it downloads and deploys the implementation component referenced to the
proxy component, if needed.
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2. it invokes the implementation component just retrieved by passing the pa-
rameters coming from the workflow.

3. it passes back to the workflow the result of the computation coming from
the implementation component.

The logic implementing the Actuator is provided by the proxy layer itself and is
exploited by proxy components every time an invocation must take place.

5.4 OSGi-Based Implementation

Mapping to the proposed reference meta-architecture (see Section 4), in this
section we describe how Application, Sensor and External Service/Component
entities contained by the Environment are actually implemented by means of the
OSGi framework.

The scenario presented in Section 3 has been implemented using the OSGi
(Open Services Gateway initiative) component-based framework. Many different
frameworks have been developed so far for component-based programming such
as JavaBeans [18] and COM [16]. Although these systems are widely accepted
as standard component-based frameworks, they are not well suited for our pur-
poses, since they do not allow for components addition and removal at run time.
More precisely, bindings between components are predefined and fixed, making
architectural mutations impossible.

On the contrary, what we need is a framework able to decouple components
by achieving a run-time feature that allows both modification of bindings, and
components addition and removal. To this extent, the OSGi (Open Services
Gateway initiative) [15] is a module system for Java implementing a dynamic
component model [4]. At a glance, the core part of OSGi defines (i) bundles (i.e.,
components) that can be installed, started, stopped, updated, and removed at
run time, (ii) the service registry that allows bundles to find new services and
bind to them, and (iii) the execution environment that defines methods and
classes available within a specific platform (e.g., lower-end device, embedded
device, high-end server). As in a service-oriented architecture, an OSGi bundle
can publish its services into the service registry, making them available to other
bundles. The key difference between Web services and OSGi services relies on
the fact that while Web services always require some specific transport layer,
the OSGi services use direct method invocations. This makes OSGi a well-suited
framework for scarce-resource devices.

Referring to the scenario presented in Section 3, Figure 5 depicts a possible
implementation of the “eHealth Emergency Management” use case. In particu-
lar, the OSGi framework is deployed into the set-top box and contains the set of
bundles implementing both proxy components and implementation components
that relate to the virtual basic actions specified within the HEM workflow (see
Figure 2).

Still referring to the meta-architecture presented in Section 4, the Application
Run-time Model and Environment Run-time Model are implemented by means
of the three-layer model discussed in Section 5.1, where virtual basic actions
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Fig. 5. OSGi implementation of the eHealth Emergency Management System

map straightforwardly to proxy components (i.e., HYP, HM and DR) and their
possible implementations, and virtual sensors are monitored by means of proxy
sensors. For example, in order to locate the hospital that can better manage
the health emergency, the HYP virtual basic action needs contextual data about
the set-top box geo-location and thus it specifies a dependency with the Geo
Location (GL) virtual sensor, which, in turn, is implemented as proxy sensor
and deployed within the set-top box with the intent of monitoring its position.
In particular, referring to Figure 5:

1. A workflow is specified by means of an OSGi bundle (the HEM workflow
bundle) that invokes the functionalities exposed by the proxy components.

2. A proxy component is implemented by means of an OSGi bundle (the HYP,
HM and DR proxy bundles), which is responsible for selecting the proper
implementation component relying on both extra-functional properties de-
clared by the implementation component and contextual data gathered from
proxy sensors.

3. A proxy sensor is implemented by means of an OSGi bundle (the GL sensor
bundle), which selects the proper implementation component implementing
the required monitoring facility.

4. An implementation component is implemented by means of an OSGi bundle
(the GL1, HYP2, HM1, HM2 and DR1 impl bundle), which actually imple-
ments the required facility.

In this setting, the HEM workflow is executed as a standard OSGi bundle that
invokes the methods exported by HYP, HM and DR proxy bundles, respectively.
When invoked, HYP selects the closest hospital by relying on the contextual
information provided by GL and returns it to HEM. Clearly GL must be retrieved
by the Service Repository and installed, unless it is already in place. GL can be
in place if another application has already mentioned it as a dependency. After
that, GL will search for all the sensors (local or remote) providing the local
position and will choose between them according to some policy. To enable HYP
to contact GL without the need of hard-coded references, a naming convention
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is adopted. That is, proxy sensors have the same name of the corresponding
entities in the run-time environment model. In this way the proxy components
of every downloaded workflow can easily reference local proxy sensors.

It is important to note that the logic responsible for retrieving contextual data
is not application-specific. Rather, once a proxy sensor is downloaded and de-
ployed within the set-top box, it can be accessed and used by many applications
at the same time. Once such information has been retrieved, the HYP bundle
can select the closest HM hospital and send the alarm to it. The result of such
invocation will then displayed on the TV screen through the DR bundle.

As explained above, each proxy bundle can select which specific implementa-
tion bundle to bind to, among the ones that are available. Indeed, this function-
ality is provided by means of the OSGi late-binding mechanism, which allows
for searching, filtering and binding bundles at run time. Specifically, there are
three issues regarding such binding selection (refer to Section 5.3): (i) a proxy
bundle selects the binding to the corresponding implementation bundle for the
first time, and (ii) the binding between a proxy bundle and its implementation
bundle is no longer valid1. To face such issues, two strategies are implemented:
the former aims at optimizing extra-functional requirements, whereas the second
one aims at forcing the application to meet its requirements also in a changed
situation.

The first strategy considers extra-functional requirements optimization while
binding a virtual basic action to an implementation bundle. For example, when
the set-top box must execute the virtual basic action corresponding to the eHealth
Manager, two implementations may be available as possible targets for HM: an
implementation bundle able to contact the closest hospital’s web service or an
implementation bundle that can contact the hospital via a standard phone call
transmitting a pre-recorded vocal message. The two alternatives are function-
ally equivalent, i.e. delivery of the alarm message to the hospital is guaranteed
in both cases. They differ, however, in their extra-functional qualities, such as
reliability, performance or cost of connection. A choice can thus be made when
the binding is performed according to some optimization strategy. Notice that
the same decision making logic can be implemented for the proxy sensors. As an
example, the geo-localization proxy sensor could choose between two different
implementation bundle, one implemented through a GPS device and the other
through an IP-based geo-localization remote service. The two implementation-
components may be associated with attributes that specify an accuracy level
and a cost; the choice can thus be made by maximizing a quality figure that
takes both parameters into account.

On the other hand, the second strategy aims at forcing the application to meet
its requirements even in a changed situation. As an example, when the set-top
box moved from its original location to a new location, the box’s environment
changes accordingly. We can also imagine that, during the previous execution
of the HEM workflow, the emergency alarm was sent to the closest hospital by

1 It is worth noticing that, as discussed in Section 5.3, the third issue can be easily

solved by reducing it to the first one.
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a web service provided by the hospital itself. It may happen that, in the new
location, the closest hospital does not provide a web service to handle emergency
alarm. It is clear that the emergency alarm must still be delivered, but the way
it is delivered must be changed to be adapted to the new environment. Thus the
binding established during the previous execution between the eHealth manager
virtual basic action and the HM implementation bundle must be changed. Once
again, the logic for the adaptation is implemented by a proxy component (HM).
In fact, this is the only component in our architecture that knows which is the
current binding and which were the inputs from the previous virtual basic action
in the workflow, as well as the context that caused such binding establishment.
In our use case, given the location change, HM could receive as input a different
“closest hospital”, and this hospital could support the on-line emergency alarm
or not. If the previous communication mode is still supported, then only the web
service address must be updated, otherwise a new implementation bundle must
be retrieved, downloaded, and deployed to be bound to the eHealth manager
virtual basic action.

Notice that a proxy bundle does not directly invoke the selected implemen-
tation bundle. Rather, following the meta-architecture an Actuator is needed
to make the decision application-agnostic. However, in our implementation, the
actuator role is played directly by the OSGi framework through the dynamic
late-binding mechanism. Indeed, every proxy bundle exploits such a mechanism
(that can be logically seen as a proxy layer facility) for selecting and invoking the
corresponding implementation bundle, and retrieve the computational results.
However, if no implementation bundle matching the requirements is available
within the framework, it can be (i) downloaded from the TV providers service
repository by means of the relative facility provided by the set-top box (see
Section 3), (ii) published into the OSGi service registry, and (iii) dynamically
invoked at run time.

As few final remarks, concern implementation bundles. They can either im-
plement the required task or be used as a stub to access remote Web Services,
which actually implement the tasks. For example, referring to Figure 5, the DR
bundle, which depends on the specific TV screen attached to the set-top box,
locally implements itself the logic needed to display the workflow outcome on
the TV screen. On the other hand, the HM proxy bundle is implemented by a
set {HM1, HM2} of implementation bundles which in turn grant the access to
HM1 Service and HM2 Service, respectively. This solution allows for reducing
the computational burden, which is unbearable for scarce-resource devices such
as the set-top box, by delegating the effective implementation to the service
provider side.

6 Conclusions

Open-world systems are characterized by a highly dynamic software architecture
where both components and their interconnections may change dynamically,
while applications are running. Pervasive systems are a notable class of open-
world systems, where the need for dynamic software architectures are needed to
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support the situation-aware behaviors that characterize them, namely context-
aware adaptation – run-time actions affecting the architectural level which react
to environmental changes – and software evolution – changes that originate in
the requirements.

In this context, software systems must be able to reason about themselves
and their state as they operate, through adequate reflective features available
at run time. Moreover, they must be able to monitor the environment, compare
the data they gather against the expected model, and detect possible situational
changes. Whenever a deviation is found, an adaptation step must be performed,
which modifies the software architecture.

This paper presented a meta-architecture supporting run-time adaptation and
evolution. In particular, it first described the general, high-level reference meta-
model by discussing its constituent entities and the relations between them. Then
it illustrated how such a meta-architecture can be instantiated and adapted to
develop a specific case-study, namely the “eHealth Emergency Management Sys-
tem”. Such a scenario describes an adaptive embedded system – i.e., a smart set-
top boxes for pay-per-view television – that addresses the functional evolution
and adaptation of on-demand software. We finally demonstrated the applica-
bility of such an approach by implementing the “eHealth Emergency Manage-
ment System” case study through the OSGi component-based framework, which
provides a complete and dynamic component-based programming platform for
scarce-resource devices. In particular, we detailed how the entities specified by
the abstract meta-architecture have been actually implemented within the con-
crete “eHealth Emergency Management System” application.

It is worth noticing that the specific application domain addressed herein –
i.e., pervasive embedded systems – had an impact on the implementation choices
we made, since it presents a set of specific extra-functional requirements. The
fact of dealing with resource-scarce devices asks for implementations to be as
light as possible, while still satisfying the functional requirements. This is the
reason why the abstract application workflow, which might naturally specified by
means of a high-level interpreted language (e.g., XML-based), has instead been
encoded directly into Java, to reduce run-time overhead. This in fact speeds up
execution and eases deployment within the framework by supporting dynamic
installation and removal of applications.

Pervasive embedded systems also have to be dependable. An applications
like the “eHealth Emergency Management System” must provide an acceptable
level service quality even in critical situations. This imposes certain require-
ments on the Decision Maker, which should be able to dynamically reconfigure
the bindings to external components and services to achieve the required self-
healing capabilities. The proposed solution also ensures a level of security and
trust because implementation components are provided through a centralized
and controlled repository. In a more general case, it might be useful to extend
reconfiguration policies beyond just re-binding, e.g. also supporting re-plan of
the workflow on-the-fly.
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The work described in this paper is part of an on-going long-term research ef-
fort that focuses on self-managing situational software systems. Part of this work
addresses software architectures that best match the goals of such systems. One
possible outcome of this particular work would be the identification of a catalog
of architectural solutions that may be adopted in different systems, which would
fit the specific characteristics of the systems under consideration. To gain precise,
reliable, and reusable knowledge about the various solutions, we are currently
engaged in different case studies, ranging from decentralized distributed sys-
tems supporting urban mobility scenarios to emergency-management to rescue
people in mountain areas. Different architectural solutions will be defined and
tried in the case studies, to gain a deep understanding of their potential benefits
and drawbacks, and eventually support the development of the solutions catalog
mentioned above.
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Abstract. The Fujaba project has created a light weight graph gram-

mar approach allowing the use of graph grammar concepts in usual Java

programs. Fujaba comes with visual editors for graph schemas / class di-

agrams, control structures / activity diagrams, and graph rewrite rules

/ extended object diagrams. Thereby the user may specify executable

programs that are translated into complete Java programs without any

need for further low level Java programming. In addition, Fujaba pro-

vides dedicated visual language support for scenario based testing. This

is complemented with support for model versioning and distributed ap-

plications. Last but not least Fujaba provides model level debugging.

This paper is an experience report applying Fujaba techniques for

requirements analysis and implementation in an industrial project in

the automotive industry. The considered project has created a tool for

the design of car electronic systems. This project involved an enormous

amount of domain knowledge. The challenge was to involve the domain

experts in the analysis, design, and implementation activities such that

the transfer of domain knowledge is fostered. This paper reports how we

used graph grammar based Fujaba techniques and languages to achieve

domain expert involvement.

1 Introduction

Modern software development processes, as e.g. the Rational Unified Process
[JBR99], use textual use case descriptions for requirements elicitation. During
further requirements analysis, analysis classes are identified and one may e.g.
use collaboration diagrams or sequence diagrams in order to outline use case
behavior. This is then further refined into design and implementation classes and
into actual behavior implementation. This process may be executed iteratively,
addressing small chunks of functionality one after the other.

Due to our experiences, such a process requires decent skills in abstraction,
object orientation, analysis, design, design patterns, etc. Frequently, the result
of an object oriented analysis or design phase will be documented and discussed
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using architecture diagrams or more specifically class diagrams. Unfortunately,
class diagrams are quite abstract and their interpretation and the judgment of
the represented design decisions requires special skills and training, too. While
many computer scientists and professional software developers have these skills
as part of their every day professional work, a project frequently involves a large
number of other stakeholders like business managers, administrative experts,
domain experts and potential system users. These people may have quite differ-
ent backgrounds and skills. These different skills and the corresponding domain
knowledge are of crucial importance for the success of the overall project. Un-
fortunately, many of these important people will have difficulties to interpret
the information and design decisions contained in architecture and class dia-
grams. Thus, the domain experts are frequently not able to communicate their
knowledge with the software experts, appropriately.

In order to overcome these communication problems, the Fujaba Process pro-
poses to use object diagrams or graphs or graph scenarios as an intermediate
representation or analysis means during analysis, design and implementation,
cf. [DGZ05, KNNZ00, FNTZ99]. Usual collaboration or sequence diagrams stay
on a level of abstraction where certain components exchange certain messages
in order to exemplify the internal process that realizes the considered use case,
cf. [JBR99, BRJ99]. Our graph scenarios usually describe the internal process
in much more detail. We employ concrete objects with concrete attribute values
and concrete links or edges between each other. Thereby, we pinpoint the rep-
resentation of certain domain information in our implementation model quite
early in the development process.

In the reported project, it turned out, that the design and implementation
decisions outlined in graph scenarios were still easily recognized by our domain
experts. Pinning down certain design and implementation aspects quite early
then fertilized the further refinement and elicitation of related functional re-
quirements, considerably. In multiple iterations, our domain experts used the re-
fined designs to enhance their textual requirements descriptions until it became
easy to implement them. As implementation language, the Fujaba approach uses
programmed graph transformations, so-called Fujaba story diagrams. Since story
diagrams use a graphical notation which is very close to our graph scenario no-
tation, our domain experts were even able to review our implementation. This
enabled very valuable feedback from our domain experts to the software devel-
opers. For the goals of the reported project cf. [GSZ et al. 05].

Note, this paper is an extended version of [ZLM et al. 06]. First, we have
added more details. Second, we have added an explicit description of the Fujaba
process. In addition, we made the relation to graph grammars more explicit.

The following section gives a short overview of the Fujaba process and relates
graph grammar terminology to object oriented terminology. Section 3 introduces
the application domain and the software development project that serves as
example in this paper. This is followed by the main section 4 showing how we
applied our software development approach to the example application. After a
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short discussion of related modeling languages the last section concludes with
lessons learned.

2 The Fujaba Process FUP

The Fujaba process (FUP) is a light weight, iterative, use case driven process
deploying graph grammar techniques for the development of object oriented
applications. For each feature or functionality of the desired software, the Fujaba
process proposes the following steps, cf. [DGZ05]:

Step 1: Textual scenarios
Once a feature has been identified, the desired functionality is outlined with

the help of scenario descriptions in natural text. Such a scenario focuses on one
concrete situation and on the steps that should be executed in this dedicated
situation. To facilitate this step, we stay at the domain level, i.e. we do not yet
map the application domain to the implementation domain.

Step 2: Graph / model level scenarios: story boards
For each scenario step, we now model an example graph (object structure)

that reflects the relevant aspects of the described situation and we model the
modifications of that graph that reflect the execution of the scenario step. We
call a textual scenario with object models for each step a story board. A story
board maps domain concepts to the domain of graphs or object structures thus
achieving a large step towards implementation. However, to facilitate this mod-
eling step, we stay at the level of example situations and we exploit that the
textual scenarios have already been split into a number of smaller steps which
are now easier to model.

Note, due to our experiences, since our graph scenarios stay at the level of
concrete example objects, even non IT experts are able to read and understand
them, easily. However, to facilitate the recognition of graphs / object diagrams
for non IT domain experts even more, we frequently use icons from the applica-
tion domain to enrich the representation of objects. The domain experts grasp
the semantics of such domain icons immediately.

Step 3: Class diagram adaption
Deriving a graph schema or a class diagram from an object diagram is a

straight forward task. The result is a conceptual model / class diagram that
covers the identified domain concepts. Usually, this conceptual model will be
refined towards implementation aspects. For example, there will be extensions for
implementation concepts and refactorings for the introduction of design patterns.

Note, usually we do not bother non IT domain experts with these class dia-
grams. They are mainly of use for the software developers.

Step 4: Graph or model implementation
Our approach does not deploy a generic graph implementation or a generic

graph database. Instead, our Fujaba tool provides a code generator that imple-
ments models using plain old Java objects/classes. However, our code generator
uses a dedicated programming style for the implementation of bidirectional asso-
ciations. This association implementation guarantees referential integrity while



Using Graph Grammars for Modeling Wiring Harnesses 515

still providing an excellent runtime efficiency. This referential integrity turns the
used object structures into graphs. Alternatively, we also generate EMF ([EMF])
based model implementations. This enables the use of a large number of EMF
based tools for our graphs.

Step 5: Test derivation
Once our class diagrams are implemented, our code generator turns the story

boards into automatic JUnit tests, cf. [GZ05]. Basically, such a test creates the
object structure modeling the start situation, triggers the described user actions
and validates that the object structure shows the modifications described in the
story board as the effects of the executed operations.

Step 6: Textual algorithm design
Now we are ready to design the desired functionality. To facilitate this complex

development task, we start with the design of an appropriate algorithm on the
domain level using natural text.

Step 7: Model level algorithm design
Once we have outlined the general algorithm, we go through its steps and

refine them towards the level of our object model. This means, domain level
sentences are refined to refer to model elements.

At this step, we leverage that the general algorithm outline has already been
done. Thus, we deal with one algorithm step after the other which facilitates
this step, considerably.

Step 8: Implementation
The model level algorithm description is now implemented. While this could

be done directly in Java, our approach proposes to use programmed graph rewrit-
ing for this approach. In Fujaba, we use activity diagrams for the modeling of
control flow and enriched objects diagrams as notation for graph transforma-
tions. Our code generator translates this to Java code either based on our own
simple model implementation or based on an EMF model implementation.

Step 9: Algorithm validation
Now we validate our implementation by running the JUnit tests derived from

the story boards in step 5. Although this does not provide a systematic whitebox
test, due to our experiences the scenario based tests achieve already a reasonable
coverage of the implementation. If occasionally certain parts of the implemen-
tation are not covered by scenario tests, most of the time the programmer has
already implemented alternative behavior which is not yet addressed by the pro-
vided scenarios. Our approach takes such uncovered implementation as an advice
to build additional scenarios covering this not yet addressed behavior and to go
back to the domain experts to discuss whether the implemented behavior for
these special cases meets their expectations.

Step 10: Refactoring
Once the functionality has been validated, we may perform some structuring

of our code and some refactorings as recommended in agile processes.
Note, we use the Fujaba process since several years in our research projects

and for the development of new features of the Fujaba tool itself. We also teach
the Fujaba process and its underlying graph based techniques since 2003 in our
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courses on programming methodologies at Kassel University. All these experi-
ences resulted in many enhancements and refinements of the Fujaba process
until we reached the state described above. While our experiences with the Fu-
jaba process are very encouraging, its enhancement and the improvement of its
tool support are ongoing work. However, one strength of the Fujaba process
and its technologies is the high level of abstraction reached by the underlying
graph concepts. Together with the scenario oriented approach, this facilitates
the involvement of non IT domain experts, considerably. A striking example of
a successful involvement of domain experts in the development of a complex ex-
pert system for the optimization of wiring harnesses is outlined in the remainder
of this paper.

Fujaba and the Fujaba process have been developed in the context of graph
grammar theory. However, Fujaba and the Fujaba process are frequently used for
object oriented modeling and implementation. In the domain of graph grammars,
we use graph grammar terms like, node, edge, or graph. In the domain of object
oriented modeling and implementation, we use OO terms like object, link, or
object structure instead. Table 1 shows the relation between graph grammar
terms and OO terms. Through the rest of this paper, we will use the OO terms.

3 The OBA Application

The considered example project is called OBA for ”Optimization of car electric
system architectures” (in German: ”Optimierung von Bordnetz-Architekturen”).
Our task was to develop a tool that enables a car manufacturer to optimize the
costs of the electronic system within a car. The considered electronic system
of a car includes actors (e.g. lights, motors, ...), sensors (e.g. on/off switches,
temperature sensors, rotation sensors, ...), electronic control units (ECUs), fuses,
and all the wires connecting these components. The costs of the electronic system
of a car consist of the costs for the parts plus the costs for assembling them within
the car plus the costs of extra material as e.g. cable ties or screws, etc.

Prerequisites for the development of a car electronic system are usually the
employed sensors and actors including their placement within the car. In addi-
tion, the geometry of the car body is usually already defined including possible
spaces for the placement of ECUs and including all channels where cables may
be laid and mounted.

The placement of ECUs and the laying of cables has to respect a large number
of additional constraints, e.g. some components must not be accessible from the
outside (e.g. anti theft devices), some components should not get wet, some
components should not get too hot (e.g. near the engine), some components
may interfere with each other (electromagnetic compatibility). There are also
robustness and security constraints, e.g. the cable diameters have to be designed
according to the connected power consumption and fuses have to be designed
to enable the desired power consumption but to prevent cable fire, the driving
lights must not depend on a single fuse, etc.
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Table 1. Graph terms vs. object oriented terms

Graph Term OO Term Remark

node object

edge link or pointer Generally, edges are bidirectional. To achieve this

in OO programming languages like Java, Fujaba

uses pairs of forward an backward pointers.

graph object structure A set of objects related by links between these

objects.

graph object diagram We distinguish between runtime object structures

and (UML) object diagrams, which are drawings

of object structures used in documentation or in

Fujaba for programming.

graph scenario story board Sequence of object diagrams outlining the evolu-

tion of an object structure during the execution

of an operation.

graph schema class diagram Beyond graph schemas, class diagrams may also

declare methods.

graph rewrite rule story pattern In Fujaba, a story pattern is an object diagram ex-

tended by modification annotations. At runtime,

the story pattern is matched against an appro-

priate part of the runtime object structure. The

matched elements are then modified as specified

by the modification annotations.

programmed graph

transformation

story diagram In Fujaba, story diagrams are UML activity di-

agrams where the activities hold story patterns.

Story diagrams specify the control flow between

story patterns. Story diagrams are attached to

methods and thus provide the method implemen-

tations.

Fig. 1. An example car electric system
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The main architectural decisions for a car electric system are how many ECUs
it employs, where these ECUs are placed in the car and which control function-
ality is placed on which ECU. Similarly, the number and placement of fuse boxes
have to be chosen. Depending on these decisions, the wiring of the car has to
be routed to connect the ECUs with each other and with the sensors and actors
they need to access and to provide the power supply to all components with
minimal costs but respecting the car geometry and the corresponding electrical
constraints. Our task was to develop tool support for the developers of car elec-
tronic systems enabling them to study alternative architectures with minimal
effort and helping them to optimize the electronic system with respect to overall
costs and e.g. weight.

As a prerequisite for the optimization of a car electric system, in a first project
phase we have developed a cost model that allows us to compute the overall
costs of a chosen electric system and to analyze the gain or loss caused by
an alternative architecture. In order to facilitate the development of alternative
architectures, the second project phase has developed support for labor-intensive
work as the configuration of ECUs and the routing for the wiring harness once
the main architectural decisions have been done. In a third project phase, the
OBA tool shall automatically generate and compare alternative architectures.
In this paper we utilize the cost model to illustrate how Fujaba enabled us to
involve the domain experts. This means, this paper deals mainly with the first
project phase.

The cost model requires an enormous amount of domain specific knowledge.
This knowledge is provided by the industrial partners in this project, namely
the Volkswagen AG, a car manufacturer or OEM, Siemens VDO, a supplier of
ECUs and electronic components, and VW Bordnetze, a manufacturer for wiring
harnesses. In addition, there were a PhD student and a post-doc in electrical
engineering from the University of Kassel involved, who had the task to transfer
the domain knowledge into the project. These engineers were part time supported
by the professor for car electric systems at University of Kassel. The software
engineering and software development part of the project was executed by two
PhD students in computer science together with some student programmers part
time supported by the professor for software engineering at University of Kassel.

4 The OBA Cost Model

Since we employ complex data structures for the optimization of the wiring har-
ness and for the conception of ECUs, and due to our experiences, we decided to
develop the OBA tool with an object oriented model using the Fujaba environ-
ment [Fu09, FNTZ99] and to generate the actual implementation in Java.

The modeling of the OBA application started with the car body. On top of
this we have build the wiring model and the models for the ECUs and for the
software functions. This is the basis for the optimization algorithms.
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In the OBA project one major source of complexity was the sheer amount of
aspects that had to be addressed. For example the costs for the wiring harness
included aspects like:

– Cable costs depending on cable length and cable kind.
– Costs of cable mounting elements depending on the crossed car areas and

their respective mechanical stress. Some car areas may require additional
mounting elements including the respective costs.

– Costs of wire protection means. For example, different (humid) car areas
require different wrapping techniques with different tape material. Since tape
may be as expensive as wires, we had to compute the length of the required
tape, exactly.

– Costs and kinds of connectors. For each bundle of wires reaching an ECU or
an actor or a sensor, we had to compute an appropriate connector. Depending
on the cross section of the different wires, pins of appropriate sizes have to
be used. However, the whole connector must not exceed a certain size e.g.
the size of the ECU itself or the size of hatches where the bundle has to
be threaded through. In addition, for a connector with a high number of
pins, the physical force required to put the connector in the socket must not
exceed a certain maximum.

– Cables may be split at a certain point in order to reach multiple target points
with the same signal. This is achieved using so-called splices. However, there
are a number of restrictions on the fan-out of such a splice and on the
environmental conditions of the car area where this splice is placed.

– The costs of mounting the wiring harness depends on the accessibility of the
corresponding car areas and on the kind and number of mounting elements
that are used and on the number of connectors that have to be placed.

– So called threading costs. If some cable bundle needs to be threaded through
some car body hatch or some rubber spout, this requires mounting costs
according to the number of connectors that are to be threaded and according
to the so-called threading length.

This list is far from completeness. Covering ECUs, fuse boxes, communica-
tion busses etc. involved similar lists. One of the main challenges of the OBA
project was to structure all of these aspects appropriately. This required a close
collaboration between the domain experts and the software engineers.

4.1 Applying FUP Steps 1 and 2

As proposed by the Fujaba process, we started the elaboration of required func-
tionality with the help of textual scenarios and object diagram scenarios.

At the beginning of the development, our domain experts came up with textual
requirements descriptions as shown in Figure 2. These requirements where of
course quite coarse grain and thus insufficient for further analysis, design and
implementation. In addition, most other requirements descriptions were based
on the car body description, e.g. the description of spatial constraints for ECUs
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or for the diameter of cable bundles. The next layer of requirements was based
on these two lower requirements layers and so on. Without a clear common
understanding of the basic requirement layers, it became progressively harder to
read and write new requirements on top of them.

2.1 The car body  
…
The car body consists of different car areas representing units of assembly and units 
of similar environmental conditions. The changeovers between car areas require 
additional protection means against different environmental conditions, e.g. humidity. 
In addition, car area changeovers require special mounting efforts. …The car areas 
contain all kinds of mutually connected wire channels, cavities, etc.
…

Fig. 2. First textual requirements on car bodies

To overcome these problems, we had to pinpoint the requirement layers such
that a common understanding between domain experts and software engineers
was achieved and such that the next layer was easy to build on top of them.

According to the FUP, we asked our domain experts to exemplify some typ-
ical situations with the help of object diagrams. After some training and some
more discussion, we developed object diagrams as shown in Figure 3. Actually,
the object diagram shown in Figure 3 has a large number of predecessors that
were refined multiple times for each requirements layer. We started with object
diagrams modeling car areas in order to deal with environmental conditions as
hot and wet in the engine area or cold and dry in the cabin area, cf. objects ca1
and ca2 at the top of Figure 3 (attributes are omitted due to space restrictions).
Then we added channels and nodes modeling the parts of the car body where
wires may be routed, cf. objects ch1 through ch4 and node n1. In addition, the
information on required wire protection means and required mounting means is
attached to channels (not shown in Figure 3 due to space restrictions). Next we
modeled ECUs and other electronic components, cf. ecu1 and comp1 and comp2.
Based on this, we introduced wires, contacts and connectors. Finally, we intro-
duced bundles of wires since some channels may contain multiple wire bundles
where each bundle has its own costs for protection means and mounting means.
Altogether this process resulted in a large number of detailed object diagrams
exemplifying our modeling of the different aspects to be considered for our wiring
harness cost model.

With the help of the object diagrams, we had a lot of fruitful discussions
with our domain experts. For example, in a first attempt our domain experts
proposed that each channel object has its own attributes for the humidity and
for the maximum temperature. We recognized, that many channel objects had
the same values for these attributes and asked the domain experts, when these
values will differ. They told us, that these values are determined by the car area
and they differ only when the car area is changed. Thus, we moved the humidity
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and temperature attributes from the channels to the containing car areas thereby
reducing the data redundancy a lot.

Similarly, at the beginning, each wire had its own attributes for meter costs,
diameter and wire type. After some while, we found out that only 7 different
wire diameters are used in a car and that the costs per meter were the same for
all wires with the same diameter and the same wire type. To improve this, we
introduced a catalogue of wire kind objects holding the price information and
each wire just refers to its wire kind. Thereby, it became easy to handle changing
market prices for wires. Later on, we introduced such catalogue objects also for
contact kinds, connector kinds, chip kinds, etc.

Another important point was the discussion of associations. We did not ask
our domain experts whether class CarArea should have a contains association
to class Channel or whether we should introduce a composite pattern at this
place. Due to our experiences, it is not fruitful to discuss with non software do-
main experts on this level of abstraction. Instead, we asked our domain experts,
whether there is an example of deeper nesting of car areas. Indeed, some car
areas contain sub car areas. In addition, there were examples where car areas
contained cavities which in turn contained channels. Thus, we decided to use
a composite pattern to model this hierarchy and told our domain experts that
arbitrary nesting of car areas, cavities, and channels are enabled, now. Note,
this design decision has been elaborated during the derivation of class diagrams
corresponding to step 3 of the Fujaba process. Thus, it would belong to the next
subsection. However, while the software experts used class diagrams to identify
the problem, the team used object diagrams to discuss the problem with the
domain experts. This corresponds to step 2 of the Fujaba process and thus it
belongs to the current subsection, too. Actually, these steps may be executed
intertwined.

Overall, the object diagrams provided the domain experts with a clear un-
derstanding how the software models the different aspects of the application
domain. This also facilitated the textual description of the requirements, con-
siderably. As an example for a more complex requirement description developed
this way, we now discuss the computation of threading costs for cable bundles.
Figure 4 shows a small example for a wiring harness connecting three compo-
nents where the right component is reached via a car area changeover that is
protected by a rubber spout. To mount the wiring harness, some cable bundle
needs to be threaded through the spout. This is a very tedious work with high
mounting costs.

Originally, the computation of these threading costs was quite unclear and
hard to explain, cf. Figure 5. This first textual requirements description was
hard to implement since it was quite unclear, how one finds the wires on the
two sides of a spout and how the length is computed. With the help of example
object diagrams, it became clear, that one has to consider the bundles within
the spout. In addition, it became clear that there are two cases to be considered.
If the spout leads directly to a channel, one may just lookup the bundles in that
channel. If the spout leads to a node, one has to consider all channels attached
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Fig. 4. Example for the threading of cable bundles

to the node. In the project, the graphs were just discussed with the software
developers. In this exceptional case, we lazily did not write down the improved
requirements description that resulted from the discussion. However, for this
paper, we created an improved textual requirements description referring to the
graph of Figure 3 in order to exemplify how the graphs helped to improve the
requirements description, cf. Figure 6.

Computing Threading Length and Threading Direction 
Consider each wire passing a rubber spout and sum up all lengths of all used 
cable channels before the spout. The distance of spouts and cavities is 
computed via the lengths of the cable channels. Consider only cavities 
connected by wires threaded through the spout. Compare the maximal lengths 
for each side of the spout. The lower one is the required threading length. This 
also identifies the threading side, i.e the side from which the cable bundle is 
threaded through the spout. Consider also the number of plugs at the threading 
side.

Fig. 5. First iteration requirement description

To summarize, with the help of object diagrams the requirements became very
detailed and concrete. Such detailed requirements accompanied with elaborated
object diagram examples were an excellent basis for the implementation of the
desired functionality. Thus, the object diagrams enabled our domain experts to
contribute very valuable aids to the design and implementation of the system.

4.2 Applying FUP Steps 3 and 4

Usually, architecture and class diagrams play an important role in software
projects. Commonly, these diagrams are used for design discussions. In the OBA
project, most of the design decisions have been done based on the discussion
of object diagrams. At the first glance, class diagrams have been derived from
these object diagrams by just collecting the employed classes, attributes and
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Threading Length 
• If a bundle of wires, cf. bundle b4 in Figure 4, needs to be threaded through a 

spout sp1, this requires mounting time according to the number of connectors 
that need to be threaded and to the length of the bundle that needs to be 
threaded.  

• To compute the threading length, both sides of the spout have to be 
considered, in our example channel ch4 and node n1 are direct neighbors of 
spout sp1.  

• If the direct neighbor is a channel, we consider the wires belonging to bundles 
that belong to the spout and to the neighbor channel. In our example, channel 
ch4 contains bundle b5 containing wires w1 and w2.  

• If the direct neighbor is a node, we consider the neighbor channels connected 
to that node. Only, wires belonging to the spout and to one of these neighbor 
channels are considered. In our example, this are again wires w1 and w2. 
Note, wire w3 must not be considered since it does not cross the spout.  

• The length of a wire is the sum of the lengths on channels containing bundles 
that contain the wire.  

• The maximal length of the two sides of the spout is the threading length.  

Fig. 6. Improved requirement description based on object diagrams (Created to exem-

plify object diagram discussions)

associations. Actually, during the editing of object diagrams, we used class dia-
grams mainly as a glossary. This means, if one creates a new object, he decides
whether the type of this object is already known and may be reused or whether
a new object kind, i.e. a new class, needs to be introduced. Similarly, we handled
the reuse of attribute declarations and associations. Thereby, the class diagrams
leveraged the consistent use of classes, attributes and links through the different
object diagrams.

However, inheritance structures and design patterns were introduced at class
diagram level. This was the task of the software experts. Discussing these class
diagrams with the domain experts was not fruitful.

As an example, Figure 7 shows some central classes of the OBA model. As
already discussed, OBA needed a flexible hierarchy of car body elements. This
was enabled by a composite pattern created through the class HierarchyElement
and its contains association. In addition, OBA employs several graph like sub-
structures. For example, channels, nodes, and cavities form a graph for the layout
of the wiring harness. Similarly, wires, contacts, connectors, ECUs, and compo-
nents form a graph. These graphs require a certain flexibility since e.g. at the
beginning wires are directly connected to components and later on contacts
and connectors are introduced. To achieve the required flexibility, we introduced
the at association for class HierarchyElement. This at association allows arbi-
trary graph connections between car elements, even between car body elements
and wiring elements which is more then we wanted to achieve. A better mod-
elling would have employed UML 2.0 association refinement features in order to
separate between different graph structures. While we wanted to employ these
UML 2.0 features, we had no sufficient tool support for the generation of the
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Fig. 7. Some central OBA classes

implementation of such refined associations available and thus we stick to the
general solution.

Conventional approaches tend to express as many requirements and con-
straints in the class diagram as possible. Such conventional approaches frequently
use additional OCL expressions to statically constrain the class diagram even
more. If class diagrams are your central document, you need to put all your
findings there. Contrarily, the Fujaba process proposes to document the cen-
tral findings in story boards. Thus, class diagrams become secondary documents
and as in the above example the class diagrams used in the Fujaba process are
usually less restrictive than conventionally. Due to our experiences, such less re-
strictive class diagrams and designs turn out to be more flexible in case of new
requirements showing up in later phases. In our example, the general at associ-
ation allows to connect wires directly to actors while in reality the wires end in
a connector that then is plugged to the actor. However, during implementation,
it became handy to connect wires to actors first and to insert connectors later
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after all wires had been added. In our relaxed design this intermediate object
structure was no problem. A conventional design may have easily forbidden it.

4.3 Applying FUP Steps 5 through 8

Once the major design for some functionality had been developed based on de-
tailed textual requirements, object diagrams and class diagrams, we implemented
that piece of functionality in an iterative process. Since this paper focuses on
the usage of object diagrams and story boards for the involvement of domain
experts, we do not discuss the algorithm development here. However, as im-
plementation language we used so-called story diagrams, i.e. a combination of
activity diagrams and a variant of object diagrams, so-called story patterns, cf.
[KNNZ00, DGZ05, Zün02]. As an example, Figure 8 shows the specification of
method getThreadingCostsPerCarArea of class Spout. The activity diagram
part of a story diagram specifies the control flow as within a flow diagram. Story
patterns specify a query to the object structure in the program’s main memory.
For such a story pattern, the Fujaba environment generates usual Java code.
This Java code searches for a match of the depicted object diagram and if this
is successful, the depicted operations are executed, cf. [Zün02]. For example, the
first story pattern of Figure 8 specifies a query for three objects this, obasystem,
and params that are connected by an allObaElems link and by a parameters
link, as depicted. Query objects that are shown without a type are so-called
bound objects, i.e. they are already known, e.g. the this object. The Java code
generated for such a query starts from known objects and uses getters and it-
erators to look-up the other query objects. If these look-up operations fail to
retrieve valid matches for all participating objects, the story pattern execution
fails. Story diagrams provide special transitions in order to react on the failure
or success of a story pattern, cf. Figure 8.

The middle story pattern of Figure 8 looks-up all wires belonging to two
bundles that belong to the this object and to the (channel)neighbor object,
respectively. For each match1, the depicted collaboration message computes the
threading length for that wire and the maximal threading length is collected in
variable threadingLength. Similarly, the last but one story pattern handles the
case that the neighbor of the current spout is a node and all channels attached
to that node have to be considered.

The point is, that our method implementation with story diagrams use a
graphical notation (cf. [KNNZ00, DGZ05, Zün02]) that again employs a variant
of object diagrams. Since object diagrams have already become familiar to our
domain experts during the requirements analysis, with some training, our do-
main experts were able to review our implementation. We had a lot of fruitful
discussions, where the software developers explained their story diagrams and
then the domain experts started to point to special cases. In these discussions,
the domain experts again used object diagrams to illustrate the special cases they
were concerned about. Then the software developers used simple walk throughs
1 Potentially, a story pattern query may deliver multiple matches. For-each activities

depicted by two stacked activity shapes allow to iterate through all such matches.
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Fig. 8. Computation of the threading costs

to check whether these special cases were already addressed or whether the story
diagram had to be adapted to handle such a special case, appropriately. Actually,
in the threading length example, such a review discussion revealed that the first
implementation attempt erroneously considered wires that only bypass a spout.
Thus we had to extend the last but one story pattern of Figure 8 by the bundle
object contained within the spout in order to ensure, that only threaded wires
are considered.
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To summarize the implementation phase, the use of story diagrams enabled
our domain experts to review our implementation and to point us to special
cases. In our experience, similar reviews by our domain experts would not have
been possible for an implementation in a textual programming language like
Java or C++.

4.4 Deployment

The Fujaba process focuses on the central software development activities. In
the OBA project, it turned out that this is only a part of the overall project.
For the deployment of the developed software, we needed not only to model the
required car data but we had also to collect all the actual data of a car electrical
system. The data on a car electrical system is distributed over a large number of
heterogenous data sources. First of all, the car body geometry is provided by a
CAD system owned by the OEM. In addition, the OEMs electrical engineers use
another CAD tool to develop the circuit diagrams for the electronic system of
the new car. In the next step the circuit diagrams are enriched with information
on wire kinds, etc. This information is then joined with the car body geometry in
order to determine the actual layout and length of cables. This is again enriched
with information on required mounting and protection elements. As an example,
Figure 9 shows a cutout of the final 3D CAD drawing for the wiring harness in
the front left area of an example car. For the manufacturing of the wiring harness,
the 3D CAD drawing is finally exported into a so-called form board diagram, a
2D flattening of the wiring harness.

Fig. 9. Cutout of a 3D drawing of a wiring harness

While the described tool chain was well established at the industrial partners
of the OBA project, the development process still involved many manual steps
and frequently the data produced by one tool is interpreted by a human execut-
ing a subsequent step. Thus, we had to collect data e.g. from paper print-outs
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and from several spreadsheets. While semi-formal, the spreadsheet data contains
numerous data cells where automatic data import failed, e.g. because an engineer
had entered some additional comment to the data. This is helpful for a human
interpreting the data but crashes automatic data import routines. In addition,
the data was frequently not on the level of detail that we needed for OBA. For
example the size of connectors was usually not contained in the plans while OBA
needed to ensure that the connectors still fit through hatches and do not exceed
the size of e.g. the ECU they are connected to.

At the beginning of the process the domain experts where quite confident
about the quality of the available car data. They have a well established tool
chain and process and they are producing quite some cars with this process.
However, with the help of the story board scenarios, it was easy for the team to
elaborate which detail of data was actually required for the OBA tool. It was
also easy to exemplify why e.g. certain comments in a spreadsheet cell are not
easy to interpret for the OBA tool and that certain data like connector sizes
are not yet available at all. This common understanding on data requirements
was the key to solve the data retrieval problem. The common understanding
was important because finally, the domain experts had to figure out where in
the enterprises and in the existing tool chain such data might be retrieved. And,
sometimes, the domain experts had to convince their colleagues that they have
to extend the existing tool chain to provide additional data. This would not have
been possible for the software developers from outside the enterprises.

5 Other Approaches

The Fujaba diagrams are derived from UML diagrams and try to stay as close
as possible to UML. However, in UML related processes class diagrams have a
much more central role and object diagrams are somewhat marginal. In the Fu-
jaba process, object diagrams and story boards are central. Accordingly, Fujaba
extends these diagrams, slightly. In SYSML, inner block diagrams are a big step
in the direction of the Fujaba approach. These inner block diagrams allow to
specify block instances and their relations at runtime and may be compared to
our use of object diagrams. The main difference is that in SYSML, the blocks
usually represent functional units that pass data values to each other via their
connections. Restructuring operations on such nets of blocks are not central to
SYSML. Thus, SYSML is well suited to model nets of functional blocks and how
data is processed within such a net. Fujaba story boards are well suited to rep-
resent complex internal states of object oriented systems and how such complex
states evolve during operation execution.

6 Lessons Learned

The main complexity of the OBA project was the sheer amount of domain details
that contribute to the construction of a car electric system. The OBA project
was initiated by our professor for car systems at Kassel University. Thus, the
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project employed two domain experts from the research group of car systems.
For the design and implementation work, there were only two PhD students
from the software engineering group of University Kassel. At the beginning, the
software engineering group thought that one domain expert and three software
developers would make a better team. However, after roughly 6 years of software
development, we have to state that the emphasis on domain experts was actually
a key to success for the project. More precisely, since we had only two software
developers, we were forced to involve the domain experts into the development
process as much as possible. Using object diagrams we were able to do this in the
requirements analysis phase. After a short learning curve, the domain experts
were actually driving the requirements process. For each new aspect, they devel-
oped object diagram examples. These were discussed with the software experts
in some iterations. Frequently, the domain experts from University of Kassel had
to interview the domain experts in the contributing enterprises in order to clarify
details. Thus, the domain experts at Kassel University served as some kind of
mediators between the actual customers and the software developers. Through
object diagrams, this worked out very well. Similarly, the contribution of detailed
implementation reviews by our domain experts was of unmeasurable value for
the project. Again, this was enabled by the object diagram like notation used in
story diagrams.

For the deployment, the gathering of actual car data became a crucial issue.
Many data came from tools without appropriate data export features. Some
data was provided in paper format, only. And some data needed to be retrieved
from the domain knowledge of the participating enterprises. Before the project,
this data was used by human experts, only. While these experts were able to
deal with slight inconsistencies and some missing data, the OBA tool requires
consistent and complete data. Thus, the retrieval of the actual car data required
a lot of negotiation with the domain experts working in the participating en-
terprises. During these negotiations it was crucial to communicate the detailed
data needs of the OBA system and why the existing data sources failed to de-
liver the required details. Again, object diagrams turned out to be very helpful in
communicating how OBA processes car data and which detailed information is
needed for which calculation step. This helped tremendously to raise the mutual
understanding of all partners and to ease the collaboration.

One may argue, that the Fujaba process requires the elaboration of a large
number of object diagrams and story boards compared to a much smaller number
of class diagrams used in conventional approaches. This is true. The cost model
of the OBA project produced about 165 object diagrams and 107 pages of tex-
tual requirements. This resulted in 108 classes with 312 major methods which
corresponds to about 8 class diagrams. However, creating the object diagrams
is much easier than creating class diagrams, directly. In addition, skipping the
object diagrams and creating the class diagrams directly would not have helped
us to involve the domain experts. Many problems in our design would not have
been discovered by the domain experts and we probably would have build the
wrong system. In addition, after a short learning period, most of the object
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diagrams have been created and elaborated by the domain experts. Thus, the
domain experts did this extra work. Thereby the domain experts facilitated the
work of the software engineers considerably. Actually, in other projects we made
the observation, that software developers tend to need a much smaller number
of less detailed object diagrams and story boards to cover some functionality.
Non IT domain experts tend to use more examples and to elaborate them in
larger details in order to ensure themselves that they did not miss any problem.
In combination, the software developers do not need to invest too much time
into the elaboration of object diagrams and the domain experts ensure that no
important domain detail is missed.

Still, the large number of object diagrams create a certain maintenance prob-
lem. If the organization of the object structure changes reasonably, this may
require only a small change to the corresponding class diagrams while this may
cause changes in many object diagrams that contain the changed structure. For
example, moving the temperature attributes from cable channels to car areas
was a small change in the OBA class diagrams but quite a number of object
diagrams needed to be adapted. Luckily, in the OBA project, again the domain
experts did this work. Generally, improved editing support as e.g. copy and paste
mechanisms and macro recording mechanisms need to be provided to minimize
this effort.

Overall the incorporation of the domain experts worked out very well in this
project. The key to success was, to enable the experts to contribute detailed do-
main knowledge within requirements analysis and even within the implementa-
tion phase. This worked due to the usage of object diagrams and story diagrams,
i.e. due to graph grammar techniques.
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Abstract. Today, mechanical engineering products can largely be classified as
mechatronic systems, i.e. systems integrating electrical and mechanical compo-
nents with software. Mechatronic systems are often employed in safety-critical
areas, for instance in the automotive or railway domain. MECHATRONIC UML
is a UML profile specifically tailored towards the modelling of mechatronic sys-
tems. It aims at bringing model-based design and formal analysis to the mecha-
tronic area, which has originally been dominated by engineering techniques. In
this paper we give a survey of the modelling as well as verification techniques
supported by MECHATRONIC UML.

1 Introduction

Today, software and its design is of critical importance for the proper functioning of
so-called embedded or mechatronic systems. Mechatronic systems are characterised by
a combination of basic mechanical devices with electrical and software components.
Typical examples of mechatronic systems can be found in automotive applications, e.g.
advanced braking systems, fly/steer-by-wire or active suspension techniques, but also
DVD-players or washing machines. The control of these systems is handled by soft-
ware. Sensors provide system and environment data to the control part, actuators allow
to actively respond to such inputs.

In addition, advanced mechatronic systems [42] are today often characterised by a
(very) high degree of distribution, i.e. they often consist of a large number of single
entities which interact with each other. This interaction allows for a significantly ex-
tended functionality by exchanging information between system components which do
not have to rely on sensor inputs only anymore. This can for instance be seen in the
automotive and rail domain: Intelligent lighting systems combine information about
their environment obtained from their own sensors with those collected by other cars.
In the Paderborn rail system (introduced in more detail in the next section) shuttles au-
tonomously form convoys as to reduce air resistance and optimise energy consumption.
As a consequence, such systems often exhibit so called self-* properties, i.e. they adapt
their own behaviour in reaction to the environment [29,30]. The enhanced facilities of
gathering information both from sensors and from other entities create new possibili-
ties for adaptation. Self-adaptation might concern changes of the particular component
composition as well as of individual component behaviour.

G. Engels et al. (Eds.): Nagl Festschrift, LNCS 5765, pp. 533–554, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Besides self-adaption, there is another characteristics of advanced mechatronic sys-
tems which makes their design hard. Communication between system components
means the exchange of complex state information which influences the control of sys-
tem components significantly. The interplay between the continuous control based on
sensor input on the one side and the discrete control based on communication on the
other side leads to usually very complex software. In general, mechatronic systems fall
into the category of hybrid systems involving continuous as well as discrete parts. The
design of mechatronic systems thus means designing a hybrid, self-adapting system.

Mechatronic systems are often employed in safety-critical contexts. To guarantee
high quality of these systems in practice, usually large numbers of tests based on sim-
ulation are being run. The (software) complexity of safety-critical systems however
requires more sophisticated methods than “only” simulation and testing; techniques
which give us a high guarantee, at the best a proof of correctness. In traditional software
development, today this ambitious goal is approached by a model-based design which
is complemented with a formal analysis. The main objective of MECHATRONIC UML
is to bring this approach to the world of mechatronic systems. Our research focuses on
complementing testing and simulation with model based design and formal analysis to
guarantee highly safety-critical system properties.

To this end, we have taken UML as the standard for software modelling as start-
ing point. MECHATRONIC UML is a specific profile for mechatronic systems, which
on the one hand restricts the use of UML to certain diagram types and on the other
hand specialises these diagrams for the usage of modelling hybrid, self-adapting sys-
tems. For modelling self-adaptation on the component structure level we employ graph-
transformation systems. To allow for a formal analysis, all modelling elements in
MECHATRONIC UML furthermore have a formally defined semantics.

In addition, our approach is based on a formal architecture definition. The proper
definition of component interfaces enables a verification of inter-component communi-
cation based on formally specified protocols which are attached to specific ports. The
interface definition guarantees that no such protocol influences the behaviour of an-
other one, i.e. protocols are specified such that no side-effects occur. Scalability of our
approach to real systems thus becomes possible by applying compositional verification.
Other special architectural modeling approaches like SysML [34] and the UML SPT
[37], or rather its successor MARTE [36], do not adequately support modeling of time
(SysML) or do not provide the needed architectural abstraction from hardware details
(MARTE).

Our architecture definition also supports the tight integration between the definition
of controllers by block diagrams and differential equations and the definition of state-
based behaviour by timed state charts. In contrast to others [1,24], we abstract from the
detailed definition of controllers by a proper interface definition which enables to ver-
ify the timed state charts independently from the controller input/output behaviour thus
improving scalability. The correct behaviour of controllers as well as the time needed
for reconfiguration of controllers is assumed to be guaranteed by control engineers and
their corresponding tools. The MECHATRONIC UML approach thus supports a tight in-
teraction of the disciplines involved in designing a mechatronic system, the mechanical
and electrical engineers and the software designers.
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In summary, model driven development using MECHATRONIC UML approach in-
cludes the following steps: definition of the system architecture by an (extended) UML
2.0 component model, specification and verification of individual component behaviour
by a special extension of timed state charts to address hybrid systems, specification of
system reconfiguration, i.e. architectural changes to address self-* properties, by timed
graph transformation systems and finally fully automatic code generation.

The paper is structured as follows. In the next section we introduce our main ap-
plication, the Railcab project. This serves as our running example for modelling and
analysis with MECHATRONIC UML. Section 3 will introduce our general architectural
model. Sections 4 to 6 describe modelling and verification with MECHATRONIC UML.
Section 7 gives a short introduction into our tool FUJABA supporting both modelling
and verification. The last section concludes and presents future work.

2 The Railcab Project

The Paderborn-based RailCab research project (http://www-nbp.upb.de/en) is a con-
crete example for a mechatronic, hybrid system exhibiting self-adaptation. It aims at
combining a passive track system with intelligent shuttles that operate individually and
make independent and decentralized operational decisions. The project is funded by a
number of German research organizations. It has built a test track in the scale of 1:2.5
such that the ideas of the project are not only tested “on paper” but in real operation.

Fig. 1. Railcabs driving in a convoy

The vision of the RailCab project is to provide the comfort of individual, traffic con-
cerning scheduling and on-demand availability of transportation as well as individually
equipped cars on the one hand, and the cost and resource effectiveness of public trans-
port on the other hand. The modular railway system combines sophisticated undercar-
riages with the advantages of new actuation techniques as employed in the Transrapid
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(http://www.transrapid.de/en) to increase passenger comfort while still enabling high
speed transportation and (re)using the existing railway tracks.

One particular aspect is to reduce the energy consumption due to air resistance by
coordinating the autonomously operating shuttles in such a way that they build convoys
whenever possible. Such convoys are built on-demand and shuttles travel only a few
centimeters apart from each other (up to 0.5 m) such that a high reduction of energy
consumption is achieved. This requires a lot of information exchange between the var-
ious machines or system components like the shuttles, registrars, dispatchers, stations,
customers, etc. It also means a tight integration of quasi-continuous and discrete control
software and the realization of complex functionality by software rather than hardware.
For example, travelling only at a few centimetres distance in a convoy requires tight
coordination between the various speed control units under hard real-time constraints.

In the following, we will use the Railcab project and, in particular, the convoy build-
ing of shuttles as our running example for MECHATRONIC UML modelling and analy-
sis. It exhibits the main characteristics of advanced mechatronic systems and the chal-
lenges that this imposes on software design: the need for integrating continous control
with discrete software and the need for self-adaptation.

3 Architectural Model

Our approach to the model-based design of mechatronic systems consists of several
phases, which incorporate different modelling as well as verification activities. All of
these phases require a tight interaction of software and control engineers as both sides
are involved in the decisions being made. The first phase consists of specifying the
overall architectural structure of the system. This will first of all be given as a hier-
archy of Operator-Controller-Modules (OCMs) (1), as described below. Based on this
model, a more detailed architecture modelling, in particular of component interaction,
is specified via UML 2.0 component diagrams (2). The next phase consists of the de-
tailed design and analysis of the interactions themselves. To this end, all connectors and
associated ports in the component diagram are attached to a so-called coordination pat-
tern (3). Coordination patterns describe interaction protocols, possibly including timing
constraints. Via model-checking we analyse the correctness of the composition of such
interaction protocols (4). The next step consists of the modelling of components them-
selves: we specify the behaviour of components with a form of hybrid statecharts (5),
in which the usage of particular controllers is attached to states. The reconfiguration of
controllers is build into these statecharts, and includes the definition of so-called cross-
fading functions to allow for a smooth switching of controller. Such a modelling of
components requires two more correctness checks. First of all, we have to show that the
component behaviour is consistent with the specified interaction protocol (6), and sec-
ond we need to show that the timing conditions in the statecharts are consistent with the
physical world, i.e. for instance actually represent the fading duration of a cross-fading
function (7). The latter aspect is a task of the engineers. Finally, going back to the top
level of the architecture, one more modelling possibility is reconfiguration on the archi-
tectural level (specified by graph transformation systems), which gives us the flexibility
of adapting in particular software protocols to changing environmental situations (8).
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This section will describe the modelling of the structural level only, (1) and (2), the
next sections have a closer look at component interaction and controller integration.

The Operator-Controller-Module, as depicted for our example in Fig. 2 (cf. [27]),
describes a general architectural model of a single system component and identifies its
constituent parts.

Fig. 2. OCM architecture

The OCM reflects the strict hierarchical construction of a system component includ-
ing the hardware components: (1) On the lowest level of the OCM, a more or less stan-
dard controller (C) implements a feedback loop based on sensor input and producing
actuator control signals accordingly. This is called the motor loop. The software pro-
cessing is necessarily quasi-continuous, including smooth switching between possible
alternative control strategies which are described by some form of differential equations
or difference equations. (2) The controller is controlled by the reflective operator (RO),
in which monitoring and controlling routines are executed. The reflective operator op-
erates in a predominantly event-oriented manner and thus includes a control automaton
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with a number of discrete control states and transitions between them. It does not access
the actuators of the system directly, but may modify the controller and initiate the switch
between different control strategies. Furthermore it serves as the connecting element to
the cognitive level of the OCM. (3) The topmost level of the OCM is called the cogni-
tive operator (CO). On this level, the system can gather information concerning itself
and its environment and use it for the improvement of its own behaviour, i.e. possibly
complex, time-consuming computations for long-range planning. This level introduces
intelligent behaviour and consequently such components could also be called agents.

Fig. 3. The OCM hierarchy of a shuttle and its connections with other shuttles

The OCM hierarchy can be nested, i.e. each nesting level may include an OCM
which however does not include the controller part. Controllers, which implement the
continuous part of the software, usually exist only on the leaf level of a nested OCM
hierarchy. As an example, consider the above mentioned shuttles of the RailCab project.
The architecture is defined by OCMs w.r.t. the reflective operators and the controllers as
depicted in Fig. 3. A shuttle consists of components like the suspension/tilt module, the
engine, or the steering module. They will utilize the same hardware (actuators, sensors
and controller) but their software is defined by OCMs as is the software of the shuttle.

As a complete mechatronic system usually consists of several concurrently running
components, there exists furthermore the possibility of communication between com-
ponents besides the strict hierarchical control flow within one component. OCMs may
also act as freely interacting system components (see Fig. 3) where controllers, reflec-
tive and cognitive operators resp. of one component exchange information with their
counterparts of another component. As examples consider communication between sys-
tem components like the different shuttles, stations, job brokers and dispatchers of the
RailCab project.
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Based on this general model, a (slightly extended) UML 2.0 component model is
used to represent the software architecture of a concrete system in detail. A key feature
of this architecture is the detailed definition of the individual component ports and their
connections with other ports. This concerns the component hierarchy of a single com-
ponent which corresponds to a single OCM as well as the peer-to-peer communication
between top-level OCMs. We also distinguish between ports which represent the ex-
change of state information on the level of reflective and cognitive operators, and ports
which represent the exchange of controller information based on sensor input. The lat-
ter, called continuous ports, are displayed as squares with an arrow inside, the former
ones are simply squares and thus follow the standard UML notation.

Fig. 4 illustrates the UML 2.0 component model representation of the OCM of a sin-
gle shuttle. The (communication) links (connectors) define port to port communication,
i.e. they identify all possible intra- and intercomponent interactions. Each of these links
corresponds to a communication protocol as explained in the next section. The inputs
and outputs via continuous ports are defined by a controller definition in terms of block
diagrams and corresponding differential equations.

Legend: continuous port discrete port

Fig. 4. Example for a component structure of a Shuttle OCM

4 Protocol Modeling

Having specified the component structure, we next develop a more detailed descrip-
tion of the communication links. Each communication link is specified by a so called
(real-time) coordination pattern. These patterns are a refinement of the loosely defined
collaboration and pattern concepts in UML 2.0. Coordination patterns mainly fix com-
munication protocols. As we assume a port to port communication based on one such
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pattern, no interference with other patterns (or rather, their instances in a concrete sys-
tem) can appear. This allows us to individually verify patterns, and afterwards compose
verification results (compositional verification).

A coordination pattern consists of a set of roles that communicate only via ports
based on a related connector that connects those ports. Each role and connector in turn
are specified by a real-time state chart (RTCS). RTSCs are an extension of UML state
charts especially supporting the notion of time. This allows for modelling timing con-
straints for transitions and states like e.g. deadlines, lower and upper bounds or worst
case execution times (WCET). To support model checking of safety and lifeness prop-
erties of the communication protocols specified by RTSCs, they are mapped to timed
automata which additionally gives them a formal semantics. (On a side note, this means
abandoning the run-to-completion semantics of UML state charts which is not appropri-
ate for modeling real-time and mechantronic systems.) In fact, RTSCs are an abstraction
of timed automata, that support building more comprehensible models as they are usu-
ally smaller than the corresponding timed automata. For details we refer to [11]. As
a model checker for the generated timed automata, we employ UPPAAL [6]. We use
it basically for two kinds of analyses: on the one hand, we show that the controllers
(see next section) associated with states in the state charts are correctly embedded. On
the other hand, we can prove time-dependent safety properties of our systems on the
generated timed automata.

The specification of safety properties on communication protocols is given by declar-
ative constraints which are defined using temporal logic. As nonfunctional system prop-
erties such as real-time behaviour are not supported by the standard UML and related
extensions for real-time systems such as the UML Profile for Schedulability, Perfor-
mance, and Time [37], a state-based temporal extension of the Object Constraint Lan-
guage (OCL) called RT-OCL [16] is used. As the examples in this paper only contain
formulas in pure OCL, we further omit any details of RT-OCL here.

The communication between shuttles which is necessary to build a convoy (of, in this
case, two shuttles) is one such coordination pattern. Fig. 5 shows a ConvoyCoordination
pattern instance between two shuttles. It defines a drastically simplified protocol for
building and breaking convoys based on two roles, namely the rear role and the front
role (see Figure 5). Initially, both roles are in state noConvoy::default, which means that
they specify the situation where a shuttle is not a member of a convoy. The rear role
decides whether to propose building a convoy or not. After the decision has been taken,
a message is sent to the other shuttle, or rather its front role instantiation. The front role
decides to reject or to accept the proposal after max. 1000 msec. In the first case, both
statecharts revert to the noConvoy::default state. In the second case, both roles switch to
the convoy::default state.

Eventually, the rear shuttle decides to propose a break of the convoy and sends this
proposal to the front shuttle. The front shuttle decides to reject or accept that proposal.
In the first case, both shuttles remain in convoy-mode. In the second case, the front
shuttle replies by a confirmation message, and both roles change to the corresponding
noConvoy::default states.

The connector which represents the wireless network does not need to be specified
by an explicit statechart specification here, but instead by its QoS characteristics such



Model-Driven Development with MECHATRONIC UML 541

(a)

default

wait

noConvoy

convoy

frontRole.convoyProposalRejected /

/ frontRole.convoyProposal

wait
frontRole.breakConvoyProposalRejected /

/ frontRole.breakConvoyProposal

default

frontRole.breakConvoy / frontRole.startConvoy /

(b)

noConvoy

answerdefault

default

/ rearRole.breakConvoyRejected
rearRole.breakConvoyProposal

/ rearRole.convoyProposalRejected

rearRole.convoyProposal /

convoy
/ rearRole.breakConvoy
rearRole.breakConvoyProposal

/ rearRole.startConvoy

wait {t0}
[1 ≤ t0 ≤ 1000]

Fig. 5. Statechart of the rear role (see Figure 5(a)) and the front role (see Figure 5(b))

as throughput, maximal delay etc. in the form of connector attributes. In our example,
we assume that the connector forwards incoming signals with a delay of 1 up to 5 msec.
The connector is unsafe in the sense that it might fail at any time, such that we set our
specific QoS characteristic reliable to false.

A safety property of this pattern is CanBrakeFully which describes that a shuttle can
only do an emergency brake when it is not taking the front position in a convoy. In detail,
the property specifies for any rear role instance that being in state convoy implies that
CanBrakeFully holds. In contrast, for any front role instance, state convoy requires that
CanBrakeFully does not hold. The following OCL role invariants are used to describe
these restrictions.1

context <component> inv:
<frontRole>.oclInState(convoy) implies

not self.CanBrakeFully
(1)

context <component> inv:
<rearRole>.oclInState(convoy) implies

self.CanBrakeFully
(2)

As the specified state chart model includes the notion of time, time-critical safety
properties are also verifiable. As an example, consider that negotiation about forming a
convoy between a number of shuttles (all of them approaching a switch) may not exceed
a given threshold. This guarantees that emergency actions might still be possible in case,
for example, a communication link is broken.

When defining the behaviour of a component like a shuttle using these patterns, the
predefined role behaviour has to be refined and synchronized. The following example
illustrates this step. Fig. 6 depicts the behaviour of the Shuttle component from Fig. 3.
The RTSC consists of three orthogonal states FrontRole, RearRole, and Synchroniza-
tion. FrontRole and RearRole describe the port behaviour. They are refinements of the
role behaviours from Fig. 5, and specify in detail the communication that is required to
build and to break convoys. An additional internal RTSC is used to specify the syn-
chronization between these roles as well as the embedding of a hybrid component
hierarchy. In our example, Synchronization coordinates the communication and is re-
sponsible for initiating and breaking convoys. The three sub-states of Synchronization

1 The context component enclosed in angle brackets is employed here as a placeholder for the
component which realize the role via one of its ports.
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Fig. 6. Behaviour of the Shuttle component

represent whether the shuttle is at the first position (convoyFront), at second position
(convoyRear), or no convoy is built at all (noConvoy). At this point, the reader should
ignore the embedded states which correspond to controllers and will be explained in the
next section.

Strictly defined refinement rules, which are checked syntactically, make sure that the
refinement of role behaviour does not invalidate the verification results of model check-
ing the coordination patterns. Basically, they only allow to refine the nondeterministic
behaviour of the patterns to a deterministic one. Then the final verification step to be
done is to verify that the newly constructed synchronization state chart does not include
any deadlocks which is checked using UPPAAL again.

We have given a formal proof that compositional verification based on constructing a
complete system just by the above sketched definition of components, ports and refined
coordination patterns is indeed possible [19].

Admittedly, there is still one significant limit of the approach. Broadcasting based
communication architectures cannot be covered by our approach. However, we found
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many examples of systems where this type of generality does not exist and thus our
approach is applicable to a wide range of systems like e.g. public transport, production
or telecommunication systems. In fact, one could even argue that building “really” safe
systems requires to avoid broadcasting-like communication structures.

5 Controller Reconfiguration

After specifying component behaviour by coordination patterns, we now address the
connection of two different levels in the OCM hierarchy, namely the detailed definition
of connecting the reflective operator and the underlying controller. Based on the com-
ponent communication, the reflective operator initiates the use of a particular controller
and, if necessary, the reconfiguration of controllers, i.e. the exchange of one or more
controllers by one or more others.

Extending RTSC to specify the connection between discrete and continuous be-
haviour is done similarly to the basic hybrid automata approaches like [25,7,2,32] by
the possibility to assign a configuration of controllers to a particular state for Hybrid
RTSCs (HRTSCs).

Fig. 7. Behavioural embedding

Take as an example the hybrid behaviour of an Acceleration Control (AC) component
which is embedded into the Shuttle component. It consists of two discrete control modes
which specify whether the shuttle is operating in velocity control mode or distance
control mode respectively (see Fig. 7). Furthermore, it has continuous in- and outputs.
Depending on the active discrete mode, the current and the required velocity are used
as input, or the current and required distance to the front shuttle plus the velocity of the
first shuttle are used. The output a is the acceleration in both modes.

This example does not illustrate a syntactic feature of our HRTSCs which is however
worth mentioning to understand Fig. 6 in full detail. As the component model only
defines all possible input and output ports, there remains a certain ambiguity on the
controller level. The same controller may have different input or output ports depending
on the particular usage. In the example above this is not the case but may well be for
velocity control. The particular usage is depending on the system state. That is why we
add the definition of input and output ports to the HRTSC definition as seen in Fig. 6.
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Of course, consistency between the component model and the HRTSC specification
concerning the names and connections of the ports is automatically checked.

In our example, each configuration consists of one single feedback controller while
in the general case a configuration of subordinated blocks representing a number of
(continuous) controllers might be assigned to each state. In addition to specifiying
controllers, switching smoothly between different controllers requires to define output
cross-fading functions (cf. [17]). Here, we have the fading functions ffade1 and ffade2 ,
and a minimal and a maximal fading duration (df1 respectively df2 ) which together
specify how the outputs of the two controllers have to be faded when changing the con-
troller. The timing constraints given by the fading functions are mapped to correspond-
ing deadlines in the HRTSC. In the example depicted in Fig. 7, the state-dependent
continuous behaviour is specified by blocks assigned to the states VelocityControl and
DistanceControl, respectively.

In cooperation with the control engineering department, we have also developed
other possibilities to precisely specify timing constraints for switching between two
controllers. For details we refer to [38]. To cover nested components with changing in-
put/output (i.e. OCM hierarchies with reconfiguration), we have furthermore introduced
an extension of the known concept of hybrid behaviour which assigns a configuration
of embedded (possibly hybrid) component instances to each state instead of control
behaviour only. For details, we refer to [17].

Model checking HRTSCs is currently based on a mapping to the Hybrid model
checker PHAVer [23]. However, it is clear that this approach only works for small ex-
amples. We are working on improvements which are based on identifying appropriate
intervals for the continous input/output relations based on application specific informa-
tion rather than taking the predefined PHAVer discretisation.

Similar to the above described approach, the behaviour of the cognitive operator is
also modelled by state charts. On this level, however, time is much less critical and
thus does not need to be modelled and analysed. As said, this part of a system com-
ponent is responsible for long range planning. Results of such a long range planning
process are transferred via the corresponding port definitions to the reflective operator,
i.e. they appear as activities of a HRTSC and may trigger architectural reconfiguration
of a system (cf. Section 6). This type of reconfiguration, in contrast to the discussed re-
configuration of controllers, may mean adding or deleting complete system components
or communication links. How to model check this type of reconfiguration is explained
in the next section.

6 Architecture Reconfiguration

RTSCs and HRTSCs describe behaviour and self-adaptation of controllers on the level
of single components. Advanced mechatronic systems, and, for example, the shuttles
of our Railcab project, in addition employ reconfiguration on the level of the overall
system structure, changing the relationships and interaction between components. This
is part of the cognitive operator of the OCM. As an example, consider that shuttles in
a convoy have to consistently decide for driving (or not driving) as a convoy. A pos-
itive decision involves changing the protocol of interaction between shuttle as convoy
or noConvoy mode which means to employ different protocols. As this reconfiguration
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involves usually quite a bit of restructuring the architecture of the system, i.e. deleting
and changing objects and corresponding links to other objects, using state chart based
models like in the previous section is not appropriate. State charts do not support ade-
quately the modelling of complex graph transformations like architectural changes but
rather “only” the replacement of a complete configuration by another one like the re-
placement of controllers. Thus, in this section we base both reconfiguration modelling
as well as their formal analysis on Graph Transformation Systems (GTSs).

Architectural changes which have to be modelled, concern e.g. creating or delet-
ing system components and corresponding communication links like shuttles but also
changes of the behaviour of communication links which are specified by the described
coordination patterns. A coordination pattern fixes a certain protocol of interaction (as
specified by an RTSC) and some particular controller usage in the mechanical parts
(fixed in the HRTSC). Coordination patterns (and thus the protocols and controllers)
can be activated or deactivated depending on the current environmental situation of a
component. More sophisticated systems might even load and unload the software for
pattern protocols by demand during run-time, i.e. software is physically stored or is not
stored on a particular device like a shuttle. In the embedded area this is often necessary
as resources (e.g. storage) are severely limited. Examples of communication changes
are shuttles that only need to communicate with a registry when they are in the reg-
istries surveyed track section (every track section is monitored by a registry, and shut-
tles need to register when they enter a registry’s section), or shuttles which only have to
communicate with other shuttles when they intend to form a convoy.

This reconfiguration (activation and deactivation of patterns), but also the structural
changes due to “normal” system evolutions, are described by graph transformation rules
(or, more generally, story patterns, additionally allowing to specify orderings on recon-
figurations). In our approach, a system state is characterised as a configuration of com-
ponents (e.g. a shuttle, a track), their relationships (e.g. whether a shuttle is standing on
a track) and their currently used coordination patterns. Figure 8 exemplifies one such

Fig. 8. Reconfiguration as graph transformations
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scenario. The upper part of the figure shows a concrete system state where two shuttles
are driving on two different but neighboured tracks. The lower part of the figure shows
the coordinated movement of shuttles on neighboured tracks, however, only when both
have instantiated the ConvoyCoordination pattern. The system configuration is given as
a graph where the nodes are components or patterns and the edges are relationships
between components. For instance, the shuttles take different roles when participat-
ing in patterns (front or rear role) and this is depicted as a correspondingly labelled
edge between a shuttle and the pattern node. Reconfiguration, i.e. here the movement,
is modelled by a graph transformation rule: the left hand side identifies the system
configuration in which the rule can be applied, the right hand side shows the result of
application. Here, left and right hand side are depicted in one single graph, using the no-
tation �create� and �delete� to specify edges (and nodes) which are created viz.
deleted during rule application. Similarly, for this example, we have rules which specify
when the ConvoyCoordination pattern is allowed to be activated and deactivated. Alto-
gether this forms a graph transformation system, consisting of a set of reconfiguration
rules plus possibly an initial configuration given by a plain graph.

The semantics of graph transformation systems is well defined, thus we again have a
formal model here. For the semantics we follow the SPO approach [15]. The semantics
gives us the possibility of carrying out a formal analysis on the model. Safety properties
which need to be guaranteed by the system, in particular under reconfiguration, are
specified as graph patterns. Graph patterns define structural properties; properties of
the underlying controllers (like stability) are not treated on this level, rather, need to
be guaranteed by the control engineers. Graph patterns can either model forbidden or
desired configurations.

Fig. 9. A forbidden graph pattern

The example in Figure 9 shows a configuration, where two shuttles on neighboured
tracks have not agreed on using the ConvoyCoordination pattern. This is potentially un-
safe since the protocol for coordinated movement is then disabled. For verification, we
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show that none of the reachable graphs exhibit such a forbidden graph pattern. Cur-
rently, there are two approaches available for proving these safety properties:

Model checking. This method follows the traditional technique of model checking
building the complete set of reachable graphs given a start graph and a set of rules.
As prerequisites we thus first of all need such a start graph, which is not neccessar-
ily always given, plus we need to ensure that the set of reachable graphs is finite. If
this is the case, the technique works as follows: the reconfiguration rules given as
story patterns as well as the start graph are translated into the formalism used by the
model checker Groove [40]. Groove is a verification tool for graph transformation
systems. Groove subsequently builds the state space of the graph transformation
system, and on this we can check our safety properties.

Induction. Induction [5] is applied when either the existence of a start graph or the
finiteness condition cannot be guaranteed. The technique proceeds by inductively
showing that the absense of certain graph patterns is fulfilled for all graphs created
by the rules. To this end, the rules need to be transformed: instead of deleting edges,
edges are specifically marked as deleted as to be able to track deletion. Induction is
then carried out from backwards: we show that a forbidden graph pattern can only
be reached by a rule application when the graph to which the rule is applied already
contains this forbidden pattern. If this can be guaranteed for all rules, the absense
of the forbidden pattern forms an inductive invariant of the GTS.

Both techniques have been implemented within the FUJABA tool suite (see next sec-
tion) and show good performance on examples from our application domain.

What is not captured by these approaches, but is relevant for the domain of mecha-
tronic systems, is the time needed for a reconfiguration. In particular, the activation or
deactivation of coordination patterns which involves changes of communication pro-
tocols and controllers may need a significant amount of time. This timing aspect is of
importance as the shuttles travel with a certain speed on the tracks, and safety properties
might depend on fast reconfiguration. For capturing timing aspects in reconfiguration,
graph transformation rules have been extended with time. Figure 10 shows an example
of a timed rule. The timing condition describes the time units needed for carrying out
the reconfiguration. Here, this is the minimal amount of time needed by a shuttle to
move from one track to the next.

Fig. 10. A timed graph transformation rule



548 W. Schäfer and H. Wehrheim

For timed graph transformation we have also developed and implemented a verifica-
tion technique following the classical approach of state space generation. To this end,
we have extended Groove with timing. Technically, we use clock zones to reduce the
infinite number of timed configurations to a finite number. This follows an approach
used in timed automata model checkers like UPPAAL.

Such an approach enables to verify time critical safety properties like “the change
of all protocols in all shuttles interested in forming a convoy happens in a certain time
frame, e.g. 5 milliseconds”. This might be necessary to still be able to take emergency
actions in case one of the communication links between the concerned shuttles may be
broken.

7 The FUJABA Real-Time Tool Suite

The FUJABA real-time tool suite is part of the open source tool suite FUJABA
(acronym for “From UML to Java and back again”) which was kicked off by the soft-
ware engineering group at the University of Paderborn in 1997. In 2002, FUJABA has
been redesigned and became the FUJABA tool suite with a plug-in architecture al-
lowing developers to add functionality easily while retaining full control over their
contributions. Different FUJABA tool suites exist, which all include a common core
functionality and a number of different plug-ins. The plug-ins provide support for dif-
ferent domains and different activities of the software life cycle. The FUJABA real-time
tool suite, in particular, includes support for modelling and analysing real-time embed-
ded systems, code generators for different target platforms and a tool enabling hazard
analysis [39].

Tool support for modeling and checking system specifications, as given by the above
described component models and HRTSCs, has been implemented as part of the FU-
JABA real-time tool suite. In order to support the specification of controllers by block
diagrams and differential equations a commercially available tool, namely CAMeL-
View, has been integrated into the FUJABA tool suite.

Both tools offer code generators which target various platforms. In particular, both
tools provide a C++ code generator. FUJABA generates its code from HRTSCs, whereas
CAMeL-View takes the block diagrams and differential equations as input [10].

A key aspect in integrating two tools from “different worlds” is the invocation of code
which is generated from the block diagrams in CAMeL-View, by the code generated
from the hybrid statecharts excluding the controller part. Controllers and in particular
their feedback loops run concurrently with the execution of statecharts or rather the
generated code. Particular synchronization points have to be identified in the controller
code, where state changes and consequently controller reconfigurations are possible.
For more details see [9].

As a simulation platform called IPANEMA [12] exists which executes C++ code, the
resulting code is used to simulate complete system behaviour. In additon to the three
dimensional CAMeL-View simulation of controller behaviour, we are now able to also
display the corresponding state information of each system component as well as their
current communication partners.

In contrast to most other approaches, a platform independent model specified in
MECHATRONIC UML has enough information to generate code fully automatically.
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This means in particular that the specification by RTSCs contains all real-time con-
straints which a system has to fulfil and consequently have to be guaranteed by the im-
plementation. [13] describes an algorithm which derives a single processor implemen-
tation in Java from a MECHATRONIC UML model such that all real time constraints
are either fulfilled by the implementation or the algorithm signals the user that such
an implementation is impossible. The algorithm is based on a schedulability analysis
based on the processor cycle time and on swapping the code of actions as given by the
state chart specification.

Fig. 11 shows a screenshot of the currently available tool. It is an extension of the
CAMeL-View simulation environment. The three dimensional view in the lower part
simulates a convoy of two shuttles. State information can now be displayed in addition
to the controller status information of all shuttles (lower right part). The graphs in the
upper part of the screen display “traditional” controller information. In detail, the upper
right part displays the position of the shuttles, the upper left hand the velocity of the
first and second shuttle, and in the lower left the reference values for speed are shown.

Fig. 11. Simulation Environment

The sketched tool, or rather its developers in the Software Engineering Group at the
University of Paderborn, were recipients of the IBM Real-time Innovation Award 2008
for this achievement.
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8 Related Work

The UML itself and even UML extensions for real-time such as the UML Profile for
Schedulability, Performance, and Time [33] are not sufficient for the model-driven
development of advanced mechatronic systems as they are neither defined rigorously
enough nor are appropriately tailored. The System Modeling Language (SysML) [35]
which combines UML concepts with system engineering concepts, has the same lim-
itations. It is mainly geared towards supporting early development phases but not the
design phase which serves as a basis for code generation as in our approach.

The UML 1.5 profile Timed UML and RT-LOTOS Environment (TURTLE) en-
hances UML class and activity diagrams with concepts from RT-LOTOS and provides
tool support for its validation by means of exhaustive simulation reusing existing tools
for RT-LOTOS [4]. In contrast to this approach, MECHATRONIC UML supports verifi-
cation even for large configurations by means of compositional reasoning and addresses
hybrid behaviour.

Within the IST project AIT-WOODDES hierarchical timed automata (HTA) [14]
are used to support the modeling and verification of complex real-time behaviour. HTA
are a hierarchical extension of timed automata [26] and they provide for most of the
powerful modeling concepts of statecharts as well as clocks like our HRTCs. However,
no comparable concept for the definition of deadlines and no corresponding support for
modelling component hierarchies exist in this approach. A mapping of HTA to multiple
parallel running flat timed automata permits to verify the model by using the model
checker UPPAAL [31], but does not support any compositional or modular reasoning.
Code generation [3] is restricted to flat automata and does not take into account the de-
lays that occur when transitions are fired. Our approach for code generation in contrast
respects hierarchy, parallelism, and the real-time constraints.

In the OMEGA project [20], the UML has been extended by additional time con-
structs. A formal semantic definition of the extensions is currently under development.
However, unlike our approach, there is no support for hybrid behaviour and composi-
tional verification is only supported by semi-automatic verification via theorem proving.

Concerning the verification of adaptive behaviour, i.e. reconfiguration, only a few
approaches exist so far. In contrast to [44] we suggest a compositional approach and in-
tegrate real-time and continuous behaviour by verifying our HRTSCs. Code generation
from HRTSCs is also a unique feature of our approach. [21] only considers untimed
models and assumes that a self-* capability of a system will fix certain types of prob-
lems in the long run, which do not have to be formally verified. In a safety-critical
system this approach is not acceptable.

For a detailed comparison of tools supporting model-driven development of mecha-
tronic systems we refer to [18].

9 Current and Future Work

So far, our approach allows constructing and verifying system structures with bilat-
eral communication only, i.e. one-to-many or many-to-many communication structures
(multilateral communication) are not supported. We are currently extending our ap-
proach by so-called multi-roles which enable to specify multilateral communication
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protocols by parameterizing the described coordination patterns. In order to avoid
model checking of possibly many parallel automata (in case the number of participat-
ing components becomes big), we define so-called regular communication structures.
They define multilateral relationships between components as an iteration of bilateral
communication, i.e. parameterized coordination patterns are again just the parallel com-
position of two automata.

The regular communication structures are again defined by a graph transformation
system. The rules of such a system (as a further restriction to the rules described above)
generate only component connections which have a corresponding (parameterized) co-
ordination pattern defined. As an example, a forbidden graph structure in this case
would incorporate multilateral component interactions without any corresponding co-
ordination pattern [28].

We also work on the automatic synthesis of coordination patterns from scenario dia-
grams which specify particular use cases of the system under construction. This requires
to define a consistent set of scenarios including timing constraints and an appropriate al-
gorithm to generate coordination patterns. The specification of scenarios must be based
on a well-defined set of component (types) together with possibly some behavioural
restrictions. A first version of this approach has been published in [22].

As future work we see the extension of our verification framework to parametric sys-
tems, i.e. systems in which the number of components taking part in a reconfiguration is
arbitrary. On the modelling side this is not difficult to achieve since there are variants of
graph transformation rules which for instance allow for using universal quantification.
On the verification side, this is less straightforward: the usual model checking approach
requires a fixed, finite number of components as to be able to build the state space. The
induction technique on the other hand requires a finite number of rules. Neither require-
ments are given for parametric systems. Here, we currently investigate the applicability
of shape-analysis-like techniques [43,41].

Another road we currently follow is to derive plans for safe reconfiguration as to be
able to direct reconfiguration into some desired goal state.
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6. Behrmann, G., David, A., Larsen, K.G., Håkansson, J., Pettersson, P., Yi, W., Hendriks, M.:
Uppaal 4.0. In: QEST, pp. 125–126. IEEE Computer Society, Los Alamitos (2006)
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Abstract. During the overall development of complex engineering sys-

tems different modeling notations are employed. For example, in the

domain of automotive systems system engineering models are employed

quite early to capture the requirements and basic structuring of the entire

system, while software engineering models are used later on to describe

the concrete software architecture. Each model helps in addressing the

specific design issue with appropriate notations and at a suitable level

of abstraction. However, when we step forward from system design to

the software design, the engineers have to ensure that all decisions cap-

tured in the system design model are correctly transferred to the soft-

ware engineering model. Even worse, when changes occur later on in

either model, today the consistency has to be reestablished in a cumber-

some manual step. In this paper, we present how model synchronization

and consistency rules can be applied to automate this task and ensure

that the different models are kept consistent. We also introduce a gen-

eral approach for model synchronization. Besides synchronization, the

approach consists of tool adapters as well as consistency rules covering

the overlap between the synchronized parts of a model and the rest. We

present the model synchronization algorithm based on triple graph gram-

mars in detail and further exemplify the general approach by means of

a model synchronization solution between system engineering models in

SysML and software engineering models in AUTOSAR which has been

developed for an industrial partner.

1 Introduction

The development of complex engineering systems involves different modeling no-
tations from different disciplines. Taking the domain of automotive systems as
an example, SysML (System Modeling Language) [1] models are employed quite
early to capture the requirements and basic structuring of the whole system
by system engineers, while AUTOSAR (Automotive Open System ARchitec-
ture)1 models are used later in the software development process to describe the
1 http://www.autosar.org
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concrete software architecture and its deployment. Using these different models
helps in addressing each specific design issue with an appropriate notation and
at a suitable level of abstraction.

For example, when going from the system design with SysML to the software
design stage with AUTOSAR, today the engineers have to ensure manually that
all relevant decisions captured in the SysML model are correctly transferred to
the AUTOSAR model. When changes occur later on either in the AUTOSAR
or SysML model, the situation is even worse: The consistency has to be reestab-
lished in a cumbersome manual step that inspects both models and transfers
all detected changes. Otherwise, the integration of the different system parts as
captured by the SysML model and refined in the AUTOSAR model may fail.

Model-Driven Engineering (MDE) with its support for model transformation
and model consistency checking is a promising direction to approach the sketched
model consistency problems, which result as the models describe the system un-
der development from different viewpoints and on different levels of abstraction
capturing only partially overlapping information (cf. [35]).

Triple graph grammars (TGGs) are a formalism to declaratively describe cor-
respondence relationships between two types of models. They were introduced
in [29] and are one option to specify the required model transformations using a
declarative transformation specification. In several contexts, different variants of
TGGs have already been employed for model synchronization such as the inte-
gration of SysML models with Modelica simulation models [22], keeping models
from the domain of chemical engineering consistent [4] and transformations from
SDL models to UML models and vice versa [7].

In this paper, we report about our approach to tackle the outlined model syn-
chronization problem. Built on top of techniques from model-driven engineering
such as meta-models, consistency rules, and bidirectional model transformations
resp. model synchronizations specified by TGGs, a general architecture has been
developed, which allows to automate the task of keeping models consistent. We
only require that the TGG rule set is deterministic and that only one of the
models is changed at a time. Like described in [13], in many cases managing
and tolerating inconsistencies (e.g., by allowing to manipulate different models
concurrently) instead of directly removing them is desirable. In the case of the
automotive domain, consistency plays a crucial role, e.g., caused by the reason
that inconsistencies between previously defined requirements and the later im-
plementation can lead to catastrophic failures. Thus, a more rigorous handling
of inconsistencies like requested in [13] is adequate for our application example.

In a project with the automotive industry, we could demonstrate that our
approach can be employed for model synchronization between the SysML tool
TOPCASED and the AUTOSAR tool SystemDesk. Firstly, the model trans-
formation derived from TGGs permits to automatically generate the initial AU-
TOSAR model from the SysML model. Secondly, consistency between both mod-
els in case of changes in one of them can be maintained by a TGG-based model
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synchronization system[19]. Thus, we can synchronize both models such that
changes within one are automatically transferred to the other.2

By making manual transformation and synchronization steps obsolete, the
automatic synchronization of models reduces costs and time. This applies to
the initial transitions, for example, from the SysML model to the AUTOSAR
model, as well as the re-establishment of consistency in case of changes in one
model. In addition, such automated synchronization steps are less error prone
than manual steps as employed today. They further enable employing iterative
and more flexible development processes as the costs for iterations or changes
are dramatically reduced as long as parallel changes do not occur.

The structure of the paper is as follows: The current state of the art and its
limitations compared to our outlined new approach are discussed in Section 2.
The considered application example for our approach for synchronizing SysML
and AUTOSAR models is introduced in Section 3. The new approach, its archi-
tecture, and its components are first sketched in Section 4. Then the constituent
parts are presented in detail. The technique for model synchronization is ex-
plained in Section 5. The tool adapter and the techniques for consistency checks
follow in Section 6 and Section 7. At the end, we discuss the suitability of our ap-
proach by looking into several typical usage scenarios, such as the initial transfer
of information or change propagation, and close the paper with a final conclusion
and an outlook on planned future work.

2 State of the Art

In this section, we discuss related approaches for model transformation and
synchronization, and related work in the context of Model-Driven Engineering,
that make use of model transformations.

2.1 Model Synchronization

An overview of model transformation and synchronization systems can be found
in [9]. The paper categorizes existing approaches and briefly explains them.

As outlined in the introduction, MDE requires a bidirectional solution, which
preserves model contents when synchronizing as much as possible. However,
many available model transformation approaches only support classical one-way
batch-oriented transformations [16]. The QVT implementations [6] and [15], and
some graph transformation-based approaches such as Viatra [33,5], the GreAT
model transformation system [34], Agg [12], the core Progres tool [28] or the
core Fujaba tool [32] are only unidirectional but partly incremental. The avail-
able relational QVT implementations [21,31] as well as BOTL [25] are bidirec-
tional but only support a batch-oriented processing and, thus, fail to be scalable.
2 It has to be noted that the required restriction concerning no parallel changes in

the models does not result in any additional limitations in the considered applica-

tion domain, as the processes currently try to exclude changes at all to avoid the

cumbersome manual step to reestablish consistency.
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Other existing TGG-based approaches also do not provide a comparable au-
tomatic and computational incremental solution (for a detailed discussion see
[19]): The TGG transformation algorithm based on the Progres environment
[4] is also incremental, but operates interactively, and is therefore inappropriate
for the transformation of large models. In the incremental TGG transforma-
tion approach supported by AToM3 [20], updates are triggered by user actions
like creating, editing or deleting elements and the specification of updates for
all possible user actions is required. Thus, the consistency of the approach is
difficult to guarantee and initial complete model transformations are not sup-
ported. Another TGG realization based on [32] is Moflon [10]. It focuses on
model integration and transformation for the MOF 2.0 standard [26] rather than
incremental model synchronization.

Incremental model synchronization can also be seen as an inconsistency res-
olution problem. [11] describes an incremental solution for the related problem
of inconsistency checking. The presented system allows a check to be made to
quickly determine whether a modification has caused inconsistencies, and pro-
poses solutions to the user. For a more detailed discussion of such solutions for
model synchronization we refer to [19].

2.2 Model Integration

Model-Driven Engineering is a development paradigm, where models are the
primary development artifacts. In [23] this idea is described. Models are used to
describe the system under development from different viewpoints and on different
levels of abstraction. During the development process, models are refined and
ultimately source code is generated from these models. The use of different kinds
of models leads to the problem of keeping those models consistent to each other.
At this point, model transformation systems play a central role. In practice an
additional challenge is that different kinds of models are normally supported
by different tools and these tools use diverse technologies for representing these
models. So at first models need to be accessed in an appropriate way to be able
to apply model transformation techniques.

In the MATE project [30] an adapter has been realized to access MAT-
LAB/Simulink models in such a way that model transformation rules can be
applied, e.g., for checking guidelines while model consistency like in case of model
synchronization is not the main focus.

In the ModelBus project [2] a framework has been developed, which is able to
integrate different model-based development tools into a service-oriented middle-
ware. The purpose of the ModelBus project is to provide a framework allowing
several tools to be connected within a single environment. Model transformation
and synchronization techniques can be potentially applied using this framework.
When access to the different models is provided in an adequate form, the in-
tegration of different models using model transformation and synchronization
techniques can be realized.

An approach for the integration of SysML models with Modelica simulation
models has been described in [22]. The approach is also based on triple graph
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grammars but uses VIATRA [8] to implement the transformation. In contrast to
the system presented in this paper, synchronization of models is not supported.

3 Application Example

We have evaluated the approach presented in this work within a project orga-
nized with our industrial partner, dSPACE GmbH. dSPACE provides, besides
other products, several tools for the development of embedded systems, espe-
cially for the automotive domain. Within this project we used two different
modeling languages commonly used for the development of automotive embed-
ded systems, namely the System Modeling Language (SysML) and the AUTo-
motive Open System ARchitecture (AUTOSAR). We used the tool SystemDesk,
a professional tool for the development of complex automotive embedded sys-
tems according to the AUTOSAR standard, and TOPCASED, an open-source
toolkit for supporting the modeling of SysML models. Both modeling languages
(AUTOSAR and SysML) are subsequently described in more detail.

3.1 SysML

A widely used language for system engineering is SysML (System Modeling
Language), which is currently available in version 1.1 (see [1]). SysML supports
the design and analysis of complex systems including hardware (HW), software
(SW), processes and more. SysML reuses a subset of the UML and adds some
additional parts (e.g., the Requirement and Parametric Diagram) to facilitate
the engineering process by providing several improvements compared to UML
concerning system engineering. UML itself tends to be more software-centric
while the topic of SysML is clearly set to the analysis and design of complex
systems (not only SW).

In our application example the existing SysML profile provided by the OMG
has been used, which utilizes the generic extension mechanisms of UML to cus-
tomize UML elements using the concept of stereotypes. Such stereotypes can
be applied to UML elements3 and extend as well as define constraints on these
elements. For expressing constraints also the Object Constraint Language (OCL)
can be used, which not only allows the description of structural properties, but
also the specification of additional constraints on the values and/or types of
attributes and so on. For more information about OCL see [27]. Instances of
the stereotyped UML elements must fulfill the properties defined by the applied
stereotypes. The SysML profile (like any other UML profile) contains a set of
stereotypes, which are applied to a UML model. In the following we explain
relevant SysML stereotypes for a small application example.

In SysML, system blocks are used to specify the structure of the system4.
For this purpose the UML meta model element Class is extended by the stereo-
type <<block>>. A block describes a logical or physical part of the system
3 Elements of the UML meta model.
4 A block describes a part of the structure of an interconnected system.



560 H. Giese, S. Hildebrandt, and S. Neumann

(e.g., SW or HW). Multiple of these blocks can be used for representing the
structure of a system. An example for the additional capabilities of SysML is
the possibility to model the flow of objects between different system elements
(which are specified in form of SysML blocks) by using <<flow ports>>. <<flow
port>> is a stereotype for the UML element Port and allows the modeling of
an object flow between SysML blocks. For the specification of objects and data,
which flow over a flow port, the stereotype <<flow specification>> is applied
to the UML element Interface in SysML. Ports can be connected via connectors
provided by the UML meta model. The elements required to connect different
ports (the UML Connector and ConnectorEnd) as well as a part of the SysML
meta model describing blocks, flow ports and flow specifications are shown in
Figure 1 in a simplified way.

Fig. 1. Extract of the SysML metamodel

When analyzing and designing automotive systems, the HW/SW-structure
can be described using SysML blocks, ports (e.g., flow ports) and appropriate
interfaces (e.g., flow specifications). In this paper, we use a simplified version
of the structural constituents taken from an application example of an engine-
fuel control system consisting of actuators and sensors for the throttle position
and the control software. The control software evaluates the sensor values, com-
putes appropriate throttle position values and sends them to the actuator of the
throttle.

The system structure including HW and SW parts has been modeled using
the tool TOPCASED5 and the resulting SysML model of the engine fuel con-
trol system is shown in Figure 2. The example consists of six different types of
blocks, three of them represent hardware parts like the engine, a HW actuator
and a HW sensor for setting and measuring the throttle position of the engine.

5 http://www.topcased.org/
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Fig. 2. Application example of an SysML model created in Topcased

The HW sensor (HWSensor8Bit) is connected to a SW block (ASWCSensor),
which reads data from the HW (e.g., by using driver functionality) and sends
these measured values to a SW block, which realizes the control functionality
(ASWCThrottleControl) and computes an output signal. This output signal is
send to a SW block (HWActuator), which realizes the access to the HW actua-
tor, which is represented through the block HWActuator8Bit. The HWActuator
interacts with the representation of the physical engine.

When such a system is designed, several restrictions have to be considered
concerning the used HW sensor blocks in combination with the software blocks.
A typical restriction is that a connector can only connect ports, which implement
the same interface. In the shown example, e.g., the flow ports of the blocks
ASWCSensor and HWSensor8Bit, over which these two blocks are connected,
have to implement the same interface. Such a constraint can be expressed in the
form of the following OCL constraint for the type connector:

context Connector inv:
self.end->forAll(e:self.end->get(0).role.type = e.role.type)

Only three of the blocks (ASWCThrottleControl, ASWCSensor and ASWC-
Actuator) described above are relevant for the SW architecture. In our implemen-
tation, stereotypes are defined for identifying, e.g., the definition of SW blocks
(<<atomicSoftwareComponent>>) as well as for the usage of the defined SW
blocks (<<componentPrototype>>) like shown in Figure 2. In the following sec-
tion, we show how these constituents can be represented in AUTOSAR.

3.2 AUTOSAR

AUTOSAR (Automotive Open System ARchitecture) is a framework for the de-
velopment of complex electronic automotive systems. The purpose of AUTOSAR
is to improve the development process for ECUs (Electronic Control Units) and
whole systems by defining standards for the system and software architecture.
The AUTOSAR standard defines a meta model, which describes a DSL for the
development of automotive embedded systems. The part of the meta model rel-
evant for the present work is described in [3] in the form of a UML profile. We
use a stand-alone meta model for AUTOSAR, which is realized accordingly.
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As defined by the AUTOSAR meta model (an excerpt is shown in Figure 3),
the software architecture is built from components (e.g., AtomicSoftwareCompo-
nents (ASWC)). These ASWC are derived from the type ComponentType and
can communicate using two different categories of ports: required and provided
ports (represented through RPortPrototype and PPortPrototype). Both types
are derived from the same abstract class PortPrototype. An RPortPrototype only
uses data or events, which are provided by other ports of type PPortPrototype.
A port of type RPortPrototype or PPortPrototype can implement an interface
of type PortInterface. This PortInterface is refined by ClientServerInterface and
SenderReceiverInterface.

The SW blocks (ASWCSensor, ASWCActuator and ASWCThrottleControl)
defined within the SysML model described above can also be specified within
an AUTOSAR model. The blocks shown in Figure 2 can also be described using
ASWCs, ports and interfaces, which are defined within the extract of the AU-
TOSAR meta model shown in Figure 3. Figure 4 shows the same SWCs modeled
with the tool SystemDesk6.

In case of the SysML example, the SW blocks, ports and connectors can be
described directly within such an AUTOSAR model in the form of ASWCs.
In case of the blocks describing HW, such a mapping is not desired by our
industrial partner. HW components in AUTOSAR are represented on completely
different levels of abstraction than in SysML. Therefore, the blocks, ports and
connectors concerning HW in the SysML model have not been reflected in the
AUTOSAR model in our application example. Also the connectors, which exist
in the SysML model between the ports of a SW block and a HW block have not
been transformed to AUTOSAR.

Fig. 3. Extract of the AUTOSAR meta model

3.3 Common Constituents

The elements in Figure 2 are tagged with stereotypes, e.g., <<senderPort>>
and <<receiverPort>>. This is necessary because there are different types of
ports in AUTOSAR but only one type in SysML. Another example are software
components. AUTOSAR supports atomic and composite software components.
6 http://www.dspace.com/ww/en/pub/home/products/sw/

system architecture software/systemdesk.cfm
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Fig. 4. AUTOSAR model derived from the SysML model

Both are represented as blocks in SysML. To distinguish both types, the stereo-
types <<atomicSoftwareComponentType>> and <<compositionType>> have
to be used. These stereotypes have been defined in a small profile for SysML,
which we created for this purpose. In the remainder of this work we describe
how to support consistency of such semantically identical elements in different
models using transformation and synchronization techniques.

4 Approach

4.1 General Architecture

The generic architecture to integrate model transformation and synchronization
with existing modeling tools is shown in Figure 5. The transformation system
only supports EMF-compatible (Eclipse Modeling Framework 7) models. There-
fore, the source and target models need to be provided in that format. This is
done by tool adapters, which translate the models from and to EMF if necessary.
If the modeling tool itself is based on EMF, such an adapter can be realized eas-
ily. If the modeling tool is not based on EMF, the tool adapter has to provide
an EMF representation on the fly that the transformation system can modify,
and has to synchronize it with the actual model in the modeling tool. More
information on how such an adapter could be realized can be found in Section 6.

Fig. 5. General Architecture

7 http://www.eclipse.org/modeling/emf/
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4.2 Architecture Example

In the project realized with our industrial partners, we have established an archi-
tecture like described above, which integrates the tools TOPCASED and Sys-
temDesk. For each tool an adapter has been realized, that provides an EMF
representation of the model to the transformation system. Figure 6 shows the
concrete architecture developed in that project.

Fig. 6. Integration architecture for TOPCASED-SystemDesk integration

The transformation system, the tool adapters, and TOPCASED are based on
the Eclipse platform. TOPCASED already uses EMF as its underlying modeling
infrastructure. Therefore, access to these models from the transformation sys-
tem can be realized without great effort. SystemDesk is a stand-alone Windows
application that provides a COM interface for access to its models. Access-
ing SystemDesk’s models is more difficult, because the technology gap between
Eclipse/EMF and SystemDesk/COM must be bridged. For this purpose, we have
developed a dedicated adapter. While the transformation system creates and
modifies an AUTOSAR model in EMF representation, the SystemDesk adapter
takes care of reading and writing the model to and from SystemDesk. For more
details concerning the realization of the SystemDesk adapter see Section 6.

5 Model Synchronization System Based on Triple Graph
Grammars

The model transformation system is based on triple graph grammars [29]. It is
able to perform model transformations in both directions, i.e. create a target
model from a source model and vice versa. Furthermore, it can synchronize both
models after modifications have occurred. In the following sections, triple graph
grammars are briefly introduced and the transformation and synchronization
algorithm is explained.
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5.1 Triple Graph Grammars

Triple graph grammars combine three conventional graph grammars to describe
the correspondence relationships between elements of two types of models. Two
graph grammars describe the two models and a third grammar describes a cor-
respondence model. Figure 7 shows a TGG rule for the transformation of a
SysML block to an atomic software component in AUTOSAR. This illustration
also combines the left-hand side (LHS) and right-hand side (RHS) of the rule.
The black elements belong to the LHS and the RHS of the rule, i.e. they form
the application context. The elements marked with ++ (and printed green)
belong only to the RHS and are created when the rule is applied. Rules that
delete elements are not used in the context of model transformation with TGGs
(cf. [29]). The correspondence model is used to explicitly store correspondence
relationships between corresponding source and target elements. It allows the
target model elements corresponding to a given source model element to be
found quickly. The correspondence nodes are connected to each other and form
a directed acyclic graph. Although, there is no link visible in Figure 7 between
CorrPackage and CorrASWC, that link is created implicitly and is not shown
in the TGG rule to ease modeling of TGG rules.

Fig. 7. TGG rule for the transformation of a block to an atomic software component

Fig. 8. Axiom of the triple graph grammar for the transformation from SysML to

AUTOSAR

Like every other graph grammar, a triple graph grammar has a start graph
which serves as the starting point of the transformation. In the context of TGGs
it is called axiom. Figure 8 shows the axiom for the transformation from SysML
to AUTOSAR. The whole grammar for this transformation contains many more
rules, which are not shown here due to space limitations.
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5.2 Model Transformation

TGG rules are declarative by nature. To execute them they can be either inter-
preted by a dedicated TGG interpreter like presented in [24], or other executable
artifacts can be derived. In our case, Story Diagrams [14]8 are generated, which
are executed by a Story Diagram interpreter [18].

Fig. 9. Operational rule for the forward transformation of a block to an atomic software

component

The transformation system consists of two major parts, the transformation
engine and the operational transformation rules. The engine is independent from
specific source or target models and invokes the rules. The transformation system
supports both transformation directions, i.e. creating the right model from the
left model and vice versa. Furthermore, synchronization of models is also sup-
ported. This is explained in Section 5.3. Therefore, separate operational rules for
each direction are required. Conceptually, the operational rules are derived by
adding all elements on the source model side to the rule’s application context.
Figure 9 shows the conceptual forward transformation rule derived from the rule
in Figure 7. In practice, the operational rules have to do much more. Therefore,
four separate operations are generated for each rule and for each direction, that
perform

1. transformation of elements (transformation())
2. synchronization of elements (synchronization())
3. synchronization of attributes (synchronizeAttributes(), called by 2)
4. reconstruction of broken structures (repairStructure(), called by 2)

The overall operation principle of the transformation engine and the trans-
formation() operation is explained in the following, the others are described in
the next section.

The operation principle of the transformation engine is depicted in Figure 10.
To execute a model transformation, the engine is started with the root ele-
ments of the source and target models as parameters, as well as the desired
transformation direction (i.e. forward or backward). First, the axiom is executed
to transform the root node (1). The correspondence node that was created by
8 Story Diagrams combine UML activity diagrams with graph transformation rules to

describe behavior.



Model Synchronization at Work 567

Fig. 10. Operation principle of the model transformation engine

the axiom is put into the transformation queue of the engine (2). This step is
done by the axiom itself. The transformation queue contains the correspondence
nodes that need to be processed. After that, the first correspondence node in
the queue is removed (3) and all transformation rules are executed that expect
such a correspondence node in their application contexts (4). If a rule has suc-
cessfully transformed an element, the associated correspondence node is put into
the transformation queue (5). Steps 3 to 5 are repeated until the transformation
queue runs empty. Then the transformation is complete.

Fig. 11. Operation principle of the transformation() operation

Figure 11 shows the operation principle of the transformation operation9. The
operation’s parameter is the parent correspondence node (in case of the rule in
Figure 9, the CorrPackage node). This node is the starting point of the search for
other elements of the application context of the rule (PackageSYSML, ARPack-
age and Block in Figure 9). If these elements can be found and if they were
9 Axioms are only special kinds of rules. Therefore, the operation principle of axioms

is virtually the same.
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not transformed before (1), the correspondence node and target elements are
created according to the TGG rule (2). After that the newly created correspon-
dence node is added to the transformation queue of the transformation engine
(3). This process is repeated as long as new matches for the rule’s application
context can be found. After that, the control flow returns to the transformation
engine as described above.

5.3 Model Synchronization

The model transformation system can also perform a synchronization between
the models after an initial transformation. For efficiency, the system only visits
those nodes that were actually modified. To detect modifications, an event lis-
tener is registered at each element of the source and target models. If an element
is modified, its associated correspondence node is put into the transformation
queue. There is an additional flag associated with each node in the queue10,
that marks whether the consistency of a correspondence node should be checked
(flag is true), or new elements should be transformed (flag is false) when this
correspondence node is processed by the engine. The notification listener always
sets this flag to true. The transformation rules (see Section 5.2, step 3) always
set it to false.

Therefore, the actual operation principle of the transformation engine is
slightly more complicated than described in Figure 10. In step 4 of Figure 10,
first the flag is checked. If the flag is false, the transformation operations are
executed. If the flag is true, only the synchronization operation (see below)
is executed that belongs to the rule that created the current correspondence
node. The synchronization rule is responsible for re-establishing consistency be-
tween the associated source and target model elements. Furthermore, in case of
synchronization, the axiom is not executed beforehand because the root model
elements already exist.

The synchronization operations are used in an attempt to preserve existing
target elements as far as possible. Many modifications, like moving elements, can
be synchronized by adjusting some links in the target model instead of deleting
and retransforming elements. This reduces the number of necessary modifications
in the target model and allows even large models to be synchronized very quickly
in many cases.

Figure 12 depicts the operation principle of a synchronization rule. First, the
rule checks if the structure of the source, target and correspondence elements
complies with the rule. If the structure is valid, the synchronizeAttributes() op-
eration is called (1). This operation compares the attribute values, synchro-
nizes them if necessary, and returns whether attribute synchronizations were
performed. If attribute values were actually modified, the subsequent correspon-
dence nodes are put into the queue with their flags set to true to check their
consistency as well (2). If no attribute synchronizations were necessary, the sub-
sequent correspondence nodes do not need to be checked. In any case, the current

10 For simplicity, this has been omitted in Section 5.2.
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Fig. 12. Operation principle of the synchronization() operation

correspondence node is also added to the transformation queue with its flag set
to false to search for new elements to transform (3).

In case the rule pattern does not match, a check is made to determine whether
all source elements of the correspondence node were deleted from the model.
Then the correspondence node and the target model elements are obsolete and
can be deleted, as well (4). Note that this implies that all subsequent correspon-
dence nodes and their target elements have to be deleted, too. If at least one of
the source elements is still part of the model, a repair is attempted. First, the
repairStructure() operation (see below) belonging to the same rule is executed
(5). In case the repair is successful, the operation is finished. If it fails, the repair
operations of the other rules are tried (6). As soon as one of them succeeds, the
operation terminates. Note that the repairStructure() operation adds correspon-
dence nodes to the transformation queue if necessary. Should all repair attempts
fail, the correspondence and target elements are deleted (7). The modified source
element cannot be synchronized with the available transformation rules.

The repairStructure() operation is the key to minimizing the number of write
operations on the target model to re-establish consistency. Its general operation
principle is shown in Figure 13. Prerequisites for a successful repair are that
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Fig. 13. Operation principle of the repairStructure() operation

the source model and application context elements exist (1) and that the source
model elements are not connected to any other correspondence nodes (2).11 If
these conditions are met, the target element pattern is checked (3). If it complies
with this rule, consistency can be re-established easily by re-adjusting the links
to the elements of the application context of the rule (4). For the rule in Figure
7 this means to delete the existing link between aswc and the ARPackage it
is currently linked to, and create a new link between aswc and the ARPackage
that was matched in step 1. Moved elements can be synchronized mostly with
this simple repair action.

More complex modifications can lead to the applicability of a different rule.
In this case, the target elements do not meet the expected pattern because they
were created by another rule. Then the correspondence node and target elements
11 If connected, this means that these elements were already transformed by a different

rule.
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have to be created according to that rule (5). The links to subsequent correspon-
dence nodes are rerouted to the newly created correspondence node (6), and the
obsolete correspondence node and target elements are deleted (7). Finally, the
current (or newly created) correspondence node is added to the transformation
queue with its flag set to false to search for new elements to transform. Also
the subsequent correspondence nodes are added to the transformation queue
with their flags set to true to check their consistency. Depending on whether the
structure could be repaired or not, true or false is returned by this operation.

This synchronization algorithm has some major advantages. First, the repair
of broken structures minimizes the number of required write operations on the
target model to synchronize modifications. While the previous version of our
algorithm ([19]) would discard the target elements and retransform them, ad-
ditional details that are not reflected in the source model would be discarded,
as well. By preserving target elements, those details are preserved, too. This is
important if the connected models have different levels of detail. Of course, also
the performance is much higher if only links are changed and elements are not
recreated. Second, the synchronization starts directly at those correspondence
nodes where a modification took place. Those parts of the models that were not
changed are not checked by the system. In addition, the synchronization stops
checking correspondence nodes if a modification does not have any effects on
them. For example, moving an element in the model usually does not influence
its child elements. The algorithm first synchronizes the movement of the parent
element. Then, its direct children are checked. If they have not been affected by
the modification, the remaining indirect children are not checked. All in all, these
optimizations make synchronization effort mostly independent from the overall
model sizes. The size of the modifications (number and severity of modifications)
has the largest impact on synchronization performance.

6 Tool Adapter

The tool adapter already mentioned in Section 4 is responsible for providing
access to a modeling tool’s in-memory model to the transformation system. Of
course, the modeling tool has to provide a means to access its model, e.g. a COM
interface. This allows models to be synchronized without indirection via files.

The transformation system works only on EMF-based models. Therefore, the
tool adapter has to provide an EMF-based model. If the modeling tool is also
based on EMF, like TOPCASED, such an adapter is quite simple. It only has to
get the model’s root element from the model editor and provide it to the trans-
formation system (left side of Figure 6). The transformation and synchronization
take place directly on the model.

If the modeling tool is not based on EMF or not even on the Eclipse platform,
a tool adapter becomes much more complicated. It has to provide an EMF-based
version of the model to the transformation system in addition to the model of
the modeling tool. Before and after the transformation system reads or writes
the EMF-based model, the adapter has to synchronize it with the model in the
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Fig. 14. Structure of the SystemDesk adapter

external modeling tool. This problem is explained in the following using dSPACE
SystemDesk as an example.

dSPACE SystemDesk is a proprietary modeling tool for AUTOSAR model-
ing. It offers a COM/.NET interface to access the model that is currently loaded
in SystemDesk. Therefore, a special Java/COM adapter is required to connect
the Java-based transformation system to SystemDesk. The architecture of the
SystemDesk adapter is shown in Figure 14. Another problem is SystemDesk’s
meta model, which is different from the AUTOSAR meta model. For example,
SystemDesk provides a Project Library that contains the types of software com-
ponents, ports, etc. Instances of these types can be used in the system model.
However, it is also possible to create a type directly in the system model. Fur-
thermore, a SystemDesk model contains several predefined root packages for
the software, hardware and system configurations. These correspond to ordinary
compositions in AUTOSAR which are not contained in any other composition.
This problem is aggravated because SystemDesk’s meta model was not available
to us, and had to be reconstructed from the COM interface specification.

The tool adapter has to handle these SystemDesk specific issues and produce
a standard-conformant EMF-based AUTOSAR model. First, we have tried to do
the translation directly in the adapter code [17]. However, this has led to a very
complex and hardly maintainable adapter code. While this transformation is es-
sentially a model transformation from a SystemDesk to an AUTOSAR model, we
have now used the model transformation system a second time to perform this
transformation. The COM interface is used to synchronize SystemDesk’s model
with a corresponding EMF-based model. The model transformation system syn-
chronizes this model with the AUTOSAR model that the adapter provides to the
transformation system. This solution makes maintenance of the adapter much
easier. Most of the adapter’s logic is encoded in model transformation rules that
can easily be adapted and extended. Maintainability is an important issue due
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to the enormous complexity of the AUTOSAR meta model and its constant
advancement.

We have encountered another problem, which regards object identity. It is not
possible to directly reference an object in SystemDesk’s memory. Instead a cor-
responding Java object has to be created. In an earlier version, SystemDesk did
not support UUIDs. Therefore, it was hard to match Java objects to SystemDesk
objects. This problem has been circumvented by always creating a second EMF-
based copy of the current SystemDesk model, comparing it to the first copy,
and merging the differences into the first copy using EMF Compare12. However,
EMF Compare does not work very reliably without UUIDs. Now, SystemDesk
supports UUIDs and matching corresponding objects in Java and SystemDesk
is easy.

7 Model Consistency

Model consistency plays an important role, not only regarding consistency be-
tween different models or model elements of different models, but also between
the elements of one model. In the following, we describe why model consistency is
a crucial aspect, especially when model synchronization techniques are applied.

When model synchronization techniques are used, normally several model
elements of two different synchronized models describe the same thing. These
model elements can be synchronized using model synchronization techniques
like TGGs. Model consistency concerning these semantically identical elements
of different modeling languages is supported by the synchronization itself, as
changes of model elements included in one model are carried over to the other
model.

In most cases where synchronization techniques are used, the property holds
that not all elements of a model are also reflected in a corresponding synchro-
nized model. Normally, this is the case because different modeling languages,
and consequently also different types of models, are synchronized. Such mod-
eling languages have a specific purpose and, thus, different properties with dif-
ferent semantics are expressed by different languages. Therefore, dependencies
or other properties can exist within the same model between synchronized and
non-synchronized elements, which are not reflected by the synchronization mech-
anism itself.

In Figure 15, the two big circles on the left and right side represent two
different models. In each model, a subset (represented through a cloud) is syn-
chronized via a model synchronization system with the semantically identical
elements of the corresponding model. Thus, consistency between elements from
the cloud of the left side and on the right side is maintained by the synchroniza-
tion system itself. Like denoted by the arrow with the exclamation mark on top,
dependencies can also exist within the same model between synchronized and
non-synchronized elements. Such properties can be invalidated when a model
element is updated by a synchronization activity.
12 http://www.eclipse.org/modeling/emft/
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Fig. 15. Synchronization of parts of the models can lead to inconsistencies with other

parts

An example of such a situation, where additional properties need to be checked
is described subsequently. The SysML model shown in Figure 2 consists of six
SysML blocks, but only the three lower blocks represent software. In Figure 4,
these three SysML blocks are reflected in the form of semantically identical ele-
ments of an AUTOSAR model. The other three SysML blocks, which represent
hardware, are not present in the AUTOSAR model. In case these two models
are synchronized, only the constituents representing software are synchronized
between the SysML and AUTOSAR model. Changing the bit width of the IO
port of the ASWCSensor of Figure 4 is a valid operation in the AUTOSAR
model, but applying these changes via the synchronization to the corresponding
SysML model leads to a violation of a property of the SysML model. This is
the case, because connectors in SysML are only allowed to connect ports with
the same bit width. Changing the bit width of the IO port of the SysML block
ASWCSensor to 16 bits, e.g. by a synchronization, without changing the bit
width of the corresponding port of the block HWSensor8Bit leads to a violation
of this property while the AUTOSAR model is still consistent.

Fig. 16. Screenshot of the OCL validation dialog in TOPCASED

Ideally, the modeling tool should provide a mechanism to check models for
syntactical and semantical correctness, not only to check models after synchro-
nizations, but also to aid the user. TOPCASED, respectively EMF, provides
such a validation mechanism. Validating the situation described above results in
an error message like shown in Figure 16.
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Currently, these constraint checks are not invoked automatically, but only on
the user’s request. The reason is that constraint evaluation in TOPCASED can
take a very long time, because it always analyzes the whole model. Of course,
it is desirable to check a model immediately after a synchronization for better
usability.

8 Usage Scenarios

The described architecture supports several scenarios where, e.g., an initial AU-
TOSAR model is derived from an existing SysML model.

Additionally, the described architecture allows the synchronization of existing
models by updating only changed model elements in the target model without
overwriting the whole model each time changes occur. Such a synchronization
can be executed in both directions. In the following, we describe different us-
age scenarios in which the shown architecture allows an enhanced development
process using model transformation and synchronization techniques.

8.1 Transformation from SysML to AUTOSAR

After the SysML model has been constructed, it needs to be transformed into
an AUTOSAR model to get from the system design to an initial model for the
software design. Design decisions concerning the software defined in the SysML
model have to be taken over to the AUTOSAR model. With the presented sys-
tem such an initial AUTOSAR model can be automatically derived by a forward
transformation. The automatic transformation is much faster than a manual
transformation and there is less risk of introducing errors into the AUTOSAR
model. A transformation in the other direction is also possible (backward trans-
formation).

8.2 Repeated Forward Synchronization from SysML to AUTOSAR

After the AUTOSAR model has been derived from the SysML model, modifi-
cations can still be made to the SysML model. These modifications have to be
transferred to the AUTOSAR model, too. While the AUTOSAR model already
exists, a complete retransformation is unnecessary. Therefore, only the modifi-
cations are synchronized. Furthermore, the AUTOSAR model might also have
been modified, e.g., by changing the type of the IO port of the ASWC ASWC-
Sensor as described in Section 7. A complete retransformation would discard
these modifications.

8.3 Backward Synchronization from AUTOSAR to SysML

However, modifications may also be made to the AUTOSAR model in order to
adjust the structure during refinement of the software architecture, e.g., to reuse
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an already existing component. Therefore, modifications also have to be propa-
gated back to the SysML model. While many model transformation approaches
only permit unidirectional transformations, our approach works bidirectionally
and incrementally. Additional details in the SysML model are preserved which
would otherwise be lost.

How such a propagation of changes using bidirectional transformation tech-
niques supports the development process is demonstrated by the following sce-
nario. When the type of the IO port of the ASWC ASCWSensor from Figure 4 is
changed in the AUTOSAR model, the transformation system updates the corre-
sponding SysML IO port shown in Figure 2 accordingly without overwriting the
whole SysML model. When the SysML model is updated, the OCL constraint
described in Section 3.1 is violated (see Figure 16) because the SysML connector
is connected to ports, that have different types.

When elements have been added to the AUTOSAR model that are not rel-
evant for the SysML model (e.g., on a more detailed abstraction level), these
elements are ignored by the transformation system. This is the case, because no
transformation rules have been defined for these elements.

8.4 Iterative and Flexible Processes

The usage scenarios outlined in Sections 8.1, 8.2 and 8.3 demonstrate that our
approach can handle changes occurring in either model in any order. Therefore,
the approach enables not only a strict sequential ordering, i.e. the SysML model
is specified first and the AUTOSAR model is derived from it (Section 8.1). It also
allows, that changes in the SysML model are propagated to an already existing
AUTOSAR model (Section 8.2) and that necessary changes in the AUTOSAR
model are also accordingly adjusted in the SysML model (see 8.3). Therefore,
instead of a rigid sequential process, also iterative and more flexible processes
can be supported. Later changes of the AUTOSAR model will be reflected back
to the SysML model after a synchronization. Such changes in an AUTOSAR
model can lead to the violation of constraints of the SysML model like described
before.

9 Conclusion and Future Work

During the development of complex engineering solutions, several models are
employed to capture the design decisions of different disciplines. We have pre-
sented an approach that supports synchronizing these models when they overlap
with regard to the captured information. The solution enables that the interplay
between the different development activities in different disciplines and the over-
arching system engineering can be kept consistent at minimal costs even though
we do not forbid changes in the different models, which might impact each other
or could lead to inconsistencies. The only limitation is that parallel changes in
the different models are not supported. Although the underlying transformation
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system can only synchronize two models, chains of transformations can be built
to connect more than two models.13

We have further demonstrated that SysML models employed early on by sys-
tem engineers and AUTOSAR models employed later on in the software devel-
opment process can be kept consistent using our approach thanks to the use of
model synchronization techniques and additional consistency rules. It has been
further outlined that flexible usage scenarios, and in particular iterative devel-
opment, become manageable when employing our approach.

As future work, we plan to further extend the coverage and also address other
development artifacts than models. We also want to investigate how multiple
models connected via model synchronization and consistency rules can be effi-
ciently managed as a whole.
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Abstract. Embedded systems engineering problems often involve many

domains, each with their own experts and tools. To help these experts with

analysis and decision making in their domain, it is desirable to present

them with a view of the system that is tailored to their particular task.

In this paper, a model integration framework is demonstrated to address

issues associated with multi-view modeling. The Systems Modeling

Language (OMG SysMLTM) is used as a general language to represent a

common model for the system as well as the dependencies between the

different domain-specific tools and languages. To maintain consistency

between these domain-specific views, model transformations are defined

that map the interdependent constructs to and from a common SysML

model. The approach is illustrated by means of a mechatronic design prob-

lem involving views in multiple domain-specific tools, namely EPLAN

FluidTM (to create production ready layouts) and Modelica R© (for dy-

namic system analysis).

1 Introduction

The design of embedded systems is becoming increasingly complex because of its
dependence on a combination of multiple disciplines, such as mechanical, elec-
trical, electronics and software engineering. Moreover, since such systems are
designed in collaborative distributed environments, they need to meet the ob-
jectives of a variety of stakeholders. To solve these multi-disciplinary embedded
systems problems, it is essential to be able to synthesize and analyze differ-
ent system architectures efficiently and effectively. This requires the ability to
describe a system from different viewpoints, such as: structural, behavioral, re-
quirements, different disciplinary domains, or different levels of detail, fidelity
and abstraction. Therefore, multi-view modeling, in which a system is described
from multiple points of view, is gaining in popularity.

A key challenge in dealing with multiple views of a system is that of consis-
tency. This is conceptually illustrated in Fig. 1. Information about the product
or system (e.g., the requirements, the physical structure, the behavior, or the

G. Engels et al. (Eds.): Nagl Festschrift, LNCS 5765, pp. 580–601, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Multi-view Modeling to Support Embedded Systems Engineering in SysML 581

manufacturing-process specification) is represented by black dots; the dependen-
cies between the information objects is shown as boxes labeled ‘D ’. Examples
of such dependencies include an assembly-part relationship, the dependence be-
tween the mechanical length of a wire and its electrical resistance, or the de-
pendence between a circuit description and the corresponding analysis model.
During the product development process, new information is generated by the
stakeholders using a variety of domain-specific tools: synthesis or authoring tools
(e.g., CAD tool or drawing tool for hydraulic schematics) as well as analysis tools
(e.g., dynamic simulation tool, or reliability analysis tool).

Fig. 1. An example of an embedded system problem with multiple subsystem models

in different domains with interdependencies between the models. Dependencies (D)

exist between certain parts of different domains but not across the complete domain.

A method that can identify these dependencies as well as allow for the addition of

knowledge between models is required, such as the method presented in this paper.

Ideally, the information and dependencies defined within such tools would
be linked globally across tool boundaries. But because individual tools are not
aware of the information in other tools, the dependencies across tool boundaries
often remain unaccounted for. Currently, at best, such dependencies are main-
tained at a coarse-grained level in a Product Data Management (PDM) system.
For instance, one may keep track of which finite element model is related to
a certain CAD file. But such coarse-grained dependencies do not identify at a
fine-grained level which parameters in the finite element model depend on which
CAD parameters. Even worse, many of the dependencies are modeled only in-
formally (e.g., in a text document) or not at all (e.g., they are unknown or exist
only in the brain of a stakeholder).
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Still, not all information needs to be shared among all tools. For instance, the
detailed description of the embedded software can be maintained in a software
engineering tool but does not need to be shared with a mechanical CAD (MCAD)
tool.

A fine-grained approach is needed that can identify information that is or is
not common between multiple views is needed. For instance, while component
and connectivity information from electrical or hydraulic schematics are impor-
tant for simulation-related views, diagram layout and placement details may not
be relevant in this particular context. Moreover, additional knowledge is often re-
quired when integrating between views, such as specifying control and simulation
parameters when creating a simulation model from a structural model. There-
fore, in such cases where models cannot be completely converted using standard
interchange formats, maintaining consistency is usually left to the users resulting
in significant non-value-added efforts and potential for error.

In order to avoid such costly and error-prone processes, the approach advo-
cated in Model-Based Systems Engineering (MBSE) is to model both the various
views and their dependencies formally in terms of a common system model. How-
ever, even when using such a common system model, the modeling formalism
must explicitly allow for information to be shared between different views. In
this paper, the focus is to demonstrate a framework in which different domain-
specific views can automatically be generated from a common system model.
We explore and develop a foundation for supporting multiple views in the Sys-
tems Modeling Language developed by the Object Management Group (OMG
SysMLTM) [1]. Through domain specific modeling and model transformations,
multiple domains and their relations can be described. Moreover, the framework
presented complies with industry standards such as Meta-Object Facility (MOF)
[2], Model Driven Architecture (MDA) [3], and SysML, thereby facilitating its
integration with a variety of existing tools and standard frameworks.

In the next section, related work and the motivation for the use of SysML
is discussed. In Section 3, we present a method for multi-view modeling in the
context of an electro-hydraulic embedded systems example. Finally, Section 4
summarizes the work presented and discusses the challenges that exist with
regard to this framework and multi-view modeling frameworks in general.

2 Related Work

Embedded systems traditionally involved only the software domain. However, the
increasing use of software as a replacement for hardware has resulted in embed-
ded systems becoming a part of many complex systems in practice. As a result,
embedded systems design spans multiple domains including the software to con-
trol these systems. These domains contain different information maintained in
multiple views for each of the various subsystems. Therefore, the requirements
for maintaining consistency between multiple views are different than those for
maintaining interoperability between models.
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Interoperability involves managing similar information across different for-
mats. For instance, standard file formats such as XML [4] and STEP [5,6], are
commonly used for interoperability in the software and engineering domains. On
the other hand, multi-view modeling involves managing different information
across different tools and domains. In such cases, tools usually do not conform
to common file formats and if they do then there are limitations such as data loss
issues in STEP [7] and readability issues with XML and XMI. Moreover, such
transformations are usually carried out in batch mode and hence maintaining
consistency and updating various views can become cumbersome [8].

Since different views involve different knowledge, such as synthesis or analysis
knowledge, only certain aspects of each view are related. Therefore additional
knowledge is required to generate one view from another, such as an analysis
view from a structural view. Model transformations are suited for this, in which a
source model is converted into a target model based on specified rules. Czarnecki
et al. [9] discuss the classification and comparison of different model transforma-
tion based approaches, such as direct manipulation and graph transformations.
In direct manipulation, general purpose programming languages such as Java
or C are used directly to define transformations. As a result, it can be cumber-
some to use, understand and maintain due to the lack of high-level abstractions
available. Graph transformations, however, can be defined in a declarative and
visual manner [10], allowing complex rules to be expressed in an intuitive fashion
[11]. Another benefit of graph transformations is that they can be executed in
continuous or incremental modes. Therefore, transformations can be performed
interactively with the user which makes managing consistency between various
views easier [8]. In addition, Computer Aided Software Engineering (CASE)
platforms such as Fujaba [12] and MOFLON [13] provide the capability to de-
fine graph transformations and automatically generate corresponding executable
code for performing the model transformation in a language such as Java. There-
fore, in the research described in this paper, a graph transformation approach is
adopted for the integration of multiple views of a system.

In addition to multi-view integration, a mechanism for systems level design is
required for embedded systems that are large and highly complex. To overcome
these problems, the use of a general-purpose modeling language such as SysML
has been proposed as an alternative to UML [14,15,16]. The use of SysML as a
unifying language for systems design is discussed in the next section, along with
related work that is being carried out with SysML.

2.1 SysML as a Common Modeling Language for Multi-view
Modeling

As discussed in the previous section, due to the widespread use of embedded
systems in contemporary products and systems, there is an increasing require-
ment for multi-view modeling methods that can incorporate multiple disciplines
as well as integrate between their associated views. Multi-view modeling also
involves describing a particular system in multiple ways, such as structural, be-
havioral, and requirements views.
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UML has been widely used in software engineering to model multiple views
of a software system. However, since embedded systems are used in multiple
disciplines of a complex system, embedded systems can no longer be designed
from a purely software modeling point of view. Consequently, to overcome this
limitation of UML when dealing with domains other than software, we advocate
the use of SysML – a general Systems Modeling Language – that provides certain
key extensions of UML to enable modeling of multidisciplinary systems, includ-
ing software. SysML extends UML in the form of a SysML profile. Some key
features include the introduction of requirements modeling, extension of Class
in UML to Block in SysML to model system structure, constraint blocks to
support engineering analyses, and the use of ports and flows to support flow
of energy, information or matter between elements. More information regarding
the specification and features of SysML can be found in [1,17].

Vanderperren and Dehaene [15] highlight the advantages of using SysML for
requirements modeling in embedded systems (System on Chip) as well as to
improve current UML-based development techniques. In addition to these new
features, SysML and UML provide a mechanism to customize the general se-
mantics of SysML through profiles. This is an important part of the multi-view
modeling method presented in this paper, and is discussed in more detail in
Section 3.3 on Domain Specific Modeling in SysML.

In order to support multiple complementary views of a system we propose to
use a common model in SysML that consists of a combination of relevant knowl-
edge from the domain-specific views at a high level of abstraction. In addition,
we use profiles to enable the domain-specific description of different disciplines
and languages in SysML, as shown in Fig. 2. When compared to Fig. 1, we see
that the dependencies are not directly between the multiple disciplines; rather,
they exist indirectly through a common model for the problem under consid-
eration. Consequently, each domain-specific model is a subset of the common
model and is therefore a view of the system. Since each domain-specific view is
at a more detailed level of abstraction compared to the common model, only
certain aspects are required to be mapped between the common model and the
corresponding view. This is achieved by abstracting the domain-specific seman-
tics mapped into SysML through the use of profiles. As a result, only those parts
of domains that are related to each other are integrated instead of translating
a complete model from one domain to another. This can allow the designer to
concentrate on specifying the system without worrying about the semantics and
features of specific tools. Moreover, since the different domain-specific views are
complementary to each other, maintaining a common high-level representation
in SysML provides designers with a consistent big-picture view of the problem
being solved.

The framework for multi-view modeling presented in this paper involves de-
scribing domains through SysML profiles and metamodels, and defining map-
pings between them through model transformations. This method is discussed
in the following section through an example of an electro-hydraulic system that
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Fig. 2. Use of SysML and mappings as a common modeling language in which depen-

dencies between different domains are captured through the use of a common view of

the system in SysML.

has multiple views - a schematic layout view and a continuous simulation view
in which the control system is modeled.

3 Multi-View Modeling Using SysML Profiles and Model
Transformations

Our general method for multi-view modeling involves the following steps, which
will be described in the context of an example problem of an electro-hydraulic
log splitter.

1. Formal definition of the domains involved in the system through metamodels.
2. Customization of SysML through profiles to enable domain specific

modeling.
3. Model transformations to generate domain-specific views from SysML

3.1 Example Problem Description

To demonstrate the implementation of the above steps, an example is used that
can be modeled in different views such as structural, control and simulation.
The example used for the remainder of the paper is of an electro-hydraulic
log splitter (Fig. 3), which is used to divide cylindrical logs into two or more
pieces. A traditional log splitter includes a hydraulic circuit in which a valve
is manually operated to actuate a cylinder into a piece of wood. Instead of
manual valve operation, we consider an embedded control system to operate
the valve, resulting in improved functionality but also additional subsystems.
These different subsystems are usually represented in multiple domain-specific
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tools such as EPLAN FluidTM [18] to capture the hydraulic schematics and
Modelica R© [19] for modeling the control system and dynamic behavior. In order
to support these complementary views, a common model in SysML is created
in order to represent the entire system at a high level of abstraction from which
EPLAN and Modelica specific views can be created with the relevant subset
of information (see Fig. 4). This is similar to the approach of domain-spanning
specification by Gausemeier et al. [20] and Product View Federations by Bajaj et
al. [21]. Thus, the integration between EPLAN and Modelica is done indirectly
through a common model from which views can be generated by using SysML
profiles and model transformations.

Log Loading &
Splitting Area

Directional
Control Valve

Hydraulic Cylinder
& Ram

Engine &
Pump

(credit: Dave Thompson)

Fig. 3. An electro-hydraulic log splitter. The production-related hydraulic layout is

done using EPLAN Fluid, while a dynamic simulation involving the hydraulics and its

control system is done in Modelica. A common view for both will be represented in

SysML, from which views for EPLAN and Modelica will be created.

From the common model two views are created: a structural hydraulic
schematic in EPLAN (Fig. 5) and a dynamic simulation of the system behavior
in Modelica (Fig. 6). These two views each contain a subset of the knowledge
captured in the common model. For instance, both tool-specific views contain
the components and connection information. However, the EPLAN view does
not contain controller information while the Modelica view does not contain in-
formation related to geometric layouts. A designer using EPLAN or Modelica
may add/remove components and this is where a common model is useful in
maintaining the relevant changes on both sides. The process of maintaining con-
sistency can be similar to the process used by Gausemeier et al. [20], in which
problem-specific rules and intervention by experts can be used to manage up-
date and propagation between views. However, since each of the views are in
separate tools, this paper presents an initial effort for creating multiple views
that are linked together by a common model in a common representation. Since
the update and propagation of changes involve custom problem-specific rules, it
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[Block] Circuit Circuitibd [   ]

«block»
cylinder : Cylinder

A : Hydraulic B : Hydraulic

housing : Flange rod : Translational

«block»
directionalValve : DirectionalValve

A : Hydraulic
B : Hydraulic

control : Control

P : Hydraulic T : Hydraulic

«block»
reliefValve : ReliefValve

A : Hydraulic

B : Hydraulic

«block»
control : Control

control : Control

«block»
pump : Pump

P : Hydraulic

T : Hydraulic

«block»
tank : TankA : Hydraulic B : Hydraulic

Common 
SysML Model 

Fig. 4. A common model representation of a log splitter in SysML. The EPLAN view

does not need control system models while the Modelica view does not require layout

information. However, both are represented in SysML as black-boxes which can further

be developed in the respective tools and languages.

is not considered in this paper; however such rules can be included within the
method presented.

3.2 Formal Capture of Domain Knowledge Using Metamodels

When dealing with domain-specific views of a system, a formal representation of
each view provides a more structured and object-oriented representation to in-
terpret. This is normally done through internal data-models that are customized
for a particular domain-specific software package. The structure of these internal
data-models is often captured only in the source code of the software package.
Therefore, to integrate multiple views, the first step is to represent each do-
main or tool formally in a common format through the use of metamodels. A
metamodel is a “model used to model modeling itself” [2]. In other words, a
metamodel for a domain is a model that specifies the possible concepts that can
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Project

Pump

Valve

Cylinder

Fig. 5. A schematic for an Electro-hydraulic Log Splitter represented in EPLAN. From

the common model in SysML, an EPLAN view is created in which a designer adds

knowledge related to the layout of the system.
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Fig. 6. A dynamic simulation model for the log splitter in Modelica. Similar to the

EPLAN view, the Modelica view is created from the common model in SysML. The

designer adds knowledge related to the control system and then performs an analysis

of the system.
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exist within that domain. Each view of a system is therefore an instance of a
metamodel defined for its domain.

To support model and metamodel driven systems, OMG established the Meta
Object Facility (MOF) [2] standard. MOF provides a methodology and frame-
work for “defining, manipulating, and integrating meta-data and data in a plat-
form independent manner” [2,22]. The approach we have taken is to specify
explicitly the metamodel reconstructed from the API of the tool with which in-
teroperability is desired [23]. This is a conversion of the implicit metamodel (i.e.,
the data structures used internally to the tool and only made visible through
its API targeted for general purpose programming languages like C++) into a
formal and explicit metamodel compliant with the MOF standard. The MOF
compliant meta-CASE tool MOFLON [13] is used to define the metamodels for
all of the domains involved.

As an example, the abstract syntax of EPLAN Electric P8, which is accessible
through its API, is explicitly defined in terms of a metamodel in MOFLON, of
which a small part is shown in Fig. 7. EPLAN constructs, such as Project, Page,
Function, Connection are specified as classes while the relationships between
the constructs are specified as associations (ProjectHasPages,PageHasDevices,
etc.).

Fig. 7. A part of a metamodel for EPLAN defined in MOFLON.

A similar approach is taken to define a metamodel for Modelica. In contrast
to EPLAN, the abstract syntax of Modelica is contained within another meta-
modeling language known as Meta-Modelica [24]. Therefore, using the Modelica
metamodel as a guide, a corresponding MOF metamodel is defined, as shown in
Fig. 8.
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Fig. 8. Part of metamodel for Modelica defined in MOFLON.

In both cases, only those portions of the language that are needed for defin-
ing the required transformations are captured within each MOF metamodel.
The metamodels can be modified to incorporate more features of the language
as well as ensure compatibility with new versions. After defining each domain by
an explicit MOF metamodel, it is necessary to customize SysML to enable trans-
formation between an instance of the metamodel and a corresponding instance
in SysML. This is done through the use of SysML profiles and model libraries,
which is the next step in our framework for multi-view modeling.

3.3 Domain Specific Modeling in SysML

In order for SysML to be used as a bridge between multiple domains, the neces-
sary semantics from each of the domains must be included within SysML. How-
ever, since SysML is a general purpose modeling language, it lacks the detailed,
formal semantics needed to represent specific views in an executable format
[25]. For instance, a model that is described using generalized constructs such
as SysML Blocks is just a visual representation. It cannot be executed, unlike a
Modelica or Simulink model that can be simulated or an EPLAN model that can
be used to create assembly schematics or a Bill of Materials. In addition, it can
be cumbersome for domain experts to create models in SysML, thereby limiting
the acceptance of general SysML for specific domains. To overcome this limita-
tion, SysML can be customized to define semantics specific to a domain. Indeed,
most UML / SysML tools allow for a broad range of customizations through the
use of Domain Specific Languages (DSLs) and corresponding modifications to
the graphical user interface.

Among the various approaches available to define DSLs in SysML [26], profiles
are preferred since they do not modify the underlying SysML metamodel so that
SysML tool support is retained. A portion of a SysML profile created for EPLAN
is shown in Fig. 9. The profile is constructed as per the MOF metamodel (Fig. 7).
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Language constructs specific to the EPLAN (e.g., Page and Device) are defined
as stereotypes that extend existing SysML and UML constructs, such as the
Block metaclass of SysML.

EPLANProfile[Profile] EPLANpkg [   ]

-direction : FlowDirection [1] = inout
-isConjugated : Boolean = false
-/isAtomic : Boolean

<<stereotype>>

FlowPort

[Port]

-fullDT : String
-category : Category
-SupplementaryField : String [0..*]
-Pins : Pin [0..*]

<<stereotype>>

Device

[Class]

-projectName : String
-projectFullPath : String
-fullInstallationNumber : Integer

<<stereotype>>

EplanProject

[Class]

-targetPin : ElectricalPin [0..*]

<<stereotype>>

ElectricalPin

[Port]

-isEncapsulated : Boolean

<<stereotype>>

Block

[Class]

FixedDisplacementPump
DirectionalControlValve

Accessories
Distributor

Cylinder

Valve

Filter

<<enumeration>>

Category

-targetPin : FluidPin [0..*]

<<stereotype>>

FluidPin

[Port]

-targetPin : Pin [0..*]

<<stereotype>>

Pin

[Port]

Fig. 9. A Profile for EPLAN in SysML. Stereotypes such as EplanProject, Device, Pin
represent constructs used in EPLAN.

A profile is also defined to represent Modelica simulation models in SysML.
Rather than creating a stereotype for every language construct of Modelica, only
the subset of constructs necessary for capturing the model interfaces is modeled.
Such “black box” models refer to externally defined Modelica models for their
internal details. The SysML profile includes the full path to the library and the
specific model within it [27], as is shown in Fig. 10.

Using these profiles, one can represent any EPLAN or Modelica model within
SysML, and then establish the dependencies between them using the common
model. To facilitate this process, it would be convenient to map entire libraries
of models to their corresponding SysML-profile versions so that they can be
referenced by systems engineers working in a SysML tool. At present, these
SysML model libraries are created manually but the process could be automated
by using a tool’s internal API (e.g., as for EPLAN) or by parsing through a model
library file (e.g., as for Modelica). By storing models that reference preexisting
tool-specific models, the designer’s need to know detailed syntax for each tool is
reduced. Consequently, a designer can focus more on the problem to be solved
instead of having to learn the syntax of each tool.

In conclusion, the combination of profiles and model libraries with metamod-
els provides the framework in which model transformations can be applied to
integrate multiple views. This is discussed further in the next section.
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[Profile] Library Librarypkg [   ]

+ref : String [1] = FluidPower.Components.Cylinders.DoubleActingCylinder
+url : String = C:\Program Files\Dymola\Modelica\Library\Modelica 2.2.1\package.mo
+library : Block [1] = FluidPowerLibrary

<<stereotype>>

ExternalLibraryModel

[Class]

+url : String = C:\Program Files\Dymola\Modelica\Library\Modelica 2.2.1\package.mo

<<stereotype>>

ExternalLibrary

[Class]

-isEncapsulated : Boolean

<<stereotype>>

Block

[Class]

+startTime [1] = 0
+stopTime [1] = 10
+analysis : Block [1]

Simulation

[Class]

<<stereotype>>

Fig. 10. A Library profile is used to capture model library elements. Stereotypes such

as ExternalLibrary and ExternalLibraryModel are used to specify the reference locations

that point to the actual tool-specific models.

3.4 Model Transformations to Generate Domain-Specific Views

Once all of the domains are represented by MOF metamodels and SysML profiles,
transformation rules can be defined both create domain-specific views in SysML
from the common model and create domain-specific tool representations of the
views. Model transformations are commonly used to convert a model in one
domain (the source model) to a model in another domain (the target model),
as is shown in Fig. 11. When creating domain-specific SysML views, the source
model is the common SysML model and the target is a domain-specific view in
SysML. For generating domain-specific tool representations, the source model
becomes the domain-specific SysML view. Since both metamodels and SysML
profiles can be described in terms of graphs [10], graph transformations can be
used to integrate between the different views and models. In this case, the domain
semantics (metamodel and profile objects) represent the nodes, and associations
represent the edges.

Fig. 11. Process of model transformation from Source to Target model (Czarnecki et
al. [28]
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Also, many common transformation-based approaches can be used including
OMG’s Queries / Views / Transformations (QVT) [29] and Triple Graph Gram-
mars (TGG) [30] because both the source and target models are instances of
formally defined metamodels. In our approach, story diagrams [31] are used to
visually define rules for the transformations between different views. These rules
are TGG-like in that they use a correspondence graph that captures the rela-
tionships between source and target model. Just as in TGGs, the correspondence
graph is defined by a correspondence metamodel [22,30]. For instance, in Fig. 12
a correspondence metamodel is used to link objects of a SysML view to objects
in an EPLAN tool specific view. The object DeviceBlock2Device links a Block
object in SysML to a Device object in the Electrical CAD (ECAD) domain,
just as the stereotype Device is a generalization of the Block metaclass in the
SysML profile. Story diagrams are used because they allow the inclusion of API
specific code.

Fig. 12. Correspondence metamodel between SysML and EPLAN. It is used to main-

tain relation between elements of different views. A Block in SysML is related to a

MOF object of class Project through the correspondence MOF object of class Eplan-
ProjectBlock2Project.

Unlike TGGs, the story diagrams presented are not specifications of bidirec-
tional transformation rules and therefore rules are required in each direction. For
instance, rules are defined between the common model and the structural view
in SysML, between the structural view in SysML and EPLAN, between the com-
mon model and the Modelica view in SysML, and finally between the Modelica
view in SysML and the executable simulation in Modelica. The transformations
are defined using a Meta-CASE (Computer Aided Software Engineering) tool
called MOFLON [13], which simplifies the overall process with its modeling and
automated code generating capabilities.

A disadvantage of story diagrams is the need to specify the order of execu-
tion within the specification. Consequently, custom story diagrams are needed
to implement problem-specific consistency management. Also, custom diagrams
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would be needed to do incremental model construction. This is in contrast to
TGG approaches in which consistency management rules can automatically be
derived from the transformation specification such as in work by Königs and
Schür [32]. TGGs can also be modified for incremental model construction as
shown in work by Griese and Wanger [33].

In Fig. 13, a story diagram is shown that takes as input a SysML block
(stereotyped with EplanProject) that contains path information for an EPLAN
project file (LogSplitter.elk) and creates a Project object as per the EPLAN
metamodel as well as updates the EPLAN project with information such as
ProjectName. Other transformations (not shown) are then executed in order to
fill in the EPLAN project from the SysML view. For instance, a transformation is
defined that finds all the SysML blocks stereotyped as Device and creates devices
in the EPLAN project along with the corresponding connections between them.
Through such transformations, an input structural view in SySML as shown
in Fig. 14 is converted into the corresponding EPLAN view as in Fig. 5. Not
only can model transformations be used to create the entire model as shown
here, they can also be defined to only propagate changes using correspondence
information to find and update the appropriate model elements.

Both the transformations from SysML to EPLAN and SysML to Modelica
establish dependencies across different modeling environments, as illustrated in
Fig. 2. In addition, it is necessary to capture the dependencies between different
views and the common model within the SysML environment. For examples, the
EPLAN profile can be used to describe the structure of electrical or hydraulic
circuits within SysML. This structural view is related to a corresponding analy-
sis view that can be represented using the Modelica profile and linked using the
common model. It is often possible to define the dependencies between different
systems views parametrically using SysML parametric diagrams, and this ap-
proach can be augmented with model transformations to create dependencies.
Parametric dependencies alone are sufficient when the structure of the views re-
mains the same and only the parameter values need to be modified or updated.
However, in this case, it is quite common to change the topology of the different
views also. A parametric mapping would have to be re-established each time the
topology of the structure is modified, a cumbersome and error-prone process.

The dependencies between the common model and domain-specific views have
been modeled using model transformations. These model transformations em-
body the generic knowledge needed to create the domain-specific views from the
knowledge available in the common model. These model transformations need to
be complemented by domain-specific knowledge stored in mapping models, called
Multi-Aspect Component Models (MAsCoMs) by Jobe et al. [34]. For instance,
the EPLAN structural view contains a pump component, which refers only to the
structural information about the pump: the type of pump, the key sizing param-
eters such as displacement and maximum pressure, and a product ID which are
all present in the common model. With this information, a corresponding MAs-
CoM can be identified in a MAsCoM library, which in turn allows the model
transformation to instantiate the appropriate EPLAN component model and
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Fig. 13. A story diagram that creates an EPLAN project file with information from a

SysML model. The input (sysmlBlock) contains project location and through EPLAN’s

API, project information is accessed and is added to the SysML input block.
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[EplanProject] Circuit Circuitibd [   ]
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2
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Valve in EPLAN
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SysML EPLAN View 
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Fig. 14. Model transformations are executed to convert this view in SysML to EPLAN.

The SysML model is in the form of an Internal Block Diagram, within the block that

corresponds to the EPLAN project.

establish the parametric dependencies. (See Fig. 15) Refer to [34] for the details
of this mapping approach. In this same way, transformations are executed to
generate a Modelica view in SysML from the corresponding common model in
SysML, as shown in Fig. 16.

Finally, once the Modelica model in SysML is generated, it is converted to
executable Modelica code through model transformations defined on the Mod-
elica metamodel (Fig. 8) and subsequent conversion to textual code through a
tool integrator. The textual Modelica model can be executed in any Modelica
solver such as the OpenModelica Compiler [35] or Dymola [36]. Figure 6 shows
the generated Modelica model within Dymola.

The model transformations discussed above are defined in MOFLON, which
automatically generates JMI (Java Metadata Interface) code that implements
the transformations in Java. This JMI code is combined with a JMI-compliant
SysML tool, such as Magic Draw [37], in the form of a plugin. To handle the in-
compatibility of programming languages of different tools (e.g., EPLAN is based
on .NET while Magic Draw and MOFLON are based on Java), interoperability
software may be necessary to bridge the gap. In the implementation of this ex-
ample, JnBridge Pro [38] has been used to access the EPLAN API from within
a Java-based model transformation framework.

In conclusion, through the successive execution of graph transformations, it
is possible to generate several domain-specific views and domain-specific tool
representations from a common model in SysML, thereby integrating tools that
are otherwise incompatible with each other and encoding knowledge that would
otherwise require manual regeneration of views each time the system topology
changes.
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Fig. 15. Dependencies between the common model and domain-specific views in

SysML.

[Block] Circuit Circuitibd [   ]

«ExternalLibraryModel»
doubleActingCyl1 : DoubleActingCylinder

port_a : FlowPort port_b : FlowPort

flange_b : Flange_b

«ExternalLibraryModel»
pump : ConstantDisplacementPump

«ExternalLibraryModel»
constantSpeed : ConstantSpeed

«ExternalLibraryModel»
valve1 : V4_3OCValveBlock

B : FlowPortA : FlowPort

u : RealInput [1..*]

«ExternalLibraryModel»
slidingMass1 : SlidingMass

flange_a : Flange_a

flange_b : Flange_b

«ExternalLibraryModel»
reliefValve : ReliefValve

«ExternalLibraryModel»
controller : Controller

y : RealOutput

flange_a : Flange_a

«ExternalLibraryModel»
j1 : NJunction

«ExternalLibraryModel»
j2 : NJunction1

«ExternalLibraryModel»
tank : CircuitTank

«ExternalLibraryModel»
fixed1 : Fixed

Cylinder in Modelica

Valve in Modelica

SysML Modelica View 
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SysML model)
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Fig. 16. Model transformations are executed to convert the common model in SysML

to a Modelica model in SysML. The SysML model is in the form of an Internal Block

Diagram.
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4 Discussion and Closure

In this paper, the use of SysML profiles and model transformations for multi-
view modeling of embedded systems is discussed. Embedded systems are be-
coming more prevalent, resulting in the increasing use of software throughout
a variety of systems [14]. Although considerable research has been done for the
automation of software development through UML, little effort has been focused
on the model-based engineering of entire systems, including both software and
hardware. To support the development of embedded systems, no single language
such as UML or SysML can effectively capture all of the needed information.
For instance, SysML is well-suited for defining the high-level relationships that
exist between requirements, structure, and behavior. It is not suited for specify-
ing schematics for assembly (EPLAN’s function) or simulating control systems
and dynamic system behavior (Modelica’s function). Therefore, the method pre-
sented in this paper integrates multiple views that involve different knowledge
(structural or analysis knowledge), thereby leveraging the capabilities of different
domain-specific tools. As a result, one can synergistically combine the strengths
of multiple modeling languages and tools. In SysML, the designer can trace re-
quirements to desired behavior or allocate functions to structural components;
these capabilities can now be combined with the modeling views created in tools
that are specifically tailored for authoring or analyzing systems in formalisms
with which domain specialists are most familiar.

However, as shown in the previous section, there are a number of challenges
still to be addressed when creating a general framework for multi-view model-
ing. A major research question involves determining an effective way maintain
consistency in a problem independent fashion. This is in contrast to the current
approach of using problem specific update and propagation rules [20]. But it is
not clear which approach is most suitable for maintaining and managing consis-
tency between the different views. Ideally, a general framework must also take
into account the work flow process, to allow consistency to be evaluated and
reestablished periodically but not enforced all the time. This process is likely
to require human involvement to resolve inconsistencies when multiple views
cannot be reconciled without ambiguity.

These challenges are applicable to any framework and we believe that the
model-based framework demonstrated in this paper is sufficiently flexible to ac-
commodate extensions that will address these challenges. Moreover, additional
design capabilities such as the design synthesis algorithms by Kerzhner and
Paredis [27] and Helms et al. [39] can benefit from the model-based framework
defined in the paper. In conclusion, the framework presented in this paper is an
approach that we believe is not restricted to any particular domain and can serve
as a step towards the unification of the various domains involved in embedded
systems design.
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Abstract. Complexity in the application domains of software-intensive systems 
is continuously growing due to at least two reasons. Firstly, technical 
complexity grows as hardware and software have to interact in individual or 
even communicating embedded systems. Secondly, social complexity grows as 
the process organizations of the 1990’s are gradually being replaced by loosely 
coupled networks of actors, often organized around community platforms. In 
this chapter, we discuss recent solution attempts for these two issues 
individually, and end with speculating about their possible future interaction. 

Keywords: abstraction layers, goals, scenarios, architecture, social networks, 
reflective architectures, web communities. 

1   Introduction 

As an essential bridge between user and developer concepts, requirements 
engineering (RE) has increasingly captured the attention of researchers, practitioners, 
and sometimes even executives and politicians for the past thirty years. Already in the 
early 1990’s, RE was defined as the process of “establishing a vision in context”, i.e. 
the critical role of the context in which a system is developed, operated, and evolved, 
has been recognized [1]. In two European Basic Research Projects as well as in the 
German SFB IMPROVE [2], the relations between requirements and the context of 
the system have been elaborated focusing on aspects such as organization of the 
context knowledge in different “worlds” of engineering or the interplay of goals and 
contextual scenarios. 

In the 21st century, the basic idea of establishing visions in context remains valid, 
but the context to be considered and the stakeholders have changed significantly. 
Firstly, “greenfield” development of completely new systems hardly exists any more. 
In contrast, changing and new requirements must typically be embedded in large-
scale corporate and technical system architectures. Secondly, the pressures on cost 
and the globalization necessitate internationally distributed “development worlds” 
with increasing interactions and much stronger needs for precise communication. 
Third, much of the innovations are no longer coming from the well-structured process 
organizations (like in the 1990’s), but from the edges of shifting cross-organizational 
networks and flexible service-orientation of which the Web 2.0 movement is probably 
the best-known example. 
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In this paper, we illustrate these new trends and their consequences for 
requirements engineering researched in two recent projects, one focusing on the co-
development of requirements and architectures in complex software-intensive systems 
(Section 2), the other focusing on requirements engineering in internet communities 
where the boundaries between users and developers tend to blur as quickly as the 
membership of the communities themselves (Section 3). Section 4 concludes with 
some speculation about future confluence of these challenges. 

2   Requirements Engineering for Complex Software-Intensive 
Systems 

As Brooks stated in 1987: „The hardest single part of building a software system is 
deciding precisely what to build. No other part of the conceptual work is as difficult 
as establishing the detailed technical requirements, including all the interfaces to 
people, to machines, and to other software systems. No other part of the work so 
cripples the resulting system if done wrong. No other part is more difficult to rectify 
later.” [3] 

Today, in many domains such as automotive, avionics, automation, energy, or 
medicine, innovative product features are realized increasingly by means of software, 
more precisely through networks of software-intensive, embedded systems. The 
number of (software-based) system functions and the number of dependencies 
between these system functions increase rapidly. Hence the complexity of these 
systems and their software increases as well. The need to develop software-based, 
innovative functions makes requirements engineering for software-intensive systems 
more challenging than ever: The requirements engineering process must satisfy strict 
quality demands which are often enforced even by laws and standards. At the same 
time, the schedules for developing new systems or, respectively, new system versions 
are tight, and the development costs must constantly be reduced. Moreover, the proper 
integration of requirements engineering into the overall development process, 
especially the intertwining of requirements engineering and architectural design, is 
becoming an essential factor for successful system development. 

In the light of these challenges we have developed the COSMOD-RE method 
(sCenario and gOal based System development MethOD; see e.g. [4]). COSMOD-RE 
supports the co-development of requirements and architectural artifacts for software-
intensive, embedded systems at multiple layers of abstraction. In the following, we 
sketch out the cornerstones of COSMOD-RE. In Section 2.1, we provide a brief 
overview of the key building-blocks of COSMOD-RE. In Section 2.2, we introduce 
the four abstraction layers which define the backbone of COSMOD-RE. In Section 
2.3, we briefly describe the co-development of requirements and architectural artifacts 
which we support by means of goals and scenarios. Moreover, we illustrate the use of 
COSMOD-RE using a simplified ACC (adaptive cruise-control system). Section 2.4 
provides a brief outlook on the further development of COSMOD-RE. 

2.1   COSMOD-RE: Brief Overview 

Fig. 1 depicts an overview of the three main building blocks of COSMOD-RE that are 
described in the next sections: the use of a hierarchy of four abstraction layers, the 
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support of the intertwined and partly concurrent development of requirements and 
architectural artifacts by means of co-design-processes, and the use of goals and 
scenarios to support the refinement of requirements across the abstraction layers as 
well as the co-development of requirements and architectural artifacts. 

 

Fig. 1. Main building blocks of the COSMOD-RE method 

2.2   COSMOD-RE Abstraction Layers 

The use of abstraction layers is a well-proven means for problem-solving and, in 
particular, for dealing with and managing the complexity of software-intensive 
systems (see e.g. [5]). As Weber and Weisbrod state: “Engineers cannot develop a 
complex system – such as an up-to-date telematics unit – solely by talking about and 
dealing with the system requirements that make up the low-level, detailed component 
specification. On the contrary, developing complex systems from the top down in 
several layers of granularity is inevitable. When it comes to RE, this observation still 
holds. Unfortunately, today systematic processing and documentation of higher level 
requirements and design decisions are insufficient.” [6] 

In order to support and guide the specification of requirements at different levels of 
granularity, COSMOD-RE is based on a generalized (or essential) hierarchy of 
abstraction layers that can be applied to a wide range of domains and systems (see 
Fig. 2). 
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Fig. 2. Hierarchy of four essential abstraction layers defining the backbone of COSMOD-RE 

The abstraction layers used in COSMOD-RE are: 
 

− System layer: The system layer (highest abstraction layer) defines requirements and 
architectural artifacts fairly independently of the implementation technology and 
internal structure (decomposition) of the system. The system is regarded as a black 
box. This layer thus focuses on the embedding of the system in its environment. 
The requirements at the system layer are defined mainly from a system usage 
perspective. At each successive layer, the requirements are refined and additional 
design concerns are taken into account. 

− Functional decomposition layer: At the functional decomposition layer, the system 
is decomposed into coarse-grained, logical building blocks. The requirements for 
each building block as well as the interrelations and interactions between the 
building blocks are defined at this layer. The functional decomposition layer aims 
at supporting problem understanding and problem decomposition. 

− Hardware/software (HW/SW) partitioning layer: At the hardware/software 
partitioning layer, the system is decomposed into coarse-grained, technical 
building blocks, i.e. hardware and software building blocks. The requirements for 
each building block as well as the interrelations and interactions between the 
hardware and software building blocks are defined. At this layer, the decision is 
made which system properties are realised through hardware components and 
which ones are realised through software components. 

− Deployment layer: At the deployment layer, the deployment of the system (i.e. the 
application software and hardware) into a hardware and software platform is 
defined. Such a platform typically consists of a set of physical units which are 
connected by physical networks and are equipped with basic system software. 
Hence, at this layer, the decision is made which application software or hardware 
component is deployed to which physical unit. This entails refining the 
requirements with regard to the specifics of each physical unit (such as processing 
speed and memory, input and output facilities, operating system, communication 
software, middleware etc. of the respective physical unit). 

This hierarchy can be refined or simplified, if needed. The specific hierarchy of 
abstraction layers used in a project should take into account characteristic properties 
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of the domain, the organization, or even the project itself (such as system complexity, 
desired reusability etc.). Using such a hierarchy of abstraction layers offers the 
following advantages for the development of complex, software-intensive systems 
(see [7] for more details): 

 

− Hierarchical (problem) decomposition: When using abstraction layers, the problem 
of defining detailed requirements for a software-intensive system is decomposed 
into a set of smaller problems of defining detailed requirements for individual 
components and their interactions. Clearly, specifying, for instance, the behavioral 
requirements for a component (e.g. the requirements for the brake control software) 
is a simpler task than specifying the behavioral requirements for the entire vehicle 
at the same level of detail simultaneously. 

− Requirements stability: Requirements and, partly, architectural solutions at higher 
abstraction layers are defined independently of their technical realizations e.g. by 
hardware and software components. Since requirements defined at the system layer 
are fairly independent of the technical solution, they are typically not affected by 
changes in the technical realization, such as changes at the hardware/software or 
the deployment layer. The effects of the abstraction layers are similar to the 
positive effects of the differentiation between the “essence of a system” and the 
“incarnation of a system” (technology-independent and technology-dependent 
requirements) in Essential Systems Analysis [8]. 

− Traceability and rationale: Requirements defined at lower abstraction layers can 
be related e.g. by means of “refines” relationships to requirements defined at 
higher abstraction layers. The requirements defined at the lower abstraction layers 
can be traced back to higher-level requirements. The requirements defined at 
higher abstraction layers thus provide rationale for the requirements defined at the 
lower abstraction layers. Among other things, this improves the traceability of the 
requirements and contributes to their comprehensibility. 

When developing requirements at multiple abstraction layers, it becomes obvious that 
requirements engineering and architectural design are inevitably intertwined (see e.g. 
[9] [10]) as discussed in the next section. 

2.3   Co-development of Requirements and Architectural Artifacts 

When developing a complex system, the stakeholders have to accomplish two 
different but closely related tasks (see e.g. [11]): 

 

− Refinement of the requirements: The stakeholders have to refine high-level 
requirements into detailed requirements which contain enough details to facilitate 
the implementation and quality assurance (e.g. testing) of the system. 

− Decomposition of the system: The stakeholders have to decompose the overall 
system into a set of interacting parts (sub-systems or components), i.e. the 
stakeholders have to define a detailed architecture which satisfies the defined 
(detailed) requirements. 

Clearly, the requirements influence and partly even determine the architecture. 
However, design decisions (e.g. the choice of a specific architectural solution for the 
system) strongly influence the refinement of high-level requirements into detailed 
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(implementable and testable) requirements. In other words, the refinement of the 
requirements depends (partly) on the design choices taken. In addition, an innovative 
architectural solution can even lead to entirely new (high-level) requirements. 

As suggested, for example, by Nagl and his co-authors (see e.g. [12]), development 
methods and tools should support a tight integration between requirements 
engineering and architectural design. Still, existing development methods do not 
foster the intertwined development of requirements and architecture. Refining 
requirements without a systematic exploration of possible design options bears the 
danger that important design decisions are made implicitly. In other words, 
stakeholders often hide design decisions taken (explicitly or implicitly) in the detailed 
requirements. Such implicit design decisions often rule out other (and perhaps better) 
solutions. In order to avoid such problems (implicit design decisions), the COSMOD-
RE method fosters and systematically supports the intertwined development of 
requirements and architectural artifacts. 

2.3.1   A Co-design Process 
COSMOD-RE supports the intertwined and partly concurrent development of 
requirements and architectural artifacts by means of so-called co-design processes. 
Fig. 3 depicts the structure of the co-design processes defined by COSMOD-RE. A 
co-design process in COSMOD-RE supports the development of requirements 
artifacts at an abstraction layer Li and the alignment of these requirements artifacts 
with the architectural solution at the abstraction layer Li+1. 
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Fig. 3. Overview of the sub-processes of a co-design process 

The goals of the five sub-processes depicted in Fig. 3 can be characterized as follows: 
 

− Sub-process SP1 supports the development of initial goals and scenarios at the 
layer Li (see Section 2.3.2). 

− Sub-process SP2 supports the development of initial architectural artifacts at the 
layer Li+1. Sub-processes SP1 and SP2 can be performed in an intertwined manner 
or, partly, in parallel. 
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− Sub-process SP3 supports refinement of the goals and scenarios defined at layer Li 
based on the architecture defined at layer Li+1. The refinement results in goals and 
scenarios at layer Li+1. In addition, the responsibilities for satisfying the goals and 
scenarios are assigned to the elements of the architecture. Thereby, the detection of 
mismatches between the requirements defined at layer Li and the architecture at 
layer Li+1 is supported (such as goals that the architecture cannot satisfy or 
architectural elements not justified by system goals). 

− Sub-process SP4 is responsible for reconciling the requirements and the architecture 
at the two neighbouring layers Li and Li+1. It results in corrections and changes 
applied to the requirements artefacts and the architectural artefacts at both layers. 

− In sub-process SP5, the detailed (solution-oriented) requirements at layer Li are 
specified based on the results obtained from the other sub-processes, i.e. 
consolidated goals, scenarios, and (coarse-grained) architectural artifacts. 

In the following, we motivate the use of goals and scenarios for supporting the co-
development of requirements and architectural artifacts as well as the refinement of 
requirements across multiple abstraction layers. The use of goals and scenarios for 
these purposes is illustrated by a brief example (Section 2.3.3). 

2.3.2   Goals and Scenarios 
COSMOD-RE uses goals and scenarios to support the co-development of requirements 
and architectural artifacts as well as the refinement of system requirements into 
component requirements. Goals document stakeholder intentions and thereby refine the 
system vision into verifiable system objectives. Goals are typically solution-neutral. 
For example, they do not prescribe or assume the use of a specific technology. In 
addition to goals, scenarios are used to document concrete examples of system usage 
which lead to the fulfilment or unfulfilment of a defined goal. Typically, a scenario is 
defined as a sequence of interaction steps. Goals and scenarios prevent the stakeholders 
from making premature design decisions or focusing on solution details too early. 
Moreover, goals and scenarios define a sound basis for identifying and exploring 
possible solutions in the downstream development activities: 

 

− Definition of an initial, coarse-grained architecture: Typically, as soon as the 
system goals and scenarios are defined and agreed, an initial, coarse system 
architecture can be developed. Therefore, goals and scenarios are well suited to 
support the co-development of requirements and architectural artifacts. 

− Definition of solution-oriented system requirements: The defined, agreed, and 
verified system goals and scenarios (along with the initial, coarse architecture) 
provide a sound basis for defining detailed, solution-oriented requirements for the 
system. The resulting, detailed system requirements are typically more stable if 
agreed and consolidated goals and scenarios are used as input. 

− Definition of component requirements: Typically, it is significantly easier to refine 
goals and scenarios than refining, for instance, a data model, a functional model, or 
a behavioral model. Hence, in COSMOD-RE, system goals and system scenarios 
are refined into component goals and components scenarios prior to defining 
(solution-oriented) component requirements. In this way, component goals and 
component scenarios are provided to support the definition of (solution-oriented) 
component requirements. 
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2.3.3   An Example 
We illustrate the development and refinement of goals and scenarios across two 
abstraction layers (the system layer and the functional decomposition layer; see 
Section 2.2) using a simplified example of an adaptive cruise control (ACC) system. 

We document goals and their relationships using the KAOS goal model [13]. A 
simplified goal model for the ACC system is depicted in Fig. 4 on the left. In addition, 
details about the defined goals are documented using a goal template (see [7] for 
details). Scenarios are documented using a use case diagram, use case templates, and 
sequence diagrams. The use cases identified for the ACC system to fulfill the 
identified system goals are depicted in Fig. 4 (on the right-hand side). 
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Fig. 4. Examples of a goal model (left) and a use case diagram (right) for the ACC system 

Based on the system goals and scenarios, the system architects define an initial, 
coarse architecture for the ACC system that satisfies the defined goals and scenarios. 
The initial architecture depicted in Fig. 5 defines the major functional components of 
the ACC system and their interfaces. 
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Fig. 5. Example of an initial, coarse architecture for the ACC system 

Based on the initial architecture, the system goals and scenarios are (if required) 
refined and related to the architectural elements. Thereby, mismatches between the 
requirements (goals and scenarios) and the suggested architectural solution can be 
detected early. For instance, an architectural component may have no associated goals 
and thus no justification for its existence. Fig. 6 depicts the refinement of a system goal 
and the assignment of the resulting sub-goals to individual, architectural components. 
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Fig. 6. Example of refining a system goal into a set of component goals 

Based on the relations between the refined goals and scenarios and the initial 
architecture, problems and inconsistencies are detected and removed in order to align 
the goals, scenarios, and architecture. Furthermore, the alignment often stimulates 
new ideas for goals, scenarios, or architectural solutions (see [7] for more details on 
aligning goals, scenarios, and the architecture). The aligned goals, scenarios, and 
architectural artifacts are subsequently used as a basis for defining the detailed, 
solution-oriented system requirements (see [7] for details). 

2.4   Further Reading and Outlook 

Additional details on COSMOD-RE can be found in several publications. The idea of 
co-developing requirements and architecture is explained in more detail in [14]. A 
comprehensive description of COSMOD-RE has been included in a recent textbook 
on requirements engineering, see [7].  

During the construction of COSMOD-RE, an initial industrial evaluation of the 
method has been performed. During this evaluation, COSMOD-RE was successfully 
applied to various industrial examples. Presently, a systematic evaluation of in a 
number of different domains such as automotive, avionics, or medical technology is  
performed. Initial results of the evaluation of COSMOD-RE in the automotive 
domain are reported in [15]. 

To support automated, formal reasoning in COSMOD-RE, parts of the method are 
being formalized [16]. Furthermore, COSMOD-RE is being integrated into a 
seamless, model-based, overall development process for software-intensive embedded 
systems. This work is conducted within the German Innovation Alliance SPES 2020 
(Software Platform Embedded Systems). 

3   Requirements Engineering in Community Networks 

Business process modeling and business process management, including their 
software equivalents of ERP and workflow systems, have been the dominant 
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paradigm of the 1990’s. Since the turn of the century, however, the growing role of 
the Internet begins to lead to a shift in emphasis, which may lead beyond well-
structured process organizations to much more flexible capability-based network 
organizations. They blur organizational boundaries and emphasize generic platforms, 
innovation at the margin of the network, and rapid reorganization over central 
process planning. Social software has begun to play a serious role in many 
enterprises, as a medium of knowledge management, project management, or public 
relations. Important contributors to this success are low entry barriers, easy usability, 
and great flexibility. Thus, community networks have become an informal, not 
necessarily friendly counterpart to the structured systems described in section 2. 

In stark contrast to the easy initial entry, the long-term structuring of these 
information networks, e.g. in order to interface them with organizational requirements 
management, is far more difficult. Bottom-up voices from “community of practice” in 
Web 2.0 media differ strongly from contract-based requirements engineering documents 
with their many formal and semi-formal interdependencies. An architecture intended to 
support community information systems on this basis requires particular flexibility. A 
community needs to be able to observe itself, to analyze and maybe even simulate its 
behavior, in order to evolve its rules of cooperation. In short, it needs reflective 
capabilities. Only then it can survive as a community, and even interact with more 
formal parts of the structured process organizations. In this section, we shall be 
interested in the question how these properties can be achieved, such that – in the long 
run – the present disparity between the structured product family and process world of 
formal organizations can reach a more fruitful interplay with the social network and 
software environment. 

Our approach originates from an operational theory of media called Transcriptivity 
Theory [17]. It describes the operational semantics of media artifacts with three basic 
operations transcription (of sets of media into new media), localization (filtering and 
adapting received media to your own culture) and addressing (media to specific target 
groups of readers). In our abstract software architecture ATLAS (Architecture for 
Transcription, Localization, and Addressing Systems) [18], transcriptivity theory has 
been re-interpreted as a design theory for information systems in which scalable and 
interoperable repositories on top of databases support communities by web service 
technologies for multimedia content and metadata management.  

 

 

Fig. 7. The ATLAS Development Model 
 



612 M. Jarke et al. 

In its reflective conception, ATLAS-based community information systems are 
tightly interwoven with a set of media-centric self-monitoring tools. Hence, 
communities can constantly measure, analyze and simulate their activities to improve 
the understanding of their needs, in turn simplifying the collaboration between 
developers and users (cf.  Fig. 7). In the future, all community design and engineering 
activities should be carried out by the community members, regardless of their 
technical knowledge. In the sequel, we illustrate challenges and solutions for this 
concept using a specific example of network organization, cooperative learning. 

The ROLE (Responsive Open Learning Environments) architecture (cf. Fig. 8) is 
an example application of the ATLAS architecture specialized on the development of 
Internet based personal learning environments. ROLE is developed in the context of 
an EU-funded Integrated Project with the same title. 

 

 

Fig. 8. The ROLE Architecture 

The design of the ROLE Cloud – the open network of learning resources and 
services -- is based on a lightweight service-oriented architecture fostering 
communication and data provision. The ROLE Community Manager provides a basic 
service layer for privacy and trust mechanisms as well as traceable learning histories 
for learner communities. The ROLE Interoperability Framework improves the 
support for distributed third party developers from industrial as well as open source 
contexts to foster collective enhancements of the ROLE framework and to open new 
opportunities for SMEs in the cooperative learning domain. 

The ROLE methodologies and specifications evaluate solutions for deployment, 
repurposing, customization, personalization, and validation in the ROLE test-bed 
frameworks, before outreaching to further communities. We aim at a self-sustaining  
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networked community of online learners and developers, at developing a best practice 
sharing strategy for virtual, collaborative learning activities, and at examining 
characteristics and circumstances of such a learning network. A special focus is 
thereby put on the elicitation of early phase requirements in communities. In the next 
subsections, we first discuss the special RE needs of such communities which are 
quite different from those of formal organizations. We then structure these needs 
using Eric Yu’s i* model, and finally discuss a couple of community monitoring and 
analysis tools we have developed to support the reflection process. 

3.1   Community of Practice 

The conceptualization of RE for communities of practice (CoP) requires a thorough 
investigation of the existing forces, which can influence community member 
behavior. Communities are influenced by many external factors called disturbances. 
These disturbances may have a negative, positive or neutral influence on the learning 
processes within the community [19]. Without disturbances, communities are in 
danger of falling into social or cognitive lock-in situations [20, 21]. Usually, the 
disturbances are coming from outside but are changing the community inside. Thus, 
the evolution of communities takes place in a lifelong loop.  

A CoP is characterized by three dimensions introduced by Wenger [22]: 
 

Mutual engagement (ME): Community members are required to be engaged in 
interaction within their community. Hereby, membership in a community is not just 
belonging to one organization, and a comunity is not only a set of members having 
personal contacts with other members.  

Joint enterprises (JE): The common goal of a community of practice, which 
binds members together is the result of a collective process of negotiation which 
reflects the full complexity of mutual engagement.  

Shared repertoire (SR): The communal resources include routines, words, stories, 
gestures, symbols, genres, actions, tools, ways of doing things, concepts, etc. that the 
community has produced or adopted during its existence, as part of its practice. 

 

A community is thus an open group of people who share a concern or a passion 
and who interact regularly about it [22].  Two aspects are combined: the social 
practice of the community as a collective phenomenon and the identity of its members 
as an individual phenomenon. Individual learning is inherent in the processes of social 
participation in the community. Knowledge and learning are not abstract models but 
relations “between a person and the world” [23] or “among people engaged in an 
activity” [24]. Individual learning is mainly based on “legitimate peripheral 
participation” [22]. During the participation process, an individual might enter the 
community as a beginner at the periphery and then gain a more central position over 
time by cognitive apprenticeship. This acquisition process leads to an intensified 
inclusion in the social practice of the community. Learning is based on this process of 
inclusion of outsiders. The communities of practice themselves can be seen as 
"shared histories of learning" [22]. The mechanism of (social) identification of 
individuals in the social context of the community plays a key role for community  
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formation as well as community survival but there does not yet exist a stable lifecycle 
theory how to achieve continued success of a community; our hope is that a more 
systematic community RE process can contribute to the development of such a 
lifecycle support. 

3.2   Towards a Community RE Process 

To map learning communities participating in RE to community concepts, we need a 
theory that explains socio-psychological aspects, which influence community 
members through relations between human agents, technologies and resources. For 
this purpose, Actor-network-theory (ANT) [25], which makes no distinction between 
human and non-human actors, can be adopted, because it intertwines actions, 
influences, and results of actions independently if automated or human.  

In addition to this action-related approach to network modeling, RE also needs to 
capture intentions of (usually human) actors and the strategic dependencies which are 
considered as the long-term basis for cooperation in a community of specialists. To 
capture this intentional aspect of networks, we chose the i* framework [26], which 
enables the description of strategic relations between actors within a particular socio-
technical system in a clear way [27]. In i* we find the following premises: Agents are 
dependent on other agents. They act intentionally, because they follow goals, have 
beliefs, competences, commitments, needs and desires. At the same time, agents are 
strategic actors, because they have to cooperate to reach their goals. Intentional 
dependencies can be made explicit with i* to disclose the reasons behind observable 
processes. In the following we provide a brief overview of i* modeling components.  

In i*, strategic dependencies (SD) are used for modeling intentional, strategic 
relationships among actors in form of an actor diagram. Strategic rationale (SR) 
models cover the individual rationale behind dependencies, and analyzes alternatives 
and dependencies fulfillment by a goal diagram. The model of our community RE 
process  is an example of strategic rationale. The main syntax elements of i* are: 
Actors, Actor Associations, Goals, Softgoals, Tasks, Resources and Links. An actor 
can be any active entity that carries out actions to achieve goals by exercising its 
know-how. An agent is an actor with concrete, physical manifestations, such as a 
human individual or a software system. Actors in SR contain intentional boundaries. 
All elements within such a boundary are explicitly desired by an actor. The 
fulfillment of goals within boundaries can depend on intentions of other actors and is 
represented as strategic dependencies. Such a dependency consists of a dependee, 
who is required to fulfill a dependum by a depender. Links in SR can be of three 
types: decomposition, means-ends and contribution. A decomposition link describes a 
decomposition of a task in subtasks, subgoals, resources or softgoals. Means-ends-
links bind a goal to achieve with a task, which has to be executed for attaining the 
goal. Finally, contribution links connect softgoals to tasks.  

An i* model for RE within a community of practice (CoP) is presented in Fig. 9.  
The main idea is firstly to combine analysis of community-generated content and 
system usage, and secondly to provide the Social System of CoP members with a 
service for expressing their requirements. 
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Fig. 9. Model of Requirements Engineering in CoPs  

CoP and Social System are modeled as agents (big dark circles) according to i* 
terminology. The Social System is a software environment used by CoP members in 
order to fulfill the softgoal of satisfying CoP needs (Joint Enterprise). Thus, the Social 
System presents a composition of different Services, depending on the community and 
its practices. The Social System should additionally provide services specified for the 
RE process: Provide CoP Monitoring Services, Provide CoP Requirements Analysis 
Services, Provide CoP and Requirements Elicitation Services. 

Any community requires a shared repertoire, which can be created and enriched, as 
community members collaborate with each other (generate content collaboratively). 
Therefore, the Social System should offer CoP services as a collaboration medium. 
However, the availability of a service is not enough for collaboration. According to 
the definition of the mutual engagement dimension of CoP, community members are 
required to be engaged in interaction; thus, they do not only consume, but also 
generate content collaboratively. Hereby, CoP-generated content can be applied to 
get insights in social characteristics of the community and thus identify CoP 
requirements. Log data of system usage can serve as the next source for requirements 
mining. For this reason, the Social System provides a CoP monitoring service, which 
collects data for later analysis.  

In our ATLAS prototype, the services of the Social System are technically 
delivered though extensions to LAS, a Lightweight Application Server for 
prototyping, testing and hosting new community web services [29].  In the remainder 
of this section, we briefly discuss two of these interactive services intended to assist 
the RE process in a community, one for the structured monitoring interactive 
assessment of the quality of existing services under special consideration of mobile 
services (MobSOS [28]), the other for the self-analysis of undesirable developments 
in the community social network structure itself (PALADIN [19]). Both services have 
already been successfully used in numerous research and practice projects. 
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The main purpose of MobSOS is the integrated support for (mobile) web service 
quality measurement and evaluation. The underlying success model was inspired by 
the widely used DeLone/McLean IS success model [30]. MobSOS offers two 
modules for the acquisition of model test data: monitoring and user surveys. The 
monitoring module logs communication between users and services together with 
context information, thus enabling context-dependent quality analysis, according to 
the data model shown in Fig. 10. All other quality data required by the success model 
are collected by the user survey module. 

 

 

Fig. 10. Monitored Community System Usage and Context in MobSOS   

The PALADIN service has been developed for the detection of multidimensional 
disturbance patterns in communities. It includes a pattern structure definition, the 
Formal Expression Language for Patterns (FELP), and algorithms for the application 
of the patterns on the data. Each pattern consists of a name, a disturbance, a 
description, forces, force relations, a solution, a rationale, and pattern relations. The 
forces are relevant actors of the pattern; the forces relations are relations between 
actors. The solution provides the advices to solve the pattern situation. The relations 
are used for reasoning about the forces and the disturbances. PALADIN has been 
successfully applied in the detection of community patterns in ten thousands of 
mailing lists. As an example (cf. Fig. 11), the conversationalist pattern identifies 
members (dark circles) in communities which are engaging also in conversations by 
participating in threads without having started them (comparable to “flame warriors”). 
The conversationalists discuss ideas, carry on conversations and share opinions. The  
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conversationalist pattern has two relations - rcnv1 = (own thread, 
conversationalist, thread) which relates the member to the threads which 
he/she has started and rcnv2 = (post thread, conversationalist, 
thread) which relates the member to the threads where he/she has posted. The 
conditions for a member to be a conversationalist are:  

 
The member has started at least one thread; AND the 
member has posted in at least one thread started by 
other members; AND the maximum number of messages, 
part of a conversationalist's thread, must be 
greater than n (in the figure: n = 4); AND the 
member has posted more than k messages overall. 

 

 

Fig. 11. Matching the Conversationalist Community Pattern in PALADIN 

 
Beside these two implicit methods of requirements identification, the ATLAS 

environment also provides communities with a mobile collaborative RE service, 
where community members can express requirements explicitly in a multi-media 
assisted scenario-based approach.  

From these varied sources and RE services, the generated pool of requirements can 
be huge and diverse. Hence, the Social System (cf. Fig. 9) has to analyze collected 
requirements first and then reports the results to the CoP. Using the results from 
social, system usage and requirements analysis, it is the task of the CoP to prioritize 
requirements and to decide on their particular realization.  
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4   Discussion and Outlook 

The two approaches described in the previous sections demonstrate that, with the 
ever-growing spread of software and information technologies in all branches of 
engineering, business organizations and society, requirements engineering approaches 
have diversified. 

The COSMOD-RE method presented in Section 2 addresses specific issues in the 
engineering of complex, technical systems. The main goal of the COSMOD-RE 
method is to support the tightly intertwined development of the requirements and the 
architecture (structure) of complex technical systems from coarse-grained system 
requirements down to detailed hardware and software component requirements. The 
approach has the advantage that the development of requirements and architectural 
models is structured by means of well-defined abstraction layers and the engineers are 
supported in choosing the appropriate level of abstraction for their models throughout 
the process. 

The community RE approach presented in Section 3 focuses on involving a 
diversified community in the system development process. In contrast to COSMOD-
RE, the main emphasis of the community RE approach is in fact the community itself. 
The community RE approach has the advantage of a very direct impact of new user 
and developer ideas on not just the evolution of the system but also of its user 
community. Fresh ideas from the margin of the community network can assist in 
radical innovation, and there is some evidence from practice applications that the 
additional community self-control offered by the monitoring services can reduce to 
some degree the brittleness many community systems have suffered from in the past.  

The two approaches described in this chapter address two different aspects of 
complexity in requirements engineering: the complexity of the user and developer 
community and the complexity of the system itself. While in this contribution, the 
complexity of the community and the complexity of the system are treated separately, 
in the near future, the need arises to address both kinds of complexity in coherent 
requirements engineering approaches: With the upcoming, converged future internet, 
embedded systems controlling physical processes will be tightly integrated with 
information systems providing innovative services to their users based on the up-to-
date information about the physical world. For instance, in the energy domain, a 
network of smart metering devices can provide real-time information about power 
consumption. Business information systems can exploit this data to offer advanced 
analysis services for decision makers in energy supply and trading companies. 
Similarly, in logistics, sensor networks can capture information about the location and 
status of physical goods in order to support advanced services for logistics planning. 

At the same time rigid organization forms will dissolve into often loosely coupled 
and rapidly changing community networks. Organizations who have their roots in 
technical domains (such telecommunications or power supply infrastructure) are 
being transformed into service providers offering information-intensive software 
services to a complex user community via the internet. One of greatest challenges for 
the next decade will be to support this change by providing development approaches 
that incorporate the ideas, needs, and wishes of user communities as well as the 
technical knowledge of domain experts in order to successfully develop the next 
generation of software-intensive systems in the converged, future internet. 
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Abstract. Development processes in engineering disciplines are highly dynamic.
Since development projects cannot be planned completely in advance, the pro-
cess to be executed changes at run time. We present a process management sys-
tem which seamlessly integrates planning and enactment. The system manages
processes at the project management level, but goes beyond the functionality of
project management systems inasmuch as it both monitors and controls devel-
opment processes and supports enactment of tasks through a work environment.
However, the process management system does not provide process automation as
performed in workflow management systems. Therefore, we have developed tools
for integrating process management and workflow management such that repet-
itive fragments of the overall development process may be enacted in workflow
management systems and monitored in the process management system. Even in
the case of repetitive process fragments, the need for deviations from the work-
flow definition may occur while a workflow is being enacted. Thus, we have also
realized a tool which allows to perform dynamic changes of workflows during
enactment. Altogether, dynamic development processes are supported through a
synergistic combination of process and workflow management systems, integrat-
ing process planning and enactment.

Keywords: Project Management, Process Management, Dynamic Changes,
Workflow Management.

1 Introduction

Development processes in engineering disciplines such as mechanical, chemical, and
software engineering are highly dynamic. Typically, a development project may not
be defined and planned completely in advance. Rather, at project runtime the process
may have to be changed for a number of different reasons: The steps to be executed
may depend on the structure of the product to be developed, problems may be detected
which require feedback to earlier steps of the process, the knowledge of the process to
be performed is incomplete or imprecise, etc. Thus, dynamic changes of the process
have to be performed at project runtime, particularly in the case of long-term projects
lasting for months or years.

This paper reports on tool support for dynamic development processes. It is based
on long-term work which has been performed in the group of Manfred Nagl at RWTH

G. Engels et al. (Eds.): Nagl Festschrift, LNCS 5765, pp. 621–654, 2010.
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Table 1. Comparison of solutions for development process management

(1) Project
Management
Systems

(2) Integrated
Project and Workflow
Management Systems

(3) Process
Management
Systems

(4) Integrated
Process and Workflow
Management Systems

(5) Workflow
Management
Systems

To
ol
s MS Project,

Primavera,
RPLan, et al.

MILOS, IPPM, et al. AHEAD AHEAD + Shark Shark, Staffware,
InConcert, WPS,
et al.

Da
ta Project plan Project plan

Workflow instances
Dynamic task net Dynamic task net

Workflow instances
Workflow instances

Ch
ar
ac
te
ris
tic
s Only planning

No enactment
No modeling of
products

Planning on project
level
Enactment of
individual
subprocesses

Dynamic task net
represents plan
and enactment
state

Workflow instances
represent partially
automated
subprocesses

Enactment of
subprocesses
Modeling of overall
development
process infeasible

Co
ns
eq

ue
nc
es Monitoring and

control difficult
Mapping of status of
workflows to project
plan difficult

Planning and
controlling well
supported
No automation of
processes

Automation of
subprocesses, but
Less flexibility in
workflow managed
subprocesses

Subprocesses
unconnected
No planning and
scheduling support

Project Planning
Process Enactment

Aachen University. Among these projects, the Collaborative Research Center IMPROVE
[1], which was dedicated to models and tools for development processes in chemical
engineering, played a dominant role. In addition, other engineering disciplines such as
mechanical engineering and software engineering were studied, as well. In all of these
research efforts, the dynamics of development processes have been a recurring theme
which was addressed by a variety of approaches.

In the current paper, we present an overview of these approaches, which complement
each other in order to provide comprehensive tool support for dynamic development
processes. We structure the presentation with the help of Table 1. In the sequel, we first
discuss related work and then describe the contributions of our own work.

1.1 Related Work

Project Management Systems. A development process is always enacted in the form
of a development project which has a restricted set of human resources and given ex-
ternal deadlines. It is common practice to use project management systems for project
planning and scheduling (column (1) of Table 1). Prominent examples for proprietary
project management tools are Microsoft Project, Primavera and RPLan. Project plan-
ning and scheduling is essential for medium to large size projects and hence for all
kinds of development projects. The project plan defines the tasks to be executed and
their resource requirements.

Conventional project management systems do not allow to associate the tasks in a
project plan with according parts of the product model. Furthermore, they support only
the planning phase of the project but not the execution of the defined tasks. No client
applications exist for the actual performers of the tasks. The enactment state of the
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development process is not reflected in a project management system. Consequently,
monitoring and control of a development project by using project management systems
only is difficult, costly, and error-prone.

Workflow Management Systems. Workflow management has recently gained in im-
portance in the different engineering domains. Workflow management systems [2] (see
column (5) of Table 1) are used to support well-defined personal and collaborative
processes. The workflow approach allows for a partial automation of processes, and
the available technologies enable interoperability with other systems and applications
in service oriented architectures. The usefulness of workflow support for development
processes has been identified in both academia [3,4,5,6] and industry. Workflow support
has been integrated into life cycle asset information systems for plant design [7,8] and
integrated software development environments.

The home ground of workflow management systems, however, is in other domains
such as business process management in administrations, banks, or insurance compa-
nies. In these domains, they constitute the industrial state of practice in process support.
Therefore, it is not surprising that vendors and users of workflow management sys-
tems are looking for solutions which make workflow management systems applicable
to dynamic development processes.

However, workflow management systems are not suitable for the management of
whole development processes. Rather, they support only the enactment of structured
subprocesses which may be defined in advance. Unlike project management systems,
global project planning goes beyond the scope of workflow management systems. The
tasks to be executed evolve during the course of the project. Many tasks cannot be
planned until certain intermediate results of the development process are available, e.g.,
the flowsheet of a chemical plant or the design of a software architecture. It is not
feasible to model a complete development process as one workflow due to the inherent
uncertainties and dynamics. As a consequence, the workflow instances in the workflow
management system are disconnected and not embedded into the context of the overall
process.

Integrated Project and Workflow Management Systems. For these reasons, several
research groups have investigated the opportunities of integrating project management
systems with workflow management systems [3,4,5,6] (see column (2) of Table 1). In
all of these approaches, project plans are used for global planning, and structured sub-
processes are enacted with the help of workflow management systems. Furthermore,
integration components couple these systems such that workflows may be represented
in project plans.

However, the different integration approaches all face the problem that no informa-
tion about the process enactment state is maintained in the respective project manage-
ment system. Thus, the ability to monitor projects is severely limited. Furthermore,
since products and data flows are not represented in project plans, product management
is still beyond the scope of the integrated systems, and data flows between workflow in-
stances have to be managed manually. Altogether, these restrictions call for an extended
project management system (see next subsection).



624 T. Heer et al.

1.2 Contributions

This paper makes several contributions regarding tool support for process management.
The contributions can be divided into three parts which refer to the last three columns
in Table 1.

Process Management System. The Adaptable and Human-Centered Environment for
the MAnagement of Development Processes (AHEAD) [9,10,11,12,13,14,15,16]) was
developed within the long-term research project IMPROVE [1] and was applied to mul-
tiple domains (chemical, mechanical, and software engineering). AHEAD is a manage-
ment system for development processes which provides integrated support for manag-
ing products, activities, and resources. A management system which offers this kind of
integrated functionality is called a process management system throughout this paper
(column (3) of Table 1).

AHEAD may be considered as an extended project management system. AHEAD
differs from conventional project management systems inasmuch it manages the prod-
ucts of development processes in addition to activities and resources. Furthermore, it
maintains state information of tasks and offers a work environment which developers
use for performing the tasks assigned to them. In these ways, AHEAD integrates pro-
cess planning and enactment, which offers great opportunities for the monitoring and
control of development processes since the current execution state can be directly com-
pared to the plan.

In contrast to AHEAD, workflow management systems do not support project plan-
ning. Their main contribution consists in the (partial) automation of routine processes.
Furthermore, AHEAD differs from workflow management systems inasmuch it has
been designed from the very beginning to allow for seamless interleaving of process
planning and enactment. In contrast, most workflow management systems require a
pre-defined workflow and support dynamic changes during enactment only to a limited
extent.

Integrated Process and Workflow Management Systems. In the process manage-
ment system AHEAD, activities are managed with the help of dynamic task nets [17].
The degree of automation of tasks is very limited on this level of process manage-
ment. Work packages are assigned to developers who are responsible for delivering the
specified results. For developers, a work environment is provided which maintains the
documents required for each task and offers commands for activating tools operating on
these documents. However, process automation as supported by workflow management
systems is not provided.

Thus, process and workflow management systems offer complementary functional-
ity which may be combined with the help of integration tools. As a result, we obtain an
integrated process and workflow management system (column (4) of Table 1). This in-
tegration provides added value in particular when a company has already applied work-
flow management systems in a fragmentary way in its development projects. Then, the
integrated system allows to reuse pre-defined workflows for process fragments, which
are combined into a coherent development process.

Compared to the integration of project and workflow management systems, our solu-
tions [15,18,19,20] provide for a tighter integration: Workflows are not only represented
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in the task net managed by the process management system. In addition, the enactment
state in the workflows may be monitored by transforming workflow operations onto
state transitions in the task net. Furthermore, data flows may be propagated from the
process management system to the workflow management system in order to provide
workflows with inputs. Conversely, outputs created in the workflows are represented in
the process management system such that they may be routed to successor tasks. Al-
together, a much tighter integration is achieved than in systems integrating project and
workflow management.

Adding Dynamics to Workflow Management Systems. State-of-the-art workflow
management systems permit no or only limited deviations from the workflow definition
at runtime of a workflow. However, even in the domains where workflow management
systems are the state of practice for process support, such as business process manage-
ment in administrations, banks, or insurance companies, the need for dynamic changes
of workflows at runtime has been identified. For example, standard examples for routine
processes such as travel reimbursement claims encompass so many alternative paths of
execution that it is difficult to define a workflow which covers all of them. This argu-
ment is reinforced in the domain of development processes, which are less repetitive by
their very nature. Therefore, using static workflows in dynamic processes alone does
not provide a comprehensive solution to the problem of dynamic changes.

Many research projects focus on the development of flexible workflow management
systems [21,22,23,24]. All prototypes have in common that they have been developed
from the start to support dynamic workflows, i.e., flexibility is built a priori into the
respective workflow engine. However, if a company has invested in a workflow man-
agement system which is widely used in its development projects, it may want to retain
its investments and keep the system in use. This requires a posteriori integration: Tool
support has to be developed in order to add dynamics to a legacy workflow management
system.

Driven by this motivation, we have added dynamics to an existing workflow man-
agement system [25,26]. In this way, we have improved the capabilities of the workflow
management system such that it may be applied to dynamic processes (contributing
an improvement to column (5) of Table 1). In contrast to the flexible workflow man-
agement systems mentioned above, we had to solve the challenging problem of adding
dynamics without modifying the given workflow management system. This problem
was solved by a tool for dynamic changes which allows to add and delete workflow
activities while the workflow is being enacted.

1.3 Structure of the Paper

The rest of this paper elaborates on the different and complementary support tools for
dynamic development processes which have been described in Subsection 1.2. Section 2
presents the AHEAD process management system (column (3) of Table 1). Our solu-
tions for using workflows in dynamic processes are described in Section 3 (column (4)
of Table 1). Section 4 explains how we have added dynamics to a commercial workflow
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management system (column (5) of Table 1). Related work is compared at the ends of
all of these sections. The technical sections are followed by a discussion (Section 5).
Finally, Section 6 concludes the paper.

2 The Process Management System AHEAD

The process management system AHEAD supports the integrated management of prod-
ucts, activities and resources for dynamic development processes. Subsection 2.1 pro-
vides an overview of the AHEAD system. Subsection 2.2 describes dynamic task nets
for activity management, focusing on dynamic changes at run time. Subsection 2.3 ex-
plains how AHEAD may be adapted to a specific domain by defining a process model.
Subsection 2.4 deals with deviations from and evolution of process models. A discus-
sion of related work (Subsection 2.5) concludes this section.

2.1 System Overview

Figure 1 gives an overview of the AHEAD system. AHEAD offers environments for
different kinds of users, which are called modeler, manager, and developer, respectively.

The management environment supports project managers in planning, analyzing,
monitoring, and controlling development processes. It provides graphical tools which
address the management of activities, products, and resources, respectively:
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– For activity management, AHEAD offers dynamic task nets which allow for seam-
less interleaving of planning, analyzing, monitoring, and controlling. Dynamic task
nets may be considered as extended project plans which in particular provide state
information and include inputs and outputs of tasks as well as data flows in addition
to control flows.

– Product management is concerned with the products of development processes,
their versions and relationships (i.e., with the management of documents and mod-
els as supported by product/engineering data management systems, document man-
agement systems, or software configuration management systems).

– Resource management deals with the management of human resources (i.e., the
members of the project team) which are assigned to development tasks, taking their
roles and capabilities into account.

In the rest of this paper, we will focus on the management of activities, and we will
not elaborate further on the management of products and resources.

AHEAD does not only support managers. In addition, it offers a work environment
which consists of two major components:

– The agenda tool displays the tasks assigned to a developer in a table containing in-
formation about state, deadline, expected duration, etc. The developer may perform
operations such as starting, suspending, finishing, or aborting a task.

– The work context tool manages the documents and tools required for executing a
certain task. The developer is supplied with a workspace of versioned documents.
He may work on a document by starting a tool such as e.g. a flowsheet editor, a
simulation tool, etc.

The management environment and the work environment are both used at project
run time. Both environments are highly interactive: The manager is provided with in-
teractive tools for managing the development process, and the developer utilizes a work
environment which provides commands for state transitions and tool invocations.

AHEAD consists of a generic kernel which is domain-independent. This means that
the management environment and the work environment may be applied “out of the
box”. Optionally, models of development processes may be defined with the help of the
modeling environment. For example, in order to apply AHEAD to design processes in
chemical engineering, the modeler may define task types for flowsheet design, steady-
state and dynamic simulation, etc. From a process model, code is generated for adapting
the management and the work environment. The adapted system still provides seamless
interleaving of planning and enactment, but offers pre-defined types for instantiating
tasks, control flows, etc.

2.2 Dynamic Task Nets

A dynamic task net consists of tasks that are connected by hierarchical and non-hierar-
chical relationships:

– Tasks may be decomposed into subtasks, resulting in task hierarchies. Complex
and atomic tasks are assigned to managers and developers, respectively.
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– Control flows resemble precedence relationships in Gantt diagrams. A sequential
control flow corresponds to an end-start dependency. A simultaneous control flow
enforces both start-start and end-end dependencies. Finally, a standard control flow
represents an end-end dependency.

– Feedback flows are oriented oppositely to control flows. They are used to repre-
sent feedback in the development process, which is not possible in a conventional
project plan.

– Each task has inputs and outputs which may be considered as ports for consum-
ing and producing the products of development processes. Data flows describe the
routing of documents along horizontal and vertical task relationships.

Seamless interleaving of planning and enactment constitutes the core mechanism
for supporting dynamic changes in the AHEAD system at project run time. The man-
ager may modify the task net at any time in the course of the project. Only minimal
constraints are imposed on these modifications based on the state of execution. For ex-
ample, it is not allowed to delete an active task because otherwise work performed by
the developer would be lost. Since tasks are performed by humans (with the help of
development tools), changes may be accommodated more easily than in the case of
automated processes. For example, a new input may be attached to a task which has
already started; it is up to the assigned developer how to process this input. In the case
of an automated process, a change of this type usually has to be prohibited.

Thus, at project run time both edit operations and enactment operations may be per-
formed on a task net. Edit operations change the structure of the task net. Enactment
operations change the states of tasks (see below) or produce or consume data. All of
these operations have to take the current enactment state into account.

The enactment states of tasks and their allowed changes are defined by a state dia-
gram (Figure 2). In the initial state InDefinition, only edit operations are permitted on
the current task (creation of input and output ports, creation of a refining task net in
the case of a complex task). In Waiting, the task waits for its activation. In the state
Active, both edit and enactment operations are allowed. When a task is Suspended, it
may no longer produce or consume data, and it may have no active subtasks; editing
operations are still allowed. Successful and failing terminations are represented by the
states Done and Failed, respectively. In these states, no changes are allowed at all to
ensure traceability of the development process.
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Traceability is further supported by different ways of version control for elements of
dynamic task nets:

– If a terminated task has to be reactivated, a new task version is created via the Derive
operation1. The data of the old version remain unaffected and are copied to the new
version.

– While a task is active, it may produce and receive multiple versions of outputs and
inputs, respectively. Therefore, the tokens referencing these product versions are
versioned, as well.

Figure 3 shows a snapshot of a (cutout of) a task net for a design process from the
chemical engineering domain2. In the diagram, each task is represented by a rectangle
containing its name, its type, and its state (displayed as an icon). Control, feedback and
data flows are shown as arrows, composition relationships are represented by nesting
component tasks into a box for the composite task.

In the sample process, which deals with the design of the reaction part of a chemi-
cal process, the designer has inserted four alternatives into the flowsheet: using single
reactors of different types (CSTR and PFR, respectively) and using reactor cascades
(CSTR-PFR and CSTR-CSTR, respectively). The designer already knows that eventu-
ally one of the cascades will be selected as the best alternative. However, simulating
these cascades in a single step is too complex. Therefore, the individual reactors are
simulated first, and the simulation results are propagated to the tasks for simulating the
cascades.

1 Strictly speaking, Derive is not a transition since it involves the creation of a new object (a
new task version) rather than the state change of an existing object.

2 The elements displayed with red thick lines denote inconsistencies with respect to the process
model definition; see next subsection.



630 T. Heer et al.

The task net of Figure 3 illustrates a state of enactment which is reached at some
time during the course of the respective development project. In particular, the task net
depends on the reaction alternatives, which are elaborated only in the initial design task.
Even when these alternatives are known, it is not possible to generate the task net from
the product structure. As explained above, the reaction alternatives are investigated in
a certain order which has to be determined by the manager. Furthermore, unanticipated
feedback may occur at any time, requiring changes to the task net for the purpose of
feedback processing.

In the current state of enactment as shown in Figure 3, the tasks for simulating the
reactor cascades as well as the final evaluation task still reside in state Waiting. The task
for simulating the CSTR was already completed successfully. In contrast, the designer
who is responsible for simulating the PFR detected a problem which caused the creation
of a feedback flow to the initial design task. Since this task had already been committed,
a new task version (rectangle in front) had to be created which now resides in state
Active.

2.3 Process Model Definitions

The AHEAD system may be applied “out of the box” using so-called standard types
for tasks, control flows, data flows, etc. Optionally, a domain-specific process model
definition may be created which introduces domain-specific types and constraints. Pro-
cesses are defined with the help of UML diagrams which have been tailored to process
modeling through a UML profile defining adapted versions of class, communication,
and state diagrams using stereotypes and tagged values [27,28,14].

With the help of class diagrams, process models may be defined at the type level.
Figure 4 shows a class diagram taken from the reference scenario developed and used
throughout the IMPROVE project [29]. This scenario deals with the basic engineering
of chemical plants. For the task class interface SubprocessDesign, a realization class is
defined which involves simulations of the respective chemical subprocess (as an alter-
native to laboratory experiments3) . For the simulation-based realization, a refining task
net is defined on the type level. This task net consists of exactly one task for defining al-
ternative chemical processes (class FlowsheetAlternatives), at least one Simulation task,
and exactly one Evaluation task which selects the best alternative and delivers the over-
all subprocess design to the parent task. Tasks of these classes are ordered by control
flow associations. Furthermore, a feedback flow association is defined from Simulation
back to FlowsheetAlternatives. As in instance-level task nets, outputs and inputs are
represented by black and white circles, respectively. Finally, data flow associations are
used to connect outputs to inputs along vertical or horizontal task associations.

Class diagrams primarily serve to define structural models. Structural elements may
be augmented with behavioral properties using tagged values (as e.g. EnactmentOrder
= simultaneous in Figure 4). Furthermore, state diagrams and communication diagrams
are offered for behavioral modeling (which are not described further here).

3 In the process model definition, multiple realizations may be defined for a single interface.
However, on the instance level the (single) realization of a task has to be selected when the
task is instantiated. Furthermore, interface and realization are merged into a single object.
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Altogether, AHEAD provides a wide spectrum approach to process modeling. The
spectrum covers ad hoc processes, which are based on standard types rather than on
a domain-specific process model definition, process models defined on the type level
with the help of class diagrams, and instance-level process patterns defined by commu-
nication diagrams.

2.4 Process Model Evolution

Despite of the inherent flexibility of our object-oriented approach to process modeling,
it may happen that a process has to deviate from its definition. For example, the process
model definition may not include the class of some task which has to be performed
in the project at hand, or a control flow which is defined as sequential prohibits the
overlapping enactment of the source and the target task. Therefore, AHEAD allows for
controlled deviations of a task net instance from its definition: The project manager is
supplied with commands for allowing/disallowing deviations at the level of subnets of
the overall hierarchy.

Deviations result in inconsistencies which are signaled to the manager [14]. In Fig-
ure 3, inconsistent elements are emphasized with bold face fonts and thick lines in red
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color. For example, the control flows between simulation tasks are marked as struc-
turally inconsistent since they were not anticipated by the process modeler. Further-
more, the control flow ending at the task SimulateCSTR is behaviorally inconsistent:
The task has already been terminated while its (reactivated) predecessor is still active.

Deviations may trigger process model evolution. In our example, the structural in-
consistencies may be removed by adding further elements to the process model which
were missing so far. This can be achieved by creating a new process model version and
migrating the process model instance to the new version. In this way, AHEAD supports
round-trip process model evolution.

2.5 Related Work

By using class diagrams, we follow an object-oriented approach to process modeling.
This approach differs from the procedural approaches realized in workflow manage-
ment systems [2,30,31,32]. The object-oriented approach provides for more flexibility
since a task net may be composed specifically for the project at hand at run time by
dynamic instantiation of task classes and associations. In contrast, instantiation of a
workflow means that a pre-defined workflow is started.

AHEAD may rather be considered as an extended project management system than
as an extended workflow management system. In particular, the control flows avail-
able in AHEAD strongly resemble precedence relationships in project plans. Unlike
workflow management systems, AHEAD does not support control structures involving
conditions. It was a deliberate decision not to support these control structures because
we considered it too demanding for the project manager to develop a plan with multiple
variants.

A variety of mechanisms has been designed and implemented for supporting dy-
namic processes (not only in workflow management systems, but also in process-cent-
ered software engineering environments [33,34]). In the following, we will list some of
these mechanisms (without striving for completeness):

Ad Hoc Processes. Processes are defined on the fly for each specific case, i.e., there is
no predefined process definition [21].

Exception Handling. Processes defined for the “standard case” of processing are ex-
tended with exception handlers, which describe how to react on deviations from the
standard case [35].

Flexible Control Flows. Many process definitions suffer from imposing too rigid con-
straints on the order in which process steps are executed. Thus, definition languages
have been developed for describing more flexible control flows [22,36].

Late Binding. Process definitions are usually decomposed into subprocesses to ma-
nage complexity. In the case of late binding [37], the definition of a subprocess
may be deferred until it is going to be executed.

Interleaving of Definition and Enactment. A more general approach to dynamic
changes supports seamless interleaving of definition and enactment in a similar
way as in integrated programming environments, where a program may be modi-
fied during execution [38,39,23].
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Toleration of Inconsistencies. Flexibility is increased by tolerating inconsistencies of
instances with respect to their definitions [40]. For example, in [41] a process step
may be executed even if its preconditions are not satisfied.

Version Control for Process Definitions and Migration. In these systems, process
definitions are put under version control [24,42,43]. Furthermore, running instances
may be migrated to revised definitions.

AHEAD supports dynamic changes through ad hoc processes (“untyped” task nets),
interleaving of planning and enactment, and toleration of inconsistencies. Furthermore,
process evolution is supported through version control of process definitions and mi-
gration of process instances. AHEAD does not address exception handling and flexible
control flows, which are partially obsolete since process instances may be changed flex-
ibly at run time. Moreover, AHEAD does not support late binding.

3 Using Workflows in Dynamic Processes

In this section, the integration of a workflow management system with the manage-
ment environment for development processes in AHEAD is described. This integration
is beneficial when existing workflow management systems within an organization and
all existing workflows can be utilized to represent relevant workflow details within the
overall development process. Not all details modeled in workflows have a real value for
the process manager on the abstract process planning level that addresses the coordi-
nation and distribution of work in the managed overall development process. Instead,
only relevant aspects of workflow processes need to be monitored by the manager. For
this purpose, we have developed a generic integration approach which is applicable
to the majority of integration scenarios and deals with the desired partial monitoring
of workflows in development processes. With respect to the details of the integration,
several alternatives can be distinguished which are more or less appropriate in certain
scenarios.

Subsection 3.1 briefly explains the motivation for our work. In Subsection 3.2 the
coupling of a workflow management system with the AHEAD system is described so
that workflows can be projected into dynamic task nets and monitored by the process
manager in the management environment of AHEAD. Subsection 3.3 describes the
weaving of workflow processes with other (dynamic) process parts within the overall
dynamic process and Subsection 3.4 explains how workflow modeling capabilities can
be additionally used. Finally, Subsection 3.5 gives an account of related work.

3.1 Motivation

We have developed an approach to integrating workflow processes into the overall de-
velopment process and have realized a coupling of workflow management systems with
AHEAD for use within an organization. In this setting, the AHEAD system is used
within the organization as the central instance for the project planning of the develop-
ment process and the coordination of all (human) work that is carried out during the
process. The overall dynamic development process is represented as a dynamic task
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net and can be monitored and controlled by the process manager within the manage-
ment environment of AHEAD. Repetitive routine processes are executed in workflow
management systems. The workflow processes are integrated as process views [15,19]
into the overall dynamic processes and projected onto dynamic task nets. The process
manager can monitor all parts of the development process within the management en-
vironment in the same process notation of dynamic task nets. In this way, an overall
development process comprising dynamic and repetitive partial process fragments is
executed across heterogeneous process support systems.

The outlined integration approach is based on the observation that although devel-
opment processes are generally human-driven, some fragments of the development
processes are indeed of a repetitive nature, i.e., repetitive process definitions can be
defined for these fragments and modeled as workflow definitions. A similar approach
to use workflow management systems within human-driven development processes is
described e.g. in [44].

Within a prototypical realization, the AHEAD system has been integrated with the
workflow management system SHARK from ENHYDRA [45]. A full account of the
coupling approach and the realized prototype is given in [15,18,19]. The resulting so-
lution approach was adopted in the technology transfer project T6 [19,20] for the in-
tegration of the Process Management Environment for Engineering Design Processes
(PROCEED) with a workflow management system. PROCEED is a new implementa-
tion of AHEAD based on an industrial platform.

3.2 Monitoring Workflows in Dynamic Processes

Figure 5 shows the resulting architecture for a coupling of a workflow management
system (left) with AHEAD (right) via an event exchange infrastructure. The AHEAD
system triggers the instantiation of a workflow. Upon the triggering event, the work-
flow management system spawns a new workflow instance and creates new run time
instances for the first startable workflow activities of that workflow definition. All nec-
essary input data is transferred from AHEAD to the workflow management system at
this moment for further consumption within the new workflow instance. The created
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workflow-activity instance is immediately started in the workflow management system
to begin the workflow execution. In particular, for each human workflow activity, a de-
veloper can start working on this activity. During task execution, all relevant workflow
changes (activity or task state changes, resource assignment changes, data changes) are
signaled as events to the AHEAD system where the corresponding task net that repre-
sents the workflow process is updated accordingly. Vice versa, all necessary changes in
the workflow (and state changes) are signaled from the AHEAD system to the workflow
management system as events where they are processed in a similar way.

Mapping of Workflow Processes into Dynamic Task Nets. Workflow processes can
be represented within the overall dynamic task net via a projection of the workflow
process onto a dynamic task net fragment (called workflow task net fragment). Each
task in a workflow task net fragment that represents a workflow activity is called a
workflow task.

The transformation of workflow processes to dynamic task nets does not need to
preserve the full semantics of both formalisms, because this would lead to very rigid
requirements for the systems to be integrated. Since the workflow fragments are used
in AHEAD for monitoring purposes only, it is tolerable if some process information
is lost during the generation of the workflow fragments. Thus, only selected details
of the workflow process, which are necessary to represent the coordination aspects of
the activities in the workflow, are mapped into a dynamic task net. The projection is
realized with a transformation algorithm to convert a workflow process definition into
a corresponding dynamic task net fragment definition. While a brief summary is given
in the sequel, more details of the chosen transformation projection and the coupling
infrastructure are described in [46].

Within AHEAD, a workflow task net fragment can then be inserted into the task net
at a location that is selected by the process manager (i.e. as children of the parent task
in the current process fragment). Initially, it is isolated at this moment from the rest of
the dynamic task net. Hence, the process manager has to connect tasks from the new
imported workflow task net fragment with tasks from the remaining dynamic task net
via control flows and data flows (a weaving step).

In order to reduce the effort for the integration of multiple different workflow man-
agement systems, we make use of a neutral exchange format to represent a wide-spread
workflow modeling language. The language XPDL has been chosen since it is a stan-
dard notation brought forward by the Workflow Management Coalition [31]. There-
fore, multiple workflow management system products that adopt this standard can be
supported with the coupling solution in general.

The projection defines both the structural mapping of workflow structures onto task
net structures as well as the mapping of the state diagram of workflow activities (in
XPDL) onto the state diagram of AHEAD tasks. Additionally, the data flow between
workflow activities is projected onto the data flow between AHEAD tasks. Workflow
definitions can include subprocess calls and iterations. These mapping details are ex-
plained in the sequel.

To illustrate our projection approach, Figure 6 introduces a simple example of a
workflow from the chemical engineering domain and shows its projection into a dy-
namic task net fragment. The underlying scenario in the chemical engineering domain
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has already been introduced in Section 2. The design of a certain part of the chemical
plant during the development process, such as the design of the reaction part, can be
supported with workflow management system technology. Specific routine processes
can be executed within workflow management systems but need to be monitored within
dynamic task nets as the contained process steps are important on the coordination and
management level for the process manager.

The example represents a routine subprocess for performing simulation calculations
for a given reactor part in the flowsheet. This process refines the simulation task de-
fined in Figure 4 and instantiated multiple times in the task net of Figure 3. Simulations
are carried out iteratively until a satisfactory result is achieved. Two different simula-
tion methods can be used here to perform the simulation: A stationary or steady-state
simulation allows to simulate the reactor with respect to the equilibrium state while
a more complex (and more expensive) dynamic simulation investigates the behavior
of the chemical process in non-steady states (e.g., start of the reaction or technical
faults). For this scenario, the lower part of the figure shows the workflow process (work-
flow management system) and the upper part shows the projected dynamic task net
(AHEAD). The workflow is comprised of four activities: In a first activity A1 Config-
ure Simulation, a reaction expert estimates the requirements for the desired simulation
and decides which type of simulation is carried out. According to this decision, in each
iteration either activity A2 Perform Stationary Simulation is executed by the reaction
expert or A3 Perform Dynamic Simulation is delegated to a simulation expert with spe-
cific expert knowledge (only one of both activities is executed). In activity A4 Evaluate
Simulation Results, the reaction expert interprets the simulation results and decides if
the simulation data are sufficient or if the simulation has to be repeated with modified
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Table 2. Mapping of workflows to dynamic task nets [15]

Workflow Model Concept(XPDL) Process Model Concept(AHEAD)
Workflow Process ↔ Task Net
Workflow Activity ↔ Task
Workflow Participant ↔ Performer
Data Field → Document
Formal Parameter → Document
Transition Information ↔ Control Flow (seq.)

configuration parameters or a different simulation method (iteration from activity A4
to A1). This example is used throughout the remainder of this subsection.

Structural Mapping. The mapping of the most important elements of the workflow
meta model in XPDL to elements of the AHEAD meta model is described by a set of
mapping rules as follows (summarized in Table 2). A workflow process definition from
XPDL is mapped to a task net in AHEAD. All activities in a workflow process definition
are mapped to AHEAD tasks. In the example of Figure 6, activities A1-A4 are mapped
to tasks T1-T4 in the dynamic task net. All tasks are inserted at the same time into the
development process. However, for an activity there can be multiple task versions in
the task net (due to iterations, see below). This is shown in the figure for activities A1
and A2 which have two different task versions in the task net. For subprocess definition
activities and route activities in XPDL, a new task is contained in the task net. All
workflow activities within an XPDL subprocess are mapped to AHEAD tasks likewise.

Workflow participants (XPDL) are assigned to tasks in the task net and assignments
of participants to workflow activities are carried over to AHEAD by assigning partic-
ipants to tasks. In Figure 6, the workflow participants Reaction Expert and Dynamic
Simulation Expert are mapped to corresponding resources in the dynamic task net. For
example, the assignment of activity A1 to participant Reaction Expert from the work-
flow process is also visible in the task net where task T1 is assigned to the corresponding
resource (shown in the bottom line of the task’s label).

For workflow-relevant data from XPDL, corresponding document elements are cre-
ated in AHEAD (not shown in the figure). Updates to workflow-relevant data (in work-
flow variables) are mapped to the creation of new versions of the corresponding docu-
ments. Not all workflow-relevant data (variables) need to be mapped to AHEAD task
nets. For pragmatic reasons, a naming scheme was defined to automatically separate
mapped from unmapped workflow-relevant data.

Transitions, Iterations, and Feedback Flows. Transitions between workflow activ-
ities in XPDL are transformed into sequential control flows in AHEAD (as shown in
Figure 6). Please note that XOR-transitions and AND-transitions are both mapped in the
same way4. The corresponding state machine mapping is described below. A workflow
activity inside a loop control structure may be associated with multiple task versions

4 The mapping is not injective, i.e., the transformation implies a loss of information. As men-
tioned earlier, branches cannot be represented in AHEAD. AND- and XOR-transitions may be
distinguished in AHEAD only by monitoring the enactment of the respective workflow.
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Table 3. State mapping between workflow activities and tasks

Workflow Activity State(XPDL) Process Task State(AHEAD)
— ↔ InDefinition
open.not running.not started ↔ Waiting
open.not running.suspended ↔ Suspended
open.running ↔ Active
closed.completed ↔ Done
closed.terminated → Failed
closed.aborted → Failed

(in the task net) according to the iterations of the loop. For example, the activity A1
in the workflow is associated with two versions of task T1 in Figure 6. While the loop
in the workflow process expresses that the activities A1–A3 have to be repeated until a
success criterion matches, in the task net the concept of feedback flow is used to express
the same meaning. In our example, initial versions of tasks T1 and T2 are executed.
Subsequently, T4 detects a failure. To repair the failure, a second version of task T1 is
instantiated and a feedback flow from T4 to the new version of T1 is created. Subse-
quently, the new version of T1 is reactivated. Since the steady-state simulation has to be
performed once more, a new version of T2 is created and prepared for enactment.

Dynamic Semantics: State Machine Mapping. Table 3 shows the mapping of the
state machine of tasks in a dynamic task net, workflow instances and workflow ac-
tivities. The coupling is described here informally. When a workflow activity is in a
pre-activation state (open.not running.not started) so is the corresponding AHEAD task
(here: Waiting). The task state InDefinition in AHEAD is only used within AHEAD and
has no direct mapping from a XPDL state. When a workflow activity enters the running
state (open.running), the corresponding AHEAD task is activated (Active). The XPDL
meta model defines three terminal states, namely successful termination (closed.com-
pleted), user-initiated cancellation (closed.terminated), and system-initiated cancella-
tion (closed.aborted). The AHEAD meta model defines only two terminal states for
successful termination (Done) and failed task cancellation (Failed). The workflow state
closed.completed is mapped to task state Done, while the additional information pro-
vided in XPDL is lost during the mapping when both cancellation states closed.termi-
nated and closed.aborted from XPDL are mapped to the cancellation state Failed in
AHEAD.

3.3 Weaving of a Workflow Fragment into a Dynamic Task Net

The individual workflow processes which are enacted by means of the workflow man-
agement system are all part of one overall development process which is represented by
a hierarchically structured task net in the process management system. Therefore, the
workflow fragments representing the workflow instances have to be embedded into the
task net.

The workflow activities are represented by workflow tasks in the workflow fragment.
The workflow instance itself can also be represented by a task in the task net. In this
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Fig. 7. Weaving of a workflow fragment into a task net

case, the subtasks of this task represent the workflow activities and no other tasks are
contained in its realization.

However, the workflow instance does not necessarily have to be represented by a
task in the task net. Alternatively, the tasks representing the workflow activities can be
directly embedded into an existing task net. In this case, there may be sibling tasks
which do not represent workflow activities.

When a subprocess of a development process is enacted in a workflow management
system, the enactment of the workflow may depend on the state of tasks which are
not part of the workflow. This is mostly the case because data or documents which are
created outside of the workflow are required in certain activities of the workflow, e.g.
when a workflow for the permit procedure of a chemical plant requires at a certain step
the result of the cost calculation. On the other hand, the enactment of the workflow
and its (intermediate) results may influence other tasks in the development process,
e.g. when a workflow is enacted for the specification of a device, and this specification
is required for the procurement of the device later on. Altogether, two different cases
for the embedding of a workflow into the surrounding development process may be
distinguished.

In the first case, the workflow as a whole requires input data from preceding tasks
and produces results which are required in succeeding tasks. All required inputs have
to be available at the start of the workflow and cannot be provided later at run time.
Intermediate results of the workflow are not available in the surrounding process. This
case requires that the workflow instance is represented by a task in the dynamic task
net.

In the second case, the individual activities of the workflow may consume external
data from outside the workflow and may provide intermediate results which can be used
by external tasks. This is illustrated in Figure 7, where the gray boxes surrounded by
the dashed line represent workflow tasks in the workflow task net fragment while the
white boxes represent external tasks in the surrounding process. Required inputs for
workflow tasks can be provided by external tasks as required, even after the start of
the workflow, and intermediate results of the workflow are available for external tasks
before the completion of the workflow. This case in which individual workflow tasks are
connected with external tasks is called fine grained weaving of processes. In this case,
it is not required that the workflow instance is represented by a task in the dynamic task
net. Data inputs and outputs do not have to be defined for the workflow instance but can
be directly defined for workflow activities.
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The weaving of a workflow with the surrounding process imposes several technical
requirements for the integration of the respective management systems. The handover
of data between the two systems requires well-defined data formats which can be writ-
ten and read by both systems. In case of documents which serve as input for tasks or
workflow activities it may be required to transfer uniform resource locators (URLs)
which specify the location of the respective documents in a common repository.

In the case of fine grained weaving, control flow connections between the tasks in
a workflow fragment and the surrounding process context influence the execution of
the workflow and the surrounding process. In the case of outgoing control flows, the
workflow management system should provide an interface for the notification of ex-
ternal systems about state changes of activities and workflows. If such an interface is
not available, a pull mechanism could be realized in which the process management
system queries the workflow management system for changes in regular intervals. Vice
versa, the execution of a workflow instance should respect the constraints imposed by
incoming control flows. Different technical solutions are possible. The original work-
flow definition could be augmented by additional activities and control flows which
represent the context of the workflow. Alternatively, special workflow activities and ac-
cording workflow variables could be used in the original workflow definition to allow
for later definitions of control flows from external tasks.

3.4 Workflow-Managed Dynamic Task Nets

The main motivation for the integration of AHEAD with a workflow management sys-
tem is the continued utilization of existing workflow management solutions. In this
case, the process participants who used the workflow management system before the
integration, will go on using the client applications of the workflow management sys-
tem after the integration. In particular they will use the worklist handler of the workflow
management system to get informed about their assigned tasks.

The workflow fragment which is embedded into the dynamic task net of the over-
all development process serves the project manager mainly to view the status of the
workflow tasks. The workflow tasks in the fragment may be atomic, i.e. they are not
refined by any subtasks, or the tasks may themselves represent workflow instances and
can therefore be refined by workflow fragments.

The second case accounts for the common scenario in workflow management system
where one workflow invokes another workflow in a synchronous fashion, i.e., a work-
flow activity initiates the execution of another workflow and waits for its termination.
This can be modeled in the dynamic task net by a task which represents at the same
time the workflow activity and the invoked workflow instance. The subtasks of this task
represent the activities of the invoked workflow.

Another motivation for the integration of an AHEAD-like process management sys-
tem with a workflow management system may be to use the modeling capabilities for
workflows, in particular alternative branching and loop structures, to enable a (partial)
automation of the defined processes. This was the main motivation for the integration of
PROCEED with a workflow management system in the technology transfer project T6
[19,20]. Workflows are not only monitored in PROCEED but the workflow fragments
are also managed automatically by the workflow engine according to the enactment of
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the according workflow instances (tasks are prepared for execution, new task versions
are created, etc.). In this case, the workflow task net fragments are called workflow-
managed dynamic task nets. The advantage of this kind of integration is the usage of
the workflow modeling capabilities and the workflow engine of the workflow manage-
ment system. The process participants can manage their assigned tasks by means of
the PROCEED work environment and do not need to use the worklist handler of the
workflow management system.

The usage of the PROCEED work environment by the process participants has an
influence on the required state machine mapping of PROCEED and the workflow man-
agement system. The start of a workflow activity has to be mapped to the transition of
the according task in the workflow fragment from InDefinition to Waiting because tasks
have to be started by the assigned resources and should not be activated by the workflow
management system automatically.

To allow for the use of a workflow definition for a high-level subprocess of the overall
development process, it is possible to refine workflow tasks in a workflow-managed
task net by manually managed dynamic task nets. Otherwise, all subprocesses of the
workflow process would have to be defined as workflows as well, which is infeasible
for dynamic development processes. Figure 8 shows a hierarchically structured dynamic
task net in which a subprocess is managed by the workflow engine but a workflow task
is refined by a manually managed task net.

The management of task net fragments in PROCEED by a workflow engine imposes
additional technical requirements for the integration of the two systems. A workflow
activity whose corresponding task in the workflow fragment is realized by a manually
managed task net has to wait for the successful termination of this task net in PROCEED
before it can be terminated. This can be realized by the implementation of special work-
flow activities which wait for an external event before they terminate. Some workflow
management systems provide this functionality.

3.5 Related Work

Several research groups have investigated the possibilities to integrate project manage-
ment systems with workflow management systems.
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Bauer distinguishes two approaches in [3]: loose coupling, where several workflow
instances can be mapped to a single project task, and close coupling, where there is
a one-to-one mapping of workflow activities and tasks in the project plan. The close
coupling approach is not applicable, when the project plan and the workflows are on
different abstraction levels. Hence Bauer presents a generic integration architecture for
loose coupling which uses event-condition-action(ECA)-rules for data propagation and
aggregation.

The MILOS tool [4] is an integrated solution for the management of software devel-
opment processes. MS Project is used as a planning interface and is extended by means
to define information flow between different tasks. The run time coupling between the
workflow management component and MS Project is realized by means of ECA-rules.

In [5], the IPPM system is described which integrates features for both project and
workflow management. An approach for the unfolding of workflow control structures
to tasks in a project plan is presented.

In [6], Bussler discusses issues regarding the integration of workflow management
systems and project management systems in general. Two approaches are distinguished
for the mapping of control structures. Continuous mapping describes the case where
tasks are inserted into the project plan at workflow run time according to the decisions
made. With static mapping, all alternative paths are inserted before the start of the work-
flow.

The integration of AHEAD with a workflow management system is based on a well-
defined mapping between the according process meta-models. Therefore, the definition
of ECA-rules is not necessary, neither by the system developer nor by the user.

The different related integration approaches all face the problem that no information
about the process enactment state and the data flow is available in the respective project
management systems. As a consequence, fine grained weaving of a workflow instance
with other tasks in the project plan is not possible. The context of a workflow instance
in a project is merely defined by the complex task to which it belongs.

4 Adding Dynamics to Workflow Management Systems

4.1 Motivation

In the previous section, we were concerned with using workflows in dynamic develop-
ment processes. By integrating process and workflow management systems, workflows
are glued together in order to form a coherent development process. However, this ap-
proach does not release the restrictions of the used workflow management systems con-
cerning support of dynamic changes.

In this section, we will present tools for adding dynamics to a workflow management
system a posteriori. These tools were developed in a project in the business process
domain. In contrast to the integration approach of the previous section, the extended
workflow management system may be used as a stand-alone component. The primary
goal was to make classical workflow applications more flexible. However, at the same
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time this flexibility makes the workflow management system better suited for the ap-
plication in development processes, which generally require more flexible support for
dynamic processes than business processes. Therefore, the extended workflow manage-
ment system may be integrated with a process management system along the lines of
Section 3. In this way, the approach presented below complements the work described
in the preceding sections.

In the AHEAD system, dynamic changes are supported by seamless interleaving of
planning and enactment. In contrast, dynamic changes to repetitive processes are better
handled by deviation from a workflow definition rather than by continuous evolution
of some dynamic task net. Yet, classical workflow management systems do not allow
for dynamic changes. In the following, we describe how and to which extent a classical
workflow management system can be upgraded a posteriori in order to support even dy-
namic business processes. In particular, we extended the workflow management system
IBM WebSphere Process Server (WPS), which provides execution support for workflow
definitions. In contrast to the concepts of Section 3, we just consider a single model-
ing language for executable models, namely the standardized language WS-BPEL [32]
used in WPS.

In Subsection 4.2, we draw the big picture of the a posteriori extension of the work-
flow management system WPS before we elaborate on the kinds of dynamic changes
which are actually supported by the approach (cf. Subsection 4.3). Finally, related work
is discussed in Subsection 4.4.

4.2 Simulating Dynamics

Adding functionality for dynamic run time changes a posteriori to an existing work-
flow management system like WPS does not work in a straight forward fashion. WPS
is a closed source system. Thus, adding dynamics by modifying the existing source
was not an option. Instead, an additional architectural layer – called dynamics layer –
was introduced (cf. Figure 9). This dynamics layer simulates dynamic changes inas-
much as workflow participants experience dynamic structural changes in their running
workflow instances while the actual workflow definitions within WPS (forcedly) remain
structurally unchanged.

The dynamics layer reflects the intrinsic distinction between build time and run time
of classic workflow management systems as it consists of two parts. Existing workflow
definitions are automatically augmented by a WS-BPEL transformer at build time by
additional control flow structures. At run time, these additional control flow structures
are used to deviate from the original control flow definition. Their run time behav-
ior is controlled by the dynamics component which is the run time counterpart of the
WS-BPEL-transformer. The additional complexities that come along with the dynamics
layer are completely hidden from process participants. In the so called process model
editor, which serves as a front end for process participants, dynamic changes are in-
deed displayed as structural changes in process instance models, i.e., models of running
processes.
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Fig. 9. Deviation of workflow enactment from workflow definitions

4.3 Dynamics Patterns

The realization of the dynamics layer is aligned with typical kinds of dynamic changes.
These are called dynamic patterns which are described in detail in [25,26] and briefly
in the following:

Dynamic Adding. Frequently, there is a need to dynamically add activities or even
workflow fragments consisting of several activities to a running workflow instance.
In a classical, i.e. static, workflow management system one could model placeholder
activities — serving as extension points — among the actual activities. These added
activities can then be used at run time for intermediate rerouting the control flow to
another newly created process instance. However, manually inserting such activities is
a tedious task and renders the workflow definition unmaintainable as every possible
position in the workflow definition has to be supplied with an additional activity. Thus,
the WS-BPEL transformer automates the augmentation and the process modeler can
stick to his or her original workflow definition.

Figure 10 provides a small example from the software engineering domain (an
implement-test-release process). The original workflow definition X is augmented with
additional activities DAI1 to DAI4 yielding a workflow definition Xa. This workflow
definition can be executed at run time within a workflow instance Xa.1. The process
model editor hides the additional activities from the process participant. Assume that
during the execution of Implement the need for an additional quality assurance step is
identified. The process participant then just embeds an according activity Review within
the existing control flow structure. This addition is reflected by the dynamics compo-
nent inasmuch the DAI2 activity is bound to a newly created instance Ya.1. Each DAI
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activity retrieves binding information from the dynamics component when executed. In
the case of DAI2, the new instance Ya.1 is executed such that the Review activity is per-
formed. After completion of Ya.1, the control flow returns to the caller DAI2, and Xa.1
is executed further.

Effectively, the DAI activities together with the binding information of the dynam-
ics component, which is indirectly manipulated by the process participant, simulate an
actual dynamic change, which is possible due to late binding.

Dynamic Removal. Complementary to dynamic addition of activities, process partic-
ipants frequently need to remove mandatory activities. Dynamic removal constitutes
another dynamics pattern which is supported by the dynamics layer. Yet the overall
approach remains the same: At build time, the WS-BPEL transformer augments the
workflow definition by additional control flow structures which are used at run time in
order to simulate the dynamic removal of activities from a running workflow instance.

As Figure 11 depicts, each original activity is surrounded by a DRD decision activity
(diamond). Depending on a dedicated value, which is stored in the dynamics compo-
nent and evaluated when the respective DRD decision is reached by the control flow
at run time, the original activity is either executed (default case) or bypassed. The lat-
ter takes place if the process participant has dynamically removed the activity. Again,
the generated DRD activities are invisible in the process model editor. Here, dynamic
removals are rendered by actually removing the respective activity from the workflow
definition.

Dynamic Iteration. Besides the decision elements labeled with DRD, Figure 11 also
depicts a decision labeled with DID. This element is generated by the WS-BPEL trans-
former in order to allow for dynamic iterations. These are the equivalents to the feed-
back flows in AHEAD, i.e. they allow to step back in the control flow and to re-execute
activities, which might have been erroneously executed before. At run time, the DID
decision works in combination with DRD decisions: Consider the case, where the
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workflow instance already has proceeded to Release and the process participant wants
to step back to Implement (e.g., because an automated regression test which was not
part of the unit Test activity fails in the Release step). Then the value backing the DID
in the dynamics component is reset such that the control flow returns to the very begin-
ning of the workflow. In this way, another iteration is started until eventually the final
Release step is passed successfully.

Expressive Power of Pattern-Oriented Changes. Interleaved planning and execution
calls for maximal freedom concerning the editing of process models (as provided by
dynamic task nets in the AHEAD system). In contrast, the dynamics patterns – each
constituting a certain kind of deviation – are more restrictive. Regarding the example of
Figure 10, it is, e.g., not possible to add the activity Review in parallel to Test (allowing
to delegate review and test to different developers working in parallel). Yet, this lack of
flexibility does not pose a real problem: The decline of process performance due to the
serial instead of parallel execution is neglectable as the dynamic change just affects a
single workflow instance.

4.4 Related Work

Many research groups have investigated the development of flexible workflow manage-
ment systems. Weber et al. [47] provide an overview over the different aspects of flex-
ibility in workflow management systems and define according change patterns. Within
the ADEPT project, Reichert et al. [23] investigate dynamic changes to running work-
flow instances. For this purpose, they use a graph based calculus with some optimiza-
tions to ensure the correctness of control flow graphs. The WASA approach [48] is
similar to the ADEPT approach. Dynamic changes in workflows are supported by spe-
cial planning activities which define possible extension points for the workflow. Casati
et al. [49] advocate the automated handling of unforeseen process exceptions using a so-
called exception-specification language. This language provides additional declarative
set-oriented conditions which complement common imperative workflow definitions.
All prototypes have in common that they have been developed from the start to support
dynamic workflows, i.e. flexibility is integrated a priori. Furthermore, the prototypes
use their own modeling languages for workflow definitions instead of standardized
languages.
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5 Discussion

In this section, we summarize several lessons learned, i.e., conclusions which we have
drawn from our work on process support for dynamic development processes. These
conclusions are condensed into a set of theses, each of which is discussed briefly.

5.1 Domain-Specific vs. Domain-Independent Management System

Thesis 1 (Domain-Independent Management Systems). The required functionality
of process support tools depends on the actual application domain only to a limited
extent. Other process properties such as the level of granularity and the degree of struc-
turing are much more relevant.

In this respect, we completely agree with [50], Thesis 3. Process support systems can-
not be reasonably classified with respect to their application domains. For example, the
AHEAD system was applied to multiple engineering disciplines such as mechanical,
chemical, and software engineering. Rather, each process support system builds upon
certain assumptions concerning the target processes to be addressed. A process support
system may be applied to processes satisfying these assumptions, regardless of the spe-
cific domain. For example, a workflow management system which has been designed
for supporting static business processes may be applied to software processes as long
as these processes match the properties assumed by the workflow management system
(e.g., structured change request processes, where a well-defined workflow exists which
has to be enforced). Furthermore, a process management system like AHEAD may be
applied not only to development processes, but also to other processes provided that
there is a need for project planning and integrated management of products, activities
and resources (e.g., construction of buildings).

Thesis 2 (Ubiquitous Need for Dynamic Changes). The need for changing processes
at run time arises in virtually any application domain. In particular, dynamic changes
need to be supported even for structured routine processes.

In our work, we have primarily studied development processes in different engineering
disciplines. However, a small fraction of our work has been dedicated to business pro-
cesses, as well. In all of these application domains, a strong need for dynamic changes
has been identified. The specific requirements for supporting dynamic changes may
vary from application to application. However, the mechanisms listed in Subsection 2.5
— ad hoc processes, exception handling, flexible control flows, late binding, interleav-
ing of planning and enactment, or deviations from process model definitions — may
be employed in any domain. In particular, we argue that workflow management sys-
tems need to support dynamic changes instead of merely enacting static workflows as
defined.

5.2 Project vs. Workflow Management

Thesis 3 (Different Focus: Project Planning vs. Process Automation). Conventional
project and workflow management systems focus on different process support functions.
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While project management systems address project planning on a fairly coarse-grained
level, workflow management systems automate routine processes typically at a more
fine-grained level.

Here, we disagree with Thesis 1 of [50], which basically claims that all kinds of process
support tools virtually address the same kinds of problems. In fact, conventional project
management systems do not support process enactment, while conventional workflow
management systems do not address project planning. Furthermore, the ways processes
are modeled in these classes of systems differ considerably. In the case of project man-
agement, a plan is built manually at run time. The plan contains only the tasks which
actually are to be enacted, and it may be modified at any time during the course of the
project. In contrast, a workflow management system instantiates a pre-defined workflow
which has to cover all potential execution paths. Furthermore, conventional workflow
management systems still fall short of supporting dynamic changes. As a consequence,
a project management system cannot replace a workflow management system and vice
versa.

Thesis 4 (Integration of Workflow Process Fragments). Only fragments of the over-
all development process may be defined as workflows. Thus, these fragments may have
to be glued together at the project management level. For supporting integrated process
management, project and workflow management have to be integrated or even unified.

This observation motivated the research presented in Section 3. Development processes
may be defined as workflows at best in a fragmentary way. However, if such fragments
exist, a workflow management system may provide (partial) process automation. In this
case, using a workflow management system improves process support. Those fragments
which are relevant at the managerial level have to be embedded into the overall devel-
opment process (consider, e.g., well-defined and rigorously controlled change request
processes in software maintenance). This requires at least an integration of the respec-
tive process support systems (as shown in this paper) — or even a unification into a
novel process management system, which, however, is not available to date.

5.3 A Priori vs. A Posteriori Integration

Thesis 5 (Economic Value and Necessity). A posteriori integration allows to retain
investments into existing systems. It is an economic necessity in the case of big invest-
ments whose replacement would imply a huge development effort. In particular, this
applies to management systems for development processes.

A priori integration means that components of an overall system are designed from the
very beginning with a common concept of integration in mind. This approach was real-
ized successfully e.g. in the IPSEN project [51], and it was also applied in the AHEAD
system for integrating the management of products, activities, and resources. A pri-
ori integration is attractive for several reasons (tight integration, homogeneous devel-
opment environment, etc.). However, a posteriori integration was required by our in-
dustrial partners in various projects, and it acted as a driving theme in the IMPROVE
project. Companies which have invested into systems for workflow, project, document,
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or engineering/product data management need to reuse these systems. Re-development
from scratch is not economically feasible.

Thesis 6 (Technical Achievements and Limitations). A posteriori integration is con-
strained by limitations imposed by the reuse of existing systems which have been de-
veloped independently. Even in the face of these limitations, tight integration may be
achieved.

A posteriori integration is well known to be a challenging task. The functionality of the
coupling which may be achieved with the help of a posteriori integration strongly de-
pends on the interfaces provided by the systems to be integrated. However, in the work
presented in this paper we succeeded in providing fairly tight integration: Workflows
may be monitored in development processes, and dynamic changes may be realized
with a conventional workflow management system. This work demonstrates what can
be achieved under the constraints of a posteriori integration.

5.4 Barriers of Technology Adoption

As a matter of fact, support technology for development processes has made its way
into industrial practice only to a limited extent. In this subsection, we discuss barriers
of technology adoption since they are relevant for future work in this area. However,
we should stress that these barriers are by no means specific for our own work and have
been observed also e.g. in [50,52].

Thesis 7 (Ease of Use). Ease of use is an essential requirement to process support
systems. Users of process support systems expect light-weight, yet powerful support for
dynamic development processes. Unfortunately, the tools which have been developed
so far do not meet this requirement.

Potential users of management systems for dynamic development processes expect that
they are supported in their processes by tools which are easy to understand, require
only little effort in their use, and yet provide a significant added value. To achieve this,
systems are needed which hide the underlying and inherent complexity in managing
development processes under a simple and carefully designed user interface. This may
be explained by an example from software configuration management: The success of
version control systems such as CVS [53] or Subversion [54] is due to the fact that
they may be operated through a small set of commands which are simple to use (e.g.,
checkout, update, and commit). Most process management systems are not as easy to
use (this also applies to our own work concerning the AHEAD system).

Thesis 8 (Modeling Effort and Return of Investment). Modeling of development
processes is inherently difficult, in particular if it comes to modeling processes to be
enacted. The effort of modeling needs to be balanced against the improved process
support achieved with the help of the model.

In the scenarios which we studied in engineering disciplines, it was always hard to come
up with a process definition. Usually, process knowledge was only implicit (i.e., domain
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experts had acquired process knowledge which was not documented in any way), and
we were faced with the task of defining process definitions which are reusable for a
sufficiently large set of development processes. It was inherently difficult to define types
of tasks, inputs, outputs, control, data, and feedback flows, etc. For a process definition,
both the structure and the behavior need to be specified precisely so that the definition
may be used to drive enactment. This is far more challenging than creating a descriptive
and informal process definition for documentation or guidance. For gaining acceptance
of the prospective users of a process management system, it is crucial that the modeling
effort may be balanced against the improved process support such that an appropriate
return of investment is achieved. An initial step towards this goal is provided by the
AHEAD system, which may be used “out of the box” without any prior modeling at
all. However, more research is still required with respect to ease of use and return of
investment.

6 Conclusion

We presented a management system for dynamic development processes which inte-
grates the management of products, activities, and resources and provides for seamless
interleaving of planning and enactment. Furthermore, we investigated the application
of workflow management systems to dynamic development processes and described
two complementary solutions. The first solution combines process management and
workflow management by integrating workflows into a coherent overall development
process. The second solution improves the capabilities of a classical workflow manage-
ment system by adding components for dynamic changes.

Resuming the topics of the discussion in Section 5, we envision the need of future
research activities in the following areas:

Dynamic Processes in Different Application Domains. As we have argued above,
process support systems cannot be reasonably classified with respect to their ap-
plication domains. Rather, each process support system is built for some class of
processes which are characterized by structural properties (e.g., degree of structur-
ing, degree of automation, granularity of process support, organizational scale; see
[16], Chapter 4). Further work is required to elaborate on these properties and the
implications on tool support.

Integrating Project and Workflow Management. From our work, we conclude that
project and workflow management systems typically operate at different levels of
granularity and satisfy different requirements, e.g., with respect to the dynamics of
work processes. While we have developed several integration approaches, we still
believe that further work has to be performed to clarify the borderlines between and
the cooperation of project and workflow management systems and to investigate the
potentials for unification.

A Posteriori Integration. As a matter of fact, there is no way around a posteriori in-
tegration, which aims at integrating existing tools into an overall environment pro-
viding an added value to its users. We are convinced that integration or extension
of existing systems is far superior from an economic point of view and more fea-
sible than building a process management system from scratch, which would have
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to cover the whole process scope and would have to compete with existing sys-
tems in terms of functionality, maturity, and compliance to standards. While we
have successfully realized different models of integration, our work still has to be
generalized beyond the integration or extension of specific systems.

Ease of Use and Return of Investment. While a rich variety of mechanisms for sup-
porting dynamic development processes has been proposed and realized, the impact
of research on industrial practice is still limited. We have identified ease of use as a
critical factor determining technology adoption. More research has to be carried out
to provide light-weight, yet powerful support for dynamic development processes
which provides a significant return of investment on behalf of the users of process
support systems.
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Transformations and Model-Driven Engineering: Essays Dedicated to Manfred Nagl on the
Occasion of his 65th Birthday. LNCS, vol. 5765, pp. 393–410. Springer, Heidelberg (2010)

37. Bolcer, G.A., Taylor, R.N.: Endeavors: A process system integration infrastructure. In: Pro-
ceedings of the 4th International Conference on the Software Process, Brighton, England,
pp. 76–89. IEEE Computer Society Press, Los Alamitos (December 1996)

38. Bandinelli, S., Fuggetta, A., Ghezzi, C.: Software process model evolution in the SPADE
environment. IEEE Transactions on Software Engineering 19(12), 1128–1144 (1993)

39. Jaccheri, M.L., Conradi, R.: Techniques for process model evolution in EPOS. IEEE Trans-
actions on Software Engineering 19(12), 1145–1156 (1993)

40. Cugola, G., Nitto, E.D., Fuggetta, A., Ghezzi, C.: A framework for formalizing inconsisten-
cies and deviations in human-centered systems. ACM Transactions on Software Engineering
and Methodology 5(3), 191–230 (1996)

41. Cugola, G.: Tolerating deviations in process support systems via flexible enactment of pro-
cess models. IEEE Transactions on Software Engineering 24(11), 982–1001 (1998)

42. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. In: Thalheim, B. (ed.) ER
1996. LNCS, vol. 1157, pp. 438–455. Springer, Heidelberg (1996)

43. Kradolfer, M., Geppert, A.: Dynamic workflow schema evolution based on workflow type
versioning and workflow migration. In: Proceedings of the International Conference on Co-
operative Information Systems (CoopIS 1999), Edinburgh, pp. 104–114. IEEE Computer
Society Press, Los Alamitos (September 1999)

44. Maurer, F., Dellen, B., Bendeck, F., Goldmann, S., Holz, H., Kötting, B., Schaaf, M.: Merg-
ing project planning and web-enabled dynamic workflow technologies. IEEE Internet Com-
puting 4(3), 65–74 (2000)

45. Enhydra.org Community: Enhydra Shark – Java Open Source XPDL workflow, version 1.1-2
(2005), http://www.enhydra.org/workflow/shark/index.html

http://www.wfmc.org/standards/XPDL.htm
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://www.enhydra.org/workflow/shark/index.html


654 T. Heer et al.
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Abstract. Expressive models of the work processes performed in the

chemical and process industries provide a basis for diverse applications

like work process documentation, analysis, and enactment. In this con-

tribution, we present a generic modeling language for different types of

work processes to allow for their integrated representation in the life

cycle of a chemical plant. Further, the generic language allows for ex-

tensions specific to certain types of work processes. For two important

types – design and operational processes – such extensions have been

elaborated. These extensions enable the adequate representation of the

context of a work process that strongly depends on the process type: for

instance, the specification of a chemical plant is a product of a design

process, whereas the plant takes the role of a resource during an opera-

tional process. This contribution also briefly introduces a modeling tool

developed by our group for applying the modeling language in industrial

practice.

Keywords: work process, design process, operational process, process

modeling language, ontology.

1 Introduction

A work process is a collection of interrelated actions in response to an event that
achieves a specific result for the customer of the work process. This definition was
originally proposed by Sharp and McDermott [1] for business processes. How-
ever, the term business process is ambiguous as there are different definitions
in different communities such as in business process engineering (e.g., [2]) or in
workflow management (e.g., [3]). Moreover, the term is typically applied exclu-
sively for work processes which are completely determined and therefore can be
planned in a detailed manner. Examples include the processing of a credit trans-
fer in a bank or of a claim in an insurance company. In consequence, many work
processes in chemical engineering, in particular design processes, are commonly
not considered as business processes. To overcome the ambiguities, we prefer the
term work process as defined above.

In the life cycle of a chemical plant, several types of work processes are per-
formed, including design processes and operational processes. Whereas design
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processes aim at the specification of chemical products, production processes,
or operating procedures for a plant, operational processes target at establishing,
maintaining or preventing certain process conditions during production. Typical
examples of operational processes are the start-up of a continuously operated
plant or the operation of a multi-purpose batch plant. Our research group has
investigated work processes in the chemical industry for more than a decade [4].

An important result of this work is the insight that there is a need for sub-
stantial support for engineers and technicians with a background in chemical
engineering to create simple and informal models of work processes (e.g., oper-
ational procedures for a plant), to enrich these models with further details next
and to finally increase their level of formality (e.g., in order to automate an
operational procedure). We have performed several case studies focusing on the
modeling of both design and operational processes [5,6]. The empirical results
of these case studies have motivated the specification of a modeling framework
comprising

– a modeling procedure as a guide for modelers that need a work process
model for a certain application such as documentation, analysis, or (partial)
automation of a work process [5];

– a modeling language, i.e., a meta-model providing the modeling elements to
represent work processes;

– prototypical modeling tools as a prerequisite for the practical application
and validation of our research results in an industrial environment.

The modeling procedure proposes several iterations with increasing levels of
generality, detail, and formalization, as required by the application. The level of
generality refers to the number of different work processes covered by a model,
whereas the level of detail refers to the amount of information captured. Finally,
the level of formalization refers to the representation of this information (e.g., by
means of textual annotations or by using some model elements with well-defined
semantics). A more elaborated description of the levels of generality, detail, and
formalization has been published elsewhere [8].

The representation of work processes requires an adequate modeling language,
which is the focus of this contribution. In Sec. 2, we discuss the requirements for
such a modeling language. An overview of existing modeling languages as well as
their evaluation with respect to industrial requirements is given in Sec. 3. We will
see that existing languages partially meet the requirements, but none of them, to
our knowledge, satisfactorily fulfills the requirements in a comprehensive man-
ner. The following two sections introduce the Work Process Modeling Language
(WPML), a language developed by our group based on existing approaches such
as the C3 language [5,7,8] and the activity diagram of the Unified Modeling Lan-
guage (UML, [9]). Sec. 4 deals with the behavioral aspect of work processes and
the modeling elements offered by WPML that go beyond existing languages;
these modeling elements are independent of the type of the work process under
consideration. Sec. 5 is about WPML’s support for the functional aspect of work
processes, which is neglected by most existing languages. The function of a work
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process, and consequently the modeling elements required for representing func-
tional aspects, strongly depend on the process type. For two important types of
work processes in chemical engineering, namely design processes and operational
processes, functional modeling elements have been elaborated. An overview on
a prototypical modeling tool is given in Sec. 6.

2 Requirements for a Modeling Language

An adequate modeling language for work processes must fulfill several require-
ments which result not only from the characteristics of the work processes under
consideration, but also from the modeling procedure sketched above. These re-
quirements are discussed in the following.

2.1 Expressiveness

The expressiveness of a modeling language refers to the different aspects of or
views on an object—a work process in our case—that can be represented by
the language. The focus of this contribution is on behavioral and functional
aspects of a work process. Further aspects, such as the actors performing a work
process, the technical resources required for their execution (e.g., see [8]), or the
complex decisions typically involved in engineering design processes [10,11], are
not discussed in this paper.

Behavioral aspects. The focus of most work process models is the representa-
tion of process behavior, i.e., the dependencies between the elementary steps—
called actions in the following—with respect to causal conditions (e.g., if action
A is executed, then action B must also be executed) and temporal restrictions
(e.g., B is executed after A is finished). Existing modeling languages often force
the modeler to create a complete behavior specification from the beginning of
the modeling process.

As an example, we consider Aspen Batch Process Developer [12], an engineer-
ing software tool for the simulation of operational processes in a batch plant. In
industrial practice, this simulation tool is also often used as a modeling tool to
create a first draft of a batch process. At this stage, many details of the batch
process are still undefined. For instance, a chemical engineer may want to pro-
vide the information that a reactor should be charged with two reactants A and
B in a yet undefined order. When creating a model in the tool, the engineer
is forced to specify a certain order because the underlying modeling language
does not allow to omit that information. In consequence, the work process model
is likely to be enriched with uncertain or even accidental content, while other
feasible alternatives are excluded.

During the design of an operational process, incomplete behavior specifica-
tions are useful intermediate steps on the way towards a complete specification,
which is required to realize process automation system and ultimately to operate
a chemical plant. In case of work process models in engineering design, complete
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behavior specifications are infeasible in general because design is an inherently
creative process, which cannot be predetermined in principle.

In conclusion, a modeling language has to allow the representation of work
process models with an incomplete behavior specification. In particular, there is a
need for two kinds of abstraction [8]: Structural abstraction refers to the freedom
to omit information about the conditions under which an action is performed,
and temporal abstraction refers to the freedom to omit information about the
temporal relations between actions if they are executed (e.g., by permitting a
partial overlap of two subsequent actions).

Functional aspects. According to the definition of the term work process in the
introduction, the function of a work process is to create a specific result. However,
most modeling languages focus on the behavioral aspect of a work process and
pay little attention to the representation of the function of an entire work process
or of the actions within it. Usually, the functional aspect is exclusively specified
by means of auxiliary constructs such as textual annotations.

Textual descriptions of functional aspects are advantageous in the early stages
of a modeling process because a modeler can phrase a text more easily than
choose a specific modeling concept and insert it into a model. There are also
model applications in which a functional representation beyond textual descrip-
tions does not provide any additional benefit. An example is the model of a
simple operational process for a lab-scale plant, which only serves as a reference
for the operator to execute the process.

However, explicit representations of functional aspects enable more advanced
applications of work process models, including automatic model checks and
model transformations for target applications that strongly depend on func-
tional aspects. Automatic model checks rely on the level of formalization as
discussed below. As for model transformations, we consider the example of an
operational process that includes the heating of some process material. If the
heating function is represented by explicit modeling elements rather than by
ambiguous textual annotations, a transformation of the model into a simulation
model for Aspen Batch Process Developer is possible.1

The function of a work process (or of an action) is typically associated with
certain objects as prerequisites or outcomes; consequently, a complete modeling
of the functional aspect should include these objects (see also [13,14]). To give an
example, the specification of a heating function for an action is rather incomplete
without the specification of the process material to be heated.

2.2 Formalization

A model is formal if it’s semantics is defined by a mathematical formalism.
Formalization refers to the transformation of an informal model into a formal
one. A trivial prerequisite for a formal work process model is a formal modeling

1 The tool does not support an abstract ‘general’ process step, but only concrete types

such as heating and cooling.
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language, where the semantics of the modeling elements are defined formally.
At the same time, a modeling language should not compel the user to a certain
level of formalization. Rather, a set of modeling elements should be provided at
a level of formalization that is imposed by the intended application of the model.
In particular, it should be possible to represent some aspects formally, but other
aspects informally, e.g., by means of simple textual annotations.

Formal representations facilitate advanced applications of work process mod-
els like automatic model checks or the derivation of implicit knowledge from
explicitly defined knowledge. As an example, we reconsider the modeling of a
heating function, which could be defined as a modeling element for a tempera-
ture change resulting in an end temperature higher than the start temperature.
Based on a formal representation of this definition, the automatic detection of a
semantic error in a model with a heating step from 80�C to 60�C is possible. In
a similar way, it could be derived that a temperature change step from 60�C to
80�C is actually a heating step; such derived knowledge would then be available
for applications like model transformations.

3 Modeling Languages for Work Processes

There is a plethora of modeling languages for work processes, and a complete
review of the existing approaches is beyond the scope of this contribution. In-
stead, some representative languages are discussed and evaluated with respect
to the requirements above. First, generic languages are addressed which have
been developed for any type of work process (or at least a wide range of types),
followed by specific languages for operational and design processes.

3.1 Generic Modeling Languages

The activity diagram of UML [9] is probably the best-known graphical model-
ing language for work processes. The language specification comprises typical
modeling elements like actions and control flows as well as concepts to repre-
sent parallel or alternative branchings of the control flow (i.e., split and decision
nodes).2 The behavioral semantics of UML activities is defined by an informal
textual description of the token flow in an activity diagram. Hence, the activity
diagram can be interpreted as a kind of Petri net, but is not formally defined as
such.

2 In addition to the general action element, more specific subclasses are defined in UML

such as CreateObjectAction or WriteVariableAction. Given that UML is rooted in

software engineering, these specific action types are not suitable for the representa-

tion of work processes in chemical engineering. However, usage of the special action

types in UML is not mandatory, and in practice it is restricted to rather advanced

applications like Model Driven Architecture [15], which aims at the automated gener-

ation of code based on UML models. This justifies the classification of UML activity

diagrams as a generic modeling language.
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Petri nets are a widely-used family of graphical modeling languages [16,17].
Their strengths include the inherent support of concurrency and resource allo-
cation concepts and the formal mathematical foundation, which eliminates any
ambiguity and allows the application of Petri nets for the automated analysis
and execution of work processes. The direct application of Petri nets to model
complex work processes is often not practical, but they have been applied to
specify the semantics of other modeling languages. Störrle and Hausmann [18],
for instance, propose formal behavioral semantics for (part of) UML activities
by means of a well-defined translation to Petri nets. Furthermore, the semantics
of Yet Another Workflow Language (YAWL, [19]) is based on a direct mapping
of its modeling elements to Petri nets.

The Process Specification Language (PSL, [20]) is an ontology-based language
for the automatic exchange of information about work processes between differ-
ent applications and to enhance their interoperability. The semantics of PSL is
defined explicitly in first order logics. An outline of a formal specification of UML
activities by means of PSL has been published [21] to illustrate its formalization
capabilities.

The graphical representation and semantics of the Business Process Modeling
Notation (BPMN, [22]) are similar to that of UML activity diagrams. Even
though its name suggests a focus on business processes, the language is rather
generic and allows to represent different types of work processes. In particular,
BPMN addresses the creation of process models for workflow execution and
automation; for this purpose mappings from BPMN to executable languages
like the Business Process Execution Language for Web Services [23] or XML
Process Definition Language [24] have been defined [22,25].

IDEF0 of the IDEF family (Integrated Definition Methods, [26]) is also widely
used for work process modeling, especially in the manufacturing domain. IDEF0
contains a set of generic modeling concepts and allows a “structured representa-
tion of the functions, activities or processes within the modeled system or subject
area” [27]. Temporal relations between actions are not included in IDEF0.

Batres and Naka [28] propose a process plant model which can be used to rep-
resent the structure of a plant and the processed material, including its physical
behavior. Further, the process plant model contains a management and opera-
tion ontology which provides concepts such as plan, activity, action or activity-
performer for describing work processes. Although the process plant model is
mainly used for representing operational processes, it can be used to represent
different kinds of work processes. The process plant model is implemented in
a development environment called Ontolingua [29], which enables to define the
semantics of modeling concepts explicitly and formally.

3.2 Specific Modeling Languages for Operational Processes

Currently, diverse modeling languages are used to represent operational pro-
cesses (cf. [30]). These languages can be divided into two groups. The first group
contains generic modeling languages such as Petri nets or UML. The focus of
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this subsection is on the second group, which includes languages developed ex-
clusively or primarily for operational processes.

The IEC 61131-3 standard [31] defines several textual and graphical languages
for the automation of operational processes. These languages are considered
primarily as programming languages rather than modeling languages.

The VDI/VDE 3682 guideline [32] seeks to facilitate the formal representa-
tion of a production process throughout its life cycle. To keep the process rep-
resentations simple and understandable for engineers from different disciplines
as well as for plant operators, the guideline covers only a small set of modeling
elements. Further, this guideline also supports the representation of the objects
involved in a process and their relations by means of UML.

ANSI/ISA-S88 [33] addresses batch process control. The standard defines a
layered structure for physical models of plants, process models, and procedural
control models. Four types of recipes are defined, including general, site, master,
and control recipes. Although the standard itself does not define a modeling
language, it provides a useful frame for representing batch process operations.

Beyond these well established standards, current and recent research efforts
also deal with the representation of operational processes. For example, on the
basis of the ANSI/ISA-S88 standard, Viswanathan et al. [34] propose an ap-
proach for the synthesis of control recipes. The approach enables to capture
the behavioral aspect of an operational process by using Grafchart, a variant of
Petri nets. Moreover, domain specific knowledge about chemical plants, chemical
processes, and operational processes is included.

Gabbar et al. [35] describe a recipe formal definition language (RFDL) to sup-
port the development of operating procedures of chemical batch plants. RFDL
statements are composed of classified keywords, which are linked to domain
knowledge, including knowledge about chemical plants, process materials, and
operational procedures.

3.3 Specific Modeling Languages for Design Processes

The representation of design processes has been an active research area in the
past. Some approaches aim at a framework for analyzing and understanding
design processes (e.g., [36,37]). Other approaches focus on detailed models of
design artifacts to facilitate design processes, but do not directly address the
design process itself [38,39]. Further, there are some guidelines for design pro-
cesses in the domain of chemical engineering (e.g., [40,41]). In the following, some
representative modeling languages for design processes are introduced briefly.

Gorti et al. [42] have developed a generic model for representing domain inde-
pendent design processes. On the one hand, artifacts produced during a design
process can be represented under functional, structural, and behavioral aspects.
On the other hand, design processes can be represented as process objects con-
taining process-related components like goal, plan, or context.

The Knowledge Based Design System (KBDS, [43]) has been developed to
support the design of chemical plants. Based on an exploration-based model of
design and the hierarchical decision procedure of Douglas [41], design processes
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are represented as networks of design objectives, alternatives, and models. De-
sign alternatives of chemical plants can be represented on different levels of
detail. Further, design alternatives are related to both the design objectives and
simulation models.

The C3 language (cooperation, coordination, and communication) is a simple
graphical modeling language with a special focus on the requirements imposed
by weakly-structured design processes [5,7,8]. In the interest of high usability,
C3 provides a rather restricted number of modeling elements. However, the user
is free to extend the language if needed. In addition to conventional modeling
concepts for predetermined processes, C3 provides concepts for temporal and
structural abstraction.

CLiP [13,44] is an information model providing a conceptualization of the
domain of chemical process design. Process Models is a partial model of CLiP
covering different types of work processes, such as the development of mathe-
matical models or the design of chemical processes [45]. The model comprises a
meta class layer which provides the concepts required for generalized processes,
and a simple class layer, which enables the representation of more concrete de-
sign processes. Design processes are modeled as iterations of synthesis, analysis,
and decision activities, linked by auxiliary activities [46].

3.4 Evaluation

Several of the modeling languages introduced above enable the representation
of process behavior, but only a small subset provides a formal foundation (Petri
nets, PSL, the languages of IEC 61131-3, and the approach by Viswanathan et
al.). Only C3 supports temporal and structural abstraction, but lacks a formal
definition of these concepts.

The functional aspect of a work process is covered by several approaches
[13,34,28,35,43,44]. Interestingly, most of them also provide a detailed model of
the objects involved in a work process. The approach proposed by Batres and
Naka [28] is the only approach providing a formal specification of the functional
aspect.

In short, the existing approaches are too restrictive with respect to process
behavior, since they do not support behavioral abstraction. On the other hand,
most approaches lack an explicit and formal representation of the functional
aspect of work processes.

4 Behavioral Semantics of WPML

The Work Process Modeling Language WPML has been designed to address
the weaknesses of the existing modeling languages discussed above. The core
of the language provides modeling elements to represent the behavioral aspect
of work processes. This part is independent from any application domain; simi-
lar as UML acitivy diagrams, it contains generic concepts to represent actions,
decisions, concurrency, etc., which are required for any type of work process.
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As argued above, functional modeling is required for diverse applications. Ex-
pressive functional models are domain-specific (e.g., the function to heat some
material in a chemical plant). Thus, the domain-independent core of the lan-
guage does not consider functions beyond the trivial aspect that an action in a
work process serves to fulfil one or several functions.3 Instead, WPML can be
extended with domain-specific modules that enable functional models with the
expressiveness required by an application. This section focuses on the domain-
independant behavioral semantics of WPML. Two examplary domain-specific
extensions are discussed in Sec. 5.

Both the WPML meta model (i.e., the domain-independent core and optional
domain-specific extensions) and WPML instance models (i.e., the work process
models created by a user) are represented in the Web Ontology Language OWL
[47]. OWL is a language for knowledge representation with a formal foundation
in the domain of description logics [48]. So-called reasoners (e.g., Pellet [49]) can
be used to exploit the formal definition of the language for applications like con-
sistency checks for work process models or to derive implicit knowledge (which,
for instance, substantially reduces the effort to implement the transformation of
models into other formats [50]). In the following, we will use a notation similar
to that of UML class diagrams to represent parts of WPML although there are
important differences between the semantics of OWL and that of UML.

4.1 Basic Elements of WPML

One goal of WPML is to give a formal definition of several behavior-related
concepts of the C3 notation for cooperative work processes, which have proven to
be valuable in several academic and industrial case studies [5,6], but that suffer
from their ambiguous semantics. An informal description of WPML has been
published elsewhere ([8], called Process Ontology there), including a discussion of
its capabilities with respect to temporal and structural abstraction. The following
discussion focuses on the formal specification of process behavior. It is restricted
to a simplified subset of WPML, which nevertheless demonstrates the basic idea
of the chosen approach. A more detailed introduction to WPML can be found
in [50]. In addition, a complete specification of the language is in preparation; it
will also cover the roles by which actions are executed, the objects produced or
consumed in actions, and the object flows that link actions with objects.

In Fig. 1 the basic structure of a WorkProcessModel in WPML is shown.
It is a graph that isComposedOf WorkProcessElements, i.e., WorkProcessNodes
and WorkProcessArcs. Each arc is from exactly 1 WorkProcessNode to exactly 1
WorkProcessNode4. The only subclass of WorkProcessArc discussed here is the
ControlFlow. Table 1 lists several concrete subclasses of WorkProcessNode and

3 To a certain extent, functions could be represented on a domain-independent, but

very abstract level (e.g., production, transformation, or consumption of material or

information).
4 The notation used in Fig. 1 and Table 1 (e.g., from exactly 1) is the Manchester OWL

Syntax proposed in [51] as a human-readable alternative for OWL class expressions.
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WorkProcessModel

WorkProcessNode

WorkProcessElement
isComposedOf

to

WorkProcessArc
from exactly 1
to exactly 1

from

ControlFlow

Fig. 1. The basic elements of a WorkProcessModel in WPML

ControlFlow. For the nodes, restrictions for their connection by ControlFlows are
given; for instance, an Action must be the origin of exactly one ControlFlow (it
must be the from node of exactly 1 ControlFlow), and a final node must not be
the origin of a ControlFlow.

4.2 An Introductory Example

Figure 2 shows an example of a simple WorkProcessModel in a graphical notation
similar to that of UML activities (the symbols for nodes and arcs are given in
Table 1). The model describes the development process for chemical processes
in an R&D department on a very coarse-grained level. The first Action a1 is to
create a block flow diagram (BFD), a schematic representation of a chemical
process. In a BFD, blocks or rectangles represent the unit operations or groups
of unit operations in the chemical process. Next, more detailed process flow
diagrams (PFD) must be made for the different parts of the BFD. This can
either be done by a contractor or in the same R&D department. For the former
case, only a single Action a2 (Outsource PFD creation) is given; further details
on how the PFDs are created are left to the contractor. For the latter case, two
Actions explicitly require that a PFD for the reaction unit (a3) and another PFD
for the separation unit (a4) are created.

In WPML, like in other flow diagrams such as UML activity diagrams, a
ControlFlow between two Actions expresses a causal dependency (if the first
Action is executed, then also the second one must be executed). Conventional
languages only include a single control flow, which, in addition to the causal
dependency, expresses a temporal dependency (when the first Action is finished,
the second starts5). This is often an unacceptable restriction for models of design
or development processes. To this end, there are several types of ControlFlows
in WPML, each resulting in different temporal relations between the Actions
connected by a flow. In Fig. 2, two different types of control flows are used.
The StrictControlFlow is the WPML equivalent of conventional control flows,
which require the previous action to be completed before the subsequent action
starts; it is drawn as a simple directed arrow. The OverlappingControlFlow allows

5 It is often ill-defined whether the second Action must start immediately or whether

there may be a temporal gap between the Actions.
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Table 1. Concrete subclasses of WorkProcessNode (first section) and WorkProcessArc
(second section)

Class Symbol Restrictions

Action
inv(from) exactly 1 ControlFlow and
inv(to) exactly 1 ControlFlow

InitialNode
inv(from) exactly 1 ControlFlow and
inv(to) exactly 0 ControlFlow

FinalNode
inv(from) exactly 0 ControlFlow and
inv(to) exactly 1 ControlFlow

DecisionNode
inv(from) min 2 ControlFlow and
inv(to) exactly 1 ControlFlow

MergeNode
inv(from) exactly 1 ControlFlow and
inv(to) min 2 ControlFlow

ForkNode
inv(from) min 2 ControlFlow and
inv(to) exactly 1 ControlFlow

JoinNode
inv(from) exactly 1 ControlFlow and
and inv(to) min 2 ControlFlow

StrictControlFlow

OverlappingControlFlow

a1
Create BFD

a3
Create PFD

(reaction unit)

a2
Outsource

PFD creation

a4
Create PFD

(separation unit)

Fig. 2. A simple WorkProcessModel

a subsequent Action to begin while the preceding Action is still executed; it is
drawn as a directed arrow decorated with a tilde symbol (~).

This way, the semantics of WPML separates causality from temporal relations.
Causality refers here to the necessary and sufficient conditions for executing an
Action. Causality is treated similarly in WPML and in UML activity diagrams.
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The causal relations between the Actions in the example model are equivalent
to those in the UML activity diagram we would get if we replaced the special
WPML control flows by the standard UML control flow: If the entire work
process is executed, then a1 is executed. If a1 is executed, then either a2 or
both a3 and a4 are executed.

The admissible temporal relations are indicated by the different types of con-
trol flows in WPML. Above, we have stated that a ControlFlow restricts the
temporal relations between Actions connected by the flow. Note that the Over-
lappingControlFlows in the example do not directly connect Actions, but also
control nodes such as the DecisionNode or the ForkNode. However, each Over-
lappingControlFlow is part of one or several control flow paths between Actions.
For instance, the OverlappingControlFlow between a1 and the DecisionNode is
the start of a path of two control flows from a1 via the DecisionNode to a2; the
second control flow is a StrictControlFlow. The temporal restriction between a1
and a2 is defined as the more restrictive one of the two control flows in the path,
i.e., the StrictControlFlow. Hence, the model contains the statement that if a1
and a2 are executed, i.e., if the PFDs are created by a contractor, then there
must be no temporal overlap with the creation of the BFD. Given the obstacles
of concurrent engineering across organizational boundaries, this is a reasonable
restriction.

We get similar statements for the other control flow paths starting at a1: If
a1 and a3 are executed, i.e., if the PFD for the reaction unit is created in-house,
then there may be a temporal overlap—because the most restrictive control flow
is an OverlappingControlFlow. Likewise, if a1 and a4 are executed, then there
may also be a temporal overlap.

This example demonstrates the capibility of WPML for temporal abstraction:
Whereas causal relations between the Actions are represented similar as in other
languages, the temporal relations offered by WPML go farly beyond these lan-
guages. As for structural abstraction, WPML provides a blob element, which
basically specifies a set of Actions and includes constraints for their occurrences
(e.g, at least 2 and at most 3 of the Actions must occur). For further details on
blobs, see [7,8].

4.3 Basic Principles of the Formal Specification of WPML

The complete formal specification of the behavioral semantics of WPML is be-
yond the scope of this contribution. Instead, we describe the basic principles of
the specification, which are based on a combination of Petri nets and axioms
in first-order logics. As the semantics of the different variants of Petri nets are
typically defined in a formal way, it should be possible to create a formal speci-
fication of WPML based exclusively on logical axioms6. However, this is not the
6 A WPML semantics based solely on first-order logics would be similar to the ap-

proach of the Process Specification Language [20]. It may even be possible to define

WPML using PSL, but several concepts of WPML—in particular the idea of over-

lapping control flows—have no equivalent in PSL and, in our opinion, this task would

require substantial extensions or even modifications of several parts of PSL.
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a1

a2 a3 a4

f

j

Fig. 3. State-transition net corresponding to the WPML model in Fig. 2

focus of our work; we are mainly interested in an application-oriented way to
give a precise definition of WPML.

By an approach similar to that of Störrle and Hausmann [18] for UML activ-
ity diagrams, a mapping from WPML models to Petri nets is defined. The Petri
net dialect chosen is the colored hierarchical Petri net as defined by Jensen [17].
To simplify the presentation in this overview, we use a simple state-transition
net here. The state-transition net corresponding to the WPML model in Fig. 2
is shown in Fig. 3: Each Action is transformed in a transition (denoted by a1,
. . . , a4). The DecisionNode has become a place with several outgoing arcs, the
MergeNode node a place with several incoming arcs. Finally, the ForkNode and
the JoinNode are transformed in auxiliary transitions (f, j). It can easily be ver-
ified that the net represents the causal dependencies of the Actions as discussed
above: The topmost place, representing the StartNode of the WPML model, con-
tains a single token. The only active transition is a1; the firing of the transition
represents an execution or occurrence of Action a1. Then both transitions a2
and f are active. The case that a2 fires is interpreted as an occurrence of a2.
Alternatively, f can fire, which will eventually lead to the firing of both a3 and
a4 (in an undefined order).

The semantics of temporal relations is not involved in the Petri net translation
and, in particular, the order in which transitions in the Petri net fire must
not be interpreted as the order in which Actions occur. Instead, an approach
based on axioms in first-order logics is used. These axioms impose restrictions
on auxiliary objects called WorkProcessOccurrences, which can be interpreted
as traces of the transitions fired in the Petri net. Like WorkProcesses, Work-
ProcessOccurrences are graphs composed of elements like ActionOccurrences and
DecisionOccurrences7. An ActionOccurrence has two functional properties start

7 It is essential to distinguish between the modeling elements in WPML, e.g., Action,

and the auxiliary objects, e.g., ActionOccurrence. In more complex work processes

than in the example discussed here, there may be several occurrences of the same

element in the model, for instance several occurrences of a single Action in a loop.
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and end, whose range is TimePoint. The concept of TimePoints has been adopted
from PSL [20]; here, the existence of a strict total order before TP on TimePoints
is essential. We require that for any ActionOccurrence, its start must be before TP
its end.

In Fig. 4, several examples of WorkProcessOccurrences are given. wpo1 is com-
posed of a StartOccurrence, two ActionOccurrences ao1 and ao2, an EndOccur-
rence, and three StrictControlFlowOccurrences. To simplify the presentation, the
TimePoints are represented as integers, and we assume that the before TP or-
der is isomorphic to the smaller-than relation of their integer representations
(i.e., 2 before TP 4, . . . ). Hence, the ActionOccurrences in the figure respect the
condition introduced above (start before TP end).

ao1
start: 2
end: 4

ao2
start: 5
end: 7

ao1
start: 2
end: 4

ao2
start: 5
end: 7

ao1
start: 2
end: 4

ao2
start: 3
end: 5

ao1
ao2

=

wpo1 wpo2 wpo3

order of TimePoints

 start of an 
ActionOccurrence

end of an 
ActionOccurrence

ao1
ao2

order of TimePoints

Fig. 4. Graphical depiction of three WorkProcessOccurrences. wpo1 is invalid because

neither of the conditions ao1 before ao2 or ao1 meets ao2 holds. wpo2 and wpo3 are

valid.

We can easily define thirteen relations between ActionOccurrences in an anal-
ogous manner to the time interval relations by Allen [52]. For instance, an Ac-
tionOccurrence ao1 meets an ActionOccurrence ao2 iff the end of ao1 and the start
of ao2 are equal,

∀ao1 , ao2 : ActionOccurrence(ao1 ) ∧ ActionOccurrence(ao2 )
⇒ (meets(ao1 , ao2 ) ⇔ end(ao1 ) = start(ao2 ) ) ,
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and similarly

∀ao1 , ao2 : ActionOccurrence(ao1 ) ∧ ActionOccurrence(ao2 )
⇒ ( before(ao1 , ao2 ) ⇔ before(end(ao1 ), start(ao2 )) ) ,

∀ao1 , ao2 : ActionOccurrence(ao1 ) ∧ ActionOccurrence(ao2 )
⇒ ( overlaps(ao1 , ao2 ) ⇔ before(start(ao1 ), start(ao2 ))∧

before(start(ao2 ), end(ao1 ))∧
before(end(ao1 ), start(ao2 )) ) .

The temporal relations imposed by the different ControlFlows are defined by
axioms which restrict the valid time relations between the ActionOccurrences
connected by their corresponding ControlFlowOccurrences. In case of a Con-
trolFlowOccurrence of a StrictControlFlow between two ActionOccurrences ao1 and
ao2, we require that ao1 must be before ao2 or that ao1 meets ao2, i.e.

∀cfo, cf , ao1 , ao2 :
StrictControlFlow(cf ) ∧ ControlFlowOccurrence(cfo)
∧ occurrenceOf(cfo, cf )
∧ ActionOccurrence(ao1 ) ∧ ActionOccurrence(ao2 )
∧ from(cfo, ao1 ) ∧ to(cfo, ao2 )
⇒ before(ao1 , ao2 ) ∨ meets(ao1 , ao2 ) .

In wpo1 (Fig. 4), there is a single ControlFlowOccurrence cfo for which the
premises of this axiom can be applied, i.e., the ControlFlowOccurrence between
ao1 and ao2. Thus, we require that ao1 is before ao2 or ao1 meets ao2. As neither
relation holds, the axiom is violated and wpo1 is invalid. In contrast wpo2 is valid,
because ao1 before ao2.

The semantics of an OverlappingControlFlow is defined by an axiom analog to
that of the StrictControlFlow, but where the time relation overlaps is allowed in
addition to before and meets. Hence, wpo4 (Fig. 5) is invalid, because ao3 starts
before ao1. wpo5 is valid because all axioms are respected.

So far, the semantics of ControlFlows has only been defined if their occur-
rences are from and to an ActionOccurrence. Other possibilities are reduced to
this case. As an example, consider wpo3 in Fig. 4, which contains a path of two
ControlFlowOccurrences from ao1 via a DecisionOccurrence to ao2. By definition,
this path is equivalent to the most restrictive single ControlFlowOccurrence, i.e.,
an occurrence of a StrictControlFlowOccurrence in this example. Hence, wpo3 is
equivalent to wpo2 and thus valid. In a similar way, wpo6 in Fig. 5 is equivalent
to wpo5 and also valid. In general, the most restrictive one of a set of Con-
trolFlows is the ControwFlow that allows all time relations allowed by each single
ControwFlow, and no further time relations.

Note that wpo3 and wpo6 directly correspond to the example model in Fig. 2.
wpo3 represents the case that a1 and a2 are executed, and it gives some valid
(but still arbitrary) values for the start and end of the ActionOccurrences. wpo6
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ao1
start: 2
end: 5

ao3
start: 1
end: 6

ao4
start: 4
end: 7

ao1
start: 2
end: 5

ao3
start: 3
end: 6

ao4
start: 4
end: 7

ao1
start: 2
end: 5

ao3
start: 3
end: 6

ao4
start: 4
end: 7

=

wpo4

=

ao1
ao3

order of TimePoints

ao4

ao1
ao3

order of TimePoints

ao4

wpo5 wpo6

Fig. 5. Graphical depiction of three WorkProcessOccurrences. wpo4 is invalid because

neither of the conditions ao1 overlaps ao3, ao1 before ao3, or ao1 meets ao3 holds. wpo5
and wpo6 are valid.

represents the case that a1, a3, and a4 are executed. The structure of both wpo3
and wpo6, excluding the time values, can be derived by means of the Petri net
in Fig. 38. Also, if we neglect the time values, wpo3 and wpo6 are the only
WorkProcessOccurrences which can be generated by the Petri net.

The overall semantics of the example model is that it represents all concrete
work processes described by wpo3 or wpo6 with arbitrary time values, provided
the constraints induced by the axioms are respected.

5 Functional Modeling in WPML

In this section, we address the functional aspect of a work process. Each action
in a work process typically serves a function which reflects the required input
and the expected results. In a purely behavioral WPML model as discussed in
the previous section, Actions produce or consume Objects9 (see Fig. 6). To cover
the functional aspect of a work process, Actions can be linked to the Functions

8 The necessity to keep track of the transitions each token passes is one reason to use

a more expressive Petri net variant than state-transition nets.
9 The hasInputObject and hasOutputObject properties are simplifications to emphasize

the analogy between the concepts on the behavioral side and those on the func-

tional side. Actually, Actions and Objects are linked by ObjectFlows similar to the

ControlFlows discussed in Sec. 4.
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they fulfill, and Objects can be linked to States. Sections 5.1 and 5.2 deal with
functional models of two different types work work processes. Finally, Sect. 5.3
elaborates the relation between behavioral and functional aspects in more detail.

In general, the functions that can appear in a work process model depend on
the process type. For instance, within an operational process, the function of an
action may be to change a reactor temperature to 80�C. To describe this function,
concepts such as Reactor and SetPoint are required. Thus, subclasses of Function
for different process types are introduced, such as the OperationalProcessStep
for operational processes and the DesignStep for design processes. Fig. 6 shows
typical function classes for both types of work processes.

WorkProcess
Node

Function

Action

Operational
ProcessStep

Design
ProcessStep

Change
Temperature

GenerateBlock
FlowDiagram

hasFunction

State

Object

correspondsToState

hasOutputState
hasInputState

hasOutputObject
hasInputObject

Fig. 6. Actions can be specified by Functions that serve to change an input State into an

output State. The diagram shows exemplary function classes for design and operational

processes.

The definition of adequate subclasses of Function allows to extend WPML
with domain knowledge. As discussed in Sec. 2, such domain knowledge cov-
ers the function of work processes and the objects involved. This knowledge
is represented as part of OntoCAPE, a comprehensive ontology for the CAPE
(computer-aided process engineering) domain [53]. According to Gruber, an on-
tology is an explicit specification of a conceptualization, while a conceptual-
ization can be seen as an abstract, simplified view of the world for a specific
purpose [54]. By means of an ontology, the semantics of the modeling concepts
is explicitly and formally specified.

Originally, OntoCAPE has been developed by our group to describe the arti-
facts created during the conceptual design of chemical processes. However, the
extensible structure of the ontology allows to integrate concepts related to work
processes seamlessly. That way, many concepts of OntoCAPE can be used to
enrich the representation of the context of work processes. OntoCAPE is de-
scribed comprehensively elsewhere [53,55,56]. In the following, we focus on the
extensions developed for representing operational processes and design processes.
These extensions are implemented as partial models of OntoCAPE.
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5.1 Extensions for Operational Processes

During an operational process, a number of operational steps are conducted in
different plant items. These operational steps support the chemical processes to
achieve the desired chemical products. Accordingly, when modeling operational
processes, modeling concepts must cover the operational steps (e.g. OpenValve
or SetControllerParameter), the involved plant items (e.g. Instrumentation, Vessel
or DistillationSystem), the production steps of chemical processes (e.g. Reaction
or Distillation), as well as the materials processed or produced by the chemical
process.

Operational
ProcessStep

operational_process

operational_process_S88

UnitProcedure

Operational
ProcessState

hasInput
State

hasOutput
State

PlantItem  
State

hasPlantItem
State

refersTo

Chemical
ProcessState

refersTo

Chemical
ProcessStep

supports
hasOutput

State
hasInput

State

Phase EquipmentModuleUnit

Procedural
ControlStep

Basic
ControlStep

Reaction

actsOnReactionStep ReactorUnit

Notation:

module

property

isPartOf

specialization

concepts
in other 

moduels of 
OntoCAPE

Plant
Item

GroupOf
Equipment

acts
On

Material

refersToMaterial

Fig. 7. The simplified partial model for operational processes

Moreover, concepts for a structured representation of chemical processes, op-
erational processes, and plant items must be incorporated in order to permit
descriptions on different levels of detail and granularity. In industrial practice,
there are various ways to specify the hierarchies of the aforementioned entities.
For instance, a very generic way to enable the structured representation of plant
items is to specify a PlantItem as a PieceOfEquipment or a GroupOfEquipment.
A more restricted alternative may involve concepts like ProcessCell, Unit, or Sin-
gleEquipment. Bearing in mind that various hierarchies may be needed when
modeling operational processes, we propose an extensible modular structure for
the partial models. The partial model for operational processes consists of the
two modules shown in Fig. 7. While the module operational process contains
concepts for representing operational processes independent from any applica-
tions or standards, the module operational process S88 covers the concepts for
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describing operational process according to the well established ANSI/ISA-S88
standard [33]. In the following, the modules involved in this partial model are
explained in detail.

The module operational process. This module is simple, yet contains essen-
tial concepts for describing operational processes. The most important concepts
within this module are OperationalProcessStep and OperationalProcessState. An
OperationalProcessStep acts on PlantItems and supports a ChemicalProcessStep.
Intentionally, only a very generic specification for OperationalProcessStep is in-
cluded in this module: an OperationalProcessStep can be a BasicControlStep or a
ProceduralControlStep. A BasicControlStep is a simple elementary step such as to
open a valve, to set the parameters for a controller, or to switch on a pump. A
ProceduralControlStep, on the contrary, consists of several operational steps. For
instance, a charging step may contain a set of basic operational steps such as to
open a block valve or to start a pump. An OperationalProcessStep changes the
OperationalProcessState which captures all relevant states during an operational
process, including

– PlantItemStates such as the position of a valve or the level of a tank,
– ChemicalProcessStates such as the temperature or pressure of the processed

material in a reactor, and
– ExecutionStates of an operational process step like running, aborted or com-

plete (not shown in Fig. 7).

The module operational process S88. Because of the generic character of the
operational process module, additional modules for the further specification of
operational processes based on certain standards or guidelines can be included
with minor effort. For illustration, we choose the ANSI/ISA-S88 standard as an
example for further specification of the operational process module. This stan-
dard provides a solid foundation for a hierarchical representation of plant op-
erational processes and plant items. The structure defined in ANSI/ISA-S88 is
partially adopted in this work (cf. Fig. 7). The module operational process S88
enables to represent plant items on four levels—ProcessCell, Unit, Equipment-
Module, and ControlModule—to refine the modules incorporated in OntoCAPE.
Furthermore, the concept ProceduralControlStep is specified into Procedure, Unit-
Procedure, Operation, and Phase. Relations between these concepts are also de-
fined. For instance, a UnitProcedure can only take place on a Unit.

The modules operational process and operational process S88 provide sufficient
expressiveness to describe operational processes on different levels of granularity
and detail. For instance, the module operational process defines that an Oper-
ationalProcessStep acts on PlantItems and that an OperationalProcessStep sup-
ports a ChemicalProcessStep. This can be further specified as, for instance, a
ReactionStep supports a chemical process step of type Reaction carried out in a
ReactorUnit. By decomposing the ReactionStep into some Phases, more details
of the ReactionStep can be captured. Another possibility for the structured rep-
resentation of plant items and operational processes has been reported in [57].
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When necessary, this can be defined in an additional module to extend the
operational process module. When modeling an operational process, one of the
extensions can be applied.

An adequate representation of operational processes can be used not only to
improve the quality of plant operations, but also to support the design of the
operational specifications, as shown in the next section. For a more compre-
hensive description of the partial model for operational processes as well as its
application, see [58].

5.2 Extensions for Design Processes

Currently, both conceptual design processes and the design of operational pro-
cess specifications are considered the design process module. For representing the
conceptual design process, we have adopted and extended the Douglas method-
ology [40]. The Douglas methodology uses a hierarchical approach where design
decisions are taken on a set of predefined levels of abstraction. We have applied
the Douglas methodology to represent conceptual design processes hierarchically.
In a similar way, modeling concepts for design processes of operational specifica-
tions have been developed based on the hierarchy defined in the ANSI/ISA-S88
standard.

As typical objects involved in a design process, documents contain information
about a chemical process or parts of the process. Representing the content of the
involved documents is crucial for describing design steps with sufficient detail,
because only then it is possible to describe the required information for carrying
out a design step and the outcome of that design step. Using concepts defined in
OntoCAPE, a chemical process system can be described under different aspects
from the abstract process level to the concrete plant item level. Such a detailed
model of domain objects provides an essential base for representing design steps
on different levels of abstraction.

As shown in Fig. 8, the partial model for representing design processes contains
several modules. Whereas the module design process contains concepts for mod-
eling design steps, the module document model can be used to describe the doc-
uments created or modified by a design step. A number of further modules may
be involved to represent the content of the documents. Two of these modules,
chemical process Douglas and operational process S88 are shown in Fig. 8. While
the module operational process S88 has been already introduced in Sec. 5.1, we
discuss the other three modules in Fig. 8 in the following.

The module document model. This module plays a crucial role to relate the
design steps to the domain knowledge about objects within the domain of chemi-
cal engineering. On the topmost level, a Document is required, produced or mod-
ified as an input or an output of a DesignStep. The content of a Document can be
described by concepts representing domain objects. As a further specification, a
set of documents in chemical engineering, represented by the concept ChemEng-
Doc and its subclasses, has been identified and related to the corresponding con-
tent. For instance, a BlockFlowDiagram hasContent about ReactionSystems, an
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chemical_process_Douglas

ChemEngDoc Document
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Fig. 8. The simplified partial model for representing design processes

InitialProblemStatement hasContent about RawMaterials and Products, or a Mas-
terRecipe hasContent about a ReactionStep. The document model module also
captures a further aspect dealing with the management of document versions.
More details about the document model can be found in [59].

The module chemical process Douglas. This module includes a hierarchy
based on the Douglas method to represent chemical process systems on different
levels of abstraction. A chemical process system can be described on the following
levels:

– The process level corresponds to the input-output structure in the Douglas
hierarchy. On this level, only input and output materials are considered. Also
recycle streams and purge streams can be investigated. Typical documents
involved on this level are InitialProblemStatement and DesignProcessBasis.

– The process system level corresponds to the recycle structure of the Douglas
hierarchy. On this level, reaction systems or separation systems are consid-
ered. Separation systems can be further classified as vapor separation sys-
tems, liquid separation systems, and flashes. Reaction system can be further
specified into single reaction steps. Typical documents involved on this level
are DesignProcessBasis and BlockFlowDiagram.

– The standard unit level is not included in the Douglas hierarchy, but is useful
to describe standard unit operations and single reaction steps. Typical docu-
ments involved on this level are BlockFlowDiagram and ProcessFlowDiagram.
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The module design process. The topmost concept in this module is Design-
Step which is further specified by typical design activities like generate, modify
or refine, combined with the associated design product such as a block flow di-
agram or a master recipe. ModifyBlockFlowDiagram and GenerateMasterRecipe,
for instance, are two specific DesignSteps. Representing design steps by combin-
ing design activities and the corresponding design products is a straightforward
and intuitive way which helps to identify design steps in terms of the related de-
sign content. We intentionally avoid using typical terminology from the design
research area like syntheses, analyze, induction, abduction etc. There are two
main reasons for doing so. Firstly, design activities in industry are usually de-
scribed by referring to the target product. For instance, generate a flow sheet is
a typical design activity. Secondly, each design activity can be seen as an aggre-
gate activity containing a synthesis step, an analysis step, and a decision step (cf.
[46]). Hence, synthesis, analysis, and decision may be used as elementary build-
ing blocks for more expressive concepts, but are not sufficient for representing
design processes.

For each DesignStep the required input and output documents are defined,
both with the corresponding content. A DesignStep can be further decomposed
into other DesignSteps. For the conceptual design process, design steps are intro-
duced according to the levels defined in the module chemical process Douglas
and the involved documents in chemical engineering. A similar approach is
used for the design process of operation specifications. The modules opera-
tional process S88 is used to describe the content of the design steps in a plant
operation design process. For illustration, two simple examples are given in the
following.

Example 1: A design step during plant operation specification. A design step
of type GenerateRecipeReactionStep requires a certain MasterRecipe (see Fig. 9).
After this design step, the second version of this MasterRecipe is created. The sec-
ond version contains information about a ReactionStep for the reactor R3. This
ReactionStep contains two Phases: Charging reactant 1 of type ChargingMaterial
and Heating of type ChangeTemperature.

Example 2: A design step in conceptual design. To develop a chemical process for
producing benzene by hydrodealkylation (HDA) of toluene, a number of design
steps are to be carried out (see Fig. 10). This example describes a design step
of type GenerateInputOutputStructure (IOS) which requires a document of type
InitialProblemStatement. This document contains a statement of the involved raw
materials (i.e., Toluene and Hydrogen) and the desired products (i.e., Benzene and
Methane). In addition, information about the ChemicalReaction of interest (i.e.
the hydrodealkylation of Toluene) is also given in the InitialProblemStatement. The
result of this design step is a report of type DesignBasis, which has content about
the InputOutputStructure of this HDA process.

These two simple examples show the strength and necessity to incorporate
detailed models of domains objects such as ChemicalReaction or RawMaterial
when modeling design processes. Knowledge about both, the design processes
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[GenerateRecipeReactionStep]
Generate reaction step for reactor R3

[MasterRecipe]
Master recipe Nr. 123 version 2

[ReactionStep]
Procedure 1 for reactor R3

hasContent

hasOutputDocument

hasInputDocument

[MasterRecipe]
Master recipe Nr. 123 version 1

[ChargingMaterial]
Charging reactant 1

contains

[ChangeTemperature]
Heating to 80°C

contains

Fig. 9. Example of a design step for plant operation on the instance level

[GenerateIOS]
Generate IOS of HDA process

[InitialProblemStatement]
Input information of  HDA process

[RawMaterial]
Toluene

[RawMaterial]
Hydrogen

[Byproduct]
Benzene

[Product]
Methane

[DesignBasis]
Report of preliminary study

[IOS]
Structure on process level

hasContent

hasContent

hasContent

hasContent

hasContent

hasOutputDocumenthasInputDocument

[ChemicalReaction]
Hydrodealkylation of Toluene

hasContent

Fig. 10. Example of a conceptual design step on the instance level

and the involved objects, must be encompassed from the coarse-grained level to
the fine-grained level to represent design steps with sufficient information.

5.3 Integrating Process Behavior and Function

So far, we have discussed the behavioral and the functional aspect of work pro-
cesses independent from each other. This section is meant to illustrate the inte-
gration of the two aspects. As a simple (and incomplete) example, consider the
work process model in Fig. 11. The left part of the figure shows part of a design
process for HDA in the concrete syntax of WPML that has been adopted from
UML activity diagrams. In the right part, the same design process is represented
as an object diagram. The two Actions of the process are linked by a ControlFlow
that captures the behavioral aspect of the process. Also, to each Action, an in-
stance of a concrete Function class is assigned to represent the functional aspect.
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Note that in the concrete syntax, it is sufficient to display the name of this func-
tion class. As for the functional aspect, it could be further specified as shown in
the examples given in Sec. 5.2.

[Action]
A1

[Action]
A2

[Controlflow]
CF1

from

to

[DetermineProcessType]
DPT1

[GenerateIOS]
GIOS1

hasFunction

hasFunction

Determine process type of 
HDA process

[DetermineProcessType]

Generate IOS of HDA 
process

[GenerateIOS]

Fig. 11. Example of a conceptual design process on the instance level. Both behavioral

and functional aspects are captured.

6 Implementation and Tool Support

Both WPML and its extensions are implemented in OWL [47]. The formal speci-
fication of process behavior is additionally supported by Petri nets and axioms in
first-order logics. WPML and the extensions can be seen as meta-models which
provide the building blocks for work process models on the instance layer. We
use the OWL editor Protégé [60] to implement the meta-models.

For the creation of work processes on the instance layer in a user-friendly
manner, our research group has developed the Work Process Modeling System
(WOMS+). WOMS+ provides a set of intuitive symbols for the WPML mod-
eling concepts. In addition, meta-models for different types of work processes
(e.g., the module for operational processes) can be imported into WOMS+,
such that the classes and properties defined in these models are offered to the
user, who can select among them for the formal specification of the elements in a
WPML instance model. Moreover, further use of the models created by means of
WOMS+ is also supported by an automated export into certain target formats
of applications like the Aspen Batch Process Developer or a Petri net simulators.

7 Conclusions and Open Issues

This contribution motivates and presents the WPML language, a generic mod-
eling language suitable for different types of work processes, which allows for
further extensions specific to certain types of work processes. Extensions for
design and operational processes have been discussed.

The WPML language supports the formal representation of both, the behav-
ioral and functional aspects of a work process. Domain knowledge can explicitly
be incorporated on different levels of abstraction. Not only the work process
itself, but also the objects involved are covered with sufficient details. Models
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created with this language can easily be translated in different format such that
one model can be used by different applications. This strategy supports the reuse
of a work process model which captures the knowledge of an organization and
thus increases engineering productivity.

Currently, cooperation with several industrial partners is in progress to achieve
a practical evaluation of the modeling framework. These empirical studies aim
at verifying the usability of the tool as well as the usability and expressiveness
of WPML.

Acknowledgments. The authors acknowledge financial support from the Ger-
man National Science Foundation (DFG) under grant MA 1188/29-1.
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Abstract. Development processes in engineering disciplines are inherently com-
plex. Throughout the development process, the system to be built is modeled
from different perspectives and on different levels of abstraction in multiple doc-
uments. They are related by manifold dependencies and need to be maintained
mutually consistent with respect to these dependencies. In addition, development
processes are highly incremental and iterative. Thus, tools are urgently needed
which assist developers in maintaining consistency between inter-dependent doc-
uments. These tools have to operate incrementally and need to support user inter-
actions, as the effects of changes cannot always be determined automatically and
deterministically. At the Department of Computer Science 3 at RWTH Aachen
University, triple graph grammars (TGG) have been invented as a formal ap-
proach to handling integration problems. During multiple research activities at
the department and many other research groups, TGGs have been used as a basis
to design algorithms and modeling formalisms and have been further elaborated.
At the department they were implemented and enhanced in different ways for
the support of rapid integration tool construction for real-world interactive de-
velopment processes. This paper gives an insight into specification, algorithms,
and tool construction for interactive, incremental integration and shows the ap-
plication within the design process of a chemical plant executed in a commercial
product.

1 Introduction

Development processes in engineering disciplines are inherently complex. During the
development process, the product to be developed is modeled from different perspec-
tives, on different levels of abstraction, and with different intents in multiple documents.

Documents are related by manifold dependencies and can get inconsistent to depen-
dent documents if they change. For example, the design of a software system depends
on its requirements, and the implementation depends on the design. There exist rules
which constrain the elements of a document due to the dependency to the elements of
that document to which it is dependent, such as the elements of the design are con-
strained due to the dependency to the requirements. The constraints can be expressed
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by relations between elements of dependent documents. If these constraints are satis-
fied, a document is said to be consistent with its dependent document (inter-document
consistency).

Development processes may be viewed as multi-phase transformation processes
from the initial problem statement to the final solution. However, this is a simplified
view suggesting a waterfall-like process, where each phase is entered only when the
preceding phase has been completed. In contrast, current development processes are
highly incremental and iterative. Furthermore, development does not always proceed
in forward direction (forward engineering). Rather, it may also involve activities work-
ing in backward direction (reverse engineering). Combining forward and reverse engi-
neering results in round-trip engineering, where developers opportunistically mix both
modes of development.

Maintaining inter-document consistency is a demanding task which requires sophis-
ticated tool support. In this paper, we will subsume all kinds of tools for maintaining
inter-document consistency under the notion of integration tool. These tools may be
classified as follows: A transformation tool processes a source document and trans-
forms it into a target document. A consistency analysis tool takes inter-dependent doc-
uments and checks inter-document consistency. A hyperlink tool creates and maintains
links between elements of inter-dependent documents. A browsing tool traverses inter-
document links.

Transformation tools have been studied extensively. For example, consider the Model
Driven Architecture [1] initiative launched by the OMG. Often, transformation tools of
this kind are run in batch mode. Batch transformers are not always adequate. Rather,
the participants of the design processes have to make deliberate design decisions which
balance requirements such as efficiency, adaptability, costs, etc. Therefore, the design
process is performed interactively. Furthermore, design usually proceeds incrementally
and iteratively. As a consequence, integration tools which assist in maintaining consis-
tency between requirements and design need to operate both interactively and incre-
mentally. Moreover, tool support has to provide for traceability, i.e., each element of
the design has to be traced back to its originating elements in the requirements.

In this paper, we focus on incremental and interactive integration tools for inter-
document consistency maintenance which were developed at the Department of Com-
puter Science 3 chaired by Prof. Nagl. The development of integration tools has passed
through multiple phases. The starting point of all realized integration tools at the depart-
ment was the IPSEN project in 1982. It aimed at a-priori integration of languages and
tools for the whole software development process via the Integrated and Incremental
Software Project Support Environment (IPSEN). Within the IPSEN-88 prototype [2,3]
integration tools were coded manually, they worked unidirectionally and incrementally.
Only 1 : 1 relationships between increments (elements of document) were supported.

In the IPSEN-90 prototype [4] relationship representing links were stored in a sepa-
rate document, the integration document, and, therefore, n : m-relationships could be
supported as well as browsing between inter-dependent documents. Storing links in a
separate data structure allows a-posteriori integration of existing tools, although not
within the scope at that time. In the case of heterogeneous tools, each tool maintains its
own data base, which may not be extensible by external applications. Furthermore, in
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IPSEN-90 bidirectional transformation was introduced. With the third IPSEN prototype
[5] interactive integration was supported, but reaction on changes was hard coded. The
fourth and last IPSEN prototype [6] then was designed for a-posteriori integration and
based on triple graph grammars (TGG) [7]. TGG rules specified synchronous develop-
ment of two independent documents and the integration document. From that TGG rules
a set of asynchronous transformation rules were derived manually into program code.

Within the Collaborative Research Center (CRC) 476 IMPROVE [8] initiated and
headed by Prof. Nagl, integration tools were generalized to support also other devel-
opment processes. The CRC’s scope of application were chemical engineering design
processes to show applicability of the generic concepts. Current integration tools are
built on an integrator framework [9] which is augmented with transformation rules de-
rived automatically from TGG rules. To allow for user interaction during integration,
transformation rules are split into graph matching and transformation rules which are
executed by a specially designed algorithm. Originally, TGGs have been used for in-
crementally transforming new increments from one document to the other (and vice-
versa), while persistently linking source and target. In addition, changes on already
transformed increments can be propagated by the application of repair actions which
are derived automatically from TGG rules at runtime [10]. With the use of wrappers
nearly all graph-based documents can be connected to the integration tools. In this pa-
per, the approach of integration tools realized within the CRC representing the results
of research of the last decades are presented in more detail.

The next section aims to give an overview of integration tools, the scenarios they
support, the way they are constructed, and the way how they work. In Section 3, we
explain the underlying concepts and algorithms of integration tools which are based on
graphs and graph transformations. In that section, we are approaching the subject in a
more theoretical way, mostly referring to a proof-of-concept realization based on PRO-
GRES [11]. The concepts learned there have been transferred into today’s integration
tools which are realized for real-world industrial application. Those tools are presented
in Section 4, also highlighting investigations for making integration tools more user-
friendly and of providing support tools for modeling the TGG rules. In Section 5, we
give a brief overview of related work being performed in this research area, and finally
draw a short conclusion in Section 6.

2 Overview of Integration Tools

Using an example from a chemical engineering design process, it is explained how
interactive and incremental integration tools can be applied in development processes
(Section 2.1). Section 2.2 presents a set of characteristics derived from the scenario. The
system architecture of an integration tool is presented in Section 2.3 and in Section 2.4
it is explained on a high level how integration is performed.

2.1 Scenario and Motivation

The research reported in this paper has been carried out within the IMPROVE project
[12,8], which is concerned with models and tools for design processes in chemical en-
gineering. In this section, we present a small example which illustrates key features
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of incremental and interactive integration tools. This example is drawn from chemi-
cal engineering, but we could also have chosen an example from another engineering
discipline (e.g., software engineering).

In chemical engineering, the process flow diagram (PFD) acts as a central document
for describing the chemical process. The PFD is refined iteratively so that it eventually
describes the chemical plant to be built. Simulations are performed in order to evaluate
design alternatives. Simulation results are fed back to the PFD designer who annotates
the PFD with flow rates, temperatures, pressures, etc. Thus, information is propagated
back and forth between PFDs and simulation models. Although the PFD plays the role
of a master document, it may also happen that a simulation model is created first and
the PFD is derived from the simulation model (reverse engineering).

In general, PFDs and simulation models are created by different users at different
times with the help of respective tools. In a cooperation with an industrial partner, we
studied the coupling of COMOS [13], an environment for chemical engineering which
in particular offers a PFD editor, and Aspen Plus [14], an environment for performing
steady-state and dynamic simulations.

Unfortunately, the relationships between PFDs and simulation models are not always
straightforward. Different kinds of simulation models are created for different purposes.
Often, simulation models have to be composed from pre-defined blocks which in gen-
eral need not correspond 1:1 to structural elements of the PFD. Thus, maintaining con-
sistency between PFDs and simulation models is a demanding task requiring sophisti-
cated tool support.

PFR Flashing

Splitting

HE PFR

HEATER RPlug
REQUIL

HE

FLASH

SPLIT
RPlug

REQUIL

L L L L L L L L L

1.

2.

5.

4.

PFD

simulation model
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propagation of 
structure

propagation of 
attributes

3.

6.

7.
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Fig. 1. Integration between PFD and simulation model

Figure 1 illustrates how an incremental integration tool assists in maintaining con-
sistency between PFDs and simulation models. The chemical process taken as example
produces ethanol from ethen and water. PFD and simulation model are shown above and
below the dashed line, respectively. Objects of both documents (increments) are con-
nected by links which are drawn on the dashed line and which are persistently stored
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in an integration document after having been installed. Dotted lines indicate the incre-
ments participating in a link.

The figure illustrates a tiny part of the example design process consisting of 8 steps:

1. An initial PFD is created by the designer using COMOS PT. This diagram is usu-
ally incomplete, describing only a part of the chemical process (here heating of
substances HE, reaction in a plug flow reactor PFR).

2. The designer wants to evaluate the design by a simulation, or he wants a simulation
expert to do this, before completing the PFD. Therefore, the integrator is used to
transform the PFD forward to a simulation model for Aspen Plus. While the heating
step is transformed automatically into a Heater (assuming there is only this alterna-
tive), the engineer has to select one of different alternatives for mapping the PFR.
He decides to use a cascade of two blocks to simulate the reaction.

3. Then the simulation is performed in Aspen Plus, which may include a further elab-
oration of the simulation model, not shown in Figure 1.

4. The results of the simulation are then used to annotate the PFD. So, here we have a
backward transformation of attribute values from the simulation to the PFD.

5. The designer now decides to extend the PFD by new process steps (Flashing and
Splitting).

6. The integrator is used again in forward mode. Here now two simulation blocks
(SPLIT and FLASH) are inserted into the simulation model to match the changes
of the PFD. It is important and necessary that the simulation model part of the
transformation step 2 and its further extensions in step 3 remain unchanged.

7. Now, the simulation is performed again. We have further results, but also changed
results corresponding to those parts of the simulation model already existing.

8. The simulation results are again propagated backward to the PFD.

We can see from this simple example that a design process is performed iteratively
and incrementally, always having different documents in mind, here PFD and simula-
tion model. So, we also have steps where we go back and refine, try something else, or
even study a new variant. A user’s changes may also affect objects which were already
transformed successfully by the integration tool and which have a corresponding struc-
ture in a dependent document. This holds true also in maintenance where we usually
modify larger portions of a design document. These changes then have to be propagated,
until all documents are again consistent to each other.

2.2 Characterization of Document Relations and Tool Functionality

Regarding the above example, we derive the following requirements for integrators:

Functionality. In order to manage inter-document consistency, an integrator must deal
with links between objects of source and target documents which, in general, are
m : n. The tool has to install the links. The user would never do it manually, as the
profit is too small.
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Operation mode. The integrator must operate incrementally rather than batch-wise. It
has to propagate changes between interdependent documents, such that only actu-
ally affected parts are propagated. As a consequence, manual elaborations (as above
of the simulation model) do not get lost. Only in those cases batch converters are
possible, where the target document can fully be generated.

Direction. In general, integrators have to work bi-directionally. Changes of the source
document have to be propagated forward, those of the target document backward.

Interaction. In simple scenarios an automatic execution mode is possible, in most sce-
narios user interaction is required to select one of multiple design decisions, to react
on decisions of others, or to resolve conflicts.

Time of activation. Only in single-user applications eager propagation of changes is
useful; the user gets immediate reactions about consequences of changes. In multi-
user scenarios, which is the regular case of industrial development, deferred prop-
agation of changes is required after these changes are quality-assured.

A-posteriori integration. Integrators should work with heterogeneous tools of differ-
ent vendors, which are used to support the elaboration of source and target docu-
ments. So, they have to access these tools and their data.

Integration knowledge. An integrator is driven by underlying knowledge, which pat-
terns may relate to each other. These patterns on object level are defined by rules.
There must be support for defining and applying these rules. In those cases where
no appropriate rule exits, it must be possible to install or correct links in a manual
mode.

Traceability. Integrators must record the rules having been applied. This way, the user
can reconstruct which rules have been applied and when in the integration process.

Adaptability. The construction of integrators or the integrator itself must be adaptable
to application domains, specific habits etc. Adaptability is achieved by defining
suitable rules and controlling their application. Eventually, it must be possible to
modify the rule base on the fly.

Not all these requirements have to be met by all integrators. In those situations,
where the target document is completely generated, incrementality is not needed. In
situations where the rule base is unambigious, no user actions are needed. We also have
implemented such simple integrators. They have been realized in a simpler way than
complex integrators, which use the integrator framework sketched below.

Figure 2 shows an example rule. It is formulated in the user view, i.e. only those
items are presented the user needs for the application of the rule. The rule says that a
PFR of the PFD may have a refinement in form of a sequence of a RPlug and a REQUIL
in the simulation model. This rule was applied in the scenario of Figure 1. Figure 2 also
shows the correspondence, i.e. the semantic link between the items of the PFD and the
two items of the simulation model. The link between the object of the PFD and the
two objects of the simulation model is stored persistently, as it may later be used for
maintenance or other purposes.

If we look at the example above we derive the following general characterization:
Entities of two documents (source document - target document which are dependent on
each other) are to be connected by fine-grained dependency relations (semantic links).
Dependency between two documents in the design process can have different seman-
tics: (a) requirements for the chemical process - a process structure (PFD) compatible
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PFR

RPlug

REQUIL
L

AspenComos

Fig. 2. Example of a correspondence rule

with these requirements, (b) coarse structure of a plant (in form of an overview PFD) -
followed and detailed (by other refined PFD documents), (c) structure of a plant (as a
PFD) - detailed and in a corresponding structure (in form of a piping and instrumenta-
tion diagram P&ID), (d) a structure (in form of a PFD) - to be analyzed and evaluated by
another one (simulation diagram), and also other and further dependency forms. In this
paper we are regarding relations of kind (d) in Figure 1 and relations of kind (c) in the
following two sections. The tools we describe in this paper do not distinguish between
different kinds of dependency relations, i.e. they are on a syntactic level. In all cases,
structures of source and target document are related to each other. The corresponding
structures, however, are different according to the variety of semantics of dependency
relations.

2.3 System Overview

The coarse-grained system architecture of the integrator for our evaluation scenario
(cf. Section 2.1) is depicted in Figure 3. Integrators are framework-based, i.e. most
functionality is reused by all integrators and combined with integrator-specific code. In
fact, the framework is based on .NET and was continuously developed [15,16,17]. This
overview reflects all parts of the graph-based approach described in the next section.

Our approach is model-based, in particular graph models are considered. Graphs
consisting of nodes and edges are well suited for representing complex data with man-
ifold relationships in a natural way. In our approach, we use graphs to represent the
application documents and the integration document placed in between these docu-
ments. Existing applications and their documents are connected to the framework using
tool wrappers that provide a graph interface on their data. In our example, these tools
are Comos PT and Aspen Plus. The corresponding wrappers both use the applications’
COM interfaces to access their API. The relationships between the documents’ data are
stored in an additional integration document. It is serialized as XML file, but kept in
memory during runtime of the integrator providing optimized access to its content, e.g.,
via indexes.
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Fig. 3. System architecture of framework-based integrator

Although the manual definition of links is possible, in most cases integrators use
integration rules to propose where to create a link. So, framework-based integrators
are controlled by integration rules. The integration rules have the semantics of graph
transformations which define how to relate graph patterns found in the documents by
creating link structures in the integration document and how to create corresponding
patterns to patterns in one document that are still missing in the other document. The
concept of TGG on which integration rules are based is presented in more detail in
Section 3.1.

The framework also includes tool support (upper right corner) for rule modeling
which is based formally on the UML [18,19] (i.e., the graph grammar formalism is not
exposed to domain experts). Based on the graph views the integration is performed by
means of graph transformations which are defined by the UML integration rules. They
are interpreted at runtime by the the integrator core, which is the main component of the
framework. This allows for extending the integration rule set at runtime without having
to recompile the integrator. Thus, the integrator can ‘learn’ new rules from manual
interaction when a complete rule set is not available in advance [19].

This rule interpreter is based on a graph transformation engine that is part of the
integrator core, too. This engine is kept much more light-weight than, e.g., PROGRES,
as only very simple graph transformations (i.e., only adding and deleting nodes and
edges and attribute transfers have to be done, pre-conditions are not supported) have
to be executed. This is also possible because all pattern matching is done starting from
dominant increments, in most cases only locally traversing the graph avoiding global
pattern matching. Thus, the—in theory—high complexity of pattern matching does not
affect the integrators’ performance. The rule-independent graph transformation rules of
the integration algorithm are manually hard-coded into the integrator core, making use
of the optimized storage of links in the integration document. For further reading please
be referred to [16,9].

During the integration process, integration rules may stand in conflict. Informally,
two rules stand in conflict if the execution of one rule disables the execution of the



Integration Tools for Consistency Management between Design Documents 691

competing rule. Conflicts are presented to the user, who performs a selection among the
conflicting rules. The GUI is presented in more detail in Section 4.2.

2.4 Overall Integration Algorithm

Here, we sketch the overall integration algorithm of our interactive, incremental, and
bidirectional integration tools which execute forward and backward transformations
and correspondence analysis as indicated in Section 2.1. It is shown in Figure 4.
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1

3
4

5

1. check all links in the integration graph
- interactive repair / change propagation

2. apply integration rules to new increments
- forward, backward and correspondence rules

Fig. 4. Overall integration algorithm

The input and output of the algorithm is an overall graph that contains graph rep-
resentations of source, target, and integration subgraphs. Thus, graph edges between
nodes belonging to different subgraphs can be handled as normal graph edges. When
the algorithm is invoked, source and/or target graph contain some edges and nodes, with
some of the nodes already being connected to links in the integration graph, if the algo-
rithm is not invoked for the first time. Another input to the algorithm is a set of forward,
backward, and correspondence analysis rules.

The overall algorithm consists of two main phases: The first one deals with existing
links, while the second one aims at handling nodes that are not referenced by links, yet,
and at creating new links.

Each link in the integration graph has an associated state. When a link has been newly
created by executing a rule or manually by the user, its state is initially set to consistent.
In the first phase, for each link it is checked whether source and target patterns originally
referenced by the link are still present in source and target graphs. If some parts of the
patterns are missing due to modifications of source and/or target graphs, the state of the
link is changed to damaged.

In the next step, it is attempted to repair damaged links. There are different possible
repair strategies, most of which require user interaction. Some of these possibilities are
explained in Section 3.3.

In the second main phase of the overall algorithm, forward, backward, and corre-
spondence analysis rules as introduced in Sections 3.1 and 4.1 are applied to nodes that
are still available, i.e. are not referenced by a link, yet. After all rules have been applied,
there may still be some nodes that have to be dealt with manually, due to the lack of
appropriate rules. Additionally, links created by executing rules may be modified by
the user later on. As already mentioned in Section 2.1, we do not intend to provide a
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fully automated transformation. Instead, we explicitly support the combination of man-
ual and automatic steps to perform the transformation. This phase of the algorithm is
described in more detail in Sec. 3.2.

3 Graph-Based Concepts

In this section, the underlying graph-based concepts and graph algorithms for integra-
tion tools are presented. First, we motivate how our integration approach is related to
triple graph grammars (Subsec. 3.1). Then, in Subsec. 3.2 we present in detail the al-
gorithm supporting user interactivity (according to the overall algorithm) and in Sub-
sec. 3.3 we explain how existing relationships are checked for consistency and repaired,
if needed.

3.1 Triple Graph Grammars as Conceptual Basis

Triple graph grammars [7] were developed for the high-level specification of graph-
based integration tools. The core idea behind triple graph grammars is to specify the
relationships between a source, a target, and a correspondence graph by triple rules. A
triple rule defines a coupling of three rules operating on source, target, and correspon-
dence graph, respectively. By applying triple rules, we may modify coupled graphs
synchronously, taking their mutual relationships into account.

Comparing to complex scenarios as described in the previous section, we have a
source document and a target document which may be modeled as graphs, and more-
over, the operations on the documents performed by the respective tools may be mod-
eled by graph transformations. The data structure storing links between inter-dependent
documents maintained by an integration tool has been called integration document
which also can be modeled as graph. So, we have the three graphs involved, source,
target, and correspondence graph. Integration rules correspond to triple rules.

We have developed prototypes based on the UPGRADE framework [20] which al-
low construction and modification of source and target graphs as well as simulating runs
of the integration tool. Such prototypes are intended only to serve as proof of concept
and for the evaluation of integration rules as well as the integration algorithm itself and
are referred to as IREEN (Integration Rule Evaluation ENvironment) [21] prototypes.
Source and target graph specifications are written and compiled by the PROGRES sys-
tem [22] and then are embedded into the UPGRADE framework [20]. Triple rules are
defined by PROGRES transformations.

An example of a triple rule is given in Figure 5 in PROGRES syntax. The rule refers
to the creation of connections (appearing in both PFDs and simulation models). In a
PFD, a connection is used to relate structural elements such as devices and streams.
In Figure 1, devices are represented as rectangles, streams are shown as directed lines.
Connections are not represented explicitly, but they are part of the internal data model.
Each device or stream has a set of ports; connections establish relationships between
these ports.

The triple rule ConnectionSynchronous has a left-hand side (shown above the
right-hand side) which spans all participating subgraphs: the source graph (represent-
ing the flow sheet) on the left, the correspondence graph in the middle, and the target
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transformation ConnectionSynchroneous * =

‘2 : ComosOutPort ‘3 : AspenOutPort

‘5 : AspenInPort‘4 : ComosInPort

‘1 : subLink

‘6 : subLink

flow sheet (source) simulation model (target)
toComosIncrement

toComosIncrement toAspenIncrement

toAspenIncrement

correspondence

::=

2’ = ‘2 3’ = ‘3

5’ = ‘54’ = ‘4

toAspenIncrement

1’ = ‘1

toComosIncrement toAspenIncrement

6’ = ‘6

toComosDominant toAspenDominantconnectsComosOutPort

connectsComosInPort

7’ : ComosConnection

connectsAspenOutPort

connectsAspenInPort

9’ : AspenConnection

toComosContext

toComosContext

toAspenContext

toAspenContext

toIntegrationContext

toIntegrationContext

8’ : Link

toComosIncrement

flow sheet (source) simulation model (target)correspondence

end;

Fig. 5. Triple rule for a connection

graph (for the simulation model) on the right. The left-hand side is composed of port
nodes in source and target graph, distinguishing between output ports and input ports.
Furthermore, it is required that the port nodes in both graphs correspond to each other.
This requirement is expressed by the nodes of type subLink in the correspondence
graph and their outgoing edges which point to nodes of the source and target graph,
respectively. Port correspondences are established by other triple rules which transform
the blocks the ports belong to, e.g. streams or devices. Correspondences between source
and target patterns are represented by links and can be further structured by sublinks,
e.g. to express port correspondences.

All elements of the left-hand side re-appear on the right-hand side. New nodes are
created for the connections in source and target graph, respectively, as well as for the
link between them in the correspondence graph. The connection nodes are embedded
locally by edges to the respective port nodes. For the link node, three types of adjacent
edges are distinguished. toDominant edges are used to connect the link to exactly
one dominant increment in the source and target graph, respectively. In general, the
source and target pattern related through the triple rule may consist of more than one
increment in each participating graph. Then, there are additional edges to normal incre-
ments1. Finally, toContext edges point to nodes which are not themselves part of the

1 The distinction between dominant and normal increments is not vital, but helpful for pragmatic
reasons.
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transformation but are required as a context condition. These nodes are called context
increments.

Figure 5 describes a synchronous graph transformation. In case of asynchronous
modifications, the triple rule shown above is not ready for use. So, we derive asyn-
chronous rules from the synchronous rule in the following ways:

– A forward rule assumes that the source graph has been extended, and extends the
correspondence graph and the target graph accordingly. Thus, the forward rule de-
rived from our sample rule would contain node 7 on the left-hand side.

– Analogously, a backward rule is used to describe a transformation in the reverse
direction. In our example, node 9 would be part of the left-hand side.

– Finally, a consistency analysis rule is used when both documents have been modi-
fied in parallel. In our running example, this means that connections have been in-
serted into both the PFD and the simulation model and a link is created a-posteriori.
Thus, the consistency analysis rule would include nodes 7 and 9 on the left-hand
side.

Unfortunately, even these rules are not ready for use in an integration tool as de-
scribed in the previous section. In the case of non-deterministic transformations be-
tween inter-dependent documents, e.g. look at the scenario from Section 2.1 where the
engineer has to select among multiple alternatives how to transform a reactor, it is cru-
cial that the user is made aware of conflicts between applicable rules. Thus, we have to
consider all applicable rules and their mutual conflicts before selecting a rule for execu-
tion. To achieve this, we have to give up atomic rule execution, i.e., we have to decouple
pattern matching from graph transformation.

The approach is that from the set of synchronous triple graph grammar rules for a
specific pair of documents we derive a set of PROGRES graph transformations, where
graph pattern matching and transformation are handled separately, and combine them
with some invariant parts of a PROGRES specification. The resulting overall specifi-
cation is executable, which allows the evaluation of the integration algorithm and the
integration rule set. The algorithm for the execution of integration rules is described in
the next section.

3.2 Interactive and Incremental Transformation

Breaking up atomic rule execution into pattern matching and graph transformation ac-
tivities is realized in two steps. First, from each synchronous triple graph grammar rule
contained in the rule set a forward, a backward, and a correspondence analysis rule
are derived as explained in Section 3.1. The integration algorithm for the execution of
integration rules consists of rule-specific and generic graph transformation rules. So
second, the rule-specific graph transformation rules are derived from the forward, back-
ward, and correspondence analysis rules. Below, one example of the resulting graph
transformation rules is described. For a more detailed description, the reader is referred
to [23].
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Fig. 6. Simplified integration algorithm (rule execution part)

The integration rule execution algorithm (phase 2 of the overall algorithm, cf. Sec.
2.4) is defined by its overall control structure, depicted as UML activity diagram (with
additional annotations) in Figure 6, together with graph transformation rules realizing
the single activities.

The set of integration rules used in an integration tool is directly incorporated into
the algorithm by realizing some of the activities with graph transformation rules specific
for each integration rule contained in the set (marked in gray and labeled in italics in
the figure). The remaining graph transformation rules are independent of specific rules.

The algorithm is used to apply forward, backward, and correspondence analysis
rules. Here, we briefly present the algorithm focusing on forward rules only. For the
sake of brevity, a simplified version of the algorithm is shown and with one exception
the steps are explained without referring to concrete rules and their PROGRES transac-
tion counterpart. The complete algorithm with optimization and rules of all directions
can be found in [23] and [9].

The algorithm for the execution of integration rules consists of three phases. In the
following, these phases are informally described with the help of the abstract example
in Figure 7. To keep it small, the example neither relates to specific types of source and
target graphs nor to specific rules.

The first phase (construct) is to determine all possible rule applications and conflicts
between them and store them in the integration graph. First, for each increment in the
source graph that has a type compatible with the dominant increment’s type of any rule,
a half link is created that references this increment. In the example, half links are created
for the increments I1 and I3, and named L1 and L2, respectively (c.f. Figure 7 a).

Then, for each half link the possible rule applications are determined. This is done
by trying to match the left-hand side of forward rules, starting at the dominant incre-
ments to avoid global pattern matching. In the example (Figure 7 b), three possible rule
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Fig. 7. Simplified example integration

applications were found: Ra at the link L1 would transform the increments I1 and I2;
Rb would transform the increments I2 and I3; and Rc would transform increment I3.

Each increment can be referenced by one link only as non-context increment, as
increments are “consumed” by integration rules. Thus, a conflict occurs if multiple pos-
sible rule applications reference the same non-context increment. After applying one of
the conflicting rules, they are no longer available for the competing rules. Therefore, in
the case of a conflict, the user has to choose one of the conflicting rules in the execute
phase.

Whereas conflicts resulting from two possible rules related to one half link are al-
ready obvious, those related to overlappings between normal increments of possible
rules are explicitly marked in the graph by adding an edge-node-edge construct (e.g.,
O1 in Figure 7 c).

In the next phase (context check), the context is checked for all possible rule appli-
cations and all matches are stored in the graph. Only rules whose contexts have been
found are ready to be applied. In the example in Figure 7 d), the context for Ra consist-
ing of increment I3 in the source graph was found (C1). The context for Rb is empty
(C2), the context for Rc is still missing.

To illustrate how PROGRES transformations are composed for the rules of the sce-
nario in Section 2.1, Figure 8 shows the transformation for checking the context of the
connection rule. The left-hand side contains the half link (‘7), the non-context incre-
ments (here, only ‘3), the rule node (‘5), and the role nodes (‘1). The non-context
increments and their roles are needed to embed the context and to prevent unwanted
folding between context and non-context increments. For the example rule, the context



Integration Tools for Consistency Management between Design Documents 697

transformation + TRC2A_R3_contextCheck * =

::=

condition ‘5.ruleId = "C2A-R3";
‘7.status = checked;

end;

Fig. 8. Check context

consists of the two ports connected in the source document (‘2, ‘4), the related ports
in the Aspen document (‘9, ‘10), and the relating sublinks (‘6, ‘8).

On the right-hand side, a new context node is created (‘15). It is connected to all
nodes belonging to the context by role nodes (11’, 12’, 13’, 14’, 16’, 17’) and
appropriate edges. If the matching of the context is ambiguous, multiple context nodes
with their roles are created as the production is executed for all matches.

In the last phase (execute), a rule is selected for execution and after its execution the
data collected in the construct phase is updated. If any rule application whose context
is present is unambiguous, i.e., it is not involved in any conflicts, it is automatically
selected for execution. Otherwise, the user is asked to select one rule among the rules
with existing context. If there are no executable rules left, the algorithm ends. In the
example in Figure 7 d), no rule can be automatically selected for execution. The context
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of Rc is not yet available and Ra and Rb as well as Rb and Rc are conflicting. Here, it
is assumed that the user selects Ra for execution.

Then, the selected rule is executed. In the example (Figure 7 e), this is the rule corre-
sponding to the rule node Ra. As a result, increments I4 and I5 are created in the target
graph, and references to all increments are added to the half link L1. Now, the half link
has become a consistent link, also called full link. The result in source, target, and inte-
gration graph—concerning the link in question and its increments—is the same as if the
corresponding forward triple graph grammar rule had been applied in an atomic way.

Afterwards, rules that cannot be applied and links that cannot be made consistent
anymore are deleted. In Figure 7 f), Rb is deleted because it depends on the availability
of I2 which is now referenced by L1 as a non-context increment. If there were alterna-
tive rule applications belonging to L1, they would be removed as well. Last, obsolete
overlappings have to be deleted. In the example, O1 is removed because Rb was deleted.

Now, the execution returns to the context check phase, where the context check is
repeated. Finally, in our example the rule Rc can be selected automatically for execution
because it is no longer involved in any conflicts if we assume that its context has been
found.

3.3 Interactive Repair Actions

In this section, we are addressing the first step of the overall integration algorithm (cf.
Section 2.4) when modifications on one or both documents have damaged the consis-
tency links between these documents. We want to consider real-life scenarios where the
documents’ editing tools are decoupled from each other. Thus, we assume not to have
any knowledge about the changes on the graphs and have to perform a damage check
when the integrator starts, which determines all damages to previously consistent links
caused by users’ editing activities in the meantime. Damages are all violated condi-
tions of the rule which originally produced the link and all referenced increments, i.e.,
the graph pattern of the rule does not match, attribute conditions are violated, required
dependencies to other links are not valid. We now study how to come to a consistent
situation again.

Links are Damaged during Development and Maintenance. In order to explain the
possibilities when and how a link may be damaged, we regard a small example based on
the example from Figure 1. A part of the underlying internal model of this scenario is
shown as a graph in Figure 9. The corresponding user view on source and target graphs
is depicted on the left and right,respectively, relating the model to the scenario from
Figure 1. In this example, the user had deleted the RPlug reactor (marked with a cross)
in the simulation model. In the internal model, the streams Str1 and Str2 to the REQUIL
reactor and the HEATER still exist.

The following possibilities exist for a link to be damaged:

1. Increments of the source or target graph which take part in a link have been deleted,
resulting in dangling references of the link. As an example, in Figure 9 the incre-
ments TP1, TP2, and R1 have been deleted.
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2. Attribute values of source or target nodes of a link have been changed such that
attribute conditions do not hold any more. This would be the case if an attribute of
Pl-Rea characterizing the plug flow reactor would be directly changed.

3. Edges of the source or target graph being involved in a link have been deleted, such
that the patterns on both sides are no longer valid.

4. A link of the integration context of the current link has become damaged. In the
example, L1 became damaged by the deletion of some increments, thus, all links
referring to L1 or one of its increments as context become damaged, too. This is
the case for the connection mapping link L2.
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Fig. 9. Reason for a link to be damaged (internal graph view)

Necessity and Types of Repair Actions. We now discuss what has to be done if dam-
aged links have been found. There are three simple possibilities we regard first:

1. The most primitive procedure is to delete the link and all the increments on both
sides, which are involved in the integration situation (in Figure 9 all the nodes and
edges of that picture linked to link L1). It is obvious that this is suitable only in
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situations where all increments of a link have been deleted by the user in one of
the graphs or where one of the dominant increments has been deleted. If some
increments of a link in one of the graphs are deleted and others still exist, such as
in the example from Figure 9, the deletion could have been part of a restructuring
activity, thus, deleting all increments is not the reaction the user expected. Still, it
is a valid repair action, but one which should never be executed without prompting
the user before.

2. The next simple possibility is to only delete the damaged link and to leave the
nodes on both sides unchanged and to make them available for other integration
rules. Most of the time this also does not lead to the desired behavior of the tool.
The modifications resulting in the damaged link were probably done on purpose.
The link, although being damaged, may contain valuable information to be used,
especially, to determine which parts of the document may be affected by the modi-
fication which damaged the link. For example, the link L1 from Figure 9 stores the
information that the remaining connection Str1 in the simulation model was pro-
duced by the application of the integration rule for mapping a plug flow reactor in
the PFD to a reactor cascade in the simulation model. Thus, by deleting the link L1
this connection Str1 would remain in the simulation model uselessly. Furthermore,
re-integration may result in at-cross transformation, i.e., a forward and a backward
transformation of the remaining increments (in the case of the connection Str1 a
corresponding connection in the PFD could be produced).

3. Another option is to restore consistency by removing the cause for the inconsis-
tency. For instance, missing increments or edges may be created. This option is
desirable only in those cases where the operation causing the damage was carried
out accidentally, because it would be undone. For attribute values, the attribute con-
ditions of the synchronous rule can be used to propagate the change.

As the three simple alternatives to (formally) repair inconsistencies presented so far
are not very useful from the practical point of view, more specific repair actions [10]
based on knowledge about the original rules which created the links have to be consid-
ered. They are called repair actions, as they bring a damaged link back to a consistent
state. The main priority when repairing links is to conserve the rule that has been orig-
inally applied to create the link or to substitute it with a similar one.

In the following, we discuss why substitution with a similar rule is useful and
what similarity between rules means. Usually, for the transformation of a pattern of
increments from the PFD to a corresponding pattern in the simulation model, multiple
alternative rules could be applied. There are rules for the transformation which differ
corresponding to (1) multiplicity, (2) type, or (3) swapped elements or (4) the patterns
to be created have a subset relation. They are regarded to build up a rule group, as any
of theses rules may be chosen. Rule of the same rule group are called to be similar.

For example, (1) a plug flow reactor of the PFD may be inserted as a single reactor
(rule 1) or a cascade of multiple reactors (rule 2) in the simulation model. This can be
applied to the situation in Figure 9: The multiplicity of the reactors has been changed
(removal of RPlug). Now, instead of applying any of the general repair strategies listed
above, another rule from the rule group is chosen, leading to the situation shown in
Figure 10 where the link now refers only to one reactor and the connection Str1 is
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Fig. 10. Damaged link from Fig. 9 now repaired (internal graph view)

removed. The sublink SL1 now refers to TP5 and TP5 is connected to the out port TP7.
The repair action consists in changing the situation as if the singleton rule - on the right
side - would have been applied.

Another situation (2) also often occurring in practice is that the elements in the PFD
or simulation model are changed by their type and the connection structure remains
unchanged. Here, the best alternative for repair in case of a damage is to try to find a
rule from the rule group with matching type, maybe including the propagation of the
type change from one document to the other. Please note that the graph structure did
not change at all.

Also, (3) there might be rules for refining a PFD element in a simulation model,
which differ only such that different alternative details may be contained in the pattern
on the simulation model side or not.
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Another case is (4) that nodes of the overall pattern of one rule are a subset of the
pattern of another rule. The applicability of a subset rule is likely as a subset rule has
less conditions which could be damaged. If for a damaged applied rule there exists a
subset rule which is not damaged, then increments which are not represented by the
subset rule but by the damaged applied rule are deleted.

Conserving the applied rule means to heal single damages of the rule pattern with
the following sub-strategies.

Attribute propagation. Attribute values are changed so that a violated attribute equa-
tion holds again.

Attribute restriction repair. Attribute values are changed so that a violated attribute
restriction holds again.

Alternative nodes and edges. Missing nodes and edges can be replaced by alternative
nodes and edges which exist in the respective graphs if they are not used by another
link.

Alternative context. Missing nodes and edges playing the role of the context of a dam-
aged link can be replaced by alternative nodes and edges in the respective graphs
if they are not used by another link.

Complete rule pattern. Missing nodes and edges can be recreated, thus, the pattern
of the applied rule is completed, resulting in an undo-like operation of the user’s
changes. Note that edges which were deleted due to the deletion of incident nodes
are not recreated as well as attribute values of recreated nodes.

NAC repair. A node violating a negative application condition (NAC) [24] condition
of the applied rule is deleted.

We now summarize all repair types in the following list and describe their strategy
in short.

Delete rule. All remaining increments participating in the same link are deleted as
well. Also the link and all its sublinks are deleted (corresponds to simple possibility
1 above).

New integration. In this naive approach the link is deleted and the increments are thus
freed for another transformation, but as discussed above, acts as last resort (corre-
sponds to possibility 2 above).

Undo damaging changes. This useful repair type cannot be performed by the integra-
tion tool for the above mentioned reasons. It could be realized by support of the
editing tools if the tools provide incremental and selective undos (corresponds to
simple possibility 3 above).

Conserve rule. Single damages of the rule pattern are healed with sub-strategies. They
are selected at runtime dependent of the damage types and number and combined
together (see below).

Alternative rule. It can also be possible to apply a similar rule with little adaptations
to the graph; in case that some preconditions for applicability of the rule are not
fulfilled, their validity can be enforced by little changes on the graph.

New correspondence. Like alternative rule repair, this repair action searches for an-
other possible rule which can be applied. But instead of taking the whole pattern
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into account, it just searches for source and target dominant increments, as a mini-
mal requirement for an alternative rule application if they still exist (slight variant
of possibility 2 above).

Define new rule. This repair type is a trivial solution to handle damage repair as for
the new situation a rule is defined (induced) and attached to the link.

It is important to distinguish the role of a missing node by context or non-context
when searching for an alternative node because a repair action is allowed to change only
nodes and edges that were originally created by the applied rule. That does not hold for
context increments. Therefore, a repair action does never cause new inconsistencies for
links referenced as context. But of course, other links having a repaired link in their
contexts could be damaged.

As mentioned, the repair types listed above are strategies from which concrete in-
stances (repair actions) are derived at runtime dependent on the damaged rule and
the specific damages triggered by the user’s changes. Repair types/actions are divided
into those which adapt source and target graphs and those which only adapt references
within the integration document assuming that the user established a consistent state by
himself. The first ones are called changing and the latter ones are called non-changing.
Therefore, repair type Delete rule2 counts to the changing, whereas the others do not
change the documents.

If a Conserve rule repair action is a changing or non-changing repair action, de-
pends on the damages of the current rule to be conserved. If only non-context incre-
ments and edges are missing, i.e. no attribute or NAC conditions are violated, and they
can be substituted with Alternative nodes and edges, it is a non-changing repair
action because it only makes changes in the integration document. If an Alternative
context has to be found this can result in a changing and non-changing repair action.
The non-changing version searches for the required nodes and edges and adapt the
references in the integration document to source and target graph only. The changing
version reassigns edges from the context to source and target graph.

A repair action of type Alternative rule also can be changing or non-changing. The
changing version creates required nodes and edges for the application of a different rule
and may delete the rest of nodes and edges of the former applied rule which are not
matched by the alternative rule.

Generating Repair Actions. As for the incremental integration algorithm from Sec-
tion 3.2 user actions in the source or target document are not recorded due to indepen-
dent use of corresponding tools. Before executing repair actions, as a first substep of
the first phase of the integration algorithm, all existing links have to be checked for
damages. This is possible as the links are kept separately in the integration document
and contain all information needed for the check, like the rule having been applied,
the necessary context, the dependency of a link w.r.t. other links, and alike. If a link is
damaged, all other links referencing it as context have to be set to damaged as well.

The derivation of forward, backward, and correspondence analysis rules at specifi-
cation time as described in Section 3.1 is very pragmatic. However, it is not possible to

2 And all derived actions.
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derive all repair actions, which are candidates for repairing inconsistent integration sit-
uations. For a triple rule which contains n nodes and e edges there exist 2n+e graph pat-
terns describing all possible inconsistent situations, i.e., each combination of a deleted
node or edge. Even more, further nodes and edges might have been inserted, values
might be inconsistent, for any inconsistent situation there might be different repair op-
tions etc. So, the number of possible transformations of repair actions for inconsistent
situations further explodes. All of these transformations would have to be used to be
checked for applicability.

Therefore, we chose to construct specific repair actions (i.e. graph transformations)
for a damaged link after the damage check at runtime. The repair actions represent
alternatives to make the link consistent again. This means, the graph part of a damaged
link which still conforms to the corresponding integration rule (remaining graph) is
the basis of the left hand side (LHS) of all repair actions generated for this link. From
the remaining graph a corresponding graph pattern for the LHS of all the alternative
repair actions is built and its pattern nodes are preset to point to the actual nodes of the
remaining graph before pattern matching.

Depending on the repair type of a repair action, further pattern nodes and edges must
be added to the LHS without already pointing to actual nodes. The approach specifies
LHS and RHS of the graph transformations for each repair type (intensionally) by set-
oriented descriptions [10]. The exact structure of a graph transformation is computed
when repair actions are constructed. It depends on the damaged rule and the certain
damage. I.e., the intensional description does not know the rule pattern and takes all
missing nodes as variables, the specific computed graph transformation retrieves the
concrete rule pattern and replaces the variable nodes by concrete ones.

If the applicability of an alternative rule is searched then the set difference of the
alternative rule specifying pattern and the remaining graph pattern is included in the
LHS. The RHS is basically equal to the LHS but contains additional pattern nodes
and edges, i.e., those which must exist according to the alternative rule but are not
existent, and some are no longer present in the RHS, i.e., those which are not used by
the alternative rule. Also, attribute values are changed if required.

The strategy to conserve the applied rule also leads to multiple repair actions: a
non-changing repair action to conserve the originally applied rule without doing any
changes on the graphs or multiple changing versions of that repair action (i.e., missing
nodes and edges can be created here with the create rule pattern strategy). Since there
can be multiple reasons for a link to become damaged and, as described above, for
each of these reasons some sub-strategies are defined, the repair actions to conserve
the applied rule are constructed stepwise; in each step, each of the repair actions are
extended to heal a certain actually existing damage. Extending a repair action consisting
of a LHS and RHS is done by gluing the LHS and RHS of a respective component
graph transformation which represents the change for healing a certain damage. For
each sub-strategy, component graph transformations are also specified (intensionally)
by set-oriented descriptions.

There are repair actions created for deleting all increments of a damaged link (delete
rule) or allowing a new integration by deleting the damaged link and all of its sublinks.
The definition of a new rule is also a repair action which - when applied - establishes



Integration Tools for Consistency Management between Design Documents 705

a state that the integration tool would recognize as consistent. When executed, the in-
tegration tool additionally derives a new integration rule, but this is done outside of the
repair action. Also, for these alternatives set descriptions are defined, the construction
consists only of a single step.

To give an example, the deletion of the RPlug R1 from the simulation model from
Figure 9 led to two damaged links, L1 and L2. For L1, increments R1, TP1, and TP2
are missing, for L2 the context increment TP1 is missing. The LHS of all the repair
actions generated consist of all the nodes L1 and L2 still refer to and all existing edges
between them. For L2 these are the normal and dominant increments C1, P4, and P5
(source graph), Str2, TP7, and TP9 (target graph) and the context increments P1 and
P6 (source graph) and TP10 (target graph). To solve the damage of L2 the repair action
is extended according to the sub-strategy Alternative context. To find an alternative
context node, this node must appear in the LHS. The node is determined by perform-
ing a set-subtraction of the current LHS and the LHS of the original triple rule which
returns a node of the type of the missing context increment (here AspenInPort) which
is connected to the context sublink SL1. The RHS of the repair action consists of the
same pattern as the LHS and is extended by the toContext edge referring from L2 to
this alternative context node and the edge from TP7 to that node. Adding these edges is
also the result of performing a pattern difference of the current RHS of the repair action
and the RHS of the triple rule.

To solve the damage of L1 one possibility is to apply the single reactor rule which is
a subset of the originally applied double reactor rule. Thus, by performing the pattern
differences of the current LHS and RHS of the repair action and the LHS and RHS of
the triple rule, the AspenConnection Str1 and its ports TP3 and TP4 are removed from
the RHS and an edge from the sublink SL1 to the in port TP5 of the reactor is added to
the RHS.

The integration tool could now remove the damages of the scenario by first applying
the repair action for reparing the link L1 which produces a new in port node of the
sublink SL1, so the repair action for L2 can be applied afterwards, but this is not known
at the time when the repair actions are generated.

In the example, both repair actions are constructed in one step. If there are more
damages, e.g. violated attribute conditions or further nodes missing, additional nodes
and attribute transfers would be integrated into the repair action as the result of the
difference computation with the original triple rule. In the example, if more nodes would
have been deleted by the user in source or target graph which were also part of the
subset Single Reactor rule, the result of the pattern difference would lead (a) in the non-
changing version (to include already existing nodes as alternatives) to an extension of
the LHS and an extension of the RHS and (b) in the changing version (to create the
missing nodes) to an extension of the RHS only.

Execution. In general, it cannot be determined automatically which alternative for re-
pairing damaged links is appropriate. Because of that, user interaction is necessary here
as well resulting in breaking up atomic transformation execution, i.e., decoupling pat-
tern matching from graph transformation, analogously to the approach of integration
rule execution (cf. Section 3.2). The integration tool finds all possible repair actions,
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then, all possible applications of normal integration rules are determined (construct
phase), and both kinds of possible executions are presented to the user who chooses
one, either being a repair action or a transformation rule (select phase). The selected
transformation is then executed, other competitive rule and repair actions are deleted
(execute and cleanup phase).

Optimizations. Generating repair actions at runtime is suitable for the above men-
tioned reasons – one argument against deriving repair actions at compilation time was
combinatorial explosion of repair actions – but this approach also implies performance
problems when at runtime a set of repair actions is generated, most of them not be-
ing applicable as required, e.g., required nodes and edges of the LHS are not present
in the graph. Thus, we have optimized the generation by distributing priorities among
the repair types and construct step-wise repair actions according to the priorities and
subsequently test their applicability until some are applicable. The priorities can be
configured by the user. In Section 4.3 the time complexity of the implementation and in
Section 4.4 the user interface for configuring the priorities are discussed in more detail.

4 Transfer to Practice: User Interfaces and Evaluation

Although the concepts presented above suffice for construction of integrators, they still
lack usability for an industrial setting: there is the need to simplify user interaction by
developing graphical user interfaces for configuration, simplifying the rule specification
language, and supporting the rule generation process. All these needs are addressed in
the transfer phase [25,17] of the IMPROVE project [8] resulting in the extension of
integrator facilities and in the development of further management tools, which are
discussed in the following.

This section is devoted to give an overview of the developed user interfaces and
how possible repair actions are presented to the user. Furthermore, it summarizes our
experiences about performance and quality of the offered repair actions.

4.1 Rule Modeling Support

Document-specific Rule Editors for more Acceptance. A basic implementation of a
rule editor based on Microsoft Visio drawings which allows rule modeling with UML
object diagrams [18,19] is provided. The rule editor can be easily extended: instead of
showing plain UML syntax, the documents’ increments are shown in a syntax similar to
those of the tools to be integrated. For example, for modeling cutouts of PFD documents
which are edited with COMOS, icons representing devices of PFDs are placed within
the object of the diagram. This is achieved by adapting the type change event of the
rule editor. When the rule modeler changes the type of an object of the rule, COMOS
is accessed and the icon for the new type is retrieved. By adapting the paste event it
is easy to achieve a tight integration of the document editing tools with the rule editor
allowing to select and copy objects of a document editing tool and to paste these objects
into the rule editor. This adaptation was implemented for the COMOS tool, too.
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Fig. 11. Rule editor with PFD and P&ID specific looks for devices

As mentioned in Section 2.2, we also have built integrators for other pairs of doc-
uments within the transfer project, such as for integrating PFDs and piping and in-
strumenation diagrams (P&ID), which are both edited with COMOS. A P&ID is more
detailed than the PFD as it is a blueprint of the chemical plant. How a rule for this inte-
gration scenario looks like is presented in Figure 11. It specifies how a column and all
of its ports of a PFD corresponds to a specific column and its ports in a P&ID. Usually,
columns in P&IDs have more ports as in PFDs (not in this rule) and ports are connected
to the columns via nozzles. All these objects contain the icons from COMOS such that
a rule modeler who is familiar with COMOS recognizes the elements immediately.

There are many other supporting features coming along with the editor [10], e.g.
ensuring the use of unique names of the objects within a rule or the possibility of ex-
ecuting self-written scripts on the rules which is very useful when the rule modeler
wants to adapt his rule mechanically. But the features which got the most attention of
the industry partner to encapsulate the complex concepts behind rule modeling were (i)
the rule checker which marks errors in a rule, (ii) the event handlers mentioned above
which allow integration with the tools that the user is familiar with, and (iii) usage of
increment-specific attributes. The latter feature is simple but extremely helpful in prac-
tice. Apart from the predefined increment attributes Name and Type, the rule modeler
can use arbitrary attribute names within attribute restrictions and equations. The docu-
ment wrapper interprets these attributes at runtime. For example, attributes of COMOS
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objects, the so-called specifications, are identified via strings. As an example, the work-
ing temperature of a pump is identified by PI020.PIA006 which means it is allowed to
use this string in an attribute equation of a rule.

In chemical engineering, the increments of a PFD have many attributes. Further-
more, most values are transferred to the next lower level P&ID. So, rule modeling
for two such diagrams means also defining explicitly all the existing attribute relation-
ships which is very laborious. COMOS already defined these attribute relationships
for two corresponding devices, i.e, one device in a PFD and the corresponding de-
vice in a P&ID, in so-called mapping tables. To profit from these mapping tables, we
defined a pseudo-attribute called Attributes for increments within rules, so many
rules contain the equation PFDIncr.Attributes = PIDIncr.Attributes.
When a forward or backward transformation of such a rule is executed, the COMOS
wrapper searches for the mapping table of the respective two increments and executes a
COMOS-specific command (here CalculateLinkedSpecifications). In gen-
eral, it is the wrapper’s task to determine if and how the pseudo-attribute Attributes
is represented in the underlying document.

Semi-Automatic Support in Finding Correspondences between Documents and
Generalization as Integration Rules. Building integration rules from scratch is te-
dious. Rule modeling is supported in multiple ways. Object structures from concrete
documents for which a rule should exist can be copied and pasted into the rule defini-
tion in the rule editor. This assumes that the rule modeler already has identified corre-
sponding object structures between existing documents from preceding projects. There
is now tool support for finding corresponding object structures by applying a correspon-
dence analysis with specific integration rules (explained below). From correspondences
found, concrete integration rules can be generated automatically [26].

When starting with rule modeling for a new domain or a new pair of document types
A and B, the type hierarchies (document models) of A and B have to be inspected and
analyzed first to determine which structures and types of A and B may correspond to
each other. Such structure and type correspondences are the basis for developing rules
which map concrete objects and object structures of that type correspondences onto
each other. To support the correspondence analysis on type level, the integrator applies
a correspondence analysis based on specific integration rules explicitly designed for
type hierarchy documents. From correspondences found on the type level, concrete
integration rules are derived for the instance level. Of course, these rules are simple and
in most cases have to be extended by the rule modeler.

Both correspondence analyses need further rule language constructs. For the corre-
spondence analysis on the document level, graph patterns were needed which describe
the coarse structure of corresponding patterns in source and target documents. These
have to be flexible, as the concrete structure is not known at specification time and is
going to be derived from the documents. Thus, we introduced graph patterns Loop [27]
and Choice which leave open the number of SCoRe graphs and the choice of a spe-
cific alternative used in the graph [26]. For the correspondence analysis on the type
level there is the problem that types and attributes which in this case are the increments
to map onto each other cannot be distinguished only by structural criteria. Thus, we
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added similarity comparing functions using string distance measures and the synonym
database WordNet [28] to map names of types and attributes.

The process of correspondence analysis is further optimized to reduce the number of
possible matches of integration rules containing the new language constructs. Now, the
structure of the documents is included. The analysis starts at a user-defined increment
in the source as well as at the target document which the rule modeler recognizes as
corresponding, e.g., two main devices in PFD and simulation model or the root types
in type hierarchies. In both documents possible rule applications are searched locally
around the specified increment. A rule which is applicable in source and target docu-
ment is a valid option and all options are presented to the user who decides which rule
to apply. Then the algorithm traverses edges connected to the increments matched be-
fore independently in source and target document and searches again for possible rule
applications. If correspondences are found in the documents, concrete rules are derived.

Managing Rule Sets and Relationships between Rules. Furthermore, functionality
for managing rule modules is provided to support rule re-use; there often are redundant
parts modeled in multiple rules which had to be maintained. Parts of other rules are
used in a rule but with different semantics. We have specified the semantics of three
relationship kinds between rules. When a rule uses another rule, the relationship is
managed. Becoming explicit, the relationships can be involved within rule execution
which is thus improved.

Explicit contained-in relationships of rules help to find smaller or bigger rules in rule
execution; furthermore, context relationships between rules exist if the context of one
rule is equal to a part of another rule. Based on these relationships, during execution a
dependency analysis is performed which determines dependencies between applicable
rules and rules depending on those rules as they expect nodes and edges as context.
If rules are conflicting, knowledge about which rules get applicable and which do not
supports the user making his decision for or against a rule. Additionally, after one rule
is executed there are now possibilities to trigger other rules and to transfer node ids to
the triggered rules so that they are applied only locally in the graph in the neighbor-
hood of the triggering rule application point. The rules to trigger are specified within
the definition of the triggering rule, thus, producing new trigger relationships between
triggering and triggered rule.

4.2 User Interface for Integration

In Figure 12, the user interface of the integrator is shown; it is designed in close coop-
eration with our industrial partner Comos Industry Solutions [29]. It allows on the one
hand the configuration of the tool, i.e., selection of documents, a rule set, and integra-
tion direction (see the lower right corner). On the other hand, it realizes a user friendly
view on the integration state by showing the contents of the documents in three tree
views. Each increment of source and target document is a node in the left and the right
tree view, respectively. A significant symbol indicates the type of an increment. The
middle tree view contains the most important elements from the integration document,
i.e., the links.
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Fig. 12. Screenshot of the integrator user interface after initial forward transformation

If there are rules competing to each other, multiple nodes representing these rules
are shown as children nodes. By selecting a rule and pushing the button Apply, the user
selects this rule for application. To allow the user to better understand which increments
are matched by a potential rule application, the respective increments are colored in the
left and right tree view. The rule pattern is displayed in the lower left corner rule view
where the names of the rule objects are replaced by the names of the respective incre-
ments colored equally to the tree views. Thus, the user knows exactly which increments
are part of a future transformation.

Figure 12 shows a consistent state after forward transformations have been per-
formed. There are three links created in the integration document and multiple incre-
ments in the target document. For example, the column COL01 is transformed by the
ColumnRule into a ground column COL01 (dominant increment) which has four noz-
zles N01 to N04 (normal increments). The according rule is depicted in Figure 11.

The column rule specifies that corresponding columns in source and target document
must have equal names. In case, the user changes a name, e.g., the ground column name
to K001, the integrator determines that the rule application is damaged and creates
repair actions shown as children nodes of the damaged rule as shown in Figure 13. In
the figure, there are four repair actions generated: two attribute repairs for transferring
the names in either the one or the other direction, a delete repair for removing the whole
structure, and an undo of the last change.
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Fig. 13. GUI offering multiple repairs for damaged column rule

(a) GUI offering a repair for propagating the context switch

(b) GUI after propagation of the context switch

Fig. 14. GUI before and after alternative context repair is executed

Figure 14(a) shows a situation where the user deleted the connection of the process
stream of the PFD and created one to a vessel, thus, the context of the process stream
was switched. The integrator finds two possibilities for repairing the damage as there
are two possible contexts: (i) the newly created context consisting of the two vessels
from both documents and (ii) the former context consisting of the two columns from
both documents as the pipe from the P&ID is still connected to the ground column.
The latter is equivalent to an undo repair which is also offered. In this example, the
user selects the first repair action. The result is shown in Figure 14(b) with emphasized
context nodes, namely the two vessels.

Also, this view was accepted by the industry partner. As with the rule editor, in-
tegration with the editing tools is achieved by adaptation of event handlers. From the
COMOS tool, PFDs and P&IDs can be dragged and dropped into the left and right tree
views allowing to configure the integration tool with a concrete pair of documents. The
icons in the tree views are retrieved also from COMOS, when the documents are loaded,
which supports the recognition of the elements. When a repair action or integration rule



712 S.M. Becker and A.-T. Körtgen

is selected in the integration document tree view, applied or only as a proposition, the
match of increments of the underlying rule pattern is presented to the user within the
rule view where the name of the rule object is replaced with the concrete name of the
matched increment. It is also possible to navigate from an increment representation of
the tree views to the respective tool’s view. This supports the user a lot in understanding
which increments are affected by an integration rule or repair action in the documents.

4.3 Time Complexity and Optimizations

In general, the most critical part of the application of transformation rules (and repair
actions) are the pattern matching steps of the algorithm. In the industrial prototypes, all
graph transformation operations are performed by a graph transformation component.
This component is kept light-weight as only very simple graph transformations have
to be executed. All pattern matching is done starting from dominant increments, in
most cases only locally traversing the graph avoiding global pattern matching. Thus,
the—in theory—high complexity of pattern matching does not affect the integrators’
performance.

Generating repair actions for a violated rule has a time complexity polynomial in
the number of objects occurring in that rule. In our case studies, the rules considered
are assumed to have average size. However, the generation process proved bad run-
time behavior due to many repair transformations generated which could not be applied
and, thus, were not offered. Therefore, we optimized the process by introducing phases
where only repair actions for a set of predefined repair types are generated and tested.
Only if no valid repair action could be found in one phase, repair actions of another set
of repair types are tested in the next phase. This has proved acceptable runtime behav-
ior. The sets of repair types and the order of their execution can be configured by the
user. Additionally, a set of repair types can be specified which should always be tested.

4.4 Configuration of Integration Tools

For managing documents and their dependencies as well as rule sets there exist further
tools. In Figure 15, the editor for managing documents, i.e. their source (if stored as
file in the file system or object in a tool’s database) and their connection for integration
purposes to other documents, is shown. Documents are represented as document icons
and a document relationship is expressed by arrows between two documents. An arrow
between two documents contains the source of the integration document, which is the
file name in case of a file in the file system or an object id in case of an object in another
database.

Documents as well as arrows are attributed with document ids. The document man-
aging tool is integrated with the Integrator GUI such that if a pair of documents is
selected for integration in the Integrator GUI, the corresponding integration document
and the underlying rule set is activated instantly.

There are several more configuration tools such as the rule collection managing tool
which allows for creating rule sets for specific integration situations. A rule can be used
in more than one rule set. The idea is that for integrating the same pair of documents
different rule sets could be used dependent on the phase of the development process.
It is also possible that for pairs of documents of specific document types, e.g., a PFD
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Fig. 15. Document relationship management

and a P&ID, different rule sets could be used. This is the case for example, when the
user knows that in one scenario only a small set of devices is used and/or he wants to
apply only a limited set of transformation. So he is able to reduce the rules used in an
integration scenario.

For the integration itself the user can configure, how integration is performed, e.g.,
if repair actions are applied and which repair actions are priorized. In Figure 16 the
GUI for configuring the phases for the generation of repair actions is depicted. First,
the repair actions of the repair types within the first phase are generated and then tested
for applicability, second those of the second phase and so on.

Fig. 16. Configuration GUI of repair types properties and phases
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4.5 Evaluation

The whole integrator approach has been closely evaluated together with COMOS indus-
try solutions. The discussion about user interface design and supporting functionality
was mostly held with the software tool builders of COMOS. But also potential users
have been involved by presenting the approach and prototypes and by collecting and
exploiting their feedback. Based on this it can be said that in any case an improvement
in usability of the overall integration approach could be achieved. Still, the integrator
user interfaces needs to be further optimized to be less complex and even more user
friendly for the tools to be ready for the market.

So far, the main contribution of the transfer project lies in the knowledge transfer.
Comos Industry Solutions, the software tool builder, was enabled to use the principles
of the structure of integration tools to satisfy the demand of their clients for tool support
for document integration by including simplified integrator functionality directly into
their tools. For the future, it is likely that even more integrator functionality will be
included into their tool, probably specific for the existent document types.

Based on this experience, we would recommend that domain-specific adaptations
should be done together with domain experts. Furthermore, the user interface for the
integration needs to be as easy as possible. For example, the interface should be directly
integrated in the document editing tools as plugins, offering easy commands such as
start, stop, resume, undo, redo.

5 Related Work

Our approach to incremental integration for development processes is based on the
triple graph grammar approach introduced by Schürr [7] and early work at our depart-
ment in the area of software engineering [6] during the IPSEN project [30]. We have
adapted the results to the domain of chemical engineering [31] and extended the origi-
nal approach: now, we are dealing with the problem of a-posteriori integration, the rule
definition formalism was modified [18] and the rule execution algorithm was further
elaborated to support conflict detection and repair actions (see Sections 3.2 and 3.3).

Related areas of interest in computer science are (in-) consistency checking [32] and
model transformation. Consistency checkers apply rules to detect inconsistencies be-
tween models which then can be resolved manually or by inconsistency repair rules.
Model transformation deals with consistent translations between heterogeneous mod-
els. In the following a few projects of both areas are presented which are using graph
transformations. Our approach contains aspects of both areas but is more closely related
to model transformation.

In [33], a consistency management approach for different view points [34] of de-
velopment processes is presented. The formalism of distributed graph transformations
[35] is used to model view points and their interrelations, especially consistency checks
and repair actions. To the best of our knowledge, this approach works incrementally but
does not support detection of conflicting rules and user interaction.
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The consistency management [36] approach of Fujaba supports inter-model consis-
tency checks by a plug-in. The approach is based on triple graph grammars [7] as well.
Comparable to our approach, different graph transformations are derived from each
triple rule. Here in contrast, change propagation is performed immediately. User inter-
action is restricted to choosing the repair action for a detected inconsistency. Conflict
detection between different inconsistency checking rules is supported only w.r.t. pre-
venting endless loops if repair actions create new inconsistencies.

Model transformation recently has gained increasing importance because of the
model driven approaches for software development like the model driven architec-
ture (MDA) [1]. In [37] and [38] some approaches are compared and requirements are
proposed.

The PLCTools prototype [39] allows the translation between different specification
formalisms for programmable controllers. The translation is inspired by the triple graph
grammar approach [7] but is restricted to 1:n mappings. The rule base is conflict free so
there is no need for conflict detection and user interaction. It can be extended by user
defined rules which are restricted to be unambiguous 1:n mappings. Incrementality is
not supported.

In the AToM project [40], modeling tools are generated from descriptions of their
meta models. Transformations between different formalisms can be defined using graph
grammars. The transformations do not work incrementally but support user interaction.
Unlike in our approach, the control of the transformation is contained in the user-defined
graph grammars.

Re-establishing consistency by transformations is mostly performed in other work in
two ways. Either there are only propagations of deletion or attribute changes or deletion
of links supported as e.g., in [41,42,43]. These are also provided by our work. Or the
reaction on specific inconsistent situations is specified in advance by the rule modeler
explicitly as e.g., in [44,45,46,47,48,33]. Manual specification of repair actions is very
tedious and would not cover all cases of inconsistencies.

In [42] also the automatic completion of missing increments for applying a rule is
supported but only for transformation purposes and not for repairing existing corre-
spondence relations. Another approach similar to ours which constructs repair actions
dynamically is presented in [49,50,51]. Consistency rules are specified by first-order
formulas. If a term is not fulfilled, model transformations are generated such that the
term would be fulfilled after execution. These contain deletion of model elements or
changes on model elements, which cause that the term is not fulfilled. The user selects
one of the generated transformations. Creation of new model elements is not supported
and furthermore the generation of transformations bases on change logs of the actions
of the user which cannot be assumed for a-posteriori integration.

Transformations between documents are urgently needed (not only) in chemical
engineering. They have to be incremental, interactive and bidirectional. Additionally,
transformation rules are most likely ambiguous. There are a lot of transformation ap-
proaches and consistency checkers with repair actions that can be used for transforma-
tion as well, but none of them fulfills all of these requirements. Especially, the detection
of conflicts between ambiguous rules is not supported. We address these requirements
with the integration algorithm described in this contribution.
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6 Conclusion

We presented the integration tool approach having been developed over many years
at the Department of Computer Science 3 chaired by Prof. M. Nagl. The approach
was recently evaluated in an industrial cooperation with the German software company
Comos Industry Solutions with different prototypes for the integration of PFDs, pro-
cess and instrumentation diagrams, and simulation models, applied during design pro-
cesses in chemical engineering. Experiments with the prototypes have shown that our
approach considerably leverages the task of keeping dependent documents consistent
to each other. Nevertheless, there is still the need for a lot of user interaction. Besides
choosing among different possible rules, contradictory changes that have been made to
the documents in parallel have to be resolved manually. For this and other aspects, the
usability of the approach heavily depends on available GUIs and tool support, e.g. for
rule definition. For further reading on this topic, the reader is referred to [10].
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Abstract. Nowadays mobile robots find application in many areas of

production, public transport, security and defense, exploration of space,

etc. In order to make further progress in this domain of engineering, a

significant barrier has to be broken: robots must be able to understand

the meaning of surrounding world. Until now, mobile robots have only

perceived geometrical features of the environment. Rapid progress in

sensory devices (video cameras, laser range finders, microwave radars)

and sufficient computational power available on-board makes it possible

to develop robot controllers that possess certain knowledge about the

area of application and which are able to reason at a semantic level.

The first part of the paper deals with mobile robots dedicated to op-

erate inside buildings. A concept of the semantic navigation based upon

hypergraphs is introduced. Then it is shown how semantic information,

useful for mobile robots, can be extracted from the digital documentation

of a building.

In the second part of the paper we report the latest results on extract-

ing semantic features from the raw data supplied by laser scanners. The

aim of this research is to develop a system that will enable a mobile robot

to operate in a building with ability to recognise and identify objects of

certain classes. Data processing techniques involved in this system in-

clude a 3D-model of the environment updated on-line, rule-based and

feature-based classifiers of objects, a path planner utilizing cellular net-

works and other advanced tools. Experiments carried out under real-life

conditions validate the proposed solutions.

1 Introduction

At the onset of Mobile Robotics (MR) most researchers believed that the ulti-
mate goal is to develop robots able to act without human guidance. Most early
papers and conferences on MR quote Autonomous Mobile Robots as their sub-
ject. Despite the cognitive challenge, this attitude turned out to be unjustified
by needs of practice. The most spectacular application of mobile robots — the
exploration of Mars — was carried out by means of remotely operated rovers
[1]. Apart from units that perform very simple tasks, like cleaning a floor [2] or
mowing a lawn [3], mobile robots used to-day in practice depend more or less on

G. Engels et al. (Eds.): Nagl Festschrift, LNCS 5765, pp. 719–748, 2010.
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human assistance. Moreover, a capability to interact with people and an ability
to understand their intentions seems to be a prerequisite for further progress in
MR [4].

In order to perform any task, a mobile robot must be able to recognise its en-
vironment and to move safely inside it. Such an ability is secured by a navigation
system of the robot. This system solves the following tasks:

1. Mapping means building and updating a map, i.e. an internal representation
of the surrounding world.

2. Self-localisation amounts to determining a current position of the robot with
respect to a certain reference frame.

3. Path-planning means generating a collision-free trajectory that leads from
the current position to the goal position.

Taking into account many spectacular solutions, shown in the literature (com-
pare, e.g., the overview in [5]), it may be considered that the mapping problem
has been satisfactorily solved. Contemporary mobile robots equipped with cam-
eras and laser range finders are able to build 2D-maps of quite cluttered and
complex in-door environments. Under such circumstances it seems to be pos-
sible to add further dimensions to the mapping problem (2.5D, 3D, 4D maps)
without changing the following basic premises:

1. The map is built from scratch, without any initial knowledge about the
explored environment.

2. The map describes only geometry of the surrounding world.

The first assumption makes the problem cognitively challenging, though less
practically oriented. Service robots are supposed to work in particular buildings,
or in particular types of buildings. Digital documentation of any building erected
contemporary is available in one of the CAD-formats. A scan of an older building
can be easily generated by a laser-based geodetic tool, like Riegl System [6].

A rescue robot might need to build a map of a demolished building, but even
then the knowledge of the state, preceding the disaster, is likely to be available.
Hence, it seems to be reasonable to relax the first premise by assuming that the
layout, taken from the documentation of the building, can serve as the initial
assumption about the environment. Moving around the building, the robot is
able to detect objects that were not shown on the initial map (e.g. pieces of
furniture). It might happen sometimes that certain features of the real layout
differ from those described in the documentation of the building (e.g. a door may
become blocked or even removed). As an outcome of the process of exploration,
the robot obtains a current map of its working environment. Taking floor plans
provided by the designers of the building as the initial step of the mapping
procedure considerably reduces the computational burden. Instead of generating
the map from scratch, the robot registers only missing elements and changes in
the environment. Such procedure is illustrated by Fig. 1, where the robot detects
an object in the room and recognizes it as a wardrobe.
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Fig. 1. Exploring a floor of a building

In order to act purposefully in the building, the mobile robot must be aware
of the meaning of a surrounding world. A capability of breaking the barrier
that separates the acquisition of geometrical features from the understanding of
semantics will determine the success of robots in the future. Most researchers
recognize this challenge and the first attempts to add meaning to environment
maps are reported in the literature [7,8]. These works follow the pattern recogni-
tion scheme. It is assumed that the robot is given a certain knowledge about the
building (ontology). Such knowledge allows the robot to recognize the compo-
nents of the layout (windows, doors, etc.) on the current map, or even to detect
the functional role of a particular subspace of the building (a hall, a staircase,
etc.). Learning semantics autonomously is a difficult task. An obvious solution
is to do it interactively with the help of a human operator.

The layout of our paper is as follows. In Section 2 we recall primaries of the
geometry-oriented navigation known in the literature, we discuss limitations of
this approach and we introduce our proposal of the navigation based upon se-
mantics of the surrounding world. Section 3 is devoted to the new standard of
the Architecture-Engineering- Construction (AEC) industry called Building In-
formation Model (BIM). We show that this knowledge representation scheme
contains a lot of information useful for in-door class mobile robots. By extract-
ing this information from BIM-files, a preliminary mapping of the building is
obtained. This mapping can be validated and enriched by the robot exploring
its working area.

In Section 4 we demonstrate how a mobile robot equipped with a laser range
scanner can recognise characteristic objects in the environment. Such objects,
like a door or a piece of furniture, are stored in the lowest level of a sematic map
proposed in Section 2. The path planning by means of Cellular Neural Networks
(CNN’s) is the subject of Section 5. Here the novelty lies in the mixed metric-
symbolic format of the map that is used. A brief summary of results and a list
of referencies conclude the paper.



722 A. Borkowski, B. Siemiatkowska, and J. Szklarski

2 Semantic Navigation

Until now most effort in mobile robotics has been spent on geometric navigation.
Given a start position of the robot S and a goal position G, the navigation system
has to find a trajectory T that brings the robot from S to G avoiding obstacles
on the way. It is assumed that the positions S and G, as well as the location and
shape of obstacles, are given with respect to a certain global reference frame.
Under such premises, finding T would be a purely geometrical problem leading
to an infinite number of solutions. Therefore, usually additional constraints are
imposed on the trajectory, like the minimum length or the minimum energy
consumption. This leads to alternative solutions shown in Fig. 2 by a solid line
and a dashed line.

Fig. 2. Main components of geometrical navigation: start position A, goal position B,

trajectory T , free space and obstacles

The advantage of the geometric navigation is that it allows the control system
to move the robot more or less safely around its working area. The drawback of
this procedure lies in the lack of links to the task planning performed at a higher
level of abstraction than pure geometry. Let us consider a robot that should
perform transportation tasks in an office building. Its current task could be to
bring a parcel of books to the library. Assume that this parcel was placed on the
robot while it was standing in the hall of the building. Thus, Hall is the starting
place and Library is the goal place. Note that there is no need of geometrical
data about start and goal, provided the layout (topology) of the building is
given. Let it be a graph depicted in Fig. 3. Nodes of this graph correspond to
particular elements of the building. They bear names reflecting functionality of
these elements, which simplifies the human-machine interface. The order Go to
the library can be given via a touch screen or via a natural language recognition
system.
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Fig. 3. Main components of semantic navigation: start place Hall, goal place Library,
passable place Staircase, impassable place Elevator, trajectory {Hall, Staircase, Corri-
dor, Library}, alternative trajectory {Hall, Elevator, Library}

Edges of the layout graph (usually called topological map) reflect accessibility
relations between places. Knowing them, it is relatively easy to generate paths
that lead from the starting place to the goal place. Many efficient graph search
algorithms can be used for this purpose. Similarly as in the case of geometrical
navigation, additional requirements should be posed in order to obtain an unique
trajectory. A cost of traversing an edge could reflect either a distance between
places or any other parameter. It is also possible to mark nodes of the graph
as temporarily passable or impassable. In Fig. 3 the latter are drawn as circles
filled with black color. So, despite the circumstance that the trajectory {Hall,
Elevator, Library} is less ”expensive”, the robot will go through the staircase
and corridor, because the elevator is blocked for the time being.

Representing the layout of the building by a graph seems to be natural but flat
graphs are insufficiently expressive. Therefore, we prefer to use multilayered or
hierarchical graphs. The usage of such graphs for representing knowledge about
layout and functionality of buildings was subjected to our joint study with the
group led by Prof. Manfred Nagl [17,18,19,20].

Let us take an exemplary office building as a case study (Fig. 4). Omitting
details, we can present its layout in a three-level graph, as depicted in Fig. 5.
The top level describes blocks of the building. It is seen that long distance paths
require transversing the Central unit, where elevators are located. Each floor
has similar layout with rooms accessible directly from a corridor. As it will be
shown in the following Section, the functionality of a particular place (room)
can be stored in an attribute of the object. Such an attribute is rather static in
its nature, whereas other attributes (e.g. accessibility or passability) can be time
dependent.

The lowest level encompasses a single place. Here nodes of the graph corre-
spond to characteristic objects ( landmarks) that can be detected by the means
of the sensoric devices mounted on the robot. At the room level we change the
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Fig. 4. Exemplary office building: a) overall view; b) footprint

meaning of edges. Instead of accessibility relations attached to edges at higher
levels of the graph, we now introduce the global frame of reference Nord-South,
East-West and store in the edges relative positions of landmarks with respect
to this frame. Thus, a door may be situated to the north from the center of the
room, the desk to the east, etc. This requires, of course, the robot to be equipped
with a digital compass, which is a low cost sensor nowadays.

Within the frame of semantic navigation positioning means knowing the name
of a place in which the robot currently is. This can be achieved either by reading
a properly placed label (barcode, RFID, etc.) or by recognising the place on the
basis of its characteristic features. In the following Sections we show some ways
how such recognition can be accomplished.

3 Extracting Semantic Features from Documentation of
Buildings

3.1 Data Models in AEC-Industry

The support of 3D modeling of buildings can be traced back to the early 1970s.
At first, modeling was based on geometrical primitives, like octahedron, cylin-
der or pyramid, that were combined by means of Boolean operations (union,
inter-section, difference, etc.) to represent more complex shapes (Fig. 6a). Later,
Constructive Solid Geometry (CSG) was introduced, defining a final shape via
a sequence of Boolean operations ordered in a tree. An alternative way was the
so-called Boundary Representation (B-rep). In this model the shape is described
by vertices and edges, as shown in Fig. 6b. Both representations have played a
useful role in the development of CAD-systems – they have simplified the inte-
gration of efforts in different domains of engineering. However, this methodology
was not able to represent more than pure geometry of the considered object.

At present AEC industry tries to catch up to aerospace and automotive indus-
tries that extensively use digitized models in design, manufacturing and main-
tenance of their products. It seems that Building Information Modeling (BIM)



Towards Semantic Navigation 725

Fig. 5. Topological map of building: a) building level; b) floor level; c) room level

gives a chance of success in this endeavor. The object-based parametric mod-
eling that is the core of BIM-methodology takes the following attitude towards
representation of knowledge [9]:

1. Building components are described as hierarchically nested objects that have
attributes and application rules.

2. The data structure is consistent, non-redundant, and allows the extraction
of multiple views of the object.

A building within the BIM-framework is an assembly of instances of object
classes, like walls, floors, ceilings, etc. There is information about how these
components have been assembled together and about the constraints that make
the design feasible. It is obvious that intelligent components may ,,be told” to
take into account the needs of mobile robots as well. For example, a floor could
refuse to accept steps and a corridor could check whether it is wide enough for
two robots to pass each other.

One of the main advantages of BIM-compliant systems is their ability to
interchange data with applications coming from different disciplines. Such inter-
operability can be achieved using various data formats, but the format Industry
Foundation Classes (IFC) [10] seems to be most suitable with respect to the
linkage between AEC and MR.
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Fig. 6. Defining geometry: a) in CSG style, b) in B-rep style

Fig. 7. Main layers of the IFC model

As shown in Fig. 7, the IFC model consists of four hierarchically nested lay-
ers. The bottom layer contains 26 reusable constructs like Geometry, Topology,
Materials, etc. At the level of Interoperability Layer these constructs are com-
bined into Shared Objects. Such objects include not only generic elements of the
building itself, like walls, floors, columns, etc., but also generic elements of the
service, management and facility domains. This allows the IFC model to cover
the entire life-cycle of the building from its design through construction and
usage up to final dismantling.

The top layer refers to specific subdomains of knowledge related to AEC. The
most frequently used are the domains Architecture, Structural Analysis, Heating
and Ventilation. The domains Building Control and Telecommunication become
increasingly important in newly erected buildings.

The IFC model follows the known rules of the object-oriented data represen-
tation. It uses the EXPRESS data modeling language [12], developed within the
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frame of the ISO-STEP (Standard for the Exchange of Product Model Data)
initiative. All objects in EXPRESS are treated as entities subject to enumera-
tions and types. Objects stay in hierarchical parent-child trees with child nodes
inheriting properties from their parents. At each level of such a tree user-defined
attributes and relations can be introduced, which makes the IFC model exten-
sible and adjustable to various needs.

Let us take the EXPRESS definition of Space as an example:

ENTITY IfcSpace

SUBTYPE OF (IfcSpatialStructureElement);

InteriorOrExteriorSpace: IfcInternalOrExternalEnum;
ElevationWithFlooring: OPTIONAL IfcLengthMeasure;
INVERSE
HasCoverings: SET OF IfcRelCoversSpaces FOR RelatedSpace;
BoundedBy: SET OF IfcRelSpaceBoundary FOR RelatingSpace;
END_ENTITY;

A space represents an area or volume bounded physically or virtually. Spaces
are areas or volumes that provide certain functions within a building. Hence, the
description of space entity bears important information for a mobile robot that
is supposed to act inside this building.

A space can be either interior or exterior. An interior space is associated with
a building storey, whereas an exterior space is associated with a building site.
A space may span over several connected subspaces. Therefore, a space group
provides for a collection of spaces included in a storey. A space can also be
decomposed in parts, where each part defines a partial space. This is defined
by the CompositionType attribute of the supertype IfcSpatialStructureElement
which is interpreted as follows:

COMPLEX = space group
ELEMENT = space
PARTIAL = partial space

The inheritance chain of IfcSpace is rather long:

IfcRoot - IfcObjectDefinition - IfcObject - IfcProduct -
IfcSpatial-Element - IfcSpatialStructureElement - IfcSpace.

Due to this chain IfcSpace obtains several attributes that carry semantic infor-
mation (Name, Description, LongName, ObjectType). The functional category
of space is usually stored in the last attribute. Unfortunately, BIM-capable sys-
tems available at present are not very good at representing spaces and their
assemblies. ArchiCAD [13] allows the user to define Zones and Revit Architec-
ture [14] is able to extract automatically Rooms as spaces bounded by Walls,
Floors and Ceilings.
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An important ingredient of the IFC model is a Property Set (P-set). Property
sets are defined by the following entity:

ENTITY IfcPropertySet

SUBTYPE OF (IfcPropertySetDefinition);

HasProperties: SET [1:?] OF IfcProperty;
WHERE
WR31: EXISTS(SELF\IfcRoot.Name);
WR32: IfcUniquePropertyName(HasProperties);
END_ENTITY;

The P-set SpaceCommon is a property set common for all types of spaces. The
exemplary set SpaceFireSafetyRequirements contains the fire safety requirements
for all types of spaces. When needed, new P-sets can be defined by the user.

A property of an object is defined as:

ENTITY IfcProperty

ABSTRACT SUPERTYPE OF (ONEOF(IfcComplexProperty, IfcSimpleProperty));

Name : IfcIdentifier;

Description: OPTIONAL IfcText;

INVERSE

PartOfPset: SET OF IfcPropertySet FOR HasProperties;

PropertyForDependance: SET OF IfcPropertyDependencyRelationship

FOR DependingProperty;

PropertyDependsOn: SET OF IfcPropertyDependencyRelationship

FOR DependantProperty;

PartOfComplex: SET OF IfcComplexProperty FOR HasProperties;

END_ENTITY;

It is seen from this definition that a property can be either complex or simple.
The definition of the latter reads:

ENTITY IfcSimpleProperty

ABSTRACT SUPERTYPE OF (ONEOF(IfcPropertySingleValue,
IfcPropertyEnumeratedValue, IfcPropertyBoundedValue,
IfcPropertyTableValue, IfcPropertyReferenceValue,
IfcPropertyListValue))

SUBTYPE OF (IfcProperty);
END_ENTITY;

The above definitions of properties fulfill most needs of AEC industry. A
serious drawback with respect to mobile robotic applications is the deterministic
nature of properties in the IFC model. Moreover, the present release of IFC



Towards Semantic Navigation 729

contains a very limited number of properties describing the assumed function
of a space, a required security level in a specific zone of the building or other
functionality-oriented features. Some proposals how to overcome this deficiency
will be given in Section 3.3.

IFC also provides means of expressing relations between objects. These rela-
tions are grouped into abstract classes as follows:

1. Assigns defines relations between instances and parent entity.
2. Decomposes describes assemblies and their parts.
3. Associates relates information shared in different parts of the model.
4. Connects defines topological relationships between adjacent entities.

It is clear that the present set of relations must be enriched in order to make
BIM robot-friendly. This issue is also discussed in Section 3.3.

Fig. 8. Data transfer from AEC-format to MR-format

3.2 Taking Advantage of Existing BIM

The attempts to use documentation created when the building was designed for
building metric maps applicable in mobile robotics were made several years ago
[15,16]. However, at that time BIM was not available and extracting anything
more than geometry from CAD drawings was almost impossible. In principle,
one could think about representing maps of an in-door environment in one of
the data formats popular in the AEC-industry. However, there are too many
of them and they are less suited for sensor-based mapping and navigation than
formats developed by the MR-community. Therefore, the scheme depicted in
Fig. 8 seems to be preferable.
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The simplest way of transferring data from one application to another is to
use a proprietary file exchange format supplied by a CAD-vendor. We use this
procedure in the currently running project, worked up in cooperation with the
research group from the Jagiellonian University in Krakow [17].

The aim of this project is to develop a prototype software that translates
floor layouts produced by Revit Architecture into three types of maps suitable
for mobile robots:

1. Occupancy grids.
2. Accessibility graphs.
3. Feature maps.

Fig. 9. Room as a subspace of building

Occupancy grids serve as ground knowledge for the mapping module, accord-
ing to the scheme described in Section 4. Accessibility graphs and feature maps
help the navigation module in planning the routes that bring the robot into de-
sired places in the building. At present our translator takes into account only the
information present in the standard AEC-oriented BIM model of the building.
In such a model a building is composed of IfcWalls, and IfcSlabs – the entities
defined in IfcShared-BldgElements. Knowing these entities and relations Con-
nects between them, Revit Architecture automatically generates rooms as such
spaces bounded by walls, floors and ceilings (Fig. 9).

Rooms are treated as IfcSpace entities possibly related by Connects relation
(adjacency). There is no relation Accesses in the presently available BIM model.
Fortunately, it is easy to check which pairs of rooms are mutually accessible: they
must be adjacent and have a door in a common wall. IFC data sets uniquely
define locations of doors and their belonging to particular walls. Hence, a topo-
logical map containing adjacency and accessibility relations can be generated
relatively easily. Figure 10 shows a simple example of such a map.
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Fig. 10. Adjacency and accessibility relations: a) part of floor layout; b) topological

map

The nodes of this graph can be attributed to values taken from P-sets of
rooms. A label indicating the functional role of the room is probably the most
valuable information for the mobile robot. Such a label could be stored by the
designer either in LongName or in ObjectType. Other attributes, like an area of
the room, could also be of interest for a service robot.

Most commercially available AEC-CAD tools support architects, structural
engineers and other specialists in the phase of detailed design. Prior to entering
this phase, designers must take many conceptual decisions that are crucial for
the quality of the building. In our earlier papers [18,19] we investigated how an
architect can be supported by a computer in the phase of preliminary design.

It turned out that, at least for a functionality-driven design, a certain for-
malization of reasoning about the goals, that are to be fulfilled by the designed
building, helps the designer to find proper conceptual solutions. Such a formal-
ization can be based upon the theory of graph transformations [20]. It allows the
designer to convert informal wishes expressed by the investor into a formal spec-
ification of the building. This specification is stored in a form of the functionality
graph serving as a framework for various special layouts that are considered in
the conceptual phase of design. Functionality graphs bear close resemblance to
topological maps of the building. Therefore, we intend to incorporate their usage
in the future release of the tools transferring knowledge about the building from
the AEC-domain into the MR-domain.

3.3 Adapting BIM for Mobile Robots

Mobile robots can be seen as facilities inside intelligent buildings. The Domain
Layer of IFC includes Facilities Management. Base entities of this domain give
the user a possibility to include information relevant for mobile robots into BIM-
based description of the building.

Let us consider a typical layout of a control system for an intelligent build-
ing (Fig. 11). Such a building has multiple stationary sensors that measure
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Fig. 11. Mobile robots embedded in an intelligent building

temperature, lighting level and other parameters determining living comfort in
particular rooms. The data from the sensors are transmitted via an internal
communication network to controllers responsible for heating, ventilation, light-
ing, etc. The overall state of the building is monitored by the main controller
that could take under its supervision mobile robots as well. These robots could
perform various tasks, like cleaning floors of the building, transporting goods
inside it, etc. In order to be more precise, let us fix our attention on one particu-
lar, though quite important task: protecting the building against intruders. The
security system could be based upon a combination of stationary sensors and
mobile sentry robots. After receiving a signal that a certain suspicious motion
has been detected by a sensor in a particular room, the building controller could
send a sentry robot to check this room.

Can such a scenario be described by means of BIM? The answer to this
question is to a large extent positive. Stationary sensors are quoted in IfcBuild-
ingControlsDomain:

TYPE IfcSensorTypeEnum = ENUMERATION OF

( FLOWSENSOR, GASSENSOR, HEATSENSOR, HUMIDITYSENSOR, LIGHTSENSOR,

MOVEMENTSENSOR, PRESSURESENSOR, SMOKESENSOR, SOUNDSENSOR,

TEMPERATURESENSOR, USERDEFINED, NOTDEFINED);

END_TYPE;

A possibility to control various facilities of the building is granted by the
following entity:

ENTITY IfcControl;
. . .
Controls: SET OF IfcRelAssignsToControl FOR RelatingControl;
END_ENTITY;
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included in the Facility Management Domain. Examples of possible actions en-
compass moving an object inside the building:

ENTITY IfcMove

SUBTYPE OF (IfcTask);

MoveFrom: IfcSpatialStructureElement;
MoveTo: IfcSpatialStructureElement;
. . .
END_ENTITY;

or triggering an action:

ENTITY IfcOrderAction

SUBTYPE OF (IfcTask);
. . .
END_ENTITY;

when certain conditions hold. Thus, the controller of an intelligent building can
be implemented as a rule-based inference engine.

Moreover, BIM introduces Actors that play certain Roles :

ENTITY IfcActorRole;

Role: IfcRoleEnum;
UserDefinedRole: OPTIONAL IfcLabel;
Description: OPTIONAL IfcText;
WHERE

WR1: (Role <$>$ IfcRoleEnum.USERDEFINED) OR
((Role = IfcRoleEnum.USERDEFINED) AND
EXISTS(SELF.UserDefinedRole));
END_ENTITY;

Until now, this part of BIM has served for describing human actors that take
part in designing, constructing and exploiting buildings:

TYPE IfcRoleEnum = ENUMERATION OF

( SUPPLIER, MANUFACTURER, CONTRACTOR, SUBCONTRACTOR,
ARCHITECT, STRUCTURALENGINEER, . . .,
USERDEFINED);
END_TYPE;
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The open character of BIM allows the user to define his or her own actors and
their roles. Thus, mobile robots as active elements of intelligent buildings can be
easily modeled in the future. Moreover, BIM provides the possibility to define
Views. These are submodels tailored for the purpose of specific applications. At
present only the AEC-oriented view is available. It takes into account needs of the
major players in designing conventional buildings: an architect and a structural
engineer. A shift towards intelligent buildings will justify the effort to develop a
control-oriented view. Such a view should enable architects, developers of mobile
robots, suppliers of sensors and software engineers to cooperate efficiently on
elaborating complex solutions for comfortable housing.

4 Extracting Semantic Features from Laser Scans

Robotics was defined as the intelligent connection of perception with action. A
variety of sensing techniques is available to provide the perception. In mobile
robotics usually laser range finders are used in order to measure the distance
to objects in the operation area of the robot and the odometry to measure
internal parameters of the vehicle. The advantage of 2D laser range finders is high
accuracy and reliability of the measurements, however they scan the environment
in a single plane. Obstacles placed below or above that plane cannot be detected.
Today a lot of methods for 3D sensing are based on CMOS/CCD techniques.
Typical CMOS/CCD 3D systems are based on the stereo vision and like all
passive sensors they have difficulties providing reliable data in an environment
with changing illumination. Since 2006 the 3D range cameras have been available.
Active methods like 3D laser scanners give a better robustness.

To create a global model of an environment the scans have to be represented
in the same coordinate system. This process is called registration. Many rep-
resentations have been proposed, one of the most popular is 2D representation
[21,22,5]. However, when the service robot acts in a domestic environment the
2D-world model assumption is not fulfilled and a 3D method is preferred. Meth-
ods of 3D map building can be roughly divided into following groups:

– Full 3D representation of the environment: meshes [23,24], point clouds [25],
3D evidence grids. Methods of this kind allow to represent an unstructured
environment very precisely but are computationally expensive and consume
a large amount of memory.

– In the second group the environment is represented as a set of features for
instance walls [26,27,28]. The advantage of this approach is the compact
data representation but it cannot be used directly for a collision-free path
planning.

– The third approach combines 3D map and 2D grid-based representation.
2.5D elevation maps, extended elevation maps and multilayer maps are ex-
amples of this method [27,29].
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The algorithm described in Section 2 belongs to the third group but the
map represents not only metric information but also nonmetric properties of
the environment. We call this kind of representation semantic map. It means
assigning meaning to data. This kind of representation has simplified human-
robot communication. For instance the goal for the robot can be given using
semantic labels.

The path planning problem is typically formulated as follows: Knowing the
goal position and the robot position, find a collision free path leading from the
robot to the goal. The path should satisfy certain optimization criteria (for in-
stance it has to be the shortest one). Many path-planning algorithms have been
proposed [32], they can be classified according to two factors: the type of the en-
vironment (static or dynamic) and the knowledge about the environment (global
or local). The global path planning algorithms requires a complete knowledge
about the entire environment which is computationally expensive, and a large
amount of memory is required. The local path planning algorithms make use of
local knowledge only, which is faster, a small amount of memory is needed, it is
easier to respond to any local environmental change. However, the solution, e.g.,
the shortest path, is not necessarily optimal.

Our approach combines the advantages of local and global methods: the
planned path is optimal, the path is re-planned in response to changes in the
environment, the problem of local minima does not exist. Moreover, it is easy to
implement CNN on a parallel architecture in order to increase efficiency.

The scanning system used in our experiments is built on the basis of a SICK
LMS 200 laser range finder which is mounted on a rotating support. Sick LMS
200 measures distances to the obstacles in 2D plane with resolution 0.1◦, 0.5◦

or 1.0◦ and swiping space from −90◦ to +90◦. A plane with 181 (or 361) data
points is scanned in 13ms (or 26ms). The laser scanner is mounted on a special
support which rotates vertically from −15◦ to +90◦. Depending on the scanning
resolution it takes from 100ms to 3s. Figure 12 depicts the scanning system.

Fig. 12. 3D scanning system: a) Robot Elektron1, b) rotating support and LMS 200

scanning system, c) a sample cloud of points



736 A. Borkowski, B. Siemiatkowska, and J. Szklarski

Data from the laser are obtained in the local polar coordinate system (ri,j , φi,
θj), where: ri,j - the distance to an obstacle [meters], θi - the vertical angle,
φj - the horizontal angle. The local Cartesian coordinates are computed as
follows:

xi,j = ri,j · cos θi · cosφj ,
yi,j = ri,j · sin φj ,
zi,j = ri,j · sin θi · cosφj ,

(1)

where (xi,j , yi,j , zi,j) are Cartesian coordinates of the point (i, j).
Usually the next step is to transform these values into a point cloud which

is a set of 3D points in the Cartesian coordinate system with the robot in its
center (Eq. 1). Such a point cloud can be analyzed for a single 3D scan, or all
the points can be combined from different scans to form a global representation
of the environment in which the mobile robot is embedded.

For most applications, direct data from point clouds are not sufficient and for
some, usually quite sophisticated ones, additional processing is required. Gener-
ally, the aim of such processing is to detect and then gather information about
specific objects present in the environment. In the field of modern robotics it
is usually expected not only to trace the objects of interest, but also to assign
some semantic meaning to them.

Often the first step is to find some regular structures in the point cloud: flat
or curved smooth surfaces like spheres or cylinders, line segments joining sur-
faces, etc. Therefore, each point from the cloud can be assigned to its specific
element. Algorithms used in this process often have their counterparts in the
image analysis field, like the split-and-merge method, surface growing methods,
or the generalization of Hough transform [34]. Afterwards a single detected ele-
ment or a group of connected elements can be recognized as an object. Of course
applications of the discussed process are not only limited to robotics. Due to the
popularity of high-resolution 3D scanners they are used in architectural mod-
eling [35], industrial applications transforming real scenes into virtual reality
[36] and many more. However, it should be noted that it is of vital importance
that all the algorithms applied for real-time semantic object detection in mobile
robotics are fast.

Below we shortly discuss our simple approach to a very fast scene segmentation
with use of standard methods for image analysis. Essentially, the method is based
on the direct transformation of a point cloud from a single scene into the RGB
image. Afterwards we outline our knowledge-based expert system for semantic
labeling detected objects.

4.1 Converting Acquired Data into a 2D Image and Image
Segmentation

The most straightforward way to transform data from the laser scanner into an
image is to use (φ, θ) as the pixel coordinates and assign its color according to
the measured distance. A sample scene is shown in Fig. 13.
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Fig. 13. A sample gray-scale image representing distance from the robot in (φ, θ) space.

Maximum distance measured by the scanner is 8 meters. (Here, for clarity, we show all

distances greater than 4 meters as black.)

As first step of our process a flood fill algorithm is run on the image repre-
senting distance. The threshold for the algorithm is constant and it corresponds
to about 5 cm (the difference between neighbouring pixels is considered when
flooding). All areas which are too small to be classified are marked with number
0 and are not considered in any later stage of the process.

Fig. 14. Areas detected after the first stage of the segmentation process applied to

data presented in Fig. 13. Each area is marked with a different, arbitrary chosen, color.

After the first step is finished, one has a list of areas which represent ,,con-
tinuous structures” of the environment. For example, a chair standing in front
of a wall will be assigned to a different area than a wall since there is a large
change of distance between the chair’s edge and the wall. On the other hand,
walls, ceiling, and floor will be classified as a single area since the change of the
distance in all corners is assumed to be small.
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In order to obtain images more suitable for the information extraction we
map three coordinates associated with a normal vector for each pixel to RGB
values of an ordinary color image. For each pixel (i, j) we obtain its position p
in 3D Cartesian coordinates with the robot in its center. Then a normal vector
at (i, j) is calculated as a sum of cross products of p and vectors associated with
the four closest neighbours of (i, j).

A color RGB image is constructed by assigning values of the coordinates
nx,ny,nz as colors red, green and blue, accordingly. Then p is normalized and
each coordinate is mapped to an 8-bit color component as (−1, 1) → (0, 255).
Note that, for example, a ceiling or a floor will have red and green components
equal to 128, while the blue one will be larger than 128 for the floor (making
it blueish) and smaller than 128 for the ceiling (making it look more yellowish).
On the other hand, all of the planes perpendicular to the laser scanner will have
the blue component equal to 128. Moreover, walls which are placed along the
line of sight of the robot will be pink on their left-hand side and cyan on the
other side. An image generated in this way is depicted in Fig. 15.

Fig. 15. Data for the scene presented in Fig. 13 were transformed in order to obtain

normalized normal vectors n for each pixel. Absolute values of (x, y, z) coordinates of n
are presented as red, green and blue components of this 8-bit RGB image (e.g., nx = 0

gives red=0, nz = ±1 gives blue=255). Note the increasing noise for φ near φ = ±90◦.

Naturally, the straightforward mapping of angles φ, θ as pixel position does
not have to lead to the construction of images optimal for subsequent processing.
For example, it is evident that all measurements with φ = π/2 (for φ = −π/2 as
well) represent in fact the same point regardless of the value of θ. Consequently,
the resulting image in the region where φ ≈ ±π/2 is strongly distorted, also a
significant noise is observed. The noise arises due to the method for calculation
of the normal vectors – the entire region represents a small area of the real
environment and statistical errors from the laser are exaggerated accordingly.
Therefore, in our research we consider other mappings as well.
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For example it is convenient to convert data in (φ, θ) coordinates to the usual
spherical coordinate system (φ̂, θ̂) in which the robot is in the center, φ̂ is the
longitude and θ̂ is the latitude. Having done this, it is possible to use, e.g., the
Albers equal-area conic projection [37] which produces images representing the
environment in a somehow more natural way. Obviously, one has only a limited
number of measured points and therefore it is necessary to apply the appropriate
interpolation when projecting from (φ, θ) coordinates.

The purpose of the discussed segmentation is to perform a fast decomposition
of the gathered data into areas, each one representing a flat polygon in the real
scene. Along the most important areas are, of course, a ceiling, a floor, walls,
doors, etc. Besides the list of polygons, some numbers characterizing physical
properties of a polygon can also be extracted. These can be used later for better
object classification.

Having obtained a list of n areas by running the flood-fill algorithm on an
image representing distance, Figs. 13, 14, the next step is performed. It consists
of dividing the n areas into smaller ones by running the flood-fill algorithm on
the RGB image constructed from normals. For each area i, 1 ≤ i ≤ n, it is used
as a mask, so only pixels belonging to the area i are used as seed points and
all pixels from area outside i act as borders for the filling process. Eventually,
the second step gives a list of m ≥ n areas each representing a more or less flat
surface of the real scene.

In the final phase of the segmentation process the areas from step two are
converted into polygons in the full three-dimensional space. For each area i,
1 ≤ i ≤ n, we consider its pixels belonging to the inner edge of the area on
the border between i and the rest of the image. Of course every pixel directly
corresponds to a point in 3D space from the point cloud. Taking every 3D point
from all pixels forming the edge we obtain a list of vertices defining a connected
component – polygon – related to the area i. These polygons are used in a
classification procedure.

After the segmentation process is finished, some geometric features of the
scene are extracted and a list of flat surfaces is obtained. In order to assign a
semantic feature to such a surface we use the following characteristics (see also,
e.g., [34]).

– Size – usually an object which is supposed to be detected is characterized
by some reasonable geometrical size.

– Orientation – for example: walls or doors are always vertical, the ceiling is
always horizontal.

– Topology – relations between surfaces is important.

Based on the above characteristics a simple rule-based classifier is applied. In
such a system an object is labeled as door if it is a single, vertical surface with
the width within the range 1-2m, the height 1.5-2.5m, it connects directly to a
floor at its bottom and to a wall from all other sides.
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Fig. 16. Areas detected after the segmentation process. However, here processing is

done on an image which has been firstly projected using Albers conic projection.

4.2 Rapid Object Detection Using Haar-Like Features

Treating laser scanner data as an image makes it also possible to directly ap-
ply well known methods for object detection and pattern recognition from an
image analysis field. Here we show how to enrich our classification system by
using a scheme based on a boosted cascade of simple features to detect ob-
jects. Algorithms which are applied are available in the OpenCV library and
they implement methods proposed by [38] for basic set of Haar-like features and
by [39] for rotated features which enhance the basic set. After the system is
trained for recognition of certain objects, new images can be analysed very fast
while maintaining a good hit rate and a reasonably low false alarm rate. This
makes the method interesting and practical for our purposes. Moreover, having
direct geometrical information about a detected object we can often reject false
classifications just by analysing its real size.

Images generated from laser data in the way proposed above have, of course,
different properties than usual visual images gathered by cameras. For example,
illumination and any lighting conditions are not of our interest here. Either in
bright light with many shadows or in a completely dark room one gets the same
image. On the other hand, when the robot equipped with the scanner moves
on a floor, red and green components of the image change so there is some
dependency upon its position. This, however, does not have to lead to problems
with the object detection with use of the image analysis, since many of the
methods used for that purpose operate on gray-scale images.

In the first stage of our classifier it is necessary to train it for objects of interest.
Here we show examples how to detect a sink visible from the perspective of the
robot. In order to perform training a Haar-like classifier one needs a large set of
positive and negative example images. All of the images should be scaled to the
same size, we use 20x20. As the set of negative examples we use a large number
of arbitrary images representing a scene without any object of our interest, i.e.,
without any image of the sink in this case.
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Fig. 17. The left panel shows 21 images – a small subset of set of positive samples

which are used to train classifier for a sink-like object. On the right the result of

classification for test image is presented (the black rectangle). The test image was not

used in the training process. Here when converting the normals to RGB absolute values

|nx|, |ny |, |nz| instead of nx,ny, nz were used.

In order to get a set of positive examples we take several snapshots with the
laser scanner of a scene with the sink. Then, after constructing images repre-
senting the scene, we crop a sub-image with a sink only, making the background
translucent. In the next step all the sub-images are rotated about x, y, z axis
by random angles, intensity is randomly modified and sinks are placed onto
a random background image. Finally, we have 1000 different images of a sink
with random transformations placed onto different backgrounds. Large images
containing a sink serve as testing images after training.

After the training process is completed, the classifier can be applied to any
region of an image giving true if the region is likely to contain a pattern similar
to one of those from the positive samples set, false otherwise. The analysis is
very fast so one can try many different regions with varied sizes from all parts
of the image. By doing this in a loop one can search the entire image for an
object of interest. Figure 17 shows the result of such an analysis when searching
with a classifier trained for the detection of objects similar to a sink and stairs
respectively.

Areas corresponding to objects detected with the discussed method can be
processed later in our classification scheme when building a semantic map. Nat-
urally, each object which is going to be recognized has to have its own specifically
trained Haar-features classifier. In a more sophisticated approach it is possible
to combine object recognition from both: visual images and images constructed
from laser scans.

Figure 18 depicts a top-view of a sample global 3D map of the environment.
In such a map each cell corresponds to a cube of size 10 cm x 10 cm x 10 cm in
reality. If a certain object has been detected, appropriate cells in the map are
marked with specific semantic labels. On this sample map the following objects
have been detected: floor, ceiling (both omitted in the figure), wastebasket, door,
stair and washbasins.
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Fig. 18. A top-view of a sample global map of the environment. Cells represent uniden-

tified and identified obstacles, floor and ceiling on the image are omitted.

5 Path Planning

A task planning for mobile robots usually relies on the spatial information. Al-
though this kind of information is necessary for performing basic operations, the
use of semantic knowledge is useful at a higher degree of autonomy and intelli-
gence. In this section we show how this type of knowledge can be profitably used
for the robot path planning. We start by defining a specific type of semantic
maps, which integrate the metric information and the semantic knowledge.

The map of the environment is represented as a grid of cells, a list of semantic
labels is attached to each cell. This kind of representation allows us to find
easily the position of a specified object in the environment, and the relationship
between objects. We can also ask the robot to move to a door or along a corridor.
The path-planning algorithm which is proposed in this paper is implemented
using the Cellular Neural Network.

5.1 Cellular Neural Network

The Cellular Neural Network (CNN, also known as systolic arrays) was proposed
by L. O. Chua in 1988, as a very efficient tool for image analysis [30,31]. CNN
consists of neurons (cells) which interact locally. Usually cells are arranged in
a form of an N × M array. The cell in strip i and column j is denoted by the
symbol cij , its state is described by symbol xij .
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The cell ckl belongs to the neighbourhood of cij , if for a parameter r (radius
of neighbourhood) the following condition is fulfilled:

max(|i − k|, |j − l|) ≤ r. (2)

The neighbourhood of the cell cij is denoted by the symbol N ij
r . The CNN

is defined by the following parameters: input signals ukl
ij ∈ R, output signals

ykl
ij ∈ R, a bias I ∈ R, akl

ij - interconnection weight between the cells ckl and
cij , bkl

ij - the feed forward template parameter. The dynamics of the CNN is
described as follows:

xij(t + 1) =
∑

ckl∈Nij
r

akl
ijykl(t) +

∑
ckl∈Nij

r

bkl
ijukl(t) + I, (3)

yij(t + 1) = f(xij(t + 1)), (4)

were: f is an output function. Chua extended the definition of CNN. It is assumed
that CNN consists of cells that interact locally and can be modelled as locally
connected finite state machines. The new definition allows to widen the area of
possible applications.

5.2 Path Planning

The algorithm for path planning consists of the following parts:

– The N ×M grid-based traversability map is created based on the dual map
of the environment, each cell of the map represents the traversability level
(uij) of a corresponding area.

– The N × M CNN is built, each cell of the map corresponds to the cell of
CNN .

– The weights akl
ij of the interconnection between cij and ckl are computed.

akl
ij is proportional to the distance between centres of gravity of areas which

are represented by cells cij and ckl.
– uij is the input signal to the cell cij , the value of uij is computed based on

semantic knowledge.
– A set cG which represents the position of the goal is distinguished. Usually

this set consists of more than one neuron, the neuron cR - represents the
position of the robot.

– the value fij is computed for each cell of CNN :

f r
ij = fo(ui−r,j−r , ..., uij , ui+r,j+r), (5)

where r is the radius of the neighbourhood, fo is the function of input signals.
– The state of the cell cij is described as follows:

xij(t) =
{

K − f r
ij if cij = cG,

max(maxkl∈Nij
2

(ykl(t) − akl
ij ) − f r

ij , 0) if cij 
= cG.
(6)
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If a cell represents the goal position and is free of the obstacles, then its state
is static and equals K (very large number). If it is occupied then its state
equals to 0 . If a cell is not a goal and is free from the obstacles then its state
equals to the maximum value of the neighbouring cells minus the traversing
cost in other cases the state equals to 0.

– The output signal ykl of the cell ckl is described as follows:

ykl(t) = f(xkl(t)). (7)

In our approach f(x) = x.
The process of diffusion is continued until stability

∀i=1,..,N,j=1,..,M xij(t) = xij(t + 1). (8)

If the cell cij represents the position of the robot then the next position of the
vehicle is indicated by the neuron ckl ∈ N ij

2 for which the following formula is
fulfilled:

xkl(t) = max({xnm(t)}), where cnm ∈ Nkl
2 (9)

The planned path (an ordered list of cells) depends on the values of input
signals uij , function fo and the radius of the neighbourhood.

In most of the algorithms of path-planning, the robot is represented as a point
and the obstacles are extended by some radius in order to take into account the
dimensions of the robot. In many practical situations it is difficult to indicate
the best value of the radius and the method fails when a group of robots with
different sizes plan their paths based on the same map. In our approach, the
dimension of the robot is taken into account during the path planning - values
of parameters bkl

ij are computed. bkl
ij indicates the influence of an obstacle in the

area represented by the cell cij to the cell ckl.
If, for instance, the task for the robot is to move to the nearest table, then all

cells which correspond to the position of any table are activated and the path is
planned automatically. If the task for the robot is to move to the specified table,
then the cells which correspond to this table are activated.

Figure 19 presents the result of the path plannig to a washbasin. The dotted
line indicates the shortest path and the continuous line referes to the safest one.
R - represents the initial position of the robot.

In order to determine low-level primitives, a set of pairs (vt, ωt), where vt is
the linear velocity and ωt the rotational velocity of the robot at the moment
t, a modified dynamic window approach is used [33]. In this method the search
space consists of velocities that can be achieved by the robot, given its current
linear and angular velocities and its acceleration capabilities, within a given time
interval. This time interval corresponds to a servo tick of the control loop. In
the case of semantic navigation the set of admissible velocities depends also on
the environment. The maximal velocity of the robot is large in a big, empty
environment but the robot has to slow down near a door.
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Fig. 19. The path of the robot: the shortest path - dotted line, the safest path -

continuous line

Fig. 20. The executed path of the robot: Left: the path of the robot, Right, top: linear

velocities, Right, bottom: angular velocities

Velocities which maximize the function G(v, ϕ) are taken as optimal values.

G(v, ω) = a · Dyf(v, ω) + b · Dyfα(v, ω), (10)

where Dyf(v, ω) is the difference between the state value of a cell which represents
the current position of the robot and the value of the state after time Δt if
controls (v, ω) are applied, Dyfα(v, ω) is a function which favours trajectories
that lead straight towards the cell (cmax). cmax has the maximum state value in
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the neighbourhood of the cell which corresponds to the current position of the
robot, parameters a and b are scaling.

6 Conclusions

The mobile robotics is on the verge of transition from cognitive-driven research
to full scale applications. In the foreseeable future in-door class robots will be-
come important ingredients of facilities provided by public domain infrastructure
and by newly erected living habitats. In order to achieve the best performance,
mobile robots must be fully integrated into the functional concept of the building
and the building must be designed taking into account the presence of robots.
Such synergy requires the opening of a new interdisciplinary domain of research,
where people interested in designing buildings and mobile robots could meet and
exchange their needs and ideas. The present paper can be seen as a modest step
toward this goal.
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Abstract. Industrial process control is a profitable field for model driven

approaches. The paper presents an overview and discusses the basic con-

cepts and architectural principles. In future an increasing demand for

engineering and reengineering activities in the operative phase is ex-

pected. In the industrial process control environment the necessary soft-

ware changes in the operative phase often have to be performed without

stopping the execution of the control system. The paper presents ideas

and concepts to improve the model driven approaches and outlines ways

to an assisted and partially automated control engineering.

1 Introduction

In process industry every plant is unique. Even ”exact plant copies” are differ-
ent. Improved functionality, necessary adaptations to actual and local regula-
tions, the usage of new equipment and the deficiency of the old documentation
require a complete new engineering project. The reusability of process control
software can be seen as being zero. Process control software is written for only
one application and under heavy time and cost pressure. Process control software
is written by ”normal” automation engineers and poorly tested. On the other
hand, strong requirements with respect to software quality and functional safety
have to be kept. To master this problem the control engineers try to keep things
simple. They follow a traditional model-based engineering procedure. Standard-
ized and vendor-supported components are assembled in accordance to a world-
wide common design schema. The components are defined one after the other
and assembled by connecting them via designated communication associations.
Powerful engineering tools support the control engineering process. They offer
a comfortable graphical interface, they support a consistent specification of the
inter-component communication, they allow the building of macros, they prevent
basic design faults, they assist to distribute the specified functionality to the de-
centralized hardware allocations, they offer integrated simulation functionality
and so on. Due to these powerful tools and the simple and intuitive architecture,
the engineering of the control software was not stated as a critical problem. But
the situation is changing. The rapidly increasing amount of functionality, the
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required flexibility even in the operational stage, the need of verification and
the loss of competence within the engineering teams cannot be equalized by an
additional improvement of the classical tools. New approaches are required.

This paper starts with a short presentation of the structure of the produc-
tion control task and the respective software architecture principles. Currently
upcoming new requirements and challenges will be presented. The application
of model-based concepts to manage these requirements will be discussed. The
paper ends with a vision of the control architecture of the future.

2 Production Control Architecture

Figure 1 shows a so-called P&I Diagram (P&I =Pipe and Instrumentation) of
a chemical reactor. This is a typical example of a plant section in the process
industry.

Fig. 1. Example of a P&I-Diagram

In this reactor different chemical processes can be performed. Manufacturing
execution functions deal with all aspects of the control and supervision of such
type of plants and production processes. In this section we focus on the main
production control task. The production control task can be divided into two
parts: the plant- or resource-related part and the product- or recipe-related part.

2.1 Plant-Related Control Tasks

In many cases, the basic levels of control are independent of the special pro-
duction process. In figure 1 for example we find pumps, valves and a stirrer as
actuators. As shown in figure 2, for every actuator an individual control module
can be specified which captures all control requirements concerning this spe-
cific actuator. In a second step we can look for coordination tasks, which are
an intrinsic part of the functionality of a plant unit. The feed unit for input A
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Fig. 2. Plant related control modules

in figure 1 is a typical example. The following plant elements are part of this
functional group: on/off-pump N21, control valve Y 22 and the flow meter F23.
The coordination functions, which are necessary to control the flow-rate or to
carry out a dosing of input A, are independent of the specific production process.
Following a hierarchical control concept, we can comprise these group control
functions in a separate group control module as shown in figure 2. The hierar-
chical concept assumes that the lower level modules provide complete control
services that can be used by the upper level control modules.

On the base of this schema we can implement a bottom-up approach for
the specification of the control task. Starting with the single unit level we can
specify the actuator control modules. In the next step we define the group control
modules, then the section control modules and so on. We can go further as
long as we find control functions, which are intrinsic parts of the technological
plant and we have to stop if the specification of a functional interrelationship
restricts the flexibility of the plant in an undesired way. Obviously the limit
of the bottom-up approach strongly depends on the character of the plant. The
control tasks of plants which are designed to support exactly one specific process
(power plants, refineries..) can be structured nearly completely by the bottom-
up approach while in plants designed for flexible production (chemical plants,
pharmaceutical plants..) only a small part of the control task can be specified
by the bottom-up approach.

2.2 Product-Related Control Tasks

From a product-oriented point of view the structuring of the control task can be
started by a top-down specification of the production process. Processes can be
structured by partitioning into consecutive or parallel sub-processes. The control
function types that are needed to run the respective processes are described in
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form of recipes. The recipes can be partitioned related to the partitioning of the
process. Recipes are formulated on different abstraction levels. As described in
the batch control standard [7] recipes can be specified as general recipes, site
recipes, master recipes or control recipes. The most specific form is the control
recipe. The control recipe contains the complete instruction sequence, which is
necessary to run a specific process within a specific plant. It is possible to specify
the complete control functionality in the control recipe, but this would not be a
good idea. The definition of a motor logic is not a matter of a recipe specification.
Therefore, the overall control solution is a combination of the bottom-up and
the top-down approach.

2.3 Complete Structure

Figure 3 shows the complete structure of the control functionality as a com-
bination of the two approaches. The concept assumes, that every production
measure can be realized by an autonomous control module. This module has to
be dynamically implemented as planned in the production schedule. Besides the
measures to produce products, there are other measures like logistic measures,
diagnostic measures and so on that can be realized by the same concept.

Fig. 3. The complete structure of the control functionality

Obviously control is the main aspect of process control engineering. But there
are other aspects to be regarded, for example cross-cutting aspects like optimiza-
tion, monitoring etc. and system functional aspects like HMI, alarming, archiv-
ing, etc. Currently service oriented approaches are discussed to realize these
functionalities as standard blocks available for all applications of all hierarchical
levels.
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3 Software Architecture

The languages to describe control functions for industrial process control sys-
tems are defined in the international standard IEC61131 [6]. This is the leading
standard. All important international process control systems support the lan-
guages defined in this standard. The defined languages are: Instruction List (IL),
Ladder Diagram (LD), structured Text (ST), Function Block Diagram (FBD)
and Sequential Function Charts (SFC). These languages serve for modeling as
well as for coding. In process control engineering typically there is no distinction
between modeling and coding.

In this paper only the FBD and the SFC-languages will be referenced. The
main architectural principles can be explained on the base of these two languages.

Fig. 4. The single-device technology

The FBD-language realizes the function block model. The function block
model is the basic software-modeling concept in industrial process automation.
The characteristic features of the function block model can be explained clearly
by the old single-device technology. Figure 4 shows a central control room typi-
cal for the period around 1970. The figure on the right side shows the front and
the backside of a panel. In the functional model every device corresponds to a
function block and every electrical signal line to a communication connection.
Some of the characteristic features can be seen directly:

– Each device executes its internal functionality independent of the other de-
vices.

– The overall functionality is a result of the interaction of the single devices.
– The devices execute their functionality in a quasi-continuous way.

Each device calculates permanently its state values and output values. The per-
manent calculation can be realized by an analog circuit or by a μ-controller
running a program in a fast cycle. With the adjective ”quasi-continuous” it shall
be expressed, that the execution cycle is very short in comparison with the tech-
nological time constants. In this case the time discreteness of the output variables
can be neglected and the behavior of the device can technologically be seen to
be continuous.
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– The communication between the devices is realized by signal connections.
– Signal connections are separate elements (wires) and can be handled indi-

vidually and independently of the devices.
– Signal connections don’t affect the output value by reading

By abstracting the devices to their automation functionality we get the func-
tion block model. Figure 5 shows the automation functionality of the panel
in figure 4 in form of a function block model. The one-to-one correspondence
is obvious. Function blocks have inputs, internal states, outputs and a quasi-
continuously executed block-method. The block-method supplies the outputs
and the internal states quasi-continuously with actual values. Every block does
this at every point of time, independent of the control and data flow of the
application, independent of the state and the existence of other blocks and in-
dependent of existing or unexisting communication connections at the in- and
outputs. Function blocks act independently and concurrently. Communication
connections are separate active units. They have to assure that the values of the
inputs are set to the values of the respective outputs. The signal model requires
that the transmission is executed quasi-continuously and the read output value
is not affected.

Fig. 5. Function block model

The language FBD is a graphical language to specify such a function block
network. But this is not the main feature. The main feature is, that in pro-
cess control systems the function block network remains explicitly visible and
Δ-changeable in the execution structure of the control system. Software function
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blocks are components that can be manipulated online like the devices in the
single device technology. The possibility to correct and reengineer the function
block network during runtime was one of the main reasons for the success of this
model in the industrial practice.

If we realize the plant-related control modules in figure 3 as well as the
production-related control modules by function blocks or compounds of func-
tion blocks, we get a clear programming model for the ”programming in the
large”. The process control systems software architecture basically supports this
programming model and allows a flexible dynamic change of the engineered
structure even at the operating stage.

Function blocks are instances of function block types. The functionality of
a block-type is either given or has to be specified explicitly by one of the au-
tomation languages IL, ST, LD, FBD or SFC. In the first ”black box model” we
denominate the types as standard block types , in the second ”white box model”
as derived block types. Figure 6 shows a valve control module. A compound of
blocks as shown on the left side realizes the valve control. The compound con-
sists of a special valve type block and a network of standard blocks to realize
the role specific locking and wiring. The valve type block can be seen either as
a standard block, if there is a respective type available, or has to be specified
as a derived block, for example by a FBD specification as shown on the right side.

Fig. 6. Block types and compounds
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For the model based engineering of production-related control modules derived
blocks by SFC-specifications are of special interest. Figure 7 shows the principle
of a SFC-specification. In addition to the shown structure in figure 7 the SFC
syntax allows alternative and parallel branching. A SFC can be modeled as a
graph with steps, transitions and action blocks as nodes. To prevent undesirable
and inconsistent behavior [2] the graph has to fulfill structural restrictions.

Fig. 7. Elements of a SFC

4 Control Engineering in the Operation Phase

In the next years the amount of functionality to be implemented in the process
control environment will increase extensively. Requirements from the manufac-
turing execution level like asset management, performance monitoring, process
optimization, quality assurance etc. have to be supported by the functionality
of the process control level. These new functions are typically cross functions.
They do not fit into the classical hierarchical architecture and the classical in-
tuitive engineering process. New architectural principles are needed as well as
new engineering processes. The already existing model driven approaches have
to be improved significantly. A second trend can be stated. Figure 4.1 shows
the three main phases of a plant: the process development phase, the plant-
engineering phase and the operative phase. Within the process development
phase the production process has to be designed and specified. To master such
complex development processes model-driven approaches seem to be the right
answer. The results of the IMPROVE project [12] determine the current state
of the art. An engineering process is much less complicated than a development
process. Within the engineering process the concrete plant design, the methods
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to implement the required functionality and the technical realization are speci-
fied, as well as the procedures to operate and to maintain the plant. The control
engineering process starts when the principle design of the plant is fixed. The
P&I-diagram as shown in figure 1 is a typical starting point. In the past, control
engineering took place primarily in the engineering phase. Modifications of the
control software within the operating phase, caused for example by migrations
of the control system (ca every 10 years) or by revamps of the production plant
(ca every 5 years) were very seldom. But this situation is changing.

1. The migration cycles become much shorter. Most importantly, the computer
components change rapidly. The software systems have to be adapted con-
tinuously to new system versions.

2. The improvement of the process performance causes a permanent need for
optimization and adaptation of the control functionality.

3. Flexible plant structures, fast changing output requirements and dynami-
cally changing optimization goals cause unplanned modifications in the con-
trol solutions.

Fig. 8. Life cycle phases and control engineering activities

In the future we have to accept the control engineering process as a permanent
process along the life cycle of an industrial plant. As shown in figure 8, control
engineering starts with the engineering phase and will not end until the plant
is removed. The implementation of a permanent control engineering process in
the operating phase is a special challenge. Contrary to the situation in classical
software maintenance, in the process industry the change of control software has
to be realized typically without stopping the technical process and consequently
the execution of the overall control system. Besides the technical problem to
realize such an online changeability, it must be assured that the unconcerned
parts of the software will not be affected by the change. The correctness of the
concerned parts cannot be checked by a start up test, they become operative
immediately.
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The need for a highly formalized and systematic engineering process is obvi-
ous. In the next section current approaches to improve the engineering process
are discussed.

5 Towards a Methodical, Rule Assisted and Automated
Engineering

In this section some ideas will be presented on how the engineering process of in-
dustrial control software can be improved systematically. The focus is especially
on the modification of existing software during the operation phase.

5.1 Modeling the Engineering Process as a Series of Single
Transformation Steps

The engineering process can be seen as a series of single transformation steps.
At the left side in figure 9 a function block network is shown. To change this net-
work, for example, a new block can be created or deleted, a connection line can
be created or deleted or changed and so on. All these changes can be seen as ele-
mentary transitions from a pre-step model to a post step model. Interpreting the
function block model as a graph, the engineering process can be seen as a sequen-
tial graph rewriting. It has been shown that only a few rewriting types are needed
to manipulate a function block system completely. Adding rewriting rules guar-
antees that if the pre-transformation graph is correct, the post-transformation
graph is correct too. At the right side of figure 9 the rewriting rule for the imple-
mentation of a new communication connection is shown in PROGRES notation.
PROGRES is a graph grammar programming environment developed by the

Fig. 9. Engineering as a sequential graph rewriting process
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Chair of Comp. Science III at the RWTH Aachen University [11, 3]. The PRO-
GRES environment was used by [4] to specify the function block system. Up to
now the transformation of the function block network as a system of instances
has been discussed, but the same procedure can be used to change the methods of
derived block types declared by a SFC or FBD network. The modification of the
SFC-declarations is of special interest in order to adapt the control sequences
of the production-related measure types to frequently changing requirements.
Currently there is no rule declaration available describing allowed and forbidden
transformations of SFC-networks. Of course the commercial ”recipe” systems
have intrinsic rules to guarantee correct SFC-declarations but this is not suffi-
cient. It is necessary to specify the rules explicitly and to notate them in a formal
way. The formal analysis of SFC networks shown in [2] is a solid starting point.

The vision is a formally specified complete set of elementary transformation
types with their respective application rules for function block networks as well
as for the SFC or FBD specification of derived function block types. With this
set it becomes possible to modify the control software by a sequence of correct
elementary step instances.

5.2 Implementing an Engineering Service Architecture

The discussed change by elementary transformations is an operative concept.
The engineering process can be realized as a sequential process. Each step can
be performed separately. After each step the system is in a correct form. With
this background we can implement a special service architecture to structure
the engineering process. The basic system architecture is shown in figure 10.
The realization of the function block model is completely hidden from the engi-
neering process. Interaction with the model is only possible via the engineering
service interface. The engineering service interface offers services to explore the
model and services to realize the discussed basic transformations. For every basic
transformation type a service is specified which is able to carry out the trans-
formation with respect to the defined rules. The system divides the engineering
problem into two different parts: The conception and realization of the func-
tion block management system and the design of the engineering process as a
sequence of transformation service calls. These systems can be developed com-
pletely independently. They are coupled by the defined transformation services,
which realize the basic transformation steps.

For the industrial process control environment the concept offers the enabling
of new possibilities. The function block model can be stored in a passive data
repository but it can also be stored in an active object management system and
even in the online execution system. Hidden by the services, the same engineering
process can be used for the classical offline engineering but also for a real-time
online engineering with or without an immediate change of the active control
software. Modern control systems provide object-handling services as a basic part
of their runtime system. With this functionality, the realization of the engineering
services for the runtime environment becomes very easy.
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Fig. 10. The engineering service architecture

5.3 Automated and Assisted Engineering Functionality

To assist the engineer in the implementation of partially automated engineering
functions is one of the hot topics in the industrial process control environment. A
manifold of control functions can be specified in a rule based manner. Rules have
a premise and a conclusion. Here the conclusion is always a complex transition of
the function block system. This implies that the conclusion affects the function
block system only. On the other hand, the premises typically need information
of the structure and the characteristics of the technical plant, the processes, the
configuration of the control system and so on. An important precondition to
realize automated engineering functions is a formal and explicit readable form
of these specifications. To get an integrated concept we define a common meta-
model for all these different models and we equip all the models with the same
services for exploration and data acquisition. This concept is shown in figure 11.
The figure shows the models and meta-models and the possibility to change them
online by engineering service requests. The architecture is hierarchical. Starting
with the (meta-meta-) model ACPLT [10, 1], at the next level the (meta-) model
CAEX as defined in the international standard [8] specifies a unique understand-
ing of role-systems, components etc. Now the models split. PandIX is the base
for the description of chemical plants. The FBD and SFC models are the bases
for the description of the control software. Logically, the exploration services are
connected to the basic object model level, but the engineering services discussed
here are linked directly to the FBD, SFC-model level (they need the FBD, SFC
semantics to be able to check the transformation rules).
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Fig. 11. Basic concept of the model landscape

5.4 Towards “Correct” Models

From model based engineering two advantages are expected: A significant in-
crease of efficiency of the engineering process and a higher quality of the result-
ing control functionality. Adressing the second goal, transformation rules shall
be specified to generate always ”correct” models. But what is a ”correct” model?
This question can be split into three aspects:

- operating system level
On a basic ”operating system level” it is required that the application must
remain executable without any system failures and that the unconcerned parts
of the software will not be affected by the transformation. This is a strong re-
striction. After every single transformation step we need a correct executable
system. But this is the thinking of process control engineers and modern control
systems support this feature. If for example only FBD and SFC constructs are
used, the systems themselves allow only ”correct” transitions and guarantee their
non-interruptible execution. This is possible even for transitions in a real-time
environment as all these transitions are small and can be executed very fast.

- meta model conformence level
On a second ”meta model conformence level” the engineered models have to be
kept in accordance with the design rules of the respective metamodels by the
transformation process. In figure 11 for example, the ”FBD/SFC model” and
the ”hierachical control model” are metamodels to be regarded by the control
engineering process. The goal is to define general types of transformation steps -
or chains of transformation steps - which guaranty that the transformed control
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model remains correct in accordance with the FBD/SFC and hierachical con-
trol design rules. At the meta model conformence level it can be tolerated, that
correctness is not guaranteed until the final transformation step of a chain is
finished.

- application level
Correct operation and meta model consistency are an important base, but they
do not guarantee a meaningful application functionality. To understand an appli-
cation functionality, a broad and semantic complex knowledge of the goals and
the nature of the application is necessary. A general rule system would be too
complex. But, as shown in figure 11, most of the work is already done by defin-
ing the functionality of the plant (P&ID) and the processes (recipes). As shown
in chapter 2, this information can be translated methodically into the control
model. So it’s not possible to assure the correctness of the application, but it is
possible to assure the correct translation of the P&ID plant model information
into the control model.

5.5 Rule Integration

The vision of future control concepts is an integrated decentralized real-time
runtime environment with the FBD and SFC constructs as exclusive concepts.
The idea is to integrate functionalities like diagnosis, engineering and so on in
this concept. This seems to be possible, but there is still a problem. In any case
we need rules. So we have to formulate rules within a FBD or SFC concept. Here
we propose a model to describe rules by function block networks [13]. Figure 12
shows a detail of the premise test part of a rule. The shown function blocks are
instances of special ”rule” function block types. The ”AND” type is not a simple
logic type, the rule type ”AND” also organizes the execution of the sub-chains
to get the needed logic result at its input. A rule function block has two roles:
when activated, it executes a special search or comparison question in a given
context. It solves the question by own iteration and comparison methods and by
activating subordinated chains to solve subordinate questions. When the answer
of the question is completely ascertained, the function block stores the answer
and signals its completion. The rule execution can be interrupted to fulfill real-
time requirements. The last state remains stored in the involved blocks. With
only a handful of ”rule-block types” a powerful rule system can be established
by means of usual FBD language constructs. With this concept rules become an
integral part of the control software:

– rules can be engineered like other automation functions,
– rules can be engineered by other rules,
– rules can be executed in the runtime environment of the process control

system.

Engineering processes can be integrated as measures in the concept shown in
figure 3.
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Fig. 12. Formulating rules as function-block networks

6 Summary

Industrial process control is a profitable field for model-driven approaches. There
is a broad and traditional feeling for the value of models. The design problems
are challenging but not too complex. Basic functions are already realized within
commercial systems. The international language standards fit to model-based
concepts. Engineering and maintaining industrial control software addresses a
big market. The users are interested in getting more flexibility especially in the
operating phase, but they are also conservative. They are interested in keeping
things plain and understandable and they like their well-known language con-
structs like FBD or SFB. The presented concepts are fragments of an improved
new concept for the process control software design. There is a realistic possibil-
ity to take a big step in this direction within the next years. But we also have
to state that there are still substantial deficits in the model development and in
the formal description of the specifications. Up to now, there exists no complete,
verified and formally specified set of the basic transformations for FBD and
SFC structures. On the other hand, the automated implementation of add-on-
functions like balance supervision, asset monitoring or performance optimization
by model-based transformation processes become more and more usual in the
chemical industry. To encourage the users to implement such new concepts in
their production plants, it is helpful to organize the software in function integrity
levels. In figure 13 the function integrity model is shown. At the left side we see
a two-level model. Currently this is the usual model. The control functional-
ity is divided into two classes: safety-relevant functions and normal, non-safety
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Fig. 13. Functional integrity levels

relevant functions. Guard-functions assure that changes or errors in the normal
function level never affect the functionality of the underlying safety level. Safety
functions have prior access to the actuators. To fulfill the discussed new flex-
ibility requirements it seems helpful to expand the two-level model to a three
level model. The safety level remains unchanged but the normal level is split
into two new levels: a ”protected” level and a ”flexible changeable” level. The
protected level contains the basic functionality that is necessary to run the plant
in a normal ”protected” mode, to guard the plant hardware and the product
and to fulfill warranty requirements. The flexible level contains add-on functions
like KPI-calculations, advanced asset diagnosis and optimization functions, or
hooks up advanced control modes. The flexible and changeable level gives an
ideal playground to test model-driven approaches in industrial environments.
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