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Preface

This LNCS volume contains the papers presented at the 8th Simulated Evolution
and Learning (SEAL 2010) Conference held during December 1–4, 2010 at the
Indian Institute of Technology Kanpur in India. SEAL is a prestigious interna-
tional conference series in evolutionary optimization and machine learning. This
biennial event started in Seoul, South Korea in 1996 and was thereafter held in
Canberra, Australia in 1998, Nagoya, Japan in 2000, Singapore in 2002, Busan,
South Korea in 2004, Hefei, China in 2006 and Melbourne, Australia in 2008.

SEAL 2010 received 141 paper submissions in total from 30 countries. After
a rigorous peer-review process involving 431 reviews in total (averaging a little
more than 3 reviews per paper), 60 full-length and 19 short papers were accepted
for presentation (both oral and poster) at the conference. The full-length papers
alone correspond to a 42.6% acceptance rate and short papers add another 13.5%.

The papers included in this LNCS volume cover a wide range of topics in simu-
lated evolution and learning. The accepted papers have been classified into the fol-
lowing main categories: (a) theoretical developments, (b) evolutionary algorithms
and applications, (c) learning methodologies, (d) multi-objective evolutionary al-
gorithms and applications, (e) hybrid algorithms and (f) industrial applications.

The conference featured three distinguished keynote speakers. Narendra
Karmarkar’s talk on “Beyond Convexity: New Perspectives in Computational
Optimization” focused on providing new theoretical concepts for non-convex
optimization and indicated a rich connection between optimization and math-
ematical physics and also showed a deep significance of advanced geometry to
optimization. The advancement of optimization theory for non-convex problems
is beneficial for meta-heuristic optimization algorithms such as evolutionary al-
gorithms. Manindra Agrawal’s talk on “PRIMES is in P” provided a much-
improved version of his celebrated and ground-breaking 2002 work on polyno-
mial time algorithm for testing prime numbers. The theoretical computation
work presented in this keynote lecture should be motivating for the evolutionary
optimization and machine learning community at large. Toshio Fukuda’s talk on
“Intelligent Robot for Multi-mode Locomotion” showcased how multiple locomo-
tions adopted by animals can be mimicked in developing highly robust robots for
performing different tasks. The learning behaviors portrayed in the talk should
be motivating to the researchers in evolutionary learning and robotics alike.

SEAL 2010 also included two tutorials, which were free to all conference
participants. Tutorial topics were chosen from two complementary areas of evo-
lutionary computing. B. Yegnanarayana’s tutorial on “Artificial Neural Networks
and Applications in Optimization” systematically introduced the principles of
artificial neural networks (ANN) and their applications in various problems.
ANN has been extensively used in learning and modeling problems; however,
an efficient use of ANN requires knowledge and understanding of the intricacies



VI Preface

of its fundamental principles. This tutorial inspired both novices and experts
of ANN to a greater understanding of the very fundamentals of its working
principles. The tutorial by Debabrata Goswami on “Quantum Computing” in-
troduced the fast-growing methodologies of quantum computing techniques. The
ideas portrayed in the tutorial motivated evolutionary computing researchers to
pay more attention to the collaborative activities between the two fields. These
two tutorials made an excellent start to the four-day conference.

We take this opportunity to thank authors of all submitted papers for their
hard work, adherence to the deadlines and patience with the review process. The
quality of a refereed volume depends mainly on the expertise and dedication of
the reviewers. We are indebted to the Program Committee members, who not
only produced excellent reviews but also did these in the short time frames that
they were given. The review process would not have been possible without the
tireless dedication of Amit Saha and Shivam Gupta and their coherent core team
at KanGAL (Sunith Bandaru, Rituparna Dutta, Soumil Srivastava, Rupesh Sri-
vastava, and Rupesh Tulshyan) in interacting with authors, Program Committee
members and simultaneously with the Chairs.

We would also like to thank our sponsors for providing all the support and
financial assistance. First, we are indebted to the IIT Kanpur administration
team (the director, the deputy director, deans, and faculty colleagues and ad-
ministrative personnel) for supporting our cause and encouraging us to organize
the conference at IIT Kanpur. We would like to thank Xin Yao, Xiaodong Li,
Mengjie Zhang for showing confidence in us in organizing the SEAL 2010 con-
ference in India. The financial assistance from the Golden Jubilee Committee,
IIT Kanpur, Department of Science and Technology (DST), New Delhi, and
the Council of Scientific and Industrial Research (CSIR), New Delhi in meeting
a major portion of the expenses is highly appreciated. Contributions including
financial support from Esteco, Italy and USA, General Electric, Bangalore, Gen-
eral Motors, Bangalore, and TCS Innovation Lab, Delhi, were extremely helpful
in arranging the conference. We would also like to thank the participants of this
conference who, despite the difficulties in getting to Kanpur, considered attend-
ing the conference above all hardships. Finally, we would like to thank all the
volunteers whose tireless efforts included meeting the deadlines and arranging
every detail to make sure that the conference ran smoothly. We hope the readers
of these proceedings find the papers inspiring and enjoyable.

December 2010 Kalyanmoy Deb
Varun Aggarwal

Arnab Bhattacharya
Nirupam Chakraborti
Partha Chakroborty

Swagatam Das
Joydeep Dutta

Santosh K. Gupta
Ashu Jain
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Learning Cellular Automata Rules for Pattern Reconstruction Task . . . . 240
Anna Piwonska and Franciszek Seredynski

Evolving Fuzzy Rules: Evaluation of a New Approach . . . . . . . . . . . . . . . . 250
Adam Ghandar, Zbigniew Michalewicz, and Frank Neumann

A Niched Genetic Programming Algorithm for Classification Rules
Discovery in Geographic Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Marconi de Arruda Pereira, Clodoveu Augusto Davis Júnior, and
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Abstract. For computational solutions of convex optimization problems,
a rich body of knowledge including theory, algorithms, and computational
experience is now available. In contrast, nothing of comparable depth and
completeness can be offered at the present time, for non-convex problems.
The field of convex optimization benefited immensely from pre-existing
body of concepts and knowledge from pure mathematics, while non-convex
problems seems to require formulation and exploration of entirely new
mathematical concepts, as well as new models of computation. The intent
of this paper is to describe our efforts in this direction, at a philosophical
or conceptual level, without going into specific applications or implemen-
tation in software. We also point out connections with other areas, partic-
ularly mathematical physics.

1 Introduction

Theory of convex optimization successfully exploits geometric and topological
properties of the underlying space. Any extension to non-convex problems re-
quires critical examination of these properties, extracting what is essential for
success, and formulating more general conceptual framework. In this paper, we
describe our investigation in this direction, organized along the following topics:

– Graded Connectivity: Moduli Spaces for Connected Sets
– Space Curvature and Generalized Parallelism
– Locally Exact Models: Linear and Quadratic
– Linear Models
– Quadratic Models
– Relativized Concept of Algebraic Curves
– Space Extension for Connectivity
– Continuous Models of Computation

2 Graded Connectivity

2.1 Introduction

Let f(x), x ∈ IRn be the function to be minimized. The downward level set of
f corresponding to level α is defined as: Lf(α) = {x ∈ IRn|f(x) ≤ α}.

K. Deb et al. (Eds.): SEAL 2010, LNCS 6457, pp. 1–23, 2010.
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2 N. Karmarkar

For maximization problems, upward level sets are defined similarly, reversing
the inequality above. Unless otherwise stated, the level sets are assumed to be
connected. If not, a remedy is given in the section on space extension.

A convex set is defined by requiring that every pair of points in the set can
be joined by a straight line segment lying entirely in the set. However, if the
function we wish to minimize is not convex, but has connected level sets, one
should, in principle be able to construct a path leading to the solution [20]. The
topological definition of connected set only requires that we can connect any pair
of points in the set by a continuous path, lying entirely in the set, a much less
stringent requirement than the straight line segment required for convexity. In
differential topology, one requires more – the path should be smooth, while these
notions serve the goals of topology very well, in the discipline of computational
mathematics, one needs to have two further properties – possibility of

finite representation, and
efficient operations.

Therefore, we introduce the following concept of graded connectivity:

Definition 2.1. A connected subset of IRn is (k, l) − connected if any pair of
points in the set can be joined by segment of a curve of degree not exceeding k
and dimension not exceeding l, lying entirely in the set.

Parameters k and l will be referred to as connectivity indices. As per this def., a
convex set has the simplest type of connectivity – it is (1, 1)− connected. Let us
consider a few more examples. Suppose any pair of points in the set can be joined
by a segment of plane cubic curve in the set. Then it would be (3, 2)−connected.
If any pair of points in the set can be joined by segment of a planar curve lying
in the set, it would be (∞, 2) − connected.

Definition 2.2. A function defined on open connected subset of IRn has connec-
tivity indices k and l for minimization if the downward level sets of the function,
are (k, l) − connected.

As per this definition, a convex or pseudo-convex function has lowest values for
connectivity indices – (1, 1). Let us consider examples in the next layer.

2.2 Example

Consider the following two subsets of IR2:

C = {(x, y) ∈ IR2 | x2 + y2 ≤ 1} (1)
H = {(x, y) ∈ IR2 | x2 − y2 ≤ 1} (2)

From a computational point of view, the first set, bounded by a circle, would
be regarded as “easy”, since it is convex, while the second set, bounded by a
pair of hyperbolas, would be regarded as “difficult”, since it is not convex. But
both are connected, the first one being (1, 1) − connected. What can we say
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about the connectivity indices of the second? It is well known that a circle and
hyperbola are both conic sections, and projectively equivalent. Hence if we give
a projectively invariant construction for joining a pair of points in one of these
sets, it will be equally applicable to the other.

We give such a construction, for not just one curve but an entire family of
curves parameterized by a parameter λ. Suppose we are given, in addition to the
parameter λ, a pair of points to be joined, say P and Q on the boundary of the
circle. (Boundary points are the extreme case, joining interior points is simpler.)
Here is the construction:

1. Draw tangents to the boundary at points P and Q.
2. Let R be their point of intersection.
3. Consider a pencil of lines passing through R.
4. A generic line l in the pencil will intersect the circle in two points, say S and

T (they may have complex co-ordinates).
5. Take an unknown point X on the line l so that the cross-ratio of the four

points R, S, T, X denoted by [R,S,T,X] satisfies the following equation for
the curve parameter λ

[R, S, T, X ] = λ. (3)

6. As we vary the line l in the pencil, the points X trace out a curve.
7. For each value of the parameter λ, we get one such curve segment connecting

P and Q.

The result of this construction for the hyperbola is shown in Figures 1 and 2.
The upper and lower portions of the ellipse in Figure 1 actually are two different
joining paths, corresponding to two different values of λ.

Note that each step of the construction has a projectively invariant meaning –
concept of tangents, intersection of the two tangents, intersection of the members
of the pencil with the curve and the solution of cross-ratio equation defining the
final point X . Hence the construction itself is projectively invariant. If we apply
a projective transformation to the original curve and carry out the construction

Fig. 1. Joining P and Q on two different
branches of the hyperbola

Fig. 2. Joining P and Q on the same
branch of the hyperbola
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in the transformed space, the joining path we get is the image of the joining
path in the original space under the same transformation. It turns out that this
construction applied to conic sections always leads to segments of conic sections
connecting the two points. Hence the set H is (2, 2) − connected.

The same construction also works for the complement of the set under con-
sideration, provided one works in the projective space. In that case, the outside
of circle and Hc are also (2, 2) − connected.

Some further observations regarding the family of curves obtained by this
method as the parameter λ is varied:

1. All curves in the family pass through the same two points P and Q and also
share the same two tangents at those two points.

2. The family of curves forms what is known as a linear system [34] in algebraic
geometry.

The family of curves obtained by this construction also shows that the straight
line segment connecting P and Q can be alternatively viewed in an interesting
form – as a limiting case of an ellipse degenerating into double cover of the
straight line segment as the length of the minor axis of the ellipse tends to zero.
It can also be obtained directly for λ = 1

2 .
This example shows that a set such as H defined above, while not convex, is

only moderately more difficult to work with than a convex set. The intent here
is to rectify the current “All or Nothing” situation in optimization. For convex
optimization we have a great theory and efficient algorithms, otherwise, nothing
much can be said. By introducing gradation in the nature of connectivity, we
have the possibility of more efficient methods for smaller values of connectivity
indices. In Section 6, we will analyze s02(x), related to potential function in [20],
in n dimension. For now, we mention that for n = 2 level sets of s02 correspond
to symmetrized version of H :

{x ∈ IRn|s02(x) ≤ 1} = {(x, y) ∈ IR2 | x2 − y2 ≤ 1, y2 − x2 ≤ 1} (4)

3 Space Curvature and Generalized Parallelism

3.1 Introduction

Note that the definition of graded connectivity in the last section implicitly used
the Euclidean Geometry of IRn. The notions of dimension and degree depend
on the geometry of the underlying space in a very fundamental way, since they
depend on the concept of parallelism itself. Evolution of foundational aspects
of geometry in last two centuries have clarified that the notion of parallelism is
not absolute, but a matter of choice. In Riemannian geometry, parallel transport
is formalized in terms of Levi-Civita connection [28]. The general definition of
connectivity indices also includes specification of a connection.

Interior point advances in optimization are based on Riemannian geometry
[21]. The main features are:
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Simplex as a Lie Group. Consider interior of simplex Sn in IRn defined by∑
i x

i = 1, xi > 0. This is a Lie Group with the following definition for
multiplication:

x,y ∈ Sn, (x ◦ y)i =
xiyi∑
i xiyi

(5)

Projectively Invariant Metric. This is given by:

gij(x) =
1

xixj

(
δij − 1

n

)
(6)

This metric has an interesting property that an observer at any point in the
interior of the simplex will think that he is at the “center” of the universe!
Note that, in dimension four, Gödel’s [17] p.168 model of universe had similar
homogeneity. In the model above, transitivity holds for any dimension.

Performance proportional to Curvature. The algorithm follows a continu-
ous trajectory given by a differential equation, and it’s performance is shown
to be proportional to integrated curvature of the curve measured in the Rie-
mannian metric.

Averaging based on Fibre Bundle. A set of linear programming problems
are stacked into a fibre bundle for the purpose of defining an ensemble over
which average performance is measured. A tight bound proved on this per-
formance in terms of curvature corroborates well with performance observed
in practice.

For other treatments of applications of Riemannian Geometry to linear and non-
linear optimization, see [49,38]. Earlier, there were also some attempts, in the
context of convex functions to take the hessian of the function as metric, but
this choice is somewhat ad-hoc and the corresponding affine connection does not
satisfy the PDE described in next section.

Riemannian Geometry, which is based on a positive definite metric, is not ad-
equate for more general non-convex situations. Differential Geometry has under-
gone major broadening of the concepts laid down by Riemann, often motivated
by requirements of major scientific application, and in the same vein, the field
of optimization is making further demands for it’s broadening.

From the point of view adopted here, the major conceptual streams are:

Riemannian Geometry. This is based on positive definite differential
quadratic form, which gives the metric, and geodesics based on this met-
ric.These developments were initiated by Gauss [13], Lubachevsky [29], Rie-
mann [41], Christoffel [7], Ricci [40], and extended further in many directions
(e.g Finsler [12]).

Indefinite Metric, Lorentzian. This is a major step, that allows the met-
ric to be indefinite (but still non-singular). In particular, signature of the
Lorentz metric is [+,−,−,−]. This was developed and applied by Minkowski
[31] and Einstein [30], to provide mathematical foundation for the theory of
general relativity. Global structure of Lorentzian geometry is quite differ-
ent from Riemannian case. There is no analog of Hopf-Rinow [18] theorem.
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Also, Lorentzian manifolds encountered in applications can be be geodesi-
cally disconnected, i.e. not (1,1)-connected as per above definition. But if
not (1,1)-connected, could they be connected for higher values of k and l?
The concepts introduced here raise an interesting question of connectivity
indices for Lorentzian universe with various mass distributions.

Theory of Connections. While a Riemannian metric gives a unique compat-
ible affine connection, one can take the connection as the main quantity
defining parallelism and geodesics. This more general point of view was de-
veloped by Weyl [30], Eddington [8], Einstein [30], Cartan [5], Schordinger
[43], Eisenhart [10], Veblen [50], Thomas [50], Ehresmann [9]. In this paper
similar approach helps in more general framework for optimization.

Multi-Cellular Differential Geometry. Insisting that the metric is non-
singular everywhere seems too restrictive, from the point of view of ap-
plications. A more general view is that it should be non-singular almost
everywhere, but one should allow for the possibility of lower dimensional
sets where the metric is singular. In case the singular hyper-surface has co-
dimension one, it can partition the original connected manifold into multiple
connected components called “cells” or “zones”. In case the metric is semi-
definite, interior of each cell still has a Riemannian geometry, but in the
more general case, the signature of the metric may change when crossing the
zone boundary.
We came across examples (see section on quadratic models) of interior-point
trajectory crossing from Riemannian to Lorentzian cell, in our “synthetic”
universe of non-convex optimization. Similar “signature changing” transition
has been hypothesized in the “natural” universe by Hartle and Hawking [16],
and significant efforts directed towards it’s analysis.
In the example we give, the transition point can be controlled to some extent
by choice of parameters, constrained by a quantity called “reciprocal distance
to closest non-solution”, but the transition is essential and distinguishes
satisfiable instances from non-satisfiable ones.
In the context of classical General Relativity, geodesics crossing cell bound-
aries have been analyzed by Kossowski [25], Larsen [26] and many others. In
multi-dimensional non-convex optimization there is greater diversity of cell-
crossing behaviors. This is to be expected in view of effects like refraction or
total internal reflection encountered in classical ray optics based on Fermat’s
variational principle and more modern negative-index meta-materials.
It seems that a more general development of such geometry has not yet
been undertaken by pure mathematicians. We are referring to this as “multi-
cellular” geometry. This may be done in “top-down” fashion by decomposing
a given connected manifold by the hyper-surface defined by det(g) = 0 or
by gluing together cells as done in some approaches to quantum gravity. In
the gluing approach, any projectively invariant metric as mentioned in Sec-
tion 3.1 has the natural advantage that in case of two simplices intersecting
in a lower dimensional face (which has a metric given by the same formula),
the metrics induced on that face from both, agree.
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3.2 Summary of Notation

Terminology and notation used in differential geometry and its applications has
been changing considerably, over the last one and half century. Modern notation
emphasizes independence from co-ordinates, while the older classical notation
sometimes looks cumbersome, since it conveys not only the operations on ten-
sors, but how to carry them out in one particular co-ordinate system. Therefore,
it still has a merit when it comes to actual software implementation, since an
explicit representation is needed anyway. The notation is also expressive enough
to permit automated parsing and conversion into computer programs. Since ef-
ficient implementation is a big part of our research program, we chose to follow
the older notation and terminology. Our experience is corroborated by those
who implement codes for numerical General Relativity. For help in interpreta-
tion and inter-conversion of various notations and terminology, we recommend
Misner [32], written for physicists and Spivak [46], which is written in the spirit
of a friendly tour guide to differential geometry. For more formal treatment,
see Kobayashi [24], Chern [6]. We follow Einstein summation convention for re-
peated covariant and contra-variant tensor indices. If a particular subscript or
superscript does not have a significance in the tensor notation, but is simply
a label to identify members of set, we enclose it in (), e.g. f

(α)
i , α ∈ S refers

to ith component of the first covariant derivative of function f from a set S,
superscripted with membership label α.

The metric will denoted by gij The corresponding affine connection is denoted
by Γ k

ij , and is given in terms of the metric by means of eqs. (7-9). Some times
only the connection is defined without any metric.In this paper, connection is
always symmetric. Eq. (10) gives geodesics in terms of the connection.

Christoffel’s symbols of the first kind

[ij, k] =
1
2

[
∂gjk

∂xi
+

∂gik

∂xj
− ∂gij

∂xk

]
(7)

Christoffel’s symbols of the second kind

{l
ij} = glk[ij, k] (8)

Coefficients of Affine Connection

Γ k
ij = {k

ij} (9)

Differential Equation for the geodesics

ẍk + Γk
ijẋ

iẋj = 0 (10)

A variation of this equation is obtained by multiplying by det(g). It is par-
ticularly advantageous when computing geodesic crossing cell boundary.

det(g)ẍl + adj(g)lk[ij, k]ẋiẋj = 0 (11)
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4 Locally Exact Models: Linear and Quadratic

4.1 Introduction

A number of computational methods in optimization and solving equations make
use of locally approximate linear or quadratic models based on Taylor expansion
of the functions involved at a point. This includes Newton’s method, homotopy
methods, interior-point methods, SQP [14], trust region methods [33], etc.

– Strength of this approach lies in the availability of efficient linear algebraic
methods for various computations on the linear of quadratic models.

– Limitations of the approach results from the fact the models are local and
approximate.

Much of the analysis of such methods is aimed at bounding the effect of such
approximations. e.g. For Newton’s method, see α−theory given in Smale [45]. For
interior point methods for convex problems, considerable unification is obtained
by means of the concept self-concordant functions Nesterov [35].

Given the success of linear and quadratic models, can we improve on their
limitations? In this paper, we give a methodology that still continues to be local
but can be made exact, by defining appropriate space curvature adapted to the
function(s) under consideration. Note that in many applications of differential
geometry, a manifold with a metric or affine connection is given first, and then
one wants study behavior of functions and their covariant derivatives relative
to the given connection. Here we are reversing the roles. Functions of interest,
defining objective(s) or constraints are given first, and we want to explore if we
can set up a suitably curved space so that the functions behave in a particularly
simple way, as linear or quadratic, along the geodesics in the space. This is similar
to the situation in the theory of General Relativity. Matter acts like source of the
curvature of space.Given a mass distribution, one asks if there is some curvature
that can be assigned to the space so that behavior of test particles in response
would follow from the space curvature alone – along the generalized straight
lines, i.e. geodesics. Here, the given functions are the sources of curvature.

4.2 Partial Differential Equation for the Affine Connection

Let f(x) be a function of interest. If we are to find a symmetric affine connection
Γ k

ij so that f is linear or quadratic w.r.t. that connection, then second or third
covariant derivative of f based on the connection should be zero, respectively.
This gives a P.D.E. to be satisfied by the connection. Expressions for first three
covariant derivatives are:

First Derivative
fi =

∂f

∂xi
(12)

Second Derivative

fij =
∂2f

∂xi∂xj
− Γ k

ij

∂f

∂xk
(13)
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Third Derivative

fijk =
∂3f

∂xi∂xj∂xk
−
{

Γ l
ij

∂2f

∂xl∂xk
+ Γ l

jk

∂2f

∂xl∂xi
+ Γ l

ki

∂2f

∂xl∂xj

}

+{Γ l
ijΓ

m
lk + Γ l

jkΓ m
li + Γ l

kiΓ
m
lj }

∂f

∂xm

−
{

∂

∂xk
(Γ l

ij) + Γ m
ij Γ l

mk

}
∂f

∂xl
(14)

If we set the third covariant derivative to zero, we get a first order, non-linear
(just quadratic) PDE in the unknown Γ l

ij , and we also have the right num-
ber of unknown functions to try to solve it. But solving this numerically in
higher dimensional space can be computationally expensive. While there may
be situations where it’s important enough to get a solution computationally,
the approach here is different. We have identified situations where under certain
conditions we can get a closed form analytical solution by symbolic means for a
class of problems. The closed form solutions can then be deployed in particular
numerical instances of the class.

5 Linear Models

Suppose we are given a set of m functions, on a manifold of dimension n,

f (i), i = 1, .., m, m ≤ n (15)

which are functionally independent in the given co-ordinate patch. Since we are
describing a local model, there is no loss of generality in working with an open set
U ⊆ IRn, to keep the exposition simple. Using the co-ordinates xj , j = 1, . . . , n
the jacobian matrix J , in this patch is given by

J i
j =

∂f (i)

∂xj
, rank(J) = m (16)

Define a set of m × n functions

hj
(k)(x), k = 1, .., m, j = 1, .., n so that

n∑
j=1

hj
(k)

∂f (l)

∂xj
= δl

k. (17)

In general there are many ways to do this, e.g. one can use inverse of any m×m
non-singular sub-matrix of J . If m < n, there are many choices possible. one
can use randomization or the following least-squares type equation, for positive
definite Q(x):

hj
(k) = ((JQJT )−1JQ)j

k (18)

Now we can define the desired connection as

Γ l
ij =

m∑
k=1

∂2f (k)

∂xi∂xj
hl

(k) (19)
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It is easy to check that the second covariant derivative of each of the functions
f (i), i = 1, .., m, as given in eq. (13) is zero. Now we mention many interesting
consequences and observations related to this construction:

Behavior along Geodesics: There is a geodesic in each direction going
through every point in the set U satisfying eq. (10). Along each such geodesic,
every function in our set varies linearly w.r.t. affine parameter of the geodesic.
In effect we have linearized all these functions over the set U . This is much
stronger than taking linear terms in the Taylor expansion at a point and
ignoring higher order terms. If the functions in the set were used for defining
non-linear inequality constraints, they will now become linear inequalities.

Generalized Polynomials: If we construct new functions by addition, multi-
plication of the functions in the set, augmented by constant functions, we
get functions which behave like polynomials along the geodesics. We refer to
these functions as generalized polynomials. Note that we could have taken
transcendental functions subject to the functional independence condition
and carried out the construction. The set of all such functions is denoted by
R[f (1), f (2), . . . , f (m)] and forms a commutative algebra.

Complex case: Similar construction works for complex manifolds and complex
analytic functions. The construction can be carried out even if the jacobian
condition is violated at some points, but is satisfied generically. In this case,
the points where the condition is violated are singularities. The main differ-
ence between the real and complex case is that in the complex case, com-
plement of the singular set still remains connected and singular set does not
necessarily “obstruct” interior point algorithms.

Linear Systems: Starting with a set of positive functions and applying the
construction to their logarithms,original functions vary exponentially along
the geodesics. In the simplest case of ordinary linear differential equations
with constant coefficients, the solution trajectories are given by exponen-
tial functions. Ability of the construction to linearize such transcendental
functions is a major advantage. Linear systems are rather important in engi-
neering applications. The methods is also applicable to non-linear systems.
In many higher order numerical methods for solving ordinary differential
equations, a polynomial basis is implicitly used for local expansion of the
solution trajectories. Instead, using generalized polynomials adapted to the
problem, longer prediction steps are possible.

Jacobian Conjecture: The main reason we refer to the construction as “local
linearization” is that the independence condition can be satisfied globally
or in the “large”, only in rather exceptional situations. One such situation
is the collection of polynomials satisfying the hypothesis of the jacobian
conjecture [1,11]. This situation is almost “too perfect”, for the jacobian is
constant. More generally, the construction of affine connection given in the
paper becomes global in case of analytic automorphisms of Cn.

Convex case and Legendre Transform: Although the emphasis of the
present paper is on non-convex problems, the linearization can be applied
to the n derivatives ∂f

∂xi of a convex function. The independence condition
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is assured for strictly convex function by non-singularity of the Hessian of
f . There is a relation to the Legendre transform, since geodesics w.r.t. to
the connection constructed in the original space correspond to ordinary Eu-
clidean geometry in transformed space. For application of Legendre trans-
form to interior point methods, see Lagarias [2].

Relation to Convex Homotopy Methods: In convex homotopy methods
for zero finding, one creates a single curve so that each of the given functions
varies linearly w.r.t. homotopy parameter along the curve. The construction
we have given creates an entire family of curves in a region along which the
functions vary linearly.

6 Quadratic Models

6.1 Introduction

Here we give a construction of metric as well as affine connection applicable to
homogeneous function of n variables. In earlier paper on Tensor Optimization
[22], which dealt with third order tensors, we had already described technique for
homogenization. The present construction is applicable to fourth (and higher)
order tensors, which have many applications. Let f(x) be an homogenous func-
tion of degree d on n real variables

f(λx) = λdf(x) (20)

We would like to find a metric and the corresponding affine connection which
leads to vanishing of third covariant derivative of this function. It turns out
that such a metric is not unique, and permits linear superposition of terms we
call “null metric” terms. In general, signature of the metric also depends on the
choice of such terms, i.e. the same function may be simultaneously quadratic
w.r.t. a Riemannian metric and a Lorentzian metric.

6.2 Construction

Definition 6.1. A null metric term is any homogenous g
(0)
ij (x) such that

g
(0)
ij (x)xixj = 0 (21)

The set of null metric terms form a linear space, and set of all homogeneous null
metric terms of a given degree a linear subspace. A simple example of such term
is given below:

g
(0)
ij (x) = δij − 1

n

(xixj

r2

)
where r2 =

n∑
k=1

x2
k (22)

As an illustration of the effect of null metric terms on the geodescis, let us
superpose the above term and standard Euclidean metric on IRn to get:
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gij(x) = δij − γ

n

(xixj

r2

)
, where γ > 1 (23)

Note that this is Lorentzian, while the original Euclidean metric was Riemannian.
By solving eq. (10) for this metric, geodesics are easily shown to be logarith-

mic spirals. They share a well known property of straight lines and circles of
possessing a continuous transformation group of self-similarity [52].

A simple way to construct a homogeneous null metric term of degree d is to
take two homogeneous functions, u(x) and v(x) of degrees d + 1 and 1 respec-
tively, and construct the following product:

g
(0)
ij (x) = u(x)

∂2v

∂xi∂xj
(24)

We can also take v(x) to be any Minkowski metric i.e. a positive homogeneous
function. Null metric property can be proved easily using Euler’s identity.

A solution to the main problem is then obtained by superposing second deriva-
tive of f with a homogeneous null metric term of the same degree:

gij(x) =
∂2f

∂xi∂xj
+ g

(0)
ij (x) (25)

Using this metric and corresponding affine connection, The second covariant
derivative of f is just a constant multiple of the metric, hence the third covariant
derivative of f vanishes. In case the manifold is a direct product of two manifolds
Ma

⊗
Mb we can apply the above construction separately to Ma and Mb and

make any linear superposition of the two metrics with constant coefficients.
To construct some interesting examples, consider power sums which form a

basis for symmetric polynomials: pk(x) =
∑n

k=1 xk. For completeness define
constant p0(x) = n where dim(x) = n. This allows many interesting polynomial
equations and inequalities involving symmetric polynomials to be expressed so
that the same expressions hold for any n, and x does not appear explicitly.

For x ∈ IRn, we define a family of non-negative symmetric polynomials for
any non-negative integers 0 ≤ k ≤ l, k + l, even:

skl(x) = p2k(x)p2l(x) − (pk+l(x))2 ≥ 0 (26)

Equality holds for rays generated by

xi = ±1 (27)

If we impose a system of homogeneous linear equations Ax = 0, the above
two properties continue to hold. Consider the potential function with connected
level sets, for ±1 integer programming problems introduced in Karmarkar [20].
It is a real analytic function in the interior of polytope. If it is separated in
it’s homogeneous components, the leading term is of degree 4, a multiple of
s02(x), the first non-negative symmetric polynomial defined above. Now the
reader should browse through the next section.
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6.3 Example 1: Same Curve, Two Connections

We want to give example of curves in multi-cellular geometry which are algebraic
relative to two different affine connections, and having in each cell:

– Degree 2n w.r.t. Euclidean connection
– Degree 1 (i.e. geodesic), w.r.t. metric constructed as per recipe above.
– Geodesics given by eq. (11) crossing cell boundary are not smooth but C1.

However, they are given by component functions belonging to:
√

Cω = {f(x)|∃k ∈ ZZ+ 
 fk ∈ Cω} (28)

It is easy for interior point methods to follow such curve, since we maintain
representation of fk as well.

We first came across such situation in analysis of potential function with con-
nected level sets [20]. Now we can offer much simpler example without any
reference to NP-complete problems:

1. Apply either the quadratic method above to p4(x) without any null metric
terms or the linear method to x2

i , i = 1, . . . , n Then gij = xixjδij (up to
constant factors ) Cells are orthants in IRn.

2. Let s(x) =
∫ x

0 |t|dt, x ∈ IR clearly, s(x) ∈ √
Cω

3.

define φ(x) : IRn → IRn

φi(x) = s(xi).

4. Within a cell, geodesics are pullbacks of straight lines, by applying φ−1.

6.4 Example 2: Fourth Degree, Non-convex Function

In the above example, p4(x) was convex in Euclidean space, and we reduced it
from 4th degree to quadratic. Now, we take s02(x), which is 4th degree and non-
convex, and create curved space so that it becomes quadratic and has positive
semi-definite second covariant derivative, by following the quadratic recipe and
choosing appropriate null metric term. The resulting metric is

gij(x) = xixj

(
δij − 1

n

)
(29)

The second covariant derivative remains positive semi-definite after imposing
linear constraints Ax = 0, To see this, choose a basis for the null space of A
and let x = By, dim(y) = co − rank(A). In matrix notation, denoting the 2nd

covariant derivatives in X and Y spaces by Hx and Hy, we get, Hy = BT HxB.



14 N. Karmarkar

6.5 Example 3: Eighth Degree, Non-Convex Function

Assuming rank(A) > 0 define:

Null Space: Ω(A) = {x|Ax = 0}
Non-solutions: NS(A) = {−1, +1}n ∩ Ωc(A)
Closest Non-solution: rmin(A) = min{dist(u, Ω)|u ∈ NS(A)}
Condition Number: C#(A) = 1

rmin(A)

As a final example, consider the following 8th degree function, along with
constraints Ax = 0, and control parameter ε

f(x) = p0(x)2p4(x)2 − (1 + ε)p2(x)4 (30)

The metric obtained by the procedure:

gij(x) = p4(x)(xixj(δij − (1 + ε)
ρ(x)
n

)) (31)

where ρ(x) =
p2(x)2

p0(x)p4(x)
(32)

Note that ρ(x) ≤ 1 with equality on rays generated by xi = ±1.
For any rmin(A), ∃ε > 0, such that the following holds:

Non-satisfiable case
1. The space defined with the above metric is Riemannian.
2. The function f(x) is geodesically convex, and strictly positive.
3. Expansion of f, using eigenfunctions of the second covariant derivative,

gives proof of non-satisfiability as sums of squares with n terms.
Satisfiable case

1. The space defined has a Riemannian cell and a Lorentzian cell.
2. The rays corresponding to satisfiable solutions are in Lorentzian cell.
3. The starting point is (generally) in Riemannian cell, any continuous

trajectory, or evolution process, deterministic, non-deterministic, or ran-
dom needs to cross from Riemannian cell to Lorentzian cell.

4. The function f(x) is geodesically convex in the interior of Riemannian
cell.

7 Relativized Concept of Algebraic Curves

While polynomials are normally defined algebraically, there is another way to
define them in IRn or Cn as functions whose all derivatives, except for a fi-
nite number, vanish. In this form they generalize to manifolds with a connection
immediately, by using covariant derivatives w.r.t. the connection, instead of ordi-
nary derivatives. Such functions behave as polynomial functions along geodesics.
Algebraic curves and higher dimensional algebraic varieties on the manifold can
be defined as intersection of zero sets of a set of such “generalized polynomials”.
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As per this view point, being algebraic is not an absolute property of a curve,
but it’s relative to the notion of parallelism, and thus a joint property of an entire
“eco-system” curves, a connection, set of geodesics, and a collection of functions
constituting generalized polynomials. In case there is more than one affine con-
nection defined on the manifold, a curve may be algebraic in the above sense
w.r.t. one connection and not so w.r.t. the others. More interesting situation is
when a curve may be algebraic w.r.t. two different affine connections. In this
case, it may have a different degree w.r.t. the two connections. It is important to
recognize that if an interior point trajectory has high degree w.r.t. one metric,
say Euclidean, it does not necessarily imply that the curve is difficult to follow,
it may be much simpler when viewed in another metric or connection.

Even in case of Linear Programming, the simplest and well understood semi-
algebraic problem, it is noteworthy that algebraic methods such as Fourier-
Motzkin elimination method, or combinatorial method such as the Simplex
method are not polynomial, where as the polynomial-time interior point method
uses Riemannian metric. Euclidean space is quite adequate for defining the lin-
ear programming problem, but not for its best solution algorithm. This effect is
even more pronounced in case of more difficult problems.

Optimization problems involve not just finding optimal solution but also con-
structing proofs of their optimality. Proving that fmin is the minimum value of
f(x) is equivalent to showing that f(x) − fmin ≥ 0 Current approach to this
can be found in Stengle [47], Shor [44], Schmüdgen [42], Karmarkar [22], Putinar
[37], Resnick [39], Lasserre [27], Parrilo [36], Bachnak [4], Todd [48]. These ap-
proaches can be generalized using ideas in this paper, and made more effective
by working in appropriate commutative algebra R[f1, f2, . . . , fm] defined on the
manifold of interest. This is a subject of a separate paper.

8 Space Extension for Connectivity

8.1 Introduction

A classic example of space extension is projectivization of affine space into pro-
jective space including points at infinity. Resulting benefits in algebraic geometry
are well known. In the subject of interior point methods, space extension was
used [19] to create projectively invariant polynomial-time algorithm. Here it is
used to transform optimization problem so that it has connected level sets.

8.2 Generalization of Linear Interpolation on Simplex

Let Δ be a simplex in IRn with barycentric co-ordinates x1, x2, . . . , xn+1 with∑
i x

i = 1, If values f(1), f(2), . . . , f(n+1) are specified on the vertices, the corre-
sponding linearly interpolated function on Δ is given by f(x) =

∑
i f(i)xi. This

could be rewritten as:

f(x) =
∑

i f(i)xi∑
i xi

(33)
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In this form, it can be generalized easily to degree d as follows:

fd(x) =
∑

i f(i)(xi)d∑
i(xi)d

(34)

This is valid in all of IRn. For even d the field of values of the extrapolated
function remains the same as that of linearly interpolated one:

min
i

(f(i)) ≤ fd(x) ≤ max
i

(f(i)) ∀x ∈ IRn (35)

8.3 Extension to Achieve Connectivity

While projectivization involves taking one point outside the space and taking
union of all rays going through that point and points in the original space, we do
similar extension with two outside points Pm and PM to achieve connectivity for
both downward and upward level sets. Extension of the function f and manifold
M are denoted by f̃ and M̃ f̃ agrees with f on M . Then assign values on Pm

and PM as:

f̃(Pm) = inf
x∈M

f(x) and f̃(PM ) = sup
x∈M

f(x) (36)

(We assume that both these values are finite.)
For each x ∈ M Let Ω(x) = span〈x, Pm, PM 〉 be the 2 − dimensional affine

space created by the three points, and Δ(x) the simplex spanned by the same.
Union of these spaces Ω(x) makes the extended manifold M̃ , and f̃(x) is defined
on Ω(x) by eq. (34), with even d. For any two points Pa and Pb in a downward
level set, the line segments PaPm and PmPb also lie in the same level set, hence
it is connected. Similarly for upward level sets. If connectivity is to be achieved
for only one of these, extension generated by one extra point suffices.

9 Continuous Models of Computation

9.1 Introduction

One of the goals of the work reported here is to understand computational dif-
ficulty of various optimization problems and classify them accordingly. Since
non-convex optimization can be applied to problems such as satisfiability, there
is partial overlap with the goals of computational complexity theory based on
Turing machines. At the same time, there are important differences in method-
ology and overall approach. Each time we presented the ideas in this paper along
with computational results on finding satisfying truth assignments or computing
proofs of non-satisfiability, one of the questions from the audience is “Does this
mean that P might be equal to NP?” To avoid such misinterpretations, and to
point out that the ideas presented here actually suggest a new path for proving
P �= NP ,we are clarifying some basic differences in the two approaches. The
approach based on classical complexity theory has four components:
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Pre-classification. Problem instance are sorted according to the number of
bits required for their description and all instances requiring the same num-
ber of bits are grouped into one bin or one layer.

Model of Computation. This is usually based on the Turing machine with
its tape and finite state machine.

Post-classification. This is based on the number of time steps taken by the
particular Turing machine or algorithm, to solve the problem instance. All
instance requiring same number of steps are put in one layer.

Complexity of the Algorithm. If the post-classification agrees with the pre-
classification upto a polynomial function, it is considered to be a “good”
algorithm or polynomial-time algorithm.

9.2 A Different Approach

Our approach to classification of computational difficulty is based on the view
that the conceptual basis for all the above aspects should be developed hand-
in-hand, and whatever is learned from progress in one aspect should be used
to refine the other aspects. In Linear Programming, which is one of the best
understood sub-domains in optimization, it is now clear that the computational
difficulty depends primarily on the condition number and dimension and its
dependence on number of bits required for input description is rather weak (ex-
cept that it’s still polynomial) Layering of the input instances based on condition
number and dimension leads to more accurate classification of their difficulty,
since instances in the same layer require similar computing effort, while grouping
on the basis of same input length leads to rather large variance in the compu-
tational effort required for instances in the same layer. With the latter type of
grouping as the first step of the complexity theory, only statements (true or false)
that can be made about all problems in the same bin as a group are admissible
statements. Any prior restrictions on admissible statements can create a situa-
tion in which there are statements which are true but not provable, since the set
of all true statements may be disconnected in the implication graph, restricted
to such class of statements. Note that the alternative pre-classification, even for
the simpler problem of linear programming indicated above, is two dimensional
and does not impose a simple ordering on the input instances. In the context
of more difficult non-convex optimization, concepts of connectivity indices and
appropriate notion of condition number are likely to play a major role in ar-
ranging input instance into layers. In any event, our approach is to not impose
any particular pre-conceived classification or layering on input instances,but to
allow it to evolve along with our understanding of the problem domain itself.

The other major difference in the two approaches is the computational model,
described briefly in the next section.

9.3 Towards Abstract Continuum Computing Model AC2M

A major intellectual step beyond the Turing machine model is based on real or
complex number computing BCSS [3]. While this model has not received the
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attention from the complexity theory community that it should have received
(in our opinion),it is clearly more appropriate in the context of optimization.
However this model has carried over the discrete time steps from the Turing
machine model, thereby inheriting some of its limitations.

Integrating concept of continuous time into the computational model is nec-
essary for further development of interior-point algorithms, which have turned
out be extremely powerful. It is well known that fundamental theories in physics
could make a major leap in the last century, only after earlier concepts of separate
space and time were replaced by a concept of a unified space-time continuum. A
similar situation prevails in development of interior point algorithms today.

This is incorporated in the following model called Abstract Continuum Com-
puting Model or AC2M. It is called “abstract”, since we don’t go into various
possibilities of mapping it on real physical computing devices in this paper.
There are many kinds of issues involved in the mapping, some of philosophical
import and some of engineering type. The former kind involves possibility of
direct mapping of AC2M into laws of nature. The latter type involves indirect
mapping or effective simulation of the abstract model on concrete or discrete
computing devices, based on classical or quantum behavior. In a separate re-
search program, we also have proposals (see Karmarkar [23]) for implementation
by combining traditional localized devices such as transistors with new type of
distributed devices called “electron transporter”.

In any case, measure of computing “cost” or effort depends on details of the
mapping. The abstract model is only concerned with trajectories for solving
various computing problems, in same spirit as theory of differential equations in
the “large”, and any measure of “cost” at this level is limited to quantities such
as integrated curvature or length of trajectories. In case the mapping is done on
conventional digital computers, the mapping process belongs to the discipline of
numerical analysis or numerical engineering. Adaptive time-steps and adaptive
grids, which are rather common in modern numerical solvers show the value
of treating the time variable as continuous and integrated into a space-time
continuum in the first abstract phase of the process and giving freedom to design
most effective discretization to the second step of the process. Consideration of
appropriate precision level also belongs to the second step.

Such “separation of concern” allows one to focus on the deeper aspects that
are not yet well understood, such as relation between determinism and non-
determinism and whether “transcendental” concepts are necessary for fuller un-
derstanding of mathematical logic.Much of the contemporary complexity theory
is inspired by Gödeĺs work. The least one expects from faithful followers of
Gödel is that they study his work in its entirety. It is noteworthy that almost
two decades after his famous work on foundational questions raised by Hilbert,
Gödel [15] turned to investigation of “Lorentzian” geometry. Could it be that
solutions of many intellectual puzzles that his work has led to, actually require
such methods?. Our investigation so far seems to suggest so.

The main features of the model, called Abstract Continuum Computing Model,
implicit in the present work, are as follows:



Beyond Convexity: New Perspectives in Computational Optimization 19

– Retain real or complex number computing from [3].
– Replace discrete time by continuous time.
– Replace Turing machine tape by a multi-dimensional curve in IRn or Cn.
– Retain the three main principles of Finite State Machine in the Turing model:

The rule to be applied uses only local information, it’s a fixed or uniform
rule repeated over and over, and it’s easy to compute. The difference is that
the main computational step uses real or complex numbers,instead of 0’a
and 1’s. The input and/or output may be restricted to special subsets such
as integer, rational, algebraic integers or bounded in their magnitude. Such
restrictions, if any, constitute important part of problem specification.

In the abstract phase of the model, we are only concerned about the existence
of the trajectory to solve the problem deterministically or non-deterministically.

9.4 Examples of Deterministic Computing in AC2M

Interior Point Algorithms. Such methods for linear programming, convex
programming, tensor optimization and its particular variant known more
commonly as “semi-definite programming” are all deterministic methods in
AC2M .

Autonomous Dynamical Systems. Consider a dynamical system in IRn:
ẋ = f(x) If f(x) is easy to compute from x as per cost model in [3], this is
an example of deterministic algorithm.
In analysis of dynamical systems f is given, and the aim is to understand
behavior of the solution to the differential equation. However, when a dy-
namical system is proposed to be used as a means of getting a solution to
a decision or computational problem, there is again a “reversal” of roles de-
scribed earlier. f is to be chosen or designed to achieve the solution. Such
designed f can be rather special and very different from a generic dynamical
system of similar dimension or structure.

9.5 Examples of Non-deterministic Computing in AC2M

Differential Linear Programming (DLP). Suppose M is a real manifold
and we are given a set S of covariant fields a

(α)
i (x) and scalar fields, b(α),

α ∈ S,x ∈ M . We use them to define a linear programming problem at each
point x on the manifold, which is required to be satisfied by the tangent
vector ẋ of the curve, at each point on the curve.:

a
(α)
i ẋi ≤ b(α), ∀α ∈ S (37)

A curve satisfying the DLP is not unique (except in certain degenerate
family of LP’s, where the feasible region at each point is one-dimensional).
The set of all possible curves satisfying the DLP define all points reachable
“non-deterministically” (Note that the fibre bundle mentioned in Section 3.1,
differs from the one implicit in DLP, as the former one had multiple non-
interacting linear programs.)
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Riemann Surface as a tape replacement. The “multi-dimensional” curve
mentioned in features of AC2M has a double meaning in the complex case:
Not only is the curve embedded in a multidimensional space, the curve itself
is a two-dimensional object, e.g. Riemann surface. The set of all possible real
one-dimensional curves that can be drawn on the Riemann surface, from the
starting point create a non-deterministic capability.
Even before the conception Riemann surface,the non-determinism in the
complex case was present in Weierstrass’s [51] method of analytic continu-
ation. Suppose we are given a complex analytic function at a point A and
wish to continue it analytically to point B, we choose a curve connecting A to
B “non-deterministically”. After this choice is made, analytic continuation
from A to B is uniquely defined (if it can be done at all), without further free
choices. Different non-deterministic choices of curves may lead to different
values at B. If one of them gives solution to the original decision problem,
we say that the problem has been solved non-deterministically.

9.6 Relation between Determinism and Non-determinism

Forms of non-determinism mentioned above, may turn out to be more amenable
to mathematical reasoning as compared to the non-determinism in the Turing
model. Truth and provability are not the same, and we find greater focus on prov-
ability desirable, leading us to AC2M . The non-determinism mentioned above
is more constrained: If the point B in the example above was contained in the
disk of convergence of the power series at A, non-deterministic and deterministic
results would be the same.

An example of how constrained form of non-determinism can be exploited is
hidden in the first proof of polynomial-time interior point algorithm for linear
programming [19]. The proof is based on showing that a polynomially weakened
non-deterministic TM for solving linear programming can be effectively simu-
lated by a deterministic one: In the proof, the current interior point is trans-
formed to the center of the simplex by means of a projective transformation.
Then it is joined by a straight-line to the optimal solution point. How does one
know the optimal point? A NDTM can guess that and solve the problem in
“one iteration”, which is not particularly interesting. But we weaken the NDTM
so that it is allowed to proceed only up to the boundary of the inscribed ball,
along the line joining the current point to the optimum. This is weakening only
by a polynomial amount,(actually just by factor of n) due to the theorem on
ratio of radii of circumscribed and inscribed balls, but now something interest-
ing happens: A deterministic TM can match the performance of the weakened
NDTM,by optimizing a linear function over a ball, resulting in a polynomial time
bound. This kind of proof technique is expected to play similar role in AC2M ,
with the role of straight line joining current point to the optimum, replaced by
curves with higher values of connectivity indices.

A potential approach to P �= NP in classical Turing Model using properties
of AC2M consists of proving the following steps:
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– No DTM can consistently beat certain class of methods in AC2M by more
than a polynomial factor

– A tight upper and lower bound on the latter methods in terms of the layer
number in its pre-classification. This is the hardest step and requires that
the the pre-classification method is well designed, otherwise lower bounds
become too low and upper bounds become too high, which are two sides of
the same coin, and only show weakness of the pre-classification method.

– Since the two models have distinct layering methods in the pre-classification
step, transferring all (infinite) input instances from one pre-classification to
another involves a permutation of infinite number of objects. Proving that
this permutation involves changing the layer number by super-polynomial
amount in either direction.
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tions. Mathematische Annalen 54(1), 125–201 (1900)

41. Riemann, B.: On the Hypotheses which lie at the Bases of Geometry. Nature 8(183),
14–17 (1873)



Beyond Convexity: New Perspectives in Computational Optimization 23
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Abstract. To simultaneously optimize multiple objective functions, several evo-
lutionary multiobjective optimization (EMO) algorithms have been proposed.
Nowadays, often set quality indicators are used when comparing the performance
of those algorithms or when selecting “good” solutions during the algorithm
run. Hence, characterizing the solution sets that maximize a certain indicator is
crucial—complying with the optimization goal of many indicator-based EMO al-
gorithms. If these optimal solution sets are upper bounded in size, e.g., by the
population size μ, we call them optimal μ-distributions. Recently, optimal μ-
distributions for the well-known hypervolume indicator have been theoretically
analyzed, in particular, for bi-objective problems with a linear Pareto front. Al-
though the exact optimal μ-distributions have been characterized in this case, not
all possible choices of the hypervolume’s reference point have been investigated.
In this paper, we revisit the previous results and rigorously characterize the op-
timal μ-distributions also for all other reference point choices. In this sense, our
characterization is now exhaustive as the result holds for any linear Pareto front
and for any choice of the reference point and the optimal μ-distributions turn out
to be always unique in those cases. We also prove a tight lower bound (depend-
ing on μ) such that choosing the reference point above this bound ensures the
extremes of the Pareto front to be always included in optimal μ-distributions.

Keywords: multiobjective optimization, hypervolume indicator, optimal μ-dis-
tributions, theory.

1 Introduction

Many evolutionary multiobjective optimization (EMO) algorithms have been proposed
to tackle optimization problems with multiple objectives. The most recent ones employ
quality indicators within their selection in order to (i) directly incorporate user prefer-
ences into the search [1, 16] and/or to (ii) avoid cyclic behavior of the current population
[15, 18]. In particular the hypervolume indicator [17] is of interest here and due to its
refinement property [18] employed in several EMO algorithms [4, 6, 14]. The hyper-
volume indicator assigns a set of solutions the “size of the objective value space which
is covered” and at the same time is bounded by the indicator’s reference point [17].
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Although maximizing the hypervolume indicator, according to its refinement property,
results in finding Pareto-optimal solutions only [10], the question arises which of these
points are favored by hypervolume-based algorithms. In other words, we are interested
in the optimization goal of hypervolume-based algorithms with a fixed population size
μ, i.e., in finding a set of μ solutions with the highest hypervolume indicator value
among all sets with μ solutions. Also in performance assessment, the hypervolume is
used quite frequently [19]. Here, knowing the set of points maximizing the hypervolume
is crucial as well. On the one hand, it allows to evaluate whether hypervolume-based
algorithms really converge towards their optimization goal on certain test functions. On
the other hand, only the knowledge of the best hypervolume value achievable with μ
solutions allows to compare algorithms in an absolute manner similar to the state-of-
the-art approach of benchmarking single-objective continuous optimization algorithms
in the horizontal-cut view scenario, see [12, appendix] for details.

Theoretical investigations of the sets of μ points maximizing the hypervolume
indicator—also known under the term of optimal μ-distributions [2]—have been
started only recently. Although quite strong, i.e., very general, results on optimal μ-
distributions are known [2, 7], most of them are approximation or limit results in order
to study a wide range of problem classes. The only exact results consider problems
with very specific Pareto fronts, namely linear fronts that can be described by a func-
tion f : x ∈ [xmin, xmax] �→ αx + β where α < 0 and β ∈ � in the bi-objective case
[2, 5, 9] or fronts that can be expressed as f : x ∈ [1, c] �→ c/x with c > 1 [11].

The main scope of this paper is to revisit the results on optimal μ-distributions for bi-
objective problems with linear Pareto fronts and to consider all conditions under which
the exact optimal μ-distributions have not been characterized yet. The result is both
exact and exhaustive, in the sense that a single formula is proven that characterizes the
unique optimal μ-distribution for any choice of the hypervolume indicator’s reference
point and for any μ ≥ 2, covering also the previously known cases. It turns out that the
specific case of μ = 2 complies with a previous results of [2] and that for all linear front
shapes, the optimal μ-distributions are always unique.

Before we present our results in Sec. 5–7, we introduce basic notations and defi-
nitions in Sec. 2, define and discuss the problem of finding optimal μ-distributions in
Sec. 3 in more detail, and give an extensive overview of the known results in Sec. 4.

2 Preliminaries

Without loss of generality (w.l.o.g.), we consider bi-objective minimization problems
where a vector-valued function F : X → �

2 has to be minimized with respect to the
weak Pareto dominance relation �. We say a solution x ∈ X is weakly dominating
another solution y ∈ X (x � y) iff F1(x) ≤ F1(y) and F2(x) ≤ F2(y) where
F = (F1,F2). We also say x ∈ X is dominating y ∈ X (x ≺ y) if x � y but y �� x.
The set of nondominated solutions is the so-called Pareto set Ps = {x ∈ X | �y ∈ X :
y ≺ x} and its image F(Ps) in objective space is called Pareto front. Note that, to keep
things simple, we make an abuse of terminology throughout the paper and use the term
solution both for a point x in the decision space X and for its corresponding objective
vector F(x) ∈ �2. Moreover, we also define the orders � and ≺ on objective vectors.
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In order to optimize multiobjective optimization problems like the bi-objective ones
considered here, several recent EMO algorithms aim at optimizing the hypervolume
indicator [17], a set quality indicator IH(A, r) that assigns a set A the Lebesgue mea-
sure λ of the set of solutions that are weakly dominated by solutions in A but that at the
same time weakly dominate a given reference point r ∈ �2, see Fig. 1:

IH(A, r) = λ
({z ∈ �2 | ∃a ∈ A : f(a) � z � r}) (1)

The hypervolume indicator has the nice property of being a refinement of the Pareto
dominance relation [18]. This means that maximizing the hypervolume indicator is
equivalent to obtaining solutions in the Pareto set only [10]. However, it is more in-
teresting to know where the solutions maximizing the hypervolume lie on the Pareto
front if we restrict the size of the sets A to let us say, the population size μ. This set of μ
points maximizing the hypervolume indicator among all sets of μ points is known under
the term optimal μ-distribution [2] and finding an optimal μ-distribution coincides with
the optimization goal of hypervolume-based algorithms with fixed population size.

To investigate optimal μ-distributions in this paper, we assume the Pareto front to
be given by a function f : � → � and two values xmin, xmax ∈ � such that all
points on the Pareto front have the form (x, f(x)) with x ∈ [xmin, xmax]. In case of a
linear Pareto front, f(x) = αx + β for α, β ∈ �, see Fig. 1 for an example. W.l.o.g,
we assume that xmin = 0 and β > 0 in the remainder of the paper—otherwise, a
simple linear transformation brings us back to this case. Moreover, α < 0 follows from
minimization. Note also that under not too strong assumptions on the Pareto front, and
in particular for linear fronts, optimal μ-distributions always exist, see [2].

3 Problem Statement

In case of a linear Pareto front described by the function f(x) = αx+β (α < 0, β ∈ �),
finding the optimal μ-distribution for the hypervolume indicator with reference point
r = (r1, r2) can be written as finding the minimum of the function

IH(x1, . . . , xμ) =
μ∑

i=1

(xi+1 − xi) (f(x0) − f(xi)) =
μ∑

i=1

(xi+1 − xi) (αx0 − αxi)

= α

μ∑
i=1

[
(xi)

2 + x0xi+1 − x0xi − xixi+1

]
(2)

with xmin ≤ xi ≤ xmax for all 1 ≤ i ≤ μ

where we define xμ+1 = r1 and x0 = f−1(r2) [2], Fig. 1. According to [2], we denote
the x-values of the optimal μ-distribution, maximizing (2), as xμ

1 . . . xμ
μ. Although

the term in (2) is quadratic in the variables x0, . . . , xμ+1, and therefore, in principle,
solvable analytically, the restrictions of the variables to the interval [xmin, xmax] makes
it difficult to solve the problem. In the following, we therefore investigate the minima
of (2) depending on the choice of r1 and r2 with another approach: we use the necessary
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condition for optimal μ-distributions of [2, Proposition 1] and apply it to linear fronts
while the restriction of the variables to [xmin, xmax] are handled “by hand”.

4 Overview of Recent and New Results

Characterizing optimal μ-distributions for the hypervolume indicator has been started
only recently but the number of results is already quite extensive, see for example [1–
5, 7, 9–11]. Here, we restate, to the best of our knowledge, all previous results that relate
to linear Pareto fronts and point out which problems are still open.

Besides the proof that maximizing the hypervolume indicator yields Pareto-optimal
solutions [10], the authors of [5] and [9] were the first to investigate optimal μ-distribu-
tions for linear fronts. Under the assumption that the extreme points (0, β) and (xmax, 0)
are included in the optimal μ-distribution, it was shown for linear fronts with α = −1
that neighbored points within a set maximizing the hypervolume are equally spaced.
However, the result does not state where the leftmost and rightmost point of the optimal
μ-distribution have to be placed in order to maximize the hypervolume and it has been
shown later [2] that the assumption about the extreme points does not always hold.

The first results without assuming the positions of the leftmost and rightmost point
have been proven in [2] where the result is based on a more general necessary condition
about optimal μ-distributions for the hypervolume indicator. In particular, [2] presents
the exact distribution of μ points maximizing the hypervolume indicator when the ref-
erence point is chosen close to the Pareto front (region I in Fig. 1, cp. [2, Theorem 5])
or far away from the front (region IX in Fig. 1, cp. [2, Theorem 6]). In the former case,
both extreme points of the front do not dominate the reference point and the (in this
case unique) optimal μ-distribution reads

xμ
i = f−1(r2) +

i

μ + 1
· (r1 − f−1(r2)) . (3)

In the latter case, the reference point is chosen far enough such that—independent of the
reference point and μ—both extreme points are included in an optimal μ-distribution1

and the (again unique) optimal μ-distributions can be expressed as

xμ
i = xmin +

i − 1
μ − 1

(xmax − xmin) . (4)

Note that the region IX, corresponding to choices of the reference point within Theo-
rem 6 of [2] does not depend on μ but on a lower bound on the reference point to ensure
that both extremes are included in the optimal μ-distribution. Recently, a limit result
has been proven [3] which shows that the lower bound of [2, Theorem 6] converges
to the nadir point2 if μ goes to infinity but the result does not state how fast (in μ) the
nadir point is approached. Clearly, choosing the reference point within the other regions
II–VIII in Fig. 1 is possible and the question arises how the reference point influences
the optimal μ-distributions in these uninvestigated cases as well. The answer to this
question is the main focus of this paper.

1 Which is proven to be true for r1 > 2xmax and r2 > 2β in another general theorem [2].
2 In case of a linear front as defined above, the nadir point equals n = (xmax, f(xmin)).
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Fig. 1. Left: Illustration of the hypervolume indicator IH(A, r) (gray area). Right: Optimal μ-
distributions and the choice of the reference point for linear fronts of shape y = αx + β. Up-
to-now, theoretical results are only known if the reference point is chosen within the regions I
and IX [2]. Exemplary, the optimal 2-distribution (circles) is shown when choosing the reference
point (cross) within region IV.

5 If the Reference Point Is Dominated by Only the Right Extreme

As a first new result, we consider choosing the reference point within the regions II or
III of Fig. 1. Here, the left extreme cannot be included in an optimal μ-distribution as
it is never dominating the reference point and thereby always has a zero hypervolume
contribution. Thus, the proof of the optimal μ-distribution has to consider only the re-
strictions of the μ points at the right extreme. Moreover, the uniqueness of the optimal
μ-distribution in the cases II and III follows directly from case I.

Theorem 1. Given μ ∈ �≥2, α ∈ �<0, β ∈ �>0, and a linear Pareto front f(x) =
αx + β within [0, xmax = − β

α ]. If r2 ≤ β and r1 ≥ xmax (cases II and III), the unique
optimal μ-distribution (xμ

0 , . . . , xμ
μ) for the hypervolume indicator IH with reference

point (r1, r2) can be described by

xμ
i = f−1(r2) +

i

μ + 1

(
min

{
r1,

μ + 1
μ

xmax − f−1(r2)
μ

}
− f−1(r2)

)
. (5)

Proof. According to (3) and assuming no restrictions of the solutions on the linear front
αx + β with x ∈ �, the optimal μ-distribution would be given by xμ

i = f−1(r2) +
i

μ+1 · (r1 − f−1(r2)) where the xμ
i are possibly lying outside the interval [0, xmax].

However, as long as r1 is chosen such that xμ
μ ≤ xmax, we can use (3) for describing

the optimal μ-distributions, i.e., in the case that

xμ
μ = f−1(r2) +

μ

μ + 1
· (r1 − f−1(r2)) ≤ xmax ⇔ f−1(r2)

μ + 1
+

μ

μ + 1
r1 ≤ xmax

⇔ r1 ≤ μ + 1
μ

xmax − f−1(r2)
μ

(
=

−r2 − βμ

αμ

)
. (6)
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Fig. 2. When choosing the reference point within regions II and III, we prove that the right ex-
treme is included in optimal μ-distributions if the reference point is chosen within the gray shaded
area right of the line y = −αμx − μβ, see Corollary 1. The picture corresponds to μ = 2.

With larger r1, the optimal μ-distribution does not change any further (only the hyper-
volume contribution of xμ

μ increases linearly with r1), i.e., we can rewrite (3) as (5). ��

The previous theorem allows us also a more precise statement of when the right extreme
is included in optimal μ-distributions than the statement in [2].

Corollary 1. In case that r2 ≤ β and r1 ≥ μ+1
μ xmax− f−1(r2)

μ , the right extreme point
(xmax, 0) is included in all optimal μ-distributions for the front αx + β. ��

Note that the choice of r1 to guarantee the right extreme in optimal μ-distributions
depends both on μ and r2 here whereas the (not so tight) bound for r1 to ensure the
right extreme proven in [2] equals 2xmax. This is independent of μ and coincides with
the new (tighter) result if μ = 2 and r2 = β. Figure 2 illustrates the region for which, if
the reference point is chosen within, the right extreme is always included in an optimal
μ-distribution. Compare also to the old result of [2] which states this inclusion of the
right extreme only in case the reference point is chosen in region IX of Fig. 1. The
description of the line y = −αμx − μβ where choosing the reference point to the
right of it ensures the right extreme in the optimal μ-distribution results from writing r2

within r1 = μ+1
μ xmax − f−1(r2)

μ as a function of r1.

6 If the Reference Point Is Dominated by Only the Left Extreme

Obviously, the two cases IV and VII of Fig. 1 are symmetrical to the cases II and III
where mainly the left extreme and the reference point’s coordinate r2 take the roles of
the right extreme and the coordinate r1 respectively from the previous proof.

Theorem 2. Given μ ∈ �≥2, α ∈ �<0, β ∈ �>0, and a linear Pareto front f(x) =
αx+β within [0, xmax = − β

α ]. If r1 ≤ xmax and r2 ≥ β (cases IV and VII), the unique
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optimal μ-distribution (xμ
0 , . . . , xμ

μ) for the hypervolume indicator IH with reference
point (r1, r2) can be described by

xμ
i =f−1

(
min

{
r2,

μ+1
μ β− f(r1)

μ

})
+

i

μ + 1

(
r1−f−1

(
min

{
r2,

μ+1
μ β− f(r1)

μ

}))
. (7)

Proof. The proof is similar to the one of Theorem 1: As in case I, we can write
the optimal μ-distribution according to (3) except that we have to ensure that xμ

1 ≥
xmin = 0. This is equivalent to f−1(r2) + 1

μ+1

(
r1 − f−1(r2)

) ≥ 0 or r2−β
α +

1
μ+1

(
r1 − r2−β

α

)
≥ 0 or r2−β

α + αr1−r2+β
(μ+1)α ≥ 0. With α < 0, this gives (μ + 1)r2 −

(μ + 1)β + αr1 − r2 + β ≤ 0 and finally r2 ≤ (μ+1)β−(αr1+β)
μ = μ+1

μ β − f(r1)
μ such

that (3) becomes (7). ��

7 General Result for All Cases I–IX

By combining the above results, we can now characterize the optimal μ-distributions
also for the other cases V, VI, VII, and IX and give a general description of optimal
μ-distributions for problems with bi-objective linear fronts, given any μ ≥ 2 and any
meaningful choice of the reference point3.

Theorem 3. Given μ ∈ �≥2, α ∈ �<0, β ∈ �>0, and a linear Pareto front f(x) =
αx + β within [0, xmax = − β

α ], the unique optimal μ-distribution (xμ
0 , . . . , xμ

μ) for the
hypervolume indicator IH with reference point (r1, r2) ∈ �2

>0 can be described by

xμ
i = f−1(Fl) +

i

μ + 1
(
Fr − f−1(Fl)

)
(8)

for all 1 ≤ i ≤ μ where

Fl = min{r2,
μ + 1

μ
β − 1

μ
f(r1),

μ

μ − 1
β} and

Fr = min{r1,
μ + 1

μ
xmax − 1

μ
f−1(r2),

μ

μ − 1
xmax} .

Proof. Again, the optimal μ-distribution would be given by (3) if we prolongate the
front linearly outside the interval [xmin, xmax] and therefore, no restrictions on the xμ

i

would hold. However, the points xμ
i are restricted to [xmin, xmax] and therefore (since

we assume xμ
i < xμ

i+1) we have to ensure that both xμ
1 ≥ xmin = 0 and xμ

μ ≤ xmax =
−β/α hold. According to the above proofs, the former is equivalent to

r2 ≤ μ + 1
μ

β − f(r1)
μ

(9)

3 Choosing the reference point such that it weakly dominates a Pareto-optimal point does not
make sense as no feasible solution would have a positive hypervolume.
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and the latter is equivalent to

r1 ≤ μ + 1
μ

xmax − f−1(r2)
μ

(10)

however, with restrictions on r1 (r1 ≤ xmax) and r2 ≤ β respectively which we do
not have here. As long as both (9) and (10) hold as in the white area in Fig. 3, i.e., no
constraint is violated, (3) can be used directly to describe the optimal μ-distribution as
in region I. To cover all other cases, we could, at first sight, simply combine the results
for the cases II, III, IV, and VII from above and use

F ∗
l = min

{
r2,

μ + 1
μ

β − f(r1)
μ

}
and F ∗

r = min
{

r1
μ + 1

μ
xmax − f−1(r2)

μ

}

as the extremes influencing the set xμ,∗
i = F ∗

l + i
μ+1 (F ∗

r − F ∗
l ). However, r1 and r2

are unrestricted and thus, F ∗
l and F ∗

r can become too large such that the points xμ,∗
i

lie outside the feasible front part [xmin, xmax]. To this end, we compute where the two
constraints (9) and (10) meet, i.e., what is the smallest possible reference point that
results in having both extremes in the optimal μ-distribution. This point is depicted as
the lower left point of the dark gray area in Fig. 3.

By combining the equalities in (9) and (10) which is equivalent to r2 = −αμr1−βμ
(see end of Sec. 5), we obtain

r2 = μ+1
μ β − f(r1)

μ = μ+1
μ β − αr1+β

μ = −αμr1 − βμ or r1 = − β
α

μ
μ−1 = μ

μ−1xmax

and thus r2 = μ+1
μ β − f( μ

μ−1 xmax)
μ = μ

μ−1β. Hence, if we choose the reference point
r = (r1, r2) such that r1 ≥ μ

μ−1xmax and r2 ≥ μ
μ−1β, both extremes will be included

in the optimal μ-distribution xμ
i = F extr

l + i
μ+1 (F extr

r − F extr
l ) with F extr

l = μ
μ−1β

and F extr
r = μ

μ−1xmax. With this result, we know that, independent of r2, the right
extreme is included if r1 ≥ μ

μ−1xmax (if the leftmost extreme is not included, r2 must

be smaller than μ
μ−1β and in this case r1 ≥ μ+1

μ xmax ensures that it is also greater

or equal to μ+1
μ xmax − f−1(r2)

μ ). The same can be said for the left extreme, which is
included in an optimal μ-distribution whenever r2 ≥ μ

μ−1β. The optimal μ-distribution
for those cases are the same than the optimal μ-distributions if we restrict r1 and r2 to
be at most min{μ+1

μ xmax− 1
μf−1(r2), μ

μ−1xmax}, and min{μ+1
μ β− 1

μf(r1), μ
μ−1β}}

respectively, i.e., to the cases where the reference point is lying on the boundary of the
white region of Fig. 3 and having one or even both extremes included in the optimal
μ-distributions. In those cases, (3) can be used again for characterizing the optimal μ-
distribution as the constraints on the xμ

i are fulfilled. Using the mentioned restrictions
on r1 and r2 results in the theorem. ��
Note that the previous proof gives a tighter bound for how to choose the reference point
r = (r1, r2) in order to obtain the extremes in comparison to the old result in [2]:
The former result states that whenever r1 is chosen strictly larger than 2xmax and r2 is
chosen strictly larger than 2β, both extremes are included in an optimal μ-distribution
in the case of a linear Pareto front. This bound holds for every μ ≥ 2 but the previous
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Fig. 3. How to choose the reference point to obtain the extremes in optimal μ-distributions: μ = 2
(left) and μ = 4 (right) for one and the same front y = −x/2 + 1

theorem precises this bound to r1 ≥ μ+1
μ xmax and r2 ≥ μ+1

μ β for a given μ which
coincides with the old bound for μ = 2 but is the closer to the nadir point (xmax, β),
the larger μ gets—a result that has been previously shown as a limit result for arbitrary
Pareto fronts [3].

Last, we want to note that, though the two equations (8) and (4) do not look the same
at first sight, Theorem 3 complies with the characterization of optimal μ-distributions
given in (4) [2, Theorem 6] for the case IX which can be shown by simple algebra.

8 Conclusions

Finding optimal μ-distributions, i.e., sets of μ points that have the highest quality in-
dicator value among all sets of μ solutions coincides with the optimization goal of
indicator-based multiobjective optimization algorithms and it is therefore important to
characterize them. Here, we rigorously analyze optimal μ-distributions for the often
used hypervolume indicator and for problems with linear Pareto fronts. The results are
exhaustive in a sense that a single formula covers all possible choices of the hypervol-
ume’s reference point, including two previously proven cases. In addition to the newly
covered cases, the new results show also how the choice of μ influences the fact that
the extremes of the Pareto front are included in optimal μ-distributions for the case of
linear fronts—a fact that has been only shown before by a lower bound result of choos-
ing the reference point and not exact as here. The proofs also show that the optimal
μ-distributions for problems with linear Pareto fronts are, given a μ ≥ 2 and a certain
choice of the reference point, always unique.

Besides being the first exhaustive theoretical investigation of optimal μ-distributions
for a specific front shape, the presented results are expected to have an impact in prac-
tical performance assessment as well. For the first time, it is now possible to use the
exact optimal μ-distribution and its corresponding hypervolume when comparing algo-
rithms on test problems with linear fronts such as DTLZ1 [8] or WFG3 [13] for any
choice of the reference point4. It remains future work to theoretically characterize the
optimal μ-distributions for test problems with other front shapes for which the optimal
μ-distributions can only be approximated numerically at the moment [2].

4 Theorem 3 can be applied directly with α = −1 and β = 0.5 (DTLZ1) or β = 1 (WFG3).
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Abstract. We consider unconstrained minimax problem where the ob-
jective function is the maximum of a finite number of smooth convex
functions. We present an iterative method to compute the optimal solu-
tion for the unconstrained convex finite minimax problem. The algorithm
developed estimates the direction of steepest-descent rapidly and using
Armijo’s condition proceeds towards the solution. Owing to the highly
parallel nature of the algorithm, it is highly suitable for large minimax
problems. Algorithm is implemented on Nvidia Tesla C1060 graphics
card using CUDA and numerical comparisons with RGA & CFSQP are
presented.

Keywords: Steepest-Descent, Large Minimax Problem, CUDA.

1 Introduction

We deal with convex unconstrained finite minimax problems which maybe char-
acterized as:

min
�n

F (x)

where
F (x) = max{fi(x) : i = 1, . . . , m}

and fi : �n → � are differentiable convex functions. We can trivially see that
the function F is convex but may not be necessarily differentiable.

Constrained finite minimax programs arise in engineering design, computer-
aided-design, circuit design and optimal control [1], and are often tackled by
converting them into unconstrained problems using Penalty parameter approach.
Many decision models can be formulated as continuous minimax problems and
interested readers can find applications and examples in [2] and [3].

Finite minimax problems form an important class of nonsmooth optimization
problems, which have attracted much attention from researchers. Prominent ap-
proaches include smoothing methods [1], interior-point methods [4], active-set
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strategy [5], trust region strategy [6], direct search methods [7], method of sub-
gradients [8], semidefinite programming [2], bundle methods [9] and sequential
quadratic programming [10]. However, standard algorithms often fail on large-
scale problems since function evaluations are computationally expensive.

2 Algorithm - Basics

Descent algorithms are broad category of iterative algorithms which compute
the next iterate (say xk+1) from the current iterative (xk) in two steps: firstly,
they compute the direction of descent, say sk and then define a step-size (say
tk). Now the next iterate is:

xk+1 = xk + tksk, where tk > 0

2.1 Terminology

An index i is said to be active at a given point x iff fi(x) = F (x). The active
index-set, I(x) contains all the active indices at point x.

I(x) := {i : fi(x) = F (x)}
Similarly, fi(x) and ∇fi(x) for i ∈ I(x) are called the active function and the
active gradient respectively at point x.

The subdifferential, at a point x, represented by ∂F (x) is the convex hull of
the active gradients at point x or,

∂F (x) = co{∇fi(x) : i ∈ I(x)}
where co is the convex hull of the gradient vectors.

∂F (x) = {
∑

i∈I(x)

αi∇fi(x) :
∑

i∈I(x)

αi = 1, αi ≥ 0 ∀ i}

It must be noted that the subdifferential (∂F ) at any point x is a compact
convex polyhedron for the finite minimax problem characterized by the convex
hull of the ∇fi where i ∈ I(x).

2.2 Condition for Optimality

The proofs of the following results maybe found in [11].

Theorem 2.1. A necessary and sufficient condition for x̂ to minimize F , as
defined above, is that there exist non-negative αi’s such that,∑

i∈I(x̂)

αi = 1

and ∑
i∈I(x̂)

αi∇fi(x̂) = 0
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Theorem 2.2. If the subdifferential is a compact convex polyhedron character-
ized as a convex hull of s1, s2, . . . sm each in �n such that,

∂F (x) := co{s1, s2 . . . sm}
and αo is the solution of the convex quadratic minimization problem

min
α∈Δm−1

1
2
{‖

m∑
j=1

αjsj‖2}

where Δm−1 is the unit simplex1, then the direction of steepest-descent is given
as,

s =
m∑

j=1

αo
jsj

3 Algorithm-Serial

The sequence of iterates xk is generated by

xk+1 = xk + tksk

where tk is chosen using appropriate Line search method.
Using formulation of Theorem 2.2, the direction of steepest descent (at xk)

may be found by solving the quadratic programming problem

min
α∈Δl−1

1
2
‖

l∑
j=1

αjsj‖2,

where |I(x)| = l, (s1, . . . , sl) is the set of active gradients at the point xk and
Δl−1 is the unit simplex. The direction of steepest-descent is then unique and is
given by,

s =
l∑

j=1

αo
jsj

where αo solves the above convex quadratic programming problem. Therefore
the steepest-descent is opposite to the projection of the non-optimal point x onto
∂F (x).

Let x be the given point with |I(x)| = l, and S = [s1s2 . . . sl] where S is an
n × l matrix. Thus, our problem is equivalent to:

min
α∈Δl−1

< Sα, Sα >

The above minimization is done iteratively. In each step of the iteration, random
i and j are chosen and αk’s for k �= {i, j} are treated as constants. The problem
then reduces to,
1 Δn = {(t1, . . . , tn+1) ∈ �n+1 | ∑n+1

i=1 ti = 1 and ti ≥ 0 ∀ i}.
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min
αi

< αisi + (p − αi)sj + c, αisi + (p − αi)sj + c >

where c =
∑

k �={i,j} αksk and αi +αj = p. If the problem was unconstrained the
minima would be at:

α∗
i = −< si − sj , psj + c >

< si − sj , si − sj >

However, another condition needs to be kept in mind, that is αi, αj ≥ 0 and
αi + αj = p. Therefore, if α∗

i < 0 then we update αi = 0, or if α∗
i > p, then we

update αi = p and αj is set equal to p− αi. The iterations are continued till we
are unable to minimize objective value any further. Thereafter, we have found
out the direction of steepest-descent at point xk.

A step length, tk is said to satisfy the Armijo condition for any descent direction
dk ∈ ∂F (x) iff: F (xk + tkdk) ≤ F (xk) + c1tkdT

k sk where c1 is a pre-defined con-
stant. Inexact linesearch is used to calculate a step length satisfying the Armijo
condition, using which xk is updated as xk+1 = xk+tksk, where sk is the steepest-
descent direction at xk. The iterations are continued till 0 ∈ coi∈I(x){∇fi(x)}.

4 Numerical Results - Small Scale Problems

The algorithm was tested (using Matlab) on various small convex optimization
problems ([12], [13]) and results compared with performance of algorithm as
presented in [11].

4.1 Problem 1

f1(x) = x4
1 + x2

2

f2(x) = (2 − x1)2 + (2 − x2)2

f3(x) = 2e−x1+x2

The convergence path can be traced in Fig.1 and numerical results are tabulated
in Table 1.
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Fig. 1. Convergence path in Problem 1 for xinit = [0, 0]
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Table 1. Problem 1

xinit [0, 0] [100, 100]
Minima 2.0 2.0
ArgMin [1, 1] [1, 1]
Function Evaluations 719 2465
Descent Iterations 29 67
Internal Iterations 33 47

4.2 Problem 2

f1(x) = x2
1 + x4

2

f2(x) = (2 − x1)2 + (2 − x2)2

f3(x) = 2e−x1+x2

The results are present in Table 2.

Table 2. Problem 2

xinit [0, 0] [100, 100]
Minima 1.9522 1.9523
ArgMin [1.1390, 0.8996] [1.1390, 0.8996]
Function Evaluations 500 805
Descent Iterations 25 46
Internal Iterations 12 12

4.3 Problem 3

f1(x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 12x3 + 7x4

f2(x) = f1(x) − 10(−x2
1 − x2

2 − x2
3 − x2

4 − x1 + x2 − x3 + x4 + 8)
f3(x) = f1(x) − 10(−x2

1 − 2x2
2 − x2

3 − 2x2
4 + x1 + x4 + 10)

f4(x) = f1(x) − 10(−x2
1 − x2

2 − x2
3 − 2x1 + x2 + x4 + 5)

The results are presented in Table 3.

Table 3. Problem 3

xinit [0, 0, 0, 0] [100, 100, 100, 100]
Minima −44 −44
ArgMin [0, 0.999, 2,−1] [0, 0.996, 2,−1]
Function Evaluations 375246 2081639
Descent Iterations 3782 19846
Internal Iterations 75441 403940
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5 Large Minimax Problem

As we go onto increase m, the number of differentiable convex functions, the
problem becomes computationally tougher. Large minimax problems have m
of the order upto 106 and the mere task of computing the active set I(x) is
very heavy and the practical implementation of the serial algorithm described
above is inefficient. Therefore, computing the function value at a given point
x and the full subdifferential has traditionally been avoided for large minimax
problems [11].

5.1 GPGPU and CUDA

Recent advancements in parallel computing have seen the usage of Graphics
Processing Units for general purpose computing (GPGPU). The GPUs employ
parallel multicore architecture which favours the inherently data parallel nature
of graphics processing. With the launch of Nvidia’s Compute Unified Device
Architecture - Software Development Kit (CUDA) in 2007, using the GPU’s
computational powers for general purpose computing has become easy. With
dynamic scheduling and fast creation and destruction of light-weight threads,
CUDA is best suited for problems whereby same instruction set is to be executed
on different data via multiple threads. The SIMT paradigm is suitable for tasks
similar to evaluation of F (x), the computationally dominant step in the serial
algorithm. Now we present the parallel algorithm.

5.2 Parallel Algorithm

The parallel algorithm derives its efficiency by parallelizing three major sections
of the serial code namely the function evaluation, active index set construction
and steepest-descent direction search.

The evaluation of fi is independent of fj (j �= i) and therefore if each thread
is passed the point xk and the function fi, it computes fi(xk) efficiently. Parallel
reduction technique is used to compute F (xk), thereby reducing the time taken
in active index set construction. Furthermore, computation of the ∂F at a point
xk is similarly done in parallel using suitable finite difference method.

The number of active constraints are expected to be small and therefore the
task of finding the direction of descent by choosing a pair of α′

is could be treated
serially. However, using suitable heuristics, this task is also parallelized. Instead
of choosing one pair of αi and αj , we run multiple threads to randomly choose
many more mutually exclusive pairs and minimize with respect to these (keeping
others constant). Note that if all the threads were to write their changed values
to α, ‖∑i∈I(xk) αi∇fi(xk)‖ might actually increase. Therefore, a thread writes
its modified αi and αj only if these changes decrease the quadratic objective
function. Such atomic operations are supported in CUDA, similar to locks in
other parallel programming paradigms.
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5.3 CUDA Optimizations

In order to efficiently port the code on CUDA, significant code optimizations
have been made:

1. The warp level optimization in function evaluation is achieved through the
use of reverse Polish notation for evaluating functions step by step. The
functions are sorted on the basis of their length and concurrency of arithmetic
operators, so that same arithmetic operations can be performed parallely by
maximum number of threads in a warp.

2. Parallel reduction is used for calculation of F (x) once all fi(x) have been pro-
vided. This reduces the complexity of the operation from O(m) to O(log m).

3. The gradient calculation of each active function is done in a separate thread
block, with the threads in the block parallely calculating the gradient in each
dimension.

6 Numerical Results - Large Scale Problems

To test the efficacy and performance of the proposed algorithm, we tested the
algorithm against some of the popular algorithms for large scale minimax opti-
mization, namely Real Coded Genetic Algorithms (RGA)2 & Feasible Sequential
Quadratic Programming (CFSQP).3

Experiments were run on a AMD Athlon 64 X2 Dual Core processor 3800+,
with a Tesla C1060 graphics card from Nvidia with 30 SM’s, 240 cores and 4 GB
of device memory. The convex functions were generated by taking a weighted
sum of two objective functions where the weights were randomly generated in the
range (0, 10). Objectives chosen were first and third convex functions specified
in Prob.1.

6.1 Results

As the terminating criterion of the algorithms (our algorithm, RGA and CF-
SQP) differ, the number of iterations does not reflect the true performance of an
algorithm. The number of function evaluations of F (x) is also not a good mea-
sure because CFSQP does not necessarily evaluate all fi(x) for the calculation
of F (x). Hence, for the comparison, the wall-clock time taken by the algorithm
to converge was chosen, using standard RGA code and CFSQP4.

It can be seen in figure 2 that the time taken by RGA5 is orders of magnitude
higher than the time taken either by CFSQP or the proposed algorithm. A
2 More descriptions of RGA can be found in [14].
3 FSQP developed by University of Maryland, is a commercial tool for nonlinear op-

timization, esp. large scale convex minimax problems.
4 RGA Code available at www.iitk.ac.in/kangal/codes.shtml while CFSQP at
www.aemdesign.com. Faster evolutionary algorithms may also be tried, such as G3-
PCX[15] and CMA-ES[16].

5 As suggested in the literature, the parameters chosen are: Population Size = 30,
Generations = 80, Mutation Probability = 0.5 Crossover probability=0.7 and a
range of (-10, 10) for each variable.

www.iitk.ac.in/kangal/codes.shtml
www.aemdesign.com
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noticeable feature of the graph is that there is a slight drop in the time taken by
the gradient based methods when the number of functions increases from 20,480
to 23,040. The reason for the change is that the minima changes and both the
methods take less iterations to arrive at the solution. However, RGA is unable
to take advantage of the same owing to the deterministic number of generations.

The algorithms are also compared based on the results they produce, namely
the minimum objective function value obtained and the accuracy of the minima.
It can be seen in figure 3 that the minima found by the gradient based methods
is significantly better than the minima obtained by RGA.

In figure 4, we can see the points to which the algorithms converged. CFSQP
and the proposed algorithm converge to the same set of values for all function
set sizes while RGA is insensitive to minute changes (notice the changing point
of minima between 20,480 and 23,040 functions).

The scalabililty of the algorithm was studied using Fig.2. As expected the
CFSQP and the RGA scale linearly (slope on the log-log graph is 1.0), while our
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proposed algorithm is sublinear (slope is 0.746124), making it suitable for large
scale problems.

7 Conclusion

In this study we have proposed an algorithm to solve large scale convex minimax
problems. The algorithm has been developed on the Graphics Processing Unit
using CUDA, achieving appreciable speed-ups on test problems. The algorithm
scales sublinearly while increasing the number of functions from 1000 to 100000.
Hence, it is highly suitable for large problems. In the future we would like to
adapt some classical optimization algorithms for the SIMT architecture to solve
large scale optimization problems.
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Abstract. Negative Selection Algorithm (NSA) is one of several algorithms in-
spired by the principles of natural immune system. The algorithm received the 
researchers attention due to its applicability in various research areas and a 
number of valuable efforts are made to increase the effectiveness and efficiency 
of it. The heart of NSA is to somehow find rules called detectors to discriminate 
self and anomaly areas. Each detector in NSA defines a subspace of problem 
space where no self data is located. One of the major issues in NSA is detec-
tor’s shape or representation of detectors which can affect the detection  
performance significantly. This paper for the first time proposes a new repre-
sentation for detectors based on convex hull. Since convex hull is a general 
form of other geometric shapes, it retains the benefits of other shapes mean-
while it provides some new features like the asymmetric shape. Experimental 
results show a significant enhancement in the accuracy of negative selection  
algorithm compared to other common representation shapes. 

Keywords: Negative Selection Algorithm, Convex hull Representation, Detec-
tor Representation. 

1   Introduction 

The natural immune system is a self organized learning system which employs a  
multilevel defense against invaders. Negative Selection Algorithm (NSA) is one of 
the several algorithms inspired by the natural immune system. It has potential applica-
tions in various research areas such as anomaly detection where the problem is  
discriminating the incoming data as normal or anomaly data, given a collection of 
normal data as the training samples. NSA has been widely used for such problems 
because of its ability to model the problem space using just normal (self) samples. 

NSA was firstly proposed by Forrest [1] and soon later D’haeseler et al. [2] pre-
sented an efficient implementation of it named greedy algorithm. Generally, during 
NSA, a group of detectors are generated by some random process to cover those parts 
of problem space where anomaly (non-self) samples might appear. Each detector 
should cover some portion of non-self space and any incoming data which is laid in 
this region would be classified as non-self data. In other words, each detector tries to 
model a subspace of non-self space and the ultimate rule set would model the whole 
non-self space. Consequently, NSA would be effective if its detectors cover the  
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non-self space completely. Also the algorithm would be efficient if it covers the non-
self space with minimum number of detectors. Therefore, detector representation (i.e. 
detector shape) has effective role in NSA. 

A traditional representation of NSA detectors was binary representation due to its 
simplicity [1,2]. In [3] it is mentioned that although almost all representations can 
theoretically be translated into binary form, it imposes some limitations such as binary 
string size, accessible distance measures and comprehensibility. Hence, real valued 
representation has received great attention in the recent decades. 

Subsequent works [4,5,6,7] used real valued representation to characterize the 
self/non-self space. Different shapes have been used as detector representation such as 
hyper rectangle [4], hyper sphere [5] and hyper ellipse [6]. Also in [7], a frame work 
for multi-shape detector representation was presented. In addition to these different 
shapes, the idea of having individual specific properties for detectors have been used 
either implicitly [4] or explicitly [8]. This approach is discussed extensively in [9] 
where the algorithm is named as V-detector algorithm. 

This paper introduces a new representation of detector definition and matching 
mechanism for NSA which is based on convex hull shape. Since convex hull provides 
asymmetric shape, it can partition the problem space into complex regions and model 
complicated boundaries. Indeed, convex hull is general form of other geometric 
shapes such as hyper rectangle and hyper sphere. Therefore each detector would have 
its own shape and size. 

The remainder of this paper is organized as follows. Section 2 describes the main 
principles of NSA and convex hulls. Section 3 introduces convex hull representation 
for NSA. Experiments are given in Section 4. The last section includes summary and 
conclusion. 

2   Preliminaries 

In this section the basic elements needed to describe the proposed method are pre-
sented. First, a detailed description of negative selection algorithm is provided and 
second, the definition of convex hull as well as the algorithms of creating a convex 
hull is briefly presented. 

2.1   Negative Selection, Principle and Algorithm 

One of the best known types of natural immune cells is T cell. Negative Selection 
process (NS) is applied during the production of T cells. The surface of these cells is 
covered by a number of receptors. Any object that could be matched with those recep-
tors is known as malicious organisms. Therefore the receptors must be designed in a 
way that they would never detect self cell as a non-self one. NS is a process in which 
the cells that react against self cells are filtered out. This would happen during the 
generation process of T cells. A huge number of T cells are made through a pseudo 
random genetic process. Then they undergo the NS process which eliminates those 
that recognize self cells. The remaining ones would be distributed in body to recog-
nize invaders. For more information, interested reader can refer to [10]. 
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This maturation process is modeled in computer science as the Negative Selection 
Algorithm (NSA). The algorithm has two phases, training and detection phase. Dur-
ing the training phase, a group of detectors are produced by some generation mechan-
ism, usually a pseudo random process. These detectors play the role of T cells and 
should cover the non-self region of problem space. The self region can be recognized 
using the self data instances given as the training set. As in the generation process of 
T cells, the detectors are checked through the training data and those detectors who 
match any self data would be eliminated. Next, in detection phase, these detectors are 
used to categorize the incoming data instance as self or non self. The NSA mechanism 
is summarized in following diagram. 

 
(a) 

 
(b) 

Fig. 1. NSA flow diagram (a) Training phase; (b) Detection phase 

2.2   Convex Hull, Definition and Algorithms 

Given a set P of limited number of points, n, convex hull of P, CH(P), is defined as 
the largest convex polygon whose vertices are from P, or unique convex polygon that 
contains all points in P and whose vertices are in P. In the plane the convex hull  
takes a polygonal shape. The extreme points in the set are the vertices of the convex 
polygon.  

There are many algorithms for finding the convex hull of a point set in the plane, 
3-D and higher dimension space. For the convex hull problem in the plane, the Gra-
ham scan algorithm is the well known one [11]. The algorithm consists of 2 simple 
steps to construct a convex hull from n>3 points. First, an external point is chosen, for 
example a point with smallest y coordinate, and is labeled as p0 and then the remain-
ing n-1 points are sorted radially, using p0 as origin. Now a simple polygon with n 
vertices is produced. Next, to change this polygon into convex hull, each point goes 
through the Three Penny Algorithm which determines whether the point along with 
its two adjacent are in clockwise order, counterclockwise order or on a line. Those 
points which are in counterclockwise order with respect to their adjacent, are known 
to be the convex hull vertices. For example, consider a sorted set of points {P0 
P1…Pn}. First, Pi’s two adjacent points in set P, are Pi-1 and Pi+1. Note that P0 is an 
adjacent of Pn. Next, it is determined whether Pi-1 ; Pi ; Pi+1 is in counterclockwise 
order. If so, the point Pi is supposed to be a vertex of the convex hull. 

To find out whether three points are in counterclockwise order or vice versa, we 
can simply calculate the cotangent of their angle since it is a monotonically decreas-
ing function. For three points (x1,y1), (x2,y2) and (x3,y3), this is formulated as bellow: 
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3   Proposed Method 

As mentioned before, there had been some valuable efforts to achieve a proper repre-
sentation for the detectors in terms of shape and size. It is shown that detectors with 
individual specific properties lead to more effective and efficient results [7,8,9]. 
Meanwhile, convex hull offers asymmetric shape which means that two convex hulls 
with different or even the same number of vertices may have different shapes and 
consequently different sizes. Therefore detectors with convex hull representation can 
form a wide variety of shapes and sizes compared to spherical and even the multi-
shaped representation. Also it is worth mentioning that all the other geometric shapes 
can be approximated through convex hulls with sufficient number of points. The re-
cent property suggests convex hull as the shape of choice by offering more general 
representation than other geometric shapes.   

Convex hull representation is not a complete stranger in knowledge representation 
field. In fact, it has been used previously in learning classifier systems literature [12] 
where representation showed to be a challenging issue. The reported experimental 
results of this representation showed a significant improvement at a 99.99% confi-
dence level. This result and the studied characteristics of convex hulls motivated us to 
test this representation in NSA as well. 

As previously indicated, NSA has two phases, training and detection phase. In 
what follows, we explain NSA’s phases for convex hull representations. 

3.1   Training Phase 

A detector with convex hull representation can be defined as a set of points by their 
Cartesian coordinates when they define the convex hull’s vertices {P0, P1,…,Pn}. 
Another choice is to represent the detector in polar coordinates originated in a random 
point which can be considered as center of the detector. Although the former case is a 
straightforward schema, the latter one provides more control on the covered area of 
convex hull. This control mechanism has been used in spherical representation to 
keep detectors away from the self space. 

The proposed algorithm uses five steps to generate a detector with convex hull  
representation. Next, these steps are explained in details.  

Step 1. Produce the center point of convex hull. A point is generated randomly and is 
checked to be out of the self space. Also as an optimization mechanism to keep num-
ber of generated detectors under control, the point is examined to find the number of 
already generated detectors it matches with. If it is more than a predefined (θoverlap) 
percentage of the whole number of generated detectors by now, the point is eliminat-
ed and a new one is produced. Otherwise, it is accepted as center point. 

Step 2. Define the number of convex hull vertices, n. It can be done in two ways; 
first, a fixed number of points for all detectors and second, a variable number of 
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points chosen randomly within a lower and upper bound for each detector. In the 
former case, the larger the number of points is fixed on, more complex regions is 
covered. However, generating such a complex detector would be harder. In the latter 
case, which we preferred, the lower bound should obviously set to three. The upper 
bound has a direct effect on the complexity of detector. Since a complex convex hull 
is less feasible to generate, smaller amount of such detectors would be generated. 
Because a convex hull detector is represented by its points, the number of convex 
hull’s vertices is considered as the detector size. 

Step 3. Generate n points to be the convex hull vertices. The points are generated in 
polar coordinate originated in the accepted center point. Again, to reduce possible self 
coverage by the detector, it is tried to choose the points out of the self space. Thus, the 
points are generated as the following. The angular space around the center point is 
divided into n parts.  For each part, a random angle is generated, and then the radius 
corresponding to each angle is defined equal to distance between the center point and 
nearest self data point located close to the corresponding angle. As usual [6,7,8], if 
one of the radiuses is less than a predefined value (θself), the detector is ignored and a 
new center would be generated. 

Step 4. Make convex hull from generated points. In this step, one of the convex  
hull algorithms as like as the one explained in the previous section, Graham scan 
algorithm, should be used to generate convex hull of the generated points. Note that 
the number of vertices in the resulted convex hull may be less than the number of 
points, n. 

Step 5. Check the detector against training data. As usual, the detector which includes 
any self data instance is eliminated. The matching rule component is responsible to 
define whether or not a data instance is covered by a detector. Convex hull detectors 
match all the points located in their corresponding convex hull. Therefore, matching 
rule will be the algorithm which defines whether a point is in the convex hull or  
not. A simple algorithm for this purpose in plane is Three Penny Algorithm which  
has been explained in Section 2.2. Figure 2 summarizes the above steps in a flow 
diagram. 

Fig. 2. Flow diagram of the proposed method 
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overlapped detectors, θoverlap, the number of convex hull vertices which is called the 
detector size, |d|, and the number of detectors |S|.  

To compare performance of the well known V-detector algorithm and the proposed 
algorithm, the parameters are configured as follows; θself is set to 0.05 as it is common 
in the literature, [7,8,9]. θoverlap is set to 1/15 experimentally, |d| is randomly chosen 
among 4,5 and 6 and the number of detectors , |S|, is set to 50 the same as in V-
detector to have a fair comparison. Also, the one-tailed pairwise t-test is applied to 
check whether the difference between results of two methods over the datasets is 
statistically significant or not. The null hypothesis of this test is that the proposed 
method and V-detector algorithm perform the same on average over 50 independent 
runs against the alternative that the average performances are not equal. 

4.3   Results 

Table 1 highlights the difference between the proposed method and V-detector algo-
rithm. V-detector algorithm is implemented as in [9] and is justified by results men-
tioned there. 

Table 1. The results of applying the proposed method and V-detector algorithm in selected 
datasets 

Data Set Proposed method V-detector algorithm p-value 
 TP FP TP FP  

Pentagram 99.6 0.2 1.7 96.4  1.7 0.5 2.8e-021 

Intersection 98.6 0.4 3.7 90.6 2.7 4.3 1.4e-035 

Ring 98.7 0.5  5 93.2 3.2 6.3 1.1e-018 

 
The table contains the average of true positive rate (TP), false positive rate (FP) 

and their standard deviation over 50 independent runs. Also, the obtained p-value of 
pairwaise t-test with 5% significance level is presented. The results show that with the 
same number of detectors, the proposed method can achieve better TP and well FP 
rate. The results of pairwise t-test verified this performance improvement over 95% 
confidence level. In addition, the variances of obtained rates are less. Therefore it can 
be concluded that a more stable and higher performance is acquired by the proposed 
method.  

It was stated earlier that the results presented in Table 1 is obtained by a fixed 
number of detectors, 50. Nevertheless, using proposed method, acceptable results can 
be achieved with a very small number of detectors. This is shown in Figure 4 where, 
results of the proposed method and V-detector algorithm with different values for |S| 
on pentagram, intersection, and ring benchmarks are illustrated. It is not surprising 
that increasing the number of detectors results in a higher detection performance. 
Comparison of the two methods shows that the proposed method results in slightly 
few detectors to reach 90 percentage of true positive rate. 

The visual results of proposed method is presented in Figure 5 where the training 
data is illustrated as black dots and the gray area shows the detectors coverage. 
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 (a)  (b) 

 (c)  

Fig. 4. Comparison of proposed method and V-detector algorithm in different values of |S| on, 
(a) Pentagram, (b) Intersection, (c) Ring 

   

  
(a) 

  
(b) 

Fig. 5. Visual results by (a) the proposed method (b) v-detector algorithm. The training data is 
illustrated as black dots and the dark gray area shows the detectors coverage. 
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As shown in the Figure 5 part b, it seems that the spherical shape can effectively 
cover the curvilinear boundaries but it can estimate lines and corners only if a large 
number of them are used. In contrast, the convex hull representation has better ability 
to match with straight lines and corners. Also, the symmetric shape of convex hull 
brings it to match the curvilinear boundaries as well.  

5   Conclusion 

In this work a new extension of NSA with convex hull based representation is pre-
sented. The proposed method is designed to enhance the performance of NSA by 
partitioning the problem space into convex regions with maximum coverage and min-
imum overlap between detectors. Convex hull representation offers our model the 
ability to cover complex area with more flexibility. To explore the advantages of our 
method over the well known NSA, named V-detector algorithm, in terms of true posi-
tive rate, standard deviations and number of detectors, a number of experiments on 
known benchmark are conducted. As comparison results show, convex hull based 
representation outperforms the variable size spherical representation due to asymme-
tric shape and higher flexibility of convex hulls in covering complex areas. The flex-
ibility of convex hull representation brings the benefit to the proposed method in the 
sense that it provides less number of detectors with more efficient detection of new 
sample, and also, promising true positive rate. 

The detector generation mechanism used in this algorithm is a pseudo random 
process which considers the uncovered area of problem space. Hence, it seems that a 
good topic as a future work can be designing a detector generation mechanism which 
can distinguish the best detectors in terms of its covered area. Also, the influence of 
higher dimensional data sets needs further study including more experiments and 
analysis. 
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Abstract. Learning classifier systems (LCSs) are evolutionary learning  
mechanisms that combine genetic algorithms (GAs) with the power of the rein-
forcement learning paradigm. XCS, eXtended Classifier System, is currently 
considered as state of the art learning classifier systems due to its effectiveness 
in data analysis and its success in applying to varieties of learning problems. 
Generalization and the size of evolved population in XCS is one of the most 
challenging issues in XCS. This paper suggests that rule representation in XCS 
is not matured to the point where the condition parts of classifiers are covering 
the problem space in an effective manner with minimum redundancy. The key 
idea in the proposed system, named XCS-HT, is to use a novel representation 
scheme based on presenting a subspace of problem space with two kinds of re-
gions named certain and vague regions. Using such mechanism significantly 
boils the number of evolved XCS-HT’s classifiers down, while changing the 
performance only marginally. The experimental results show that XCS-HT has 
a better ability to solve problems having indistinguishable class boundaries 
comparing to XCSR, a common extension of XCS standing for handling real 
valued data.  

Keywords: Learning Classifier System, XCS, Representation, Fuzzy Member-
ship Function. 

1   Introduction 

The accuracy based learning classifier system (XCS) [1] is a Learning Classifier Sys-
tem (LCS) that was introduced by S. W. Wilson. The Learning Classifier system term 
is used generally for a system which tries to propose a classification for a set of envi-
ronmental states. The aim of learning classifier systems is to evolve a population of 
classifiers using an internal evolutionary algorithm. This population is expected to 
enable the system to interact with the environment to achieve maximum available 
payoff. In Lanzi’s view [2], the effectiveness of XCS as a machine learning technique 
to solve a learning problems is that “XCS was the first classifier system to be both 
general enough to allow applications to several domains and simple enough to allow 
duplication of the presented results”. 

A rule based system like XCS is able to solve a problem efficiently if its rule set 
can cover the whole problem space properly and also each rule makes an effective 
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decision. Therefore, it can be concluded that rule representation, i.e. knowledge repre-
sentation, has an essential role in rule based systems. In addition, one of the most 
important goals in XCSs is to achieve a compact and an accurate solution for a given 
problem. These features depend on the representation method used to cover the prob-
lem space. For example, to handle real valued problems, many representation me-
thods have been proposed in XCS realm, such as; interval [3-6], ellipsoidal [7], and 
convex hull [8]. It can be concluded that many of proposed representations are de-
signed to describe the shape of subspace in the problem space. This shape certainly 
identifies which environmental states belong and which do not. Our main contribution 
in this paper is to propose a new representation scheme for XCS. In this scheme, each 
classifier presents two kinds of regions; 1) Certain region, identifying which envi-
ronmental states can be matched by the corresponding classifier certainly, 2) Vague 
region, identifying which environmental states might be matched by the correspond-
ing classifier.   

The rest of this paper is organized as follows; Section 2 summarizes the important 
works that have been done to enhance the knowledge representation component of 
XCS. Our proposed method is described in Section 3. In Section 4, the test problems 
are represented and the experimental results are demonstrated and discussed.  

2   Related Work 

For the sake of continuous-valued input, the traditional “Ternary” representation in-
cluding {0,1,#} alphabets has been substituted to the interval-based representation. 
For each dimension, there is an interval in condition part of classifiers. The disjunc-
tion of intervals in condition part of each classifier identifies the subspace of problem 
space which can be covered with this classifier. According to definition of these  
intervals four different representation techniques have been introduced; Center  
Spread Representation (CSR) [3], Lower-Upper Bound Representation or Min-Max 
Representation (MMR) [4], Unordered-Bound Representation (UBR) [5], and Min-
Percentage Representation (MPR) [6]. Besides, in order to handle real valued inputs, 
several invaluable efforts have been done to define a geometric shape in each classifi-
er to cover the problem space. Some of these efforts are done in [7] and [8] where 
each classifier presents an ellipsoidal and a convex hull respectively. Other represen-
tations with general purpose have also been proposed to use in XCS to make it more 
effective; such as, fuzzy [9-13], GP-like conditions [14], and neural network [15].  

There are a number of approaches to use fuzzy logic as a technique for 
representing rules in Michigan-style LCS [9-13]. The main goal behind such efforts is 
combining the generalization capabilities of XCS with the fine interpretability of 
fuzzy rules to achieve an online learning system with more accurate, general and well 
understandable rule set. A general framework of LCS using fuzzy logic was intro-
duced by Bonarini et al. in [10, 11]. Recently, a system named Fuzzy-XCS [12] was 
proposed where the rules are expressed in fuzzy format. Soon later, this approach is 
expanded to be useable in UCS [13]. 
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3   XCS-HT 

The aim of this paper is to propose a mechanism for handling real valued input and 
also covering the problem space with classifiers containing certain and vague regions. 
Here, an incoming state x will be certainly matched by a classifier cl if and only if it 
falls in the certain region presented by cl and x might be matched by cl if and only if it 
locates in the vague region of cl. In former case, it can be said that cl matches x with 
100% matching degree and in latter case x might be matched by cl with less than 
100% matching degree. So, in XCS-HT, each classifier has a parameter to identify its 
matching degree when faces the current incoming state. In following, we describe the 
modification of XCS’s components in XCS-HT in detail. The other components of 
XCS-HT are the same as those in XCS. 

Representation. Each classifier covers a subspace of the problem space and makes a 
decision in this subspace regarding to its experiences. In XCS-HT, the condition part 
of each classifier presents two hyper rectangles. One of these hyper rectangles em-
braces the other one completely. The inner hyper rectangle is indeed the certain re-
gion and the space between these two hyper rectangles is a vague region where in-
stances can be matched by less than 100% matching degree. In other words, in each 
classifier, we use an asymmetric hyper trapezoidal membership function defined as 
Formula 1. This function identifies the matching degree of corresponding classifier 
while it is checked with current incoming instances in forming match set, [M], 
process. Therefore, the condition part of each classifier in XCS-HT consists of four 
genes for each dimension to present such trapezoidal membership function, that is, 
cl.C={a1,b1,c1,d1,a2,b2,c2,d2, …, an,bn,cn,dn} where n identifies the dimensions of given 
problem and {ai,bi,ci,di} are the parameters of the defined trapezoidal membership 
function in i’th dimension.  

, , , ,
0                   1                                 0

 

 

 

(1) 

Matching. To match a classifier condition against the incoming instance the trape-
zoidal membership functions defined in condition for each dimension are checked. If 
the outputs of these functions are greater than zero, this classifier can match the cur-
rent input. As mentioned before, each classifier has a μ identifying its matching de-
gree when faces the current incoming instance. This parameter is calculated by mul-
tiplying the output of defined trapezoidal membership function for each dimension in 
the condition part of classifier, that is, . ∏ . , . , . , . .  

 



58 F. Shoeleh, A. Hamz

Covering. In XCS-HT, the 
an essential. In XCS-HT, tw
forming [M] process; 1) the
its matching degree parame
ated. If this random numbe
the corresponding classifier
dinary mechanism. 2) Anot
selection mechanism to sele
ers that its matching degre
wheel selection. In this m
minimum sum of candidate

If no classifier was found
a sequence of random num
part of a new classifier as if

Subsumption. Two subsum
Subsumption were introduc
subsumption procedure, we
cl1.C can cover the other on
both classifiers cl1 and cl2 m
tion, a classifier cl1 subsum
covers the interval defined 
can subsume cl2 if .  
in XCS-HT we use another
subsumption procedures. H
dimension the overlapping 
the condition parts of two 
overlapping area (Soverlap) i
covered by more specific c
can be covered by the more
sider an example which is
subsume cl2 in subsumption

Fig. 1. An example of our sub
cl2 (Soverlap > 0.9 *Scl2) whereas

Algorithm 1 describes our I
both GA subsumption and A
sifier is more general than o

eh, and S. Hashemi 

 matching degree parameter of each classifier, i.e. cl.μ, 
wo mechanisms can be considered to use such paramete
e probability of a classifier being a part of [M] is equa
eter. In this case, a random number between (0,1] is gen
er is less than the classifier’s matching degree parame
r will be a member of [M]. This mechanism is named 
ther approach called RW mechanism is using roulette wh
ect classifiers for forming [M]. So, [M] consists of class
ee is equal to one and the classifiers who win in roul

mechanism, a predefined threshold is used to identify 
e classifiers’ matching degree. 
d to match the current instance, the system would gener

mbers as a1,b1,c1,d1, a2,b2,c2,d2, … , an,bn,cn,dn in condit
f it could match the current instance certainly. 

mption procedures named GA subsumption and Action 
ced in XCS to improve its generalization capability. In e
e must determine whether the condition part of a classi
ne cl2.C or not. It must be mentioned that the action par
must be the same. In the case of interval based represen
mes cl2 if the interval presented in each dimension of
in the corresponding dimension of cl2. In other words, .   and .   .   for all dimensions. 
r mechanism to determine the covering classifiers in b

Here, to identify whether cl1 can cover cl2 or not, for e
area of the trapezoidal membership functions defined
classifiers is calculated. If in all problem dimensions 
s greater than a specific percentage of total area which
lassifier, i.e. cl2, (Soverlap > θoverlap*Scl2), we can say that
e general classifier, cl1. To illustrate such mechanism, c
s shown in Figure 2. According to our approach, cl1 
n procedures whereas cl1 cannot subsume cl3.  

 

bsumption mechanism; let consider θoverlap =0.9, cl1 can subsu
s it cannot subsume cl3 (Soverlap < 0.9*Scl3) 

IS MORE GENERAL (clgen,clspec) function which is used
Action Set Subsumption procedures to identify which c
others.  

has 
er in 
al to 
ner-
eter, 
Or-
heel 
sifi-
ette 
the 

rate 
tion 

Set 
each 
ifier 
rt of 
nta-
f cl1 
, cl1 
But 

both 
each 
d in 
the 

h is 
t cl2 

con-
can 

ume 

d in 
las-



 To Handle Real Valued Input in XCS: Using Fuzzy Hyper-trapezoidal Membership 59 

 

4   Experimental Results and Discussion 

This section precisely covers our observation and analysis. At first, the experimental 
setup and used data sets are introduced. Then, the obtained results are presented and 
analyzed. Finally, we introduce a measurement to approve our hypothesis that XCS-
HT can cover the problem space in an effective manner with minimum redundancy. 

4.1   Experimental Set Up  

To verify the basic behavior of our proposed representation in XCS-HT, the experi-
ments were carried out using four synthetic data sets named: “Zigzag Boundary”, 
”Vague Boundary”, “Tao” [16] and “Pentagram” [17]. As shown in Figure 2, we use 
these data sets due to their various class boundary shapes and few dimensions which 
would lead to better visual understanding of the resulting classifiers. In Figure 2, the 
white area presents the space of the positive class and the black area is the negative 
class space. The instances of these data sets are obtained by sampling from their  
figures. Each instance has two real valued attributes regarding the position of  
 

Algorithm 1. The pseudo code of our IS MORE GENERAL (clgen,clspec) function

IS MORE GENERAL (clgen, clspec): 
 i=0 
 do{ 
  Soverlap=OverlapArea(Trap(clgen[i]),Trap(clspec[i])) 
  Sspec=(|clgen[i].d-clgen[i].a|+|clgen[i].c-clgen[i].b|)/2 
  If(Soverlap<Sspec* overlap) 
   Return false 
  i++ 
 }while(i<length of Condition part of clspec) 
 Return true 
 
OverlapArea(Trap1,Trap2): 
 max_a=max(Trap1.a, Trap2.a) 
 min_d=min(Trap1.d, Trap2.d) 
 if(min_d<=max_a) 
  retrun 0 
 x=constant less than 0.1 
 i=0 
 Soverlap=0 
 do{ 
  p1= max_a+ x*i 
  p1_value= min(T(p1,Trap1.a,Trap1.b,Trap1.c,Trap1.d) 
          ,T(p1,Trap2.a,Trap2.b,Trap2.c,Trap2.d)) 
  p2=max_a+ x *(i+1) 
  p2_value= min(T(p2,Trap1.a,Trap1.b,Trap1.c,Trap1.d) 
           ,T(p2,Trap2.a,Trap2.b,Trap2.c,Trap2.d))
  Soverlap=Soverlap+|p1_value + p2_value|/2  
 } while(p2<min_d) 
 retrun Soverlap 
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Table 1. Comparison XCSR using MMR representation against XCS-HT using Ordinary 
mechanism to form match set, [M]. The results are achieved at different level of θoverlap. The 
performance (Perf.) and the number of evolved macro classifiers (#Rules) are averaged over 50 
independent runs.  

Data set XCSR XCS-HT 
θoverlap=1.0

XCS-HT 
θoverlap=0.95

XCS-HT 
θoverlap=0.9

XCS-HT 
θoverlap=0.85

XCS-HT 
θoverlap=0.8 

Zigzag 
Boundary 

Perf. 95.95 
( 1.33) 

96.27 
( 0.63) 

96.46 
( 0.67) 

96.39 
( 0.66) 

96.33 
( 0.81) 

95.92 
( 0.78) 

#Rules  231.62 
( 40.1) 

247.74 
( 34.9) 

257.76 
( 54.4) 

191.28 
( 39.5) 

169.56 
( 20.5) 

179.48 
( 26.8) 

Vague 
Boundary 

Perf. 93.71 
( 1.36) 

94.66 
( 0.76) 

94.25 
( 0.81) 

94.34 
( 0.85) 

94.14 
( 0.82) 

93.99 
( 0.88) 

#Rules  234.36 
( 35.6) 

303.34 
( 46.9) 

283.02 
( 47.1) 

213.62 
( 40.5) 

187.92 
( 28.2) 

190.78 
( 27.0) 

Tao  Perf. 92.85 
( 1.26) 

93.99 
( 1.00) 

93.24 
( 0.88) 

91.9 
( 1.62) 

92.09 
( 1.44) 

91.54 
( 1.49) 

#Rules  416.58 
( 47.0) 

673.5 
( 43.5) 

443.7 
( 53.4) 

296.44 
( 43.2) 

230.10 
( 37.8) 

115.44 
( 30.3) 

Pentagram   Perf. 94.34 
( 1.14) 

93.44 
( 0.84) 

92.70 
( 1.02) 

91.73 
( 1.21) 

90.94 
( 1.23) 

90.60 
( 1.60) 

#Rules  576.34 
( 36.2) 

689.72 
( 34.5) 

564.78 
( 36.0) 

484.4 
( 43.7) 

416.48 
( 59.5) 

359 
( 49.8) 

Table 2. Comparison XCSR using MMR representation against XCS-HT using RW mechanism 
to form match set, [M]. The results are achieved at different level of θoverlap. The performance 
(Perf.) and the number of evolved macro classifiers (#Rules) are averaged over 50 independent 
runs.  

Data set XCSR XCS-HT 
θoverlap=1.0

XCS-HT 
θoverlap=0.95

XCS-HT 
θoverlap=0.9

XCS-HT 
θoverlap=0.85

XCS-HT 
θoverlap=0.8 

Zigzag 
Boundary 

Perf. 95.95 
( 1.33) 

96.56 
( 0.72) 

96.46 
( 0.67) 

96.48 
( 0.68) 

96.47 
( 0.61) 

95.92 
( 0.79) 

#Rules  231.62 
( 40.1) 

214.60 
( 39.5) 

204.50 
( 36.4) 

167.56 
( 29.3) 

145.8 
( 24.1) 

153.62 
( 23.0) 

Vague 
Boundary 

Perf. 93.71 
( 1.36) 

94.40 
( 0.78) 

94.46 
( 0.76) 

94.58 
( 0.60) 

94.45 
( 0.75) 

93.92 
( 0.95) 

#Rules  234.36 
( 35.6) 

256.36 
( 51.1) 

259.10 
( 50.6) 

193.24 
( 32.5) 

162.74 
( 28.3) 

154.28 
( 24.6) 

Tao  Perf. 92.85 
( 1.26) 

93.95 
( 1.02) 

93.22 
( 0.84) 

92.52 
( 1.27) 

92.15 
( 1.18) 

92.10 
( 1.36) 

#Rules  416.58 
( 47.0) 

611.50 
( 46.7) 

407.94 
( 52.2) 

267.56 
( 37.9) 

217.28 
( 40.2) 

205.34 
( 41.2) 

Pentagram   Perf. 94.34 
( 1.14) 

93.91 
( 1.04) 

93.2 
( 1.08) 

92.89 
( 0.96) 

91.65 
( 1.22) 

90.88 
( 1.20) 

#Rules  576.34 
( 36.2) 

653.78 
( 30.4) 

512.28 
( 33.6) 

424.86 
( 39.1) 

379.74 
( 44.1) 

312 
( 43.9) 
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(a) (b) 

Fig. 3. Difference between applying Ordinary mechanism (a) or RW mechanism (b) to form 
match set, [M], in XCSR and XCS-HT with different values of θoverlap. 

frequently in comparison to using Ordinary mechanism. Figure 3 shows the differ-
ence of applying these two mechanisms for forming [M] in “Tao” data set. Note that, 
the horizontal axis is the first 5000 exploitation trials and the vertical axis is the mean 
size of evolved population (|pop|). As shown in this figure, Using RW mechanism 
causes lower increasing of |pop| in the beginning and also after the subsumption is 
applied the size of evolved classifiers will be decreased more rapidly. 

Minimum Redundancy. If the covered subspaces of classifiers in XCS have low 
overlap with each other, XCS can cover whole problem space with less number of 
classifiers. In other words, producing and evolving classifiers with minimum redun-
dancy would solve the problem space in an effective manner. To investigate whether 
the classifiers of XCS-HT have the minimum redundancy property or not, a measure 
named  is defined. This measurement shows the average of covering 
space for each classifier in corresponding system. Figure 4 illustrates the obtained 

 measurement in XCS-HT and XCSR which is computed as Formula 2 
and 3 respectively.  

∑ ∏ . .∈ .  (2) 

  ∑ ∏ 0.5 ∗ . . . . 0.5 ∗ . .∈ .  
(3)

 
As mentioned before, the performance of XCS-HT can approach that of XCSR but it 
produces smaller evolved rule set. So, if XCS-HT has a lower   in com-
parison to XCSR, it can be claimed that the evolved classifiers in XCS-HT have a 
lower overlap with each other. As the results shown in Figure 4 approve our claim in 
most of data sets especially in ones having distinguished class boundaries, it is can be  
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(a) (b) 

Fig. 4. Difference between applying Ordinary mechanism (a) or RW mechanism (b) to form 
match set, [M], in XCSR and XCS-HT with different values of θoverlap. 

said that the proposed representation scheme can producing classifiers covering the 
problem space in an effective manner with minimum redundancy. 

5   Conclusion 

In this work, we propose an accuracy based classifier system named XCS-HT with 
new representation scheme, which is based on presenting two kinds of regions, i.e. 
certain and vague regions. In this scheme, in each dimension a trapezoidal member-
ship function is defined. Some main components of XCS are modified in XCS-HT to 
be compatible with the proposed representation scheme. XCS-HT is applied on some 
real valued benchmark problems and it compared with the original XCS with interval 
based representation named XCSR. As experimental results showed, in comparison 
with XCSR, XCS-HT using the proposed representation scheme leads significant 
improvement in term of the number of evolved classifiers without noticeable loss of 
performance. To conclude, our experimental observations show that the obtained 
performances of XCS-HT on the problems with no distinguishable class boundaries 
(like Vague Boundary and Zigzag Boundary) are promising. As a feature work, we 
decide to improve this system to be able apply on multi step problems. 
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Abstract. Platooning technology is becoming a future task which suggests as a 
way of reducing carbon dioxide emissions and realizing safe driving at a high 
velocity. This paper presents a unique optimal control method of velocity and 
distance for platooning using model predictive control. The vehicle-platoon’s 
distance model which is based on the road condition and weather condition is 
used in this rigorous approach of deriving the control input. A combination of 
Continuation and Generalized Minimum Residual Methods is used to optimize 
the sequence of vehicle control commands which is required in the prediction 
horizon aiming at minimizing the relative velocity and keeping safe distance of 
the vehicle-platoon while the vehicle-platoon is on a high velocity driving. 

Keywords: Platooning, model predictive control, safe distance. 

1   Introduction 

Platooning is considered as one of the innovations in the automotive industry that aim 
to improve the safety, efficiency, mileage, and time of travel of vehicles while reliev-
ing traffic congestion, decreasing pollution and reducing stress for passengers [1]. 
Also, platooning makes it possible for vehicles to travel together closely and safely. 
This leads to a reduction in the amount of space used by a number of vehicles on a 
highway. Thus more vehicles can use the highway without traffic congestion [2]. 

Model predictive control is a potential control technique for non-linear systems  
that suits vehicle driving [3], [4]. This paper presents a unique approach for the con-
trol of vehicle-platoon’s relative velocity and safe distance that measures the condi-
tions of vehicles in the vehicle-platoon, determining the optimal control input based 
on minimization of relative velocity and difference between safe distances of the 
vehicle-platoon.  

The optimum control model of the vehicle-platoon, used in this paper, expresses 
the dynamic relationship between leading vehicle and following vehicles at any in-
stant. The optimization of control inputs in the prediction horizon is conducted using 
Continuation method combined with generalized minimum residual method known as 
C/GMRES method [5], [6].  

The contribution of this paper is two-fold. Firstly, develops an optimum control sys-
tem to minimizing the relative velocity and keeping safe distance of vehicle-platoon 
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for platooning using model predictive control. Secondly, a safe distance adjustment 
model according to road condition and weather condition is designed. 

2   Overview of Optimal Control System 

The proposed optimal control system is composed of vehicle-platoon model and model 
predictive control block, which is shown in Fig. 1. Vehicle-platoon model describe 
dynamics of the leading vehicle and following vehicles. The optimizer calculates a 
group of control inputs over the whole horizon, and feed the optimal commands to the 
vehicle-platoon. This process is repeated when control vector is updated. 

 

 

Fig. 1. Optimal controller for platooning 

3   Model Predictive Control 

In the model predictive control, dynamic models are usually described as [7] 
 ,  (1) 

 
Performance is evaluated by a cost function 

 , ,  (2) 

 

where, L is the function applied to evaluate automobile performance, t is the virtual 
time, t is the time when control vector is updated, T is the horizon length, x is a state 
variable vector of the host vehicle and the surrounding vehicles, its initial value is 
determined by data from vehicle sensors, and u is an optimal control input vector. The 
problem is how to optimize control vector u to minimize the value of J. in this paper, 
GMRES method is applied [8], [9]. 

Requirements for solving this problem are defined as  
 

, : , , 0 (3) 

 



 Development of Optimal Control System for Safe Distance of Platooning 67 

0 (4) 

 
H is a Hamiltonian defined as 

 , , , , , · ,  (5) 

 

where, ,  and  are partial derivatives of H, and λ is a costate vector with the 
same dimension of x. Prediction horizon[t, t + T] is divided into N sampling times, 
and control input vector is defined as 

 , , ⋯ , 0, 1, ⋯ 1 (6) 

 x τ  and λ τ  can be calculated by integral of equations (3). 
A function of u and x is constructed as  
 , , , , ⋯ ,  (7) 

 , , ,
 (8) 

 
The optimal condition can be derived from 

 , , 0 (9) 

 

With differentiation of equation (10), equation of  is derived as, 
 0 (10) 

 
Equation (11) is solved by GMRES method. Therefore optimal control vector  
can be obtained. Optimal control vector after  is represented as , and 
calculated by ·  (11) 

4   Modeling and Control  

4.1   Platooning Model 

For the optimum control system for safe distance of platooning, the most important 
element is the formulation of the vehicle control problem. A simplified platooning 
model considering only the longitudinal motion of three vehicles is taken into account 
Fig. 2. 
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Fig. 2. Vehicle-platoon in a string 

For each vehicle, we define,  is position,  is the velocity,  is acceleration,  
is range signal measured,  is relative velocity measured by ith vehicle, i shows the ith 
vehicle. 

Here we assume that each vehicle can transmit its status to the others. In this mod-
eling, the state equation of the platooning: 

 , , , , , ,  (12) 

 

Where, , , , , ,  denotes state vector representing position and 
velocity of the vehicle-platoon including the leading vehicle. The control input of this 

equation  is the acceleration/deceleration of the leading vehicle, which is bounded 

by an inequality constraint as , to meet physical limits of 

actuators. The time dependent parameter  and  represent the model of following 
vehicles in term of these acceleration/deceleration by which movement of the follow-
ing vehicles is anticipated in the prediction horizon. 

For leading vehicle, the motion equation is defined as 
 

,  (13) 

 
and the motion equations of following vehicles is defined as 
 

,  (14) 

 

, ,  (15) 

 

where,  is the desired time headway,  is desired velocity of vehicle i. 

4.2   Safe Distance Model 

As we know, when the vehicle is driving on the road, the road condition and weather 
condition usually changes, so a fixed distance is not safe. We should consider a  
safe distance adjustment model according to different road condition and weather 
condition.  

Road condition for platooning is about the frictional factor of different road types 
in Table 1. 
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Table 1. Road frictional factor 

Road type Dry road Rainy road Snow road Freeze road 
Frictional factor 0.6 0.4 0.28 0.18 

 

Fig. 3. Actual stopping distance 

There is a difference between actual stopping distance and ideal stopping distance. 
Fig. 3 [10] shows the actual stopping distance according to different velocities. 

Here we assume the human driving by velocity of 60 km/h on dry road, and the 
ideal stopping distance is calculated as 44 m by the equation as 

 /2  (16) 

 

Where,  is the frictional factor, 9.8 / . 
For the difference between ideal stopping distance and real stopping distance, we 

consider two parts, which are driving reaction time and correction factor. 
 

,  (17) 

Where,  is driving reaction time which means the reaction delay time to carry out 
commands,  is the influence between road and shoes. 

We use the data of human driving stopping distance by the velocity of 60 km/h and 
we can calculate 0.865. The reaction time of human is 1s, while the reaction time 
of platooning is 0.1s for signal transmission. So the safe distance of vehicle-platoon 
can be designed as  

 /2 0.1  (18) 

 
Here I consider a method for vehicle adjusting the distance of vehicle-platoon auto-
matically. For leading vehicle, we assume that it loads a camera to discriminate the 
road every mixed time period. Fig 4 shows the dry road and wet road which comes 
from Kitakyushu, Japan (pixel 400 400). 

Here we use the HSV method which is the two most common cylindrical-
coordinate representations of points in an RGB color model, which rearrange the 
geometry of RGB in an attempt to be more perceptually relevant than the cartesian 
representation. For the HSV method, we can pick up the hue, saturation, and lightness 
of the picture and compare with other pictures, finding the most obvious part. After 
simulation, the biggest difference appears in the saturation which is shown in Fig 5. 
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Fig. 4. Road (right-dry road and left-wet road) 

       

Fig. 5. Saturation (right-dry road and left-wet road) 

 

We select the first value of saturation of the pictures and show compared results  
in Fig 6. 

 

       

Fig. 6. Saturation value (right-dry road and left-wet road) 

The average value of two pictures is almost the same, but the variance of dry road 
data is 0.000246 while variance of wet road data is 0.000145. We can see that colour 
comparison is stronger in dry road from Fig 5.  

Here we assume ideal condition that variance of wet road data is 0 which means it 
is full of gray, and variance of dry road data is 0.00025, so we can give the frictional 
factor forecast shown in Table 2. So we can calculate the variance of the picture of 
road condition at present and estimate the road frictional factor, adjusting the distance 
of vehicle-platoon automatically. 

Table 2. Frictional factor forecast 

Variance 0.00025 0.00025<x<0 0 
Frictional factor 0.6 (0.6-0.4)x/0.00025=m-0.4 0.4 

4.3   Evaluation Function  

The vehicle performance is evaluated from the viewpoint of safe and smooth driving, 
by the following criteria: 
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(1) Vehicle acceleration should be as small as possible, which is evaluated with an 
equation of longitudinal acceleration, 12  (19) 

 
(2) The relative velocity of the vehicle-platoon is maintained as small as possible, 
 12  (20) 

 
(3) Keep the safe distance of vehicle-platoon as long as possible, 
 12  (21) 

 
(4) The desired velocity of the vehicle is maintained as long as possible, 
 12  (22) 

 
The basic form of function L is defined as 
 

 (23) 

 
Where, ,  ,   and  are evaluation indexes, , ,   and  are their  
weightings. 

5   Simulation Results  

5.1   Simulation Result with Fixed Distance  

In this part, the simulation conditions are shown in Fig. 7, the figure of left is for  
the first case, while right is for the second case. For the first case, weightings for 
evaluation indexes are set to [ , , , ] = [0.1, 0.35, 0.35, 0.2] and [ , , ] = 
[0.2, 0.5, 0.3], headway time h=1s, distance is fixed as 10m and simulation time  
is 30s. 
 

   

Fig. 7. Initial simulation conditions 
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Fig. 8. Simulation results (left- position of platooning and right-velocity of platooning) 

Simulation results are shown in Fig. 8. Following vehicles achieve the same veloci-
ty with the leading vehicle and keep the 10m distance after 15s, and then keep the 
same status all the time. 

For the second case, weightings for evaluation indexes are set to [ , , , ] = 
[0.1, 0.35, 0.35, 0.2] and [ , , ] = [0.2, 0.5, 0.3], headway time h=1s, distance is 
fixed as 10m and simulation time is 90s. In the second case, it is assumed that vehicle-
platoon drive on the road of plane, uphill and downhill, shown as Table 2, and the 
angle of roll is set as10/π. 

Table 3. Road condition 

Time  0-30 s  30-40 s 40-60 s 70-80 s 80-90 s 
Road condition plane uphill plane downhill plane 

 
Simulation results are shown in Fig. 9. After 10s, three vehicles keep the same  

velocity and the distance achieves to 10m. 
 

     

Fig. 9. Simulation results (left- position of platooning and right-velocity of platooning 

5.2   Simulation Result with Safe Distance Model  

In this part, the simulation conditions are shown in Fig. 10, the figure of left is for the 
first case, while right is for the second case.  
 

   

Fig. 10. Initial simulation conditions 
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For the first case, weightings for evaluation indexes are set to [ , , , ] = 
[0.1, 0.35, 0.35, 0.2] and [ , , ] = [0.2, 0.5, 0.3], headway time h=1s, frictional 
factor 0.6 and simulation time is 30s. 

Simulation results are shown in Fig. 11.The safe distance of vehicle-platoon is 
changed according to velocity of vehicle-platoon. We can find that the safe distance 
of 5s is longer than the safe distance of 25s. 
 

     

Fig. 11. Simulation results (left-position of platooning and right-velocity of platooning) 

For the second case, weightings for evaluation indexes are set to [ , , , ] = 
[0.1, 0.35, 0.35, 0.2] and [ , , ] = [0.2, 0.5, 0.3], headway time h=1s, frictional 
factor is changed from 0.6 to 0.28, the velocity of vehicle-platoon is fixed as 
20m/s and simulation time is 30s. 

Simulation results are shown in Fig. 12. The safe distance of vehicle-platoon is 
changed according to different road conditions. We can see that there is longer safe 
distance of snow road than dry road.  

 

     

Fig. 12. Simulation results (left-dry road and right-snow road) 

6   Conclusion  

In this paper, an optimal driving control system calculating optimal driving mode 
based on model predictive control is presented. The information of road condition and 
statement of vehicle-platoon is formulated and transformed to a more intuitive and 
acceptable form, an optimal driving commands for vehicle-platoon. By the road con-
dition information, the optimal control system for platooning adjusts the safe distance 
of vehicle-platoon. 

In the future research, weightings such as , , ,  would be optimized. Safe 
distance model would be improved for more precise prediction. Besides, the road 
condition automatic measurement by the leading vehicle using image discrimination 
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would be considered. The optimal driving control system is expected to be applied in 
automatic driving systems in the future. 
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Abstract. In this paper we derive theoretical expressions to compute expected 
population variance for Differential Evolution (DE) variants – DE/best/1/bin, 
DE/rand/2/bin and DE/best/2/bin by directly extending Zaharie’s work on 
DE/rand/1/bin. The study includes comparing the theoretical and empirical  
evolution of population variance of three DE variants. This work provides in-
sight about the explorative power of the variants and explains their behavior.  

Keywords: differential evolution, population variance, theoretical and empiri-
cal analysis, convergence rate, explorative power. 

1   Introduction 

Differential Evolution (DE), proposed by Storn and Price [1,2], is a very simple yet 
very powerful stochastic global optimizer for continuous search domain [3,4,5]. DE 
has some unique characteristics for it uses a differential mutation operation, coupled 
with recombination operation to generate a trial vector (offspring) followed by a one-
to-one greedy selection scheme between the trial vector and the parent. Depending on 
the way the parent solutions are perturbed, there exist many DE variants. 

In [6], we performed empirical comparative analyses of fourteen variants of DE on 
fourteen numerical benchmark optimization problems. In a preliminary effort to un-
derstand the explorative power of DE variants on theoretical grounds, in this paper, 
we have directly extended Zaharie’s theoretical measure of population diversity of the 
DE variant DE/rand/1/bin [8]  to three other closely related, commonly used, variants 
viz. DE/best/1/bin, DE/rand/2/bin and DE/best/2/bin. 

This paper is organized as follows. Section 2 provides the expressions to compute 
the expected population variance of three above said DE variants. While Section 3 
briefs the design of experiments to compare the theoretical and empirical evolution of 
population variance, Section 4 provides results and discussion. Finally, Section 5 
concludes the paper. 
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2   Computation of Expected Population Variance  

As the evolution of population variance is a measure of the explorative power of an 
evolutionary algorithm (EA) [7], Zaharie in [8], derived a theoretical relationship be-
tween the expected population variance after mutation and crossover and the initial 
population variance of DE/rand/1/bin. The main result of [8], is the following theorem. 

Let X={x1,…,xm} be the current population, Y={Y1,…,Ym} the intermediate popula-
tion obtained after applying the mutation and Z={Z1,…,Zm} the population obtained by 
crossing over the population X and Y. If F is the parameter of the mutation step and Pc 
is the parameter of the crossover step then 2 1                               (1) 

In this paper we have directly extended the Zaharie’s work to the three closely related, 
commonly used, DE variants viz. DE/best/1/bin, DE/rand/2/bin and DE/best/2/bin. In 
[6], we observed that strategies relying on best solutions, in spite of fast convergence, 
get stuck at local optimum and those relying on random solution demonstrated stronger 
exploration capability. The choice of DE variants, in this paper, is to gain insight, on 
theoretical basis, the above observations. 

Following [8], the extension of theoretical relationship for the chosen DE variants is 
presented in two steps viz. expected population variance after differential mutation i.e 

 and expected population variance after binomial crossover i.e, . 
In case of the variant DE/best/1/bin, the expected population variance after mutation 

and crossover has been derived respectively as 2                                                                         (2)     2 1 1             (3) 

For DE/best/2/bin, the derived population variances after mutation and crossover are 
respectively      4                                                                         (4)     4 1  1          (5) 

The expected population variances of DE/rand/2/bin are as follows      4                                                                     (6)     4 1 1         (7) 

In the following section, experiments have been designed to compare  

and the empirical expected population variance , where  is the popula-
tion obtained after  generations through successive mutation and crossovers. 

3   Design of Experiment  

Having derived the theoretical expression to compute the expected population va-
riance, we set out to compare the theoretical and empirical evolution of population 
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variance of chosen DE variants. For the purpose of comparison we have used Sphere 
model [9,10], with dimension 30, as the benchmark function. 

The parameters of the DE variants were: population size NP = 50, crossover rate Pc 
= 0.5, scaling factor F = 0.1, 0.12, 0.2 and 0.3 and the maximum number of generations 
GMax = 30. With this experimental set up we compare the theoretical and empirical 
evolution of the population variance for the three DE variants. 

For further analysis and comparison, we extend our experiment with a different pa-
rameter setup and by considering the following variants:  DE/rand/1/bin (considered 
from Zaharie’s work [8]) and the chosen three variants - DE/best/1/bin, DE/rand/2/bin 
and DE/best/2/bin. The  new parameters were : NP=60, CR={0.5,0.2,0.2,0.2} (a boot-
strap test yielded these values for the above said four variants), following [10,11], F  
[0.3, 0.9], GMax = 3000 ( or if tolerance error 1 x 10-12 is obtained). As EA’s are sto-
chastic in nature, 100 independent runs per variant were performed and mean values 
are presented. 

For the extended experiment we report convergence rate [10] and vanish point for 
all four variants. Convergence rate is used to detect which variant is most competitive. 
It is calculated as the mean percentage out of the total 1,80,000 function evaluations 
required by each of the variant to reach its best objective function value,  for all the 100 
independent runs. The vanish point shows the generation at which the population di-
versity vanished (ie. population variance = 0). 

4   Results and Discussion 

The expected population variance and empirical variances for the variants 
DE/best/1/bin, DE/rand/2/bin and DE/best/2/bin are displayed in Table 1.  

Table 1. Empirical and Theoretical Variance measured for DE/best/1/bin, DE/rand/2/bin and 
DE/best/2/bin 

DE/best/1/bin’s Empirical / 
Theoretical Variance 

DE/rand/2/bin’s Empirical / Theo-
retical Variance 

DE/best/2/bin’s Empirical / 
Theoretical Variance 

 G F=0.1 F=0.12 F=0.2 F=0.3 G F=0.1 F=0.12 F=0.2 F=0.3 G F=0.1 F=0.12 F=0.2 F=0.3 

1 
8.52/ 
8.64

8.52/ 
8.72 

8.30/ 
8.34 

8.71/ 
8.85 1 

8.75/ 
8.92 

8.81/ 
9.14 

8.46/ 
9.65 

8.44/ 
11.31 1 

8.44/
8.41

8.48/ 
8.90 

8.68/ 
8.58 

8.39/
8.09 

4 
1.36/ 
0.57

1.46/ 
0.59 

1.79/ 
0.71 

2.48/ 
1.05 4 

9.11/ 
9.76 

9.52/ 
10.70

11.34/
16.44

15.51/ 
36.72 4 

1.55/
0.62

1.59/ 
0.35 

2.35/ 
0.98 

3.66/
1.81 

7 
0.33/ 
0.07

0.36/ 
0.08 

0.52/ 
0.11 

0.91/ 
0.21 7 

9.18/ 
10.36

9.94/ 
11.95

13.82/
24.36

24.13/ 
88.36 7 

0.38/
0.09

0.42/ 
0.05 

0.83/ 
0.19 

1.97/
0.56 

10 
0.073
/0.01

0.08/ 
0.01 

0.16/ 
0.02 

0.33/ 
0.05 10 

9.37/ 
10.98

10.29/
13.35

16.54/
36.09

37.87/ 
212.61 10

0.09/
0.01

0.11/ 
0.01 

0.29/ 
0.04 

1.05/
0.18 

13 
0.02/ 
0.00

0.02/ 
0.00 

0.05/ 
0.00 

0.13/ 
0.00 13 

9.53/ 
11/66

10.71/
14.91

20.29/
54.47

60.24/ 
511.55 13

0.02/
0.00

0.02/ 
0.00 

0.10/ 
0.01 

0.54/
0.06 

16 
0.00/ 
0.00

0.01/ 
0.00 

0.02/ 
0.00 

0.05/ 
0.00 16 

9.64/ 
12.38

11.26/
16.67

24.34/
79.21

93.68/ 
1230.85 16

0.01/
0.00

0.01/ 
0.00 

0.04/ 
0.00 

0.29/
0.02 

19 
0.00/
0.00

0.00/ 
0.00 

0.00/ 
0.00 

0.02/ 
0.00 19 

9.74/ 
13.13

11.66/
18.61

29.54/
117.36

145.21/
2961.55 19

0.00/
0.00

0.00/ 
0.00 

0.01/ 
0.00 

0.15/
0.01 

22 
0.00/ 
0.00

0.00/ 
0.00 

0.00/ 
0.00 

0.01/ 
0.00 22 

9.93/ 
13.04

11.99/
20.79

35.78/
173.86

227.65/
7125.80 22

0.00/
0.00

0.00/ 
0.00 

0.01/ 
0.00 

0.09/
0.00 

25 
0.00 
/0.00

0.00/ 
0.00 

0.00/ 
0.00 

0.00/ 
0.00 25 

10.11/
14.79

12.57/
23.23

43.36/
257.59

354.89/
17145.41 25

0.00/
0.00

0.00/ 
0.00 

0.00/ 
0.00 

0.05/
0.00 

28 
0.00/ 
0.00

0.00/ 
0.00 

0.00/ 
0.00 

0.00/ 
0.00 28 

10.27/
15.70

13.09/
25.96

52.87/
381.63

550.62/
41253.64 28

0.00/
0.00

0.00/ 
0.00 

0.00/ 
0.00 

0.03/
0.00 

30 
0.00/
0.00

0.00/ 
0.00 

0.00/ 
0.00 

0.00/ 
0.00 30 

10.39/
16.33

13.33/
27.93

59.18/
495.97

749.29/
74075.03 30

0.00/
0.00

0.00/ 
0.00 

0.00/ 
0.00 

0.01/
0.00 
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As can be seen from the table, the decrease and increase in theoretical expected va-
riance is matched by the empirical variance. Figure 1 reiterates this similar evolution 
pattern of theoretical and empirical population variance of DE/rand/2/bin and 
DE/best/2/bin. However there is large difference between the theoretical and empirical 
variances, which may be attributed to the fact that the theoretical derivation ignores the 
restriction that the indices of chosen solution vectors should not be equal to the parent 
vector index. 

It is worth noting that DE/rand/2/bin variant displays increase in population variance 
(theoretical and empirical) as evolution proceeds, a measure of strong explorative ca-
pability. On the other hand DE/best/*/bin variants lose population diversity, as is evi-
dent from decreasing variances. 

 

                                    
(a) (c) 

                       
(b) (d) 

Fig. 1. Evolution of expected population variance after mutation and crossover (a,b) empirical 
evolution and (c,d) theoretical expected evolution, for DE/rand/2/bin  and DE/best/2/bin.  

Table 2. Mean Objective Function Value, Convergence Rate and Vanish Point measured  

Variant G MOV CoRate % VanishPoint
DE/rand/1/bin 1227 0 40.94 1200 
DE/best/1/bin 3000 457.24 100 600 
DE/rand/2/bin 2100 0 70.05 1359 
DE/best/2/bin 1278 0 42.67 768 

 
Table 2 displays the mean objective function value (MOV), Convergence rate and 

Vanish point for the four DE variants considered. As can be seen from the table, for the 
variant DE/best/1/bin the population variance vanishes soon. In the case of 
DE/best/2/bin, even though the variance vanished rapidly, the optimum is also reached 
equally fast. This substantiates the observation that strategies relying on best solution 
have fast convergence but equally vulnerable to premature convergence. Relatively the 
DE/rand/*/bin variants retain diversity as is evident from the Table 2. 
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From the experiments, it has been observed that the theoretical expected population 
variance match with empirical variance evolution behavior for the chosen DE variants 
and substantiates our observation made elsewhere [6]. 

5   Conclusion 

In this paper, a theoretical relationship between expected population variance after 
mutation, crossover and initial population variance for DE/best/1/bin, DE/rand/2/bin 
and DE/best/2/bin has been derived by directly extending Zaharie’s work on 
DE/rand/1/bin.  Simulation results show that the theoretical expected population va-
riance evolve similar to empirical variance. In future we will extend this theoretical 
analysis to other DE variants such as DE/current-to-rand/1/bin, DE/current-to-
best/1/bin and DE/rand-to-best/1/bin to get further insight about the variants. 
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Abstract. In this paper, the authors compare a Monte Carlo method
and an optimization-based approach using genetic algorithms for se-
quentially generating space-filling experimental designs. It is shown that
Monte Carlo methods perform better than genetic algorithms for this
specific problem.
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1 Introduction

For many modern engineering problems, accurate high fidelity simulations are
often used instead of controlled real-life experiments, in order to reduce the
overall time, cost and/or risk. These simulations are used by the engineer to
understand and interpret the behaviour of the system under study and to identify
interesting regions in the design space. They are also used to understand the
relationships between the different input parameters and how they affect the
outputs.

However, the simulation of one single instance of a complex system with mul-
tiple inputs (also called factors or variables) and outputs (also called responses)
can be a very time-consuming process. For example, Ford Motor Company re-
ported on a crash simulation for a full passenger car that takes 36 to 160 hours
to compute [2]. Because of this long computational time, using this simulation
directly is still impractical for engineers who want to explore, optimize or gain
insight into the system.

The goal of global surrogate modelling is to find a function that mimics the
original system, but can be computed much faster. This function is constructed
by performing multiple simulations (called samples) at key points in the design
space, analyzing the results, and selecting a model that approximates the samples
and the overall system behavior quite well.

It is clear that the choice of the data points (or samples) is of paramount
importance to the success of the surrogate modelling task. Intuitively, the data
points must be spread out in such a way as to convey a maximum amount of
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information about the behaviour of simulator. This is a non-trivial challenge,
since little or nothing is known about this (black-box) simulator in advance.
From now on, we will refer to the entire set of samples that were selected for
evaluation as the experimental design.

Sequential design (which is also known as adaptive sampling [7] or active
learning [10]) methods generate an experimental design by selecting samples one
by one, allowing for an integrated approach with the surrogate modelling task.
After each simulation, new models are built, and the accuracy of these models is
estimated. If the target accuracy is reached, the algorithm is halted. Otherwise,
another sample is selected and the process starts all over again.

In this paper, we study the sequential generation of space-filling designs.
Space-filling designs attempt to spread out the samples as evenly as possible,
in order to get as much information about the entire design space as possible.
We will investigate why it is difficult to sequentially generate good space-filling
designs, and we will compare two approaches to tackling this problem: optimiza-
tion using genetic algorithms, and Monte Carlo methods.

2 Space-Filling Experimental Design Criteria

From now on, we will consider the d-dimensional experimental design P =
{p1,p2, . . . ,pn} containing n samples pi =

(
p1

i , p
2
i , . . . , p

d
i

)
in the (hyper)cube

[−1, 1]d. This experimental design P will be constructed by selecting samples
one by one, without knowing the total number of samples n at any point during
the construction process. In order to evaluate the space-filling qualities of the
final design, we consider two criteria.

First and foremost, the generated design should be space-filling. Intuitively, a
space-filling design is an experimental design in which the points are spread out
evenly over the design space. However, there are several ways do define this prop-
erty mathematically. Over the course of the years, many different space-filling
criteria have been proposed. Depending on the criterion, the optimal design P
will look differently. A popular and intuitive choice is the maximin criterion or
intersite distance [1,5,6,8,9,12]. The intersite distance of an experimental design
P is the smallest distance between two points in the design, and is defined as
follows:

idist(P ) = minpi,pj∈P

√√√√ d∑
k=1

∥∥pk
i − pk

j

∥∥2 (1)

Secondly, a good space-filling design should also have good projective proper-
ties. This is also called the non-collapsing property by some authors [1]. An
experimental design P has good projective properties if, for every point pi, each
value pj

i is strictly unique, and as different from the other values as possible.
This property also means that, when the experimental design is projected from
d-dimensional space to (d − 1)-dimensional space along one of the axes, no two
points are ever projected onto the same location. The quality of a design in terms
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of its projective properties can be defined as the minimum projected distance of
points from each other:

pdist(P ) = minpi,pj∈P min
1≤k≤d

∣∣pk
i − pk

j

∣∣
= minpi,pj∈P ‖pi − pj‖−∞

(2)

3 Results

Generating an experimental design that satisfies the two criteria mentioned in
the previous section is a multi-objective optimization problem. Starting with
two initial points (for example, opposing corner points), a new point is selected
by finding a location in the design space that maximizes both the intersite and
projective distance. Many different methods have been proposed to solve such
multi-objective optimization problems efficiently. The simplest approach is to
combine the different objectives in a single aggregate objective function. This
solution is only acceptable if the scale of both objectives is known, so that
they can be combined into a formula that gives each objective equal weight.
Fortunately, in the case of the intersite and projective distance, this is indeed
the case.

The final objective function, which scores a new candidate point p when it is
added to an existing design P , is defined as:

dist(P,p) =
(n + 1)

1
d−1

2
minpi∈P

√√√√ d∑
k=1

∣∣pk
i − pk

∣∣2 +
n + 1

2
minpi∈P ‖pi − p‖−∞

(3)
In this paper, we will compare two approaches to finding the best location for
the next point at each iteration. The first one is a Monte Carlo method. In this
method a large number of uniformly distributed random points is generated, and
for each candidate p, the objective function dist(P,p) is calculated and the best
candidate is selected as the new point to be added to P . In the second method,
the genetic algorithm toolbox from Matlab will be used to optimize the objective
function and find the best next candidate. Both methods will be compared for
different settings, and the final designs be evaluated on the idist and pdist
criteria to compare both approaches.

At each iteration, the Monte Carlo method will generate kn random points,
where n is the number of samples evaluated thus far, and k is an algorithm pa-
rameter. It is expected that, for larger k, the quality of the design will improve. In
this study, the following values for k were considered: 50, 250, 2000, 10000, 50000.

For the genetic algorithm, the implementation from the Matlab Genetic Al-
gorithm and Direct Search Toolbox (version 3.0) was used. Most of the options
were kept at their default values, but some were changed in order to improve
the performance. The default mutation function (which offsets each input by
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a value drawn from a gaussuan distribution) wasn’t usable, because it did not
respect the boundary constraints (each input must lie in [−1, 1]). It was changed
to a mutation function that changes each input with a chance of 0.01 to a
random values in the [−1, 1] interval. Preliminary results have shown that play-
ing with the crossover/mutation fraction settings, changing the elite behaviour
etc does not affect the outcome much, so these settings were kept at their de-
fault values. This experiment was repeated for different numbers of generations:
50, 100, 250, 1000, 2000.

All these experiments were carried out using the SUMO Toolbox research
platform [3,4]. This freely available Matlab toolbox, designed for adaptive sur-
rogate modelling and sampling, has excellent extensibility, making it possible
for the user to add, customize and replace any component of the sampling and
modelling process. Because of this, SUMO was the ideal choice for conducting
this experiment1.

In order to compare the two methods, an experimental design of 144 points
was generated in a 2D input space, and the intersite and projective distance of
the final design generated by both methods were compared. Because both the
Monte Carlo and genetic algorithms use random numbers, each experiment was
repeated 10 times to get a good average of the performance of the methods. This
demonstrated a clear trend: even the Monte Carlo method with k = 50 produced
better results than the genetic algorithm with 2000 generations. And even though
the final designs generated by the genetic algorithm are considerably worse than
the ones generated by the Monte Carlo method, the genetic algorithm requires
much more time to generate them. The genetic algorithm with 2000 generations
takes 3 times longer than the Monte Carlo method with k = 50, but still produces
worse results.

It is also noticeable that the difference between 50 generations and 2000 gen-
erations is smaller than the difference between k = 50 and k = 50000, while
the difference in elapsed time is larger for the genetic algorithm. This indicates
that the rate at which the genetic algorithm improves is actually lower than the
improvement rate for the Monte Carlo method. So no matter how many genera-
tions are computed, there will always be a Monte Carlo alternative that requires
less time to get the same result.

4 Conclusion

This study shows that, when sequentially generating space-filling experimental
designs, Monte Carlo methods are prefered above genetic algorithms or other
optimization methods. This can be explained by the extremely complex and
multimodal optimization surface obtained by adding the intersite and projective
distance. It is possible that other optimization methods might perform better
than the genetic algorithm implementation from the Matlab toolbox used in
this study. However, the authors find it unlikely that any optimization method
1 The SUMO Toolbox v7.0 can be downloaded from
http://www.sumo.intec.ugent.be
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will do better than the Monte Carlo approach, considering the nature of the
optimization surface.

Preliminary experiments have shown that the results published in this paper
also hold in higher dimensions, and for different criteria, such as the φp criterion
proposed by [8]. In subsequent publications, these preliminary results will be
examined and expanded upon.

The ultimate goal of this experiment is to develop highly efficient sequential
space-filling algorithms that can compete with proven and popular one-shot ex-
perimental design techniques such as the optimized Latin hypercube [1,11]. These
methods will use Monte Carlo methods as the optimization method of choice,
as opposed to global optimization methods. Finally, hybrid methods will also be
investigated. Hybrid methods use Monte Carlo to find promising locations, and
then perform a local optimization to further improve the initial result.
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Abstract. Extending Estimation of distribution algorithms (EDAs) to the con-
tinuous field is a promising and challenging task. With a single probabilistic 
model, most existing continuous EDAs usually suffer from the local stagnation 
or a low convergence speed. This paper presents an enhanced continuous EDA 
with multiple probabilistic models (MP-EDA). In the MP-EDA, the population 
is divided into two subpopulations. The one involved by histogram model is 
used to roughly capture the global optima, whereas the other involved by Gaus-
sian model is aimed at finding highly accurate solutions. During the evolution,  
a migration operation is periodically carried out to exchange some best indi-
viduals of the two subpopulations. Besides, the MP-EDA adaptively adjusts the 
offspring size of each subpopulation to improve the searching efficiency. The 
effectiveness of the MP-EDA is investigated by testing ten benchmark func-
tions. Compared with several state-of-the-art evolutionary computations, the 
proposed algorithm can obtain better results in most test cases. 

Keywords: Estimation of Distribution Algorithm, Evolutionary Computation, 
Histogram, Multivariate Gaussian Distribution, Global Optimization. 

1   Introduction 

The estimation of distribution algorithms (EDAs) are a new class of evolutionary 
computation algorithms [1] [2]. They generate new individuals by sampling a prob-
abilistic model, which is estimated based on the current promising solutions. As the 
probabilistic model can capture promising areas in a statistically sound manner and 
can explicitly express the interactions among variables, EDAs usually can outperform 
traditional EAs on a number of complex problems . 
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The EDAs are first proposed to solve discrete problems with binary representation. 
For the last few years, various efforts have been made on extending them to the con-
tinuous optimization [3] - [11]. Most existing continuous EDAs use the Gaussian 
model or the histogram model to estimate the distribution of promising areas. The 
marginal Gaussian probabilistic model was used to guide the search in early continu-
ous EDAs, such as the PBILc [3] and the UMDAc [4]. Lately, the multivariate Gaus-
sian models also appeared in continuous EDAs [5] [6]. EDAs with a single Gaussian 
model are excellent in finding the global optima for unimodal optimization. However, 
for multimodal problems, they usually suffer from a slow convergence speed or even 
a local stagnation. Though clustering techniques have been utilized to address some of 
these issues [7], more efficient methods are greatly desirable.   

Meanwhile, the histogram has multimodal density and can capture multiple local 
optima at the same time. Hence the histogram-based EDAs (HEDAs) are less likely to 
get trapped in local optima [8]. However, the HEDAs usually need a heavy computa-
tional cost to search for a highly accurate solution. To tackle this problem, the local 
search techniques [9], the shrink strategy [10], and the sub-divided method [11], have 
been proposed in recent few years. Nevertheless, since the histogram ignores interac-
tions among variables, the HEDAs are not efficient enough to solve problems contain-
ing variable dependency. 

In this paper, we present an enhanced EDA with multiple probabilistic models 
(named MP-EDA) for the global continuous optimization. The proposed MP-EDA 
has made two major improvements as below. First, the robustness to find a highly 
accurate solution is guaranteed by adopting two different types of probabilistic mod-
els: the multivariate Gaussian model and the fixed-height histogram (FHH) model. 
Second, the efficiency of the search is improved by utilizing an adaptive control strat-
egy. In the MP-EDA, the population is initially divided into two subpopulations, with 
each involved by a probabilistic model. The one involved by the FHH is used to 
roughly capture the global optima, and the other involved by the multivariate Gaus-
sian model is aimed at finding highly accurate solutions. During the evolution, a  
migration operation is carried out periodically to exchange some best individuals 
between the two subpopulations. By sharing information of better individuals, both 
subpopulations can converge faster. Besides, in order to improve the search effi-
ciency, an adaptive strategy is used to adjust the offspring sizes of the two subpopula-
tions. The performance of a probabilistic model is measured by the average fitness of 
new individuals generated by it during recent generations. The better probabilistic 
model is allowed to generate more offspring individuals, and vice versa.We investi-
gate the effectiveness of the proposed MP-EDA by solving ten test functions with 
different characteristics. Several state-of-the-art EAs (i.e PLSO [12], DE [13], FEP 
[14] and CMA-ES [15]) are used for the comparison. Experimental results show that 
the proposed MP-EDA can achieve better results in most test cases.  

The rest of the paper is organized as follows. Section 2 briefly describes the EDAs’ 
general framework and two classical continuous EDAs. Section 3 illustrates the de-
tailed implementations of the MP-EDA. The experimental studies on the MP-EDA 
are presented in Section 4. At last, Section 5 draws the conclusions. 
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2   Estimation of Distribution Algorithms 

2.1   Framework of EDAs 

The general framework of EDAs is similar to that of the GA. However, there is  
neither crossover nor mutation in EDAs. Instead, they use a probabilistic model to 
generate new individuals. Specifically, the common outline of EDAs consists of the 
following four steps. 

Step 1: Initialize the algorithm parameters and the initial population. 

Step 2: Select a certain number of excellent individuals. There are several selection 
strategies, such as the truncation selection and the tournament selection. 

Step 3: Construct probabilistic model by analyzing information of the selected indi-
viduals.  

Step 4: Create new population by sampling new individuals from the constructed 
probabilistic model. 

There is a repetition from Step2 to Step4 until the algorithm meets the termination 
condition. 

2.2   Multivariate Gaussian Model 

The multivariate Gaussian model is most commonly used in continuous EDAs. It 
characterizes the distribution of data points by two parameters μ and ∑. The former 
gives the mean vector of data points, while the latter describes the covariance infor-
mation. In particular, given a set of data points X = {x1, x2, …, xZ}, the multivariate 
Gaussian model of X can be expressed by  

11 1
( , ) exp( ( ) ( ))

22
N x xμ μ μ

π
−∑ = ⋅ − ⋅ − ⋅∑ ⋅ −

∑
 (1)

where μ is the mean vector of X, and ∑ is the covariance matrix of X. 
The multivariate Gaussian model is able to capture the interaction between vari-

ables, owing to the covariance matrix in the density function. However, it is not effec-
tive to estimate the distribution of multimodal data points, due to its unimodal density.  

2.3   Histogram Model 

There are usually two types of histograms, namely the fixed-width histogram (FWH) 
and the FHH. The FWH consists of bins with the same width, whereas the FHH con-
tains bins with the same height. In this paper, we choose the FHH as one probabilistic 
model of the proposed method, because it has shown to perform better than the FWH. 
Given a set of data points X = {x1, x2, …, xZ} within an interval min max[ , ]x xΩ = . The 

FHH of X consists of n bins, with each bin Bi (i=1, 2, …, n) containing the same 
number of data points. Hypothesizing that the data points in each bin are uniformly 



88 J.-h. Zhong, J. Zhang, and Z. Fan 

 

distributed, the estimated density ˆ ( )Hf x  of the underlying probability density at any 

point x can be computed by 

1ˆ ( )H
k

f x
w n

=
⋅

 (2)

where wk is the width of the bin Bk that contains x. According to the definition of the 
FHH, bins in the dense regions would have a narrower width than those in the sparse 
regions. As the population of an evolutionary algorithm evolves, individuals will gradu-
ally gather around promising areas. By giving more bins to these regions, the FHH is 
able to capture multiple peaks at the same time. Nevertheless, one drawback of the FHH 
based EDA is that it may get stuck when the population converges. It this case, a heavy 
computational cost is usually required to sample a highly accurate solution. 

3   MP-EDA for Multimodal Continous Optimization 

3.1   Algorithm Framework 

There are two subpopulations (POPfhh and POPgm) involved by two probabilistic 
models in the MP-EDA. The POPfhh is involved by the FHH model, whereas the 
POPgm is involved by the Gaussian model. Specifically, the framework of the pro-
posed MP-EDA contains following six steps. 

1) Step 1 - Initialization 
This step initializes parameters of the algorithm, such as the size of the population N, 
the number of excellent individuals S, the migration cycle T and the number of bins n. 
Besides, new individuals of POPfhh and POPgm are randomly generated in the search 
space, with their offspring sizes respectively set as Nfhh = N and Ngm = N. 

2) Step 2 – Constructing probabilistic models 
This step aims at constructing two different probabilistic models for the two subpopu-
lations in parallel. For the POPfhh, S best individuals are firstly selected. Then the 
marginal histogram for all variables is updated. Let X={x0, x1,…, xS} with 
x0≤x1≤…≤xS, be the i-th variable values of these selected individuals, then the lower 
bound and the upper bound of each bins is updated by 

,
( 1) ( 1) 1

lower bound of the -th variable,   if 1

( ) / 2,  otherwisej i
j x j x

i j
l

x x− ⋅Δ − ⋅Δ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

=⎧⎪= ⎨ +⎪⎩
 (3)

 

,
1,

upper bound of the -th variable,   if 

,  otherwisej i
j i

i j n
u

l +

=⎧⎪= ⎨
⎪⎩

 (4)

where /x S nΔ =  is the average number of data points in each bin. 
As for the multivariate Gaussian model, the constructing process aims to update 

values of two parameters: the mean μand the covariance matrix ∑. Firstly, S promising 
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individuals are selected in POPgm, and then the mean and the covariance of these S 
individuals are computed and set as the values of μ and ∑. 

3) Step 3 – Sampling new population 
The sampling process of the FHH consists of two sub-steps. Firstly, a bin is randomly 
selected according to the constructed marginal histogram. Then a random value uni-
formly distributed in the interval of the selected bin is generated. 

As for the multivariate Gaussian model, the sampling process contains three sub-
steps.  

Sub-step1: Use the Cholesky decomposition to generate a lower triangular matrix S, 
with  

TS S= ⋅∑  (5)

Sub-step2: obtain a 1-by-D matrix Z with random elements sampled from a standard 
Normal distribution N (0,1).  

Sub-step3: generate a individual P by  

P S Zμ= + ⋅  (6)

In order to maintain higher population diversity, a scale parameter δ>1 is suggested 
to add in (6) [16] and expressed as 

P S Zμ δ= + ⋅ ⋅  (7)

Note that the parameter δ should be set appropriate, for a trade-off between the diver-
sity and the convergence of the population. 

4) Step 4 –Evaluation and Replacement 
This step aims to evaluate the fitness values of all new individuals and replace some 
worst individuals of the current population by better new individuals. For example, let 
C= {C1, C1, …, CN} be the current subpopulation POPfhh, C*={C*1, C*2, …, C*N} be 
the newly generated individuals by the FHH and C#= C∪ C*. Then the best N indi-
viduals in C# are selected as the new POPfhh. The similar process can be done to gen-
erate the new POPgm. 

5) Step 5 –Migration  
During the evolution, a migration operation is carried out every T generations. In the 
migration, the best M individuals in one subpopulation are migrated to the other. By 
sharing the best individuals of two subpopulations, the algorithm can utilize the ad-
vantages of both probabilistic models, which makes the algorithm less likely to be 
trapped into local optima and more efficient to find highly accurate solutions.  

6) Step 6 – Adaptive control operation 
This step aims to adjust the size of new offspring for each subpopulation, so as to save 
the computational cost. The key idea is to make the better probabilistic model gener-
ate more new individuals in each generation. Specifically, Ffhh and Fgm are supposed 
to be the average fitness of new individuals generated by the FHH and the GM  
respectively during the recent T generations. If Ffhh is better than Fgm, the value of Nfhh 
would be enlarged by a small step ∆, whereas the value of Ngm would be reduced  
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by ∆. Otherwise, the reverse operation can be done. The maximum and the minimum 
of Nfhh and Ngm are both set as Pmin and Pmax. 

There is a repetition from Step2 to Step6 and the evolution processes iteratively  
until reaching the maximum number of evaluations. 

4   Experiments and Comparisons 

4.1   Test Functions and Parameter Settings 

Ten benchmark functions are contained in the experimental study, as listed in Table 1. 
These functions are chosen in the literature [17] and [18]. Parameter settings of all 
comparison algorithms are listed in Table 2. The parameter settings of the DE, the 
CLPSO and the CMA-ES are set as those in the reference papers. The dimension of 
all test functions is 30 and the maximum evaluation number for each function is 
3×105. In order to make fair comparisons, 30 independent runs are performed on each 
algorithm.  

Table 1. Test functions 

Test Function Domain 
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Table 2. Parameter Settings 

Algorithm Parameter Settings 
GM-EDA population size N = 200, S=100, α=0.2, Q=2,  δ=1.2 
FHH-EDA population size N = 200, S=100, n=50 
MP-EDA population size T=5, Nmin=20, Nmax=200, ∆=10, M=5 
CLPSO particle number ps = 40, w0 = 0.9, w1 = 0.4, c = 1.49445, m = 7  

DE population size = 100, F = 0.5, CR = 0.9 
CMA-ES population size = 14 as default 

Table 3. Experimental Results. ‘a’ stands for the average best values, ‘s’ stands for the standard 
deviations and ‘r’ stands for the performance ranking of the corresponding algorithm.  

   MP-EDA FHH-EDA GM-EDA CLPSO DE CMA-ES 
a 0 6.99×10-1 2.08×10-14 5.68×10-14 0 3.79×10-15 
s 0 3.37×10-1 2.74×10-14 0 0 1.44×10-14 

f1 

r 1 6 4 5 1 3 
a 1.98×10-9 3.40×103 3.51×10-10 6.21×102 4.81×10-5 3.22×10-14 
s 2.23×10-9 9.65×103 2.91×10-10 1.52×102 4.00×10-5 2.86×10-14 

f2 

r 3 6 2 5 4 1 
a 2.46×10-5 5.22×103 1.40×10-6 6.29×103 1.39×10-2 2.69×104 
s 4.56×10-5 1.53×103 5.21×10-6 1.38×103 1.38×10-2 8.53×103 

U
ni

m
od

al
 

f3 

r 2 4 1 5 3 6 
a 4.74×10-5 2.97×103 3.46×10-8 5.14×100 2.87×100 5.12×10-14 
s 1.03×10-4 3.82×103 9.21×10-8 4.62×100 1.98×100 1.73×10-14 

f4 

r 3 6 2 5 4 1 
a -12569.5 -12569.3 -6.03×103 -12557.6 -8290.5 -9555.6 
s 1.82×10-12 6.75×10-2 1.11×103 3.55×101 8.32×102 4.40×102 

f5 

r 1 2 6 3 5 4 
a 0 2.72×10-1 1.85×102 3.69×10-13 1.28×102 2.81×102 
s 0 1.79×10-1 9.27×100 3.55×10-13 2.08×101 3.27×101 

f6 

r 1 3 5 2 4 6 
a 3.51×102 5.46×102 6.79×102 2.53×102 4.95×102 6.88×101 
s 3.06×101 1.11×102 1.61×101 5.29×101 5.98×101 2.44×101 

f7 

3 5 6 2 4 1 
a 0 4.69×10-1 1.52×10-14 5.68×10-14 0 2.47×10-2 
s 0 1.67×10-1 2.51×10-14 0 0 0 

f8 

r 1 6 3 4 1 5 
a 5.68×10-14 1.99×10-1 1.06×10-13 1.27×10-13 6.06×10-14 1.63×101 
s 0 7.99×10-2 1.93×10-14 2.40×10-14 1.42×10-14 7.41×100 

f9 

r 1 5 3 4 2 6 
a 4.13×101 1.58×102 1.90×102 1.03×102 1.78×102 5.13×102 
s 1.13×101 7.51×101 8.08×100 1.68×101 9.69×101 2.36×102 

M
ul

ti
m

od
al

 

f10 

r 1 3 5 2 4 6 
Total r 17 46 37 37 32 39 

Average r 1.7 4.6 3.7 3.7 3.2 3.9 
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4.2   Experimental Results 

The comparison results are summarized in Table 3. Firstly, we investigate the per-
formance of the FHH-EDA, GM-EDA and the MP-EDA. Results of f1 show that, 
among these three algorithms, the MP-EDA performs the best, while the FHH-EDA 
performs the worst. The GM-EDA can obtain very highly accurate solutions, but it 
gets stuck near the global optima. This is because the eigenvectors of the covariate 
matrix in the GM-EDA has dropped to zero when the mean vector was still a bit dis-
tant from the global optimum. However, the MP-EDA can overcome this drawback, 
owing to the diversity provided by the histogram. Results of f2 and f3 indicate that, 
the FHH-EDA is not suitable to solve these kinds of problems, since it contains no 
mechanism to deal with variable interactions. However, the GM-EDA is very effec-
tive to solve these problems, and the proposed MP-EDA can also give competitive 
performance. As for multimodal functions, the MP-EDA performs much better than 
the GM-EDA and the FHH-EDA in all test cases except for the shift rosenbrock func-
tion. It can be observed that the Gaussian-based EDA can find satisfying solutions for 
multimodal functions with a big-valley structure (such as f8 and f9), but it performs  
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Fig. 1. Convergence graphs of the MP-EDA 
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very badly for those with local optima scattering in the search space. Meanwhile, the 
FHH-EDA can only find roughly accurate solutions for separable-multimodal func-
tions (such as f5 and f6), but it performs badly for those containing variable interac-
tions (such as f4). By combining two different probabilistic models, the MP-EDA 
performs better and more stable.  

Results in table 3 indicate that the proposed MP-EDA performs the best in six test 
functions, and it can also give competitive performance on other test functions. Ac-
cording to the average rank value, the MP-EDA performs averagely much better than 
the other comparison EAs. 

The convergence graphs of the MP-EDA and the comparison algorithms are shown 
in Fig. 1. It can be observed that the proposed algorithm can not only search a highly 
accurate solution, but also has a very fast convergence speed. Besides, the proposed 
MP-EDA can give good performance on both unimodal functions and multimodal 
functions. 

5   Conclusions 

This paper has proposed an enhanced EDA with multiple probabilistic models for the 
global continuous optimization. The proposed MP-EDA adopts a histogram and a 
multivariate Gaussian model to involve two subpopulations. During the evolution, a 
migration strategy is used to exchange some best individuals of the two subpopula-
tions. Besides, the offspring size of each subpopulation is adaptively adjusted to re-
duce the computational cost. The effectiveness of the proposed MP-EDA has been 
investigated by testing ten benchmark functions. Compared with several state-of-the-
art evolutionary algorithms, the proposed MP-EDA can obtain better results in most 
test cases. 

This study has shown that, EDAs with multiple probabilistic models usually can 
work more effectively and efficiently than those with a single probabilistic model. As 
for future work, we will further extent the framework by hybridizing more probabilis-
tic models. Besides, applying the proposed algorithm framework to solve real applica-
tion is another promising research topic.  
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Abstract. In a multimodal optimization task, the main purpose is to
find multiple optimal solutions, so that the user can have a better knowl-
edge about different optimal solutions in the search space and as and
when needed, the current solution may be replaced by another opti-
mum solution. Recently, we proposed a novel and successful evolutionary
multi-objective approach to multimodal optimization. Our work however
made use of three different parameters which had to be set properly for
the optimal performance of the proposed algorithm. In this paper, we
have eliminated one of the parameters and made the other two self-
adaptive. This makes the proposed multimodal optimization procedure
devoid of user specified parameters (other than the parameters required
for the evolutionary algorithm). We present successful results on a num-
ber of different multimodal optimization problems of upto 16 variables
to demonstrate the generic applicability of the proposed algorithm.

Keywords: Multimodal optimization, Multi-objective optimization,
Self-adaptive algorithm, Hooke-Jeeves search.

1 Introduction

Single-objective optimization problems are usually solved for finding a single
optimal solution, despite the existence of multiple optima in the search space.
In the presence of multiple global and local optimal solutions in a problem, an
algorithm is usually preferred if it is able to avoid locally optimal solutions and
locate the true global optimum.

However, in many practical optimization problems having multiple optima, it
is wise to find as many optimum points as possible for a number of reasons. First,
an optimal solution currently favorable (say, due to unavailability of some critical
resources or satisfaction of some codal principles, or others) may not remain to
be so in the future. This would then demand the user to operate at a different
solution when such a predicament occurs. With the knowledge of another opti-
mal solution for the problem which is favorable to the changed scenario, the user
can simply switch to this new optimal solution. Second, the sheer knowledge of
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multiple optimal solutions in the search space may provide useful insights into
the properties of high-performing optimal solutions of the problem.

All existing methods of multimodal optimization in evolutionary computing
(EC) literature use an additional niching operation in some form to maintain
multiple optimum solutions from one generation to next. Recently we suggested
a very different approach using principles of Evolutionary Multi-objective Opti-
mization (EMO). We showed a couple of ways to select a second objective for
an otherwise single-objective multimodal optimization problem, and hence solve
the resulting multi-objective optimization problem using a modified EMO proce-
dure, the NSGA-II [2]. One of the two methods that we found scalable and more
generic was the Hooke-Jeeves (H-J) search based neighborhood count algorithm.
The proposed algorithm, although found to be performing excellently suffered
from the drawback of preselecting the correct value for three parameters. In
the current work, we successfully eliminate one of the parameters and estimate
the other two from the population itself. This work hence contributes a generic
procedure for multimodal optimization to the research community without the
additional burden of more user specified parameters.

In the remainder of the paper, we provide a brief description of past mul-
timodal EC studies in Section 2. The concept of multi-objective optimization
for solving multimodal problems is described in Section 3. We explain our self-
adaptive parameter calculation in Section 4 and then present the results of the
approach on a number of different test problems in Section 5. Finally, conclusions
and possible extensions to this study are highlighted in Section 6.

2 Evolutionary Multimodal Optimization

As opposed to single-objective optimization, multimodal optimization entails
finding the multiple solutions, rather than the best solution. Population based
optimization algorithms, such as Evolutionary algorithms (EAs) have been found
to be a generic tool for such problems. The intrinsically parallel nature of their
search enables discovery of multiple solutions simultaneously. However, all EAs
have the tendency to lose diversity and converge to the globally best solution due
to genetic drift. The main challenge is to maintain an adequate diversity among
population members such that multiple optimum solutions can be found and
then a preservation mechanism to maintain the discovered solutions from one
generation to another. For this purpose, niching methodologies are employed, in
which crowded solutions in the population (usually in the decision variable space)
are degraded either by directly reducing the fitness value of neighboring solutions
(such as the sharing function approach [8,9]) or by directly ignoring crowded
neighbors such as in the clearing approach [10] or clustering approach [11].

In [1], we proposed an EMO based approach, where a couple of suggestions
for a suitable second objective for the multimodal optimization problem is put
forward and their performance demonstrated. The H-J based approach, which
we put forward as the better method and improve upon here is described in the
next section.
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3 Multimodal Optimization Using a Bi-objective
Approach

In our two-objective approach, we demonstrated the high performance of H-
J based neighborhood count approach, where the first objective is the given
function, f(x) and the second objective is the number of neighboring points
better (we restrict ourself to minimization problems here, and hence a point
is better than another, if its function value is lesser) than x. We select the
sample of neighboring points judiciously by using the way an exploratory search
is performed in the Hooke-Jeeves classical optimization algorithm. The procedure
starts with the first variable (i = 1) dimension and creates two extra points
xc

i ± δhj around the current solution xc = x. Thereafter, three solutions (xc −
δhjei,xc,xc + δhjei) (where ei is the unit vector along i-th variable axis in
the n-dimensional variable space) are compared with their function values and
the best is chosen. The current solution xc is then moved to the best solution.
Similar operations are done for i = 2 and continued for the remaining variables.
Every time a solution having a better objective value than the original objective
value (f(x)) is encountered, the second objective value f2(x) is incremented by
one. It is obvious that for an optimum solution f2(x) = 0. Multiple optimum
solutions, hence possess an invariant second objective and thus form a weakly
Pareto-optimal set. Some basic changes to NSGA-II were sufficient to obtain
multiple optimal solutions:

1. We introduced a parameter, δf to prevent the convergence to only one (or
some) of the optima thus giving a chance to the population of solutions
to discover other optima. For any two solutions having equal f2(x) and
function values within δf of each other, the solution with the lower function
value dominates the other, else the solutions are assigned an identical non-
dominated rank

2. It is interesting to observe that the above change will prevent multiple optima
of equal value to be discovered. To be able to obtain multiple optimal solu-
tions having identical function value, we introduce another parameter δx. We
check the normalized Euclidean distance (in the variable space) of any two
solutions having function values within δf (and equal values of f2(x)). If the
normalized distance is greater than the value of δx, we assign both solutions
an identical non-dominated rank, otherwise both solutions are considered
arising from the same optimal basin and we assign a large dominated rank
to the solution having the worse objective value f(x).

The above changes ensured that NSGA-II would be able to find a weak Pareto-
optimal set (in our case the multiple optimal solutions) of the given bi-objective
problem. It is clear from the above discussion, that the algorithm required the
values of three parameters – δhj , δf and δx to be preset correctly for a successful
operation. This is a limitation, in an otherwise novel work. We seek to remove
this shortcoming by calculating the values of δhj and δx from the population of
solutions and eliminating the need for δf in our algorithm. In the next section,
we describe these new developments.
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4 Self-adaptive Parameter Estimation

Niching is a mandatory task in multimodal optimization. Most of the niching
methods use at least one Euclidean distance measure, usually called the niching
radius to be able to maintain multiple favorable areas in the solution space.
Like any other parameter based approach, niching suffers from the problem of
setting the value of niching radius. Hence, researchers in the EC community
have targeted to make it self-adaptive such as demonstrated by [3] in the realm
of Particle Swarm Optimization (PSO), [4] in Genetic Algorithms (GA), and [5]
in Evolution Strategies (ES). Others ([6] and [7]) have also tried to make certain
aspect(s) of a GA self-adaptive to assist multimodal optimization.

In the next sub-sections, we describe how we were able to eliminate δf and
calculate the values of δhj and δx from the population of solutions.

4.1 Elimination of the Objective Space Niching Parameter – δf

As earlier described, δf was introduced to allow two almost identical valued
solutions to be eligible for the variable space niching check. We did a basic
parametric study with different values of δf on one of the problems, the MMP(8)
(introduced in our earlier work and later described in Section 5). We fixed the
values of δhj and δx as per our earlier work. The results are show in Table 1. It
is apparent that even though we keep increasing the value of δf , the performance
of the algorithm doesn’t get worse. In fact, the number of function evaluations
to find all the desired optima tend to decrease as we increase the value of δf .
(Increasing the value of δf implies that more solutions qualify for the variable
space niching check, thus increasing the importance of the variable space niching
check as the primary mode of maintaining multiple solutions)

Observing the above behavior of the algorithm, we eliminate δf – thus making
every pair of solutions (irrespective of their relative function value) eligible for a
variable space niching check. (This is equivalent to setting a very high value for
δf ). Our algorithm performed equivalently well without δf on our test problems
– MMP(4), MMP(8) and MMP(16) (described in Section 5) introduced in the

Table 1. Performance of the H-J based procedure with respect to different values of
δf for the MMP(8) problem

Parameter Value Succ. runs Func. Evals.
(out of 30) (Median, Std.dev)

0.1 23 (5.1250e+05, 7.0612e+05)
0.2 26 (5.0620e+05, 9.3033e+05)

δf 0.5 25 (5.0000e+05, 6.6298e+05)
(δx = 0.2 0.7 28 (4.8125e+05, 6.1725e+05)

δhj = 0.04) 1.5 26 (4.3750e+05, 5.9616e+05)
20 27 (4.2500e+05, 9.1617e+05)
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earlier work. Based on this study, we conclude that the δf based check can be
eliminated without compromising on the performance of the algorithm.

4.2 Estimation of the HJ Parameter – δhj

The value of δhj determines “how far” is the neighborhood of a solution searched
for better solutions around it. One simple restriction is that if xi is one of the
vector-components of a possible optimum solution, then δhj should be such that
the new point with xi±δhj does not overshoot nearby optima. This is to prevent
encroachment into another optima and hence get a correct estimation of f2(x).
We consider this factor and calculate δhj for a solution, x, as follows:

1. Find the closest member (and the corresponding Euclidean distance, say
dmin

x ) in the population of solutions to the current solution x.
2. Set δhj = 0.5dmin

x .
3. The H-J procedure is now invoked with δhj .

The above procedure ensures that the value of δhj is such that new points are
evaluated around the incoming solution during the neighborhood search. This
not only prevents overshooting another possible optima, but also makes sure
that the search does not evaluate another population member for calculating
f2(x). Note that for every x, the estimated value of δhj may be different.

4.3 Estimation of the Variable-Space Niching Parameter – δx

A multimodal problem may contain equal valued local and global minima. We
introduced a simple variable space niching using a parameter δx which preserved
multiple solutions having the same function value. The value of δx thus deter-
mines the least distance (in the variable space) that two solutions having the
same function value should be to consider them as different solutions, and hence
preserved.

Since we are solving for the minima, as the modified EMO progresses, the max-
ima will start occupying the higher ranked fronts (higher domination level) and
the minima will be occupying the lower ranked fronts (higher non-domination
level). On the assumption that for continuous functions, between any two min-
ima lies a maxima, we can obtain a fair estimate of the distance of a point from
its closest maxima by the calculating the minimum distance between the popu-
lation members of the highest ranked front and the lowest ranked front. This is
done every generation and we use this distance as δx. We set the lower limit on
the value of δx to be 0.05. Note that δx is estimated to have a single value for
the entire population.

Figure 1 is a schematic description of the calculation of δx. It is intuitive that
if two solutions having the same function value are farther than δx in the variable
space, then they can be safely considered to arise from different optimal basins,
and hence non-dominated to each other in EMO parlance.
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Fig. 1. Estimation of δx

5 Performance of the Algorithm

In this section, we present results of applying the new self-adaptive multimodal
optimization algorithm to different test problems of varying dimensions and
number of optima. In all cases, we use a population size, N ≤ 15 max(n, M),
where n is the dimension of the problem and M is the number of optima, SBX
probability = 0.9, SBX index = 15, polynomial mutation probability = 1

n , and
mutation index = 20 (unless otherwise mentioned). The results are summarized
in Table 3.

5.1 Modified Rastrigin Function

In our earlier work, we defined a scalable n-variable unconstrained multimodal
test-problem, as follows:

MMP(n) : min. f(x) =
∑n

i=1 10(1 + cos(2πkixi)) + 2kix
2
i ,

subject to 0 ≤ xi ≤ 1, i = 1, 2, . . . , n.
(1)

Here, the total number of global and local minima are M = Πn
i=1ki. We use the

following ki values for the two MMP problems, each having 48 minimum points:

MMP(8): k2 = 2, k4 = 2, k6 = 3, k8 = 4,
ki = 1, for i = 1, 3, 5, 7.

MMP(16): k4 = 2, k8 = 2, k12 = 3, k16 = 4,
ki = 1, for i = 1-3, 5-7, 9-11, 13-15.

Both these problems have one global minimum and 47 local minimum points.
Figures 2 and 3 summarize the result obtained by this modified procedure

for the MMP(8) and MMP(16) problems. All 48 minimum points are discovered
by the modified procedure. All 10 runs starting from different initial random
populations find 48 minima in each case. For MMP(8), we use N = 500 and
a maximum of 300 generations, and for MMP(16), we use N = 750 with a
maximum of 1, 000 generations.

It would be interesting to see how the current self-adaptive algorithm with one
less parameter fares compared to the earlier fixed-parameter approach. Table 2
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Fig. 2. All 48 minimum points are found
for the eight-variable MMP(8) problem
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Table 2. Results (over 10 runs) of the H-J based procedure on MMP(16) with fixed
parameters and self-adaptive parameters

Fixed Param. Adaptive Param.

Success rate 86.67 100.0

Best 5.3802e+06 4.9500e+06
Function Evaluations Median 1.0628e+07 7.2150e+06

Worst 2.5181e+07 9.5400e+06
Standard Deviation 5.5476e+06 1.1437e+06

Minimum 9.3035e-05 1.6803e-06
Average Error Median 1.2113e-03 9.3366e-06

Maximum 6.5139e-02 5.4722e-05
Standard Deviation 1.64e-02 1.3195e-05

shows the comparative success rate, function evaluations taken to find all the
48-optima and the average error in the found optima for the MMP(16) problem.

It appears that overall the self-adaptive approach have increased the efficiency
and accuracy of the algorithm.

48 Global Optimal Solutions: Next, we modify the objective function as
follows:

f(x) =
n∑

i=1

10 + 9 cos(2πkixi).

In this problem, we use n = 16 and ki values are chosen as in MMP(16) above,
so that there are 48 minima having an identical objective value of f = 16.
Interestingly, there is no locally minimum solution in this problem. We believe
this problem will provide a stiff challenge to the adaptive variable-space niching
procedure, as all 48 global minimum points will lie on an identical point on the
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Fig. 5. Representative plot showing the
variation of δx and δ̄hj for the modified
MMP(16) problem along with the num-
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objective space and the only way to distinguish them from each other would be
to investigate the variable space and emphasize distant solutions.

Figure 4 shows that the proposed niching-based NSGA-II procedure is able to
find all 48 minimum points for the above 16-variable modified problem. Figure 5
shows the variation of δx and population-average δhj with generation. Starting
with a large value, both these parameters get stabilized to a small value after a
substantial number of optima are found.

5.2 Six-Hump Camel Back

The Six-Hump camel back function [3] has two global optima and 4 local optima.
It is defined as:

min. f(x) = 4[(4 − 2.1x2 + x4

3 )x2 + xy + (−4 + 4y2)y2],
subject to −1.9 ≤ x ≤ 1.9,

−1.1 ≤ y ≤ 1.1.

(2)

We report our results in Table 3 with N = 90 and a maximum of 100 gener-
ations. All the six optima are found.

5.3 Schwefel Function

The Schwefel function is defined as follows:

min. f(x) = 418.9828872724339n−∑n
i=1 sin(

√|xi|),
subject to −500 ≤ xi ≤ 500, i = 1, 2, . . . , n.

(3)

This function has 7n optima, with 1 global optima. We test our algorithm on
n = 2 and n = 5. For n = 2, we report the results of our algorithm with N = 750
and a maximum of 1,000 generations. For n = 5, we report the results of our
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algorithm with N = 1, 000 and a maximum of 5,000 generations. The global
optima is found in all runs along with many other local optima.

5.4 Vincent Function

The Vincent function [5] is defined as follows:

min. f(x) = − 1
n

∑n
i=1 sin(10 log(xi)),

subject to 0.25 ≤ xi ≤ 10, i = 1, 2, . . . , n.
(4)

This function has 6n global optima, with no local optima. We test our al-
gorithm on n = 2 and n = 5. For n = 2, our algorithm finds all 36 optima
with N = 500 and a maximum of 500 generations For n = 5, the algorithm
finds a large number of global optima with N = 1, 000 and a maximum of 5,000
generations.

Table 3. Test functions and Results (over 10 runs). A optimum solution is said to be
found when the normalized Euclidean distance between the expected and the obtained
optima is within 0.05. The std. dev. of the number of function evaluations have been
reported when all the optima have been found within the maximum allowed number
of generations.

Function n Range # Optima # Avg. Opt. obt. Func. Evals.
(Med., Std.dev) (Med., Std.dev.)

Mod. Rast. 4 0 ≤ xi ≤ 1 48 (48, 0) (2.9750e+05, 5.1508e+04)
Mod. Rast. 8 0 ≤ xi ≤ 1 48 (48, 0) (1.0920e+06, 2.1203e+05)
Mod. Rast. 16 0 ≤ xi ≤ 1 48 (48, 0) (7.2150e+06, 1.1437e+06)
Six-hump 2 -1.9 ≤ x1 ≤ 1.9 6 (6, 0) (7.2000e+04, 0.0000e+00)

Camel back -1.1 ≤ x2 ≤ 1.1
Schwefel 2 -500 ≤ xi ≤ 500 49 (30, 5) (6.0060e+06, - )
Schwefel 5 -500 ≤ xi ≤ 500 75 (82, 42) (8.5000e+07, - )
Vincent 2 0.25 ≤ xi ≤ 10 36 (36, 0) (2.2080e+05, 7.3618e+04)
Vincent 5 0.25 ≤ xi ≤ 10 65 (907, 11) (8.5000e+07, - )

6 Conclusions

In this work we have successfully improved our earlier bi-objective multimodal
optimization algorithm with a self-adaptive approach of calculating the niching
parameters. The results obtained on different multimodal test problems with
varying dimensions reinforce its generic applicability. An important future work
is to test the self-adaptive algorithm on constrained multimodal test problems
suggested earlier in [1]. An interesting area to explore would be to use the ideas
of the proposed approach on multimodal problems in domains such as control
systems, evolutionary neural networks and combinatorial optimization.
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L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M.,
Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska,
N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1160–1171.
Springer, Heidelberg (2003)

7. Srinivas, M., Patnaik, L.M.: Adaptive probabilities of crossover and mutation in
genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics 24(4),
656–667 (1994)

8. Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal
function optimization. In: Proceedings of the Second International Conference on
Genetic Algorithms and Their Applications, pp. 41–49. L. Erlbaum Associates Inc.,
NJ (1987)

9. Deb, K., Goldberg, D.E.: An investigation of niche and species formation in genetic
function optimization. In: Proceedings of the Third International Conference on
Genetic Algorithms, pp. 42–50. Morgan Kaufmann Publishers Inc., USA (1989)

10. Pétrowski, A.: A clearing procedure as a niching method for genetic algorithms.
In: Proceedings of the IEEE 3rd International Conference on Evolutionary Com-
putation (ICEC 1996), pp. 798–803. IEEE Press, Los Alamitos (1996)

11. Streichert, F., Stein, G., Ulmer, H., Zell, A.: A clustering based niching EA for mul-
timodal search spaces. In: Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoe-
nauer, M. (eds.) EA 2003. LNCS, vol. 2936, pp. 293–304. Springer, Heidelberg
(2004)



On the Flexible Applied Boundary and Support
Conditions of Compliant Mechanisms Using

Customized Evolutionary Algorithm

Deepak Sharma

Department of Mechanical Engineering
Indian Institute of Technology Kanpur, India

dsharma@iitk.ac.in

Abstract. In structure topology optimization, the applied boundary
and support conditions are often fixed in a-priori. These conditions can
affect the behavior and the properties of single-piece elastic structures
known as compliant mechanisms. In this paper, the same aspect is ex-
plored for path generating compliant mechanisms by considering them as
design variables and their values are evolved using customized NSGA-II
algorithm. Three examples are solved and the innovative facts among
the applied boundary and support conditions are presented. The elastic
structures are also presented in this paper.

1 Introduction

Structural topology optimization is a fast growing field that is finding numerous
applications in automotive, aerospace and mechanical design processes. It op-
timizes the material distribution or layout within a given design-domain under
the applied boundary and support conditions [1].

Quite often, it has been observed in the literature of structural topology op-
timization that the applied boundary and support conditions are fixed a-priori.
Sometimes, these conditions are known or the design constraints and variables
limit them. However, the applied boundary and support conditions can affect the
behavior and optimal properties of structures. It has been shown elsewhere [2]
that the optimum set of support and loading positions generated the improved
compliant mechanisms in their objective values. It can also influence the final
shape of elastic structures [3]. However, various design principals and facts can
be discovered on the basis of design goals and variables [4]. In this paper, an
attempt is made to explore the innovative facts by considering the applied and
boundary conditions as design variables for three examples of path generating
compliant mechanisms. Unique facts of these conditions for compliant mecha-
nisms are explored that can be beneficial to the designers. The elastic structures
of three examples of path generating complaint mechanisms are also presented.
In the remaining part of the paper, section 2 described the methodology fol-
lowed in this paper. The experimental results are discussed and optimum elastic
structures are presented in section 3. The paper is concluded in section 4.

K. Deb et al. (Eds.): SEAL 2010, LNCS 6457, pp. 105–114, 2010.
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2 Methodology

2.1 Formulation

The formulation is designed for path generating compliant mechanism (PGCMs)
that trace-out the prescribed path by undergo through elastic deformation. In
this paper, the design-domain for PGCMs is categorized into three regions called
support, loading and output regions (cf. Fig. 1). The elastic structures are sup-
ported in support region whereas the load is applied at the loading region. The
elastic structures trace-out the prescribed path at the output region. As Fig. 2
shows, the constraints are imposed at precision points of prescribed path so that
the actual path generates the similar path (d2 ≤ d1) [5].

In this paper, the compliant mechanisms are designed using two bi-objective
sets. In both sets, the primary objective is to minimize the weight of elastic
structures. The another objective for first bi-objective set is the minimization
of supplied input energy [5] that is calculated with respect to the stress and
the strain developed during the large deformation of the elastic structures. For
second bi-objective set, the maximization of geometrical diversity [2] is chosen
that is calculated by comparing the dissimilarity in the bits of binary strings of
the reference design and the elastic structure of GA population. In this paper,
the compliant mechanism evolved by single-objective optimization is chosen as
a reference design. The single and bi-objective sets and the constraints are given
in appendix A.

2.2 Customized Evolutionary Algorithm

Among the multi-objective evolutionary algorithms, NSGA-II [6] is the fastest
and has shown to have a good convergence property to the global ‘Pareto-
optimal’ front for various two objective test and engineering problems [7]. Thus,
NSGA-II is used as a global search and optimizer in this paper. However, there is
a need to modify the existing NSGA-II for structure topology optimization. A lo-
cal search method is also used which acts as a post-processing method to refine
the non-dominated compliant mechanisms evolved by the modified NSGA-II.
The flow chart of the customized NSGA-II algorithm is shown in Fig. 3.
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Start with NSGA-II parameters which are given in Table 1. A binary string
of 12 bits is used to evolve the applied boundary and support conditions in their
respective regions of the given design domain (cf. Fig. 1). To calculate the values,
12 bits are divided into three groups of five, three and four bits respectively as
given in Table 2. The decoded value of first five bits indicates the location of
an element from the origin where the elastic structure is to be supported. The
decoded value of subsequent three bits helps to determine the loading position,
that is, a node where the input load is applied. The decoded value of last four
bits are used to evaluate the magnitude of input displacement which can vary
from 1 mm to 16 mm at step of 1 mm.

Table 1. GA parameters

Population 240 Generation 100
Crossover 0.95 Mutation 1/string
probability probability length

String length 625 String length for 12
for a structure applied boundary &

support conditions

Table 2. A binary string of a GA popula-
tion member
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For structure representation, a binary string of 625 bits is used to represent
the material distribution for the elastic structure. A binary string is copied to
two dimensional array followed by the material assignment as shown in Fig. 4.
The bit value ‘1’ signifies that material is present whereas, ‘0’ represents the
void. This scheme divides a design domain of structure into 25 × 25 (= 625)
grids in x and y directions, respectively.

In this paper, the domain specific initial population strategy is used which
has shown its advantage over random initialization of material in the design
domain [3]. The initial population strategy is described by showing the material
connectivity between the support and loading regions in Fig. 5. The intermediate
points (between 1 to 5) are randomly generating within the design domain.
In Fig. 5, four points (P1, P2, P3 and P4) are generated and they connect
the support (S1) and the loading (L1) positions by straight lines. Thereafter, a
material is assigned to those elements where these straight lines pass as shown
in Fig. 5. Similarly, a set of piece-wise linear line segments between the support
and output regions and another set between the loading and output regions
are explained. Here, the element positions of support and loading regions are
calculated after decoding the binary string of 12 bits (cf. Table 2). The location
of output region is fixed in this study because this point will trace-out the user-
defined path. This initial population strategy ensures the geometrically feasible
structures in the initial population.

As two bi-objective sets are used to capture the facts between applied bound-
ary and support conditions, the two crossover operators are also used in this
paper. For each example of PGCMs, NSGA-II is coupled with both operators
individually and the conditions are evolved on different optimization platforms.
The first two-dimensional crossover has shown its successful application in shape
optimization [8,9] and compliant mechanisms [5,2,3]. It works on exchanging the
rows or column (refer Fig. 6) with equal probability. The size and location of
common patch are found randomly and it is swapped between the two parents.
Another crossover operator is a domain specific crossover that divides the given
two-dimensional design domain into four sub-regions. Points P1, P2 and P3 of
Fig. 8 are chosen randomly on their respective edges and are joined by straight
lines. With an equal probability, two sub-regions out of four are swapped be-
tween the two parents. For the crossover of 12 bit binary string, a standard
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single point crossover operator is used. In this paper, the mutation of each bit
of binary string representing the structure is done with a probability of 1/string
length.

Because of the crossover and mutation operators, the new solutions can suffer
from disconnected topology problem. As shown in Fig. 7, the support region
(S) is not connected to the loading (L) and the output (O) regions. In this
disconnected scenario, the individual distances are calculated from the centroid
of each grid of material of S to the centroid of each grid of material of L and
O. Then, the straight lines (L1, L2) are drawn from the centroid of those two
grids which show minimum distances between S-L and S-O. In this way, the
connectivity among S, L and O regions of a structure is checked.

3

1

7

8

6 5 4

2

Fig. 9. Eight neighbor-
hood connectivity

The point singularity between the two material ele-
ment’s can arise due to the developed initial population
strategy, GA operators and after the connectivity tech-
nique. An ad-hoc repairing technique motivated from the
image processing concept [10] is employed in this paper.
In Fig. 9, the material at positions 2, 4, 6 and 8 can
create point singularity. If position 2 creates point con-
nectivity, then an extra material can be filled at 1 or
3 with equal probability. In this way, the point singu-
larity for each element of material is eliminated. Due
to the mutation operator, any floating material element
can appear which is not connected to the seed elements.
In this case, this isolated element is changed to void by
assigning value ‘0’.

After above steps, the elastic structures are now undergo for finite element
analysis (FEA). In this study, one grid of a structure is further discretized into
four finite elements with same Boolean variable value as shown in Fig. 4. In
the present process, the structure is discretized with 4 × 625 (= 2500) 4-node
rectangular finite elements and analyzed through a non-linear large deformation
FE analysis using ANSYS package. However, the GA operations are performed
on 625 bits representing the same structure.

The function evaluations and FE simulations are performed on the parallel
computing platform. Master-slave architecture is used in the present paper in
which the population members are evaluated on the slave processors and rest
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of the operations are done on the master processor. A MPI based Linux cluster
with 24 processors is used in the present study.

When the non-dominated solutions are evolved by the customized NSGA-II,
these solutions are refined by local search method. The weighted-sum approach
is used in this paper to reduce the multi-objective problem into single-objective.
Weights are calculated according to the positions of non-dominated solutions
evolved by NSGA-II in the objective space (refer Eqn. 1) [7].

wx
j =

(fx
jmax

− fx
j ) \ (fx

jmax
− fx

jmin
)∑M

k=0(f
x
kmax

− fx
k ) \ (fx

kmax
− fx

kmin
)
, (1)

where wx
j is the corresponding weight to the jth objective function, fx

j is jth

objective function, fx
jmin

and fx
jmax

are minimum and maximum values of jth

objective function of non-dominated front, M is the number of non-dominated
solutions.

In the local search method, the weighted sum of scaled fitness of a selected
representative solution is evaluated. Thereafter, the two-dimensional array of
solution is checked for the grids having a material. For each material’s grid,
there are maximum of eight possible neighborhoods as shown in Fig. 9. One
by one, all neighboring bits including its own bit, are mutated. The new elastic
structure is now extracted on which FEA is performed for objective function and
constraints values. The new elastic structure will discard if it is infeasible. If it is
feasible, then the changes are accepted when the weighted sum of scaled fitness
of new elastic structure is better. When the scaled fitness of elastic structure
before checking the material’s grid is same as after mutating all bits having
material and their neighborhood, the local search method is terminated. In the
same way, all representative solutions are mutated.

3 Experimental Results

In this section, three examples of compliant mechanisms tracing (i) curvilinear
path, (ii) straight line path and (iii) upward curvilinear path are solved with
different objective sets using customized NSGA-II with two different crossover
operators. The applied boundary and support conditions are evolved for the
wide-variety of optimization frame-works and the innovative facts are discovered.

Deb and Srinivasan [11] introduced a new design methodology called “in-
novization” in which the new and innovative design principles are developed by
means of optimization techniques. In this paper, an attempt is made to find
such principals or facts that are based on the applied boundary and support
conditions of various PGCMs. It can help the designers and decision makers to
get more insight into the topology optimization of compliant mechanism tracing
user-defined path.

The optimum set of applied boundary and support conditions of all single and
bi-objective studies are given in Table 3. In this table, ‘OX’ is referred for the
row/column crossover-wise operator based studies and similarly, ‘NX’ is used for
the domain specific crossover operator based studies.
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Table 3. Applied boundary and support conditions for different optimization frame-
works

Example: Curvilinear Path Tracing Compliant Mechanisms (CPTCM)

Conditions
Single-objective Ist bi-objective IInd bi-objective

study study study
OX NX OX NX OX NX

Support position 20 2 2 2 16 18
Loading position 32 24 32 40 24 32

Input displacement magnitude 7 5 7 9 5 7
Example: Straight Line Path Tracing Compliant Mechanisms (SLPTCM)

Conditions
Single-objective Ist bi-objective IInd bi-objective

study study study
OX NX OX NX OX NX

Support position 46 46 46 46 46 46
Loading position 40 28 20 20 20 28

Input displacement magnitude 8 5 4 4 4 5
Example: Upward Non-Linear Path Tracing Compliant Mechanisms (UNPTCM)

Conditions
Single-objective Ist bi-objective IInd bi-objective

study study study
OX NX OX NX OX NX

Support position 44 46 44 46 46 44
Loading position 44 48 44 44 48 44

Input displacement magnitude 5 6 5 5 6 5

Let us first identify the common support positions in Table 3. For the curvi-
linear path tracing compliant mechanisms (CPTCM), the support position of
2 mm is common in single-objective ‘NX’, Ist bi-objective ‘OX’, and Ist bi-
objective ‘NX’ studies. The corresponding loading positions are at 24 mm, 32
mm and 40 mm, respectively. The required input displacement magnitudes of
single-objective ‘NX’, Ist bi-objective ‘OX’, and Ist bi-objective ‘NX’ studies are
5 mm, 7 mm and 9 mm, respectively.

Similar information can also be unfold from the examples of straight-line
path tracing compliant mechanisms (SLPTCM) and upward non-linear path
tracing compliant mechanisms (UNPTCM). In case of SLPTCM, the identical
support position at 46 mm is evolved for all studies. The corresponding loading
positions are at 40 mm, 28 mm and 20 mm from the origin. The respective
magnitudes of input displacement are 8 mm, 5 mm and 4 mm to trace the
straight line prescribed path. Similarly, an example of UNPTCM shows the
common support position at 44 mm for single-objective ‘OX’, Ist bi-objective
‘OX’ and IInd bi-objective ‘NX’ studies and another support position at 46 mm
for single-objective ‘NX’, Ist bi-objective ‘NX’ and IInd bi-objective ‘OX’ studies.
When the topologies are supported at 44 mm, then they are loaded at 44 mm
and required 5 mm of input displacement magnitude. On the other hand, the
elastic structures that are supported at 46 mm, require 6 mm and 5 mm of
input displacement magnitudes for the loading positions at 48 mm and 44 mm
respectively to trace the upward non-linear path.

For identical support positioned compliant mechanisms, we observe that the
magnitude of input displacement required to trace the prescribed path increases
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(a) CPTCM (b) SLPTCM (c) UNPTCM

(d) Deformed
CPTCM

(e) Deformed
SLPTCM

(f) Deformed
UNPTCM

Fig. 10. Topologies

as the load is applied away from the origin. This common feature is independent
of the nature of compliant mechanisms tracing variety of paths.

Another interesting information can be drawn out when we observe the com-
mon loading positions of each study mentioned in Table 3. In the example of
CPTCM, the first identical loading position is at 32 mm for which the elastic
structures are supported at 20 mm, 2 mm and 18 mm from the origin and re-
quire 7 mm of input displacement. The elastic structures with second common
loading position of 24 mm are supported at 2 mm and 16 mm and require 5
mm of input displacement. The example SLPTCM indicates 28 mm and 20 mm
common loading positions for which all compliant mechanisms are supported at
same position and require 5 mm and 4 mm values of input displacement, respec-
tively. Similarly in the example of UNPTCM, the topologies which are loaded at
44 mm, are supported at 44 mm and 46 mm from the origin and require 5 mm
of input displacement whereas, the topologies with common loading position of
48 mm are supported at 46 mm and require 6 mm of input displacement. The
observation reveals that if the loading position of compliant mechanisms is same,
then these mechanisms require same magnitude of input displacement to trace
the prescribed path irrespective of the different support positions.

The topologies of single-objective optimization using NSGA-II with domain-
specific crossover operator are shown in Fig. 10 for three examples of PGCMs. Ac-
cording to the nature of generating prescribed paths, the topologies and shapes of
CPTCM, SLPTCM and UNPTCM are evolved. Although the applied boundary
and support conditions of CPTCM and UNPTCM and their prescribed paths are
different but they have same topology. If we look at the support positions of above
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three examples, CPTCM is supported on the bottom left-hand side (cf. Fig. 10(d))
and SLPTCM is on the bottom right-hand side (refer Fig. 10(e)). It is because the
elastic structure supported in left-hand side generates higher downward curvilin-
ear paths compared to right-hand side supported PGCMs. In case of UNPTCM,
the output region is positioned at the middle of top edge of the given design do-
main. In this scenario, the output point can only trace the upward non-linear path
when the support position lies on the right hand side of the output point (refer
Fig. 10(f)). Such behaviors of the elastic structures are expected and the evolved
support conditions also abide the same principal [2,3].

Another important fact of considering the applied boundary and support condi-
tions as design variables can observe when these conditions are unknown. The de-
signer does not have to define these conditions a-priori. Moreover, the optimum set
of evolved conditions can explore the possibilities of non-optimum applied bound-
ary conditions that might be considered in the previous practice of designers [3].

4 Conclusions

This paper has explored the innovative facts of the applied boundary and support
conditions for variety of PGCMs, irrespective of the different optimization frame-
works. Moreover, the optimum sets of these conditions were evolved without any
priori information. The possibility of non-optimum conditions was also explored
which might be considered in the previous practices. Beside all facts, the evolved
support positions by the customizedNSGA-II for three examples ofPGCMs abided
the expected rule of elastic deformation of structures. These unfold facts and infor-
mation can be beneficial to the designers to get deeper insight into the problem. In
the future work, the concept of flexible applied boundary and support conditions
can be used for variety of structure topology optimization problems.
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A PGCM Formulation

Single-objective optimization:
Minimize: Weight of structure
Ist Bi-objective set:
Minimize: Weight of structure (primary objective),
Minimize: Supplied Input energy (secondary objective),
IInd Bi-objective set:
Minimize: Weight of structure (primary objective),
Maximize: Geometrical Diversity of structure (helper objective),
Optimization problems are subjected to:

1 −
√

(xia−xi)2+(yia−yi)2

η×
√

(xi−xi−1)2+(yi−yi−1)2
≥ 0, i = 1, 2, ..., N

σflexural − σ ≥ 0,
where η = 15% is the permissible deviation and N is number of precision points
representing the prescribed path. σflexural and σ are flexural yield strength of
material and maximum stress developed in the elastic structure, respectively. xi

and yi are the coordinates of precision points whereas the coordinates of xia and
yia are the corresponding points on the actual path traced by elastic structure.
Note that the points on actual path are found from the non-linear finite element
analysis of elastics structures based on equal load steps.
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Abstract. It is only relatively recently that extremal optimisation (EO)
has been applied to combinatorial optimisation problems. As such, there
have been only a few attempts to extend the paradigm to include stan-
dard search mechanisms that are routinely used by other techniques such
as genetic algorithms, tabu search and ant colony optimisation. The key
way to begin this process is to augment EO with attributes that it natu-
rally lacks. While EO does not get confounded by local optima and is able
to move through search space unencumbered, one of the major issues is
to provide it with better search intensification strategies. In this paper,
two strategies that compliment EO’s mechanics are introduced and are
used to augment an existing solver framework. Results, for single and
population versions of the algorithm, demonstrate that intensification
aids the performance of EO.

1 Introduction

Extremal optimisation (EO) [4] has two main attractions for the researcher and
practitioner. The first is that it is very easy to understand and implement. The
base algorithm, in comparison to other meta-heuristics, is very simple. This is
described in detail in the next section. Perhaps more important is the fact that,
unlike its counterparts, it does not converge on a single, or set of, locally optimal
solution(s). This avoids the problem of premature convergence. Instead it moves
continually through search space, largely being repelled by poor regions of the
search space, rather than being specifically attracted to good areas.

The natural, continual diversification of EO’s search suggests that work on the
algorithm should be devoted to improving its ability to focus on good and promis-
ing areas of the search space. This increase in search focus is traditionally referred
to as intensification, and is present in varying degrees in all meta-heuristic tech-
niques. There exists a reasonably large body of literature for explicit intensifi-
cation strategies applied to a range of these meta-heuristics, rather than to EO
itself. According to Glover and Laguna [10], these approaches can be grouped into
two broad classes. The first set of techniques gathers elite solutions found during
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the search and allows the meta-heuristic to revisit them when in intensification
mode. This is characterised by works of Gambardella, Taillard and Dorigo [9] and
Blum [3]. The former propose a hybrid ant system for the quadratic assignment
problem (QAP) that is known as HAS-QAP. In an intensification trial phase, the
initial solution it uses is the best solution found to date, so it thus corresponds
to using one elite solution. Blum [3] follows a similar idea to this, except that the
search is allowed to intensify around a set of elite solutions rather than just one.

The other main approach is based on the frequency of incorporation of so-
lution component values1 into solutions, and their association with quality. If
solution components are generally associated with better solutions, it would be
prudent to intensify search around a combination of these values. This is ex-
emplified by Randall [11] and Beausoleil [2]. The former work, based on ant
colony systems (ACS) (an ant colony optimisation meta-heuristic), analysed the
frequency of incorporating components into the colony’s solutions. In an inten-
sification phase, frequently incorporated components were highly weighted in
the probability selection equations. This is because, according to the ACS rules,
they have been associated with good quality solutions in the past. Three search
phases (normal, intensification and diversification) were triggered on the basis of
the progress of the search. Intensification is performed if the search frequently re-
ceives good solutions above some threshold rate, which suggested that the search
was in a promising area of the space. Overall, improved solution costs were ob-
tained for larger travelling salesman problem (TSP) instances over a standard
ACS strategy. In the latter work [2], parts of the solution structure were kept
constant to allow the tabu search mechanism to concentrate on regions con-
taining high quality solution components (as identified through the frequency
memory). Applying this strategy, along with frequency-based diversification and
path relinking, to the one-machine problem with a weighted tardiness objective
produced very good performance in terms of solution quality and time.

The remainder of the paper is organised as follows. Section 2 gives an overview
of the mechanics of EO and a description of a framework to help it process
constrained problems. Section 3 describes two different intensification methods
and how they are integrated with, and augment EO. Using a standard set of
generalised assignment problems (GAPs), the intensification-enhanced methods
are compared to canonical EO (as well as other algorithms) in Section 4. Finally,
the conclusions and future research directions are given in Section 5.

2 Extremal Optimisation

Boettcher and Percus [4, 6, 7] describe the general tenets of EO. In many ways,
it operates counter to other meta-heuristic search algorithms. Instead of actively
seeking good solutions through either incremental improvement (such as tabu

1 A solution component simply refers to each separate value in the solution vector. In
essence, a component represents a building block of the problem. For example, in the
generalised assignment problem [8], the assignment of an agent to a job represents
a single component.
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search and genetic algorithms) or construction (such as ant colony optimisation),
bad solutions are actively discouraged. The main advantage of this, as previously
mentioned, is that EO will not prematurely converge on a locally optimal solution
or a set thereof.

At each iteration of the algorithm, a poor solution component value (as defined
by some incremental cost measure) has its value simply changed to a random
value (which, of course, is different from the initial value). In the original ver-
sion of EO, this chosen solution component was always the worst. However, the
performance of EO in this form was not favourable. Allowing the component
to be chosen probabilistically, according to Equation 1, helped to increase EO’s
performance and competitiveness with other meta-heuristics.

Pi = i−τ 1 ≤ i ≤ n (1)

Where: i is the rank of the component, τ is a parameter that alters the probability
distribution, Pi is the probability (Pi = [0, 1]) that component i is chosen and n
is the number of components.

All components are ranked from worst (rank 1) to best (rank n). The set of
probabilities are calculated from the ranks and the parameter τ . Essentially, a
τ value of 0 gives a random search whereas τ approaching ∞ corresponds to
greedy search.

From the above, the general EO (Algorithm 1) is formed.

Algorithm 1. General EO algorithm for a minimisation problem
1: best cost = Form an initial solution, x, to the problem
2: Calculate the probability, P , for each rank based on the value of τ and n (using

Equation 1)
3: while the stopping criterion is not met do
4: Rank the n solution components from worst to best, based on x and the objective

function
5: i = Choose the component value to change using roulette wheel selection (or

similar)
6: Assign x(i) a different, random, value
7: cost = Evaluate the cost of x according to the objective function
8: if cost < best cost then
9: best cost = cost

10: end if
11: end while
12: Report best cost
13: end

2.1 A Framework for Constrained Problem Solution

The following describes three elements that have previously been used [12, 13]
to enable EO to solve constrained optimisation problems. The discussion is cast
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in terms of the problems solved in this paper, the GAP. However, they are
sufficiently general to be able to be applied to other problems.

1. Feasibility Management – While EO only makes a small change at each itera-
tion - allowing many transitions to be made in a computationally reasonable
time - their randomness allows transitions that potentially result in infeasible
solutions. Overall, many feasible solutions will likely be produced depending
on the difficulty of the constraints. Increasing the proportion of feasible so-
lutions may be accomplished by the use of the partial feasibility restoration
algorithm. This is a simple, non-degenerative, parameter-free heuristic that
reduces the amount of infeasibility of a solution. Effectively it helps speed
EO back to feasible space, but it does not guarantee that a feasible solution
will be produced. As such, it subsequently has a low computational com-
plexity of O(MN) for the GAP, where M is the number of agents and N is
the number of jobs.

2. Population Model – Unlike many other meta-heuristics, canonical EO only
manipulates a single solution. Techniques such as genetic algorithms, ant
colony optimisation and particle swarm optimisation derive much of their
search power from co-operating and interacting solutions. A simple way to
add this extension to EO is to employ some aspects of the Bak-Sneppen
model of evolution [1]. Put simply, the weakest member of a population and
its two closest neighbours die and are replaced by new members. These new
members are two generated at random and one that is a copy of the best
found solution. The population interactions are triggered probabilistically
according to a divergence measure.

3. Local Search – Standard greedy descent search can be applied each time
a feasible solution is generated. For the GAP, two operators are possible.
“Move” moves a job from one agent to another and “Swap” swaps two jobs
(from different agents). This is a variable length search that stops when
an improving move cannot be found. These used in combination are very
effective and add relatively little to the computational time [12, 13].

Another, new component that can be added to this standard framework is a
general method to introduce search intensification. This is described in the next
section.

3 Intensification Methods

Intensification schemes that take advantage of the native EO algorithm can be
developed using frequency and historic information. Two separate methods that
integrate into, and extend, the previously described EO framework are thus
developed and outlined below.

3.1 Intensification Based on Frequency Information

Over a number of iterations of EO, an association between solution component
values and quality of solutions can be built. The solution component values
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that are generally present in good quality solutions may be worthy of further
investigation. Specifically, if these values are fixed temporarily within the search
process, it allows EO to better explore the (smaller) region around those values.
This may in turn reveal improved solutions.

The association of solution component values and overall solution quality can
be kept in a matrix indexed by component number and value. Each cell of the
matrix holds the average solution quality that that combination of component
and value has received to date. This can be used to calculate the probability
of temporarily “locking in” that value. There are numerous, sensible, ways that
such a probability can be calculated, with one such given in Algorithm 2.

Algorithm 2. Calculation of the probabilities to lock in solution component
values. This assumes a minimisation problem
1: for each solution component c do
2: vc = Choose the lowest/best from the association matrix
3: pc = best cost

vc

4: end for
5: Rescale the probability vector, p, between its minimum and maximum value

After an initial period of iterations (typically a few hundred iterations), to
allow the association matrix to receive sensible values, EO has the possibility of
temporarily locking in solution component values. At each iteration that a fea-
sible solution is produced, each of the probability values are compared against
uniformly distributed random numbers to determine which combinations of com-
ponent and values should be locked in. This works with EO’s ranking system
in a novel way. If a component is locked, it is given the highest available EO
rank. In reality this is a “soft” lock, as EO may, in an unlikely case, choose this
component value to change. In the event that all components become locked,
this protects the system from not being able to make a transition (see step 5 of
Algorithm 1).

The search, of course, will quickly stagnate if components are locked for an
excessive number of iterations. Conversely, if the period is too short, EO will not
have sufficient opportunity to explore the search region bounded by the locked
values. The system allows this choice to be a user-defined parameter. Once this
number of iterations has expired, the components are then freed. The alternative
to fixing this period would be to explore self-adaptation governed by sufficient
solution improvement.

3.2 Intensification Based on Historic Information

During the course of EO’s search, it will typically find many solutions that have
objective costs that are the best to date. These solutions, apart from being
comparatively good, may indicate that the surrounding space may also contain
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other solutions of similar, and potentially superior, quality. However, canonical
EO will continue through the space without adequately exploring such regions.

The best solutions found during the course of the search can be saved in
a specially created archive. EO can revisit these solutions by selecting them
from the archive to substitute for poor solutions to be discarded. It is extremely
unlikely that EO will follow the same search trajectory after one of the archived
solutions is reinstated, since further probabilistically-chosen bad solutions will be
replaced with random values. Thus, the region around an archived solution may
be better explored by further sampling. The questions that naturally arise in
terms of its implementation are: a) when should this intensi cation be activated
in the search process; b) how many solutions should constitute the archive and
c) how should they be chosen to be used?

Intensification need only be activated when the search process appears to be
unable to find improved solutions for an extended period. The current region of
search space likely does not contain better solutions than received previously;
thus, returning to one of the archived solutions would be more profitable. There
are many possible models that could provide this intensification “trigger” mech-
anism. One such interesting way, given in Equation 2, calculates a probability
based on the number of iterations since the last solution improvement was re-
ceived. As the number of iterations since the production of this solution increases,
the probability of activating intensification geometrically increases.

p = N × I

T
(2)

Where: p is the probability that intensification will be activated, N is the number
of non-improving moves since the last improved solution was received, I is the
number of (approximate) intensification periods in the search, and is a user
definable parameter and T is the total number of iterations.

A fixed-size archive is a simple and practical way of storing the solutions to
which search may be returned. There is no way of accurately determining this
size a-priori, thus it becomes another user defined parameter. As new improved
solutions are obtained, and the archive is at capacity, solutions in it will need to
be replaced. An effective way to do this is to replace the current worst solution
in the archive. As only ever improving solutions are added to the archive, the
replaced solution will also be the oldest member.

4 Computational Experiments

The computer used to perform the experiments was a 3 GHz Pentium 4-based
PC. Each problem instance was run across ten random seeds. The experimental
programs were coded in the C language and compiled with gcc. The only two
standard EO parameters were τ and the number of iterations for which it was to
be run. τ was set as 1.5 (a value consistent with Boettcher and Percus [5]), and
the latter as 500,000. This value is the same as used by Randall [12] and Randall
et al. [13]. Results are reported as relative percentage deviations (RPDs) from
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the known best solution cost for each problem instance. Formally this is given
as a−b

b × 100% where a is the obtained cost and b is the best known cost.
To test the practical performance of the two intensification schemes, instances

of the generalised assignment problem were used. This is because it has now been
extensively trialled with EO [12, 13] and as such, new results can be sensibly
compared. In addition, it is an NP hard problem that also has constraints. The
test suite of problems was the large-sized set of Chu and Beasley [8]. Further
explanations of these may also be found in Randall [12] and Randall et al. [13].
The B, C and D type problem instances were considered here.

4.1 Experiments and Results

In the development of any new algorithm, there will always be design choices
and new parameters introduced. It is not possible to test all combinations of
algorithm variations and parameter values to determine the best. However, some
investigation and analysis is required.

For both of the intensification-enhanced EO variants, the trigger points could
be infinitely varied. This is perhaps matter for a more extensive study of the
subject than this paper provides. There is one parameter to vary for the Locked
version and two for the Archive version. These are as follows:

– Locked – A substantial number of iterations should be used to give EO
time to explore the region around a solution that has one or more of its
components locked. As such, values from the set {100, 200, 500, 1000, 5000}
iterations were tested.

– Archive – The two parameters are size of the archive and the approximate
number of intensification periods (see Equation 2). Both were tested with
values drawn from the set {5, 10, 20, 50, 100}.

To test the effect of these parameters, the instances D5-100 and D10-200 were
chosen. Both of these problems are relatively hard, yet representative of this
assignment problem. Table 1 shows the results of varying the Locked parameter
on the canonical and population variants respectively. Due to the sheer size of
the Archive results only those for the canonical algorithm for D5-100 are shown
here. The Kruskal-Wallis statistical procedure was used to determine if there
were any substantive differences between the parameter values. The following
was found:

– Locked – The single and population versions of the algorithm yielded different
results as is evident from the tables. Neither Kruskal-Wallis test detected
significant differences amongst the locked period values. Looking at Table 1
shows that, in terms of the median and maximum values, 500 and 5000
iterations were best for the single and population versions of the algorithm
respectively.

– Archive – Given the combination of two parameters, there are 25 separate
cases. These results (for D5-100) are shown in Table 2. D10-200 shows a
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Table 1. Parameter variation results for the Locked version

Single Population
Instance Locked Iterations Min Med Max Min Med Max
D5-100 100 0.85 1.26 1.33 0.28 0.75 1.26

200 0.55 1.18 1.38 0.41 0.86 1.22
500 0.89 1.2 1.29 0.27 0.77 1.22
1000 0.93 1.26 1.47 0.5 0.73 1.27
5000 0.86 1.26 1.41 0.31 0.62 1.22

D10-100 100 2.45 2.93 3.12 1.38 1.83 2.49
200 2.4 2.97 3.19 1.62 2.04 2.71
500 2.49 2.93 3.08 1.54 2.03 2.71
1000 2.53 3.1 3.22 1.51 1.84 2.71
5000 2.57 3 3.2 1.55 1.83 2.71

similar pattern. In the canonical/single version of EO, a significant difference
was detected. The best results were achieved using a small archive size (5)
and a large number of intensification periods which is confirmed by inspection
of the table. This was not the case for the population version. There was no
significant difference between the Kruskal-Wallis ranks also verified by the
contents of the table. However, a larger archive size (10 members) was better
and was used subsequently.

Table 2. Parameter variation results for the archive version using D5-100

(Size, Periods)
Descriptor Single Population

(5,5) (5,10) (5,20) (5,50) (5,100) (5,5) (5,10) (5,20) (5,50) (5,100)
Min 0.82 0.44 0.63 0.58 0.44 0.08 0.24 0.19 0.05 0.05
Med 1.04 0.82 0.81 0.81 0.71 0.35 0.33 0.42 0.29 0.29
Max 1.21 1.11 1.1 1.13 0.82 0.63 0.75 0.67 0.77 0.77

(10,5) (10,10) (10,20) (10,50) (10,100) (10,5) (10,10) (10,20) (10,50) (10,100)
Min 0.82 0.63 0.63 0.77 0.71 0.09 0.25 0.13 0.16 0.16
Med 1.08 1 0.91 0.86 0.85 0.39 0.43 0.36 0.28 0.28
Max 1.27 1.46 1.37 0.97 1.02 0.78 0.58 0.56 0.52 0.52

(20,5) (20,10) (20,20) (20,50) (20,100) (20,5) (20,10) (20,20) (20,50) (20,100)
Min 0.77 0.77 0.88 0.72 0.72 0.17 0.08 0.16 0.19 0.19
Med 1.28 1.25 1.11 1.15 0.97 0.29 0.34 0.42 0.34 0.34
Max 1.46 1.43 1.38 1.4 1.05 0.55 0.64 0.74 0.67 0.67

(50,5) (50,10) (50,20) (50,50) (50,100) (50,5) (50,10) (50,20) (50,50) (50,100)
Min 0.77 0.77 1.05 0.86 0.83 0.02 0.22 0.09 0.27 0.27
Med 1.27 1.25 1.17 1.17 0.93 0.28 0.33 0.29 0.38 0.38
Max 1.46 1.43 1.43 1.4 1.11 0.53 0.55 0.5 0.55 0.55

(100,5) (100,10) (100,20) (100,50) (100,100) (100,5) (100,10) (100,20) (100,50) (100,100)
Min 0.77 0.77 1.05 0.86 0.83 0.19 0.22 0.28 0.16 0.16
Med 1.27 1.25 1.17 1.17 0.93 0.31 0.35 0.41 0.38 0.38
Max 1.46 1.43 1.43 1.4 1.11 0.94 0.49 0.61 0.63 0.63

Table 3 shows the results for the Locked and Archive versions of the algorithm
(in single and population mode). Visual inspection indicates that the Archive
version clearly outperforms the Locked version. On all problem instances, for
both single and population versions, the former yields solution values with lower
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Table 3. The cost results received by the Locked and Archive

Unintensified Locked Archive
Single Pop. Single Population Single Population

Instance Med Med Min Med Max Min Med Max Min Med Max Min Med Max
B5-100 1.03 0.3 0.81 1.47 1.74 0.54 1.33 1.84 0.27 0.33 0.65 0.22 0.33 0.54
B5-200 0.48 0.07 0.17 0.37 0.62 0.2 0.45 0.65 0.17 0.24 0.34 0.03 0.08 0.2
B10-100 0 0 0 0 0.14 0 0 0.07 0 0 0 0 0 0
B10-200 0.76 0.11 1.41 1.59 2.23 0 0.49 0.64 0.21 0.37 0.53 0 0.12 0.32
B20-100 0.17 0 0.17 0.17 0.43 0.09 0.17 0.43 0 0.04 0.17 0 0 0.17
B20-200 0.21 0.11 0.09 0.26 0.47 0.09 0.19 0.34 0.04 0.11 0.17 0 0.06 0.13
C5-100 0.6 0.05 0.05 0.47 0.62 0.62 0.88 1.19 0.05 0.21 0.47 0 0 0.1
C5-200 0.52 0.04 0.23 0.36 0.69 0.29 0.45 0.52 0.17 0.26 0.32 0 0.03 0.2
C10-100 1.1 0.14 0.64 1.46 2.35 0.29 0.96 1.21 0.07 0.36 1.14 0 0.07 0.21
C10-200 0.82 0 1.28 1.6 1.85 0.18 0.44 0.82 0.14 0.25 0.57 0 0 0.11
C20-100 1.05 0.08 1.45 2.65 3.7 0.48 0.76 1.13 0.08 0.24 1.05 0.08 0.12 0.48
C20-200 1.17 0 2.29 2.84 3.5 0.13 0.58 1 0.21 0.5 0.92 0 0.08 0.33
D5-100 1.54 0.45 0.89 1.2 1.29 0.89 1.3 1.68 0.44 0.71 0.82 0.16 0.28 0.52
D5-200 1.63 0.27 1.33 1.61 1.79 0.69 0.91 1.36 0.42 0.7 1.01 0.12 0.24 0.42
D10-100 2.56 0.74 2.4 2.84 2.98 2.01 2.42 2.62 1.07 1.43 1.91 0.66 0.94 1.3
D10-200 1.54 0.04 1.75 2.08 2.31 0.66 1.12 1.72 0.18 0.5 0.96 0 0 0.22
D20-100 2.47 0.45 3.01 3.4 3.45 1.72 2.15 2.63 0.72 1.45 1.9 0.37 0.68 1.23
D20-200 1.69 0.17 2.63 2.91 3.12 1.25 1.74 2.05 0.52 0.8 1.29 0.06 0.13 0.4

RPDs. In more than half the test cases, the population implementation of the
Archive version finds the best known solution at least once. On several test
cases it finds the best known solution in more than half of the trials, a result
unmatched by any other version.

Consistent with the results of previous studies [12, 13], the population model is
a more efficient way of running EO. Comparison to the work of Randall et al. [13]
shows that (using the Archive version), intensification helps the single version
of EO dramatically. On all test cases, it gives improved or better solution costs
in terms of minimum, median and maximum values. In the majority of cases,
the RPDs achieved have been at least halved. Interestingly, the performance of
intensification in the population version of Archive is very similar to the results
of Randall et al. [13]. This simply confirms that the population mechanism is a
very powerful way of managing EO searches. However, it may be noted that, on
the majority of test cases, intensification has yielded lower median RPDs than
the use of the population mechanism alone.

5 Conclusions

From the results presented in this paper it is evident that explicit intensification
techniques for EO can improve its ability to find good quality solutions. Two rel-
atively simple forms of intensification, based on the notions of locking in solution
componentswith goodvalues, and revisiting previouslyknown good solutionswere
investigated. These strategies were enhanced with heuristics that made them more
suitable for use with, and contextually applicable to, EO. In particular, the Archive
version produces very good solutions. We plan to investigate further refinements
on these schemes for a wider range of problems in the near future.
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Abstract. In this paper the relative performance of two constraint
handling techniques, namely a parameter-less adaptive penalty method
(APM) and the stochastic ranking method (SR), is studied in the context
of continuous parameter constrained optimization problems. Both tech-
niques are used within the same search engine, a binary-coded genetic
algorithm.

Keywords: constrained optimization, stochastic ranking, adaptive
penalty.

1 Introduction

Nature-inspired meta-heuristics in general, and genetic algorithms (GAs) in par-
ticular, can be readily applied to unconstrained optimization problems. However,
when the solution must satisfy a set of constraints, such techniques must be
equipped with a constraint handling procedure which can be classified either as
direct (interior), when only feasible elements are considered, or as indirect (ex-
terior), when both feasible and infeasible elements are used during the search.

Direct techniques comprise: a) special (closed) genetic operators, b) special
decoders, c) repair techniques, and d) “death penalty”. With the exception of the
“death penalty”, they are strongly problem dependent and of reduced practical
applicability, specially when constraints are not known as explicit functions of the
decision variables. Indirect techniques include: a) the use of Lagrange multipliers,
b) the use of fitness as well as constraint violation values in a multi-objective
optimization setting, c) the use of special selection techniques, and d) penalty
techniques. Ensemble of such techniques have also been considered [7]. Further
references for constraint handling methods in evolutionary computation can be
found in the on-line bibliography [3].

It is only then natural that several performance comparisons among such
techniques have been published using benchmark problems. For the case of con-
tinuous parameter optimization problems, one of the best performing technique
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has been shown to be that due to Runarsson & Yao [9], where a balance between
the objective and the penalty function values is sought by means of a stochastic
ranking (SR) procedure. However, it should be noted that the final results of a
constrained optimization problem depend not only on the constraint handling
technique but also on the search engine adopted. The superior results obtained
by Runarsson & Yao [9] correspond to the use of an evolution strategy search
technique (ES) augmented with the stochastic ranking (SR) constraint handling
procedure. The question then arises as to the relative contribution of each of
these components, ES and SR.

In [2] a binary-coded GA using an adaptive penalty method (GA+APM) was
not able to outperform the results obtained using the ES+SR technique in [9].
However, as both search engine and constraint handling technique were different,
and the (real-coded) ES technique is usually more efficient for continuous param-
eter optimization than a binary-coded GA, the question whether SR is in fact
superior to APM as a constraint handling technique could not be satisfactorily
answered.

In an attempt to clarify this issue, the objective of this paper is to compare the
relative performance of the two constraint handling techniques (SR and APM)
when the same search engine is adopted with SR and APM, namely a standard
binary-coded GA.

2 Constrained Optimization

Optimization problems appear naturally in many areas as one is always inter-
ested in minimizing or maximizing quantities such as cost or profit, respectively.

A continuous constrained optimization problem can be stated as the mini-
mization (or maximization) of a given objective function f(x), where x ∈ Rn is
the vector of design/decision variables, subject to inequality constraints gp(x) ≤
0, p = 1, 2, . . . , p̄ as well as equality constraints hq(x) = 0, q = 1, 2, . . . , q̄. Ad-
ditionally, the variables are usually subject to bounds xL

i ≤ xi ≤ xU
i . For con-

venience, this formulation is retained in complex real world situations where an
explicit mathematical expression for gp or hq as a function of the vector of de-
cision variables x is not available. The constraints are in fact a complex implicit
function of x, and the check for feasibility may require an expensive compu-
tational simulation. Furthermore, derivatives of the objective function and/or
constraints with respect to the design variables may be undefined, noisy, ex-
pensive or unavailable. Constraint handling techniques which neither require
the explicit form of the constraints nor additional evaluations of the objective
function are thus well suited for real-world applications.

In the following sections, the Adaptive Penalty Method and the Stochastic
Ranking technique, which satisfy those requirements, are summarized.

3 The Adaptive Penalty Method - APM

Due to its generality and simple intuitive basis, penalty techniques, in spite of their
shortcomings, are perhaps the most popular constraint handling techniques. The
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fitness function value of an unfeasible solution is penalized by means of a term that
grows with the magnitude of constraint violation. Usually, the performance of the
technique depends strongly on the penalty parameter(s) that must be set by the
user for a given problem.

In [2,6] an adaptive penalty scheme which uses feedback from the population
and does not require any user defined parameter was proposed and tested.

Defining the amount of violation of the j-th constraint by the candidate so-
lution x ∈ Rn by

vj(x) =
{ |hj(x)|, for an equality constraint,

max{0,−gj(x)} otherwise

where j = 1, . . . , m and m = p̄ + q̄, the modified fitness function is written as:

F (x) =

⎧⎪⎨
⎪⎩

f(x), if x is feasible,

f(x) +
m∑

j=1

kjvj(x) otherwise f(x) =
{

f(x), if f(x) < 〈f(x)〉,
〈f(x)〉 otherwise

and 〈f(x)〉 is the mean of the objective function values in the current population.
Denoting by 〈vl(x)〉 the violation of the l-th constraint averaged over the

current population, the penalty parameter is then defined at each generation by:

kj = |〈f(x)〉| 〈vj(x)〉∑m
l=1[〈vl(x)〉]2

The idea is that the values of the penalty coefficients should be distributed in a
way that those constraints which are more difficult to be satisfied should have a
relatively higher penalty coefficient.

By automatically defining a penalty parameter for each constraint, APM re-
lieves the user from the burden of having to determine sensitive parameter(s)
when dealing with every new constrained optimization problem.

4 The Stochastic Ranking Method - SR

In the stochastic ranking (SR) technique [9] the balance between the objec-
tive and penalty functions is achieved through a ranking procedure based on a
stochastic version of the bubble-sort algorithm. In this approach a probability pf

of using only the objective function for comparing solutions in the infeasible re-
gion of the search space is introduced. Given any pair of two adjacent candidate
solutions, the probability of comparing them according to the objective function
is 1 if both solutions are feasible, and pf otherwise. The procedure (see Figure 1)
is halted when no change occurs in the rank ordering within a complete sweep.

When pf = 0 the ranking induces an over-penalization, as all feasible solutions
are ranked highest, according to their objective value, followed by the infeasible
ones. Two infeasible solutions are then compared based on their amount of con-
straint violation. On the other extreme, when pf = 1, all solutions would always
be compared according to their objective function values.
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1: procedure SR(I, f, φ, pop, pf )
2: Ij = {j, j = 1 : pop}
3: for j = 1 : pop do
4: swap ← false
5: for j = 1 : pop − 1 do
6: u = random(0, 1)
7: if φIj = φIj+1 = 0 or u < pf then
8: if fIj > fIj+1 then
9: tmp = Ij+1; Ij+1 = Ij ; Ij = tmp; swap ← true

10: end if
11: else
12: if φIj > φIj+1 then
13: tmp = Ij+1; Ij+1 = Ij ; Ij = tmp; swap ← true
14: end if
15: end if
16: end for
17: if not swap then break
18: end for
19: end procedure

Fig. 1. Stochastic ranking (SR) procedure. I is a list of ranked solutions, f denotes
the objective function, and φ is the sum of the squares of the constraint violations.

However, as one is interested in finding feasible solutions in the end, pf should
be less than 0.5, so that there is a selective pressure against infeasible solutions.
The parameter pf can thus be used to adjust such selection pressure [8].

5 Numerical Experiments

The constraint handling techniques considered here are tested against a well
known suite of 24 test-problems [10], where three levels of number of fitness
function evaluations (ffe) were considered, namely, 5,000, 50,000, and 500,000.

The same generational Gray-coded GA was adopted as the search engine for
both constraint handling techniques. It uses elitism (the best and one copy with
one bit flipped are saved to the next generation), uniform crossover with 0.8
probability, mutation rate equal to 0.03, a population size of 100, and 25 bits for
each real variable. The GA+APM technique uses linear ranking selection, which
is replaced by the SR technique in the GA+SR context.

Four variants of the GA+SR technique were considered here by setting SR’s
user-defined parameter to pf = 0, 0.25, 0.35, and 0.45. These variants were de-
noted by sr000, sr025, sr035, and sr045, respectively. The results for 500,000 ffe
obtained by another SR variant, a (60,400)-ES published in [8] (denoted here by
ES+SR), are also presented.

Twenty-five independent runs were performed for each test-problem, and the
average, best, and worst results were recorded. The results are presented using
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Fig. 2. Performance profiles and AUC comparing the algorithms for 5,000 (a and b),
50,000 (c and d), and 500,000 (e and f) ffe considering the average results
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Fig. 3. Performance profiles and AUC comparing the algorithms for 5,000 (a and b),
50,000 (c and d), and 500,000 (e and f) ffe considering the best results
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performance profiles [5,1]. By testing all variants against all problems and mea-
suring the performance tp,v of variant v ∈ V when applied to problem p ∈ P ,
a performance ratio can be defined with respect the best performing variant in
each problem:

rp,v =
tp,v

min{tp,v : v ∈ V } (1)

The performance indicators (larger values are better) considered here are the
inverse of the average, best, and worst of the minimum objective function value
found by variant v in problem p.

The relative performance of the variants in V on the whole set of problems P
can be displayed in a compact graphical form by defining [5]

ρv(τ) = |{p ∈ P : rp,v ≤ τ}| /np

where |.| denotes the cardinality of a set. Then ρv(τ) is the probability that the
performance ratio rp,v of variant v ∈ S is within a factor τ ≥ 1 of the best
possible ratio. If the set P is representative of problems yet to be tackled, then
variants with larger ρs(τ) are to be preferred. The performance profiles thus
defined have a number of useful properties [5,1]. The first one is that ρv(1) is
the probability that variant v will provide the best performance in P among all
variants in V . If ρV 1(1) > ρV 2(1) then variant V 1 was the winner in a larger
number of problems in P than variant V 2. The second one is that the area
under the ρv curve (AUC) is an overall performance measure for variant v in
the problem set P : the larger the AUC, the higher the variant efficiency. Finally,
a measure of the reliability of variant v is its performance ratio in the problem
where it performed worst. The most reliable variant is the one with minimum
Rv = sup{τ : ρv(τ) < 1}.

Performance profiles for the measure defined by equation (1) are displayed in
Figures 2, 3, and 4 (a, c, and e). Each curve corresponds to one variant, and,
at the left, ρ(1) indicates the fraction of test-problems where the algorithm was
the best performer. Also, these figures display the area under each performance
profile curve in the interval [1, τmax] (b, d, and f). Another important informa-
tion can be obtained at the right extreme of the plots, ρ(τmax), in which the
fraction of problems that were eventually solved by each algorithm within the
computational resources alloted can be observed. In the experiments conducted,
not a single variant was able to solve all problems in the benchmark since the
ρ(τ∗) curves never reach the maximum value of one in Figures 2–4.

Figure 2 shows performance profiles and area under their curves for the mean
of the results over the 25 independent runs. It can be seen that, for 5,000 ffe (a
and b), sr025 performed better than the other algorithms. APM, sr000, and sr035
present similar behavior but their results are slightly worse than those obtained
by sr025. The worst results are found by the sr045 variant.

APM and sr000 present the best mean results for 50,000 ffe (c and d) al-
though sr000 is slightly better than APM. Similarly to the case of 5,000 ffe
sr045 presents the worst results.

When 500,000 ffe are available to the algorithms the ES+SR variant finds
the best average results (e and f). APM is the second best variant, and the first
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one if only binary-coded search engines are considered. This points to the higher
performance of APM over SR when the same search mechanism is used by both
algorithms, suggesting that the ES component is in fact the one responsible for
the good results found by the original ES+SR variant, and not the constraint
handling (SR) component. Also, it is important to notice that, when considering
the average case and more than 50,000 fitness function evaluations, higher values
of the pf parameter lead to lower performance of the GA+SR variants.

Performance profiles for the best results and the area under their curves can
be shown in Figure 3. For this case, using 5,000 ffe, APM presents the best
performance (a and b). sr000, sr025, and sr035 variants present similar results,
and all variants substantially outperform sr045.

The sr000 variant presents the best results when 50,000 ffe are available (c
and d). APM is the second one as it performs around 10 times worse than sr000
for one problem (c).

For 500,000 ffe (e and f) APM is outperformed only by ES+SR. Also, as
for the average results (see Figure 2), with more than 50,000 fitness function
evaluations, higher values of the pf parameter lead to lower performance of the
GA+SR variants.

APM presents the best worst results among the GA based algorithms. Only
when 500,000 ffe are available it is outperformed by ES+SR. Again, with more
than 50,000 ffe, higher values of the pf parameter lead to lower performance
of the GA+SR variants.

It is important to notice that, although pf = 0.45 is the recommended value
in the ES context [9], the (GA+SR) sr045 variant finds the worst results in
all comparisons. Using 5,000 fitness function evaluations the sr025 and sr035
variants present good results showing the importance of having both feasible and
infeasible candidate solutions at the start of the search process. APM performs
best for 5,000 ffe when the best and worst cases are considered, but is the
fourth in the average case, where the sr025 variant presents the best results.

When 50,000 fitness function evaluations are available, a similar performance
ranking (sr000, APM, sr025, sr035, and sr045) can be observed in all cases, except
for the case of worst results, in which APM presents the best performance.

The same performance ranking is observed when 500,000 ffe are allowed, in
which case APM is the best GA algorithm. This result is important as it shows
that SR leads to better results than APM only when embedded in the ES search
context. If the same search mechanism is used, here a binary GA, then SR is no
longer able to outperform APM.

6 Conclusions

Among nature-inspired techniques for continuous parameter optimization prob-
lems, superior results were obtained by Runarsson & Yao [9] using an evolution
strategy technique (ES) augmented with the stochastic ranking (SR) constraint
handling procedure (ES+SR). A genetic algorithm equipped with an adaptive
penalty method (GA+APM) [6] was not able to outperform them. However,
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as both search engine and constraint handling technique were different, and the
(real-coded) ES technique is usually more efficient for continuous parameter opti-
mization than a binary-coded GA, the question whether SR is in fact superior to
APM as a constraint handling technique could not be satisfactorily answered. In
this paper numerical experiments were performed comparing the two constraint
handling techniques (SR and APM) when the same search engine is adopted,
namely a standard binary-coded GA.

The experiments performed comparing GA+SR and GA+APM in a standard
test-problem suite have shown that (i) using the GA search engine, SR is no longer
able to outperform APM as a constraint handling technique; (ii) in fact, for a larger
number of fitness function evaluations,GA+APM outperformsGA+SR; (iii) if the
SR parameter is set at its standard value pf = 0.45 then GA+APM clearly out-
performs GA+SR; (iv) lower values of pf are required in the GA case due to its
lower selection pressure when compared to the ES; (v) GA+SR obtains better re-
sults with pf = 0, which recovers Deb’s constraint handling technique [4]; and (vi)
all variants are greatly outperformed by the original ES+SR technique, indicating
the superiority of the ES search engine in this class of problems.

The next question is to investigate whether introducing APM into ES would
provide better results than those obtained by ES+SR [9].
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Abstract. In this paper, we develop a tree adjoining grammar (TAG) to capture 
semantics of a story with long-distance causal dependency, and present a com-
putational framework for story plot generation. Under this framework, TAG is 
derived and a story plot is represented by a derivation tree of TAG. The gener-
ated plots are then evolved using grammar guided genetic programming 
(GGGP) to generate creative, interesting and complex story plots. To evaluate 
these newly generated plots, a human-in-the-loop approach is used. An experi-
mental study was carried out, in which this framework was used to produce cre-
ative, interesting and complex plots from a predesigned fabula based on a story 
known as “The magpie and the water bottle”. The experimental study demon-
strated that TAG and GGGP can potentially contribute significantly to complex 
automatic story plot generation.  

Keywords: Automatic storytelling, story formalism, complex plot generation, 
long-distance dependency, Tree Adjoining Grammar, GGGP. 

1   Introduction 

Automatic storytelling and story generation has drawn significant attention from re-
searchers in Artificial Intelligence, computational linguistics, and the entertainment 
industry such as computer Role Playing Games [1]. Moreover, it plays an important 
role in planning and scenario generation [2]. Three major story generation approaches 
have been observed in the literature: case-based reasoning [13-16], simulation-based 
[17] and multi-agent-based planning [1, 5, 18-19]. In the first approach, stories gener-
ated possess limited creativity and variability, so generating stories with surprising 
plots is a challenge. The second approach hardly produces good story by simply re-
cording the simulated events [20]. Stories generated by the third approach may be 
subject to semantic incoherence [21]. 

The lack of a story formalism – we conjecture – is a cause for these problems. We 
hold that using a formal grammar to guide story generation, the generated stories can 
enjoy semantic coherence and the quality of the generated stories can be further im-
proved using already mature search techniques, such as evolutionary algorithm (EA). 
In a recent paper [10], regular grammar is used to generate and evolve plots with 
Grammar Evolution (GE). It has been shown that the syntactic constrains imposed by 
the story grammar is an important factor for the generated stories to enjoy desirable 
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coherence. Through the evolutionary process, biased by human assessment of some 
desirable story features (e.g. interestingness, creativity), the generated stories can be 
improved in quality to demonstrate these features to some degree. However, only 
simple stories with single-character can be generated because long-distance causal 
dependency is a challenge for regular grammar.   

In order to deal with the problem that regular grammar is incapable of capturing 
long-distance dependency, we propose to use Tree Adjoining Grammar (TAG) to 
generate stories. Two excellent properties of TAG are responsible for this: the ex-
tended domain of locality (ELD) and factoring recursion from the domain of depen-
dencies (FRD) [22].  

In this paper, we firstly develop a TAG for story plot generation, which can capture 
story semantics with long-distance causal dependency. This TAG is based on an exist-
ing fabula story generation model [11-12]. Subsequently, we present a computational 
framework for story plot generation. Under this framework, TAG is derived and a 
story skeleton (i.e. an uninstantiated story plot) is represented by a derivation tree of 
TAG. The generated story skeletons are then evolved using grammar guided genetic 
programming (GGGP) and a human-in-the-loop fitness evaluation. After instantiating 
these story skeletons with a predefined fabula, creative, interesting and complex story 
plots are generated. The contributions of this paper are the proposal of a TAG for 
story plot generation that can capture story semantics with long-distance causal  
dependency, and the computational framework to generate creative and interesting 
complex story plots using GGGP. 

The rest of the paper is organized as follows. In the following part of section 1, we 
give a brief introduction of the fabula story generation model which is the basis of our 
work. In section 2, we elaborate on our proposed TAG and the computational frame-
work for constructing creative and interesting complex plots. In section 3, an experi-
mental study is presented and the results are discussed. Finally, some concluding 
remarks are made, and future work is discussed in Section 4.  

Before going into the details of the TAG and the computational framework, we 
first present the fabula story generation model which is the basis of our framework.  

According to the fabula model adapted from Bal [11] and Rimmon-Kenan [12], a 
story comprises three information layers: fabula, plot, and presentation. The lowest 
layer is called the fabula layer. It is a series of logically and chronologically related 
events that are caused or experienced by characters in a story world. In [24] and [25], 
a fabula is defined as a network of causal relationships of six type of elements: goal 
(g), actions (a), outcomes (o), events (e), perceptions (p) and internal elements (i), 
which are connected by four types of relationships: Physical Causality (φ), Motivation 
(µ), Psychological Causality(ψ), and Enablement(ε) depicted in Fig.1. The middle 
layer is called the plot layer, which is a relevant set of events taken from the fabula to 
form a consistent and coherent whole semantically. Semantic measures of a story such 
as coherence, creativity and interestingness are determined by the story at this level. 
In this paper, we focus our work on story generation on the plot layer. The top layer is 
the presentation layer where story plot unfolds in an understandable form for the 
audience, e.g. narration, movies and so on.  

The three-layer story structure of the fabula model divides story generation work into 
three independent functional levels. First, we define a TAG to capture the semantics in  
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Fig. 1. Swartjes’s model of fibula 

the fabula layer. To build the plot layer, we first derive the corresponding TAG to obtain 
un-instantiated plots which we call story skeletons. These story skeletons are then in-
stantiated with instances retrieved from the fabula; after which, plots are generated. 

2   A Computational Framework for Plot Generation 

In this section, a tree adjoining grammar (TAG) formalism based on the fabula model 
is first given. The proposed TAG is derived and a story skeleton is represented by a 
derivation tree of TAG. The generated story skeletons are then evolved using gram-
mar guided genetic programming (GGGP) to generate creative, interesting and com-
plex plots from a given fabula. We use the following notations: “^” is a set notation; 
“↦” is the valuation notation; symbols starting with capital letters or x, y,  z  are  
variables; other symbols denote constants.  

2.1   Tree Adjoining Grammar (TAG) for Plot Generation 

Tree adjoining grammar (TAG) is a tree rewriting and analysis system, first proposed 
by Joshi et al in [27] to enhance the expressive and generative power of context free 
grammar (CFG). TAG in its original form can not represent multi-character stories. 
We overcome this problem through grammar parameterization. In order to denote 
different characters in a story, we introduce parameters P, x, x  and n . P is used to 
indicate the global causal dependency, which we define to mean a causal relationship 
among characters. It is introduced to represent the interaction between characters 
which is necessary to generate complex story plots with multiple characters and 
branches. Our TAG for plot generation is defined as a quintuple (∑, n, ı̂, a, s), where: 

(1) ∑ is a finite set of terminal symbols, defined as ∑ t̂ ( X ) 
={ t n  , t x   , t P, x ,  t P, x , t X , t X ,  t X ,  t X ,  t X ,  t X ,  t X , t X , t X , t X , t X , ε n }, where X de-
notes n , x  or x. ε n  is a placeholder, and each of the other terminals is a 
symbol representing a causal relationship between two elements. For example,  t x  means an action done by x causes a corresponding perception of x.  

(2) n is a finite set of non-terminal symbols: n ∩∑= . In our grammar, n =nt(Y) 
={s(n ), g Y , a Y , e n , e x , i Y , o Y  } where Y denotes n , x  or x. g, a, e, i, o correspond to the story elements in the fabula model. 

(3) s is a starting symbol: s ∈ n. We define s =s(n ). 

 
ψ ψψ

ψ
ψψ μ μφ/ε

μ/εφ/ε φ φ
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(4) ı̂ is a finite set of finite trees, called initial trees (or α trees). Each of the α 
trees corresponds to the structure of the simplest story plot without any recur-
sion.  We define ı̂ = α(Z) =  α(n ). A typical α tree α n  is illustrated in 
Fig.2. The initial trees and auxiliary trees in this TAG for plot generation are 
transformed from our existing regular grammar rules [10] using Schabe’s algo-
rithm[22, 28].  

(5) a is a finite set of finite trees, called auxiliary trees (or β trees). Each auxiliary 
tree corresponds to a minimal recursive structure that is brought into the plot 
derivation when we recur on the non-terminal using adjunction to expand the 
main story line expressed in an α tree. Therefore, the label of the foot node (i.e. 
a node on the frontier annotated by an asterisk *) must be identical to the label 
of the root node. We define a = β(Z ) = β ( x , P, x ), where x  represents the 
character of the non-terminal who calls the adjunction operation, P is to record 
global causal dependency in the plot derivation process, x can be assigned to 
represent a branch line character during the plot derivation. There exists two 
types of β trees in this grammar: β x , P, x  and β / / / x , see examples β x , P, x  and β x  in Fig.2. The trees in ı̂ a  are called elementary 
trees. 

2.2   Plot Derivation 

To generate a plot, we first generate a story skeleton (i.e. an un-instantiated plot) by 
deriving the TAG defined above using adjunction and substitution operations on ele-
mentary trees, and then instantiate it with a predefined fabula to obtain a plot. Since 
substitution is not an indispensable operation for TAG to maintain generative power 
[22], we only use adjunction operation  

Definition of Adjunction 

An adjunction is done by expanding a non-terminal in an elementary tree (e.g. e n  
in α n   and p n  in β "0", n  in Fig.2) with an auxiliary tree (e.g. β "0", n  and β n  in Fig.2) whose root and foot node are labeled by the same 
non-terminal. After adjunction, the expanded non-terminal is substituted by the aux-
iliary tree with its original sub-tree excised and inserted below the foot node of the 
auxiliary tree. Because parameters have been included in our TAG, parameter valua-
tions must be taken into account during TAG derivation: x  needs to be assigned to 
the character parameter of the non-terminal who calls the adjunction operation. As a 
result, we can ignore x  in the derivation tree. For example, in Fig. 2, when adjoining β "0", n  to the non-terminal e n  in α n , the valuation of x  is x ↦ n . P  and x  are assigned as follows: Based on the two types of auxiliary trees: β / / / x  and  β x , P, x , we define “local” and “global” adjunction. On the one 
hand, the role of the local adjunction is to expand the main story or a branch line to 
obtain a wandering plot (see the local adjunction of β n  on the non-terminal p n  in Fig.2). It can employ the first type β tree or the second type by assigning 
{P ↦ null, x ↦ x . On the other hand, the global adjunction is to introduce a branch 
line (see the global adjunction of β "0", n  on the non-terminal e n  in Fig.2) 
which can itself be expanded by local adjunction (see the following local adjunction 
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in Fig.2), so that long-distance causal dependency can be realized by allowing some-
thing about another character (i.e. a branch line character, see n  in Fig.2) happening 
in between a causal relationship in the main story. More importantly, a branch line is 
not introduced arbitrarily. It will only emerge when some events (i.e. the result part of 
a causal relationship couple t P, x  or t x ) have happened in the existing un-
folded story, which endows the generated stories with an interaction mechanism. 
Parameter valuation will be explained in the story skeleton generation procedure.  

In TAG, the derived tree and derivation tree [29] are used to represent the deriva-
tion result. Each of them can be equivalently transformed to another.  

Definition of Derived Tree and Derivation Tree 

The derived tree is the resultant tree after grammar derivation. It contains the detailed 
information about a story skeleton, which we need to resort to when deriving TAG to 
generate a story skeleton and when instantiating the story skeleton to obtain a plot.  

The derivation tree [29] encodes the history of adjunctions to obtain a story skele-
ton. Compared to the derived tree, it enjoys conciseness in presentation. So it is used 
as the representation of the story skeleton during plot generation and evolutionary 
process. An example is given in Fig.2.  

Story Skeleton Generation Procedure 

By deriving TAG using the adjunction operation defined above, a story skeleton can 
be generated in the following procedure: First, choose one α tree from the initial tree 
set α(n ) and expand it using random times of local adjunction operation within the 
main story length limit to obtain a complete main story; Second, for every un-
adjoined non-terminal e(n ) in the existing derived tree, adjoin a randomly selected β x , P, x  using global adjunction to obtain a primitive branch line. Then apply 
random times of local adjunction on this branch line within the length limit. All the e(n ) non-terminals are adjoined in their emergence order in the derived tree. Here 
comes the parameter setup of x and P: There are three choices of x: n (main cha-
racter), newly introduced branch line character n , or one of the existing branch line 
characters. That is: x ↦ n / n / n n ∈ n … n . P can be assigned to the ad-
dress of the node (in the derivation tree representing a β tree) which has t  or t  
terminals prior to the to-be-adjoined non-terminal e ( n ). During the derivation 
process, all the addresses of this type of nodes must be recorded in a set P, so that 
when introducing a branch line, we can randomly select one P  from P  and do P ↦ P .  

After the story skeleton generation, a plot can be generated by instantiating the sto-
ry skeleton with the predefined fabula. It involves the following procedure: First of 
all, transform a story skeleton in the form of a derivation tree to a derived tree. Then, 
record all the terminal symbols from left to right. Finally, select an instance for each 
of the terminal symbol while bearing in mind the instance consistency between adja-
cent terminals in the same character or the ones requiring global causal links. For 
example, in Fig.2, a fragment of the plot is: ε-t # n - t # n -t ∗ 0, n -t ∗ n  where the symbols “#  *” are used to mark the instance consistency. 
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TAG for plot generation has the following main advantages:  

(1) The length of the plots is controllable, which credits for the derivation length 
controllability of TAG [23].  

(2) It can generate complex multi-character and multi-branch story plots with long-
distance dependency owing to the global adjunction and parameterization; 

(3) Using derivation tree as the story skeleton presentation, a complicated plot can 
be expressed in a concise form, which will simplify the evolutionary process; 

(4) Sufficient evolution is facilitated. This owes to the non-fixed arity and locality 
property of TAG discussed in Hoai [23], which allows diversified and fine-
grained genetic and search operators. 

 

 

Fig. 2. Story Skeleton Generation by TAG Derivation 

2.3   Plot Evolution Using GGGP 

So far, using our TAG for plot generation, coherent and complex multi-character and 
multi-branch story plots can be generated. However, the quality of the plots may vary 
and become far from satisfactory. To overcome this problem, a plot evolution based 
on GGGP is used to gather story skeletons with preferable properties in the hope of 
magnifying the chance to obtain “good” story plots once instantiating them. Our plot 
evolution falls into three parts: 

Representation: The derivation tree is used as the story skeleton representation. 

Fitness Evaluation: A human-in-the-loop fitness evaluation approach is applied. In 
order to reduce the risk of instability of human evaluation, we use two fitness 
scores—creativity and interestingness. The final fitness is their linear combination.  

Genetic and Search Operators: Diversified fine-grained genetic and search opera-
tors can be applied to our story skeleton evolution, which makes the evolutionary 
process effective and efficient. Literarily, all the operators Hoai [23] has introduced 
can be used. The only extra work is to reassign P and x during evolution to preserve 
the validity of story skeletons.  

(1) Reassigning x is to unify character names within one newly-recombined story 
line (either the main story or a branch line).   
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(2) Reassigning P is to repair the global causal relationship broken during the appli-
cation of genetic and search operators. This must be done after all crossovers and 
mutations. It requires exactly the same work to the parameter setup of P when 
the story skeleton is first generated. 

The applied genetic and search operators we use are: sub-tree crossover; mutation 
operators that can make small changes [23] on a story skeleton, which are referred to 
sub-tree relocation, leaf node insertion and deletion, and leaf node substitution[23]. 

3   Experimental Study 

In this section, we present some of the initial results we have obtained. In particular, 
we derive our proposed TAG and evolve the derivation trees to obtain different story 
plots from a small fabula we design called “The magpie and the water bottle”. In the 
conducted study, a population of 20 individuals was randomly initialized: The length 
of each of the story lines was controlled by randomly choosing adjunction times ap-
plied on its root node between 1 and 3. The initial population was then evolved for 50 
generations. During each successive generation, a binary tournament selection was 
used to select story skeleton individuals with higher fitness for reproducing a new 
generation. Here, a sub-tree crossover rate of 0.7, a sub-tree relocation rate of 0.6, a 
leaf node insertion and deletion rate of 0.6, and a leaf node substitution rate of 0.8 
were used.  

High mutation rates were used to help TAG guided genetic programming converge 
to solutions more quickly even with a small population [23] and to modulate the di-
versity of sub-structures. Diversity has shown to potentially contribute to creativity 
and interestingness in the experiment. 

The fitness evaluation was implemented using a human-in-the-loop approach. It 
requires the instantiation of each story skeleton. The instance of each terminal was 
also randomly chosen from a set of available instances of the fabula. The fitness of 
each individual was computed based on two criteria with equal weights: creativity and 
interestingness. Each criterion was evaluated on a scale between 1 and 10. Fig.3. 
illustrates the evolutionary process of the total fitness and the fitness of each criterion. 
The average fitness value of the whole population at each generation was bounded by 
the fitness values of the weakest and the strongest individuals of the population. As 
depicted, the evolutionary process became stable around generation 40, from where 
onwards no significant improvement in the two fitness values was observed.  

A closer look at the evolution of the fitness of each criterion offers a number of in-
teresting insights. First, the best individual in the initial population has enjoyed desir-
able fitness value. That can be probably attributed to the capacity of our proposed 
TAG based formalism to generate complex multi-character and multi-branch story 
plots with long-distance dependency. Second, the gap between the weakest and the 
fittest individual gradually becomes narrower as evolution comes to an end. This 
indicates that the search starts widely and becomes more focused on potential areas 
along the evolutionary process. Furthermore, it is interesting to notice that even 
though the fitness value converges at the end of the evolution, individuals surviving 
through the evolutionary process are still with diversified skeletons. This can still be 
owed to the power of our proposed TAG. However, all of the individual stories in the 



142 K. Wang, V.Q. Bui, and H.A. Abbass 

final population either possess diversity in their constituents (e.g. non-terminals, ele-
mentary trees, characters, instances of terminals…) or interwoven story lines. This 
finding implies that diversity and interweaving lines may play important role in  
creativity and interestingness.   

An individual (a story skeleton) with its instantiated presented story in the final 
population is given in Fig.4. We can notice that after an event “That breaks the bottle 
on the stone” occurring in the main story about “Minnie”, a branch line about the 
character “Tom” is introduced and independently unfolded. This is regarded as an 
interaction between characters. Then the main story unfolds again from where it is 
broken by the branch line. It is at the breaking point that a long-distance causal rela-
tionship emerges in the main story. It is also interesting to note that what happened in 
the branch line about Tom shadows the main character Minie’s death after drinking 
the water in that bottle. This may be another reason why this individual enjoys high 
fitness. 

 

 

Fig. 3. The evolutionary process of the fitness and the two criteria 

 

Fig. 4. An individual with high fitness in the final population 

From the results and analysis, we can conclude that the proposed computational 
framework for plot generation can generate complex plots with multiple characters 
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A magpie called Minnie finds there is a bottle of water on the stone. 
Minnie believes she will not feel thirsty if she drinks the water in the bottle. 
Minnie wants to drink the water in the bottle.  
Minnie flies towards the stone.  
Minnie finds the stone collapse.  
Minnie is very depressed by this. 
Minnie turns about sadly and wipes the tears. 
At this moment, some water in the bottle leaks out. 
Minnie finds some water leaking out.  
Minnie believes she will feel better if she drinks the water leaking from the bottle.  
Minnie wants to fly to the stone.… 
 Minnie flies to the stone. 
That breaks the bottle on the stone. 
Tom finds the bottle broken. Tom believes he will feel better if he drinks the 
water leaking from the bottle. Tom flies to the stone. Tom drinks the water. Tom 
finds him suffering from serious stomach-ache. Tom believes the water is 
poisonous. Tom is haunted by his bad luck and finally dies from sorrow. Tom 
insists on drinking the water. His soul flies back to the place he passes away.  At 
this moment, some water in the bottle leaks out. 
Minnie finds the bottle broken. 
Minnie believes she will feel better if she drinks the water leaking from the bottle. 
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and independently unfolded branch lines. The emergence of each branch is to ac-
commodate long-distance dependency as well as strengthen the interaction between 
characters.  

However, the plot generation TAG we propose in this paper is a linear TAG with 
only right auxiliary trees. It has been demonstrated that linear TAG possesses weaker 
generative capacity than TAG [30-32] in the sense of limited string wrapping. Fortu-
nately, this situation is relieved by the introduction of global adjunction which enables 
the wrapping of main story and branch lines. Moreover, our linear version of story 
generation TAG can be easily modified to full TAG by separating each of the causal 
relationship couples (i.e. each terminal in this grammar) into corresponding cause and 
result parts (two terminals), and relocating each of the non-terminals between them. 
The reason why this work is suspended in this paper is because of the unknown effect 
of overmuch wrapping of story elements on the coherence and understandability cha-
racteristics of a story, which requires further research.   

4   Conclusion and Future Work 

In this paper, we developed a Tree Adjoining Grammar (TAG) for plot generation 
that captures story semantics with long-distance causal dependency. This owes to the 
extended domain of locality (ELD) and factoring recursion from the domain of de-
pendencies (FRD) properties of TAG. Consequently, we presented a computational 
framework for story plot generation. Under this framework, TAG is derived and a 
story plot is represented by a derivation tree of TAG. The generated plots are then 
evolved using grammar guided genetic programming (GGGP). To verify the ap-
proach, an experiment was conducted based on a designed fabula called “The magpie 
and the water bottle”. The result obtained is promising. The system was able to pro-
duce coherent, creative, interesting and complex plots with multiple characters, 
branches, and long-distance dependency.  

The current plot grammar we use cannot represent cause or result requiring more 
than one character. Future work includes designing new formalism of plot generation 
based on TAG. The substitution operation is still required by our TAG for plot gener-
ation to reduce redundancy in existing elementary trees and allow independently and 
completely unfolded branch lines. Quantitative metrics of story semantics such as 
creativity and interestingness are needed to enable computational story evaluation 
thus overcome the shortcomings of human-in-the-loop evaluation. 
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Abstract. In past, only a few attempts have been made in adopting a
unified outlook towards different paradigms in Evolutionary Computa-
tion. The underlying motivation of these studies was aimed at gaining
better understanding of evolutionary methods, both at the level of the-
ory as well as application, in order to design efficient evolutionary al-
gorithms for solving wide-range complex problems. One such attempt is
made in this paper, where we reinstate ‘Unified Theory Of Evolutionary
Computation’, drawn from past studies, and investigate four steps – Ini-
tialization, Selection, Generation and Replacement, which are sufficient
to describe common Evolutionary Optimization Systems such as Genetic
Algorithms, Evolutionary Strategies, Evolutionary Programming, Parti-
cle Swarm Optimization and Differential Evolution. As a next step we
consider Differential Evolution, a relatively new evolutionary paradigm,
and discover its inability to efficiently solve unimodal problems when
compared against a benchmark Genetic Algorithm. Targeted towards
enhancing DE’s performance, several modifications are successfully pro-
posed and validated through simulation results. The Unified Approach is
found helpful in understanding the role and re-modeling of DE steps to
efficiently solve unimodal problems.

1 Introduction

Much of the early research and development in evolutionary based computa-
tional methods occurred independently without any interaction(s) among var-
ious groups [3]. It was around late 1980s and early 1990s when the confluence
of these paradigms began, which eventually led to the agreement on the term
“Evolutionary Computation”.

In-spite of advances in different EA paradigms there has been a lukewarm
interest in investigating a framework which is capable of explaining the overall
behavior of an EA. A plausible approach could be to decompose an EA into key
standard components. Then, by understanding the role of each component indi-
vidually and interaction between the components, insights into the performance
of an EA could be obtained.
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This paper focuses on the performance of standard DE algorithm on class
of unimodal problems, compared against a benchmark genetic algorithm named
G3-PCX [1]. After discovering inefficient DE performance, Unified Approach is
adopted in analyzing major DE steps. The DE steps are modified by borrowing
ideas from G3-PCX and gradual improvement in performance is noted. Through
a series of seamless modifications the DE performance is enhanced to an extent
where it is comparable to the benchmark results, and the resulting algorithm
is found to be equivalent to G3-PCX. Thus, this study highlights that how one
can traverse from modifying one algorithm into the other by altering the major
steps of an algorithm on the basis of functional requirements, and stresses on the
importance of similarities and differences in terms of key steps of an algorithm
which give rise to a difference in performance.

The rest of the paper is structured as follows: Section 2, presents an Unified
Framework for evolutionary optimization algorithms. Section 3, provides details
on chosen test problems and describes experimental methodology. Sections 4 and
5, look at the the performance of standard DE and its variants for the sake of
improvement. Section 6, concludes the paper and hints on the direction for the
future work.

2 Unified Framework for Evolutionary Algorithms

The most notable breaking new ground attempt in adopting Unified Approach
towards Evolutionary Computation is made in [3], serving the goal of present-
ing an integrated view of Evolutionary Computation. This paper takes a step
forward in demonstrating – How the Unified Approach can be utilized in better
understanding (and thereby improving) an EA paradigm? In [3] author outlines
a general Evolutionary Optimization System(EOS), which is based on Darwinian
evolutionary system. Such an EOS can be assumed to be constant in population
size and with the optimization task of minimizing. The key steps pointed out in
this EOS are: (1)Initialization – of the population randmomly, (2) Selection –
of the individual(s) from the population to act as parent(s), (3) Generation –
Creation of offspring(s) from the selected parent(s), and (4)Replacement – Se-
lection of individuals(s) to survive for the next generation. After Initialization,
Selection, Generation and Replacement are iteratively repeated till some termi-
nation criterion is met. Although detailed descriptions on each step are required
before EOS can be simulated. The reader is refrred to [3] to see how major EA
paradigms are studied in the above framework.

EOS described above requires an additional elaboration on population man-
agement i.e. how do offsprings compete for survival. Two popular ways are: (a)
Steady State – or incremental model, implying that offsprings are produced one
at a time and immediately compete for the survival i.e. if the fitness of child is
better than the parent selected, the child survives or vice-versa, or (b) Genera-
tional – or batch model, implying that entire batch of child population is created
and then there is competition for survival. We adopt the notation from [3] while
representing evolutionary systems as follows – two populations are maintained:
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one of size m for parents and second of size n for offsprings (now the system
being represented as EOS(m,n) ). In EOS(m,n), n offsprings are created from
the parent population of size m and then each child competes for space in the
parent population. For, a special case, n = 1 we arrive at steady state model,
and any value of n > 1 symbolizes generational model. EOS s, in this paper, are
associated with real parameter optimization and solutions shall be represented as
vectors of real parameter decision variables. The initialization of population for
EOS s shall be done randomly. Next, we discuss DE as an instance of EOS(m,n).

2.1 Differential Evolution as EOS(m,m)

Differential Evolution (DE) algorithm has emerged as a very competitive form
of evolutionary computing more than a decade ago. The main goal of this study
is to develop a thorough understanding of DE algorithm as an EOS and then
systematically exploit this understanding in improving DE’s performance. As
majority of simulations presented in this study are based either on standard
DE, its pseudo code is presented in Figure 1.

Selection, Generation and Replacement steps in DE here are same as those
in “DE/best/1/exp” [4]. The population is scanned serially and for creation of
a child, corresponding to any individual, four parents are selected (i.e. the indi-
vidual itself, also referred to as base or index parent, best fitness individual from

Input DE parameters: scale factor (F), crossover-rate (Cr) and population size (M)
Randomly Generate the initial population of M individuals in the defined region
and compute the fitness of each individual.
Set Generation Counter t = 1
Do until a defined stopping criterion is met:

For i = 1 to M
Selection

– Choose, ith individual (Xi,t), two random individuals (Xr1,t,Xr2,t), and best member
in the population at previous (t − 1) generation (Xbest) as parents
Generation

(a)Create ith Donor Vector:
Vi,t = Xbest,t−1 + F · (Xr1,t − Xr2,t)

(b)Create ith Trial Vector:
Ui,t=CombineElements(Xi,t, Vi,t) // with probability CR

Replacement
If (Fitness(Ui,t)≤Fitness(Xi,t))
Then Xi,t+1 = Ui,t

Else Xi,t+1 = Xi,t

End For
Update(Xbest)

t = t + 1
Update(Pt+1)
End Do
Return the individual with best fitness value.

Fig. 1. Standard Differential Evolution Algorithm (DE/best/1/exp), borrowed
from [4]
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the previous generation and any two population members chosen at random).
First a donor vector (Vi,t) is created (step a) and then a trial vector (Ui,t) is
created (step b) by stochastically combining elements from Xi,t and Vi,t. This
combination is commonly done using an exponential distribution with crossover
factor of CR. If the newly created child Ui,t is better compared to Xi,t then Ui,t

is stored for updating Xi,t+1. It should be noted carefully that Xi,ts are updated
to Xi,t+1s after entire set of Ui,ts are created. Once the population is updated,
the generation counter is incremented and termination criteria is checked.

Following properties of this DE should be noted: (i) There is ‘elitism’ at an
individual level i.e. if the newly created trial vector Ui,t is inferior compared to
the individual then individual is preserved as a child for the next generation and
Vi,t is ignored. (ii) The algorithm follows a generational model i.e. the current
population is updated only after the entire offspring population is created.

3 Test Suite

We consider unimodal problems (having one optimum solution) or problems
having a few optimal solutions, so as to test an algorithm’s ability to progress
towards the optimal region and then to focus to find the optimum with a specified
precision. A previous study considered a number of evolutionary algorithms like,
generalized generation gap (G3) model using a parent-centric crossover (PCX)
operator, differential evolution, evolution strategies (ESs), CMA-ES, and a clas-
sical method on following test problems [1]:

Felp =
n∑

i=1

ix2
i (Ellipsoidal function) (1)

Fsch =
n∑

i=1

(
i∑

j=1

xj

)2

(Schwefel’s function) (2)

Fros =
n−1∑
i=1

(
100(x2

i − xi+1)2 + (xi − 1)2
)

(Generalized Rosenbrock’s function) (3)

In all these problems we use n = 20 The first two problems have their minimum
at x∗

i = 0 with F ∗ = 0 and the third function has its minimum at x∗
i = 1

with F ∗ = 0. We initialize the population away from the known optima while
restricting xi ∈ [−10,−5] for all i, in all problems. In subsequent generations we
do not confine solutions to lie in the above range. After initialization, we count
the number of function evaluations needed for the algorithm to find a solution
close to the optimal solution and call this our first evaluation criterion S1. We
choose a value of 0.1 for this purpose. This criterion will denote how fast an
algorithm is able to reach the optimal region. The second evaluation criterion
(S2) involves the overall number of function evaluations needed to find a solution
having a function value very close to the optimal function value. We choose a
value of 10−20 for this purpose.
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Table 1. G3-PCX results, as reported in [1]

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst
S2 5,744 6,624 7,372 14,643 16,326 17,712 14,847 (38) 22,368 25,797

The earlier extensive study on G3-PCX algorithm reported the best, median
and worst number of function evaluations needed based on 50 different runs on
the three problems with the S2 criterion. Table 1 presents those results. G3-PCX
outperformed other state-of-the-art algorithms [1] and is treated as a benchmark
for this study.

4 Performance Analysis of Standard DE

DE algorithm presented in section 2.1 belongs to the DE family of Storn and
Price [4]. The family comprises of 10 different Generation strategies. Based on
preliminary experiments we found strategy 1 to yield overall best performance.
According to this strategy new solutions are created around the previous gener-
ation’s best solution (step a in Generation, Figure 1). This feature of generating
solutions around the best population member is desirable in solving unimodal
problems and also done in G3-PCX [1], hence it is no surprise that strategy
1 was the best performer. In remainder of this paper, DE with strategy 1 is
employed for simulations and referred to as standard DE. We performed a para-
metric study on standard DE for M , CR and F , and found M = 50, CR = 0.95
and F = 0.7, as optimal values with respect to all the three test problems. The
results of standard DE are reported in Table 2.

Table 2. Standard DE, “DE/best/1/exp” [4], F = 0.7, CR = 0.95, M = 50

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst
S1 6,100 6,600 7,200 7,600 9,000 11,200 21,050(43) 29,500 33,850
with 10−1

S2 31,700 33,550 35,100 48,050 51,100 55,200 55,400(43) 63,350 69,350
with 10−20

5 Functional Analysis and Modification of Standard DE

One of the noticeable features of standard DE is elitism at the individual level
i.e. a child is compared with its base parent (i.e. the individual at the index
corresponding to which child has been created), and only the better of the two
survives in the next generation. We modified this Replacement scheme by always
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accepting the newly created child i.e. without carrying out the parent-child com-
parison. This resulted in a significant performance degradation in all three test
problems with respect to both the metrics, indicating that elitism in DE by
parent-child comparison is key to its performance.

Next, we try two Selection schemes, Tournament and Random, instead of the
usual serial parent selection. The results are shown in Table 3 indicate that the
alternate selection schemes perform poorly compared to serial selection, and we
conclude that deterministic serial approach works most appropriately for DE.

Table 3. Standard DE with Random and Tournament selection, CR = 0.95, F = 0.7,
M = 50

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst
Random Selection

S1 14,250 16,700 20,050 15,950 20,400 24,600 50,800(38) 56,900 64,500
with 10−1

S2 58,350 64,900 72,100 116,000 122,000 132,700 136,750(38) 147,050 158,900
with 10−20

Tournament Selection

S1 14,600 16,850 19,400 17,700 21,250 25,300 39,500(44) 52,950 66,650
with 10−1

S2 86,350 92,950 97,650 114,800 124,700 134,900 100,050(44) 114,850 132,300
with 10−20

The Generation scheme (Step a) in standard DE involves creation of a child
around Xbest,t−1. This approach of creating solutions around the best is par-
ticularly useful in solving problems exibhiting unimodality, and the benchmark
algorithm G3-PCX successfully exploits this property. A major difference be-
tween G3-PCX and the standard DE arises from the fact that former uses the
current best location in the population, whereas DE utilizes the previous gener-
ation’s best. We incorporate this feature in standard DE by using Xbest instead
of using Xbest,t−1, where Xbest indicates the best known location so far. This is
achieved by checking and updating Xbest after every child creation. The results
shown in Table 4 reflect an improved performance in all cases. Thus, we con-
clude that creating solutions around Xbest is an effective strategy for standard
DE while solving unimodal problems.

Next we observe a basic difference in steady state and generational models of
G3-PCX and standard DE. In standard DE a newly created child has to wait till
next generation before it can be selected as the index parent. We test the steady
state version of standard DE in which as soon as a child is created it is compared
with its index parent. The index parent is replaced if the child is better. Since
the created child is compared with the index parent itself, we refer this as Serial
Parent Replacement. In another steady state version of standard DE, we compare
the created child with a randomly selected member of the population and carry
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Table 4. Standard DE + Best Update, F = 0.7, CR = 0.95, M = 50

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst
S1 5,500 6,250 6,900 7,450 8,800 10,800 18,550(44) 24,350 29,000
with 10−1

S2 31,400 32,650 34,500 43,600 48,600 52,100 51,400(44) 56,750 62,400
with 10−20

out the replacement. In this version even if the newly created child is inferior
to the index parent, it has a chance of surviving while being compared against
a randomly chosen individual. The results for both the steady state versions
are shown in Tables 5. Both the steady state versions show an improvement
over standard DE (Table 2). The steady state versions are also an improvement
over the DE with Best Update except for Fros. Between the two versions, the
Random Parent Replacement performs better compared to the Serial Parent
Replacement. Thus, we conclude that the steady state model is useful over the
generational model, and in particular Random Parent Replacement is a preferred
strategy.

Now, we combine Best Update and Steady State (Random Parent Replace-
ment) with standard DE, results shown in Table 6. The performance of this
modified DE turns out to be best so far.

Table 5. Standard DE + SteadyStateV ersions, CR = 0.95, F = 0.7, M = 50

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst
Standard DE + Steady State(Serial Parent Replacement)

S1 5,300 6,000 6,850 7,200 9,050 12,600 23,600(36) 28,950 35,850
with 10−1

S2 28,750 29,650 32,200 46,300 50,100 55,250 54,550(36) 60,950 70,850
with 10−20

Standard DE + Steady State(Random Parent Replacement)

S1 4,000 5,200 6,850 6,050 8,500 11,450 20,750(40) 29,750 37,200
with 10−1

S2 23,150 25,200 27,150 42,100 47,700 54,350 53,050(40) 66,300 76,900
with 10−20

Till now we have been successful in improving the performance of standard DE
by borrowing ideas, particularly Steady State and Best Update, from G3-PCX
algorithm. This emphasizes the fact that a better understanding of EOSs at the
level of operators can be highly useful in developing and enhancing other EOSs.
At this stage, we also identify a mutation operator proposed by [2] in context to
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Table 6. Standard DE + Best Update + Steady State(RPR), F = 0.7, CR = 0.95,
M = 50

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst
S1 3,800 4,350 5,150 5,500 7,150 9,600 15,050(38) 20,050 24,800
with 10−1

S2 20,350 21,700 24,200 36,350 40,550 44,350 40,850(38) 46,600 51,500
with 10−20

Table 7. Standard DE + Best Update + Steady State(RPR) + Mutation, CR = 0.95,
F = 0.7, Pm = 0.25

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst
S1 2,450 3,050 3,850 5,350 7,400 9,300 11,550(39) 19,450 24,600
with 10−1

S2 13,200 14,700 15,700 37,250 41,700 46,250 43,300(39) 52,900 61,150
with 10−20

development of efficient PSO for solving unimodal problems. In short, the goal
of this mutation operator is to probabilistically (Pm indicating the mutation
probability) perturb a newly created child randomly around the Best solution.
This serves for following two purposes: (a) to explicitly promote the diversity
in the population, and (b) aid search around the Best region. We combine the
mutation operator with the best DE so far and show the results in Table 7.
Pm is chosen as 0.25 as done in [2]. The results show a definitive improvement
on Felp and a mixed improvement on Fsch and Fros. Such trends reconcile with
those presented in [2]. The possible explanation for the improved performance
on Felp lies in the variable-separable and unimodal properties of this problem.

5.1 PCX Based DE

The overall best performance from all the modified DEs is compared against
G3-PCX in Table 8, and the DE performances are unable to match-up with
those of G3-PCX. While facing a similar predicament with PSO, in [2], authors
successfully introduced a parent-centric Generation mechanism based on PCX
operator and enhanced the PSOs performance, which we attempt next. The step
a of Generation, shown in Figure 1, is replaced by PCX operation in which child
is created around the best solution. More details on PCX operator can be found
in [1]. Two parameters required in PCX, σζ and ση, were taken as 0.1.

The PCX operation with standard DE (referred to as PCX-DE) failed to give
any satisfactory results. Following which we introduced Best Update strategy.
The performance of ‘PCX-DE with Best Update’ was studied and with a pop-
ulation size of M = 100 and higher values of CR (taken here as 0.95) yielded
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Table 8. G3-PCX and DE’s best-so-far performance

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst
G3-PCX

S2 5,744 6,624 7,372 14,643 16,326 17,712 14,847 (38) 22,368 25,797
with 10−20

Best So Far in DE
S2 12,500 13,550 15,250 31,000 34,550 38,850 33,400(40) 43,950 49,800
with 10−20

Table 9. PCX-DE + Best Update + Steady State (RPR), F = 0.7, CR = 0.95,
NP = 100

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst
S1 1,800 2,300 2,900 3,900 5,200 6,600 21,500(39) 24,500 31,100
with 10−1

S2 9,300 10,200 11,600 28,000 32,500 35,000 45,500(39) 55,300 66,500
with 10−20

an overall better performance. The results were also better than best-so-far DE
results. We also tried mutation operator in conjunction with DE-PCX and dis-
covered a degradation in performance. This could be explained based on the
fact that mutation brings undesirable randomness into the child creation and
destroys the ellipsoidal distribution from PCX operation.

Next, we introduce the Steady State with Random Parent Replacement in DE-
PCX with Best Update and observe a slight improvement in few cases, Table 9.
As a next step, the index parent was selected randomly as opposed to being
being selected serially. Random selection of index parent further improved the
performance but still did not take it closer to G3-PCX. At this point we increased
the value of CR to 1.0 and achieved a performance similar to that of G3-PCX,
Table 10.

Table 10. PCX-DE + Random Parent Selection + Best Update + Steady State (RPR),
F = 0.7, CR = 1.0, NP = 100

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst
S1 1,000 1,400 1,900 2,300 2,800 3,300 8,800(42) 11,700 14,400
with 10−1

S2 5,700 6,300 6,900 13,700 15,200 16,500 19,500(42) 23,800 27,800
with 10−20
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6 Conclusion

Drawing concepts from existing literature, this paper makes an attempt in de-
veloping and employing a unified approach towards Evolutionary Optimization
Systems. The key steps required for describing an EOS are Initialization, Se-
lection, Generation and Replacement. The central focus of this study is then
to improve the performance of standard DE on the class of unimodal problems
by identifying modifying its key steps – Selection, Generation and Replacement.
Drawing principles from G3-PCX, a benchmark algorithm, key steps in DE are
modified one-by-one. At each stage certain degree of performance improvement
is obtained. Finally, PCX operation is introduced in standard DE along with the
other alterations, and the performance is comparable to G3-PCX. Although, the
modified DE is algorithmically equivalent to G3-PCX, the study suggests how
two seemingly different algorithms can be converted from one into another by
modifying the key steps. Such a study should enable researchers in Evolutionary
Computation to adopt unified approach towards evolutionary algorithms and
work towards identifying the properties of key steps, useful in order to develop
efficient EAs for any given task.
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Abstract. This work presents a dynamic island model framework for helping the
resolution of combinatorial optimization problems with evolutionary algorithms.
In this framework, the possible migrations among islands are represented by a
complete graph. The migrations probabilities associated to each edge are dynam-
ically updated with respect to the last migrations impact. This new framework is
tested on the well-known 0/1 Knapsack problem and MAX-SAT problem. Good
results are obtained and several properties of this framework are studied.

1 Introduction

Genetic algorithms (GAs) [8] are widely used to tackle NP-hard problems. They are
easy to implement and can provide good results on classic discrete and continuous
optimization problems in term of solutions quality and robustness. Nevertheless, the
efficiency of GAs mainly depends on the representation of configurations [15], the fit-
ness function [26], the mutation and crossover operators used [18] as well as global
parametrization (population size, mutation frequency, diversity control, selections, eli-
tism, . . . ) [10,9,22]. Even with a good effort to adapt an efficient GA to a given problem,
one quickly observes on critical problem instances some limitations in terms of general
performance or scalability.

In order to make GAs more powerful, classic techniques include hybridizations with
local search (memetic algorithms [16]) and/or multi-island parallelization schemes [25],
which we are investigating in this paper.

Since twenty years and the first distributed evolutionary algorithms [23], island-
based genetic algorithms (or island models [25]) are more and more studied in the
community. The main problem is to define both the model topology and the migra-
tion policies in order to slow down the general convergence of the population while
preserving the global mixing of promising individuals. Araujo et al. give in [2] a nice
review of state-of-the-art island models, in particular concerning the question of migra-
tion policies. One can observe that an important number of topologies (Gustafson and
Burke in [11] or Rucinski et al. in [19] cite numerous topologies models like chains,
rings, hypercube and many more) and policies [3,6,24,5,7,1], greatly based on local or
global diversity measures, have been defined. In all cases, migration sizes and intervals
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remain difficult to fix [21]. In his recent work, Skolicki [20] emphasizes the fonda-
mental interactions between the two levels of evolution in island models: intra-islands
and inter-islands. Ideally, a master intelligent evolution strategy should take advantage
of these interactions and maximize the benefits of migrations. But, depending on the
current intra- and inter-islands situations (traditionnally only with diversity and fitness
measures), it is difficult to predict when individuals have to move, which ones and
where, and for which impact.

These considerations motivate us to develop a dynamic island model framework
which aims to auto-adapt topology and migration policies during the search in function
of some chosen indicators (typically subpopulations properties and previous migrations
effects). A particularity of our dynamic island model is to use a complete graph model-
ing. Nodes represent islands while edges symbolize possible migrations.

Section 2 contains both general and concrete descriptions of our dynamic island
model framework. In section 3, we apply our model to two benchmark problems: 0/1 KP
and MAX-SAT. Section 4 is a short discussion with additional experiments, with a view
to measure the influence of migrations. The conclusion includes future investigations.

2 Dynamic Island Model Framework

2.1 General Description

As recalled by [2], several parameters specify an island model, like:

– the number of individuals undergoing migration,
– the frequency of migrations,
– the policy for selecting immigrants,
– the immigrant replacement policy,
– the topology of the communication among subpopulations, and
– the synchronous or asynchronous nature of the connection among subpopulations.

Now, let us propose an island model framework which generalizes all these parameters,
while giving us the possibility to make the model dynamic.

The island model is materialised by a graph, where vertices symbolize islands (sub-
populations), while edges represent the possibilities of migrations. Each edge is ori-
ented, and valued with the probability for an individual to migrate from an island to
a destination one. The auto-adaptation of this modeling is made with a reward/penalty
mechanism. Migration probabilities (values of the edges) are updated after each mi-
gration cycle in function of the last migration effects. If the island which receives an
individual observes any improvement (resp. deterioration) of its population, then the
corresponding migration probability increases (resp. decreases). Here, the population
quality is impacted by the average fitness of individuals as well as their diversity if the
modeling imposes it.

The dynamic control of parameters like migration rate, can produce different size
islands (unless we specifically forbid it). This mechanism prevents poor-quality sub-
populations to require as many computational effort as promising ones, and manages
the merging of populations. If different islands represent different mutation operators,
local search effort or local parametrization, then the algorithm will dynamically pro-
vides a well-adapted repartition of individuals considering the search progression.
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2.2 Practical Use of the Framework

Figure 1 is an example of our Island Model framework with three islands (i1, i2 and
i3). Figure 1.a represents islands with their individuals as well as the migration values
(probabilities) from an island to another. In figure 1.b, the destination for each individ-
ual are chosen with respect to the values. Most of them remain in the same island (due
to the probability values close to 1) but several individuals migrate to other islands (two
individuals go from i1 to i2 and one from i3 to i2). After those migrations, on each
island, operators like crossover, migration, or local search, are applied on the individu-
als. If an offspring individual (i.e. an individual obtained by crossover) improves (resp.
deteriorates) the population, then its parents are used to update the migration values.
For each parent, the values of edges between the last visited island and the current one
are increased (resp. decreased) to take into account the impact of the migration. For
instance, on Figure 1.c, if we only observe i2 and a reward/penaly fixed to 5 points
(±0.05), several values are updated:

– (i1 → i2) decreases from 0.50 to 0.40, because the two indivduals becoming from
i1 have produced individual offspring deterioring the population of i2;

– (i2 → i2) decreases from 0.95 to 0.85, because individuals of island i2 do not
improve the population of i2;

– (i3 → i2) increases from 0.20 to 0.30, because the individual becoming from i3 has
produced individual offsprings improving the population of i2;

– due to normalization, other values in relation with i2 have to be adjusted.
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Fig. 1. Communication among subpopulations with a complete graph representation

3 Results

In this section we propose to measure the overall efficiency of the Dynamic Island
Model scheme (DIM), applied to two well-known NP-hard problems: 0/1 Knapsack
problem and MAX-SAT problem. For this study, the main goal is not to propose a
ready-to-use algorithm which outperforms best available softwares, but to measure the
global relevance of such a model. For this purpose, we compare for both problems the
performance of four basic configurations of the GA:
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– A classic 1-island GA (GAclassic),
– A standard DIM algorithm (DIMstand),
– A specially-parametrized DIM algorithm with uni-directional ring topology DIMring,

which simulates a classic island-based GA with rotative migrations (at each migra-
tion process, best individuals migrate to the following populations),

– A parallel GA (GA�), with several islands but no migration.

Let us notice that a classic GA corresponds to an island-based GA where migration
intervals are minimal, while the parallel partitioned GA (GA�) is an island-based GA
with no migrations (i.e. infinite migration intervals).

3.1 Genetic Algorithms Characteristics

The four configurations of the GA have two types of characteristics. All the numerical
values are empirically obtained and confirmed by the REVAC method [17].

1. Intra-islands characteristics:
– type of population management: steady state
– elitism: yes
– selection: tournament
– mutation: random on offspring with probability 0.5
– crossover: uniform crossover

2. Inter-islands characterisics:
– islands number: 20
– total number of individuals: 600
– starting repartition: well-balanced (30 individuals per island)
– total number of crossovers: 216000 (360 × 600 individuals)
– initial migration probabilities: see below
– reward: 5 points
– penalty: 5 points

The number of crossovers in an island between two migrations is proportional to its
number of individuals. This choice ensures the same crossover rate per island, whatever
its size.

Initial migration probabilities. To give the same attractive power to each island, the
initial migration probabilities must be symmetric. At the beginning, we fix a highest
probability to stay on the same island than to move to another one, in order to exploit
initial populations. For instance, the initial matrix corresponding to an island model
with three islands can be the next one:

Destination
i1 i2 i3

Source
i1 0.75 0.125 0.125
i2 0.125 0.75 0.125
i3 0.125 0.125 0.75
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3.2 Experimental Settings

Algorithms used in our experiments are applied 10 times for each instance. To be sure
that the difference of behaviours is not due to the initial populations and other stochastic
factors, 10 distinct random seeds are used by each algorithm. Results presented in the
tables are averages; standard deviations are not mentioned since they are very low.

3.3 0/1 Knapsack Problem

The Knapsack Problem (KP) is a well-known combinatorial problem. Given n items
whose weights wi and values vi are known (xi ∈ {1, . . . , n}), the goal is to find a
subset of items of maximal value such that the total weight is less than a given capacity
W . In the most common 0/1 KP, each item can be selected only once (xi ∈ {0, 1},
where xi is the number of selected copies of object i).

More precisely, 0/1 KP is shortly formulated as an optimization problem by:

maximize
n∑

i=1

vixi, s.t.
n∑

i=1

wixi ≤ W, xi ∈ {0, 1}

For more information on 0/1 KP, we invite the reader to refer to [12].
Island-based algorithms DIMstand and DIMring, as well as edgeless topologies

GAclassic and GA�, have been tested on five 0/1 KP instances. Instances have been
generated according to the definition given by [4] and the generator proposed in [13],
with the following parameters:

– number of items ∈ {100, 250, 500, 1000, 2000}
– range of coefficient: 10000
– type: avis subset-sum
– number of tests in series: 1000

Experiments have shown that only the three last instances (those with resp. 500, 1000
and 2000 items) are representative for comparison, the two first ones appearing too
much easy to solve, with similar results for all algorithms. Consequently, we only focus
on three random instances: n500, n1000 and n2000.

Table 1 shows the efficiency of each method on these instances. It is not surprising
that the Dynamic Island Model outperforms traditional GAs. However, performance
differences are quite important, taking into account that last improvements are par-
ticularly hard to find for knapsack problems. An interesting point is that, in this ex-
periment, the classic rotative scheme (DIMring) is not competitive; comparatively, the
classic GA works even better for the two hardest instances. The main reason is proba-
bly the relatively-small size of islands (20 individuals), which is adaptative in DIMstand
while it remains unchanged during the entire process in DIMring.

3.4 MAX-SAT Problem

In order to test the DIM framework with an other problem, we try to handle the MAX-
SAT problem. Given a Boolean formula in CNF (conjunction of clauses which are
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Table 1. Comparison between DIM and classic GAs

Instance GA DIMstand DIMring GA�

n500 755 626.54 760 620.50 755 818.38 748 230.25
n1000 1 485 393.86 1 502 549.22 1 483 248.36 1 465 757.47
n2000 2 866 752.92 2 910 891.46 2 853 072.50 2 832 290.37

disjunctions of literals), the aim is to provide an assignment to the Boolean variables
such that the number of true clauses is maximum. The formula is satisfiable iff it exists
an assignment which makes true all the clauses.

Three instances are used for our experiments:

– f600: random instance with 600 variables and 2550 clauses;
– f1000: random instance with 1000 variables and 4250 clauses;
– qg1-7.suffled: latin square instance with 686 variables and 6816 clauses.

All these instances are satisfiable thus there is an assignment of the Boolean variables
satisfying all the clauses.

Table 2. Comparison between DIM and classic GAs

Instance Nb Clauses GA DIMstand DIMring GA�

f600 2550 2513.80 2533.40 2518.70 2357.20
f1000 4250 4174.20 4208.90 4174.10 3890.50
qg1-7.shuffled 6816 6756.30 6787.00 6776.50 6211.70

In table 2, we observe that DIMstand provides the best results on the three instances.
GA� is the worst and GA obtains a little less interesting results than DIMring. The
results for DIMstand and DIMring are computed with the best migration frequency
empirically found. In the next section, a more detailled study of this parameter is given.

4 Discussion

As seen in section 3.3 and 3.4, DIMstand provides very promising results with respect
to the other GAs. The difference between DIMstand and DIMring is only concerning
the type of migration, whereas the difference among GA�, GA and DIMstand is the
migrations periodicity. This periodicity is given by a mean number of crossovers per
individuals. Then, the number of crossovers between two migrations differs from an
island to another and depends on their size (number of individuals).

GA can be considered as an island model with a very weak migrations periodicity
and GA� with a very strong migrations periodicity (recall that a weak periodicity cor-
responds to a high frequency). Between these two algorithms, a dynamic island model
can use different frequencies which provide different algorithm behaviours. In figure 2,
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Fig. 2. Powerfull of the DIM with several values of migrations periodicity

one can observe the impact of the migrations periodicity on all the studied 0/1 KP and
MAX-SAT instances in this paper.

It is interesting to see that, when the migrations periodicity is higher than 8 crossovers
per individual, DIMstand and DIMring provide equivalent results. A possible explana-
tion of this behavior is that the population is converging before the first migration.
Indeed, in our experiments, 240 crossovers are applied on the population of each is-
land before the first migration. If each population only contains clones after these
crossovers, then rotative migration provides the same effect than the complete graph mi-
gration scheme. Let us precise that in this study, we have deliberately not regulated the
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diversity of the population, in order to observe more precisely the behaviour of the
models. That is the reason for which scores are lower than those shown in Table 2.

An other observation is the weak difference among the results obtained by DIMring
for all values of migrations periodicity. Except for instance qg1-7.suffled, where
results are better with a small periodicity, this parameter seems not determinant for the
rotative migration scheme.

With a migrations periodicity smaller than 8, the complete graph migration scheme
is clearly better than the rotative one. For the 0/1 KP instances, value 6 seems to be
the best periodicity. For MAX-SAT instances, a small periodicity provides very good
results. The reason is probably that a small periodicity avoid the convergence of all the
populations.

It is clear that the migration periodicity is an important parameter for DIMstand. A
next work will be to control it with autonomous mechanism like in [14].

5 Conclusion

In this work, we have introduced a dynamic island model framework, which aims both
to generalize migration toplogies and to auto-regulate migration policies. First, the com-
plete graph modeling allows every definition of topologies, from edgeless graphs (stan-
dard sequential or parallel genetic algorithms) to well-studied island model topologies
like uni-directional or bi-directional rings, lattices, hypercubes, full topologies or any-
thing else. If the dynamic regulation is activated, then the topology is evolving during
the search following the rewards and penalties due to previous migration effects. Con-
trary to traditional island model mechanisms, where migrations are evaluated a priori
in measuring divergence between individuals (which is much more a guided repartition
of individuals to provide diversity, but a nonsense in a nature-inspired algorithm), we
encourage (resp. dissuade) moves of which previous executions and produced mixing
yield good (resp. weak) offsprings, in term of fitness and/or diversity. During the search,
this auto-regulation of migration probabilities makes the model more or less dynamic in
terms of number of migrations, which favouring either diversification, or intensification.

Experiments realized on two major combinatorial problems like 0/1 KP and MAX-
SAT show that this dynamic scheme, even with basic parametrization, provides good re-
sults, notably if we compare its performance with a classic uni-directional ring
migration topology.

The most promising prospect of our ongoing and future works is to parametrize
differently each island. One can imagine that different islands can work with their own
rules in terms of mutation or crossover operators, selection or replacement criterions for
instance. In particular, considering local search operators, if different islands working
with different operators, or different parametrizations of the search (more intensive or
more stochastic), are coexisting within a dynamic island model, it would be interesting
to observe the evolution of each island activity during the search. We think that such a
model can provide an adaptative operator selection as well as a diversity regulation due
to the island topology.
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3. Cantú-Paz, E.: Migration policies, selection pressure, and parallel evolutionary algorithms.
Journal of Heuristics 7(4), 311–334 (2001)
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Abstract. This paper formulates the optimal coverage problem (OCP) in wire-
less sensor network (WSN) as a 0/1 programming problem and proposes to use 
evolutionary computation (EC) algorithms to solve the problem. The OCP is to 
determine to active as few nodes as possible to monitor the area in order to 
save energy while at the same time meets the surveillance requirement, e.g., 
the full coverage. This is a fundamental problem in the WSN which is signifi-
cant for the network lifetime. Even though lots of models have been proposed 
for the problem and variants of approaches have been designed for the solu-
tion, they are still inefficient because of the local optima. In order to solve  
the problem effectively and efficiently, this paper makes the contributions to 
the following two aspects. First, the OCP is modeled as a 0/1 programming 
problem where 0 means the node is turned off whilst 1 means the node is ac-
tive. This model has a very natural and intuitive map from the representation 
to the real network. Second, by considering that the EC algorithms have strong 
global optimization ability and are very suitable for solving the 0/1 program-
ming problem, this paper proposes to use the genetic algorithm (GA) and the 
binary particle swarm optimization (BPSO) to solve the OCP, resulting in a di-
rect application of the EC algorithms and an efficient solution to the OCP. 
Simulations have been conducted to evaluate the performance of the proposed 
approaches. The experimental results show that our proposed GA and BPSO 
approaches outperform the state-of-the-art approaches in minimizing the active 
nodes number. 

Keywords: Wireless sensor networks (WSN), optimal coverage problem,  
evolutionary computation (EC), genetic algorithm (GA), particle swarm optimi-
zation (PSO). 
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1   Introduction 

The wireless sensor networks (WSN) is a very new technology which has become a 
hottest and most challenging research topic recently [1][2]. The WSN consists lots of 
sensor nodes that monitor the area for specialized applications such as battlefield 
surveillance, habitat monitoring, environmental observation, health applications, and 
many others [3]. The environments of these applications are usually not friendly and 
it is difficult to deploy the sensors determinately. Therefore, a large amount of nodes 
are randomly deployed in the area, resulting in more sensors than required. The high 
density of sensors on the one hand compensates for the lack of exact positioning and 
improves the fault tolerance, while on the other hand may cause the larger energy 
consumption due to conflicting in accessing the communication channels, maintaining 
information about neighboring nodes, and some other factors [4]. Therefore, research 
into optimally scheduling the sensor nodes and making the redundant nodes turned off 
to sleep in order to save the energy to prolong the network lifetime has become one of 
the most significant and promising areas in the WSN [5][6]. 

A considerable number of researches have devoted to address the energy efficient 
problem in the WSN in order to prolong the network lifetime. Most of the researches 
transform this issue to the optimal coverage problem (OCP) [5]. The OCP is based on 
the fact that the WSN contains a large number of sensor nodes with many nodes shar-
ing the same monitored regions, and some of the nodes are redundant and can be 
turned off to preserve the energy while the others still work to offer the full coverage. 
The OCP is to find out a minimal set of nodes to monitor the area, and turning off the 
other redundant nodes to save energy, while at the same time meeting the coverage 
requirement. This way, not only the nodes can reduce the energy consumption caused 
by the nodes confliction, but also the network lifetime can be significantly prolonged 
because the nodes can be scheduled to work in turn [6]. 

In the literature, different models and assumptions have been introduced to this 
problem and variant of approaches have been proposed for solution. Xing et al. [7] 
proved that the full sensing coverage of the network can guarantee the connectivity of 
the network when the communication range is not shorter than twice the sensing 
range. As many kinds of wireless sensor can meet this condition, many researches 
only concentrate on the coverage problem of the network. Consequently, only the 
coverage problem is considered in this paper. Approaches such as coverage-based off-
duty eligibility rule [8], time axis dividing node working schedule [9], and probing 
environment and adaptive sleeping (PEAS) protocol [10] have been proposed to ad-
dress the OCP in finding out a minimal set of nodes to be active. Among the above 
state-of-the-art approaches, it should be noted that the approaches in [8][9] can guar-
antee the full coverage while the one in [10] can not. Our model and approaches are 
designed to guarantee the full coverage. 

The motivations and contributions of our work include the following four aspects. 

1) The WSN consists of lots of sensor nodes with very limited energy. It has 
been a promising and significant research area to solve the OCP in order to 
save sensor energy and prolong network lifetime. 

2) The existing models and their approaches to OCP are always not easy to un-
derstand or implement. Therefore, it is significant and promising to design a 
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simple OCP model to describe the problem, and at the same time propose 
simple but effective and efficient approach to solve the problem. 

3) The OCP is NP-complete [11] and some of the traditional approaches have 
their natural disadvantages of being trapped into local optimal. Therefore, we 
propose to use evolutionary computation (EC) algorithm [12] to solve the 
problem. As the EC algorithms have strong global search ability, good adap-
tation and robustness, it is expected that the EC algorithms can solve the OCP 
efficiently. 

4) Some existing approaches can not guarantee the full coverage when dealing 
with the OCP [10], resulting in disadvantages when used in practical applica-
tions. In our work, the model and approaches are hence designed to guarantee 
the full coverage. 

In this paper, the OCP is modeled as a 0/1 programming problem. Given a WSN to-
pology with a set of randomly deployed sensor nodes, our model marks the nodes 
with values of 0 or 1, where 0 means that the node is turned off to sleep while 1 
means that the node is active to work. In this way, the OCP is transformed to optimiz-
ing a 0/1 string. That is, minimizing the number of 1 and at the same time making 
sure that the nodes with value 1 can provide full coverage for the area. In order to 
solve this problem effectively and efficiently, two EC algorithms, named the genetic 
algorithm (GA) [13] and the particle swarm optimization (PSO) [14], are adopted. 
The GA approach is used to solve the problem directly with the chromosomes coded 
as a 0/1 string. The standard PSO was designed for the problems in continuous do-
main. Therefore it is not suitable to directly use the standard PSO to solve the OCP. In 
our work, we use the discrete binary PSO (BPSO) [15] as the approach. The BPSO is 
promising in solve discrete binary problems [15], and therefore it is also suitable for 
the OCP. Simulations are conducted to evaluate the performance of the proposed GA 
and BPSO approaches. Experimental results show that our GA and BPSO approaches 
both win the state-of-the-art approaches in minimizing the active sensor number in the 
WSN. The experimental results also show that the BPSO approach is more robust and 
more efficient than the GA approach at minimizing the active sensor number over 
different sensing ranges and different deployed nodes number. 

The rest of this paper is organized as follows. Section 2 gives the problem formula-
tions of the OCP in the WSN. Section 3 proposes our methodology that uses the EC 
algorithm to solve the OCP. Section 4 gives the experimental results and compares 
our approaches with some state-of-the-art approaches. Moreover, the search behaviors 
and scalabilities of the GA and BPSO approaches are investigated. At last, conclu-
sions are summarized in Section 5. 

2   Optimal Coverage Problem in WSN 

Given an L×W (Length×Width) rectangle area A for monitoring, and a great amount 
of N sensors are randomly deployed in the area. The OCP is to determine using only a 
sub-set of M sensors from the N sensors to fully cover the monitored area, supposed 
that the area can be fully covered by the original N sensors (as the N sensors are ran-
domly deployed, the area may be not fully covered in the original network topology, 
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we do not consider this situation in our paper). The objective of the OCP is to mini-
mize the number of M. 

In order to know whether the area A is fully covered by the sensors network, we 
assume that the location of the sensor is prior known. Moreover, the area is divided 
into grids and the coverage issue can be transformed to check whether each of the 
grids is covered by at least one active sensor [8]. 

All the N sensors form the sensors set S={s1, s2, …, sN}, where each sensor node si 
is with the location (xi, yi) and the sensor radius R. For any grid g=(x, y)∈A in the 
monitored area, the relationship between the si and the g is defined as: 
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where 1 means that the grid g is covered by the sensor si while 0 means the sensor si 
does not cover the grid g. Therefore, for any grid point g, if there exists at least one 
sensor si(1≤i≤N) that makes P(si,g)=1 follow, we say that the g is covered by the 
sensor network. In this sense, the monitored area A is fully covered if any grid point g 
in the area is covered by the sensor network. 

In OCP, the area is monitored by an optimally selection sub-set S*⊆S with M sen-
sors from the N sensors, satisfying the constraint that the area A is still fully covered 
by the M sensors, and with the objective of minimizing the value of M, as: 
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Here, the operator ⊕ results in a value of 0 if all the elements are 0. Otherwise, the 
result is 1 if at least one of the elements is 1. 

Therefore, the OCP can be modeled as a 0/1 programming problem to determine 
whether a sensor is selected (with the value 1) or is not selected (with the value 0). 
Such a model has the following features and advantages. 

1) The 0/1 programming model is easy and intuitive to understand, 1 means the 
sensor is selected to active, whilst 0 means the sensor is scheduled to sleep. 

2) Unlike some other scheduling algorithms and protocols, our OCP model does 
not need the neighborhood information of the sensor nodes. This makes the 
model robust to adapt to different network topologies. 

3) The OCP model is naturally suitable to be solved by the EC algorithms such 
as the GA and the BPSO. Therefore, good performance can be expected by 
using the EC algorithms to solve the OCP. 

3   Methodology: EC for OCP 

In this section, the EC approaches are designed to solve the OCP. As the OCP is 
modeled as a 0/1 programming problem, the GA [13] and the BPSO [15] are naturally 
suitable for it. Therefore, we describe the EC approaches to the OCP based on these 
two algorithms. 
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3.1   Solution Representation and Fitness Function 

The OCP is modeled as a 0/1 programming problem and therefore the individual (e.g., 
the chromosome in the GA and the particle in the BPSO) is coded as a binary string of 
0 and 1. The length of the binary string is the same as the sensor nodes number N, and 
the representation is as: 

X = [x1, x2, …, xN], where xj=0 or 1                            (3) 

where xj=1 means that the jth sensor is selected to active and xj=0 means that the jth 
sensor is selected to sleep. 

The objective of the problem is to minimize the number of active sensor nodes. 
Therefore, the fitness function can be simply defined as Eq. (2) as in Section 2. 

3.2   Evolutionary Process 

The main process of the EC algorithms consists of the evolutionary operators. For 
example, the selection, crossover, and mutation operators in GA, and the velocity, 
position updating operators in BPSO. In this section, we describe these evolutionary 
processes of GA and BPSO in solving the OCP. 

(1) Initialization: In this phase, a check is first carried out to make sure that the 
area can be fully covered by the original sensor network with all the nodes active. 
Otherwise, the optimization process reports a failing result and terminates. 

In the initialization, a population of individuals is randomly generated. For each 
dimension j, the value of xj is set as 0 or 1 randomly. Moreover, the velocity in BPSO 
is randomly initialized as a real value within the velocity range [–Vmax, Vmax]. 

One thing should be noted is that the initialized individual X may be infeasible be-
cause it can not provide the full coverage of the area. In this case, a repair procedure 
would be performed on the individual to make it feasible. The repair procedure will 
be discussed in the next part. 

(2) GA Related Operators: In a genetic cycle, the GA performs the selection, 
crossover, mutation, evaluation, and elitist operations. 

In the selection, a tournament selection strategy is adopted. In each selection, par-
tial of the chromosomes (e.g., 20% of the population) are randomly chosen to  
compete for survival. The winner (the chromosome with the best fitness value, i.e., 
with fewest active sensor nodes) is selected into the next generation. Repeat the selec-
tion round until a population size of chromosomes have been selected. After selection, 
the survived chromosomes produce offspring via the single-point crossover and  
the bits flip mutation operations [13]. After the above three genetic operations, all the 
chromosomes are to be evaluated. The evaluation operation is to count the sensor 
nodes that the chromosome uses to fully cover the area. That is, the number of value 1 
in the solution string. If the solution is infeasible, it will be repaired before evaluation. 
At last the elitist operation is used to store the best-so-far solution. 

(3) BPSO Related Operators: The BPSO performs the velocity update similarly to 
the one used in the standard PSO. The only difference is that the value for xij, pij, and 
gj is 0 or 1. Also, the velocity is to be clamped within the range of [–Vmax, Vmax]. 
The jth dimension of velocity, vij, is regarded as the probability of the jth position xij 
being the value of 1. Therefore, the value of vij should be mapped into the interval of 
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[0.0, 1.0]. In the proposal of [15], the sigmoid function is used to obtain this transfor-
mation, as: 

ijvijij
e

vSigmoidp −+
==

1

1
)(                                            (4) 

With the value of pij obtained, the BPSO performs the position update as: 

⎩
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otherwise  ,0
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ij

prand
x                                                (5) 

where rand() is a random value generated from a uniform distribution in the range 
[0.0, 1.0]. 

After the velocity and position update operations, the particle will be evaluated. 
However, we do not repair the particle if its current position X is infeasible. Instead, 
we do not evaluate the infeasible particle. As we have made sure that all the particles 
are initialized feasibly, all the particles will store a feasible solution in their Pbest 
vectors. Therefore, all the particles will eventually return to the search range because 
they are attracted by the feasible guidance Pbest and Gbest. Using such a strategy can 
save a lot of computational time by avoiding the repair procedure. 

3.3   Repair Procedure 

As mentioned above, the solution represented by the individual may be infeasible 
sometimes because the active sensor nodes can not fully cover the area. Therefore, it 
is necessary to design a repair procedure to make the individual feasible. The repair 
procedure is performed on all the infeasible individuals in the initialization and on all 
the infeasible GA chromosomes during the evolutionary process. The pseudo-code of 
the repair procedure is given as Fig. 1 and is described as follows. 

01. //Input: A infeasible binary string X
02. //Output: A feasible binary string X
03. procedure Repair
04. {
05. int k=rand()%N;
06. while (X is infeasible){
07. while (Xk==1){
08. k=k+1;
09. if (k>=N) k=k–N;
10. }//end of while (Xk==1)
11. Xk=1;
12. }//end of while (X is infeasible)
13. }   

Fig. 1. The pseudo-code of the repair procedure 

Given an infeasible individual X to be repaired, it is supposed that the X is feasible 
if the values of all the dimensions of X are 1. First, a random integer value k in range 
[1, N] is generated as the start dimension where N is the total sensor nodes number. 
Then the procedure checks the dimensions of X from k to find the first dimension k* 
with the value of 0. This dimension is forced to set as 1. Then the new X is checked to 
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see whether it is feasible. If the X is still infeasible, the procedure goes on finding 
another dimension k** with the value of 0 and force it to be 1. The procedure termi-
nates until the X is feasible. 

4   Experiments and Comparisons 

The GA and BPSO approaches for solving the OCP are implemented and evaluated. 
The parameters configurations of the two algorithms are described as follows. 

In the GA approach, a population size of 40 chromosomes is used to solve the 
OCP. A tournament selection strategy is used. In each selection round, 20% of the 
chromosomes compete for survival. The crossover probability px and mutation prob-
ability pm are 0.7 and 0.03 respectively. The algorithm terminates at the maximal 
generations of 200. 

In the BPSO approach, the population size is also 40 and the maximal generations 
is 200. The algorithm parameters Vmax is 6, acceleration coefficients c1 and c2 are 
both 2.0 [15]. These parameters configurations are determined by considering the 
commonly recommended values in the literature and our empirical study. 

4.1   Comparisons with the State-of-the-Art Approaches 

We take the representative state-of-the-art work in [8] and [10] for comparisons. It is 
should be noticed that the approach in 8 ensures the full coverage while the one in 
[10] can not. 

In order to make a fair comparison, we follow the network topology used in [8]. 
That is, with the monitored area 50m×50m, the sensing range 10m, and the original 
deployed nodes number 100. We carried out the simulations on 100 different random 
topologies and the mean results are compared. 

Table 1. Comparisons on the Sleep Nodes Number Obtained by Different Approaches 

Approach Probing range Sleep nodes Blind points Full coverage 
[8] N/A 53 0 Y 

 3 38 13 N 
 4 54 26 N 

[10] 5 66 68 N 
 6 71 91 N 
 7 81 100 N 

GA N/A 81.74 0 Y 
BPSO N/A 81.12 0 Y 

 
We show the average number of sleep nodes obtained by our GA approach, BPSO 

approach, and the approaches of [8] and [10] in Table I where the data of approaches 
[8] and [10] is derived directly from [8]. It can be observed from the table that our GA 
and BPSO approaches have the strong search ability to identify the redundant nodes 
and let more nodes sleep to save the energy. The performance of the PEAS in [10] is 
significantly relied on the probing range. The sleep node number increases as the 
probing range increases. However, the larger probing range results in more blind 
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points. The approach in [8] can avoid the blind point, but it is not efficient enough to 
schedule the redundant nodes to sleep. Our proposed GA and BPSO approaches can 
not only avoid the blind point, but also are efficient in turning off the redundant nodes 
to save energy. 

4.2   Behaviors of the EC Approaches 

As the stochastic nature of the EC optimization approaches, it is interesting to investi-
gate the search behaviors of the EC approaches in solving different network topolo-
gies with different node density and sensing range. Therefore, more experiments are 
conducted in this subsection. 

In the investigations, the sensing range is set as 8m, 10m, and 12m, while the 
original deployed nodes number is set as 100, 150, 200, 250, and 300. We test the 
approaches in 100 random topologies for each configuration, and the average results 
are plotted in Fig. 2. The observations from the Fig. 2 show that increasing the sens-
ing range and increasing the number of original deployed nodes can both result in 
more nodes being scheduled to sleep. This result is consistent with our expectation. 
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Fig. 2. The sleep node number over different sensing range and deployed node number 

Another interesting investigation is to see whether the number of active nodes re-
mains constant over different number of original deployed nodes when the sensing 
range is fixed. The data in Table 2 and the curves in Fig. 3(a) show that the behavior 
of the GA approach does not have the good ability to keep the number of active nodes 
in a dense network as small as the one in a sparse network. Instead, the number of 
active nodes increases as the increasing of the original deployed nodes. Such a phe-
nomenon was also observed in the coverage-based off-duty eligibility rule which was 
proposed in [8]. The authors of [8] claimed that that was caused by the increasing of 
the edge nodes which can not be turned off by their approach. However, the GA and 
BPSO approaches seem to be less affected by the edge nodes. This can be demon-
strated by the performance of BPSO that has very good ability in keeping the small 
set of active nodes over different networks. As shown in Fig. 3(b), within the same 
sensing range, the number of active nodes almost does not change when the original 
deployed node number increases. 
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Table 2. The Active Node Number Over Different Original Deployed Node Number on Differ-
ent Sensing Ranges 

Original Deployed Node Number Sensing range 
100 150 200 250 300 

8 m 27.97 31.29 37.59 45.43 54.91 
10 m 18.26 21.59 27.75 35.63 45.32 GA 
12 m 13.26 16.27 22.48 31.14 42.25 
8 m 28.90 28.77 28.41 28.64 29.13 
10 m 18.88 19.04 19.17 19.44 19.62 BPSO 
12 m 13.48 13.70 14.03 13.85 14.22 
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Fig. 3. The active node number over different sensing range and deployed node number 

So what makes the GA sensitive to nodes density of the network? We conducted 
experiments on another two mutation probabilities, 0.005 and 0.07, while the other 
parameters keep the same as above. The results are plotted in Fig. 4. It can be ob-
served that the performance of GA over different network topologies can be main-
tained when the pm is small, e.g., 0.005, as shown in Fig. 4(a). However, if the pm is 
large, GA can not find a solution with as few nodes as in a sparse network when deal-
ing with a dense network. This means that GA is sensitive to the parameters, spe-
cially, the mutation probability pm. The BPSO approach is more robust than the GA 
approach in dealing with different optimization environments. 
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Fig. 4. The active node number over different sensing range and deployed node number for the 
GA approach with different mutation probability pm 
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5   Conclusions 

The optimal coverage problem in WSN has been formulated as a 0/1 programming 
problem and the GA and BPSO approaches have been designed to solve the problem. 
In the OCP model, 0 stands for sleep and 1 stands for active. Therefore the model  
is not only simple and easy to understand, but also has a natural map from the repre-
sentation to the real network topology. The approaches to solve the OCP are based  
on evolutionary computation algorithms and therefore they are adaptive to the prob-
lem, with strong global search ability and good robustness. We have described the 
implementation details of using the GA and the BPSO to solve the problem. The  
performance is evaluated and compared with the state-of-the-art approaches. The 
experimental results have shown the effectiveness and efficiency of the proposed 
approaches. The experimental results also show that BPSO is more robust and more 
efficient than GA in reducing the active node number to save the network energy, 
especially in dense network. 

In the future work, we will try to use the most recent adaptive strategy [16] and the 
orthogonal learning strategy [17] in to BPSO to design more efficient algorithm for 
solving the OCP in WSN. 
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Abstract. Over the last few decades, many different variants of Genetic  
Algorithms (GAs) have been introduced for solving Constrained Optimization 
Problems (COPs). However, a comparative study of their performances is rare. 
In this paper, our objective is to analyze different variants of GA and compare 
their performances by solving the 36 CEC benchmark problems by using, a new 
scoring scheme introduced in this paper and, a nonparametric test procedure. 
The insights gain in this study will help researchers and practitioners to decide 
which variant to use for their problems. 

Keywords: Constrained Optimization, genetic algorithm, a non-parametric test. 

1   Introduction 

Over the last few decades, many different variants of GA have been introduced for 
solving COPs. These variants differ mainly in their use of crossover and mutation  
operators. Due to the variability of function properties in practical COPs, one such 
variant, even if it works well for one problem or a class of problems, does not guaran-
tee that it will work well for another class of problems or a range of problems. As a 
result, finding a suitable variant is still a headache for researchers and practitioners. 
Keeping this in mind, in this research, we have implemented ten variants of GA using 
five different specialized crossover and two mutation operators. The crossovers consi-
dered in this paper are widely used in practice, such as the blend crossover (BLX-α) 
[7], the simulated binary crossover (SBX) [2], the simplex crossover (SPX) [13], the 
parent centric crossover (PCX) [3] and the triangular crossover (TC) [6]. Each of these 
operators has its own positives and negatives when applied to evolutionary problem 
solving. Interestingly, none of these crossovers is suitable for all possible scenarios of 
the constrained problems. The mutations considered are non-uniform and polynomial 
mutations. 

The variants are compared based on their performances in solving a set of 36 prob-
lem instances introduced in CEC2010 (18 test problems, 2 instances each [9]). In this 
paper, we have introduced a new scoring scheme to compare the performance of dif-
ferent algorithms which is very simple to use, and easy to judge the performances of 
different algorithms. The scheme produces a single score for each test problem. To 
judge the performance over a set of problems, an overall score can be generated by 
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simply adding the individual scores. The decision produced by the proposed scheme 
is consistent with a nonparametric test procedure. The analysis shows that no single 
operator of GA is able to reach the high quality solutions for all the test problems. In 
addition, no one is clearly the winner. These insights of algorithms’ performances are 
analyzed and discussed. We believe the insights will help researchers and practition-
ers to decide the appropriate variant for their problems. 

This paper is organized as follows. After the introduction, the search operators and 
the constraint handling technique used are discussed in section 2. Section 3 presents 
the new comparison technique. Section 4 provides the computational results and ana-
lyzes the performances. Finally the conclusions are drawn. 

2   Search Operators and Constraint Handling 

In this section, the search operators and constraint handling technique used in this 
research are briefly discussed.   

As indicated earlier, we have implemented five different crossovers with two muta-
tions. These crossover and mutation operators are briefly reviewed below. 

Blend Crossover (BLX-α) has an advantage of generating diverse offspring [7], 
that allows GA to converge, diverge, or adapt to changing fitness landscapes without 
incurring extra parameters or mechanisms [8]. However, it has a disadvantage in the 
consideration of the epistasis problems, in which a piece of information of one  
variable is very dependent to another one [8]. Also, BLX-α works well for separable 
functions, but it does not perform well in solving optimization problems with non-
separable functions [12]. 

Simulated Binary Crossover (SBX) is widely used in practice. The SBX operator 
has been found to work well in many test problems having a continuous search space 
when compared to other real-coded crossover implementations. The SBX operator 
can restrict offspring solutions to any arbitrary closeness to the parent solutions, the-
reby not requiring any separate mating restriction scheme for better performance. 
SBX is also useful in problems where the bounds of the optimum point are not known 
a priori and where there are multiple optima [2].  

Simplex Crossover (SPX) is a multi-parent recombination operator for real-coded 
GAs. The SPX uses the property of a simplex in the search space. The simplex cros-
sover works well on functions having multimodality and/or epistasis with a medium 
number of parents: three parents on a low dimensional function and four parents on a 
high dimensional function [13]. However, SPX fails on functions that consist of 
tightly linked sub-functions [13]. 

Parent Centric Crossover (PCX) allows a large probability of creating a solution 
near to each parent, rather than near the centroid of the parents [3]. PCX is a self 
adaptive type approach that has shown excellent performance in solving some test 
problems when implemented with a real coded GA [3]. However, GA with PCX has a 
difficulty in separable multimodal problems compared to other EAs such as DE [11]. 

Triangular Crossover (TC) is a three-parent crossover approach that concentrates 
on the boundary of a feasible region. TC works well where the optimal solution lies 
on the boundary of the feasible region of a problem, where the problem also has a 
single bounded feasible region in the continuous domain [6].  
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In Non-uniform Mutation, the step size is decreased as the generations increase, 
thus making a uniform search in the initial stage and very little at the later stages [10]. 
In contrast, in Polynomial Mutation, the probability of mutating a solution near to the 
parent is higher than the probability of mutating one distant from it. The shape of the 
probability distribution is directly controlled by an external parameter and the distri-
bution remains unchanged throughout the entire evolution process [4]. Hence non-
uniform mutation is often better at refining a solution, while polynomial mutation 
maintains diversity throughout a run. 

In this paper, we measure the superiority of feasible points (during a tournament 
[5]) as follows: i) between two feasible solutions, the fittest one (according to the fit-
ness function) is better, ii) a feasible solution is always better than an infeasible one, 
iii) between two infeasible solutions, the one having the smaller sum of its constraint 
violation is preferred. The equality constraints are transformed to inequalities of the 
form:  0,  1, … , , where  is a small number. 

3   A New Comparison Technique 

In this section, we propose a new technique for comparing different variants of GA. It 
can also be used to compare any other stochastic algorithms. To judge the quality of 
any variant, we assign a score of ‘1.0’ if a variant obtains the best fitness value for a 
given test instance and ‘0.0’ if a variant fails to achieve any feasible solution. If a va-
riant achieves a feasible solution, but not the best fitness, it will receive a fractional 
score (between 0.0 and 1.0) as discussed below. We assume that all of the problem 
instances have a minimization objective function. 

For a variant i and test instance j, and a total number of test problems , we define 
 as the actual fitness, and ,  as the overall best 

and worst fitness value for a test instance j, respectively.  The score of a variant i for 
instance j is then: 

  1  |  | |  |   , if  is feasible  0,                                                         (1) 

where 1 and 1. A value 1 will differentiate between the worst feasible and 
any infeasible solution by having a small positive value for Sij. A higher value of p 
will put a higher emphasis on good solutions. In this study, we use a = 1.1 and p = 2. 
In a similar way we can also calculate scores for averages. In that case, the final score 
for a variant i can be calculated as follows:  ∑  1  ∑                  (2)  

where,  is the final score of variant i for test problem j,  is  the feasibility ratio of 

variant i for test problem j,  is the score based on the best solutions,  is 
the score based on the average values, and   is a constant ∈ 0, 1 . A higher value 
of   (1 or close to 1), will put a higher emphasis on the best solutions, which is ap-
propriate when we are interested in only the best fitness value, while a lower value 
of   (0 or close to 0) will put a higher emphasis on the average solutions, which is 
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appropriate when we are interested in a number good alternative solutions. In this 
study, we use 0.5 to make a balance between the best and the average results. 
The overall score (  for each variant i can then be calculated using the following 
equation. ∑                       (3) 

If a variant finds the best fitness value for all test instances, then OSi = J. For the 
worst fitness value for all test instances, OSi = 0. In statistical significance testing, if a 
variant is significantly better in some instances and significantly worse in some other 
instances, it is not easy to decide the best performing variant, as the precise difference 
in magnitudes is not reflected in the test results. In that case, the proposed scoring 
scheme would provide better insights in such comparisons, as the precise difference in 
magnitudes is taken into account. In addition, this is not a pair-wise comparison, but 
rather a simultaneous comparison for any number of algorithms /samples. 

4   Experimental Results and Analysis 

As discussed earlier, the variants are designed using one of five crossover operators 
with one of two mutation operators. The crossover operators are TC, SBX, PCX, SPX 
and BLX-α, and the mutation operators are non-uniform (NU) and polynomial (P) 
mutations. The test problems details are presented in Table 1. The parameters settings 
are: initial population size    30, crossover rate (CR) = 100%, mutation rate  (MR) = 10%, tournament size (TS) = 3, α = 0.366 according to [12], the index  
parameter 3,  0.01 according to [3]. As suggested for the number of 
parents in SPX, three parents are used on a low 10D function and four parents on a 
high 20D function [13], we have used 5 parents for 30D. For the non-uniform muta-
tion, b 5, and for the polynomial external parameter 10, finally ε 0.0001. 
The detailed results showing best fitness (b), mean (M), standard deviation (Sd) and 
the average feasibility ratio (Avg. Fr) are presented in Table 2 for 10D, and in Table 3 
for 30D. All results are out of 25 independent runs. Due to space and formatting limi-
tation, we only provide the results of the best variants. However the analysis is  
performed using all ten variants. 

Firstly, based on the feasibility ratio for 10D and 30D, we found that TC-NU is in 
the 1st position followed by, BLX-α-NU, PCX-NU, SBX-NU, SPX-NU, PCX-P, 
SBX-P, TC-P, BLX-α-P and SPX-P, with total averages of FR 84%, 83.5%,83.5%, 
83%, 78.5%, 78%, 75%, 72%, 69% and 61.5%, respectively. So, it is clear that the 
non-uniform mutation is superior to polynomial in regards of the feasibility ratio. The 
number of best solutions found by each variant, TC-NU, TC-P, SBX-NU, SBX-P, 
SPX-NU, SPX-P, PCX-NU, PCX-P, BLX-α-NU, and BLX-α-P are 3, 0, 4, 2, 3, 0, 3, 
4, 3 and 0, for 10D, respectively.  Note that all variants with the non-uniform muta-
tion were able to reach the same solution for C16, while TC-NU, SBX-NU, SPX-NU, 
PCX-NU, PCX-P and BLX-α-NU are able to solve C03. Further only SBX-NU, SPX-
NU, PCX-NU, and BLX- α-NU are able to solve C04, while all variants except TC-
NU cannot solve C11.  For 30D, the numbers of best solutions found by each variant 
(in the same order) are: 3, 2, 2, 2, 1, 0, 1, 0, 4 and 0.  No variant can solve C03, C04 
and C11, and the variants with only the non-uniform mutation are able to solve C12.   
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Table 1. Properties of the CEC2010 test problems. D is the number of decision variables, | |/| | is the estimated ratio between the feasible region and the search space, I is the 
number of inequality constraints, E is the number of equality constraints 

Prob Search Range Objective Type Number of constraints Feasibility Region 
E I 10D 30D

C01 [0, 10] Non Separable 0
2 Non 

Separable
0.997689 1.000000

C02 [ 5.12, 5.12] Separable 1 Separable
2 Non 

Separable
0.000000 0.000000

C03 [ 1000, 1000] Non Separable 1 Separable 0 0.000000 0.000000

C04 [ 50, 50] Separable
2 Non Separable, 

2 Separable
0 0.000000 0.000000

C05 [ 600, 600] Separable 2 Separable 0 0.000000 0.000000
C06 [ 600, 600] Separable 2 Rotated 0 0.000000 0.000000
C07 [ 140, 140] Non Separable 0 1 Separable 0.505123 0.503725
C08 [ 140, 140] Non Separable 0 1 Rotated 0.379512 0.375278
C09 [ 500, 500] Non Separable 1 Separable 0 0.000000 0.000000
C10 [ 500, 500] Non Separable 1 Rotated 0 0.000000 0.000000
C11 [ 100, 100] Rotated 1 Non Separable 0 0.000000 0.000000
C12 [ 1000, 1000] Separable 1 Non Separable 1 Separable 0.000000 0.000000

C13 [ 500, 500] Separable 0
2 Separable, 1 
Non Separable

0.000000 0.000000

C14 [ 1000, 1000] Non Separable 0 3 Separable 0.003112 0.006123
C15 [ 1000, 1000] Non Separable 0 3 Rotated 0.003210 0.006023

C16 [ 10, 10] Non Separable 2 Separable
1 Separable, 1 
Non Separable

0.000000 0.000000

C17 [ 10, 10] Non Separable 1 Separable
2 Non 

Separable
0.000000 0.000000

C18 [ 50, 50] Non Separable 1 Separable 1 Separable 0.000010 0.000000  
 
According to the problem properties, it can be seen, that TC with the non-uniform 

mutation is the only variant that is able to reach a feasible solution for 10D rotated 
objective functions (e.g., C11). In contrast, PCX with the polynomial mutation is pre-
ferred for either separable or non-separable objective function, with only rotated 
equality constraints, (e.g. C06 and C10). Also, PCX with the polynomial mutation is 
the best for the separable objective function, with separable equality constraints and 
non-separable inequality constraints, (e.g. C02).  For the non-separable objective 
functions with only inequality constraints (rotated or separable), it is preferable to use 
the non-uniform mutation with BLX-α, or TC (e.g. C07, C08, C14 and C15). For the 
non-separable objective function with both equality constraints (separable) and in-
equality constraints (only non-separable or only separable), SBX and PCX with the 
polynomial mutation reached more robust solutions (e.g. C17 and C18). In test prob-
lems where the objective function is non-separable/or separable, and does have a mix 
of non-separable and separable inequality constraints, the non-uniform mutation is 
preferred with SBX (e.g. C13). Finally, for the separable objective function with only 
equality constraints (separable), it is preferable to use the non-uniform mutation with 
SBX or PCX (e.g. C05). The non-uniform mutation is preferred in the test problems 
where the objective function is non-separable with only inequality constraints (non-
separable) (e.g. C01). Also, the same mutation performs well for test problems with a 
separable objective function with equality constraints (only non-separable) and in-
equality constraints (only separable), (e.g. C03 and C09).To compare the variants, we 
have performed a non-parametric test (Wilcoxon Signed Rank Test) [1] that allows us  
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Table 2. Function values out of different GA variants, for 10D test problems 

Pr. TC-NU SBX-NU SBX-P SPX-NU PCX-NU PCX-P BLX-α-NU
1 b -0.74726 -0.74728 -0.74641 -0.74731 -0.74729 -0.74687 -0.74729

M -0.72839 -0.72992 -0.69813 -0.68265 -0.71796 -0.70001 -0.71900
Sd 0.02172 0.02331 0.04945 0.06857 0.02762 0.05356 0.04048

2 b -2.20403 -2.20140 -2.25830 -1.60231 -2.24070 -2.27097 -2.18671
M -0.07300 -1.18436 -1.69085 1.53784 -0.90938 -1.73062 0.75009
Sd 1.85484 1.31417 0.72668 1.49232 1.40541 0.65883 1.94768

3 b 1.1E+10 10028669 - 3.44E+09 40707467 3.516912 3.99E+08
M 2.8E+13 7.54E+13 - 1.01E+14 6.49E+13 1.39E+14 5.13E+13
Sd 3.7E+13 2.22E+14 - 2.14E+14 1.01E+14 2.83E+14 1.03E+14

4 b - 0.004377 - 0.00045 0.014563 - 14.02194
M - - - 4.387388 8.102383 - 15.10635
Sd - - - 7.87455 11.4379 - 1.53359

5 b -231.962 -473.5781 -237.2348 -464.6771 -400.9999 -427.6626 -265.2265
M -106.338 -204.7016 -105.0468 -50.0089 -244.1168 -160.4987 -150.5770
Sd 77.2131 93.7422 105.7225 241.3993 59.3223 130.6904 100.1925

6 b -575.789 -575.7960 -576.2588 -576.1843 -576.7053 -572.6023 -574.6536
M -83.7290 -160.4517 -345.7701 -68.3604 -144.7258 -87.8436 -189.3297
Sd 321.1026 483.5311 334.8700 379.0355 392.5743 328.1714 380.5476

7 b 3.35E-21 1.22E-20 6.70E-11 9.32E-17 1.38E-21 2.97E-12 4.64E-22
M 5.40E-19 1.70E-18 5.72E-09 1.90E-15 3.02E-20 1.88E-11 1.47E-20
Sd 1.10E-18 2.34E-18 1.92E-08 2.38E-15 2.56E-20 2.01E-11 2.44E-20

8 b 1.20E-20 5.87E-20 3.52E-10 1.76E-16 4.95E-21 3.25E-11 1.93E-22
M 2.17E-19 1.31E-18 4.62E-08 0.5147464 6.29E-20 1.80E-08 1.10E-20
Sd 2.33E-19 1.93E-18 5.72E-08 0.6465979 6.96E-20 5.34E-08 1.76E-20

9 b 207.7978 375.54613 24.32602211 4.30E+08 218.49958 0.0920886 374.7197
M 2.6E+07 4.58E+08 3.74E+09 4.88E+12 1.04E+06 5.47E+09 1.89E+09
Sd 1.1E+08 2.24E+09 17348769574 4.77E+12 2209044.7 2.71E+10 7.33E+09

1
0

b 0.248143 60.033514 6.61064209 1.34E+10 69.104363 7.73E-06 75.291298
M 9.6E+06 5.93E+09 2.50E+09 5.02E+12 2.97E+08 3.31E+08 5.49E+09
Sd 3.0E+07 2.44E+10 1.05E+10 4.24E+12 1.21E+09 1.27E+09 1.16E+10

1
1

b -0.00106 - - - - - -
M - - - - - - -
Sd - - - - - - -

1
2

b -115.445 -374.4726 -304.7074 -161.8349 -304.6433 -260.0960 -303.0400
M 44.3670 20.1254 8.7836 25.7515 5.2216 -27.8116 -26.1526
Sd 126.6006 384.7512 241.1720 135.0566 197.5852 71.4188 112.6932

1
3

b -67.3679 -68.2885 -68.1437 -68.0511 -67.3388 -68.2287 -67.8926
M -61.2049 -63.2528 -64.9840 -61.7082 -63.3479 -65.4860 -63.7720
Sd 3.4104 1.9835 2.8576 3.5873 1.9832 1.9890 2.2564 

1
4

b 0.1758 0.0910 0.2467 0.0882 0.0818 0.0000 0.2258
M 4783.407 7931.4724 2335.7943 4197.8557 5130.0824 8377.1144 10656.307
Sd 18106.75 16877.661 11231.1540 18074.121 18711.9980 17430.0030 23138.143

1
5

b 4.3E+07 3.42E+11 4.0787E+10 5.84E+10 1.09E+11 5.33E+08 9E+08
M 2.4E+12 7.057E+13 4.0229E+13 1.39E+13 3.2E+13 4.56E+12 2.03E+13
Sd 5.3E+12 6.744E+13 5.2273E+13 1.65E+13 4.14E+13 6.48E+12 5.72E+13

1
6

b 0 0 4.78173E-13 1.11E-16 0 1.33E-14 0
M 0.153187 0.0119858 0.1556867 0.633979 0.19949 0.245698 0.280637
Sd 0.221928 0.0293591 0.15681833 0.317308 0.255503 0.248255 0.488704

1
7

b 0.111628 0.0035024 0.000678985 15.44855 0.001073 0.000924 0.106927
M 6.632889 6.594218 3.80935626 198.1898 9.641727 3.198288 19.50653
Sd 7.659975 8.162406 5.49315642 181.9092 11.98974 4.413743 32.84651

1
8

b 0.353893 2.488E-10 0.082019072 1.97547 0.007973 0.003178 0.075067
M 1107.45 762.80204 104.199786 6695.769 834.5436 26.33942 1004.014
Sd 1545.649 1441.3715 178.745095 4695.514 1723.946 51.25978 1384.054

Fr 89% 88% 81% 83% 88% 86% 89%
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Table 3. Function values out of different GA variants, for 30D test problems 

Pr. TC-NU SBX-NU SBX-P SPX-NU PCX-NU PCX-P BLX-α-NU
1 b -0.81714 -0.821671 -0.815216 -0.815679 -0.817997 -0.817050 -0.817855

M -0.79892 -0.781180 -0.794330 -0.764440 -0.799509 -0.792670 -0.783985
Sd 0.014196 0.031671 0.014201 0.030688 0.012201 0.019100 0.029011

2 b -1.25658 -1.126926 -1.652844 3.390203 -1.789475 -1.422927 -0.640858
M -0.13683 1.289422 -0.525870 4.545690 0.996184 -0.296748 1.283116
Sd 0.84786 1.361109 0.640276 0.636066 1.383242 0.921409 0.915661

3 b - - - - - - -
M - - - - - - -
Sd - - - - - - -

4 b - - - - - - -
M - - - - - - -
Sd - - - - - - -

5 b -457.322 -439.8795 -429.2540 215.0637 -431.9744 -378.6791 -435.1072
M -145.951 -274.4893 -162.1598 481.4305 -335.2496 -33.7101 -111.7567
Sd 102.1364 173.4741 214.5627 97.3591 83.9306 386.8334 181.6593

6 b -252.319 -517.8180 -436.9482 45.3549 -519.5224 -310.4290 -521.3494
M -147.094 -352.6657 -271.6617 339.0001 -123.7365 -214.1711 -409.0158
Sd 57.6696 228.0035 104.7799 194.7921 231.2404 97.0451 175.9162

7 b 7.12E-19 4.43E-17 0.111546449 5.9393812 1.96E-16 0.063957987 4.70E-20
M 0.197979 3.08E-16 1.034270613 9.5030099 5.78E-16 1.972052263 6.12E-19
Sd 0.494948 1.60E-16 0.847198591 2.4415226 2.97E-16 0.98146394 3.65E-19

8 b 4.50E-19 6.38E-17 0.429089011 4.9494844 1.30E-16 3.072100581 1.63E-19
M 1.629232 0.435555 3.794085142 11.129745 0.5939709 5.021856481 0.5939381
Sd 1.643779 0.6440672 1.473428046 2.9225308 0.857331 1.392382668 1.0303173

9 b 1.8E+09 2.29E+12 7.86E+10 2.52E+13 3.97E+12 2.19E+11 4.43E+12
M 1.4E+11 1.94E+13 2.03E+12 3.33E+13 1.84E+13 3.36E+12 1.41E+13
Sd 1.6E+11 1.17E+13 1.86E+12 8.78E+12 1.05E+13 2.85E+12 5.73E+12

10 b 4.3E+11 2.19E+12 1.36E+11 9.26E+12 7.41E+12 4.31E+11 5.86E+10
M 2.9E+12 1.74E+13 3.35E+12 2.87E+13 2.00E+13 3.56E+12 1.05E+13
Sd 2.3E+12 1.09E+13 3.67E+12 1.53E+13 8.17E+12 2.02E+12 5.43E+12

11 b - - - - - - -
M - - - - - - -
Sd - - - - - - -

12 b -0.13045 -0.190433 - -0.192083 -0.117789 - -0.086306
M 0.003453 3.155255 - -0.054965 0.998620 - 8.751375
Sd 0.148807 4.731518 - 0.130925 1.993884 - 12.498368

13 b -60.5334 -65.79880 -62.000733 -63.25430 -64.448800 -64.213130 -64.56370
M -55.6431 -61.68457 -59.837132 -58.94818 -61.069500 -60.510728 -59.50287
Sd 2.509570 2.120910 1.756991 3.094427 1.768428 2.112393 1.987751

14 b 8.47152 4.81551 161.87403 22.70745 10.92657 85.12049 0.12090
M 2.7E+03 7.08E+03 4.09E+05 1.53E+05 6.56E+03 4.55E+03 4.14E+03
Sd 6.6E+03 1.30E+04 1.83E+06 7.44E+05 1.83E+04 9.17E+03 1.24E+04

15 b 52.11062 6017.2691 3.43E+10 7.26E+12 225712214 6.88E+10 0.7314271
M 9.8E+03 3.13E+12 6.76E+11 2.84E+13 3.42E+12 2.01E+12 2.61E+12
Sd 3.8E+04 6.67E+12 6.99E+11 2.51E+13 6.67E+12 2.12E+12 5.23E+12

16 b 0.749937 0.290163 0.000841 1.017013 0.258111 0.001214 0.824704
M 1.017990 0.958698 0.852487 1.080749 1.004627 0.777738 1.027524
Sd 0.103935 0.188695 0.336429 0.044407 0.238504 0.397705 0.054663

17 b 0.749937 60.024590 3.598506 182.72766 49.991087 3.623220 90.666040
M 124.8363 258.79140 93.818115 1016.4893 265.721340 86.013982 420.60479
Sd 45.59627 155.21920 61.064014 503.07045 214.048620 72.386892 180.46487

18 b 6.2E+03 2.63E-01 5.57E+01 2.54E+03 2.44E+02 9.42E+01 1.63E+03
M 1.1E+04 3.14E+03 1.72E+03 1.57E+04 4.70E+03 1.55E+03 5.70E+03
Sd 2.9E+03 3.99E+03 1.94E+03 5.57E+03 7.16E+03 1.28E+03 2.06E+03

Fr 79% 78% 69% 74% 79% 70% 78%
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Table 4. The Wilcoxon non-parametric test for ten variants of GA for both 10D and 30D, based 
on the best fitness values obtained  

  b 
 
a 

10D 30D 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 

1              
2            
3              
4               
5                
6                 
7                    
8                   
9                    

 

Table 5. The Wilcoxon non-parametric test for ten variants of GA for both 10D and 30D, based 
on the average fitness values obtained 

  b 
 
a 

10D 30D 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 

1             
2                     
3              
4                     
5                
6                 
7                  
8                   
9                    

 

 
to judge the difference between paired scores when it cannot make the assumption 
required by the paired-samples  test, such as that the populations should be normally 
distributed. The results based on the best and average fitness values are presented in 
Table 4 and 5, respectively. As a null hypothesis, it is assumed that there is no signifi-
cant difference between the best/or mean values of two samples, whereas the alterna-
tive hypothesis is that there is a significant difference of the two samples at the 5% 
significance level. Based on the test results /rankings, we assign one of three signs 
(+, , and ) for the comparison of any two algorithms (shown in the last column), 
where the “ ”  sign means the first algorithm (a) is significantly better than the 
second (b), “ ” sign means that the first algorithm significantly worse, and “ ” sign 
means that there is no significant difference between the two algorithms. From the 
results it can be seen that there is no significant difference between most of the algo-
rithms, with the exception of SPX with both non-uniform and polynomial in 30D, but 
SPX with non-uniform is a little bit competitive to the other variants in the 10D test 
problems. Note that the numbers in the second row of Tables 4 and 5 represent the 
algorithms TC-NU, TC-P, SBX- NU, SBX-P, SPX-NU, SPX-P, PCX- NU, PCX-P, 
BLX-α-NU and BLX-α-P, respectively. 
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Fig. 1. The effect of changing  on the overall scoring over 36 test problems 

 

Fig. 2. The convergence pattern for 10 variants of GA, for one problem “C01”. Note that, the x-
axis is in the log scale. 

Based on our proposed scoring scheme, when considered all 36 test problems, the 
overall scores for the variants SBX-NU, PCX-NU, PCX-P, TC-NU, BLX-α-NU, 
SBX-P, TC-P, BLX-α-P, SPX-NU and SPX-P are 20.62, 20.09, 19.12, 18.98, 18.66, 
17.65, 15.2, 14.45, 10.98, and 2.48, respectively. Note that, the maximum possible 
score is 36 when a variant dominates all other variants. That means SBX-NU is the 
best performing variant for the 36 test problems considered in this paper. However it 
is not easy to make a similar decision with the Wilcoxon Signed Rank Test results. 

To see the effect of the constant  on the overall scorings, we have plotted  versus 
the overall scores for all the variants in Fig. 1, which shows that TC-NU is the best 
when  is less than 0.2, and SBX-NU is the best when  is above 0.2. However, 
PCX-NU is always in the second place irrespective of the value of . 
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Finally, a sample convergence pattern for problem “C01” for all variants is shown 
in Fig. 2. 

5   Conclusions 

In this paper, ten different variants of GA were implemented and extensively tested 
on 36 well-known benchmark problems. The results obtained showed that there is no 
single variant that is able to reach the best results for all test problems. However, the 
non-uniform mutation is suitable in most of the test problems in both 10D and 30D, 
but there are also some test problems in which the polynomial mutation works better. 
The analysis and insights provided in this paper will help researchers and practitioners 
to decide the variant suitable for their problems.  
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Abstract. A data stream is an ordered sequence of instances that can be read 
only once or a small number of times using limited computing and storage ca-
pabilities. Stream data analysis is a critical issue in many application areas such 
as network fraud detection, stock market prediction, and web searches. In this 
research, our previously proposed FCMAC-BYY, that uses Bayesian Ying-
Yang (BYY) learning in the fuzzy cerebellar model articulation controller 
(FCMAC), will be advanced by evolutionary computation and dynamic rule 
construction. The developed FCMAC-EBYY has been applied to a real-time 
stream data analysis problem of traffic flow prediction. The experimental  
results illustrate that FCMAC-EBYY is indeed capable of producing better  
performance than other representative neuro-fuzzy systems.  

1   Introduction 

The sequence of data in a time dependent manner is called a datastream. Stream data 
flow in and out of a computer system continuously and with varying update rates. 
They are temporally ordered, fast changing, massive, and potentially infinite. Appli-
cations involving stream data include telecommunications, financial markets, and 
satellite data processing [1]. For algorithms designed to analyze data stream, the abili-
ty to process the data in a single pass, or a small number of passes, while using little 
memory, is crucial [2].  

Inspired by the Taoist Yin-Yang philosophy, Xu [3] proposed the concept of 
Bayesian Ying-Yang (BYY) learning, here the word “Ying”, substituted for “Yin” in 
order to create symmetry with the word “Yang”. The BYY learning algorithm 
 is well-known as a harmony learning theory with a new learning mechanism that 
implements model selection implemented either automatically during parameter 
learning or subsequently after parameter learning via a new class of model selection 
criteria obtained from this mechanism. The implementation of the BYY learning 
model is done in two phases, parameter learning and cluster number selection, in 
order to determine all unknown parameters and to select the optimal solution for the 
input data, respectively. 

The Cerebellar Model Articulation Controller (CMAC) is a type of associative  
memory neural network based on a model of the mammalian cerebellum [4]. In our 
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previous work, the BYY was applied to the fuzzification layer of the FCMAC structure, 
thereafter referred to as FCMAC-BYY [5-8]. To help comparison with conventional 
clustering algorithms that are “one-way” clustering, BYY harmonizes the training input 
and the solution/clusters by considering not only forward mapping from the input data 
into the clusters, but also the backward path from the obtained clusters to the input data. 
With the introduction of the BYY learning algorithm, FCMAC-BYY has a higher gene-
ralization ability because the fuzzy rule sets are systematically optimized by BYY; it 
also reduces the memory requirement of the network by a significant degree compared 
with the original CMAC; finally, it provides intuitive fuzzy logic reasoning and has 
clear semantic meanings. However, the FCMAC-BYY suffers from two problems: 
First, when the BYY-based fuzzification is separated from the weight training of the 
neural network, local optima may occur. Second, the weights are trained by using gra-
dient-based methods, which may also lead to local optima. 

To address the above-mentioned problems, evolutionary computation (EC) is in-
troduced in this research to utilize global search for both the optimal fuzzy clusters 
and the optimal weights of FCMAC-BYY. Traditional evolutionary approaches are 
limited to small populations of short binary string length, whereas neural network 
training involves a large search space due to the complex connections and real values. 
One of the solutions to applying EC to neural network training is coevolution, in 
which a complex solution is decomposed into pieces to be optimized in different pop-
ulations/species and then reassembled [9]. Typically, the coevolutionary algorithms 
can be classified into two types, namely, competitive coevolution [10] and coopera-
tive coevolution [11]. 

In a competitive coevolutionary algorithm the fitness of an individual is based on 
direct competition with individuals of other species, which, in turn, evolve separately 
in their own populations. Increased fitness of one of the species implies a diminution 
in the fitness of the other species. Such an evolutionary pressure tends to produce new 
strategies in the populations involved so as to maintain their chances of survival. 
Consequently, the capability of reaching global optima can be improved [10]. 

García-Pedrajas, Hervás-Martínez and Ortiz-Boyer presented a cooperative coevo-
lutive approach for designing neural network ensembles [11]. For each network,  
different objectives are defined, considering not only its performance in the given 
problem, but also its cooperation with the rest of the networks. In addition, a popula-
tion of ensembles is evolved, improving the combination of networks and obtaining 
subsets of networks to form ensembles that perform better than the combination of all 
the evolved networks. The performance has been thoroughly tested over a set of ten 
real-world problems with different features.  However, the problem of how to define 
the objectives, especially the diversity objectives, still remains. 

This research aims to incorporate coevolutionary computation into the FCMAC-
BYY to search for the optimal fuzzy sets as well as the connection weights. The paper 
is organized as follows. Section 2 describes the work mechanism of coevolutionary 
learning incorporated with FCMAC-BYY. In Section 3, dynamic rule construction 
suitable for stream data analysis is introduced. Experimental results are presented and 
compared in Section 4, followed by our conclusion in Section 5. 
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2   FCMAC –EBYY Model 

As depicted in Figure 1, the FCMAC-EBYY network has a hierarchical structure of 5 
layers, the input layer, fuzzification layer, association layer, post association layer and 
output layer. 
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∑
 

 

 

BYYFuzzification
 Layer B

Input data

  

Fig. 1. The block diagram of FCMAC-EBYY 

2.1   Fuzzification with BYY Learning 

The input to FCMAC-BYY is a non-fuzzy data vector corresponding to a measure of 
the input parameter represented in the respective dimension. The fuzzification layer 
maps the input patterns into the fuzzy sets in the association layer through BYY learn-
ing. Thereafter, the association layer associates the fuzzy rules with the memory cell 
and tries to imitate a human cerebellum. The logical AND operation is carried out in 
this layer to ensure that a cell is activated only when all the inputs associated with it 
are fired. The association layer is then mapped to the post association layer where the 
logical OR operation will fire those cells whose connected inputs are activated. For 
the output layer, the defuzzification center of area (COA) method is used to compute 
the output of the structure. 

In neural network models, input data x and solution y can be treated as random 
processes. The joint probability distribution p(x,y) can be calculated by either of these 
two formulae:  

p(x,y) = p(y| x)p(x)     (1) 

p(x,y) = p(x| y)p(y)     (2) 

However, the result of Equation (1) is not equal to that of Equation (2) unless y is the 
optimal solution and Ying and Yang achieve harmony.  

Ying-Yang fuzzification involves two phases, namely, parameter learning and clus-
ter selection. Parameter learning does the task of determining all the unknown parame-
ters for a specific number of clusters in each dimension. In the cluster selection phase, 
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the optimal cluster number is selected according to a cost function calculation. In this 
research, we focus on the parameter learning phase, in which the optimization of the 
clusters is converted to minimization of the difference between Ying and Yang by 
using the Kullback-Leibler (KL) divergence. Minimization of the KL divergence will 
produce the optimal parameter at each number of clusters [5].  

2.2   FCMAC-BYY with Coevolutionary Learning 

The original FCMAC-BYY suffers from two problems: First, as the BYY-based 
fuzzification is separated from the weight training of the neural network, local optima 
may occur. Second, the weights are trained using gradient-based methods, which may 
also lead to local optima. These two problems motivate us to introduce EC so that we 
can utilize global search for both the optimal fuzzy clusters and the optimal weights 
of FCMAC-BYY. 

In traditional evolutionary computation the expected solution is sought among a 
population of individuals via genetic operations such as crossover and mutation. 
However, single-population evolutionary algorithms often perform poorly-
manifesting stagnation and convergence to local optima when confronted with com-
plex problems, or strong interdependencies among the components of the solution. 
Co-evolutionary learning allows simultaneous evolution of two or more species with 
coupled fitness. Such coupled evolution favors the discovery of complex solutions.  
On the other hand, the traditional binary GA has some drawbacks when applied to 
multidimensional and high-precision numerical problems. The situation can be im-
proved if GA in real numbers is used. Each chromosome is coded as a vector of float-
ing point numbers that has the same length as the solution vector. A large domain can 
thus be handled. Much research effort has been spent to improve the performance of 
real-coded GA (RCGA) [12].  

In this research, coevolutionary computation and real-coded GA are applied to 
FCMAC-BYY, referred to as FCMAC-EBYY, in which the fuzzy sets and the 
weights are evolved independently and then cooperated to form the final solution. 
One can see from Figure 1 that co-evolutionary learning is integrated into the optimi-
zation of fuzzy clusters and weights of the FCMAC-EBYY network. There are two 
kinds of species in the FCMC-EBYY, namely, fuzzy cluster species and weight spe-
cies. In the species of fuzzy clusters, all the chromosomes are initialized with the 
fuzzification results obtained by the BYY learning. In the species of connection 
weights, all the chromosomes are initialized with randomly generated real values. 
Such a treatment keeps a good mixture of the optimized outputs from BYY fuzzifica-
tion and random processes, so as to speed up the searching process. 

The chromosome representation has been also shown in Figure 1, where μij and σij 
represent the mean values and widths of the ith dimension in the jth cluster of fuzzy 
cluster species respectively, wn represents the weights of the corresponding rules in 
the neuron weighting species. The following are the details of the five processes in 
coevolutionary learning: evaluation, selection, reproduction (crossover and mutation) 
and re-insertion. 

Evaluation. In the fuzzy cluster species, the membership value of training data for 
each cluster is used as the fitness function of each chromosome, whereas the output 
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error is used as the fitness function in the connection weights species to train the 
weights of the neurons in the rule layer.  An individual undergoing fitness evaluation 
cooperates with one or more representatives of the other species to construct a candi-
date FCMAC.  A selected individual from the fuzzy cluster species will cooperate 
with the selected individuals from the connection weights species to form a full repre-
sentation of the structure.  

Selection. Stochastic Universal Sampling (SUS) is employed in the FCMAC-
EBYY, in which the chromosomes are mapped one-to-one into contiguous segments 
of a line, where the size of the segment of each chromosome relates to its fitness 
value. Then, equally-spaced pointers are placed along the line. The number of point-
ers on the line corresponds to the number of individuals to be selected.  

Crossover. Intermediate recombination is suitable to fulfil crossover between two 
real-valued parent chromosomes [13]. Each variable in the offspring is the result of 
combining the variables in the parents according to the above expression with a new α 
chosen for each pair of parent genes. Intermediate crossover is capable of producing 
new variables within a slightly larger hypercube than that defined by the parents but is 
constrained by the range of α.  

Mutation. Mutation can be accomplished by replacing the parameter values with 
random selection of new values. These new values, which are selected from the al-
lowable range for the respective dimension, ensure that the mutated values are within 
reasonable regions. Similar to the crossover operator, the probabilistic rate of the 
mutation determines the frequency of mutations. In all, mutation allows for an in-
crease in the level of possible exploration of the search space without adversely  
affecting the convergence characteristics.  

Reinsertion. The elitist strategy is employed to select a number of old chromo-
somes to be reinserted into the resultant population. This strategy chooses a pre-
specified number of the fittest chromosomes in the old population to be inserted into 
the resultant population while the rest of the chromosomes are discarded. The deleted 
cluster parameters are replaced by the chromosomes created from the reproduction 
process. This is done to retain the best quality chromosomes in the population. The 
production of the resultant population marks the completion of one generation. 

3   Dynamic Rule Construction Based on Credit Assignment 

In steam data analysis, a learning system must have the ability to update its structure 
to fit to the new data. In this research, two parameters, fired_frequency and time_ 
fired, are used as predefined quality creation to evaluate the current neurons in the 
rule layer. The fired_frequency evaluates the efficiency of a rule, as it indicates the 
historical contribution of individual neurons to the past patterns, whereas the 
time_fired records the nearest time a neuron is fired. By combination of these two 
parameters, the best-performing neurons will be retained while the others are deleted.  

Figure 2 depicts how to determine all neighborhoods of a fired cell in two-
dimensional input space. The green clusters are those activated in each input dimen-
sion, for example, the neighborhoods of rule 11 are: 01, 21, 10, and 12. In the 
FCMAC-EBYY, each rule is identified by a unique index that represents the connec-
tion between clusters in layer 2 according to that rule. Two rules are called neighbors  
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Fig. 2. Cell neighbors in two-dimensional input space 

if they connect to two neighboring clusters in the same dimension while connecting to 
the same clusters in the other dimensions. The details can be seen in [6]. 

4   Experimental Results 

A data stream is an ordered sequence of instances that can be read only once or a 
small number of times using limited computing and storage capabilities. Examples of 
data streams include computer network traffic, phone conversations, ATM transac-
tions, web searches, and sensor data. In this section, the FCMAC-OBYY is applied to 
a real-time traffic prediction application. The data were collected from a site (Site 29) 
located at exit 15 along the east-bound Pan Island Expressway (PIE) in Singapore 
using loop detectors embedded beneath the road surface. There are a total of five 
lanes at the site, two exit lanes and three straight lanes for the main traffic. For this 
experiment, only the traffic flow data for the three straight lanes were considered. The 
traffic dataset has four input attributes, including the time and the traffic density of the 
three lanes. It was used to make predictions for traffic density of each lane at time

τ+t , where τ = 5,15,30,45,60 minutes.  
For the simulation, three cross-validation groups, CV1, CV2 and CV3, of training 

and test sets were used. The square of the Pearson product-moment correlation value 
(denoted as R2) was used to compute the accuracy of the predicted traffic trends ob-
tained using the FCMAC-EBYY network. The FCMAC-EBYY network is compared 
with the Falcon-class networks, and the GenSoFNN-CRI(S) network [14] in Table 1. 
The “Var” indicator (the change in Avg R2 value from  min to  min expected as a 
percentage of the former) and the “Avg Var”, the mean “Var” values across all 3 
lanes, were used for the benchmarking of the various systems. These 2 indicators 
reflect the consistency of the predictions made by the benchmarked systems over  
 

 Dimension i

Dimension j
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Table 1. Simulation results of traffic prediction 

Network Lane1 
Var(%) 

Lane2 
Var(%) 

Lane3 
Var(%) 

Avg Var(%) 

Falcon-FCM(CL) 24.17 9.32 30.47 21.32 

Falcon-MLVQ(CL) 36.41 25.94 30.21 30.85 

Falcon-FKP(CL) 23.87 22.09 35.19 27.05 

Falcon-PFKP(CL) 20.78 21.05 28.25 25.70 

Falcon-MART 20.78 15.47 20.58 18.94 

GenSoFNN-VRI(S) 19.64 19.58 21.09 20.10 

FCMAC-BYY 10.75 9.95 15.36 11.68 

FCMAC-EBYY 10.22 8.95 13.34 10.60 

different time intervals across the 3 lanes. From Table 1, one can see that the 
FCMAC-EBYY network exhibited superior performance over all the other networks.  

5   Conclusion  

In this paper, a fuzzy cerebellar model articulation controller using evolutionary 
Bayesian Ying-Yang learning is proposed and applied to stream data analysis. After 
the initial cluster parameters were obtained through BYY learning, evolutionary com-
putation is utilized for the simultaneous evolution of two species, namely fuzzy clus-
ters and connection weights species. Dynamic rule construction allows the trained 
neural network update itself when new data comes. The performance of the proposed 
model was validated by a real-world application of traffic flow prediction.  
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Abstract. The group interaction parameter prediction of Ionic Liquids(IL’s) 
with thiophene (C4H4S)  and other hydrocarbons are essential to generate (Liq-
uid Liquid Equilibria) LLE through UNIFAC model. UNIFAC model is highly 
non-convex and can have several local extrema. In this work, the structural 
group interaction parameters have been calculated for [OMIM][BF4] + thio-
phene  + hydrocarbons and [OMIM] [BTI] + thiophene + hydrocarbons systems 
through regression using GA.The obtained LLE data has been correlated with 
reported values and it was observed that the cumulative RMSD(root mean 
square deviation) of ten ternary systems used for regression were 3.01% and 
3.65%  for [OMIM][BF4] and [OMIM]BTI] based system respectively. Further, 
the obtained interaction parameters were used to correlate the experimental 
LLE data for four ternary systems which were not used for regression. These 
systems having a total of 40 tie lines gave a very satisfactory RMSD of 1.76 to 
3.99% between reported and predicted composition. 

Keywords: GA, Ionic Liquid, UNIFAC, Thiophene, Liquid Liquid Extraction. 

1   Introduction 

By 2010, petroleum industry is bound to produce Ultra Low Sulphur Diesel (ULSD) 
containing maximum of 15ppm sulphur [1]. The removal of aromatic sulphur com-
pounds  from diesel oil is becoming increasingly difficult because of its resistance to 
hydrodesulphurization (HDS)[2]. Green solvents such as Ionic liquids provide an im-
portant alternative in removing such compounds by Liquid–Liquid Extraction (LLE) 
[2]. The removal of aromatic sulphur from diesel oil using ILs requires LLE data be-
cause of the numerous possible combination of ILs (to the order of 1018!).Therefore, 
the development of effective thermodynamic model and the selection of potential ionic 
liquid as solvent is very crucial.  

UNIFAC (UNIquasi Functional ACtivity)[3] model is one such model which pre-
dicts the LLE data for  ternary systems including ILs. The group interaction parame-
ters for typical cation and anion with other hydrocarbons and aromatic sulphur  
compounds are unavailable. The most common way to do this is to fit the experimen-
tal data to the UNIFAC model and then use that model with fitted parameters for 
predicting LLE for other systems containing the same groups. But quite often the 
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model parameter estimation process is an optimization without a unique result. It is 
more than likely to run into situations where the optimization problem is nonconvex 
with several local extrema. The focus of this work is on the application of genetic 
algorithm (GA) to find global extrema for the estimation of group interaction parame-
ters. In this work, the group interaction parameters of the IL:[OMIM][BF4] and 
[OMIM][BTI] were calculated using UNIFAC model with GA, with the help of avail-
able  volume R and area Q parameter. 

2   UNIFAC Model 

The original UNIFAC model combines the functional group concept with a model for 
activity coefficients based on an extension of the quasi-chemical theory of liquid 
mixtures (UNIQUAC) as proposed by Fredenslund et al. [3]. This model can be  
applied at infinite dilution and finite concentrations and was the most widely used 
before several revisions and extensions were developed. The activity coefficient is 
expressed as a function of composition and temperature.  

The data required for calculating activity coefficients at infinite dilution (non-
ideality) using UNIFAC are two folds, first the group specific parameters – group 
volume and surface area parameters, and second the group interaction parameters. 
Although the group surface area and volume parameters are available for a large 
number of groups including those of ionic liquids (ILs), it is the group interaction 
parameter that is largely missing. Keeping this in mind this work focuses on finding 
the group interaction parameters for groups present in ternary mixture of IL –
thiophene-diesel. Thiophene is taken as the model sulphur component and our aim in 
to separate it from diesel .However in our work we have taken the hydrocarbon such 
as hexane, heptane etc as the diesel component.  

The UNIFAC model has a combinatorial contribution ( ln C
iγ  ) to the activity coef-

ficient which is directly related to differences in size and shape of the molecules,  
and a residual contribution ( ln R

iγ  )
 
to define the energetic interactions between the 

molecules. 
ln ln lnC R

i i iγ γ γ= +                                                   
  (1) 

 

The combinatorial part is given by                        

ln 1 ln 5 1 lnC i i
i i i i

i i

V V
V V q

F F
γ

⎡ ⎤⎛ ⎞
= − + − − +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

           (2) 

i
i

j j
j

q
F

q x
=
∑

            (3)  

 

i
i

j j
j

r
V

r x
=
∑

           (4) 

 

The pure component parameters ri and qi are, respectively, related to molecular van 
der Waals volume and molecular surface area. They are calculated as the sum of the 
group volume and group area parameters, Rk and Qk.. The mole fraction of component 
j in the mixture is denoted as xj. Thus  
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i
kv , always an integer is the number of groups of type k in molecule i. The 

group parameters Rk and Qk  are normally obtained from van der Waals group volumes 
and surface areas, Vk and Ak, as given below: 
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The residual part is given by: 
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kΓ is the group residual activity coefficient, and 
( )i
kΓ is the residual activity coeffi-

cient of group k  in a reference solution containing only molecules of type i. 
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The surface area fraction of group m in the mixture is represented by 
mθ ; and 

mX  

is the mole fraction of group m  in the mixture. The group interaction parameter 
nmΨ  

is defined by 

     
exp nm

nm

a

T
ψ ⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

               (13) 

The parameter nma characterizes the interaction between groups m and n at tem-

perature T. For each group-group interaction, there are two parameters:
nm mna a∗ . 

Equations 10-12 hold true for ( )ln i
kΓ , except that the group composition variable kθ , 

,is now the group fraction of group k  in pure fluid i. In pure fluid, 
( )ln ln i

k kΓ = Γ which means that the activity coefficient approches unity when mole 

fraction approaches unity. Thus 
R
iγ  must be close to unity because as 1ix → , 

1C
iγ → and 1iγ → . Therefore, the group parameters (Rk, Qk, anm and amn) should be 

available beforehand to solve the above equations. 
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3   Computational Details 

3.1   Liquid - Liquid Equilibrium 

Many pairs of chemical species when mixed, would not satisfy the stability criterion 
for single phase and thus split into two phases having different composition of differ-
ent components. The equilibrium criterion for LLE is uniformity of  P, T and of fuga-
city for each component throughout both phases (I and II refers to the two phases).

 

( ); 1, 2, ..........I II
i if f i n= =                     (14) 

In terms of activity coefficients this becomes: 
 

( ); 1,2,.........I I II II
i i i ix x i nγ γ= =

 
               (15) 

 

In terms of K-Value(distribution ratio): 
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The above equations clearly shows that if we are able to predict activity coefficient of 
each component in both phases then it is easier to calculate distribution coefficient of 
components in both phases.  

3.2   Calculation of Composition 

The mole fraction of all components in both phases can be calculated using distribu-
tion coefficient K at a particular temperature. This calculation has been performed 
using the Rachford-Rice algorithm [4] (Fig. 1) and it is constructed by the following 
equations (c refers to the equilibrium condition and the number of components re-
spectively, z being the initial molar feed fraction of mixture and ψ=V/F  the split 
between the two liquid phases as represented by V  and L, such that F=V+L): 
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The Rachford-Rice algorithm along with UNIFAC model predicts the distribution 
coefficient whenever the ionic liquid is involved in the separation of thiophene from  
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Fig. 1. Modified Rachford-Rice algorithm (k refers to iteration number) 

hydrocarbon. Thereafter we will extend our work to predict group interaction parame-
ters of ionic liquids systems containing aromatic sulphur compounds. 

3.3   Group Interaction Parameters of Ionic Liquids  

The group interaction parameters can be predicted by correlating large number of 
experimental data in combination with an objective function such as  
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(21) 

 
In the objective function, ‘W’, the weight factor  has been taken as unity, c represents 
the number of components, m  the number of tie lines ; x and X are the experimental 
and calculated mole fractions, respectively. The calculated mole fraction is obtained 
using equation 19 and 20. The global minimum of the objective function (OF) may be 
found until some tolerance limit is reached, which is related to accuracy of , anm and 
amn predicted. For this purpose we require Genetic Algorithm (GA) for regressing the 
experimental data. GA leads to nearly globally optimum values; it does not require 
any initial guess but only the upper and lower bounds of the interaction parameters. It 
has also been shown to perform better than inside variance estimation method 
(IVEM)[5] and the techniques used in ASPEN and DECHEMA.  
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4   Results and Discussion 

We have used the Float genetic algorithm (FGA).This is better than both binary ge-
netic algorithm (BGA) and Simulated Annealing(SA) in terms of computational effi-
ciency and solution quality [6,7]. The methodology and the operators are described in 
our earlier work[8]. Relationships for selection function and operators are also given 
in our previous work[8].GA moves from generation to generation until a termination 
criterion is met. The most frequently used stopping criterion is a specified maximum 
number of generations (Gmax) [6,7]. The operator values are the default values are as 
used in MATLAB Toolbox[7]. For the regression GA is used with the objective func-
tion as given in equation 21. Prior to the optimization the lower and upper bounds for 
the interaction parameters were given beforehand (+1000 to -1000) based on prior 
literature data. Based on our earlier work on LLE [9], the number of population and 
generation has been kept at 100 and 200 respectively. 

Table 1. Group volume and area parameters 

Parameters CH2 CH3 Thiophene [IM][BF4] [IM][BTI] 
Rk 0.6744 0.9011 2.8569 5.6658 7.4134 
Qk 0.540 0.848 2.140 3.1570 6.5440 

 
For this study, we considered ten two phase, three component systems with 

[OMIM][BF4] and [OMIM][BTI] based ternary systems. The groups for the three 
component systems used in the prediction are listed in Table 1. The group interaction 
parameter was determined from the liquid liquid equilibrium (LLE) results through 
UNIFAC via regression of experimental data. The group volume R and area Q values 
are taken from literature .All the group and their parameters are listed in Table 1. In 
this case the ionic liquid [OMIM][BF4] or [OMIM][BTI] is broken in three parts i.e. 
one [IM][BF4] and/or [IM][BTI] group, one octyl group and one methyl group. When 
these data are used simultaneously, we need to have a grand parameter matrix. A 
Grand Parameter Matrix (GPA) is a matrix of group interaction parameters which 
includes all the groups (frequency matrix) present in all the compounds as shown  
in Table 2.But it can be readily observed that the interaction parameter or group pa-
rameter matrix for ILs is still scarce. The accuracy of the new observed interaction 
parameters (Table 3) of these values can be judged by looking at RMSDs of the five 
groups used for the prediction, which are defined as 
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Here ‘m’ refers to the number of tie lines, ‘c’ the number of components and ‘2’ is the 
number of phases. The observed RMSD values for [OMIM][BF4] and [OMIM][BTI] 
are quite accurate given the cumulative RMSD of ten systems (systems 1-7 and 8-14)  
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considered simultaneously is 3.01% and 3.65% respectively. All the RMSD values 
are shown in Table 4. 

A further check is provided by applying the group parameters values to system 
which involve compounds that are not used for the prediction. Two different ternary 
data sets were taken for both the ionic liquid systems to confirm the predictions. For 
the prediction of group interaction parameters for [OMIM][BF4] based systems, tie 
lines corresponding to systems 1-5 of Table 4 were used for regression. 

Table 2. Grand Parameter matrix & Frequency matrix 

                                  Grand parameter matrix 
Name CH2 CH3 Thiophene [IM][BF4] [IM][BTI] 
CH2 0 0 92.99 NA NA 
CH3 0  0 92.99 NA NA 
Thiophene -8.479 -8.479 0 NA NA 
[IM][BF4]. NA NA NA 0 - 
[IM][BTI] NA NA NA - 0 
                                          Frequency matrix        
[OMIM][BF4] 7 2 0 1 - 
[OMIM][BTI] 7 2 0 - 1 
Thiophene 0 0 1 0 0 
Cyclohexane 6 0 0 0 0 
Hexane 4 2 0 0 0 
Heptane 5 2 0 0 0 
Dodecane 10 2 0 0 0 
Hexadecane 14 2 0 0 0 

       NA: not available. 

Table 3. Estimated group interaction parameters  

 [IM][BF4] 
 CH Thiophene [IM][BF4] 

CH 0 92.99 1268.3 

Thiophene -8.479 0 679.7 

[IM][BF4] 1374.4 456.4 0 

[IM][BTI] 
CH 0 92.99 313.71 

Thiophene -8.479 0 240.9 

[IM][BTI] 333.81 175.06 0 
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Fig. 2. Experimental and Predicted tielines for [OMIM][BF4]-thiophene-methylcyclohexane 

Table 4. RMSDs of the ternary systems used in the prediction 

No. System Name 
RMSD 
in % 

Ref T /K 

1 [OMIM][BF4]—thiophene–cyclohexane 5.85 [12] 298.15 

2 [OMIM][BF4]—thiophene–hexane 3.33 [12] 298.15 

3 [OMIM][BF4]—thiophene–heptane 1.78 [14] 298.15 

4 [OMIM][BF4]—thiophene–dodecane 2.35 [14] 298.15 

5 [OMIM][BF4]—thiophene–hexadecane 3.60 [14] 298.15 

6 [OMIM][BF4]—thiophene–isooctane 3.99 [13] 298.15 

7 
[OMIM][BF4]—thiophene–methyl- 
-cyclohexane 

2.39 [11] 298.15 

8 [OMIM][BTI]—thiophene–cyclohexane 2.88 [10] 298.15 

9 [OMIM][BTI]—thiophene–hexane 2.00 [15] 298.15 

10 [OMIM][BTI]—thiophene–heptane 2.40 [15] 298.15 

11 [OMIM][BTI]—thiophene–dodecane 2.65 [10] 298.15 

12 [OMIM][BTI]—thiophene–hexadecane 4.70 [15] 298.15 

13 [OMIM][BTI]—thiophene– isooctane 3.55 [13] 298.15 

14 
[OMIM][BTI]—thiophene–methyl- 
-cyclohexane 

1.76 [13] 298.15 
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Thereafter the predicted group interaction (Table 3) has been used in predicting the 
tie lines of systems: [OMIM][BF4] + thiophene + isooctane (system 6 of Table 4) and 
[OMIM][BF4] + thiophene + methylcyclohexane (system 7 of table 4) with RMSD of 
3.99 and 2.39% respectively. For the prediction of group interaction parameters for 
[OMIM][BTI] based system, tie lines corresponding to systems 8-12 of Table 4 were 
used for regression. Thereafter the predicted group interaction (Table 3) has been  
used in predicting the tie lines of systems: [OMIM][BTI] + thiophene + 
224trimethylpentane (system 13 of Table 4) and [OMIM][BTI] + thiophene + methyl-
cyclohexane (system 14 of table 4) with RMSD of  3.55 and 1.76% respectively.  
The data shown in above tables can also be plotted in a ternary diagram to give a 
pictorial comparison of the experimental and the predicted data. Figure 3 shows  
the comparison between predicted and experimental tie lines for the system 
:[OMIM][BF4]-thiophene-methylcyclohexane .It can be seen that our predicted results 
are in qualitative agreement with those of reported values [10-15].  

5   Conclusions  

In this work, UNIFAC model is used to calculate the group interaction parameter of 
the mixture containing IL, thiophene and hydrocarbons. New group interaction  
parameters are regressed using GA from 100 reported tie lines of liquid- liquid equi-
librium data of three component systems. The predicted results are in good agreement 
with reported values. The predicted group interaction parameters and LLE results 
show very encouraging results in terms of RMSDs which lies between 1.5% - 5%. 
Thus regression using GA is a powerful tool to describe LLE especially when ex-
tended to systems containing similar groups like thiophene, pyrrole or Ionic Liquid. 
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Nomenclature 
[OMIM]   1-octyl-3-methylimidazolium 
[BF4]   Tetrafluoroborate 
[BTI]   Bis [trifluoromethylsulfonyl] imide 
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Abstract. There has been considerable interest in using evolutionary
algorithms based techniques to design creative systems. However,these
techniques suffer from either being too creative and violating design con-
straints of the domain or those catering to a limited search space, but
operating within design constraints. We have designed a new evolution-
ary system ‘HIER-HEIR’, which is not only creative (searches a large
space effectively), but creates only such designs which are valid with
respect to the design domain. Inspired by human design methodology,
the representation is a hierarchy of components and variation acts at all
levels of hierarchy intelligently, facilitating effective search in the design
space with explicit control over exploitation and exploration. We have
explained our technique with the metaphor of automatic design of a fash-
ion dress in this paper. The experimental results validate our hypotheses
with regard to the system. With regard to previous work, our technique
is new both with regard to previously published hierarchical systems and
those designed for evolving fashion designs.

1 Introduction

Automatic design of creative and engineering systems using evolutionary algo-
rithms has been of considerable interest [11,5,6,4,3,7]. For evolving designs which
are useful in a real scenario, these techniques require not only to be creative, but
the resulting design must follow certain design constraints to allow actual fab-
rication and use. The current systems for evolutionary design suffer from a few
challenges. While some algorithms design very flexible and creative systems [3,4],
others look at a coarse library of few designs or degenerate to simple parameter
optimization for set designs [8,11,9]. The second challenge with flexible systems
is that they not only lead to many invalid designs in the course of evolution [7],
but lack of direct mapping between genotype and phenotype leads to a coarse
fitness landscape [2] and possible random search.

Our aim is to design an algorithm (i) which creates designs from a large design
search space, (ii) has a rich set of variation operators capable of creating every
valid design in the search space, (iii) without resulting in any invalid design,

K. Deb et al. (Eds.): SEAL 2010, LNCS 6457, pp. 205–214, 2010.
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(iv) having a smooth fitness landscape (v) with control over exploitation and
exploration. Such a system can be used to evolve designs which are not only
creative, but also respect the constraints of the specific domain of design.

We have identified that encoding a design as a hierarchy of components solves
the challenges discussed above. The knowledge of the hierarchy, the do’s (vari-
ations) and don’ts (constraints) at each level of the hierarchy is what enables a
designer to make valid yet creative designs. Whereas changing components at
a higher level of hierarchy helps the designer take larger jumps in the search
space, tweaking components at the lower level of the hierarchy helps in fine-
grained search. The designer respects the component integrity at each level of
hierarchy and thus never creates an invalid design.

We translate this domain knowledge of hierarchy of components into an ef-
fective evolutionary technique. Our system HIER-HEIR1 for evolving designs is
analogous to STGP (Strongly Typed Genetic Programming) as used in evolving
functions (analogy discussed in Section 5). The system has the following proper-
ties: (a) Each design is one instance from a hierarchical library of designs where
options and constraints, at each level are defined. (b) A hierarchical mutation
operator that can create any new design in the search space from a given design
without creating any invalid design. (c) A hierarchical crossover operator that
can create all possible valid mixes of two designs without creating any invalid
design. (d) The algorithm has a knob to control exploration vs. exploitation.
The hierarchical nature of the operators provides this power. (e) The fitness
landscape is fine-grained since genotype closely maps to the phenotype.

With regard to previous work, [1,9] come closest to our technique. In [1], bit-
wise parameters are organized in a hierarchy to identify which bits between two
individuals are of the same ‘type’ and can be exchanged. There isn’t a notion of
swapping ‘blocks’ at different levels of hierarchy and exchanges only happen at
the leaf nodes implying only parameter evolution and no component-wise evolu-
tion. Mutation is used simply, to vary the number of blocks by adding/deleting
blocks. Our operators, on the contrary, facilitate component level evolution with
both mutation and crossover capable of operating at different levels of the hier-
archy. For instance, in [1], the crossover cannot create every possible valid design
formed by exchanging parts of two parents. In [9], the system is designed and dis-
cussed in context of analog design. The notion of operators is not well-developed
and there is no discussion on how to create exploitative or explorative operators
or respect constraints at different levels of the hierarchy. The authors uses simple
hierarchies in his experiments, which allows them to use simple operators.

Our primary contribution is to develop a technique, HIER-HEIR, having hi-
erarchical representation with hierarchical variation operators, which uses the
domain knowledge of design, to efficiently evolve creative yet valid designs. In
this paper, we explain HIER-HEIR with a metaphor of a fashion design system.

With regard to the previous attempts to fashion design using evolutionary
algorithms, our system is novel showing that it is non-obvious. In [6], the sys-
tem uses a flat representation of dress parts and bit-wise operations, unlike our

1 ‘HIER’ stands for hierarchy, whereas ‘HEIR’ for evolution.
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hierarchical design. In [11], the dress is considered as a sketch, for which coordi-
nates can be moved to create new dresses.

The paper unfolds as follows: Our approach to implement a fashion design-
ing system using HIER-HEIR is discussed next. It is followed by description
of hierarchical representation and variation operators. Next, we elucidate the
Experimental Results of our system. Last, we summarize our work.

2 System Design

A dress design could be considered as a 2-D or 3-D drawing which can be modified
by re-sketching [11]. On the other hand, it may be understood as being composed
of many parts which are all seamed together to make the dress. These parts can
be organized in a flat structure or otherwise, in a hierarchical structure. Let us
consider traversing such a hierarchy bottom-up: collars, sleeves, pocket design
and center design all are joined together to make up a shirt. Similarly, belt,
fly, pocket and trouser-length seam together to make up trousers. Shirt and
trousers, in turn, rendered together, make up a dress. This simple illustration of
the hierarchy has the shirt and trousers at a higher level, whereas the belt, fly,
etc. are at a lower level and are parts of the shirt/trousers.

HIER-HIER evolves this hierarchy of components. The input to the system
is a hierarchical library of parts. Each part is composed of other parts and pro-
grammable numeric or categorical parameters (such as a parameter representing
color). Secondly, there is a rule set, which defines any constraints on putting
these parts together, for instance, one may set a rule that a button design A is
never put with a collar of type B.

At each level, the system requires to choose one of the alternatives for each
part at the given level and define all its programmable parameters. On the basis
of the alternative chosen (say A1), at the next level, the alternatives for each
of the child parts of A1 (that compose A1) require to be chosen. This iterative
process goes on till the smallest indivisible part is decided and the dress is
constructed.

HIER-HEIR is extensible and scalable in multiple ways. The designer can add
new parts at any level of the hierarchy as per taste and discretion. The definition
of a part is not restrictive. By defining multiple child parts and programmable
parameters for a given part, a wide variety of parts may be represented (allowing
both parameter and component search together). The designer may add recursive
parts making the design space infinitely large and more creative.

3 Design Representation

In line with HIER-HEIR’s ideology, we preserve the hierarchy described in the
previous section in all components of our evolutionary system including the
representation of the genome, variation operators and in fitness evaluation. This
is not as obvious as it seems. In previous works, even though the authors have
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had an inkling of the hierarchy they have chosen a flat representation which is
very often bit-encoded [6].

The hierarchical library of parts is represented as a polymorphic class. Every
possible dress or genome is an instance or object of this polymorphic class. The
genome is a hierarchy of chosen parts. A ‘part’ is a component/block at each
level of the hierarchy. Each part contains the necessary and sufficient information
to construct (or equivalently draw, in this case) the part in 2-D space and to
perform effective crossovers and mutations. The structure of the polymorphic
class is illustrated below in C++ syntax.

C1: Code for Polymorphic Class
class dress { public:

top *t;
bottom *b; };

class top {public: //shared members
collar *c;
sleeve *s; };

class shirt::top //inherits from top
{public: //unshared members

center shirt *cs;
button shirt *bs; };

class collar //basic part’s class
{public:

int type;
int to connect[r][c];
int shape[r][c]; }; So on and so forth...

There are the following two kinds of parts in the hierarchy:
Compositional Part: Compositional parts are composed of other parts

(termed as child parts henceforth) which themselves may be compositional or
basic parts. Parts at all levels of the hierarchy except the lowermost level are
compositional parts. A Compositional part is represented as a class with the fol-
lowing data members: (a) Shared Members : These are (pointers to) child parts of
the given part which are shared or common to all possible choices of the current
part. Put another way, a shared part is common to all derived classes of the base
class of the given part. As depicted in Code C1 (code for hierarchical library),
collar and sleeve are shared parts, since they remain the same for a shirt, kurta
or a t-shirt. From perspective of inheritance, the shared parts may be declared
in the base/parent class itself. (b) Unshared member : There are (pointers to)
child parts which are unique to the current part and not a property of any other
choices for the current part. In fact, it is the unshared members which provide
individuality to any part and distinguish it from all the other choices. For in-
stance, buttons and center are unshared members for top, since they are different
for a kurta and a shirt. (c) type: This field identifies whether the particular part
is a basic part (represented by a numeric 0) or a compositional part (numeric 1).
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Basic part: Parts of this type belong to the lowermost level(leaf nodes) of
the hierarchy. Basic parts are classes with the following fields: (a) shape: This
field is an array of (x,y) coordinates that exactly defines how the part shall
be rendered/drawn in 2-D space. For each unconnected shape in the part, a
set of points are defined, which if joined sequentially will render the part. The
shape field can be extended to represent a 3-D format. (b) to connect : This field
defines what parts connect to the given part and at exactly what coordinates of
the given part the connections will happen. For instance, a ‘collar’ connects with
the ‘center’ and not a ‘sleeve’, even though all these three parts compose a shirt
and are at the same level of hierarchy. (c) parameters : These are any numeric
values for a part, which can be chosen from a range, for instance, color. (d) type:
Same as in compositional part.

4 Initialization

Initialization is done by a recursive process traversing the polymorphic hierarchy
in a top-down, breadth-first fashion. For each part, one of the alternatives is
randomly chosen. Given the alternative chosen, alternatives are randomly chosen
for all its child parts. The process terminates when only basic parts are left.

5 Variation Operators

5.1 Mutation

The hierarchical mutation operator simply chooses a part of the individual and
re-initializes it. The same initialization function, which generates the whole dress
in the beginning of the algorithm, is now executed just for the chosen part. The
function works iteratively to grow the whole hierarchy of parts under chosen
part. Everything in the genome remains same except the chosen part and parts
that make the chosen part. All dresses created are valid dresses.

Our mutation operator can be exploitative or explorative depending on the
level of hierarchy it operates at. For instance, if it re-initializes a part at the
top of the hierarchy (say shirt or trousers), it is a macro-mutation (explorative)
that changes a large part of the dress. Whereas, if the mutation is performed
on a part at the lower levels of the hierarchy (say collar, etc.), the operator is
exploitative. In our design, whenever an individual is chosen, the level at which
the mutation occurs is chosen probabilistically. A probability density function
(PDF) determines the probability of choosing a part at any given level of the
hierarchy. The PDF is defined by the algorithm designer and can be varied as a
function of generations.

5.2 Crossover

The basic idea to ensure valid crossovers is that only the parts which are of the
same type or equivalently, inherit from the same base class can be exchanged.
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The crossover simply exchanges the parts of same type with all its child parts,
which ensures the validity of the new dresses created. For instance, a shirt may
be exchanged with a kurta/t-shirt, since they belong to the same type, but not
with trousers. Comparing this with [1], the crossover operator therein would not
be able to exchange a kurta with a shirt.

Given two individuals, for a given part in the first individual, there may not
be any part in the second individual which is of the same type. For instance,
consider one dress has trousers, whereas the other dress has shorts, then no child
parts of the trousers or the shorts can exchange with each other. Given any two
individuals, we can calculate a Mating Potential as the number of parts that
could be exchanged between the two individuals. If the dresses are too distinct,
the Mating Potential (MP) is low and crossover could only happen at the top
levels of the hierarchy. On the other hand, two similar dresses would have high
MP and the crossover could happen across the levels. Do note however, that two
exactly same dresses have very high MP, but the the crossover is degenerate.

Given two individuals, we use a recursive ‘coloring’ algorithm to color all
parts that can be mated in the two individuals and to find the MP quantita-
tively. The algorithm works henceforth: (1) The algorithm starts from the top of
the hierarchy for both individuals, which is colored by default. The part(s) under
consideration in the first iteration is top. (2) If the corresponding parts have the
same design, both their shared and unshared members are colored. For parts of
same design, we know that all their children, shared and unshared, will corre-
spond with regard to type. Whereas if the corresponding parts (that of same
type) are not of the same design2, only its shared parts are colored. for e.g., if
the corresponding part is a shirt for both chosen individuals, all their child parts
are exchangeable and are hence colored. Whereas if the corresponding parts are
a shirt and a t-shirt, only their shared child parts are colored. (3) All the colored
child parts again go through Step 2. This process continues till the part being
compared is a basic part or there are no shared children for a part.

This algorithm colors all parts of both individuals which can be exchanged.
More the number of exchangeable parts between two individuals, higher is their
MP. Given the colored individuals, we probabilistically choose which part to
exchange. Similar to mutation, a PDF controls exploration vs. exploitation de-
pending on which level of the hierarchy the exchange is done. MP can also be
used to choose the individuals for mating: crossover of two individuals with high
MP will lead to a micro-mutation and vice-versa.

Our hierarchical crossover exchanges parts of the same type leading to valid
dresses. Exploration vs. exploitation is controlled both by the choice of the indi-
vidual that undergo crossover and the level of hierarchy at which the crossover
takes place. This can be explicitly controlled using the PDF.

2 Each ‘basic part’ class has a field called shape which defines how exactly that part
will be rendered on the screen. This field represents the ‘design’ of that part. The
‘design’ of a basic part can be defined by the position of its seams when it is or will
be stitched to make a dress. The ‘design’ of a compositional part is based on the
‘design’ of basic parts it contains.



HIER-HEIR: An Evolutionary System 211

5.3 Discussion on Representation and Operators

Our hierarchical representation and operators are unique. They do not lead to
any invalid designs. They are not restrictive and can potentially cross two designs
in all possible valid ways and mutate a design to create any new design. The
variations exchange or modify phenotypic building blocks, i.e. parts. This implies
that a micro-variation in the genotype space corresponds to a small change in
the phenotype (rendered dress) space as well and vice-versa. This leads to a
smooth fitness landscape, which increases the chances of success/convergence of
the algorithm.

The hierarchical nature of the operators, provides a knob to control explo-
ration and exploitation according to the discretion of the algorithm designer.
We believe this extra knob lays a lot of power in the hand of the algorithm
designer to control the trajectory of the algorithm more efficiently than relying
on the emergent dynamics of evolution.

With regard to genetic programming paradigms, we believe that our repre-
sentation and operators are analogous to STGP [10]. Whereas in STGP, the type
of arguments a function takes, is defined, for us the type of parts which compose
any part are defined. In both cases, this allows only valid (or those adhering to
the defined grammar) designs to be created. The crossover in STGP happens
only at points where the same type of arguments are available, whereas in our
system, they happen where the same type of part is available.

Our representation and operators strictly adhere to the objectives detailed in
Section 1.

6 Fitness Evaluation

The system takes fitness values from the end user. The interactive system is
displayed as a GUI, which renders/shows eight different designs per page (refer
Figure 1). We first describe the GUI and later, the details of how various designs
are rendered.

The GUI asks the user/designer to rate the designs on two criteria: style and
wearability. The former represents the aesthetic value of the design, whereas the
latter is about the ease/comfort with which the dress can be worn. Both of the
above criteria have a meter of judgment that ranges from 0 to 10 with a step-
size of 1. The average of these two parameters is taken as the fitness value of a
fashion dress.

Render and Connect Functions: Our genome is hierarchical in nature hav-
ing both compositional and basic parts. A mapping function recursively flattens
this hierarchical genome to a flat array of basic parts called ‘dress phenotype’.

We implement two functions ‘connect’ and ‘render’ to connect and render the
fashion dress as an appropriate connection of all the basic parts in 2-D space.
The render function simply draws the part in the 2-D space at a given position.

To render a complete fashion-design/dress each of these parts is combined and
connected in a specific way. The connect function takes the ‘dress phenotype’
as input and renders them at appropriate positions (here co-ordinates), thus
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Fig. 1. Design System’s GUI

connecting them. The connected assembly of parts forms the phenotype which
is then assigned fitness by the user.

Algorithm for the ‘connect’ function: (1) We randomly pick one part and ren-
der it at the origin using the ‘render’ function. This part is labeled ‘rendered’.
(2) We pick any remaining part, such that it connects to the part labeled ‘ren-
dered’ and not ‘connected’. We render this part at appropriate coordinates in
2-D space so that it ‘connects’ to the part already rendered. We render this part
next, because given the positions of the parts already rendered , we can exactly
determine the position of the current part. (3) We go to Step 2 till all parts that
connect to the part rendered in step 2 are rendered at appropriate positions.
This part is then labeled ‘connected’ and all the parts that connected to it are
labeled ‘rendered’. (4) We go to Step 2 till all parts are labeled both ‘rendered’
and ‘connected’.

7 Experiments

We implemented HIER-HEIR in MATLAB. Since MATLAB supports very little
Object Oriented Programming and does not support polymorphism or pointers,
we implemented the polymorphic classes in MATLAB ourselves.

Our hierarchical library constitutes the following parts. The dress is divided in
three parts: top, belt and bottom. There are two alternatives for top: shirt and
kurta. Each of these comprise of right and left collar, right and left sleeve, and a
center design. There are three alternative designs each for sleeve, collar and cen-
ter design. There are three alternatives for bottom: trousers, shorts and pajamas.
There are three alternate designs for each of these. There are three alternatives
for belt style.The total search space spanned by our library is 39,366.
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We ran an instance of our algorithm to get reactions from users. The pop-
ulation size used is 8. We use tournament selection with tournament size of 2.
The crossover probability is pc (0.75), whereas the probability of mutation is
pm (0.4). We use a two-valued discrete PDF for crossover and mutation. The
probability of modifying (crossover or mutation) a basic part is pmicro, whereas
that to modify any compositional part is pmacro. We have set these probability
values such that crossover is more exploitative, whereas mutation is more explo-
rative. For Crossover: cpmacro=0.33 and cpmicro=0.66; Mutation: mpmacro=0.75
and mpmicro=0.25.

Experiment: We requested fourteen subjects (eight men, six women) to rate
the designs created by our system on the basis of both Style and Wearability.
After ten generations (80 designs), they were asked to fill up a questionnaire.
Four key questions were asked and their answer endorsement rates are as follows.
For each answer choice, the number of subjects that endorsed the given choice
is mentioned besides it.

1. Do u think the system was able to find a design which you liked?
Ans- Yes: 3; To a fair extent: 5; Somewhat: 5; Not Really: 1.

2. Did you feel that the system slowly understood what you like and generated
more designs of your choice?
Ans- Yes: 2; To a fair extent: 11 ;Somewhat Yes: 1; Not Really: 0.

3. Do you think the system was creative?
Ans- Yes: 4; To a fair extent: 5; Somewhat: 5; Not Really: 0.

4. Would you like to choose such a system for designing or choosing clothes?
Ans- Yes: 4; Yes, if designs are visually more realistic: 4; Somewhat: 4; Not
Really: 2.

We group the first two choices as positive endorsement, whereas the last two as
negative. Whereas, 90% of the subjects felt that the system was learning their
taste of design, an encouraging 60% of the subjects thought the system found
a design they liked. The former provides strong evidence to our hypothesis of a
smooth fitness landscape and that the selection-variation dynamics are working
as desired. The latter is a fairly strong endorsement of our system in meeting
the expectations of the users.

All subjects found the system ‘creative’ with no one endorsing the ‘Not Really’
question. They enjoyed designing on such a system and were quite enthusiastic
with it. Though, a consistent feedback included the need for 3-D designs and
inclusion of texture and patterns.

Our current experiments show that a large proportion of subjects were sat-
isfied with HIER-HEIR in its ability to create designs and they could also see
the system learning their likes and dislikes. The current experiments along with
the feedback from subjects, gives us direction and scope of future work, which
will include 3-D rendering, controlled experiments and larger sample sets. In
the long term, we wish to use our system as a test-bed for general hierarchical
evolution. We wish to plug-in different design problems in it and test its useful-
ness. We wish to also try our hands at some problems where fitness is measured
objectively to precisely benchmark different approaches.
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8 Summary

We describe a new and powerful technique, HIER-HEIR that implements hier-
archical representation and hierarchical variation operators, to create designs.
The representation and operators efficiently capture the nuances in creative de-
signing to generate creative yet valid designs. The paper details application of
the HIER-HEIR technique to automatic design of dresses through interactive
evolution. The design of hierarchical representation, crossover and mutation op-
erators for dress evolution is discussed. Finally, experiments are conducted to
validate efficient working of our technique. As future work, we aim to add more
variety and aesthetics to our fashion designing system and also, use HIER-HEIR
technique for automatic evolution of other creative systems.
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Genr8: Architects’ experience with an emergent design tool. In: The Art of Artificial
Evolution, pp. 167–188 (2008)

4. Hornby, G.S., Lipson, H., Pollack, J.B.: Generative representations for the au-
tomated design of modular physical robots. IEEE Transactions on Robotics and
Automation 19, 703–719 (2003)

5. Kicinger, R., Arciszewski, T., De Jong, K.A.: Generative design in structural en-
gineering. In: ASCE International Conference on Computing in Civil Engineering
(2005)

6. Kim, H.-S., Cho, S.-B.: Knowledge-based encoding in interactive genetic algorithm
for a fashion design aid system. In: GECCO, p. 757 (2000)

7. Koza, J.R., Bennett III, F.H., Andre, D., Martin, A., Dunlap, F.: Automated syn-
thesis of analog electrical circuits by means of genetic programming. IEEE Trans-
actions on Evolutionary Computation 1, 109–128 (1997)

8. Leenaerts, D., Kruiskamp, W.: Darwin: Cmos opamp synthesis by means of a
genetic algorithm. In: Design Automation Conference, pp. 433–438 (1995)

9. McConaghy, T., Palmers, P., Gielen, G., Steyaert, M.: Genetic programming with
reuse of known designs for industrially scalable, novel circuit design. In: GPTP V,
pp. 159–184 (2008)

10. Montana, D.J.: Strongly typed genetic programming. Evol. Comput. 3(2), 199–230
(1995)

11. Ogata, Y., Onisawa, T.: Interactive clothes design support system. In: Ishikawa,
M., Doya, K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2007, Part II. LNCS,
vol. 4985, pp. 657–665. Springer, Heidelberg (2008)



K. Deb et al. (Eds.): SEAL 2010, LNCS 6457, pp. 215–219, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

A Population Diversity-Oriented Gene Expression 
Programming for Function Finding 

Ruochen Liu, Qifeng Lei, Jing Liu, and Licheng Jiao 

Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of 
China, Institute of Intelligent Information Processing, Xidian University, Xi’an, 710071 

Abstract. Gene expression programming (GEP) is a novel evolutionary algo-
rithm, which combines the advantages of simple genetic algorithm (SGA) and 
genetic programming (GP). Owing to its special structure of linear encoding 
and nonlinear decoding, GEP has been applied in various fields such as function 
finding and data classification. In this paper, we propose a modified GEP (Mod-
GEP), in which, two strategies including population updating and population 
pruning are used to increase the diversity of population. Mod-GEP is applied 
into two practical function finding problems, the results show that Mod-GEP 
can get a more satisfactory solution than that of GP, GEP and GEP based on 
statistical analysis and stagnancy (AMACGEP). 

Keywords: Gene expression programming, genetic programming, function 
finding. 

1   Introduction 

Among various data mining tasks, function finding is considered as a fundamental 
activity [1]. Gene expression programming (GEP) proposed by Ferreira [2] has gotten 
relatively good results in finding exact model functions for complex systems. 

On the other hand, GEP [2] also has a low speed of convergence, and tends to be 
trapped in local optima. Taiyong Li [3] pointed out that in the process of GEP, many 
individuals in one population are identical. But works on these issues in GEP are very 
little. Based on the above facts, a modified GEP (Mod-GEP) is proposed to improve 
the diversity of population and then to deal with prematurity and the low convergence 
speed. The experimental results of two function finding problems show that Mod-
GEP can find a more satisfactory function compared with GP [4] and GEP [2] and 
GEP based on statistical analysis and stagnancy (AMACGEP) [5]. 

2   An Overview of GEP Algorithm 

GEP [6] uses fixed-length chromosome as its genotypes which can be expressed  
as phenotypes, i.e., expression trees (ETs) with different sizes and shapes. The chro-
mosome employs the head-tail encoding method which ensures the validity of the 
reproduced offsprings after unconstrained modification.  
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The GEP algorithm [6] begins with an initial population of randomly generated 
chromosomes (individuals), which are encoded as ETs, and then evaluate each indi-
vidual in the population by a predefined fitness function. According to their fitness, 
some individuals in the population will be selected and subjected to reproduction  
by using genic operations such as mutation, inversion, recombination, and so on. 
These reproduced individuals are subjected to the same process: fitness evaluation, 
selection and reproduction. The process is repeated until certain termination criteria 
are satisfied. 

3   Mod-GEP Algorithm 

3.1   The Framework of Mod-GEP Algorithm 

To illustrate Mod-GEP explicitly, the whole framework of the algorithm is given as 
follows: 
 

Step 1: Initialization. A population Pold is initialized according to a specific 
problem. 

Step 2: Evaluation. The fitness Fold of each chromosome in Pold is evaluated. 
Step 3: Selection. Select M chromosomes from Pold according to fitness by  

roulette wheel to form a new population Pnew. 
Step 4: Population Updating. Randomly generate Ndead chromosomes to replace 

the same number of chromosomes in Pnew. After population Updating, the middle 
population is denoted as Pnew1. 

Step 5: Genic Operation. Pnew1 is evolved by using mutation, inversion,  
recombination and so on. Another middle population is denoted as Pnew2. 

Step 6: Evaluation. The fitness Fnew2 of the chromosomes in Pnew2 is evaluated. 
Step 7: Population Pruning. If the condition of population pruning is not  

satisfied, return to step 8. 
Step 8: Re-selection. The chromosomes with the highest fitness are selected from 

Pold and Pnew2 to pass to the next generation. 

3.2   Population Pruning 

When there is no remarkable improvement in term of the best fitness over a certain 
number of generations (suppose Gen=100), it can be believed that the population may 
has a low diversity. In this step, the chromosomes are sorted by descending order ac-
cording to their fitness, and then we pick out the first chromosome to form the next 
generation, and prune the chromosomes that have a similarity with the picked one. 
We repeat the operation till there's no chromosome left in the current population. 

What's worth noting is that what we do is just to prune the chromosomes with 
lower fitness than the picked one within a certain limited range (δ). There is an advan-
tage that we can directly make full use of the fitness of the chromosomes and we don't 
have to calculate how many symbols are the same in the corresponding positions. If 
the number of the chromosomes in population is less than the predefined population 
size after population pruning, we randomly initialize the equal number of chromo-
somes to maintain the population size. 
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Here, another point to be put is that we do population updating after roulette wheel 
selection, which is different from other algorithms such as [7]. Since roulette wheel 
selection makes high-fitness chromosomes quickly dominate the population and thus 
the diversity of population is decreased. 

4   Experimental Evaluations 

The common way for function finding task in real life is to run several times, and ac-
cept the best solution. So, each experiment was repeated for 5 runs independently in 
our experiments, and the best results were compared with genetic programming (GP) 
[4], GEP, AMACGEP [5] in term of the mean squared error (MSE). And the results in 
[4] and [5] are used to make a direct comparison. 

In our experiments, GEP and Mod-GEP use the same following empirical parame-
ters: the population size is 30, the number of maximum generations is set as 10000, 
number of genes = 5, the head length is 8, all the modification rates are set as table 5.8 
in [6], the function set F={+, -, *, /, sin, cos, exp, log, sqrt} where 'log' and 'sqrt' deal 
with the absolute value of the corresponding numbers, the terminal set T= {t, ?} or 
{I, ?} where "?" represents the random numerical constant ranged from -1 to 1 in  
experiment 1 while "?" ranged from -2 to 2 in experiment 2. We choose the fitness 
function based on the absolute mean squared error (MSE) proposed by Ferreira [6]. In 
addition, Ndead = 7 and δ = 1e-3 in Mod-GEP. 

Table 1. The data of experiment 1 

Result Relative error(%) 
No. t(min) y(%) 

GP GEP 
AMAC 
GEP 

Mod-
GEP 

GP GEP 
AMAC 
GEP 

Mod-GEP 

1 1 4.00 3.9991 3.9820 4.0034 4.0145 0.0223 0.4502 0.0843 0.3613 

2 2 6.40 6.4284 6.5253 6.4265 6.4267 0.4443 1.9583 0.4145 0.4179 

3 3 8.00 7.9389 7.9221 7.9430 7.9947 0.7641 0.9734 0.7123 0.0667 

4 4 8.80 8.7385 8.7527 8.8305 8.7839 0.6985 0.5376 0.3468 0.1832 

5 5 9.22 9.2257 9.2199 9.2161 9.2437 0.0617 0.0011 0.0426 0.2572 

6 6 9.50 9.5524 9.4871 9.4859 9.4976 0.5511 0.1353 0.1482 0.0248 

7 7 9.70 9.7863 9.6730 9.7093 9.6926 0.8899 0.2781 0.0957 0.0767 

8 8 9.86 9.9620 9.8499 9.8739 9.8672 1.0350 0.1029 0.1406 0.0727 

9 9 10.00 10.0988 10.0334 10.0366 10.0386 0.9884 0.3340 0.3657 0.3864 

10 10 10.20 10.2083 10.2001 10.2322 10.2070 0.0816 0.0012 0.3158 0.0686 

11 11 10.32 10.2979 10.3257 10.3335 10.3652 0.2138 0.0557 0.1311 0.4376 

12 12 10.42 10.3726 10.4077 10.4114 10.4656 0.4547 0.1182 0.0822 0.4372 

13 13 10.50 10.4358 10.4646 10.4858 10.4920 0.6111 0.3368 0.1349 0.0765 

14 14 10.55 10.4900 10.5216 10.5388 10.5148 0.5685 0.2704 0.1059 0.3337 

15 15 10.58 10.5370 10.5887 10.5821 10.5437 0.4066 0.0825 0.0195 0.3428 

16 16 10.60 10.5781 10.6552 10.6661 10.5852 0.2067 0.5208 0.6237 0.1397 
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4.1   Experiment 1 

The data used in experiment 1 originates from one chemical experiment, the experi-
menter wrote down the density of a material every other minute. The data are given in 
Table 1. The task is to find the relationship between the density of the material y/% 
and the time t/min.  

For the relative error, it seems a little difficult to judge which algorithm is better 
between AMACGEP and Mod-GEP. But we can still see that, seven out of sixteen 
points, the relative error obtained by Mod-GEP is smallest in four algorithms, but four 
out of sixteen points, the relative error obtained by AMACGEP is smallest. 

4.2   Experiment 2 

The data in experiment 2 originates from a physical experiment: when current I passes 
2Ω resistance, the voltage on the two sides of the resistance is V. The data are given in 
table 3. The task of the problem is to find the relationship between V and I. 

From table 4, we can vividly see that Mod-GEP has a smaller relative error than 
any of other compared algorithms on the whole. 

Table 2. Comparison with other algorithms in term of MSE 

Algorithm GP GEP AMACGEP Mod-GEP 
MSE 0.0032235881 0.0019886611 0.0007948444 0.0006489875 

Table 3. The data of experiment 2 

Result Relative error (%) 
No. I(A) V(V)

GP GEP AMAC 
GEP Mod-GEP GP GEP AMAC 

GEP Mod-GEP 

1 1 1.8 1.8092 1.7981 1.7993 1.7949 0.5107 0.1080 0.0363 0.2815 
2 2 3.7 3.8320 3.6977 3.6729 3.7043 3.5681 0.0623 0.7321 0.1170 
3 4 8.2 7.8777 8.2019 8.2267 8.2043 3.9308 0.0226 0.3364 0.0522 
4 6 12.0 11.9233 12.0346 12.0689 11.9981 0.6389 0.2882 0.5744 0.0162 
5 8 15.8 15.9690 15.7954 15.8266 15.7990 1.0695 0.0294 0.1685 0.0066 
6 10 20.2 20.0146 20.1492 20.0451 20.1947 0.9176 0.2514 0.7667 0.0263 

Table 4. Comparison with other algorithms in term of MSE 

Algorithm GP GEP AMACGEP Mod-GEP 
MSE 0.0316997178 0.0006348718 0.0051572400 0.0000159727 

5   Conclusions and Future Work 

In this paper, we proposed a modified GEP (Mod-GEP) to perform better in function 
finding by increasing the diversity of population. In the future, we will focus on com-
bining GEP with other up-to-date methods of diversity maintenance [8] 
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Abstract. This paper presents an important real-world application of
both evolutionary computation and learning, an application to the search
for optimal catalytic materials. In this area, evolutionary and especially
genetic algorithms are encountered most frequently. However, their appli-
cation is far from any standard methodology, due to problems with mixed
optimization and constraints. The paper describes how these difficulties
are dealt with in the evolutionary optimization system GENACAT, re-
cently developed for searching optimal catalysts. It also recalls that the
costly evaluation of objective functions in this application area can be
tackled through learning suitable regression models of those functions,
called surrogate models. Ongoing integration of neural-networks-based
surrogate modelling with GENACAT is illustrated on two brief examples.

Keywords: evolutionary optimization, mixed optimization, constrained
optimization, neural network learning, surrogate modelling, evolutionary
algorithms in catalysis.

1 Introduction

In chemical engineering, much effort is devoted to increasing the performance of
industrially important reactions, i.e., to achieving a higher yield of the desired
reaction products without higher material or energy costs. Over 90% of chem-
ical processes use a catalyst to this end. Catalysts are materials that decrease
the energy needed to activate a chemical reaction without being themselves con-
sumed in it. They typically consist of several components with different purpose,
which can be selected from among many substances. Chemical properties of those
substances constrain the possible ratios of their proportions, but they still al-
low for an infinite number of catalyst compositions. Moreover, the catalyst can
usually be prepared from the individual components in a number of ways, and
the preparation method also influences its performance in the chemical process.
Consequently, the search for new catalytic materials leading to optimal perfor-
mance of a chemical reaction entails high-dimensional constrained optimization
tasks. Their objective functions cannot be analytically described, their values
must be obtained empirically. Commonly used smooth optimization methods
are not convenient to this end. Indeed, to obtain sufficiently precise numerical
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estimates of gradients or second order derivatives of the empirical objective func-
tion, those methods need to evaluate the function in points some of which would
have a smaller distance than is the measurement error. That is why methods
not requiring derivatives have been employed to solve those optimization tasks -
both deterministic ones, in particular the simplex method and holographic strat-
egy, and stochastic ones, such as simulated annealing, or evolutionary algorithms
[1]. Evolutionary, especially genetic algorithms (GA) are encountered most fre-
quently, but their application to this area is far from any standard methodology.
Main obstacles on a way to such a methodology are mixed optimization with
respect to continuous and discrete variables, and constraints.

This paper describes how those two obstacles are tackled in the evolutionary
optimization system GENACAT, developed in recent years at the Leibniz Insti-
tute for Catalysis in Rostock, in collaboration with the Institute for Computer
Science in Prague. The overall functionality of the system has been outlined,
from the point of view of the application domain, in the Journal of Chemical
Information and Modeling [2]. The present paper, on the other hand, explains
the principles of the underlying evolutionary approach to mixed constrained op-
timization, which have not been published yet.

The evaluation of the empirical objective functions encountered in the opti-
mization of catalytic materials is costly and time-consuming. In particular, testing
a generation of materials proposed by an evolutionary algorithm typically needs
several to many days of time and costs thousands of euros. Therefore, evolutionary
optimization usually proceeds only for 5–10 generations in this application area.
A common approach to the optimization of such objective functions is to evaluate
the original objective function only sometimes, and to replace it otherwise with
a suitable regression model learned from the available data and called surrogate
model of the objective function [3,4,5,6]. Several successful applications of this
approach have been already reported also in catalysis [7,8,9], inciting us recently
to incorporate surrogate models based on two kinds of artificial neural networks
into GENACAT. An explanation of the integration of surrogate modelling with
this evolutionary system would exceed the extent of the paper. Therefore, it has
been presented in a separate more comprehensible companion paper [10]. Here, we
mainly document the usefulness of surrogate modelling in the evolutionary opti-
mization of catalytic materials on examples, not included in [10].

In the next section, the optimization task entailed by the search for new
catalytic materials is formalized, and the solution adopted in the GENACAT
system is explained and illustrated on an example. Section 3, on the other hand,
shows two brief examples of neural-network based surrogate modelling.

2 Constrained Mixed Optimization in the Search for
New Catalytic Materials

In the search for new catalysts leading to the optimal performance of a chemical
reaction, the individual coordinates of points in the input space of the objective
function typically convey some of the following meanings:
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(i) Qualitative composition of the catalytic material that is, of which compo-
nents it consists, and what its support is.

(ii) Quantitative composition of the catalytic material, that is, the fractions of
the various components mentioned in (i).

(iii) Preparation of the catalytic material, its individual steps and their quan-
titative characterizations, such as temperatures or durations.

(iv) Reaction conditions of the catalyzed reaction.

There is an intimate connection between qualitative and quantitative compo-
sition. The presence of a particular component in the material is equivalent to
the fraction of that component being non-zero. In evolutionary optimization, the
employed algorithm has to guarantee that this equivalence cannot become inval-
idated through its operations, e.g., through the crossover and mutation in GA.

Taking into account the fact that some of those coordinates are continuous
and other discrete, the considered optimization task entailed by the search for
new catalysts can be formulated as:

maximize f(x, d) subject to c1, . . . , cnc , (1)

where

– f is some empirical performance measure of the catalytic material, most
frequently yield of (some of) the reaction product(s);

– x = (x1, . . . , xnx) is a vector of values of continuous variables X1, . . . , Xnx ,
the range Val(Xi) of Xi is a union of intervals of non-zero lengths (typically,
a single such interval);

– d = (d1, . . . , dnd
) is a vector of values of discrete variables D1, . . . , Dnd

, thus
the range Val(Dj) of Dj is countable (typically, finite) and not necessary a
subset of real numbers;

– c1, . . . , cnc can be equality or inequality constraints, which can include func-
tions of any of the variables x1, . . . , xnx and d1, . . . , dnd

, as well as constraints
determining the distributions of X1, . . . , Xnx , D1, . . . , Dnd

.

As an example, Fig. 1 shows one of the tasks faced by the system GENACAT
during the first year of its use.

2.1 Solution Using Evolutionary Optimization

The popularity of evolutionary optimization methods in the search for catalytic
materials is mainly due to the fact that they tend to find global rather than
local solutions, and due to the possibility to establish a straightforward corre-
spondence between the optimization paths followed by the evolutionary algo-
rithm and channels of the high-throughput reactor in which the materials are
experimentally tested.

Due to the specific meaning conveyed by coordinates of points in the input
space of the objective function, it is quite difficult to use general evolutionary
optimization software, which optimizes functions with input spaces of low-level
data types, such as vectors of real numbers or bit-strings. Therefore, it is not
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Fitness: Y (product yield)
Continuous inputs:
Xi: proportion of the i-th com-
ponent from the components
pool available for the cat-
alytic material, i = 1, . . . , 37,
Val(Xi) = [0, 0.1] for i =
1, . . . , 22, Val(Xi) = [0, 0.003]
for i = 23, . . . , 37;
X38: overall proportion of com-
ponents belonging to precious
metals, Val(X38) = [0, 0.003];
X39: overall proportion of com-
ponents belonging to alkaline
earth metals or lanthanoids,
Val(X39) = [0, 0.05];
X40: proportion of the lower va-
lence element in a fixed pair
of alkaline earth metals or lan-
thanoids, Val(X40) = [0, 0.01];
X41: proportion of the higher
valence element in a fixed pair
of alkaline earth metals or lan-
thanoids, Val(X41) = [0, 0.05];
X42: overall proportion of com-
ponents not belonging to pre-
cious or to alkaline earth met-
als or lanthanoids, Val(X42) =
= [0.003, 0.05];
Discrete inputs:
D1: choice of a material serv-
ing as support of the cata-
lyst, Val(D1) = {material1,
material2};

D2: proportion of support;
Val(D2) = {0.95,0.99};
D3: choice of a fixed pair of
alkaline earth metals or lan-
thanoids, Val(D3) = {(i-th
component, i′-th component):
(29 ≤ i ≤ 31 & 32 ≤ i′ ≤ 33) ∨
(32 ≤ i ≤ 33 & 34 ≤ i′ ≤ 37)};
D4: number of included com-
ponents belonging to precious
metals, Val(D4) = {0, 1};
D5: number of included com-
ponents belonging to alkaline
earth metals or lanthanoids,
Val(D5) = {0, 1, 2};
D6: number of included fixed
pairs of alkaline earth metals or
lanthanoids, Val(D6) = {0, 1};
D7: number of included compo-
nents belonging neither to pre-
cious metals, nor to alkaline
earth metals or lanthanoids,
Val(D7) = {1, 2, 3, 4};
D8: overall number of all in-
cluded components, Val(D8) =
{2, 3, 4};
Constraints:
ci: probability distribution of
Xi on [0.003, 0.1] is uniform,
i = 1, . . . , 22;
ci: probability distribution of
Xi on (0, 0.003] is uniform, i =
23, . . . , 37;
c38: joint probability distribu-

tion of (X40, X41) on {(x, x′) :
0 ≤ x ≤ 0.01 & 0 ≤ x′ ≤ 0.05
& 20x≤x′≤50x} is uniform;
ci: P (0 < Xi−38 < 0.003) =
0, i = 39, . . . , 60;
ci: P (X1>0.03)=3 ∗ P (Xi−59>
0.03), i = 61, . . . , 81;
cj : probability distribution of
Dj−60 on Val(Dj−60) is uni-
form, j = 82, . . . , 84;
c85: probability distribution of
D4 on {0, 1} is (0.8, 0.2);
c86: joint probability distribu-
tion of (D5, D6) on Val(D5) ×
Val(D6) = {(0, 0), (0, 1), (1, 0),
(1, 1), (2, 0), (2, 1)} is ( 1

3 , 1
3 , 2

9 ,

0, 1
9 , 0);

c87: probability distribution of
D8 on {2,3,4} is (0.45,0.45,0.1);
c88: |{i : 23 ≤ i ≤ 28 & xi >
0}| = d4;
c89: |{i : 29 ≤ i ≤ 37 & xi >
0}| = d5;
c90: |{i : i = 40 & xi > 0}| =
d6;
c91: |{i : 1 ≤ i ≤ 22 & xi >
0}| = d7;
c92: d2 + x38 + x39 + x42 = 1;
c93: x1 + x2 + · · · + x22 = x42;
c94: x23 +x24 + · · ·+x28 = x38;
c95: x29+x30+· · ·+x37+x40+
x41 = x39;
c96: 20x40 ≤ x41 ≤ 50x40;
c97: d4 + d5 + d6 + d7 = d8.

Fig. 1. Example optimization task encountered in the search for new catalysts

surprising that – apart from early attempts to use general evolutionary software
and of a recent application of genetic programming based on general context-
based crossover [11] – the application of evolutionary algorithms in this area
took the route of developing them specifically for the optimization of catalytic
materials [12,13,14]. However, none of those specific algorithms attempted to
tackle both the obstacles mentioned in the Introduction – mixed optimization
and constraints, and the experience gathered with them so far shows that they
bring a difficulty of another kind: they are usable only for a narrow spectrum
of particular optimization tasks and have to be reimplemented each time when
different tasks emerge.

In GENACAT, that difficulty has been tackled through automatically gener-
ating, at run time, a specific GA precisely tailored to the optimization task being
solved. The algorithm is generated by a program generator, based on a user
specification of the task in a catalyst description language (CDL). The imple-
mentation of the program generator, the CDL-language, as well as the creating
and processing of CDL-descriptions have been presented in [2]. Here on the other
hand, we explain the method used in GENACAT to solve the mixed constrained
optimization task (1). It is based on two specific features of that task pertaining
to the search for new catalysts:
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(i) It is sufficient to consider only linear constraints. Even if the set of feasible so-
lutions is not constrained linearly in reality, the finite measurement precision
of the involved continuous variables always allows to constrain it piecewise
linearly and to indicate the relevant linear piece with an additional discrete
variable. Consequently, the set of values of the continuous variables that are
feasible for a particular combination of values of the discrete variables is a
polyhedron, determined by some matrix AP and vector bP

P = {x : AP x ≤ bP }. (2)

(ii) If a solution polyhedron is described with (2), then its feasibility (i.e., non-
emptiness) is invariant with respect to any permutation of columns of AP ,
and to any permutation of rows of (AP bP ). Moreover, the relation ≈ defined

P ≈ Q iff (AQbQ) can be obtained from (AP bP ) through
some permutation of columns of AP , followed by
some permutation of rows of the result and of bP

(3)

is an equivalence, partitioning the set of polyhedra into disjoint classes.

The property (ii) plays a crucial role in GENACAT because only one represen-
tative from each class needs to be checked for non-emptiness. For the example
optimization task introduced in Fig. 1, the difference between the number of
solution polyhedra and the number of their classes is shown in Fig. 2

On the set of nonempty polyhedra, discrete genetic optimization is performed,
using operations selection, mutation and crossover developed specifically to this
end. Each of the polyhedra forming the population obtained in this way con-
tains a subpopulation of combinations of values of continuous variables found
through continuous genetic optimization. The union of all such subpopulations
combined with the combinations of values of discrete variables corresponding
to the respective polyhedra, form together the final population of solutions to
the optimization task. The specific genetic operations employed in the discrete
optimization are defined as follows:

Selection is in the first generation uniform, in subsequent generations propor-
tionally to the importance of the polyhedron due to points from earlier genera-
tions that it contains. As a measure of that importance, the difference between
the fitness (=value of the objective function) of a point and the minimal fit-
ness encountered in previous generations is taken, summed over points with the
combination of values of the discrete variables corresponding to the polyhedron.

Mutation consists in replacing an existing polyhedron with a uniformly se-
lected nonempty one. The values of continuous variables forming a point in that
polyhedron are again obtained through continuous genetic optimization. If the
mutation rate is μ, then a proportion μ of the population is selected in this way,
and the proportion 1 − μ is selected using the above proportional selection.

Crossover relies on the fact that a solution polyhedron P is determined on the
one hand by the assignment of continuous variables to the columns of AP , on the
other hand by a particular combination of values of some or all discrete variables.
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All Nonempty
Solution
polyhedra 583 232 160 282 810

Equivalence
classes 480 60

Fig. 2. Comparison of the number of all and nonempty polyhedra with the number of
their equivalence classes for the example optimization task in Fig. 1 (left). End-users
are not confronted with the concept of equivalence classes, that is why the graphical
interface controlling the evolutionary optimization by GENACAT reports only the
numbers of solution polyhedra (right).

We assume that for the optimization of catalytic materials, the assignment of
variables to the columns of AP is more important, and we suggest a crossover
operation that always exchanges exactly one of the continuous variables assigned
to the parent polyhedra, and attempts to include as many discrete variables
corresponding to them as possible. Formally, denote mp the number of columns of
AP , and let {iP,1, . . . , iP,mP}⊂ {1, . . . , nx} and V P

j ⊂ Val(Dj) for j = 1, . . . , nd

be such that every solution (x, d) of (1) fulfills

AP (xiP,1 , . . . , xiP,mP
) ≤ bP & dj ∈ Vj for j = 1, . . . , nd. (4)

If the crossover rate is λ, then for each pair P and P ′ of solution polyhedra
selected using the proportional selection, a set of recombination offsprings is
formed with probability λ, in the following way:

(i) The set of candidate offsprings of P and P ′ is defined by

C(P, P ′) = {Q − solution polyhedron : Q �= ∅ &

& {iQ,1, . . . , iQ,mQ} ⊂ {iP,1, . . . , iP,mP } ∪ {iP ′,1, . . . , iP ′,mP ′ } &

& [(mQ = mP & |{iQ,1, . . . , iQ,mQ} ∩ {iP,1, . . . , iP,mP }| = mQ − 1)}∨
∨ (mQ = mP ′ & |{iQ,1, . . . , iQ,mQ} ∩ {iP ′,1, . . . , iP ′,mP ′ }| = mQ − 1)]}.

(5)

(ii) For each Q ∈ C(P, P ′), the uncertainty index of Q is computed as

u(Q) = |{j : 1 ≤ j ≤ nd & V Q
j �⊂ V P

j ∪ V P ′
j }|. (6)

(iii) The final set of offsprings of P and P ′ is defined by

O(P, P ′) = {Q ∈ C(P, P ′) : u(Q) = min
Q′∈C(P,P ′)

u(Q′)}. (7)
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Fig. 3. The distribution of sizes of the individual polyhedra during the 7 generations
of running the GA for the optimization task in Fig. 1

Due to the proportional selection, the subpopulations of combinations of con-
tinuous variables in polyhedra with higher importance tend to increase, whereas
the subpopulations in polyhedra with lower importance tend to decrease or to
disappear. This is illustrated in Fig.3 for the example task introduced in Fig.1.
For that task, the GA was run with a population size 96, given by the number of
available channels in the reactor in which the catalysts were tested. The evolu-
tion was finished after 7 generations, when the number of found materials with
sufficiently high fitness (yield) was already satisfactory for the users, in view of
the cost of the evaluation of another generation. Figure 3 shows the development
of the distribution of subpopulation sizes.

3 Learning Neural-Networks-Based Surrogate Models

This section has been included due to its particularly high relevance to sim-
ulated evolution and learning. However, space limitations cause it to lack de-
tail, for which the reader is referred to a more comprehensive companion paper
[10], devoted specifically to surrogate modelling in evolutionary optimization of
empirical objective functions.

Surrogate modelling is a general approach to the optimization of objective
functions with costly or time-consuming evaluations, encountered both in tradi-
tional optimization, mainly in connection with the efficient global optimization
(EGO) approach [15], and in evolutionary optimization [5,6,16]. It consists in
restricting the evaluation to points considered to be most important for the
progress of the employed optimization method and approximating it otherwise,
using a suitable model, learned from available data. For the progress of evolution-
ary optimization, most important are considered points with highest values of the
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Fig. 4. Comparison of the highest values
of the benchmark fitness function from [9]
found by the GA from Section 2 without
surrogate modelling and with an RBF-
based surrogate model

Fig. 5. Comparison of the cross-valida-
tion and test RMSE of surrogate models
with 21 different 2-hidden-layers MLP ar-
chitectures learned from data introduced
in [19]

fitness and points that most contribute to the diversity of the population. Since
empirical objective functions are typically nonlinear, nonlinear regression models
have been the primary choice for surrogate modelling, in particular polynomials
[17], Gaussian processes [3,15], and artificial neural networks of the kinds multi-
layer perceptron (MLP) or radial basis function (RBF) network [5,6,18]. Various
possibilities how to combine surrogate modelling with evolutionary optimization
discussed in the literature (most important among which are the individual-
based strategy and the generation-based strategy) have been explained in [10].

The fact that surrogate modelling is employed in the context of costly or time-
consuming objective functions effectively excludes the possibility to use those
functions for tuning surrogate modelling methods, and for comparing different
models and different ways of combining them with evolutionary optimization. To
get round this difficulty, artificial benchmark functions can be used, computed
analytically (thus in negligible time) but expected to have similar properties like
the empirical objective function from the point of view of evolutionary optimiza-
tion. For catalysis, two such benchmark functions were proposed in [9] and [12].
An alternative approach is to use available data from past evaluations of em-
pirical objective functions. This allows to estimate the accuracy of predictions
obtained with a surrogate model but it does not allow to test or to compare
particular strategies how to combine surrogate modelling with evolutionary op-
timization because the values of the objective function cannot be obtained in
points suggested by the strategy.

As an example of the former approach, Fig. 4 compares the highest values of
the benchmark fitness function proposed in [9] found in a population of the same
size by the GA outlined in Section 2 without and with surrogate modelling. A
RBF-network learned with data from all previous generations is used as surrogate
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model, combined with the GA according to the individual-based-strategy algo-
rithm described in [10]. An example of the latter approach is given in Fig. 5, using
data from optimization of catalysts for the high-throughput synthesis of HCN [19].
It compares cross-validation RMSE of 21 architectures of MLPs with two hidden
layers, learned from data obtained in the 1.-6. generation of the GA, with test
RMSE of MLPS with those architectures on data from the 7. generation. Both
examples clearly document the usefulness of surrogate modelling.

4 Conclusion

The paper presented several aspects of a real-world application of both evo-
lutionary computation and learning, an application to the search for optimal
catalytic materials. It explained the principles of an evolutionary algorithm un-
derlying the recently developed optimization system GENACAT for this appli-
cation area. They have not been addressed in the original, application-oriented
presentation of the system in [2]. Due to the orientation of the SEAL conference
to learning, it also recalled an ongoing incorporation of neural-networks-based
surrogate models into GENACAT. However, it only complemented with two brief
new examples the presentation of this topic in a more comprehensible compan-
ion paper [10]. Moreover, those examples illustrate only the general usefulness
of the integration of GENACAT with surrogate modelling, not our own mod-
est contribution to this area, which consists in enhancing neural-networks-based
surrogate models with regression boosting [18].
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18. Holeňa, M., Linke, D., Steinfeldt, N.: Boosted neural networks in evolutionary
computation. In: Chan, J.H. (ed.) ICONIP 2009, Part II. LNCS, vol. 5864, pp.
131–140. Springer, Heidelberg (2009)
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Abstract. Mainstream surrogate approaches for multi-objective prob-
lems build one approximation for each objective. Mono-surrogate ap-
proaches instead aim at characterizing the Pareto front with a single
model. Such an approach has been recently introduced using a mixture
of regression Support Vector Machine (SVM) to clamp the current Pareto
front to a single value, and one-class SVM to ensure that all dominated
points will be mapped on one side of this value. A new mono-surrogate
EMO approach is introduced here, relaxing the previous approach and
modelling Pareto dominance within the rank-SVM framework. The re-
sulting surrogate model is then used as a filter for offspring generation
in standard Evolutionary Multi-Objective Algorithms, and is compara-
tively validated on a set of benchmark problems.

1 Introduction

This paper is concerned with evolutionary Multi-Objective Optimization (EMO)
[2], and most specifically focuses on designing and using surrogate models in
order to speed up the evolutionary search. Surrogate models, namely compu-
tationally light estimates of the objective function, have been extensively used
in Evolutionary Algorithms (EAs) since the 1990’s [6], as the Achilles’s heel of
EAs is known to be the high number of times the objective function has to be
computed. This high number forbids using mainstream EAs in some application
domains, e.g. Optimal Design and Numerical Engineering where the objective
functions are computationally demanding. Surrogate-based EAs alleviate this
limitation by iteratively estimating the objective function, fueling the EA with
the estimate (aka surrogate model), acquiring new examples of the objective
function and revising the surrogate model accordingly; the reader will find a
comprehensive review of surrogate evolutionary optimization in [6].

Surrogate models are equally useful in evolutionary Multi-Objective Opti-
mization, all the more so when EMO involves several computationally heavy
objectives [8]. Current surrogate-based EMO approaches, with the notable ex-
ception of [13] and [10], basically extend surrogate-based standard EAs, building
� Work partially funded by FUI of System@tic Paris-Region ICT cluster through con-

tract DGT 117 407 Complex Systems Design Lab (CSDL).
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one surrogate for each objective function and replacing the objective by its sur-
rogate. The main limitation of such approaches is due to the approximation noise
as the number of objectives increases. The estimation cost indeed increases lin-
early with the number of objectives; but the Pareto dominance test, checking
whether one individual is dominated by another one, requires comparing their
surrogate values over all objectives; the error thus exponentially increases in the
worst case with the number of objectives.

The first mono-surrogate EMO approach was proposed by [13], aimed at char-
acterizing the already visited region of the objective space, although this char-
acterization hardly enables to guide evolution in the decision space. Addressing
this limitation, another mono-surrogate approach defined in the decision space
aimed at characterizing the current Pareto front and dominated region in the
decision space in order to guide further evolution [10] (more in section 2). While
this approach, referred to as Aggregated Surrogate Model (ASM), yields signifi-
cant savings in terms of computational cost on benchmark problems, it relies on
a complex adaptation of the Support Vector Machine framework [12], involving
regression- and one-class-like constraints. The ASM limitations, related to the
diversity of the Pareto front or the care to be exerted when using the surrogate
model to filter the offspring, are blamed on the over-constrained formulation of
the mono-surrogate model.

A new and relaxed version of Aggregated Surrogate Model for EMO is pro-
posed in this paper, inspired from rank-based SVM [4,7]. Basically, the new
surrogate model referred to as RASM (Rank-based ASM) is only required to
locally approximate the Pareto dominance relation, enabling to rank neighbor
points within the objective space. RASM is still used to filter the offspring,
through estimating whether they improve on their parents in terms of approxi-
mated Pareto-dominance.

This paper is organized as follows. Section 2 briefly discusses Aggregated
Surrogate Models in EMO, detailing the approach proposed in [10] for the sake of
self-containedness. Section 3 presents and discusses the RASM approach, which
is experimentally validated in Section 4. Section 5 concludes and presents some
perspectives for further research.

2 Aggregated Surrogate Models

Without pretending to exhaustivity, and referring the reader to [8] for a com-
prehensive review of surrogate-based EMO approaches, this section focuses on
mono-surrogate EMO algorithms. As mentioned in the introduction, the first
ever mono-surrogate EMO algorithm proposed by Yu et al. aimed at charac-
terizing the region of the objective space visited so far [13]. The rationale for
this approach, based on One-Class SVM [11], is that the envelope of the vis-
ited region excludes the Pareto front. In the general case however, the Pareto
front in the objective space does not tell much about the Pareto set in decision
space (except for specific problems where the Pareto front in the objective space
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corresponds to a set of rectangles in the decision space) and thus hardly allows
one to guide the EMO search.

The only mono-surrogate EMO approach in the decision space, to our best
knowledge, was referred to as Aggregate Surrogate Model [10]; it combines sev-
eral variants of the Support Vector Machine framework.

In their initial formulation [12], Support Vector Machines aim at a linear
model on the instance space X ⊂ IRd, solution of a quadratic optimization
problem:

Argmin{w,ξ} (
1
2
||w||2 + C

∑
k

ξk)

where the norm of the sought linear solution w ∈ IRd is minimized for the sake
of good generalization guarantees, and each ξk stands for the violation of one
learning constraint, to be minimized1

Typically, mapping a point xi ∈ IRd onto a desired value yi up to some
tolerance threshold ε (regression problem) amounts to four constraints:

< w, xi > −yi ≤ ε + ξup
i ξup

i ≥ 0
< w, xi > −yi ≥ −ε − ξlow

i ξlow
i ≥ 0

Likewise, mapping a point xi onto a half space [a,∞) (one-class problem)
involves two constraints:

< w, xi > ≥ a − ξi ξi ≥ 0

The ASM approach presented in [10] hybridizes the above two types of con-
straints as follows. Let the training set be defined as E = {x1, . . .x�, x�+1, . . . xm}
where the first � points belong to the current Pareto front and the following
points x�+1, . . .xm are dominated ones (possibly sub-sampling the current pop-
ulation to preserve the diversity in the objective or decision space). The ASM is
obtained from the following learning constraints:

– All Pareto points x1 . . .x� are mapped on some value ρ up to tolerance ε
(regression constraints);

– All dominated points are mapped onto (−∞, ρ + ε[ (one-class constraints).

The intuition behind this formulation is that the true Pareto front would then
expectedly lie in the ‘half space, ]ρ + ε, +∞), thus enabling to guide the explo-
ration of the search space.

The ASM problem finally reads:

Argmin{w,ξ} (
1
2
||w||2 + C

�∑
i=1

(ξup
i + ξlow

i ) + C

m∑
i=�+1

ξup
i )

1 The extension of the SVM approach to non-linear search spaces relies on the so-
called kernel trick, implicitly mapping the instance space X onto a feature space
[12]. See section 3 and [12] for more details.
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subject to

< w, xi > ≤ ρ + ε + ξup
i ξup

i ≥ 0 i = 1 . . . �
< w, xi > ≥ ρ − ε − ξlow

i ξlow
i ≥ 0 i = 1 . . . �

< w, xi > ≤ ρ − ε + ξup
i ξup

i ≥ 0 i = � + 1 . . .m

As mentioned in the introduction, the ASM problem is overconstrained as
all Pareto points must be mapped on a narrow interval ]ρ − ε, ρ + ε[. Another
issue is that it should make no difference whether the dominated points are
mapped onto (−∞, ρ − ε[ or ]ρ + ε, +∞). Still, the experimental validation on
problems ZDT1:3-6 [14] and their rotated variants IHR1:3-6 [5] shows that the
most effective variant depends on the underlying benchmark problem. Whereas
one can proceed by trying both variants and retaining the most effective one, the
approach is clearly unsatisfactory. Some attempts at a symmetrical formulation
of the ASM problem failed to address this issue.

3 Rank-Based Aggregate Surrogate Model

This section gives an overview of the Rank-based Aggregate Surrogate Model
(RASM), meant to address the ASM limitations. After stating the RASM formu-
lation and sketching its resolution, it details its use within the EMO framework.

3.1 A Surrogate Modelling Pareto Dominance

A new learning setting aimed at preference learning, a.k.a. learning to rank, has
been addressed within the SVM framework [7]. While preference learning can
be cast as a classification problem on X × X (the class of (x, x′) is positive iff
x is to be preferred to x′), it offers better generalization guarantees to formalize
preference learning as an underconstrained regression problem, where the hy-
pothesis h mapping X onto the real-valued space IR is only required to satisfy
h(x) > h(x′) whenever x is preferred to x′.

Let E = {x1, . . . , xm} and let P denote the set of pairs (i, j) such that xi

is preferred to xj ; the original formulation of rank-based SVM, involving all
preference constraints, is as follows:

Argmin{w,ξ} (
1
2
||w||2 + C

∑
(i,j)inP

ξi,j) (1)

subject to 〈w, xi〉 − 〈w, xj〉 ≥ 1 − ξi,j

ξi,j ≥ 0

}
∀(i, j) ∈ P (2)

where ξi,j stands for the slack variable associated to the violation of the pref-
erence constraint associated to (xi, xj) along the same lines as in Section 2.
However, for the sake of tractability, the resolution of Eq. (1-2) proceeds itera-
tively, considering a set Ωactive of active constraints which is initially empty. Eq.
(1)-(2) then only imply Ωactive instead of P . At each iteration, the most violated
constraint in P is added to Ωactive, and optimization proceeds [7].
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Fig. 1. Constraints involved in Rank-based Aggregated Surrogate Models. Left: The
current RASM. Right: Further extensions; see section 5.

Rank-SVM is adapted to the EMO framework as follows. Let E define the
current training set (population or archive), and consider the preference order
defined by non-dominated sorting. Several requirements on the rank-based sur-
rogate model are defined. First of all, the number of constraints should be linear
or sub-linear in the population size for the sake of tractability. Secondly, the
constraints should enforce an accurate model in terms of generality w.r.t. Pareto
dominance. Lastly, the model should support the diversity of the population
along the Pareto front. To comply with these requirements, only dominance
constraints have been considered so far (Fig. 1.left)2. Specifically, let primary
dominance constraints be associated to pairs (xi, xj) such that xj is the near-
est neighbor of xi conditionally to the fact that xi dominates xj (continuous
arrow, Fig. 1.left), and let secondary dominance constraints be associated
to pairs (xi, xj) such that xi belongs to the current Pareto front and xj belongs
to another front from non-dominated sorting (dotted arrow, Fig. 1.left).

Formally, the RASM is built by solving the dual problem associated to Eqs.(1-
2); due to space limitations the reader is referred to [10] for more details. Let
Ka,b denote the scalar product < Φ(xa), Φ(xb) > where Φ denotes the mapping
from the initial to the feature space (kernel trick), and let αa,b denote the La-
grange multiplier associated to the constraint relating xa and xb. Then it comes:

Dual form:

Argmax{α}
∑m

i,j=1 αij − 1
2

∑m
i,j,u,v=1 αijαuv (Kiu − Kiv − Kju + Kjv)

subject to 0 ≤ αij ≤ C
(3)

The Lagrangian (Eq. 3) is maximized iteratively by optimizing a single αij

multiplier (uniformly selected in Ωactive) in each iteration. Taking inspiration
from [7], RASM maintains a set Ωactive of active constraints which is initialized
to the set of primary dominance constraints. After the first 1000 × |Ωactive|
2 Other possibilities, illustrated in Fig. 1.right, will be discussed in section 5.
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iterations, every 10× |Ωactive| iterations the most violated secondary constraint
is thereafter added to Ωactive, until a given number of secondary constraints have
been added (typically 10% the number of primary constraints in the presented
experiments, see Section 4).

3.2 RASM-Based EMO

The RASM is integrated within existing EMO algorithms along the same lines
as the ASM [10]. Two different EMO algorithms have been considered, respec-
tively NSGA-II and MO-CMA-ES. At each generation, the training set is built
from the current population and an archive of points that have been visited
by the algorithm (more in Section 4.1). The standard variation operators of
the underlying EMO are used to generate many offspring; these offspring are
thereafter filtered according to the RASM as follows. Formally, the quality of an
offspring z is estimated as RASM(z) − RASM(xz) where xz is the individual
from population nearest to z in decision space.

As could have been expected, greedily selecting the offspring with maximal
quality leads to premature convergence due to the approximation noise. The off-
spring are therefore ordered according to their quality estimate; a probabilistic
selection attached to the offspring indices is achieved, using a normal distribu-
tion with variance σ2

sel (Fig. 2.right). Granted that the number of offspring is
sufficiently large, parameter σ2

sel thus controls the selection pressure and the ex-
ploration vs exploitation trade-off. However we use at the moment a small value
σ2

sel = 0.001 for the normal distribution for the ranked point to be chosen (Fig.
2.right) to simulate the situation when new offspring always has the first rank,
and allow comparison with results from [10].

4 Experimental Validation

4.1 Experimental Setting

For the sake of a fair comparison between the presented RASM and the ASM
first presented in [10], the same experimental validation procedure is used: two
state-of-the-art EMO algorithms are considered as baselines, the (100+100)-S-
NSGA-II [3], NSGA-II with hypervolume indicator as second-sorting criterion,
and the 100× (1 +1)-MO-CMA-ES, the multi-objective version of CMA-ES [5].
Both ASM and RASM are integrated within these algorithms.

Both ASM and RASM are based on the Radial Basis Functions kernel: K(xi, xj)
= e−‖xi−xj‖2/2σ2

, where the bandwidth σ is set as the average distance between
all pairs of training points. The SVM penalization constant C is set to 1000.

The training set E that is used at each generation to build the RASM model is
an archive that contains at most Narchive = 1000 points. The current population
is added to the archive at each generation. When this archive gets larger than
Narchive, it is pruned by removing the worst individuals after non-dominated
sorting. Furthermore, in order to improve the diversity of the training set (many
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Fig. 2. Left: Learning time of the proposed dominance-based RASM on ZDT1 function.
Right: Mapping the ranks of pre-children to a normal distribution.

points too close together can lead to poor surrogate model), an additional filter-
ing procedure is applied to the archive. The 2-objective space has been divided
into 100×100 boxes, and at most one point among the archived non-dominated
points of each box is retained in the archive.

As detailed in section 3, RASM maintains the set Ωactive of active constraints,
initialized to the set of primary dominance constraints. After an initial round
of 1000 |Ωactive| iterations, Ωactive is incrementally enriched every 10 |Ωactive|
iterations with the most violated constraint among the secondary dominance
constraints, until a total of 0.1 |Ωactive| secondary constraints have been added.

Performance Measures. Many ways of measuring the performance of EMO
algorithms have been proposed. After [9], this study uses Pareto-compliant qual-
ity indicators, more particularly the widely used hypervolume indicator IH . Let
P be a μ-size approximation of Pareto front and let P ∗ be the approximate μ-
optimal distribution of optimal Pareto points [1]. The approximation error of the
Pareto front is defined by ΔH(P ∗, P ) = IH(P ∗) − IH(P ). All reported results
are averaged over 10 independent runs with at most 100,000 fitness evaluations.

4.2 Result Analysis

Some experiments are first conducted to estimate the complexity of the surro-
gate training on 30-dimensional ZDT1 problem. The empirical complexity with
respect to the number of training points is circa 2.2 (slope on Fig. 2-Left in log
scale). The fact that the complexity is super-quadratic is not surprising since
the SVM procedure relies on the Gram matrix K(xi, xj) for all points xi and xj

in the training set. The complexity however remains bounded as the size of the
training set (extracted from the archive) is less than 1,000, limiting de facto the
computational cost of the RASM learning.

Table 1 shows the comparative results of all baseline, ASM and RASM-based
EMOs; in the latter cases, both p = 2 and p = 10 pre-offspring are considered.
These results first confirm that S-NSGA-II performs best on separable functions
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Table 1. Comparative results of two baseline EMOAs, namely S-NSGA-II and MO-
CMA-ES and their ASM and RASM variants. Median number of function evaluations
(out of 10 independent runs) to reach ΔHtarget values, normalized by Best: a value of
1 indicates the best result, a value X > 1 indicates that the corresponding algorithm
needed X times more evaluations than the best to reach the same precision.

ΔHtarget 1 0.1 0.01 1e-3 1e-4 1 0.1 0.01 1e-3 1e-4
ZDT1 ZDT2

Best 1100 3000 5300 7800 38800 1400 4200 6600 8500 32700
S-NSGA-II 1.6 2 2 2.3 1.1 1.8 1.7 1.8 2.3 1.2
ASM-NSGA p=2 1.2 1.5 1.4 1.5 1.5 1.2 1.2 1.2 1.4 1
ASM-NSGA p=10 1 1 1 1 . 1 1 1 1 .
RASM -NSGA p=2 1.2 1.4 1.4 1.6 1 1.3 1.2 1.2 1.5 1
RASM -NSGA p=10 1 1.1 1.1 1.5 . 1.1 1 1 1.2 .
MO-CMA-ES 16.5 14.4 12.3 11.3 . 14.7 10.7 10 10.1 .
ASM-MO-CMA p=2 6.8 8.5 8.3 8 . 5.9 8.2 7.7 7.5 .
ASM-MO-CMA p=10 6.9 10.1 10.4 12.1 . 5 . . . .
RASM -MO-CMA p=2 5.1 7.7 7.6 7.4 . 5.2 . . . .
RASM -MO-CMA p=10 3.6 4.3 4.9 7.2 . 3.2 . . . .

ZDT3 ZDT6
Best 1300 3500 7100 10100 15200 2500 3600 5200 12300 .
S-NSGA-II 1.4 1.9 1.6 1.9 2.2 2.1 3.4 3.8 2.7 .
ASM-NSGA p=2 1.1 1.3 1.1 1.2 1.3 1.4 2.4 2.6 2 .
ASM-NSGA p=10 1 1 1 1 1 1.1 1.8 2.3 2.3 .
RASM -NSGA p=2 1.1 1.3 1.2 1.4 1.6 1.5 2.4 2.8 2.1 .
RASM -NSGA p=10 1 1.1 1.1 2 . 1.4 2 2.3 1.8 .
MO-CMA-ES 15.4 17.8 . . . 2.5 2.6 2.5 2 .
ASM-MO-CMA p=2 9 . . . . 1.1 1.2 1.1 1 .
ASM-MO-CMA p=10 8 25.6 . . . 1 1.1 1.3 2.5 .
RASM -MO-CMA p=2 8.5 . . . . 1.5 1.2 1.2 1 .
RASM -MO-CMA p=10 8.1 . . . . 1 1 1 1.6 .

IHR1 IHR2
Best 500 2000 35300 41200 50300 1700 7000 12900 52900 .
S-NSGA-II 1.6 1.5 . . . 1.1 3.2 6.2 . .
ASM-NSGA p=2 1.2 1.3 . . . 1 3.9 4.9 . .
ASM-NSGA p=10 1 1.5 . . . 1.4 6.4 4.6 . .
RASM -NSGA p=2 1.2 1.2 . . . 1.5 . . . .
RASM -NSGA p=10 1 1 . . . 1.2 5.1 4.8 . .
MO-CMA-ES 8.2 6.5 1.1 1.2 1.2 5.8 2.7 2.1 1 .
ASM-MO-CMA p=2 4.6 2.9 1 1 1 3.1 1.6 1.4 1.1 .
ASM-MO-CMA p=10 9.2 6.1 1.3 1.2 . 5.9 2.6 2.4 . .
RASM -MO-CMA p=2 2.6 2.3 2.4 2.1 . 2.2 1 1 . .
RASM -MO-CMA p=10 1.8 1.9 . . . . . . . .

IHR3 IHR6
Best 800 . . . . . 16500 . . . .
S-NSGA-II 1.5 . . . . 5.4 . . . .
ASM-NSGA p=2 1.1 . . . . 3.8 . . . .
ASM-NSGA p=10 1 . . . . . . . . .
RASM -NSGA p=2 1.3 . . . . 2.2 . . . .
RASM -NSGA p=10 1.1 . . . . 2.6 . . . .
MO-CMA-ES 9.6 . . . . 2 . . . .
ASM-MO-CMA p=2 7.2 . . . . 2 . . . .
ASM-MO-CMA p=10 12.1 . . . . . . . . .
RASM -MO-CMA p=2 3.3 . . . . 1 . . . .
RASM -MO-CMA p=10 2.6 . . . . 1 . . . .
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ZDTx and MO-CMA-ES on non-separable functions IHRx3. They also show
that both RASM -NSGA and RASM -MO-CMA work nearly 1.5 times faster
with p = 2 and more than 2 times faster with p = 10 than the baseline versions
with regards to the ΔH value and the number of function evaluations.

ASM -NSGA and RASM -NSGA yield comparable performances. A more thor-
ough analysis shows that RASM -MO-CMA is usually faster at the beginning (up
to 10000-15000 function evaluations) though it might suffer from a premature
convergence thereafter: experiments on concave IHR2 (and to some extent, also
on ZDT2) show that RASM -MO-CMA converges to the value ΔH = 0.1 nearly
1.5 times faster than with ASM model, and fails to go further. This failure is
blamed on the fact that the diversity of the population is hardly preserved;
a small part of the optimal Pareto front is sampled. Indeed, RASM learning
and the RASM-based offspring selection only aim at speeding up the conver-
gence; further work will be required to extend the approach and approximate the
μ-optimal distribution of nearly-optimal Pareto points.

5 Discussion and Perspectives

The main contribution of the present paper is to show how to train a single
surrogate model to reflect Pareto dominance in an EMO framework, using a
Learning to Rank framework. RASM, the resulting surrogate model, does not
require that all Pareto points are mapped onto the same value. It is thus both
more constrained in the dominated region, and less constrained on the Pareto
front, than ASM, previous work of the authors along similar lines [10].

Furthermore, this approach opens new and interesting perspectives for real
world multi-objective problems, enabling for instance to account for the user’s
preferences in a flexible way by simply adding user-defined constraints to the
order-based SVM formulation. Most importantly, the rank constraint formaliza-
tion enables to accommodate conflicting preferences: to the best of our knowl-
edge, this corresponds to a significant advance on the state of the art. This
property is likely to be important for simulated evolution, since the ability to
predict an environment is a prerequisite for intelligent behavior.

The experimental validation of the proposed approach shows that RASM-
EMO usually converges faster than ASM-EMO, with the caveat that it some-
times leads to premature convergence (e.g., on ZDT2 and IHR2 problems). This
premature convergence was blamed on the selection pressure and the adjustment
of parameter σ2

sel. A further work will explore the adaptation of the famed 1/5-th
rule to adjust σ2

sel, using the hypervolume indicator ΔH as measure of success.
The number of constraints that are added to the primary constraints could

also be made adaptive by considering the stability of the surrogate model. How-
ever, such potential improvement would require the computation of all ξij and
Fsvm values for all points of the archive at each generation, and would hence be
computationally costly.
3 MO-CMA-ES penalization parameter α is 1.0 for all problems in order to prevent

evolution from being biased toward exploring the boundaries of the decision space.
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Another shortcoming of Aggregate Surrogate Models is how to resist the loss
of diversity. It is emphasized that RASM might incorporate additional specific
constraints in each generation. Some possible constraints are described in Figure
1-Right: such non-dominance constraints involved points on the current Pareto
front, and include inequality constraints from the extremal points over their
neighbors (continuous arrows), and equality constraints for all neighbor pairs
on the Pareto front (continuous double arrow), as well as between extremal
points (dotted double arrows). Such equality constraints can be rewritten as two
symmetrical inequality constraints in order to preserve the particular form of
the formulation (Eq. 2). Along the same lines, constraints could be weighted,
e.g. the weight of constraints related to points with the largest hypervolume
contributions can be increased online. This is however a topic for further work.

References

1. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indica-
tor: Optimal μ-distributions and the choice of the reference point. In: FOGA, pp.
87–102. ACM, New York (2009)

2. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wi-
ley, Chichester (2001)

3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast Elitist Multi-Objective
Genetic Algorithm: NSGA-II. IEEE TEC 6, 182–197 (2000)

4. Herbrich, R., Graepel, T., Obermayer, K.: Large margin rank boundaries for ordi-
nal regression. In: Smola, A., Bartlett, P., Schölkopf, B. (eds.) Advances in Large
Margin Classifiers, pp. 115–132. MIT Press, Cambridge (2000)

5. Igel, C., Hansen, N., Roth, S.: Covariance Matrix Adaptation for Multi-objective
Optimization. Evolutionary Computation 15(1), 1–28 (2007)

6. Jin, Y.: A Comprehensive Survey of Fitness Approximation in Evolutionary Com-
putation. Soft Computing 9(1), 3–12 (2005)

7. Joachims, T.: A support vector method for multivariate performance measures. In:
De Raedt, L., Wrobel, S. (eds.) Proc. ICML, pp. 377–384. ACM, New York (2005)

8. Knowles, J., Nakayama, H.: Meta-modeling in multiobjective optimization. In:
Branke, J., Deb, K., Miettinen, K., S�lowiński, R. (eds.) Multiobjective Optimiza-
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Abstract. This paper presents results of experiments concerning the
scalability of two-dimensional cellular automata rules in pattern recon-
struction task. The proposed cellular automata based algorithm runs in
two phases: the learning phase and the normal operating phase. The
learning phase is conducted with use of a genetic algorithm and its aim
is to discover efficient cellular automata rules. A real quality of discov-
ered rules is tested in the normal operating phase. Experiments show a
very good performance of discovered rules in solving the reconstruction
task.

Keywords: cellular automata, pattern reconstruction task, genetic
algorithm, scalability of rules.

1 Introduction

Cellular automata (CAs) are discrete, spatially-extended dynamical systems that
have been studied as models of many physical and biological processes and as
computational devices [8,14]. CA consists of identical cells arranged in a regular
grid, in one or more dimensions. Each cell can take one of a finite number of states
and has an identical arrangement of local connections with other cells called a
neighborhood. After determining initial states of cells (an initial configuration
of a CA), states of cells are updated synchronously according to a local rule
defined on a neighborhood. In the case of two-dimensional CAs, two types of
neighborhood are commonly used: von Neumann and Moore [8]. When a grid
size is finite, we must define boundary conditions.

One of the most interesting features of CAs is that in spite of their simple
construction and principle of operation, cells acting together can behave in an
� This research was supported by S/WI/2/2008.
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inextricable and an unpredictable way. Although cells have a limited knowledge
about the system (only its neighbors’ states), localized information is propagated
at each time step, enabling more global behavior.

The main bottleneck of CAs is a difficulty of constructing CAs rules producing
a desired behavior. In some applications of CAs one can design an appropriate
rule by hand, based on partial differential equations describing a given phe-
nomenon. However, it is not always possible. In the 90-ties of the last century
Mitchell and colleagues proposed to use genetic algorithms (GAs) to discover
CAs rules able to perform one-dimensional density classification task [7] and the
synchronization task [4]. The results produced by Mitchell et al. were interest-
ing and started development of a concept of automating rule generation using
artificial evolution. Breukelaar and Back [3] applied GAs to solve the density
classification problem as well as AND and XOR problem in two dimensional
CAs. Sapin et al. [11] used evolutionary algorithms to find a universal cellular
automaton. Swiecicka et al. [13] used GAs to find CA rules able to solve multi-
processor scheduling problem. Bandini et al. [1] proposed to use several Machine
Learning techniques to automatically find CA rules able to generate patterns
similar in some generic sense to those generated by a given target rule.

In literature one can find several examples of CAs applications in image pro-
cessing [6,10] as well as evolving by GAs CAs rules in image processing task [12].
Some of them deal with image enhancement, detection of edges, noise reduction,
image compression, etc. The authors have recently proposed to use a GA to
discover CAs rules able to perform pattern reconstruction task [9].

In this paper we present results of subsequent experiments concerning evolv-
ing CAs rules to perform pattern reconstruction task. The main aim of these
experiments was to analyse possibilities of discovered rules in reconstructing the
same patterns but on larger grids, that is the scalability of rules. The paper is
organized as follows. Section 2 presents pattern reconstruction task in context of
CAs. Section 3 describes two phases of the algorithm: the learning phase and the
normal operating phase. Results of computer experiments are reported in Section
4. The last section contains conclusions and some remarks about future work.

2 Cellular Automata and Pattern Reconstruction Task

We assume that a given pattern is defined on a two-dimensional array (grid of
cells) of size n×n. Each element of an array can take one of two possible values: 1
or 2. Let us assume that some fraction q of values of grid elements is not known.
These are missing parts of a pattern. Based on such a not complete pattern,
it could be difficult to predict unknown states unless one is able to see some
dependencies between values of cells. Let us further assume that we have a series
of such not complete patterns, created from one given pattern in a random way.
These patterns will be treated as initial configurations of two-dimensional CAs.

Pattern reconstruction task is formulated as follows. We want to find a CA
rule which is able to transform an initial, not complete configuration to a final
complete configuration.
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Fig. 1. The examples of a complete pattern (on the left) and an incomplete one (on
the right). The incomplete pattern has 30 states unknown (q = 0.3).

Let us construct a two-dimensional CA of size n× n, in order to describe our
pattern. Our CA will be a three-state: unknown values of grid elements will be
represented by state 0. That means that at each time step every cell of our CA
can take a value from the set {0, 1, 2}.

In the context of CAs our task can be described as follows. Let us assume
that we have a finite number of random initial configurations, each of which
is an incomplete pattern. We want to find a CA rule that is able to converge
to a final configuration identical with a complete pattern. That means, a rule
that will be able to reconstruct a pattern. We also assume that a complete
pattern is not known during searching process. The only data available during
searching process is a series of incomplete patterns, randomly created from one
given pattern. It is worth mentioning that related to our task is a problem from
data mining field described in [5], where a heuristic CA rule was proposed.

Fig. 1 presents the example of a pattern of size 10 × 10 (on the left). Grid
elements with value 1 are represented by grey cells and elements with value 2
are represented by black cells. On the right side of this figure one can see the
example of this pattern with 30 states unknown. These are represented by white
cells. Indexes of unknown elements were generated randomly. Such an incomplete
pattern is interpreted as an initial configuration of a CA.

When using CAs in pattern reconstruction task, we must first define a neigh-
borhood and boundary connditions. In our experiments we assume von Neumann
neighborhood, with three possible cell states (Fig. 2). Using this neighborhood
we have 35 = 243 possible neighborhood states. Thus, the number of possible
rules equals to 3243, which means enormous search space. In our experiments we
assume null boundary conditions: our grid is surrounded by dummy cells always
in state 0. The interpretation of this assumption is that we do not know the
state of these cells. In fact, they are not a part of our pattern.

3 The GA for Discovering CAs Rules

The proposed CA-based algorithm runs in two phases: the learning phase and
the normal operating phase.
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3.1 Learning Phase

The purpose of this phase is searching for suitable CAs rules with the use of the
GA. The GA starts with a population of P randomly generated 243-bit CA rules.
Five cells of von Neumann neighborhood are usually described by directions on
the compass: North (N), West (W), Central (C), East (E), South (S). Using this
convention, the bit at position 0 in the rule (the top bit in the bar in Fig. 2)
denotes a state of the central cell of the neighborhood 0000000 in the next time
step, the bit at position 1 in the rule denotes a state of the central cell of the
neighborhood 0000001 in the next time step and so on, in lexicographic order of
neighborhood.

Fig. 2. The neighborhood coding (on the left) and the fragment of the rule - the
chromosome of the GA (on the right, in a bar)

The next step is to evaluate individuals in the initial population for the abil-
ity to perform pattern reconstruction task. For this purpose, at each generation,
starting from a complete pattern, we randomly generate an incomplete pattern
with q states unknown. This process proceeds as follows. We have a complete
pattern. In single step we randomly select a single cell which has not been previ-
ously chosen and this cell changes its state to 0 (unknown state). We repeat these
steps until we chose q·n2 cells. All these cells will be in the state 0 (unknown).

Then each rule in the population is evolved on that randomly generated in-
complete pattern, considered as an initial configuration of CA, for t time steps.
At the final time step we compute the number of cells in the grid, with a state
different from 0, that have the correct state. If a given cell is in the state 1 in an
initial configuration, then the correct state for this cell in the final configuration
is 1. Similarly, if a given cell is in the state 2 in an initial configuration, then
the correct state for this cell in the final configuration is 2. The number of cells
in a final configuration with the state 1 which are in the correct state will be
denoted as n 1 and the number of cells in a final configuration with the state
2 which are in the correct state will be denoted as n 2. Since we compute the
number of correct states, we deal with maximization problem. The fitness f of
a rule i, denoted as fi, is computed according to formula:

fi = n 1 + n 2 − n 0 , (1)
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where n 0 denotes the number of cells in the final configuration with the state
0. Subtracting the number of cells with the state 0 is a kind of penalty factor
and its task is to prevent from evolving to the final configuration with many
cells in the state 0. It would be unfavorable situation from the point of view of
pattern reconstruction task. The maximal fitness value equals to the number of
cells in known states and equals to n2 − q·n2.

After creating an initial population, the GA starts to improve it through
repetitive application of selection, crossover and mutation. In our experiments
we used tournament selection: individuals for the next generation are chosen
through P tournaments. The size of the tournament group is denoted as tsize.

After selection individuals are randomly coupled and each pair is subjected to
one-point crossover with the probability pc. If crossover is performed, offspring
replace their parents. On the other hand, parental rules remain unchanged.

The last step is a mutation operator. It can take place for each individual in
the population with the probability pm. When a given gene is to be mutated,
we replace the current value of this gene by the value 1 or 2, with equal prob-
ability. Omitting the value 0 has the same purpose as described previously: it
prevents from evolving rules with many 0s. Such rules are more likely to pro-
duce configurations containing cells with the state 0. It would be unfavorable
situation.

These steps are repeated G generations and at the end of them the final
population of rules is stored.

3.2 Normal Operating Phase

At the end of the learning phase we have a population of discovered rules which
were trained to perform pattern reconstruction task. Let us remind that a com-
plete pattern was not presented during this phase.

In our previous paper [9] we investigated a real quality of discovered rules by
running each rule on IC random initial configurations with q states unknown.
For a given final configuration produced by rule i, we counted the fraction of
cells’ states identical with these in a complete pattern. This value, denoted as
ti, was computed according to the formula:

ti =
n 1 + n 2

n2 . (2)

An ideal rule can evolve an initial configuration to the final configuration with
all cells in correct states. Thus, the maximum value ti that such an ideal rule can
obtain is 1.0. That means that the final configuration is identical with a complete
pattern. Since we tested each rule on IC random initial configurations, the final
value for a rule was the rule’s average result over IC initial configurations. We
denoted this value as t̄i.

In experiments described in this paper we decided to test the population
of discovered rules on larger grid size, but on the same pattern. The aim of
these experiments was to examine the existence of the scalability of CAs rules.
Intuitively, one can suppose that testing rules on larger grid size than that on
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which they have been learned is much harder task. Results of these experiments
are described in the next section.

4 Experimental Results

In our experiments we used two patterns with n = 10 presented in Fig. 3.
They were denoted as pattern 1 and pattern 2. For each pattern, we tested the
performance of the GA for three values of q: 0.1, 0.3 and 0.5. The maximal
number of time steps t during which a CA has to converge to a desired final
configuration was set to 100. Experiments showed that such a value is large
enough to let good rules to converge to a desired final configuration. On the
other hand, when a CA converged to a stable configuration earlier, the process
of CA run was stopped.

Fig. 3. Patterns used in experiments: pattern 1 (on the left) and pattern 2 (on the
right)

4.1 Learning Phase

The parameters of the GA were the following: P = 200, tsize = 3, pc = 0.7 and
pm = 0.02. Higher than the usual mutation rate results from rather long chro-
mosome and an enormous search space. Experiments show that slightly greater
pm helps the GA in the searching process. The searching phase was conducted
through G = 200 generations. Increasing the number of generations had no effect
on improving results.

Fig. 4 and 5 present typical runs of the GA run for two patterns used in
experiments, for the first 100 generations. On each plot one can see the fitness
value of the best individual in a given generation, for three values of q.

The maximal fitness value for q = 0.1 equals to 90, for q = 0.3 equals to 70
and for q = 0.5 equals to 50. One can see that in case of q = 0.1 and q = 0.3,
the GA is able to find a rule with the maximal fitness value.

The differences between patterns appear for q = 0.5. In the case of pattern
1, a fitness value of the best individual slightly oscillates around its maximal
value. On the other hand, rules discovered for pattern 2 seem to be perfect. In
this case, the GA quickly discovers rules with the maximal fitness value. We can
conclude that in our method pattern 2 is easier in reconstruction than pattern 1.
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Fig. 4. The GA runs for pattern 1
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Fig. 5. The GA runs for pattern 2

4.2 Normal Operating Phase

The aim of the normal operating phase was to examine the scalability of discov-
ered rules. For this purpose we tested populations of discovered rules on the same
patterns, but on larger grid size. In our experiments we used n = {20, 30, 40, 50}.
New patterns for n = 20 are presented in Fig. 6. Patterns for remaining n values
were created in the same way.

For both patterns, we tested the final population discovered by the GA for
q = 0.1 and n = 10 on IC = 100 random initial configurations, created on larger
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Fig. 6. Patterns for n = 20 used in experiments

Table 1. ¯tbest values for pattern 1 and different q values

q = 0.1 q = 0.3 q = 0.5
n = 20 0.997 0.959 0.890
n = 30 0.999 0.974 0.930
n = 40 0.999 0.980 0.945
n = 50 0.999 0.984 0.957

Table 2. ¯tbest values for pattern 2 and different q values

q = 0.1 q = 0.3 q = 0.5
n = 20 0.999 0.998 0.998
n = 30 1.0 0.998 0.994
n = 40 1.0 0.999 0.995
n = 50 1.0 0.999 0.996

grid sizes. For each rule, t̄i was computed. Results of the best rules (from the
whole population), denoted as ¯tbest are presented in Tab. 1 and 2.

Results presented in Tab. 1 and 2 show that discovered rules have possibilities
in reconstructing the same pattern on larger grids. What is interesting, this
scalability does not degrade when n increases. For a given q, as n increases,
¯tbest oscillates around similar values. Slight changes are caused by stochastic

way of computing of ¯tbest: a rule i might have different t̄i values, depending on
a concrete initial configuration.

As q increases, the scalability of discovered rules slightly decreases, as was
to be expected. This is particularly noticable in the case of pattern 1, which
proved to be more difficult in the learning phase. Higher values of q mean more
unknown states in an initial configuration (and less states known). The more
unknown states, the more difficult pattern reconstruction task is.

Let us look closely at the performance of one of the best rules from the normal
operating phase. The leftmost picture in Fig. 7 presents the initial configuration
of the CA for pattern 1, n = 20 and q = 0.3. We run the best rule found for
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Fig. 7. Configurations of the CA in time steps: 0, 1 and 14 (from the left to the right)

n = 10 on this configuration, for the maximal number of time steps t = 100.
Further configurations in time steps 1 and 14 are presented in Fig. 7.

One can see that the rule is able to quickly tranform the initial configuration
to the desired final configuration. What is interesting, the number of time step
sufficient to do it does not increment when n increases. Barely after one time
step, the configuration of CA does not contain any cells with unknown state and
has many cells in the correct state.

5 Conclusions

In this paper we have presented pattern reconstruction task in the contex of
CAs. One of the aims of the paper was to present possibilities of the GA in
evolving suitable CAs rules which are able to transform initial, not complete
configurations to final complete configurations. Results of presented experiments
show that the GA is able to discover rules appropriate to solve this task for a
given instance of a problem. Found rules perform well even when the number of
unknown cells is relatively high.

The most important subject addressed in this paper is the scalability discov-
ered CA rules. Experiments show that during learning phase rules store some
kind of knowledge about pattern which is reconstructed. This knowledge can be
successfully reused in the process of reconstructing patterns on larger grid size.
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Abstract. Evolutionary algorithms have been successfully applied to
optimize the rulebase of fuzzy systems. This has lead to powerful auto-
mated systems for financial applications. We experimentally evaluate the
approach of learning fuzzy rules by evolutionary algorithms proposed by
Kroeske et al. [10]. The results presented in this paper show that the
optimization of fuzzy rules may be universally simplified regardless of
the complex fitness surface for the overall optimization process. We in-
corporate a local search procedure that makes use of these theoretical
results into an evolutionary algorithms for rule-base optimization. Our
experimental results show that this improves a state of the art approach
for financial applications.

1 Introduction

The combination of evolutionary algorithms and fuzzy systems has lead to many
successful applications [2]. There are numerous applications for evolving fuzzy
systems for applications in finance. For example, recently [1] described an ap-
plication of a Takagi-Sugeno-Kang system [13] to predict stock prices. They
reported impressive accuracy over 90%; the approach involved several stages to
select model inputs and tune fuzzy rule parameters. These included regression
analysis to select rule inputs and simulated annealing to tune rules. Also recently,
[5] described a type-2 fuzzy logic system for modeling stock prices. Type-2 fuzzy
systems, see [9], allow a more fine grained problem representation and may be
useful. Finally, [6] describes an application of evolving fuzzy rulebases to con-
struct adaptive asset valuation models from analysis of historic financial data
and reports risk and return performance when applied for managing a portfolio
of stocks. A number of analytical approaches to tune fuzzy rulebase parameters
are also well known. Notably, in [11] a gradient descent method for learning fuzzy
rules from input/output data is presented. Another powerful technique using the
least square method is described in [12].

We describe implementation of an approach based on theoretical analysis
in [10], and compare it with the method for learning fuzzy rules introduced
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in [6]. The new method involves division of the problem into parts to be solved
using a combination of an evolutionary algorithm (EA) and local search. By
analysing the partial derivatives of the evaluation function to compare solutions
by the EA, the rulebase optimization problem is able to be projected onto a
smooth space (with a guaranteed global optimum) for setting the importance of
each rule with respect to the objective.

We show that this novel optimization technique improves the quality of solu-
tions for prediction over a state of the art approach [6], and that the method is
able to be enhanced by controlling the probability to apply local the rule weight-
ing optimization. In testing, we focus on the distinct issues of constructing fuzzy
rules for financial prediction from a large training data set.

The paper is organized as follows. Section 2 describes the problem of fuzzy rule
base optimization. Section 3 describes details of the evolutionary algorithm and
the local search procedure. Experimental results comparing the new approach
with a standard evolving fuzzy system are reported in Section 4. Finally, we
finish with some concluding remarks.

2 Problem Description

The objective of our approach is to minimize the error in predicting financial
time series, for example asset price movements, using a rule base. The data
comprises price series for the assets and also series of observations of factors
considered in the model, for example economic or company information.

The approach involves finding asset valuation models, which are sets of If-
Then fuzzy rules with a specific structure, that have high out-of-sample perfor-
mance. Given fuzzy membership statements A1, . . . , An that describe the model
factors (e.g. observation is LOW) a fuzzy rulebase is a set of rules each with
format

r = If A1 ∧ A2 ∧ · · · ∧ An =⇒ o. (1)

The evaluation function measures error between observed percentage price
movement in training data and prediction by rules. The rulebase output is inter-
preted as a prediction of percentage price movement. Note that rulebase output
originally in the interval [0.0, 1.0], is scaled by a factor δ appropriate for the
application. The training data consists of a set {xi, yi}i=1...N , where each

xi =

⎛
⎜⎜⎜⎝

x1
i

x2
i
...

xL
i

⎞
⎟⎟⎟⎠

is a vector constructed from the factors given in 1 such that each x1...L=30
i is

an observation of f1...L=30 (it is a pre-condition that xi ∈ RL), and each yi is
the percentage price change (yi ∈ R) over a period (horizon of the prediction).
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The evaluation function is a measure of squared error between predicted (ρ) and
yi (the percent price change found in the training data):

ε =
N∑

i=1

(ρ(xi) − yi)2 (2)

=
N∑

i=1

(∑n
j=1 aijo

j∑n
j=1 oj

− yi

)2

.

For training data {xi, yi}i=1,...,N , where xi ∈ RL and yi ∈ R for all i and a
rulebase with n rules, we define

aem =
km∏
l=1

μ
im
l

jm
l

(xim
l

s ),

where e = 1, ..., N ranges over the number of training data examples N and
m = 1, ..., n ranges over the rules currently in the rule base. Since an equal
number of membership functions are used to describe each linguistic variable
(very low, to, very high), then

aem =
km∏
l=1

μjm
l

(xim
l

s ).

The objective is thus to minimize error, ε with respect to some training data.
The procedure for a rule base fitness evaluation given a training window of
historic data with length, len and a forecast horizon, s, is given in Algorithm 1.
Here, pai,t refers to the price of an asset at time t (note: δ is a scaling factor to
modify the range of price changes that are predicted). The number of training
data points, N , is equal to the number of assets times the window length divided
by the forecast horizon or step s.

Algorithm 1. Evaluation
ε ← 0
for all (assets ai in a market) do

for (t ← s; t < len; t ← t + s) do
ε ← ε + (δρ(xai) − pai,t/pai,t−s)2

end for
end for

3 Optimization Process

The optimization process involves an evolutionary algorithm and a local
search procedure that makes use of the reformulated objective function. In the
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following, we describe the main components of our algorithm for optimizing fuzzy
rules bases.

3.1 Evolutionary Algorithm

The main rule base optimization procedure is given in Algorithm 2. In the fol-
lowing, we describe the details of the evolutionary algorithm.

The genotype of a fuzzy rulebase is represented using three arrays I, U and
O. I is an m × n matrix of integers where each i − jth element corresponds to
a membership function μ in i − th rule for the j − th linguistic variable, each
variable has the same number of membership function specifications so for 5
membership functions the possible values of I are 1, 2, 3, 4 or 5. U is an m × n
matrix of boolean values, if Ui,j = TRUE then the input in i − th rule for the
j−th variable is switched on and used in the linguistic rule description, otherwise
it is not used. O is a vector of double values with size m, one for each rule, and
corresponds to the output levels, a value of 0 means the rule has zero weight and
is not used.

Mutation and crossover operators are applied to vary the genotype. They are
defined as follows: mutate inputs — select a random gene from either I or U
with uniform probability and (with equal probability) either replace with a new
random value or in/de-crement by 1 step with equal probability; mutate outputs
— select and replace an output at random; crossover — uniform crossover over
I and U ; and rule crossover — swap rules between two different individuals, at
the genotype this means the whole i − th from I, U, O are swapped.

With regard to the genotype representation we can express aem as follows

aem =
L∏

l=1

U(m, l)μI(m,l)(xl
s),

where U(m, l) = 1 if in the m-th rule the l-th linguistic variable is switched on,
otherwise it is removed from the calculation. This can be achieved in a number of
other ways, for example [8] describes the use of a special don’t care membership
set that is always set to 1. Selection is with a tournament of size 2. Elitism is used.

Probabilities of the operators to create offspring are updated during the run,
depending on their success (in obtaining better solutions). Further details on
parameter setting methods used are able to be found in [7] and [3]. The proba-
bility of using the separate output optimization procedure oscillates in between
never and always being applied [0, 1] over the course of the the process. Fitness
is assigned in the method applyOperators() using the specification in algorithm
1. In this way rule base antecedents (if parts of each rule) and consequents (then
parts) separately for optimization. At every step it is possible that a separate
optimization of rule base outputs occurs with probability ooProb.

3.2 Local Search Procedure

A local search procedure for the optimal weighting/individual rule output for each
rule in a rulebase is integrated into the evaluation method. This is accomplished
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Algorithm 2. EA
Require: P0, rbest, gen, operators[], opProb[], ooProb

while (gen < max gen) do
parents[] ← selectParents(Pgen) {t size=2}
operator ← selectOperator(operators, opProb)
offspring ← applyOperator(parents)
if (random() < ooProb) then

adjustOutput(offspring)
end if
Pgen ← replaceWorse(Pgen, offspring) {t size=2}
rcbest ← best(Pgen)
opProb[]←update(opProb[])
ooProb←update(ooProb)
if (rcbest > rbest ) then

rbest ← rcbest

end if
gen ← gen + 1

end while
return rbest

by an analysis of the properties of the evaluation function. The evaluation func-
tion is able to be rewritten as follows, the full calculation and proof may be found
in [10]. The objective of the local search to set the output part of the rules (the
vector O) involves the following system of equations

∂ε

∂oq
= 0 ⇔

⎛
⎝ n∑

i=1

n∑
j=1

(Aiq − Aij)oioj

⎞
⎠ = 0, q = 1, ..., n. (3)

with Ajk =
N∑

i=1

(aij − yi)(aik − yi)

The constants A are calculated from the training data (xi, yi).
The evaluation function for the outputs of the rulebase is now to minimize

this system. Furthermore, there exists a one-parameter family of solutions to the
system (3) [10]. Hence the space of extremal points for ε is a line in Rn that passes
through zero. We solve the problem for the optimal weights by minimizing the
expression 3 using the local search procedure given in Algorithm 4.

Recall that n is the number of rules, then in the implementation, the terms
Ai,j etc, the array A[][], is calculated from the training data. The objective of
the local search is

The search algorithm for the output parts of the rulebase is then
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Algorithm 3. evaluate (o[])
result = 0
for q = 1 . . .N do

for i = 1 . . .N do
for j = 1 . . . N do

result += (A[i, q] − A[i, j]) ∗ o[i] ∗ o[j]
end for

end for
end for
return result

Algorithm 4. Output search
init o[] to random
eval = evaluate(o[])
while |(evaluate(o[])| > 0 + ε do

tmp[] = mutate(o[])
evalTmp = evaluate(tmp)
if evalTmp < eval then

eval = evalTmp
o[] = tmp[]

end if
end while

4 Experimental Results

This section contains experimental results obtained by application of the pro-
cedures rule learning procedures described in the previous sections. The exper-
iments are designed to compare the performance of the novel method and a
standard case. We consider statistics including best fitness, number of genera-
tions (fitness evaluations in this case of a steady state algorithm) and prediction
performance.

Table 1 lists the model factors, used in these experiments. They include in-
formation derived from company balance sheets, trend and cyclical analysis of
price and market trading volume volume series and accepted the, single factor,
capital asset pricing model, alpha and beta. The rules can identify two types of
information in these series: trend and mean reversion. The trend is information
about the change in the series over the period p: trendA = At/At−p. Distance
from the mean is found using an oscillator: oscillatorA = ma1 − ma2/ma1,
where ma1, ma2 are rolling averages of A over a short and long period (3 and
6 months). Alpha and beta, factors 1 and 2, refer to the capital asset pricing
model and a standard single factor model (see [4]).

Table 2 lists the evolutionary algorithm parameters that were used. In the tests
of the new method, rule weightings are optimized with an oscillating probability
set by P = cur gen/max gen mod 3. In addition the rulebase was repaired to
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Table 1. The input factors are modeled by linguistic variables specified by triangular
membership functions defined from all available observations. In addition change in
each over time is considered as a separate variable. Factors 15 to 19 are “technical”
indicators calculated using price data.

Variable Factor Description

f1 Jensen’s α
f2 β
f3 Dividend yield.
f4 Price to book value
f5 Price earnings ratio
f6 Forecast of price earnings
f7 The market capitalization
f8 Earnings per share over
f9 Total debt to equity ratio
f10 Long term debt to equity ratio
f12 Earnings before interest and tax
f13 Return on assets
f14 Return on equity
f15 Money flow index.
f16 Price change
f17 Bollinger bands.
f18 Volatility (sdev)
f19 Price volume oscillator

maintain < 4 inputs per rule and < 5 active rules (i.e. having output greater than
zero). 5 discrete output weights were possible in the specification. Test data was
sourced from Data Stream International (http://www.datastream.com/) and
consisted of ASX200 listed stocks and associated data for the period 1/1/2006−
1/1/2008. A steady state EA with elitism was used in the normal case and al-
tered by the addition of the local output optimization subroutine. The objective
was to minimize the squared error between predicted asset price movement (from
the output of fuzzy rules) and the real movement over 1 week periods.

Tables 3 contains the results after 7, 500 generations for 30 runs. Table 4 shows
the error recorded when applying best solutions outside training data.

If the termination condition is to stop after 7, 500 generations the improvement
is, empirically, very clear. The local output optimization (OO) test produced
solutions with better fitness than the normal case (N) table 3 with a p-level
less than 0.1 percent. The median and mean fitness for the OO runs were also
over 35% higher. In addition, the distribution for the OO showed a lower range
and and standard deviation indicating that it produces more consistent results.
Specifically, the range was 192 for the OO compared with 142.

Table 4 provides compares (absolute) prediction error when applying solu-
tions outside the training data window. The results are from applying rules for
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Table 2. Parameters of the evolutionary algorithm and the testing methodology

Parameter Value

P. OO Adj. 0.0 – 1.0 / 3 times
Population 500
Generations 7500
Elitism ? Yes
Selection Tournament size = 2
Horizon 5 days
Win len. 120 days
Initial Operator P. 0.3333 (3 Operators)
Penalties No ranking = 0.05

Direction = 0.1
Max Rules 5
Max Inputs 4
Output levels (d) 5

Table 3. Paired statistical comparison of the fitness values of the process (with different
data) for 7500 generations

Norm. OO adj.

Min. -341.1837 -242.3193
Max. -149.2366 -100.4559
Median -220.766 -161.1760
Mean. -226.8101 -162.7535
Sdev 56.55486 45.69378
Mann Whit. – W =205

p < 0.01 (gt.)

5000 different predictions from a pool of 201 assets considered in the investment
universe over a period. For each optimization run, the best rulebase is applied to
predict the price change of each stock 3 times over a subsequent 15 day period
after the end of the training window; for each application the difference between
the actual and the predicted change was recorded. As would be expected from
the fitness results, it was the case that generalization performance of solutions
produced by the OO method were better in the 7, 500 generation test runs.
The mean error was lower (3.8% vs. 4% ) and also by parametric testing the
improvement was significant.

We can see clearly that significant improvements in prediction accuracy are
attained through the the implemementation of the theoretical results in [10].
This is an excellent result that demonstrates that there is promise in developing
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Table 4. Paired statisical comparison of the error of prediction out of sample. The
new method provided solutions that performed better with significance P < 0.01.

Norm. OO adj.

7, 500 generations

Mean. 0.0406 0.03810
Sdev 0.0382 0.03335
Mann Whit. – W = 13256668

p < 0.01 (2 sided)

methods to enable faster and more efficient restructuring of fitness surfaces and
objectives to improve evolutionary algorithms in the domain of fuzzy rulebase
optimization.

5 Conclusion

Evolutionary algorithms have been widely used for optimizing the rule base of
fuzzy systems. This has lead to many successful applications in finance. We have
examined how the state of the art system of [6] can be improved by incorporating
the theoretical results obtained in [10]. The results of [10] allowed us to design
an efficient approach that involves combining a local search, over a restructured
objective function, with an evolutionary algorithm. Our experimental investiga-
tions show that this leads to a significant improvement in performance compared
to the system given in [6].
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Abstract. This paper presents a niched genetic programming tool, called 
DMGeo, which uses elitism and another techniques designed to efficiently per-
form classification rule mining in geographic databases. The main contribution 
of this algorithm is to present a way to work with geographical and conven-
tional data in data mining tasks. In our approach, each individual in the genetic 
programming represents a classification rule using a boolean predicate. The 
adequacy of the individual to the problem is assessed using a fitness function, 
which determines its chances for selection. In each individual, the predicate 
combines conventional attributes (boolean, numeric) and geographic character-
istics, evaluated using geometric and topological functions. Our prototype  
implementation of the tool was compared favorably to other classical classifica-
tion ones. We show that the proposed niched genetic programming algorithm 
works efficiently with databases that contain geographic objects, opening up 
new possibilities for the use of genetic programming in geographic data mining 
problems.  

Keywords: Classification rules, data mining, knowledge discovery in geo-
graphic databases. 

1   Introduction 

Classification rule mining is one of the most important tasks for knowledge discovery 
in databases (KDD). Recently, techniques and algorithms for classification rule min-
ing have been intensively studied due to the large variety of practical applications for 
them. For instance, commercial firms want to know more about the behavior of their 
customers. Governments need to prioritize resource allocation and decide about  



 A Niched Genetic Programming Algorithm for Classification Rules Discovery 261 

public policies. Educators want to find out the factors that lead students to fail. In all 
of these situations, specialists are seeking unexpected patterns within data, and such 
patterns can emerge in the form of classification rules. 

Mining classification rules usually utilizes supervised learning techniques that con-
sist in discovering patterns in training data so that the resulting rules can be applied in 
the classification of other data. Goldberg [7] shows that genetic algorithms have been 
applied successfully in machine learning problems since the 1970s. The growth of 
interest in data mining has motivated the scientific community of evolutionary algo-
rithms. Freitas [5] shows that genetic algorithms, genetic programming and, more 
recently, artificial immune systems, ant colony algorithms [12] and particle swarm 
optimization [9] have been successfully used in various data mining problems.  

The main advantage of evolutionary algorithms is their robustness, that is, once the 
problem is correctly modeled, the algorithm is able to explore the feasible region within 
the space of problem solutions, looking for the best global solution. Greedy algorithms 
can be applied, but they usually return a local solution, not the global one [2]. 

The popularization of the access and use of geographical data, sponsored by big 
companies like Google (with Google Earth, Google Maps) and governmental depart-
ments like NASA (in USA) and INPE (in Brazil), brought up a new challenge: devel-
oping good data mining algorithms that works well with geographic tools.  

There are a lot of good algorithms presented in the literature that works with geo-
graphical data mining. In section 2 the last algorithms designed to geographical data 
mining are shown. Nevertheless, there are not any algorithms capable to manipulate 
conventional data and geographical data at the same time exploring the topological 
relations.  

In this paper, a niched genetic programming algorithm with elitism, called 
DMGeo, is presented. DMGeo has been designed to work with conventional and 
geographic data, which makes it suitable to a new range of applications.  

This paper is organized as it follows. Section 2 presents related works. Section 3 
introduces DMGeo and presents the proposed algorithm. Section 4 presents a case 
study developed to demonstrate DMGeo and shows the results. Finally, Section 5 
presents a conclusion of this paper.  

2   Related Works 

Whigham [17] propose a first genetic programming that uses a context-free grammar 
to predict the density of Australians marsupials. This algorithm identifies spatial pat-
tern behavior of these marsupials with confidence of 99% against all the non-spatial 
methods. However, this algorithm does not use topological relations (such as con-
tains, covers, crosses and others [3]). 

Bogorny et al [1] show a tool that permits integration between a classical data min-
ing toolkit (Weka [16]) and a geographic information system. The tool, implemented 
as an extension of Weka, is used as it follows. The user selects a geographic database 
to be used and chooses a set of feature types or instances. The tool preprocesses the 
geographic relations between the elements of the set. These relations include topology 
and distance. A Weka ARFF file is thus generated, encoding a representation of the 
geographic relations among the selected items. Weka is then used to mine the data 
using conventional algorithms.  
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Pappa et al. [13] show a multi-objective genetic algorithm (MOGA) that is used in 
selecting attributes from database for data mining purposes. In particular, this genetic 
algorithm looks for the best set of attributes to create a decision tree to be used in a 
classification algorithm, namely C4.5 [11]. 

Just one of the mentioned papers presents a tool that is able to work with geo-
graphic and conventional data at the same time, but it cannot deal with topological 
relations. Moreover, the data mining specialist has to decide which kind of data is 
more important, that is, the tools found in literature are not capable to tell which set of 
attributes (combining geographical and conventional ones) is the most relevant in the 
target problem. The algorithm we propose and present in the next section has been 
designed specifically to allow the incorporation of spatial functions and operators in 
the genetic programming approach to rule mining, thus, avoiding complex and costly 
preprocessing. 

3   The Proposed Algorithm - DMGeo 

We propose a niched genetic programming algorithm, called DMGeo, to perform 
classification tasks in the presence of geographic attributes. DMGeo is capable of 
incorporating geographic constraints and operations in its rules, combining them with 
conventional operators and functions at each individual. In our approach, an individ-
ual represents a Boolean predicate, defined in the same manner as a SQL WHERE 
clause. The adequacy of the individual to the problem is assessed using a fitness func-
tion, which determines its chances of selection. These elements of the algorithm are 
presented in the next subsections. 

3.1   Individual 

The individual was modeled to represent a rule that should be applied to pattern selec-
tion in a database, as in the WHERE clause of a SQL query. Fig.  1 shows an example 
of an individual’s tree, in which logical operators, attribute names and constants are 
combined to form a filter clause. It is important to note that the tree represents the rule 
to identify features of one class. 

 

Fig. 1. Representation of an individual and its class 

Tree nodes include the following information: 

• Type. The types implemented in DMGeo are Boolean, numeric, and geo-
graphic (point, line or polygon). 
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• Node body. The body can be a constant or a geographic function call. This will 
be detailed next. 

• Parameters. If the body is a function call, it must receive parameters from 
other nodes in the tree. 

Nodes of the tree can be of the following types: 
• Function Nodes: functions that, in this paper, have exactly two parameters, 

and form the set of possible inner nodes. They can be divided in two groups: 
conventional and geographical; 

• Terminal Nodes: The set of terminal nodes is formed by the set of leaves in 
the tree. These nodes represent constants or database attributes. 

 
The set of function nodes, as described previously, is composed by conventional func-
tions (or operators) like =, <, >, >=, <=, AND and OR and by geographical ones. This 
last type of functions is implemented by geographically-extended databases. In this 
paper, we used the PostGIS implementations, which include the following spatial 
relation functions, described in [3]: contains, covers, coveredBy, crosses, disjoint,  
 

Algorithm 1. Pseudocode to Generate the Individuals 

Input: Table target_table           /* table with all attributes of the instances to be classified */ 
Output: Individual I 

1. 
Make a list of possible terminal nodes, called possible_terminal_nodes, with all the attributes from 
the list target_table. 

2. 
Make a list of function nodes, called inner_nodes, with all possible functions (conventional and 
geographical); 

3. Create an empty individual I; 
4. while count _nodes <= max_num_inner_nodes do 
5.     Select randomly a node from the inner_nodes list and name it as c. 
6.    if (individual I is empty) 
7.       Insert c as a root node and make count_nodes := count_nodes + 1; 
8.    else  

9. 
      In the tree of the individual I, search a function node that has an argument of the same type as 
 node c and does not have this argument already set. Call this node as cn; 

10.       if (cn ≠ null) 
11.          Add node c as a child of node cn; count_nodes := count_nodes + 1; 
12.       end if; 
13.    end if; 
14. end while; 
15. for each function node i in the tree of individual I do 

16. 
nt := retrieve_function_node(i); /* the function retrieve_function_node (index i) obtains the i-th 
function node using the tree-traversal algorithm [5] */ 

17.    if (nt does not have its arguments set) 
18.       if (rand() > 0.5) 
19.          Select a terminal node, called nc, from the possible_terminal_nodes; 
20.       else 
21.          Generate a terminal node, called nc with a random value; 
22.       end if; 
23.       Add nc as a argument (child) of nt; 
24.    end if; 
25. end for; 

26. 
Evaluate the fitness of I using all possible classes; Choose the class that brings the greater fitness 
value as the class of I; Return Individual I. 
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equals, touches, within, and distance. The distance operator is the only one that does 
not generate a boolean result: it returns a numeric value that will be compared to a 
constant using a conventional operator. 

The initial population of rules (individuals) is created randomly. Algorithm 1 
shows a procedure to create an individual. The user must indicate a target table, which 
contains the features to be classified, with all their attributes. Training data will also 
have a label attribute, indicating the previously determined class. 

In the Algorithm 1, an individual is generated with a max number of function 
nodes (loop between lines 4 and 14.) After this loop, the individual’s tree is filled with 
terminal nodes that can have database attributes (line 19) or a constant value (line 21). 
Each terminal node generated has its type matching with the parameter type of the 
parent function node. This peculiarity is important to ensure that the individuals of 
DMGeo will be strongly-typed [10], that is, the DMGeo will manipulate just consis-
tent individuals. 

3.2   Rule’s Performance Evaluation 

The performance of a rule (individual) that classifies samples from a database is de-
termined by evaluating a fitness function, which is totally based on SQL queries to 
be submitted to the database.  This evaluation can be divided into two parts: 

• Determination of the coefficient values of the confusion matrix; 
• Calculation of the fitness function. 
 

In the algorithm, we assume that the relation R (Attr1, Attr2, …, AttrN, Class) con-
tains all the attributes (geographic or not) that can be used in the classification, includ-
ing Class which is the actual class of the individual.  

The calculation of the confusion matrix values and the determination of the fitness 
are described next. 

3.2.1   Confusion Matrix Coefficient Values 
The number of True Positives for the i-th individual is the number of tuples selected 
using its rule whose class coincides with the expected class. The True Negative value 
is the number of items that are not selected using the rule prescribed by the i-th indi-
vidual and do not belong to its class.  

The number of False Positives is the number of items selected by the individual 
that do not belong to the expected class. Considering the example that was presented 
in Fig. 1, the False Positive number is the number of items selected by the rule 
“(city.population > 200.000) AND (rail.geom crosses city.geom)” which class is 
different of ‘A’. 

The False Negative value is the number of items that are not selected by the rule, 
which class matches the expected one.  

3.2.2   Fitness Function Evaluation 
A classical way to measure the effectiveness of a classifier is to obtain and compare 
indicators such as Accuracy, Sensitivity and Specificity. These indicators are calcu-
lated using the confusion matrix, as it follows: 
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Accuracy (A) = TP +TN

TP + FP +TN + FN
,  

Sensitivity (A) = TP

TP + FN
, 

Specificity (A) = TN

TN + FP
, 

where A denotes the class. 
Thus, after the confusion matrix coefficient evaluation, the fitness function is calcu-

lated using (1): 
 

F(I, X) = Accuracy(I, X) * Sensitivity(I, X) * Specificity(I, X) (1) 
 
where F (I, X) is the fitness function that evaluates the individual I for classifying 
items of class X. 

3.3   Mutation 

Differently of genetic algorithms, the mutation operator implemented in genetic pro-
gramming is not so simple. First, it is necessary to make sure that the individual’s tree 
remains valid after the mutation process, i.e., the mutation operation cannot replace a 
node (or a subtree) by a node of a different type. There are four possible outcomes 
after the mutation process [5]: 

 

• Point Mutation: a terminal node is replaced by another terminal node.  
• Collapse Mutation: a terminal node replaces a function node (subtree); the in-

dividual’s tree decreases in size; 
• Expansion Mutation: a function node replaces a terminal node. In this case, 

the individual’s tree increases in size. 
• Subtree Mutation: a function node replaces another function node. In this 

case, the size of the individual’s tree can increase or decrease. 
 

We also implemented a mechanism to generate changes in the class during the  
mutation process. It happens when another class leads to a greater value of the fitness 
function. Section 3.5 will show that the predicted class of an individual is used as a 
niche and the class change mechanism works as a niche migration. 

It is important to highlight that in all four situations previously cited, the mutation 
works as follows: 

1. Randomly select a node (terminal or function); 
2. Generate another node (terminal or function) of the same type of data of the 

node selected in step 1; 
3. Replace the selected node by the newly generated one. 

3.4   Crossover 

DMGeo’s crossover is based on the classical crossover of genetic programming [10]. 
The operation is implemented as it follows: select two individuals of the same class, 
using roulette wheel; clone these individuals; permute a randomly selected subtree of 
the first individual with a randomly selected subtree from the second one.  
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3.5   Niches and Elitism 

The number of niches should be equal to the number of classes, in such a way that 
each class will have, in the final process, just one rule (individual) that is expected to 
be the best one for selecting samples, belonging to the expected class.  

To ensure that the best individual of each niche will be preserved at the next gen-
eration, the elitism technique was applied.  

3.6   Storage of the Fitness Value in Cache Memory 

As seen previously, the calculation of the fitness function for each individual is based 
on SQL queries executed in databases. As these queries demand expensive disk  
access, we implemented a simple cache memory to store the fitness value of some 
individuals. This cache consists in a hash table where the WHERE-Clause that repre-
sents the individual is the key of the table and the stored value is the performance of 
fitness function.  

4   Tests and Results 

4.1   Problems Used in Tests 

The performance of the proposed algorithm DMGeo is analyzed by applying it in four 
classification problems: two datasets available in the UCI Machine Learning Reposi-
tory[14], denoted as Heart and Wine databases, which are composed by numeric data, 
and two others datasets available in Geominas repository [6], City Development and 
Soy Aptitude, with numeric and geographic data.  

The Heart database is composed of 270 instances where 120 have a heart disease 
(class B) and 150 are normal (class A). This problem is available in a dataset with 13 
numerical attributes like age, resting blood pressure, maximum heart rate achieved, 
between others. 

The Wine database contains data of three different groups of wine, according to its 
level of alcohol. The problem is composed by 178 instances where 59 are level A, 71 
are level B and 48 are level C. The problem is stored in a dataset with 13 attributes, 
like for example, ash, alkalinity of ash and color intensity. These attributes were ob-
tained from a chemical analysis. 

The City Development database contains data of three different levels of develop-
ment: high, medium and low. There are 852 cities where 264 are high (class A), 296 
are medium (class B) and 292 are low (class C). This problem is stored in a dataset 
with 22 numerical attributes like quantity of schools (public and private), quantity of 
industrial electricity customers and GINI number. The dataset also contains geo-
graphical attributes like cities geometry (stored as polygons), railway and highway 
(stored as polygonal lines [3]). 

The Soy Aptitude database contains data from two different type of soil, according 
to its aptitude to produce soy. There are 852 cities, where 562 have its soil appropri-
ated to soy cultivation (class A) and 290 that have restriction in their soil for soy cul-
tivation (class B). In this problem, we just have geographical attributes to work with: 
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cities geometry, rain incidence (stored as polygons), soil aptitude to beans, citrus 
fruits and cotton cultivation (all stored as polygons).  

The datasets from UCI were used to evaluate the performance of DMGeo using just 
numerical attributes. The main contribution of the proposed algorithm is that it can 
explore well the feasible region of problems whose datasets are formed by numerical 
and geographical attributes. The datasets from Geominas have this property.  

As a baseline, three standard classification algorithms were used in all databases: 
decision tree (J48), Radial Basis Function Neural Network (RBF) and Support Vector 
Machine (SVM). Results of these three techniques were compared to the ones ob-
tained by DMGeo. The Soy Aptitude problem cannot be solved using the standard 
tools (J48, RBF and SVM) because they do not manipulate geographical attributes. 
Then, we did a pre-processing of the geographical attributes, using the tool presented 
in [1], in order to generate a dataset composed just by numeric attributes. Thus, the 
standard tools were applied to classify this new dataset.  

It is important to notice that the Soy Aptitude problem is unbalanced, that is, one 
class has much more instances than the other one (66% of class A and 34% of class 
B). To balance this problem, copies of instances of class B were randomly generated 
to make the number of instances of each class similar. The experiments were made 
using the balanced and unbalanced datasets.  

The experiments using DMGeo in the City Development dataset were conducted in 
the presence and in the absence of geographic data in two different runs, one using 
geographic data (Table 3) and one using only numeric data (Table 2).  

All algorithms used the cross-validation procedure with 5 folds and the experiment 
was repeated 3 times with each tool using each base. DMGeo used population size = 
200, generations = 200, crossover probability = 90% and mutation probability = 2%. 

4.2   Results and Analysis 

This section presents the main results obtained with DMGeo and with the standard 
techniques J48, RBF and SVM. First, we present the global index in Table 1. This 
index is an average of the results obtained for each class. For example, the DMGeo, in 
Wine Problem, classified correctly 93% as class A, 90% as B and 99% as C. In this 
case, the global index is the medium value, which is (93+90+99)/3 = 94%.  

Table 1. Actual global index of each tool 

 J48 RBF SVM DMGeo 
Wine 91% 98% 98% 94% 
Heart 78% 81% 84% 78% 

Unbalanc. Balanc. Unbalanc. Balanc. Unbalanc. Balanc. Unbalanc. Balanc. Soy Aptitude 
44% 68% 38% 56% 74% 73% 76% 80% 

City Development 62% 58%  57% 82% 

 
As we can see, DMGeo performed well all these problems. 
Table 2 shows the results obtained by each algorithm stratified by each class, as 

well as the standard deviation (σ). It is important to emphasize that a low standard 
deviation means that the tool was able to achieve a more homogeneous classification.  
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Table 2. Actual index for each class 

  J48 RBF SVM DMGeo 
A 97% 100% 98% 93% 
B 87% 96% 100% 90% Wine 
C 89% 98% 96% 99% 

σ 5.292 2.000 2.000 4.583 
A 77% 79% 83% 85% Heart 
B 78% 82% 84% 72% 

σ 0.707 2.121 0.707 9.192 
 Unbalan. Balan. Unbalan Balan Unbalan Balan Unbalan Balan 

A 66% 68% 66% 54% 73% 74% 93% 90% Soy Aptitude 
B 22% 68% 10% 58% 74% 70% 59% 70% 

σ 31.113 0.000 39.598 2.828 0.707 2.828 24.042 14.142 
A 78% 78% 78% 75% 
B 52% 47% 47% 71% 

City Development 
(without geographic 

att.) C 57% 47% 47% 66% 
σ 13.796 17.898 17.898 4.509 

Table 3. DMGeo with geographic attributes in City Development dataset 

A B C σ Global index 
85% 80% 82% 2.516 82% 

 
DMGeo obtained, in this analysis, good results in the datasets that are composed 

by conventional data. For example, the best results of class C in the Wine dataset and 
class A in Heart dataset were found by DMGeo. But the biggest contribution of this 
algorithm is obtained when results of the classification problem can be improved by 
the geographical analysis. As shown in Table 3, when DMGeo used the geographical 
attributes the results became better. This table presents the result obtained in City 
Development dataset with geographic attributes. The results show that the DMGeo 
took advantage of the topological relations of these geographic attributes to increase 
its performance. When the dataset contains just geographical attributes a pre-
processing tool can be applied and posteriorly a conventional classification algorithm 
can be used. Nevertheless, in this case, the DMGeo can present a better result.  

5   Conclusion 

This paper proposes a new evolutionary algorithm that can be applied in classification 
problems in which numeric and/or geographic data may be present. The algorithm 
uses niches, elitism and a cache memory to improve its performance, and represents 
the individual as a SQL WHERE-clause. In order to evaluate the performance of  
the designed algorithm, tests of classification problems were used. Classical classifi-
cation algorithms, like Neural Network, Decision Tree and Support Vector Machine 
were also used to generate results to be compared with those obtained with DMGeo. 
The comparison shows that the proposed algorithm is competitive and robust, since it 
has presented the best results in most cases. The main contribution of the proposed 
algorithm is achieved when the classification problem presents regular and geo-
graphical attributes. 
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Abstract. It is necessary to estimate the weld bead width and depth of penetra-
tion using suitable sensors during welding to monitor weld quality. Infra red 
sensing is the natural choice for monitoring welding processes as welding is in-
herently a thermal processing method. An attempt has been made to estimate 
the bead width and depth of penetration from the infra red thermal image of the 
weld pool using artificial neural network models. Real time infra red images 
were captured using IR camera during A-TIG welding. The image features such 
as length and width of the hot spot, peak temperature and other features are ex-
tracted using image processing techniques. These parameters along with their 
respective current values are used as inputs while the measured bead width and 
depth of penetration are used as output of the neural network models. Accurate 
ANN models predicting weld bead width and depth of penetration have been 
developed.  

Keywords: Artificial neural network, Infra Red Thermal images, image proc-
essing, Depth of penetration, Weld bead width, A-TIG welding. 

1   Introduction 

In the recent decades, there is an extensive development in the field of welding sci-
ence and technology. Robotization of welding are well investigated and many new 
intelligent welding robots with arc sensors and vision sensors are developed. The  
development of automated robotic welding systems for TIG welding is of much  
importance and its success lies in the development of adaptive/intelligent welding. 
Intelligent welding enables dynamic altering of the welding parameters to compensate 
for changing environment. Control of the welding process requires 

• Sensing the perturbation occurring during the welding process 
• Identifying the perturbation 
• Providing the necessary feedback for corrective action 
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In conventional welding, the quality of the weld is ascertained only after the welding 
has been completed with the help of NDT techniques (Ultrasonic or Radiography). In 
manual welding process, the welder ensures the quality of the weld by monitoring and 
suitably manipulating the process parameters according to the changing environment 
based on his knowledge and experience.  

In the case of adaptive welding vision system, sensors play the role of welder. Vi-
sion systems use the  CCD/IR/CMOS cameras for monitoring weld pool size and to 
control the welding parameters [1,2]. They provide process status information in real 
time and are an integral part of such an adaptive system. Welding, inherently being a 
thermal processing method, infrared sensing is a natural choice for weld process in-
formation. The basis for using infrared imaging lies in the fact that an ideal welding 
condition would produce surface temperature distribution that show a regular and 
repeatable pattern. Any variation or perturbation should result in discernible change in 
the thermal profiles. Welding being a thermal processing method, thermographic in-
frared sensing (thermography) using IR sensors are most extensively used technique 
for sensing, monitoring and control of weld process. 

Thermocouples were used in various configurations to measure temperature distri-
butions during the welding process [3-5]. The thermal changes during welding are 
rapid, the inherent slow response and low spatial response of thermocouples present 
significant problems in their use for process control. Non-contact measurement of the 
emissions in the infrared portion of the electromagnetic spectrum is used to extract 
information about the condition of the weld. Point, line and image analysis techniques 
have been used to measure the infrared emission during the welding [6]. Using image 
analysis techniques, seam tracking, bead width control, penetration control and cool-
ing rate control can be successfully implemented using extracted information, which 
ensures satisfactory weld quality.  

Infra red sensing is not without its difficulties, such as the interference of arc radia-
tion and welding electrode emissions, these interferences are mitigated by using either 
mechanical or optical means to filter the unwanted thermal emissions[7]. To over-
come the interference of radiation from the arc, this is done by selecting the sensors, 
which ignores the wavelength range. Scanning infrared sensor with the spectral  
response greater than 2µm ignores the radiation of the arc [8]. By employing CCD 
cameras with band pass filter operating at a wavelength where the arc intensity is low, 
the camera will be able record the image of the weld pool because of the reduced in-
tensity of the arc light [2]. The reported control systems are based on the assumption 
that the surface temperature distributions are indication of the conditions below the 
surface of the weldment. Joint tracking, joint depth penetration, weld parameter varia-
tions and surface contaminants are the key variables that must be controlled during 
online welding to ensure satisfactory weld quality. To ensure reliable weld quality, 
joint depth penetration and bead width are the two key variables to be sensed and  
controlled.  

The estimation of weld bead geometry such as weld bead width and depth of pene-
tration of the weld pool from the infrared (IR) thermal video of a welding process is 
an intermediate step towards online control of the welding process. Among the vari-
ous approaches used to calculate the weld bead geometry parameters, infrared sensing 
technique has been widely used [9-13]. IR sensing technique has been used for con-
trolling the weld penetration depth [12]. Menaka et al [13] have estimated bead width 
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and depth of penetration during welding by IR imaging. Bead width was computed 
based on sharp temperature gradients and change in emissivity (perceived as dip-
inflection) in the profile. This point of inflection was more clearly seen from the 1st 
derivative plot [8,11,13]. Another approach for bead width measurement is by calcu-
lating the full width half maximum (FWHM) from the line profile across the weld 
[9,13]. Rider et al[14-15] used a linear array of silicon photodiodes as the sensor for 
measuring weld bead width.  

Menaka et al[13] estimated that as the depth of penetration increases, the peak 
temperature attained the width and area under the temperature curve also increases. 
Chen and Chin [9] found out that there exists an exponential relationship between 
depth of penetration and area under the peak temperature profile. Malmuth et al[16] 
were one of the first to report on the use of a full two dimensional image of the sur-
face temperature distribution during arc welding. They related weld penetration depth 
to thermal distribution of the plate. Nagarajan et al[10] and Chen et al [9] proposed 
and implemented a penetration control strategy based upon the size and area con-
trolled by the surface isotherms, where an ellipse was fitted to the lower half of the 
selected isotherm. The length of the minor axis and the sum of all the intensity values 
in this region were found to be proportional to the penetration depth. Saeed and zhang 
[17] have calculated the depth of the weld pool surface using images captured by  
a calibrated charge couple device sensor. Pietrzak and Packer [18] have designed 
methods for controlling weld penetration using weld pool using geometry sensing. 
Baneerjee et al [19] and Govardhan [20] implemented bead width and penetration 
control systems based upon the thermal gradient across the weld pool. Vasudevan et 
al [21] enhanced the penetration performance of TIG welding process with the help of 
a specific activated flux. Sheela Rani et al [22] developed an image segmentation al-
gorithm for characterizing the lack of penetration from the thermographs for online 
weld monitoring.  

In recent years, artificial neural networks (ANNs) and fuzzy logic have been used 
for predicting weld microstructure, weld bead geometry parameters, weld recognition 
and weld defect detection [23]. A similar approach in which a model on artificial neu-
ral network for predicting the welding parameters (current voltage and torch speed) 
from the weld geometry was done by Chan et al [24]. Nandhitha et al [25] predicted 
the torch current using feed forward artificial neural network for monitoring lack of 
penetration from IR thermal images. Lee and Um [23] have used neural networks to 
predict welding process parameters by predicting back bead geometry. Ghanty et al 
[26] have used neural networks for predicting the weld bead geometry parameters 
after analyzing the weld control features using an online feature selection (OFS)  
technique. With the help of Bayesian neural network, a model predicting the ferrite 
content in stainless steel was developed by Vasudevan et al [27].  

The present work attempts to develop accurate artificial neural network based 
models for estimating weld bead width and depth of penetration from the acquired 
infra red thermal images of weld pool during A-TIG welding. From the acquired im-
ages, various image features are extracted using image processing techniques. The 
extracted image features and along with the current used during welding form the 
input variables of the ANN models. The measured weld bead width and depth of 
penetration are the out put variables. The objective of the work also included validat-
ing the model predictions by carrying out experiments.    
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2   Experimental  

A-TIG welding is carried out on 3mm thick 316LN Austenitic Stainless Steel plates 
of dimension 125x50mm to make square butt joints with the help of precision TIG 
375 welding machine. Before welding, the plates are preprocessed. During the weld-
ing process, the surface temperature distributions of the plate being welded are meas-
ured with the help of an IR camera. It uses a high band filter to permit only a portion 
of the emitted energy within a wavelength range of 4.99 µm-5.1 µm thereby minimiz-
ing the interference from the arc light and hot tungsten electrode on the image quality.  

2.1   Image Acquisition 

The thermal radiation from the object is focused by the built-in-lens in which the im-
age is acquired. Each scan of the camera is transferred as a video frame consisting of 
320x240 discrete intensity measurements. The camera is capable of measuring tem-
perature in the range of 473– 1973 K with an accuracy of +/-1% over the entire range. 
Each frame consists of the thermal images, these images has a high-resolution color 
image appearing on the external monitor. These images are analyzed using the Altair 
software. It has a number of features and tools for quantitative analysis of the images.  

The plates were cleaned after welding and then polished sequentially using Auto-
matic polishing machine. They are sectioned transversely from the beginning of  
the plate at 8mm, 55mm and 92mm, for measuring the bead width (BW) and depth 
penetration (DOP) using a machinist microscope. The experiment is conducted with 
various current values starting from 50 amperes to 95 amperes with increment of 5 
amperes and at constant torch speed of 120 mm/min to achieve different values of 
depth of penetration and weld bead width. 

2.2   Feature Extraction 

The video frames of the surface temperature distributions corresponding to a particu-
lar cut section are determined from the torch speed and the video frame rate. For ex-
ample: Torch speed = 2mm/s (120mm/min), Frame rate = 25 frames/s, Video frame 
corresponding to the cut section at 8mm = (8x25)/2 =100th frame, which is referred as 
the key frame (t). Similarly, the cut sections are selected at 55mm and 92mm, so their 
corresponding key frames will be 688 and 1150. At each key frame, 8 features are 
extracted from ten welding experiments with the help of Altair and Origin software. 
They have a number of features and tools for quantitative analysis of the images. For 
feature extraction, only the weld pool (hot spot) region is processed in order to accu-
rately measure the length and width of the weld pool. Around 8 features are extracted 
from the weld pool region.  

The extracted eight features are as follows,  

• Length and width of the weld pool, L(t) and W(t) respectively. 
• Peak temperature, T(t) based on line of scan.  
• Mean µ(t) and Standard deviation σ(t) of the Gaussian temperature profile.  
• Thermal area (A) under the Gaussian temperature profile.  

 



274 S. Chokkalingham, N. Chandrasekhar, and M. Vasudevan 

 

• Full Width Half Maximum of the Gaussian temperature curve  
• Bead width computed from the first derivative curve of the Gaussian tem-

perature curve. 

These features are extracted for 3 scan lines in every frame (100, 688, 1150). Along 
with these eight image-extracted features, their corresponding current value is also 
considered as another input variable. There are totally 9 input variables and one out 
put variable in each of the models. Weld bead width and depth of penetration are the 
out put variables which are measured from the cut sections of the weld joints. Totally 
90 data sets are generated and are used for developing the artificial neural network 
models. Among the 90 data sets, 70 data sets with their corresponding known weld 
bead geometry are chosen randomly as the training input to train the neural network 
model and the remaining 20 data sets are used to test the neural network model.  

3   Results and Discussion 

3.1   Artificial Neural Network Model on Depth of Penetration 

Number of neurons/nodes in the hidden layer is varied from 3 to 15 and the RMS er-
ror was determined for test data set. The network architecture exhibiting minimum 
RMS error for predicting depth of penetration was identified as 9-9-1. The RMS error 
value determined was 0.12934. Then the above network was used to predict the depth 
of penetration for the entire 90 dataset. Figure 1 compares the predicted and measured 
values of depth of penetration for the entire dataset. There was good agreement be-
tween the predicted and measured depth of penetration values. 

 

Fig. 1. Comparison between predicted and measured depth of penetration for entire data set 
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Fig. 2. Comparison between the predicted and measured weld bead width for the entire dataset 

3.2   Artificial Neural Network Model on Weld Bead Width   

Among all these models, the model with 11 hidden nodes exhibited minimum RMS 
error value of 0.10542 for the test dataset. The model with 9-11-1 architecture is se-
lected as the best for predicting weld bead width. The optimized network was used to 
predict weld bead width for the entire 90 dataset. Figure 2 compares the predicted and 
measured weld bead width for the entire dataset. There was again good agreement 
between the predicted and measured values.  

3.3   Validation of the Neural Network Models 

During validation of the model predictions, two plates of 316LN stainless steel of 
same dimensions are butt welded with 60 and 85 amperes of current. Infra red images 
were captured online. By sectioning the weld joints at 30mm, 50mm, 70mm, 90mm, 
110mm, measurements were carried out on depth of penetration and weld bead width. 
Respective to the sectioned regions, the frame numbers are identified and all the eight 
image features are extracted as explained earlier. Those image features along with 
their respective current values are tabulated and randomized. They are fed as input to 
the optimized model predicting the depth of penetration and bead width in order to 
validate them. The physically measured bead width and depth of penetration at the 
sectioned regions with their corresponding frame number are tabulated in the table 1.  

The depth of penetration and weld bead width predicted by the optimized neural 
network models are compared with the actual depth of penetration and the weld bead 
width measured in figures 3 (a) & (b) respectively. There was good agreement  
between the values implying that the artificial neural network models are good in pre-
diction. The slightly high error values on depth of penetration for the validation data 
was due to more noise in the captured images. Filtering of noise in the captured im-
ages may reduce the error further. Artificial neural network models correlating weld 
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bead width and depth of penetration with input variables as the image features ex-
tracted from the infrared thermal images and the current values have been developed. 
The above models may find application during real time monitoring and control of 
weld quality in terms of weld bead geometry during A-TIG welding. 

Table 1. Measured values of weld bead width and depth of penetration 

Current 
(A) 

Sectioned 
Region  
(mm) 

Frame 
No. 

Measured 
Bead Width 

(mm) 

Measured 
Depth of Penetration 

(mm) 
30 377 3.377 1.143 

50 630 3.397 1.118 

70 880 3.529 1.286 

90 1132 3.243 1.271 

 
60 

 
 
 

110 1384 3.416 1.264 

30 377 4.337 3 

50 630 4.39 3 

70 880 4.435 3 

90 1132 4.304 3 

 
85 

 
 
 

110 1384 3.932 3 
 

              

Fig. 3. Comparison between predicted and measured (a) depth of penetration (b) weld bead 
width for validation experiments 

4   Conclusions 

1. Artificial neural network models have been developed for predicting the weld 
bead width and the depth of penetration from the image features extracted from 
IR thermal images of weld pool and the current used for welding. 

2. The optimized neural network model for predicting depth of penetration accu-
rately consists of 9 input parameters, 9 neurons in the hidden layer and 1 output 
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(9-9-1). The RMS error for the test data set was 0.129. The correlation coefficient 
obtained between the predicted and measured depth of penetration was 0.99184 
for the test dataset.  

3. Similarly, another optimized neural network model for predicting weld bead 
width consists of the same 9 input parameters, 11 neurons in the hidden layer and 
1 output (9-11-1). The RMS error for the test data set was 0.11. The correlation 
coefficient obtained between the predicted and measured weld bead width was 
0.98862 for the entire test dataset.  

4. Validation of the optimized models predicting depth of penetration and weld 
bead width were carried out and the correlation coefficient obtained between the 
predicted and measured depth of penetration was 0.92255. Similarly, the correla-
tion coefficient obtained between the predicted and measured weld bead width on 
validation was 0.95525. 

 
All the developed ANN models are found to be accurate and may find application 
during on-line monitoring and control of weld bead geometry during A-TIG welding 
of type 316 LN stainless steels.  

References 

1. Smith, J.S., Lucas, W.: Vision Based Systems for Controlling the Arc Welding operation 
and Inspecting the Weld Bead Profile. Welding in the World 43(suppl. issue), 10–22 
(1999) 

2. Houghton, M.A., Lucas, J.J., Lucas, W.: Vision Systems for Monitoring and Control of 
Arc Welding Operations. Soldagem Insp. Sao Paulo 12(4), 293–299 (2007) 

3. Barry, J.M., Paley, Z., Adams Jr., C.M.: Heat conduction from moving Arc in Welding. 
Welding Journal 42(3), 97-s–104-s (1963) 

4. Dorschu, K.E.: Control of Cooling rate in Steel Weld metal. Welding Journal 50(11), 49-s–
62-s (1968) 

5. Kannatey-Asibu Jr., E., Kikuchi, N., Jallard, A.R.: Experimental Finite Element Analysis 
of Temperature distribution during Arc Welding. Journal of Engineering Materials and 
Technology 111, 9–18 (1989) 

6. Wickle, H.C., Chen, F., Nagarajan, S., Chin, B.A.: Survey of Infrared Sensing Techniques 
for Welding process Monitoring and Control. Journal of Chinese Institute of Engi-
neers 21(6), 645–657 (1998) 

7. Nagarajan, S., Chen, W.H., Chin, B.A.: Infrared Sensing for Adaptive Arc Welding. Weld-
ing Journal 68(11), 462-s – 466-s (1989) 

8. Nagarajan, S., Banerjee, P., Chin, B.A.: Thermal imaging for Weld quality Control in Arc 
Welding processes. Transport Phenomena in Materials Processing 146, 171–178 (1990) 

9. Chen, W., Chin, B.A.: Monitoring Joint Penetration using Infrared Sensing Techniques. 
Welding Journal 67, 181s–185s (1988) 

10. Nagarajan, S., Banerjee, P., Chen, W.H., Chin, B.A.: Control of Welding Process using In-
frared Sensors. IEEE Transactions on Robotics and Automation 8(1), 86–92 (1992) 

11. Ghanty, P., Vasudevan, M., Chandrasekhar, N., Mukherjee, D., Maduraimuthu, V., Pal, 
N.R., Bhaduri, A.K., Bharat, P., Raj, B.: An Artificial Neural Network Approach for esti-
mating weld bead width and depth of penetration from Infra red Thermal image of weld 
pool. Science and Technology of Welding and Joining 13(4), 395–401 (2008) 



278 S. Chokkalingham, N. Chandrasekhar, and M. Vasudevan 

 

12. Wikle, H.C., Kottilingam, S., Zee, R.H., Chin, B.A.: Infrared Sensing Techniques for 
Penetration depth Control of the Submerged Arc Welding process. Journal of Materials 
Processing Technology 113, 228–233 (2001) 

13. Menaka, M., Vasudevan, M., Venkatraman, B., Raj, B.: Estimating Bead Width and Depth 
of Penetration during Welding by Infrared Thermal imaging. Journal of British Institute of 
NDT 47(9), 564–568 (2005) 

14. Rider, G.: Control of Weld pool size and position for Automatic and Robotic Sensory 
Welding. In: Proceedings of SPIE Third Inernational Conference on Robot Vision and 
Sensory Control, Cambridge, MA (November 1983) 

15. Rider, G.: Measurement of Weld pool size by Self-scanned Photodiode Arrays. In: Proc. 
IEE International Conference on Low Light and Thermal Imaging Systems, London, pp. 
3–5 (1975) 

16. Malmuth, N.D., Hall, W.F., Davis, B.I., Rosen, C.D.: Transient Thermal Phenomena and 
Weld Geometry in GTAW. Welding Journal 53(9), 388–400 (1974) 

17. Saeed, G., Zhang, Y.M.: Weld pool surface depth measurement using a Calibrated Camera 
and Structured light. Measurement Science and Technology 18, 2570–2578 (2007) 

18. Pietrzak, K.A., Packer, S.M.: Vision based Weld Pool Width Control. ASME Journal of 
Engineering for Industry 116, 86–92 (1994) 

19. Baneerjee, P., Liu, J.Y., Chin, B.A.: Infrared Thermography for Non-destructive Monitor-
ing of Weld Penetration Variations. In: Liu, M. (ed.) Proceedings of the Japan U.S.A. 
Symposium on Flexible Automation, pp. 291–295. American Society of Mechanical Engi-
neers (1992) 

20. Govardhan, S.M., Chin, B.A.: Monitoring GTA Weld Puddle Geometry using Measured 
Temperature Gradients. In: David, S.A., Vitek, J.M. (eds.) Recent trends in Welding Sci-
ence and Technology, pp. 383–386. American Society for Metals International Materials 
Park OH (1990) 

21. Vasudevan, M.: Computational and Experimental Studies on Arc Welded Austenitic 
Stainless Steels. PhD Thesis, Indian Institute of Technology, Chennai (2007) 

22. Nandhitha, N.M., Manoharan, N., Sheela Rani, B., Venkataraman, B., Vasudevan, M., 
Chandrasekar, Kalyana Sundaram, P., Raj, B.: Euclidean Distance Based Colour Image 
Segmentation Algorithm for Dimensional Characterization of Lack of Penetration from 
Weld Thermographs for Online Weld Monitoring. In: GTAW, 17th world Conference on 
Non-destructive testing WCNDT, Shanghai, China, October 26-28 (2008) 

23. Lee, J.I., Um, K.W.: A Prediction of Welding process parameters by Prediction of Back 
bead geometry. Journal of Materials Processing and Technology 108, 106–113 (2000) 

24. Chan, B., Pacey, J., Bibby, M.: Modeling Gas Metal Arc Weld Geometry using Artificial 
Neural Network Technology. Canadian Metallurgical Quarterly 38(1), 43–51 (1999) 

25. Nandhitha, N.M., Manoharan, N., Sheela rani, B., Venkataraman, B., Vasudevan, M., 
Kalyana Sundaram, P., Raj, B.: Prediction of Torch Current Deviation using Feed Forward 
Neural Network for Monitoring Lack of Penetration from Thermal Images in GTAW of 
AISI Stainless Steel 316. International Journal of Intelligent Information Processing 3(2), 
271–279 (2009) 

26. Ghanty, P., Paul, S., Mukherjee, D.P., Vasudevan, M., Pal, N.R., Bhaduri, A.K.: Model-
ling Weld Bead geometry using Neural Networks for GTAW of an Austenitic Stainless 
Steel. Science and Technology of Welding and Joining 12(7), 649–658 (2007) 

27. Vasudevan, M., Muruganath, M., Bhaduri, A.K., Raj, B., Prasad Rao, K.: Bayesian Neural 
Network Analysis of Ferrite number in Stainless Steel. Science and Technology of Weld-
ing and Joining 9(2), 109–120 (2004) 



Swarm Reinforcement Learning Method
Based on an Actor-Critic Method

Hitoshi Iima and Yasuaki Kuroe

Kyoto Institute of Technology,
Matsugasaki, Sakyo-ku, Kyoto, Japan

{iima,kuroe}@kit.ac.jp

Abstract. We recently proposed swarm reinforcement learning meth-
ods in which multiple agents are prepared and they learn not only by
individual learning but also by learning through exchanging information
among the agents. The methods have been applied to a problem in dis-
crete state-action space so far, and Q-learning method has been used as
the individual learning. Although many studies in reinforcement learning
have been done for problems in the discrete state-action space, continu-
ous state-action space is required for coping with most real-world tasks.
This paper proposes a swarm reinforcement learning method based on
an actor-critic method in order to acquire optimal policies rapidly for
problems in the continuous state-action space. The proposed method is
applied to an inverted pendulum control problem, and its performance
is examined through numerical experiments.

1 Introduction

In ordinary reinforcement learning methods [1], a single agent learns to achieve a
goal through many episodes. Since the agent essentially learns by trial and error,
it takes much computation time to acquire optimal policies especially for com-
plicated learning problems. Meanwhile, for optimization problems, population-
based methods such as genetic algorithms and particle swarm optimization (PSO)
[2] have been recognized that they are able to find rapidly global optimal solutions
for multi-modal functions with wide solution space. It is expected that by intro-
ducing a concept of population-based methods into reinforcement learning meth-
ods, optimal policies can be found rapidly even for complicated learning problems.

We recently proposed reinforcement learning methods using the concept of the
population-based methods, and call them swarm reinforcement learning methods
[3,4]. In the methods, multiple agents are prepared and they all learn concur-
rently with two learning strategies: individual learning and learning through
exchanging information. In the former strategy, each agent learns individually
by using a usual reinforcement learning method such as Q-learning method
[5]. In the latter strategy, the agents exchange information among them reg-
ularly during the individual learning and they learn based on the exchanged
information.
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Learning methods called multi-agent reinforcement learning have been pro-
posed [6]. Basically, the aim of the multi-agent reinforcement learning methods
is to acquire optimal policies in tasks achieved by cooperation or competition
among multiple agents, and each of the agents regards information of other
agents as a part of environments. Therefore, the concept and objective of the
swarm reinforcement learning methods are different from those of the multi-
agent reinforcement learning methods. The swarm reinforcement learning meth-
ods could treat both tasks achieved by a single agent and achieved by cooperation
or competition among multiple agents. In the methods, multiple agents are pre-
pared in order to make some of them learn in shorter learning time even for
complicated reinforcement learning problems.

The swarm reinforcement learning methods in [3,4] are applied to problems
in discrete state-action space as the first stage of this study. Continuous state-
action space should, however, be adopted for coping with most real-world tasks,
and effective learning methods are required to be developed for solving compli-
cated problems in the continuous state-action space. Thus, this paper proposes a
swarm reinforcement learning algorithm which enables to acquire optimal poli-
cies rapidly for the problems in the continuous state-action space. In the proposed
method, an actor-critic method is used in the individual learning because actor-
critic methods are known to be easily applicable to the continuous problems
[7,8]. The proposed method is applied to an inverted pendulum control prob-
lem of a single-agent task, and its performance is examined through numerical
experiments.

2 Swarm Reinforcement Learning Methods

In this section, we briefly explain the swarm reinforcement learning methods
[3,4]. The swarm reinforcement learning methods are motivated by population-
based methods in optimization problems. Multiple agents are prepared and they
all learn concurrently with two learning strategies: individual learning and learn-
ing through exchanging information. In the former strategy, each agent learns
individually by using a usual reinforcement learning method. For the individual
learning, any usual reinforcement learning method can be used. In [3,4], Q-
learning method which is a typical reinforcement learning method is used, and
each agent updates its own state-action values (Q-values) by using the update
equation of Q-learning method.

In the latter strategy, the agents exchange their information among them and
learn based on the exchanged information every after repeating the individual
Q-learning a certain number of times. Each agent updates its own Q-values by
referring to the Q-values which are evaluated to be more useful and superior
to those of the other agents. For this purpose, the Q-values of each agent are
evaluated after the individual Q-learning is performed. They are evaluated by an
appropriate method so that the superior Q-values can be selected. Each agent
updates its own Q-values by using the superior Q-values.

In ordinary reinforcement learning methods with a single agent, the agent
often takes a useless action bringing a small reward, which makes learning time



Swarm Reinforcement Learning Method Based on an Actor-Critic Method 281

longer. On the other hand, in the swarm reinforcement learning methods, since
the multiple agents are prepared, some of these agents could take useful actions
bringing a larger reward. By the information exchange, all the agents could
receive information of the agents who take the useful actions. It is therefore
expected that some agents can acquire the optimal policy in a shorter learning
time even for complicated reinforcement learning problems.

The flow of the swarm reinforcement learning method is as follows.
Step 1 Each of multiple agents updates its own Q-values by performing the

individual Q-learning for a specified number of episodes.
Step 2 The Q-values of each agent are evaluated by an appropriate method so

that superior Q-values can be selected.
Step 3 Based on the evaluation of Step 2, the superior Q-values are selected.

The Q-values of each agent are updated by using the superior Q-values.
Step 4 If the termination condition of the swarm reinforcement learning method

is satisfied, terminate the method. Otherwise, return to Step 1.

3 Proposed Method Based on an Actor-Critic Method

This section proposes a swarm reinforcement learning method based on an actor-
critic method in order to acquire optimal policies rapidly for problems in contin-
uous state-action space. First we outline the actor-critic method which is used in
the individual learning, and then we propose the swarm reinforcement learning
method using it.

3.1 Actor-Critic Method

Actor-critic methods [1] consist of two learning modules: actor and critic. In
the actor module, the policy of each agent is updated based on state values in
such a way that the agent could gain more rewards. In the critic module, the
state values are estimated for the policy. The agent perceives the current state,
and takes an action according to the policy. Consequently, it gains a reward and
perceives the next state. By using the reward and the value of the next state, the
value of the current state is updated in the critic module, and then the policy is
updated based on values in the actor module.

Several learning methods in the actor and critic modules have been proposed
so far, and any actor-critic method can be used as the individual learning of
the proposed swarm reinforcement learning method. In this paper, we adopt an
actor-critic method using eligibility traces [7].

In this actor-critic method, the value vs of each state s is updated by means
of TD(0) method [1]. Namely, when the agent who perceives the current state s∗

gains a reward r and perceives the next state sn by taking an action, the value
vs∗ of the current state is updated by

ERTD = r + γVvsn − vs∗ (1)
vs∗ ← vs∗ + αCERTD (2)
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where ERTD is the TD error, γV is the discount-rate parameter of the state
values and αC is the learning-rate parameter in the critic module.

In the actor module, the policy is expressed by a function of some parameters
{wk} (k = 1, 2, · · · , NA) whose number is denoted as NA. As a typical example,
the policy p is given by the normal distribution

p =
1

σ
√

2π
exp

(−(a − μ)2

2σ2

)
(3)

where μ and σ are the mean and the standard deviation, respectively, and they
are usually expressed by functions of the actor parameters {wk}. For instance,
they are given by (11)(12) as shown in Sect. 4. According to a random value
based on the normal distribution, the agent selects an action a. When the agent
who perceives the current state s∗ takes action a∗, the values of all the actor
parameters {wk} are updated by

ek =
∂lnp

∂wk

∣∣∣∣
s=s∗,a=a∗,wk=w∗

k

(4)

etk ← ek + γEetk (5)
wk ← wk + αAERTDetk (6)

(k = 1, 2, · · · , NA)

where w∗
k is the value of wk before the update, ek is the eligibility, etk is the

eligibility trace, γE is the discount-rate parameter of the eligibility traces and
αA is the learning-rate parameter in the actor module.

The flow of the actor-critic method for one episode is as follows.
Actor-critic method for one episode

Step 1 Initialize the current state s∗, and set etk ← 0 for ∀k.
Step 2 The agent takes action a∗ according to a random value based on the

normal distribution (3).
Step 3 The agent gains a reward r and perceives the next state sn. Update the

value of critic parameter vs∗ for the current state by using (1)(2).
Step 4 Update all the eligibility traces {etk} and the values of all the actor

parameters {wk} by using (4)–(6).
Step 5 If the terminate condition of episode is satisfied, terminate the episode.

Otherwise, return to Step 2.

3.2 Basic Framework of the Proposed Method

This subsection describes the basic framework of the proposed swarm reinforce-
ment learning method. In the proposed method, multiple agents learn by indi-
vidual learning and learning through exchanging information among them. In
the individual learning, each agent i updates its own values of actor-critic pa-
rameters {vis, wik} by using the above-mentioned actor-critic method. After the
individual learning, the values of the actor-critic parameters of each agent are
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evaluated by an appropriate method so that the superior values can be selected,
and each agent updates its own values by using the superior values.

The flow of the proposed swarm reinforcement learning method is as follows.
Step 1 Each of the multiple agents updates its own values of the actor-critic pa-

rameters by individually performing the actor-critic method for a speci-
fied number of episodes.

Step 2 The values of the actor-critic parameters of each agent are evaluated by
an appropriate method so that the superior values can be selected.

Step 3 Based on the evaluation of Step 2, the superior values are selected. The
values of the actor-critic parameters of each agent are updated by using
the superior values, which is explained in the next subsection.

Step 4 If the termination condition of the proposed swarm reinforcement learn-
ing method is satisfied, terminate the method. Otherwise, return to
Step 1.

3.3 Information Exchange Method among Agents

The performance of the swarm reinforcement learning method depends on a
method of exchanging the information, which should be appropriately designed.
Because population-based methods are often used for rapidly finding a global
optimal solution in optimization, an optimal policy could be also found rapidly
by applying an update procedure used in the population-based methods to the
swarm reinforcement learning method. PSO [2] is a promising population-based
method which originates in social behavior. Each agent updates its own can-
didate solution by utilizing its own personal best and the global best. In this
paper, we adopt the update procedure of PSO for exchanging the information
among the agents.

In the proposed method, each agent updates its own value of the actor-critic
parameter by using the update equations of PSO. The personal best of agent i
and the global best are selected and memorized. The personal best is defined as
the value of the actor-critic parameter which is evaluated to be superior to any
other value among the values found by agent i so far. The global best is defined
as the value of the actor-critic parameter which is evaluated to be superior to any
other value among the values found by all agents so far. The update equations
are given by

V A
ik ← WV A

ik + C1R
A
1 (PA

ik − wik) + C2R
A
2 (GA

k − wik) (7)
wik ← wik + V A

ik (8)
V C

is ← WV C
is + C1R

C
1 (PC

is − vis) + C2R
C
2 (GC

s − vis) (9)
vis ← vis + V C

is (10)

where
V A

ik , V C
is : so-called velocities for actor-critic parameters,

W , C1, C2 : weight parameters,
RA

1 , RA
2 , RC

1 , RC
2 : uniform random numbers in the range from 0 to 1,
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PA
ik, PC

is : personal best values of actor-critic parameters for agent i,
GA

k , GC
s : global best values of actor-critic parameters.

3.4 Flow of the Proposed Method

The flow of the proposed swarm reinforcement learning method is as follows.

I : number of agents.
T : total number of episodes.
Y : number of episodes for which the individual actor-critic method is performed

between the information exchange among the agents.
Step 1 Set the initial values of actor-critic parameters wik, vis for ∀i, k, s. In

addition, set the initial values of velocities V A
ik , V C

is for ∀i, k, s. Set t ← 1,
where t is the number of episodes.

Step 2 Each agent i updates its own values of the actor-critic parameters wik, vis

by individually performing the actor-critic method using the eligibility
traces for Y episodes.

Step 3 The updated values are evaluated by an appropriate method.
Step 4 If the actor-critic parameters {wik, vis} of each agent i are superior to

the personal best {PA
ik, PC

is}, set PA
ik ← wik and PC

is ← vis for ∀k, s.
In addition, if {wik, vis} are superior to the global best {GA

k , GC
s }, set

GA
k ← wik and GC

s ← vis for ∀k, s.
Step 5 All the values of the actor-critic parameters and the velocities for all the

agents are updated by (7)–(10).
Step 6 If the termination condition t ≥ T is satisfied, terminate the proposed

method. Otherwise, set t ← t + IY and return to Step 2.

4 Numerical Experiments

The performance of the proposed swarm reinforcement learning method is evalu-
ated by applying it to an inverted pendulum control problem, and by comparing
its computational efficiency with that of ordinary actor-critic method using a
single agent.

4.1 Inverted Pendulum Control Problem

In the inverted pendulum device shown in Fig. 1, the cart can move horizontally
by impressing a voltage to the electric motor, and the pole is mounted on the
cart. The pole swings according to movement of the cart. The inverted pendulum
control problem is to design a controller to remain standing the pole upright after
the inverted pendulum device is actuated from the initial state that the pole is
slightly leaned. Let x1, x2, x3, x4 and u be the position [m] of the cart, the angle
[rad] of the pole, the velocity [m/s] of the cart, the angular velocity [rad/s] of
the pole, and the input voltage [V], respectively.

The initial values of (x1, x2, x3, x4) are denoted as (x10, x20, x30, x40). If |x1| >
xmax

1 , |x2| > xmax
2 , |x3| > xmax

3 or |x4| > xmax
4 after the inverted pendulum device
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Fig. 1. Inverted pendulum

is actuated, we judge that the attempt to control the pendulum has failed. If the
attempt does not fail during a specified time Ts [s], we judge that the pendulum
successfully remains standing.

4.2 Experimental Set Up

For the problem parameters, the following values are used:
initial values of state variables :

(x10, x20, x30, x40)=(0.01[m],0.5[rad],0[m/s],0[rad/s]),
bound in control failing condition :

(xmax
1 , xmax

2 , xmax
3 , xmax

4 ) =(2.4[m],0.6[rad],2[m/s],1.5[rad/s]),
time required for judging that the pendulum successfully remains standing :

Ts=60[s].
The following methods are applied to the inverted pendulum control problem,

and their computational efficiency is compared:
PSO-AC : proposed swarm reinforcement learning method using the actor-critic

method and PSO,
1-AC : ordinary actor-critic method using a single agent.
In these methods, an agent is a controller and its action a corresponds to the

input voltage u. The policy p is defined by (3), and the mean μ and the standard
deviation σ are expressed by

μ =
4∑

k=1

wkxk (11)

σ =
1

1 + exp(−w5)
(12)

where wk (k=1,2,3,4,5) is the actor parameter [7]. From (3)(4)(11)(12), each
eligibility is given by

ek =
(u∗ − μ)xk

σ2 (k = 1, 2, 3, 4) (13)
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e5 =
{(u∗ − μ)2 − σ2}(1 − σ)

σ2 . (14)

For the parameters of each method, the following values are used:
number of agents : I = 10,
total number of episodes : T = 20000,
number of episodes for which the individual learning is performed between the
information exchange :

Y = 3,
weights in (7)(9) : W = 0.2, C1 = C2 = 1.8,
learning-rate in the actor module : αA = 0.2,
discount-rate of the eligibility traces : γE = 0.9,
learning-rate in the critic module : αC = 0.6,
discount-rate of the state values : γV = 0.95.
These values are determined through the preliminary experiments in such a way
that each method works as good as possible.

If the attempt to control the pendulum fails in an episode, then the agent
gains reward −1 and the episode is terminated. The episode is also terminated
when the pendulum successfully remains standing for Ts seconds. If the pendu-
lum remains standing for longer time, the values of actor-critic parameters are
evaluated to be superior.

In the numerical experiments, the following model is used for the inverted
pendulum device:

ẋ1 = x3 (15)
ẋ2 = x4 (16)

ẋ3 =
mp�x2

4 sinx2 − mpg cosx2 sin x2 − cx3

mc + mp − mp cos2 x2

+
KtKg

Rarc(mc + mp − mp cos2 x2)
u (17)

ẋ4 =
−mp�x

2
4 cosx2 sin x2 + (mc + mp)g sin x2 + cx3 cosx2

�(mc + mp) − mp� cos2 x2

− KtKg cosx2

Rarc{�(mc + mp) − mp� cos2 x2}u (18)

c =
KtKeK

2
g

Rar2
c

(19)

where mc=0.522, Kt=0.00767, Ke=0.00767, Ra=2.6, rc=0.00635, Kg=3.7, mp=
0.212, �=0.305 and g=9.8.

4.3 Results and Discussion

Figure 2 shows the variation of balancing time through the learning phase ob-
tained by each method. The x-axis in this figure is the number of episodes. In the
swarm reinforcement learning method, the x-axis is not the number of episodes
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Fig. 2. Variation of balancing time through the learning phase

for each single agent, and is the sum of numbers of episodes for all the agents.
The y-axis is the balancing time, namely the time the attempt to control the
pendulum fails. If the pendulum successfully remains standing, the balancing
time is counted as Ts(=60). The balancing time in the figure is the maximum
among those obtained so far. Each method is performed ten times with various
random seeds, and their results are averaged.

It is confirmed from Fig. 2 that the balancing time of PSO-AC at each episode
is longer than that of 1-AC. Therefore, learning with multiple agents works
better. Since the balancing time of PSO-AC reaches 60 seconds at a small number
of episodes, PSO-AC finds the optimal policies in shorter computation time for
all the ten trials.

In PSO-AC, optimal policies can be found rapidly by using both the actor-critic
method and the update equations of PSO. In order to discuss this fact, we evaluate
the performance of a method in which the values of actor parameters are updated
by using only the update equations of PSO. For this purpose, the original PSO
(OPSO) is applied to the inverted pendulum control problem. In OPSO, a can-
didate solution is the actor parameters {wik}, and the objective function is the
balancing time in the case where the input voltage u is given by u = μ and (11).

The experimental result of OPSO is shown in Fig. 2. Whereas both OPSO and
1-AC do not necessarily find optimal policies, PSO-AC can find them. Because
the personal best and the global best in OPSO are not necessarily good policies
at and shortly after the first episode, the policy of each agent is not improved
by using these bests. By contrast, in PSO-AC, since the individual actor-critic
method is applied before the application of the update equations of PSO, the
personal best and the global best in PSO-AC are superior to those in OPSO,
and the policy of each agent is improved by using these bests. Therefore, better
polices can be found rapidly by PSO-AC.
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5 Conclusion

This paper has proposed a swarm reinforcement learning method based on an
actor-critic method for solving problems in continuous state-action space. In the
proposed method, multiple agents are prepared, and the update equations of
PSO are used for exchanging information among the agents. In order to eval-
uate the performance of the proposed method, the proposed method has been
compared with the one-agent actor-critic method and the original PSO in numer-
ical experiments. It is concluded from the experimental results that the proposed
method outperforms the other methods.
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Abstract. The eXtended Classifier System (XCS) is a rule-based evo-
lutionary on-line learning system. Originally proposed by Wilson, XCS
combines techniques from reinforcement learning and evolutionary op-
timization to learn a population of maximally general, but accurate
condition-action rules. This paper focuses on the discovery component of
XCS that is responsible for the creation and deletion of rules. A novel rule
combining mechanism is proposed that infers maximally general rules
from the existing population. Rule combining is evaluated for single- and
multi-step learning problems using the well-known multiplexer, Woods,
and Maze environments. Results indicate that the novel mechanism al-
lows for faster learning rates and a reduced population size compared to
the original XCS implementation.

1 Introduction

Learning Classifier Systems (LCS, [2]) are rule-based evolutionary on-line learn-
ing systems that are widely used in various application areas [1]. One of the
most successful LCS is the eXtended Classifier System (XCS) that has been
introduced by Wilson [9, 10].

As reinforcement learning system, XCS acquires knowledge by interacting
with an unknown environment. It receives an environmental input (coded as
bit string), performs an action based on its current knowledge, and receives a
numerical reward in response. Its knowledge is represented by a set (or popula-
tion) of condition-action rules that are called classifiers. A classifier’s condition
(denoted as cl.C in the following) specifies to which inputs the classifier is ap-
plicable. Conditions are defined over a ternary alphabet {0, 1, #}, where ‘#’
represents a don’t care symbol (or wildcard) that matches both ‘0’ or ‘1’. Other
specifications of conditions using larger alphabets or numerical values may be
reasonable for special applications (see [8]), but for the topics of this paper the
classical ternary alphabet is sufficient. A classifier’s action cl.A specifies a pos-
sible response to the matched inputs. Several additional parameters keep track
of a classifier’s predicted future payoff cl.P , its past prediction error cl.ε, its
fitness cl.F (that measures the relative accuracy of a classifier with respect to
other classifiers with overlapping conditions), and other bookkeeping values.

K. Deb et al. (Eds.): SEAL 2010, LNCS 6457, pp. 289–298, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Based on the current classifier population [P ], XCS’ performance component
determines the action that is executed in response to a given input: Classifiers
with a matching condition form a match set [M ]. Since the classifiers in [M ] can
advocate different actions, a selection has to take place. The action can be either
chosen randomly to explore the environment or deterministically to exploit the
previously learnt knowledge. In either case, all classifiers in [M ] advocating the
selected action are stored in an action set [A] before the action is executed.

Based on the action’s success, XCS receives a reward that is used to update the
parameters of all classifiers in [A]. The update of existing classifiers is the regime
of the reinforcement component. An additional discovery component aims at
obtaining a small population of accurate rules: Randomized covering and genetic
operators help to create well-performing classifiers, a subsumption mechanism
combines similar rules, and a randomized deletion mechanism removes classifiers
of a low fitness from the population.

In this paper, the discovery component of XCS is revisited and a novel rule
combining technique is proposed. Rule combining aims at creating maximally
general classifiers that match as many inputs as possible while still being exact
in their predictions. It explicitly takes into account previously learnt knowledge
and infers generalized classifiers from the existing population, thereby improving
the achievable learning rate and reducing the population size.

The remainder of this paper is structured as follows: Section 2 focuses on
the discovery component of XCS and briefly reviews literature on generalization
in XCS, before Sect. 3 presents the novel rule combining mechanism. Section 4
compares an XCS variant that uses rule combining to the original XCS. The
comparison considers single- and multi-step environments using the well-known
multiplexer, Woods, and Maze problems. Finally, the paper concludes with a
summary and an outlook on future work in Sect. 5.

2 Generalization in XCS

XCS aims at learning a population of maximally general classifiers. Within its
discovery component, several mechanisms interact to support this goal:

Covering. Covering occurs for an input s if the classifiers in [M ] represent less
than a predefined number of different actions. During covering, additional
matching classifiers are created randomly. Depending on a don’t care proba-
bility P#, wildcards are inserted in a new classifier’s condition so it matches
a set of inputs including s. The classifier’s action is chosen randomly among
those not present in [M ], its prediction, prediction error, and fitness are
initialized with defaults.

Genetic operators. Genetic operators are applied to classifiers in the action
set if the average time since their last genetic modification exceeds a thresh-
old. In this case, parent classifiers are selected using fitness-proportionate
[9,10] or tournament [3] selection. From the selected parents, offspring clas-
sifiers are created using crossover and mutation.
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Subsumption. When inserting newly created classifiers into [P ] or when build-
ing the action set, subsumption deletion can be applied. A classifier is
subsumed by a more general classifier advising the same action if the more
general classifier is sufficiently accurate and experienced. If so, the subsumed
classifier is deleted and its numerosity is added to the subsumer. (The nu-
merosity specifies the number of identical classifier copies that a classifier
represents.)

Deletion. To keep the population within its size limit, a classifier is selected
for deletion with a probability that is proportional to the average size of the
action sets it was part of. In this way, classifiers in well covered environmental
niches have a higher probability to be removed. Furthermore, if the classifier
is experienced and its fitness is lower than the population’s average fitness,
its deletion probability is increased.

In combination, covering, genetic operators, subsumption, and deletion help to
learn classifiers that are as general as possible without losing accuracy, as formu-
lated in Wilson’s generalization hypothesis [10]. Butz et al. identified and ana-
lyzed the evolutionary pressures guiding the learning process in XCS [4], thereby
supporting the theoretical understanding of Wilson’s hypothesis. Additionally,
the analysis of the complex learning interactions in XCS provided insights on the
system configuration [7] and identified room for further improvements (e. g., by
modifying the deletion [6] and selection [3] schemes). In the spirit of this previous
research, the following section introduces a novel rule combining mechanism for
XCS that supports the generalization of classifiers.

3 A Novel Discovery Component

This section introduces several modifications to XCS that improve the learning
performance and reduce the required population size. The main modification
is a novel rule combining mechanism that supports the discovery of maximally
general classifiers. Rule combining reuses the covering, subsumption, and dele-
tion mechanisms of XCS, but removes the genetic operators. New classifiers are
created by inference, instead. The resulting novel XCS variant is called XCS-RC.

3.1 Rule Combining

In XCS-RC, a rule combining mechanism infers general, but accurate classifiers.
Every Tcomb cycles, the mechanism is executed in between the regular learn-
ing cycles. Its steps are illustrated in Fig. 1: In a preparatory Step 0, classifiers
advocating the same action are gathered in a combining set [C]. (In the fig-
ure, different actions are depicted by different shades of grey.) Afterwards, the
classifiers in [C] are examined pairwise to obtain a generalized candidate clas-
sifier cl∗ which is then checked for potential conflicts with existing classifiers
(Step 1). If no conflicts are found, existing classifiers that are less general than
cl∗ are marked for subsumption or deletion, while cl∗’s parameters are updated
(Step 2). Finally, the generalized classifier is inserted into [C] and [P ], while
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Fig. 1. Overview of the rule combining process

Index cl.C cl.A cl.P cl.num cl.exp

1 #10011 0 1 2 17

4 000101 0 1000 1 6

8 001##1 0 0 3 23

10 000111 0 10 1 0

13 00001# 0 997 2 15

14 000110 0 1001 1 3

Index cl.C cl.A cl.P
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(a) Step 1
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Fig. 2. Rule combining example

marked classifiers are deleted (Step 3). In the following, the steps are presented
in detail.

Steps 0 and 1: Combining Set and Candidate Creation To prepare the gen-
eralization of existing classifiers, the combining set [C] is created in Step 0. It
contains all classifiers in [P ] that advocate the same action. Afterwards, Step 1
examines the classifiers in [C] pairwise. If a pair cli and clj is sufficiently expe-
rienced and has similar payoff predictions, the classifiers will be combined into
a new classifier cl∗. To be combined, the experience of both classifiers must ex-
ceed a minimum experience threshold minExp. Furthermore, their prediction
difference |cli.P − clj .P | must not exceed a prediction tolerance predTol.

With these preconditions fulfilled, a generalized classifier cl∗ can be created
from the parent classifiers cli and clj. Its condition cl∗.C is derived according to
the following rules:

– If positions p in the conditions of cli and clj are identical (i. e., if cli.C[p] =
clj .C[p]), that position is copied to cl∗ (i. e., cl∗.C[p] := cli.C[p]).

– If positions p in the conditions of cli and clj are different (i. e., if cli.C[p] �=
clj .C[p]), that position becomes a wildcard in cl∗ (i. e., cl∗.C[p] := #).

The generalized classifier cl∗ has the same action as its parent classifiers, its
prediction is determined as the numerosity-weighted average prediction of cli
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and clj (see Fig. 2(a) for an example). Other values of cl∗ remain unspecified at
this time, as they will be determined later in the combining process (see Step 2).

Once a candidate classifier cl∗ is created, all classifiers in [C] are examined to
prevent potential conflicts with previously learnt knowledge. A conflict occurs if
a classifier clk ∈ [C] with clk.exp ≥ 1 matches one or more inputs that are also
matched by cl∗, while clk and cl∗ differ significantly in their predictions (i. e.,
|clk.P − cl∗.P | > predTol). In case of a conflict, the generalized classifier cl∗ is
abandoned. No changes are made to [C] or [P ]. The rule combining process is
continued in Step 1 with a new pair cli and clj.

Steps 2 and 3: Subsumption and Population Update In case that no conflicts
are found for cl∗, the classifiers in [C] are checked for subsumability and deletion:
A classifier clk ∈ [C] is subsumable to cl∗, if clk’s condition is less general than
the condition of cl∗. In case that clk is experienced (i. e., clk.exp ≥ 1) and
the prediction difference |clk.P − cl∗.P | of both classifiers does not exceed the
prediction tolerance predTol, clk is subsumed. If, on the other hand, clk ∈ [C]
has no experience (i. e., clk.exp = 0) while its condition is less general than the
condition of cl∗, it is deleted.

The parameters of cl∗ are updated based on the subsumed classifiers. When
clk is subsumed by cl∗, the prediction of cl∗ becomes the numerosity-weighted
average of clk.P and cl∗.P , while clk’s experience and numerosity are added to
the corresponding values of cl∗. The prediction error and fitness of cl∗ are derived
according to the following equations:

cl∗.ε =

{ |cl∗.P−PI |
cl∗.exp , if cl∗.exp ≤ 1/β

|cl∗.P−PI |
1/β� · (1 − β)cl∗.exp−1/β�, otherwise

(1)

cl∗.F = (FI − 1) · (1 − β)cl∗.exp + 1 (2)

Equations (1) and (2) have been derived experimentally. Their result resem-
bles the outcome of an iterative process that starts with the default values for
new classifiers (i. e., εI and FI). In the iteration, cl∗.ε and cl∗.F are updated
as if cl∗ was part of an action set [A] := {cl∗} and received a reward of cl∗.P
for cl∗.exp times. The intention of these computations is to ensure that cl∗ is
considered accurate, having a low prediction error and a high fitness.

Figure 2(b) depicts an example showing the obtained parameters for cl∗ after
subsuming cl4, cl13, and cl14 (for β = 0.2, PI = 10.0, and FI = 10.0). The
subsumed and deleted classifiers and their parameters are available in Fig. 2(a).

Once its values have been updated, cl∗ is inserted into [C] and [P ] in Step 3
of the combining process. All classifiers marked for subsumption and deletion
are removed from both sets, including the parents cli and clj. Afterwards, rule
combining continues with Step 1 using the updated combining set.

3.2 Further Changes

Besides the novel rule combining mechanism, several minor changes are intro-
duced with XCS-RC:
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Covering. Like in XCS, XCS-RC uses full covering, but applies a don’t care
probability P# = 0. As a result, classifiers created by covering match the
current input, only. Generalization is the regime of the previously discussed
rule combining mechanism.

Classifier deletion. XCS-RC introduces an additional deletion mechanism that
is executed after updating the classifiers in the action set. A classifier cl is
deleted in case it is sufficiently experienced (i. e., if cl.exp > 2×minExp), cl.ε
is greater than the prediction error tolerance predErrTol, and the update
did not reduce cl.ε.

Explorative action selection. The last change in XCS-RC affects the perfor-
mance component. In exploration mode, XCS randomly selects an action for
execution in the environment. In contrast, XCS-RC favors actions advocated
by classifiers with low experience. If classifiers cl with cl.exp < minExp exist
in [M ], one of their actions is chosen randomly. Otherwise, XCS-RC oper-
ates like XCS. The modified action selection in explore mode ensures that
classifiers with a low experience can quickly gain the minimum experience
required for taking part in the rule combining process.

All changes support the quick and accurate rule generalization in XCS-RC.

4 Experimental Evaluation

To compare XCS and XCS-RC, different single- and multi-step problems have
been investigated: The boolean multiplexer that is known from Wilson’s original
work [9, 10] serves as an example for a single-step problem, while multi-step
problems are represented by various Woods [9, 10] and Maze [7] environments.
All experiments have been performed using the XCS implementation by Butz [5]
that is also the basis for XCS-RC.

XCS and XCS-RC are compared based on their performance and their pop-
ulation size requirements. Figure 3 summarizes the experimental results by
depicting average results of 20 runs for each problem. For the performance mea-
surements, the figure contains additional error bars indicating the 25th and 75th
percentiles. Invisible bars are due to small errors.

4.1 Multiplexers

Boolean multiplexer functions are defined for binary strings of length l = k+2k.
The first k bits address a position in the remaining 2k bits of the input. The
addressed bit is the output of the multiplexer and is expected to be the selected
action of the classifier system.

The configuration of XCS and the experimental setup for the comparison of
XCS and XCS-RC are as in [10]: A random input is presented to the classifier
system that has to select the correct function value as its action. A reward of
1000 is provided in case of a correct action, or otherwise the reward is zero. For
every second input, the classifier systems operate in explore or exploit mode,
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respectively. For XCS-RC, the parameters for the discovery mechanism are set
to Tcomb = 100, minExp = 1, predTol = 10, and predErrTol = 100.

Figures 3(a) to 3(c) depict the comparison between XCS and XCS-RC for the
multiplexer problems with respect to correct classification rates and population
sizes. As in [9,10], the depicted data is based on a sliding window average of the
last 50 exploit trials. Therefore, a correctness rate of 50% means that 25 out of
the last 50 exploit steps resulted in a correct classification.

For the 6-bit multiplexer problem, the maximum population size N has been
limited to 400 classifiers. Figure 3(a) shows that XCS-RC achieves high correct-
ness rates more quickly than XCS. XCS-RC correctly classifies all inputs after
approximately 350 explore trials while XCS requires more than 2000 trials to
reach a stable correctness rate of 100%. Furthermore, XCS-RC quickly reduces
the population size. Less than 200 explore trials are required to obtain a pop-
ulation of less than 24 classifiers. In comparison, the population of XCS is still
converging after 5000 trials, reaching a size of approximately 45 classifiers.

Similar results have been obtained for the 11-bit multiplexer (see Fig. 3(b)).
Using N = 800 and the same parameters as before, XCS-RC uses about 3000
explore trials to reach a stable correctness rate of 100%, while XCS requires over
10 000 trials. As for the 6-bit multiplexer scenario, the XCS classifier population
has not finished converging by the end of the experiment. After 20 000 trials, the
population still contains around 112 classifiers. In contrast, XCS-RC maintains
only 50 classifiers after about 1850 trials.

Figure 3(c) presents the result for 20-bit multiplexer with a parameter change
of N = 2000 for XCS. XCS-RC, using N = 800, requires only 12 000 trials to
achieve a correctness rate of 99.8%, while XCS needs more than 61 000 trials to
reach the equal rate. With respect to the population size, XCS-RC keeps at most
200 classifiers after 31 000 trials. In contrast, XCS never reduces its population
to less than 340 classifiers till the end of the simulation at 100 000 trials.

In summary, results for the single-step multiplexer problem indicate a clear
benefit for classifier generalization based on rule combining.

4.2 Woods and Maze Environments

To test the performance of XCS-RC for multi-step problems, various Woods
[9, 10] and Maze environments [7] have been investigated. At the beginning of
every simulation, an animat is placed randomly at an empty position in a grid
environment. The animat can move to any of the eight neighboring cells which is
not occupied by a rock. Its task is to find a food source hidden in the environment
while minimizing the steps taken.

The animat’s movements are controlled by a classifier system that receives the
status of the neighboring cells as input and decides the animat’s next movement.
Once the food is reached, a reward is distributed and the environment is restarted
by placing the animat again at a random empty position (see [9,10] for details).

Experiments for the Woods and Maze environments follow the setup in [10]
using a maximum population size of N = 800. For XCS-RC, the prediction error
tolerance is set to predErrTol = 5, other parameters are kept unchanged from
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(a) 6-bit multiplexer
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(b) 11-bit multiplexer
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(c) 20-bit multiplexer
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(f) Maze4
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Fig. 3. Summary of experimental results
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the multiplexer experiments. For comparability with previous results in [10], the
performance of XCS and XCS-RC is evaluated in a 50/50 explore/exploit regime
based on the average number of steps the animat required to reach the food in
the last 50 exploit trials. Additionally, the size of the classifier population is
recorded throughout the experiments. Both measures should be minimized.

Figures 3(d) and 3(e) compare XCS and XCS-RC for the Woods environ-
ments. With respect to the required steps to food, XCS and XCS-RC perform
similarly for Woods1 and Woods2. After approximately 100 explore trials, the
animat does not require significantly more than 1.69 steps to reach the food
which is optimal for both environments. A remarkable difference, however, can
be observed for the population sizes. XCS-RC successfully reduces the classifier
population to less than 36 classifiers after 150 trials for Woods1 or 2200 trials for
Woods2, respectively. In contrast, XCS maintains a population of approximately
160 classifiers for both environments at the end of the experiment.

Results for the Maze environments (see Fig. 3(f) to 3(h)) provide further
evidence for the superiority of classifier generalization in XCS-RC. For Maze4,
Fig. 3(f) shows that XCS-RC is significantly quicker in minimizing the number
of steps required to reach the food. While XCS fails to generalize and maintains
a population of approximately 450 classifiers by the end of the simulation (i. e.,
after 4000 trials), XCS-RC quickly reduces its population to a size of less than
120 classifiers in only about 450 trials.

Maze5 and Maze6 are bigger than Maze4 and the food can be reached from
one or two positions, only. In both environments, XCS fails to solve the learning
task (see Fig. 3(g) and 3(h)). Although XCS significantly reduces the number of
classifiers over time, the required number of steps to the food is not minimized.
In contrast, XCS-RC is capable to minimize the number of steps to the food,
requiring less than six steps on average after 100 trials in both environments.
To achieve this result, XCS-RC maintains a population that is larger than that
of XCS. However, the learning result shows that the classifiers are properly
generalized (and are not overly general as in the XCS population).

The observation that XCS performs badly for Maze5 and Maze6 has also
been made by Lanzi [7] who suggests a modified XCS version (called XCSS)
that performs better in the Maze environments. After approximately 400 trials,
XCSS requires less than ten steps on average to reach the food in Maze5 and
less than six steps in Maze6 (see [7] for details). In comparison, XCS-RC reaches
a similar performance for both environments after approximately 100 trials (see
Fig. 3(g) and 3(h)). Unfortunately, no comparison can be made with respect to
the population size since no details are available in [7].

In summary, XCS-RC outperforms XCS (and XCSS) for the investigated
single- and multi-step test problems. XCS-RC requires less trials to solve the
learning tasks and is capable of reducing its population size quickly by using
the novel rule combining mechanism in its discovery component. It performs
well even in Maze environments that are not successfully tackled by XCS (like
Maze5 and Maze6).
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5 Conclusion

The paper presents a novel rule combining mechanism that improves the classi-
fier discovery in XCS. Rule combining creates maximally general, but accurate
classifiers from the existing population. It does not rely on genetic operators to
create new classifiers, but infers them using an extended subsumption mecha-
nism that combines specific, but experienced classifiers to more general rules.
The general classifiers then replace their specific counterparts unless the popu-
lation contains contradicting, but experienced classifiers.

The resulting classifier system (called XCS-RC) has been compared to XCS
for various single- and multi-step learning problems. Boolean multiplexers served
as test case for single-step learning, while Woods and Maze environments of
varying sizes have been investigated as examples of multi-step problems. In all
experiments, XCS-RC outperforms XCS with respect to learning performance.
Furthermore, XCS-RC quickly reduces the size of its classifier population be-
low the number of classifiers maintained by XCS, thereby demonstrating the
generalization capabilities of the rule combining approach. In two cases (Maze5
and Maze6) where XCS maintains a smaller population than XCS-RC, XCS
overgeneralizes the population and fails to learn.

Future work will simplify the rule combining mechanism in XCS-RC to im-
prove its computational requirements and to support the theoretical analysis
of its generalization capabilities. Furthermore, the performance of XCS-RC in
dynamically changing environments will be investigated.
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Abstract. A new approach to evolutionary robotics is presented. Neu-
ral networks are abstracted and supplanted by a system of ordinary dif-
ferential equations that govern the changes in controller outputs. The
equations are evolved as trees using an evolutionary algorithm based
on symbolic regression in genetic programming. Initial proof-of-concept
experiments are performed using a simulated two-wheeled robot that
must drive a straight line while wheel response properties vary. Evolved
controllers demonstrate the ability to learn and adapt to a changing en-
vironment, as well as the ability to generalize and perform well in novel
situations.

Keywords: Evolutionary Robotics, Genetic Programming, Evolution-
ary Algorithms, Genetic Algorithms, Evolutionary Computing, Learning.

1 Introduction

In the field of evolutionary robotics, the goal is to evolve controllers artificially
for robotic applications. While the most obvious metric of success is how well
the final controller solves the given task, researchers and developers are also very
interested in robustness, adaptability and the ability to generalize. Evaluating
controller fitness on hardware is usually infeasible owing to time and hardware
constraints. Thus the fitness of individuals, which is usually their ability to
accomplish the specified task, is most often evaluated in simulation. This is one of
the reasons that the ability for an evolved controller to generalize is so important,
as it is very difficult to perfectly predict and simulate the environmental and
hardware behaviors that the evolved controller will eventually see during real-
world applications. Thus a good algorithm should be able to produce a controller
that can take its evolved solution and apply it successfully in never-before-seen
scenarios.

With these goals in mind, researchers have been looking to nature for inspi-
ration as so far it is nature, and not human design, that has produced the most
adaptable controllers. However, natural systems are extremely complex, and so
initial research tried to distill the most important elements of the evolution and
operation of modern lifeforms in an attempt to reproduce nature’s successes.
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This has yielded the core idea behind evolutionary robotics: Use an evolution-
ary algorithm to evolve the weights of a fixed-structure artificial neural network
(e.g. [8]). Further research then worked to increase the biofidelity of this ap-
proach by adding in components such as chemical signals (e.g. [1],[7]), Hebbian
learning (e.g. [2]), neuromodulation (e.g. [4]) and neural structures that are non-
fixed and thus able to change and grow through evolution (e.g. [5]). While these
advances have increased the adaptability and evolvability of artificial controllers,
the evolved systems are still a long way from natural systems in both complexity
and real-world performance.

In this paper, we propose an alternative approach. Instead of looking to in-
crease further the biofidelity (and complexity) of the algorithms, we attempt
to evolve an abstraction of natural neural systems. Using an algorithm based
on symbolic regression algorithms from genetic programming ([3]), it is hoped
that complex decision-making, learning and generalization capabilities can be
evolved and represented simply and concisely as a system of ordinary differen-
tial equations. Utilizing mathematical functions as a part of the decision-making
process of an evolved controller has been implemented before, most notably in
Compositional Pattern Producing Networks [6]; however, as far as the authors
know, the artificial neural network structures have never been completely sup-
planted by mathematical equations. The purpose of this paper is only to present
an alternative to other, neural network based methods, and to demonstrate that
despite its simplicity, this new method can tackle a difficult problem and pro-
duce complex behaviors. Performance comparisons with other methods are left
for future studies.

The rest of this paper is organized as follows. Section 2 presents both the con-
troller and evolutionary algorithm of the proposed ODE-evolving evolutionary
robotics algorithm. Section 3 describes the initial proof-of-concept experiments
that were used for testing, while Section 4 presents and discusses the results of
these experiments. Section 5 concludes with some final thoughts and directions
for future research.

2 The Algorithm

This section will present the Ordinary Differential Equation Evolution (ODEvo)
algorithm in detail. The structure and operation of the controller portion of the
algorithm will first be described (Section 2.1), followed by the details of the
evolutionary algorithm used to train these controllers (Section 2.2).

2.1 The Controller

Despite the complex behavior that an ODEvo controller can display (see Sec-
tion 4), its internal structure and operation are quite simple. The controller is
fully described by a system of ordinary differential equations that control how
the outputs yi change at each time step. So for a system with N outputs, the
controller will have the form:
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dy/dt = f (x,y) (1)

where x = [x0, x1, . . . , xM ]T is the set of M inputs to the controller, y =
[y0, y1, . . . , yN ]T is the set of the N outputs of the controller and f (x,y) =
[f0 (x,y) , f1 (x,y) , . . . , fN (x,y)]T.

The operation of the controller is straightforward and is summarized below:

1. Select a fixed step size Δt.
2. Set yi = 0, ∀i = 0 . . .N .
3. Update x with current sensor readings.
4. Solve for dyi/dt, ∀i = 0 . . .N using the controller’s ODEs (1).
5. Update the controller’s outputs as yt+Δt

i = yt
i + Δt (dyi/dt) , ∀i = 0 . . .N .

6. Run agent for Δt seconds using output signals yt+Δt
i .

7. End of one time step, repeat operations 3-6 for subsequent time steps.

The controller runs sequentially, i.e., an action is performed, the ODEs are then
solved, the outputs are updated and then the next action is performed. It is
expected that with a small enough Δt the system might be able to operate in
parallel, i.e. actions can be executed continuously using the latest yi values while
the ODEs update the yi values every Δt seconds without forcing the agent to
stop and wait, however this has yet to be tested.

2.2 The Evolutionary Algorithm

The evolutionary algorithm (EA) used to evolve the ODEs is based on symbolic
regression algorithms from genetic programming (GP) [3]. Equations are repre-
sented in the genomes as trees (see Figure 1 for an example), with each genome
containing N such equation trees, one for each output of the system. Each tree
contains a collection of terminal (“leaf”) and non-terminal (“internal”) nodes.
The set of possible terminal nodes is comprised of all potential constants and
variables, while the set of possible non-terminal nodes is composed of a user-
defined group of mathematical functions. The number of “child” nodes (sub-
trees) of a non-terminal node depends on its function. For example, arithmetic
operations such as addition and multiplication require two child nodes, while
operations such as sine and absolute value have just one child node.

The EA is a standard discrete-generation algorithm whose various operations
will now be explained.

Initialization. The random initialization of each equation in each initial genome
is done using the “ramped half-and-half” method as described in [3]. For all the
experiments in this paper, the set of potential maximum depths was {1, 2}.

Crossover. If an offspring genome is to be produced through crossover, two
parent genomes are required. First, a single equation tree τi is selected randomly
from the N equation trees that each individual possesses. The offspring inherits
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Fig. 1. Example tree representation of an equation. Assuming this is the first equation
in the genome, this tree is equivalent to the ODE dy0/dt = 1.7 + sin (x1/y2).

exact copies of all the equation trees τj , ∀j < i from the first parent and exact
copies of all the equation trees τj , ∀j > i from the second parent.

As for τi, the offspring version of this equation tree is generated by crossing
over the corresponding trees of the two parents using the standard tree crossover
method described in [3]. For all experiments in this paper, crossover occurred
with a probability of 0.7.

Mutation. The mutation operators used are similar to those suggested in [3],
however unlike in GP, mutation and crossover are not mutually exclusive in
ODEvo, i.e., a genome can be produced through crossover and still undergo
mutation. For more details on the mutation operators described here, the reader
is referred to [3].

Each of an offspring’s equation trees is selected for mutation with probability
μτ , with μτ = 1/N in this paper. Once selected, a tree will undergo one of several
types of mutations:

– Point Mutation. Occurring with probability 0.5, a point mutation performs
one of several operations on a single randomly selected node in the tree:
• Perturbation of a constant. This operation is performed with probability

0.5 and only if the tree in question contains one or more constants. The
operation adds a random value taken from a Gaussian distribution with
mean 0 and standard deviation 1.0 to a randomly selected constant.

• Mutation of a non-terminal function. This operation is performed if a
perturbation of a constant was not done and if a randomly selected node
is a non-terminal. The new function is randomly selected from the set
of functions requiring the same number of child nodes as the current
function (i.e., an addition function can be mutated to multiplication but
not to sine).

• Mutation of a terminal function. This operation is performed if a per-
turbation of a constant was not done and if a randomly selected node
is a terminal. One of two mutations occurs, with equal probability. The
chosen terminal is either mutated to a randomly chosen variable or it is
mutated to a constant randomly chosen from a uniform distribution of
potential constants.
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– Subtree Mutation. Occurring if there was no point mutation, this opera-
tion selects a random node on the original tree and replaces it with a new
random subtree. A small variation to the standard subtree mutation was
also added. With a probability of μs = 0.05, the roles of the subtree and the
original tree are swapped, i.e., a random node on the randomly generated
subtree is replaced with the entire original tree and this becomes the new
tree of the offspring.

3 Experiments

Initial proof-of-concept experiments were done in a two-dimensional simulation
world using a simple robot with two independently actuated wheels, one on each
side. Only step changes in wheel speeds were allowed, i.e., wheel acceleration
was not modeled. The distance between the two wheels was set to 1 m. The
task required of this robot was for it to drive in a straight line along the x-axis.
The starting position of the robot is (0, 0), with an initial orientation randomly
selected from −π < θ ≤ π. A straight line is defined here as driving in the
positive x direction with a y position in the strict range of (−0.01, 0.01) m,
measured at the center of the robot. The fitness of a simulation run is calculated
as (d0 − d)2, where d0 is the target distance of 300 m and d is the total distance
(in metres) driven in the positive x direction within the defined y boundaries.
Thus, this is a minimization problem.

This may seem like a fairly straightforward task, however there is a twist.
The wheels do not respond directly to the signals sent to their actuators. Their
response is based on a multiplier that is an abstraction of all possible factors that
could affect their real-world performance, such as motor degradation, slippage,
tire pressure, etc. As there are two independently actuated wheels, a left wheel
and a right wheel, there are two independent wheel multipliers, wL and wR.
Therefore, the velocities (in m/s) produced by the left and right wheels are

vL = wLy0
vR = wRy1

(2)

where y0 and y1 are the signals sent to the left and right actuators, respectively.
For all experiments presented here, each simulation was run for T = 300 s

and wL, wR ∈ [0.25, 1.25]. For a given training or test scenario, initial wL and
wR values are chosen randomly and are changed to new random values at five
randomly selected times between 1 s and (T − 50 s). A starting θ value is also
randomly selected.

These experiments were designed to be difficult and to require a solution
that has the ability to adapt, learn and generalize. A simple feedforward neural
network would not be able to adapt to the changing environment, however more
complicated approaches could potentially solve this problem. The aim of these
experiments is to demonstrate the power of ODEvo despite the relative simplicity
of the algorithm itself.
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3.1 Controller Parameters

The parameters of the controller used in these experiments are summarized
in Table 1. The controller has three inputs x = [x0, x1, x2]

T and two outputs
y = [y0, y1]

T, thus requiring two ODEs (one for each output).

Table 1. Controller parameters used in all experiments

Parameter Description Value/Range

Δt Step Size (s) 0.1
x0 Robot Position on x-axis (m) (−∞,∞)
x1 Robot Position on y-axis (m) (−∞,∞)
x2 Robot Orientation θ (rad) (−π, π]
y0 Signal to Left Actuator [−1.0, 1.0]
y1 Signal to Right Actuator [−1.0, 1.0]

The allowed mathematical operations were addition; multiplication; di-
vision, where the denominator of the operation is forced to be in the range(−∞,−10−6

]∪ [10−6,∞) and values outside of this range are set to the nearest
acceptable value; differentiation, calculated as g′(t) = (g(t) − g (t − Δt)) /Δt;
absolute value; sine; cosine; base-e exponential; natural logarithm, which
will only operate on values in the range

[
10−6,∞) and values less than 10−6 are

set to 10−6.

3.2 Evolutionary Algorithm Parameters

All experiments ran populations of 1000 for 100 generations. Tournament selec-
tion with a tournament size of 12 was used, and constants were real-valued and
uniformly drawn from [−1000, 1000]. Elitism, where the top individual from the
current generation is cloned for the next generation, was also used. A collection
of simple equation-reducing operations was performed on the entire population
every 10 generations to help reduce bloat.

When generating random trees, be it for the initial population or for sub-
tree mutation, “ramped half-and-half” was always used, generating trees with a
maximum depth of 1 or 2 with equal probability.

The training set consisted of 10 randomly generated scenarios, was fixed for
all generations within an evolutionary run and was also held constant between
evolutionary runs. Every evolutionary run started with a randomly generated
population. When comparing experiments with different parameter settings, the
same set of random initial populations was used.

4 Results

4.1 Training Results

A summary of the training performance of the evolutionary algorithm with var-
ious parameter settings can be found in Table 2. Each configuration was run 50
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Table 2. Training results summary

Best Fitness (x103) Gen. Converged Evo. Time (s)

EA Settings μ σ Min. Max. μ σ Min. Max. μ σ Min. Max.

baseline 301 105 157 593 81 20 24 100 479 247 223 1260
no crossover 426 177 172 819 78 22 25 100 315 55 221 445
μs = 0.0 342 98 158 589 73 23 26 100 431 257 220 1282
no eqn. reduction 359 151 155 821 81 21 19 100 539 374 252 2504

times. The generation converged is the generation where the best solution for
that run was first found and the evolution time was measured as the real-world
execution time of an evolutionary run with multithreaded fitness evaluations on
an Intel R© CoreTM2 Quad CPU Q9550 @ 2.83GHz.

From these results, we can clearly see that crossover is an important part of the
ODEvo algorithm. Furthermore, μs does indeed seem to provide some benefits
for average fitness. Finally, simple equation reduction every 10 generations has
a strong impact on running times and also seems to improve average fitness
results.

A manually simplified and re-arranged version of the best ODEvo controller
found during the baseline training runs is

dy0/dt = 2 (dx2/dt) + 3 |dx2/dt| + 2 sin (dx2/dt) + e348.24x1

− ((x1y1) /566.17) + 4 |x2| + 65x1 + 24x2 − 9362.96x1x2

dy1/dt = y1 + 0.82 − 232.16 (x1 + x2) .

(3)

It should be noted that it contains rounding errors and thus is not the exact
form of the actual controller used for testing. The paths that this controller
takes in the first four training scenarios are shown in Figure 2. While a detailed
analysis of these equations is outside the scope of this paper, a few interesting
properties can be noted. First of all, the two equations obviously have very little
in common, despite the symmetrical nature of the simulated robot. Furthermore,
the equation for the left actuator seems more complex than that of the right.
This is corroborated by data showing the values of the two signals y0 and y1
over the course of a run (e.g. Figure 3). It is clear that the right signal is usually
set to the maximum, while the left signal is responsible for the majority of the
maneuvers. These equations also contain the equivalent of recurrent connections
in artificial neural networks, with the right side of both equations containing the
current value of y1 and with dy0/dt also depending on the time derivative of x2
(the orientation θ of the robot).

4.2 Test Results

While the results on the training set are strong, it is the ability to generalize
that is of true concern in evolutionary robotics. All the results that follow are
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Fig. 2. Performance over the first four training scenarios of the best evolved controller.
It is important to note the scales, as what at first may appear to be a zigzag path
usually only has a vertical displacement measureable in millimetres, while its horizontal
displacement is in metres.

from experiments using the best evolved controller from the baseline runs (see
(3)). Note that this controller was only trained on 10 different scenarios.

When tested in new scenarios (generated in the same manner as the train-
ing scenarios, see Section 3 for details), the ODEvo controller performs quite
well. Visual inspection of the paths of the controller in 100 new scenarios re-
vealed that the robot successfully drove along the x-axis in all 100 cases. Table 3
shows statistics on the distance driven along the x-axis during both training and
testing. In a novel scenario, the ODEvo controller can on average drive along
the x-axis for 94% of the distance of an average training run. This percentage
becomes even more significant when one considers average maximum possible
speeds (assuming straight-line driving) in both sets of scenarios, as this value in
the test set (0.58 m/s) is roughly 94% of that in the training set (0.62 m/s).

Table 3 also contains results from an identical test set, but with varying
distance between wheels on the robot. As can be seen, even though the controller

Table 3. Comparison of performance of best controller on training and test sets

Dist. on x-axis (m)

Scenario Set μ σ

Training Set (10 runs) 185 52
Test Set (100 runs) 174 38
Wheel Dist. 0.75 m (100 runs) 157 51
Wheel Dist. 1.25 m (100 runs) 174 38
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Fig. 3. 1) y0 and y1 values of the best evolved controller over the course of its operation
in the second training scenario. 2) A close-up of the first three seconds.

was evolved on a robot with 1 m between wheels, it can operate successfully
on different simulated hardware. With the wheel distance set at 0.75 m, the
controller failed on one test scenario (i.e. it could not successfully drive a straight
line) and in 14 others the robot was not always within the strict y boundaries,
however it never strayed more than 0.10 m from the x-axis and always drove in
the desired direction. The other 85 runs were completely successful. With a wheel
distance of 1.25 m, the controller was successful on all 100 test scenarios and
performed almost identically to when it had its original wheel distance. One final
test was performed on this controller. The starting position was x = y = θ = 0
and the controller was given 30 s from t = 0 to learn to operate with its randomly
generated wheel settings. After these 30 s, the controller was artificially moved
to a new y position randomly selected from [−2, 2] m, rotated to a random
orientation (θ ∈ (−π, π]) and given a new set of random wheel parameters.
From here, the controller was given 270 s to return to the x-axis and continue
to drive along it.

In all 100 cases, the controller was successfully able to return the robot to
within 0.10 m of the x-axis, and in 89 of these cases, it managed to get back to
within 0.01 m of the x-axis. Two such runs are shown in Figure 4.

Fig. 4. 1) started with wL = 0.95, wR = 0.88 and at t = 30 s was sent 1.66 m above the
x-axis, rotated to 0.93 rad and given new wheel parameters of wL = 0.83, wR = 0.75.
2) started with wL = 1.05, wR = 1.03 and at t = 30 s was sent 1.6 m below the x-axis,
rotated slightly to 0.07 rad and given new wheel parameters of wL = 1.09, wR = 0.93.
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This controller has demonstrated a remarkable ability to generalize, learn and
adapt, especially considering that it was only evolved over 10 training scenarios.

5 Conclusion and Future Work

ODEvo presents a new approach to evolutionary robotics, completely dispensing
with neural networks and showing immense promise in the areas of learning and
generalizability, all while sidestepping the controller and evolutionary algorithm
complexity that usually accompanies these terms.

This paper only presented initial proof-of-concept experiments, and so ODEvo
still has much to prove. These experiments assumed perfect position and orien-
tation sensors and ignored wheel acceleration. Further work is needed to evolve
proper controllers for hardware testing, more complex tasks need to be attempted
and comparisons need to be done with current neural network based methods.
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Abstract. Evolutionary algorithms have been successfully applied to design 
fuzzy rule-based classifiers. They are used for attribute selection, fuzzy set se-
lection, rule selection, membership function tuning, and so on. Genetics-based 
machine learning (GBML) is one of the promising evolutionary algorithms for 
classifier design. It can find an appropriate combination of antecedent sets for 
each rule in a classifier. Although GBML has high search ability, it needs long 
computation time especially for large data sets. In this paper, we apply a paral-
lel distributed implementation to our fuzzy genetics-based machine learning. In 
our method, we divide not only a population but also a training data set into 
subgroups. These subgroups are assigned to CPU cores. Through computational 
experiments on large data sets, we show the effectiveness of the proposed paral-
lel distributed implementation. 

Keywords: fuzzy classifier design, genetics-based machine learning, parallel 
distributed implementation, large data sets. 

1   Introduction 

Evolutionary computation has been frequently and successfully used for knowledge 
acquisition [1]. Genetics-based machine learning (GBML) is one of the largest 
branches of evolutionary computation. It can search for a set of if-then rules as under-
standable knowledge [2]. Fuzzy rule-based systems have also been optimized in the 
framework of GBML which is referred to as genetic fuzzy systems (GFS) or evolu-
tionary fuzzy system [3,4]. A hot research issue in the field of fuzzy GBML (and 
GBML in general) is the scalability improvement of evolutionary algorithms to large 
data sets. This is because even an evaluation of a single fuzzy rule-based classifier 
needs a long computation time in the case of large data sets. Since the execution of a 
fuzzy GBML algorithm involves tens of thousands of evaluations of fuzzy rule-based 
classifiers, its application to large data sets is very difficult.  
   To reduce the computation time, parallel implementation of evolutionary computa-
tion is a promising approach [5,6]. When we use island models for parallel implemen-
tation, each sub-population is assigned to a different processing node (e.g., CPU 
core). Let NCPU be the number of processing nodes which are available for parallel 
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implementation. In an ideal case, the total computation time could be reduced to 
1/NCPU of that by non-parallel implementation. On the other hand, from the viewpoint 
of data mining, data reduction such as feature selection and instance selection [7-10] 
is a frequently-used approach. The computation time depends on the data reduction 
rate linearly. However, there is a negative side-effect that useful information in the 
training data set for designing good classifiers is accidentally removed from the origi-
nal data sets by data reduction.  

We have already proposed parallel distributed implementation of genetic fuzzy rule 
selection for pattern classification problems in [11-13]. Our genetic fuzzy rule selec-
tion is a two-stage method [14]. At the first stage, a number of candidate fuzzy if-then 
rules are extracted from numerical data in a heuristic manner. Then, at the second 
stage, a subset of the extracted candidate rules is selected by a genetic algorithm. In 
our parallel distributed implementation [11], the second stage is performed in parallel. 
We divide not only a population but also a training data set into subgroups. A pair of 
a sub-population and a training data subset is assigned to one CPU core. In order to 
avoid the overfitting of each sub-population to a specific training data subset, training 
data subset re-assignment is periodically performed (e.g., every 10 generations). In 
[11], we used a workstation with four CPU cores (a CPU core was used as a server, 
and the others were used as clients). The experimental results showed that we can 
reduce the computational time to 1/9 with no deterioration of the test data accuracy.  

In this paper, we apply the parallel distributed implementation of our genetic fuzzy 
rule selection [11] to our fuzzy genetics-based machine learning (GBML) for pattern 
classification problems [15]. Our fuzzy GBML is a hybrid version of Pittsburgh ap-
proach and Michigan approach. It can optimize the combination of antecedent condi-
tions and the number of rules. Although there is a high possibility that fuzzy GBML 
can obtain more accurate classifiers than genetic fuzzy rule selection thanks to the 
larger search space of fuzzy GBML, the computation cost of fuzzy GBML is much 
heavier than genetic fuzzy rule selection when we apply them to the design of fuzzy 
classifiers for large data sets. 

This paper is organized as follows. First we briefly explain fuzzy rule-based classi-
fier and our fuzzy GBML algorithm in Section 2. Next we explain the parallel distrib-
uted implementation of our fuzzy GBML in Section 3. Then experimental results are 
reported in Section 4. Finally we conclude this paper in Section 5. 

2   Fuzzy Genetics-Based Machine Learning  

Let us assume that we have m training (i.e., labeled) patterns xp = (xp1, ..., xpn), p = 1, 2, 
..., m from M classes in an n-dimensional pattern space where xpi is the attribute value 
of the pth pattern for the ith attribute (i = 1, 2, ..., n). For the simplicity of explanation, 
we assume that all the attribute values have already been normalized into real numbers 
in the unit interval [0, 1]. For our classification problem, we use fuzzy if-then rules of 
the following type: 

Rule Rq: If x1 is Aq1 and  ...  and xn is Aqn then Class Cq with CFq, (1) 
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where Rq is the label of the qth fuzzy rule, x = (x1, ..., xn) is an n-dimensional pattern 
vector, Aqi is an antecedent fuzzy set (i = 1, 2, ..., n), Cq is a class label, and CFq is a 
rule weight. We denote the antecedent fuzzy sets of Rq as a fuzzy vector Aq = (Aq1, 
Aq2, ..., Aqn). 

We use 14 fuzzy sets in four fuzzy partitions with different granularities in Fig. 1. In 
addition to those 14 fuzzy sets, we also use the domain interval [0, 1] as a special ante-
cedent fuzzy set for representing a don’t care condition.  
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1 2
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Fig. 1. Homogeneous fuzzy partitions used in this paper 

The consequent class Cq and the rule weight CFq of each fuzzy rule Rq are specified 
from training patterns compatible with its antecedent part Aq = (Aq1, Aq2, ..., Aqn) in a 
heuristic manner [16]. Since the consequent class and the rule weight of each fuzzy rule 
can be specified by compatible training patterns, only the combinations of antecedent 
fuzzy sets for fuzzy rules in a classifier are optimized in our fuzzy GBML algorithm. 

2.1   Genetics-Based Machine Learning 

Our fuzzy GBML is a hybrid version of Pittsburgh approach and Michigan approach 
[15]. Its main framework is based on Pittsburgh approach in which a rule set is codi-
fied as a string. Michigan approach is used as a kind of local search. 

Each fuzzy rule Rq is represented by its antecedent fuzzy sets Aqi (i = 1, 2, …, n) as 
an integer substring of length n, where n is the dimensionality of the pattern space (i.e., 
n is the number of attributes of each pattern). We use 15 symbols (e.g., 0, 1, …, 9, a, b, 
…, e) to represent don’t care and the 14 antecedent fuzzy sets as shown in Fig. 1.  

A rule set S is handled as an individual and coded as a concatenated integer string 
where each substring of length n represents a single fuzzy if-then rule. It should be 
noted that the number of fuzzy rules in each rule set is not fixed in our fuzzy GBML. 
This means that we use strings of variable length as individuals. 

In order to generate an initial population, first we randomly select Nrule training pat-
terns. Next we generate a fuzzy if-then rule Rq from each selected training pattern xp = 
(xp1, …, xpn) by probabilistically choosing an antecedent fuzzy set Aqi for each attribute 
value xpi from the 14 antecedent fuzzy sets Bk (k = 1, 2, …, 9, a, b, …, e) in Fig. 1. 
Each antecedent fuzzy set Bk has the following selection probability for the attribute 
value xpi: 
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(2) 

That is, each antecedent fuzzy set Bk has a selection probability which is propor-
tional to its compatibility grade with the attribute value xpi. Then each antecedent fuzzy 
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set of the generated fuzzy rule is replaced with a don’t care condition using a prespeci-
fied probability Pdon’t care. This process makes the rule more general.  

In this manner, Nrule initial fuzzy rules are generated. An initial rule set consists of 
the generated fuzzy if-then rules. By iterating this procedure, we generate Npop initial 
rule sets (i.e., an initial population). 

A newly generated rule set S is evaluated by the following three objective  
functions:  

f1(S): The misclassified rate (%) on the training patterns by S, 

f2(S): The number of fuzzy rules in S, 

f3(S): The total number of antecedent conditions of fuzzy rules (i.e., total rule 
length) in S. 

To calculate f1(S), a single winner rule Rw is identified by using the compatibility grade 
and the rule weight of each fuzzy rule in the rule set S. The input pattern xp is classified 
as the consequent class Cw of the winner rule Rw. When multiple fuzzy rules with dif-
ferent consequent classes have the same maximum value, the classification of xp is 
rejected. If there is no compatible fuzzy rule with xp, its classification is also rejected. 

Whenever a new rule set is generated by not only the above procedure directly from 
training patterns but also Pittsburgh-type genetic operations and Michigan-type opera-
tion, each rule set is evaluated by the same three objective functions.  

We use the following weighted-sum fitness function for obtaining accurate and sim-
ple fuzzy classifiers. 

fitness(S) = w1 f1(S) + w2 f2(S) + w3 f3(S), (3) 

where w1, w2 and w3 are non-negative weights. 
Two parents (i.e., two rule sets) are selected from the current population by binary 

tournament selection with replacement. Let the selected rule sets be S1 and S2. Some 
fuzzy rules are randomly selected from each parent to construct an offspring rule set by 
crossover. The number of fuzzy rules to be inherited from each parent to the new rule 
set is randomly specified. We use an upper bound on the number of fuzzy rules in each 
rule set (e.g., 60 in our computational experiments). When the number of fuzzy rules is 
larger than the upper bound, we randomly remove fuzzy rules from the offspring rule 
set until the upper bound condition is satisfied. The above-mentioned crossover opera-
tion is applied to the selected pair of parent rule sets with a prespecified crossover 
probability PC. When the crossover operation is not applied, one of the two parent rule 
sets is randomly chosen as their offspring rule set. Each antecedent fuzzy set of fuzzy 
rules in the offspring rule set is randomly replaced with a different antecedent fuzzy set 
in Fig. 1 by mutation. This mutation is applied to each antecedent fuzzy set with a 
prespecified mutation probability PM.  

After the crossover and mutation operations, a single iteration of the following 
Michigan-style algorithm is applied to the newly generated offspring rule set S: 

Step 1: Classify all training patterns by the rule set S. The fitness value of each fuzzy 
rule in S is the number of correctly classified training patterns by that rule. 
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Step 2: Generate Nreplace fuzzy rules. Some rules are generated from the existing rules 
in S by genetic operations. The others are generated directly from misclassi-
fied and/or rejected training patterns. 

Step 3: Replace the worst Nreplace fuzzy rules in S with the newly generated Nreplace 
fuzzy rules. 

In Step 2, Nreplace fuzzy rules are to be generated. The number of replaced fuzzy rules 
(i.e., Nreplace) is specified as ⎡ ⎤||2.0 S×  for each rule set S where ⎡ ⎤||2.0 S×  is the 

minimum integer not smaller than ||2.0 S× . We generate at least a half of new fuzzy 

rules (i.e., at least Nreplace/2 fuzzy rules) by genetic operations from the existing fuzzy 
rules in S. The probabilistic specification of each antecedent fuzzy set by (2) and the 
replacement with don’t care using the probability Pdon’t care are used to generate the 
other fuzzy rules. 

Let NMR be the sum of the number of misclassified and rejected training patterns by 
the rule set S. When NMR is less than or equal to Nreplace/2, all the NMR training patterns 
are used to generate new fuzzy rules. In this case, NMR fuzzy rules are generated from 
the NMR training patterns. The other fuzzy rules (i.e., (Nreplace − NMR) fuzzy rules) are 
generated by genetic operations. On the other hand, when NMR is larger than Nreplace/2, 
Nreplace/2 patterns are randomly chosen from the NMR misclassified or rejected training 
patterns. Then Nreplace/2 fuzzy rules are directly generated from the chosen patterns. The 
other Nreplace/2 fuzzy rules are generated by genetic operations. 

When we generate a new fuzzy rule from existing rules in S by genetic operations, 
first a pair of fuzzy rules is selected from S using binary tournament selection with 
replacement as parents. Then the standard uniform crossover operation is applied to the 
selected pair to generate a new fuzzy rule. Finally each antecedent fuzzy set is ran-
domly replaced with a different one using a prespecified mutation probability. This 
procedure is iterated to generate a required number of new fuzzy rules (i.e., Nreplace 
fuzzy rules including directly generated fuzzy rules from training patterns). 

As we have already explained, in our fuzzy GBML, a new rule set S is generated by 
selection, crossover, mutation, and a single iteration of the Michigan-style algorithm. 
These operations are iterated Npop times to generate an offspring population of Npop rule 
sets. The next population is constructed by choosing the best Npop rule sets from the 
current and offspring populations with respect to the fitness function in (3). Generation 
update is iterated until a prespecified stopping condition is satisfied. The total number 
of generations was used as the stopping condition in our computational experiments. 

3   Parallel Distributed Implementation 

We use a workstation with multiple CPU cores for parallel distributed implementation 
of our fuzzy GBML. It is also possible to use a cluster system with several computers. 
Our implementation can be written as follows.  

Step 1: Generate Npop integer strings as an initial population by the heuristic rule 
initialization mechanism in (2) where Npop is the population size. 

Step 2: Randomly divide the current population P with Npop integer strings into NCPU 
sub-populations of the same size {P1, P2, …, 

CPU
PN }. Randomly divide the 
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training data set D with m patterns into training data subsets of the same size 
{D1, D2, …, 

CPU
DN } in Fig 2. 

Step 3: Assign a sub-population and a training data subset to each of the NCPU CPU 
cores. 

Step 4: Perform the fuzzy GBML algorithm in each CPU core. 
Step 5: If the prespecified termination condition is satisfied, go to Step 8.  
Step 6: If the prespecified rotation interval is satisfied, rotate the NCPU training data 

subsets as shown in Fig. 2 over the NCPU CPU cores.  
Step 7: Return to Step 4. 
Step 8: Choose the best string Sbest from the whole population in terms of the training 

data accuracy (i.e., f1(S)) for the whole training data set. 
 
It should be noted that in Step 6 the consequent class and the rule weight of each rule 
in the current sub-population at each CPU are updated by the newly assigned training 
data subset. Whenever these parameters are specified or updated, the compatibility 
grade of each training pattern in the training data subset with each rule is stored in 
order to reduce their repeated calculation. 

Sub-population
CPU

Data subset

Sub-population
CPU

Data subset

Sub-population
CPU

Data subset

D1 D2 D3

P1 P2 P3

GBML

 

Fig. 2. Parallel Distributed Implementation of GBML 

4   Computational Experiments 

In our computational experiments, we used three data sets in Table 1 available from 
the KEEL-dataset repository [17]. The generalization ability was evaluated by iterat-
ing the ten-fold cross validation procedure 3 times (i.e., 30 runs in total).  

We used a workstation with two Xeon 2.93 GHz quad processors (i.e., eight CPU 
cores in total). We codified the parallel distributed fuzzy GBML by Java on Windows 
7 operating system. We used five CPU cores in this paper as preliminary experiments, 
because the operation system needs at least one CPU core for the basic operations. In 
this paper, we specified the population size as 210. That is, the size of each sub-
population for parallel distributed implementation was 42. The remaining setting was 
as follows: 

The number of fuzzy rules in each initial rule set: 30, 
Upper limit on the number of fuzzy rules: 60, 
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Lower limit on the number of fuzzy rules: 1, 
Probability of don’t care (Pdon’t care): (n-1)/n, (n is the number of attributes), 
Probability of the Michigan-style algorithm: 0.5, 
Crossover probability in the main part (PC): 0.9, 
Crossover probability in the Michigan-style part: 0.9, 
Mutation probability in the main part (PM): 1 / (n |S|), 
Mutation probability in the Michigan-style part: 1/n, 
Termination condition: 10,000 generations, 
The weight vector in Eq. (3): w = (100, 1, 1).  

We used a large value for the first element of the weight vector to find accurate classi-
fiers. Since obtained classifiers strongly depend on the weight vector specification, we 
may need further experiments with different specifications as a future study.  

We examined the following specifications of the rotation interval for training data 
subsets rotation.  

 Rotation interval (generation): 50, 100, 200, 500, none, 

where “none” means that training data subsets were not rotated. When the rotation 
interval was specified as 50, training data subsets were rotated every 50 generations. 
After the rotation, each rule set in the current sub-population was re-evaluated for the 
newly assigned training data subsets. 

Table 1. Data sets used in our computational experiments 

Data set Number of attributes Number of patterns Number of classes 

Phoneme 5 5404 2 

Satimage 36 6435 6 

Pendig 16 10992 10 

 
In Tables 2-4, we summarize experimental results (i.e., training data accuracy, test 

data accuracy, the number of rules, total rule length, and computation time). Each entry 
in the tables is the average over 30 runs. The first five rows of each table represent the 
results by the parallel distributed implementation of our fuzzy GBML algorithm with 
different rotation intervals of training data subsets. The last row (i.e., Standard) repre-
sents the results by the standard non-parallel implementation of our fuzzy GBML algo-
rithm with a single population and no data subdivision. With respect to training data 
accuracy and test data accuracy, improved results from the non-parallel implementa-
tion are highlighted by the bold face. 

Table 2 shows the results for Phoneme data set. From Table 2, we can see that the 
parallel distributed implementation with the rotation of training data subsets searched 
for classifiers with higher test data accuracy (i.e., higher generalization ability) than 
those by the non-parallel method. With respect to the test data accuracy, similar re-
sults were obtained over a wide range of rotation intervals. The main advantage of the 
parallel distributed implementation is the reduction of the computation time. Whereas 
the parallel distributed implementation of genetic fuzzy rule selection [11] was about 
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Table 2. Average results over 3x10CV by the parallel distributed and non-parallel implementa-
tion of fuzzy GBML for Phoneme data set 

Rotation 
interval 

Training data 
accuracy [%] 

Test data 
accuracy [%] 

Number of 
rules 

Total rule 
length 

Computation 
time [min] 

50 84.58 83.31 16.50  61.83  9.4  

100 84.22 83.12 17.33  65.27  9.3  

200 84.33 83.27 18.57  68.27  9.4  

500 84.25 83.44 17.80  64.60  9.1  

None 83.00 81.62 17.90  50.00  7.0  

Standard 84.59 82.98 16.50  50.30  60.3  

 
NCPU

2 faster than the non-parallel one, the proposed method was only about seven 
times faster (NCPU < 7 < NCPU

2 = 25) than the non-parallel one. That is, the speeding-
up rates were not so high.  

Table 3 shows the results for Satimage data set. It is showed that the parallel dis-
tributed implementation with the rotation of training data subsets searched for classi-
fiers with higher training and test data accuracy than those by the non-parallel 
method. The proposed method was 10-13 times faster than the non-parallel one. Table 
3 also shows that the average number of rules was decreased by the frequent rotation 
of training data subsets.  

Table 4 shows the results for Pendig data set. With respect to the training data ac-
curacy and test data accuracy, the parallel distributed implementation did not work 
well for Pendig data set. There exists a large gap between the training data accuracy 
by the parallel distributed implementation and that by the non-parallel method. The 
same observation was not seen for the other data sets. Although there exists a clear 
deterioration in the classification accuracy, our parallel distributed implementation 
was 9-11 times faster than the non-parallel one. The detailed analysis is necessary to 
investigate the reason. We may need longer generations for Pendig data set. 

Table 3. Average results over 3x10CV by the parallel distributed and non-parallel implementa-
tion of fuzzy GBML for Satimage data set 

Rotation 
interval 

Training data 
accuracy [%] 

Test data 
accuracy [%] 

Number of 
rules 

Total rule 
length 

Computation 
time [min] 

50 85.66 84.46 11.47 89.67 9.8 

100 85.95 84.85 11.93 112.00 10.0 

200 85.87 85.15 13.73 106.90 10.6 

500 85.04 83.82 14.33 94.67 10.9 

None 83.65 82.88 18.97 65.33 11.9 

Standard 85.72 83.94 18.10 72.93 128.4 
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Table 4. Average results over 3x10CV by the parallel distributed and non-parallel implementa-
tion of fuzzy GBML for Pendig data set 

Rotation 
interval 

Training data 
accuracy [%] 

Test data 
accuracy [%] 

Number of 
rules 

Total rule 
length 

Computation 
time [min] 

50 94.41 93.85 31.10 141.20 36.5 

100 94.67 93.88 28.50 147.97 35.4 

200 94.65 93.95 29.37 159.97 38.0 

500 94.21 93.31 30.00 162.73 38.6 

None 93.09 92.36 36.67 159.13 42.4 

Standard 96.42 95.22 34.50 164.2 392.9  

5   Conclusion 

In this paper, we applied the parallel distributed implementation proposed in [11] to 
our fuzzy GBML algorithm. Through the computational experiments on three large 
data sets with a large number of patterns, we examined the effects of the proposed 
parallel distributed implementation of our fuzzy GBML algorithm. For Phoneme and 
Satimage data sets, the proposed method worked very well. Classifiers with higher 
generalization ability were obtained in shorter time than the non-parallel method. For 
Pendig data set, we observed the deterioration in the test data accuracy by the pro-
posed method. But the computation time was drastically reduced by the parallel dis-
tributed implementation in all the three data sets. 

As a future study, we need further experiments with other data sets to quantita-
tively clarify the effectiveness of our parallel distributed approach. The effects of the 
(sub) population size on the search ability should be studied. As reported in [18] for 
standard data sets (i.e., not with a large number of patterns), there exists a tradeoff 
between accuracy and complexity of fuzzy classifiers. We should also examine the 
effect of different specifications of the weight vector in the fitness function on the 
search ability of the proposed method. The use of evolutionary multiobjective optimi-
zation will also be an important step to avoid the weight specification.  
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Abstract. A Multi-Objective Evolutionary Algorithm (MOEA) was
adapted in order to deal with problems of feature selection in data-
mining. The aim is to maximize the accuracy of the classifier and/or to
minimize the errors produced while minimizing the number of features
necessary. A Support Vector Machines (SVM) classifier was adopted.
Simultaneously, the parameters required by the classifier were also op-
timized. The validity of the methodology proposed was tested in the
problem of bankruptcy prediction using a database containing financial
statements of 1200 medium sized private French companies. The results
produced shown that MOEA is an efficient feature selection approach
and the best results were obtained when the accuracy, the errors and the
classifiers parameters are optimized.

Keywords: Multi-Objective, Evolutionary Algorithms, Feature Selec-
tion, Bankruptcy Prediction.

1 Introduction

The problem of feature selection from databases with high amount of data is of
crucial importance, specially when dealing with problems such as bankruptcy
prediction given its consequences for banks, insurance companies, creditors and
investors. Thus, the ability to discriminate between faithful customers from po-
tential bad ones is thus crucial for commercial banks and retailers [1].

Traditional methods used to study this problem, such as discriminant analy-
sis [2] and Logit and Probit models [3], have important limitations. Discriminant
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analysis is limited due to its linearity, restrictive assumptions, for treating finan-
cial ratios as independent variables and can only be used with continuous indepen-
dent variables. In non-linear models the choice of the regression function creates
a bias that restricts the outcome, they are very sensitive to exceptions, and most
conclusions have an implicit Gaussian distribution on data, which is inappropriate
in many cases. To overcome these problems other approaches have been applied
recently in the problem of bankruptcy classification, such as Artificial Neural Net-
works (ANN) [4,5], Evolutionary Algorithms (EA) and Support Vector Machines
(SVM) [6]. Usually, complementary tools based on ANN, EA and SVM are used to
classify credit risk. In some studies it is shown that ANN outperforms discriminant
analysis in bankruptcy prediction [5,6,7,8,9]. Moreover these promising results, it
is generally recognized that further research is needed [10].

Due to the large number of variables usually present, and due to the high cor-
relation between these variables, it is of fundamental importance the existence
of a feature selection method able to reduce the number of features considered
for analysis [11]. A possible approach to deal with this problem consists on the
use of Multi Objective Evolutionary Algorithms (MOEA). Bi in [12] proposed a
framework for SVM based on multi-objective optimization with the aim of min-
imize the risk of the classifier and the model capacity (or accuracy). Igel in [13]
followed an identical approach, but replaced the objective concerning the mini-
mization of the risk by the minimization of the complexity of the model (i.e., the
number of features). Oliveira et al. in [14] used an hierarchical MOEA operating
at two levels: performing a feature selection to generate a set of classifiers (based
on artificial neural networks) and selecting the best set of classifiers. Hamdani
et al. in [15] used the NSGA-II [16] algorithm to optimize simultaneously the
number of features and the global error obtained by a neural network classi-
fier. Alfaro-Cid et al. in [17] applied a MOEA to take into account individually
the errors of type I (false positive) and type II (false negative). Finally, Handl
and Knowles in [18] studied the problem of unsupervised feature selection by
formulating them as a multi-objective optimization problem.

This work follows the main ideas of a previous work proposed by the authors,
were a methodology based on MOEA was used to accomplish simultaneously
two objectives: the minimization of the number of features used and the max-
imization of the accuracy of the classifier used [19]. In the present case differ-
ent accuracy measures, such as maximization of the F measure (Fm) and the
minimization of errors (type I and type II), will be tested. Simultaneously, the
parameters required by the classifier will be optimized. This is an important
issue since parameter tuning is not an easy task [20].

2 Bankruptcy Prediction

The Problem and Dataset. In the bankruptcy prediction problem the aim is
to infer the probability that a company will become distressed, over a specified
period, given a set of financial statements. This can be done from over one, or sev-
eral years. In general this task is performed by dividing the data into two groups:
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healthy and bankrupted companies, and then training a binary classifier, either
supervised or unsupervised, to learn the pattern that discriminate between the
two cases. Often, the database needs some previous treatment, prior to training
the classifiers, in order to create a well balanced and unbiased sample. Usually,
a full dataset is composed by tenths of accounting features, or ratios, measuring
different characteristics of a company (e.g., the profitability, liabilities, cash-flow
and equity). These features are often highly correlated and confusing, being im-
portant to use just some of them. This will simplify considerably the problem.
However, in order not to loose important information, special care must be taken
during the process of reducing the number of features. Thus the performance of
the classifier will not decrease. It is clear that these ideas can be generalized to
other type of classification problems than bankruptcy prediction.

In this work a sample obtained from the DIANE database was selected. The
initial database consisted of financial ratios of about 60 000 industrial French
companies, for the years of 2002 to 2006, with at least 10 employees. From these
companies, about 3000 were declared bankrupted in 2007 or presented a restruc-
turing plan (”Plan de Redressement”) to the court for approval by the creditors.
No distinction between these two categories has been made since both categories
signals companies in financial distress. The dataset includes information about
30 financial ratios, as defined by COFACE (Table 1), of companies covering a
wide range of industrial sectors.

Classification and Metrics. In the methodology proposed a SVM classifier
will be used while a MOEA is used to determine the best compromise between the
two and/or the three conflicting objectives. Support Vector Machines (SVMs)
are a set of supervised learning methods based on the use of a kernel, which
can be applied to classification and regression. In the SVM a hyper-plane or set
of hyper-planes is (are) constructed in a high-dimensional space. In this case, a

Table 1. Set of features considered (as defined by COFACE)

F1 Number of employees F2 Capital Employed/Fixed Assets
F3 Financial Debt/Capital Employed F4 Depreciation of Tangible Assets
F5 Working capital/current assets F6 Current ratio
F7 Liquidity ratio F8 Stock Turnover days
F9 Collection period F10 Credit Period
F11 Turnover per Employee F12 Interest / Turnover
F13 Debt Period days F14 Financial Debt/Equity
F15 Financial Debt/Cashflow F16 Cashflow/Turnover
F17 Working Capital/Turnover (days) F18 Net Current Assets/Turnover
F19 Working Capital Needs/Turnover F20 Export
F21 Value added per employee F22 Total Assets/Turnover
F23 Operating Profit Margin F24 Net Profit Margin
F25 Added Value Margin F26 Part of Employees
F27 Return on Capital Employed F28 Return on Total Assets
F29 EBIT Margin F30 EBITDA Margin
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good separation is achieved by the hyper-plane that has the largest distance to
the nearest training data points of any class. Thus, the generalization error of
the classifier is lower when this margin is larger. SVMs can be seen an extension
to nonlinear models of the generalized portrait algorithm developed by Vapnik
in [21]. In this work the SVM from LIBSVM was used [22]. The selection of
the right kernel, as well the definition of the best kernel parameters, is of pri-
mordial importance for the SVM performance [13]. In the present study only
the C-SVC method using as kernel the Radial Basis Function (RBF) was tested
[22]. Thus, two different SVM parameters are to be selected carefully: the regu-
larization parameter (C) and the kernel parameter (γ). Simultaneously, another
important parameter for training the SVM is the Learning Rate (LR), which
was also taking into account in this study. Another important issue concerns
the performance metrics used to evaluate the learning methods [23,24,25]. The
most straightforward way is to use the accuracy given by the ratio between the
number instances correctly evaluated and the total number of instances, i.e.:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where, TP are the positives correctly classified, TN are the negatives correctly
classified, FP are the positives incorrectly classified and FN are the negative
incorrectly classified.

It is also important to know the level of the errors accomplished by the clas-
sifier, mainly on problems where the existence of errors is critical. Two different
error types can be defined, type I and type II, given respectively by:

eI =
FP

FP + TN
(2)

and
eII =

FN

FN + TP
(3)

Another traditional way to evaluate the information is using the sensitivity or
recall (R) and the precision (P ) of the classifier:

R =
TP

TP + FN
(4)

and
P =

TP

TP + FP
(5)

In the present work Fm, which represents the harmonic mean of R and P , was
adopted here to evaluate globally the classifier:

Fm =
2PR

P + R
(6)

The selection of the best learning algorithm to use and the best performance
metric to measure the efficiency of the classifier is nowadays the subject of many
studies [23,25].
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3 Multi-Objective Evolutionary Algorithms

MOEAs have been recognized in the last decade as good methods to explore
and find an approximation to the Pareto-optimal front for multi-objective opti-
mization problems. This is due to the difficulty of traditional exact methods to
solve this type of problems and by their capacity to explore and combine vari-
ous solutions to find the Pareto front in a single run. A MOEA must provide a
homogeneous distribution of the population along the Pareto frontier, together
with an improvement of the solutions along successive generations [26,27]. In this
work, the Reduced Pareto Set Genetic Algorithm (RPSGA) is adopted [27,28],
where a clustering technique is applied to reduce the number of solutions on
the efficient frontier. Detailed information about this algorithm can be found
elsewhere [27,28]. In the present study the RPSGA algorithm was adapted to
deal with the features selection problem, so it can be considered as a combina-
tory optimization task. Concerning the definition of the decision variables, two
possibilities were considered. Initially, a pure feature selection problem was an-
alyzed. In this case the parameters of the classifier, such as type of training (in
the present study only k-fold cross validation was used) and learning rate and
the SVM parameters (C and γ), were initially set. In a second approach, these
parameters were also included as variables to be optimized. The latter approach
has the advantage of obtaining in a single run the best features and, simultane-
ously fine tuning the classifier parameters. This approach will be illustrated in
the next section.

4 Results and Discussion

4.1 Case Studies

The MOEA methodology presented above will be used in a problem of find-
ing the minimum number of features while maximizing Fm and minimizing eI .
Based on the data from a given year, the classifier is trained to predict whether
the company will survive over the following year. Table 2 shows the different
experiments tested. In all cases the C-SVC method using as kernel the Radial
Basis Function (RBF) and 10-fold validation training method were used. First
four experiments, using only as decision variables the features, were performed
(experiments c-svc1 to c-svc04 in Table 2). In this case the Learning Rate (LR),
C and γ are set to 0.01, 1 and 10, respectively. In experiments c-svc11 to c-svc14
and c-svc21, LR, C and are also considered as decision variables (i.e., they are
parameters to be optimized). The range of variation allowed for these variables
is shown on Table 2. The RPSGAe was applied using the following parameters:
100 generations, crossover rate of 0.8, mutation rate of 0.05, internal and exter-
nal populations with 100 individuals, limits of the clustering algorithm set at
0.2 and the number of ranks (NRanks) at 30. Due to the stochastic nature of
the initial population several runs were performed (in the present case 16 runs)
for each experiment. Thus, a statistical method based on attainment functions
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Table 2. Experimental setup

Exp. LR C γ Objectives
c-svc1 0.01 1 10 NF + Fm

c-svc2 0.01 1 10 NF + eI

c-svc3 0.01 1 10 NF + eII
c-svc4 0.01 1 10 NF + Fm + eI

c-svc11 [0.001,0.1] [1,1000] [0.005,10] NF + Fm

c-svc12 [0.001,0.1] [1,1000] [0.005,10] NF + eI

c-svc13 [0.001,0.1] [1,1000] [0.005,10] NF + eII
c-svc14 [0.001,0.1] [1,1000] [0.005,10] NF + Fm + eI

was applied to compare the final population for all runs [29,30]. This method at-
tributes to each objective vector a probability that this point is attaining in one
single run [29]. It is not possible to compute the true attainment function, but it
can be estimated based upon approximation set samples, i.e., different approx-
imations obtained in different runs, which is denoted as Empirical Attainment
Function (EAF) [31]. The differences between two algorithms can be visualized
by plotting the points in the objective space where the differences between the
empirical attainment functions of the two algorithms are significant [32].

4.2 Correspondence between Optimization Objectives

First, in order to have an idea about the shape of the Pareto fronts a population
of 1000 individuals generated randomly was initially evaluated using the classifier
and the different metrics (equations 1 to 6). Figure 1 shows these results. As can
be seen it is possible to obtain identical value for Fm with different number
and combinations of features. However, when approaching the top left corner
(maximization of Fmeasure and minimization of the number of features) this
does not happen, as expected. In the case of the graph eI versus Fm the best
location is the bottom right corner, but, as expected, the tendency is to go to
the top right corner. This means that these objectives are conflicting.
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Fig. 1. Pareto plots for 1000 solutions generated randomly
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Table 3. Results for Run 1 of experiment C-SVC14

N.F. Fm eI LR γ C Features
2 0.885 0.0467 0.0953 9.99 985 F11, F28
3 0.962 0.0054 0.0992 9.98 983 F11, F18, F28
3 0.967 0.0173 0.0970 9.99 975 F 8, F11, F28
4 0.997 0.0000 0.0941 9.98 959 F 8, F11, F16, F28
4 0.998 0.0017 0.0960 9.99 967 F 8, F11, F13, F28
5 1.000 0.0000 0.0986 9.99 967 F 1, F 8, F11, F13, F2
5 1.000 0.0000 0.0937 9.98 971 F 3, F 8, F11, F16, F28
5 1.000 0.0000 0.0971 9.94 905 F 3, F 8, F11, F13, F28
5 1.000 0.0000 0.0969 9.97 986 F 3, F 8, F11, F28, F30
5 1.000 0.0000 0.0917 9.98 968 F 8, F11, F13, F16, F28
5 1.000 0.0000 0.0943 9.98 975 F 4, F 8, F11, F16, F28
5 1.000 0.0000 0.0908 9.99 965 F 8, F 9, F11, F16, F28
5 1.000 0.0000 0.0962 9.96 977 F 6, F 8, F11, F13, F28
5 1.000 0.0000 0.0958 9.99 969 F 8, F11, F13, F22, F28
5 1.000 0.0000 0.0984 9.95 905 F 5, F 8, F11, F13, F28
5 1.000 0.0000 0.0979 9.99 980 F 8, F11, F18, F22, F28

Table 4. Results with 3 features for Runs of experiment C-SVC14

Run Fm eI LR γ C Features
1 0.967 0.0173 0.0970 9.99 975 F8, F11, F28
2 0.963 0.0151 0.0805 9.93 737 F8, F16, F22
3 0.953 0.0168 0.0443 9.95 942 F8, F9, F28
4 0.962 0.0194 0.0739 9.95 990 F6, F8, F23
5 0.956 0.0135 0.0529 9.90 961 F8, F14, F16
6 0.964 0.0226 0.0182 9.81 984 F8, F11, F29

4.3 Optimization Results

EAFs graphs were vused to compare the performance between experiments c-
svc1 and c-svc11, c-svc2 and c-svc12 and c-svc3 and c-svc13, were objective 1 is
the number of features and objective 2 is Fm, eI or eII , respectively. These plots
were not presented here due to a lack of space. The analysis of these plots allows
concluding that the best performance is always obtained when the classifier
parameters are optimized simultaneously (i.e., experiments c-svc11 to c-svc13).
This indicates that the optimization algorithm is able to find the best classifier
parameters for the case under study. The same is true for the experiments with
three objectives (c-svc4 and c-svc14), to which is more difficult to obtain the
EAFs graphs and, thus, they are not present. Figure 2 plots the Pareto-fronts
after 100 generations of a single run of experiments c-svc4 (left) and c-svc14
(right). It is clear from these plots that the run corresponding to experiment
c-svc is more efficient. In this case fewer solutions are found since the MOEA
was able to reach to solutions were the Fmeasure and eI converge to its best
value (1 and 0, respectively).
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Fig. 2. Pareto optimal fronts for a single run of experiment c-svc14 (Table 2)

The results obtained for a single run of experiment c-svc14 (i.e., the solutions
shown in the right graphs of Figure 2) are presented on Table 3. As can be seen
there are several solutions were the number of features obtained are the same,
mainly in the case of the solutions with five features. This is due to small changes
produced in the classifier parameters values (LR, C and γ) also optimized. If
considered that a good solution will be the one with an Fm higher than 90%, the
two solutions with three features were selected: the solution with F11, F18 and
F28 and the solution with F8, F11 and F28 features, respectively. The difference
between these two solutions is due to features F11 and F8. When F8 is present
both Fm and eI increase.

Table 4 presents for ilustrating purposes the best results accomplished only
with three features selected for some of the runs of experiment c-svc14. In this
case the MOEA converged to a different set of features. Also, in this case, the
features selected are able to cluster the companies. Therefore, for this set of data
there is more than one solution able to attain the objectives defined.

5 Conclusion

In this work a MOEA was used for feature selection in the bankruptcy prediction
problem using Support Vector Machines classifier. The methodology proposed was
able not only to reduce the features necessary but is able also to provide relevant
information to the decision maker. The algorithm does not only provide the best
features to be used but, also, with the best parameters of the classifier. The best
performance only is attained when the classifier parameters are optimized simulta-
neously with the features to be selected, since the classifier performance is strongly
dependent on these parameters. Finally, the MOEA was able to provide more than
one set of features able to optimize the objectives defined.



MOEAs for Feature Selection: Application in Bankruptcy Prediction 327

Acknowledgments. The financial support of the Portuguese science founda-
tion (FCT) under grant PTDC/GES/70168/2006 is acknowledged.

References

1. Atiya, F.: Bankruptcy prediction for credit risk using neural networks: A survey
and new results. IEEE Transactions on Neural Networks 12, 12–16 (2001)

2. Eisenbeis, R.A.: Pitfalls in the Application of Discriminant Analysis in Business,
Finance and Economics. J. of Finance 32, 875–900 (1997)

3. Martin, D.: Early Warning of Bank Failure: A Logit Regression Approach. J. of
Banking and Finance 1, 249–276 (1977)

4. Charitou, A., Neophytou, E., Charalambous, C.: Predicting corporate failure: em-
pirical evidence for the UK. European Accounting Review 13, 465–497 (2004)

5. Neves, J.C., Vieira, A.S.: Improving Bankruptcy Prediction with Hidden Layer
Learning Vector Quantization. European Accounting Review 15, 253–271 (2006)

6. Fan, A., Palaniswami, M.: Selecting bankruptcy predictors using a support vector
machine approach. In: Proceedings of IJCNN 2000, pp. 354–359 (2000)

7. Coats, P.K., Fant, L.F.: Recognizing Financial Distress Patterns Using a Neural
Network Tool. Financial Management 22, 142–155 (1993)

8. Yang, D.T.: Urban-biased policies and rising income inequality in China. American
Economic Review Papers and Proceedings 89, 306–310 (1999)

9. Tan, C.N.W., Dihardjo, H.: A Study on Using Artificial Neural Networks to De-
velop an Early Warning Predictor for Credit Union Financial Distress with Com-
parison to the Probit Model. Managerial Finance 27, 56–77 (2001)

10. Vieira, A.S., Duarte, J., Ribeiro, B., Neves, J.C.: Accurate Prediction of Financial
Distress of Companies with Machine Learning Algorithms. In: Kolehmainen, V.,
Toivanen, P., Beliczynski, B. (eds.) ICANNGA 2009. LNCS, vol. 5495, pp. 569–576.
Springer, Heidelberg (2009)

11. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.: Feature Extraction Foundations
and Applications. Springer, Heidelberg (2006)

12. Bi, J.: Multi-Objective Programming in SVMs. In: Proceedings of the Twenti-
eth International Conference on Machine Learning, ICML 2003, Washington, DC
(2003)

13. Igel, C.: Multi-Objective Model Selection for Support Vector Machines. In: Coello
Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410,
pp. 534–546. Springer, Heidelberg (2005)

14. Oliveira, L.S., Morita, M., Sabourin, R.: Feature Selection for Ensembles Using the
Multi-Objective Optimization Approach. SCI, pp. 49–74 (2006)

15. Hamdani, T.M., Won, J.-M., Alimi, A.M., Karray, F.: Multi-objective Feature Se-
lection with NSGA II. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro,
B. (eds.) ICANNGA 2007. LNCS, vol. 4431, pp. 240–247. Springer, Heidelberg
(2007)

16. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective
genetic algorithm: NSGA-II. IEEE Transaction on Evolutionary Computation 6,
181–197 (2002)

17. Alfaro-Cid, E., Castillo, P.A., Esparcia, A., Sharman, K., Merelo, J.J., Prieto, A.,
Mora, A.M., Laredo, J.L.J.: Comparing Multiobjective Evolutionary Ensembles
for Minimizing Type I and II Errors for Bankruptcy Prediction. In: CEC 2008,
Washington, USA, pp. 2907–2913 (2008)



328 A. Gaspar-Cunha et al.

18. Handl, J., Knowles, J.: Feature subset selection in unsupervised learning via mul-
tiobjective optimization. Int. J. of Computational Intelligence Research 2, 217–238
(2006)

19. Gaspar-Cunha, A., Mendes, F., Duarte, J., Vieira, A., Ribeiro, B., Ribeiro, A.,
Neves, J.: Feature Selection for Bankruptcy Prediction: A Multi-Objective Opti-
mization Approach. Int. J. of Natural Computing Research 1, 71–79 (2010)

20. Kulkarni, A., Jayaraman, V.K., Kulkarni, B.D.: Support vector classification with
parameter tuning assisted by agent-based technique. Computers and Chemical En-
gineering 28, 311–318 (2008)

21. Cortes, C., Vapnik, V.: Support-Vector Networks. Machine Learning 20, 273–297
(1995)

22. Chang, C.-C., Lin, C.-J.: LIBSVM a library for support vector machines (Tech.
Rep.). Dept. of Computer Science and Information Engineering, National Taiwan
University, Taipei, Taiwan (2000)

23. Caruana, R., Niculescu-Mizil, A.: Data Mining in Metric Space: An Empirical
Analysis of Supervised Learning Performance Criteria. In: KDD 2004, Seattle,
Washington, pp. 69–78 (2004)

24. Provost, F., Fawcet, T.: Analysis and Verification of Classifier Performance: Classi-
fication under Imprecise Class and Cost Distributions. In: KDD 1997, Menlo Park,
CA, pp. 43–48 (1997)

25. Fawcet, T.: An introduction to ROC analysis. Pattern Recognition Letters 27,
861–874 (2006)

26. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, New
York (2001)

27. Gaspar-Cunha, A., Covas, J.A.: RPSGAe - A Multiobjective Genetic Algorithm
with Elitism: Application to Polymer Extrusion. In: Dorigo, M., Birattari, M.,
Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS,
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Abstract. Pasting Systems and Tile Pasting P Systems are syntactic techniques 
using pasting operation generating tiling patterns and tessellations. A variant of 
the Parametric Tile Pasting P System equipped with multiple-edge pasting op-
erations and geometric transformation operations has been presented here. This 
extension, Tile Pasting P System with Multiple-Edge Pasting (TPPSMEP) dis-
cussed in this paper with the enhanced operations increases the generative  
capacity to produce patterns with recurring primitives and rotated/ scaled tiling 
patterns unlike the earlier versions. 

Keywords: Membrane computing, Picture languages, Syntactic methods. 

1   Introduction 

The Pasting System (PS) and its variants such as Extended Pasting Scheme (EPS) and 
Tabled Pasting System (TPS) are syntactic methods, introduced by Robinson et al. in 
[14,15,16], to generate tessellation and tiling patterns. The technique of gluing two 
tiles introduced in [16] specifies the edges of tiles that are to be glued or pasted the 
tiles thus pasted side to side with such pasting rules result in bigger pattern of tiles 
known as tiling pattern. With reference to the generative capacity of these systems,  
it has been proved that in [14] PS and EPS are incomparable and PS is properly  
contained in TPS. 

Membrane Computing [8, 9], a branch of nature inspired systems is an area of 
computer science aiming to abstract computing models from the structure and func-
tioning of the living cell. The basic model of membrane systems (also known as P 
Systems) which consist of membrane structure, are distributed parallel computing 
devices, processing multisets of symbol-objects, synchronously, in the compartments 
defined by cell-like membrane structure. The evolution rules also govern the modifi-
cation of these objects in time, and transfer of objects from one membrane to another 
membrane. In recent years, generation of two dimensional picture languages using 
various syntactic techniques has been is extensively studied. P Systems using array-
objects, picture–objects have also been defined. P Systems generating arrays and 
Indian folk designs (Kolam patterns) are considered in [11]. Tissue like P-systems 
with active membranes that generate local picture languages are considered in [1]. 
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Theoretical models of P Systems are introduced in [12, 14] for generating two di-
mensional tiling patterns that are formed by gluing square tiles, wherein the applica-
tion of pasting rule to a picture pattern is by sequential i.e. one rule is applied at a 
time [12] or in a maximally parallel manner [14] i.e., all the rules are applied to the 
edges of the tiling pattern simultaneously. In [14] it has been proved that the picture 
languages generated by TPS are contained in the family of picture languages gener-
ated by Evolution-Communication Tile Pasting P System (ECTPPS) and Tile Pasting 
P System with Active Membrane (TPPS–AM). In this paper we propose an extension 
to the Tile Pasting P System, namely Parametric-Multiple Tile Pasting P System with 
Multiple-Edge Pasting (TPPSMES), allowing multiple edge pasting and geometric 
operations on the tiling patterns. Tessellation patterns made up of primitive tiling 
patterns are generated by this newly proposed system.. 

2   Preliminaries 

In this section we recall certain notions relating to Pasting Systems [12, 14, 15]. A tile 
is a 2-dimensional topological region (disk) with a single simple closed bounding 
curve whose ends join up to form a loop without crossing or branching. A tiling in the 
Euclidean plan is a countable family of tiles that cover the plane without gaps or over-
laps. Hence the intersection of any finite set of tiles in a plane tiling has zero area. 
Such an intersection will consist of a set of points (vertices) and lines (edges). Two 
adjacent tiles have an edge in common. Regular polygon tiles such as triangles, 
squares and hexagons tile the plane without crossing. A tile, its vertices and edges 
may be labeled distinctively. A square tile with label a for its region and edge labels 
x1 , x2 , x3 and x4 respectively for its right, top, left and bottom side edges can be ex-
pressed as a tuple (a, x1x2x3x4). A decorated tile is a disk with any colour or pattern 
engraved in its region. A planar tiling is said to be non-periodic, if it admits no trans-
lations. A set of tiles is said to be aperiodic, if it admits only non-periodic tilings.  

A pasting rule [12, 15] is a pair (x, y) of edges of two (not necessarily different) la-
beled tiles a and b. If x is the label of the right side edge of a square tile a and y is the 
label of the left side edge of another square tile (say, b), then an application of the rule 
(x, y) pastes side by side the two tiles i.e the tile b will be pasted to the right side of the 
tile a.  Similarly pasting rules for top and bottom sides of square tiles are also defined. 
Pasting of tiles gluing or pasting edges result in formation of new tiling patterns. 

2.1   Pasting System (PS)  

Definition: A Pasting System (PS) [12, 15] is  a 3-tuple, S = (∑, P, t0), where ∑ is a 
finite non-empty set of (labeled regular polygons) tiles, P is a finite set of pasting 
rules and t0 is the axiom tile or tiling. 

A tiling pattern p2 is obtained from a tiling pattern p1 by applying the pasting rules 
in parallel to all the boundary edges of p1 where pasting is possible. Note that the 
labels of pasted edges in a pattern are ignored once the tiles are pasted. Rotation of 
tiles is not allowed in the PS while pasting two tiles. The set of all patterns generated 
from the axiom t0 using the pasting rules of P is called the language of tiling patterns 
of S, and is denoted by T(S). 
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Example:  Consider the Pasting System S1 = (∑, P, t0) with a single tile (as well as 
axiom)  

     
   

∑ = 
                
 
 
 
A member generated by S1 at second generation of pasting is shown in Figure 1. 
 

                                                          
 

Fig. 1. A member of the family generated by S1 

2.2   Extended Pasting Scheme (EPS) 

Definition: An Extended Pasting Scheme (EPS) is a 4-tuple (∑, P, t0, ∆), where ∑ is a 
finite non-empty set of  (labeled regular polygons) tiles, P is a finite set of pasting 
rules, t0 is the axiom and ∆ is a finite set of constraints on the edge labels of  ∑. 
 
Example: Consider the Extended Pasting Scheme S2 = (∑, P, t0, ∆) where  
 

                                ∑    =      ,   ,   
 

P = {(R, B)},       axiom tile t0      =    ∆ = {B∗} 

The language of tiling patterns generated in parallel is given in figure 2.   
 

b

a

d

c
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                              T(S2) =         ,  ,…  
 

Fig. 2. The language of tiling patterns by S2 

2.3   Tabled Pasting System (TPS) 

Definition: A Tabled Pasting System (TPS) [14] is a 4-tuple (∑, P, t0, C), where   is a 
finite non  empty set of (labeled regular polygons) tiles, P is a finite set of tables {T1, 
T2, …, Tk} where each table Ti contains pasting rules, t0 is the axiom pattern  and C is 
a control language over P. 
 
Example: Consider the Tabled Pasting System S3 = (∑, P, t0, C) where  
           

                                    ∑  =      , ,  
 

P = {T1, T2, T3}, T1 = {(R2, G5), (R4, G1), (R6, G3), (G6, B3), (G4, B1), (G2, B5)}, 
T2 = {(B1, G4), (B2, R5), (B3, G6), (B4, R1), (B5, G2,), (B6, R3)}, 
T3 = {(R1, B4), (R2, G5), (R3, B6), (R4, G1), (R5, B2), (R6, G3)} 

 

                                          t0  =           and C = {(T1T2T3)
n /  n  ≥ 1}. 

 
 A tessellation obtained by S3 is shown in the figure 3. 

 
 
 
 
 
 
 
 
 

Fig. 3. A view of a tessellation generated by S3 

2.4   Tile Pasting P System (TPPS)  

Definition: A Tile Pasting P System (TPPS) is a construct Π = (∑ , μ, F1, ..., Fm, 
R1,...,Rm, i0) where ∑ is a finite set of tiles; μ is a membrane structure with m membranes 
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labeled in a one-to-one way with 1,...,m; F1,...,Fm are finite sets of picture patterns over 
tiles of  ∑ associated with the m regions of μ; R1,...,Rm are finite sets of pasting rules (t; 
(xi; yi); 1 ≤ i ≤ n) associated with the m regions of  μ and i0 is the output membrane 
which is an elementary membrane.  
 
Example: Consider the TPPS  Π with ∑  = {t0 = (a, cbvh), t1 = (a, chch), t2 = (a, 
vbvb), t3 = (a, vdvb)}; µ = [1[2[3]3]2]1 ,  indicating that  the  system  has  three regions 
one within another i.e. region 1, denoted by [1]1 is the ‘skin’ membrane which con-
tains region 2, [2]2 which in turn contains region 3, [3]3 ; i0   = 3 indicating that region 
3 is the output region; F1 = {t0}, F2 = F3 = φ; R1 contains a pasting rule (t1, (c, c), in) 
(with target indication in), R2 contains two pasting  rules  (t2, (b, b), out), (t3, (b, b), 
in), R3 = φ. 

Starting with the initial object t0 in region 1, the rule (t1, (c, c), in) allows tile t1   to 
be pasted to t0 growing one tile vertically but the target indication in sends the pattern 
formed to region 2. In this region 2 if the rule (t2, (b, b), out) is applied, then the pat-
tern grows one tile horizontally giving rise to a shape of the letter L but the pattern is 
sent back to region 1 and the process repeats. On the other hand if rule (t3, (b, b), in) is 
applied in region 2, again the pattern grows horizontally one tile and the pattern 
formed in the shape of L is sent to the inner output region 3 wherein it is collected in 
the picture pattern  language formed by the TPPS  Π. 

3   Tile Pasting P System with Multiple-Edge Pasting (TPPSMEP) 

The Tile Pasting P Systems considered so far have generated tessellation or tiling 
patterns by pasting of tiles at the edges specified by the rules. At each stage individual 
tiles are pasted. We extend the pasting rules specified for edges to a sequence of 
edges. In this section we introduce a variant of the Parametric Tile Pasting P System 
(PMTPPS) introduced in [17] which allows non edge-edge tiling, multiple edge past-
ing and geometric transformations of tiles/tiling patterns such as translation, rotation, 
reflection, replication, scaling and edge rewriting and relabeling operations. These 
operations facilitate the rotation of tiles/tiling patterns and pasting of multiple tiles to 
tiling pattern unlike the earlier models. 

The following geometrical transformation operators were included in [17]: 
Translation: A tile labeled t subject to a translation of (h, k) in Cartesian plane and 
moved into a target region j is expressed as  
 

[t] → [tra(t, <h, k>)]j 

 

Rotation: A tile labeled t subject to a rotation of θ with respect to its centre and 
moved into a target region j is expressed as  

[t] → [rot(t, <θ>)]j . 
 

Positive values for the rotation angle define counterclockwise rotations about the 
pivot point and negative values rotate tiles in the clockwise direction. 
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Reflection: A tile labeled t subject to a vertical reflection in Cartesian plane and 
moved into a target region j is expressed as  
 

[t]i → [refv(t)]j .  
 

Similarly horizontal reflection is expressed by  
 

[t] → [refh(t)]j . 
 

Replication: A tile labeled tp subject to replication where finite number (k) of copies 
are made and placed in a target region j is expressed as 
  

[tp] → [tp1, tp2,,…, tpk]j . 
 

Scaling: A tile labeled t subject to scaling by an integer k > 0 and placed in a target 
region j is expressed as  
 

[t] → [kt]j.  
 

For k < 1, the tile is reduced in its area. 
Edge/path rewriting (linear scaling): An edge or path bounding a tile or tiling is re-
written when a sequence of vertices and edges vieivi+1ei+1vi+2…vn-1ei+kvn is replaced by 
a new sequence viejvi+1ej+1vi+2…vn-1ei+lvn for a finite k, l ≥ 1. The length of the path is 
increased for k < l, decreased for k > l and maintained for k = l. The operation is  
expressed as  
 

(vieivi+1ei+1vi+2…vn-1ei+kvn) → (viejvi+1ej+1vi+2…vn-1ei+lvn). 

3.1   Parametric Tile Pasting P System (PTPPS) 

Definition: A Parametric Tile Pasting P system (PTPPS) Π is a construct with (∑ , μ, 
F1, ..., Fm, R1,..., Rm, i0) where ∑ is a finite set of tiles with vertices and edges labeled; 
μ is a membrane structure with m membranes labeled in a one-to-one way with 
1,...,m; F1,...,Fm are finite set of tiles  associated with the m regions of μ; R1,..., Rm are 
finite sets of evolution rules containing multiple edge pasting rules and geometric 
operators associated with the m regions of μ and i0 is the output membrane which is 
an elementary membrane.  

A computation in a PTPPS is defined in a way similar to TPPS with the successful 
computations being the halting ones. The computation starts with the membrane mi, 
containing the axiom pattern t0. The pasting (evolution) rules present in the set Ri are 
applied to the edges of the tiles in a maximally parallel manner. For instance during a 
computation if pasting is possible at all the edges of the given pattern pi then the evo-
lution rules present in the table Ri are applied to all possible edges simultaneously. If 
Ri contains two or more pasting rules/geometric operators, then any one of them, 
chosen non deterministically is applied in the membrane.  
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To each picture pattern, from each region of the system, for which geometric op-
erations and pasting rules could be applied, should be applied; The picture pattern 
thus evolved is communicated to the region j indicated by the target associated with 
the rule used. j ∈ {here, out, inm}. here refers to the same region, out means that the 
pattern exits the current membrane and in means that the pattern is immediately sent 
to one of the directly lower membranes (m), non deterministically chosen if several 
exist; if no internal membrane exists, then a rule with the target indication in cannot 
be used). A tiling pattern is evolved where no operator or pasting rule can be applied 
to the existing picture patterns. The result of a halting computation consists of the 
picture patterns placed in the membrane with label io in the output membrane. The set 
of all such picture patterns computed or generated by a PTPPS Π is denoted by 
PTPPL(Π). The family of all such languages PTPPL(Π) generated by systems Π as 
above, with at most m membranes, is denoted by PLm(PTPPS). 

 
Example: The language of chair like non-periodic tiling patterns, whose first four 
members shown in figure 5 is generated by the following PTPPS. 

Π  = (∑, [1[2[3]3[4]4]2]1, F1, F2, F3, F4, R1, R2, R3, R4, 4) where F1 has the tile T0 
shown in figure 4. The vertices of T0 are labelled 1.   

        

Fig. 4. Axiom of Π 

F2 = F3 = F4 = φ, 
 

R1 = {[T0] → [T0, T1, T2, T3]2} . 
 

The edges of the tile T1 are bi where bi = ϕ1(ai), ai ∈ T0.  
Similarly, the edges of the tile T2 are ci where ci = ϕ2(ai), ai ∈ T0 and the edges of 

the tile T3 are di where  di = ϕ3(ai), ai ∈ T0. 
 

R2 = {[T0] → [T0]3, [T1] → [T1]3, [T2] → [rot(T2, <900>]3, 
 

[T3] → [rot(T3, <2700>]3, 
 

[(1a71a81 → 1a71, 1a51a61 → 1a61, 1b21c11 → 1a21, 1b31d41 → 1a31, 1c51c61 → 
1a81, 1c71c81 → 1a11, 1d51d61 → 1a41, 1d71d81 → 1a51)]out, 
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[(1a71a81 → 1a71, 1a51a61 → 1a61, 1b21c11 → 1a21, 1b31d41 → 1a31, 1c51c61 → 
1a81, 1c71c81 → 1a11, 1d51d61 → 1a41, 1d71d81 → 1a51)]4 }. 

 
R3 = [T0, T1, T2, T3, {(d3, d2; b4, b5), (a4, a3, a2 ; d1, b6, b7), (c4, c3, c2 ; a1, b8, b1) }]out 

 

R4 = φ 

 ,   , ,  

Fig. 5. First four members of the language of Π 

The computation starts with the membrane m1 having the tile T0 and the evolution 
rules present in R1 (associated with m1) are applied to the tile T0, thereby producing 
three new tiles with a different labelling as defined in R1 and communicating all the 
tiles to m2.  In m2 the geometric operator rules rotates the tiling patterns and commu-
nicates it to m3, edge rewriting rules rewrite the edges of the tiling patterns and com-
municate it to m1 and m4.  In m3 the multiple edge pasting rules are applied to the four 
tiles T0, T1, T2, T3 thereby producing the chair like tiling patterns and communicated 
to m2. In the successive pasting operation the primitive chair like tiling patterns are 
used for assembling the larger chair like tiling patterns. The tiling patterns reached in 
the output membrane m4 are collected in set PMPPL(Π). 

3.2   Tile Pasting P System with Multiple-Edge Pasting (TPPSMEP) 

A Multiple-edge pasting rule is a pasting operation defined between two sequences of 
n-edges of a tiling pattern. A Multiple edge pasting rule (a1a2…an; b1b2…bn) is a past-
ing operation defined between two sequences of n-edges of a tiling pattern. If a1a2…an 
are the sequence of n-edges of a tiling pattern ti and b1b2…bn are the sequence of n-
edges of a another tiling pattern ti+1, then the application of the multiple edge pasting 
rule (a1a2…an; b1b2…bn) pastes the two tiling patterns ti and ti+1 side by side. Multiple 
edges of tiling patterns are thus pasted with another tiling pattern having the same 
number of edges. Tile Pasting P System with Multiple-Edge Pasting (TPPSMEP) is the 
enhanced PTPPS given in 3.1. Tiles pasted to tiling patterns in a membrane are pushed 
to another membrane where rules for multiple edges assemble the tiling patterns to 
form bigger tiling patterns. For example, the pattern shown in figure 6 (b) is obtained  
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     (a)            (b) 

Fig. 6. A recurring pattern and a tessellation obtained 

from two triangle tiles (black and white), a black and a grey square tiles. The recurring 
primitive pattern shown in figure 6 (a) is generated and pumped into another region 
where multiple copies of these primitives are pasted with edge sequence pasting rules.  

4   Conclusion 

The Tile Pasting P System for tiling and tessellation pattern generation has been ex-
tended with multiple-edge pasting operation and geometric transformation operations 
on the tiles and tiling patterns. This generalized form of PTPPS has the generative 
capacity of patterns where tiling patterns are pasted with other tiling patterns. 
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Modeling and Automation of Diagnosis and
Treatment of Diabetes

Abhirami Baskaran�, Dhivya Karthikeyan, and Anusha T. Swamy
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Abstract. The present work aims at designing and implementing an
automated decision making system for the treatment of diabetes. The
automated medical tool has been equipped to handle the decisions re-
garding the care plan of the patient and also helps in diagnosis. It takes
in essential parameters like glucose, cholesterol, blood pressure and de-
vises a care plan for the patient. Fuzzy logic was used to implement the
medical decision support system. A knowledge base for diabetes contain-
ing the essential concepts, treatment algorithms was created. The fuzzy
logic based system used the knowledge base for constructing the collec-
tion of rules. The essential parameters from the patient database were
provided as input and the decisions like the type of diabetes, diet plans,
medication etc were recorded. The tool also takes the decisions and the
parameters that led to the decisions to build an optimal care pathway
for the patient.

Keywords: Clinical Pathways, Diabetes mellitus, Fuzzy logic.

1 Introduction

Diabetes mellitus ranks high in the list of wide spread diseases in today’s society.
The International Diabetes Federation has indicated that India will become the
diabetes capital of the world, signalling the need for a uniform care plan in the
treatment and diagnostic process throughout the world. Currently, there exists
variance in treatment for patients with the same condition. Clinical pathways
[1] are useful in standardizing the treatment processes. Also in rural areas and
primary care centres, they act as guiding tools to nurses and care workers.

The current research focuses on an expert system developed to aid the spe-
cialist. An expert system is a computer program that simulates the judgement
and behaviour of a human or an organization that has expert knowledge and ex-
perience in a specific field. For example, Chang et al. [2] have employed artificial
neural network [ANN] based expert system for the diagnosis of breast cancer.
Dey and Bajpai [3] have devised a diagnostic tool based on ANN for diabetes.
Similar efforts have been reported by Sivakumar for diabetic retinopathy [4] and
Phuong [5]. While these researchers have only focussed on the diagnostic aspects
of the treatment, the current paper covers the treatment as well. The usage of
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ANN does not lay emphasis on the intermediate decisions taken to arrive at the
final outcome. The intermediate decisions taken are crucial for building clini-
cal pathways. Hence a fuzzy control system has been designed to take medical
decisions related to diagnosis and treatment. It works on the basis of standard
treatment algorithms for diabetes.

Fuzzy logic [6] is an ideal choice in decision making as it is similar to human
thinking and decision making in spirit. Since medical diagnosis and treatment of
diabetes involves a certain degree of uncertainty and imprecision, fuzzy logic is
an ideal choice to implement a smart system for diabetes treatment. The rules
have linguistic variables replacing quantitative values. Fuzzy logic enables us to
produce definitive outputs or decisions for fuzzy input sets.

This paper talks about how the action plans for the treatment are arrived
at based on fuzzy logic. Firstly it gives an insight into the diabetes domain
and the fuzzy logic framework. Consequently the system architecture and the
patient database are discussed. This is followed by the implementation of the
expert system. The expert system employs the concepts in diabetes domain to
bring about intelligent decision making. It constructs a pathway for each patient
based on various input parameters like laboratory tests, previous diagnosis etc.
It includes the response parameters that decide the treatment course and traces
the exercise, diet plans etc. of the patient.

2 Overview of Diabetes and Fuzzy Logic

2.1 Diagnosis and Treatment of Diabetes

The blood glucose level is regulated with the help of insulin, a hormone made
in the pancreas. Diabetes mellitus develops when the pancreas stops producing
insulin (Type 1 diabetes) or when the body does not respond properly to insulin
(Type 2 diabetes). Insulin injections are necessary to treat Type 1 diabetes. Type
2 diabetes can usually be controlled in the first instance by regular exercise and
diet. Tablets and eventually insulin injections may be needed as the disease
progresses [7].

Diagnosis of the Diabetes type and pre-diabetes is done by fasting plasma
glucose(FPG) test. An oral glucose tolerance test (OGTT) measures blood glu-
cose after a person fasts at least 8 hours and 2 hours after the person drinks a
glucose-containing beverage. HbA1c, present in our blood, is a minor component
of hemoglobin to which glucose is bound. Therefore, HbA1c is a useful indicator
of how well the blood glucose level has been controlled in the recent past and
may be used to monitor the effects of diet, exercise, and drug therapy on blood
glucose in diabetic patients, as per [8] and [9].

The less known Type 1 diabetes usually occurs in people under the age of 30.It
can be managed only by replacement of insulin via injections. The premeal dose
of insulin can be adjusted based on the content of the meal and the patient’s
blood glucose level. In our work we have taken into account only Rapid-Acting
insulin, as described in [11] and [12]. The more prevalent Type 2 diabetes usually
occurs in people over 30 years of age but it may occur in overweight and inactive
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teenagers, and children with a family history of diabetes. Most people who are
newly diagnosed with type 2 diabetes will immediately begin a drug monother-
apy.In case HbA1c goals are not met, a combination of drugs are given. Insulin
shots might be recommended if the A1C is higher than 8.5 percent. Low-dose as-
pirin therapy,Angiotensin-Converting Enzyme (ACE) inhibitors and statins are
prescribed for heart disease, high blood pressure ad cholesterol respectively.

2.2 Working with Fuzzy Logic

Fuzzy logic [13] is a system that is multivalued with its reasoning being approx-
imate rather than concrete. In other words fuzzy logic is based on fuzzy sets.
A fuzzy set,F in a universe of discourse can be characterized by a membership
function(μ) which take values between 0 and 1 namely, μ : U →[0,1]. This value
of a variable is referred to as the degree of membership. The key components
are:

– Knowledge base: It is a repository of information consisting of all the data,
concepts and policies required to define the control rules and build a control
system.

– Fuzzification scheme: Its main role is to map the range of input variables to
their appropriate universes of discourse which are represented by linguistic
labels. Crisp values are converted into fuzzy sets using a fuzzifying operator.
Suppose Cr is the crisp value and F is the fuzzy set then,

F ← fuzzifier(Cr) (1)

– The decision making system: It makes inferences based on the rules for-
mulated based on the knowledge base. The rule base is a set of linguistic
statements structured in IF X AND Y THEN Z form. The output given out
by the decision making system is a particular range in a fuzzy set.

– Defuzzification scheme: This scheme performs the reverse of fuzzification. It
converts the fuzzy output to a non fuzzy or crisp value. Many methods are
used in this procedure like max-min, averaging,root mean square method
etc.

z0 = defuzzifier(z) (2)

where z0 is the non-fuzzy control output and defuzzifier is the defuzzification
operator.

2.3 System Architecture

The overall systems architecture is shown in figure 1. An Oracle database func-
tions as the storage and retrieval base for the patient records. MATLAB fuzzy
logic toolbox has been used to model the decision making system for diabetes.
The required patient data is imported into a CSV (comma separated values) file.
These records serve as inputs to the fuzzy logic toolbox. The principal steps in
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Fig. 1. System architecture

fuzzy logic like fuzzification, decision making and defuzzification are performed
in MATLAB using the rule set available in knowledge base. The front end has
been designed as a Visual Studio C# application.

3 Implementation

3.1 Expert System Implementation

Diagnosis of Diabetes. Diagnosis of the diabetes has the input parameters
FPG (Fasting Plasma Glucose), OGTT(Oral Glucose Tolerance test) and family
history. Based on the ranges of FPG and OGTT, diagnosis is made.Hence the
output is a membership function value of Type1, Type2 or PreDiabetes.

Input Parameters fuzzy sets = {LowFPG, HighFPG, NormalFPG, LowOGTT,

normalOGTT, highOGTT, familyHistory }

Output Parameters fuzzy sets = {Type1, PreDiabetes, Type2, normal }

Figure 2 shows the method of diagnosing the disease while figure 3 depicts the
membership functions and fuzzy sets for FPG. The rule base is determined on
the basis of diagnostic criteria by WHO. For example,

If FPG is HighFPG and OGTT is HighOGTT and FamilyHistory is type1

then diagnosis is Type1.

There are similar rules for type-2 and Prediabetes. Here the input values are
fuzzified into the above mentioned sets. The membership functions go on to pro-
duce values for each parameter. Let the membership functions of FPG, OGTT,
Familyhistory and the result be represented by F,O,FH and TD respectively. The
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Fig. 2. Diabetes Diagnosis

Fig. 3. Membership functions for FPG

input parameters are I1,I2,I3 and output parameter can be O1. The inference
from the rule is made as follows:

TD(O1) ← min{F (I1), O(I2), FH(I3)} (3)

TD(O1) constitutes the matching value of the type-1 rule. Similarly there exist
TD(O2) for type-2 rule and TD(O3) for PreDiabetes. Aggregation is performed
on these variables by the OR/Max function and output fuzzy set is obtained.

fuzzyoutput ← max{TD(O1), TD(O2), TD(O3)} (4)

Let
Y1 ← TD(O1), Y2 ← TD(O2), Y3 ← TD(O3) (5)

Defuzzification is performed using centroid formula as follows:

DiagnosisType =
3∑

i=1

w(i) ∗ Yi/

3∑
i=1

Yi (6)

where Yi refers to the output vector, w(i) is the membership co-efficient vector.
The defuzzification procedure returns the probability of the type of diabetes
diagnosed. The crisp output value can be again evaluated and conclusions can
be made about the diagnosis.
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Table 1. Grouping based on values

Input parameters Ranges Membership function Label
LDL 0-100 trapmf Normal

(Low Density Lipoprotein) 100-160 trapmf Borderline
160-190 trapmf High
190-320 smf very high

HDL 0-40 trimf Low
(High Density Lipoprotein) 40-130 trimf Normal

Triglycerides 0-150 zmf Normal
150-200 trapmf Borderline
200-500 trapmf High
500-625 smf very high

Type 1 and Type 2 Treatment Review. A fuzzy control system has been de-
signed for monitoring clinical parameters relevant to diabetes. This fuzzy control
system performs decisions based on the Texas diabetes algorithms [10]. Here the
Texas Diabetes Association algorithms have been employed to construct the rules
relevant to the system. The input parameters, ranges, membership functions and
their labels for cholesterol are shown in the table 1. In the table, trapmf denotes
trapezoidal shaped membership function and smf denotes S shaped member-
ship function. Similar measures are defined for blood pressure, body mass index
(BMI), fasting plasma glucose (FPG) and HbA1C. In our system, five out-
put variables have been similarly defined along the lines of treatment. They
are diet plans, exercise plans, glycemic medication, cholesterol medication and
blood pressure medication. Consider for example, a fuzzy system for glycemic
management. The management of glucose is dependent on three main factors
namely fasting blood glucose levels, HbA1c level and the progress of the patient
in the careplan. These values from the patient record fires the rules related to
the parameter. The steps involved are similar to the diagnosis implementation.
First the FPG and HbA1c values are mapped into a membership value by a
membership function. ’AND’ operation is performed to give a membership value
to the output vector. The combined ouput from the fuzzy inference system give
the drug therapy as the output.

Fig. 4. Insulin dosage determination for type 1 diabetes
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Fig. 5. Surface view for diagnosis

Drug therapy value ← (FBGvalue) AND(HBa1c)

Finally defuzzification is performed by the centroid method to get a probabilistic
value for the type of drug treatment. The output indicates how strongly recom-
mended the drug is. Based on the output a decision regarding the medication
can be made.

Insulin Dose for Type 1 and Type 2. A fuzzy system was developed for
calculating the increase or decrease in insulin dose for type 1 patients during
pre-meals according to the blood glucose level observed at that time. The inputs
to the insulin dosage calculator are FPG and HbA1c level and the output is
unit of increase or decrease in the insulin dose as displayed in the figure 4. The
membership function used for the input FPG is trapmf, HbA1c is trimf and the
output insulin dose is trapmf. The ranges for FPG to calculate amount of insulin
were used from the tables 2 and 3. Similarly another fuzzy system was developed
to calculate insulin dosage for type 2 patients with the same input and output
variables of same membership functions.

Table 2. Action Plan for Insulin
Lispro (Rapid-Acting) Supplements

Premeal blood glucose Insulin dose (when
level, mg/dL (mmol/L) HbA1C level ≥ 7.%

≤ 50 (2.8) Decrease by 2 units
50 to 80 (2.8 to 4.4) Decrease by 1 unit
80 to 130 (4.4 to 7.2) No change
130 to 150 (7.2 to 8.3) Increase by 1 unit
150 to 200 (8.3 to 11.1) Increase by 2 units
200 to 250 (11.1 to 13.9) Increase by 3 units
250 to 300 (13.9 to 16.7) Increase by 4 units
300 to 350 (16.7 to 19.4) Increase by 5 units

Table 3. Action Plan for Insulin
Therapy with Glargine or basal in-
sulin daily

Premeal blood glucose Insulin dose (when
level, mg/dL (mmol/L) HbA1C level ≥ 7.%

≤80 (4.4) Decrease by 2 units
80 to 100 (4.4 to 5.5) No change
100 to 120 (5.6 to 6.6) Increase by 1 unit
121 to 140 (6.7 to 7.7) Increase by 2 units
141 to 180 (7.8 to 10) Increase by 4 units

≥180 (10) Increase by 6 units



346 A. Baskaran, D. Karthikeyan, and A.T. Swamy

4 Results

4.1 Surface Views

Surface view is a 3-D representation of the fuzzy inference system with two input
parameters and 1 output parameter. The surface view of the fuzzy system for
the diagnosis of the diabetes disease is shown in Figure 5. The x-axis shows the
FPG, y-axis the OGTT. The output is shown along the z-axis, i.e., Diagnosis
Type. The surface view of the fuzzy System for the Insulin Therapy for type 1
diabetes was obtained as shown in Figure 6. The x-axis shows the FPG, y-axis
the HbA1c level which are the inputs. The output is shown along the z-axis, i.e.,
the Insulin Dosage. As seen, the mapping relationships conform to intuition as
well as the rules.

Fig. 6. Surface viewer of insulin dosage for type 1

4.2 Pathways

The clinical pathways are built in the front end based on the decisions undertaken
by the fuzzy system. The pathway is a flow based diagram which shows the
parameters and their values at each decision stage. A pathway generated for a
type-1 diabetes patient is shown in Figure 7.

4.3 Accuracy of Prediction

The patient datasets of 100 records from a private hospital, of which 50 were
diabetic and 50 non-diabetic, were used to test the Fuzzy Systems. The datasets
were fed from a csv file to a Matlab file which used the fuzzy systems to get
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Fig. 7. Pathway for type 1 diabetic patient

the values for various output parameters. The results obtained predicted the
diabetes cases with accuracy rate of 97% of which 5 were diagnosed as type-1
diabetic and the rest as type-2. Also, the type 1 and 2 treatment review and
their insulin dosage fuzzy systems have produced 98% accurate results as per
the physician’s prescription.

5 Conclusions and Future Work

In this paper a clinical decision making system for the diagnosis and treatment of
diabetes is modeled and implemented. The fuzzy logic based expert system is de-
vised for diagnosis, patient review and insulin administration. It takes in patient
records and gives an integrated care plan which includes diets, exercise regime,
medication, insulin dosage etc. An optimal clinical pathway is traced for the pa-
tient. Such automated systems provide standard and quality in treatment of dia-
betes and can help reduce the diabetic population. They can act as support systems
or guides for the specialists in health care centres, military bases etc. It provides
the patient a ready system that calculates the insulin level and tracks the medi-
cation history and the progress levels. Hence an automated clinical system is the
way to go to ensure a risk free and standard medical treatment domain.
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The system can be enhanced further to include risk factors like heart disease
etc as output. Adaptability in case of unexpected changes in a patient’s condition
such as sudden liver failure and emergence of new technology like improved drugs,
medical procedures need to be addressed.

Acknowledgments. We like to acknowldege Prof. Srinivas, Computer Science
Department, PESIT for his guidance and help.
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Abstract. Fuzzy classifiers and fuzzy rules can be informally defined as
tools that use fuzzy sets or fuzzy logic for their operations. In this paper,
we use genetic programming to evolve a fuzzy classifier in the form of a
fuzzy search expression to predict product quality. We interpret the data
mining task as a fuzzy information retrieval problem and we apply a
successful information retrieval method for search query optimization to
the fuzzy classifier evolution. We demonstrate the ability of the genetic
programming to evolve useful fuzzy classifiers on two use cases in which
we detect faulty products of a product processing plant and discover
intrusions in a computer network.

Keywords: genetic programming, information retrieval, classifier evo-
lution, fuzzy systems.

1 Introduction

Genetic programming is a powerful machine learning technique from the wide
family of evolutionary algorithms. In contrast to the traditional evolutionary
algorithms, it can be used to evolve complex hierarchical tree structures and
symbolic expressions. It has been used to evolve Lisp S-expressions, mathemat-
ical functions, symbolic expressions, decision trees, and recently to infer search
queries from relevance ranked documents in a fuzzy information retrieval system.

The last application is interesting for the general data mining as well. It
can be directly applied in the data mining domain. Extended Boolean queries
(i.e. fuzzy queries) can be interpreted as symbolic fuzzy classifiers that describe
a fuzzy subset of some data set by means of its features. Moreover, a fuzzy
classifier evolved over a training data set can subsequently be used for efficient
classification of new data samples and e.g. predict quality of products or detect
harmfull actions in computer network. Artificial evolution of search expressions
is a promising approach to data mining because genetic programming yields very
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good ability to find symbolic expressions in other problem domains. The general
process of classifier evolution can be used to evolve custom classifiers for many
data sets with different properties.

2 Fuzzy Information Retrieval

The evolution of fuzzy classifiers for data mining is implemented within the
framework for search query optimization designed for efficient information re-
trieval. Data records are interpreted as documents and data features are mapped
to index terms.

The area of information retrieval (IR) is a branch of computer science dealing
with storage, maintenance, and searching in large amounts of data [1]. It defines
and studies IR systems and models.

An IR model is a formal background defining the document representation,
query language, and document-query matching mechanism of an IR system.
The proposed classification algorithm builds on the extended Boolean IR model,
which is based on the fuzzy set theory and fuzzy logic [1,2]. Documents are
interpreted as fuzzy sets of indexed terms, assigning to every term contained
in the document a particular weight from the range [0, 1] expressing the degree
of significance of the term for document representation. A formal description of
a document collection in the extended Boolean IR model is shown in Eqn. (1)
and Eqn. (2), where di represents i−th document and tij j−th term in i−th
document. An index matrix of the entire document collection is denoted D.

di = (ti1, ti2, . . . , tim), ∀ tij ∈ [0, 1] (1)

D =

⎛
⎜⎜⎜⎝

t11 t12 · · · t1m

t21 t22 · · · t2m

...
...

. . .
...

tn1 tn2 · · · tnm

⎞
⎟⎟⎟⎠ (2)

Each IR model defines a query language to specify search requests. The query
language in the extended Boolean model allows weighting search terms in order
to attribute them different levels of importance. Moreover, the aggregation op-
erators (most often AND, OR and NOT) can be weighted to parameterize their
impact on query evaluation [1,2].

In this study, we adopt the threshold interpretation of the query term weights.
In the threshold interpretation, an atomic query (i.e. a query with one weighted
term representing single search criterion) containing term ti with the weight a
is a request to retrieve documents having index term weight ti equal or greater
than a [1].

The effectiveness of an information retrieval system can be evaluated using
the measures precision P and recall R. Precision corresponds to the probability
of retrieved document to be relevant and recall can be seen as the probability of
retrieving relevant document.
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Precision and recall in the extended Boolean IR model can be defined using
the Σ−count ‖A‖ [3]:

ρ(X |Y ) =

{‖X∩Y ‖
‖Y ‖ ‖Y ‖ �= 0

1 ‖Y ‖ = 0
(3)

P = ρ(REL|RET ) R = ρ(RET |REL) (4)

where REL stands for the fuzzy set of all relevant documents and RET for the
fuzzy set of all retrieved documents.

For an easier IR effectiveness evaluation, measures combining precision and
recall into one scalar value were developed. The F-score F = 2PR

(P+R) [4] is among
the most used scalar combinations of P and R.

3 Genetic Programming for the Evolutionary Query
Optimization

Genetic programming (GP) [5,6], an offshoot of genetic algorithms [7], facili-
tates the efficient artificial evolution of symbolic expressions. In this work, we
use the genetic programming originally developed for search query optimiza-
tion (see e.g. [8,9]) to evolve general fuzzy classifiers for data mining. Genetic
programming was chosen due its ability to evolve symbolic tree-like expressions
that correspond to search queries. The symbolic nature of the algorithm output
also allows good possiblility of verification and feedback from the side of system
users.

It was shown that the GP was able to optimize search queries so that they
described a set of relevant documents. In the fuzzy information retrieval model,
the relevant documents formed a fuzzy subset of the collection of all documents
and the extended Boolean queries that would describe them were evolved.

An information retrieval system based on the extended Boolean IR model
was implemented to validate evolutionary query optimization. The tf · idft term
statistics [10] was used for document indexing and the threshold interpretation of
query term weights was implemented. The query language in the IRS supported
the standard Boolean operators AND, OR, and NOT.

The information retrieval system served as a test bed for the evolutionary
query optimization. The GP evolved tree representations of the search queries
with the Boolean operators as function nodes and terms as leaves. Both, opera-
tor nodes and term nodes, were weighted. In order to generate a random initial
population for the GP, the system was able to generate random queries. The pa-
rameters of the random query generator showing the probabilities of generating
a particular query node are summarized in Table 1a.

The crossover operator was implemented simply as a mutual exchange of two
randomly selected branches of parent tree chromosomes. The mutation operator
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Table 1. Random query generation an mutation probabilities

(a) Probabilities of generating random
query nodes

Event Probability
Generate term 0.5
Generate operator AND 0.24
Generate operator OR 0.24
Generate operator NOT 0.02

(b) Probabilities of mutation operations

Event Probability
Mutate node weight 0.5
Insert or delete NOT node 0.1
Replace with another node
or delete NOT node

0.32

Replace with random
branch

0.08

selected a node from the processed chromosome at random and performed one
of the mutation operations summarized in Table 1b.

The query mutation types that were implemented included:

– change of selected node weight
– replacement of selected node type by a compatible node type (e.g. operator

OR replaced by an AND, term replaced by another term)
– insertion of the NOT operator before selected node
– removal of the NOT operator if selected
– replacement of selected node by a randomly generated branch

The F-Score was used as a fitness function. An experimental evaluation of such
an information retrieval system showed that the GP can find search expression
describing fuzzy sets of relevant documents [8,9].

The extended queries evolved by the algorithm can be seen as fuzzy classifiers
describing the fuzzy set of relevant documents, or, more generally, a fuzzy set of
data records. The fuzzy classifier evolved over a training data set can be easily
used to classify new data samples.

4 Applications

The algorithm for evolutionary query optimization was applied to the evolution
of a general symbolic fuzzy classifier. In this work, we have evolved a fuzzy
classifier for quality prediction in an industrial manufacturing process and for
intrusion detection in an intrusion detection system.
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Table 2. Product features data set

(a) Normalized product features

Feat. Feat. . . . Feat. Prod.
Id 1 2 839 class
1 0.846 0.951 . . . 0.148 1
2 0.856 0.9452 . . . 0.160 1
3 0.882 0.968 . . . 0.160 0
...

...
...

...
...

204 0.618 0.861 . . . 0.025 0

(b) Product features data set as
an IRS index matrix D.

D =

⎛
⎜⎜⎜⎝

0.846 0.951 · · · 0.148
0.856 0.9452 · · · 0.160

...
...

. . .
...

0.618 0.861 · · · 0.025

⎞
⎟⎟⎟⎠

4.1 Genetic Evolution of Fuzzy Classifier

In heavy industry, a product is created. During its processing, a number of
product features are measured and recorded. The features include the chemical
properties of the raw material, density, temperature at several processing stages,
and many other indicators that are recorded several times during the production.
At the end, the product is classified as either flawless or defective. The data and
classification for a number of product samples are known and the goal of the
algorithm is to find a fuzzy classifier that could be used for product quality
prediction during product processing.

The problem differs from the query optimization task only semantically. We
interpret products as documents and product features as terms. The product fea-
ture value then corresponds to the index weight of a term in a document (feature
weight in a product). The product class corresponds to document relevance.

We have obtained a test dataset from a product processing plant. The dataset
contained 204 samples with 839 features each. 200 samples described flawless
products (class 0) and 4 samples described deffective products (class 1). The
raw product features values were normalized to the interval [0, 1]. A sample of
product features data after normalization is shown in Table 2a. The mapping of
normalized data onto an IRS index matrix is demonstrated in Table 2b. The goal
of the optimization algorithm was to find a search expression (fuzzy classifier)
that would describe the set of defective products as good as possible. As the
data set is very small and contains only 4 samples of deffective products, the
results of presented experiment should be seen as a proof of concept rather than
a rigorous evaluation of the algorithm.

We have implemented the GP for the evolution of fuzzy classifiers. The fuzzy
classifier that was evolved by the algorithm corresponds to a search expression
that describes the class of defective products in terms of product features. The
parameters of the executed GP (found after initial tuning of the algorithm) are
shown in Table 3.

During 12 independent optimization runs, the GPdelivered a best classifierwith
a fitness of 0.9996 and a worst classifier a with fitness of 0.399872.Every fuzzy clas-
sifier reaching a fitness of 0.5 and higher was able to identify all defective products
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Table 3. GP parameters used to evolve fuzzy classifier for quality prediction

Parameter Value
Population size 100
Generations limit 1000
Fitness F-Score
Mutation probability 0.8
Crossover probability 0.8
Independent runs 12

Table 4. Example of evolved fuzzy classifiers for quality prediction

Label Query Fitness
Q1 (Best) (Feat308:0.79 and:0.95

(Feat295:0.36 or:0.34
Feat413:0.99))

0.9996

Q2 Feat641:0.998113 0.5759
Q3 (Feat641:0.97 and:0.06

(Feat593:0.76 and:0.81
Feat421:0.80))

0.6066

Q4 (Worst) Feat426:0.999203 0.3999

without an error or without false positives (i.e. without flawless products being
marked as defective). A fuzzy classifier with a fitness higher than 0.5 was evolved
in 10 cases out of 12 independent runs. An example of several evolved fuzzy clas-
sifiers is shown in Table 4.

The best classifier found by the algorithm was Q1. It is indeed a perfect
expression describing defective products in the available data set. It is superior
in terms of its F-Score, but also in terms of precision and recall because it
describes defective products only.

The symbolic nature of the GP output gives us valuable information about the
features that indicate product defectiveness. From Q1, we can see that the product
can already be classified as faulty or flawless after the value of feature 413 (out of
839 measured product features) was read. Therefore, a defective product can be
removed from production at an earlier stage and costs can be saved. Moreover, it
is also a good clue telling us what features are really worth measuring. The other
sensors can be suspended and savings can be made. Last but not least, the clas-
sifier provides also an important feedback on the production process. Production
specialists can focus on adjusting the technology so that the reason for the prob-
lematic values of identified key features are eliminated in the future.

4.2 Genetic Evolution of Fuzzy Classifier for Intrusion Detection

Next, we have implemented an evolution of fuzzy classifier for intrusion detection.
In this experiment, larger-scale data were processed by the algorithm.
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To investigate the ability of discussed algorithm to find useful classifiers, a test
sytsem implementing evolution of fuzzy expressions was implemented. The 10%
sample of the KDD Cup 1999 intrusion detection dataset1 was used to evolve
classifiers and test their ability to detect illegal actions. It contains 10% of the
large intrusion detection data set created in 1998 by the DARPA intrusion de-
tection evaluation program at MIT. The full data set contains 744 MB data with
4,940,000 records with 41 nominal and numerical features. For our experiments,
all features were converted to numeric and normalized.

The data describes normal traffic and 4 attack classes called DoS (Denial of
Services), U2R (User to Root), R2L (Remote to User), and Probe (Probing). The
records for each class are divided into training (40%) and testing (60%) data set.
For each class, the training data set was used to evolve the fuzzy classifier and
testing data set was used to evaluate the detection capabilities of the classifier.
The attack classes contained following number of records: DoS contained 195,494
training and 293,242 testing records, U2R consisted of 38,931 training and 58,399
testing records, R2L included 39,361 training and 59,043 testing records, and
finally the Probe class consisted of 40,553 training and 60,832 testing records.

Intrusion detection classifier evolution. We interpret data samples in intru-
sion detection data set as documents and its features as terms. The normalized
feature value corresponds to the index weight of a term in a document (feature
weight in a data sample) while the class of the record corresponds to document
relevance. In the testing data, there are only 2 crisp product classes: normal
traffic (class 0) and attack (class 1). The goal of the algorithm was to find an
expression (fuzzy classifier) that will describe the set of records describing an
attack.

The settings for the GP are summarized in Table 5.

Table 5. GA parameters used for fuzzy classifier evolution

Parameter Value
Population size 100
Generations limit 5000
Fitness F-Score
Mutation probability 0.8
Crossover probability 0.8

The F-Score parameter β was set in different experiments to 1, 0.5 and 5 to
see detection capabilities of evolved classifiers with different priorities of pre-
cision and recall in fitness function. We have observed overall accuracy of the
classification (OA) as the percent of correctly classified records in the test col-
lection, detection rate (DR), e.g. the percent of correctly classified attacks and

1 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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Table 6. Calssification results for different attack classes

(a) Results for attack
class DoS

β
0.5 1 5

OA 93.95 99.31 95.22
DR 99.42 99.27 94.04
FP 28.07 0.53 0.05

(b) Results for attack
class U2R

β
0.5 1 5

OA 99.95 99.96 99.95
DR 50 34.34 50
FP 0.02 0 0.02

(c) Results for attack
class R2L

β
0.5 1 5

OA 93.95 98.87 99.09
DR 99.42 38.17 31.07
FP 28.07 0.43 0.12

(d) Results for attack
class Probe

β
0.5 1 5

OA 94.02 98.46 98.34
DR 90.34 63.2 59.11
FP 5.83 0.05 0.01

false positives (FP), e.g. the percent of regular records missclassified as attacks.
Obviously, good classifier would feature high OA, high DR and low FP.

The results of experiments are summarized in Table 6.
We can see that the evolved classifier reached in all cases and for all attack

types good accuracy higher than 93 percent. However, DR and FP are for some
attack classes not so good. The best combination of high DR and low FP was
reached for DoS and β = 1. The classifier managed to detect 99.27 percent of
attacks and misclassified only acceptable 0.53 percent of harmless connections.
For the U2R attack class, the best classifiers managed to detect 50 percent of the
attacks. In R2L experiment, the classifier evolved with β = 0.5 reached DR 99.42
percent, but it also misclassified close to 30 percent of harmless connections. The
classifiers with low FP managed to detect only 38 and 31 percent of attacks.
Finally, the classifiers evolved for Probe attacks managed to detect fair 90 percent
of attacks at the cost of 5.83 percent of false positives for β = 0.5 and around
60 percent of attacks with FP percent below 0.05 for β = 1 and β = 5.

The different results for different attack classes suggest that the nature of
the fetaures describing the attacks varies and different settings for GP (e.g. the
value of β) needs to be used. Moreover, we have seen that high overall acuuracy
of classification does not imply good detection rate and low misclassification of
legitimate traffic.

5 Conclusions

We have implemented a genetic programming to evolve fuzzy classifiers for data
minig. In contrast to previous efforts in this area (see e.g. [11]), our approach
is inspired by information retrieval. We interpret data classes as fuzzy sets and
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evolve fuzzy search expressions that would describe such sets rather than tradi-
tional rule-based fuzzy classifiers. The data mining problems were reformulated
as information retrieval tasks and the search query optimization algorithm was
used to infer symbolic fuzzy classifiers describing classes of data records.

The evolution of fuzzy classifier for data mining is an ongoing project. We
have used the genetic programming originally developed for query optimization
and the results are encouraging. However, a number of tasks deserves attention.
The choice of the best fitness function (are IR measures really the best fitness
function for classifier evolution?) or the interpretation of the fuzzy weights in
the classifier (is the IR retrieval status value the optimal choice?) are among the
most appealing open questions.
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Abstract. This paper describes an algorithm that generates analytic functions for 
PID step response characteristics (i. e. rise time, overshoot, settling time, peak 
time and integral of time weighted absolute error) in an application of a third-
order plant. The algorithm uses genetic programming for symbolic regressions 
and provides formal expressions composed of variables, constants, elementary 
operators and mathematical functions. Results show a good fitting between the 
desired and obtained step response for DC motor positioning problem.  

Keywords: PID step response, genetic programming, symbolic regression. 

1   Introduction 

The Proportional-Integral-Derivative (PID) controller has been widely used in the 
industrial processes because of its simple structure and high-quality performance in 
several operational conditions [1]. Astrom and Hagglund [2], pointed out that in a 
survey over than 11000 regulatory controllers, 97% of them had the PID structure. In 
few words, a PID controller attempts to minimize the error by adjusting three gain 
parameters: the proportional gain kp, the integral gain ki and the derivative gain kd [3]. 
According to [4] the transfer function of a PID controller in the frequency domain is 
as given by Eq. (1): C s k ks k s . (1) 

The process of finding the best set of gain parameters is called PID tuning. Even 
trial and error can be used to achieve the best tuning inspite being time-consuming. 
On the other hand, as presented in [4-6], the PID tuning can be also formulated as an 
optimization problem for one or more step response characteristics such as rise time, 
overshoot, settling time, peak time, Integral of the Absolute Error (IAE), Integral of 
the Squared Error (ISE) and Integral of Time weighted Absolute Error (ITAE). 

Sharing this line of thought, Herreros et al. [5] propose a genetic multiobjective al-
gorithm, Boubertakh et al. [7] present an ant colony optimization algorithm and Visioli  
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[8] compares different fuzzy methodologies for PID tuning. Soares [6], in particular, 
proposes a robust multiobjective formulation and uses Interval Analysis to deal with 
uncertainties in the gain parameters. In this approach, it is mandatory to deduce inter-
val functions from analytic expressions of the step response characteristics. The task 
for deducing such interval functions grows with the complexity of the mathematical 
model. Hence, we decided to use Symbolic Regression (SR) to cope with this problem. 

Some methods in regression analysis have been used to find out the function struc-
ture set up by coefficients and variables in order to represent the behavior of a diverse 
phenomenon. The traditional ones utilize a linear, quadratic or polynomial frame-
work. Alternatively, SR is a flexible way to find a mathematical expression, in sym-
bolic form, which best fits a given finite sample of data from an unknown curve [9]. 

 Genetic Programming (GP) [10] can be successfully applied in several fields, for 
example, sequence induction, optimal control, forecasting, SR and others. Like the 
genetic algorithms, GP is based on the Darwinian principle of survival of the fittest. 
However, the structures undergoing adaptation are hierarchical computer programs, 
which dynamically change size and shape. This flexibility provides a powerful sym-
bolic expressiveness. For instance, the computer program evolved in SR is a mathe-
matical expression that is not a priori defined, unlike other regression techniques. 

Therefore, considering the previous discussions, we present an algorithm that uses 
GP for SR in order to obtain analytic functions to step response characteristics of PID 
controller.  

The paper is organized as follows. Section 2 reviews the GP. In section 3 the algo-
rithm is described. Section 4 is divided in two parts: i) the first one introduces the PID 
controller study-case and ii) the second one presents and discusses the results of the 
experiment. Finally, the final considerations are presented in Section 5. 

2   Genetic Programming in Symbolic Regression 

As shown in [9], the GP is a stochastic approach that searches in the space of comput-
er programs (individuals) for one of them, which best solves the problem at hand. 
According to Fig. 1 based in [10], GP starts with an initial random population of pro-
grams and, generation by generation, transforms the programs in new ones, hopefully 
better. GP determines how well a program works by running it, and then comparing 
its behavior to some reference value. GP uses the standard genetic operations (cros-
sover, mutation and reproduction) to evolve the new generation of programs. 

Specifically, to handle SR problems, it is indispensable to define in GP: the set of 
functions, the set of terminals, the fitness measure, the controlling parameters, the 
stopping criteria, the training and the validation sets [11].  

 
1.  Initialize a population of programs. 
2.  Until achieve an stopping criteria, repeat 

2.1  Run the programs and determine their fitness. 
2.2  Select programs. 
2.3  Generate child programs by applying genetic operations. 

3.  Return the best program. 

Fig. 1. Basic GP Algorithm 
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In GP, the convergence to the correct mathematical expression consists in evolving 
the sets of functions and terminals taken together. The set of functions is formed by 
any arithmetical operator and the set of terminals is composed of algebraic terms 
(variables) and ephemeral constants. Both are important to provide elements to the 
mathematical expressions that in GP, generally, are represented by trees. Each inter-
nal tree node is a member of the set of functions and the leaves nodes belongs to  
the set of terminals. The constants are ephemeral because they remain to the future 
populations if and only if they belong to the group of selected programs.  

Typically, the fitness measure is computed by sum or average of the error between 
the result produced by the expression and the reference value over different combina-
tions of the inputs and outputs, called fitness cases. Keijzer [12] proposed an im-
provement in this calculation, that is denominated fitness scaling, which consists of 
the computation of the intercept (a) and slope (b) for the expression. Given that y expression x  is an output of an expression produced by GP on the input x. A 
linear regression on the reference values (r) can be evaluated by Eqs. (2-3) [12]: a r by , 

and 

(2) 

b ∑ r r y y∑ y y . (3) 

In Eqs. (2-3) the parameter n is the number of fitness cases and r and y denote the 
average reference and average output value, respectively. Thus, the scaled version of 
the most common fitness measure that is the Mean Squared Error (MSE) is given by 
Eq. (4): 1n a by r . (4) 

The main controlling parameters in GP are the population size, the maximum 
number of generations, maximum height tree for expressions created during the run, 
maximum height tree for initial random expressions, the generative method for initial 
random population, the selection method and the probabilities of crossover, mutation, 
among others.  

The two more common criteria to terminate a GP run are: to reach the maximum 
number of generations or to obtain an expression with zero error for all fitness cases.  

A SR involves two phases: training and validation. The first one performs GP in 
one subset of samples, called training set. The second one estimates the accuracy of 
the expressions obtained in the previous phase when evaluated in other subset, called 
validation set. The training and the validation subsets are complementary, in other 
words, their union is the full sample of data. 

An example of GP training phase in a SR problem is presented hereafter. The goal 
is to find an expression in which output y is equal to the values of the x 2x 4 
with x ∈ [-3, 4]. Table 1 summarizes the GP settings.  

Running the GP algorithm once generated the expression ((x)+(2))*((x)/(5)) with 
slope and intercept equal to 5 and 4, respectively. Note that the returned expression is 
equivalent to 5 x 2 4, which is identical to the expression x 2x 4 . 
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Table 1. GP parameters for the SR example 

Parameter Value
Maximum number of generations 10
Number of programs  500
Crossover, mutation and reproduction rates 0.9, 0.1 and 0.2, respectively 
Rate of crossover on internal nodes 0.8
Function set +, -, *, /, ^, √, sin, ln and exp  
Terminal set x and ephemeral constant 
Real and integer ephemeral constant ranges ]-10, 10[  and {1, 2, …, 5} 
Population tournament size 2
Maximum tree height during the run  7
Maximum tree height for initial generation 2
Generative method for initial population Ramped half-and-half as in [9] 
Stopping criteria Maximum number of generations 
Fitness measure MSE with fitness scaling
Fitness cases – training set 25 random pairs (x,y), x ∈ [-3,4] 

3   The Algorithm 

The GP implemented in this paper follows the structure shown in Fig. 2. We hig-
hlighted two points in the algorithm: 1) in the 5.4 step, where each program (individ-
ual) is converted to an expression in order to perform its evaluation. But, the fitness 
value is calculated just for valid programs. Thus, a preprocessing stage is executed as 
proposed in [13], which uses Interval Analysis to make sure that the mathematical 
expression discovered by GP does not contain any undefined values. 2) In the 5.6 
step, where two programs are considered similar if both have the same fitness value, 
the same quantity of terminal and  internal nodes. 

1. Initialize a population of programs. 

2. Define the fitness cases. 

3. Run the programs and determine their fitness. 

4. Calculate the ranking to each program. 

5. Until achieve an stopping criteria, repeat 

5.1. Save the best programs from current generation (elitism). 

5.2. Select programs. 

5.3. Generate child programs by applying genetic operators. 

5.4. Run the child programs and determine their fitness. 

5.5. Append the best programs with the child programs (elitism). 

5.6. Eliminate similar programs. 

5.7. Calculate the ranking to each program. 

5.8. Select the best ranked programs to next generation. 
6. Return the best program. 

Fig. 2. Customized GP algorithm 
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The algorithm in Fig. 2 is applied in the training phase of the SR. Fig. 3 shows the 
algorithm proposed to the validation phase. In the step 3.2 the percent error is given 
by Eq. (5): δ |r y||r| ∗ 100 ,  

(5) 

where r is the reference value and y is the value returned by the mathematical expres-
sion that was obtained in the training phase. In the step 4 the tolerance is defined as 
51th percentile of the percent error considering all validation’s samples. This method 
was proposed, because it was noticed in the preliminary experiments that best (smal-
lest MSE) expression obtained in the training, frequently was not the same in the 
validation, considering all expressions in last generation population. 

 
1. Take an expression obtained in training. 
2. Define the validation samples. 
3. For each validation sample 

3.1. Evaluate the expression. 
3.2. Calculate the percent error.  

4. Return the tolerance. 

Fig. 3. Validation algorithm 

4   Experiment and Results 

4.1   Modeling of DC Motor Positioning - Case Study 

At this subsection, a real problem is presented. It consists in the DC motor, which is a 
common actuator in control systems. The problem specifications were based in [14]. 
Table 2 presents the values for its physical parameters. The main objective is set the 
position of the motor precisely using a PID controller. In this experiment the transfer 
function of the closed-loop system is given by Eq. (6) [14]: 
 

θV Ks Js B Ls R K , (6) 

where the shaft position (θ) is the output and the voltage (V) the input of the system. 
Note that Eq. (6) is a third-order function.  

4.2   Training and Validation 

The GP parameters were set as shown in the Table 3. The choice of elements in the 
function set was made so as to result in expressions which contain elementary opera-
tors and continuous functions, which are desirable in composing interval functions. 
The sample data were obtained by using numerical methods in Matlab® simulations, 
as shown in [14]. We ran 1800 simulations with randomly kp, ki and kd. ranging from  
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0 until 1000. The data were equality divided between training and validation sets. The 
validation set was split in nine complementary groups each one with one hundred 
samples. The GP algorithm was executed around fifty times for each time response 
characteristic. It was used one thousand programs in the GP population to the rise 
time, two thousand to the settling time and ITAE, and five hundred to the overshoot 
and peak time.  

Table 2. Physical parameters values for the DC motor position problem 

Physical parameter (acronym) Value
Moment of inertia of the rotor (J) 3.2284E-6 kg.m2

Damping ratio of the mechanical system (B) 3.5077E-6 Nms
Electromotive force constant (K) 0.0274 Nm/Amp
Electric resistance (R) 4 Ω
Electric inductance (L) 2.75E-6 H

Table 3. GP parameters 

Parameter Value
Maximum number of generations 50
Number of programs  500, 1000 or 2000
Crossover, mutation and reproduction rates 0.9, 0.1 and 0.2, respectively 
Rate of crossover on internal nodes 0.8
Function set +, -, *, /, ^, √, sin, ln and exp  
Terminal set kp, ki, kd and ephemeral constant 
Real and integer ephemeral constant ranges ]-10, 10[  and {1, 2, …, 5} 
Population tournament size 2
Maximum tree height during run 7
Maximum tree height for initial generation 2
Generative method for initial population Ramped half-and-half as in [9] 
Stopping criteria Maximum number of generations 
Fitness measure MSE with fitness scaling 
Fitness cases – training set 900 samples
Validation set 900 samples divided in 9 groups 

 
The last generation population of the training was verified by validation algorithm 

for each group. Hence, it was computed for each expression the mean tolerance and 
the mean MSE (considering all validation groups). Finally, the expression with the 
smallest mean tolerance was declared the best one. Table 4 summarizes the best run-
ning for each time response characteristic. The algorithm was run on a core i3 CPU 
with 4 GB of RAM memory. 
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According to Table 4 the overshoot has the best (just 1.43% to mean tolerance) ex-
pression among time response characteristics. On the other hand, the peak time has 
the worst expression (mean tolerance = 6.21%). Nevertheless, it is an acceptable val-
ue, mainly if we consider the order of magnitude (10-6) in the peak time values. The 
peak time was tested with more programs in the population, but better results were not 
reached. Also, for all time response characteristics, that mean validation MSE is 
greater than training MSE. However, the median has the same order of magnitude in 
both situations.  

Table 4. Results considering the best running 

Time Response
Characteristic 

Value of the best obtained expression to
Training  

MSE 
Validation MSE Tolerance (%) Run 

Time (s) Mean Median Mean
Rise time 4.96E-10 2.94E-9 1.50E-10 4.48 0.42 510 
Overshoot  4.06E-5 5.08E-4 3.68E-5 1.43 1.04 376 
Settling time 6.66E-12 3.57E-7 8.23E-12 5.89 1.70 1740 
Peak time 1.38E-9 1.55E-8 2.94E-9 6.21 0.83 240 
ITAE 1.09E-6 2.14E-4 1.54E-6 5.05 1.88 1371 

 
The equations (7), (8), (9), (10) and (11) show the best analytic expressions (with 

some mathematical simplifications) obtained for rise time, overshoot, settling time, 
peak time and ITAE, respectively.  

 

1. . . 1.
ln 2.23 . . . .  

 

(7) 

58527 sin 5000 √kd32829 ln kd10000 17513 ln ki 52000 kd √kd 2 ln kd kd 

 

(8) 

 

423559 sin 4 ln kd10000 √kd 1kd .
ln kd sin 9407930000 kdkd  

(9) 

 √  ln kp 2 kd 108.6219kd 1.4475  400 kd979 19.3877 ln kp 2 kd 101.6191  

 

 

(10) 
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2.885 sin 7.634kd kp
√kd 9.20882.7183 kd  

 

(11) 

Although, according to control system theory, there are individual effects of PID 
adjustable parameters on time response characteristics. In the all best obtained expres-
sions we can note that at least one PID adjustable parameter is not present. It suggests 
that GP algorithm selected the most significant parameters according to the case study 
peculiarities. It would be possible to add a constraint in GP algorithm that obliges the 
inclusion of all parameters. However, it was not our intention in this work. 

It is necessary to know the slope and the intercept in order to use the obtained ex-
pressions. Both are calculated during the training because the fitness scaling tech-
nique was used. Table 5 shows its values. 

Using the obtained expressions with the respective slope and intercept it was possible 
to build the validation graphics. Fig. 4 shows, for each step response characteristic, the 
percent error to the four hundred fifty nine samples that have the smallest percent error 
values considering the union of all validation groups.  For all step response characteris-
tic, expect settling time, we can clearly see by inspection that biggest percent error value 
(samples number 459) is smaller or equal the mean tolerance value presented previously 
in Table 4. Thus, we can realize an improvement in the tolerance value of the rise time, 
overshoot, peak time and ITAE, when all samples are taken together. 

Table 5. The slope and the intercept for the obtained expressions 

Characteristic Slope Intercept

Eq. (7) – Rise time 0.00924428311695392 -0.00926197893941111 
Eq. (8) – Overshoot 0.000187149002201421 -0.00985609977638255 

Eq. (9) – Settling time 8.20756558513056e-5 1.09948493977817e-5 
Eq. (10) – Peak time 0.0481524972937903 1.9290865493687e-6 
Eq. (11) – ITAE 0.000498795690522851 1.62323177760705e-5 

 
a) Rise Time         b) Overshoot 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The percent error (in ascending order) to the 459 samples that have the smallest percent 
error according to each step response characteristic: a) Rise time, b) Overshoot, c) Settling 
time, d) Peak time and e) ITAE 
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c) Settling Time                                    d) Peak Time 
 
 
 
 
 
 
 
 
 
 
 

e) ITAE. 
 

 
 

 
 
 
 
 
 
 

Fig. 4. (Continued) 

5   Conclusion 

The formulation by SR was appropriated to obtain the analytic functions for step 
response. The results show that the best selected analytic expressions were obtained 
without at least one gain parameter to the DC motor positioning problem. This sug-
gests that the missing parameters were not representative for the step response charac-
teristics taking into account of case study specifications. Besides, for all expressions, 
the mean tolerance in the validation is between 1.43% and 6.21% that shows a good 
fit, mainly if we consider the magnitude of the data. 

Therefore, the described algorithm is a helpful and feasible way to allow or to be-
come less hard, depending on the transfer function order, the use of PID tuning ap-
proaches that require analytic expressions for step response characteristics such as the 
interval ones.  
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Abstract. This work describes the incorporation of human strategies into a  
genetic algorithm. Human competence and machine intelligence are merged, 
creating a divide and evolve approach. The approach is applied to the restora-
tion problem of Rubik’s Cube and successfully solves this task.  

Keywords: Human strategy, genetic optimizer, discrete optimization, perform-
ance evaluation. 

1   Introduction 

This work illustrates the incorporation of human strategies into a genetic algorithm, 
thereby introducing a method of divide and evolve called HuGO! – the Human strat-
egy based Genetic Optimizer.[1][3][7] 

As a use case, an application is analyzed that is simple regarding its principle func-
tionality, yet invokes complex mathematics – Rubik’s Cube. This three-dimensional 
puzzle is widely known and represents an easy to grasp exemplification of the prob-
lem class. 

In 1994, MICHAEL HERDY and GIANNINO PATONE solved the cube using evolution 
strategies.[4] Therefore, they introduced a quality function for the evaluation of the 
cube state. The quality function to be minimized consists of three parts, Q1, Q2 and 
Q3, combined by addition. Q1 is increased for a wrong facelet, while Q2 and Q3 
penalize wrong positioned edge- and corner cubies. 10 different mutations, as intro-
duced by [4] are realized using swaps and turns of individual cubies. On the one hand, 
this enables a rapid solution search because dependencies are minimized. But on the 
other hand, the results will be fairly long solution sequences, because accomplishing a 
single swap already incorporates around 10 cube rotations. Since our approach is 
supposed to find short solutions, HERDY and PATONE’s approach is inappropriate for 
this work’s goals. CYRIL CASTELLA built an evolutionary approach for solving the 
cube, seeking short solution sequences, that would be much more convenient to 
adapt.[2] The program uses a genetic algorithm, which is based on a one-point cross-
over, omitting a selection operator and mating pool. Unfortunately, the approach 
suffers from missing integrity so that no performance comparison could be conducted, 
as of yet. More precisely, the solution output seems to fail if the cube is already in  
the two-generator group. However, it incorporates some useful functions that are 
enhanced in and applied to HuGO!. 
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2   HuGO! 

The most obvious way of solving the cube by evolutionary means is to use a trivial 
fitness function that compares the scrambled cube to the solved one and counts the 
number of facelets consistent with the solution. Tests showed that this approach turns 
out to be inefficient. While the algorithm quickly reaches around 70% consistent 
facelets, further computational efforts only provide marginal improvements. This is 

due to the 194.3 10⋅  interdependent permutations that are possible states of the cube 
group, which lead to an enormously jagged fitness landscape containing numerous 
local optima. Consequently, the algorithm repeatedly becomes trapped in local  
optima, considerably prolonging calculation time.  

The integration of a common human strategy for solving Rubik’s Cube, called two-
generator method, provides a solution to this problem.[2] The two-generator method is 
inefficient in respect to the fast generation of solutions, but is often used by contestants 
of fewest moves challenges. This method restores a scrambled cube by transforming it 
into the two-generator subgroup first and then solving the cube in this group. The two-
generator subgroup contains only about 73,483,200 different states, a number that  
is significantly smaller than that of the entire cube group. Thus, it is a promising  
approach to split up the cube-solving search algorithm into partial solutions. 

In the first phase a 2x2x3 subcube, i.e. the entire cube except two adjacent layers, 
is solved in one of the twelve possible locations. The two remaining layers are left 
scrambled. Since not all cube states that only have two adjacent layers unsolved are 
automatically in the two-generator, the second phase transforms the cube into this 
group. For this purpose tests are necessary that check, whether the edge cubie orienta-
tions and corner cubie permutations stick to the states achievable in the two-generator. 
In the third phase, the remaining two layers are turned until the entire 3x3x3 cube is 
completely restored. The three phases of the algorithm realizing this human strategy 
are three independent algorithms that are based on the common canonical genetic 
algorithm and share a lot of analogies. The individual components, as well as  
their interaction in the composed workflow are explained in detail in the succeeding  
sections. 

According to these suggestions, the discrete characteristics of Rubik’s Cube as op-
timization process allow a rather direct incorporation of the search space into the 
solution representation. All three phases of the algorithm have in common that instead 
of binary strings, each gene of a solution contains a number ranging from 0 to 17 
representing one of the 18 potential cube turns.[2]  

In the case of Rubik’s Cube, the scrambled cube represents the environment and 
the solution string represents the individual that is customized to fit to the environ-
ment. The fitness function assigns a fitness value to the individual judging the quality 
of adaptation, i.e. ability to solve the cube. To test this ability, the particular solution 
operates on the scrambled cube and the resulting cube undergoes evaluations that 
determine the individual’s fitness. It becomes clear that the implementation of the 
cube has to fulfill two main capabilities. First it must be receptive to the individual’s 
modifications, i.e. turns. Then the resulting cubes must be distinguishable in quality, 
respecting the number of turns applied. 
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To simplify implementation, the facelets of the cubies are labeled with integer 
numbers.[2] Since there are 54 facelets on the cube, the numbers from 0 to 53 are 
used to identify them. Allocated row by row on the faces, the entire cube is encom-
passed. 

During evaluation, the individuals are traversed successively from gene to gene 
while on each step the substring's (first to current gene) fitness is determined. The best 
fitness and the step number, i.e. number of turns, are stored. The overall fitness of the 
potential solution is determined by calculating the fitness and subtracting the number 
of needed steps. The fitness describes the progress of restoring the cube. The counted 
number of steps allows to differentiate between longer and shorter turn sequences of 
cube states of the same fitness. The distinct determination of the best fitness is differ-
ent in each algorithm phase due to different goals of the phases.[2]  

In the first phase, the solve 2x2x3 cube phase, the fitness is determined by counting 
the number of facelet pairs of the same color on the 2x2x3 surface. Particularly, the 
pairs are corner-edge pairs and center-edge pairs. A corner-edge pair is the confor-
mance of the corner cubie facelets and the adjacent edge cubie facelets of a corner 
cubie and an edge cubie. Thus there exist six corner-edge pairs on the 2x2x3 surface. 
A center-edge pair is the conformance of a center cubie facelet and an edge cubie 
facelet. There are 10 center-edge pairs on the 2x2x3 surface, adding up to a total 
number of 16 pairs that constitute the maximum fitness value when the entire 2x2x3 
subcube is solved. The pair technique encompasses the entire 2x2x3 surface and no 
facelet is ignored.[2]  

In the second phase, the transformation to two-generator phase, fitness is deter-
mined by the number of corner-edge pairs and center-edge pairs as in the first phase, 
as well as the fact, whether the cube is in the two-generator group. The check for the 
pairs is done because in this phase, the cube is allowed to temporary leave the solved 
2x2x3 state. Only in this way it is possible to manipulate the two not yet solved layers 
beyond the turns allowed in the two-generator to enter the two-generator subgroup. So 
the maximum fitness value achievable is 17 and signifies that the cube is successfully 
transformed to the two-generator group. To determine, whether the cube is in the two-
generator, the cubies that are in the edge cubicles and in the corner cubicles of the not 
yet solved layers are requested. The center cubies are not directly involved in this 
transformation process because their position is fixed a priori. 

The third phase, the solve two-generator phase, only allows turns of the two still 
scrambled sides, so that the cube remains in the two-generator subgroup. This phase 
performs the integrity determination, which equals the fitness value, for the entire 
cube surface. Integrity is always at least 16 because the already solved 2x2x3 cube 
stays unaffected. The maximum value the integrity can achieve is 48 pairs, which 
means that the two-generator is solved and the cube is completely restored. 

As selection operator, stochastic universal sampling is used to propagate individu-
als to the mating pool. The selection operator incorporates two selection points to 
reduce spread. The best solution is maintained as elite. Elitist strategies link the life-
time of individuals to their fitness. They are techniques to keep good solutions in the 
population for longer than one generation. The use turns search more exploitative 
rather than explorative. Elitist strategies are guessed to be necessary when genetic 
algorithms are used as function optimizers and the goal is to find a global optimal  
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solution as it is the case in the cube optimization process regarding integrity restora-
tion.[1][6] The genetic operations in the reproduction stadium are slightly adapted 
standard operators. The crossover operator is realized by a uniform crossover, elimi-
nating positional bias. As explained before, the gene values are, in contrast to binary 
values, composed of numbers 0 to 17. A standard mutation is performed after the 
crossover using the adjustable mutation probability

 mp . In contrast to binary string 

individuals, where during mutation a gene value is just swapped from 0 to 1 or from 1 
to 0, here the genes have values from 0 to 17. So if a gene is chosen to become mu-
tated, the gene value will be replaced by a random integer number between 0 and 17. 

3   Test Results 

Performance tests are conducted that give information about the efficiency of the 
algorithm. For this purpose, a measure called complexity is introduced with the help 
of the program CubeExplorer[5], which provides the length of an optimal solution to 
a scrambled cube, to classify it according to the difficulty of restoration. For each 
complexity class, the algorithm’s performance is worked out. The performance tests 
investigate the efficiency of HuGO!. To display the efficiency in terms of solution 
lengths, it is essential to differentiate between different difficulties of scrambled 
cubes. A feasible way to gain information on the scrambled cube is to count the num-
ber of turns that led to the cube state. However, the number of turns is limited in in-
formation content. For example, a scramble sequence of 20 turns might need no turns 
as solution, if after 10 turns, the first 10 turns are inverted and repeated in reverse 
order. For this reason, a measure called complexity is introduced that does not con-
sider the scramble sequence but orientates on the actual solution length. The actual 
solution length can be computed with a program generating optimal solutions to a 
given cube configuration. This is the case in CubeExplorer[5]. So, for the perform-
ance tests, the complexity of each cube configuration considered is derived from 
CubeExplorer beforehand. The resulting optimal solution length is used to develop 
classes. Since each cube, according to the general scientific assumption, should be 
solvable in up to 20 turns, complexity has a range of 1 to 20, whereas any cube can be 
classified into one of the 20 complexity classes. For each of the 20 classes, three ran-
dom scrambles are solved 10 times resulting in 600 test runs that evaluate the per-
formance of the algorithm. As generation numbers 200, 5000 and 50000 are used. The 
third phase is run with the highest amount of generations, because the third phase 
produces the longest part-solutions and therefore has the highest potential for solution 
improvements. 

The performance tests reveal four distinct efficiency characteristics depending on 
the introduced complexity measure. From complexity 1 to 3, HuGO! reaches optimal 
solutions. From 4 to 7, a heavy variation in solution lengths occurs. From 8 to 10, 
HuGO! loses the capability of optimal solutions and in the last category from 11 to 
20, a relatively equal amount of around 38 turns establishes itself. Consequently, the 
algorithm performs well for lower complexities, while it shows disadvantages in the 
handling of complex scrambles. 
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4   Conclusion 

The Human strategy based Genetic Optimizer is applied to the restoration problem of 
Rubik’s Cube and successfully solves this task. The introduction of HuGO! is not 
only theoretically reasoned but also empirically. Tests to solve the cube using a plain 
genetic algorithm show the inappropriateness of this optimization technique to the 
chosen discrete optimization problem. Only when a human strategy was implemented 
that splits up the process to distinct intermediate stages, the algorithm’s solving capa-
bility became enabled. The strategy consists of three phases that allow the cube to be 
gradually solved. To summarize, this work shows, how a human strategy can be in-
corporated in a genetic algorithm. The goal was not to develop an outstanding fast or 
efficient algorithm, but to demonstrate the advantageous adaptation of genetic algo-
rithms to human induced strategies using a divide and evolve approach. While an 
external strategy guides the algorithm, the evolutionary process produces solutions no 
human had thought of. 

References 

1. Borschbach, M., Grelle, C.: Empirical Benchmarks of a Genetic Algorithm Incorporating 
Human Strategies. Technical Report, no. 2009/01 (2009) 

2. Castella, C.: Rubik’s Cube, méthodes pour tous (2005), 
http://www.francocube.com (Call date 2009-01-20) 

3. De Garis, H.: Genetic Programming: building artificial nervous systems using geneti-
cally programmed neural networks modules. In: Porter, R., Mooney, B. (eds.) Proceedings 
of the 7th International Conference on Machine Learning, pp. 132–139 (1990) 

4. Herdy, M., Patone, G.: Evolution Strategy in Action – 10 ES-Demonstrations (1994), 
http://www.bionik.tu-berlin.de/user/giani/esdemos/evo.html 
(Call date 2009-02-23) 

5. Kociemba, H.: CubeExplorer (2009), http://kociemba.org/cube.htm (Call date 
2009-02-21) 

6. Sarma, J., De Jong, K.: Generation gap methods. In: Bäck, T., Fogel, D., Michalewicz, Z. 
(eds.) The Handbook of Evolutionary Computation, Bristol, pp. C2.7:1–C2.7:5 (2002) 

7. Schoenauer, M., Savéant, P., Vidal, V.: Divide-and-Evolve: a Sequential Hybridization 
Strategy using Evolutionary Algorithms. In: Siarry, P., Michalewicz, Z. (eds.) Advances in 
Metaheuristics for Hard Optimization, Berlin, pp. 279–298 (2007) 



K. Deb et al. (Eds.): SEAL 2010, LNCS 6457, pp. 374–378, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

A Genetic Algorithm for Assigning Individuals to 
Populations Using Multi-locus Genotyping  

Avnish K. Bhatia*, Monika Sodhi, Dinesh K. Yadav, and B. Prakash  

National Bureau of Animal Genetic Resources, Karnal – 132001, India 
Fax: +91-184-2267654 
avnish@lycos.com 

Abstract. This paper reports a genetic algorithm (GA) for individual assign-
ment using multi-locus microsatellite genotyping.  Its performance has been 
compared with existing frequency, Bayesian and distance-based methods using 
simulated as well as actual data. Simulated data has been generated with SIM-
COAL program. Actual data has been generated from genotypes of four cattle 
breeds from India. The GA showed lower accuracy while assigning individuals 
from simulated data. Its performance was comparable to that of existing meth-
ods using actual data.  

Keywords: Genetic algorithm, Individual assignment, Breed, Microsatellite 
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1   Introduction 

Genetic algorithms (GAs) [1] are general purpose procedures that work on principle 
of natural selection. It starts from a randomly generated population of strings repre-
senting potential solutions, which are selected according to their fitness values.  
Selected strings reproduce and create population at the next generation. Genetic op-
erators, mainly crossover and mutation, alter composition of strings and make them 
ready to be part of the population in later generations. Strings in a generation are 
having higher average fitness than predecessors. GA marches towards the global 
optimum over a number of generations.  

Multi-locus genotyping refers to detection of alleles on a number of loci in indi-
viduals. Highly polymorphic microsatellites are being used for evaluating genetic 
variability of populations [2]. Individual assignment problem [3] consists of assigning 
individuals to one of the candidate populations of likely origin on the basis of multi-
locus genotyping. Assignment accuracy is percentage success of classification of 
untested individuals to one of the baseline populations. It depends on number of loci, 
number of alleles per locus, baseline population size, and degree of differentiation 
between populations as measured by FST. Assignment of individuals to specific breed 
/ strain / variety is useful in conservation and utilization of animal, wildlife, plant and 
aquatic genetic resources.  
                                                           
* Corresponding author.  
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Existing methods for individual assignment are categorized into three groups. First 
group utilizes likelihood estimation of multi-locus genotype of individuals to be as-
signed to each of the two or more candidate populations [3]. It includes frequency and 
Bayesian methods, which rely on two assumptions - loci should be at Hardy-
Weinberg equilibrium and each locus should be independent. Second group includes 
methods that utilize genetic distances to assign individuals to the nearest population 
[3]. Various inter-population distances such as Nei’s distances and Cavalli-Sforza & 
Edwards chord distance are available. Shared-allele distance is an inter-individual 
distance. The last group includes supervised machine learning approaches such as k-
NN classifier, artificial neural networks, decision tree, etc. [4]. These methods involve 
evaluation of baseline data set to predict classes of cases in test data set. There are no 
assumptions on data in distance-based and machine learning methods.  

GAs are placed in the category of machine-learning approaches. These are applied 
in solving diverse range of problems either by optimizing parameters of other ap-
proaches or by formulation of candidate problem as an optimization problem. GAs 
have been used to solve complex problems including bioinformatics problems [5] due 
to their flexibility in tuning genetic parameters. Guinand et al. [6] and Topchy et al. 
[7] utilized GA for selecting subset of loci among available genotypes, which  
provided maximum accuracy of individual assignment based on likelihood classifica-
tion. Authors are not aware of any method based on GA for solving the individual 
assignment problem.  

2   Methodology 

2.1   Genetic Algorithm for Individual Assignment 

Genetic algorithm for individual assignment has been designed so as to evolve a posi-
tion matrix in the form of a binary matrix of order n.l, where n is size of baseline 
population and l is number of loci. Objective function maximizes accuracy of assign-
ment within baseline population. Each individual in the baseline population is com-
pared with all the individuals including it. Accuracy is calculated on the basis of  
deviation of score of an individual from average score of baseline population calcu-
lated with the function: 

[ ]∑∑ ∑
=

= = ,
                             

(1) 

where 1/0=ija  is the number at a position in evolved position matrix, j

j

k
is  is the 

score of matching jth allele of individual ‘k’ to the jth allele of individual ‘i'. A value of 
‘1’ at a position in the position-matrix indicates that an allele at the position will be 
considered for scoring, and a value ‘0’ indicates that it will not be taken.  

The GA also evolves haploid matching and no-matching scores. Diploid matching 
score is obtained by multiplying haploid matching score by two. Scores are evolved in 
the range (d, 1.0), where ‘d’ is pre-specified level of deviation of score of an individ-
ual from average score of baseline population. An individual is assigned to baseline 
population if deviation of its score from average score of individuals in the baseline 
population is less than or equal to ‘d’.  
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Finally, evolved values of scores, position-matrix and average score of baseline 
population are stored for utilization in assignment of new individuals. Score of an 
unknown individual is calculated for each candidate population using formula (1) and 
it is assigned to the population with minimum deviation of its score. 

2.2   Implementation of Genetic Algorithm 

GA execution involves generation of initial population and decision on genetic pa-
rameters and operators, which are generally chosen on the basis of experiences of 
researchers. Initial population in the GA consisted of bits. Sixteen bits were used each 
for evolving a real number for haploid-matching score as well as for no-matching 
score. Position-matrix required n*l bits. Thus, the overall string size was equal to 32 
plus n*l bits. Single-point crossover operator was used. Mutation operator was tradi-
tional bit operator. Values of other genetic parameters were fixed as: population size 
= 100, crossover probability = 0.5, and total number of generations = 1000.  

Mutation probability (pm) was varied by a decaying function 

)))log()(log(*)1/()1(*0.1exp(*1.0 hLTtp m −−−−= , where t is generation number, T is 

total number of generations, L is string size, h = 0.7 is a mutation factor [8], and ‘log’ 
calculates natural algorithm. It varies pm from 0.1 at generation one to (0.7/L) at last 
generation.  

2.3   Experimental Setup 

Experiments were conducted on simulated as well as on actual test data. Results ob-
tained using the GA were compared with frequency, Bayesian, Nei’s Standard dis-
tance and Chord distance methods as implemented in GeneClass2 software [9].  

SIMCOAL program [10] was used for generating simulated haploid individuals, 
converted to diploids by randomly selecting two individuals and pairing correspond-
ing alleles at a locus. Data was generated for eight combinations of population fea-
tures: population differentiation (low FST - 0.01 and high FST - 0.1), allelic diversity 
(low - four alleles per locus and high - eight alleles per locus), number of loci (10 and 
20). Simulated population consisted of 1100 diploids.   

Actual microsatellite genotyping data was obtained from laboratory experiments at 
22 loci for four Indian cattle breeds - Red Kandhari, Deoni, Hariana and Sahiwal [11, 
12]. To avoid missing alleles, allelic frequencies were calculated from genotype data. 
Populations consisting of 1100 diploids for each breed were generated from allelic 
frequencies for six combinations of two breeds. Allelic diversity values of all the six 
breed combinations were near 8.0. 

We utilized separate ‘holdout’ method [6] for comparing the results. Size of base-
line population was taken equal to 50 and test population equal to 1000 for each popu-
lation in both simulated and actual data.  

3   Results  

The proposed GA was executed to maximize accuracy of assignment at 5% level of 
deviation (d=0.05) of individual score from average-score of baseline population.  
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Table 1 shows the results as summary of five experiments for simulated data. Suc-
cess of assignment using the GA was somewhat lower in comparison to other meth-
ods. For the population with high FST, 20 loci and eight alleles per locus, accuracy 
provided by the GA was 88.2% in comparison to accuracy of 93.5% with frequency 
method and 92.1% with chord distance method. 

Table 2 shows the results for data generated from actual allelic frequencies of four 
cattle breeds. Success rates of GA for this data were comparable with other methods. 
In the case of assignment of individuals between Hariana and Sahiwal cattle breeds, 
GA provided accuracy value equal to 98.75%. Accuracy values with frequency, 
Bayesian, Nei’s standard distance and chord distance methods were 100%, 100%, 
99.6% and 99.7 % respectively. 

Table 1. Accuracy (%) of assignment as average (s.d.) reached by genetic algorithm and other 
methods on simulated data 

FST No. 
of 
Loci

Allelic 
diversity 

Genetic 
Algorithm

Frequency 
method 

Bayesian Nei’s 
Standard 

Chord 
distance 

Low  
(0.01) 

10 4 53.7 (2.6) 58.7 (2.9) 59.1 (2.6) 59.7 (0.8) 56.7 (2.6) 

  8 56.1 (1.5) 67.0 (3.7) 66.7 (4.8) 65.8 (3.5) 65.8 (3.5) 

 20 4 51.6 (2.0) 62.2 (3.4) 62.3 (3.4) 61.0 (2.8) 60.6 (2.4) 

  8 51.1 (2.1) 66.1 (2.6) 66.9 (2.8) 64.5 (1.4) 65.1 (1.7) 

High 
 (0.1) 

10 4 63.1 (5.0) 77.2 (1.7) 77.4 (2.0) 77.3 (0.7) 71.6 (3.6) 

  8 71.8 (3.8) 87.6 (5.8) 88.5 (5.3) 86.9 (3.5) 76.0 (4.5) 

 20 4 61.0 (2.8) 77.6 (1.8) 76.9 (2.5) 78.1 (1.4) 67.9 (3.3) 

  8 88.2 (1.3) 93.5 (2.8) 94.2 (2.2) 91.9 (2.4) 92.1 (2.7) 

Table 2. Accuracy (%) of assignment reached by genetic algorithm and other methods on the 
data generated from actual genotypes 

Breeds FST Genetic 
Algorithm 

Likelihood 
method 

Bayesian Nei’s 
Standard 

Chord 
distance 

Red Kandhari, 
Deoni  

0.11 99.90 100 100 100 100 

Red Kandhari, 
Hariana 

0.13 100 100 100 100 100 

Red Kandhari, 
Sahiwal  

0.19 100 100 100 100 99.95 

Deoni, Hariana 0.08 98.65 100 100 99.90 99.95 

Deoni, Sahiwal 0.13 99.05 100 100 99.85 100 

Hariana,  
Sahiwal  

0.10 98.75 100 100 99.60 99.70 
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4    Conclusion 

Genetic algorithms are appropriate procedures for solving individual assignment 
problem using micosatellite genotypes due to its flexible parameter tuning capabili-
ties. These are not dependent on any assumptions about candidate populations like 
other machine learning approaches. A methodology based on genetic algorithm has 
been proposed for individual assignment. It has been compared with existing fre-
quency, Bayesian, Nei’s standard distance and chord distance methods. Results show 
lower success for genetic algorithm on simulated data. Performance of genetic algo-
rithm is comparable to other methods in case of data generated from actual microsa-
tellite genotypes of four cattle breeds. Further experiments using systematic tuning of 
genetic parameters might improve performance of the genetic algorithm. 
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Abstract. In this paper, we study the path planning for Khepera II mobile robot 
in a grid map environment using an extended Q-learning algorithm. The exten-
sion offers an additional benefit of avoiding unnecessary computations involved 
to update the Q-table. A flag variable is used to keep track of the necessary up-
dating in the entries of the Q-table. The validation of the algorithm is studied 
through real time execution on Khepera-II platform. An analysis reveals that 
there is a significant saving in time- and space- complexity of the proposed  
algorithm with respect to classical Q-learning.  

Keywords: Q-learning, Reinforcement learning, Motion planning. 

1   Introduction 

Motion planning is one of the important tasks in intelligent control of a mobile robot. 
The problem of motion planning is often decomposed into path planning and trajectory 
planning. In path planning, we need to generate a collision-free path in an environment 
with obstacles and optimize it with respect to some criterion [8], [9]. However, the 
environment may be imprecise, vast, dynamical and partially non-structured [7]. In 
such environment, path planning depends on the sensory information of the environ-
ment, which might be associated with imprecision and uncertainty. Thus, to have a 
suitable path planning scheme in a cluttered environment, the controller of such kind of 
robots must have to be adaptive in nature. Trajectory planning, on the other hand, con-
siders time and velocity of the robots, while planning its motion to a goal. It is impor-
tant to note that path planning may ignore the information about time/velocity, and 
mainly considers path length as the optimality criterion. Several approaches have been 
proposed to address the problem of motion planning of a mobile robot. If the environ-
ment is a known static terrain and it generates a path in advance, it is said to be off-line 
algorithm. It is called on-line, if it is capable of producing a new path in response to 
environmental changes. 
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A good path-planning algorithm requires a priori knowledge of the robot’s world 
map. Usually a learning algorithm is employed to make the robot aware about its en-
vironment. Reinforcement learning [1-5] helps a robotic agent to adapt it experience 
throughout its life. Q-learning falls under the reinforcement class. This research is 
aimed at improving the performance of the Q-learning algorithm. It examines the 
scope of the improved algorithm in path planning application of mobile robots.  

The rest of the paper is organized as follows. Classical Q-Learning is introduced in 
section 2. The algorithm for conditional Q-learning is presented in detail in section 3. 
Experimental instances are given in section 4, and conclusions are listed in section 5. 

2   The Classical Q-Learning Algorithm 

In classical Q-learning, all possible states of an agent and its possible action in a given 
state are deterministically known. In other words, for a given agent A, let S0 , S1, S2,..., 
Sn, be n- possible states, where each state has m possible actions a0, a1, a2,...,am. At a 
particular state-action pair, the specific rewards that the agent may acquire is known 
as immediate reward. For example r (Si, aj) denotes the immediate reward that the 
agent A acquires by executing an action aj at state Si. An agent selects its next state 
from its current states by using a policy. This policy attempts to maximize the cumu-
lative reward that the agent could have in subsequent transition of states from its next 
state. For example, let the agent be in state Si and is expecting to select the next best 
state. Then the Q-value at state Si due to action of aj is given in equation 1. 
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where δ(Si, a j ) denotes the next state due to selection of action aj at state Si.  Let the 

next state selected be Sk . Then Q(δ( Si , a j ), a / )= Q( Sk , 
/a ). Consequently selec-

tion of a / that maximizing Q(Si, a j) is an interesting problem. One main drawback 
for the above Q-learning is to know the Q-value at a state Sk  for all possible action 
a /. As a result, each time it accesses the memory to get  Q-value for all possible ac-
tions at a particular state to determine the most appropriate next state.  So it consumes 
more time to select the next state. Since the action a/ for which Q(Sk , a /) is maxi-
mum needs to be evaluated, we can remodel the Q-learning equation by identifying 
the a/  that moves the agent closer to the goal.  

In the extended Q-learning to be presented, we have created only one field for  
action of each state. In this way, we save the space required for the Q-table. Thus the 
Q-table storing the Q-values for the best action in each state, requires small time for 
retrieval of Q-values, and hence saves significant time complexity. 

3   The Extended Q-Learning 

Let for any state Sk , the distance between the goal state and the next feasible state of 
Sk are known.  Let the next feasible state of Sk be {Sa, Sb, Sc,Sd }. Let G be the goal and 
the distance between Sa, Sb, Sc, Sd and G be daG,dbG,dcG,ddG  respectively. Let the  

(1) 
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distance in order be  dbG  <daG <dcG <ddG . Then the agent should select the next state Sb  
from its current state Sk, if the Q-value of the state Sb is known. We can evaluate the 
Q-value of state Sk  by the following approach. 
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Thus if the next state having the shortage distance with the goal is known, and the 
Q-value of this state is also known, then the Q-value of the current state is simply 
γ×Q-value of this next state. 

Let Sp, Sn and SG be the present, next and the goal states respectively. Let Qp and 
Qn be the Q-value at the present and the next states Sp and Sn respectively. Let dxy be 
the Euclidean distance between the states Sx and Sy. We use a Boolean variable Lock: 
Lx to indicate that the Qx value of a state is fixed permanently. We set lock Ln=1 if the 
Q-value of the state n is fixed, and won’t change further after Ln is set to 1. The Lock 
variable for all states except the goal will be initialized zero in our proposed Q-
learning algorithm. 

We now study some interesting property of Q-learning algorithm, which would 
provide us an insight to extend classical Q-learning algorithm for both speed up and 
minimum space complexity. The proof of the properties is not given here for space 
limitation. 
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It is apparent from the property 1 that if Ln is 1, we on updating Qp, set Lp to 1. Simi-
larly, in property 3, we set Ln to 1 when Lp =1 is detected.  When Ln= 0 in property 2 
and Lp =0 in property 4, we just update Qp and Qn respectively.  When Li for all state 
i=1, we need not update Q-table further. These properties have been employed in the 
extended Q-learning algorithm.  

 
Time-Complexity: In classical Q-learning, the updating of Q-values in a given state 
requires determining the largest Q-value, in that cell for all possible actions. Thus if 
there are m possible actions at a given state, maximization of m possible Q-values, 
require m −1 comparison. Consequently, if we have n states, the updating of Q values 
of the entire Q table by classical method requires n(m −1) comparisons. Unlike the 
classical case, here we do not require any such comparison to evaluate the Q values at 

(2) 

 (3) 
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a state Sp from the next state Sn. But we need to know whether state n is locked i.e., Q-
value of Sn is permanent and stable. Thus if we have n number  of states, we require   
n  number of comparison. Consequently, we save  n(m −1) − n = nm − 2n= n(m−2). 

 
Proposed Algorithm for Extended Q-Learning  
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Space-Complexity:  In classical Q-learning, if we have n states and m action per 
state, then the Q-table has a dimension n)(m× . In the conditional Q-learning, we only 

store Q-value at a state for the best action. Further, we need to store whether the  
Q-value is already stable or changing. Naturally, we need to store the status of lock 
variable for each state. Consequently, for each state we require 3 storages, such as  
Q-value, lock and the best action at that state. Thus for n number of states, we require 

n)(3×  number of storage. The saving in memory in the present context with respect 

to classical Q thus is given by mn − 3n = n(m − 3). 

4   Experiments 

Experiment on a large maze of 200×200 show that the run time for planning is less 
and the optimal path obtained in classical Q-learning is not lost by the present 
scheme. Snapshots of the planning steps realized on Khepera II are given in Fig. 1 
below. The extended Q-learning algorithm is used in the first phase to learn the 
movement steps from each grid in the map to its neighbor. After the learning phase is 
over, the planning algorithm is executed with the snapshots as indicated in the Fig.1 to 
reach the goal. 
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.        

       

Fig. 1. Snapshots of experimental planning instances 

5   Conclusions 

The paper presented an extension of classical Q-learning algorithm, so as to reduce 
both space and time-complexity by economically updating the Q-table, only when 
such updating is mandatory. The economic selection of specific entries of the Q-table 
is performed by certain properties of the extended Q-learning algorithm. The claim of 
this paper is four fundamental properties, and utilization of these properties to set 
conditional checking on updating of Q-table entries. This is realized in a pseudo code 
given in the paper. The reduction in both space-and time-complexity is indicated. 
Verification of the algorithm has been performed on Khepera II platform. The expla-
nation of the algorithm cannot be included for space limitation. 
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Abstract. Analysis of artificial evolutionary systems uses post-processing to ex-
tract information from runs. Many effective methods have been developed, but
format incompatibilities limit their adoption. We propose a solution combining
XML and compression, which imposes modest overhead. We describe the steps
to integrate our schema in existing systems and tools, demonstrating a realistic
application. We measure the overhead relative to current methods, and discuss
the extension of this approach into a community-wide standard representation.

1 Introduction and Background

Evolutionary algorithms are used for a vast range of problems in sciences and engineer-
ing. Each system has its own data format and analysis tools. As the field progresses,
the need for fair comparisons and detailed analysis grows. We need a standard format
to enable the development of easily configurable post-processing tools for smooth data
exchange and integration. We propose a representation based on XML [1]. The major
concern with XML as a data representation is the size of XML files – far larger than raw
data. Here, we provide some technical background on XML compression and XML in-
terfacing, our proposed XML schema for output data, an application example, and tests
on comparative overheads. Full detail is available in our technical report [2].

Genetic Programming and XML: A number of authors have used XML in connection
with GP. Martens [3] and Garcia-Sanchez et al [4] use GP to generate XML transfor-
mation scripting. Johnson and Kumara [5] use XML as an evolutionary representation
within the evolutionary system, as do Amarteifio [6] and Tanev and Shimohara [7].
Tanev [8] uses it to describe communication between evolutionary agents. All have
very different aims from this proposal.

XML Compression and Interfacing to XML: Many XML compressors have been
proposed in the literature in recent years. Among them, XMill [9] compressor achieves
the best compression ratio for so-called ‘structural’ documents of the kind that arise in
GP output. Though XMill is based on gzip, it achieves about twice the compression
ratio at roughly the same speed. XMill is not only XML-conscious, but also an archival
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Fig. 1. XML Schema

Fig. 2. Sample XML output representation

compressor. Since a good archival compressor is exactly what we need, we chose XMill
to compress our XML output. For interfacing, we chose Java Simple Exchange Format
API (JSefa, [10]) providing high-level streaming over an iterator interface. Our frame-
work for interfacing XML, built on top of JSefa, is available from http://sc.snu.ac.kr
(click on tab Research and then Software).

Equivalent Decision Simplification: We tested the flexibility of this format with a
typical complex problem: simplification of GP expression trees to remove bloat. This
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requires both input and output of the standard format. We used Equivalent Decision
Simplification (EDS) [11], a semantic simplifier. We also tested it on a simpler post-
processing problem, computing mean best fitness.

Our XML Schema is designed to support many hierarchical sub-levels, each with
a statistics element. A sample XML schema for Project, Node and Statistics levels is
shown in Figure 1. Due to space constraints, most sub-levels are omitted. For details,
please refer to [2]. A small example of the schema is shown in Figure 2. While the
schema is currently only instantiated for standard GP, it is readily extensible to most
grammar-based or linear GP representations, and to other evolutionary algorithms.

2 Workflow Tests

We took data from a typical GP experiment on a simple problem, symbolic regression
to find approximations to the polynomial x4 +x3 +x2 +x [12]. For these trials, we per-
formed a typical GP workflow: running 30 trials, and saving the output data, including
full representations of all trees generated, followed by two analytical processes: com-
puting mean best fitnesses and equivalent decision simplification, requiring both read-
ing the original data, and writing the simplified output. We compared four treatments:
XML output vs our original (and typical) prefix representation; using compressed vs
uncompressed output. All work was performed in pipes, so that for the compressed ver-
sions, uncompressed files never needed to be stored. For each stage of processing, we
recorded the total run time of the stage, the memory used and the storage required. We
then aggregated over the 30 trials, and computed means and standard deviations. We
used bzip2 compression for the prefix notation, XMILL for XML. Experiments were
conducted on a cluster of identical 2GHz computers. We used our C++ implementa-
tion of GP. It is reasonably efficient, with no known memory leaks. The GP parameter
settings are shown in Table 1.

Table 1. Evolutionary Parameter Settings

Fitness Cases 20 points in [−1 . . . 1]
Fitness Sum of Errors
Genetic Operators Tournament selection(5)

Subtree crossover
Subtree mutation

� of Runs 30
� of Generations 1001
� of Individuals 250
Crossover prob. 0.9
Mutation prob. 0.1
Maximum Depth 15

Table 2. GP Processing Stage

Com- XML Time Memory File Size
pressed (secs) (miB) (MB)
Yes Yes 123 ± 20 48 ± 2 6.2 ± 1.0
Yes No 438 ± 188 55 ± 8 1.4 ± 0.3
No Yes 51 ± 10 33 ± 2 240 ± 44
No No 324 ± 130 49 ± 9 149 ± 59
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Results of these treatments are shown in Tables 2, 3 and 4. Though CPU processing
times are less for uncompressed XML, it is a poor strategy resulting in enormous files
compared with other treatments. Compressed XML is more storage-efficient than un-
compressed prefix-tree storage. Even with the overheads of compression, XML based
processes used much less resources than the classic ‘uncompressed prefix tree’ ap-
proach, with the exception of the small ‘mean best’ computation stage (refer Table
4), where memory requirements and processing time were both substantially higher for
XML based processes. When the two ‘compressed’ strategies are compared, the prefix
tree compression (i.e. bzip2) achieved substantially greater compression than XMILL,
but at the cost of much greater computation time, especially for compression. Thus
even when issues of standardisation are ignored, compressed prefix storage is worse
than compressed XML based storage. In using these methods, all processing must be
done in pipes (to avoid creation of immense intermediate file structures); and close at-
tention must be paid to compiler and operating system I/O limits (often in the 1-4GB
range).

Table 3. Simplification Stage

Com- XML Time Memory File Size
pressed (secs) (miB) (MB)
Yes Yes 188 ± 47 2408 ± 26 2.4 ± 0.5
Yes No 438 ± 532 384 ± 30 0.4 ± 0.1
No Yes 98 ± 33 2397 ± 2 702 ± 172
No No 498 ± 302 2372 ± 22 40 ± 23

Table 4. Mean Best Computation Stage

Com- XML Time Memory File Size
pressed (secs) (miB) (MB)
Yes Yes 47 ± 27 2412 ± 21 NA
Yes No 14 ± 5 40 ± 2 NA
No Yes 40 ± 20 2410 ± 19 NA
No No 10 ± 4 36 ± 3 NA

3 Discussion and Conclusions

The testing demonstrates that XML-based data representation and storage for GP output
data, combined with XMILL compression technology, is an efficient and viable strat-
egy. The potential advantages, in sharing data and analyses, are immense. The main cost
of transition to an XML representation is modification of current systems to output data
in this XML format, and rewriting existing analysis tools to support it. Essentially, it re-
quires new output drivers for GP systems, and new input drivers for processing systems.
We are currently developing generic APIs that will allow these to slot in seamlessly.

We have argued the need for a standard XML output representation for GP, and pre-
sented a suitable XML schema, supporting the gradual development by the research
community of a reservoir of post-processing tools based on it. The natural concern with
this proposal, especially in GP, lies in the resource issues, especially file storage and
processing costs. We have tested these in typical experimental settings, and confirmed
that modern XML processing tools provide a remedy. We believe that there will be neg-
ligible resource costs in typical scenarios; those costs almost certainly do not outweigh
the potential advantages of a standard output format.
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Abstract. Computational intelligence competitions have recently
gained a lot of interest. These contests motivate and encourage re-
searchers to participate on them. Computer games are interesting test
beds for research in artificial intelligence that motivate researchers to
apply their work areas to specific games. In this paper a structural pa-
rameter set of a car agent is optimised using particle swarm optimisation
and evolution strategies. The change was for were to the TORCS com-
petition held during the Car Setup Optimization Competition EvoStar
2010.

Keywords: Car Racing, Evolution, Optimisation, Evolutionary Strate-
gies, Particle Swarm Optimisation, Torcs, Simulation.

1 Introduction

Designing a racing car is quite complex and expensive. The fact that the optimi-
sation of the final design in most cases depends on environmental variables, such
as the weather, makes it a difficult task. In addition, the structural configuration
of a car does not behave in the same way over different circuits, this implies that
parts of its structure should allow modifications to exploit the caracteristic of the
circuit. The main problem is that this type of modifications are normally very
expensive and require a long time. Most racing teams do not have the financial
resources or the time to properly perform this type of configuration.

This paper focuses on the use of Artificial Intelligence techniques to optimise
the structural setup of a car agent for The Open Racing Car Simulator (TORCS)
[1], a car racing simulator that provides a physics engine, a 3D visualization and
different models of car and tracks. The optimisation of the parameter set that
defines the structural configuration of a car (Rear Wing, Brake System, Rear
Anti-Roll Bar, Front Left-Right Wheel, etc) was done by applying two evolu-
tionary techniques: a particle swarm Optimisation algorithm and an evolutionary
strategy {ν + λ, α}-ES. The performance of these controllers are compared and
the results obtained are presented here and analysed individually.

K. Deb et al. (Eds.): SEAL 2010, LNCS 6457, pp. 389–393, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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2 The Simulation

For developing the different algorithms, the organizers of the Car Setup Op-
timization Competition EvoStar 2010 (Luigi Cardamone, Daniele Loiacono,
Markus Kemmerling and Mike Preuss) have provided a server module for
TORCS that provides the communication to the remote controller called opt-
Server through an implemented API allowing to send the parameters that defined
the car setup and replies with the result of the simulation which is a vector of
four parameters (lap time, max speed, distance, damage).

There is an important problem that needs to be taken into account. It is
very important to know that the simulation results not only depend on the
parameters set or simulated time, but also on the position of the car in the final
instant of the previous simulation. This is a very important issue which will
influence the outcome of the simulation. For example if a car is located pointing
backwards the agent will have to turn around in order to continue the race with
the corresponding waste of time, however, a car driving at a very high speed at
the end of the previous simulation will have a positive influence over the current
one.

if anyone interested then look for reference http://cig.dei.polimi.it/
?page id=103.

3 Techniques

In this section, the tecniques that have been selected to solve the parameter op-
timisation of the car agent are dealt with, these are particle swarm optimisation
and evolution strategies.

3.1 Particle Swarm Optimisation

The PSO implementation used in this worrk, is based on Jswarm [7], which has
been adapted and changed to meet the dynamic fitness evaluation time problem
mentioned above and the car optimisation competition contest requirements.
This technique uses a group of 200 particles (solutions) and then searches for
optima by consecutive generations. At every iteration, each particle is updated
depending on the value of three parameters: global best, local best and personal
best. The algorithm finishes when the maximum number of game tics allowed
by the simulator (1 million game tics) is reached.

The fitness of an individual is obtained by running the simulation process
once and computing the fitness through the following equation

f(x) = MaxSpeed− Damage . (1)

which tends to select individuals that maximise the speed and minimise the
damage suffered by the car.
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3.2 Evolutionary Strategies

The second artificial intelligence technique used here to optimise a vector of
parameters of a car agent is an evolutionary strategy, in particular a {ν +λ, α}-
ES. with ν parents and λ offspring per generation. Again, the algorithm finishes
when the maximum number of game tics allowed by the simulator is reached.
The fitness of an individual is obtained by running the simulation process in
random order 5 times with different number of tics, and then computing the
average fitness values of each individual as

f(x) = (MaxSpeed + AverageSpeed) − Damage . (2)

The parameter α in the definition of the ES was introduced to account for the
number of iterations that an individual remains in the population without being
evaluated. It is used to avoid the effects of the noise in the evaluation and increase
the number of iterations of the process.

The above equation (2) selects individuals with maximum top speed, those
with more stable speed during the entire race and those with less damage. Ini-
tially a variant of this equation was used, the average damage was substracted
from the sum of the average speed and the best top speed, however, it was ob-
served that in many cases the car speed was decreased significantly and thus it
was not usefull.

4 Experiments

4.1 Evaluation

To validate the two techniques presented in the paper, every controller is tested
on three different tracks (E-Track 5, Dirt 4 and E-Track 1), each one of them
has different characteristics to prove the efficiency of the algorithm. Each cir-
cuit presents a different structure and characteristics which allows checking the
potential of the algorithm to find a good setup for the car controller.

Figure 1 shows the three different circuits selected for the experiments, the
first circuit, called E-track 5, is a simple fast track, that has been selected to
find the maximum speed of the optimised vehicles, the second track, called Dirt
4, is probably the most difficult track, due to the large number of bends which
allows finding vehicles that deal without problems with the need to turn. The
last circuit, called E-Track 1, is a difficult environment with areas where the
maximum speed can be reached followed by sharp bends. All experiments shown
in this paper have been executed using the version 1.3.1 of TORCS.

4.2 Results

The evaluation process is performed in three steps. First, for the PSO technique
three agents are obtained, one at each circuit. Then, the process will be repeated
for the ES technique. Next, each of the six technique-circuit pair is tested on
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Fig. 1. Structure of the different circuits used to test the setup vector generated for
each technique

each circuit for 50 runs of 10,000 game tics (about 3 minutes and 20 seconds)
and the results are averaged. Finally, the different solution are tested on their
corresponding circuit running together with other cars to observe the influence
of other vehicles in the solutions.

The following tables show the results obtained after making the tests, in most
cases the PSO gets better results but the difference between the two techniques
is quite small.

Table 1. Results for individual tests

Track ES PSO
Average Standard Average Standard

Deviation Deviation

E-Track 5 9726.66 625.06 9903.63 494.33
E-Track 1 8071.80 468.17 8116.94 395.04

Dirt 4 7984.93 402.88 7924.65 411.38

Table 1 shows the results obtained after executing the different car agents in
the different circuits.

In table 2 the results of driving with other cars on the track are presented. In
this case the PSO technique dominates over the ES.

After analysing the results show inthe tables 1 and 2, it seems to be a good
idea to perform multiple assessments to obtain the most reliable fitness or use
a small population, although this does not guarantee a quality vehicle. Since
the best results are obtained by the swarm of particles this represents the most
stable solution regardless of circuit conditions and evolves with large populations
and single individual assessment.
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Table 2. Results for test with traffic

Track
ES PSO

Average Standard Average Standard
Deviation Deviation

E-Track 5 9736.13 543.65 9918.84 483.57
E-Track 1 7883.70 1239.06 8153.21 417.50

Dirt 4 7388.48 394.74 7416.74 450.83

5 Conclusions

In this paper, two different artificial intelligence techniques, PSO and ES, have
been used to successfully optimise a setup vector for a racing car agent. This
setup vector represents certain structural characteristics of a vehicle.

The results suggest that both techniques are able to generate configurations
that offer similar results regardless of the circuit, but in general the PSO tech-
nique obtained better results. Although the results were quite good, it has been
observed that the optimisation process incurred in some problems. These were
due to the way the fitness is evaluated, fitness is based on the results obtained in
several sections of the circuit which leads to optimised parameters that produce
very fast vehicles, but not downshifting effectively in the curves, because the
optimisation process always selects the fastest vehicle with minor damage.
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Abstract. In this paper, we suggest a novel problem within the context of multi 
objective optimization. It concerns the control of solutions' performances in 
multi objective spaces. The motivation for controlling these performances 
comes from an inspiration to improve the robustness of solutions to physical de-
terioration. When deterioration occurs, the solution performances degrade. In 
order to prevent extended degradation and loss of robustness, an active control 
is implemented. Naturally, in order to enable such a control, the solution  
(product) should have tunable parameters that would serve as the controlled 
variables. Optimizing the solution for such a problem means that the tunable pa-
rameters should be found and their manipulation determined. Here the optimal 
solutions and the controller are designed using multi and single objective evolu-
tionary algorithms. The paper is concluded with a discussion on the high poten-
tial of the approach for research and real life applications.  

Keywords: Evolutionary multi-objective, Physical deterioration. 

1   Introduction  

Multi Objective search is an important research topic. It concerns the search for solu-
tions to many real world problems, dubbed appropriately enough Multiobjective Prob-
lems (MOPs). According to Mattson and Messac [1], successful engineering design 
generally requires the resolution of various conflicting design objectives. In the case 
of contradictory objectives, there is no universally accepted definition of an 'optimum' 
as in a single-objective optimization, [2]. In such cases, there is no single global solu-
tion, often rendering it useful to determine a set of solutions that fits a predetermined 
definition for an optimal set and lets a decision maker choose among them. The pre-
dominant concept in defining such a set is Pareto optimality. By definition, Pareto 
solutions, which belong to the Pareto optimal set, are considered optimal because 
there are no other designs that are superior in all objectives, [3].  

Most Multi-Objective Evolutionary Algorithms (MOEAs) use the non-dominance 
relation, [4], to direct the evolutionary search towards a Pareto front. For instance, 
they use niching to support the spreading of solutions along the front. According to 
[5], the second generation of Pareto-based algorithms, such as NSGA-II, [6], involves 
three major elements: The first element concerns the creation of a search pressure 
towards the Pareto set. This is commonly achieved by one of the known Pareto-based 
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fitness assignment (dominance-based) techniques. The second element is set to avoid 
convergence to a single solution and preserve diversity. The third element is elitism, 
which helps to prevent losing non-dominated solutions that are diversified. Detailed 
descriptions of multiobjective evolutionary techniques can be found in [7].  

Robust design tries to ensure that performance requirements are met and con-
straints are not violated due to system’s uncertainties and variations (e.g., [1]). Fun-
damentally, robust design is concerned with minimizing the effect of such variations 
without eliminating the source of the uncertainty or variation, [8]. Taguchi, (e.g., [9]), 
has contributed tremendously to the development of this field of interest by introduc-
ing several approaches (e.g., Loss Function, Orthogonal Arrays and Linear Graphs). 
There are many possible ways to treat robustness by using Evolutionary Computation 
(EC), with a few possible heuristics having been suggested in [10].  

Dealing with robustness within MOPs has been rarely studied. Not long ago Deb 
and Gupta, [11], introduced a formulation for the different aspects of robustness and 
suggested an approach to evolve a robust front based on the mean of an effective 
fitness function. Teich, [12], defined a probabilistic domination relation to represent 
the noise objective functions. Luo et al., [13], used an EMO approach to evolve robust 
fronts that are a result of taking into consideration possible market changes.  

According to the current survey, no research concerning multiobjective robustness 
to physical deterioration has been conducted. Nevertheless, modeling of such deterio-
rations exists. Physical deterioration is defined as the loss in the value of assets, 
commodities, goods, materials, etc., due to exposure to the elements and wear and 
tear associated with their storage and use. Examples of models for such deteriorations 
include mathematical models of tools' wear, [14], deterioration models for effective 
bridge management, [15] and statistical models for analyzing failure. 

Although the current paper is related to all of the above issues, here a totally novel, 
previously untreated (as far as our review goes) problem is suggested. Here control is 
implemented for attaining robustness for physical deterioration by actively controlling 
the performances of the solutions within multi objective spaces.   

2   The Active Control Approach 

The idea behind the methodology of the current paper might be elucidated through 
depicting Figure 1. The left panel of the figure depicts four Pareto optimal solutions' 
performances in a bi-objective space, designated by capital letters, A-D. Physical 
deterioration of the solutions' design parameters (due to e.g., wear) might cause the 
performances to degrade to new performance vectors, designated by small letters, a-d. 
As a result, the Pareto front alters and solution B does not belong to the new, shifted, 
front (it is dominated by solution C) and, according to [11], it should not be consid-
ered a robust solution. Moreover, although solutions C and D do not dominate each 
other (also after deterioration), solution C seem to be more robust than D as its per-
formances are less effected (the distance C-c seems closer than D-d). As a last note, 
for all solutions A-D, the robustness could not suffice due to the possibility that the 
loss of performances is higher than the designers are ready to reconcile with.  

Now suppose that there is a way to actively change some (at least one) of the solu-
tions' parameters by actively controlling its value. If this is done properly, the 
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Fig. 1. Left Panel: Pareto front (bold circles) and related performances after deterioration (white 
circles), Right Panel: Active control shifts performances closer to the original performances 

performances might be improved to new performance vectors (designated by A*-D*). 
Clearly the performances are more robust than before (the influence on performances 
due to deterioration has been reduced). Moreover, it is possible that a solution that 
was previously (when no control action has been taken) the worst in terms of robust-
ness is now the best in that respect (see solution B*). In the following section, the way 
to achieve this improvement in robustness through active control is explained and 
formulated. 

3   The Control Problem 

In the current paper, a solution is associated with two types of decision variables. 

The first nT
n21 R]x,.....,x,x[x ⊂Ω∈=  are variables with values that, once they are 

chosen, may not be intentionally altered any more. These variables are subjected 
tochanges due to physical deterioration, such that o
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ix  is the initial value of the i-th  

variable (before deterioration occurs) and if  is the function that models the  

physical deterioration of the i-th variable (see Section 1). The second 

type: mT
m21 R]y,.....,y,y[y ⊆Γ∈= , are decision variables, whose values might be 

changed with time (time dependent variables) by actively tuning them.  This means 

that  y might be expressed as T
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where o
iy is the initial value of the i-th tunable variable (before tuning it) and iC  

represents a controller acting to tune it.   
A solution z, is comprised of both types of variables, 

Γ×Ω⊆ΨΨ∈= ,]y,x[z T where Ψ is the compound design space. The mapping of a 

solution from the compound design space to the objective space is done by utilizing the 

MOP's objective functions: KR:F ⊆ΦΨ  where [ ]TK21 )z(F....,),z(F),z(F)z(F = , 

and K is the number of objectives of the MOP.  
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As pointed out before, at the initial design stage, the decision vectors x and y are 

set such that To
n

o
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o
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o ]y,.....,y,y[y =  . We suggest that these 

would be set to comprise an optimal solution. This means that 
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o ],y,.....,y,y,x,.....,x,x[z = would be determined by solving the following 

MOP:  
 

Find )z(  in order to                                              (1) 

))z(F(Min  

 
The solution would therefore be a Pareto set P *and Pareto front PF*.  
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Once these are found, the motivation of keeping robust solutions (undesired changes 
would cause a small as possible change in the initially designed performances) is 
treated. With that motivation in mind, we suggest that once the Pareto set and front of 
the problem are found, the control problem, may be defined over a period of time t, as: 
 

Find )C,z( o where C is T
n21 ]C,.....,C,C[C =                                                            (3) 

In order to: )e(Min where ∫ −=
t

o

o )z(F)z(Fe  

The control schema is shown in Figure 2. It is depicted that the set-point for the con-
trol is an optimal vector, which is found by solving Equation 1. Note that there are 
several control loops, each designed for one solution of the Pareto set. The schema is 
in fact a regulation control for keeping the error at zero.  

 

Fig. 2. The active control schema 

The initial performances belong to the Pareto front. As a result of physical deterio-
ration (change in x), the performances alter. The error signal is a normalized distance 
in objective space between the set-point and the new performances. The controller 
(that is to be designed) should change y in order to minimize the error caused by the 
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disturbance, x. Such a minimization would increase the robustness of a solution as it 
diminishes its performances' changes due to the physical deteriorations. 

The controller design has to be considered as an a-posteriori step to finding the op-
timal set. Commonly, when designing a controller, the relations between the inputs (x 
and y) and the outputs (the multi objective performances) should be modeled and 
analyzed. When considering an MOP, the model is inherently given by the objective 
functions. Yet, in order to design a successful controller, the influence of changes in x 
and separately those of y on the performances should be found. This influence might 
be modeled through transfer functions, state space representations artificial neural 
nets, fuzzy relations, etc. In the context of the current methodology, we try not to 
confine the solutions to any of these modeling techniques as this might harm the ge-
neric nature of the suggested problem. This also implies that we try to avoid any spe-
cific controller design approach. Yet, in order to demonstrate the applicability of the 
problem, the next section contains several examples in which we design controllers by 
utilizing an evolutionary search.  

4   Examples 

4.1   An Artificial Example 

In the current sub-section, an artificial academic example is considered. It involves a 
robust optimization within a bi-objective space. The problem is to design optimal 
robust solutions to the problem: 

Find  C,y,x oo  in order to: ,xy,
y

x
Min ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
 5y1,10x2:toSubject ≤≤≤≤ (here, 

1mn == ) and t2.1x)x(f o +=  (t is time). 

As the first step of solving the problem, NSGA-II, [6] is implemented in order to 
find the Pareto set and the Pareto front (see Equations 1 and 2). The latter is depicted 
in the left panel of Figure 3. A population of nine individuals (such a small number 
has been chosen for the sake of visibility) are run for 500 generations using a real 
valued coding with uniform cross over (50%) and mutation of 5%. The right panel of 
Figure 3 depicts the Pareto front (stars) and the degraded performances (circles) after 
deterioration period of t=1. It is depicted that some of the Pareto solutions are more 
affected by the degradation (e.g. the boundary solutions). This might be interpreted 
such that a boundary solution is not robust as say the center one to such deterioration. 

In order to improve the robustness, active control is implemented by tuning y. In 
the current paper, we chose a straightforward approach to tune this variable. We chose 

a proportional controller such that, ekyy c
o ⋅+= , where kc is the proportional con-

troller gain and e is defined in Equation 3. 
The tuning of the controller's gain is sequentially implemented for each Pareto set's 

solution. This is done by running a simple genetic algorithm to find the best kc within 
an interval: 5k5 c ≤≤− that minimizes e for each solution. The different gains (one for 

each solution) starting from the upper left boundary of the Pareto front (which is  
depicted in figure 3), are: -3.23, -2.74, -2.24, -1.55, -0.56, 0.46, 0.93, 0.92, 0.71. 
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Fig. 3. Left panel: The Pareto front.  Right panel: the deterioration affect on the performances 
(circles) and the control resulting performances (squares). 

Implementing the control mends the performances to performances with smaller devia-
tions from the original Pareto front. The performances that are the result of the control 
are depicted in the right panel of Figure 3, designated by squares. The improvement in 
performances is clear (reduced error). This improvement may be profoundly depicted 
for the boundary solutions. Extending the use of the same gains for further time steps is 
tested next. Figure 4 depicts one Pareto solution performances (designated by a star), 
the shifted deteriorated performances for t = [0, 4] when no control action is taken as 
diamonds, the deteriorated performances when control is implemented by circles, and 
the results of the control action by squares. It is unambiguous that with all time sam-
ples, the suggested approach enhances robustness. This may be depicted by the con-
centration of circles and squares in the vicinity of the star in contrast to the remoteness 
of the diamonds from it.  

It is noted that, although the same gain computed for the first step has been used, 
the robustness has been enhanced for four time steps. Yet, it is expected that utilizing 
such a controller, which is a linear controller, within non-linear functions would per-
form well in the vicinity of the initial conditions (around the Pareto front) and would 
not perform as well if the work conditions change substantially. This inherent prob-
lematic issue might be depicted if the same controller is used for six time steps. The 
left panel of Figure 5 depicts the instability occurring at the 5-th time step. Until the 
4-th time step the robustness is the one of Figure 4; yet starting from the 5-th time, 
step, the controller is unable to halt back the degradation (see the circle at [1.0, 8.1] 
and square at point [2.2, 3.8]).   

These results might be further supported by depicting the right panel of the figure. 
Until the 5-th time step, higher robustness is enhanced by the control approach, which 
is designated in Green when compared to an uncontrolled deterioration, which is 
designated in blue. Yet, starting from the 5-th step, this advantage is disrupted by an 
unsuccessful control action. 

In order to improve the performances of the control, adaptive control might be con-
sidered. As highlighted in the methodology, here the purpose is to demonstrate the 
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Fig. 4. Samples at t=[0,4], with the control (circles and squares) and without the control 
(diamonds) 

 

Fig. 5. Incapability of the control to halt back the increase in error (from the 5-th step) 

approach rather than develop or improve controllers. Therefore, we took a simple and 
straightforward tuning approach. At each time step, a genetic search for the best kc 
has been conducted. This resembles the search for the initial kc, repeated for each 
solution, several times (each time for another time sample). The results are depicted in 
Figure 6. Comparing Figures 5 and 6, shows a clear improvement in robustness. 

When all controllers are designed (one for each Pareto solution), the decision maker, 
may be presented with more knowledge concerning the alternative optimal solutions. 
Now, each solution may be accompanied with a measure of robustness (the overall 
error, which is computed from 3). The robustness of solutions, as defined in Equation 
3, depends on the time, t.  Therefore, this may result in preference of different solu-
tions when robustness over different time durations is tested. 

For the current problem, adaptive control over five time steps and over ten time steps 
has been tested for all nine Pareto solutions. This ended up with two different most 
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Fig. 6. An adaptive tuning of gains, showing major improvement 

robust solutions: those with performances at [0.6, 6.0] and [1.0, 4.0] (see Figure 3), 
respectively. 

4.2   An Engineering Example 

The engineering problem is depicted Figure 7. 

  

Fig. 7. A schema of the engineering problem  

The dynamic model for the system is: )tcos(F)t(xh)t(hy)t(hm o ω=++ , where 
m=20 kg, is the mass, y is the viscous damping coefficient, x is the spring constant, 
Fo=1000N is the excitation amplitude and ω  its frequency. It may be shown that in 
the steady state response the amplitude of oscillations would be: 

222

o

)y()mx(

F
h

ω+ω−
= , 

It is assumed that the spring's deterioration might be modeled such that 

tx1.0x)t(x oo ⋅−= , which might be a result of hardening of the spring due to extended 
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Fig. 8. Robustness of one Pareto solution with active control (blue) and without it (green) 

use. The objectives of the MOP are to minimize the response overshoot and steady-
state- error, that is:  
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The deterioration might be compensated by altering the outlet orifice (change of y). 
The improvement in robustness may be highlighted by comparing the suggested ap-
proach' results with the no control approach by comparing the blue and green curves 
of Figure 8, respectively.   

5   Summary and Conclusions 

In the current paper, we suggest a novel research direction. It deals with the idea of 
controlling the performances of solutions within multi objective spaces in order to 
achieve robustness to physical deterioration. The current approach assumes that some 
of the design parameters are subjected to such deterioration, while others may be 
tuned in order to improve the degraded performances. The problem is posed as a regu-
latory feedback control schema. The main purpose of the current paper is to highlight 
the possibility of such a control and to demonstrate its potential in improving the 
robustness of solutions. The approach is to initially evolve the Pareto set and then to 
tune the controlled parameters in order to maintain minimal changes to these initial 
performances. It has been shown that the approach may improve the robustness of 
solutions and prolong the serviceability of products. It is clear that the current work is 
just the launch of an elaborated research, which may be further elaborated by e.g., a. 
Designing a global controller that may cope with all Pareto solutions, b. Exploring 
other more applicable real life examples from various fields of interest other than 
engineering, c. Developing an evolutionary algorithm that simultaneously searches for 
optimal robust solutions, d. Suggesting servo related problems and controllers.  
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Abstract. Thermoelectric devices are indeed device of future as they
are green cooling devices. Tough still under research, performance of
these devices is main concern to engineers for their suitability for prac-
tical use. In the present work, the two main concern i.e. Coefficient of
Performance (COP) and Rate of Refrigeration (ROR) of such devices are
simultaneously addressed. NSGA-II is used for finding Pareto-optimal
solutions under three different settings for ambient conditions. Mathe-
matical model is considered and effect of ambient conditions on optimal
performance is also highlighted.The results of optimization are verified
by theoretical governing equations for Thermo-Electric Coolers (TEC).
It is concluded that Bi-Objective optimization of performance of single
stage TEC is possible, relevant and have huge potential for practical use
by designers of TEC.

Keywords: TEC, Practical Performance Optimization, Multi-Objective
Optimization, NSGA-II.

1 Introduction

Thermoelectric generation technology, as one entirely solid state energy conver-
sion way can directly transform thermal energy into electricity by using ther-
moelectric transformation materials. A thermoelectric power converter has no
moving parts, and is quite, compact, highly reliable and environment friendly.
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Due to these merits, this generation technology is presently becoming a notice-
able research direct [4].

Thermoelectric coolers (Also known as thermoelectric refrigerators or Peltier
modules) have been employed in various applications of small volume devices,
typical of which are to stabilize the temperature of solid state lasers, to cool
infrared detectors and charge coupled devices, and to increase the operating
speed and reduce unwanted noise of integrated circuits [5]. Peltier modules have
also been employed in portable cool boxes for medicine/serum transport and for
picnic items storage [6].

Thermoelectric refrigeration and generation devices occupy a niche market,
because they are quite and reliable and friendly to our environment. However,
thermoelectric refrigeration appears to has made little impact on the domes-
tic refrigeration market. The main factors that determine the marketability of
a thermoelectric refrigerator are price and running cost, together with reliabil-
ity, quietness, flexibility and temperature stability are important considerations.
Price reflects the manufacturing cost, while the running cost is mainly deter-
mined by the coefficient of performance (COP) of the cooling unit. Although the
COP of a Peltier module is lower than that of conventional compressor units,
efforts have been made to develop the thermoelectric refrigerators to exploit the
advantage associated with this solid state energy-conversion technology [7].

2 Past Studies

There has been a considerable interest during the past ten years in finding new
materials and structures for use in green, highly efficient cooling and energy
conversion systems [8,9]. A good thermoelectric material should possess large
Seebeck coefficient (α), low thermal conductance (K) to retain the heat at the
junction and maintain a large temperature gradient and low electrical resistance
(R) to minimize Joule heating. These desirable properties are embodied in a so-
called thermoelectric material property figure of merit Z. To describe material
more useful method is dimensionless figure of merit (ZT ), where T is the absolute
temperature of interest. ZT provides a measure of the quality of such materials
for applications and is defined by ZT = α2T/RK [8]. The increase in ZT leads
directly to the improvement in the cooling efficiency of Peltier modules and in
energy conversion efficiency of thermoelectric generators [10]. Much effort has
been made to raise Z of thermoelectric materials using various methods, so that
they have some improvements in Z (For example, 3.20× 10−3K−1 at 300 K [11]
and 3.99×10−3K−1 at 298 K [12] for the n type Bi-Te alloys and 3.70×10−3K−1

at room temperature [13] and 4.58×10−3K−1 at 308 K [14] for the p-type Bi-Te
alloys). But their values are not sufficient to improve dramatically the cooling
efficiency.

In addition to Thermoelectric (TE) material improvements, there are many
areas in which research is continuing to improve the performance of thermo-
electric cooler (TEC). An assembly technique which affects the temperature
difference across the TE module is also being developed that may improve the



406 P.K.S. Nain, S. Sharma, and J.M. Giri

device performance. There is a technique that involves the thermal isolation of
each of the thermoelectric couples in the direction of fluid flow [15]. Individual
thermoelectric elements which are thermally isolated can additionally heat or
cool a working fluid to increase system performance compared to a standard
device. Coefficient of performance (COP) approaches the theoretical maximum
of a continuous system by increasing the number of TE elements. COP increases
up to 120% over conventional TE devices. Experimentally, the thermal isola-
tion technique has shown measured performances ranging from 60 to 90% of the
theoretical COP and at least 50% greater than the theoretical best COP for
conventional TE systems [16]. More experimentation in this area is on the way.

3 Mathematical Modeling

A simple thermoelectric refrigeration system consists of a single stage thermo-
electric device, which is composed of large number of p-and n-type semiconductor
elements connected electrically in series and thermally in parallel as shown in
Fig.1, where Qh and Qc are rate of rates of heat rejection and input from the
device to the high temperature sink and from low temperature cold space to the
devices respectively. M indicates the pair number p- and n-type semiconduc-
tor elements. The refrigeration system is operated between the heat reservoirs
at the temperatures Th and Tc. The thermoelectric device is insulated; both
thermally and electrically, from its surroundings except its junction reservoir
contacts. When the electric current I flows through the thermoelectric device,
the heat MαITc and MαITh are absorbed from the low temperature cooled
space and released to the high temperature heat sink by the thermoelectric de-
vice, respectively, due to Peltier effect. Where, α is the Seebeck coefficient of a
pair of semiconductor elements.

Heat abstracted from low temperature

Qc = MαITc − 1
2
I2MR − MK(Th − Tc) , (1)

Heat rejected to high temperature

Qh = MαITh +
1
2
I2MR − MK(Th − Tc) . (2)

N P N P

T

Q

h hQ

c Tc

M pairs

Fig. 1. General schematic diagram of thermoelectric refrigerator
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Here, I2MR is the Joule heat which goes half to high temperature sink and half
to low temperature source. MK(Th−Tc) is the heat transfer due to temperature
difference. Where, K and R are the thermal conductance and the electrical
resistance of a pair of semiconductor elements.

Using Eqn.1 and 2 and the definition of the figure of merit Z = α2/(RK) of
the semiconductor elements, we obtain the Coefficient of Performance (COP) as

ε =
Qc

Qh − Qc
=

j − θ
2

j2

ZTh
+ (1 − θ)

(θ − 1)j + θ j2

Z Th

. (3)

where j = αI/K, θ = Th/Tc, and P = Qh − Qc is the power input. It is seen
from Eq.3 that putting COP to be zero for a thermoelectric refrigerator, we get
two values of j (called dimensionless current)

j = ZTc[1 −
√

1 − 2(θ − 1)/ZTc ] = jmin , (4)

j = ZTc[1 +
√

1 − 2(θ − 1)/ZTc ] = jmax . (5)

For a practical refrigerator, the value of ε (COP) must be real and positive.
It is obvious that only if the dimensionless electric current of a single- stage
thermoelectric refrigerator lies in the region between jmin and jmax, i.e.

jmin ≤ j ≤ jmax , (6)

and the temperature of the heat sink to the cooled space satisfies the following
condition:

θ <
1 +

√
1 + 2ZTh

2
. (7)

If Eqn. 6 and 7 are not satisfied simultaneously, a single stage thermoelectric
refrigerator would lose its role. Further, Rate of refrigeration for a single stage
thermoelectric refrigerator

R = Qc

Dimensionless rate of refrigeration:

r =
Qc

MKTh
=

MαITc − 0.5I2MR − MK(Th − Tc)
MKTh

=
j

θ
− j2

2ZTh
+(

1
θ
−1) . (8)

There are two important performance criteria of thermoelectric refrigerator, first,
rate of refrigeration (ROR) and second, coefficient of performance (COP) which
can be optimized to enhance the utility of the device.

3.1 COP and ROR Characteristic Curves

Following the governing equations as mentioned in the mathematical modeling
part, a characteristic plot for COP against dimensionless current j at three differ-
ent values of θ namely, 1.1, 1.2 and 1.3 for single stage thermoelectric refrigerator
is drawn in Fig. 2. Similarly, a plot of ROR at same values of θ is also drawn in
Fig.3.
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The fact which is observed with these values given in Table 1 and Fig. 2 are:

1. The peak value of COP is shifting towards higher values of dimensionless
current (from 0.22 to 0.6) with increase in value of θ = Th/Tc. It shows that
as we increase the temperature ratio for obtaining peak value of COP we
have to supply more current.

2. The peak value of COP is also decreasing with increase in value of θ. It
is decreasing from 1.22 to 0.1. It indicates the performance of single stage
TEC is deteriorating with increase in source and sink temperature ratio (θ)
of TEC.

3. Now if we try to plot COP Vs. j curves for further higher values of θ= 1.4
and so on, we find no curve. It shows that with increase in the temperature
ratio single stage refrigerator becomes ineffective.

Table 1. COP Vs. Dimensionless cur-
rent

θ j COP

0.1 0
1.1 0.22 1.22

1.7 0
0.22 0

1.2 0.4 0.38
1.42 0
0.4 0

1.3 0.6 0.1
1.15 0

Table 2. ROR Vs. Dimensionless cur-
rent

θ j ROR

0.1 0
1.1 0.9 0.32

1.7 0
0.22 0

1.2 0.81 0.18
1.42 0
0.4 0

1.3 0.75 0.07
1.15 0
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Observing the values given in Table 2 and Fig. 3, it is noted that:

1. The peak value of ROR is shifting towards lower values of dimensionless
current (from 0.9 to 0.75) with increase in value of θ = Th/Tc. It shows that
as we increase the temperature ratio θ, for obtaining peak value of ROR we
have to supply less current.

2. The peak value of ROR is also decreasing with increase in value of θ. It is
decreasing from 0.32 to 0.07. It indicates the performance of single stage
TEC is deteriorating with increase in source and sink temperature ratio (θ)
of TEC.

3. Now if we try to plot ROR Vs. j curves for further higher values of θ= 1.4
and so on, we find no curve. It shows that with increase in the temperature
ratio single stage refrigerator becomes ineffective.

Hence, as we observe that it shows a conflicting behavior of single stage thermo-
electric refrigerator as one tries to maximize COP and ROR simultaneously for
a given value of θ, because it has shifted peaks of maximum COP and maximum
ROR with respect to values of dimensionless current, which makes impossible to
optimize both objectives simultaneously. It implies possibility of Pareto-optimal
solutions as neither of the objectives cannot be improved without making a sac-
rifice on other. It makes this problem of optimizing performance of single stage
TEC, a perfect case for multi-objective optimization[1,2,3].

It also indicates that for higher values of θ greater than 1.3, the single stage
TEC becomes ineffective as no feasible values of COP and ROR is observed. It
indicates a possible use of multi-stage TEC in place of single stage TEC for cooling
situations having high ambient temperatures such that Th/Tc is greater than 1.3.

4 Simulation Results for Performance Optimization of
Single Stage TEC

The problem of the multi-objective optimization of ROR and COP of thermo-
electric refrigerator is formulated as the following Bi-Objectives optimization
problem:

Max ROR,
Max COP,

Subject to:
jmin ≤ j ≤ jmax.

Three different values of θ, namely 1.1, 1.2 and 1.3 are taken as three separate opti-
mization problems, the results forwhich are presented in this section in same order.
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [1,2,3] has been used for
multi-objective optimization. General parameter settings for multi-objective opti-
mization of COP and ROR are follows. A population size of 200 for 100 generation
is run with distribution index for crossover set at 10 while for mutation is taken
20. The probability of crossover is taken 0.8 while for mutation is taken 0.4. The
variable bounds on dimensionless current is taken from Table 1.
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The algorithm gives result in the form of Pareto-optimal front shown in Fig.4.
in order to validate simulation results, the corresponding characteristic plot of
COP and ROR is given in Fig.5. It is observed from Fig.5 that if we have a
target value of a parameter, say 0.2 value of ROR, this value can be achieved
at two different values 0.4 and 1.4 of dimensionless current. These are shown in
Fig.5 by points 1′ and 2′. Corresponding to point 1′, the COP is 0.95 (Point 1)
at dimensionless current value of 0.4. While, corresponding to point 2′ the COP
is 0.1 (Point 2) at 1.4 value of dimensionless current. It is better to select 0.4
value of dimensionless current because it gives target value of ROR (0.2) with
higher value of COP(0.95). In fact, if we observe Fig.4, NSGA-II has picked up
this point in its results.

It can be observed from Fig.5 that there are two values of dimensionless cur-
rent for a single value of COP or ROR. Between these two values of dimensionless
current, there is range where COP and ROR have conflicting nature. At θ=1.1,
the region from the dimensionless currents 0.22 to 0.9 is the range where both
the parameters have conflicting nature. This range can be seen from Fig.5 where
at 0.22 value of dimensionless current COP & ROR are at points A & A′ respec-
tively and at 0.9 value of dimensionless current COP & ROR are at points B &
B′ respectively. It is clear that we can optimize both the parameters (COP &
ROR) and NSGA-II has picked up these two extremities in its results. It is worth
noticing that the dimensionless current can be used as variable with lower and
upper bounds to get feasible optimized solutions. It should be considered that
making dimensionless current as variable in optimization problem we can mini-
mize the complication since dimensionless current is a value with combinations
of Seebeck coefficient, thermal conductance and electric current.

For implementation of NSGA-II at θ=1.2, GA settings remain same except
the lower limit and upper limit of real variable which is 0.22 and 1.42 respec-
tively. The NSGA-II gives the Pareto-optimal front as shown in Fig.6. The corre-
sponding characteristic plot is given in Fig.7. The extremities of NSGA-II result
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matches with extremities of that range where two parameters have conflicting
nature (point (A, A′) and point (B, B′)). This means that the algorithm success-
fully converged to the Pareto-optimal front. Similar to our previous discussion,
we find that this time also NSGA-II has picked up point (1, 1′) in preference to
point (2, 2′) of Fig.7.

For implementation of NSGA-II at θ=1.3, GA settings remain same except the
lower limit and upper limit of real variable which is 0.4 and 1.1 respectively. The
NSGA-II gives the Pareto-optimal front as shown in Fig.8. The corresponding
characteristic plot is given in Fig.9. The extremities of NSGA-II result matches
with extremities of that range where two parameters have conflicting nature
(point (A, A′) and point (B, B′)). This means that the algorithm successfully
converged to the Pareto-optimal front.
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5 Conclusions and Scope of Future Work

In this work, the need for optimization of single stage TEC performance is
discussed. A mathematical model for single stage TEC is discussed. Later, by
studying characteristic curves for COP and ROR, a framework of multi-objective
optimization problem is developed. The Pareto-optimal solutions for three dif-
ferent settings of (Th

Tc
) values up to 1.3 are reported.

The potential use of single stage TEC can be significantly improved by choos-
ing optimum values of current to device. In this work, a dimensionless approach
in optimization is employed, which combines several significant material prop-
erties into meaningful dimensionless groups. Such an approach simplifies opti-
mization problem as now the optimizer (NSGA-II) has to deal with reduced
problem variables. Using such an approach leads to greater flexibility to the
designer of TEC as the can manipulate any of the variables present in the di-
mensionless group to attain Pareto-optimality. In present work, both objectives
as well as problem variable are dimensionless, making the presented optimiza-
tion approach very powerful, significant, meaningful to a TEC designer. Current
work deals with dimensionless COP, dimensionless ROR and dimensionless cur-
rent. Even the setting of θ, which is the only limitation of the present work is
dimensionless as it deals with ratio of temperature. In era of microprocessors,
which are finding increased applications in automobile industries for enhancing
performance of vehicle by storing and controlling timing and quantity of fuel
injection and ignition advances, a dream to control performance of TEC by mi-
croprocessor based current controller is not very far. In such case, a look-up
table containing Pareto-optimal settings for TEC can be stored and be used to
enhance the performance of TEC. As we know that, when initially a cooling de-
vice is switched on, θ value is low, as temperature of refrigerated space is almost
equal to ambient temperature. As time progresses this difference and hence θ
value starts increasing till it saturates. This makes the very strong case of use of
Pareto-optimal solutions for simulations presented in this work in conjunction
of microprocessor based current controllers. It will ensure that under each oper-
ating condition, TEC will be operating at nearest possible Pareto-optimal point
and hence will be a makeup for their low COP and ROR when compared to tra-
ditional cooling devices. It is also found that beyond (Th

Tc
) = 1.3, the single stage

TEC lose their effectiveness as coolers and hence multi-stage TEC suitability for
such task should be explored.
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Abstract. Multi-objective optimizations of various conflicting objec-
tives in designing particle reinforced silicone rubber are conducted using
evolutionary algorithms to reduce the processing time of soft tooling pro-
cess. A well-established evolutionary algorithm based multi-objective op-
timization tool, NSGA-II is adopted to find the optimal values of design
parameters. From the obtained Pareto-optimal fronts, suitable multi-
criterion decision making techniques are used to select one or a small
set of the optimal solution(s) of design parameter(s) based on the higher
level information of soft tooling process for industrial applications.

Keywords: Multi-objective optimization problem; evolutionary algo-
rithm; particle reinforced flexible mould material; soft tooling; cooling
time.

1 Introduction

In soft tooling (ST) process, there are some polymeric flexible (mould) mate-
rials (namely Silicone rubber (SR), Polyurethane, etc) used for making mould.
The cooling time in soft tooling process using such conventional mould materials
is normally high (as those materials possess poor thermal conductivity) which
is not beneficial in competitive market. This is overcome by the practitioners
through inclusion of highly thermal conductive filler particles into the mould
material. From experimental studies [1], it has been observed that equivalent
thermal conductivity of particle reinforced flexible mould material (FMM) in-
creases with the enhancement of filler content in the composite like other polymer
composites. On the other hand, the effective modulus of elasticity of the com-
posite material is also rising simultaneously with increasing the filler content.
But, in this case high modulus of elasticity is not desirable as increase in stiff-
ness of mould box, creates many difficulties particularly removing the pattern
from the mould box, etc. Moreover, high content of fillers in the melt mould
material reduces its flow-ability by enhancing its effective viscosity [2]. There-
fore,determination of optimum amount of filler content is an important issue in
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c© Springer-Verlag Berlin Heidelberg 2010



MOO of Particle Reinforced Mould Material 415

order to design and develop a suitable particle reinforced flexible mould material
for useful application in soft tooling process. In the present work, SR compos-
ite mould materials are designed using aluminium (Al) and Graphite (Gr) filler
particles based on an evolutionary algorithm for improvement of soft tooling
process.

In order to accomplish this, the effective thermal conductivity of mould ma-
terial should be high enough along with limiting the effective modulus of elas-
ticity and viscosity to an acceptable/minimum value for a given configuration of
wax/plastic pattern. It can be achieved by keeping the controlling parameters,
namely volume fraction, size and shape factor of filler particle to optimum values
for a given particle reinforced flexible mould material. Since, in this optimization
process there are three primary conflicting objectives (maximization of thermal
conductivity, minimization of modulus of elasticity and minimization of viscos-
ity), it can be solved by suitable multi-objective optimization (MOO) tool. In the
present study, we have adopted a well-established evolutionary algorithm (EA)
based MOO tool, NSGA-II (an elitist non-dominated sorting genetic algorithm)
proposed by Deb et al. [3]. After obtaining the Pareto-optimal fronts by solving
the multi-objective problem (MOP),a suitable (multi-criterion decision making)
MCDM technique is used to select one or a small set of the optimal solution(s)
of design parameter(s) based on the higher level information of the process of
soft tooling for industrial applications.

2 Problem Definition

The proposed procedure of designing the particle reinforced mould material is
carried out through two kinds of approaches. The formulations of MOPs corre-
sponding to these approaches are presented in the following. In the problem I, we
have considered the maximization of equivalent thermal conductivity (kc) and
minimization of modulus (Ec) of elasticity are the objectives where the equiva-
lent viscosity (ηc) is assumed as constraint for simplicity of the problem. On the
other hand, all the three properties of mould material are treated as objectives
to carry out a deeper investigation by treating them with equal importance in
designing the mould material.

2.1 Problem I

The optimization problem evolved in ST process in order to make it cost effective
by reducing cooling time as well as keeping more ease in casting process is
described below.

f1 = Maximize kc(kf , kp, Ps, Sf , T, Vf) (1)

f2 = Minimize Ec(kf , kp, Ps, Sf , T, Vf ) (2)

Subject to (for a given composite system of flexible mould material and conduc-
tive filler material)
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0 ≤ Ps ≥ 500 (3)

0 ≤ Sf ≥ 4.0 (4)

0 ≤ Vf ≥ 100 (5)

23◦C ≤ Ps ≥ 200◦C (6)

φm(Ps, Sf ) − Vf

φm(Ps, Sf )
≥ 0 (7)

ηLimiting
c − ηc(Ps, Vf , ηp) ≥ 0 (8)

and kf , kp, Gf , Kf , Kp and ηp are constant.

2.2 Problem II

f1 = Maximize kc(kf , kp, Ps, Sf , T, Vf) (9)

f2 = Minimize Ec(kf , kp, Ps, Sf , T, Vf ) (10)

f3 = Minimize ηc(Ps, Sf , Vf , ηp) (11)

Subject to Equ. (3) to Equ. (7) for a given composite system of flexible mould
material and conductive filler material.

The function φm(Ps, Sf ) is called the maximum loading level (maximum pack-
ing fraction) which is determined using the empirical expressions stated in [4].
The upper and lower limits of Ps and Sf are fixed based on the fact that the
particles having these sizes and shape factors are most suitable for handling in
practical applications.Furthermore, the size and shape factors of common non-
metallic filler materials those are commercially available in particulate form fall
in those ranges. In soft tooling process, the preparation of mould is generally car-
ried out in room temperature. Therefore, in this work, the range of temperature
is set from 23◦C to 30◦C.

3 Various Models/Objective Functions

In the authors’ previous work, a genetic-fuzzy model of equivalent thermal con-
ductivity of particle reinforced polymer composites was developed based on fuzzy
logic rules [5]. The developed fuzzy rule based model is adopted here in order to
investigate the role of Al and Gr fillers and design of composite mould materials
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so as to reduce cooling time in ST process. On the other hand, it was found that
the model proposed by Lielens [6] provides close agreements with experimental
data of particle reinforced mould materials compare to other models [1]. The
relative viscosity model presented by Kriger and Dougherty [7] is adopted in
the present study. The values of the controllable parameter of Kriger-Dougherty
model are found as 2.8697 and 10.3459 for the Al and Gr filled flexible mould
material composite systems, respectively [2].

4 Evolutionary Multi-Objective Optimization Algorithm

The evolutionary algorithms are now well known optimizers influenced by the
principles of natural selection and natural genetics [8]. In case of MOPs, the ge-
netic search is performed following the concept of Pareto-opti-mality [9]. Having
several conflicting objective functions, the concept of optimum changes, from
the unique global optimum, as used in the single objective problems, to a set
of solutions providing the best possible compromises between the objectives,
known as the Pareto set. The very definition the Pareto-optimality entails that
no other solution could exist in the feasible range that is at least as good as some
member of the Pareto set, in terms of all the objectives, and strictly better in
terms of at least one. The Pareto set thus offers a number of equivalent optimum
solutions, out of which a decision maker can easily pick and choose the most suit-
able ones. NSGA-II (an elitist non-dominated sorting genetic algorithm) is an
efficient evolutionary algorithm to find a set of Pareto-optimal solutions [3].

In NSGA-II, the offspring population, Qt is first created using the parent
population, Pt. However, instead of finding the non-dominated front of Qt only,
first the two populations (Qt and Pt) are combined together to form Rt of size
2N . Then, a non-dominated sorting is performed based on the measure of non-
domination rank of the individuals to classify the enter population Rt. Once the
non-dominated sorting is over, solution(s) of different non-dominated fronts, one
at a time fill the new population. The fillings start with the best non-dominated
front, and so on. Since the overall population size of Rt is 2N , not all fronts
may be accommodated in N slots available in the new population. All fronts,
which could not be accommodated, are simple deleted. When the last allowed
front is being considered more solutions may be present in the last front than
the remaining slots in the new population. Instead of arbitrarily discarding some
members from the last front, it would be wise to use a niching strategy to choose
the members of the last front, which decide in the least crowded region in that
front. Based on this new population another offspring population Qt is created
using genetic operators like selection, (crowded) crossover and mutation in the
next generation, and this cycle is continued till a specified number of generations
is reached. In the present work, we have adopted two different niching strategies
to select the solutions from the last considered front, crowding distance approach
which is associated with original NSGA II [3] and clustering approach [10]. In
order to solve the problem I defined in Section 2.1, original NSGA II utilizing
crowding distance approach is used, whereas to solve the problem II defined
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in Section 2.2, we have replaced the crowding distance approach by clustering
approach in the NSGA-II by by realizing that crowding distance approach does
not work well with higher number of objective functions.

Since the decision variables involved in optimization of equivalent thermal
conductivity and modulus of elasticity are continuous type, we have used real-
coded GA and the values of GA-parameters are adopted in NSGA-II for solving
both the problems stated in Section 2 are Population size=500; Number of gen-
erations=200; Mutation probability=1/no of decision variable; Crossover prob-
ability=0.98; Distribution Index for real-coded crossover=20; and Distribution
Index for real-coded mutation=100.

5 MOO with Considering Viscosity as Constraint

The definition of this MOP while considering viscosity of melt particle reinforced
FMM as constraint is explained in Section 2.1. In this study, three levels of
viscosity melt FMM composite are considered such as Low (10Pas), Medium
(50Pas), and High (200Pas).

Fig. 1 describes the Pareto-optimal fronts of optimum values of kc-Ec combi-
nations for different composite systems of SR when the viscosity is considered
as a constraint in the MOO process carried out using NSGA II. For all three
viscosity levels, it has been found that the Pareto-front of the Gr-SR composite
overlaps with that of the Al-SR system. Thus, given a choice between the two
combinations of composite systems, one cannot give preferences on any of them.

(a) (b) (c)

Fig. 1. Pareto-optimal fronts in optimization of kc and Ec of FMM composites for
different viscosity labels: (a) 10Pas (b) 50Pas and (c) 200Pas

From the above studies; it is found that all the decision variables (Ps, Sf and
T ) seem constant except Vf for both the composite systems. After analyzing the
variations of Vf with kc in different viscosity levels it is found that Vf seems to
be varying linearly with kc with the empirical expressions, Equ. (12) and Equ.
(13) in Al and Gr filled SR composites, respectively:

Vf = 2.8965 Kc − 0.4385 (12)

Vf = 3.2453 Kc − 0.574 (13)
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Relationships between Vf and kc are valid only for the Pareto solutions, i.e. for
some fixed values of other variables. It has been found that the upper limit of Vf

attains lesser value for the lower viscosity level. Increase of upper limit of Vf is
found more in the initial stage of increasing the viscosity level and gradually it
diminishes. Later, it does not change for any further increase of viscosity level.

6 MOO with Considering Viscosity as an Objective

The Pareto-optimal fronts for maximization of kc, minimization of Ec and min-
imization ηc in Al particle reinforced SR composite systems is shown in Fig. 2.
From Fig. 2, it is observed that Ec and ηc are correlated to each other, because
it has been found that minimization of Ec also minimizes ηc. However, in kc-Ec

combination, Ec is not correlated with kc. Similarly in kc-ηc combination ηc is
also not correlated to kc. Thus, to find the optimum values of decision variables
any of the kc-Ec or kc-ηc can be considered. Form the above studies; it is found
that all the decision variables (Ps, Sf and T ) seem constant except Vf . and the
variation of Vf with kc is illustrated using Equ. (14) and Equ. (15).

Vf = 2.8737 Kc − 0.4265 (14)

Vf = 3.1097 Kc − 0.4473 (15)

Pareto-optimal
front

Pareto-optimal
front

(a) (b)

R

R

Fig. 2. Pareto-optimal fronts in optimization of kc, Ec and ηc of silicone rubber com-
posite filled with (a) Al (b) Gr

Note that, the variation of kc with respect to Vf looks identical with that found in
Equ. (12) and Equ. (13)., respectively which suggests the existence of correlation
among Ec and ηc in Al filled SR composite system.

7 Selection of Preferred Solution(s) Based on MCDM

Although there are advantages of knowing the range of each objective for Pareto-
optimality and the shape of the Pareto-optimal frontier itself in a problem for an
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adequate decision-making, the task of choosing a single preferred Pareto-optimal
solution is an important task because the practitioners finally adopt the chosen
preferred solution for implementation in industrial applications. Nowadays vari-
ous MCDM techniques are available and following a classification by Veldhuizen
and Lamont [11] the articulation of preferences may be done either before search
(a priori) or after search (a posteriori) or during search (progressive) of the op-
timization process. In the present problem, we have adopted two such MCDM
techniques after the optimization process: reference point based technique [12] to
identify a single preferred solution, and selection of a set of (few) preferred solu-
tions by identifying knee-region [13] on the Pareto-front based on trade-off and
then DM chooses a solution from the knee zone based on higher level information.
Typical other methods of selecting a preferred solution from the set of Pareto-
optimal solutions are the compromise programming approach [14], the marginal
rate of substitution approach [12], the pseudo-weight vector approach [9], etc.

The DM can decide a reference point based on various aspects concerning
to the problem domain. A well-accepted reference point suitable to all kinds
of MOP is the ideal point. An ideal point is referred to the vector of individual
optimal objective values. In the present application, the ideal point is considered
as a reference point and a single preferred solution is determined by finding
the solution on the Pareto-front having minimum (Euclidian) distance from the
reference point.

After a thorough study on the shape of Pareto-optimal front, sometimes it is
found that there may be solutions where a small improvement in one objective
would lead to a large deterioration in any of the other objectives. These solutions
are called knee-points. The area of the Pareto-front surrounded by such solutions
is termed as knee-region. Without any knowledge about the users preferences, it
may be argued that the region around that knee is most likely to be interesting
for the DM.

Ideal point of Al filled SR composite system is identified from the obtained
Pareto-optimal front shown in Fig. 2(a), as follows: kc = 13.0912; Ec = 723.8;
ηc = 5.29452. The preferred Pareto-optimal solution obtained based on this
reference point is designated by R as shown in Fig. 2(a) and the values of cor-
responding objective functions and decision variables are referenced in solution
no. 1 in Table 1. The preferred solution, R is determined by considering each of
the three properties of al filled SR composite kc, Ec and ηc play as an objective
in the decision-making procedure. In Section 6, we have seen that there exist a
correlation between the objectives, Ec and ηc. Therefore, the preferred solution
can also be decided by taking the projection of the Pareto-optimal front obtained
in 3D into either kc-Ec or kc-ηc plane. The preferred Pareto-optimal solutions
which are the solutions with minimum distance from the ideal (reference) point
obtained in the kc-ηc and kc-Ec planes are referred to P and Q, respectively
as shown in Fig. 3(a) and Fig. 3(b). The related objective function values and
decision variable values corresponding to the preferred points P and Q are en-
listed in Table 1. From the Figures 3(a) and 3(b), it is observed knee-zone is not
clearly visible in the entire Pareto-optimal front (except at both the extreme
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Fig. 3. Projection of Pareto-optimal front of Al filled Silicone rubber composite system
as shown in Figure 2(a) in (a) kc-ηc plane (b) Ec-kc plane and (c) Ec-ηc plane

Table 1. List of optimal solutions based on minimum distance from ideal point: Al-SR
composite

Ideal point Optimal values of Optimal values of Preferred
objectives decision variables solution
kc Ec ηc Ps Sf Vf T

kc = 13.091 6.733 1258.25 10.02 68.871 1.625 18.95 24.0001 Denoted asR
Ec = 723.8 in Fig. 2(a)
ηc = 5.294
kc = 13.091 8.342 1451.93 12.17 68.871 1.625 23.57 24.0006 Denoted as’P ’
ηc = 5.294 in Fig. 3(a)
kc = 13.091 7.641 1363.72 11.16 68.872 1.624 21.56 24.0001 Denoted as ’Q’
Ec = 723.8 in Fig. 3(b)

ends) in both the kc-ηc and kc-Ec planes. The correlation between Ec and ηc is
characterized by the curve as shown in Fig. 3(c).

Ideal point (kc = 12.1101; Ec = 724.781; ηc = 5.33096) of Gr filled SR
composite system considering all the three properties kc, Ec and ηc as objectives
is identified from the obtained Pareto-optimal front shown in Fig. 2(b). The
preferred Pareto-optimal solution, R is obtained based on this reference point as
shown in Fig. 2(b). The values of corresponding objective functions and decision
variables are cited in Table 2. Like Al filled composite, existence of correlation
between Ec and ηc is observed in Section 6, and the preferred solution is decided
by taking the projection of the Pareto-optimal front obtained in 3D into either
kc-Ec or kc-ηc plane. The preferred Pareto-optimal solutions found based on the
minimum distance from the ideal point in the kc-ηc and kc-Ec planes are referred
to P and Q, (in Fig. 4(a) and Fig. 4(b)) respectively. The related objective
function and decision variable values corresponding to the preferred points P and
Q are presented in Table 2. From the Fig. 4(b) no such knee-zone is found in the
Pareto-optimal front in kc-Ec plane. However, in Fig. 4(a), a pronounced knee-
zone is observed (marked by a dotted ellipse) in the middle of Pareto-optimal
front in the kc-ηc. The solutions in this zone are characterized by the fact that
a small improvement in either objective will cause a large deterioration in the
other objective, which makes moving in either direction not very attractive. If we
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Fig. 4. Projection of Pareto-optimal front of Graphite filled Silicone rubber composite
system as shown in Fig. 2(b) in (a) kc-ηc plane (b) Ec-kc plane and (c) Ec-ηc plane

Table 2. List of optimal solutions based on minimum distance from ideal point:
Graphite-SR composite

Ideal point Optimal values of Optimal values of Preferred
objectives decision variables solution
kc Ec ηc Ps Sf Vf T

kc = 12.110 6.96 1294.2 74.3 68.865 1.623 21.25 24.802 Denoted as
Ec = 724.78 R in
ηc = 5.330 Fig. 2(b)
kc = 12.110 9.41 1622.5 262.1 68.867 1.623 28.87 24.0003 Denoted as’P ’
ηc = 5.330 in Fig. 4(a)
kc = 12.1101 7.01 1299.1 75.8 68.871 1.623 21.38 24.802 Denoted as’Q’
Ec = 724.78 in Fig. 4(b)

assume linear preference functions, as (due to the lack of any other information)
furthermore assume that each preference function (kc and ηc) is equally likely,
the solutions at the knee-region are most likely to be the optimal choice of the
practitioners. It is also noticed that the preferred point P as obtained based on
the minimum distance from the ideal point is positioned on the right end of the
dotted ellipse, which may suggest the extent of knee-zone on the right side is
limited to the preferred point P . The correlation between Ec and ηc is found by
the curve as shown in Fig. 4(c).

8 Conclusions

In order to design and develop a suitable particle reinforced silicone rubber mould
material and at the same time to reduce the cycle time of soft tooling process,
multi-objective optimizations of various conflicting mould material properties are
conducted using evolutionary algorithms. In this regard, two different problems
with or with out considering viscosity as an objective are solved using NSGA II
and it is observed that modulus of elasticity and viscosity of particle reinforced
mould material are correlated. Pareto-optimal fronts obtained by solving the
MOPs are presented and the roles of various decision variables are analysed
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using innovization technique. The preferred Pareto-optimal solution(s) selected
by using reference point MCDM technique as well as finding knees on the Pareto-
fronts may be used for making composite silicone rubber mould in industry.
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Abstract. This study investigates the applicability of two elitist multi-objective 
evolutionary algorithms (MOEAs), namely the Non-dominated Sorting Genetic 
Algorithm-II (NSGA-II) and an improved Strength Pareto Evolutionary Algo-
rithm (SPEA2), in the voltage and reactive power optimization problem. The 
problem has been formulated mathematically as a nonlinear constrained multi-
objective optimization problem where the real power loss, the load bus voltage 
deviations and the installation cost of additional reactive power (VAR) sources 
are to be minimized simultaneously. To assess the effectiveness of the proposed 
approach, different combinations of the objectives have been minimized simul-
taneously. The simulation results showed that the two algorithms were able to 
generate a whole set of well distributed Pareto-optimal solutions in a single  
run. Moreover, fuzzy logic theory is employed to extract the best compromise 
solution over the trade-off curves obtained. Furthermore, a performance analy-
sis showed that SPEA2 found better convergence and spread of solutions than 
NSGA-II. However, NSGA-II found more extended trade-off curves in some 
cases and required less computational time than SPEA2. 

Keywords: Optimal VAR dispatch; Elitist multi-objective evolutionary  
algorithms; Fuzzy logic theory. 

1   Introduction 

The classical reactive power optimization problem is to improve the voltage profile of 
the electric power system through optimal adjustments in voltage controllers while 
minimizing the transmission power losses and the allocation cost of additional VAR 
sources. However, these objectives can no longer be considered alone due to voltage 
security concerns. Voltage stability should be taken into consideration because vol-
tage collapse may occur if ever the power system fails to supply the reactive power 
demand. Moreover, the use of shunt compensation for larger power transfer can bring 
the instability point closer to normal values. With the growing concerns of voltage 
security, voltage collapse has been considered as a reactive power problem which is 
mainly influenced by load behavior. Since, voltage collapse is characterized by a pro-
gressive and uncontrollable drop in voltage magnitudes, the load bus voltage devia-
tions has been used as an objective during the reactive power optimization. Therefore, 
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the aim of the voltage and reactive power optimization problem is to achieve a correct 
balance between economic and voltage security concerns.  

The problem is formulated mathematically as a nonlinear constrained multi-
objective optimization problem. The traditional approach to solve the problem by 
combining the objectives using the weighted-sum or parameterized method can no 
longer be considered because such an approach may either result in a single optimal 
solution or may require multiple runs to generate the set of non-dominated solutions 
by varying the parameters. Moreover, the use of the load bus voltage deviations as an 
objective to improve the stability of the system makes the problem a multi-objective 
problem with conflicting objective functions. The ability of MOEAs to explore the 
solution space and to find tradeoffs between multiple conflicting objectives in one 
single run have made them attractive for solving such problem. 

Some researchers have carried out simultaneous optimization of multiple conflict-
ing objectives using MOEAs. Among these methods, excellent results have been  
obtained by Abido [1] by using the Strength Pareto Evolutionary Algorithm (SPEA) 
[2] to generate a set of well distributed Pareto-optimal solutions with satisfactory di-
versity. However, the clustering technique used in SPEA to reduce the size of the  
archive, though maintaining a good diversity, does not guarantee the preservation of 
the boundary solutions. An improved version of SPEA, known as SPEA2 [3], has 
been proposed to eliminate the main weaknesses of its predecessor. 

NSGA-II proposed by Deb et al. [4] and SPEA2 proposed by Zitzler et al. [3] pro-
vide excellent results as compared with other MOEAs proposed in the literature. This 
paper presents a comparative application of these two state-of-the-art MOEAs to the 
voltage and reactive power optimization problem. Simulation results considering dif-
ferent combinations of the three objectives are presented for a sample test system. 
Moreover, fuzzy logic theory [5] is applied to extract the best compromise solution 
over the trade-off curves obtained. Ultimately, some performance metrics are used to 
evaluate which one of the two implemented MOEAs performs better. 

2   Problem Formulation 

The voltage and reactive power optimization problem involves the simultaneous op-
timization of the real power loss, the load bus voltage deviations and the allocation 
cost of additional VAR sources which are conflicting objectives. Generally, the prob-
lem can be formulated as follows. 

2.1   Objective Functions 

Real Power Loss 
 
The classical reactive power optimization problem of minimizing the real power loss 
in the transmission lines can be mathematically expressed as follows: 

   2∈∈ ,
 

(1) 
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where  is the set of numbers of transmission lines in the system;  is the conduc-
tance of the  transmission line between buses  and ;  is the voltage at bus 
 of the  transmission line. 

 
Voltage Deviation 
 
This objective is to minimize the sum of the magnitude of the load bus voltage devia-
tions that can be expressed as follows: 

  | 1.0|∈  (2) 

 
where  is the set of numbers of load buses. 

 
Investment Cost 
 
The allocation cost of additional VAR sources consists of a fixed installment cost and 
a variable purchase cost that can be stated as follows [6]: 
  ∈  (3)

 

where  is the set of numbers of load buses for the installation of compensators;  
is the fixed installation cost of the compensator at bus  ($);  is the per unit cost of 
the compensator at bus  ($/MVAR);  is the compensation at bus  (MVAR). 

2.2   Constraints 

The optimization problem is bounded by the following constraints: 
 

Equality Constraints 
 

These constraints represent typical load flow equations as follows:  

  –  cos sin∈ 0 ∈   (4)

   sin cos∈ 0 ∈    (5)

 
where  is the set of numbers of total buses;  is the set of numbers of total bus-
es excluding the slack bus;  and  are the generator real and reactive power,  
 
 

∠
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respectively;  and  are the load real and reactive power, respectively;  and  
are the transfer conductance and susceptance between bus  and bus , respectively. 
 
Inequality Constraints 
 
The control and state variables are bounded as shown in Table 1. 

Table 1. Inequality Constraints 

 

2.3   Multi-Objective Formulation 

The voltage and reactive power optimization problem can be formulated mathemati-
cally as a nonlinear constrained multi-objective optimization problem by aggregating 
the objective functions and constraints as follows: 

Minimize [ , , ] (12)

Subject to:  Equality constraints              , 0 (13)

                    Inequality constraints           , 0 (14)

where   ∈ ,   ∈ ,   ∈  is the vector of dependent state variables and    ∈ ,   ∈ ,   ∈  is the vector of control variables. 

3   Simulation Results and Discussion 

IEEE 30-bus Test System 
 

The two elitist MOEAs were tested on the standard IEEE 30-bus test system [7]. The 
system consists of 6 generator buses, 24 load buses, 41 transmission lines of which 
four branches are in-phase transformers with assumed tapping ranges of 10% and 2 
installed shunt capacitor banks at bus 10 and bus 24. The candidate buses for reactive 
power compensation are 10, 12, 15, 17, 20, 21, 23, 24 and 29. The lower voltage 
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magnitude limits at all buses are 0.95 p.u while the upper limits are 1.1 p.u for PV 
buses and 1.05 p.u for load buses and the slack bus. 
 
Settings of the Proposed Approach 

 
The optimization techniques used in this study were implemented using C language 
on an Intel Core 2 Duo 2.80 GHz processor having 1GB of RAM. In all the simula-
tions, the population size was chosen as 100; crossover and mutation probabilities 
were 0.99 and 0.01 respectively. The distribution index for crossover and mutation 
were set at 5 and 50 respectively. The simulations were run for 500 generations. The 
cost settings and parameters used to calculate the annual energy loss cost ( ) and the 
total cost ( ) of the power system are given in Ref. [6]. 

3.1   Case 1:  and  Minimization 

The two MOEAs are used to minimize the real power loss and the load bus voltage 
deviations simultaneously. The Pareto-optimal fronts (trade-off curves) obtained are 
shown in Figs. 1 and 2. It can be seen that the two MOEAs were able to locate the 
Pareto-optimal solutions with excellent diversity. Moreover, it can be noted that vol-
tage deviation and real power loss are two conflicting objectives such that any attempt 
to minimize the former would increase operation cost considerably. This is because 
conduction loss decreases strongly with increasing generator voltage.  

Table 2 shows the best solutions obtained as compared to SPEA from [1]. The  
optimum values of the VAR sources were not included in this paper. The best com-
promise solution was extracted from each trade-off curve at the maximum value of 
the normalized membership function, as given in Ref. [5]. It is evident that the results 
obtained using NSGA-II and SPEA2 are better than that obtained using SPEA in Ref. 
[1]. This proves that the use of the clustering technique in SPEA for diversity preser-
vation does not guarantee the preservation of the boundary solutions. 

 

Fig. 1. Pareto-optimal front for   and  
using NSGA-II 

 

Fig. 2. Pareto-optimal front for   and  
using SPEA2 
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Table 2. Best solutions for   and  minimization 

 
 
SPEA2 found a slightly more extended trade-off curve, as shown in Fig. 2, than 

that obtained by NSGA-II in Fig. 1 and, hence, it produced both the best real power 
loss and the best voltage deviation. Therefore, SPEA2 was capable of exploring better 
non-dominated solutions at the extremities of the trade-off curve than NSGA-II. 

3.2   Case 2:  and   Minimization 

The two MOEAs are used to minimize the real power loss and the investment cost 
simultaneously, to assess the cost effectiveness. The trade-off curves obtained are 
shown in Figs. 3 and 4. Table 3 shows the best solutions obtained as compared to EP 
from [6]. It can be noted that the results obtained using NSGA-II and SPEA2 are  
better than that obtained using EP [6]. This proves that it is much better to minimize 
the real power loss and investment cost simultaneously using MOEAs rather than 
combining them linearly and using a single-objective algorithm as in Ref. [6]. 

 
 

Fig. 3. Pareto-optimal front for   and  
using NSGA-II 

 

Fig. 4. Pareto-optimal front for   and  
using SPEA2 
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Fig. 3 shows that NSGA-II produced a more extended trade-off curve compared to 
that obtained by SPEA2 in Fig. 4. This is because SPEA2 concentrated much more at 
maintaining a good diversity of solutions over the trade-off curve instead of refining 
its search to extend the latter. Hence, NSGA-II produced both the best real power loss 
and the best investment cost while SPEA2 produced the best total cost. 

It should be noted that real power loss and VAR cost are two conflicting objectives 
such that any attempt to minimize the operation cost of the power system would in-
crease investment cost considerably. This is because reactive power compensation 
improves the system power factor and reduces the reactive (unproductive) component 
of the current, thus reducing the Ohmic energy losses. Hence, Table 3 shows an in-
crease in the expenses of the power system for the best  solutions. Moreover, 
SPEA2 produced the best saving on the initial operating cost of the power system. 

Table 3. Best solutions for  and  minimization 

 

3.3   Case 3:  ,  and  Minimization 

Considering the three conflicting objective functions: real power loss, load bus vol-
tage deviations and VAR cost simultaneously, the Pareto-optimal solutions were ob-
tained as shown in Fig. 5 and the best solutions extracted are tabulated in Table 4. 

It can be noted that SPEA2 yielded better diversity of Pareto-optimal solutions 
than NSGA-II. This is because SPEA2 considers density information during fitness 
assignment to achieve a better spread of solutions. However, Table 4 shows that 
NSGA-II was able to refine its search to find better extreme solutions than SPEA2. 
Hence, NSGA-II produced the best solutions for all three objective functions while 
SPEA2 found the best total cost due to the excellent diversity of its solutions. 
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Fig. 5. Pareto-optimal solutions for ,  and  minimization. The upper diagonal plots are 
for SPEA2 and lower diagonal plots are for NSGA-II. 

Table 4. Best solutions for ,  and  minimization 

 

4   Performance Analysis 

The two main goals in a multi-objective optimization are to minimize the generation 
distance of the solutions to the true Pareto-optimal set and to maximize the diversity 
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of the solutions along the Pareto-front. Twenty one independent runs were carried out 
using each algorithm and some performance metrics were used to test how far these 
goals have been attained and to evaluate which one of the two MOEAs performed 
better. Moreover, a reference Pareto-optimal front was obtained by selecting the best 
non-dominated solutions from the resulting Pareto-optimal solutions. 

4.1   Generation Distance and Spread Metrics 

The generation distance metric [8] evaluates the closeness of the non-dominated set 
obtained by an algorithm to the reference Pareto-optimal front while the spread metric 
[4] evaluates how evenly the non-dominated solutions are distributed in the objective 
space. From Table 5, it can be deduced that SPEA2 has the smallest generation dis-
tance and it gives better convergence and diversity of solutions than NSGA-II. 

Table 5. Generation Distance and Spread Metrics 

 Generation Distance Metric Spread Metric 
NSGA-II SPEA2 NSGA-II SPEA2 

Mean 0.001103 0.000698 0.455250 0.386633 
Variance 2.0600E-07 1.2605E-07 0.000222 0.000699 

4.2   Statistical Analysis 

A statistical analysis was performed using the Mostats5 toolbox [9] which samples 
the attainment surfaces of the two MOEAs throughout the fitness space to determine 
the percentage by which each algorithm outperforms the other. The results in Table 6 
show that SPEA2 was unbeaten in the entire fitness space covered by the two MOEAs 
while in 52.5% of the fitness space it outperformed NSGA-II. NSGA-II did well in 
part of the fitness space but not enough to beat SPEA2 at the 95% confidence level. 

Table 6. Statistical Analysis 

 NSGA-II SPEA2 
Unbeaten (%) 47.5 100 
Beats all (%) 0 52.5 

Table 7. Computational Time of NSGA-II and SPEA2 

 
 

4.3   Computational Complexity 

Table 7 shows the computational time of the two algorithms during the different simu-
lation cases considered. It can be noted that NSGA-II required the least computational  
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time while SPEA2 took about twice as much time as the former for the bi-objective 
simulation cases and about 3.5 times as much time for the tri-objective simulation case. 
This is because the truncation operator used in SPEA2 is more computationally expen-
sive than the non-dominated sort used in NSGA-II. 

5   Conclusions 

A comparative application of two elitist MOEAs, namely NSGA-II and SPEA2, was 
presented for the voltage and reactive power optimization problem in power systems. 
Firstly, a bi-objective optimization problem was considered on the IEEE 30-bus test 
system where the real power loss and the load bus voltage deviations were minimized. 
The results obtained were better than that obtained using SPEA in Ref. [1]. Moreover, 
the two MOEAs were able to locate well distributed Pareto-optimal solutions with 
excellent diversity. Then, to assess the cost effectiveness of the proposed approach, 
the real power loss and investment cost were minimized simultaneously. The results 
obtained during this simulation were better than that obtained using EP in Ref. [6], in 
which the two objectives were combined linearly. Finally, the tri-objective optimiza-
tion problem considering real power loss, load bus voltage deviations and investment 
cost simultaneously has been considered. The results showed that SPEA2 concen-
trated much more at maintaining a good diversity of solutions over the trade-off 
curves rather than exploring better solutions at the extremities. Moreover, fuzzy logic 
theory was employed to extract the best compromise solution over the trade-off 
curves obtained during the different simulation cases considered. Ultimately, a  
performance analysis showed that SPEA2 found better convergence and spread of 
solutions than NSGA-II. However, NSGA-II found more extended trade-off curves in 
some cases and required less computational time than SPEA2. 
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Abstract. During engineering design, it is often difficult to quantify
product reliability because of insufficient data or information for mod-
eling the uncertainties. In such cases, one needs a reliability estimate
when the functional form of the uncertainty in the design variables or
parameters cannot be found. In this work, a probabilistic method to es-
timate the reliability in such cases is implemented using Non-Dominated
Sorting Genetic Algorithm-II. The method is then coupled with an exist-
ing RBDO method to solve a problem with both epistemic and aleatory
uncertainties.

Keywords: probability, epistemic uncertainty, design optimization.

1 Introduction

Deterministic optimal results are usually unreliable because there exist uncer-
tainties in the design variables and parameters which result in output variation.
These uncertainties can be classified into two major types. Aleatory uncertain-
ties are those due to unpredictable variability in the value of a quantity, and a
characterization of this variability is usually available. Epistemic uncertainties
are due to lack of information about the variability, so that such a variation can
not be characterized explicitly. Input variation due to aleatory uncertainty is
fully accounted for in Reliability Based Design Optimization (RBDO). RBDO
does not, however, consider the fact that in actual design, much of the infor-
mation regarding the uncertain quantities is available in the form of a set of
finite samples. These samples are usually not enough to infer probability distri-
butions, and in many cases there is no reason to assume that they would follow
any standard distribution. Also, collecting more samples is often not possible
due to cost or time constraints. Techniques like the Bayesian probability based
[1], Possibility based [2] and Evidence based [3] methods have been suggested to
deal with low levels of information about the uncertainties.

In this work, we have implemented the Bayesian approach to reliability esti-
mation using an evolutionary algorithm. We have then combined the Bayesian
approach with an RBDO technique to yield a general Bayesian RBDO (BRBDO)

K. Deb et al. (Eds.): SEAL 2010, LNCS 6457, pp. 435–444, 2010.
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algorithm. The BRBDO analysis results for a well known test problem involving
variables with aleatory uncertainty, parameters with aleatory uncertainty and a
variable with epistemic uncertainty are shown. Using an evolutionary algorithm,
our results show how a decision making process can be facilitated for such a
problem.

2 Reliability Based Design Optimization

In reliability-based optimization, uncertainties in the design are embodied as
random design variables X and random design parameters P, and the problem
is formulated as:

minimize
μX

f (μX, μP)

subject to: Pr [gj (X,P) ≥ 0 ] ≥ Rj , j = 1, . . . , J
(1)

The objective of the problem is to minimize f with respect to the means of
the random variables given the means of the random parameters . The problem
is subject to the constraints that the probability of design feasibility is greater
than or equal to some value Rj corresponding to each constraint gj , for all
j = 1, . . . , J . The quantity Rj is the target reliability for the jth probabilistic
constraint. Solution to a reliability-based optimization problem is called the
optimal-reliable design.

3 Bayesian Approach

3.1 Bayesian Inference Method

In this section, we outline the Bayesian approach as suggested by Gunawan
and Papalambros [1]. For a Bernoulli sequence [4], the probability of having r
successful trials out of N trials follows a Binomial distribution, where p is the
probability of success in each trial. Thus,

Pr (r |N, p) =
(

N

r

)
pr (1 − p)N−r (2)

When the probability of success p is unknown, its distribution can be calculated
using Bayes’ rule by a process known as Bayesian inference. Given r successes
out of N trials and a prior distribution Pr (r | p), the posterior distribution of p
given by Pr (p | r) can be calculated as

Pr (p |N, r) =
Pr (p) × Pr (r | p)∫ 1

0 Pr (p) × Pr (r | p) dp
(3)

When the trials are done for the first time, no previous information is available
and Pr (r | p) = U (0, 1), a uniform distribution can be used. If a prior distribu-
tion is known from a previous set of trials, the same can be used to calculate the
posterior distribution. Thus, the distribution of p can be updated as more and
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more trials are done and more information is available. For the uniform prior
distribution, the posterior distribution is the following Beta distribution where
α = r + 1 and β = N − r + 1,

Pr (p |N, r) = Beta(α, β) =
Γ (α + β)
Γ (α) Γ (β)

pα−1 (1 − p)β−1 (4)

We can partition the random variables and parameters in our formulation into
two vectors: X = [Xt,Xs] and P = [Pt,Ps]. The vectors Xt and Pt are those
random variables and parameters whose probability density functions (pdf’s) are
known. The vectors Xs and Ps, on the other hand, are those random variables
and parameters whose pdf’s are not known, and instead, only some samples are
available.

For a probabilistic constraint Pr [ gj (X,P) ≥ 0 ] = Pgj (0), we can obtain
a distribution estimate of Pgj (0) using E(r), the expected number of feasible
realizations of the design.

E(r) =
N∑

k=1

Pr [ gj (Xt,Pt) ≥ 0 | (Xs,Ps)k ] (5)

The posterior distribution estimate of Pgj (0) is given by:

Pgj (0) = Beta (E (r) + 1, N − E (r) + 1) (6)

For any design, the confidence of that design with respect to the jth inequal-
ity constraint is defined to be the probability that it will meet or exceed the
reliability target.

ζj = Pr
[
Pgj (0) |μX ≥ Rj

]
; j=1, . . . , J (7)

In Figure 1 the area of the shaded region represents the confidence for a hypo-
thetical case when the desired Rj is 0.90 and E(r) = 21 for a case of 25 samples.
A ζj = 0 means that the design is certainly unreliable, while a ζj = 1 means
that the design certainly meets or exceeds the target. The confidence given in 7
can also be written as:

ζj (μX) = 1 − φBj (Rj) (8)

where φBj (.) is the cumulative density function (cdf) of the jth Beta distribution,
for all j = 1, . . . , J .

The ζj ’s can be lumped into ζs (μX), a quantity called the overall confidence
of a design. Using this measure the multi-objective problem becomes:

minimize
μX

f (μX, μP) ,

maximize
μX

ζs (μX) ,

subject to: 0 ≤ ζs (μX) ≤ 1.

(9)
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Fig. 1. Obtaining confidence (shaded region) from the distribution of Pgj (0)

It has been shown that the maximum confidence is related to the number of
samples and the reliability desired by the equation:

ζmax
s = 1 − RN+1 (10)

This is because the maximum value of E(r) for any set of samples is N , which
corresponds to the rightmost distribution of Pgj (0) given by Beta(N +1, 1). The
maximum confidence for a given reliability will equal to the confidence obtained
from this rightmost distribution.

3.2 Results Given by an EA for a Two Variable Problem

The following problem is solved here using the non-dominated sorting genetic
algorithm (NSGA-II [5]):

minimize
μX

f (μX) = μX1 + μX2 ,

subject to: Pr

[
g1 : 1 − X2

1X2

20
≤ 0

]
≥ R1,

P r

[
g2 : 1 − (X1 + X2 − 5)2

30
− (X1 − X2 − 12)2

120
≤ 0

]
≥ R2,

P r

[
g3 : 1 − 80

X2
1 + 8X2 − 5

≤ 0
]
≥ R3.

(11)

where PrX1 =
e−5X4

1+1.5X2
1+0.5X1

1.614
was assumed to get the samples, X2 follows

Beta(1.5, 5) and R1 = R2 = R3 = 0.95 were the reliability targets.
Figure 2 shows the results obtained when 25 and 135 samples of X1 are used.

The evolutionary algorithm results in a Pareto-optimal front for each case. The
front represents the trade-off between objective function value and the confidence
in the design at that design point. As Equation 10 predicts, it is possible to have
almost 100% confidence at some design points using 135 samples for the given
reliability target.
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Fig. 2. Trade-off of Confidence vs. Function value for fixed reliability (95%) for all
constraints (two variable problem)

4 A More Practical Approach

So far, the Bayesian approach was used to obtain designs with varying levels of
confidence for a particular desired reliability. We propose an alternative approach
wherein, we ask the designer to fix the confidence level he desires in the design,
and perform a multi-objective optimization to yield a trade-off front between
the objective function value and the maximum reliability that can be achieved
with the given confidence. This will allow the designer to make a more practical
decision when choosing a design. Most designers will prefer a high confidence
value (depending on the number of samples, but limited by the maximum relia-
bility they seek, according to (10)) and would prefer to see how much they will
need to sacrifice on the objective function value in order to have a more reliable
design.

Such a multi-objective optimization task can be readily performed using an
evolutionary algorithm like NSGA-II. For this purpose, the ζj desired is used to
obtained the Rj for the obtained Pgj distribution, which is the value of Rj for
which the cumulative density of Pgj becomes equal to (1 − ζj). We then define
Rs = min. Rj for j = 1, . . . , J , using which the problem now becomes:

minimize
μX

f (μX, μP) ,

maximize
μX

Rs (μX) ,

subject to: gj (X,P) ≥ 0 j = 1, . . . , J

(12)

Figure 3 shows a sample result of the two variable problem obtained using NSGA-
II using a population size of 60 and 50 generations. The confidence in this case
was fixed at 95% and 25 samples of X1 were used.

To perform a more detailed analysis, it may be useful to compare the trade-
offs between reliability and objective function value for various confidence levels.
Such a comparison for the same two variable problem is shown in Figure 4. It
can be clearly seen that if one needs a higher confidence for the same reliability,
one must sacrifice on the function value.
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lem)

5 Proposed Bayesian RBDO Algorithm for a General
Problem

A general design optimization problem will involve several variables/parameters,
some with aleatory uncertainty while others with epistemic uncertainty. Also,
some constraints might involve variables with epistemic uncertainty while oth-
ers may not. In such a situation, we suggest the use of Fast Reliability Index
Approach (FastRIA [6]) to find the probability of feasibility of a constraint. Fas-
tRIA method is used to find a point on the constraint boundary which is closest
to the solution, called the Most Probable Point (MPP [7]) of failure. Assuming
linearity for the constraint in the vicinity of the MPP, a value for the reliability
can be obtained which is a good approximation for non linear constraints as well.
This method has earlier been used for RBDO when the variables have aleatory
uncertainty characterized by a normal distribution.

5.1 Overall Algorithm

We now outline the overall algorithm for performing reliability based optimiza-
tion for a problem with several constraints and variables/parameters having
different types of uncertainties. Algorithm 1 shows the steps to be followed. The
outlined algorithm takes into account different types of constraints when some
variables have aleatory uncertainty while others have epistemic uncertainty.

5.2 Car Side-Impact Problem

The problem formulation [8] involves the minimization of the weight of the car
subject to EEVC restrictions on safety performance in terms of 10 constraints.
There are 11 design variables. For our study, we partition the 11-variable vector
into 3 sets: variables with aleatory uncertainty Xt = {X1, X2, X3, X4, X6, X7},
variable with epistemic uncertainty Xs = {X5}, and parameters with aleatory
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Algorithm 1. Proposed Bayesian RBDO algorithm
foreach constraint do

if constraint involves variables with epistemic uncertainty then
foreach sample set of (Xs,Ps)k do

use FastRIA to find Pr [ gj (Xt,Pt) ≥ 0 | (Xs, Ps)k ];
end
obtain E(r) using Equation 5;
use E(r) (sum of the reliabilities obtained) to find the posterior
distribution of Fgj (0) using Equation 6;
using the desired confidence value, calculate the reliability at the point
using Equation 8;

end
else

use FastRIA to directly find the reliability at the point;
end

end
Find minimum reliability Rs (μX) over all constraints;
Perform a multi-objective optimization procedure with an additional goal to
maximize Rs (μX);

uncertainty Pt = {X8, X9, X10, X11}. The variables/parameters with aleatory
uncertainty are normally distributed about their means with standard deviations
as given in Table 1, along with the description of variables and parameters and
their upper and lower bounds. All quantities are in mm.

The parameters X8, X9, X10 and X11 are assumed to have a normal distribu-
tion with the given standard deviations and a fixed mean of 0.345, 0.192, 0 and
0 mm respectively. Thus there are seven decision variables. The Bayesian RBDO
procedure is applied to the problem using NSGA-II for the optimization task.
150 generations are run for a population size of 100. A set of 25 samples of X5
generated from a normal distribution using a standard deviation of 0.03 is used.
The results obtained as a trade-off between Weight and Reliability are shown in
Figure 5 for a confidence value of 90%. For 25 samples, the maximum reliability
that can be achieved with 90% confidence is 0.915247 which is the limit of the
Pareto-optimal front.

5.3 Analysis of Results Obtained

Figure 6 shows the trade-off fronts obtained for different confidence levels when
the number of samples of X5 is fixed at 25. The same sample set is used to obtain
the fronts. The front from RBDO analysis is also shown for comparison. It can
be seen that as we try to have more confidence in the design for the same number
of samples, we have to compromise more and more on the weight for the same
reliability. The maximum reliability obtainable also decreases as the confidence
increases. The RBDO front is the one with complete information and thus is
the lowest one, while Bayesian analysis has less information due to epistemic
uncertainty, leading to worse fronts than the RBDO fronts.
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Table 1. Description of variables and parameters for the car side-impact problem

Variable Description Uncertainty Standard
Deviation

Lower
Bound

Upper
bound

X1 B-pillar inner Aleatory 0.03 0.5 1.5
X2 B-pillar reinforcement Aleatory 0.03 0.45 1.35
X3 Floor side inner Aleatory 0.03 0.5 1.5
X4 Cross member Aleatory 0.03 0.5 1.5
X5 Door beam Epistemic – 0.875 2.625
X6 Door belt line Aleatory 0.03 0.4 1.2
X7 Roof rail Aleatory 0.03 0.4 1.2
X8 Material of B-pillar inner Aleatory 0.006 – –
X9 Material of floor side inner Aleatory 0.006 – –
X10 Barrier height Aleatory 10 – –
X11 Barrier hitting position Aleatory 10 – –
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Fig. 5. Weight vs. Reliability Pareto-optimal front using 25 samples of X5 with 90%
confidence

A comparison of fronts for varying number of samples of X5 with a fixed
level of confidence (90%) is shown in Figure 7, along with the RBDO front for
comparison. In this case we observe that the Bayesian RBDO front approaches
the RBDO front as the number of samples increases. More samples add to the
available information about the variable and the result approaches the case of
complete information. It must be kept in mind that Bayesian RBDO results
depend on the sample set, and will change if the samples change, even if their
number remains the same. This is a consequence of having epistemic uncertainty
in the design variables. The behaviour of the fronts is also interesting in that
points around C seem to be preferred points. To the right of C, one needs to
make a large sacrifice on weight in order to gain some reliability while towards
the left of C, a very small improvement in weight is obtained for a large compro-
mise on reliability. Such points are called knee points [9]. A comparison of knee
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points in Table 2 shows that although the fronts for different number of sam-
ples change, the preferred solutions are quite close in terms of objective function
value (weight).

The variation of the variable values with reliability is shown in Figure 8. We
also note in Figures 7 and 8 that in the region from A to B, only the variables
X2 and X4 are non-constant while B onwards, X5 begins to contribute to the
change in the front. The location of B is found to be a function of the number
of samples of X5 used.

Table 2. Knee Points for different confidence levels

X1 X2 X3 X4 X5 X6 X7 Weight Reliability
25 samples 0.500 1.309 0.500 1.334 1.135 1.199 0.405 25.130 0.902
50 samples 0.500 1.333 0.500 1.388 1.178 1.196 0.405 25.724 0.944
135 samples 0.518 1.348 0.500 1.477 1.198 1.199 0.404 26.159 0.978

RBDO Result 0.509 1.341 0.500 1.406 0.875 1.199 0.400 25.197 0.967
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6 Conclusion

In this paper we have demonstrated the application of an EA to a Bayesian
technique of finding optimal-reliable designs with a given reliability for varying
levels of confidence. Using an evolutionary approach, we then proposed finding
an optimal-reliable non-dominated front, which can be used by a decision maker
for a trade-off analysis between target reliability and optimal objective function
value. The Bayesian analysis method and an RBDO technique (FastRIA) were
then coupled to develop a Bayesian RBDO algorithm for a general problem,
and the proposed algorithm was then applied to the car side-impact problem.
Such analysis methods are much more versatile than traditional methods of
reliability analysis which are not flexible in terms on handling different types
of uncertainties, since many real world design optimization problems involve
variables with different levels of information available about their uncertainty.
Further research in this direction will lead to more practical methods capable of
capturing various information levels in design problems.
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Abstract. This paper presents an application of multi-objective optimisation for
the design of an important component of automobiles, namely the suspension sys-
tem. In particular, we focus on the double wishbone suspension, which is one of
the most popular suspensions in use today and is commonly found on mid-range
to high-end cars. The design of such mechanical systems is fairly complicated due
to the large number of design variables involved, complicated kinematic model,
and most importantly, multiplicity of design objectives, which show conflict quite
often.

The above characteristic of the design problem make it ideally suited for a
study in optimisation using non-classical techniques for multi-objective optimi-
sation. In this paper, we use NSGA-II [5] for searching an optimal solution to
the design problem. We focus on two important performance parameters, namely
camber and toe, and propose objective functions which try to minimise the varia-
tion of these as the wheel travels in jounce and rebound. The pareto-optimal front
between these two objectives are obtained using multiple formulations and their
results are compared.

Keywords: Double Wishbone Suspension, Optimisation, GeneticAlgorithms.

1 Introduction

Computer aided design, analysis and optimisation has become an integral part the de-
sign of components and systems required to deliver good performance and satisfy mul-
tiple design requirements. The suspension system of an automobile is a good example
of such a system, as it is a subsystem having multiple parts, and has to satisfy sev-
eral needs such as ride comfort, good handling, cornering stability etc., some of which
conflict mutually.

Standard suspension design methodology involves taking a basic design and then
simulating, testing and modifying it repeatedly till the target ride characteristics are
reached. The process can be expedited somewhat by performing design optimisations
on a mathematical model of the same. This is the objective of the present work, with
the focus on a particular type of suspension system, namely the double wishbone sus-
pension. The double wishbone suspension is a very popular type of suspension found
on mid-range to high-end cars. It is an independent suspension design using two (occa-
sionally parallel) wishbone-shaped arms to locate the wheel as shown in Fig. 1(a). Each
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(a) Solid model (adapted from:
www.carbibles.com)
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Fig. 1. Double wishbone suspension system

wishbone or arm has two mounting points connected to the chassis and one joint at the
knuckle to accept the steering input. The shock absorber and coil spring are mounted
on the wishbones to control its vertical movement. Double wishbone designs allow the
engineer to carefully control the motion of the wheel throughout the suspension travel,
controlling parameters such as camber angle, caster angle, toe, roll centre height, scrub
radius, scuff and more thereby resulting in a better tuned suspension system for good
ride, handling etc. These parameters affect factors from lateral force to steering effort
to anti-dive/ant-squat characteristics of the vehicle. Two of the wheel parameters that
significantly effect the car handling characteristics are camber and toe, and we focus on
these for the rest of the paper.

Camber is the angle the wheel plane makes with the vertical when viewed from the
front of the vehicle. The camber angle of a wheel has a significant effect on the lateral
force the tyre produces and hence a significant impact on the handling of the car. More
importantly, the variation of camber with the wheel’s vertical movement plays a big role
in roll steer/bump steer. The toe is the distance between the front extremes and the back
extremes of the tires when seen from the top of the vehicle. It is measured at a height
from the ground that is specified by the manufacturer of the vehicle and is usually at
the height of the vehicle under-body cover. Toe adds a constant slip angle to the wheels
and therefore affects the lateral force generated by the tyre. It affects the agility of the
vehicle and also the response of the vehicle to steering inputs. The desired performance
characteristic for a suspension is to minimise the camber angle and toe in or toe out for
the complete range of vertical displacement of the wheel.

A significant number of publications exist which deal with modelling and simulation
of suspension systems. In [10] and [4], the authors deal with modelling and simula-
tion of the spatial kinematics of the McPherson strut automotive suspension. Similarly,
in [1], the double wishbone suspension is modelled and simulated dynamically. Neither
paper deals with the design and optimisation of the suspension system. In other pub-
lications such as [6,3,7], the authors deal with the redesign or optimisation of existing
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suspension systems to eliminate or reduce a certain defect or fault inherent in the sus-
pension design. These papers work on already existing and working suspension designs
and refine them to obtain a better suspension system. It is important to note that these
optimisation or design algorithms aim to reduce or eliminate only one defect and do
not take into account other suspension characteristics. Therefore, it is possible that the
optimisation in one aspect is at the cost of other performance parameters that have not
been taken into consideration. In [9] and [8], the authors study the effect of the suspen-
sion kinematics on the vehicle handling characteristics and perform vehicle handling
simulations. In [8], the authors also use the kinematic model of the suspension to ac-
tively adjust them for optimum ride and handling characteristics. Very few papers seem
to deal with design of the suspension system from scratch, two prominent among which
being [2] and [11]. While both of them do deal with suspension kinematics as a part
of the design objective, their treatment is qualitative in nature. Not much is available
in the public domain literature on ways to shorten the design process of a suspension
system in general and double wishbone suspension in particular. Apparently, there have
not been focused efforts on methods to design and optimise suspension for quantitative
ride characteristics either, so far as research publications are concerned.

In this paper the authors have attempted to present an optimisation framework for the
design of double wishbone suspension system for better performance, by considering
two of the significant parameters, namely camber angle and toe for the complete range
of vertical displacement of the wheel. The suspension kinematics problem is formed
and solved in closed form using a computer algebra system, Mathematica. The results
are used in evaluating the objective functions. This approach reduces the computational
cost significantly, as symbolic simplifications are used to reduce the number of opera-
tions required. Such savings are important, as we use a Genetic Algorithm(GA)-based
optimisation tool, namely NSGA-II [5], which require a large number of function eval-
uations. The choice of GA for optimisation is justified as we want a framework for a
design from scratch, and as such we do not have good initial guesses that would be
needed by a local search method based on the classical algorithms. Furthermore, we
try to obtain the pareto-optimal front for the two-objective problem of camber and toe
variation minimisation, representing the trade-off between the two objectives over the
relevant span. This is achieved easily in the NSGA-II setup. The pareto-optimal front
obtained using NSGA-II captures the significant region of the front used for design
trade-off better as compared to that obtained using classical methods. Double wishbone
suspension designs with optimal camber and toe characteristics are finally presented.

The paper is organised as follows: In section 2, the spatial kinematic model is pre-
sented. The details of the optimisation process is presented in section 3, followed by the
results in section 4. Finally, the conclusions of the paper are presented in section 5.

2 Kinematic Model of the Double Wishbone Suspension

The double wishbone suspension (shown in Fig. 1(b)) can be kinematically described as
a pair of coupled spatial four-bar mechanisms, resulting in three degrees of freedom. The
points o1 and o2 describe the supports and l1, l2, l3, l4 and l5 are the various link lengths.
The first degree of freedom can be interpreted as the movement of the four-bar double
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wishbone loop o1 p1 p2o2 o1 which is parametrised by the orientation of the lower A-arm,
θ. The second degree of freedom corresponds to the movement of the four-bar steering
loop o1 p1 p4 p5 o1 which is parametrised by the steering input s at point p5. However,
the present analysis is done at constant steering input. The third degree of freedom is
a redundant degree of freedom that corresponds to the rotation of the link p4 p5 about
its own axis. In order to obtain the positions of all the points on the double wishbone
suspension for the given values of θ and s, one needs to solve the vector loop equations
for the two loops, namely, the double wishbone loop and the steering loop. To obtain
the loop-closure equation for double wishbone loop, let us consider the rotation matrix
to move from the frame attached to link l1 at o1to the frame attached to link l3 at o2,
given by:

R2
1 = Rx(α)Ry(β)Rz(γ) (1)

where, α, β and γ are the Euler angles of the frame attached to link l3 at o2 (refer Fig.
1(b)). Here Rx(θ) stands for rotation matrix about x axis by an angle θ and so on. Let
angles ψ1 and ψ2 be the orientation of the links l2 and l3. The points p1 and p2 on the
suspension are given as:

p1 = Rz(θ)[l1, 0, 0]T (2)

p2 = p1 + Rx(α)Ry(β)Rz(γ)Rz(ψ1)[l2, 0, 0]T (3)

The closure equation for this loop is given by:

o1 + l1 + l2 − l3 − o2 = 0 (4)

which can to be reduced to a single scalar equation

l2.l2 − l22 = 0, where l2 = p2 − p1. (5)

Once the equation eq. (5) is expanded and simplified, it takes the form of eq. (6):

A cos θ + B sin θ + C = 0 (6)

The coefficients of the above equation are closed-form expressions in terms of the base
point coordinates, link lengths etc. For the sake of brevity, only the smallest one in size
is presented below.

C =2l1o1x cos θ − 2l1o2x cos θ + 2l1o1y sin θ − 2l1o2y sin θ + l21 − l22 + l23+

o2
1x + o2

2x − 2o1xo2x + o2
1y + o2

2y − 2o1yo2y + o2
1z + o2

2z − 2o1zo2z (7)

The loop-closure equation can then be solved to obtain ψ2 by trigonometric manipula-
tion. Once ψ2 is obtained, it is substituted back in l2 to get the numerical values of l2

and p2. If we consider a parameter r for the knuckle link (l2), describing the ratio of the
distance of the point p3 from p1 to the distance of the point p2 from p1 then one can
solve the loop closure equation for steering loop.

o1 + l1 + l4 + l5 − p5 = 0
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which can be reduced to a single scalar equation:

l5.l5 − l25 = 0, where l5 = p5 − p4. (8)

This loop closure equation is solved in the same way as eq. (5). Without going into
details, it is noted here that the numerical values of points p1, p2, p3, p4 and p5 can be
determined as mentioned above. To solve for the performance parameters like camber,
toe, etc., one needs to obtain the vector corresponding to the wheel axis. The wheel
axis, is parallel to the vector w that is perpendicular to (p2 − p1) and (p4 − p3).

3 Optimisation of the Double Wishbone Suspension System

This section describes the framework for optimising the double wishbone suspension
system for desired performance characteristics. The details of variables chosen, objec-
tive function formulation, constraints and tools for solving the same are described in
the following.

3.1 Design Variables and Their Bounds

The kinematic performance of a double wishbone suspension system can be fine-tuned
by choosing suitable values for several parameters which are listed in table 1. To the best
knowledge of the authors, no public domain literature is available on design optimisa-
tion of double wishbone suspension system. Therefore, for the purpose of comparison,
a basic design that has been reported in [1] has been taken as the reference. The values
of the design parameters are listed in table 1. An initial parametric study was con-
ducted using single objective formulation for determining the significant parameters to
be considered as variables for reducing camber and toe variations separately. The com-
bined variable set was used for multi-objective optimisation using genetic algorithm
(MOGA). Variable bounds were chosen based on the initial values of the parameters
from the base design given in table 1.

3.2 Objective Function

The objective function for the optimisation is formulated so as to reduce the difference
between the attained variation of a given wheel parameter, say camber ga,camber(x, θ),
where x is the vector of design variables, to the corresponding desired variation of the
same, say gd,camber(x, θ), over some region of suspension operation which is parametrised
by θ ∈ [θmin, θmax]. The range of variation in θ shall correspond to the typical variation
of wheel vertical displacement when encountering pot holes and bumps in a road. In the
present formulation the second input from steering s is considered to be zero. The de-
sired performance characteristic gd(x, θ) can be kept constant with respect to θ or varied
depending on the designer’s intent. The objective function can be written in general as:

h(x, θ) = d(ga(x, θ), gd(x, θ)), θ ∈ [θmin, θmax] (9)
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Table 1. Design parameters for the modelling of the suspension system and design variable and
their optimised values obtained using single objective optimisation in Mathematica for camber
and toe considered individually and MOGA results for toe and camber optimisation (“*” implies
parameter value same as in the initial design)

Parameter,
Units

Initial design
from [1]

Optimised
for Camber

Optimised
for Toe

Solution point A on the
MOGA pareto front

[o1x, o1y, o1z], m [0, 0, 0] * * *
[o2x, o2y, o2z], m [0.13, 0.16, 0.01] * * [−0.0801, ∗, ∗]
l1, m 0.42 * * *
l2, m 0.163 0.2 0.1807 0.1248
l3, m 0.26 0.2929 0.2559 0.4618
[l4x, l4y, l4z], m [0.01, 0.02, 0] * * [∗, 0.0827, ∗]
l5, m 0.904 * * 0.8800
r 0.125 * * *
[p5x, p5y, p5z],
m

[0.01, 0.02,−0.8] * * [0.0302, 0.0372,−0.7646]

α, radians -0.0349 0.0334 0.0872 *
β, radians -0.0175 0.0083 -0.0369 -0.0799
γ, radians 0.0524 0.0653 0.0543 *

Performance Characteristic
Camber 50.6839 1.9831 - 22.0853
Toe 50.1755 - 5.7253 29.2397

where, d(·, ·) denotes any acceptable measure of distance between two functions. In the
present formulation, this is done rather empirically, by sampling the domain [θmin, θmax]
uniformly and determining the Euclidean distance between the desired and attained
values for the performance parameter under consideration.

f (x) =
1
n
Σn

i=1(ga(x, θi) − gd(x, θi))2 (10)

The performance measure ga(x, θ) is either camber or toe in this paper. Three multi-
objective optimisation methods, namely, the weighted-sum method, the min-max method
(both classical) and MOGA have been attempted for the performance optimisation of
the double wishbone suspension system and results compared. In the classical methods,
a multi-objective optimisation problem is converted into a series of single objective op-
timisation problems and the solution to the same form the pareto-optimal front. For the
weighted sum method, the individual objectives of optimising for camber and toe have
been combined using normalised weights to form a single objective as:

f (x) =
Ccamb

n
Σn

i=1(ga,camb(x, θi) − gd,camb(x, θi))2 +
Ctoe

n
Σn

i=1(ga,toe(x, θi) − gd,toe(x, θi))2

where, Ccamb, Ctoe, are normalised scaling weights which are systematically varied to
obtain the pareto-optimal set. For optimisation with the min-max method, the distance
between the ideal design point (in the objective space) having minimum value for both
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the camber and toe objectives, and the design point (again in the objective space) scaled
along the different objective axes using weights, is minimised. The weights are sys-
tematically varied to obtain points on the pareto-optimal front. This method has been
reported to provide better convergence to the desired front.

3.3 Constraints

Singularities in the mechanism, if any, will cause ψ2 or φx (knuckle link angle) to be
evaluated to complex values. This will lead to the function ga(x, θi) to be evaluated to a
complex value for some θi. This is avoided by introducing the constraint for the solution
of eq. (6) for the two loops (wishbone as well as steering) as A2 + B2 −C2 ≥ 0.

4 Results and Discussion

The optimisation framework for performance enhancement of double wishbone sus-
pension system has been accomplished. In the present work the expressions for the
kinematic loop closure equations that were derived in closed form using symbolic com-
putation in Mathematica aided in numerical evaluation of the same with less com-
putational expense. The sensitivity analysis, multi-objective optimisation that has been
accomplished in this work was made feasible due to the same. Initially the results of
single objective optimisation of the suspension for wheel parameter camber and toe are
presented. These optimisation were done considering only a limited number of vari-
ables, namely, l2, l3, α, β and γ. The performance parameters namely the camber and
toe variations with respect to the lower A-arm angle of the suspension are plotted to vi-
sualise the performance. The desired performance for the present study has been taken
as zero camber and toe for the range±π/8 of lower A-arm travel from the reference con-
figuration. Single objective optimisations were performed using the tool NMinimize of
Mathematica and the results are tabulated in table 1. The performance curves for cam-
ber and toe for these designs are presented in Fig. 2(a) and 2(b). As can be seen from
the plots and the objective function values, the optimised suspension shows marked im-
provement in the wheel parameters camber and toe individually. It is important to note
that while performing a single objective optimisation for one performance parameter,
say, camber the other performance parameter, say, toe deteriorates (refer Fig. 2(b)) and
vise-versa (refer Fig. 2(a)).

The design trade-off can be better addressed with multi-objective optimisation.To
perform multi-objective optimisation a parametric study was done to determine the set
of variables to which the two wheel parameters considered as objectives namely the
camber and toe are sensitive. Camber was found to be sensitive to the parameters l2, l3,
l5, o2z, o2y, o2x, p5z and β. Toe was sensitive to the parameters l3, l4y, l4z, l5, o2x, p5x,
p5y and p5z. These parameters were considered as variables for multi-objective optimi-
sation. The results of multi-objective optimisation by weighted sum method, min-max
method and multi-objective genetic algorithm for performance optimisation of double
wishbone suspension system are presented and compared. Weighted sum method and
min-max methods were solved using NMinimize function of Mathematica. As men-
tioned before, weights were systematically varied in both the methods to obtain a spread
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Fig. 2. Camber and toe variation with the lower A-arm angle (θ) for various cases of optimisation:
A. Optimised for camber alone, B. Original design, C. MOGA result (point A in Fig. (3)), D.
Optimised for toe alone.

Fig. 3. Pareto-optimal front in the objective space for minimising camber as well as toe
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of solution in the pareto-optimal front. In-spite of the choice of a large set of weights,
several of the optimisation runs converged to the same point on the objective space. For
the case of min-max method, only 5 unique points and for the case of weighted sum
method 4 unique points were obtained to represent the front. These fronts are shown in
the Fig. 3. The point corresponding to the original design as well as that correspond-
ing to the ideal design where both camber and toe are minimum (refer solutions in
table 1 obtained from single objective optimisation) are also depicted in the figure. The
multi-objective optimisation was done using NSGA-II. A real coded NSGA-II1 with
probability of crossover as 0.9, mutation as 0.1 and 100 generations of evolution was
chosen. Initially, a population size of 500 was chosen in the anticipation that at the end
of optimisation there will be enough converged (i.e., rank 1) solutions representing the
pareto-optimal front. But since the convergence was poor the same was increased to
20000 when a set of 14 solutions of rank 1 were obtained. These are also plotted in
Fig. 3. The solutions obtained from NSGA-II are well spread as well as converged. The
front obtained from NSGA-II is better than that obtained from weighted sum method as
well as min-max methods since the same is closer to the ideal point at the knee region,
which is significant for design trade-off. The trade-off solution point A on the pareto
front obtained from NSGA-II shows reasonable improvements in both performance
characteristics namely camber and toe (refer Fig. 2 and table 1). The convergence to
the front though has been computationally expensive due to the large population size
needed to capture the pareto-optimal front. The authors intend to do study the effect
of various NSGA-II parameters on the convergence of the front and the computational
efficiency.

5 Conclusions

The paper proposes a framework for optimising the design of double wishbone suspen-
sion systems. Pareto-optimal solutions to the mechanism synthesis problem are gen-
erated so that the designer can choose from the set of solutions under contradicting
objectives of minimising camber as well as toe – the two important performance pa-
rameters leading to better vehicle handling characteristics. The results show that the
method based on NSGA-II converges to solutions better than that based on classical
methods. The present research can be extended to include more objectives and design
variables, and the same approach may be adopted to other suspension design problems
as well.
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Abstract. Controlling dominance area of solutions (CDAS) relaxes the
concepts of Pareto dominance with an user-defined parameter S. This
method enhances the search performance of dominance-based MOEA
in many-objective optimization problems (MaOPs). However, to bring
out desirable search performance, we have to experimentally find out S
that controls dominance area appropriately. Also, there is a tendency
to deteriorate the diversity of solutions obtained by CDAS when we de-
crease S from 0.5. To solve these problems, in this work, we propose a
modification of CDAS called self-controlling dominance area of solutions
(S-CDAS). In S-CDAS, the algorithm self-controls dominance area for
each solution without the need of an external parameter. S-CDAS con-
siders convergence and diversity and realizes a fine grained ranking that
is different from conventional CDAS. In this work, we use many-objective
0/1 knapsack problems with m = 4 ∼ 10 objectives to verify the search
performance of the proposed method. Simulation results show that S-
CDAS achieves well-balanced search performance on both convergence
and diversity compared to conventional NSGA-II, CDAS, IBEAε+ and
MSOPS.

1 Introduction

The research interest of the multi-objective evolutionary algorithm (MOEA) [1]
community has rapidly shifted to develop effective algorithms for many-objective
optimization problems (MaOPs) because more objective functions should be
considered and optimized in recent complex applications. However, in general,
Pareto dominance-based MOEAs such as NSGA-II [2] and SPEA2 [3] noticeably
deteriorate their search performance as we increase the number of objectives to
more than 4 [4,5]. This is because these MOEAs meet difficulty to rank solutions
in the population, i.e., most of the solutions become non-dominated and the same
rank is assigned to them, which seriously spoils proper selection pressure required
in the evolution process.

To overcome this problem and induce more fine-grained ranking of solutions in
MaOPs, recently some selection methods such as indicator, aggregating function
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and extending Pareto dominance based approaches have been proposed and ver-
ified its search performance in MaOPs. Indicator-based evolutionary algorithm
(IBEA) [6] introduces fine grained ranking of solutions by calculating fitness
value based on some indicators which measure the degree of superiority for each
solution in the population. Multiple single objective Pareto sampling (MSOPS)
aggregates fitness vector with multiple weight vectors, and reflects the ranking
of solutions calculated for each weight vector in parent selection [4]. Compared
with conventional Pareto dominance based NSGA-II, superiority of IBEA and
MSOPS has been reported on continuous many objective optimization problems
[9]. CDAS [7] relaxes the concepts of Pareto dominance by controlling dominance
area of solutions using an user-defined parameter S to induce appropriate selec-
tion pressure in MOEA. CDAS shows better search performance in MaOP than
NSGA-II due to convergence by the effects of fine grained ranking of solutions
using S < 0.5 [8]. However, to bring out desirable search performance, we have
to experimentally find out (select) S that controls dominance area appropriately.
Also, there is a tendency to deteriorate diversity of obtained solutions by CDAS
when we decrease S from 0.5.

In this work, we focus on CDAS [7] and propose a modification of CDAS,
which is called self-controlling dominance area of solutions (S-CDAS), to solve
the aforementioned problems and achieve well-balanced search performance be-
tween convergence and diversity toward optimal Pareto front on MaOPs. When
calculating dominance relation among solutions, S-CDAS self-controls domi-
nance area for each solution without using an external parameter, while the
conventional CDAS controls using a same parameter S for all solutions. Due
to this self-control of dominance area, S-CDAS realizes different fine grained
ranking from conventional CDAS by considering that extreme solutions for each
objective functions are never dominated by other solutions in the calculation
of dominance area. In this work, we verify the search performance of the pro-
posed method in many-objective 0/1 knapsack problems with m = {4, 6, 8, 10}
objectives by comparing with NSGA-II, IBEAε+ [6], MSOPS [4] and CDAS [7].

2 Dominance Based MOEA and Problems in MaOPs

NSGA-II [2] is one of the well-known MOEAs that use Pareto dominance, which
robust performance has been verified on a wide range of MOP especially for two
or three objective optimization problems. In parent selection process, NSGA-II
first classifies solutions into several layers (fronts) based on non-dominance level.
Then, it selects parent solutions from higher fronts until filling up the half size
of entire population. When comparing solutions that belong to a same front,
NSGA-II determines superiority of solutions based on crowding distance (CD)
[2] which considers solution’s distribution in objective space.

When analyzing NSGA-II in MaOP, most of the solutions become non-
dominated (front 1 : F1), and the number of solutions belonging to F1 exceeds
the size of parent solutions |Pt| (half of the entire population) in early stage of
the evolution. In such case, parent selection of NSGA-II becomes to rely on CD
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Fig. 1. Fitness modification to change the
covered area of dominance

Fig. 2. Expanding dominance area by
CDAS with S < 0.5

strongly. Consequently, the obtained POS are well-distributed in objective space,
but convergence of POS towards the true POS is substantially deteriorated. To
overcome this problem and enhance convergence of the obtained POS, it is ne-
cessity to improve selection pressure by discriminating non-dominated solutions
using some effective manner.

3 Controlling Dominance Area of Solutions

To induce appropriate selection pressure into Pareto dominance-based MOEAs,
controlling dominance area of solutions (CDAS) [7] contracts or expands the
dominance area of solutions before we calculate dominance relations among so-
lutions. For a solutions x shown in Fig.1, CDAS modifies the fitness value for
each objective function by changing a parameter Si in the following equation

f ′
i(x) =

r · sin(ωi + Si · π)
sin(Si · π)

(i = 1, 2, · · · , m), (1)

where ϕi = Si · π, r is the norm of f(x) = (f1(x), f2(x), · · · , fm(x)), fi(x) is
the fitness value in the i-th objective, and ωi is the declination angle between
f(x) and fi(x). In [7], a same parameter S is used for all fitness functions
fi (i = 1, 2, · · · , m). When S < 0.5, the i-th fitness value fi(x) is increased
to f ′

i(x) > fi(x). On the other hand, when S > 0.5, fi(x) is decreased to
f ′

i(x) < fi(x). When S = 0.5, f ′
i(x) = fi(x) which is equivalent to conventional

dominance. Fig.2 shows an example in the case of expanding dominance area
with S < 0.5. In the case of conventional dominance, the solution a dominates
c, but a and b, and b and c do not dominate each other. If we modify fitness
value with S < 0.5 the dominance area of solutions a′, b′ and c′ is expanded
from the original one of a, b and c. This causes that a′ dominates b′ and c′,
and b′ dominates c′. That is, expansion of dominance area by smaller S < 0.5
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Fig. 3. Difference of front classification between CDAS [7] and proposed S-CDAS

works to produce a more fine grained ranking of solutions and would strengthen
selection.

In case of solving MaOP, CDAS shows better search performance than conven-
tional NSGA-II when we set S < 0.5. The hypervolume value for obtained non-
dominated solutions is larger than NSGA-II due to convergence improvement
by the effects of fine grained ranking of solutions using the optimum parameter
S∗ [8]. However, as a side effect, the diversity of obtained solutions deteriorates
when we decrease S from 0.5. Also, to bring out desirable performance of CDAS,
we have to find out appropriate parameter S experimentally.

4 Proposed Method

4.1 Motivation

To solve aforementioned problems in the conventional CDAS and achieve well-
balanced search performance between convergence and diversity toward optimal
Pareto front on MaOPs, the proposed S-CDAS reclassifies solutions in each front
classified by NSGA-II to realize fine-grained ranking that is different from CDAS.

Fig.3 shows that difference of front classification between CDAS [7] and S-
CDAS, where all solutions area included in F1 by the classification of NSGA-II.
When we classify these solutions by the conventional CDAS, three fronts F ′

1,F ′
2

and F ′
3 are obtained as shown in Fig.3 (a). In this example, since the angles

of dominance area specified by all solutions are the same, only well-converged
solutions distributed in a limited central region of Pareto front are included
in F ′

1. Accordingly, extreme solutions having the maximum fitness values are
dominated by these solutions. Thus, it becomes difficult to maintain diversity
in the population. On the other hand, when we classify solutions by S-CDAS,
different three fronts F ′′

1 ,F ′′
2 and F ′′

3 are obtained as shown in Fig.3 (b), where
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the angle of dominance area specified by each solution is different. Also, S-CDAS
always guarantees the inclusion of extreme solutions in F ′′

1 . In other words, in the
proposed method, not only highly converged solutions but also widely distributed
ones are classified into higher front.

4.2 Algorithm of S-CDAS

S-CDAS reclassifies the solutions in each front Fj (j = 1, 2, · · · ) which is classified
by NSGA-II using the following procedure. Fig.4 shows the illustration of the
reclassification by the proposed algorithm.

Step 1 : Move the origin to O = (O1, O2, · · · , Om) in objective space. In this
work, we set Oi = fmin

i − δ (i = 1, 2, · · · , m) , where fmin
i is the minimum

value of the i-th objective function in Fj and δ is a tiny constant value.
Step 2 : Create a set of landmark vectors L = {p1, p2, · · · , pm}, where pi =

(O1, O2, · · · , fmax
i − δ, · · · , Om), and fmax

i denotes the maximum value of
the i-th objective function, which is derived from the extreme solution Ei

in Fj .
Step 3 : Repeat the following calculation for all solutions in Fj.

Step 3-1 : For a single solution x, calculate ϕ(x) =
(ϕ1(x), ϕ2(x), · · · , ϕm(x)) by Eq.(2) derived from sine theorem.
Here, ϕi(x) is the angle determined by the solution x and the landmark
vector pi in the i-th objective function. ϕ(x) determines the individual
dominance area of x, which does never dominate extreme solutions
Ei (i = 1, 2, · · · , m) having the maximum fitness value for each objective
function.

ϕi(x) = sin−1
{

r(x) · sin(ωi(x))
li(x)

}
(i = 1, 2, · · · , m), (2)
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where li(x) is Euclidean distance between the solution x and the land-
mark vector pi.

Step 3-2 : Modify fitness values of all other solutions y ∈ Fj by the follow-
ing equation

f
′
i (y) =

r(y) · sin(ωi(y) + ϕi(x))
sin(ϕi(x))

(i = 1, 2, · · · , m). (3)

Step 3-3 : Check dominance relations between the solution x and all other
solutions y ∈ Fj . If a solution y ∈ Fj is dominated by x, the counter
(rank) of y is incremented.

Step 4 : Finally, reclassify all the solutions in Fj based on the accumulated
rank values, i.e., smaller rank corresponds to higher front, and larger rank
corresponds to lower front. When multiple solutions have a same rank value,
they are included in the same front.

In the proposed method, reclassification procedure is performed for each non-
dominated front Fj (j = 1, 2, · · · ) obtained by NSGA-II. That is, the proposed
method makes front distribution fine-grained, but superiority of each solution is
never overturned by S-CDAS. In other words, superiority of solutions in fronts
obtained by NSGA-II is maintained even after the reclassification by S-CDAS.

After the reclassification of all fronts, the proposed algorithm selects parent
solutions Pt from higher fronts until filling up the half size of entire population
similar to NSGA-II [2]. Also, to create offspring solutions, the crowded tourna-
ment selection is applied [2].

5 Experimental Results and Discussion

5.1 Preparation

In this work, we verify the search performance of the proposed method in many-
objective 0/1 knapsack problems [10] by comparing with NSGA-II [2], IBEAε+
[6], MSOPS [4] and CDAS [7]. We generate problems with m = {4, 6, 8, 10}
objectives, n = 100 items, and feasibility ratio φ = 0.5. For all algorithms, we
adopt two-point crossover with a crossover rate Pc = 1.0, and apply bit-flipping
mutation with a mutation rate Pm = 1/n. In the following experiments, we
show the average performance with 30 runs, each of which spent T = 2, 000
generations. Population size is set to N = 200 (size of parent and offspring
population are |Pt| = |Qt| = 100). In IBEAε+, scaling parameter k is set to 0.05
similar to [6]. Also, in MSOPS, we use W = 100 uniformly distributed weight
vectors [9], which maximizes Hypervolume (HV ) [11] in the experiments.

In this work, to evaluate search performance of MOEA we use HV , which
measures the m-dimensional volume of the region enclosed by the obtained non-
dominated solutions and a dominated reference point in objective space. Here
we use r = (0, 0, · · · , 0) as the reference point. Obtained POS showing a higher
value of hypervolume can be considered as a better set of solutions from both
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convergence and diversity viewpoints. To calculate the hypervolume, we use
the improved dimension-sweep algorithm proposed by Fonseca et al. [12], which
significantly reduces computational time especially for large m. To provide addi-
tional information separately on convergence and diversity of the obtained POS,
in this work we also use Norm [13] and Maximum Spread (MS) [11], respec-
tively. Higher value of Norm generally means higher convergence to true POS.
On the other hand, Higher MS indicates better diversity in POS which can be
approximated widely spread Pareto front.

5.2 Performance Comparison with Conventional CDAS

First, we observe the search performance of CDAS [7] and the proposed S-CDAS
as we vary the number of objectives. Fig.5 (a) ∼ (c) show results on HV as
a combined metric of convergence and diversity, Norm as a measure of con-
vergence, and MS as a measure of diversity. The vertical bars, overlaying the
markers, represent 95% confidence intervals. For CDAS, we plot multiple results
when we vary the parameter S in the range [0.25, 0.50]. In these figures, all the
plots are normalized by the results of NSGA-II [2].

From Fig.5 (b) and (c), the conventional CDAS increases Norm while de-
creases MS as we decrease S from 0.5. Obviously, there is a trade-off between
convergence and diversity in the solutions obtained by CDAS. Therefore, only
when we select well-balanced S between convergence and diversity, we can
achieve higher HV values as shown in Fig.5 (a), where the optimal parameters
of CDAS to maximize HV are S∗ = {0.50, 0.45, 0.45, 0.40} for m = {4, 6, 8, 10}
objectives, respectively. On the other hand, both Norm and MS achieved by
S-CDAS are higher than CDAS with S = 0.45. Consequently, as shown in Fig.5
(a) the value of HV achieved by S-CDAS are higher than CDAS with any S for
all m = {4, 6, 8, 10} objectives problems.

5.3 Performance Comparison with Conventional MOEAs

Second, we compare the search performance of the proposed method (S-CDAS)
with conventional MOEAs: NSGA-II, CDAS, IBEAε+ [6] and MSOPS [4] as
we vary the number of objectives. Fig.6 (a) ∼ (c) show results on HV , Norm
and MS. For CDAS, we plot only results using the optimal parameter S∗ that
maximizes HV . Similar to Fig.5, all the plots are normalized by the results of
NSGA-II.

NSGA-II achieves the highest MS for m = {6, 8, 10} objectives while Norm
remains the minimum. That is, NSGA-II can obtain well-distributed POS, but its
convergence is poor in MaOP. Consequently, the values of HV are also the lowest
for m = {6, 8, 10} objectives. IBEAε+ achieves the highest convergence, but its
diversity is the minimum. MSOPS achieves balanced search on both convergence
and diversity, and consequently it achieves the highest HV among conventional
MOEAs compared in Fig.6. On the other hand, S-CDAS achieves higher Norm
and MS than conventional NSGA-II. Although Norm achieved by S-CDAS are
lower than IBEA, MSOPS and CDAS in m > 8 objectives, S-CDAS achieves
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high MS next to NSGA-II. Consequently, S-CDAS achieves the highest HV
among all MOEAs compared in Fig.6 for m = {4, 6, 8, 10} objectives problems
due to well-balanced search between convergence and diversity.

5.4 Algorithm’s Behavior of NSGA-II, CDAS and S-CDAS

Here we observe the transition of solutions search by NSGA-II, CDAS(S∗ = 0.45)
and S-CDAS in m = 8 objectives problem. Fist, we show the transition of the
number of solutions belonging to the top front for each algorithm over generation
in Fig.7. Among three methods, the ratio that the top front of NSGA-II (F1)
occupied in the population is noticeably larger than CDAS and S-CDAS. This
means more difficult in NSGA-II to discriminate solutions to obtain enough
selection pressure. Consequently, the convergence of POS obtained by NSGA-
II noticeably deteriorate especially for large m as shown in Fig.6 (b). On the
other hand, we can see that CDAS and S-CDAS considerably reduce the ratio
of the top front (F ′

1 and F ′′
1 ) and enhance selection pressure by using extended

dominance area. Consequently, CDAS and S-CDAS improve the convergence of
the obtained POS compared to NSGA-II as shown in Fig.6 (b).

Next, we focus on the transition of extreme solutions Ei (i = 1, 2, · · · , m),
each of which has maximum value for i-th objective function. Fig.8 shows the
transition of averaged maximum objective value in the top front given by f̄max =
1
m ·∑m

i=1 fi(Ei). In CDAS(S∗ = 0.45), the possibility that extreme solutions
Ei (i = 1, 2, · · · , m) are dominated and dismissed in parent selection is high
as shown in Fig.3 (a). Consequently, f̄max obtained by CDAS becomes lower
than NSGA-II over generations. On the other hand, S-CDAS achieves high f̄max

which is comparative with NSGA-II, since it has a mechanism to keep extreme
solutions Ei (i = 1, 2, · · · , m) in F ′′

1 . S-CDAS achieves better diversity for the
obtained POS than conventional CDAS as shown in Fig.6 (c), although S-CDAS
reduces the size of the top front F ′′

1 similar to conventional CDAS.
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Finally, we observe the transition of dominance area which is self-controlled
by S-CDAS for each solutions. For all solutions in top front F ′′

1 , we calculate the
average angle ϕ̄ from each solution’s ϕi(i = 1, 2, · · · , m) which determines the
dominance area, and transform ϕ̄ to S̄ by ϕ̄/π. Fig.9 shows the transition of S̄
as well as the maximum Smax and the minimum Smin over generation. From this
figure, S̄ is gradually decreasing as we spend more generations. That is, S-CDAS
gradually expands dominance area of solutions and strengthen selection pressure
while constructing variety of dominance areas in the range [Smin, Smax] for each
solution. Since Smax is 0.5 throughout the entire evolution, S-CDAS achieves
fine-grained ranking than NSGA-II similar to CDAS while keeping higher f̄max

than CDAS similar to NSGA-II.

6 Conclusions

In this work, we have proposed a modification of CDAS [7] called S-CDAS, which
self-controls dominance area for each solution without the need of an external
parameter. S-CDAS realizes fine-grained ranking that always guarantees the
inclusion of extreme solution in top front, which is different from conventional
CDAS. Through performance verification using many-objective 0/1 knapsack
problems with m = 4 ∼ 10 objectives, we have shown that S-CDAS achieves
well-balanced search performance on both convergence and diversity compared
to NSGA-II, IBEAε+, MSOPS and conventional CDAS with optimal parameter
S∗. Also, we have observed the transition of solutions search to see algorithm’s
behavior in detail.

As future works, we are planning to verify the search performance of the pro-
posed algorithm when we vary the size of solution space and the feasibility ratio.
Also, we want to apply our method to many-objective continuous optimization
problems.
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J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS,
vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

7. Sato, H., Aguirre, H., Tanaka, K.: Controlling Dominance Area of Solutions and
Its Impact on the Performance of MOEAs. In: Obayashi, S., Deb, K., Poloni, C.,
Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 5–20. Springer,
Heidelberg (2007)

8. Sato, H., Aguirre, H., Tanaka, K.: Effect of Controlling Dominance Area of So-
lutions in MOEAs on Convex Problems with Many Objectives. In: Proc. 7th
Intl. Conf. on Optimization: Techniques and Applications (ICOTA7), in CD-ROM
(2007)

9. Wagner, T., Beume, N., Naujoks, B.: Pareto-, Aggregation-, and Indicator-Based
Methods in Many-Objective Optimization. In: Obayashi, S., Deb, K., Poloni, C.,
Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer,
Heidelberg (2007)

10. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms
– a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel,
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Abstract. Three Multi-Objective Differential Evolutions (MODEs)
that differ in their selection schemes are applied to a real-world appli-
cation, i.e., the multi-objective optimum design of the balanced Surface
Acoustic Wave (SAW) filter used in cellular phones. In order to verify the
optimality of the Pareto-optimal solutions obtained by the best MODE,
those solutions are also compared with the solutions obtained by the
weighted sum method. Besides, from the Principal Component Analysis
(PCA) of the Pareto-optimal solutions, an obvious relationship between
the objective function space and the design parameter space is disclosed.

1 Introduction

Surface Acoustic Wave (SAW) filters have played an important role as a key
device in modern mobile and wireless communication systems such as personal
digital assistants (PDAs) and cellular phones[1,2]. The frequency response char-
acteristics of SAW filters are governed primarily by their geometrical structures.
Therefore, in order to decide the suitable structures of SAW filters, optimum de-
sign methods that combine optimization algorithms with computer simulations
have been reported[3,4,5,6]. Evolutionary Algorithms (EAs) such as Genetic Al-
gorithm (GA) have been also used in the optimum design methods[4,6].

In our previous paper[7], the design of the balanced SAW filter used in cellular
phones was formulated as a constrained multi-objective optimization problem.
Then a recent multi-objective EA based on Differential Evolution (DE)[8], i.e.,
Generalized DE 3 (GDE3)[9], was applied to the optimization problem. However,
the optimality of the non-dominated feasible solutions obtained by GDE3 has
not been confirmed. Furthermore, those solutions have not been assessed enough
to get the useful knowledge about the design of the balanced SAW filter.

In this paper, in order to obtain a set of Pareto-optimal solutions of the
above multi-objective optimization problem for the design of the balanced SAW
filter, three variants of Multi-Objective DE (MODE) that differ in their selection
schemes are employed. The three MODEs are compared in several criteria[10].
In order to verify the optimality of the Pareto-optimal solutions obtained by the
best MODE, those solutions are also compared with a set of solutions obtained
by using the weighted sum method. Furthermore, from the Principal Component
Analysis (PCA) of the Pareto-optimal solutions, an obvious relationship between
the objective function space and the design parameter space is disclosed.
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2 Balanced Surface Acoustic Wave Filter

2.1 Structure of Balanced SAW Filter

The balanced SAW filter consists of several components, namely Inter-Digital
Transducers (IDTs) and Shorted Metal Strip Array (SMSA) reflectors, fabricated
on a piezoelectric substrate. Fig. 1 shows a typical structure of the balanced SAW
filter consisting of one transmitter IDT (IDT-T), two receiver IDTs (IDT-Rs),
pitch-modulated IDTs between IDT-T and IDT-Rs, and two SMSA reflectors.

Port-1 connecting to IDT-T is an input-port of the balanced SAW filter, while
a pair of port-2 and port-3 connecting to respective IDT-Rs is a balanced output-
port. IDT-T converts electric input signals into acoustic signals. The acoustic
signals around a resonate frequency are amplified between two SMSA reflectors.
Then IDT-Rs reconvert the acoustic signals into electric output signals.

2.2 Model of Balanced SAW Filter

The behavior of each IDT can be simulated by using a circuit model in Fig. 2:
port-a and port-b are acoustic signal ports, while port-c is an electric signal
port[11]. The circuit model of SMSA reflector is derived from the circuit model
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of IDT by shorting the electric port (port-c). Therefore, an equivalent circuit
model of the balanced SAW filter in Fig. 1 can be composed by linking all the
components’ circuit models in their acoustic signal ports. The equivalent circuit
model of the balanced SAW filter is represented by a scattering matrix S as⎡

⎣ b1
b2
b3

⎤
⎦ = S

⎡
⎣a1

a2
a3

⎤
⎦ =

⎡
⎣s11 s12 s13

s21 s22 s23
s31 s32 s33

⎤
⎦
⎡
⎣a1

a2
a3

⎤
⎦ (1)

From the matrix S = [spq] in (1), the network model of the balanced SAW filter
in Fig. 1 can be described graphically as shown in Fig. 3. In the network model of
the balanced SAW filter in Fig. 3, nodes aq (q = 1, 2, 3) denote the electric input
signals, while nodes bp (p = 1, 2, 3) denote the electric output signals. Besides,
scattering parameters spq labeled on edges provide the transition characteristics
from the input signals aq to the output signals bp. The port-1, port-2 and port-3
of the network model in Fig. 3 correspond respectively to the port-1, port-2 and
port-3 of the balanced SAW filter shown in Fig. 1.

2.3 Criteria of Balanced SAW Filter

It is desirable that the output signals b2 and b3 from a pair of balanced output-
ports, namely port-2 and port-3 in Fig. 3, have the same amplitude and the
opposite phases through the pass-band of the balanced SAW filter. Therefore,
the amplitude balance and the phase balance of those signals are evaluated
respectively by E1 in (2) and E2 in (3). Both criteria E1 and E2 should be
restricted to a small value through the pass-band of the balanced SAW filter.

E1 = 20 log10(|s21|) − 20 log10(|s31|) (2)

E2 = ϕ(s21) − ϕ(s31) + 180 (3)

where, ϕ(spq) denotes the phase angle of the scattering parameter spq.
In order to evaluate strictly the band-pass filtering characteristics of the bal-

anced SAW filter, differential mode signals have to be segregated from common
mode signals at the balanced output-port shown in Fig. 3. Therefore, according
to the balanced network theory[12], the differential mode signals (ad and bd) and
the common mode signals (ac and bc) are derived respectively as follows:⎧⎪⎪⎨

⎪⎪⎩
ad =

1√
2

(a2 − a3)

bd =
1√
2

(b2 − b3)

⎧⎪⎪⎨
⎪⎪⎩

ac =
1√
2

(a2 + a3)

bc =
1√
2

(b2 + b3)
(4)

From (4), the matrix S in (1) is transformed into the matrix Smix as

Smix =

⎡
⎣
√

2 0 0
0 1 −1
0 1 1

⎤
⎦ S

⎡
⎣
√

2 0 0
0 1 −1
0 1 1

⎤
⎦−1

=

⎡
⎣ s11 s1d s1c

sd1 sdd sdc

sc1 scd scc

⎤
⎦ (5)
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Table 1. Design parameters of balanced SAW filter

xj [ xL
j , xU

j ] ej design parameter

x1 [200, 400] – overlap between electrodes
x2 [10.0, 40.0] 0.5 number of fingers of IDT-R
x3 [10.5, 40.5] 1.0 ditto of IDT-T
x4 [1.0, 4.0] 1.0 ditto of modulated IDT
x5 [50.0, 300.0] 10.0 number of strips of SMSA
x6 [0.2, 0.8] – metallization ratio of IDT
x7 [0.2, 0.8] – ditto of SMSA
x8 [1.0, 1.1] – pitch ratio of SMSA
x9 [0.9, 1.0] – ditto of modulated IDT
x10 [1.9, 2.1] – finger pitch of IDT
x11 [3900, 4000] – thickness of electrode

By using the mix-mode scattering parameters in (5), the band-pass filtering
characteristics of the balanced SAW filter can be evaluated in the same way
with the conventional SAW filters[5]. Therefore, the standing wave ratios of the
input-port E3 and the output-port E4, which should be close to one through the
pass-band of the balanced SAW filter, are defined respectively as follows:

E3 =
1 + |s11|
1 − |s11| , E4 =

1 + |sdd|
1 − |sdd| (6)

The attenuation E5 between the input- and output-ports is also defined as

E5 = 20 log10(|sd1|) (7)

3 Problem Formulation

3.1 Design Parameter

Table 1 shows D = 11 design parameters xj (j = 1, · · · , D) selected for describ-
ing the structure of the balanced SAW filter in Fig. 1. Table 1 also shows the
upper xU

j and lower xL
j bounds of the design parameter xj . Each design param-

eter takes either a continuous value or a discrete value. Therefore, for discrete
design parameters, the intervals ej ∈ IR of them are appeared in Table 1.

3.2 Objectives and Constraints

The values of the criteria Eh = Eh(x, ω) (h = 1, · · · , 5) in the previous section
depend on both the design parameters x = (x1 · · · , xD) and the frequency ω.
Therefore, a set of frequency points ω ∈ ΩP is sampled from the pass-band of
the balanced SAW filter. Similarly, two sets of frequency points ω ∈ ΩL and
ω ∈ ΩH are sampled respectively from the lower and higher stop-bands.

The balanced SAW filter works as a band-pass filter. Therefore, the attenua-
tion E5 = E5(x, ω) defined in (7) should be kept small through the stop-band
but large through the pass-band as much as possible. In order to realize such a
band-pass filtering characteristics, three objective functions are defined as
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) =
∑

ω∈ΩL

E5(x, ω)
|ΩL|

f2(x) = −
( ∑

ω∈ΩP

E5(x, ω)
|ΩP |

)

f3(x) =
∑

ω∈ΩH

E5(x, ω)
|ΩH |

(8)

where, |Ω| denotes the number of frequency points ω ∈ Ω.
The upper Uh(ω) and lower Lh(ω) bounds are specified for the rest of criteria

Eh(ω, x) (h = 1, · · · , 4). Then six constraints are defined with them as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gh(x) =
∑

ω∈ΩP

Eh(x, ω) − Uh(ω)
|ΩP | ≤ 0, h = 1, · · · , 4,

g5(x) =
∑

ω∈ΩP

L1(ω) − E1(x, ω)
|ΩP | ≤ 0

g6(x) =
∑

ω∈ΩP

L2(ω) − E2(x, ω)
|ΩP | ≤ 0

(9)

3.3 Optimum Design Problem

From (8), (9) and Table 1, the design of the balanced SAW filter is formulated
as a constrained three-objective optimization problem as follows:⎡

⎢⎢⎣
minimize { f1(x), f2(x), f3(x) }
subject to gk(x) ≤ 0, k = 1, · · · , 6,

xL
j ≤ xj ≤ xU

j , j = 1, · · · , D, (D = 11).

(10)

4 Multi-Objective Differential Evolution

4.1 Representation

MODE holds NP individuals, or the tentative solutions of the multi-objective
optimization problem defined by (10), in a population PG. The i-th individual
xG

i ∈ PG in the population of generation G is represented as follows:

xG
i = (xG

1,i, · · · , xG
j,i, · · · , xG

D,i) (11)

where, xG
j,i ∈ IR and 0 ≤ xG

j,i ≤ 1 (j = 1, · · · , D; i = 1, · · · , NP ).
The individual xG

i is converted into a corresponding solution x when the
values of functions fm(x) and gk(x) are evaluated. For a continuous design
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parameter xj , xG
j,i is converted into xj as shown in (12). On the other hand, for

a discrete design parameter xj , xG
j,i is converted into xj as shown in (13).

xj = (xU
j − xL

j )xG
j,i + xL

j (12)

xj = round

(
(xU

j − xL
j )xG

j,i

ej

)
ej + xL

j (13)

where, round(z) rounds a real number z ∈ IR to the nearest integer.

4.2 Selection Scheme

In order to select the next population xG+1
i ∈ PG+1 (i = 1, · · · , NP ) from the

current one xG
i ∈ PG, every MODE considers the dominance relation between

two individuals, or their corresponding solutions x′ and x′′. If the relation shown
in (14) holds between the two solutions x′ and x′′, x′ dominates x′′ (x′ # x′′)
in the objective function space. Similarly, if the relation shown in (15) holds
between the two solutions x′ and x′′, x′ weakly dominates x′′ (x′ $ x′′).

∀m ∈ {1, 2, 3} fm(x′) ≤ fm(x′′) ∧ ∃m′ ∈ {1, 2, 3} fm′(x′) < fm′(x′′) (14)

∀m ∈ {1, 2, 3} fm(x′) ≤ fm(x′′) (15)

Furthermore, if the constraint function ĝk(x) (k = 1, · · · , 6) is defined as
shown in (16), both the dominance and the weak dominance relations between
two solutions can be also introduced into the constraint function space.

ĝk(x) = max{ gk(x), 0 } (16)

First of all, the trial vector uG
i (i = 1, · · · , NP ) is generated from the target

vector xG
i by using the strategy of DE[8]. Then, in the selection scheme of the

first variant of MODE (MODE1), the trial vector uG
i is compared with the target

vector xG
i . As a result, if uG

i satisfies any of the following OR-conditions, uG
i is

selected such as xG+1
i = uG

i , otherwise xG
i is selected such as xG+1

i = xG
i .

[OR-conditions to select the trial vector]

1) uG
i is feasible and xG

i is infeasible.
2) uG

i and xG
i are feasible and uG

i $ xG
i in the objective function space.

3) uG
i and xG

i are infeasible and uG
i $ xG

i in the constraint function space.

The second variant of MODE (MODE2) borrows the selection scheme from
NSGA-II[13]. Therefore, both the target vectors xG

i and the trial vectors uG
i are

added to the next population PG+1. As a result, the size of PG+1 is increased
to 2 NP temporally. Then it is set back to NP by using the selection rule based
on the non-domination ranking and the crowding distance. Because feasible so-
lutions have priority over infeasible ones, the selection scheme of NSGA-II is
executed in the objective function space. However, if the number of the feasible
solutions is less than NP , it is executed in the constraint function space.
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Table 2. Performance

method NS HV τ

MODE1 70.0 76.4 61.3
MODE2 200.0 99.8 65.4
MODE3 200.0 100.0 63.5
SODE 61.8 85.5 56.2

Table 3. Dominance rate

method MODE1 MODE2 MODE3 SODE
MODE1 85.3 78.3 75.4 98.7
MODE2 97.9 78.6 75.2 94.3
MODE3 98.3 80.0 76.7 93.9
SODE 100.0 100.0 100.0 83.3

As well as GDE3[9], the third variant of MODE (MODE3) combines two
selection schemes used by DE and NSGA-II. First of all, the trial vector uG

i

is compared with the target vector xG
i . If uG

i satisfies any of the above OR-
conditions, uG

i is selected such as xG+1
i = uG

i , otherwise xG
i is selected. However,

if uG
i satisfies all the following AND-conditions, uG

i is also added to PG+1 such
as xG+1

i′ = uG
i (i′ > NP ). As a result, the size of PG+1 comes into the range

between NP and 2 NP . Then it is set back to NP in the same way with MODE2.
[AND-conditions to keep the trial vector]

1) uG
i has not been selected yet, namely xG+1

i �= uG
i .

2) uG
i is feasible and xG

i � uG
i in the objective function space.

5 Experimental Results

5.1 Comparison of Three Variants of MODE

MODE1, MODE2 and MODE3 were applied to the optimization problem in
(10). Besides MODEs, the weighted-sum method was also applied to the op-
timization problem in (10) for the comparison. For the weighted-sum method,
three objective functions in (8) were integrated into one objective function as

f(x) =
3∑

m=1

αm fm(x) =
3∑

m=1

fm(x) (17)

In order to solve the constrained optimization problem defined by using (9)
and (17), a Single-Objective DE (SODE), i.e., GDE3[9], was employed.

For generating the trial vector uG
i , a basic strategy called “DE/rand/1/bin”[8]

was used by all MODEs and SODE. The same set of control parameters’ values,
which was obtained experimentally, was used in every method: the scale factor
SF = 0.9, the crossover rate CR = 0.9, the population size NP = 200 and the
maximum generation Gmax = 600. Every method was coded by MATLAB and
executed on a personal computer (CPU: Intel�CoreTM i7@3.33GHz).

Table 2 compares the performances of the four methods in several criteria,
namely the number of non-dominated solutions NS, the normalized hypervolume
HV , and the computational time τ [min] averaged over four runs. From Table 2,
MODE3 is superior to the other methods in HV . Table 3 shows the rate of the
non-dominated solutions that are obtained by the method in the row and not
dominated by any solutions obtained by the method in the column. From Table
3, MODE3 is also better than the other MODEs in the quality of solutions.
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Fig. 4. A set of solutions by MODE3
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Fig. 5. A set of solutions by SODE
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Fig. 9. Attenuations achieved by two ex-
treme Pareto-optimal solutions

Fig. 4 plots a set of non-dominated feasible solutions in the final population
of MODE3 in the objective function space. Fig. 5 plots a similar set of solutions
obtained by SODE in the same way. Comparing Fig. 4 with Fig. 5, the solutions
by MODE3 are excellent not only in the diversity but also in the optimality.

5.2 Principal Component Analysis of Solutions

A set of the solutions obtained by MODE3 has been assessed by PCA in both the
objective function space and the design parameter space. Fig. 6 shows the propor-
tions of the principal components evaluated in the three-dimensional objective
function space. Fig. 7 shows those values evaluated in the eleven-dimensional de-
sign parameter space. From Fig. 6, a difference of the Pareto-optimal solutions
in the objective function space can be described by the first and the second
principal components. Similarly, from Fig. 7, a difference of them in the design
parameter space can be described mainly by the first principal component.

Fig. 8 plots the Pareto-optimal solutions shown in Fig. 4 by using two axes,
namely the first principal component of the objective function space and that
of the design parameter space. From Fig. 8, a positive correlation between the
objective function space and the design parameter space can be observed.

Fig. 9 shows the attenuations E5(x�, ω) achieved by two extreme Pareto-
optimal solutions x� that have the largest (solid line) and the smallest (broken
line) values for the first principal component of the objective function space.
From Fig. 9, the former solution is apparently better than the latter one.

6 Conclusions

Three variants of MODE that differed in their selection schemes were applied to a
constrained three-objective optimization problem for the design of the balanced
SAW filter. As a result, the performance of MODE3 that combined two selection
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schemes used by DE and NSGA-II was better than the others. Incidentally, the
similar result has been reported on two-objective benchmark problems[14].

Future work will focus on the further investigation of the Pareto-optimal solu-
tions for the optimum design problem of the balanced SAW filter that has more
than three objectives. For solving the hard problem, we may need to extend
the framework of MODE3[15]. Thereby we would like to clarify the relationship
between the structure and the frequency response of the balanced SAW filter.
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Abstract. We present a novel system to lessen the risk of occupational health 
hazards (OHH) of workers in the labor intensive industrieswith a job-
combination approach. The work is carried out in a brick manufacturing (BM) 
unit at Hathras, India. The risk of OHH is assessed in terms of perceived  
discomfort level (PDL) of workers. PDL is computed with factor rating (FR) 
method. It is observed based on an initial survey in the BM unit that the work-
ers, in general, aim to maximize their earnings by subjecting themselves to  
extreme work conditions due to economic reasons, and hence are exposed to 
greater risk of OHH resulting in higher values of PDL. We employ NSGA-II, 
an evolutionary multiobjective optimization (EMO) technique, to search for op-
timal PDL-earning tradeoff (PET) profile with two conflicting objectives, viz. 
minimization of PDL, and maximization of earnings. 

Keywords: Multiobjective Optimization, Occupational Health, NSGA-II,  
Factor Rating. 

1   Introduction 

In brick manufacturing (BM), firing workers are exposed to high risk of heat stress 
which adversely affects their health and work performance. Heat stress is a recog-
nized occupational health hazard (OHH) in many industries including BM units. Cur-
rent guidelines define working environment that cause an increase above 38°C (heat 
stress) as potentially hazardous [1]. However, the effectiveness of these guidelines is 
limited by the individual variation among employee and variation in work practices 
[2]. Hot conditions give rise to physiological heat strain [3], and cognitive decrements 
[4], [5]. In the present work, which is carried out in a BM unit at Hathras, India, we 
assess the risk of OHH in terms of perceived discomfort level (PDL) of workers for a 
given job-combination. We make the following observations based on an initial  
survey using interview method: (1) the workers, in general, are found to maximize 
their earnings by subjecting themselves to extreme work conditions due to economic 
reasons, and hence are exposed to greater risk of OHH; (2)there are three factors  

                                                           
* Corresponding author. 
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identified to be influencing significantly the PDL of a given job, viz. number of work-
ing hours (WH), time of a rest break in minutes (RB), and number of rest breaks 
(NRB). BM comprises firing work, molding, and three types of lifting. Firing work is 
found to be the most severe job in BM as it involves undue exposure of workers to 
excessive heat. To reduce the risk of heat stress we propose a job-combination ap-
proach wherein the firing workers are required to do another job (brick molding in the 
present study) along with firing work in the same BM unit within their prescribed 
working hours thereby reducing their exposure to high temperature zone while main-
taining their earning to a satisfactory level. Similarly molding workers go for firing 
work to reduce the risk of musculoskeletal disorder, a recognized occupational hazard 
in molding work. Therefore, workers of a BM unit at Hathras, India are trained to 
perform firing job along with molding job with predefined WH distribution − result-
ing in a firing-molding job-combination.Each job has its specific earning. High earn-
ing jobs are tedious to perform yet workers prefer such jobs due to the reasons already 
mentioned, which in turn create considerable health problems to them. Combining 
jobs is found to be a way of reducing OHH and yet maintaining the good earnings.  

PDL-earning tradeoff (PET) belongs to a class of multiobjective optimization 
(MOO) problem wherein there is no single optimum solution rather there exists a 
number of solutions, which are all optimal – Pareto-optimal solutions – optimal PET 
profile in occupational health literature. The tradeoff between PDL and earnings gives 
workers wide opportunities to work out the best schedule to reduce the risk of OHH 
while maintaining their required earnings, and therefore PET analysis is of considera-
ble importance from the view points of both – workers’ health and owners’ adminis-
tration. There are six factors in a given job-combination which assume discrete values 
in real-life situations; therefore, the problem being tackled in this work, i.e., searching 
for optimal PET profile, is a combinatorial multiobjective optimization problem, 
which is otherwise difficult to solve using classical search and optimization tech-
niques, and hence the use of NSGA-II, an EMO technique, is justified to solve this 
problem.  MOO is a field reasonably explored by researchers in recent years since 
1990 – as a result diverse techniques have been developed over the years [6]. Most of 
these techniques elude the complexities involved in MOO and usually transform mul-
tiobjective problem into a single objective problem by employing some user defined 
function. Since MOO involves determining Pareto-optimal solutions, therefore, it is 
hard to compare the results of various solution techniques of MOO, as it is the deci-
sion-maker who decides the ‘best solution’ out of all optimal solutions pertaining to a 
specific scenario [7]. Evolutionary algorithms (EAs) are meta heuristics that are able 
to search large regions of the solution’s space without being trapped in local optima 
[8]. Some well-known meta heuristics are genetic algorithm, simulated annealing, and 
tabu search. Genetic Algorithms are search algorithms [9], which are based on the 
mechanics of natural selection and genetics to search through decision space for op-
timal solutions [10]. In genetic algorithm, a string represents a set of decisions (chro-
mosome combination), a potential solution to a problem. Each string is evaluated on 
its performance with respect to the fitness function (objective function). The ones 
with better performance (fitness value) are more likely to survive than the ones with 
worse performance. Then the genetic information is exchanged between strings cros-
sover and perturbed by mutation. The result is a new generation with (usually) better 
survival abilities. This process is repeated until the strings in the new generation are 
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identical, or certain termination conditions are met. A genetic algorithm uses a popu-
lation of solutions in each iteration of its search procedure, instead of a single solu-
tion. Since a population of solutions is processed in each iteration, the outcome of a 
GA is also a population of solutions. This unique feature of GA makes it a true mul-
tiobjective optimization technique and that is how GAs transcend classical search and 
optimization techniques [11]. Different versions of multiobjective GAs have been 
successfully employed to solve many MOO problems in science and engineering. 

2   Methodology 

The risk of OHH for a job-combination is evaluated based on the perceived discom-
fort level (PDL) of workers using interview method. We consider a job-combination 
consisting of two jobs – firing job and molding job in the present work. We identify 
three factors which influence PDL of a given job, viz. number of working hours 
(WH), time of a rest break in minutes (RB), and number of rest breaks (NRB) as men-
tioned earlier. Factor Rating (FR) is an approach that is used for evaluating PDL for a 
given job-combination. The importance of FR is that it provides a rational basis for 
evaluating PDL and facilitates comparison among PDL of different sets of a given 
job-combination by establishing a composite value that summarizes all related factors. 
FR also helps in incorporating the qualitative as well as quantitative information in 
evaluating PDL. The following procedure is used to develop FR for computing PDL: 

1. We first identify relevant factors that influence PDL. As mentioned these are 
WH, RB and NRB for each job. We get six factors for a job-combination consisting 
of two jobs, which are WH1, RB1, and NRB1 for the first job (firing work), and WH2, 
RB2, and NRB2 for the second job (molding work). 

2. Based on the perception and opinion of concerned workers and their supervisors 
we assign an average weight to each factor that indicates its relative importance com-
pared with all other factors for evaluating PDL as shown below. Typically weights 
sum to 1.0. 
 

Factors WH1 RB1 NRB1 WH2 RB2 NRB2 

Weight  0.35 0.10 0.15 0.25 0.06 0.09 
 
3. The value of each factor is normalized in computing PDL by dividing it by its 

maximum value, which yields ratios ranging from 0 to 1.0. 
4. We then multiply the normalized value of each factor with its corresponding 

weight, and sum the result, called a composite score, which is nothing but the required 
PDL value. The resulting expression for PDL is shown below. 
 
PDL = [((WH1/WHmax) * 0.35 - (RB1/RBmax) * 0.10 - (NRB1/NRBmax) * 0.15) + 
((WH2/WHmax) * 0.25 - (RB2/RBmax) * 0.06 - (NRB2/NRBmax) * 0.09)] 

It is obvious that WH1 and WH2 contribute positively to PDL, whereas higher values 
of RB1, RB2, NRB1, and NRB2 would cause a decrease in PDL. Higher weights to job 
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1 in comparison to job 2 is attributed to the fact that job 1 (i.e. firing work) is more 
severe than job 2 (i.e. molding work) as mentioned earlier. 

The wages of workers are based on the job they are doing. In the firing work a 
worker earns on an average Rs. 25 per hour while for molding work the earning is Rs. 
16.66 per hour. Since the proposed system is flexible enough to allow a good amount 
of rest break (upto 60 minutes) and sufficient number of rest breaks (upto 8), therefore 
we find it lucid to deduct an amount equivalent to his total rest break time from his 
earnings/day for the ease of implementability of the proposed system by the owner of 
the BM unit. The resulting expression for earnings/day (ER/day) is illustrated below. 
 
ER/day = (WH1 – (RB1 * NRB1)/60) * 25) + (WH2 – (RB2 * NRB2)/60) * 16.66) 
 
The formal definition of PET problem is illustrated below. 
 Min  PDL Max  ER/day 

Subject to WH  ∈  2, 3, 4, 5, 6, 7, 8, 9, 10  WH  12  WH  RB  ∈  5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60  RB  ∈  5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60   NRB  1, 2, 3, 4, 5, 6, 7, 8 , 0  NRB  WH   NRB  1, 2, 3, 4, 5, 6, 7, 8 , 0  NRB   WH  

3   NSGA-II for PET  

We employ of non-dominated sorting genetic algorithm-II (NSGA-II) in solving PET, 
a multiobjective optimization problem. The problem tackled is a real life problem of a 
labor intensive BM. NSGA-II has proved its effectiveness in solving many real life 
MOO problems in terms of convergence to Pareto-optimal front, and in maintaining 
diversity within the population. The NSGA-II algorithm and its detailed implementa-
tion procedure can be found in [11] and [12]. A brief description of NSGA-II is as 
follows. NSGA-II uses non-dominated sorting for fitness assignments. All individuals 
not dominated by any other individuals, are assigned front number 1. All individuals 
only dominated by individuals in front number 1 are assigned front number 2, and so 
on. Selection is made, using tournament between two individuals. The individual with 
the lowest front number is selected if the two individuals are from different fronts. 
The individual with a higher crowding distance is selected if they are from the same 
front. i.e., a higher fitness is assigned to individuals located on a sparsely populated 
part of the front. Each individual is made to participate in exactly two tournaments, 
thereby making at most two copies of itself in the selected population. There are N 
parents in any iteration and crossover is used to generate N new individuals 
(offspring). This is followed by mutation which is applied on a few randomly selected 
individuals. 
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In the context of PET problem, a solution in NSGA-II is an array (gi) where i = 1, 2 
. . ., 5 which represents an instance of a job-combination (Fig. 1). Here g1, g2, g3, g4 
and g5 represent WH1, RB1, NRB1, RB2, and NRB2 respectively. 
 

 

Fig. 1. An instance of job-combination schedule 

The initial population consists of N solutions, where N strings are selected random-
ly from the feasible search space. These solutions are referred to as parents. For the 
crossover, two strings (say, S1 and S2) from the population are selected randomly. The 
offspring O1 and O2 are produced as follows: First the working hours of S1 and S2 are 
stored in the respective positions of O2 and O1 respectively. The remaining entries of 
S1 and S2 are copied to O1 and O2 respectively. To ensure the feasibility of offspring, 
the number of rest breaks is checked and if it exceeds the corresponding working 
hours, its value is reassigned randomly so as to make it feasible. Mutation is per-
formed on randomly selected rm * N individuals from the offspring population where-
in the working hours in the selected individual are reassigned randomly, where rm is 
the mutation rate. 

4   Simulation Results  

NSGA-II implementation details are as follows. The procedure is coded in MATLAB 
7.0 and run on Pentium (R)-based HP Intel (R) computer with 1.73 GHz Processor 
and 512 MB of RAM. The crossover rate and the mutation rate (rm) are kept as 1.0 
and 0.05 respectively. The population size is chosen as 50. These parameters are de-
cided after performing computational experiments based on faster convergence crite-
ria. The search is set to terminate when nondominated PET profile remains unchanged 
for three consecutive iterations – a number is suitably decided based on extensive 
experiment. It takes on an average ten iterations for NSGA-II to search for the best 
possible PET profile. Results of an example run of NSGA-II follow to demonstrate its 
performance to solve PET problems. It can be seen that the initial population is well 
distributed over the solution space (Fig. 2). Fig. 3 illustrates the intermediate  
improvements in the PET profile along with different fronts of the population. In 
succeeding iterations NSGA-II searches for optimal PET profile. Fig. 4 depicts the 
nondominated PET solution points of the final generation population, which are con-
cluded to be the best points obtained.  
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Fig. 2. An example of the Initial population with nondominated PET profile 

 
 

 
Fig. 3. Intermediate improvements in the PET profile along with other fronts  
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Fig. 4. PET profile and other fronts of final generation population 

Table 1. Nondominated solution points of final generation 

WH1 RB1 NBB1 WH2 RB2 NRB2 ER/day PDL 
4 60 6 8 50 2 55.5133 -0.0017 
2 60 5 10 50 1 77.7167 0.0117 
6 60 5 6 50 3 83.3100 0.0225 
8 60 6 4 50 2 88.8733 0.0317 
7 60 6 5 50 1 94.4167 0.0346 
2 20 5 10 55 4 113.8467 0.0396 
4 60 3 8 50 3 116.6300 0.0433 
5 60 3 7 50 3 124.9700 0.0517 
3 60 2 9 50 3 133.2900 0.0537 
4 60 2 8 50 3 141.6300 0.0621 
2 60 1 10 50 3 149.9500 0.0642 
3 60 1 9 20 6 166.6200 0.0687 
4 60 1 8 20 6 174.9600 0.0771 
9 25 8 3 45 1 179.1517 0.0771 

10 25 8 2 45 1 187.4917 0.0854 
5 60 1 7 50 2 188.8533 0.1004 
7 15 6 5 25 4 193.0333 0.1008 
4 60 1 8 50 1 194.3967 0.1033 
6 60 1 6 50 2 197.1933 0.1087 
5 60 1 7 50 1 202.7367 0.1117 
7 5 7 5 45 1 231.2217 0.1125 
8 5 7 4 45 1 239.5617 0.1208 
9 5 7 3 45 1 247.9017 0.1292 

10 5 7 2 45 1 256.2417 0.1375 
10 5 5 2 45 1 260.4083 0.1750 
9 5 4 3 15 1 262.4817 0.2154 

10 5 4 2 15 1 270.8217 0.2237 
10 5 3 2 5 1 275.6817 0.2525 
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We present these points in the tabular form also (Table 1). It is interesting to note 
that certain PDL assume negative values which indicate that the workers are in com-
fortable zone for corresponding job-combination schedules. 

A comparison of NSGA-II with enumeration technique follows. It takes a total of 
995328 searches to compute the nondominated solution points for the problem under 
consideration whereas NSGA-II takes a maximum of 800 searches for the same. Fur-
ther, the mean elapse time of a single run of NSGA-II is found to be 3.012 sec. − a 
very fast convergence. It is observed that the near optimal nondominated curve is 
attained in 4th or 5th iteration and in the remaining iterations more and more solutions 
points belonging to this front are explored thereby increasing the size of the nondomi-
nated front. 

5   Conclusion   

Brick kiln owners are faced with the problems of putting together and managing large 
number of workers while considering their health hazards and absenteeism, limited 
time schedules, and environment uncertainty. An analysis is done to reduce the risk of 
OHH by combining firing work with molding work in a BM unit. A job-combination 
approach is proposed so that workers’ earnings are not compromised to a greater 
extent. Firing work is identified to be the most severe job. NSGA-II is implemented to 
search for the optimal PDL-Earning profile.  

It has the ability to trace out Pareto-optimal front and it does not place any restric-
tion on the form of inputs (WH, RB, and NRB of two jobs) to evaluate PDL and earn-
ings for a given job-combination. Factor rating approach is developed to evaluate 
PDL. The unifying approach amalgamating job-combination concept, weighted factor 
rating scheme with NSGA-II in a unique way turns out to be a powerful and efficient 
method without losing its simplicity. For complex optimization scenario, it can effec-
tively search for the optimal values of WH, RB, and NRB for minimum PDL and 
maximum earnings. 

The top management faces the problem of monopoly of workers of firing work in 
BM units, as it is a high skill job. The system presented in this work will alleviate this 
problem as job-combination approach will make other workers getting trained for 
firing work. In fact the system will help in ‘work generalization’ to take over ‘work 
specialization’. Therefore, the feasibility of implementing this system is high as it is 
beneficial to both the parties − workers as well as owners. In view of these facts, the 
work presented here forms an important basis to effectively address the issues in 
health management of workers. The proposed system act as an advisor to a worker to 
choose a job-combination and the corresponding values of WH, RB, & NRB to decide 
his/her occupational risks and earnings suitably. 
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Abstract. Because of their numerous and diverse ranges, the tuning of
process parameters of a machining process depends heavily upon oper-
ators’ technologies and experiences. Still, proper tuning cannot be ex-
pected from such a manual process, which encourages the use of an
optimization tool for effective utilization of a process. In this paper,
a multi-objective genetic algorithm (GA) is applied to electrochemical
machining for tuning its various process parameters so that the optimum
output can be achieved. An experimental dataset is used for modeling
the problem through regression analysis, and then the GA is applied to a
linear model and an exponential model for maximizing material removal
rate and minimizing surface roughness.

Keywords: Electrochemical machining, regression analysis, multi-
objective optimization, genetic algorithm.

1 Introduction

Electrochemical machining (ECM) is one of the most widely used nontraditional
machining processes, which is used to process extremely hard materials that are
unable to be machined by traditional machining processes. The ECM process
is based on the principle of material removal by electrochemical dissolution of
an anode. In this process, a direct current with high amperage and low voltage
is passed between the workpiece (anode) and the tool (cathode). At the anodic
workpiece surface, metal is dissolved in electrolyte as metallic ions by the electro-
chemical reactions, and thus the tool shape is copied on the workpiece. The tool
material of the ECM process needs not to have high strength and hardness, and
hence complicated shapes can be machined easily. It is a complex process, partic-
ularly in setting various process parameters for effective utilization of the process.
This has necessitated the use of an optimization tool for optimizing the output
by proper tuning of various process parameters, which is nearly impossible even
from the experience of a skilled operator. In the case of an optimization tool, clas-
sical methods, particularly the widely used gradient-based methods [2], are not
so suitable for solving such highly nonlinear and complex problems. Therefore,
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the nondominated sorting genetic algorithm-II (NSGA-II) [6], a very popular and
widely applied nontraditional multi-objective optimization technique, is chosen
here for optimizing the output of the ECM process. An experimental dataset,
produced by the ECM process, is considered for the study. A linear model and
an exponential model for the problem are first generated by multiple regression
analysis of the dataset. Then, NSGA-II is applied to the models for maximiz-
ing material removal rate and minimizing surface roughness by proper tuning
of the input current, voltage, flow rate of electrolyte, and inter-electrode gap
size. The obtained results show very similar performance of NSGA-II in both
the models. However, the results could not be compared with others due to the
non-availability of any literature.

The rest of the paper is organized as follows: the specialized literature is
reviewed in Sect. 2. The regression analysis of the experimental dataset is per-
formed in Sect. 3, followed by Sect. 4 where the regression models are formulated
as optimization problems. The obtained computational results are presented in
Sec. 5. Finally, the paper is concluded in Sect. 6 with the present findings and
the possible future scope of the theme of the present work.

2 Literature Review

The response surface methodology, hybridized with low frequency vibration of
the tool, is used by Ebeid et al. [7] for deriving an ECM model from experimen-
tal data. The modeling and monitoring of the inter-electrode gap is presented
by Rajurkar et al. [9]. Analytical modeling of ECM process with low frequency
vibration of the tool is demonstrated by Hewidy et al. [8]. Rajurkar et al. [10]
perform an experimental analysis for minimizing the machining allowance due
to the sludge and the memory error. The controlled ECM through response
surface methodology is studied by Bhattacharya and Sorkhel [4], in which the
process is optimized by the Gauss-Jordon algorithm. Multi-objective optimiza-
tion of ECM process is performed by Acharya et al. [1] using the goal partitioning
algorithm. It is a complex method as a preference should be given every time
to particular variables. A multi-objective model is proposed by Rao et al. [11]
for optimizing process parameters of the ECM process using a particle swarm
optimization algorithm. However, they solve the problem as a single-objective
optimization problem by combining multiple objectives into a single function.
Another multi-objective optimization model is proposed by Asokan et al. [3] for
maximizing material removal rate and minimizing surface roughness, which is
also solved as a single-objective optimization problem, using an artificial neural
network algorithm, by mapping the two objectives into a single grade value.

3 Regression Analysis

Regression analysis is used to correlate unplanned experimental input data with
output data, in which a mathematical model is generated in such a way that
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the model deviates minimally from the experimental data. Multiple linear re-
gression models and exponential models are used here for generating relations
between machining parameters and their responses. The experimental dataset
is taken from Asokan et al. [3], in which similar regression analysis is performed
and the obtained models are compared with an ANN (artificial neural network)
based model. The dataset is obtained by processing a cylindrical blank, made by
hardened steel, in an electrolyte composition of 10% NaCl and 0.2% H2O2. The
dataset contains 32 observations, which are given in Table 1, where “F/rate”,
“MRR” and “SR” indicate “flow rate”, “material removal rate” and “surface
roughness”, respectively.

Table 1. Experimental data used in the present study (taken from Asokan et al. [3])

Current Voltage F/rate Gap MRR SR Current Voltage F/rate Gap MRR SR
(A) (V) (l/m) (mm) (mg/m) (μm) (A) (V) (l/m) (mm) (mg/m) (μm)

220 24 6 0.2 2.57 2.0 260 24 6 0.2 2.85 2.5
220 32 6 0.2 2.67 2.1 260 32 6 0.2 2.96 2.5
220 24 8 0.2 2.57 2.1 260 24 8 0.2 2.70 2.1
220 32 8 0.2 2.65 2.3 260 32 8 0.2 2.91 2.3
220 24 6 0.4 2.65 2.3 260 24 6 0.4 2.70 2.1
220 32 6 0.4 2.85 2.1 260 32 6 0.4 3.10 2.5
220 24 8 0.4 2.57 2.1 260 24 8 0.4 2.62 2.0
220 32 8 0.4 2.52 2.1 260 32 8 0.4 2.71 2.1
200 28 7 0.3 2.30 2.0 280 28 7 0.3 3.05 2.5
240 20 7 0.3 2.15 2.0 240 34 5 0.3 3.01 2.5
240 28 9 0.3 2.75 2.1 240 28 7 0.3 2.91 2.5
240 28 7 0.1 2.70 2.1 240 28 7 0.3 2.82 2.5
240 28 7 0.1 2.61 2.0 240 28 7 0.5 2.64 2.1
240 28 7 0.3 2.65 2.1 240 28 7 0.3 2.59 2.2
240 28 7 0.3 2.60 2.1 240 28 7 0.3 2.59 2.0
240 28 7 0.3 2.57 2.1 240 28 7 0.3 2.55 2.0

The linear regression model, and the exponential model in the logarithmic
form, can be given by (1) and (2), respectively.

Yi = a0 +
n∑

j=1

ajxj + εl ; i = 1, 2, · · · , m ; (1)

ln Yi = b0 +
n∑

j=1

bj ln xj + εe ; i = 1, 2, · · · , m ; (2)

where, xj ’s are independent variables and Yi’s are their dependent functions,
and n and m are numbers of independent variables and dependent functions,
respectively. a0, a1, . . . , b0, b1, . . . are constant terms which are to be evaluated
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by minimizing the error terms εl and εe. In the present study, the process param-
eters, x = {c,v,ṁ,h}, are independent variables, where c, v, ṁ and h stand for
current, voltage, flow rate of electrolyte, and inter-electrode gap, respectively.
On the other hand, the material removal rate z(x) and surface roughness f(x)
are dependent functions, which are responses to the process parameters x. Using
the data of Table 1 in the linear model of (1), the maximum errors of 0.3103
and 0.3256 are obtained in z(x) and f(x), respectively, along with their average
errors of 3.646% and 5.52%, respectively. In the case of the exponential model
of (2), the maximum errors obtained in z(x) and f(x) are 0.1229 and 0.1369,
respectively, along with their average errors of 3.577% and 5.42%, respectively.
Although the maximum errors are quite high, the models are acceptable because
the reasonably smaller average errors. The derived linear regression models and
the exponential models of z(x) and f(x) are given by (3) and (4), respectively.

z(x) = 0.0062539c + 0.028467v − 0.053475ṁ− 0.046035h + 0.77816
f(x) = 0.0046298c + 0.016201v − 0.066900ṁ− 0.082067h + 1.11330

}
(3)

z(x) = 0.064635 c0.54941v0.29730

ṁ0.14369h0.0043271

f(x) = 0.127020 c0.47667v0.19298h0.0041196

ṁ0.20925

}
(4)

It is observed in the linear models of (3) that both z(x) and f(x) increase with
c and v, and decrease with ṁ and h. A slightly different situation is observed
in the exponential models of (4), in which f(x) increases with c, v and h, and
decreases with ṁ only.

4 Formulation of Optimization Models

In order to directly use the regression models of (3) and (4) in the optimization
models, the process parameters, current, voltage, flow rate, and gap size, are
considered as decision variables for maximizing material removal rate and min-
imizing surface roughness. In addition to minimizing the surface roughness, its
upper limit is also restricted to a given constant value. Accordingly, the multi-
objective optimization model is given below by (5).

Determine x = (c, v, ṁ, h)

to maximize MRR ≡ z(x)
minimize SR ≡ f(x)

subject to: f(x) − fmax ≤ 0
cmin ≤ c ≤ cmax
vmin ≤ v ≤ vmax
ṁmin ≤ ṁ ≤ ṁmax
hmin ≤ h ≤ hmax ;

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)

where, fmax is the allowed maximum value of f(x), and (cmin, cmax), (vmin, vmax),
(ṁmin, ṁmax) and (hmin, hmax) are bounds of c, v, ṁ and h, respectively. The ex-
pressions of z(x) and f(x) in (5) depend upon the type of models used, i.e., linear
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or exponential, the formulations of which are given by (3) and (4), respectively.
The reason of considering z(x) and f(x) as objectives in (5) is that, according
to the regression models of (3) and (4), they are guessed to be conflicting with
each other.

It is observed in Sect. 2 that the ECM process is formulated as a multi-
objective optimization problem by many researchers [1,3,11]. However, it is
solved as a single-objective optimization problem by combining multiple ob-
jectives into a single function with some user-defined “weights” to different ob-
jectives. It is well established that the solution quality of such a mapped problem
depends upon the user-defined “weights” to objectives. The problem, formulated
in (5), is solved here as a multi-objective problem by giving equal importance
to all objectives. Such a consideration will give a set of nondominated solutions,
known as a Pareto front , in a single run, instead of a single solution per run as
a single-objective formulation does. Then, a decision maker will have multiple
alternatives (solutions) to choose a particular one according to his/her choice.
The nondominated sorting genetic algorithm-II (NSGA-II) [6], a well known and
widely applied non-traditional multi-objective optimization technique, is used
here for solving the problem, the obtained results of which are presented in the
following section.

5 Results and Discussions

Both the linear and exponential regression models of the ECM process, given by
(3) and (4) respectively, are solved by NSGA-II [6] as multi-objective optimiza-
tion problems, formulations of which are given in (5). The user-defined values
for the problem-specific parameters of (5) are fixed as per the dataset of Table 1,
which is used in Sect. 3 for formulating the regression models. These values are
given in Table 2.

Table 2. User-defined values for the problem-specific parameters used in (5)

Parameter Value

Upper limit of the surface roughness (fmax) 2.5 (micro-meter)
Bounds of the applied current (cmin, cmax) [200, 280] (amperes)
Bounds of the applied voltage (vmin, vmax) [20, 34] (volts)
Bounds of the electrolyte flow rate (ṁmin, ṁmax) [5, 9] (liter/minute)
Bounds of the inter-electrode gap (hmin, hmax) [0.1, 0.5] (millimeter)

Since it is well established that the performance of a stochastic optimizer, like
a genetic algorithm, is usually dependent upon its various user-defined parame-
ters [5], each model of the ECM process is solved 36 times with different initial
solutions as well as other NSGA-II related parameters. Such parameter values
are given in Table 3.
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Table 3. NSGA-II related parameter values used for solving the problem of (5)

Parameter Value

population size Randomly chosen in the range of [60, 100]
Number of generations to be performed 200
Crossover probability 90%
Mutation probability 10%
Distribution index for simulated binary
crossover operator of NSGA-II

Randomly chosen in the range of [2, 10]

Distribution index for polynomial mu-
tation operator of NSGA-II

Randomly chosen in the range of [10,50]

The Pareto fronts obtained from 36 runs of each of the linear and exponen-
tial models of the ECM process are shown in Figs. 1 and 2, respectively, where
NSGA-II is found very consistent in giving similar performances over all the 36
runs of both the models. As guessed in Sect. 4, the conflicting nature of the con-
sidered objectives, maximizing material removal rate (z) and minimizing surface
roughness (f), is very clear in the figures as z increases with increasing f , or
f decreases with decreasing z, i.e., one objective is improved at the expense of
another.

As mentioned in Sect. 2 and 3, Asokan et al. [3] perform a similar study with
the same dataset, in which an ANN (artificial neural network) based model

Linear model

Experimental data

z

f

Expected Pareto front

Asokan et al. (2008)

 1.7

 1.8

 1.9

 2.1

 2.2

 2.3

 2.4

 2.5

 2.0  2.2  2.4  2.6  2.8  3.0  3.2

 2.0

Fig. 1. Pareto fronts obtained for the linear model of (3), and their comparison with
the experimental data of Table 1 and existing result of Asokan et al. [3]
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z

f

Exponential model
Experimental data

Asokan et al. (2008)

Expected Pareto front

 1.7

 1.8

 1.9

 2.0

 2.1

 2.2

 2.3

 2.4

 2.5

 2.0  2.2  2.4  2.6  2.8  3.0  3.2

Fig. 2. Pareto fronts obtained for the exponential model of (4), and their comparison
with the experimental data of Table 1 and existing result of Asokan et al. [3]

is found to be better than both linear and exponential regression models. In
their models, the two objectives are mapped into a single grade value for solv-
ing the problem as a single-objective optimization problem, and the reported
ANN-based optimum solution is (c, v, ṁ, h)= (200A, 20V, 9 l/m, 0.3mm). Ac-
cording to (3) and (4), the corresponding objective values for the linear model is
(z, f)= (2.103194, 1.736560) and for the exponential model is (z, f)= (2.121389,
1.778065). These two solutions are also plotted in Figs. 1 and 2, respectively,
where it is observed that both the solutions are biased towards a single objec-
tive, i.e., minimizing the surface roughness (f) only.

The plots of the experimental data of Table 1, which are used to formulate the
regression models of (3) and (4), are also shown in Figs. 1 and 2. It is observed
that the computational results have missed to cover some potential experimental
observations in both the models, making some portions of the Pareto fronts to
be inferior to those observations. Those inferior portions of the Pareto fronts
are shown inside dashed-boxes in Figs. 1 and 2. Such inferiority is certainly not
caused from optimization (NSGA-II), but from the accepted errors in formulat-
ing the regression models as reported in Sect. 3. If an accurate regression model
were used, what would be the expected Pareto fronts are also shown in Figs.1
and 2 by dotted curves, i.e., expected (ideal) Pareto fronts would be better than
any experimental observation.

Finally, in order to study the differences between the linear regression model
of (3) and the exponential regression model of (4), the Pareto fronts obtained for
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z

f

Linear model

Exponential model

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2  2.2  2.4  2.6  2.8  3  3.2

Fig. 3. Comparison of the Pareto fronts obtained for both the linear and exponential
models of (3) and (4), respectively

both the models are shown in Fig. 3, where it is observed that the performances
of both the models are almost similar (in the objective space), having only some
negligible differences in the objective values. Such outcomes are quite appreciable
as the designs for the same problem are not desirable to be different with different
techniques.

6 Conclusions

The electrochemical machining process is formulated as both linear and expo-
nential regression models using an experimental dataset, in which current, volt-
age, electrolyte flow rate and inter-electrode gap are considered as input process
parameters, and material removal rate and surface roughness as the output re-
sponses of those process parameters. Then the models are solved by NSGA-II [6]
as multi-objective optimization problems for maximizing material removal rate
and minimizing surface roughness. Comparing the outcomes in the objective
space, both the models are found comparable with each other. However, the
models fail to cover some potential experimental observations, which has hap-
pened due to the inaccuracies accepted in the regression models. The future
aim of the present work is to model the problem with higher accuracies, and
then to test on different benchmark instances. Attempts will also be made for
experimental validation of the computational results.
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Abstract. Altruism may be found in sets (groups of solutions). In such cases, it 
may occur that individual/individuals degrade their chances of survival (with 
sacrifice in the extreme) to ensure survival of fitter individuals. The idea of al-
truism within group evolution is posed here as a multi objective problem. The 
aspiration of a group to survive (find an optimal solution) is posed versus the 
individual's aspiration to survive. In the paper, the problem is a trajectory plan-
ning problem with the dilemma producing a Pareto set for a decision maker to 
choose from. It is shown that if the decision maker is ready to forfeit some of 
the group members, optimality may be gained. Evolutionary multi objective  
algorithm is implemented in order to search for this optimal set.  

Keywords: Multi objective, altruism, evolution. 

1   Introduction 

1.1   Biological Inspiration  

In evolutionary biology, an organism is said to behave altruistically when its behavior 
benefits other organisms at a cost to itself, [1]. The costs and benefits are measured in 
terms of reproductive fitness, or expected number of offspring. Altruistic behavior is 
common throughout the animal kingdom, particularly in species with complex social 
structures. For example, vampire bats regularly regurgitate blood and donate it to 
other members of their group who have failed to feed that night, ensuring they do not 
starve. From a Darwinian viewpoint [2], the existence of altruism in nature is at first 
sight puzzling. By virtue of its relative fitness advantage within the group, the selfish 
mutant will out-reproduce the altruists; hence selfishness will eventually swamp altru-
ism. Nevertheless, altruism exists in nature. 

Kin selection [1] might explain the evolution of altruism. A process of group selec-
tion may thus allow the altruistic behavior to evolve. Within each group, altruists will 
be at a selective disadvantage relative to their selfish colleagues, but the fitness of the 
group as a whole will be enhanced by the presence of altruists ([3]).  

Altruism is a well understood topic in evolutionary biology; the theoretical ideas 
explained above have been extensively analyzed, empirically confirmed, and are 
widely accepted. Nevertheless, this biological notion of altruism is not identical to the 
everyday concept. In everyday parlance, an action would only be called ‘altruistic’ if it 
was done with the conscious intention of helping another. However, in the biological 
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sense, there is no such requirement. Nevertheless ‘new’ group selection turns out to 
mathematically equivalent to kin selection, as a number of authors have emphasized 
(e.g., [3], [4]); Where human behavior is concerned, the distinction between biological 
altruism, defined in terms of fitness consequences, and ‘real’ altruism, defined in terms 
of the agent's conscious intentions to help others, does make sense. (Sometimes the 
label ‘psychological altruism’ is used instead of ‘real’ altruism.) What is the relation-
ship between these two concepts? They appear to be independent in both directions, as 
argued in [5]. An action performed with the conscious intention of helping another 
human being may not affect their biological fitness at all and so would not count as 
altruistic in the biological sense. Conversely, an action undertaken for purely self-
interested reasons, i.e., without the conscious intention of helping another, may boost 
their biological fitness tremendously. Therefore, evolution may well lead ‘real’ or 
psychological altruism to evolve. Contrary to what is often thought, an evolutionary 
approach to human behavior does not imply that humans are likely to be motivated by 
self-interest alone.  

In the study, which is reported here, there is altruistic behavior within a group. Be-
cause we do not introduce any genes that impose an altruistic behavior, yet altruistic 
behavior may evolve, it appears that the altruism of the current study is related to 
psychological altruism and not to biological altruism.   

1.2   EMO and Its Utilization for Trajectory Planning    

Evolutionary Computation (EC) methods belong to a class of non-gradient methods 
that has grown in popularity. Searching a multi-objective design space for optimal 
solutions by EC approaches is commonly referred to as Evolutionary Multi-objective 
Optimization (EMO). Multi-Objective Evolutionary Algorithm (MOEA) is an EMO 
algorithm that searches for a solution in a multi-criteria space using some inspiration 
from evolutionary theories. According to [6], the later generation of Pareto-based 
algorithms, such as SPEA2, [7], and NSGA-II, [8], involves three major elements. 
The first element concerns the creation of a search pressure towards the Pareto set. 
This is commonly achieved by one of the known Pareto-based fitness assignment 
(dominance-based) techniques. The second element is set to avoid convergence to a 
single solution in order to preserve diversity. The third element is elitism, which helps 
to prevent losing non-dominated solutions that are diversified. Detailed descriptions 
of multi-objective evolutionary techniques can be found in [9].  

The use of EC and EMO approaches for path and trajectory planning has been sug-
gested in many works (e.g., [10]). In those studies, different path descriptions have 
been coded within the solution related chromosome code. In [11], Bezier functions 
were used while [12] used B-splines. [13] proposed methods for generating path plan-

ning by using EC algorithms to define composite 3η -Splines. The method generates a 

sequence of vertices, tangents, and curvature parameters to formulate and define basic 

polynomial coefficients serving the 3η -Spline curve.  

1.3   Robotics and Altruism  

Several works highlight the need for altruism in order to enhance better performances 
in multi Unmanned Vehicles (UMVs) communities. Individual robots (UMVs) must 
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offer varying levels of “help” to their robots. In [14] and [15], a description of robot 
behaviors in terms of a “satisfaction   index” and transmission/reception of signals 
from other robots is studied. A robot’s progress in a given task can be measured by its 
“satisfaction” in the task, which corresponds to the fitness or performance index. 
Thus, a robot needing help with a task may emit an attraction (“please help me”) 
signal. Robots receiving this signal may stop their current task and aid their commu-
nity members. In [16], controllers are searched for the community robots. In that 
work, the performance of individual robots is assessed through a fitness function. It is 
the difference between the rewards gained from tasks being completed and the costs 
involved in completing these tasks. The fitness of a community is a measure of the 
success measured across all community's tasks. Thus robots helping others although 
decreasing their self fitness may contribute to the overall fitness of the community. 
Recently, in [17], the evolution of different behavioral strategies has been optimized 
by both an EMO and by a single objective search, demonstrating the superiority of the 
former in producing better community performances. In [18], the authors have exam-
ined evolutionary methods that may lead to the emergence of altruistic cooperation in 
robot collectives. They have considered evolutionary algorithms that derive from 
biological theories on the evolution of altruism in nature and compare them system-
atically in two experimental scenarios where altruistic cooperation can lead to a  
performance increment. We discuss the relative merits and drawbacks of the four 
methods and provide recommendations for the choice of the most suitable method for 
evolving altruistic robots.  

In the current study, we aim at posing an auxiliary MOP problem that poses the di-
lemma of optimality versus survival. As will be shown in cases, sacrifice of resources 
is needed in order to attain improved performances with the decision whether to sacri-
fice these resources being left for the decision maker. That means that a decision 
maker has to examine the Pareto front of the posed problem and decide, as common 
in multi criteria decision making, on a preferred solution, which might involve sacri-
fice (less survival). As far as the review goes, no such posing has been suggested 
before. Such posing is needed when there is contradiction within that MOP setting, 
which may only be resolved by a decision maker. Here, we suggest utilizing an 
MOEA to search for the optimal set for the posed MOP.       

2   Methodology 

2.1   Problem Definition and Solution  

Altruism is associated with a cost for the community, i.e., the fitness degradation of 
some of its members. At the extreme, this altruism may involve total loss of these 
members. It is noted that, although the biological inspiration exists, the current paper 
deals solely with engineering products. Sacrifice should not be related to the sacrifice 
of human lives, but rather with a cost of losing resources. In the context of the current 
paper, losing resources means that some of the UMVs fall out of order or are held 
back for such a long period that they are useless. The cost of losing resources as as-
sessed here in relation to the attainment of better group performances. Attaining better 
performances may be viewed as an aspiration for optimality. The performances of the 
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group or its competency are a measure of the group's success in performing its task. A 
group of individuals is a set X of n UMVs' trajectories, 1= ⎡ ⎤⎣ ⎦

T
i nX x ,..x ,......x , nX RΩ⊆ ⊆  

where ix p( y,t )= is the trajectory of the i-th UMV, designating the location y of that 

UMV in time t, initial finalt [ t ,t ]∈ . The competency of the set m( X ) RΨ Γ⊆ ⊆ , 

1 2
T

m( X ) ( X ), ( X ),...... ( X )Ψ Ψ Ψ Ψ= ⎡ ⎤⎣ ⎦ , is therefore a vector of performances in an MOP 

with m objectives. This competency is problem specific as it is determined by the 
task's objective/s. The cost of losing one of the agents is C( X ) and is computed here 

directly by totaling the number of lost UMVs. Losing a UMV is a result of sacrificing 
it (e.g., deliberately bumping into an obstacle). The optimization versus survival (not 
losing resources) is posed here as an MOP of maximizing the competency of the set 
and minimizing sacrifice (maximizing survival). If the competency is measured based 
on minimization of each ( X )Ψ , then the problem may be defined as: 

Tmin( ( X )), ( X ) [ ( X ),C( X )]Φ Φ Ψ=  

Subject to X Ω⊆ and ( X )Ψ Ω⊆  
(1)

 
This MOP is associated with 1+m objectives. The problem does not include an inher-
ent contradiction between the performances and the survival (cost). It is possible that 
optimality is gained with no need for sacrifice. Yet, in the general case, sacrifice may 
be needed. The solution to the problem at hand is a Pareto set C* and a Pareto front 
FC*: 

* * * *

* * * * * *

C : { X C | X C : ( X ) ( X )}

FC : { z Z |z ( X ) : X C }

Φ Φ
Φ

= ∈ ¬∃ ∈

= ∈ = ∈

≺  (2)

Each vector of optimal performances is represented as a point on the Pareto front. 

2.2   Decision Making 

By depicting FC*, which is the Pareto front of the posed MOP (see Equation 2), a 
decision maker has to choose the winning set. Such a decision is attained through the 
execution of the set's related UMVs' trajectories. While making decisions, the DM has 
to consider the pros and cons of improving performances as related to maintaining the 
available resources. It is clear that either extreme, no sacrifice whatsoever or sacrific-
ing all but one UMV (the job has to be done), might be decided upon. Yet, a tradeoff 
between these extremes should also be considered. The decision should take into 
account the relative importance of optimality and the importance of keeping the re-
sources for future tasks. This means that availability of substitutes should be taken 
into account. 

3   Solution Approach and an Example 

Here, each trajectory is divided into sections. While the length of the section may 
vary, the time of travel between the start and end point of each section is predefined 
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and constant. This means that the speeds of the travel may vary (longer sections mean 
higher travel speeds). The lengths of the trajectories' sections are constrained such that 
the UMVs' speeds may not exceed an attainable travel speed.  Figure 1 depicts the 
paths of two sets of UMVs. Each of the sets is associated with three UMVs (the black 
and white circles). The sets are designated by their related UMVs' trajectories, which 
are shown as bold lines for one set and dashed lines for the other. Numbers designate 
the times at which the UMVs arrive at those locations. In the figure, five sections are 
planned. It is assumed that if a UMV collides with an obstacle, it removes it, such that 
another UMV passing in the location where the obstacle stood before does not collide 
with it. The mean distance traveled by a set's UMVs (not accounting for sacrificed 
UMVs) is computed. This distance is utilized together with the number of lost UMVs 
as the set's vector of performances. The optimization is aimed at minimizing both the 
mean distance and the number of lost UMVs. In fact, this means that the size of ( X )Ψ  

is one and together with the cost the posed MOP is a bi-objective problem. Depicting 
Figure 1, it is seen that for the black circles set the left most and middle UMVs has 
bumped into two obstacles, in the first and third sections respectively, while the third 
UMV bypassed the obstacles. For this set, the survival will be degraded to just one 
with the competency being equal to the length traveled by the right most UMV (the 
only survivor). Clearly the sacrifice of two UMVs was unjustified as it did not im-
prove the performances of the set. In contrast, the white related set undertook another 
strategy. The left most UMV bumped into the obstacle between times 2 and 3, leaving 
room for the middle UMV to pass through between times 3 and 4. This means that 
this set will have two survivors with a distance equal to the mean distance traveled by 
these survivors.  

 

Fig. 1. Trajectories of two sets of three UMVs each. The different sets are distinguished one 
from the other by different circles' colors (black and white) and by different path lines (bold 
and dashed). The left most bold line UMV clears the way for its middle path set's member.  

Each set is coded as an individual. Each individual codes all paths of the set's related 
UMVs trajectories. In that code, each chromosome of an individual decodes the path 
of one UMV. Each two adjacent genes of the chromosome decode a point along the 
path of that UMV. A population of such individuals is evolved using NSGA-II (Deb 
et al 2002). 
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The actual test involves a set of six UMVs instead of just three, each starting at a 
predefined location. It is noted that the tests shown here are easy to follow because 
their solution is despicable (otherwise proving optimality might be impossible). The 
UMVs are to reach an end point while avoiding/colliding with the four obstacles. A 
population of 100 individuals has been evolved for 500 generations using real coded 
individuals with 50% single point crossover and 5% Gaussian mutation. The evolved 
front is depicted in figure 2.  

 

Fig. 2. The Pareto front for the posed problem. As the number of sacrifices increases, the mean 
distance traveled by the set decreases. Clearly sacrificing more than three UMVs does not 
possess merit. Decision on the strategy is left to the decision maker.    

It is depicted that insuring high survivability degrades optimality. It is also clear that 
sacrificing more than three UMVs possesses no merit. Moreover, in fact computa-
tional inaccuracies are entirely responsible for the difference in the mean values for 
the distance between 3, 4 and 5 UMVs' sacrifices. A decision maker viewing the 
evolved front would easily detect this waste and concentrate on just the four right 
located points in Figure 2. In the following Figures (Figures 3 to 6), different Pareto 
set related cases are demonstrated. All solutions shown are evolved simultaneously, 
using NSGA-II.    

 

Fig. 3. Maximal survivability: The evolved set of UMVs with maximal survivability  
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Fig. 4. One sacrifice: In the first movement (between start and time 1), UMV No. 5 bumps into 
one of the obstacles (left panel). Losing that UMV as an available resource allows UMVs No. 4 
and No. 6 to shorten their travel, as depicted in the right panel of the figure.  

 

 

Fig. 5. Three sacrifices: In the first movement (between start and time 1), UMVs No. 5 and No. 
6 dismantle two of the obstacles (upper left panel). In the second step (between time 1 and time 
2), UMV No. 1 dismantles yet another obstacle (upper right panel). 

Because an evolutionary approach, which is a stochastic approach, has been used 
we have tested the repeatability of the results. Figure 7, Depicts a box plot of these 
tests, where we report on the mean and average length attained for each number of 
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Fig. 6. Five sacrifices: In the first movement (between start and time 1), UMVs No. 1 and No. 4 
dismantle one of the obstacles while No. 5 dismantles another one (upper left panel). In the 
second step (between time 1 and time 2), UMVs No. 2 and No. 6 dismantles yet another obsta-
cle (upper right panel).  

sacrifices. It is noted that although the actual paths may differ from one run to the 
other, the statistical data implies on high reliability when the multi objective problem 
(i.e., optimality versus sacrifice is considered).  

 

Fig. 7. A box plot describing the statistical data for running the algorithm 30 times 
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We have also repeated the solution for the above problem, but by dividing the tra-
jectories to more than four sections. The only reportable difference between these 
runs and the one reported here is that more generations are needed when more secre-
tions are used in order to achieve the same standard of deviations as gained here. This 
is understandable based on the fact that the search space increases in a direct relation 
to the number of added sections. 

The consistency of the results shows that the approach may find different multi ob-
jective optimal solutions with high reliability. 

4   Summary and Conclusions  

In this paper, we suggested the posing of the optimality versus survival as an MOP. 
Incorporating survival within a MOP is motivated by relating such an objective to 
atomism. Such posing, which was never posed as such before, leads to a solution that, 
in the cases at hand, is a Pareto set and front. In such cases, a decision maker is pre-
sented with the Pareto front and has to decide on a preferred strategy. A preferred 
strategy might be one that is ready to sacrifice some of the available resources (sacri-
ficing UMV/s) to gain better performances. In the paper, we utilized an MOEA in 
order to simultaneously evolve the Pareto front for trajectory planning problem. In the 
current problem, the posed MOP is a result of one performance objective and the cost 
objective. Future work should consider more than one performance objective. More-
over, the use of a simple trajectory code (division to linear sections) might be altered 
to a more sophisticated coding, such as B-splines. Yet, more complicated and less 
straight forward problems should be solved. For example, using many more obstacles 
with more constraints (e.g., friction affect) should be tested. As a last implication 
towards future work, it would be interesting to examine dynamic obstacles and may 
be to incorporate co-evolutionary approach where opponents interact. 
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Abstract. Monopulse antennas form an important methodology of realizing 
tracking radar and they are based on the simultaneous comparison of sum and 
difference signals to compute the angle-error and to steer the antenna patterns in 
the direction of the target (i.e., the boresight direction). In this study, we con-
sider the synthesis problem of difference patterns in monopulse antennas from 
the perspective of Multi-objective Optimization (MO). The synthesis problem is 
recast as a multi-objective optimization problem (for the first time, to the best 
of our knowledge), where the Maximum Side-Lobe Level (MSLL) and Beam 
Width (BW) of principal lobe are taken as the two objectives. The Optimal 
Pareto Fronts (OPF) are obtained for different number of elements and subar-
rays using one of the best-known evolutionary MO algorithms till date, called 
the Non-dominated Sorting Genetic Algorithm (NSGA-II). The quality of solu-
tions obtained is compared with the help of Pareto fronts on the basis of the two 
objectives to investigate the dependence of the number of elements and the 
number of sub-arrays on the final solution. Then we find the best compromise 
solutions for 20 element array and compare the results with standard single  
objective algorithms such as the Differential Evolution (DE) that has been  
reported in literature so far for the synthesis problem. 

Keywords: Antenna array, monopulse antennas, evolutionary algorithm, mul-
tiobjective optimization, non-dominated sort, genetic algorithms. 

1   Introduction 

The conventional way of enhancing angular accuracy amounts to taking several meas-
urements while the antenna rotates through an area of interest, and then to compare 
the results. However, this method has its drawbacks even if the antenna is properly 
calibrated. As the measurements are taken one after the other, the target has moved  
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to another place in-between and the aspect angle has changed too. The monopulse 
technique was invented to eliminate this source of measurement error. A monopulse 
antenna [1 – 4] also takes several measurements with beams pointing into different 
directions, but as the name implies, these measurements are taken simultaneously, 
with a single pulse. The word "monopulse" implies that with a single pulse, the an-
tenna can gather angle information, as opposed to spewing out multiple narrow-beam 
pulses in different directions and looking for the maximum return Therefore this tech-
nique can determine angle very precisely. Monopulse antennas are in widespread use 
in military applications like target-tracking radars and missile-seeker heads. Civilian 
applications include automotive radars, secondary radars for air traffic control and 
control systems, which need to know the precise whereabouts of a TV-, GPS- or other 
type of satellite [1, 5].  

A key issue in the design of monopulse antennas is that the sum pattern and the dif-
ference pattern have to be synthesized by the same array configuration. In this context 
Lopez et al. [6] proposed an interesting method that is based on a subarray configura-
tion and uses a standard binary Genetic Algorithm (GA) to determine the weights of 
the subarrays. Caorsi et al. [7] took a similar approach  where the same synthesis 
problem has been faced by applying the Differential Evolution (DE) method [8], in 
which hybrid chromosomes (constituted by real and integer genes) are used to avoid 
the need for coding and decoding the real variables (weights of the subarrays). In [9] 
the approach of [7] is extended to the optimization of the directivity of the difference 
pattern by means of a hybrid real/integer DE algorithm. 

As can be perceived from a literature survey, the design of monopulse antenna ar-
rays can be formulated in several possible ways and with emphasis on various aspects 
of the final output expected. Under such circumstances there may not exist a single 
optimal solution but rather a whole set of possible solutions of equivalent quality [8]. 
A natural choice for handling this kind of design problems is to use Multi-objective 
Optimization (MO) algorithms [9, 10] that deal with such simultaneous optimization 
of multiple, possibly conflicting, objective functions.  

Here we employ a most widely used evolutionary MO algorithm called Non-
dominated Sorting Genetic Algorithm (NSGA-II) proposed by Deb et al. [11] for two 
purposes: firstly to design monopulse arrays that could simultaneously minimize the 
Maximum Side-Lobe Level (MSLL) and principal lobe Beam Width (BW), and  
secondly to study the effects of number of elements and number of subarrays on the 
performance of the antenna array by observing the shape of the Pareto fronts gener-
ated with NSGA-II for various combinations of these two numbers. For the multi-
objective design of monopulse array, a fuzzy membership function based approach 
described in [12] is taken to select the best compromise solution from the Pareto front. 
Comparison with the single objective design results with DE and another real parame-
ter optimizer of current interest, called Particle Swarm Optimization (PSO) [13]  
reflects the superiority of the multi-objective approach in terms of final accuracy of 
design results. Since multi-objective approach is superior to single objective cases 
where more than one design objectives are combined through weighted sum, the 
Pareto fronts generated by a reliable MO algorithm, like NSGA – II, can provide a 
means of identifying the optimal number of design variables (through number of  
elements and number of subarrays). To the best of our knowledge, such study is  
undertaken here for the first time in the related area.   
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2   Formulation of the Design Problem 

An antenna array is a configuration of individual radiating elements that are arranged 
in space and can be used to produce a directional radiation pattern. For a linear antenna 
array with 2N isotropic radiators the array factor can be expressed as below 
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2 2
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Nj n kd j n kd

n n
n N n

AF a e a e
θ θ

θ
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where an is the excitation of the thn  radiating elements, k is the wave number of the 
medium in which the antenna is located,  d is the distance between the elements, and θ  
defines the angle at which ( )AF θ  is calculated with respect to a direction orthogonal 

to the array. 
The required sum pattern is obtained by the excitation s

na , n = -N, …, -1,1,…, N, 

which are assumed to be symmetric about the array centre and fixed. Thus we will 
have s s

n na a−= .The excitations are obtained by the Dolph-Chebyshev method [15]. Us-

ing the symmetry property the array factor reduces to the expression (2).  
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Excitations for the difference pattern are obtained by: 
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,nc pδ represents the Kronecker delta function [16] i.e , 1
nc pδ =  if nc p= , otherwise 

, 0
nc pδ = . In order to obtain the difference pattern, the excitations must be anti-

symmetric i.e. s s
n na a−= − . Thus the array factor for the difference pattern reduces to 

expression (4). 
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( )dAF θ is a function of θ which is symmetric about °0 . Let 
maxθ be the angle at which 

( )dAF θ attains global maxima. We calculate ( )dAF θ for discrete values of θ . Let 

those discrete values be represented by set [ ]2/,0 πψ = . Let the discrete steps in which 

( )θdAF  is calculated be θΔ . 

For obtaining multi-objective formulation of the present problem we need to find 
the maximum sidelobe level and the width of the principal lobe. To calculate the 
maximum sidelobe we calculate where the array factor reaches local maxima, and the 
maximum value of all the local maxima gives us the SLL value. Let, 

( ) ( ) ( ) ( ) max[ { } { } { ]d d d dAF AF AF AFζ θ ψ θ θ θ θ θ θ θ θ= ∈ > − Δ Λ > + Δ Λ ≠
be the set of angles where local maxima of ( )θdAF  occur. 
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One null of the principal lobe is located at °0 because of the anti-symmetric prop-
erty of monopulse antenna.  

Let: ( ) ( ) ( ) ( ){ 0 }d d d dAF AF AF AF οθ ψ θ θ θ θ θ θ θΦ = ∈ < − Δ Λ < + Δ Λ ≠ be the 

set of angles where local minima of ( )AF θ is reached. Let the local minimum closest 

0o to be α. 
Therefore ( )Φ= minα . Now we are at a position to define the two objective  

functions:  
( )

( ) ⎟⎟
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⎞
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θ

d

d

AF
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3   The NSGA-II Algorithm – An Outline 

Due to the multiple criteria nature of most real-world problems, Multi-objective  
Optimization (MO) problems are ubiquitous, particularly throughout engineering ap-
plications. The concepts of dominance and Pareto-optimality may be presented more 
formally in the following way: 

 
Definition 1: Consider without loss of generality the following multi-objective optimi-
zation problem with D decision variables x (parameters) and n objectives y:  

Minimize 1 1 1( ) ( ( ,...., ),...., ( ,...., ))D n DY f X f x x f x x= = ,            (6) 

where 1[ ,....., ]T
DX x x P= ∈  and 1[ ,...., ]T

nY y y O= ∈ and X is called decision (pa-

rameter) vector, P is the parameter space, Y is the objective vector, and O is the  

objective space. A decision vector A P∈ is said to dominate another decision vector 
B P∈  (also written as A B≺ for minimization) if and only if: 

{1,...., }:    ( ) ( )i ii n f A f B∀ ∈ ≤ ∧ {1,....., }:j n∃ ∈ ( ) ( )j jf A f B<       (7) 

Based on this convention, we can define non-dominated, Pareto-optimal solutions 
as follows: 

Definition 2:  Let A P∈ be an arbitrary decision vector.  

(a) The decision vector A  is said to be non-dominated regarding the set 'P P⊆ if 

and only if there is no   vector in 'P which can dominate A .  
(b) The decision (parameter) vector A is called Pareto-optimal if and only if A  is 

non-dominated regarding the whole parameter space .P  

During 1993-2005, plethora of different evolutionary algorithms was suggested to 
solve multi-objective optimization problems and an interested reader may consult [10, 
11, 17, and 18]. Central to this article, we select an MO algorithm called the Non-
dominated Sorting Genetic Algorithm (NSGA-II) proposed by Deb et al. [12], owing 
to its wide popularity among various research communities for solving practical MO 
problems from diverse domains [10, 17]. The NSGA-II algorithm has been illustrated 
through a flow-chart in Figure 1. 
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For a monopulse antenna array of 2N elements and P subarrays we will have N bi-
nary coded variables and P real coded variables. The N binary coded variables signify 
the subarray grouping information nc  and the P real coded variables indicate the subar-

ray weights pg . 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                      

       Fig. 1. Basic flow-chart of NSGA-II                       Fig. 2. Trade-off Curves for 20 element  
                                                                                         array (N=10) 

4   Study of Optimal Pareto Fronts for Designing Monopulse 
Antenna 

This section is primarily meant to study how the parameters such as number of ele-
ments and number of subarrays affect design of monopulse antennas in terms of two 
important figures of merit: the BW and MSLL. For a fixed number of elements we 
can use an MO algorithm to decide the number of subarrays that produces a good 
trade-off between the two design objectives yielding an Optimal Pareto Front (OPF) 
that has its knee points closer to the origin.  Then we fix the number of elements and 
number of subarrays to find the best solution from the OPF considering the same two 
design objectives, but this is taken up in the next section.  

A. Case 1:  20 Element Array 

Fixing the number of elements to 20, we run NSGA – II varying the number of subar-
rays P from 2 to 10 in steps of 2. The corresponding Pareto fronts have been shown in 
Figure 2. 

A close inspection of Figure 2 shows that the best trade-off can be achieved for 6 
subarrays as points near the knee of the OPF are closest to the origin corresponding to 
least values of MSLL and BW in comparison to the Pareto fronts obtained with other 
numbers of subarrays. 
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B.  Case 2:  40 Element Array 

Figure 3(a) shows the trade-off curve obtained for 40 element array with number of 
subarrays = 2, 4, 8, 16. In this case we can observe that the best trade-off can be ob-
tained with P = 8. The OPF is very close to that obtained for P = 4. However increas-
ing the number of subarrays does not improve the quality of solutions. Rather the OPF 
obtained for P = 16 is far worse than the others. This is probably because for P = 16 
the complexity of problem hyperspace is increased. 

C. Case 3:  NUMBER OF SUBARRAYS CONSTANT 

Here we have fixed the number of subarrays to P = 8. In this case we can observe that 
keeping P constant increasing N does not improve the solution beyond a certain limit, 
as is evident from the trade-off curves provided in Figure 3(b). 

 
 
 
 
 
 
 
 
 
 
 

 
    (a)                                                                            (b) 

Fig. 3. (a) Trade-off Curve for 40 element array (N=20) , (b) Trade-off Curve for fixed number 
of subarrays (P=8) 

 
 
 
 
 
 
 
 
 
 
 
 

                               

Fig. 4. Trade-off Curve for N/P=constant 
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D. N/P CONSTANT 

In this case we show how the quality of design improves when the number of ele-
ments and subarray are increased in the same proportion. As can be perceived from 
Figure 4, for N = 10, P = 8 (N/P = 1.25) the OPF is exhibiting a considerably good 
trade-off between the two design objectives, with knee points at which values of both 
MSLL and BW reduced more than those obtained with other values of N and P giving 
same ratio N/P. 

The aim of this section was to investigate how the optimal combination of two vital 
parameters related to the design problem viz. number of elements and number of su-
barrays can be estimated using an MO algorithm. The next section is devoted to the 
actual design of the monopulse array using NSGA - II with the subarray weights and 
the element grouping kept as decision variables. 

5   Design of Monopulse Antenna Using NSGA-II 

In case 1 of Section 3, we discussed that for 20 element array design , 6 subarrays 
gives a considerably good OPF with knee points showing better compromise between 
the two objectives. In this section we systematically find the best compromise solu-
tion for 20 element array (P = 2, 4, 6, 8, 10) and compare them with the results from 
two standard single objective optimization algorithms namely DE [7] and PSO [9]. 
For DE the parametric setup is also taken from [9]. For PSO, we used swarm size = 
50, acceleration coefficients C1 = C2 = 2.00, inertia weight ω linearly decreasing 
from 0.9 to 0.4 and for d-th component of maximum velocity max,dv = 0.9*rd where rd 

is the difference between the maximum and minimum values of the d-th decision 
variable. Both PSO and DE were run for 1500 iterations. 

The best compromise solution was chosen from the OPF using the method de-
scribed in [13]. Due to limitation of space we are suppressing the description of this 
method. 

Below we provide the design results for two (among five) different cases (others are 
not mentioned due to space limitation) corresponding to two different numbers of  
subarrays. The sum pattern corresponds to a Dolph-Chebyshev array with distance 
between elements 2/λ=d and SLL=-25dB. The fitness function for single objective 
algorithms was taken as 

21 ff + where f1 and f2 are given by (5a) and (5b). Note that 
NSGA – II was run with 100 chromosomes and run for 1500 iterations for all prob-
lems. As results we provide the best solutions found in 25 independent trials of each 
algorithm. 

 
Case A: 20 Elements , 6 Subarrays      

Table 1. Subarray Configuration (Case A) 

Algorithms c1
 

c2
 

c3
 

c4
 

c5
 

c6
 

c7
 

c8
 

c9
 

c10
 

NSGA - II 6 2 5 4 1 3 3 3 6 2 
DE 4 3 4 2 5 1 0 1 5 6 
PSO 1 4 5 6 3 3 2 5 6 2 
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Table 2. Subarray Weights (Case A)  

Algorithms 
1g  2g  3g  4g  5g

 6g  

NSGA-II 0.9976 0.4166 0.1865 0.6465 0.9064 0.9977 

DE 0.9978 0.4303 0.1720 0.9976 0.7473 0.9977 

PSO 0.8620 0.1842 0.4416 0.7020 0.9359 0.8621 

Table 3. Design Objectives Achieved (Case A) 

Algorithms NSGA - 
II 

DE PSO 

BW(degrees) 12.01 13.05 12.05 

SLL -24.27 -23.31 -19.14 

Case B: 20 Elements , 10 Subarrays 

Table 4. Subarray Configuration (Case B) 

Algorithms c1
 

c2
 

c3
 

c4
 

c5
 

c6
 

c7
 

c8
 

c9
 

c10
 

NSGA-II 6 1 7 8 10 2 5 3 9 4 

DE 6 7 5 2 1 3 4 9 10 8 

PSO 4 6 8 1 10 7 2 5 9 3 

Table 5. Subarray Weights (Case B) 

Algorithms 
1g  2g  3g  4g  5g  

NSGA-II 0.3790 .9990 0.9987 0.2171 0.9988 

DE 0.9022 .9023 0 0.9992 0.9023 

PSO 0.9512 .9513 0.1505 0.1709 0.9513 

Algorithms 
6g  7g  8g  9g  10g  

NSGA-II 0.1538 0.6552 0.7912 0.9439 0.9988 

DE 0.1627 0.5896 0.1626 0.9993 0.9023 

PSO 0.0128 0.9514 0.8196 0.7864 0.9513 

Table 6. Design Objectives Achieved (Case B) 

Algorithms NSGA - 
II 

DE PSO 

BW(degrees) 11.58 13.34 13.74 

SLL -23.48 -16.93 -20.66 
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A keen observation of Tables 3, 6 and also Figures 5(a), 5(b) shows that in all test 
cases, NSGA – II achieves much better design objectives as well as array factors with 
lower SLL in comparison with both the single-objective algorithms - DE and PSO. 
Again, among all the test cases, as predicted in Section III, best results were achieved 
by NSGA – II for 20 elements and 6 subarrays (Table 3).  
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Fig. 5.  (a) Normalized patterns for 20 element array (Case A), (b) Normalized patterns for 20 
elements array (Case B) 

6   Conclusion 

This article has presented a new approach to the synthesis problem of the difference 
patterns of monopulse antenna arrays in a multi-objective optimization framework. 
One of the best known multi-objective optimization approach called NSGA – II has 
been over different instances of the design problem, keeping Maximum Sidelobe 
Level (MSLL) and Principal lobe Beam Width (BW) as two objectives to be simulta-
neously achieved.  

The subarray grouping information and weights are obtained from the best com-
promise solution of the OPF corresponding to N and P as determined before. The best 
compromise solution for N = 10 and P = 2, 4, 6, 8, 10 are obtained from their OPF 
and the figure of merit of solution (i. e. MSLL and BW) are shown to beat those ob-
tained with two well-known single objective algorithms DE and PSO.  We have also 
demonstrated that the optimal 20 element array design should be with 6 subarrays. 
Increasing the number of subarrays increases the complexity of design without  
improving the quality of solution appreciably. In conclusion we can say that MO al-
gorithms have a dual role in designing a monopulse antenna. They can be used both 
for fixing N and P and also for determining the subarray configuration and subarray 
weights. Moreover, other powerful MO algorithms like MOEA/D [19] can also be 
tested on the problem. 
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Abstract. This paper presents an improvement in performance of elitist non-
dominated sorting genetic algorithm (NSGA-II) by modifying the probability 
distribution of crossover operator. The probability distribution of simulated bi-
nary crossover (SBX-A) operator, used in NSGA-II algorithm, is modified with 
lognormal distribution (SBX-LN). This algorithm is used to test twenty multi-
objective functions. This NSGA-II (SBX-LN) algorithm performed well for  
different functions. This algorithm also performed well in optimizing a turbo-
alternator design. It found more optimum solutions with better diversity in 
turbo-alternator design optimization.  

Keywords: convergence, diversity, genetic algorithm, optimization. 

1   Introduction 

In genetic algorithm (GA), reproduction operator makes duplicates of good solutions 
while crossover and mutation operators create new solutions by recombination [1, 2]. 
The crossover operator is the main search operator in GA. The search power of a 
crossover operator is defined as a measure of how flexible the operator is to create an 
arbitrary point in the search space. The role of mutation is to restore lost or unex-
pected genetic material into population to prevent the premature convergence of GA 
to suboptimal solutions.  

The performance of elitist non-dominated sorting genetic algorithm (NSGA-II) is 
improved by modifying the probability distribution of simulated binary crossover 
(SBX-A) operator [2, 3].  

In this paper, the probability distribution of SBX-A operator is modified with log-
normal distribution (SBX-LN). The NSGA-II algorithm with SBX-A and SBX-LN 
operators is used to test twenty multi-objective functions. The results are compared to 
find the performance of NSGA-II algorithm.  

The NSGA-II algorithm with SBX-A and SBX-LN operators is also used to obtain 
the optimum design of a turbo-alternator. In this paper, a real-life turbo-alternator is 
considered for optimization. The results obtained by these two crossover operators are 
also compared to find the performance of NSGA-II algorithm.  
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2   NSGA-II 

The NSGA-II algorithm uses an elite preservation strategy along with an explicit 
diversity preserving mechanism [4]. This allows a global non-dominated check 
among the offspring and parent solutions. The diversity among non-dominated solu-
tions is introduced by using the crowding comparison procedure which is used in the 
tournament selection and during the population reduction phase. Since, solutions 
compete with their crowding distance, no extra niching parameter is required here. 
Although the crowding distance is calculated in the objective function space, it can 
also be implemented in the parameter space, if so desired [5]. However, in all simula-
tions performed in this study, the objective function space niching is used.  

2.1   SBX-A Operator 

The SBX-A operator works with two parent solutions and creates two offspring. This 
simulates the working principle of the single point crossover operator on binary 
strings. This operator respects the interval schemata processing, in the sense that 
common interval schemata between parents are preserved in children [1, 2].  

The probability distribution used to create a child solution is  

( ) ( ) 115.0 ≤+= ββηβ η ifP c
c  . (1) 

( ) ( ) otherwiseP
cc 2

1
15.0 ++= ηβ

ηβ  . (2) 

In equations (1) and (2), β is the spread factor and ηc is the crossover index. The 
value of ηc gives a probability for creating near parent solutions. A large value of ηc 
gives a higher probability for creating near parent solutions.  

2.2   SBX-LN Operator 

The SBX-A operator creates children solutions proportional to the difference in parent 
solutions. In this operator, near parent solutions are more likely to be chosen as chil-
dren solutions than solutions away from parents. Raghuwanshi et al. [2] presented the 
SBX-LN operator, a new recombination operator, for contracting and expanding the 
crossover of real-coded GAs. In the SBX-LN operator, the probability of creating 
offspring away from the parents is influenced by the crossover index (ηc). This possi-
bility decreases with the decrease in ηc and hence the SBX-LN becomes more parent 
centric operator. In this operator, both parents are given equal probability of creating 
offspring in its neighbourhood. It uses lognormal distribution for spread factor.  

The lognormal distribution, defined with the probability density function, is  
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In equation (3), β is the spread factor and μ is the mean of the variable’s natural 
logarithm. The probability of contracting crossover is more desirable than the expand-
ing crossover. This increases the probability of creating offspring between the parents. 
This is more parent centric for small value of ηc. The use of mutation may destroy 
already found good information. It is suggested that GAs may work well with large 
crossover probability (pc) and with a small mutation probability (pm). Hence, the mu-
tation index (ηm) is chosen with a small value. The value of pm, for twenty multi-
objective functions, is chosen as 0.01 instead of (1/N) where N is number of variables.  

3   NSGA-II Algorithm to Optimize the Test Functions 

The NSGA-II algorithm with SBX-A and SBX-LN crossover probability distributions 
is used to test five unconstrained multi-objective functions [2]. In this paper, the 
NSGA-II algorithm with SBX-A and SBX-LN crossover probability distributions is 
used to test twenty different multi-objective functions [1]. The variance generational 
distance (GD) is the performance metric used to measure the performance of SBX-A 
and SBX-LN operators. The GD of convergence metric finds an average distance of 
the solutions of optimum solution set obtained by the algorithm (Q) from Pareto-
optimal set of solutions (P*) [1]. The GD is obtained from the following relation.  

( )
Q

d
GD

pp
i

Q
i

1

1=Σ=  . (4) 

In the equation (4), the di is the Euclidean distance and p and i are the constants. 
The value of p is equal to two. The di (in the objective space) is the distance between 

solutions i ∈ Q and the nearest member of P*. The di is obtained from the following 
relation.  
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In the equation (5), the fm
*(k) is the m-th objective function value of the k-th mem-

ber of P* and fm
(i) is the m-th objective function value of the i-th member of Q.  

The GD of diversity metric is obtained from the following relation [1].  

dQd

ddd
e
m

M
m

i
Q
i

e
m

M
m

+∑

−∑+∑
=Δ

=

==

1

11
 . (6) 

In the equation (6), the di is the distance measure between neighboring solutions, 
d  is the mean value of these distances and dm

e is the distance between the extreme 
solutions of P* and Q corresponding to m-th objective function.  

The variance GD of convergence and diversity are computed, in each case, to  
find the performance of algorithm with different crossover probability distributions.  
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As a first step, five runs are made, for each function, with different random seeds. For 
all functions, the population size = 100, number of generations = 250, crossover prob-
ability (pc) = 0.8, mutation probability (pm) = 0.01, crossover index (ηc) = 0.05 and 
mutation index (ηm) = 0.5 [2]. The results are as per Table 1.   

Table 1. Variance GD of convergence and diversity  

NSGA-II (SBX-A) NSGA-II (SBX-LN) S.No. Function
Convergence Diversity Convergence Diversity 

Remarks 

1 ZDT1 5.99E-05 1.72E-02 4.55E-06 4.64E-02 SBX-LN /SBX 
2 ZDT2 6.84E-05 7.90E-03 1.16E-05 4.13E-02 SBX-LN /SBX 
3 ZDT3 9.50E-05 1.65E-02 1.87E-05 4.97E-02 SBX-LN /SBX 
4 ZDT4 2.97E-04 1.72E-02 1.48E-04 4.64E-02 SBX-LN /SBX 
5 ZDT6 2.83E-04 3.43E-02 1.81E-06 3.00E-02 SBX-LN 
6 SCH1 2.18E-06 5.12E-02 1.88E-05 5.30E-02 SBX 
7 SCH2 1.60E-05 1.88E-02 1.90E-04 1.25E-02 SBX/ SBX-LN 
8 POL 3.72E-03 2.28E-02 9.44E-03 3.55E-02 SBX 
9 FON 2.62E-05 4.09E-02 8.14E-05 3.90E-02 SBX/ SBX-LN 
10 KUR 2.86E-04 2.88E-02 1.16E-03 3.30E-02 SBX 
11 VNT 4.75E-05 5.41E-02 1.81E-04 8.65E-02 SBX 
12 BNH 3.09E-03 2.46E-02 2.54E-03 2.71E-02 SBX-LN /SBX 
13 SRN 1.42E-02 2.73E-02 1.47E-02 2.80E-02 SBX 
14 CTP1 3.12E-05 2.88E-02 3.55E-05 2.73E-02 SBX/ SBX-LN 
15 CTP2 5.45E-05 7.00E-03 4.04E-04 2.64E-02 SBX 
16 CTP5 9.59E-05 3.61E-02 7.40E-04 2.79E-02 SBX/ SBX-LN 
17 CTP6 8.95E-05 1.51E-02 1.73E-04 3.48E-02 SBX 
18 CTP7 6.46E-05 3.69E-03 1.15E-04 5.56E-03 SBX 
19 CTP8 2.28E-04 4.66E-03 2.85E-03 7.58E-02 SBX 
20 TNK 1.24E-03 4.29E-02 2.69E-04 2.12E-01 SBX-LN /SBX 

 
The NSGA-II algorithm with SBX-LN crossover probability distribution found 

better optimum solutions for different types of functions. By comparing the variance 
GD of convergence and diversity, it is observed that the NSGA-II algorithm with 
SBX-LN is having good convergence for seven functions and better diversity for five 
functions. Classification of these functions is shown in Table 2.   

It is observed that the NSGA-II algorithm with SBX-A is having good convergence 
and better diversity for some functions. This is because the number of generations, for 
all the functions, is taken as 250. This is not acceptable for all the functions. Hence, a 
suitable number of generations, with sufficient number of function evaluations, are to 
be selected for each function to converge to the Pareto-optimal front.  

From this it is observed that the performance of NSGA-II algorithm is improved by 
choosing a better parent centric crossover probability distribution. The OSY function 
with six constraints is not considered because the turbo-alternator design with six 
constraints is optimized using NSGA-II algorithm. In the next section, the NSGA-II 
algorithm is used to optimize a real-life turbo-alternator design having six constraints, 
with SBX-A and SBX-LN crossover probability distributions.  
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Table 2. Classification of functions outperformed by NSGA-II (SBX-LN) 

NSGA-II (SBX-LN) S.No. Parameter 
Convergence Diversity 

1 
Continuous solutions 

5 (ZDT1, ZDT2, ZDT4, 
ZDT6 and BNH) 

3 (ZDT6, FON and 
CTP1) 

2 Discontinuous solutions 2 (ZDT3 and TNK) 2 (SCH2 and CTP5) 
3 

Unconstrained functions 
5 (ZDT1, ZDT2, ZDT3, 
ZDT4 and ZDT6) 

3 (ZDT6, SCH2 and 
FON) 

4 Constrained functions 2 (BNH and TNK) 2 (CTP1 and CTP5) 
5 

Unimodal functions 
5 (ZDT1, ZDT2, ZDT3, 
ZDT4 and ZDT6) 

3 (ZDT6, SCH2 and 
FON) 

6 Multimodal functions 2 (ZDT3 and TNK) 2 (SCH2 and CTP5) 
7 More epitasis 2 (ZDT4 and ZDT6) 1 (ZDT6) 
8 One variable functions 0 1 (SCH2) 
9 Two variable functions 2 (BNH and TNK) 2 (CTP1 and CTP5) 
10 Five variable functions 0 1 (FON) 
11 Ten variable functions 2 (ZDT4 and ZDT6) 1 (ZDT6) 
12 Thirty variable functions 3 (ZDT1, ZDT2 and ZDT3) 0 

4   NSGA-II Algorithm to Optimize the Turbo-Alternator Design 

The NSGA-II algorithm with SBX-A and SBX-LN crossover probability distributions 
is used to optimize the turbo-alternator design. In this paper, the results obtained for a 
real-life turbo-alternator are presented. The data of turbo-alternator is as follows.  

7999.35 kW, 3300 V, three-phase, 1646 A, 50 Hz, star-connected, 3000 r.p.m. ma-
chine operates at 85 percent power factor. The stator has 36 slots with 36 coils. The 
rated field excitation current is 252 A and the field excitation voltage is 125 V.  

4.1   Turbo-Alternator Design 

The efficiency and cost of turbo-alternator are the two objective functions, obtained 
from the given data [6-8]. A computer aided design (CAD) program is developed to 
obtain these parameters. The relations for efficiency and cost are as follows [9].  

The efficiency of turbo-alternator, in terms of rated output power (P0) and total 
losses (PTLoss), is  

( )
( )⎥⎦
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=
TLossPP

P

0
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The PTLoss is divided into five major types such as stator copper loss (PL1), stray 
load loss (PL2), friction and windage loss (PL3), stator iron loss (PL4) and excitation 
loss (PL5).  

The cost of turbo-alternator, in terms of cost of copper (C1), cost of iron (C2), total 
weight of copper (W1) and total weight of iron (W2), is  

( ) ( )[ ]2211 *WCWCCT +∗=  . (8) 
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The actual design parameters of turbo-alternator, for a given data, are found from the 
CAD program.  

4.2   Optimization Problem 

The CAD program, developed to obtain the turbo-alternator design, is reformulated as 
a multi-objective optimization problem (MOOP) [9]. In this MOOP, five design  
parameters such as P0, stator line voltage (VL), stator line current (IL), stator power 
factor (pf) and stator frequency (f) are considered as variables which will affect the 
design. The other design parameters such as stator number of phases (Nsp), rotor 
speed (Nr) and stator winding connection (Wcs) are kept constant in the design. Six 
constraints are formulated to obtain the required design of turbo-alternator. They are 
formed to maintain the stator slot pitch (λ) to be within maximum stator slot pitch 
(SPsm), the temperature difference between stator copper and iron (TDsci) to be within 
the maximum temperature difference between stator copper and iron (TDscim), the 
rotor critical speed (Nrc) to be within rotor maximum critical speed (Nmrc), the rotor 
exciting current (Irme) to be within its lower bound of rotor exciting current (Irmel) and 
upper bound of rotor exciting current (Irmeu) and rotor shaft deflection (DFLrs) to be 
within its maximum rotor shaft deflection (DFLrsm). The extreme values of these pa-
rameters are the SPsm = 0.07 m, TDscim = 190C, Nmrc = 2400 r.p.m., Irmel = 201.6 A, 
Irmeu = 252.0 A and DFLrsm = 5% of air-gap thickness (δ).  

The optimization problem of turbo-alternator design is as follows.  
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The five design variables are allowed to vary within certain allowable range from 
their rated values, to obtain the optimum design of turbo-alternator. The P0 and IL are 
allowed to vary from zero to their rated values. The VL is allowed to vary by ±5% 
from its rated value [10]. The pf is allowed to vary from its rated value to unity. The f 
is allowed to vary from 97% to 100% of the rated value.  

Five best runs are chosen, for each crossover operator, with different random 
seeds. The population size is 1000 and number of generations is 10000. For SXB-A 
operator, pc is 0.9, pm is 0.2, ηc is 5 and ηm is 15. For SXB-LN operator, pc is 0.8, pm 

 

Table 3. Parameters of turbo-alternator design  

S.No. Variable/ 
Constraint 
/Objective 
function 

NSGA-II (SBX-A) NSGA-II (SBX-LN) Actual 
values 
(CAD 
Prog.) 

Remarks 
1 2 3 4 1 2 3 4 

1 P0 (MW) 7.99935 2.63 1.76 1.1E-03 7.99935 2.63 1.76 1.1E-03 7.99935 Variable 
(0.0 to 
7.99935) 

2 VL (kV) 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.3 Variable 
(3.135 to 
3.465) 

3 IL (kA) 0.67 0.58 0.38 0.16 0.67 0.58 0.38 0.16 1.646 Variable 
(0.0 to 
1.646) 

4 pf 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.85 Variable 
(0.85 to 
1.0) 

5 f (Hz) 49.88 50.0 50.0 49.85 49.88 50.0 50.0 49.85 50.0 Variable 
(48.5 to 
50.0)

6 λ (m) 6.9E-02 6.9E-02 6.8E-02 6.6E-02 6.9E-02 6.9E-02 6.8E-02 6.6E-02 6.9E-02 Constraint 
(≤ 0.07) 

7 TDsci (0C) 16.55 15.52 18.79 14.22 16.55 15.52 18.79 14.22 10.99 Constraint 
(≤ 19) 

8 Nrc (r.p.m.) 1730 1710 1605 2393 1730 1710 1605 2393 1575 Constraint 
(≤ 2400) 

9 Irme (A) 229.32 230.82 207.89 201.72 229.32 230.82 207.89 201.72 248.12 Constraint 
(201.6 ≤ If 
≤ 252.0) 

10 DFLrs (m) 2.9E-04 2.9E-04 3.3E-04 1.2E-04 2.9E-04 2.9E-04 3.3E-04 1.2E-04 3.5E-04 Constraint 
(≤ 0.05 ) 

11  (m) 3.2E-02 2.9E-02 2.8E-02 1.5E-02 3.2E-02 2.9E-02 2.8E-02 1.5E-02 3.3E-02 Parameter 
( ) 

12  0.98 0.965 0.961 0.02 0.98 0.965 0.961 0.02 0.91 Objective 
function 

13 CT 
(normalized 
by1000000 
units) 

0.94 0.79 0.60 0.29 0.94 0.79 0.60 0.29 2.35 Objective 
function 
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is 0.2, ηc is 0.05 and ηm is 0.5 [2]. The optimum solutions are discontinuous in the 
objective space. The optimum design parameters of turbo-alternator at two points, for 
each crossover operator, are shown in Table 3.   

The results are shown in Figure 1. The cost is normalized by 1000000 units. The 
results obtained by these two crossover operators are also compared to find the per-
formance of NSGA-II algorithm [9].  
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Fig. 1. Results of a real-life turbo-alternator design 

4.3   Discussion of Results 

The results obtained by the NSGA-II algorithm with SBX-A and SBX-LN crossover 
probability distributions are compared. The major observations are as follows.  

The NSGA-II algorithm with SBX-LN found more optimum solutions with better 
diversity.  

Most of the optimum solutions obtained by NSGA-II algorithm with SBX-A and 
SBX-LN crossover probability distributions are matching with each other.  

The optimum design of turbo-alternator found by NSGA-II algorithm, with each 
crossover probability distribution, is having better efficiency and low cost when  
compared with the CAD program values.  

The Irme is having very large effect on the turbo-alternator design. All other con-
straints are not affecting the turbo-alternator design.  

5   Conclusion 

The following conclusions are drawn from this study.  
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1. The SBX-LN crossover probability distribution improved the performance of 
NSGA-II algorithm.  

2. The NSGA-II (SBX-LN) algorithm found better optimum solutions for vari-
ous functions having continuous and discontinuous solutions, unconstrained 
and constrained functions, unimodal and multimodal functions and different 
number of variables.  

3. Two functions (ZDT4 and ZDT6) have more epitasis. NSGA-II (SBX-LN) 
has better convergence for both problems and has better diversity for one 
problem (ZDT6).  

4. In turbo-alternator design optimization, the NSGA-II (SBX-LN) found more 
optimum solutions with better diversity when compared with the NSGA-II 
(SBX-A). These solutions are taken as Pareto-optimal solutions.  

5. The Irme is having very large effect on the turbo-alternator design. Hence it is 
identified as a hard constraint. All other constraints are not affecting the  
design of turbo-alternator. Hence, these are identified as soft constraints.  

6. In the real-life turbo-alternator design, the number of stator slots and stator 
coils are equal. To satisfy this condition, the number of conductor layers in 
stator slot (depth) is 2. For multi-layer winding, the size of alternator is  
reduced. This is in turn reducing the cost considerably while reducing the  
efficiency marginally.  
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Abstract. Metamodels can speed up the optimization process. Previ-
ously evaluated designs can be used as a training set for building sur-
rogate models. Subsequently an inexpensive virtual optimization can be
performed. Candidate solutions found in this way need to be validated
(evaluated by means of the real solver).

This process can be iterated in an automatic way: this is the reason of
the fast optimization algorithms. At each iteration the newly evaluated
designs enrich the training database, permitting more and more accurate
metamodels to be build in an adaptive way.

In this paper a novel scheme for fast optimizers is introduced: the
virtual optimization - representing an exploitation process - is accompa-
nied by a virtual run of a suited space-filler algorithm - for exploration
purposes - increasing the robustness of the fast optimizer.

Keywords: Fast Optimization, Metamodels, Exploitation and Explo-
ration.

1 Introduction

In real case applications, Computer Aided Engineering (CAE) solvers are usu-
ally computationally expensive: every single simulation can take hours or even
days. Therefore multi-objective optimization algorithms are required to face a
demanding issue: finding a satisfactory set of optimal solutions within a reduced
number of evaluations. Response Surface Models (RSM) [12,8] - also known as
Metamodels - can help in tackling this situation, speeding up the optimization
process (e.g., see [16]).

The so-called fast optimization algorithms meet this demand, implementing
an adaptive scheme for RSM training [9]. In this paper a novel scheme for fast
optimizers is proposed: the usual virtual optimization stage (i.e. optimization
performed over RSM) is completed with a virtual exploration phase (described
in sec. 2.5), in order to improve both robustness and fast convergence. A detailed
description of the algorithm workings is exposed in section 2. Sec. 3 briefly
describes the standard optimizers incorporated within this framework, while
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sec. 4 exposes some details of the RSM algorithm implemented in this work.
The performance of fast optimizers on some test problems is reported in sec. 5;
we draw the conclusions in sec. 6.

2 Description

Fast optimizers use metamodels to speed up the optimization process. Different
RSM are implemented within the algorithm: the best ones, in terms of perfor-
mance on some validation points, are chosen and used for a virtual optimization.
The so obtained virtual Pareto front is then validated (i.e., evaluated by means
of the real solver), obtaining some designs that iteration by iteration progress to-
ward the real Pareto front. At each iteration the newly evaluated designs enrich
the training database, permitting a more and more accurate RSM to be build
in an adaptive and iterative way.

The algorithm works on the analogy of a population of independent designs
evolving through successive iterations (generations), like an ordinary genetic al-
gorithm. So the total number of generated designs will be equal to the population
size multiplied by the number of iterations.

The virtual optimization is accompanied by a virtual run of the Incremental
Space Filler (ISF) algorithm, for exploration purposes: this fact increases the
robustness of the fast optimizer. The relative incidence of virtual optimization
vs. exploration is defined with the setting of a relevant exploration fraction
parameter. Therefore the validation phase involves points generated both with
virtual optimization and with virtual exploration.

For each objective and each constraint a different set of RSM is trained:
considerations about fitness quality of the different models are carried out in-
dependently for each quantity. In this way the best RSM can be guaranteed in
each single situation.

2.1 Iterative Loop

Fast optimizers progress toward better solutions in an iterative way. Each iter-
ation in the main loop of the algorithm involves the following steps:

Metamodels training: RSM are trained over the existing database of evalu-
ated designs.

Virtual exploration: ISF algorithm is employed for enriching the space ex-
ploration around the current Pareto front points.

Virtual optimization: optimization algorithm is run using the best available
metamodels.

Validation process: selected points coming from the previous two steps are
evaluated by means of the real solver. These new designs enrich the training
database to be used in the next iteration.

Metamodels evaluation: the performance of the different RSM is evaluated
over the validation points. The best RSM are selected to be used in the next
iteration.
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2.2 Preliminary Initialization

If a preexistent database of evaluated designs is available before the fast opti-
mizer run (e.g., a previous optimization or exploration has already been per-
formed), it is convenient to import it: in this way the available designs are used
by RSM as training set at the first iteration. So the metamodels training oc-
curs at this preliminary stage, and furthermore the metamodels performance
assessment is performed just after the evaluation of the initial population.

This fact enhances the promptness of the adaptive scheme, since the iterative
loop is custom tailored to the problem at hand just from the beginning.

Otherwise the default initialization takes place: this simply means that the
iterative scheme will undergo a “cold start”, reaching its running condition only
from the second iteration on.

2.3 Initial Population

In this work two different optimization algorithms are implemented within fast
optimizers: MOGA-II and SIMPLEX (refer to sec. 3). This leads to two different
fast optimizers, i.e., FMOGA-II and FSIMPLEX, respectively.

For FMOGA-II the provided initial population determines the population size
m, while for FSIMPLEX the population size has to be equal to n + 1, where n
is the number of input variables (n+1 is the number of vertices of the simplex).

Initial design are evaluated (by means of the real, expensive, solver), and they
are used as training set for the RSM.

If the optional preliminary initialization occurs, RSM are trained over the
preexistent database, and not over the initial population: these initial designs
are used instead as the validation set for evaluating the RSM performance. In this
way the assessment stage (sec. 2.8) - that usually take place after the validation
process - can be anticipated: best RSM can be selected from the very beginning.

2.4 Metamodels Training

Metamodels are trained over the existing database of all designs evaluated so far.
Otherwise the database size can by limited by specifying a relevant maximum
size parameter: an according number of designs is randomly picked out from the
full database. This fact can reduce effectively the training time of metamodels,
limiting the total computational demand of the algorithm.

Four different RSM algorithms are implemented within fast optimizers: Poly-
nomial SVD, Radial Basis Functions, Kriging, Neural Networks (refer to sec. 4).
This different range of choices guarantees that for each problem - and for each
single objective or constraint too - the more appropriate model can be applied.

Not always the complete list of all RSM algorithm is employed: under some
particular conditions (refer to sec. 2.8 for details) some RSM algorithms - clearly
the less performant ones - are automatically switched off, involving a desirable
reduction of computational effort. These considerations are carried out indepen-
dently for each each objective and each constraint.
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At the first iteration, if preliminary initialization did not take place, default
RSM are employed in the virtual exploration (sec. 2.5) and in the virtual opti-
mization (sec. 2.6): the default choice is Radial Basis Functions (or Kriging in
case of large scale problems, see sec. 2.10).

From the second iteration on, best RSM are selected by means of the proce-
dure defined in the metamodels evaluation (sec. 2.8), according to the outcome
obtained in the previous iteration.

So for exploitation and exploration purposes only the best metamodels out
of all the RSM trained at this step are employed. On the contrary, all the RSM
here trained are used in the metamodels evaluation step (sec. 2.8).

2.5 Virtual Exploration

The Incremental Space Filler (ISF) Design of Experiments (DOE) algorithm is
used for enriching the database with designs lying in the region of interest, i.e.,
around the current Pareto front: this exploration stage increases the robustness
of the fast optimizer.

ISF is useful for generating a uniform distribution of points in the input space.
ISF is an augmenting algorithm: it considers the existing points in the database
(previously generated designs), and it adds new points in order to fill the space
in a uniform way. The maximin criterion is implemented: new points are added
sequentially where the minimum distance from the existing points is maximized.

Here the zone filling option is enabled: new points are chosen in balls centered
at the points belonging to the current Pareto front, with a specified radius. This
zone radius is suitably related to a characteristic distance computed over the
current Pareto designs.

There are two variants of the ISF algorithm:

– Genetic Algorithm Optimization: the internal optimization of the maximin
criterion is performed by means of a Genetic Algorithm (approximated but
fast and robust method).

– Voronoi-Delaunay Tessellation: the exact solution of the maximin criterion
is found (precise method, but time-consuming in high dimensional case).

Here Voronoi-Delaunay is implemented when n ≤ 5, otherwise Genetic Algo-
rithm is used.

ISF is run in order to generate a sufficiently large number of possible can-
didate points. Then these designs are evaluated by means of the best available
metamodels. These so obtained virtual designs are ordered according to Pareto
ranking and crowding distances (refer to [4]): the best fraction of m points is
extracted and selected as candidate designs for the validation process (sec. 2.7).

2.6 Virtual Optimization

The exploitation stage is performed by means of an optimization algorithm run
over the best available metamodels. Clearly this virtual optimization is carried
out by means of MOGA-II (multi-objective optimizer) in case of FMOGA-II,
and by SIMPLEX (single-objective optimizer) in case of FSIMPLEX.
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The parameters of MOGA-II and SIMPLEX, respectively, are automatically
set internally the fast optimizer. The DOE (of size m) to be used as the initial
population is randomly built up for 50% of designs taken from the current Pareto
front (in order to improve the convergence of the optimizer) and for 50% of
designs generated by Random DOE (in order to increase the robustness of the
optimizer).

The best fraction - in terms of Pareto ranking and crowding distances - of
2m designs are extracted from the full database of virtual designs evaluated
during the virtual optimization. These possible candidate points are compared
with the archive of already evaluated (real) designs, in order to remove possible
duplicated designs. In this way duplicates are avoided, saving computational
resources. The first m designs are selected as candidate designs for the validation
process (sec. 2.7). In case that - after the duplicates removal - there are less than
m designs, the algorithm exits because possible convergence has been reached
(in fact if the virtual optimization tends to find almost the same points, it means
that possibly there is no room for further improvement).

2.7 Validation Process

In this step m candidate designs are randomly selected out of a total of 2m
designs coming from the virtual exploration (sec. 2.5) and from the virtual opti-
mization (sec. 2.6), according to the relative incidence defined with the setting
of a relevant exploration fraction parameter.

These designs represent the new population of the current iteration: conse-
quently they are validated, i.e., evaluated by means of the real solver.

2.8 Metamodels Evaluation

The validation designs obtained in the validation process (sec. 2.7) are used for
evaluating the performance of all the metamodels trained in the current iteration
(sec. 2.4).

Performances are expressed in terms of mean normalized error: in fact the
variables (objectives and constraints) are normalized according to their range of
variation, in order to avoid scale effects. The error is computed as the difference
between the value predicted by the metamodel and the experimental value. By
mean it should be intended the root mean square. Best RSM algorithm are
selected accordingly to their performance metric.

Optionally a performance threshold for RSM competition can be specified:
this value is used as a target threshold below which the competition between
different metamodels is stopped. If fact if one of the competitive RSM reaches
this value - in terms of mean normalized error - it is considered the definitive
winner of the competition, given its excellent performance. If this is the case,
in the next iterations the other RSM will not be trained, saving computational
time. However, in case the performance worsens, the competition is automatically
reopened.
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2.9 Parallel Training

Fast optimizers are computationally demanding, since they involve time consum-
ing operations, such as training RSM and running ISF (this is especially true for
high dimensional problems and large number of designs). Paradoxically fast algo-
rithm are slow in terms of net computational time, when compared to standard
optimization algorithms. Usually this is not an issue, since the bottleneck of the
optimization resides in the single design evaluation, carried out by means of an
expensive CAE solver: this is indeed the domain of application of fast optimiz-
ers. However, in order to save the algorithmic computational effort, metamodels
can be trained in parallel on the local machine, taking advantage of multi-core
systems. In fact the training of different internal RSM - being independent tasks
- can be carried out in different threads (according to the number of available
processors/cores), reducing the total execution time of the algorithm.

2.10 Large Scale Problems

If the number of input variable is n > 10 the problem is considered to be a
large scale problem: the algorithm automatically switches to a safe-mode. In
this modality, the most computational intensive components of the algorithm
are switched off, in order to supply an acceptable execution time. The virtual
exploration is disabled, and only Kriging and Polynomial SVD (the fastest al-
gorithms) are retained as RSM to be used in the virtual optimization.

3 Optimization Algorithms Description

The scheme outlined in this work could be applied in general to any optimization
algorithm, generating its relevant fast version. In the current implementation
two different optimization algorithms have been used: MOGA-II and SIMPLEX.
They are briefly described in this section.

MOGA-II is a multi-objective optimization algorithm: it is an improved ver-
sion of MOGA (Multi-Objective Genetic Algorithm) by Poloni et al. [16]. This
genetic algorithm [5] uses a smart multisearch elitism for robustness and direc-
tional crossover for fast convergence.

SIMPLEX is a single-objective optimization algorithm [15] based on the well
known Nelder and Mead downhill method [13] commonly used for multidimen-
sional minimization problems. The SIMPLEXmethod does not require derivatives
of the function, hence it is more robust than algorithms based on local gradients.

4 Metamodels Description

Several RSM algorithms are implemented within Fast Optimizers: this section
is devoted to their general description.

Polynomial Singular Value Decomposition (SVD) produces best fitting poly-
nomial approximations of responses minimizing the squares of the error pre-
dictions on the training dataset. The simple formulation of the model and the
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effectiveness of the SVD algorithm allow the training process to be very fast,
compared to other metamodelling techniques.

Radial Basis Functions (RBF) are a powerful tool for multivariate scattered
data interpolation [2]. Since RBF are interpolant response surfaces they pass
exactly through training points. In our RBF implementation [18] five different
radial functions are available: Gaussians (G), Duchon’s Polyharmonic Splines
(PS), Hardy’s MultiQuadrics (MQ), Inverse MultiQuadrics (IMQ), and Wend-
land’s Compactly Supported C2 (W2). MQ kernel is the default choice, since it
shows a fair performance on a wide set of benchmark problems. In general the
leave-one-out methodology (useful for checking the goodness of an interpolant
response surface) has a huge computational demand, but this is not the case in
RBF framework: in fact there is a convenient way for computing the root-mean-
square (rms) leave-one-out error (see [20]).

Kriging is a very popular regression methodology based on Gaussian Processes
[17]. Kriging is a Bayesian methodology named after professor Daniel Krige,
which is the main tool for making previsions employed in geostatistics. The
formalization and dissemination of this methodology is due to Matheron [11].
The Kriging behavior (smoothness of the model) is controlled by a covariance
function, called the variogram function, which rules how varies the correlation
between the response values in function of the distance between different points.
There are several variogram types that can be employed: Gaussian, Exponential,
Matèrn, Rational Quadratic. In our implementation [10] Gaussian is the first
(default) choice: the generated metamodel is infinitely many times differentiable.

Feedforward Neural Networks are a very efficient and powerful tool for func-
tion approximation purposes. Neural Networks (NN) with one single non-linear
hidden layer and a linear output layer are sufficient for representing any arbitrary
(but sufficiently regular) function [7]. The best known training algorithm of NN is
backpropagation: a very effective approach consists in the Levenberg-Marquardt
algorithm, as outlined in [6]. The Nguyen-Widrow initialization technique greatly
reduces the training time (see [14]). In our implementation automatic network
sizing has been adopted, using the value proposed in [19].

5 Results

We test the performances of fast optimizers, FMOGA-II and FSIMPLEX, with
respect to their direct precursors MOGA-II and SIMPLEX, respectively. The
comparison is focused on the ratio between quality of the best-so-far solution
(point or set) and number of evaluated designs. In other words, fast optimizers
are run up to a fixed maximum number of evaluations, but also some interme-
diate steps are analyzed, in order to study the progressive trend.

We chose two single-objective and two multi-objective problems. The first
couple is taken from CUTEr [1] suite. The “linear function–full rank” problem
involves nine input variables, while “Brown and Dennis” has four. Both have
a unique optimal point and they are unconstrained. Their original formulation
includes also a starting point for an optimization run. However, since SIMPLEX
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and FSIMPLEX require a set of initial points, we skip to a Random DOE. The
stochasticity of this operation (and of some routines of the fast algorithm) is
smoothed out by repeating 10 times the test and averaging the results. We did
not tune any parameter of the algorithms, we keep standard values.

The “CTP7” [3] and “TNK” [21] problems involves two input variables and
two objectives. The Pareto front of TNK presents concave and convex regions
created by the two constraints added to the problem. The difficulty of CTP7
instead is the presence of local optima which are created once more by a con-
straint. We fix the size of the initial population to 50 points and we pick them
by using a Uniform Latin Hypercube DOE algorithm which distributes samples
uniformly in the configuration space. Ten independent runs of each algorithm
were considered, varying only the seed for the random generator.

The performance of the multi-objective optimizers can be computed with an
evaluation metric. We use the inverted generation distance (IGD) metric [22]
which can measure accuracy and uniformity of a computed front with respect
to a given reference one. If P is a sample of the true Pareto Set and A is an
approximated set, we define:

IGD(A, P ) =

∑
p∈P d(p, A)

|P | ,
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Fig. 1. Quality of the computed solution points (for single-objective problems) and
sets (for multi-objective tests) with respect to the number of evaluated designs
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where d(p, A) is the minimum Euclidean distance between p and all the points
in A. Low values of IGD are desirable, since this implies that the set A contains
points near to any point in P .

A snapshot of the results can be found in Fig.1. In the majority of the cases
the fast algorithms outperform the standard ones. This is much more evident for
“TNK” and “linear function–full rank”: in these problems the RSM managed
to capture efficiently the structure of the functions involved and they speed up
convergence significantly. In “Brown and Dennis” the gap is smaller although
still present. The behavior observed over “CTP7” shows a difficulty for both
FMOGA-II and MOGA-II in handling local optima.

It is not easy to judge whether the exploration-exploitation ratio should be
moved in one direction or in the opposite one in order to reach the true Pareto
front. Future studies will focus on this problem and on how the algorithm could
detect a similar situation.

6 Conclusions

An automatic procedure for improving the accuracy of metamodels in an adap-
tive and iterative way can be devised. The fast optimizers obtain designs that
iteration by iteration progress toward the real Pareto front.

Balancing the relative incidence of exploration vs. exploitation is a key issue
for achieving both robustness and fast convergence. The strength of the two
stages can be controlled by means of a relevant exploration fraction parameter.

Metamodels training and assessment are carried out independently for each
objective and each constraint. In this way the best algorithm can be guaranteed
in each single situation.

On large scale problems the virtual exploration and the metamodels training
stages become computationally demanding: this issue requires proper consider-
ation, as discussed in sec. 2.9 and 2.10. The algorithmic computational effort
increases exponentially with the number of input variables and with the number
of database designs: this fact represents a possible drawback of the fast optimiz-
ers, limiting their use in this high end limit.

On the contrary, the proposed tests show the possible advantages of fast op-
timizers. Whenever a usual algorithm can solve the problem, FMOGA-II and
FSIMPLEX reduce the number of design evaluations needed to reach the solu-
tion. Moreover the exploration fraction parameter represents a possible impor-
tant tool to handle more difficult problems.
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tion. LNCS, vol. 5252, pp. 245–284. Springer, Heidelberg (2008)

10. Lovison, A.: Kriging. Technical Report 2007-003, Esteco (2007)
11. Matheron, G.: Les variables régionalisées et leur estimation: une application de la
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Abstract. A supply chain network system is to provide an optimal platform for 
efficient and effective supply chain management. There’s increasingly competi-
tive, multi-channel retail world calls for a radically new strategy for evaluating 
supply chain network design. Retailers must abandon past practices which look 
to optimize the number and placement of facilities within traditional networks. 
A multi-objective optimization procedure which permits a trade-off evaluation 
for an integrated model is initially presented. This model includes elements of 
total cost, customer service and flexibility as its objectives and integrates facil-
ity location and inventory control decisions. Inventory control issues include 
economic order quantity, safety stock and inventory replenishment decisions 
and consider the risk pooling phenomenon to be realized from collaborative ini-
tiatives such as vendor-managed inventory. The possibility of a multi-objective 
evolutionary approach is developed to determine the optimal facility location 
portfolio and is implemented on a real large retail supply chain in Taiwan to  
investigate the model performance. Some preliminary results are described. 

Keywords: multiobjective evolutionary algorithm, retail supply chain, facility 
location problem, inventory control, integrated supply chain model. 

1   Introduction 

Today’s increasingly competitive, multi-channel retail world calls for a radically new 
strategy for evaluating supply chain network design. Retailers must abandon past 
practices which look to optimize the number and placement of facilities within tradi-
tional networks where domestic distribution centers (DCs) touch all merchandise 
moving to stores. In recent years, two generic strategies for supply chain design 
emerged: efficient and responsive supply chains. Efficient supply chains aim to re-
duce operational costs; responsive supply chains, on the other hand, are designed to 
react quickly to satisfy customer demands and thus save costs. Therefore, it has be-
come a challenge for firms to evaluate tradeoffs among the total costs (for efficiency) 
and customer service (for responsiveness).  

Research on integrated location-inventory distribution supply chain network  
systems is flourishing. Nozick & Turnquist [1] proposed a joint location-inventory 
model to consider both cost and service responsiveness trade-offs based on the unca-
pacitated facility location problem. Miranda & Garrido [2] studied an MINLP model 
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to incorporate inventory decisions into typical facility location models to solve the 
distribution network problem by incorporating a stochastic demand and the risk pool-
ing phenomenon. Similarly, Gaur & Ravindran [3] studied a bi-criteria optimization 
model to represent the inventory aggregation problem under risk pooling. Daskin et 
al. [4] and Shen et al. [5] developed a single-commodity joint location-inventory 
model with risk pooling (LMRP) that incorporates inventory and safety stock costs at 
the facilities into the location problem. Liao & Hsieh [6] proposed a variation of the 
LMRP model: capacitated DCs and multi-objective performance metrics including 
customer service components. However, the single supplier assignment is usually not 
the practical case. When the number of suppliers increases, decisions that “where” 
and “which” suppliers should be identified were made. In this paper, we present an 
integrated location-inventory model with multiple suppliers. The basic premise of this 
paper is to consider inventory strategy together with facility location costs and distri-
bution costs in determining the optimal location of suppliers and DCs, and the as-
signment of retailers to DCs. We consider a two-echelon location-inventory retail 
supply chain network design problem. 

The paper is organized as follows. Section 2 describes our research problem and 
details the model formulation. Section 3 proposes an evolutionary algorithm for the 
model. Section 4 illustrates computational results of a real case problem. Finally, in 
section 5, we make the research conclusion. 

2   Mathematical Formulation  

2.1   Problem Description 

Consider the problem of configuring a location-inventory distribution system, where a 
set of suppliers and distribution centers (DCs) are to be established to distribute vari-
ous products to a set of retailers. It considers jointly both the strategic and tactical 
decisions in the supply chain system. The strategic decision involves the location 
problem, which determines the number and the locations of DCs and assigns retailers 
to DCs, whereas the tactical decision deals with the inventory problem which deter-
mines the levels of safety stock inventory at DCs to provide certain service levels to 
retailers. Fig. 1 shows our supply chain. It includes multiple suppliers (usually manu-
facturers but sometimes resellers or distributors) that support all retailers through DCs  
 

 

Fig. 1. Two-echelon retail supply chain network problem 
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of several types: supplier-owned (Mfg-DC), retailer-owned (VMI-DC) or third-party-
owned (3rd-DC). Each retail-owned DC faces daily demand from the retailer’s stores. 
The suppliers’ DC receives daily orders from daily orders from retailers and places 
daily replenishment orders to specific suppliers. The dash-boxed area in the figure 
indicates our scope of interest. We tracked demand and inventory at the suppliers’ DC 
and at the retailer’s DC. We omitted third-party DC from the analysis since we were 
concentrating on VMI at the first-tier DC level. 

2.2   Mathematical Model 

Basic assumptions are used when modeling our problem. It is assumed that all the 
products are produced by a single supplier and one specific product for a retailer 
should be shipped from a single DC. Reverse flows, in-transit inventory, and pipeline 
inventory are not considered. All the retailers’ demands are uncertain and the storage 
capacities of the supplier are unlimited but are capacitated at the open DCs. More 
assumptions will be stated when we illustrate the mathematical model. Here, the 
mathematical notation and formulation are as follows.  

Indices. i is an index set for suppliers (i∈I). j is an index set of potential DCs (j∈J). k 
is an index set for retailers (k∈K). 

Decision Variables. xij is the number of units of products shipped from supplier i to 
DC j. yjk is a binary variable to decide if DC j serves retailer k. wi is a binary variable 
to see if supplier i is chosen or not. sj is a binary variable if DC j is opened or not. Qjk 
is the economic order quantity for retailer k at DC j. 

Model Parameters. Vj  is the capacity of DC j. Pi is the production capacity of supplier 
i. dk is the mean demand rate (daily) for retailer k. σk is the standard deviation of daily 
demands for retailer k. Ljk is the average lead time (daily) to be shipped from DC j to 
retailer k. cij is the Unit cost of producing and shipping products from the supplier i to 
DC j and tjk is the unit transportation cost of shipping product from DC j to retailer k. 
fi is the fixed annual operating cost for supplier i and gj is the facility operating cost of 
locating at DC j. hj is the unit inventory holding cost at DC j. ojk is the ordering cost at 
DC j for retailer k per order. dis(i, j) and dis(j, k) are the distances between supplier i 
and DC j and between DC j and retailer k, respectively. Dmax is the maximal covering 
distance, i.e. retailers within this distance to an open DC are considered well satisfied. 

{ }maxk)dis(j,|Jj Dk ≤∈=
Δ

τ  is the set of DCs that could attend retailer k within Dmax. 

We assume that the daily demand for product k at each retailer i is independent and 
normally distributed, i.e. N(dk,σk). Furthermore, at any site of DC j, we assume a 
continuous review inventory policy (Qj, rj) to meet a stochastic demand pattern. Also, 
we consider that the supplier takes an average lead time Ljk (in days) for shipping 
product k from the supplier to DC j so as to fulfill an order. Considering centralized 
inventory system, if the demands at each retailer are uncorrelated, then the aggregate 
demands during lead time at the DC j is normally distributed and the total amount of 
safety stock pooled at any DC j is 

jkk kjk yz ∑−
2

1 L σα
 where 1-α is referred to the 

level of service and z1-α is the standard normal value with P(z ≤ z1-α)= 1-α.  
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In our proposed model, the total cost of the system can be decomposed into the fol-
lowing items: (i) supplier’s operating cost, which is the total cost incurred from the 
suppliers, (ii) DC’s operating cost, which is the total cost of running DCs, (iii) order-
ing cost, which is the total annual expenses incurred in placing and order via VMI, 
which is the cost incurred from the suppliers, (iv) cycle stock cost, which is the cost of 
maintaining working inventory at the DCs, (v) safety stock cost, which is the cost of 
holding sufficient inventory at DCs in order to provide specific service level to their 
retailers, (vi) inbound transportation cost, which is the total cost of shipping products 
from suppliers to DCs, and (vii) outbound transportation cost, which is the total cost 
of shipping products from DCs to retailers. Hence, it can be represented as total cost 
function Z1 as follows. 
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Based on Z1, the optimal order quantity Q*

jk for retailer k at DC j can be obtained 
through differentiating Z1 in terms of Qjk, for ∀ j and k, and equaling to zero to mini-
mize the total cost. We obtain Q*

jk= 
jjkk hydo ⋅⋅⋅ jk2  for every open DC j and 

every retailer k. Replacing Q*
jk in the third and fourth terms of Z1, we can obtain a 

non-linear cost function of Z1. In the following, we propose our model. 
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The objectives are referred to (2)-(4). Z1 in (2) is to minimize the total cost (TC), 

Z2  in (3) and Z3 in (4) give the objectives referred to maximizing customer service by 
two measurements. Z2 in (3) is referred to volume fill rate (VFR) which is defined as 
the fraction of total demand that can be satisfied from inventory without shortage. Z3 

in (4) is called responsiveness level (RL) which measures the percentage of fulfilled 
demand volume within a distance coverage for DCs. Equations in (5) and (6) are 
capacity restrictions on the suppliers and DCs, respectively, and permit the use of 
opened facilities only. Equations in (7) are product flow conservation equations at 
DCs, ensuring for every product that flows through the DC, a part of it is held in 
safety stock and the rest is used to satisfy demand at the retailers. Equations in (8) 
restrict a retailer’s demand to be served by a single DC. Equations in (9) are binary 
constraints. Equations in (10) are integrality and non-negativity requirements. 

3   Problem Solving Methodology 

3.1   NSGAII-Based Evolutionary Algorithm  

Multiobjective optimization problems give rise to a set of Pareto-optimal solutions, 
none of which can be said to be better than other in all objectives. Unlike most tradi-
tional optimization approaches, multiobjective evolutionary algorithms (MOEAs) 
work with a population of solutions and thus are likely candidates for finding multiple 
Pareto-optimal solutions simultaneously. Non-dominating Sorting GA (NSGA-II) [7] 
is one of the best techniques in MOEAs. For each solution, one has to determine how 
many solutions dominate it and the set of solutions to which it dominates. Thus, it 
ranks all solutions to form non-dominated fronts according to a non-dominated sort-
ing process to classify the chromosomes into several fronts of nondominated solu-
tions. The non-domination sorting updates a tentative set of Pareto optimal solutions 
by ranking a population according to non-domination. To maintain diversity in the 
population, NSGA-II also estimates the solution density surrounding a particular 
solution in the population by computing a crowding distance operator. During selec-
tion, individuals of equal non-domination rank are sorted according to their crowding 
distance. The selection operator selects the best individuals according to this ranking 
as the parents of the next generation, whereas crossover and mutation operators re-
main as usual. A NSGA-II-based evolutionary algorithm is proposed, as shown in 
Table 1. As we can see in Table I, chromosome fitness depends on the evaluation of 
the decoded solution in the objective functions and its comparison with other chromo-
somes in the selection process of the next generation. The non-domination sorting 
updates a tentative set of Pareto optimal solutions by ranking a population according 
to non-domination. After that, each individual p in the population is given two attrib-
utes: (1) non-domination rank in the optimization objectives; (2) local crowding  
distance in the objectives space directions. If both chromosomes are the same rank, 
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the one with fewer chromosomes around in the front is preferred. Therefore, a partial 
order (≧n) can be defined as follows. Let p, q∈P(t) be two individuals in population 
P(t). We say that p is better fitted than q (p ≧n q), either if (p.rank < q.rank) or 
((p.rank = q.rank) and (p.distance > q.distance)). 

Table 1. NSGA-II-based evolutionary algorithm 

1: Random generating parent population P(0) of size L 
2:  Non-domination  sorting P(0)  
3: For each nondominated solution, assign a fitness (rank) equal to its nondomination. 
4: Create a child population C(1) of size L, apply binary tournament selection, crossover, and 

mutation. 
5:  Evaluate C(1) 
6:  while t ≤ T do 
7: Create the mating pool R(t) =P(t) ∪ C(t) of size 2L by combining the parent population P(t) and 

the child population C(t). 
8:    Sort R(t) using non-domination sorting ≧n  
9:    Select P(t+1) from the first L chromosome of R(t) 
10: Generate C(t+1) from P(t+1), apply binary tournament selection, crossover, and mutation 
11:  Mutate and Evaluate C(t+1) 
12: t ← t + 1 
13: end while  

3.2   Hybrid Evolutionary Algorithm 

Here, a hybrid evolutionary algorithm is proposed. Cycles of fitness evaluation, selec-
tion, crossover, and mutation repeat until some stopping criteria are met. However, 
our algorithm first focuses on fitness evaluation according to a partial order (≧n) 
which is used to decide which chromosomes are fitter. Suppose that Zk(p) and Zk(q) 
and  be the k-th objective function evaluated at two decoded chromosomes p and q, 
respectively. Here in our model, Z1(.) indicates cost, Z2(.) indicates volume fill rate 
and Z3(.) indicates responsiveness level. We say that p≧n q if Z1(p)≤Z1(q), 
Z2(p)≥Z2(q) and Z3(p) ≥Z3(q); and Z1(p)<Z1(q) or Z2(p)>Z2(q) or Z3(p)>Z3(q). The 
chromosome representation is represented in two parts as shown in Fig. 2. Each part 
has the same length m=|J| (where |J| is the number of DCs) with total length of  
chromosome 2J. The solution in the first part of chromosome is encoded in binary  
 

1 1 0 1 0 0 3 8 10 6 3 7

Binary variable  
(indicating Opening DC) 

Integer variable 
(indicating corresponding supplier)

 

 

Fig. 2. Chromosome representation 
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variables (sj) where the j-th position indicates if DC j is open (value of 1) or closed 
(value of 0). However, the second part of chromosome is encoded in integer variables 
where the value in it stands for the corresponding supplier that is assigned to it. 

A solution also involves the assignments of retailers to open DCs (binary variables 
yjk). This assignment is performed by a greedy heuristics used to obtain the single 
retailer-DC assignments. The retailers are firstly sorted in the descending order of 
their demand flows and then assign them in the sorted order to the DC according to 
the following rules: 

Rule 1. If retailer i is covered (i.e., there are DCs within a coverage distance), it is 
assigned to a DC with sufficient capacity (if exists) which can serve it with the mini-
mal difference between the remaining capacity of an open DC j and the demand flow 
of the retailer i through DC j. That is, the DC assignment attempts to be filled. 

Rule 2. If the retailer i cannot be covered or there is no successful assignment from 
the coverage set τi, it is then assigned to the candidate DC (with sufficient capacity) 
that increases the total cost by the least amount, regardless of its distance to the DC.  

4   Model Applications 

4.1   An Illustrative Retail Supply Chain Example 

C company, one of the world's largest retailer, is increased rapidly through the 1990s, 
and by 2010, the firm is currently 64 retail stores in Taiwan, most of them being 
hypermarkets. The company has set up several distribution centers in Taiwan, which 
distributes commodities through its national-wise retail chain. It also consigned ven-
dor-managed inventories, consisting primarily of seasonal merchandise and such 
direct-to-store products as ice cream and soft drinks are held until needed. By asking 
them help manage inventory, the suppliers are asked to make new products available 
and to deliver products to stores ready to sell. It has illustrated clearly the benefits of 
such real-time stock management.  

For this case study, 7 suppliers could be potentially chosen to make our procure-
ment plan. According to the realistic data, there are 8 potential depots for its retail 
network. We also aggregate retailer’s depots located in the same city or town. After 
aggregation, we ended up with 44 retailer stores. The maximal covering distance was 
set in Dmax=150 km. Other key input parameters of the model are given in Table 2. 
The demand for retailer k (dk) is set equal 50 demands per day per million people in 
the population. For simplicity, Euclidean distance is used for measuring distribution 
distances. The company intended to determine both the number of opening DCs and 
its corresponding suppliers for retailer’s order assignments. Such assignment will be 
affected by DC’s capacity limitation and suppliers’ production capacities. Therefore, 
the decisions are to evaluate tradeoffs among three criteria. 

4.2   Computational Results 

To obtain the Pareto front, we attempted to solve the specified problem using the 
evolutionary approach. The Pareto front is then evaluated to find out the ‘optimal’ 
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solution. We define a reference point which is a vector formed by the single-objective 
optimal solutions. It is the best possible solution among the Pareto front that a multi-
objective problem may have. Given a reference point, the problem can be solved by 
locating the alternative which has the minimum distance to the reference point. The 
reference point can simply be found by optimizing one of the original objectives at a 
time subjective to all constraints. Due to incommensurability among objectives, we 
measure this distance by using normalized Euclidean distance between two points in 
k-dimensional vector space to obtain the score function in Eq. (11). 

21
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where f is an alternative solution in Pareto front, f * is the reference point and wt is the 
relative weight (given by prior) for the t-th objective. Then, all alternatives are ranked 
based on the value of d in descending orders. The highest ranked alternative (with the 
minimal value of score) is the ‘optimal’ solution. Input parameters are: cloning=20%; 
generation number=100; population size=50; crossover rate = 80%; mutation rate 
varies from 5% to 10%. The decision maker requires determining weights wt by prior 
knowledge of objectives. The hybrid GA is evaluated with the illustrative example.  

Table 2. Model parameters 

Parameters Value Parameters Value 
Demands per unit population per day(d

k
) 50*10-6 Capacity of DC j (V

j
) U(1.2*106,1.5*106

)Lead time (days) (L
jk
) 5 Prod. capacity of supplier i (P

i
) U(1.8*106, 2*106) 

Unit ship. cost from supplier i to DC j (c
ij
) $0.2 Fixed ann. oper. cost for supplier i (f

i
) U(50*106, 80*106) 

Unit ship. cost from DC j to retailer k (t
jk
) $1 Fixed ann. oper. cost for DC j (g

j
) U(35*106, 65*106) 

Unit ordering cost at DC j (o
jk
) U (0.5,1) Unit inv. holding cost at DC j (h

j
) $1.2 

 
Fig. 3 illustrates a good evolution approach for generating the Pareto front after 

200 generations in our problem. It is revealed that the population curve converges 
shortly after 50 generations; they are nearly overlapped among themselves. After-
wards, no significant improvement is incurred. In order to illustrate the performance 
effects on the proposed solution procedure, we also consider four diverse scenarios by 
changing wt parameters at a time as follows: (1) equal-weight scenario (S1) with 
w1=w2=w3=1/3; (2) cost-concerned scenario (S2) with w1=0.8, w2=w3=0.1; (3) respon-
sive-level scenario (S3) with w2=0.8, w1=w3=0.1; (4) volume-fill-rate scenario (S4) 
with w3=0.8, w1=w2=0.1. Table 3 summarizes computational results of all scenarios. 

In Fig. 4, we display graphically the geographical locations of three components: 
DCs( ) and their corresponding suppliers ( ) and retailers ( ). All corresponding 
retailer assignments and supplier selections of a specific DC are represented in the 
same color. Fig. 4(a) illustrates the optimal assignment of alternative 27 for scenario 
S1 with minimal TC $1,078,800,000, maximal VFR 73.71% and maximal RL 
65.14%, respectively, where 5 out of 8 potential DCs are aggregated. Most of these 
DCs look close to their assigned retailers. However, there are about 26.29% unas-
signed retailers (especially the retailers located in southern Taiwan), indicating sales 
loss percentage. There are also 34.86% aggregated retailers assigned to DCs farther  
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than the coverage distance. Fig. 4(b) represents the cost-concerned scenario. Fig. 4(c) 
shows the optimal assignment of alternative 6 for scenario S3 and S4, where 7 DCs are 
aggregated. The results shows that it is possible to increase VFR 13.12% and RL 
17.23%, if only the percentage over TC increases 17.23% where the number of open 
DCs increased from 5 to 7. That is, it is necessary to spend extra costs to open DCs up 
to 7 to enhance customer’s VFR and also to increase RL at the same time. 

 

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
8

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8  

 

 
(a) First Generation (n=1) 
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Fig. 3. Evolutionary approach for generating Pareto front 

Table 3. Summary of computational results 

Objectives  Optimal solution 
Scenarios TC 

(million) VFR RL Alter-
native 

# of 
open DC

DC (vs. 
supplier) Retailer (vs. DC) 

S1 1,078.8 73.71% 65.14% 27 5 
2(4) 3(7) 
4(3) 5(5) 

7(2) 

3(5) 4(2) 5(5) 6(3) 8(3) 9(5) 10(2) 
11(5) 12(3) 15(3) 16(2) 18(5) 19(3) 
20(5) 22(4) 23(3) 28(7) 30(7) 32(7) 
34(4) 38(4) 39(4) 40(7) 43(4) 44(7) 

S2 388.46 28.51% 28.51% 19 2 2(2) 3(5) 3(3) 5(3) 6(3) 8(2) 13(3) 19(2) 20(3) 

S3 & S4 1,549 90.94% 78.26% 6 7 

1(6) 3(3) 
4(7) 5(5) 
6(1) 7(2) 

8(5) 

1(5) 2(5) 3(5) 4(5) 5(3) 6(3) 7(3) 8(5) 
9(3) 10(1) 11(3) 12(5) 13(6) 15(5) 
16(1) 18(3) 19(1) 20(1) 22(4) 23(7) 
24(7) 25(7) 27(7) 28(7) 30(7) 32(1) 
33(3) 34(4) 35(6) 38(4) 39(4) 40(1) 
41(6) 42(8) 43(4) 44(6) 

 
 

(a) scenario 1 (b) scenario 2 (c) scenarios 3 & 4 

Fig. 4. Graphical display of the ‘optimal’ solution under scenarios 
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5   Conclusion 

This research presented an integrated location-inventory retail supply chain network 
design problem which examines the effects of facility location, distribution, and in-
ventory issues. The goal of this research is to realize the application of multi-objective 
evolutionary approaches to real problems. The possibility of a hybrid MOEA is de-
veloped to efficiently determine the optimal facility location portfolio and is success-
fully implemented on a real large retail supply chain in Taiwan to investigate the 
model performance. The proposed model is helpful in adjusting the distribution net-
work to these changes. 
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Abstract. With the properties of multi-objective job shop problem (MOJSP) in 
mind, we integrate the multiagent systems and evolutionary algorithms to form 
a new algorithm, multiagent evolutionary algorithm for MOJSP (MAEA-
MOJSP). In MAEA-MOJSP, an agent represents a candidate solution to 
MOJSP, and all agents live in a latticelike environment. Making use of three 
designed behaviors, the agents sense and interact with their neighbors. In the 
experiments, eight benchmark problems are used to test the performance of  
the algorithm proposed. The experimental results show that MAEA-MOJSP is  
effective. 

Keywords: Multi-objective job shop problem, multiagent system, evolutionary 
algorithm. 

1   Introduction 

Job shop problem (JSP) is one of the combinatorial optimization problems. During the 
last two decades, some researchers have attempted to study the multi-objective job 
shop problem (MOJSP). As far as we know, in [1], a crowding-measure-based multi-
objective evolutionary algorithm was presented, which utilized the crowding measure 
to adjust the external population and assign individual’s fitness. In [2], a multistage 
genetic algorithm (GA) and a multi-recombinated cooperative population GA were 
implemented to solve two-objective and three-objective JSP respectively. In [3], three 
approaches, GA, constraint logic programming, multi-criteria decision-making, were 
proposed to solve MOJSP. In [4], a memetic algorithm based on differential evolution 
is proposed for multi-objective job shop scheduling problems. 

In this paper, we combine the multiagent systems and evolutional algorithms to 
form a multiagent evolutionary algorithm for MOJSP (MAEA-MOJSP). In the next 
section, multi-objective job shop problem is introduced and then we described 
MAEA- MOJSP. In section 3, experimental results are presented. Finally, section 4 
makes a brief conclusion for this article. 

                                                           
* This work was supported by the National Natural Science Foundation of China under Grant 

60872135, 60803098, and 60970067, and the National Research Foundation for the Doctoral 
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2   MAEA-MOJSP 

2.1   Multi-Objective Job Shop Problem 

Generally, a multi-objective optimization problem (MOP) with N objectives can be 
described as follows: 
Minimize: 

1 2( ), ( ),..., ( )Nf x f x f x  (1) 

where 1 2( ), ( ),..., ( )Nf x f x f x  are N objectives to be minimized, and x solution set∈ . 

Consider two solutions, a and b, the solution a is said to dominated b ( a b ) 
If 

{ } { }1,2,..., : ( ) ( ) : 1,2,..., : ( ) ( )i i i ii N f a f b and j N f a f b∀ ∈ ≤ ∃ <  (2) 

If a solution is not dominated by any other solutions of the MOP, that solution is 
called a nondominated solution. All the nondominated solutions of the problem form 
optimal Pareto front. 

For JSP, the following objective functions are frequently used [5]:  
1) makespan or maximum completion time: 

  max( )imakespan C=  (3) 

where Ci is the completion time of job i. 
2) total tardiness(due date based): 

    
1

_ max(0, )
n

i
i

total tardiness L
=

=∑  
(4) 

where Li is the lateness of job i. 
3) total earliness(due date based): 

1

_ max(0, )
n

i
i

total earliness E
=

=∑  
(5) 

where Ei is the earliness of job i. 
4) total idle time of machine: 

1

_
m

k
k

total idletime I
=

=∑  
(6) 

where Ik is the idle-time of machine k. 
5) maximum flow time: 

max max( )i iF C S= −  (7) 

where Ci and Si are completion time and start time of job i, respectively. 
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6) number of tardy jobs: 

1

n

T i
i

N U
=

=∑  
(8) 

where Ui is an indicator function denotes whether job i is tardy ( 1iU = ) or not 

( 0iU = ). 

For MOJSP, some objectives should be considered simultaneously. But some of 
them are conflicting, such as makespan and total idle time of machine, makespan and 
total tardiness etc. 

2.2   The Agent Used in Job Shop Problem 

Usually, a JSP considers n jobs to be proposed on m machines. The process of a job 
on a specific machine is defined as an operation. Processing time of each operation is 
fixed and known in advance. Each job can only have one operation processed at a 
time and no preemption can take place. 

One encoding method for JSP is permutation with repetition, where a scheduling is 
described as a sequence of all n m×  operation, and each operation in the sequence is 
described by the job-number. Thus, the search space S of a JSP consists of the ele-
ments satisfy the following conditions: 

1 2, , , ...,
n m

P S P P P P ×∀ ∈ = and ( ) ( ) ( )(1) (2) ... ( )P m and P m and and P n m= = =  (9) 

where {1,2,..., }iP m∈ , 1, 2,...,i n m= × , and ( )P j , 1, 2,...,j n= , stand for the number 

of j in P. When transforming P into a schedule, Pi stands for oj,k if Pi =j and the num-
ber of j among P1, P2,…,Pi is equal to k. The schedule is obtained by considering the 
operations in the order they occur in P and assigning the earliest allowable time to 
that operation. Such encoding method has the advantage that no infeasible solutions 
can be represented, and each element in S corresponds to a feasible schedule. 

 An agent for MOJSP represents an element in the search space. It is represented by 
the following structure: 

Agent = Record 

P: P∈S; 
        E: The energy of the Agent, E=Energy(P); 

    SL: The flag for the self-learning behavior, which will 
be defined later, if SL is True, the self-learning 
behavior can be performed on the Agent, otherwise, 
cannot; 

End. 

2.3   Environment of Agents 

In multiagent evolutionary algorithm (MAEA) [6], all agents live in a latticelike envi-
ronment, L, which is called an agent lattice. The size of lattice is Lsize× Lsize, where Lsize 



546 X. Duan et al. 

is an integer. Each agent is fixed on a lattice-point and can only interact with the 
neighbors. It can assume that the agent located at (i, j) is represented as 
Li,j, , 1, 2,..., sizeLi j = , then the neighbors of Li,j, Neighborsi,j, are defined as follows: 

{ }, ', , ' '', , '', , ,i j i j i j i j i jNeighbors L L L L=  (10) 

where 
1 1

'
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i i
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.   

The agent lattice can be seen in Fig.1. Each circle represents an agent; the number 
in it represents the position in the lattice. And two agents can interact with each other 
if only there is a line connecting them. 

In MAEA-MOJSP, we use the fitness assignment of SPEA [7] as energy definition: 

,

, ( ) (1 ( ))
tb P b a

a S energy a S b
∈

∀ ∈ = − + ∑  (11) 

where Pt is the Pareto solution set, and 
{ }

( )
1

t

size size

a a P b a
S b

L L

∈ ∧
=

× +
. 

 

Fig. 1. Model of the agent lattice 

2.4   Behaviors of Agents 

Since, resources are limited and the behaviors of the agents are drove by their  
purpose, an agent will compete with others to get more resources. Therefore, three 
behaviors, competitive behavior, self-learning behavior and mutation behavior are 
designed for agents to realize their purpose. 

(1) Competitive behavior: In this behavior, the energy of an agent is compared 
with those of the neighbors. The agent can survive if the energy is maximum, 
otherwise, the agent must die. Then the child of the agent with maximum energy 
among the neighbors will substitute the former one. The goal of the competitive 
behavior is to eliminate the agents with low energy, and give more chances to 
the potential agents. 
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Algorithm 1. Competitive behavior 

Input:  Maxi,j : Maxi,j (P)= 1 2, ,..., n mm m m × ; 

Output: Childi,j : Childi,j(P)= 1 2, ,..., n mc c c × ; 

Random(n,i) is a random integer in [0, n] (not equal to i) 
pc: A predefined parameter in the range of 0~1; 
U(0,1): A function that generates a  random decimal in the 
range of 0~1; 
begin 

Childi,j(P)=Maxi,j (P); i:=1; 
  repeat 
  if (U(0,1)< pc)  then 
  begin 

l:= Random(n,i); 
swap(ci, cj); 

end; 
i:=i+1; 
until (i>n); 
Childi,j(SL) :=True; 

end. 

 
(2) Self-learning behavior: It is known that the performance of EAs can be boosted 

through the local searches. So, the self-learning behavior is designed for agents 
by making use of local search method. The aim of self-learning behavior is to 
find an exchange for the components in a permutation, so that the energy of the 
corresponding agent is increased after the arrangement.  

Since a number in P occurs many times, the algorithm must be prevented from 
swapping two identical values. Let P= 1 2, ,..., n mp p p × , opi denotes the operation 

corresponding to Pi, and Mpi is the machine on which opi is to be processed. Sup-
pose that Pi and Pj (Pi ≠ Pj and i<j) is swapped and P’is obtained. Based on the 
method transforming P to a schedule, we can obtain that the two schedules cor-
responding to P and P’are identical if Pi and Pj satisfy (12). It is assumed that 
this behavior is performed on Li,j. The details are shown in Algorithm 2. 

, , ( ) ( )

( ) ( ) ( )
i i

k i k j

k P P k i

P P k j P P

P i j k M M and P P and

M M and P P and M M

∀ < < ≠ ≠⎧ ⎫⎪ ⎪
⎨ ⎬≠ ≠ ≠⎪ ⎪⎩ ⎭

 (12) 

 

(3) Mutation behavior: In the objectives space, a solution set with high quality 
should be distributed uniformly. Especially duplicate individuals should not ex-
ist in the set. If two or more individuals are duplicated, individuals’ places will 
be wasted in the solution set. This could reduce effective representation of the 
solution set. Moreover, the distance of two duplicate individuals is zero. This has 
a considerable influence on evaluating the distribution of the solution set. The 
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duplicate individuals in Pareto set often can be seen in some classical multi-
objective evolutionary algorithm (MOEA), such as SPEA [7], NSGA-II [8] etc. 

Herein, the mutation behavior is designed to prevent the emergence of the du-
plicate individuals. The details are shown in Algorithm 3. 

 
Algorithm 2. Self_learning behavior 

Input:  Li,j : Li,j (P)= 1 2, ,..., n mP P P × ; 

Output: Li,j; 
begin 
  repeat 

Repeat:=False; k:=1; Iteration :=1; 
While ( k n m≤ × )  do 
begin 
  Energyold := Li,j (E); 
  l:=Random( ,n m k× ), k lP P≠ , and Pk, Pl do not satisfy (12); 

  swap(Pk, Pl); Energynew := Li,j (E); 
  if (Energynew < Energyold)  then swap(Pk, Pl) 
  else begin 
        if (Energynew > Energyold)  then  Repeat :=True; 
        k :=k+1; 
      end; 
  if  (Iteration< n m× -1)  then Iteration := Iteration+1 
  else begin Iteration :=1; k :=k+1; end; 
end; 

until (Repeat=True) ; 
Li,j (SL) :=False; 

end. 

 
 
Algorithm 3. Mutation behavior 

Input:  Li,j : Li,j (P)= 1 2, ,..., n mP P P × ; 

Output: Li,j; 
invert(Pi, Pj): perform a invert mutation on Li,j (P) from Pi to Pj; 
begin 

start=Random( n m× ); 
end=Random( n m× ); 
if (end≠start) 
if (end<start)  then  swap(start, end); 
else  invert(Pstart, Pend); 

end. 
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2.5   Implementation of MAEA-MOJSP 

Like most MOEA, there is an external archive beside the agent lattice in MAEA-
MOJSP to maintain the solutions of high quality. But the difference here is no fixed 
size of the archive in MAEA-MOJSP.  

 
Algorithm 4. MAEA-MOJSP 
Step 1. Initialize agent lattice L, and copy the 

nondominated solution of L into archive P; 
gen:=1; 

Step 2. Competitive(L); 
Step 3. In order to reduce computational cost, select 

the best agent (agentbest), self_learning(agentbest); 
Step 4. For each agent Li,j of L, compare it with every 

agent p in P: 
if Li,j dominate p, delete p from P, and P:=P∪ Li,j; 

else if Li,j and p are duplicate, mutation(Li,j); 
Step 5. Copy the agents of P into L, randomly; 
Step 6. gen:=gen+1; 
Step 7. if gen>maxgen, end; 

else go to Step 2. 

 
Consider a circumstance that Li,j and p are duplicated, if Li,j is a agent with high 

quality, after the mutation on Li,j, it may become worse and take part in the next evo-
lution. Therefore, a replacement strategy (Step 5) is designed to prevent this. After 
maintenance of the archive P, suppose the size of P is pareto_size, select pareto_size 
lattice-points randomly in L, then copy the pareto_size agents of P into the lattice-
points in L. In this way, the good agents can participate in the next evolution, so that 
the agents of high quality can be reserved. 

3   Experimental Studies 

Eight benchmarks with different scales from [9] are tested to investigate the perform-
ance of MAEA-MOJSP. Makespan and the total tardiness are the two objectives to be 
optimized simultaneously. For that the due date is not provided in the original bench-
marks, so they are set as same as in [1]. The parameter setting is given in Table 1. For 
each problem, the algorithm runs 30 times stochastically. Some of the nondominated 
solutions obtained by MAEA-MOJSP are shown in Table 2. Due to the limitation of 
space, here we only give the comparison with SPEA (fitness assignment of SPEA is 
adopted in our algorithm) of instances FT10, ORB1 and LA26 in Fig.2, Fig.3 and 
Fig.4, respectively. 

From the results, we can see that the MAEA-MOJSP can obtain a good Pareto front, 
and the Pareto solutions distribute on it has an appropriate diversity. That because there 
is no global control exists in MAEA-MOJSP, so each agent is independent with each  
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Table 1. Parameter setting 

MAEA-MOJSP SPEA 

sizeL  10 N  80 N  20 

pc 0.8 pc 0.85 pm 0.1 
maxgen 150 maxgen 150 

Table 2. Some nondominated solutions obtained by MAEA-MOJSP 

FT06 6×6 FT10 10×10 ORB1 10×10 ABZ5 10×10 
60, 1 
65, 0 

55, 28 
59, 8 

57, 19 

1059, 830 
1174, 676 
1207, 658 
1229, 496 
1283, 284 

1200, 599 
1193, 966 
1336, 391 
1423, 336 
1197, 605 

1414, 0 
1362, 5 

1340, 263 
1299, 398 
1308, 371 

ABZ6 10×10 ABZ7 20×15 LA26 20×10 LA27 20×10 
1055, 30 
1022, 42 
979, 348 
981, 212 
979, 348 

798, 361 
796, 383 
789, 426 
786, 430 
790, 397 

1380, 3912 
1365, 4493 
1364, 4547 
1354, 4697 
1375, 4085 

1350, 3201 
1452, 2613 
1368, 3117 
1451, 2969 
1508, 2372 
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Fig. 2. Pareto front of FT10 

other to some extent, which is propitious to maintaining diversity. Moreover, thanks to 
the mutation behavior which prevents the emergence of the duplicate individuals, the 
algorithm also has a great uniformity and coverage of the Pareto front. As can be seen, 
the latticelike which agents live is closer to the real evolutionary model than the popu-
lation in traditional evolutionary algorithms. 
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Fig. 3. Pareto front of ORB1 
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Fig. 4. Pareto front of LA26 

4   Conclusion 

In this paper, we integrate multiagent systems and evolutionary algorithms to form an 
algorithm to solve multi-objective job shop problem. Based on the properties and en-
coding method of job shop, we designed agent, agent environment and three behaviors 
for the algorithm. In the experiments, MAEA-MOJSP obtains a good performance on 
eight benchmark datasets. Comparing with the classical multi-objective evolutionary  
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algorithm SPEA, experimental results demonstrate that the MAEA-MOJSP can obtain 
a wider Pareto front in solving multi-objective job shop problems, and the solutions 
which distribute on the Pareto front are of great diversity and uniformity. 
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Abstract. From the viewpoint of decision making process, it brings inconven-
iences for decision makers to select one (few) proper solution(s). Thus we  
propose preference oriented two-layered multiagent evolutionary algorithm 
(TL-MAEA) to meet customers’ needs. The algorithm has a structure of two 
layers: in the top layer, preference relations among multiple objectives are  
calculated through interactions with the decision maker; while in the bottom 
layer, MAEA is employed to obtain the optimal solution corresponding to the 
preference relations. In the experimental, 12 benchmark problems are used to 
test the algorithm. The results show that the proposed algorithm is effective. 

Keywords: Multi-objective job shop problems, preference, multiagent evolu-
tionary algorithm. 

1   Introduction 

Job shop problem (JSP) is an important kind of actual production system, which has 
been demonstrated to be NP-hard [1]. During the last two decades, there were many 
researches on multi-objective JSPs (MO-JSPs). They are all for the purpose of finding 
a set of Pareto solutions. However, it is not easy for the decision maker to select one 
(few) solution(s) from a large number of candidate Pareto solutions.  

In this paper, we designed a two-layered multiagent evolutionary algorithm (TL-
MAEA) to solve the multi-objective JSPs. This algorithm aims to obtain a solution 
which represents the decision maker’s preference rather than seek to find all Pareto 
solutions. We designed a hierarchical structure of three agents, director, managers and 
staffs. By using such a structure, it is easy for decision makers to involve into the 
problem solving process, and obtain proper solutions. In addition, staff agents can 
optimize the subproblem with given preference relation in parallel. In the experi-
ments, we select 12 benchmark datasets to test the performance of TL-MAEA. The 
experimental results illustrate that TL-MAEA is effective for MO-JSPs. 

                                                           
* This work was supported by the National Natural Science Foundation of China under Grants 

60872135, 60803098, and 60970067, and the National Research Foundation for the Doctoral 
Program of Higher Education of China under Grant 20070701022. 
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2   Preference Oriented Two-Layered Multiagent Evolutionary 
Algorithm 

2.1   Modeling Preference by Fuzzy Logic Technique 

Fuzzy preference relation [2] is used frequently in many important decision models. 
Generally, for N objectives problem, N(N-1)/2 preference information must be given 
by the decision maker. Cvetkovic et al. [3] demonstrates how to transform the fuzzy 
preference to weight vector. 

2.2   Multiagent Evolutionary Algorithm (MAEA) 

Jing Liu et al. [4] proposed a multiagent evolutionary algorithm (MAEA) by integrat-
ing the multiagent system and evolutionary algorithms to solve constraint satisfaction 
problems. In MAEA, all agents live in a latticelike environment, they sense and act on 
the environment by using the designed behaviors. During the process of interacting 
with the environment and the other agents, each agent’s final goal is to increase its 
energy. Therefore, the MAEA can find the optimal solution. 

The size of lattice is Lsize×Lsize, where Lsize is an integer. Each agent is fixed on a  
lattice-point and can only interact with the neighbors. It can assume that the agent 
located at ( , )i j  is represented as Li,j, , 1, 2,..., sizeLi j = , then the neighbors of 

Li,j, ,i jNeighbors , are defined as follows: 

                   { }, ', , ' '', , '', , ,i j i j i j i j i jNeighbors L L L L=                           (1) 

where 
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For JSPs, an agent, a, denotes an element in the search space S, with the energy 
equal to:  

                  1

, ( )
N

i i
i

a S energy a w f
=

∀ ∈ = −∑
                                  

(2) 

where N is the number of objective function, wi is the weight of each objective, , and 

if  is value of the i-th objective function. What should be noted is that, for the maxi-

mization criterion, fi is the value of the i-th objective function; for the minimization, fi 
is the negative value of the i-th objective function. 

The two designed behaviors are described as follows: 

Competitive behavior: In this behavior, the energy of an agent is compared with 
those of the neighbors. The agent can survive if the energy is maximum, otherwise, 
the agent must die. Then the child of the agent with maximum energy among the 
neighbors will substitute the former one. The algorithm of how to generate a child of 
an agent can be seen in [4].  
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Fig. 1. Model of the agent lattice 

Self-learning behavior: The self-learning behavior is designed for agents by making 
use of local search method. The aim of the behavior is to find an exchange for the 
components in a permutation, so that the energy of the corresponding agent is in-
creased after the arrangement. More details of MAEA are given in [4]. 

2.3   TL-MAEA 

Integrating preference information into MAEA, we propose a new algorithm TL-
MAEA. In this algorithm, we adopt an interactive framework which is a procedure 
that transforms the preference information into quantitative relationship being consid-
ered as a priori knowledge and transmitted to evolutionary population. 

There are two layers in this algorithm. The top one determines the quantitative rela-
tionship of the preferences by interacting with the decision maker. In the bottom one, 
we exploit this relationship to guide the optimization direction. In the TL-MAEA, 
four concepts are defined as follows: 

(1) Initial weight: according the preference information, { }1 2, ,..., Nw w w w=  is 

obtained by the method in [3]. 
(2) Desired value: the best value that each objective can achieve in NE genera-

tion evolution.  
(3) Adjust rule: a regulation which director amends the weight of next evolu-

tion according to. Specifically, the rule is defined as a vector c  which is the 
normalization of w . 

(4) Elasticity: the degree of the deviation from each objective’s desired value 
that director can accept. Specifically, it is a vector e  which is the normali-

zation of{ }1 21 ,1 ,...,1 Nw w w− − − . 

Staff agents are distributed in the bottom layer, while the other two agents are distrib-
uted in the top layer. Each staff agent can only interact with those in the same group, 
and only be supervised by the manager which it belongs to. Each manager is on  
behalf of benefit of its group, so each of them is selfishness. Therefore, in the first 
evolution, their energy criterion is the objective function which is assigned by the 
director respectively. The model of the interactive system is seen in Fig.2. 
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Fig. 2. Model of the agent lattice 

Suppose that there is a three-objective problem. At first, three desired values are 
obtained. Transform the preference into initial weight, and determine adjust rule and 
elasticity at the same time. 

Once each group gets a solution by MAEA, the manager should transmit it to the 
director. The director analyzes whether each solution is in the acceptable deviation 
(elasticity). If “yes”, stops the algorithm. Otherwise, according the adjust rule, the 
director must give the adjust information to each manger. Then, each manager 
changes their energy criterion and makes its group search along the direction of the 
preference in intervalgen generation evolutioan. Finally, after maxgen times, the di-
rector should select a best solution with the minimum deviation from the N solutions.  

3   Experiments 

In this study, we apply this algorithm on MO-JSPs. 12 benchmarks from [5] with 
different scales are selected to test the proposed algorithm. Two regular performance 
measures, makespan and total tardiness which are minimum problems, are used as 
criteria. For that the due date is not provided in the benchmark, so they are set as same 
as in [6]. The parameters are set as follows: Lsize=10, NE=50, maxgen=5, interval-
gen=20. For each problem, the algorithm runs 30 times stochastically. 

For two-objective JSPs, three relationships, H1,2 (the 1st objective is important than 
the 2nd one), E1,2(the two objectives are equally important), and L1,2(the 2nd objective 
is important than the 1st one) between the two objectives are tested as the preference. 
The results can be seen in Table 1. 

Take FT06 problem as an example: when the 1st objective (makespan) is important 
than the 2nd one (total tardiness), the solution, (58, 4), indicates that minimum degree 
of the 1st objective is greater than this of the 2nd one. When the two objectives are 
equally important, the answer is (60, 1). And the solution, (62, 0), is obtained, when 
the total tardiness is important than the makespan. 

From the results, we can see that the solutions vary with the preferences. In gen-
eral, different solution is obtained with different preference relation, and the solution 
quality of this algorithm is also appropriate. 
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Table 1. The results of two-objective JSPs 

Preference Relation 
Problem 

H1,2 E1,2 L1,2 
FT06 6×6 58, 4 60, 1 62, 0 

FT10 10×10 1015, 205 1088, 81 1087, 60 

FT20 20×5 1078, 6011 1211, 6056 1210, 5788 

ORB1 10×10 1081, 607 1156, 410 1189, 362 

ORB2 10×10 891,51 948,12 938,0 

ORB3 10×10 1162, 857 1149, 477 1286, 429 

ABZ5 10×10 1251,366 1277, 422 1297, 139 

ABZ6 10×10 967, 180 974, 149 993, 61 

ABZ7 20×15 702, 176 707, 195 736, 69 

ABZ8 20×15 733, 217 748, 166 736, 118 

LA26 20×10 1218, 2914 1230, 2872 1241, 2696 

LA27 20×10 1273, 2381 1281, 2296 1285, 2273 

4   Conclusion 

In this paper, a preference oriented two-layered multiagent evolutionary algorithm 
(TL-MAEA) is proposed to solve multi-objective job shop scheduling problems.  
TL-MAEA uses a fuzzy method to model the preference of the decision maker on  
the objectives. Then use a hierarchical structure to involve the decision maker into the 
problem solving process. By such two-layered structure, the solutions meeting the 
requirements of the decision maker are obtained. The experimental results illustrates 
that TL-MAEA achieves a good performance, and it can find a solution which  
corresponds to the preference of the decision maker. 
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Abstract. In this paper, we propose an adaptation to Nondominated Sorting 
Genetic Algorithm (NSGA-II), introducing a data structure, called 
NonDominated Tree (NDT). The NDT is an adaptation of a Binary Search Tree 
and is used to identify the nondominated fronts in only one run. This structure 
may be used to improve even more the performance of NSGA-II and other 
Evolutionary Algorithms (EAs) that use nondominated sorting procedures. It 
reduces the number of comparisons performed by the NSGA-II nondominated 
sorting routine. Some tests demonstrated that the proposed structure improves 
the search of fronts of nondominated solutions in an efficient way.  

Keywords: NSGA-II, Search Binary Tree, Multiobjective Optimization. 

1   Introduction 

The use of evolutionary algorithms (EAs) to solve multiobjective optimization 
problems (MOPs) has been motivated mainly because the EAs allow the generation of 
several elements of the Pareto optimal set in a single run [1]. Several Multiobjective 
Evolutionary Algorithms (MOEAs) search for a subset of some solution set (Pareto 
Optimal Set). The Nondominated Sorting Genetic Algorithm II (NSGA-II) is a popular 
MOEA, proposed by Deb et al. [6], used in several MOEAs comparisons and as a 
foundation for other algorithm designs.  

We propose in this work an adaptation in the fast nondominated sorting procedure 
of  NSGA-II. We defined a data structure, called Non Dominated Tree (NDT), that 
does nondominated sorting in an efficient manner.  

This paper is organized as follows. Section 2 presents the MOEA NSGA-II. 
Section 3 details the NDT. In section 4 we present some results obtained in tests 
realized in laboratory and make some comments in the last section.  

2   Nondominated Sorting Genetic Algorithm (NSGA-II) 

The NSGA-II is a MOEA that uses elitism and a crowded distance operator that keeps 
diversity without specifying any additional parameters. In short the NSGA-II operates 
as: (1) Firstly, t=0, a random population Pt is created with n individuals; (2)   is 
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sorted (by fast nondominated sorting procedure) into different nondomination levels 
(fronts) F , F , … , F  k  1, P   F  F ⋯  F . While there is no dominance 
between individuals in the same front   1 , each individual in level   
is dominated by at least one individual in level :   ⋯  . (3) A 
population P’ (size n) is generated and the population Q* = Pt U P’(size 2n ) is sorted 
into nondomination fronts  F  , F , … , F  y  1); (4) In a last step, t = t+1 and a 
population  Pt  is created with the best   individuals of ∗. Return to step 2 and 
repeat the operation until a stop condition is found. 

The NSGA-II fast nondominated sorting procedure sorts a population  (size ) 
into non-dominated fronts F , F , … , F . For a MOP with M objectives, its time 
complexity is  [3][6][7].  

Due to NSGA-II popularity, some researches in enhancing NSGA-II were done. 
An adaptive parameter control was proposed by Carvalho and Aluizio [2] to update 
the static mutation operator for improving the performance of NSGA-II. Jensen [7] 
describes two algorithms for nondominated sorting: one for problems with only two 
( 2) objectives and other for problems with three or more ( 3) objectives. 
Fieldsend et al. [4] proposed  dominated and non-dominated trees for the storage and 
maintenance of archival solution sets. Berry and Vamplew [5] implemented a 
specialized algorithm (called Mak_Tree) for application in bi-objective problems. The 
Mak_Tree only accept non-dominated solutions and uses a dynamic and self-
balancing binary tree structure, ordered by performance on the first objective. Fang  
et al. [3] proposed a data structure called dominance tree to save the dominance 
information among solutions. They developed a non-dominated sorting algorithm that 
implements the divide-and-conquer mechanism to generate the dominance tree.   

In this paper we propose and describe a sorting algorithm that uses an Adapted 
Binary Search Tree to do nondominated sorting.  

3   Non-Dominated Tree (NDT) 

A  is an adapted Binary Search Tree (BST) that is used to describe the 
dominance relation between the members of a population P. Also, it generates, 
automatically, all non-dominance levels.   

Each node r of the NDT is associated with a set of individuals (r.F) from a 
population P. The individuals located in the same NDT node have no dominance 
relation one another. The individuals in the right subtree of node r dominate the 
individuals of r.F. On the other hand, individuals of r.F dominate those in left subtree 
of node r.  In resume: (1) r. : It is a list to store individuals with no dominance 
relation at node r; (2) Left, Right subtrees: They are NDT subtrees where  
r.Right  r.F  r.Left.  

The main algorithms implemented by NDT are described in the following. 

BuildingNDT Algorithm 

The buildingNDT algorithm, described by Algorithm 1, gets each individual (p) of a 
population P and inserts it in the NDT structure. The first individual of P is inserted in 
the root node and the remaining ones (2, ⋯, n) are inserted in the NDT through the  
insertIndiv algorithm.  
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Algorithm 1. Algorithm to Construct the NDT Structure 

 

The insertIndiv algorithm, described by Algorithm 2, works as following: (1)  
while solution p is dominated by none in list ndt.F and ndt.Right is not empty,  it goes 
to ndt.Right. (2) But, if any solution in ndt.F dominates p, then it continues its search 
in ndt.Left (if ndt.Left is empty, we are in front Fk and p belongs to front Fk+1); (3) 
Otherwise, when p dominates none or dominates only k solutions in ndt.F, the 
following operations are done: (a) p is inserted in list ndt.F; (b)The k individuals are 
removed from ndt.F and are inserted in next front.   

Algorithm 2. Algorithm to Insert an Individual in NDT structure 

 

Nondominated Fronts 

The nondominated-fronts procedure, illustrated by Algorithm 3, shows all 
nondominated levels defined in the NDT ordered by non-dominance. 
 
 

Input: Population P;       // Population with n individuals to be ordered by dominance  
Output: NDT Structure. 

Input: NDT structure and an Individual p; Output: NDT Structure. 
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Algorithm 3. Algorithm to Print All non-dominanted Fronts in NDT 

 

Joining Two Populations 

During the NSGA-II run, a new population Q* = Pt U P’  is created and ordered using 
non-dominance and crowding distance principles.  As the original population (Pt)) is 
already ordered by non-dominance through NDT, the combinePopulation procedure, 
described by Algorithm 4, gets each individual of P’  and insert it in the NDT 
structure. At its end, the new population Q* will be ordered by non-dominance.  

Algorithm 4. Algorithm to Join Two Populations Using NDT Structure 

 

4   Results 

The methodology to shown the results obtained with the proposed procedure of 
sorting nondominated fronts was divided in four steps: i) generation of different 
populations randomly, where each individual represents one point in the search space 
with five variables; ii) each individual was evaluated considering the problem as 
stated in (1); iii) both the  buildingNDT and fast nondominated sorting procedures 
were executed to classify all nondominated fronts and iv) the results obtained with 
both procedures are compared, as shown in Table 1.              ,    :           ∗  ∗ ∗ ∗   ∗                                     ∗  ∗    0                                                             0   1, 5   5, 2,3,4,5                             0.05 ∗ ;  40;  5;  1;  6;  0.

            (1) 

where  , ∗ 1–  and  41 ∑ 10 ∗ 2 ∗ ∗ . 

NDT ; 
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In Table 1, the total numbers of nondominated fronts found by NDT structure, the 
NDT height, the number of comparisons performed by both the buildingNDT and fast 
nondominated sorting procedures to find all nondominated fronts are shown.  

Table 1. Results obtained using a NDT to order populations of varying sizes 

 

5   Conclusions 

The results showed that the NDT is very promising to improve algorithms that use the 
nondominated sorting procedure. Some important comments about this work are: 

• No attempt was done to produce a balanced NDT. The individuals were 
inserted one by one starting from the first one. Also the strategy “delayed 
insertion” [3], was implemented to reduce the number of comparisons; 

• The NDT structure may be applied in problems with more than 2 objective 
functions and adapted to MOEAs that implements nondominated sorting; 

• As future works, it is interesting to evaluate the NDT performance with the 
structures proposed by Jensen [7] and Fang et al. [3]. 
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Abstract. This paper introduces a hybrid shape optimization method
(M-HYBRID) for multiple objectives (MO) using Genetic Algorithm
(GA) and Ant Colony Optimization (ACO) in combination with a mesh-
less computational fluid dynamics solver. It uses the reference point based
approach to reach the required optimum. This method was found to con-
verge faster than MO optimizer based on GA alone. The constraint on
the handling large number of parameters with MO optimiser based on
ACO is overcome in M-HYBRID. This hybrid optimizer is good con-
tender when a global optimum is the target.

Keywords: Multi objective optimization, shape optimization, reference
point, goal vector, M-HYBRID, GA, ACO.

1 Introduction

The problem of multi objective optimization (MOO) in context with optimal
shape design is a non-trivial task. In last few decades large variants of Ge-
netic Algorithm (GA) [1,2,3] have been used for MOO problems extensively.
Ant Colony Optimization (ACO) is a global optimization technique based on
meta-heuristics; was introduced by Dorigo [4] and extended by Abbaspour et
al. [5] to parametric optimization using the route of inverse modeling (ACO-IM).

In a shape optimization problem more than 95% of the total time gets con-
sumed by the Computational Fluid dynamics (CFD) solver in the evaluation
of the objective functions. Each set of objective functions evaluation requires a
CFD call. Thus, an optimizer that can converge in minimum number of function
evaluations, without compromising on the accuracy of the result would reduce
the time of optimization.

The authors have earlier demonstrated shape optimization with single objec-
tive using a hybrid method coupled with CFD solver [6]. In this paper the authors
have extended the hybrid method to handle multi objectives (M-HYBRID). Next
section discusses the concept of M-HYBRID method, followed by implementa-
tion details for various standard test cases. The optimal shape design problem
is discussed in section 4 followed by conclusions.

K. Deb et al. (Eds.): SEAL 2010, LNCS 6457, pp. 563–567, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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2 M-HYBRID

The M-HYBRID consists of three stages. 1) MGA-multi objective genetic algo-
rithm solver (coarse optimizer), 2) Reorganising stage from MGA to MACO and
3)MACO[7]-multi objective ACO-IM solver (fine optimizer). MGA and MACO
are coupled such that the advantages of both are retained with the aim to reduce
the number of function calls.

The MOO problem can be written as: Minimize fi(x), i = 1, 2...m where
parameter x ∈ X ⊂ Rn can be converted into single objective optimization
problem using scalarization (weighted Lp problem).

Minimize
x∈Rn Lp(f, w, u�)x = (Σwi|fi(x) − u�

i |p)1/p (1)

where 1 ≤ p ≤ ∞, wi ≥ 0 ∀ i ∈ 1, 2, · · · , m. We choose p = 2 and wi = 1/m.
The reference point method proposed by Wierzbicki [8] was applied in GA by
Deb et al. [1] and Mahendra et al. [2]. The method of determining the rank
is (based on distance from the reference point) based on ε-dominance (shown in
Fig. 1a) [1,2] defined by the following equation.

f� ≺ f :⇔ ∀
i∈1,2,...m(f�

i ≤ fi) ∧ ∃
i∈1,2,···,m(f�

i < fi − εi) εi ∈ (0, 1) (2)

Stage − 1 : MGA: The GA-CFD method which was successfully validated [9]
was the starting point for this work. Scalarization and ranking elaborated above
have been implemented so that multiple objectives can be handled. The decision
maker (DM) supplies only the reference point. Stage−2 : Reorganising: The re-
organization of the results obtained from stage-1 is performed. The subdomain
obtained with less number of parameters is set as the initial guess for MACO.
Stage−3 : MACO: The implementation of MACO is described in detail in Sashi
et al. [7]. Figure 1b gives the pseudo code for M-HYBRID optimizer.

Advantages of M-HYBRID method: The combination of the operators
along with microGA makes MGA approach global optima very fast at the

(a) (b)

program M-HYBRID
begin

Assuming initial domain for parameters x , i = 1,2,...,n;
Stage-1 : MGA-optimizer

Choose a population within the initial domain;
repeat

Evaluate the objective functions f , i = 1,2,...,m;
Evaluate the scalarized functions;
Ranking based on scalarization and epsilon dominance;
Generate the children population;
Count the number of parameters (NPcon) that are not
varying in the child population;

until NPcon < Naco
Stage-2: Reorganize the results obtained from MGA to MACO;

Choose the unconverged parameters (n ), where n n;
Assign the domain of optimization for these parameters;

Stage-3: MACO optimizer
repeat

Discretize the domain and choose ant paths;
Evaluate the objective functions f , i = 1,2,...,m;
Evaluate the scalarized functions;
Evaluate scores for each strata based on epsilon dominance;
Generate the parametric domain for the following iteration;

until scalarized function < tolerance assumed by DM
end.

i

i

i

uc uc ≤

Fig. 1. (a)Reference point based approach and ranking(b)Pseudo code of M-HYBRID
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begining. Once the members of the population are near to the global optima, the
efficiency of MGA decreases, requiring more function evaluations to reach global
optima if used alone. In M-HYBRID one switches to MACO after considerable
convergence. MACO has better convergence efficiency near to the global opti-
mum than MGA. Thus M-HYBRID method converges in less number of function
calls. MACO when used alone, is very costly for problems having more than 6
(let us call it Naco) parameters. In M-HYBRID solver MACO is envoked once
the number of unconverged parameters reduces to < Naco.

3 Standard Test Cases

Two test cases ZDT2 [3]and DTLZ2(with 3 objective functions) are illustrated
to demonstrate the advantages of M-HYBRID method (Table 1). For ZDT2 the
design variables xi ∈ (0, 1), i = 1, 2, . . . , 30 were the initial domain for stage-1 i.e.
MGA. Stage-1 is complete when 25 design variables out of 30 variables converge
(within a pre-assigned tolerance). The MGA solver is run for 138 generation with
100 members in the population. Five variables remain unconverged after 138th

generation. Stage-2 prepares the input for MACO. The variables retained after
stage-1 were x1,x2, x10, x19 and x25. Stage-3 uses these as input parameters. Each
of the parameters were discretized into 5 levels and 625 ant paths were chosen
randomly. The scalarized objective function with respect to reference point was
used. Figure 2a shows the converged solution for various reference points using
M-HYBRID. The M-HYBRID solver requires less number of function evaluations
to reach the final optimum compared to MGA solver if used alone (Table 1).
MACO stand alone solver cannot handle such large number of variables hence
comparison with M-HYBRID cannot be made. The second test case DTLZ2 with
3 objective functions is analyzed. Figure 2b show the converged values for two

Table 1. Optimization results for all cases considered in this paper

Case 1: ZDT2 Ref pt. 1 Ref pt. 2 and 3
Goal vector (0.1, 0.8)T (0.5, 0.6)T ; (0.8, 0.2)T

Stage-1 function (fn) calls 14400 13800 ; 14600
Stage-3 fn calls 6250 5000 ; 7500
Best OF’s (.2072, .9603)T (.5633, .6851)T ; (.849, .284)T

Total fn calls (M-HYBRID) 20650 18800 ; 22100
Fn calls if MGA alone used 42400 44200 ; 68900
Case 2: DTLZ2 - Goal vector (0.2, 0.2, 0.6)T , (0.5, 0.2, 0.2)T

Best OF’s (.3752, .3752, .8751)T (.7232, .4899, .5547)T

Total fn calls (M-HYBRID) 5995 7255
Fn calls with MGA alone 11400 12800
Case 3: Airfoil shape optim.
Goal vector-AOA chosen (0.6, 0.02)T - 1 degree (0.25, 0.001)T - 0 degree
Best OF’s (.612, .022)T , (0.608, 0.021)T (.245, .0012)T , (0.24, 0.0012)T

Total fn calls (M-HYBRID) 1245 795
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Fig. 2. Solution of (A)ZDT2 and (b) DTLZ2 problems using M-HYBRID method

reference points (0.2, 0.2, 0.6)T and (0.5, 0.2, 0.2)T . In this test case as number
of variables were 5, no variable was dropped while transferring the solution from
stage-1 (MGA) to stage-3 (MACO). M-HYBRID is found to require less number
of function evaluations compared to when MGA was alone used (Table 1).

4 Test Case 3: Aerodynamic Shape Optimization

We optimize the shape of the airfoil, such that the multiple objective func-
tions are minimized subject to the constraints. The CFD solver is used only
to evaluate the objective functions by satisfying the governing Navier-Stokes
equations. Thus, the implementation of multi objective hybrid method is inde-
pendent of the scheme of CFD solver used. The CFD (SLKNS) solver was run
for 3 decade fall in residue. More details of the solver can be had from [7]. The
airfoil is parameterized using 10 control nodes xi, i = 1, ..5 ∈ upper section and
xi, i = 6, ..10 ∈ lower section of the airfoil. Two cubic splines are used to rep-
resent the top and bottom sections of the airfoil. The allowable band for the
control nodes and a typical airfoil is shown in Fig. 3a. Here we deal with viscous
subsonic flow around an airfoil in elliptic cloud of points at Mach = 0.6 and
7x105 Reynolds number. The angle of attack (AOA) is fixed at 0 or 1 deg. It
uses two objective functions. f1 = Cl and f2 = Cd. 20 airfoil shapes constitute a
population for a particular MGA generation. We run the MGA optimizer till the
generation where 6 control variables have converged. For the case of goal vector
(Cl,m, Cd,m) = (0.6, 0.02) MGA is run (i.e. stage-1) for 30 generations. The four
of the variables x1, x6, x7, x8 were supplied to MACO for further optimization.
Each of the four parameter’s domains were discretized into 5 levels and 125 ant
paths were chosen randomly. Table 1 shows the details of the optimization with
two different goal vectors. Figure 3b shows the change in best airfoil shape as the
optimization proceeds for the case (Cl,m, Cd,m) = (0.25, 0.001). The optimizer
was able to converge to value near to the goal vector.
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(a) (b)

Solution with MOO- GA-ACO-CFD solver

Output from MO-GA-CFD solver

1st Generation
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375 Iteration

multi objective
GA-CFD solver

multi objective
ACO-CFD solver

Goal Vector
(0.25, 0.001)

Fig. 3. (a)Allowable band and a typical airfoil shape (b)The change in shape of airfoil
as optimization proceeds

5 Conclusions

The M-HYBRID method was able to solve the reference based multi objective
optimization problems. We have demonstrated that M-HYBRID method can
capture the member of the Pareto front, which is closest to the reference point.
The M-HYBRID method based shape optimizer is a good contender in multi-
objective search space.
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Abstract. The field of evolutionary multi-objective optimization (MOO) has 
witnessed an ever-growing number of studies to use artificial swarm behavior. 
In this paper authors have made an endeavor to minimize the computational 
burden, associated with global ranking methods and local selection modules 
used in many multi-objective particle swarm optimizers. Two different swarm 
strategies were employed for global and local search respectively using particle 
swarms and bacterial chemotaxis. In this paper the authors have shown  
comparative improvements of the proposed method namely MOBSO, with a 
benchmark evolutionary MOO method, NSGA-II. The paper also highlights  
the reduction in computational complexity for large populations, due to the  
proposed method. 

Keywords: Swarm intelligence, bacterial chemotaxis, computational complex-
ity, particle swarm, Pareto optimality, crowding distance, multi-objective  
optimization, bio-inspired systems. 

1   Introduction 

Evolutionary multi-objective optimization (MOO) have started becoming popular  
with advent of algorithms like SPEA, VEGA, MOEA etc. [1], followed by NSGA 
(Non-dominated sorting genetic algorithm) and its subsequent improvement, namely 
NSGA II [2]. In recent time, there is a growing trend in using biologically inspired 
evolutionary techniques such as swarm based heuristics, artificial ant and bee sys-
tems, bird-flocking, bacterial foraging (BFOA) [3] etc. Current researches in this field 
are concerned in applying the basic concepts and ideas of Particle swarm optimization 
(PSO) in MOO problems [4, 5, 6 and 7]. Some of the main drawbacks of conventional 
PSO techniques as highlighted by the authors [5, 6], are higher computational com-
plexity, large number of fitness function evaluation and premature convergence.  
Recently, there have been several studies [8, 9] on the hybridization of PSO and 
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BFOA, especially on single objective domain. Promising results from these studies 
encourages possible extension of these techniques to multi-objective domain. 

In this paper, a fast hybrid intelligent swarm based optimizer is developed. A gen-
eral purpose MOO employing some sort of global ranking scheme will have a com-
plexity of O (MN2) per iteration, which makes the computational time large enough so 
that online optimization becomes impractical. The proposed method (MOBSO) has a 
reduced complexity of O (kMN2) per iteration. In MOBSO the search space was  
explored both globally and locally with two mutually-independent swarm based 
strategies.  

The rest of this paper is organized as follows. Section 2 describes the details of the 
algorithm proposed in this work. In section 3, comparative studies with that of 
NSGA-II are elaborated with results obtained for the selected benchmark test prob-
lems. The paper is concluded in Section 4. 

2   The Proposed Algorithm: MOBSO 

MOBSO is a hybridization of PSO and BFOA in MOO domain, where the global 
search is carried out using social part of the standard PSO model. In standard PSO, 
the particles traverse in multi-dimensional search space (parameter space), having two 
decision making components; one of which is its’ cognitive part (for local search) and 
another is the social part (for global search). A particle updates its velocity and posi-
tion (per iteration) in the parameter space in the following way,  

Vnew (i, d) = w* Vold (i, d) + C1*R1*(X Є global best – Xold (i, d)) + C2*R2*(X Є local 

best – Xold (i, d)) . 
(1) 

 

Xnew (i, d) = Xold (i, d) + Vnew (i, d) . (2) 

Where, V (i, d) and X (i, d) are velocity and position vectors of ith particle respec-
tively in a d dimensional parameter space. X Є global best is a particle from global best 
solution set, which, in case of single objective optimization, is the global best solu-
tion. The global best set in the new approach is chosen using crowding rank, which is 
explained later. The term X Є local best denotes the position of a particle chosen from the 
neighbourhood of the particle or it can be the previous best instance of the particle 
itself. In MOO domain, definition of this term is often arbitrary. In the proposed solu-
tion, this term is avoided and local search is performed using bacterial chemotaxis. 
Here C1 and C2 are acceleration constants, R1 and R2 are random numbers between  
(0, 1) and w is the inertia constant. 

In MOBSO cognitive local search is applied using bacterial chemotaxis and the 
third term of the velocity update equation is not used hence, C2 = 0. The global  
best set is chosen in the following way. First, each non-dominated solution in the 
population is given a rank based on calculation of its’ crowding distance [1]. This 
mechanism is used to maintain the diversity of the solution. At the beginning of  
each iteration, a fraction κ of the best (in terms of crowding distance) non-dominated  
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solutions is chosen as the set of global best solution. The fraction κ is determined at 
the beginning of each iteration as κ = min (NE / (N-NE), 1), where, NE is the number 
of non-dominated solutions in the population of N individuals. In the proposed 
method, only the dominated solutions in the population update their position and 
velocity using Eq. 1.  

The evolution process results in creating more non-dominated solutions in the 
population, which search in their local space using bacterial chemotaxis. In the stan-
dard BFO model (developed from the study of e-coli bacterium [3]), each bacterium 
can move mainly by two mechanisms, one being stumble, in which the bacterium 
takes a short (defined by stumble length) ‘jump’ on a random direction in the search 
space. Another mechanism is called run, in which a bacterium that has stumbled to a 
better solution, continues to take short stumble in that direction until maximum  
run step is exhausted or no better solution is obtained, whichever comes earlier. The 
following equations summarize this mechanism. 

St (i) = Rd / √ (Rd
T * Rd) . (3) 

Xnew (i, d) = Xold (i, d) + c (i, d) * St (i, d) . (4) 

 

Where, Rd ϵ [0, 1] is a d-dimensional random vector and (.)T stands for its transpose. 
St (i) is a random unit vector giving the direction of stumble of ith bacterium and c (i, 
d) is the stumble step size of ith bacterium in dth dimension. In MOBSO independent 
stumble by a bacterium is considered only if it leads to a run, otherwise the stumble is 
discarded.  

The computational complexity of the proposed approach is O (kMN2), and k ∝ 
NE/N, thus average k is kept below 1. Since the number of non-dominated solutions 
needed is more or less a pre-requisite to the user, increasing the number of solutions 
N does not, therefore, demand an increase in NE in the final non-dominated set. So, 
for large N, NE/N << 1 and taking k ≈ NE/N, the complexity becomes O (MN2 – ε), 
where 0 < ε < 1. 

3   Experimental Results 

To study the performance of MOBSO, authors have taken several benchmark func-
tions from [1, 10 and 11]. These are unconstraint MOO problems, bi-objective in 
particular, with varying size of search space. In Table 1 the parameters chosen for 
simulation are given. To maintain consistency the parameters were kept constant 
throughout simulation. In this study two performance metrics have been used namely 
General Distance metric (γ) and Inverse Generational Distance metric (IGD) [1]. The 
comparative performance of MOBSO and NSGA II, with respect to γ, is given in 
Table 2. Table 3 indicates IGD metric values for selected problems from [11].  In all 
cases first row gives the mean value of the measure over 30 runs and second row 
gives the standard deviation (SD).  
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Table 1. Simulation parameters for MOBSO 

Algorithm parameters used in simulation  
Population size = 100 
Maximum Chemotactic run count, Nc = 4 
acceleration constant, C1 = 0.5  
inertia weight w = 0.9  
Maximum number of iterations (generation) = 250 
Maximum fitness function evaluations = 10,000 
Scaling factor (µ) = 0.01  
Stopping fraction of non-dominated solution (NE/N) = 0.8 
Minimum fitness function evaluations = 1,000 
Number of runs to evaluate each benchmark problem was taken to be 30 
 

Table 2. Comparative result from the γ and Δ metric  

Problem  SCH FON KUR ZDT1 ZDT2  ZDT3 ZDT4 ZDT5 

γ metric        
NSGA II (Real Coded)       
Mean 0.003 0.002 0.0289 0.0334 0.0723 0.1145 0.5131 0.2965 
SD 0.0 0.0 0.0 0.0048 0.0317 0.0079 0.1184 0.0131 
         
MOBSO         
Mean 0.001 0.000 0.0006 0.0025 0.0015 0.0014 0.4208 0.0014 
SD 0.0 0.0 0.0 0.0 0.0 0.0 0.0008 0.0 

Table 3. Result of IGD metric on selected problems from CEC 2009 (special session) [11] 

Problem  UF1 UF2 UF3 UF4 UF5  UF6 UF7 
IGD metric        
MOBSO        
Mean 0.0265 0.0271 0.2316 0.0445 0.3732 0.6700 0.0784 
SD 0.0035 0.0009 0.0822 0.0062 0.1202 0.1552 0.0020 

4   Concluding Remarks 

This study introduces a hybrid swarm strategy to simultaneously search for local and 
global solutions in the problem space. MOBSO method gives a diverse pareto-optimal 
front with reduced computational burden in limited number of fitness function evalua-
tion. With problems having large search space, MOBSO can be implemented in O 
(kMN2) complexity, with k < 1. It has been found to be competitive with benchmark 
algorithms in this domain. The result encourages further examination of the parame-
ters of MOBSO along with its scalability and convergence, in order to make them 
problem space independent in future. 
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Abstract. This paper proposes an approach for the optimisation of web busi-
ness processes using multi-objective evolutionary computing. Business process 
optimisation is considered as the problem of constructing feasible business 
process designs with optimum attribute values such as duration and cost. This 
optimisation framework involves the application of a series of Evolutionary 
Multi-objective Optimisation Algorithms (EMOAs) in an attempt to generate a 
series of diverse optimised business process designs for given requirements. 
The optimisation framework is tested to validate the framework’s capability in 
capturing, composing and optimising business process designs constituted of 
web services. The results from the web business process optimisation scenario, 
featured in this paper, demonstrate that the framework can identify business 
process designs with optimised attribute values. 

Keywords: Multi-objective optimisation, Business Process, EMOA, Web  
services. 

1   Introduction 

The design and management of business processes is a key factor for companies to 
effectively compete in today’s volatile business environment. By focusing on the 
optimisation and continuous improvement of business processes, organisations can 
establish a solid competitive advantage by reducing cost, improving quality and effi-
ciency, and enabling adaptation to changing requirements. This paper discusses how a 
business process optimisation framework (bpoF), based on Evolutionary Multi-
objective Optimisation Algorithms (EMOAs), can be applied to the real-world opti-
misation of actual web business processes. The details of bpoF are presented in [1]. 
The proposed optimisation framework is tested with a web business process scenario 
to validate the framework’s capability in capturing, composing and optimising proc-
ess designs constituted of web services.  

According to Davenport and Short [2] a business process is a set of logically re-
lated tasks performed to achieve a defined business outcome. A business process is 
perceived as a collective set of tasks that when properly connected perform a business 
operation. A web business process is therefore a process composed of web services, 
where the function each process task performs is enacted by an individual web ser-
vice. A web service can be thought of as ‘a discretely defined set of contiguous and 
autonomous business or technical functionality implemented over a network’ [1]. A 
further discussion of the literature for business process optimisation can be found in 
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[3]. There are limited approaches for optimising business processes. Such approaches 
can only deal with simple sequential business processes within a single objective 
optimisation framework [4]. The work of Ko et al. [5] highlights a number of exam-
ples of soft computing use in the business process arena. 

2   Quantitative Representation of Business Process Designs 

The business process optimisation framework (bpoF), applied here, is described in 
detail in [1]. The main elements involved are the tasks and resources of the business 
process. The attributes of the tasks and the process are also taken into consideration in 
order to provide the capability of evaluating a business process design. Finally, the 
patterns that interconnect the tasks are also included. As task attributes, we consider 
measurable (quantitative) characteristics of the tasks. Examples involve task cost and 
task duration. The task attributes can be mapped to the corresponding process attrib-
utes (e.g. process cost) using a suitable aggregate function. We consider the inputs 
and outputs of a task as task resources. The task resources connect the various tasks 
based on their inputs and outputs. Also, the resources provide the requirements for a 
process design in the form of required process input and process output.  

The chromosome of each individual is made up of task numbers which are then or-
ganised into a specific sequence by the Process Composition Algorithm (PCA). It is 
the PCA that creates the process graphs out of the tasks provided in an individual. 
Both crossover and mutation operators are used in the manipulation of individuals. 
The task library can be used to help repair an individual by the addition of extra tasks 
as that individual is built into a process by the PCA. The general parameter settings 
for the EMOAs used are shown in Table 1. The main steps of the proposed business 
process optimisation framework are detailed in [6]. 

3   Web Business Process Optimisation 

The scenario featured in this paper describes an automated sales forecasting process 
(scenario provided by [7]). This process is considered as semi-automated as it in-
volves the interaction of some applications but it is not streamlined and still requires 
human involvement in the act of generating and visualising the requested forecasts. In 
this process each of the tasks (marked 1- 5 in Fig. 1) is a web service carrying out a 
unique function, such as generating graphs etc. The aim of this scenario is to show the 
optimisation potential of the framework. Fig. 1 shows the generic business process 
design for the scenario. It involves two input resources: (a) company name and (b) 
market update request. The first resource is necessary for the web service to extract 
relevant data for the specified company. The second resource is a request for a market 
update that needs to be considered for the sales forecast.  

3.1   Library of Tasks (Web Services) 

Having sketched the initial business process design, we can compile the library of 
alternative web services based on the main steps of the generic process design. 
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                                                                                                       Table 1. General parameters 
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Fig. 1. Initial business process design for sales forecasting 

 
Relevant research on the selected on-line libraries of web services resulted in a se-

lection of 20 web services from different providers that can potentially contribute to 
implementing the scenario (an example table of web services can be found in [1] p. 
213). Each task in the scenario has input and output resources (an example of the 
table of resources can be found in [1] p. 212). The proposed optimisation framework 
is tested for two objectives; Service Delivery Price (SDP) (specifies the amount of 
money the service customer has to pay for the consumption of distinct service vol-
umes, i.e. the cost to use the service) and Service Fulfilment Target (SFT) (specifies 
the service provider’s promise of effective and seamless delivery of the defined bene-
fits to any authorised service consumer). SFT is expressed as the promised maximum 
number of successful individual service deliveries with respect to the total counts of 
individual service deliveries.  

Having gathered all the necessary information (library of web services and in-
put/output resources for each web service), the problem parameters can be defined 
based on the business process problem formulation (an example of parameter values 
can be found in [6]). This results in a complete scenario ready to be tested within the 
proposed optimisation framework.  

3.2   Generate the Scenario’s Search Space 

The first step towards visualising the results is to generate the scenario’s search space 
by producing 1000 random feasible process designs. The initial business process 
design in Fig. 1 involves 5 main steps. A design with less than 5 tasks shows that 
there is a web service that consolidates two or more tasks. A design with more tasks 
shows that one step requires two or more web services to be implemented. The search 
space for this scenario is shown in Fig. 2.  The search space consists of five different 
regions, each corresponding to a group of designs with same number of tasks (4, 5, 6, 
7 or 8).  

3.3   Test the Scenario with BPOF 

The challenge for the EMOAs in the framework is to identify non-dominated (opti-
mised) solutions in each of the regions in the search space. Fig. 2 shows the results 
obtained by combining the outputs of four EMOA algorithms (the four algorithms 

Population 250 
Generations 25,000 
Crossover 
probability 

0.8 

Mutation 
probability 

0.2 

Objectives 2 
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used were NSGA2 (Non-dominated Sorting Genetic Algorithm 2), PAES (Pareto 
Archived Evolutionary Strategy), PESA2 (Pareto Envelope-based Selection Algo-
rithm 2) and SPEA2 (Strength Pareto Evolutionary Algorithm 2)). All the algorithms 
identify process designs near the Pareto front of each of the five regions of the search 
space. This is a strong indicator of the performance of the algorithms and the confi-
dence in the generated designs being near optimal. Fig. 2 demonstrates two optimised 
business process designs (a) and (b), one with 4 tasks and one with 6 tasks (taken 
from the Pareto fronts indicated in Fig. 2). Each of these designs belongs to a different  
 

 
 

 
 

Fig. 2. Search space and EMOA results for the scenario 

 

     

Fig. 3. Optimised business process designs for the scenario (process a (on the left) has 4 tasks 
and process b (on the right) has 6 tasks) 

(a) 

(b) 

SDP 

SFT 
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island based on its size. The arrows in Fig. 2 indicate the island from where each 
design in Fig. 3 originates. Fig.3. (a) shows a business process design with one of the 
generic steps missing. The forecasting results are not plotted into a graph but they are 
just faxed back to the requestor. The framework reduces cost in this instance. There-
fore, in a semi-automated process the framework can take ‘initiative’ and alter the 
generic design provided that the process input and output requirements are still satis-
fied. Fig. 3(b) is composed of 6 services and involves two tasks for obtaining the 
company’s financial data either from selecting one or both (OR is not exclusive 
choice). This provides better confidence in terms of accuracy of the data obtained and 
improved reliability of the process execution itself.  

4   Conclusions 

The scenario featured in this paper demonstrated how an optimised business process 
can be automatically created by the optimisation framework using web services.  
The framework identified the optimal designs for all the available process sizes. The 
generated designs select and incorporate different web services arranged with the 
appropriate process patterns so that (i) the process input and output requirements are 
satisfied and (ii) the attribute values are optimised. Results from the real-life scenario, 
featured in this paper, demonstrate that the optimisation framework can identify busi-
ness process designs with optimised attribute values. 
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Abstract. In present work, multi-objective optimization of multi-stage plane-
tary gear train is done. Optimization of multi-stage speed reducer is difficult 
due to involvement of integer variables. Minimizing surface fatigue life factor 
and minimization of volume of gear box are two conflicting objective functions 
under consideration. Two methods, one classical (SQP) and other non-
traditional (NSGA-II) have been used for analysis to satisfy strength and other 
geometric criteria. Previous work is concentrated on optimization of spur or 
helical gears. This work is an extension to earlier work in a sense that planetary 
gear train with reduced speed involves more geometric constraints.  

Keywords: Multi-objective optimization, planetary gear train, Genetic  
Algorithm, SQP.  

1   Introduction 

Optimization of multi-stage speed reducer is a complex problem as it involves design 
variables which are integer (number of teeth), discrete (normal module) and real (gear 
width).  

A few studies done by Deb and Jain [1] and Shukla et. al. [2] demonstrated the use 
of a multi-objective evolutionary algorithm for multi-speed gear box design problem 
involving mixed discrete and real-valued parameters and more than one objective.  

In the present work, minimization of surface fatigue life factor of gears and mini-
mization of volume of gear box is done simultaneously using a traditional Sequential 
Quadratic Programming (SQP) optimization technique and a non traditional technique 
Non-dominated Sorting Genetic Algorithm - II (NSGA II). 

2   Problem Formulation 

In the study a generic mathematical model for a two stage planetary gear train for 
different gear train applications is developed [3]. Input parameters and other gear 
design parameters describe in current section are for grinder mixer application. 

2.1   Input Parameters 

These are To output torque 50 N-m, G over all reduction 49 and maximum volume V 

is  90× 90× 90 mm3. 



 Multi Objective Optimization of Planetary Gear Train 579 

2.2   Gear Design Parameters 

Design parameters and constants necessary for the formulation of constraint equations 
and objective functions are provided in the following Table 1. Ks, CH, ZN, Yr, KB, SF, 
ZN’ and SH are size factor, hardness ratio factor, stress cycle factor for contact, reliabil-
ity factor, rim thickness factor, bending factor of safety,   stress cycle factor for bend-
ing and bending factor of safety respectively and all are taken as 1. 

Table 1. Gear design parameters 

Parameter Description Values Unit 
ZE

 
Elastic coefficient

 232  
Sb’

 
Allowable bending stress number

 
1172 N/mm2 

SW'
 

Allowable contact stress number
 

2600 N/mm2 
 Poisson’s ratio

 
0.28 None 

Ko
 

Overload factor
 

1.25 None 
KV

 
Dynamic factor

 
1.81 None 

KH
 

Load distribution factor
 1.2765 None 

YJ
 

Geometry factor
 

0.2 None 
E

 
Young’s modulus

 
155000 N/mm2 

2.3   Gear Design Variables 

Upper and a lower bound on the design variables are as follows,  

 x     =  [ m   1st  1pt 1n  1b   α   2st 2pt 2n 2b ] 

( )Lx = [0.1    6       24     1        5     20       6      24      1        5] 
( )Ux = [2     23       63     3      30     20      23     63      3      30] 

where m is module, α is pressure angle, tsi and tpi are number of teeth on sun and 
planet gear respectively, bi face width, ni are and number of planets, i is index denotes 
first and second stages. 

2.4   Constraints  

( ) 2
1

2
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Constraints in Equations (2.1) – (2.2) are  for interference, Equations (2.3) –  
(2.6) are for face width, Equation (2.7) for overall gear ratio and (2.8) for maximum 
diameter of ring gear, Equations (2.9) – (2.13) for planetary conditions, Equation 
(2.14) – (2.15) for gear tooth bending and Equations (2.16) – (2.19) for contact 
stresses between sun-planet and planet-ring pair of both stages. 

2.5   Objective Function Formulation 

Volume of sun and planets gear is calculated from pitch circle diameter:  
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The study seeks to minimize  volume f1(x), and surface fatigue life factor f2(x) in 
range from 0.8 to 1.2 in step of 0.05 for specific number of cycles. 

This problem can be formulated as follows 

Minimize ( ) ( )xFxf o=1 ,
 

Subjected to:  ( ) 0≥xgi   i = 1, 2…, 16 

   ( ) 0=xhj   j = 1, 2…, 3 
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L
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Fig. 1. Surface fatigue life versus volume for 50 N-m torque, pressure angle 20o  
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3   Results and Discussion 

The NSGA-II and SQP methods have been used to compute the results. The NSGA-II 
[4] code is obtained from the KanGAL, whereas SQP codes available with Hyper 
study module of Altair’s HyperWorks 9.0 is used.  

Material Designation - FN-0208-155HT. Parameters are given in Table 1. The vol-
ume of the present gear box used by Whirlpool Corporation USA having helical and 
worm gears is 35092 mm3, whereas planetary arrangement gives volume of 21660 
mm3 for surface fatigue factor 1, as shown in Fig. 1.  

The NSGA-II evaluates 5000 functions, whereas SQP evaluates 31 functions to 
give optimum front. Modified SQP used here takes 72 minutes, while NSGA –II  
takes 80 minutes to give optimum solutions. But NSGA-II gives better optimum  
values than SQP.   

4   Conclusion  

The proposed work uses multi-objective optimization method for gear train design. 
The study makes uses of a traditional and a non-traditional algorithm to solve multi-
objective optimization problem. NSGA-II gives better results than SQP and it is suit-
able for mixed integer type of optimization problem. Comparison of Performance of 
NSGA-II and SQP shows that even though time taken by both algorithms is close, but 
NSGA-II after more function evaluations gives better results. It is clear from the re-
sults that replacing helical and worm wheel arrangement with planetary not only 
makes system compact but also increases efficiency. 
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Abstract. Control systems design may be based on many criteria. These opti-
mization problems are nonconvex, therefore evolutionary multi-objective  
optimization algorithms (EMOA) are methods of choice. In engineering design 
problems it is desirable to find the one solution only as in single criterion opti-
misation. We describe a new method based on reduction of objectives while 
keeping relevant Pareto sets changes bounded. In the illustrative control design 
six objectives from optimal control, mixed norm robust optimization and stan-
dard control methods are reduced to three, which enables visualisation of the 
Pareto front. 

Keywords: Multi-objective optimization, Pareto set analysis, genetic algo-
rithms, criteria reduction, NSGA II, computer-aided control system design. 

1   Introduction 

Evolutionary Multi-Objective Algorithms (EMOA) have been successfully applied to 
solve control problems, when a number of design objectives are conflicting. One of 
the first results on EMOA application to control system design were presented by 
Fonseca [1]. Herreros et al. [2] presented an approach for adjusting the parameters of 
a PID controller. Takahashi et al. [3] showed that using EMOA one could find better 
solutions comparing to one obtained using the Linear Matrix Inequalities approach 
which is standard method for the H2/H∞ multi-objective robust control. 

Many research projects show that EMOA are not computationally efficient in find-
ing sets of solutions on problems having a large number of objectives. Also lack  
of visualization of a high dimensional front deteriorates decision-making process. 
These reasons, outlined in numerous works (e.g. [4],[5],[6]), explain why in high-
dimensional multi-objective optimization problems, a dimension reduction of the 
objective space can be beneficial both for search and solution selection. This is espe-
cially convincing in engineering problems [5]. 

Practical engineering problems often involve many objective functions. Search for 
solution methods for difficult problems may lead to acceptance of some trade-offs 
between precision deterioration and optimization efficiency increase. Simplifications 
may be accepted after the initial analysis of the complete, high-dimensional, optimiza-
tion problem if the formulation of the problem to be solved becomes easier. 



584 P. Woźniak 

 

The overall idea in dimension reduction in EMOA is to find justifiable ways to 
eliminate some of the objectives from consideration. One has to ensure that has to 
ensure that omission will have only minor effects on the search dynamics and the 
final solutions. Currently, there are mainly three approaches to deal with objectives 
reduction. Deb and Saxena [5] proposed method based on principal component analy-
sis (PCA). The approach was further extended by Authors to non-linear case [6]. 
Jaimes et.al. [7] proposed method to reduce the objectives using feature selection 
technique. 

One may consider additional analysis of clusters approximation of the Pareto set 
what may lead to reduction of the decision space. Hereafter we propose a method to 
identify the most non-conflicting objective in case the correlation matrix in analysis 
of the whole Pareto front does not suffice. The central part of the strategy is based on 
results of combined analysis of the Pareto front and Pareto set properties. 

The exposition is organized as follows. In Section 2, the control system design as a 
multi-objective optimization problem is defined in high-dimensional objective space. 
In Section 3 we describe the objective reduction procedure and its validation is pre-
sented in Section 4. Section 5 concludes the paper. 

2   Control Design as a Multi-Objective Optimization Problem 

For many-real world control systems it is desirable to meet all specified goals using 
the controllers with simple structures like a proportional-integral (PI). In practice, 
these controllers are commonly tuned based on classical single norm-based perfor-
mance criteria, but weight selection is a very hard task. In modern control engineer-
ing, a design problem is usually formulated as a multi-objective optimization problem 
with the standard notation min ∈ , ⋯ , . (1) 

where ∈  denotes a vector of decision variables (arguments), ⊆  is the set of 
feasible arguments, and each   , 1, ⋯ , , is a real-valued function  

The most common performance measures are norms of some characteristic closed-
loop properties of the control system. Therefore, different and potentially conflicting 
specifications, such as: good tracking for various input signals, low energy of the 
control signals, simultaneous attenuation of several types of disturbances, robust sta-
bility. Thanks to the flexibility of the EMOA methods all three groups may be treated 
as elements of one objective vector. 

3   Objective Reduction by Clustering in the Decision Space 

Unsupervised learning and clustering lead to extraction of information from unlabeled 
samples. Cluster analysis divides data into groups (clusters) such that similar data 
objects belong to the same cluster and dissimilar data objects to different clusters. 

In this paper the k-means clustering algorithm is used for partitioning (or cluster-
ing) N data points approximating Pareto set into k disjoint subsets Sj containing Nj 
data points so as to minimize the sum-of-squares criterion  
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∑ ∑ μ∈  , (2) 

where xn is a vector representing the n-th data point and m is the geometric centroid of 
the data points in Sj . The algorithm iteratively minimizes the criterion by updating 
the mean vector until there is no change in an update. 

After discovering separate clusters one may decide to confine the search to 
the neighbourhood of the cluster. Introducing this step may facilitate final selection of 
the unique solution of the multi-objective problem. 

4   An Illustrating Example – Dynamic Control System Design 

The proportional-integral (PI) is still the most common controller [8]. The objectives 
of the feedback control system under consideration belong to three groups of criteria : 

─ command tracking :  rise time tn, settling time ts, overshoot M [8], 
─ functional : Integral of Time-weighted Absolute Error (ITAE), 
─ disturbance rejection : noise attenuation , disturbance attenuation. 

The first group is representative of the standard control system design approach, the 
second to the optimal control problem, while disturbance rejection is typical of the 
mixed-norm optimization problem. 

The considered feedback control system is shown in Fig.1. 

 

Fig. 1. Considered control system 

Let G(s) = (1+s)-1 be the plant transfer function, Wn(s) = (s+1)-1 and Wd(s) = 1 are 
simple filters. The decision variables  x=[KP, Ti] for this problem are the parameters 
of the PI controller, which has the following transfer function 

GPI s 1 . (3) 

For the regulation problem (r(s) ≡ 0) the closed-loop output is described as   , (4) 

with       
GPI s

GPI s
  ,  . 
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The elements of the six-criteria objectives (5) are based on the step response of 
the system, with inputs: the reference r(s), the disturbance d(s), and the noise n(s) min ∈ , , , , , ITAE  . (5)

The stability of the system was guaranteed by search over the set of feasible decision 
vectors and the search space starting from x1 ∈ [10, 100] , x2 ∈ [10, 100]. Optimiza-
tion of all problems was performed using the conventional NSGA-II algorithm. 

4.1   Cluster Analysis in the Decision Space 

The multi-objective optimization of the control system design may be analyzed in 
the decision space. It is done using the k-means clustering which aims to partition n 
observations into k clusters in which each observation belongs to the cluster with the 
nearest mean. The results may be visualised in the form of silhouette plots [9], which 
displays a measure of how close each point in one cluster is to points in 
the neighbouring clusters. This measure ranges from +1 for points that are distant 
from neighbouring clusters, through 0, indicating points that are not distinctly in one 
cluster or another, to -1, indicating points that are probably assigned to the wrong 
cluster. The results for six-, five- and four-criteria optimization are shown in Fig.2. 

 

 

Fig. 2. Silhouette plots of Pareto fronts’ clusters of a) six-,b) five-, and c) four-criteria  
problems 

One may observe presence of two well separated clusters in Fig.2a. This enabled 
selection of only part from the decision space (denoted as cluster 1). This part of deci-
sion space was considered in the five criteria problem. The resultant Pareto set again 
formed two well separated clusters (Fig.2b). The reduction procedure was repeated 
for reduction to four-criteria problem (in the neighbourhood of the cluster 2 from 
Fig.2b) and three- criteria problem. 

The final set of objectives consists of , , and ITAE. The Pareto 

optimal solutions are searched locally x1 ∈ [10, 20], x2 ∈ [10, 35] i.e. in 
the neighbourhood of the cluster 2 from Fig.2c. 

The Pareto sets are shown in Fig.3a, while the Pareto front resulting from the  
three-criteria optimisation problem is shown in Fig.3b. The final selection of a unique 
solution of the three-objective problem remains open. At this stage the selection of the 
final solution is not discussed, but the presented approach reduced sixfold the decision  
subspaces to ∈ 0.162, 0.213  and ∈ 2.133, 2.938 . 
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a)        b)  

Fig. 3. a) Pareto sets for: six-(*), five-( ) and four-( ) criteria problems with the reduced 
cluster (dashed rectangle) b) the Pareto front for the reduced three-criteria problem 

The potential further research includes addressing the problem of robustness of the 
proposed algorithm. 

5   Conclusions 

The paper presents the application of the procedure to identify the most redundant 
objectives of EMOA so that one can obtain a lower-dimensional problem. To facili-
tate dimension reduction we proposed use of the cluster analysis of the Pareto set in 
the decision space. The illustrative control system design problem proves the effec-
tiveness of this approach. 
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Abstract. This paper studies the probabilistic based evolutionary algorithms in 
dealing with bi-objective travelling salesman problem. Multi-objective re-
stricted Boltzmann machine and univariate marginal distribution algorithm in 
binary representation are modified into permutation based representation. Each 
city is represented by an integer number and the probability distributions of the 
cities are constructed by running the modeling approach. A refinement operator 
and a local exploitation operator are proposed in this work. The probabilistic 
based evolutionary optimizers are subsequently combined with genetic based 
evolutionary optimizer to complement the limitations of both algorithms.  

Keywords: Estimation of distribution algorithm, evolutionary multi-objective 
optimization, restricted Boltzmann machine, travelling salesman problem. 

1   Introduction 

Travelling salesman problem (TSP) is one of the famous permutation based combina-
torial optimization problems [1]. The problem aims to minimize the total distance 
travelled, in which each city is visited exactly once and the salesman must return to 
the starting depot. The adaptation of TSP into multi-objective framework (MOTSP) is 
another promising area which can be explored [2-3]. In the multi-objective formula-
tion, the aim is to simultaneously optimize several conflicting objectives, such as 
shortest travelling distance, minimum time, minimum cost and lowest risk [4].  

Probabilistic based evolutionary algorithms (EAs), commonly known as Estimation 
of distribution algorithms (EDAs) [1], mimic the biological evolutionary principle to 
guide the search. The primary difference between EDAs and genetic based EA (spe-
cifically genetic algorithm) is that no genetic operators (crossover and mutation) are 
implemented in EDAs. The reproduction is based on building of probabilistic model 
from the selected solutions and sampling from the constructed model.  

Several researches have been carried out to study the single objective permutation 
based problems (specifically TSP) by using EDAs [1]. However, there is no research 
which studies multi-objective permutation based problems (specifically MOTSP) by us-
ing EDAs. In this paper, binary representation of multi-objective univariate marginal 
probability algorithm (MOUMDA) and multi-objective restricted Boltzmann machine 
(MORBM) [5] are adapted into a permutation based representation to solve Bi-TSP. The 
two objectives being considered are travelling distance and travelling cost. Permutation 
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refinement operator is proposed to refine the cities in a chromosome to guarantee that no 
city is repeated. A local exploitation operator is also presented to enhance the search ca-
pability of the algorithms. Probabilistic based EAs are subsequently combined with ge-
netic based EA to increase the spread of the trade-off solutions.  

2   Algorithms’ Framework 

2.1   Modeling and Reproduction 

Two modeling approaches are considered in this paper. UMDA [6] learns the distribu-
tions of the cities without considering their linkage dependencies with other cities. In 
the modeling, a  probability matrix which models the distribution of the cities is 
constructed, according to the following equation.  

Prob C , ∑ ,    where  δ C , c 1  if C , c0  otherwise . 

Prob C ,  is the marginal probability of city i at the jth place of the chromosome at 
generation g, c  is the city i, pop is the population size, and n is the number of cities. 

RBM is energy based neural network [5] which learns the distribution of the input 
stimuli through unsupervised learning. The probabilistic model is constructed as  

Prob C , ∑ , ∗   where 

P C , c ∑ e ,   if C , c0  otherwise  , Z  = ∑ e ,,  

E v, h v h w v b h b  

where v is the input state and h is the hidden state of the network, w and b is the 
synaptic weights and biases, Z is the normalizing constant, and E is the energy value 
of the network. The simple probabilistic sampling mechanism [5] is applied to gener-
ate offspring based on the built probabilistic model.  

For evolutionary optimizer [7], the variation operators are based on crossover and 
mutation. Single point crossover is used to create the offspring. This operator randomly 
selects the position to cut the chromosomes for crossing over between two parents. 
This single point crossover is equivalent to route inter-crossing. After which, mutation 
is carried out by swapping between two randomly selected alleles within the chromo-
some. This genetic perturbation provides exploitation capability to the optimizer to 
search within fitter region. 
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2.2   Refinement Operator and Local Exploitation Operator 

After reproduction some cities may not be visited, while others are visited more than 
once. To overcome this problem, a refinement operator is proposed. Firstly, the re-
peated and unvisited cities in a chromosome are detected. An insertion is carried out 
by inserting the unvisited cities to the position of the repeated cities. The average dis-
tance and cost (normalized) between the adjacent cities in the permutation are calcu-
lated and served as the main criteria for insertion.  In order to enhance the search, a 
local exploitation operator is also proposed. The process flow of this operator is as 
follow.  Firstly, a set of k number of cities to be relocated is randomly selected. Dis-
tances and costs among all the selected cities are calculated. The permutation of the 
cities is re-determined according to the distances and costs information. Due to opti-
mization of two objective functions in this paper, three types of relocation criteria are 
considered. The first criterion determines the permutation based on the shortest dis-
tance in first objective function. Second considers the lowest cost in second objective 
function, and last criterion computes the normalized average distance and cost from 
both objective functions.  

2.3   Overall Framework 

The algorithmic process flow of the proposed algorithm is shown in Fig. 1. Firstly, 
initialization is performed by randomly generating permutation in integer number. 
Then, evaluation is carried out. Based on the objective domain, a new fitness is as-
signed to each solution based on Pareto ranking and crowding distance [7]. Binary 
tournament selection is applied to choose the promising solutions. The selected solu-
tions will undergo modeling based on univariate or RBM approach. Based on the con-
structed model, probabilistic sampling is carried out to produce n offspring, where n is 
the population size. Then, the refinement operator is performed. To further improve 
the routing, a local exploitation is incorporated. The local exploitation will only be 
performed if the generated random value is smaller than a predefined local exploita-
tion rate. After this, an archive is created to store the promising solutions found. The 
same procedure is iterated until the stopping criterion is met. The same process flow 
is implemented in genetic based EA. As for combination of genetic and probabilistic 
based EAs, the algorithms starts with probabilistic based optimizers and alternated 
with genetic based optimizer every 500 generation.  

3   Simulation Results and Discussions 

The experimental settings are shown in Table 1. TSP with two objectives is studied. 
The information of the distance and cost among cities is randomly generated in the 
range of [0, 1000] as done in [8]. Two performance metrics namely inverter genera-
tional distance (IGD) and non-domination ratio (NR) are utilized. IGD measures the 
proximity as well as the spread of the optimal solutions to the evolved solutions. NR 
measures the non-dominated ratio of solutions in one algorithm compared to other 
algorithms. The approximate optimal solutions set is formed from all the non-
dominated solutions found in all algorithms [8]. EA refer to genetic based EA. UMEA 
and RBMEA is the combination of UMDA and RBM with EA.  
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           Fig. 1. Process flow of MOEDAs 

Results for 100 cities are plotted in Fig. 2. EDAs give better performance than EA 
in term of IGD and NR. This is because EDAs consider the overall distribution of the 
population to guide the search, which is different from EA which use individual 
chromosome to generate offspring. From convergence trace, it is observed that RBM 
has the fastest convergence rate at early evolution, while EA has the lowest conver-
gence rate. Furthermore, the Pareto front curve shows that UMDA has good proximity 
but poor spread. The corporation between EDAs with EA improves the spread of the 
algorithms with the cost of sacrificing proximity. 

Results for 200 cities are presented in Fig. 3. Most of the final non-dominated  
solutions are generated from RBM. RBM and RBMEA take advantages from the de-
pendencies of the cities. Thus, outperform other algorithms. Furthermore, the incorpo-
ration of EDAs with EA seems to improve the performance of sole algorithms. 

 

 

 

Fig. 2. NR, Evolution trace and, Evolved Pareto front with 100 cities  

   

 

 

Fig. 3. NR, Evolution trace and, Evolved Pareto front with 200 cities  

Table 1. Parameter setting for the  
algorithms 

 
Parameter Value 

Population size Number of cities 
Number of cities 100, 200, 500 

Stopping criterion 2000 generations 
Local search rate 0.5 

Crossover rate 0.8 

Mutation rate 
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Fig. 4. NR, Evolution trace and, Evolved Pareto front with 500 cities 

The simulation results for problem with 500 cities are presented in Fig. 4. Overall, 
the EDAs and EAs alone are unable to evolve a set of good trade-off solutions. The 
corporation between EDAs and EAs improve the overall performance.  

4   Conclusions 

This paper has studied the probabilistic based EAs in solving Bi-TSP. It is among the 
first attempts to employ EDAs in the study of permutation based multi-objective prob-
lems. Two probabilistic modeling techniques have been adapted. They include univa-
riate modeling and RBM approach. A refinement operator has been proposed to make 
sure the hard constraints of the problem are not violated. In addition, a local search 
operator is defined to enhance the exploitation of the algorithms. As the limitation of 
EDAs in evolving a set of good spread solutions, genetic based evolutionary optimiz-
er is incorporated with EDAs to complement their weaknesses. The empirical results 
show that EDAs have better proximity while EA has better spread in their final 
evolved solutions. The incorporation between EDAs and EA mutually complements 
each other’s limitation; thus yielding better performance.  
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Abstract. This paper presents a novel technique to detect irregular shell clusters 
using an algorithm that is inspired by Ant Colony Optimization (ACO). Till 
now major work on shell clustering has been based on regular shells using a 
fuzzy-based technique. However the proposed algorithm can separate irregular 
shell clusters from the solid clusters very efficiently. The algorithm is tested on 
seven test images and it is seen to give very good results. 
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1   Introduction 

Traditional fuzzy clustering algorithms like Fuzzy C –Means (FCM) [1] and Possibilis-
tic C – Means (PCM) [2] cannot detect clusters that lie in nonlinear subspaces of the 
feature space because they use points (i.e. cluster centroids) as prototypes. To find 
clusters in nonlinear subspaces that resemble shells or patches of hyper-surfaces with 
no interior points, prototypes like curves/hyper-surfaces have been proposed. The shell 
clustering techniques provide an effective means for solving the problem of fitting 
multiple curves/hyper-surfaces to unlabeled, sparse, and scattered data. Algorithms 
dedicated to detect shell type clusters have also found applications in boundary detec-
tion, surface approximation and similar computer-vision tasks [3 - 5]. A few represen-
tative fuzzy shell clustering algorithms are Adaptive Fuzzy C Shells (AFCS) algorithm 
[6], Fuzzy C Quadric Shells (FCQS) and its variants [7, 8], Fuzzy C Plano-Quadric 
Shells [9] etc. and they attempt to minimize the weighted squared sum of distances of a 
feature point to a prototype by updating the fuzzy membership and parameters in an 
alternating fashion. Yager and Filev proposed the Mountain Clustering Method 
(MCM) [10], to estimate the cluster prototypes in a simple way. Pal and Chakraborty 
[11] extended MCM for detecting circular shell-shaped clusters and proposed the 
Mountain Circular Shell (MCS) method. Most of the shell-clustering algorithms avail-
able in the literature are computationally quite expensive since either they need to 
perform matrix inversions or they solve some nonlinear equations iteratively. Usually 
for better results a series of algorithms need to be applied on the data. Moreover to the 
best of the author’s knowledge no work has been done with irregular shell clusters.  
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Fig. 1. Basic Flowchart of the proposed algorithm 

In this paper we have use a hybrid intelligent technique which is inspired by Ant 
Colony Optimization. Proposed by Dorigo and Stutzle[12] , Ant Colony Optimization 
has found applications in solving Traveling Salesman Problem [17] and image process-
ing and machine vision problems [13-16].  
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We have divided the paper into 4 sections. The different stages of the hybrid algo-
rithm are explained in Section 2 followed by a description of the working of the algo-
rithm in Section 3. In Section 4 we show the experimental results and conclude the 
paper in Section 5. 

2   Description of Algorithm 

The basic principal of the algorithm is represented with the help of a flowchart in 
Figure 1. The algorithm has been divided into various steps. The aim of the algorithm 
is to extract irregular shell clusters automatically from datasets. A modified ACO 
algorithm is used. After extraction of the shells normal clusters are extracted using 
conventional automatic clustering algorithms. 

The basic steps of the algorithm were illustrated by the means of a flowchart. They 
are dealt in further detail now. 

 
1. INITIALIZATION PHASE: 
The starting location of the ants is fixed randomly. The various attributes of the ants 
are also initialized. 

 
2. ACO EVOLUTION: 
In this step all the ants complete one journey each. In the figure 2, a single step of 

ACO evolution is shown. it be the present data point of the ant at the thi  iteration. 

1−it  be the  data point of the ant at the previous iteration. Let the set Ξ represent all 

the data points sufficiently close to data point it . Let ( )Ξ∈t  be the data point which 

the ant considers moving to from it  

We form another set Υ . Υ∈t if Ξ∈t and οφ 90> . 

An ant goes to its next datapoint t using the following selection rule: 
 

{ }argmax
i it t t t

t

t d
α β

τ
∈Υ
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                                                                                        (1)  
    = J                                                otherwise   
 

[ ] [ ]
[ ] [ ]∑

Υ∈

=

t
tttt

tttt

tt

ii

ii

i d

d
P βα

βα

τ
τ
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where, 
 

it td =Euclidean distance between two data points 

 tti
τ = Pheromone trail between data points it  & t. 

  r denotes a random variable (0,1). 
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J denotes a random variable generated by the probability distribution given in 
equation (2). 

The idea behind equation (1) is that the ant will be biased to travel through a route 
having high pheromone deposition. The ant should also choose to travel to a closer 
data point than a data point which is at a greater Euclidean distance. Hence α should 

be positive and β  negative. 

 
3. SHELL VALIDITY TEST 1(INTERNAL ANGLE TEST): 
The contour followed by each ant is checked if it is a shell or not. If yes then the angle 

subtended at an internal point would be found to be very close to °360 .  
While calculating the total angle subtended by the cluster at an internal point we 

sum the angles subtended at the internal point by all the sides forming the shell. Sup-
pose we consider a side AB and we name the internal point as I. ABI can be consid-
ered as 3 vertices of a triangle. We need to find AIB∠ . We first calculate the 

Euclidean distances AB , BI , AI . Let IBa = , AIb = , ABc = .The re-

quired internal angle subtended by side AB ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+=∠ −

ab

cba
AIB

2
cos

222
1 .Similarly we 

find the angle subtended by all the sides forming the shell cluster. This will be the 
total internal angle.  

If  θ  is the angle subtended , then to pass the test the following condition should 

be satisfied εθ ο <− 360 .We chose 0.0001.ε = If the ant travel in a closed con-

tour as shown in Figure 3 then θ  is the sum of all the angles subtended by all the 
sides. 

                  
4. SHELL VALIDITY TEST 2(NOISY DATAPOINTS TEST): 
After the shell has passed the internal angle test, it is subjected to the noisy data point 
test. 

First we need to find the sides forming the shell cluster. 
We first find the data point which has the minimum y-objective value. Let it be de-

noted by O . We know all the data points belonging to that shell. Next we calculate 
the angles associated with the vertices, the two arms being the line joining the vertex 
under consideration and O and the positive x- axis. From Figure 4 we see that 

AOX BOX COX DOX∠ < ∠ < ∠ < ∠ . Hence the vertices are sorted as follows 
O,A,B,C,D. A data point is termed as a “noisy data point” if it is present inside the 
detected shell. 

The set of all data points be Ξ . Suppose the shell to be tested, be a set of data 
points Z. 

 
Each datapoint is characterized by 2 objectives (x,y).  
Only those datapoints can be tested for this test which belong in set Z−Ξ . 
Suppose datapoints Znm −Ξ∈, . 
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We consider a positive ray from m and n as shown in Figure 5. If the ray intersects 
the shell odd number of times then the datapoint is inside the shell and if it intersects 
even number of times then it figures outside the shell.  

Let us describe the procedure for the datapoint m.To reduce the complexity of the 
process we first scan for those sides whose one vertex has greater y-objective value 
and the other has lesser y-objective value. The sides obtained would be AB and CD. 
Then we solve for the point of intersection of a horizontal line passing through m and 
the sides under consideration. If the point of intersection has x-objective value greater 
than m then it will intersect the ray in the positive x direction. Only AB will intersect 
the positive ray through m. 

Each closed contour is tested if the no. of noisy points is less than a threshold. If 
yes then it is a valid shell. 
 
5. PHEROMONE DEPOSITION: 
Pheromone is deposited by successful ants (i.e. ants which detected valid shells). The 
Pheromone Update equation is described here.  

Suppose a successful ant sA travels from data point i to data point j then  

the pheromone level between the two data points ijτ and jiτ  is updated as given in 

equation 3. 

[ ]δτττ
1

1

+
+==

p

ijjiij
N

,                                 (3) 

where pN is the number of noisy data points detected. Now likewise the contribution 

of all successful ants is considered.  
After the contribution of all successful ants has been considered the pheromone 

trail is evaporated by equation 4. 
 

( ) 01 μττμτ +−= ijij ,                                        (4) 

where μ  is the pheromone evaporation rate, 10 ≤≤ μ . 

     0τ is the initial pheromone level 

 
6.”REPRESENTATIVE ANT” DETERMINATION: 
Let the set of clusters detected in the present iteration be represented by  Ψ . Let 
cluster Ψ∈w . It is possible that more than one ant travel on cluster w. That ant is 
named the “representative ant” of cluster w which has maximum no. of points and 
minimum noisy datapoints.. 

 
7. UPDATE OF SET OF CLUSTERS: 
Let the set of cluster detected till present iteration be called ζ . 



598 S. Pal, A. Basak, and S. Das 

Say cluster Ψ∈w .It may happen that many points of w are already present in 

cluster ( )ζ∈′w . Let the number of points in cluster w be p. The two shell clusters  

are termed as “similar” if more than λp  points are common with cluster w′ .We 

generally choose 4=λ . If similar shell be found, w replaces w′ in set ζ if it has 

more no. of points and less number of noisy data points. If no such w′ be found in 
ζ then cluster w is added to ζ . 

 
8. EXTRACT SHELLS 
As can be seen from the flowchart this step is outside the loop. After the shell clusters 
are returned it sometimes happens that all the data points haven’t been covered. Those 
data points that are sufficiently close to the shells are added to the shells as long as the 
number of noisy data points does not increase for the new shell cluster as compared to 
the previous one. Now that the shell clusters have been extracted the remaining solid 
clusters can be taken care of by any standard clustering algorithm. 

3   Basic Functioning of Algorithm 

Till now the basic steps of the algorithm has been listed. In this section we will ex-
plain how the different steps of the algorithm contribute to the detection of shells. A 
very basic question that arises is that how does the algorithm distinguish a shell clus-
ter from a solid cluster. This problem is solved by the Internal Angle Test. If the ant 

travels on a solid cluster then it will subtend more than °360 at an internal point. Any 

ant that has followed a closed path will at least subtend °360 at an internal point. If it 

is a shell cluster then exactly °360  is subtended at an internal point. However for a 

solid cluster due to formation of multiple loops an angle greater than °360  is sub-
tended at an internal point. 

Another question that arises is whether this algorithm can efficiently extract an ir-
regular shell from a solid cluster which is positioned nearby.  

  
 
 

 
 
 
 
 
 

 
Fig. 6. Path travelled by ant with shell and 
solid cluster close together  (case 1) 

Fig. 7. Path travelled by ant with shell and 
solid cluster close together (case 2) 
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Here in figure 6, a shell cluster is shown close to a solid cluster. An ant can travel 
from the shell cluster to solid cluster as shown by the arrows. When the ant enters the 
solid cluster it moves inside the solid cluster as shown making multiple loops in the 
process. These solutions get immediately discarded as they don’t pass the Internal 
Angle test. 

It might also happen that the ant travel through the solid cluster as shown in  
figure 7.This ant passes the internal angle test. However there are a number of data 
points trapped inside the shell which are termed as “noisy data points”. Hence this 
solution is either discarded if the number of datapoints exceeds maximum limit or 
deposits less pheromone compared to true solution. A number of ants might travel on 
the same shell. So a representative ant is determined which represents the shell cluster 
in the best possible way. Now the newly detected clusters are added to or update the 
earlier set of clusters. 

4   Experimental Results 

The algorithm was tested with 7 datasets with varying degree of complexity. The data-
sets that were considered are 2 dimensional and the final result has been shown in the 
form of an image which clearly depicts the clustered shells and the solid clusters left 
unrecognized. The aim of this algorithm was to detect irregular shell clusters. Exten-
sive work has been carried out in detecting solid clusters. This algorithm is dedicated 
to detecting irregular shells. Hence after the extraction of shell clusters, further cluster-
ing can be performed by any standard clustering algorithm like k-means, Fuzzy  
C-Means, etc. 

The various parameters that performed well on all the datasets are listed below.  
 

• The parameters related to ACO Evolution were chosen as  

8.,3,1 0 =−== rβα , 

• Pheromone evaporation rate 1.=μ , 

• Initial pheromone level 001.0 =τ , 

• Noise Coefficient of pheromone deposition 3=δ , 

• Upper limit on the number of steps of an ant 100max =S , 

• Upper limit on maximum number of noisy data points = 10maxS , 

• Number of iterations T=20, 

• No. of ants an =60. 

 
To study how the test images perform 25 runs were carried out for each dataset.  
Table 1 shows the simulation results. Datasets 1 to 4 contain only regular clusters. 

A trial is said to be feasible if all the shell clusters were correctly identified. A trial 
is said to be successful if all the data points were correctly clustered. 
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 Fig. 8. Clustered  Result(Dataset 1)                           Fig. 9. Clustered  Result(Dataset 2) 

 
 

 
 
 
 
 
                              
 
 
 
 
 
 

 
Fig. 10. Clustered Result(Dataset 3)                          Fig. 11. Clustered  Result(Dataset 4) 

 
 
 
 
 
 
 
 
 
                                                               
 
 
 
 
     Fig. 12. Clustered Result(Dataset 5)                            Fig. 13. Clustered Result(Dataset 6) 
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       Table 1. Statistical Results 
 
 

Dataset No. Number 
of feasible 
runs 

Number  
of successful 
runs 

Clustering 
Efficiency 

1 25 25 100% 

2 25 23 92% 

3 25 24 96% 

4 25 23 92% 

5 25 25 100% 

6 25 23 92% 

7 25 23 92% 

 
                                                                                     Fig. 14. Clustered Result (Dataset 7)    

 
Clustering efficiency,  

                                  
Trials

Trialssuccessful=η  

The clustering efficiency is independent of the type of clusters (regular or irregu-
lar). However it is noted that if a solid cluster is present extremely close to shell clus-
ters then the efficiency of clustering decreases. This is mostly because sometimes one 
or two data points belonging to a neighbouring solid cluster get wrongly classified as 
data points of a shell cluster. However for all the images every trial was feasible as in 
every trial all the shell cluster were correctly detected.  

5   Conclusion 

We believe that the main contribution of this paper is to propose an algorithm that can 
detect shell clusters independent of their geometric shapes. Most of the existing shell 
clustering algorithms uses a prototype to match with the data points to extract the clus-
ters. Thus they are capable of only extracting shell clusters which can be defined by 
means of equations. Our algorithm is radically different from that viewpoint. We have 
also tested our algorithm on seven datasets. The first four datasets contain regular shell 
clusters and solid clusters. All the regular shell clusters were correctly identified with 
great efficiency. The rest of the datasets contain irregular shell clusters which were also 
identified correctly. Thus we can conclude that this algorithm can be used for shell 
clustering purposes and is also very promising for image processing applications.  
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Abstract. The objective of this paper is to investigate optimum process
parameters and tool geometries in Friction Stir Welding (FSW) to min-
imize temperature difference between the leading edge of the tool probe
and the work piece material in front of the tool shoulder, and simultane-
ously maximize traverse welding speed, which conflicts with the former
objective. An evolutionary multi-objective optimization algorithm (i.e.
NSGA-II), is applied to find multiple trade-off solutions followed by a
gradient-based local search (i.e. SQP) to improve the convergence of the
obtained Pareto-optimal front. In order to reduce the number of function
evaluations in the local search procedure, the obtained non-dominated
solutions are clustered in the objective space and consequently, a post-
optimality study is manually performed to find out some common design
principles among those solutions. Finally, two reasonable design choices
have been offered based on several process specific performance and cost
related criteria.

Keywords: Evolutionary multi-objective optimization, gradient-based
local search technique, ε-constraint method, hybrid search, friction stir
welding, thermal simulation, material flow.

1 Introduction

The FSW process is an efficient solid-state, i.e. without melting, joining tech-
nique that is invented by Wayne Thomas and a team of his colleagues at the
Welding Institute (TWI), UK, in December 1991; especially for aluminium al-
loys which are difficult to weld with traditional welding techniques [1]. Figure 1a
shows a standard welding tool having a cylindrical shoulder and probe which are
in general designed in different size and shapes with/out thread features or man-
ufactured with different materials based on work piece and process specific needs
or limitations. The process, which is schematically shown in Figure 1b, consists
of several subsequent procedures denoted as plunging, dwelling, actual welding
and pulling the tool out of the work piece. First, the tool is submerged vertically
into the joint line with high rotational speed in the plunge period and then dwell

K. Deb et al. (Eds.): SEAL 2010, LNCS 6457, pp. 603–612, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. (a) A standard tool having a cylindirical shoulder and probe (pin) design. (b)
Schematic view of the FSW process. (c) A welded structure having a key hole at the
end.

period takes place, where the the tool is held steady relative to the work piece
while keeping rotation and heating the surrounding work piece material locally.
Following dwelling, the tool is moved forward while stirring two work piece ma-
terial to be joint (welding period) and is pulled out of the work piece leaving
a key hole behind as seen in Figure 1c. These sequences have also been repre-
sented schematically in Figure 2 emphasizing different computational modelling
approaches with respect to different reference frames, i.e. the Lagrangian (also
known as ”global approach” [9], where transient effects are captured) and the
Eulerian (”local approach” [7], in general used for the steady-state conditions).

In FSW, heat is generated by friction (mainly at the interface between tool
shoulder and upper surface of the work piece) and plastic deformation (by tool
probe or pin in plunging stage and during welding period via stirring two work
piece material along the joining line). The heat flows into the work piece as well
as the tool. The amount of heat conducted into the work piece influences the
quality of the weld, distortion and residual stress in the work piece [7,8,9]. Insuf-
ficient heat generation from the tool shoulder and the probe could lead to failure
of the tool pin since the work piece material is not soft enough. Therefore, un-
derstanding the heat aspect of the FSW process, which is the main driving force
for all consequent coupled simulations, e.g. microstructure and solid mechanics
models, is extremely important, not only for understanding physical phenomena,
but also for improving the process efficiency, e.g. welding faster and safer.

In the present paper, optimum process parameters and tool geometries in FSW
are investigated to minimize the temperature difference between the leading edge
of the tool probe and the work piece material in front of the tool shoulder, i.e. to
soften the material enough to move the tool probe forward without failure, and
simultaneously to maximize traverse welding speed, therefore production rate,
subjected to hot and cold weld conditions. More specifically, the choices of the
tool rotational speed and the traverse welding speed together with the radii of
the tool shoulder and the probe have been investigated in order to achieve the
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Fig. 2. Lagrangian versus Eulerian approach for simulation of the FSW process

goals mentioned above which are in essence conflicting. A Steady-state Eulerian
thermal finite element model with temperature dependent thermo-physical (i.e.
heat treated aluminum alloy, AA2024-T3) material data has been implemented
using a commercial multi-physics simulation software COMSOL for the function
evaluations. An evolutionary multi-objective optimization (EMO) algorithm, i.e.
non-dominated sorting genetic algorithm (NSGA-II) is initially performed to find
the Pareto-optimal front. The non-dominated solutions found so far have been
clustered based on their Euclidean distances (in the objective space) in a pre-
fix grid structure to reduce the number of the solutions, which will in turn be
served as initial starting points for the gradient-based local search technique, i.e.
sequential quadratic programming (SQP). The ε-constraint method is applied
by fixing the second objective (i.e. welding speed) as a constraint for each clus-
tered non-dominated solutions independently to obtain the modified optimized
front. Further improvement in accuracy and confidence in the convergence of
the Pareto-optimal front is achieved, and following this, a brief post-optimality
study is performed to unveil some common design principles among members of
the clustered Pareto-optimal set. Finally, two reasonable design solutions among
those multiple trade-off solutions have been selected based on different charac-
teristics of the temperature distribution under the tool shoulder induced by the
material flow, tool selection and production rate preferences.

2 Thermal Model

Due to relatively high heat generation contribution from the surface of the tool
shoulder, an assumption based only on modelling the tool shoulder is taken into
account. The radius or in other words location of the tool probe is hypotheti-
cally included as a design variable to compute the first objective function (i.e.
temperature difference) and temperature variation under the tool, between the
tool shoulder and the probe, to be used in the decision making step. Modelling
the whole welding process, i.e. plunge, dwell and pull out periods, holds some
notable complexities. In order to reduce the computational cost regarding mov-
ing heat source, meanwhile preserving the applicability, only the welding period
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is taken into account and a moving coordinate system (i.e. Eulerian reference
frame) which is located on the heat source is applied. The shear layer formed
below the tool shoulder due to high tool rotational speed is also included; hence
an asymmetric temperature field along the joint line is obtained in the present
numerical model. Equation 1, on the right side, describes the steady-state heat
transfer in the plate (transient term on the left side disappears),

ρcp
∂T

∂t
= ∇(k∇T ) + qvol − ρcpu∇T ⇒ ρcpu∇T −∇(k∇T ) = qvol (1)

where T denotes the temperature field to be solved, ρ, cp and k are the density,
the specific heat capacity and the heat conductivity of the AA2024-T3 (the work-
piece material), respectively, besides u prescribing the flow vector and qvol is the
volumetric stationary heat source representing the tool as a circle in Figure 3a.

(a) (b)

Fig. 3. (a) 2-D Eulerian Steady state thermal model. (b) Mathematical modelling of
the flow field under the tool shoulder in detail.

In the present model, heat generation is a function of the tool radius and
the temperature dependent yield stress of the work piece material (σy(T ) of
AA2024-T3) and assumed to be uniform through the thickness (t=3 mm) of the
plates to be welded, as given below in Equation 2.

qvol(r(x, y), T ) =
ω r(x, y) σy(T )√

3

t
= (

nrev2π

60
)
√

x2 + y2 σy(T )
t
√

3
(2)

The details of this temperature and position dependent heat source model en-
titled as Thermal-Pseudo-Mechanical (TPM) model are given in detail elsewhere
[2]. The traverse motion of the tool and the relatively complex flow field under
it are modelled by prescribing a material flow through the rectangular plate re-
gion, as shown in Figure 3a. Due to this flow prescription, Equation 1 includes
a convective term (u) in addition to the conductive term. The derivation of the
mathematical prescription of the material flow is also schematically represented
in Figure 3b and components of the flow vector in the welding and the transverse
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directions are formulated for an arbitrary point on the periphery of tool shoul-
der as a function of θ (i.e. θ = arccos( x√

x2+y2
) in Cartesian reference frame).

Equation 3 generalizes the flow field description (u(θ) = u(x, y) = (vx, vy)) for
the whole domain as follows,

u =
{

(uweld − sin(θ)wRshoulder , cos(θ)wRshoulder) if r(x, y) ≤ Rshoulder

(uweld, 0) if r(x, y) > Rshoulder
(3)

where r(x, y) is the radius or the position vector, cos(θ) = x√
x2+y2

and sin(θ) =
y√

x2+y2
. As a boundary condition, the room temperature (20◦C) is defined at

the left edge of the rectangular region where the tool is assumed to be moving
towards. The heat flux on the right edge of the plate region, where the material
leaves the computational domain, is dominated by convection. On the upper and
lower edges of the plate boundaries, thermal insulation is enforced.

3 Hybrid EMO

Although evolutionary computation has become an important problem solving
methodology with its population-based collective learning process, self-
adaptation, and robustness, the performance of the algorithms still depend on
proper selection of various parameters (e.g. probabilities, selection and mutation
schemes, etc.), namely the proper relationship between the exploration and the
exploitation capabilities avoiding premature convergence, as mentioned above.
Moreover, the computational speed is relatively slow as compared to the classi-
cal (deterministic) algorithms. Therefore, as expected, the need for hybrid algo-
rithms, which combine an evolutionary algorithm with e.g. a local search method,
emerges aiming at both robust and accurate solutions with (if possible at all) less
computational cost. Local search methods may be incorporated within the pop-
ulation members (parents) or among the offsprings. The architectures of hybrid
evolutionary algorithms have been summarized by [5] as follows: hybridization
between two different EAs (a GP asisted GA), an EA with a neural network,
a particle swarm optimization (PSO) or an ant colony optimization (ACO) as
well as hybridization between EA and other heuristics (such as local search, tabu
search, simulated annealing, hill climbing, etc.). However, as the No Free Lunch
Theorem proposes, on average, all black-box algorithms have identical behavior,
thus there is not a definite answer for which local search procedure to use for
any sort of problems.

4 Hybrid EMO for the Thermal FSW Model

In this section, the multi-objective optimization problem (MOP), briefly de-
scribed in section 1 that is related to the thermal aspects of the FSW process,
is formulated. Optimum process parameters, i.e. the tool rotational and tra-
verse welding speeds (nrev and uweld), and geometrical tool parameters, i.e. tool
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shoulder and probe radii (Rshoulder and Rprobe), are investigated to minimize
the temperature difference (ΔT ) between the leading edge of the tool probe
and the work piece material in front of the tool shoulder, and simultaneously
to maximize traverse welding speed. The second objective, based on the duality
principle, is reformulated as the minimization of -uweld due to the way of imple-
mentation of the EMO algorithm, i.e. MATLAB implementation of the original
NSGA-II [3] algorithm by the first author [6]. This MOP problem is constrained
with hot and cold weld conditions, geometrical constraints (the tool shoulder
radius is desired to be 5 mm larger than the tool probe radius), besides lower
and upper limits of the design variables. In order to evaluate hot and cold weld
conditions, average temperature (Tavg) is computed under the tool shoulder, in
other words, the temperature values on each element inside the circular region
(i.e. Area = πR2

shoulder) are integrated and divided by the number of elements.
The constrained multi-objective optimization problem is given below,

Minimize : f1(x) = ΔT = Tprobe − Tahead,
Minimize : f2(x) = −uweld,
subject to : 450◦C ≤ Tavg ≤ 500◦C,

Rprobe + 5 mm ≤ Rshoulder ,
8 mm ≤ Rshoulder ≤ 17 mm,
3 mm ≤ Rprobe ≤ 12 mm,
100 rpm ≤ nrev ≤ 1250 rpm,
0.5 mm/s ≤ uweld ≤ 15 mm/s.

(4)

As mentioned above, NSGA-II, which is an EMO algorithm [3] enabling find-
ing well-spread multiple Pareto-optimal solutions for an MOP by incorporating
three substantial features, i.e. elitism, non-dominated sorting, and diversity pre-
serving mechanism (crowding distance), is used for the proposed constrained
problem. Population size is 100 and the number of generations is fixed to 10 due
to relatively high computational cost of the function evaluations, i.e. simulation
time for each set of designs is approximately 10 minutes on a PC having Core
2 CPU, 2.33 GHz, 2 GB of RAM. Real variable-coding is used for the design
variables. Therefore the simulated binary crossover (SBX) and the polynomial
mutation [4], with a distribution indices of 5 and 10, are used as a crossover and
mutation operators, respectively. Figure 4a shows all NSGA-II (non-dominated)
solutions composing a non-convex Pareto-optimal front, having −uweld on the
horizontal axis and ΔT on the vertical axis. As expected, the higher welding
speeds results in higher temperature difference indicating steeper gradients in
front of the tool, which is not desirable in case of limitations due to improper
tool or machine designs. More detailed analysis of these trade-off designs is per-
formed after the local search procedure which aims for further improvement in
the convergence of the obtained trade-off frontier.

Prior to the local search step, the non-dominated solutions found so far are clus-
tered simply based on their Euclidean distances (i.e. minimum di) with respect to
their mean, which is computed in each cell and in each axes, in a prefix grid struc-
ture to reduce the number of the solutions (for the sake of computational cost), as
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Fig. 4. (a) The non-convex Pareto-optimal front obtained with NSGA-II. (b) Cluster-
ing scheme.

represented in Figure 4b on a hypothetically distributed points in the objective
space. Figure 5a shows 17 clustered solutions, indicated by cross markers, out of
72 non-dominated solutions for the FSW problem in a 10-by-10 grid.

In the next step, before investigating some common manufacturing process or
design principles in the FSW process among the members of the Pareto-optimal
set, NSGA-II solutions are sought to be further improved or at least validated
to be true Pareto-optimum solutions. ε-constraint method [10] is a very suit-
able approach to alleviate the difficulties faced in non-convex objective spaces
(a weighted objective or a Tchebyscheff metric or any other metric which will
convert multiple objectives into a single objective can also be used). In this ap-
proach, the MOP is reformulated by just keeping one of the multiple objectives
and restricting the rest of the objectives within user-specified values (i.e. uweld

is transformed into a constraint by considering ε = 10−6 in the present case).
More details are given in [4]. In order to solve the scalarized optimization prob-
lem by means of searching the minimum of the aggregated objective function,
a gradient-based local search technique, i.e. sequential quadratic programming
(SQP; fmincon function in MATLAB Optimization Toolbox), is used. The mod-
ified front is shown with the blue curve in Figure 5b. The change in the conver-
gence is not exaggerated, but on the other hand, it enhances the confidence in
the trade-off front obtained by NSGA-II.

After completing the multi-objective optimization task, a set of optimal so-
lutions specifying the design variables and their trade-offs is obtained. If these
optimal solutions are sorted according to the worse order of the first objective
(min. ΔT ), they would also get lined up in the second objective (min. -uweld) in
an ascending order. Having such a wide variety of solutions make the decision-
making process much easier compared to having only one optimal solution. This
enables engineers or designers to judge or plan the performance of a product
or a process in a larger perspective in terms of sacrifices and gains with re-
spect to multiple criteria [4]. Moreover, a basic post-optimality study can unveil
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interesting design knowledge that is common to all of these trade-off solutions
or a partial set of them [11]. This design methodology, which was originally
formulated as ”innovization” (innovation through optimization) [12,13], has also
been applied manually to the current FSW problem. A set of design variables
corresponding to some of the solutions on the Pareto-curve have been listed
in Table 1.
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Fig. 5. (a) Clustered non-dominated solutions indicated by crosses and the correspond-
ing numbers on top of them. (b) Pareto-optimal front modified after the local search
on each clustered non-dominated solutions.

Table 1. Set of designs corresponding to some of the members on the modified Pareto-
optimal front in Figure 5b

Rshoulder [mm] Rprobe [mm] uweld [mm/s] nrev [rpm]
10.932 5.155 13.224 1037.8
10.819 5.377 12.359 1014.9
10.896 5.831 11.261 1119.6
14.959 9.887 9.694 974.33
13.793 8.263 7.171 856.07
13.579 8.005 4.304 718.17
10.998 5.74 3.672 1057.7
11.113 5.527 1.539 880.33
10.694 4.581 0.643 968.65

Three intervals can be distinguished looking at Table 1, i.e. 0.5mm/s ≤
uweld < 4mm/s, 4mm/s ≤ uweld < 10mm/s and 10mm/s ≤ uweld < 14mm/s.
In the first and the third intervals, tool shoulder and probe radii are approxi-
mately same (10 mm and 5 mm, respectively). In the middle interval, there is a
significant increase in the tool dimensions, but there is also a common tendency
to have a 5 mm difference in the radius dimensions (second constraint is active)
along the Pareto-front. Moreover, in the middle interval, since the tool shoulder
is getting larger, therefore heat generation is increasing due to the increase in
the frictional surface area (consequently, the hot weld condition becomes active),
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Fig. 6. Thermal field for a parameter set: uweld=11.3 mm/s, Rshoulder=10.5 mm,
Rshoulder=5.5 mm, nrev=1100 rpm

tool rotational speed (nrev) shows a decrease compared to other two intervals on
the Pareto-curve. In most of the designs, distribution of the temperature field
under the tool is almost uniform (i.e. cold weld condition is not active), thus
standard deviation is close to the mean value, which is a desired process con-
dition. Main criterion for the manufacturer to select one or two designs out of
these possibilities would be welding speed which is related to investment and
operating cost of different kinds of tool-machine combinations. In case of limited
financial resources, manufacturer or engineer would like to weld slower (need
to sacrifice in production rate) in order to improve the lifetime of the tools. In
this case, such a design set: uweld=2-3 mm/s, nrev=700-800 rpm, Rshoulder=9-10
mm and Rprobe=4-5 mm would be preferable. In an opposite case, where finan-
cial limitations are negligible, the production rate would be a dominant criterion
(e.g. uweld >11 mm/s), but similar tool geometries with higher rotational speeds
would be sufficient (e.g. Figure 6).

5 Conclusions and Discussions

Optimum FSW process parameters and tool geometries are investigated to min-
imize temperature difference between the leading edge of the tool probe and the
work piece material in front of the tool shoulder, and simultaneously to maxi-
mize traverse welding speed, which are in essence conflicting. An evolutionary
multi-objective optimization algorithm (i.e. NSGA-II), is applied to find multiple
trade-off solutions followed by a gradient-based local search (i.e. SQP) on clus-
tered non-dominated solutions to enhance the confidence in the convergence of
the obtained Pareto-optimal front. A brief post-optimality study is performed to
find out some common design principles among those trade-off solutions. Three
intervals in the design space have been distinguished looking at these optimal
solutions. Finally, production rate is found to be a dominant criterion, and con-
sequently, two reasonable choices have been made to solve the manufacturer’s
dilemma (faster production versus safer process conditions which can also be
related to cheaper solutions).
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Abstract. Radial Basis Function Neural Network (RBFNN) is a curve
fitting tool in a higher dimensional space. The nature of this surface de-
pends mainly on the number of neurons in the hidden layer. The number
of hidden neurons is decided by the number of clusters into which the
data-set gets divided. It has been shown that the accuracy in prediction
depends upon the quality of the clusters. To obtain good quality clusters,
in this study, a hybrid optimization scheme of running a genetic algo-
rithm in the outer loop, while simultaneously running a back-propagation
algorithm in the inner loop, has been adopted. The number of hidden
neurons is kept the same with that of clusters formed by an algorithm
proposed here, apart from the popular fuzzy-c-means and entropy-based
clustering algorithms. RBFNN developed using the proposed clustering
algorithm is found to perform better than that obtained utilizing the
other two clustering algorithms. The method has been successfully imple-
mented in both forward and reverse mappings of electron beam welding
process.

Keywords: Electron beam welding; Radial Basis Function Neural Net-
works; Forward Mapping; Reverse Mapping; Clustering.

1 Introduction

Radial Basis Function Neural Network (RBFNN) was proposed by Broomhead
and Lowe [1]. It is a special type of Artificial Neural Network (ANN), where an
error surface can be fitted into a multidimensional space. The basic architecture
of the network comprises of input nodes, a single hidden layer containing some
neurons and an output layer. As the number of inputs and that of outputs remain
fixed, the accuracy in prediction depends upon the number of hidden neurons,
constants of the transfer functions used and connecting weights in-between the
layers. There are various methods of determining the number of neurons in the
hidden layer [2]. One of the methods states that the number of hidden neurons
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can be made equal to the number of clusters formed by the data-set. The number
of clusters formed depends not only on the type of clustering algorithm but also
on the optimal values of parameters of the chosen algorithm. Out of various
available optimization techniques, Genetic Algorithm (GA) is one of the best
choices, as it searches the entire space for the best values, whereas the connecting
weights between different layers and the constants of transfer functions are better
minimized, if they are allowed to converge along the steepest descent direction.
The combined effect of the above global and local searches, gives rise to a hybrid
optimization technique for the RBFNNs. The hybrid optimization technique has
been successfully utilized in both forward and reverse mappings of electron beam
welding process carried out on stainless steel plates.

2 Literature Review

In RBFNN, transfer functions of the hidden neurons are assumed to be radial
basis functions. It maps a multi-variable input into a multidimensional space
after ensuring the best fit to all the training patterns. The performance of this
network depends upon number of hidden neurons, their attributes and the type
of basis function used. The training program of RBFNN basically involves the
determination of center and spread of the basis functions, that is, mean and
standard deviation in case of Gaussian Radial Basis Function and secondly, the
weights between the hidden and output layers.

Billings and Zheng [3] provided with an extensive documentation on various
algorithms used in training RBFNN before propounding the use of a GA to
train the same. Since the GA can escape from local minimum, it has a lower
probability of getting trapped into it. There had been similar approaches, where
GA-optimized RBFNN was tuned with a back-propagation algorithm [8]. It was
also shown that the training algorithm for GA-optimized RBFNN performed
better, when all the input-output variables were of the same order of magnitude.

Zhang and Bai [4] proposed a training scheme of two-stages. In the first stage,
a GA was employed to search for a cluster distance parameter crucial in deter-
mining the structure of the RBFNNs. Next, a self-growing algorithm was used
to progressively increase the number of Radial Basis Functions (RBFs) and ad-
just their positions. It had been seen, mostly in pattern recognition problems
that some of the inputs might not be relevant for a particular output. But, the
presence of these inputs during network training might un-necessarily compli-
cate the network. To overcome such problems, Zheng and Billings [5] developed
a RBFNN, where they used suboptimal set of input variables for the desired
output. The neurons in the hidden layer were determined by orthogonal least
squared algorithm (OLS). There is also a study, where Self-Organizing Feature
Map (SOFM) [6] was used as an unsupervised training scheme for determining
the number of hidden neurons and the variables of Gaussian radial basis func-
tion. In general, the RBFs of the hidden layer used unique standard deviation
(radius) for all the neurons. But, in multi-scale RBFNN, specific standard devi-
ations were used for each neuron [7]. This algorithm gave more flexibility with
more generalization capabilities.
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To optimize the problems involving a large number of variables, the GA may
face the well-known permutation problem [2]. In order to overcome this problem,
an extensive study was performed by Amarnath and Pratihar [9], where some
variables were optimized using the GA and the remaining ones were tuned by a
back-propagation algorithm.

In order to automate a process, its input-output relationships are to be known
both in forward and reverse directions. Not much work has been carried out in
this direction. In the present study, both the problems of forward and reverse
mappings have been tackled using a Gaussian RBFNN, whose architecture has
been decided through clustering of the data by utilizing some fuzzy clustering
algorithms. In this study, three different approaches have been illustrated. In the
first two approaches, the number of neurons in the hidden layer are determined
using fuzzy c-means (FCM) [12] and entropy-based fuzzy clustering (EFC) [13]
algorithms, respectively. In the third approach, the newly proposed clustering
algorithm has been utilized to determine the number of neurons of the hidden
layer of RBFNN. All the parameters of the clustering algorithm along with the
parameters and constants of back-propagation algorithm have been optimized
using a GA.

3 Data Collection

An electron beam welding setup at BARC, Mumbai, India, is utilized to per-
form the bead-on-plate experiments on stainless steel plate (ASS-304) [10]. The
experiment is conducted as per a central composite design matrix [11]. The de-
sign of experiments-proposed welds are carried out on seventeen sets of input
process parameters. All the weld runs are repeated three times to take care of
the experimental variations and the output data are collected. A schematic view
of weld-bead profile is shown in Fig. 1.

There are three inputs for the forward mapping problem: accelerating volt-
age, beam current and welding speed. The corresponding outputs are eight
in number, such as: Bead penetration, Bead width, Bead height, coordi-
nates of two arbitrarily chosen points on the bead profile, namely: a1, b1, a2,
b2 and Vickers micro-hardness VH.

4 Soft Computing Tools Used

A RBFNN has been utilized to model both in forward and reverse directions. In
the present study, the number of neurons in the hidden layer has been determined
by the number of clusters that are formed from the data set. For this purpose,
three approaches have been utilized as discussed below.

In fuzzy clustering, a data may partially belong to more than one clusters at
the same time. In case of FCM, the number of clusters into which the data have to
be divided is first decided. All the center points along with the membership values
of the data points that belong to a particular cluster are updated iteratively.
The clusters obtained by this algorithm are compact but not distinct. In EFC,
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Fig. 1. A schematic view of weld-bead geometry

the number of clusters is determined by the algorithm itself. A data point is
then assigned to a cluster, if its similarity value is found to be greater than a
predefined threshold value. The resulting clusters are distinct but not compact.
In the newly proposed algorithm, the number of clusters are determined as it
is done in EFC algorithm, and then with help of iterations, the membership
values are updated, as it is done in the FCM algorithm. Unlike the earlier two
algorithms, clusters developed by the newly proposed algorithm are seen to be
both compact as well as distinct in nature.

Approach 1: GA-based optimization of the parameters of FCM
and BP algorithms

In this approach, the data are clustered using the FCM algorithm. The pa-
rameters of clustering algorithm like number of cluster centers C (that is, the
number of hidden neurons), level of fuzziness g (that is, power of the fuzzy set),
constant of log-sigmoid transfer function λ along with other parameters of BPNN
(learning rate η, momentum term α), have been optimized using a binary-coded
GA. A uniform crossover and bit-wise mutation have been used in the GA. More-
over, a tournament selection scheme has been utilized in it. Each parameter is
represented using 10 bits and the overall string is found to be 50-bits long. A
typical GA-string for approach 1 is shown below.

010010 . . . . . .︸ ︷︷ ︸
C

010011 . . . . . .︸ ︷︷ ︸
g

100110 . . . . . .︸ ︷︷ ︸
η

101101 . . . . . .︸ ︷︷ ︸
α

100111 . . . . . .︸ ︷︷ ︸
λ

.

The fitness function value of a GA-string (that is, f) has been determined
using the following expression (that is, mean squared deviation in prediction):

f =
1

Nn

N∑
i=1

n∑
j=1

(Tij − Cij)
2 , (1)
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where N and n represent the number of training scenarios and outputs, re-
spectively. Tij and Cij denote the target and calculated values of jth output
corresponding to ith training scenario.

Approach 2: GA-based optimization of the parameters of EFC
and BP algorithms

In this approach, EFC has been used as the clustering algorithm. The number
of cluster centers is determined by the algorithm itself. However, other param-
eters like the constant of similarity function a (which decides the relationship
between similarity and distance), threshold value of similarity β (which de-
cides whether a point will belong to a cluster based on its similarity with the
cluster center), learning rate of the BP algorithm η, momentum term of the
BP algorithm α and constant of log-sigmoid transfer function λ are coded in
the GA-string. The overall string length is 50-bits, where 10-bits are assigned
to denote each parameter. A GA-string used to optimize the above mentioned
parameters looks as follows:

111010 . . . . . .︸ ︷︷ ︸
a

010111 . . . . . .︸ ︷︷ ︸
β

101110 . . . . . .︸ ︷︷ ︸
η

111101 . . . . . .︸ ︷︷ ︸
α

001110 . . . . . .︸ ︷︷ ︸
λ

Approach 3: GA-based optimization of the parameters of pro-
posed fuzzy clustering and BP algorithms

In this approach, clustering of the data is carried out using a new algorithm
proposed in the present study by merging the properties of the FCM and EFC
algorithms, so that the obtained clusters become distinct and compact, too.
Hence, the number of cluster centers is determined by the EFC algorithm and
then, the positions of the cluster centers are updated iteratively using the FCM
algorithm. Ten bits have been assigned to represent each parameter. The pa-
rameters considered in this case are a, β, level of fuzziness g, learning rate η,
momentum constant α and log-sigmoid transfer function λ. Thus, the GA-string
is found to be 60-bits long. A typical string will look as follows:

. . . 111010 . . .︸ ︷︷ ︸
a

111010 . . . . . .︸ ︷︷ ︸
β

010111 . . . . . .︸ ︷︷ ︸
g

101110 . . . . . .︸ ︷︷ ︸
η

111101 . . . . . .︸ ︷︷ ︸
α

001110 . . . . . .︸ ︷︷ ︸
λ

5 Results and Discussion

This section presents the results of both forward and reverse mappings carried
out on electron beam welded data of austenitic stainless steel plates.

5.1 Results of Forward Mapping

There are three input parameters in forward mapping, namely accelerating volt-
age, beam current and welding speed; and eight outputs, out of which seven
related to the weld-bead geometry, such as bead penetration (BP ), bead width
(BW ), bead height (BH), parameters : a1, b1, a2, b2 (refer to Fig. 1) and Vickers
hardness (V H), have been considered.
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(a) (b)

(c)

Fig. 2. Results of GA-parametric study during forward mapping of ASS-data in Ap-
proach 1

In approach 1, the set of optimal GA-parameters has been obtained through
a parametric study, in which one parameter has been changed at a time, keep-
ing the others fixed. Fig. 2 shows the results of this study. The following GA-
parameters are found to yield the best results: Probability of mutation Pm =
0.004, population size N = 170, maximum number of generations G = 50. More-
over, a uniform crossover of probability equal to 0.5 has been used. Table 1
displays the ranges of variables optimized by the GA.

The optimized RBFNN parameters, such as c, g, η, α and λ are seen to be
equal to 23, 1.1789, 0.1985, 0.85302 and 4.9780, respectively. In approach 2,
the optimized GA-parameters, namely probability of mutation, population size
and maximum number of generations are found to be equal to 0.08, 70 and
50, respectively. A uniform crossover as mentioned above has been used in this
approach. During optimization, the ranges of constant of similarity function (a)
and threshold value of similarity (β) have been kept fixed to (0.4, 1.0) and
(0.2, 0.45), respectively. Other variables have been varied in the same ranges
mentioned in Table 1. The parameters of RBFNN like a, β, η, α and λ are
obtained as 0.9554, 0.3427, 0.9613, 0.8844 and 2.3167, respectively. The number
of hidden neurons in this case is found to be equal to 14. In approach 3, the
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Table 1. Ranges of the RBFNN parameters used in forward mapping

Number of Neurons (c) 2 to 25
Degree of Fuzziness (g) 1.0 to 2.0
Learning rate (η) 0.1 to 1.0
Momentum factor (α) 0.1 to 1.0
Const. of Log sigmoid function (λ) 0.5 to 5.0

Table 2. Results of test cases during forward mapping of ASS-data in terms of percent
deviation in predictions

Test Cases Approach 1 Approach 2 Approach 3

BH

1 -45.15 32.02 -15.1
2 -64.51 21.91 -33.48
3 -86.22 8.61 -63.05
4 -34.03 36.19 -8.2
5 -3.94 50.12 16.1
6 -39.38 32.57 -14.49

BP

1 -7.98 -14.27 -2.44
2 -9.05 -14.55 -6.28
3 -20.06 -10.04 -30.15
4 5.74 10.19 -0.83
5 3.50 4.92 1.46
6 4.80 3.12 5.98

BW

1 9.66 30.32 13.72
2 -4.53 17.33 1.97
3 -10.93 9.61 -4.80
4 5.76 26.38 6.51
5 17.86 33.81 11.36
6 1.48 16.28 3.63

VH

1 5.86 5.20 1.47
2 4.17 6.09 6.57
3 2.27 3.61 6.37
4 6.07 5.16 1.10
5 6.11 6.12 3.60
6 6.66 6.07 7.18

best fitness value is obtained at 80 generations for the population size of 100
and mutation probability of 0.005. A uniform crossover with a probability equal
to 0.5 has been utilized. The number of hidden neurons is found to be equal to
13. Here, the GA-string is seen to be 60-bits long, as there are six parameters
to be optimized. During optimization, the ranges of these six parameters have
been kept the same as mentioned above.

The values of the RBFNN parameters, such as g, η, α, λ, a and β are seen to be
equal to 1.1818, 0.7501, 0.7211, 3.3020, 0.8332 and 0.3797, respectively. The per-
formances of the above optimized networks have been tested on six different cases.
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Table 3. Ranges of GA and RBFNN parameters used in reverse mapping

Parameters Ranges Approach 1 Approach 2 Approach 3

N 50-200 120 140 80
G 50-200 50 50 50
pm 0.001-0.01 0.007 0.009 0.004
c 2-25 4 8 3
g 1-2 1.52 - 1.52
η 0.1-1 0.99 0.98 0.85
α 0.1-1 0.89 0.92 0.96
λ 0.5-5 4.53 4.45 4.78
a 0.7-0.85 - 0.83 0.78
β 0.3-0.4 - 0.3 0.3

Table 4. Results of test cases during reverse mapping of ASS-data in terms of percent
deviation in predictions

Test Cases Approach 1 Approach 2 Approach 3

Acc. Voltage

1 -18.98 2.84 -14.97
2 -17.83 6.64 -14.08
3 -19.57 7.23 -13.43
4 -0.30 16.65 0.45
5 -5.20 7.83 0.04
6 0.30 17.01 0.50

Beam Current

1 -18.46 -15.96 -14.17
2 -18.69 -10.17 -13.86
3 -21.06 -7.28 -13.60
4 -14.34 -15.74 -14.14
5 -4.19 -6.10 0.01
6 0.53 -0.94 0.15

Weld speed

1 -29.23 -66.67 -33.33
2 4.81 -25.00 0.00
3 26.35 0.00 20.00
4 -34.90 -66.67 -33.33
5 -31.72 -66.67 -33.33
6 -1.71 -25.00 0.00

Table 2 displays these results in terms of percent deviation in predictions of
various outputs for the test cases, as obtained by the above three approaches.

Approaches 1, 2 and 3 have yielded the values of average absolute percent
deviation in predictions of the outputs as 16.8178, 16.7860 and 12.7254, respec-
tively. Moreover, the values of regression coefficients for the approaches 1, 2
and 3 are found to be equal to 0.90, 0.90 and 0.93, respectively. Thus, approach
3 has outperformed the other two approaches. It has happened so, due to the
reason that a modified clustering technique has been used in approach 3. The
proposed clustering technique utilized in approach 3 combines the merits of
the FCM and EFC algorithms to yield compact and distinct clusters.
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5.2 Results of Reverse Mapping

In reverse mapping, eight input parameters, such as BP, BW, BH, a1, b1, a2,
b2 and VH have been considered. The outputs are accelerating voltage, beam
current and welding speed. The optimized values of the GA as well as RBFNN
parameters along with their ranges have been displayed in Table 3.

Table 4 shows the results of reverse mapping on stainless steel welding data,
as obtained by the above three approaches. Approaches 1, 2 and 3 have yielded
the values of average absolute percent deviation in predictions of the process pa-
rameters as 14.8993, 20.2439 and 12.1889, respectively. The values of regression
coefficients for the approaches 1, 2 and 3 are seen to be equal to 0.90, 0.86
and 0.90, respectively. Once again, approach 3 is seen to outperform the other
two approaches due to the same reasons mentioned earlier.

6 Summary

Input-output relationships of EBW process have been modeled in both forward
as well as reverse directions using radial basis function neural networks. In order
to decide the number of hidden neurons, input-output data set has been clus-
tered based on the similarity among the data points using two well-known fuzzy
clustering algorithms and one newly developed algorithm. Three approaches are
developed for the forward and reverse mappings, each by utilizing three different
clustering techniques. The performances of the developed approaches are tested
on two different data sets. All these three approaches are found to carry out the
forward and reverse mappings successfully within a reasonable accuracy limit. It
has happened so, due to the fact that a hybrid scheme of optimization has been
adopted in the said three approaches, where a global optimizer like GA has been
used along with a local optimizer, namely BP algorithm. The difference in the
performances of these approaches has come due to the application of different
clustering algorithms. Approach 3 is found to be the best out of all the ap-
proaches. It may be due to the supremacy of the developed clustering technique
over the other two well-known clustering techniques. To automate any process,
its input-output relationships are to be known in both the forward and reverse
directions, on-line. Thus, the present study may be considered as a significant
step towards automating a process.

7 Scope of Future Work

In future, an attempt will be made to combine GA with a modern learning
algorithm like Levenberg-Marquardt method to solve the same problem.

Acknowledgments. The authors acknowledge the support of EBW project
(sponsored by BRNS-DAE), a joint venture of IIT Kharagpur, India and BARC
Mumbai, India, for carrying out the experiments.
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Abstract. The Levenberg Marquardt (LM) algorithm is a popular non-
linear least squares optimization technique for solving data matching
problems. In this method, the damping parameter plays a vital role in
determining the convergence of the system. This damping parameter is
calculated arbitrarily in the classical LM, causing it to converge prema-
turely when used for solving real world engineering problems. This paper
focuses on changes made to the classical LM algorithm to enhance its
performance. This is achieved by adaptive damping, wherein the damp-
ing parameter is varied depending on the convergence of the objective
function. To eliminate the need for a good initial guess, the idea of using
an evolutionary algorithm in conjunction with the LM algorithm is also
explored.

Keywords: Data Matching, Nonlinear Least squares, Levenberg Mar-
quardt, criterion for termination of genetic algorithm.

1 Introduction

A mathematical model is often used to match actual experimental data for
predicting the behavior of natural processes. Earlier, prototypes were used for
prediction of behavior of engineering problems. But with the advancements in
computing, computer simulations replaced this. Often, unknown parameters in
the model are adjusted for obtaining a good fit. The best estimates of these are
the ones that give the best fit between the test data and the model data. In order
to find out the best values of these parameters, the problem is solved as a non-
linear least squares problem, where the root sum squares of the error (difference
between the test data and model data) is minimized iteratively. Such a problem
is commonly known as an inverse problem [2] and is frequently encountered in
the engineering field.

For example, in fluid dynamics, the test data is a set of flow values, which is ex-
perimentally determined. The scalars are the flow coefficients and the simulation
model is used to match the physical flow. The scalars are optimized such that the
output of the simulation model matches the experimental results. Figure 1 shows
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Fig. 1. Schematic of Inverse Problem Approach

the inverse problem schematically. Objective of the data-matching problem is to
minimize the difference between test data and model data. The ideal value of
the objective function (OF) of the data matching is zero, which implies that
the experimental data and model data are matching perfectly. Data-matching
problem can be solved in two different ways.

1. Least Squares minimization based method
2. Methods based on point to point match

Method one involves minimization of the OF, which is the root sum square of
test data and model data. Information about the individual error of all data
points are not provided to the optimizer.

Objective Function, OF =
√∑

(Ytest − Ymodel)2

In method two, the optimizer makes use of information about error in each data
point and the slope to minimize the error between test data and model data.
This method has been explained in detail by Akkaram et al. [2] There are two
popular algorithms to solve this genre of optimization problems.

1. Gauss Newton Algorithm (GN) 2. Levenberg Marquardt Algorithm
(LM)

Genetic algorithms (GA) also have been used in a few instances to solve data
matching problems [4]. But they involve numerous function evaluations, which
prove expensive. As a result, tackling real-life engineering problems becomes
difficult. The focus of this paper is two fold:

1. Improvements on the present LM algorithm to force better convergence.
2. Usage of GA in conjunction with the LM algorithm to eliminate the depen-

dence on a user-specified initial guess.

2 Overview of Gauss Newton Algorithm

The GN algorithm is a method used to solve non-linear least squares problems.
It can be seen as a modification of Newton’s method for finding a minimum of
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a function. The GN algorithm has the advantage that second derivatives, which
can be challenging to compute, are not required. The Hessian is approximated
by JT J where J is the Jacobian matrix [10]. Given m functions r1, . . . , rm of n
variables X = (x1, . . . , xn), with m ≥ n, the GN algorithm finds the minimum
of the sum squares of errors. Starting with an initial guess Xi for the minimum,
the method proceeds by the iterations as shown below, where the increment Δ
is the solution to the normal equations.

∑m
i=1(Ytest − Ymodel)2 Xin = Xin−1 + Δi (JT J)Δ = −JT r

The GN search direction is a descent direction and is thus a suitable direc-
tion for a line search [10]. This method is very efficient when the initial guess is
very close to the actual solution.

3 Overview of Levenberg Marquardt Algorithm

The efficiency of the GN algorithm is dependent on the accuracy of the initial
guess. Moreover there may occur instances where JT J becomes singular and
hence its inverse cannot be obtained when solving for Δ.

The LM algorithm is a damped least squares optimization technique, which
is a weighted combination of the GN and the steepest descent technique [9].
Levenberg first proposed the damped GN method to avoid the weakness of GN
when J becomes rank deficient [6]. Marquardt extended this idea by provid-
ing options to control the damping LM algorithm [8]. The damping parameter
is added to the diagonal of the Jacobian as (JT J + λ.diag(JT J))Δ = −JT r
where λ is the damping parameter. The value of the new Xs are obtained as
Xin = Xin−1 +Δi. The damping parameter prevents the occurrence of a singu-
lar matrix. This method is more robust than the GN, i.e. it can work well even
if the initial guess is slightly off from the globally known solution.

3.1 Inefficient Damping Parameter Estimation

The damping parameter in the classical LM algorithm is updated as follows: A
new set of Xs is calculated and the OF is evaluated. If this OF is less than the
OF of the previous iteration, the damping parameter is updated as

New damping parameter = Previous damping parameter / Reduction constant.
If the OF is more than that of the previous iteration,
New damping parameter = Previous damping parameter * Reduction constant

Previous efforts have been made by a few authors ([3], [5]) to calculate the value of
the damping parameter based on the previous and the present value of Jacobian,
but most of these are not suitable for large scale engineering problems. Improper
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selection of the damping parameter may lead to pre-convergence. Therefore se-
lection of an appropriate damping parameter is critical to the functioning of the
algorithm. Hence a methodology has to be devised where the damping parameter
is varied dynamically.

4 Modified LM: Improved Damping Parameter Updation

The behaviour of the damping parameter λ in the classical LM was extensively
studied and graphically depicted in Figure 2. It was found that the convergence
was rapid when λ was approximately in the range of 0.1 to 100. The improve-
ment in the OF was very low when the value of λ was either very high or very
low. A very high value of the damping parameter causes the algorithm to ter-
minate. Based on these observations, the value of the damping parameter in the
proposed method is forced to a specific value depending on the relative change
in OF value. The relative change in the OF is computed as follows.

ΔOF1 = (OF )n−1 − (OF )n ΔOF2 = (OF )n − (OF )n+1
Relative change (RC) = ΔOF2/ΔOF1

1e+8

1e+5

100

0
0.1

1e−5

1e−8

Very low improvement in OF,
termination

(faster convergence)
Tending towards steepest descent

Slower but better convergence

Very low improvement in OF,
termination

valuesλ Effect

Fig. 2. Impact of λ on classical LM

E2

E1

T1

T2

Fig. 3. Calculation of Explo-
ration Metric

A low RC value (less than 1%) implies a very small improvement in the OF
value. As a result, the damping parameter is assigned a high value forcing it to
terminate. When RC is greater than 25%, the damping parameter is assigned a
value between 0.1 and 100 for faster convergence. When the improvement in OF
tends to slow down, i.e. RC is less than 25%, it is a signal that the algorithm is
about to prematurely terminate and hence a smaller value of damping parameter
is assigned to prevent it from terminating. Thus, this dynamic updation of the
damping parameter effectively controls the functioning of the LM algorithm.
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5 Employing GA in Conjunction with LM Algorithm

Solving a data-matching problem has always been associated with the us-
age of gradient-based optimization techniques. The usage of GA to solve a
computationally-intensive problem is not preferred because of the large number
of function evaluations required, which is true for most engineering problems.
However, the main advantage of GA is that it does not require an initial guess
and converges to the global optimum.

Gradient-based techniques such as the LM and the GN have a high dependence
on the initial guess, which is generally not known to the user. Thus the user has
to undertake many trials with various initial guesses to arrive at the global
optimum. Hence, an effective solution to this problem would be to use GA to
explore the whole design space in order to provide a good initial guess to the
LM algorithm.

Since GA requires a large number of function evaluations to converge to the
global optimum, it may be advisable to terminate it when the improvement in
the OF is small and the design space has been explored significantly. A detailed
investigation on this front has led to the development of two innovative metrics:
1. Exploration Metric and 2. Mean Metric.

5.1 Exploration Metric

Genetic Algorithms use a set of solutions to search the design space ex-
haustively to find the global optimum. During the search process GA try
to explore the whole design space and finally concentrate on the location
where global optimum resides. Since exploration is computationally costly,
in this paper we propose an Exploration Metric, which measures the extent
of exploration of the design space. The exploration metric is defined as the
ratio of the explored hyper-volume to the total hyper-volume of the design space.

Exploration Metric = Explored Hyper-volume/Total Hyper-volume
Total Hyper-volume = (xUB

1 − xLB
1 )(xUB

2 − xLB
2 ) . . . (xUB

n − xLB
n )

Explored Hyper-volume = (xmax
1 − xmin

1 )(xmax
2 − Xmin

2 ) . . . (xmax
n − Xmin

n )

xLB
n and xUB

n are the lower and upper bound of the variable xn and
Xmin

n and xmax
n are the minimum and maximum achieved values of xn till

the current generation. An example with two variables has been shown in the
Figure 3.

Total Hyper-volume = T 1 ∗ T 2
Explored Hyper-volume = E1 ∗ E2
Exploration Metric = (E1 ∗ E2)/(T 1 ∗ T 2)

5.2 Mean Metric

This metric is used to estimate the convergence of the GA, based on the change
in the mean OF value over a given number of generations.
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Mean Metric = Mean OF of Nth gen − Mean OF of (N − k)th gen,
where 5 ≤ k ≤ 10 and N > k.

If the Mean Metric value is below a user-specified MeanTol% of the cu-
mulative OF mean (mean OF across all generations), the GA is assumed to
have converged reasonably well. Figure 4 below shows the mean value of the
OF of each generation for a typical GA run. It can be seen that during the first
few generations, the reduction in mean OF is very rapid whereas after the 17th
generation, the reduction is slow. The mean metric condition will indicate that
suitable convergence has been achieved at this stage.
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The termination of the GA is enforced when the desired percentage of explo-
ration is reached and the condition for the mean metric is satisfied.

6 Results and Inference

The proposed algorithms, modified LM and GA-LM combined algorithm have
been tried out on a transient algebraic function and on a transient engine model.
The performance of these algorithms has been compared with GN algorithm and
classical LM algorithm.Comparison has been based on the final OF value and the
number of function evaluations required to achieve that. Moreover to understand
the search power of the algorithms, each of them has been tried out on three
different test cases defined as follows.

– The initial guess is very close to the known solution.
– The initial guess is moderately close to the known solution.
– The initial guess is far off from the known solution.

During performance evaluation, the GN algorithm suggested by Heath [9] has
been used along with a line-search algorithm. For classical LM algorithm, MIN-
PACK package has been used for evaluation. The modified version of the LM
algorithm has been developed from the levmar [7] implementation.
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6.1 Test Problem 1: Algebraic Transient Function

Function : f(t, x) = x1e
x2t Test Data :

t 0 1 2 3
y 2.0 0.7 0.3 0.1

Actual Solution: x1 = 1.995, x2 = −1.01

The inverse problem was solved with four different test cases based on
the initial guess selection. The initial guess is very close to the optimum solution
in case 1 and case 2, moderately close in case 3, and far off from the optimum in
case 4. Results obtained from the different algorithms are presented in Table 1.

Table 1. Performance Comparison of Proposed Algorithms

Gauss Newton Classical LM Modified LM

Sl.
No

Initial
Guess

No
of Fn
Evals

Final OF
value

No
of Fn
Evals

Final OF
value

No
of Fn
Evals

Final OF
value

1 (1, 0) 16 0.001996 48 0.00223 20 0.001998
2 (2, 2) 34 0.001997 69 0.00223 36 0.002005
3 (-3, 3) Singular 81 0.002233 37 0.002003
4 (20,20) Singular 50 1.07 121 4.58

GA in conjunction with LM : Objective Function Value : 0.001996
Total no. of function evaluations : GA 70 + LM 36 = 106

Observations:

1. It can be seen from Figure 5 (Case 1) and Figure 6 (Case 2) that with a
good initial guess, the GN works very efficiently since it makes use of a line
search routine. It is found that the classical LM consumes almost twice the
number of function evaluations as that of the proposed modified LM. The
modified LM effectively converges due to the effect of the dynamic damping
parameter as discussed in Section 4.

2. In Case 3 and Case 4, the Jacobian in the GN algorithm becomes singular and
hence the algorithm fails. This shows that GN is not suitable for an arbitrary
initial guess. It is again seen in Case 3 that the modified LM converges in
almost half the iterations as compared to the classical LM. Figure 7 shows
the convergence of these two algorithms.

3. If the initial guess is far away from the actual solution (Case 4), it is seen
that the classical LM performs better than the modified LM. Further studies
will need to be done to determine the exact cause of this behaviour.

4. The use of a Genetic Algorithm in conjunction with modified LM ensured
convergence in 106 (70 from GA, 36 from LM) function evaluations without
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the need for an initial guess. This method is suitable when the user has very
little idea of a good initial guess.

5. It is observed that all algorithms converge to approximately the same OF
value.

6.2 Test Problem 2: Transient Engine Model

The second test problem used for comparison is a single spool thermodynamic
performance model called AIR4548 [1]. There are 6 input scalars (Xs), and 9
transient outputs (Ys) with 52 time points for each Y. Since the values of the
transient outputs are in different scales, they are normalized. Again, like in Test
Problem 1, four test cases based on different initial guesses have been considered
for studying the behaviour of the algorithms. Simulation results are presented in
Table 2. Another test case (test case 5) has been considered, where LM algorithm
is run in conjunction with GA.

Observations:

1. It is observed that the classical LM converges prematurely in all four cases
(as the OF values are relatively high). This is evident in Figures 8 - 11.

2. In all four cases, GN is able to converge to a better solution than the classical
LM, although the number of function evaluations is higher. When the initial
guess is very good (Case 1), the number of function evaluations required by
GN is comparable to that of the classical LM.

3. The modified LM is found to be converge much better (lowest OF value)
than the other two algorithms, irrespective of the initial guess.

4. Even when the initial guess is away from the optimum (Case 3 and Case 4),
the modified LM converges very rapidly, as seen in Figure 10 and Figure 11
respectively.

5. When GA is used along with the modified LM, a far superior convergence
is achieved. Though this method requires more function evaluations as com-
pared to pure gradient based techniques, it is more robust and eliminates
the need for trials with different initial guesses.
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Table 2. Comparison Chart for AIR4548 Problem

Gauss Newton Classical LM Modified LM

Sl.
No

Initial Guess No
of Fn
Evals

Final OF
value

No
of Fn
Evals

Final OF
value

No
of Fn
Evals

Final OF
value

1 Initial guess very close to the optimum

(0.945, 0.945, 0.089,
1.01, 1.05, 1.01)

54 0.00261476 31 0.0033626 118 0.000162

2 Initial guess close to the optimum

(0.93, 0.97, 0.085,
0.98, 1.02, 1.02)

234 0.00359118 33 0.014319 100 0.000406

3 Initial guess moderately close to the optimum

(0.9, 0.9, 0.095,
1.05, 1.05, 1.1)

333 0.000633724 46 0.157508 106 0.000102

4 Initial guess far off from the optimum

(1.1, 1.1, 0.08, 0.9,
0.9, 1.1)

288 0.613374 57 0.726287 111 0.000322

5 GA in conjunction with LM

Total no of function evaluations : 346 Final OF Value : 3.452e-005
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7 Conclusions and Scope for Further Work

The paper provides a comparison between the GN and the LM algorithms, which
are commonly used for inverse optimization problems. The advantages and disad-
vantages of both the algorithms are discussed and the need to refine the classical
LM algorithm is identified. In the revised LM algorithm, the damping parameter
calculation is modified. Though this change makes the LM more efficient, it is
still dependent upon a user defined initial guess. The idea of using GA in con-
junction with LM is explored. The dynamic termination of the GA is brought
about by introducing two new metrics. This method of using both GA combined
with LM is more robust and can solve inverse problems without any need for
an initial guess. Even though this method requires many function evaluations,
it can converge to the global solution in a single trial as compared to the LM or
the GN algorithms which may need multiple trials with different initial guesses.

The present work calculates only a single damping parameter which is applied
for all the diagonal entries. Future work relating to arriving at a mathematical
formulation to calculate the damping parameters for each diagonal entry is de-
sired. Further work can be carried to out to enable the algorithm to handle large
data sets. Research related to bringing down the computational expense of GA
integrated with LM would be very beneficial to the engineering community.
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Abstract. Constrained engineering design optimization problems are
usually computationally expensive due to non-linearity and non convex-
ity of the constraint functions. Penalty function methods are found to
be quite popular due to their simplicity and ease of implementation, but
they require an appropriate value of the penalty parameter. Bi-objective
approach is one of the methods to handle constraints, in which the
minimization of the constraint violation is included as an additional
objective. In this paper, constrained engineering design optimization
problems are solved by combining the penalty function approach with
a bi-objective evolutionary approach which play complementary roles
to help each other. The penalty parameter is approximated using bi-
objective approach and a classical method is used for the solution of
unconstrained penalized function. In this methodology, we have also
eliminated the local search parameter which was needed in our previ-
ous study.

Keywords: Constrained Optimization, Engineering Design, Penalty
Function and Bi-objective evolutionary algorithms.

1 Introduction

Most real-life scientific and engineering design problems involve a large number
of non-linear, non-convex, and discontinuous constraints and objective function.
Evolutionary population based algorithms are widely used to solve constrained
optimization problems. Many researchers have already proposed methodologies
using different evolutionary algorithms to solve constrained optimization prob-
lems in engineering design [1], [2] and [3].

Penalty function method has been found to be the most popular constrained
handling technique due to its simple principle and easy implementation. A
penalty-parameter-less strategy was proposed by Deb in 2000 [4], in which an in-
feasible solution is always treated worse than a feasible solution and the approach
avoided the need of any penalty parameter. Coello [5] proposed a self-adaptive
penalty approach by using a co-evolutionary model to adapt the penalty factors.

K. Deb et al. (Eds.): SEAL 2010, LNCS 6457, pp. 633–637, 2010.
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Some studies proposed the conversion of original problem into a bi-objective
optimization problem in which a measure of an overall constraint violation is
used as an additional objective [6]. Recently we proposed [7] an extention of the
bi-objective idea that used the reference point approach to focus its search near
the constrained minimum solution.

Although many other ideas are suggested, researchers realized that the task
of finding the constrained optimum by an EA can be made more efficient and ac-
curate, if it is hybridized with a classical local search procedure [8]. Recently, we
have suggested a bi-objective evolutionary optimization strategy [9] to estimate
the penalty parameter R for a problem from the obtained two-objective non-
dominated front. Thereafter, an appropriate penalized function is constructed
and solved using a classical local search method.

In the remainder of this paper, the proposed algorithm is described, which is
an extension of our bi-objective optimization procedure [9]. Two standard engi-
neering design optimization problems considered from the existing literature and
showed the results obtained from our proposed algorithm. Results are compared
with some of the best-known results from the literature. Finally, the paper ends
with the conclusions of this study.

2 Proposed Algorithm

This section describes the algorithm based on the principles of bi-objective han-
dling of a constrained optimization problem and the use of a penalty function
approach. First, the generation counter is set at t = 0.

Step 1: An Evolutionary Multi-Objective Optimization (EMO) algorithm
(NSGA-II [10]) applied to the bi-objective optimization problem to find the
non-dominated Pareto-optimal front. Here CV(x) is defined as follows:

minimize f(x),
minimize CV(x),

subject to CV(x) ≤ c,

x(L) ≤ x ≤ x(U).

(1)

Since CV(x) is the normalized constraint violation, we have used c = 0.2J ,
where J is number of constraints in all our studies and x(L), x(U) are the
lower and upper variable bounds.

Step 2: If t > 0 and ((t mod τ) = 0), compute R from the current non-
dominated front as follows. A cubic curve is fitted for the non-dominated
points (f = a + b(CV ) + c(CV )2 + d(CV )3) and the penalty parameter is
estimated by finding the slope at CV=0, that is R = −b. Since this is a lower
bound on R, we use twice this value as R or R ← −2b.

Step 3: Thereafter, following local search problem is solved with R computed
from above and starting with the current minimum-CV solution:

minimize P (x) = f(x) + R
∑J

j=1〈ĝj(x)〉,
x(L) ≤ x ≤ x(U).

(2)

Say, the solution is x̄.
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Step 4: If x̄ is feasible and the difference between f(x̄) and the objective value
of the previous local searched solution is smaller than a small number δf

(10−4 is used here), the algorithm is terminated and x̄ is declared as the
optimized solution. Else, we increment t by one and proceed to Step 1.

It is interesting to note that, the penalty parameter R is no more a user-tunable
parameter and gets adjusted from the obtained non-dominated front. We use
Matlab’s fmincon() procedure to solve the penalized function with reasonable
parameter settings. We have eliminated the frequency of local search as a pa-
rameter and use local search at every generation.

3 Results on Engineering Design Optimization Problems

Our proposed methodology was applied to a number of engineering design opti-
mization problems, taken from [1], [2], [3]. Following parameters are used: popu-
lation size = 20n, SBX probability= 0.9, SBX index = 10, polynomial mutation
probability = 1/n, and mutation index = 100. The termination criterion is de-
scribed in Section 2. In each case, we run our algorithm 50 times from different
initial populations.

3.1 Three-Bar Truss Design

The volume of the truss structure is to be minimized subject to the stress con-
straints.

Figure 1 shows the variation in the population-best objective value for a par-
ticular run. All solutions are feasible right from the initial population. The adap-
tation of R is also shown in the figure. At generation 2, the first local search is
performed and optimal solution is found. However, the algorithm continues for
another generation and local search to satisfy our termination criteria. The value
of R at the end of generation 3 is found to be 2.306753 for this simulation run. All
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Table 1. Comparison of objective value and function evaluations for three-bar truss
design problem

Algorithms Best Median Mean Worst FE
ADE[3] 263.895843 263.895843 263.895843 263.895843 45,000

DSS-MDE[1] 263.895843 263.895843 263.895843 263.895849 15,000
Ray & Liew[2] 263.895846 263.8989 263.9033 263.96975 17,610

proposed method 263.895843 263.895843 263.895843 263.895844
FE 246 327 493

EMO+LOCAL 120 + 126 120 + 207 160 + 333

50 runs find a feasible solution close (with in 10−4) to the best-known optimum.
The best performance of our algorithm requires only 246 evaluations, whereas
the best-reported existing EA methodology takes at least 70 times more function
evaluations to achieve similar accurate solutions. Table 1 shows the comparison
of results taken from literature with our approach. In addition to total function
evaluations (FE), the sub-division of FE in EMO (NSGA-II) and local search
are shown in the next line.

3.2 Tension/Compression Spring Design

The objective is to minimize the weight of a tension/compression spring.
Figure 2 shows the best objective value of the population and the correspond-

ing constraint violation value with the generation for a typical simulation out
of 50 runs. The figure shows that initially no feasible solution is found up to
the second generation. At generation 3, the first feasible solutions appear. The
corresponding CV value is zero, indicating that the obtained solution is feasible.

Table 2 is the comparison of our approach with that of the best, median, mean
and worst function values taken from literature.

Table 2. Comparison of objective value and function evaluations for spring design
problem

Algorithms Best Median Mean Worst FE
ADE[3] 0.012665 0.012665 0.012933 0.020643 60,000

DSS-MDE [1] 0.012665 0.012665 0.012669 0.012738 24,000
Ray & Liew[2] 0.012669 0.012922 0.012922 0.016717 25,167

Coello[5] 0.012704 0.012755 0.012769 0.012822 9,00,000
Proposed method 0.012665 0.012665 0.012666 0.012668

FE 1,826 3,886 8,774
EMO+LOCAL 840+986 1,860+2,026 5,520+3,254
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4 Conclusions

This paper is an integration between a bi-objective evolutionary approach with
the penalty function based classical optimization, which alleviates the drawback
of each other. The main limitation in accurate convergence, to find the optimum
by an EMO procedure is alleviated by the use of a local search involving a classical
optimization procedure and the difficulty of the commonly-used penalty function
based approach is alleviated by estimating the penalty parameter adaptively by
the EMO procedure. The promising results on two engineering design test prob-
lems are compared with some state-of-the-art algorithms and results indicate that
the proposed procedure is robust, faster and accurate than the existing ones.
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Abstract. A novel process has been developed for reducing complexity in real-
world, high-dimensional, multi-objective optimisation problems. This approach 
relies on being able to identify and exploit local harmony between objectives to 
reduce dimensionality. To achieve this, a systematic and modular process has 
been designed to cluster the Pareto-optimal front and apply a rule-based Princi-
pal Component Analysis including preference articulation for potential objec-
tive reduction. This many-objective optimisation decision-making process is 
demonstrated on a real-world, automotive diesel engine calibration optimisation 
problem comprising six objectives. The complexity reduction process resulted 
in three- and four-objective sub-problems. In the former, a significant im-
provement was achieved in one of the retained objectives at very little cost to 
the others. 

Keywords: optimisation, many-objective, dimension reduction, engine  
calibration. 

1   Introduction 

During the process of carrying out automotive engine calibration, it is common to 
come across trade-off problems, that is, optimisation problems comprising two or 
more competing objectives. In the automotive market there is ever-increasing cus-
tomer demand for more fuel efficient, higher performance, increased refinement and 
reliability at low cost. These requirements combined with evermore stringent exhaust 
emissions legislation and fierce competition amongst automotive manufacturers has 
led to more complex engine technologies. This has, in turn, driven the development of 
correspondingly complex control systems, with more actuator variables and more 
engine responses or objectives to be optimised and traded off. 

Historically, optimisations were formulated as single objective problems, which 
were solved using methods available at the time, e.g. gradient-based or direct search 
algorithms. These approaches have a number of weaknesses including a tendency to 
get stuck in local optima, the fact that they are often designed to be problem-specific  
and they require multiple runs to generate a family of solutions as required for a 



 A Many-Objective Optimisation Decision-Making Process 639 

multi-objective optimisation by definition [1]. By contrast, Evolutionary Algorithms 
(EAs) evolve a population of solutions to search for the optimal trade-off or Pareto-
optimal front. Such methods are able to produce a diverse set of solutions in one run 
of the optimiser and are well suited to multi-objective problems. 

EAs have been mostly applied to two- or three-objective optimisations, the results 
of which are straightforward to visualise in low dimensions. However, real-world and 
in particular, modern, complex engine calibration optimisation problems can involve 
significantly more than two or three objectives, termed many-objective optimisations. 
For such high-dimensional problems, multi-objective EAs (MOEAs) have issues with 
lack of effective search, potentially large population size required (may be computa-
tionally expensive) and visualisation of the solutions, which may be sparse [2]. Re-
views of some recent and relevant potential counter-measures is provided in [3,4,5]. 

Research to address these issues has primarily concentrated on algorithmic devel-
opments to improve the search effectiveness. Nevertheless, even if a Pareto-optimal 
population has been generated, the subsequent decision-making process to select a 
preferred solution has received little attention, particularly in the case of many-
objective problems. 

2   Background 

There exists an opportunity to reduce the dimensionality in many-objective problems 
if, for the Pareto-optimal solutions in the Decision-Maker's (DM's) region of interest, 
objectives are sufficiently positively correlated, i.e. in harmony [6,7]. In this case, 
improvement in one objective would automatically improve another positively corre-
lated objective. 

In order to discover such local objective dependency, if it exists, it is necessary to 
partition or cluster the Pareto-optimal front into groups of like-solutions. This will 
allow any local objective harmony to be exploited for local objective reduction. In 
addition, other studies [8,9] suggest that sub-dividing the Pareto-optimal front is useful 
for visualizing high dimensional Pareto-optimal fronts and grouping similar solutions. 

In order to be effective as part of a many-objective optimisation decision-making 
(MOODM) process, a clustering algorithm must fulfill the following requirements: i) be 
efficient to run, as sufficient data density is required to determine the number and loca-
tion of clusters and it may need to be run a number of times to generate reliable results, 
ii) generate the correct number of clusters in high-dimensional, real-world problems 
given that the number of clusters is not known a priori and iii) produce a valid cluster-
ing structure consistent with the downstream objective reduction process, e.g. Principal 
Components Analysis (PCA) assumes the clusters are hyper-ellipsoidal. Assessed 
against these requirements, the k*-Means algorithm [10] appears to be a good choice 
and has two main steps. Firstly, a pre-processing procedure is carried out, which assigns 
at least one cluster centre to each of the initial clusters. The second step involves apply-
ing a learning rule to adaptively adjust each centre to a cluster while penalising rival 
centres. It generates elliptical clusters and determines the number of output clusters. 
Simulation testing on known data was carried out in [3] on multi-variate normal and 
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non-normal data. This provided evidence that the k*-Means algorithm did meet the 
requirements for clustering in a MOODM process and was a suitable choice for parti-
tioning a Pareto-optimal front. Furthermore, estimation of cluster mean and covariance 
matrices robust to outliers was provided by the FAST-MCD algorithm [11]. 

Having partitioned the Pareto-optimal front into clusters, an appropriate method is 
required to in order to identify any objective dependency and hence potential dimen-
sion reduction. Dimension reduction approaches are described and reviewed in 
[12,13]. With regard to linear dimension reduction approaches, PCA is a widely-used 
method and comprises a linear transformation of the objectives to a new set of uncor-
related variables (or Principal Components) that account for the majority of the varia-
tion in the original objectives (full details are provided in [14]). Linear PCA is cited 
as not being suitable for non-linear data such as that typical of Pareto-optimal fronts. 
However, if the Pareto-optimal front is partitioned into groups of like solutions, then 
PCA may be useful in identifying local harmony for objective reduction. Previously, 
Deb and Saxena [23] have used PCA as part of an objective reduction process, but 
this was applied to the whole Pareto-optimal front and the authors stated that this 
approach showed some vulnerability in that not all conflicting objectives could be 
correctly identified. This approach was applied in [3], but resulted in a somewhat 
drastic objective reduction, one of the high priority objectives being discarded and 
many of the solutions violating a constraint. 

With non-linear methods, the DM may need to specify additional information such 
as the non-linear transform required or distributional assumption. In addition, there 
are known problems with Multi-Dimensional Scaling not being able to project onto 
lower dimensions [12,16]; with Self-Organising Maps [17], which have issues with 
subjectivity involved in hierarchical clustering, convergence and interpretation; and 
with Vector Quantisation, where the DM must specify target dimension a priori and 
no consideration is given to objective harmony and conflict [18]. 

3   Proposed Process 

The clustering and PCA elements previously discussed can be combined with an 
efficient search method to produce a systematic dimension reduction process. The 
goal is to aid the DM in discovering opportunities for progressively simplifying the 
optimisation by reducing the number of objectives at each step. The proposed 
MOODM process is displayed in Figure 1 and shows the elements of optimisation, 
robust clustering and objective reduction via PCA-based heuristic rules combined in a 
proposed MOODM process. 

The first step is to efficiently generate a Pareto-Optimal Population (POP). There 
are many MOEAs that can be used to achieve this, but for many-objective problems, 
careful consideration must be given to overcome the known issues of lack of search 
efficiency and very large population sizes required. On completion of the optimisation, 
the resulting POP is partitioned into groups of like-solutions using a clustering algo-
rithm. It is important that the DM is satisfied that there is evidence of the number and 
location of the clusters and so, cluster verification rules have been developed. Subse-
quently, for each POP cluster, PCA together with some heuristic rules are applied to 
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Fig. 1. Proposed Many-Objective Optimisation Decision-Making (MOODM) Process 

reduce objective dimensionality. If no objective reduction is achieved, then the process 
is terminated. If objective reduction is possible within a cluster, then the process re-
peats with firstly, optimisation with the reduced objectives subject to the constraint of 
remaining within the cluster hyper-ellipsoidal boundary in an attempt to preserve ob-
jective correlations. The process ends when no further objective reduction can be 
achieved within each cluster. 

As the similarity metric for clustering, the k*-Means algorithm uses Mahalanobis 
distance, which follows a Chi-squared distribution. Large Mahalanobis distances can 
be used to detect outliers by comparing them to a quantile of the Chi-squared distribu-
tion [22] and in so doing can be used as a cluster boundary. 

Preference articulation can be used to direct the optimiser towards the DMs region of 
interest and so improve search efficiency [2]. Furthermore, a progressive approach al-
lows the DM to specify these preferences interactively as information emerges from 
successive optimisations. The Progressive Preference Articulation method of [19] 
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(PPAFF) provides an intuitive and efficient specification of objective goals and priorities 
[20]. The multi-objective optimisation algorithm, NSGAII [24] is widely used [21] and 
it was decided to modify this to incorporate the PPAFF approach. 

As is the case with MOEAs, the stochastic nature of the k*-Means clustering algo-
rithm justifies running it a number of times to gain confidence that the results are 
reliable. Consequently, clustering verification rules are defined [3] to ensure consis-
tent and correct results. With many objectives and possible large population sizes, the 
computational demands may be significant and deserve consideration in deciding how 
many clustering runs are to be run. 

4   Diesel Engine Calibration Optimisation 

Diesel base engine calibration involves adjustment of the control actuator settings to 
achieve optimal trade-offs between competing objectives. Such objectives include 
fuel consumption as well as legislated emissions and combustion noise measures. 

A six-objective diesel problem was formulated comprising the minimisation of 
Specific Fuel Consumption (SFC), Oxides of Nitrogen (NOx), Particulates (Parts), 
Hydrocarbons (HC), Carbon Monoxide (CO) and combustion noise (Noise). These 
objective functions were formed from empirical engine models based on engine test 
data, the boundary of which formed a constraint on the six continuous decision vari-
ables to ensure there was no extrapolation. A version of NSGAII modified with the 
PPAFF method was used for the optimisation with objective goals and priorities speci-
fied and initially in Stage 1, a population of 4000 run for 5000 generations to provide 
a reasonable computational effort, i.e. this took approximately 3 hours. In addition, 
the relatively large population supported the downstream clustering and sub-sampling 
process. 

Clustering was carried out using the k*-Means algorithm and the clustering verifi-
cation rules. This resulted in two clusters and a sub-sampled POP size of 1000, which 
gave good agreement with the parent POP in terms of cluster means and correlation 
matrices. Both clusters were retained as they both had significant membership and 
each was better than the other in different objectives. Subsequent application of the 
PCA-based objective reduction rules in each cluster resulted in three and four objec-
tives being retained in Cluster 1 and 2, respectively. The objectives retained were 
those in each Principal Component whose eigenvector coefficients had the highest 
magnitude and objective priority. Detailed explanation is provided in [3]. 

Further optimisation in Stage 2 with the reduced objectives was carried out within 
each cluster resuming from the sub-sampled POPs and run for 2000 generations. A 
hyper-ellipsoidal cluster constraint [22] was used keep the search within each cluster 
and to preserve objective correlations. The resulting POPs were then plotted in paral-
lel coordinates and scatter plot formats and these are shown for Cluster 1 in Figures 2 
and 3, respectively. 

Figure 2 shows for the retained objectives, both NOx and HC have improved, but 
partially at the expense of Parts (due to the fact that all three objectives conflict), 
while the discarded Objectives, SFC, CO and noise broadly show no deterioration. 
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Fig. 2. Parallel coordinates plot of Cluster 1, the Stage 2 POP resulting from the (reduced) 
three-objective optimisation of NOx, Parts and HC and the selected final solution 

The plot indicates that the objective correlations resulting from the initial optimisation  
have been maintained after further optimisation. The two-dimensional scatter plots in 
Figure 3 show this more clearly and suggest that a trade-off solution for NOx and 
Parts can be chosen with simultaneously improved HC. The Data Cursor feature in 
the Matlab® Figure environment was used to select such a solution and hence deter-
mine from the final population the corresponding values for the discarded objectives. 

In Cluster 2, for the retained objectives, NOx improved along with noise at the ex-
pense of Parts and HC, whilst the discarded Objectives (SFC and CO) have both 
maintained their objective correlations. In summary, no overall improvement was 
achieved with this objective reduction. 

Table 1 summarises the results from the objective reduction process applied in 
each of the two clusters. Of the two highest priority Objectives (NOx and Parts), final 
solution 1 in Cluster 2 has achieved the lowest NOx, but this was at the expense of 
Parts and deteriorated SFC, HC and especially CO. If Parts is prioritised higher (i.e. is 
more important) than NOx, final solution 2 in Cluster 2 is improved for SFC, Parts, 
HC and CO and only marginally deteriorated for noise. By comparison, final solution 
1 in Cluster 1 is further improved in Parts (again at the expense of NOx), SFC, HC 
and CO and although noise has deteriorated, it is relatively low. 
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Fig. 3. Scatter plot of Cluster 1,the Stage 2 POP resulting from the (reduced) three-objective 
optimisation of NOx, Parts and HC and the selected final solution 

Table 1. Final solutions selected 

Stage Cluster Final 
Solution 

SFC 
(g/kWh) 

NOx 
(g/h) 

Parts 
(g/h) 

HC 
(g/h) 

CO 
(g/h) 

noise 
(dBA) 

2 1 1 249.1 25.8 12.1 5.5 44.7 2.1 
2 2 1 294.0 7.3 73.3 7.5 434.0 0.5 
1 2 2 261.1 16.2 31.6 6.4 122.2 0.8 

5   Conclusions and Future Work 

In summary, the original six-objective optimisation has been split into two smaller 
optimisation problems via the complexity reduction process summarised above. Of 
these two sub-problems and with further preference articulation, the three-objective 
sub-problem was able to provide an improved solution in comparison to the four-
objective sub-problem. 

A number of observations from this case study have relevance to higher dimen-
sional optimisation problems. Firstly, while this six-objective problem involved only 
one stage of objective reduction, it is possible that for problems with a larger number 
of objectives, the number of stages increases also. In such a scenario, the application 
of the clustering verification and objective reduction rules will become lengthy. A 
more compact form for these rules, which lends itself to being automated, would be 
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useful. Secondly, higher dimensional problems may require larger populations to 
provide effective search. Larger populations in more objectives may generate more 
clusters. Both place significant demands on computational efficiency. Parallel com-
puting is one approach to address this requirement. Finally, as the number of objec-
tives increases so does the number of PCs. A PCA on a larger number of objectives 
may reveal a finer gradation in the percentage of variation represented by the PCs. In 
other words, it may be possible that the threshold for selecting PCs could be varied 
slightly to retain a different number of PCs and potentially, a different degree of  
objective reduction. 

Acknowledgments. The first two authors are grateful to Ford Motor Company Lim-
ited for their resources and support to research, develop and apply this MOODM 
process. In addition, the authors appreciate the helpful and useful comments of the 
anonymous reviewers. 

References 

1. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & 
Sons, Chichester (2001) 

2. Fleming, P.J., Purshouse, R.C., Lygoe, R.J.: Many-Objective Optimization: An Engineer-
ing Design Perspective. In: Coello, C.A.C. (ed.) EMO 2005. LNCS, vol. 3410, pp. 14–32. 
Springer, Heidelberg (2005) 

3. Lygoe, R.J.: Complexity Reduction in High-Dimensional Multi-Objective Optimisation. 
Ph.D. thesis, University of Sheffield, Sheffield, U.K (2010) 

4. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Behavior of evolutionary many-objective opti-
mization. In: UKSIM 2008, pp. 266–271 (2008) 

5. Zou, X., Chen, Y., Liu, M., Kang, L.: A new evolutionary algorithm for solving many-
objective optimization problems. IEEE Transactions on Systems, Man, and Cybernetics, 
Part B 38(5), 1402–1412 (2008) 

6. Deb, K., Saxena, D.K.: Searching for Pareto-optimal solutions through dimensionality re-
duction for certain large-dimensional multi-objective optimization problems. In: CEC 2006 
(2006) 

7. Purshouse, R.C., Fleming, P.J.: Conflict, harmony, and independence: Relationships in 
evolutionary multi-criterion optimisation. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., 
Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 16–30. Springer, Heidelberg 
(2003) 

8. Yoshikawa, T., Yamashiro, D., Furuhashi, T.: A Proposal of Visualization of Multi-
Objective Pareto Solutions - Development of Mining Technique for Solutions. In: IEEE 
Symposium on Computational Intelligence in Multicriteria Decision Making (MCDM 
2007), pp. 172–177. IEEE Press, Honolulu (2007) 

9. Müller, H., Biermann, D., Kersting, P., Michelitsch, T., Begau, C., Heuel, C., Joliet, R., 
Kolanski, J., Krller, M., Moritz, C., Niggemann, D., Stber, M., Stnner, T., Varwig, J., Zhai, 
D.: Intuitive Visualization and Interactive Analysis of Pareto Sets Applied on Production 
Engineering System. In: Yang, A., Shan, Y., Bui, L.T. (eds.) Success in Evolutionary 
Computation. SCI, vol. 92, pp. 189–214. Springer, Heidelberg (2008) 

10. Cheung, Y.M.: k*-Means: A New Generalized k-Means Clustering Algorithm. Pattern 
Recognition Letters 24(15), 2883–2893 (2003) 



646 R.J. Lygoe, M. Cary, and P.J. Fleming 

11. Rousseeuw, P., Van Driessen, K.: A Fast Algorithm for the Minimum Covariance Deter-
minant Estimator. Technometrics 41, 212–223 (1999) 

12. Carreira-Perpinan, M.A.: A Review of Dimension Reduction Techniques, Technical Re-
port CS-96-09, Dept. of Computer Science, University of Sheffield (1997) 

13. Fodor, I.K.: A survey of dimension reduction techniques, Technical report, Center for Ap-
plied Scientific Computing, Lawrence Livermore National Laboratory (2002) 

14. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, New York (2002) 
15. Hyvärinen, A.: Survey on Independent Component Analysis. Neural Computing Sur-

veys 2, 94–128 (1999) 
16. Morrison, A., Ross, G., Chalmers, M.: Fast Multidimensional Scaling through Sampling, 

Springs and Interpolation. Information Visualization 2(1), 68–77 (2003) 
17. Kohonen, T.: Self-Organizing Maps. Springer, Berlin (1995) 
18. Kambhatla, N., Leen, T.K.: Dimension reduction by local principal component analysis. 

Neural Computation 9(7), 1493–1516 (1997) 
19. Fonseca, C.M., Fleming, P.J.: Multiobjective Optimization and Multiple Constraint Han-

dling with Evolutionary Algorithms — Part I: A Unified Formulation. IEEE Transactions 
on Systems, Man, and Cybernetics, Part A: Systems and Humans 28(1), 26–37 (1998) 

20. Adra, S., Griffin, I., Fleming, P.J.: A Comparative Study of Progressive Preference Articu-
lation Techniques for Multiobjective Optimisation. In: Obayashi, S., Deb, K., Poloni, C., 
Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 908–921. Springer, Hei-
delberg (2007) 

21. Adra, S., Dodd, T.J., Griffin, I.A., Fleming, P.J.: A Convergence Acceleration Operator for 
Multiobjective Optimisation. IEEE Transactions on Evolutionary Computation 13(4), 825–
847 (2009) 

22. Filzmoser, P.: A multivariate outlier detection method. In: Seventh International Confer-
ence on Computer Data Analysis and Modeling, Minsk, Belarus, vol. 1, pp. 18–22 (2004) 

23. Deb, K., Saxena, D.K.: On Finding Pareto-Optimal Solutions Through Dimensionality Re-
duction for Certain Large-Dimensional Multi-Objective Optimization Problems, Technical 
Report 2005011, Kanpur Genetic Algorithms Laboratory (KanGAL), Indian Institute of 
Technology, Kanpur, India (2005) 

24. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic 
Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 
(2002) 



A Modular Decision-Tree Architecture for
Better Problem Understanding

Vineet R. Khare� and Halasya Siva Subramania

Diagnosis and Prognosis Group
India Science Lab, General Motors Global Research and Development

GM Technical Centre India Pvt Ltd, Creator Building, International Tech Park Ltd.
Whitefield Road, Bangalore - 560 066, India

{vineet.khare,halasyasiva.subramania}@gm.com

Abstract. In this paper, we propose a sequential decomposition method
for multi-class pattern classification problems based on domain knowl-
edge. A novel modular decision tree architecture is used to divide a
K-class classification problem into a series of L smaller (binary or multi-
class) sub-problems. The set of all K classes c = {c1, c2, . . . cK} is divided
into smaller subsets (c = {s1, s2, . . . sL}) each of which contains classes
that are related to each other. A modular approach is then used to solve
(1) the binary sub-problems (pi = {si, s̄i}) and (2) the smaller multi-
class problem si = {ci1, ci2, . . . cin}. Problem decomposition helps in a
better understanding of the problem without compromising on the clas-
sification accuracy. This is demonstrated using the rules generated by
the C4.5 classifier using a monolithic system and the modular system.

Keywords: Problem Decomposition, Decision Trees, Confusion matrix,
Multi-class Classification.

1 Introduction

With the growth in complexity of the electrical architecture in automobiles,
fault diagnosis is gaining more and more importance in the automotive domain.
Generic diagnostic data includes standard (OBD-II government regulations [2])
and manufacturer specific diagnostic trouble code (DTC) definitions and diag-
nostic Parameter Identifier (PID) lists. DTCs are binary logic check points in
a vehicle’s electrical architecture to indicate out-of-threshold range behavior in
circuits, their connections and circuit components. The various physical parame-
ters or sensors that monitor the state of the vehicle at any given instance of time
are called PIDs. The PIDs are the parametric values representing the state of the
vehicle at the instance when a DTC is set. The PID to DTC mapping logic for
every DTC is embedded in the vehicle’s Electronic Control Units (ECUs) and is
also partly reflected in the service manual. However, with increasing complexity
of the on-board electrical system and common PIDs involved in various DTCs,
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the generic PID to DTC mapping is non-trivial. The knowledge of this generic
mapping can help the design experts validate the system design and discover
anomalies.

In this paper we analyze the PID-DTC mapping for a specific vehicle sub-
system, as a case study, to demonstrate the sequential decomposition method for
multi-class pattern classification problems. Although, the overall 20-class classi-
fication task can be performed with reasonable accuracy using a C4.5 decision
tree [11], the resulting rules are too complex for human experts to comprehend.
In a physical sense, however, these rules should be much simpler. We argue that
the spatial interference between the PIDs are causing the rules to be complex.
We propose a modular system architecture (Sect. 3) that reduces the interfer-
ence between the PIDs and produces simpler rules without compromising on the
classification accuracy (Sect. 4). A brief background on the relevant literature is
presented in Sect. 2.

2 Background

Problem decomposition can be viewed as the process of discovering any in-built
structure in the given problem. It involves three steps [7]: (1) Decomposition
(decomposing a complex problem into smaller and simpler problems), (2) Subso-
lution (designing modules to solve these simpler problems) and (3) Combination
(combining these individual modules into a solution to the original problem).
The optimal decomposition for a problem depends on the associated objective.
For instance, for a classification problem one might try to decompose the prob-
lem such that the classification accuracy on the overall task or the robustness
towards noisy data can be improved. There are different types of problem de-
compositions [7] available in machine learning literature, including parallel and
sequential problem decompositions. The best decompositions corresponding to
these objectives might not always match with the in-built structure of the prob-
lem. There are various benefits of problem decomposition discussed, especially,
in machine learning literature. Examples of these include, learning speed, min-
imizing spatial interference between features [5], minimizing forgetting (tempo-
ral interference), efficient learning of related tasks [6] and better generalization.
However, it is also argued [3] that by using efficient learning algorithms and
sophisticated cost functions many of these advantages can be accounted for even
with a non-modular architecture.

In this work we present a modular approach to solve a multi-class classification
problems and explore the benefits of problem-structure-based decomposition for
a better understanding of the problem. For interpretability we are constrained to
use decision trees, rules from which can be understood by a human. Most of the
modular approaches to the multi-class classification problems primarily involve
artificial neural network (ANN) learning [1,4,9]. The multi-class classification
problems are divided based on the inherent class relations among the training
data. In [1,4] a K-class classification problem is divided into K two-class classi-
fication problems by using the class relations. In [9], it is divided into a series of
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K
2

)
binary classification problems. These binary classification problems are to

discriminate class ci from class cj for i = 1, 2, . . . , K and j = i+1 with using only
the data specific to the two classes. Each of the binary classification problem is
learnt in parallel using ANNs. The output of each of the ANN is then combined
using a min-max modular network (refer to the paper [9] for details). Although
these approaches highlight the benefits of problem decomposition, they have lim-
ited applications in domains where interpretability is of crucial importance. For
this reason, we prefer decision trees over ANNs for the classification tasks. In
addition to interpretability, decision trees (in particular C4.5 [11] used in this
study) can also handle nominal data and provide rapid classification [12].

3 Sequential Problem Decomposition

Using problem decomposition we aim to reduce spatial interference among the
attributes and obtain classification rules which are easier to understand com-
pared to the rules obtained from the monolithic system. Following are the steps
involved in the problem decomposition.

3.1 Related Classes Based on Domain Knowledge

First and the most crucial step in problem decomposition is to divide the K-
class classification problem into a series of L smaller (binary or multi-class)
sub-problems. The set of all K classes c = {c1, c2, . . . cK} is divided into smaller
subsets (c = {s1, s2, . . . sL}) each of which contains classes that are related to
each other. This can be done in consultation with domain experts or using other
sources of domain knowledge (e.g. service manuals used in Sect. 4.2). Separat-
ing related classes into different groups helps in reducing interference between
attributes. Each sub-problem is solved in a sequence using a separate module.

3.2 Ordering of the Modules

The very first module receives all the data and classifies the first set of classes s1
against the rest s̄1. Let the set of instances classified, by module 1, as s1 be S1
and s̄1 be S̄1. The second module receives only S̄1 as input. Out of these ‖S̄1‖
instances, module 2 classifies s2 against the rest s̄2. In general, module i receives
‖S̄i−1‖ as inputs and classifies si against the rest s̄i (Fig. 1). The ordering of sub-
problems is a design issue and a greedy heuristic approach is used in this work.
While deciding the ordering, two objectives can be considered – (1) classification
accuracy and (2) module complexity. In the current implementation, at every
step, one module is chosen that has the highest classification accuracy (si against
s̄i). For further enhancements a weighted sum of classification accuracy and
module complexity (measured in terms of module structure – e.g. size of C4.5
tree in Sect. 4.3) needs to be considered as the objective function for the module
orderings. Initially the first module is supplied with the complete dataset. For
subsequent modules (i), the input data is derived from the previous module
(‖S̄i−1‖ instances from module i − 1).
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Fig. 1. Proposed modular architecture representing sequential problem decomposition

3.3 Module Design

Each module has to perform two classification tasks. The first task (binary) is
to classify all instances belonging to si against s̄i from all the input instances
received from the previous module. The second task (binary or multi-class) is
to identify individual classes cik from the subset of classes si = {ci1, ci2, . . . cin},
where k ∈ {1, 2, . . . n}. The design of module i is illustrated in Fig. 2 and the
two classification tasks are discussed below.

Fig. 2. Schematic illustrating the design of Module i in the proposed modular archi-
tecture (Fig. 1)

Inter-set Classification Task – The classifier receives ‖S̄i−1‖ instances from
module i−1, performs the binary classification task and produces a confusion
matrix [8] with the following:
– True positives (Nii in Fig. 2) – Instances correctly classified as si and

are passed on to the intra-set classification task.
– False positives (Nji in Fig. 2) – Instances incorrectly classified as si and

and are passed on to the next module1 (module i + 1).
1 While testing, outputs of test instances are not known. Hence all instances classified

as si (Nii + Nji) are passed on to the intra-set classification task.
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– False negatives (Nij in Fig. 2) – Instances incorrectly classified as s̄i and
are ignored2.

– True negatives (Njj in Fig. 2) – Instances correctly classified as s̄i and
are passed on to the next module (module i + 1).

Intra-set Classification Task – The classifier receives Nii instances from the
intra-set classification task and predicts individual classes cik from the subset
of classes si = {ci1, ci2, . . . cin}.

4 Results and Discussion

In this section we compare a monolithic solution (Sect. 4.1) with the modu-
lar solution (Sect. 4.2) for a PID-DTC classification problem (described here).
The modular solution is obtained using the problem decomposition presented in
Sect. 3 and the monolithic solution is obtained using the standard C4.5 decision
tree algorithm. For the vehicle sub-system chosen for this study, there are 387
PIDs which represent the state of the vehicle subsystem that can set one or
more of 20 DTCs. Out of the 387 PIDs, only 221 have non-constant values in
the dataset chosen for this study. Hence the rest of the PIDs are ignored. Out of
the 221 PIDs used in the study, 141 are nominal and 80 are numeric attributes.
There are 7, 340 instances in the training dataset and 3, 343 instances in the test-
ing dataset. The DTC class distribution of the training and the testing datasets
are shown in Fig. 3.

Fig. 3. Class distribution for the PID-DTC Classification Problem. Symbol D** rep-
resents DTC**

4.1 The Monolithic Solution

For the given problem and the nature of the data, decision trees are an obvious
choice for variety of reasons: a mixture of numeric and nominal data, inter-
pretability and rapid classification [12]. Hence we choose C4.5 [11] classifier as
our monolithic solution. The implementation of C4.5 in WEKA [13], a data
mining software, is used in this work. For C4.5, multi-way splits are used for
nominal data. Pruning is performed, including the sub-tree raising option. The
confidence factor c for pruning is decided based on a set of experiments with
2 For testing all instances classified as s̄i (Nij +Njj) are passed on to the next module.
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Fig. 4. (a) Parameter Setting for the confidence factor c related to the decision tree
pruning. 10-fold cross-validation and testing dataset’s classification accuracy for differ-
ent c are plotted. s indicates the size of corresponding pruned tree. (b) and (c) Discov-
ering the minimum number of attributes required for the PID-DTC classification task.
The two plots show various tree sizes and classification accuracies corresponding to dif-
ferent number of attributes. Significant attributes are chosen based on the chi-squared
statistic with respect to the class.

various c values. Lower values of c result in higher pruning and smaller decision
trees. Figure 4(a) shows the 10-fold cross-validation classification accuracy using
all 221 attributes. From the figure it is evident that c = 0.1 is a good choice
for the confidence factor which provides a good classification accuracy and a
reasonable size tree.

The attribute/feature selection for the classification is another design choice.
Experiments with various number of attributes were carried out using top natt

significant attributes based on the chi-squared statistic with respect to the class
on the training dataset. Various tree sizes and classification accuracies corre-
sponding to different choices of natt are shown in Fig. 4(b) and 4(c), respectively.
Using more than 150 attributes does not provide any improvement in classifica-
tion accuracy. In addition, the number of nodes in the resulting trees for 150 and
more attributes also stabilizes at 150. For this reason we choose only the top 150
attributes for the classification task. The corresponding confusion matrix and
the classification accuracies are presented in Tables 1 and 3, respectively.

4.2 The Modular Solution

The first step in the modular solution to the PID-DTC classification problem is
to divide the whole set of 20 DTCs into subsets, each containing related classes.
This is done using domain knowledge obtained using the service manuals associ-
ated with each DTC. These manuals indicate which PID values should influence
the DTC in question. In addition, the DTC descriptions (e.g. DTC P0496: Evapo-
rative Emission (EVAP) System Flow During Non-Purge and DTC P0446: Evap-
orative Emission (EVAP) Vent System Performance [10]) also help in identifying
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Table 1. Confusion matrix for the monolithic model (test dataset). Symbol D** rep-
resents DTC**

Classified As

D
01

D
02

D
03

D
04

D
05

D
06

D
07

D
08

D
09

D
10

D
11

D
12

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

Class
483 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 3 0 0 D01
3 72 0 0 0 0 1 0 8 11 11 0 0 0 0 0 0 0 0 0 D02
0 0 53 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D03
1 0 0 439 2 0 0 0 0 3 0 0 5 3 0 0 0 0 0 0 D04
0 0 0 3 405 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 D05
0 0 0 0 1 12 0 0 0 0 0 0 1 0 0 0 0 0 0 0 D06
0 0 0 1 3 0 406 3 0 0 0 0 0 0 0 0 0 0 0 0 D07
0 0 0 0 1 0 232 184 0 0 0 0 1 0 0 0 0 0 0 0 D08
1 1 0 0 0 0 0 0 76 9 6 0 1 0 0 0 0 0 0 0 D09
0 14 0 4 1 0 0 4 8 234 13 0 5 3 0 0 0 0 0 0 D10
0 4 0 0 0 0 0 0 2 10 103 0 1 0 0 0 0 0 0 0 D11
0 0 0 1 0 0 0 1 0 0 0 139 6 0 0 0 0 0 0 0 D12
0 8 0 20 0 5 0 0 1 0 1 4 153 8 0 0 0 0 0 0 D13
0 0 0 3 0 0 0 1 0 4 0 1 17 35 0 0 0 0 0 0 D14
9 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 1 0 0 D15
0 3 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 D16
0 1 0 0 0 0 0 0 3 1 2 0 0 0 0 0 2 0 0 0 D17
2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 26 0 0 D18
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D19
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 D20

related DTCs. Descriptions of P0446 and P0496 suggest that both are related to
the EVAP system and should be related. Based on this domain knowledge, the
set of 20 DTCs are divided into eight subsets (si where i ∈ {1, 2, . . . , 8}; refer to
column 2 in Table 2 for details). These subsets represent the sub-problems in the
decompositions. Eight modules are then used in a sequence (obtained using the
ordering presented in Sect. 3.2) to solve each of these sub-problems. As discussed
in Sect. 3.3, each module i performs two classification tasks – inter-set classifica-
tion and intra-set classification. Inter-set classification identifies instances specific
to all si DTCs. Whereas intra-set classification identifies DTCs within si.

The confusion matrices for both inter and intra-set classification tasks are listed
in Table 2 for the testing dataset. Confidence factor of c = 0.1 was used in all the
modules. Correctly classified instances from all intra-set classification tasks are
collected to obtain the classification accuracy for the overall classification task.
The incorrectly classified instances (both inter and intra-set classification tasks)
contribute to the overall error. Using the modular solution, we have observed im-
provement in classification accuracy (Table 3). This, however, was not our primary
objective. In Sect. 4.3 we will compare the classification rules generated for each
DTC from the monolithic and modular solutions to explain how the modular so-
lution helps in a better understanding of the PID-DTC mapping.
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Table 2. Confusion matrices for the Modular model. Symbol D** represents DTC**

Module Module Inter-set Classification Intra-set Classification
Index (i) DTC Set (si) Classified As Class Classified As Class

1 D06 s1 s̄1 D06 D07 D08
D07 840 5 s1 11 0 0 D06
D08 6 2492 s̄1 0 409 4 D07

0 238 184 D08
2 D03 s2 s̄2 D03 D05

D05 464 2 s2 53 1 D03
4 2027 s̄2 1 413 D05

3 D01 s3 s̄3 D01 D04
D04 933 18 s3 504 22 D01

31 1047 s̄3 0 438 D04
4 D12 s4 s̄4

143 4 s4

10 908 s̄4

5 D09 s5 s̄5 D09 D15 D18 D20
D15 119 13 s5 91 4 3 0 D09
D18 17 763 s̄5 0 10 2 0 D15
D20 1 3 22 0 D18

0 0 0 0 D20
6 D02 s6 s̄6

85 18 s6

24 649 s̄6

7 D11 s7 s̄7 D11 D13 D16
D13 281 10 s7 100 2 5 D11
D16 29 347 s̄7 10 189 1 D13

2 1 0 D16
8 D10 s8 s̄8 D10 D14 D17 D19

D14 308 0 s8 257 4 0 0 D10
D17 49 0 s̄8 45 45 0 0 D14
D19 0 0 6 0 D17

0 0 0 0 D19

Table 3. Classification accuracies on training and testing datasets for the monolithic
and modular models

Dataset Classification Accuracy
Size Monolithic Model Modular Model

Training Set 7, 430 89.81% 92.69%
Test Set 3, 343 84.62% 88.54%

4.3 Benefits of Problem Decomposition

There are three benefits of the problem decomposition observed in this work
– (1) Better classification accuracy; (2) Better problem understanding and (3)
More flexible system design.
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Table 4. Number of PIDs required for various DTC classification rules. Symbol D**
represents DTC**

Number of PIDs Number of PIDs Number of PIDs
Classes Modular Monolithic Classes Modular Monolithic Classes Modular Monolithic
D01 11 19 D08 6 6 D15 8 16
D02 22 44 D09 6 29 D16 7 16
D03 6 11 D10 13 43 D17 10 13
D04 12 21 D11 8 37 D18 8 10
D05 7 16 D12 5 10 D19 10 9
D06 6 19 D13 7 31 D20 6 7
D07 6 14 D14 13 27

1. The classification accuracy improved from 84.62% (monolithic solution) to
88.54% (modular solution) on the testing dataset. This however is not the
major benefit of decomposition. Of greater significance here is that the ben-
efit in terms of better problem understanding (see below) is realized without
compromising on the classification accuracy.

2. Using the trees generated from the monolithic and modular solutions, rules
are generated in the form of

OR

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

AND(p11, p12, . . . , p1i, . . .),
AND(p21, p22, . . . , p2i, . . .),

. . .
AND(pj1, pj2, . . . , pji, . . .),

. . .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

→ DTCk,

where pji is a boundary condition on PID pi. Table 4 lists the number of
distinct PIDs required for various DTC classification rules. Lower numbers
imply simpler rules. For 18 out of 20 DTCs, the modular solution provides
smaller simpler rules, thereby helping domain experts understand the PID-
DTC mapping better. The other two DTCs – DTC08 has the same number
of PIDs, whereas DTC19 has one additional PID in the classification rule.

3. Decomposing the problem also provides more flexibility in terms of system
design. Separate modules can be designed as per the requirements of the sub-
problems. This is not possible with the monolithic system. Example of this
flexibility is the number of PIDs used for various sub-problems. Although,
in all instances top 150 attributes are used, however, this number can be
chosen based on the sub-problem being solved.

5 Conclusion

A modular approach to multi-class classification problems is presented. Prob-
lem decomposition is achieved using the domain knowledge about the problem.
It is argued that using the modular approach the spatial interference between
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attributes is reduced. This results in a much better understanding of the origi-
nal problem and the sub-problems. The PID-DTC classification problem is used
to illustrate the benefits of problem decomposition. These include, better clas-
sification accuracy, better problem understanding (much simpler classification
rules compared to rules obtained without the decomposition) and a much more
flexible system design.
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Abstract. In this paper an application of conventional Particle Swarm Optimi-
zation (PSO) approach with alternative neighborhood topologies is proposed for 
the design of virtual manufacturing cells within which machines and jobs are 
assigned to the cells with a view to maximize productive output, whilst simulta-
neously minimizing the inter-cell movements due to the limited availability of 
machines. The PSO results are then compared with the following approaches: 
Binary PSO (BPSO) and Preemptive / Lexico Goal Programming. It is observed 
that the PSO topological variants perform well for the assumed VCM design 
problem. 

Keywords: Virtual Cellular Manufacturing Design, Particle Swarm Optimiza-
tion, Neighborhood Topologies. 

1   Introduction 

The present day manufacturing environment is characterized by profusion in product 
variety, exacting standards of quality, and a relentless pursuit to reduce costs to ward 
of competition. Cellular manufacturing (CM) has often been touted as the panacea by 
operations managers in the light of the above manufacturing dilemma. As a well es-
tablished manufacturing paradigm, CM is known to offer notable advantages, includ-
ing the reduction in setup times on account of the similarity between the part types 
produced within the constituent manufacturing cells, together with a reduction in lead 
times and work-in-process inventories [1]. 

However, although CM offers important advantages, there are other reasons why 
several firms prefer the (conventional) functional layout. In contrast to the cellular 
layout, the functional layout (FL) is more robust to changes in product mix, and also 
offers a degree of routing flexibility which may improve shop performance signifi-
cantly [2][3][4]. 

Clearly then, both functional and cellular layouts have their respective advantages 
and disadvantages. With a view to harness the potential benefits of both CM and FL 
systems, the recent years have seen the introduction of virtual cellular manufacturing 
systems [2]. 
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The virtual cells are a logical grouping of workstations which is only present in the 
planning and control system and in the minds of workers. Virtual cells are created 
periodically in response to changes in demand, and this imparts VCM systems their 
characteristic dynamic nature. Nomden et al. [2] provide a detailed account of the 
motivation for pursuing a VCM philosophy as a viable manufacturing option in the 
present day turbulent environment.  

Slomp et al. [3] propose a general mathematical model for the design of virtual 
manufacturing cells, with a view to optimize productive throughput and minimize 
inter-cell dependencies. They indicate the various objectives and constraints that play 
a role in the design of virtual cells. In order to serve the solvability of the problem, 
they have partitioned the general model into two Integer Programming (IP) problems 
to be solved in successive stages. They propose Preemptive / Lexico Goal Program-
ming to solve both problems and illustrate the applicability of this approach by means 
of a small illustrative example. Although the example problem can be solved, the 
required computing time also indicates the NP-hardness of both sub-problems. Most 
IP problems are NP-hard and heuristic approaches are needed to solve reasonably 
sized problems. In this paper, we suggest an optimization methodology based on the 
PSO approach, which is a metaheuristic search procedure to solve this VCM design 
problem. We illustrate the performance of our solution method by solving the first 
sub-problem presented by Slomp et al. [3]. We compare results obtained by the con-
ventional PSO, with the Binary PSO (BPSO) and the Preemptive / Lexico Goal Pro-
gramming proposed by [3]. Performance criteria concern the model objectives and, 
for the PSO algorithms, the number of iterations needed to gain the proposed solution.  

The paper is organized as follows. Section 2 details the mathematical formulation 
for VCM design model considered. Section 3 provides an overview of swarm optimi-
zation techniques which comprise the conventional Particle Swarm Optimization 
(PSO) and its neighborhood topological variants (Star topology, Ring topology, and 
the Von Neumann topology,) and the Binary PSO (BPSO) method. Section 4 presents 
the PSO algorithm for the VCM design problem and provides details of the assumed 
experimental setup. In Section 5 we present results and conclude the paper. 

2    Problem Definition 

In this paper, we apply the problem definition presented in [3] for the assignment of 
jobs, machines, and a number of workers to the Virtual Cells. Consider a set of jobs, 
denoted by the index set {I}, which has to be produced in the upcoming planning 
period. Each job requires processing on various machine types. The required process-
ing time for job i on machine type m is given by Tim. Each job belongs to a family of 
part types. The set of jobs (i ∈ I) belonging to family f is given by Jf. The setup time 
needed for family Jf  on machine m is given by Sfm, and only one machine setup is 
needed if two or more jobs of the same family are manufactured sequentially on the 
same machine. The available number of machines of type m in the shop is denoted by 
θm, and the number of workers present in the shop at each moment in time is L. Work-
ers are needed to operate the machines and to handle the setups. Table I provides 
details of the assumed symbols used in the model. 
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Table 1. VCM design model inputs & outputs 

Inputs 

i  
f 
m 
c 
θm 

Sfm 

Tim 

Jf 

R 
L 
α 
MAXW 
MINW 

Job index: i = 1,2,..I (set of all jobs) 
Family index: f = 1,2,..F (set of all families) 
Machine type index: m = 1,2,..M (set of all machine types) 
Cell index: c=1,2,..C (set of all cells) 
Number of type m machines available in the system 
Major setup time required for family f on machine type m 
Processing time for job i on machine type m 
Set of jobs belonging to family f 
Length of planning period 
Number of available workers 
Setup factor indicating the ineffectiveness to reduce the need for setups 
Maximum size of a virtual cell, as the number of full-time-equivalents (FTEs) 
Minimum size of a virtual cell, as the number of  full-time-equivalents (FTEs) 
 

Important outputs (decision variables) 

xic 
yicm 
zfcm 
nnmc 
Tcm 

 
wc 
 
vm

+ 
vm

- 

Allocation of job i to cell c 
Allocation of job i to cell c on machine m 
Allocation of family f to cell c on machine m 
Number of type m machines needed for cell c  
Time needed to complete the jobs assigned in cell c on machine m (including setup 
times) 
Number of full-time-equivalent workers (FTEs)  needed to perform the  
operations in cell c 
Number of machines of type m needed in more than one cell 
Number of machines of type m not needed in any cell 
 

 
It is the objective to create efficient Virtual Manufacturing Cells which are as inde-

pendent as possible during the planning period R. Cells are independent if they are 
able to perform all operations needed for a set of jobs without the need to use the 
same machine stations. Jobs belonging to the same part family are ideally assigned to 
the same VMC in order to enable dedication and setup time savings. This can be real-
ized by focusing on maximizing the total processing time assigned to the VMCs, 
given the available capacity of machines and workers.  

Following the problem description, Slomp et al. [3] developed the following goal 
programming model formulation:   

 
Maximize Z =  Π1 ΣiΣcΣm (Tim xic )  - Σm  Π2m vm

+  + Σm  Π'
2m

 vm
-       (1) 

Subject to: 
Σc xic ≤  1, ∀  i                                                  (2) 
Tim xic ≤  Ω  yicm , ∀  i, c, m                                                                                (3) 
ΣiεJf  yicm ≤  Ω  zfcm, ∀  f, c, m                                                                                (4) 
LBfcm= zfcm , ∀ f, c, m                                                                                (5) 
UBfcm= ΣiεSf yicm, ∀ f, c, m                                                                                (6) 
Tcm = [Σi Timyicm+Σf (LBfcm+α(UBfcm-LBfcm))Sfm], ∀c, m                                      (7) 
Tcm  ≤  nmc R,  ∀ c, m                                                                              (8) 
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Σcnmc ≤ θm,  ∀  m                                                                                            (9) 
nmc   ≤  nnmc ,    ∀  m, c                                     (10) 
Σc nnmc   ≤   θm    + vm

+
 - vm

+
 , ∀  m                                                 (11) 

Σm  Tcm  ≤ wcR, ∀ c                                                                             (12) 
Σc wc ≤  L                        (13) 
wc ≤ MAXW, ∀  c                                                                                           (14) 
wc ≥ MINW , ∀  c                                                                                           (15) 
xic, yicm and zfcm are 0/1 variables ∀ i, c, f,  m  
nnmc , Wc, vm

+
 , vm

+
 , LBfcm, and UBfcm are integer variables ∀ c, m, f  

nmc is a real variable ∀ m,c  
 

The objective function consists of three terms, one for each of the following objectives: 

1. Maximize productive output, in terms of machining hours (as opposed to non-
value-added time caused by machine setups and imbalances) processed in virtual 
cells in release period R. The parameter Π1 indicates the importance of this  
objective. 

2. Minimize total number of additional machines of type m needed for creating 
independent virtual cells. This objective implicitly minimizes the extent of 
intercell movements. The parameter Π2m  reflects the importance this objective.  

3. Maximize the number of machines that are not needed in any cell. The more 
machines in the virtual cells, the more difficult it will be to allocate workers to 
only one cell and to gain sufficient machine coverage of all machines. The pa-
rameter Π3m  reflects the importance this objective. 

Constraint (2) in the formulation ensures that each job will maximally be assigned to 
one virtual manufacturing cell. Constraint (3) ensures that a machine m is assigned to 
cell c if needed for job i (yicm). Constraint (4) determines whether or not a machine of 
type m is needed in cell c for the processing of jobs belonging to family f (zfcm). The 
values of yicm and zfcm are needed to determine the lower bound (LBfcm) and the upper 
bound (UBfcm) of the number of setups to be performed on a machine of type m at cell c 
for family f. This is done in constraints (5) and (6). The lower bound (LBfcm) equals 1 if 
one or more jobs of family f require an operation on a machine of type m in cell c. The 
upper bound (UBfcm) equals the total number of jobs of family f that has to be produced 
on a machine of type m in cell c. The required number of setups will lie between LBfcm 
and UBfcm. Here the parameter α is introduced in the model which indicates the ability 
to schedule jobs of the same family sequentially on a machine within a cell (0 ≤ α ≤ 1).  
If α = 0 then the workers are not able to realize any sequence of jobs belonging to the 
same family. If α = 1 then the workers are able to realize maximal setup time savings 
within the VMCs. The value of α need to be fixed before solving the model. It is con-
ceivable that α is larger in case of smaller VMCs. Constraint (7) calculates the total time 
tcm needed at each VCM. This total time includes processing times (Tim) and setup times 
(Sfm). Constraints (8) to (10) concern the division of machine capacity among the 
VMCs. Constraint (8) takes care of sufficient capacity of type m machines for cell c. 
Constraint (9) concerns the limitation of the available capacity of machine type m.  
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Constraint (10) ensures that the integer number of type m machines needed in cell k 
exceeds the real (fractional) number of required type m machines in cell k.  This integer 
number (nnmc) is needed to calculate the excess of machines and/or the need to share 
machines between VMCs. This is done in constraint (11). Constraint (12) determines 
the minimal number of workers needed in cell c. Constraint (13) takes care of the num-
ber of available workers in the whole system. Constraints (14) and (15) limit the cell 
size by means of the number of FTEs.  

The above model is solved in this paper by using the PSO algorithmic procedure 
and its topological variants detailed in the Section 3. The PSO results are then  
compared with those obtained using the Binary PSO approach. We also compare the 
results with those obtained in [3]. 

3   The PSO Approach and Its Variants 

This section presents a brief description of the conventional PSO and its topological 
variants, as well as the Binary PSO approach. 

3.1    Particle Swarm Optimization  

Particle Swarm Optimization (PSO) was initially proposed to find optimal solutions 
for continuous space problems by Kennedy and Eberhart [5]. In the PSO approach, 
search starts with a randomly generated population of solutions called the swarm of 
particles in a d-dimensional solution space. Particle i is represented as Xi = 
(xi1,xi2,…..,xid) which is called the position of the particle i  in the d-dimensional 
space. With every particle i is associated a velocity vector Vi = (vi1,vi2,…..,vid) that 
plays an important role in deciding the next position of the particle and is updated at 
each iteration. For updating the velocity of each particle, the particle’s best position, 
Pibest=(pi1,pi2,…..,pid) which is the best position of particle i achieved so far, together 
with the global best position,  Pgbest=(pg1,pg2,….pgd) which is the best position of the 
entire swarm achieved so far by any particle of the swarm, are used. The following 
equations are used to update the velocity and position of particle i in iteration t+1 
using values obtained through iteration t. 

Vi(t+1)=wVi(t)+c1ϕ1(pibest-Xi(t))+ c2ϕ2(pgbest-Xi(t))                                        (16) 
Xi(t+1)=Xi(t)+Vi(t+1)                                                                   (17) 

In equation (16), w is the inertia weight which controls the impact of the previous 
history of velocity on the global and local search abilities of the particles, while c1 and 
c2 are the positive learning constants which determine the rate by which the particle 
moves towards an individual’s best position and the global best position respectively. 
Usually, c1 and c2 are chosen in a way so that their sum doesn’t exceed the value ‘4’. 
If it does exceed that value at any instant, then both the velocities and positions, will 
explode toward infinity. ϕ1 and ϕ2 are random numbers drawn from a uniform prob-
ability distribution between (0,1). Using the above update equations, the positions and 
velocities of the constituent (swarm) particles evolve at each subsequent iteration until 
the optimal solution is obtained or some termination criterion is achieved. 
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3.2   Neighborhood Topologies  

In equation (16), the term ‘c2ϕ2(pgbest-Xi(t))’ is the social component (or social  influ-
ence) and represents the force emerging from the attraction of the best position found 
so far in the entire swarm. This model of the PSO in which a particle is attracted to-
wards the best position found in the entire swarm is also called the gbest PSO. This 
version of the PSO, however, is susceptible to premature and/or false convergence 
over multi-modal fitness landscapes [7, 8]. In order to overcome the problems faced 
with this gbest version of the PSO, a neighborhood is identified for each particle. The 
PSO is then modified so that the social influence is dictated by the best position found 
in the neighborhood of each individual. The relationship of influence is thus defined 
by a social network, which is called population topology [7]. Results in [7, 9] show 
that the performance of the PSO can be improved using different neighborhood to-
pologies and different topologies perform differently on a given problem. 

The most common topologies used with PSO are Star Topology (ST), Ring Topol-
ogy (RT), and the Von Neumann Topology (VNT) [7, 8]. Fig. 1 shows these topology 
structures. The ST is simply the gbest model in which the entire population comprises 
the neighborhood.  In other topologies such as the RT and VNT the neighborhood is 
some smaller portion of the swarm. In RT each particle is connected with two other 
particles while in the VNT each particle is connected with four other particles in a 
cubic type lattice. 

                          

Fig. 1. The standard neighbourhood topologies (Star, Ring, and Von Neumann) 

3.3   Binary Particle Swarm Optimization 

Kennedy and Eberhart [6] introduced the binary particle swarm optimization (BPSO) 
algorithm in 1997. In this version of the PSO, every particle is represented by a bit 
string, and each bit in turn is associated with a velocity which is the probability of 
changing the bit to 1. Particles are updated bit by bit and, in contrast to PSO, in the 
BPSO the velocity must necessarily be restricted within the range [0,1]. If P is the 
probability of changing a bit from 0 to 1, then this probability can be represented as 
the following function:  

),),1(),(()1)(( gdidididid pptvtxftxP −==
 

where, P(xid=1) is the probability that an individual particle i will choose 1 for the bit 
at the dth site in the bit string, xid(t) is the current state of the particle i at bit d,  vid(t-1) 
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is a measure of the string’s current probability to choose a 1, pid is the best state found 
so far for bit d of individual i, (i.e., a 1 or a 0), pgd is 1 or 0 depending on what the 
value of bit d in the global best particle is.  

The most commonly used measure for f is the sigmoid function which is defined 
as follows: 

)(id
1

1
))(f(v

tvide
t −+

=
 

where, 

            
))1()(())1()(()1()( 21 −−+−−+−= txptxptwvtv idgdidididid ϕϕ

                           
(18)

 

Equation (18) gives the update rule for the velocity of each bit, where ϕ1 and ϕ2 are 
random numbers drawn from a uniform distribution such that their sum is four. The 
vid value is sometimes limited so that f does not approach 0.0 or 1.0 too closely. In this 
case, constant parameters [Vmin, Vmax] are used. When vid is greater than Vmax, it is 
set to Vmax and if vid is smaller than Vmin, then Vid is set to Vmin. This simply limits 
the ultimate probability that bit xid will take on a zero or one value. A higher value of 
Vmax makes new vectors less likely. Thus Vmax in the discrete particle swarm plays 
the role of limiting exploration after the population has converged [6], i.e., it can be 
said that Vmax controls the ultimate mutation rate or temperature of the bit vector. 
Smaller Vmax leads to a higher mutation rate [6].  

4   PSO Implementation Details for VCM Design 

The applicability of the PSO (and BPSO) algorithm(s) for the design of virtual manu-
facturing cells is now described.  

4.1   PSO VCM Design Algorithm 

The PSO (and BPSO) algorithmic procedure(s) for assigning jobs and machines to the 
virtual cells is described in the following steps. 

1. Choose an appropriate particle string (chromosome) representation for jobs as-
signments. 

2. Define the fitness function (numerically measures the closeness of the solution to 
the optimal solution) on the basis of the objective function and constraints (per 
equations (1) through (15)). 

3. Select suitable search parameters. 
4. Execute the PSO algorithm: 

a. Generate the candidate solutions. 
b. Check constraint violation; if the constraint is violated, repair candidate 

solution. 
c. Compute fitness.   
d. Update ‘self best’ and ‘global best’ particles. 
e. Update the state of the particle. 
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4.2    Experimental Setup  

To test the application of the suggested PSO procedure with its topological variants, 
we use the example problem detailed in [3]. The experiments are carried out for dif-
ferent combinations of number of virtual cells (1 & 3) and for α values (0 & 1.0). 

4.3   Implementation Details for BPSO and PSO Topological Variants 

In this model, jobs are assigned to the virtual cells using the PSO algorithm and the 
BPSO approach described above. Given that there is a pool of 12 jobs to be  
processed (see [3] for details), each cell can process at most 12 jobs in all. The 
chromosome length in case of the BPSO (which is a binary string) required for rep-
resentation is then computed as follows: Binary string length = (Number of Cells × 
Total number of jobs that a cell can process × Bits required to represent a job). Ac-
cordingly, the BPSO binary string length for the 1-cell, 2-cell, and 3-cell cases are 
respectively, 48, 96 and 144. The representation can be illustrated through Fig. 2. For 
the case of the PSO topological variants, the chromosome length is computed thus: 
(Number of Cells × Total number of jobs that a cell can process) because in this 
case, the chromosome is a chunk of real numbers instead of bits 0 or 1. Accordingly, 
the chromosome length for the 1-cell, 2-cell, and 3-cell cases are respectively, 12, 24 
and 36. 

 

 

Fig. 2. Binary string representation for job assignment in the 2-cell case 

The selection of the PSO algorithm’s parameters need to be carefully done as this 
may have a major impact on the convergence towards the optimal solution. Table 2  
 

Table 2.  PSO and BPSO Parameters 

Population size 50 
PSO Parameters 

Vmax, Vmin 6, -6 
Xmax, Xmin 12, 0 

c1, c2 2, 2 
BPSO Parameters 

Vmax, Vmin 1, 0 
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details the assumed parameters used for the PSO as well as the BPSO algorithm for 
the VCM design problem in this paper. 

Following the assignments of jobs into cells, the machines are next assigned into 
the cells using constraint (3) and then nnmc is computed. Next, using constraints (5), 
(6) and (7), the LBfcm, UBfcm and Tcm values are computed. It may be noted that the nmc 
values are then assigned in such a way that the constraints (8), (9) and (10) are not 
violated. To effect this, first the ratio (Tcm/R) is compared with nnmc. If (Tcm/R) be-
comes larger than nnmc then some additional machines of type m are assigned into cell 
c so as to increase the value of nnmc. As soon as the requirement that (Tcm/R≤ nnmc) for 
each of the formed virtual cells is ensured, then for each cell the nmc value is set equal 
to (Tcm/R). In this way the constraints (8) and (10) are satisfied.  

Now only wc values remain to be assigned in order to satisfy constraints (12), (13), 
(14) and (15). Constraints (12) and (14) require that (ΣmTcm /R ≤ MAXW) for all the 
cells and machines. If this does not happen then again a repair procedure ie effected 
by removing some jobs from cell c. Once this is done, then the wc values are assigned 
by taking the minimum of MINW and ΣmTcm /R. In this way the constraints (12), (14) 
and (15) get satisfied. Also, if constraint (13) gets violated for some cells then again 
some jobs are removed from the cell c in order to decrease the value of ΣmTcm /R and 
wc. Proceeding sequentially in this way, for each candidate solution, all the constraints 
are satisfied. 

After application of the repair procedure, the fitness value for each candidate solu-
tion is computed in order to estimate the solution quality obtained. For the VCM  
design problem at hand, the fitness value is computed by estimating the objective 
function value Z.  

5   Results and Conclusion 

The results obtained from the application of the conventional PSO algorithm with its 
alternative neighborhood topologies, as well as for the BPSO approach for the as-
sumed VMC design problem are detailed in Table 3. The table also contains the re-
sults reported in [3] (shown highlighted) obtained using the Preemptive / Lexico Goal 
Programming approach. It is seen that the PSO results compare well with the reported 
results in [3]. It was also observed that the PSO results were obtained very quickly 
(often in a few seconds) whereas those from the Goal Programming procedure some-
times took several hours when solved using the LINGO software package on a Intel 
Core 2 Duo CPU (2.4 GHz) PC. It is also interesting to note that for the 3-cell VCM 
design problem, the Goal Programming solution is not the general best. This may be 
explained by the fact that the solver used for implementing the Goal Programming 
approach applies a branch and bound methodology and that some of the presented 
solutions in [3] are intermediate results obtained after several hours of running on  
a PC.  

In conclusion, the PSO algorithm with its topological variants are efficient ap-
proaches for the VCM design problem that can easily be implemented within real-
world VCM-type manufacturing environments.  
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Table 3. Results for the PSO VCM design procedure  

No. 

of 

Cells 

 

Cell  

Size 

(Range) 

Applied 

Search  

Algorithm 

Required 

Iterations 
Z Jobs Assigned To Machines In Vm 

� � � � � � Cell 1 Cell 2 Cell 3 Cell 1 Cell 2 Cell 3 + - 

��� ��� 22�� 1,2,�,�,�,�,�,�,1�,11,12� � � 1,2,2,�,�,�,�,�,�� � � �� 1,�,��

����(�T)� 111� 22�� 1,2,�,�,�,�,�,�,1�,11,12� � � 1,2,2,�,�,�,�,�,�� � � �� 1,�,��

����(RT)� ��� 22�� 1,2,�,�,�,�,�,�,1�,11,12� � � 1,2,2,�,�,�,�,�,�� � � �� 1,�,��

����(��T)� ��� 22�� 1,2,�,�,�,�,�,�,1�,11,12� � � 1,2,2,�,�,�,�,�,�� � � �� 1,�,��

�

��

�

����� ����� 21�� 2,�,�,�,�,�,��,1���11��12� � � 1,1,2,2,�,�,�,�,�,�� � � �� �,��

��� ��� 1��� 1,2,�,�,�,�,�,1�� � � 1,2,2,�,�,�,�,�,�,�� � � �� 1,��

����(�T)� 1�� 1��� 2,��,��,��,��,��,�1�,�11� � � 1,2,2,�,�,�,�,�,�,�� � � �� 1,��

����(RT)� �� 1��� 2,��,��,��,��,��,�1�,�11� � � 1,2,2,�,�,�,�,�,�,�� � � �� 1,��
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Abstract. In order to reduce the amount of wasted energy in office lighting and 
provide a major contribution to lowering overall energy consumption, we are 
developing a new energy saving system for office lighting by using adjustable 
lamp, ZigBee Wireless Sensor Network (WSN) and Particle Swarm Optimiza-
tion (PSO).In this paper we make a prototype system which consists of one 
ZigBee control module, four fluorescent lamps with dimming capacity and three 
illumination sensors.The illumination sensors collect and send the data to the 
control module. After the PSO (Particle Swarm Optimization) process, the 
module finally sets the power of the lamps according to the PSO result. After real 
experiments in both sunny day and cloudy dayin a small-size office, it was 
proved that the system can successfully control the lights, and save considerable 
energy. 

Keywords: Office Lighting, Energy Saving System, PSO, ZigBee, Wireless 
Sensor Network. 

1   Introduction 

Nowadays, due to the shortage of energy resources and greenhouse effect, energy 
saving becomes an emergence subject all over the world. However, the demand of 
energy is still growing rapidly each year. So improving the energy efficiency becomes a 
core strategy for slowing down the growth of energy consumption.  

The amount of energy used from lighting varies from industry to industry but, typ-
ically, lighting accounts for approximately 15% of the electrical load in industry[1].  

As a major economic power which has the world's second-largest economy by no-
minal GDP and the third largest in purchasing power parity, Japan consumes more than 
900 billion kWh per year. And buildings are responsible for up to 40% of the total 
energy[2]. It is reported that lighting accounts for around 40% of the primary energy 
use in Japanese office buildings[3]. So energy saving for office lighting may be one of 
the most efficient ways to save the energy among all the electrical systems.  
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Fig. 4. Photos 

3.1   ZigBee Control Mod

The module is implemented
where the optimization algo
illumination sensors, proce
lamps. 

3.2   Illumination Sensor

When calculating the illumi
during each time, the senso
thus calculates the environm
and illumination from lumin

The sensor can be powe
position can be changed any

3.3   Fluorescent Lamp w

The fluorescent lamp is con
receive the power setting co
makes the lamp capable of
lamp is linear with the inpu

4   Experimental Ver

The experiments were taken
luminosity meter are used to
in the positions of sensors. A
used to record the sensor da
to ensure the enough lumino

The minimum dimming r
power.The initial dimming

for Office Lighting by Using PSO and ZigBee Network 

 

of ZigBee control module and illumination sensor 

dule  

d with the control program which is the core of the syst
orithm resides. It is responsible of receiving data from 
essing the optimization and issuing the commands to 

r 

ination coefficients, the lamps are turned off one by one, 
or gets the illumination contribution aij from each lamp 
mental illumination Ni according to the total illumination
naires aij: N E ∑ a  .                                   

red by both wired source and battery which means that
ytime thus makes the system more adaptable. 

with Dimming Capacity 

nnected with wireless equipment which enables the lamp
ommands wirelessly. There is also a dimming circuit wh
f changing luminosity continuously. The luminosity of 
ut power and cannot light below certain input power. 

rification 

n on both sunny day and cloudy day. Electricity meter 
o check the power consumption and the actual illuminat
And a data collecting device implemented in computer w

ata.In our experiments we set the target illumination 800 
osity. 
ratio for the luminaire to illuminate is 20% of the maxim

g ratio of each lamp in the experiments was 80% of 

671 

tem 
the 
the 

and 
and 
n Ei 

(4) 

t its 

p to 
hich 

the 

and 
tion 
was 
lux 

mum 
the 



672 W. Si et al. 

maximum power. Thus the 
~ 1.25(0.2/0.8=0.25 ~ 1/0.8

In our experiments, we s
PSO program, we set all the

The illumination contribu
the same as long as the posit
and fig.5 shows the changi
that the illumination coeffic

 

Fig. 5. Chang

According to the data in 
showed in fig.6. 

Fig

In the PSO program, the 
the memory shortage of th
times. 

The process took only ab
In order to see if the PS

only 100 times and record th
changing history of the seco

 

theoretical final dimming ratio setting for each lamp is 0
8=1.25). 
set the maximum final setting of the lamp 1.2. And in 
e positions 0 if they were less than 0.25. 
ution from one luminaire to one sensor will theoretically
tion has not been changed. It was proved in our experime
ng of the illumination coefficients in one day. We can 
cients were stable. 

 

ging of the Illumination Coefficients in One Day 

fig.5, we calculate the average illumination coefficie

 

g. 6. Average Illumination Coefficient 

number of particles was limited to 6 due to the limitation
e network control module. The optimization repeats 10

bout 3 seconds in each test. 
SO program works well, we do some pre-test which rep
he particle change history. Fig.7 shows the particle posit
ond particle in one pre-test. 

0.25 

the 

y be 
ents 
see 

ents 

n of 
000 

peat 
tion 



 Energy Saving System 

Fig. 7. Particle Positio

We can see from the gra
peating 26 times and the fin
lamp 4 were: 0 which meant

Fig.8 shows one exampl
sensor 2 and sensor 3 were 7
and lamp 2 were turned off,
about 1/3 of the original po
sensor 3 were 896 lux, 854 l
of the system was 148.8 w, 

 

Fig. 8. Ex

Fig.9 shows the nature il
cloudy day. The experimen
with the nature illumination
can save more energy). The
the weather is fine. The syst
the natural illumination is l
still save 10% of the energy

for Office Lighting by Using PSO and ZigBee Network 

 

on Changing History of the Second Particle in one Pre-test 

aph that the optimization reached the best solution after
nal dimming ratio settings for lamp 1, lamp 2, lamp 3 
t turned off, 0, 0.72, and 1.2 which was the maximum val
le of the experiment. The natural illumination of senso
772 lux, 479 lux and 251 lux. After the optimization, lam
, while lamp 3 was set 1.2, and lamp 4 was set 0.35 whic
ower. The controlled illumination of sensor 1, sensor 2 
lux and 888 lux. In this experiment, the power consumpt
and more than half of the energy (55.4%) was saved. 

 

xample of the experiment when all seats filled 

llumination and energy saving proportion on sunny day 
nt results prove that the energy saving proportion is lin
n (when there are higher natural illuminations, the syst
e system can save around 50% energy during daytime w
tem can save nearly 30% of energy during cloudy days w
low. When there is no nature illumination, the system 
y by avoiding useless illumination. 

673 

r re-
and 
lue. 

or 1, 
mp 1 
ch is 
and 
tion 

and 
near 
tem 

when 
hen 
can 



674 W. Si et al. 
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In order to improve the accuracy and efficiency of the system further, the program of 
illumination sensors should be modified to get more accurate data. Besides, the PSO 
program can be improved so the system can get better solutions. 

In the proposed prototype system, sensors in different positions share the same target 
illumination. However, different individuals may prefer different illumination condi-
tions. So in the improved system, changeable target illumination may be set for each 
sensor to meet various needs.  

Large-size offices may have more complicated configuration with much more lu-
minaires and sensors (seats) which increases the difficulty of optimization especially 
the calculation of illumination coefficients.  

In this prototype system, before each optimization, every lamp needs to be turned off 
one by one to let the illumination sensors to calculate the illumination coefficients. So 
every time the natural illumination change or occupancy condition change, this need to 
be done again. However, as proved in the system, the illumination coefficients stay the 
same as long as the position of the sensor is not changed, so the calculation of illumi-
nation coefficients will be meaningless. The sensors only need to measure the total 
illumination, and calculate the latest natural illumination according to the old data of 
illumination coefficients.So a database may be introduced to the system to store the 
coefficient and the history of sensor changing. 
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Abstract. A global supply chain spans several regions and countries
across the globe. A tremendous spurt in the extent of globalization has
necessitated the need for modeling global supply chains in place of the
conventional supply chains. In this paper, we propose a framework, Eco-
Supply, to analyze the supply chain ecosystem in a probabilistic setting
unlike the existing methodologies, which presume a deterministic con-
text. EcoSupply keeps track of the previous observations in order to
facilitate improved prediction about the influence of uncertainties in the
ecosystem, and provides a coherent mathematical exposition to construe
the new associations, among the different supply chain stakeholders, in
place of the existing links. To the best of our knowledge, EcoSupply is
the first machine learning based paradigm to incorporate the dynamics
of global supply chains.

Keywords: Supply Chains, Global Sourcing, Machine Learning.

1 Introduction

Global outsourcing has acquired a central role in the contemporary manufactur-
ing and service industries. Multinational companies invest at different locations
across the globe to gain competitive advantage by exploring new markets, avail-
ing cutting edge technology, and harnessing skills at sustainable costs. Therefore,
the need for making an effective decision regarding the selection of locations and
global business partners from a plausible set of candidates can not be overem-
phasized.

The literature abounds in techniques for modeling the supply chain forma-
tion. Walsh et. al [1] proposed a combinatorial protocol, consisting of a one-shot
auction and a strategic bidding policy, to study the negotiations on production
relationships among multiple levels of production in a distributed setting. Prior
to this work, auction mechanisms were proposed, such as in [2], to address the
complementarities or the mutual dependencies among values of obtaining inputs
and producing outputs. Typically, a global supply chain is the result of trade by
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a firm across national borders by means of either foreign direct investment (FDI)
or outsourcing, though other levels of operational strategies such as licensing,
joint venture, and acquisition etc. also exist. Consequently, a lot of effort has
gone into investigating the decision of firms to trade through FDI or outsourc-
ing, see for instance, [3], [4]. Most of these models can not be quantitatively
analyzed and proffer only a high level insight into the decision making process.

Tax has a significant impact on SCF, as the product material moves across
boundaries. Certain parts of the world offer special economic zones - also known
as free trade zones - where goods bound for export can be manufactured, as-
sembled, and stored with attractive tax holidays. Therefore, substantial research
has gone into integrating taxes and other regulatory factors in the global supply
chain design ([5], [6]). Recently, a mixed integer non-linear programming model
that incorporates the import and export tax liabilities at various stages of the
global supply chain has been proposed [7]. Besides tax, there are certain other
factors with positive (for example, acquaintance) or negative (e.g. economic and
cultural heterogeneity) influence that have a marked influence on the overall
supply chain formation. However, these factors have been overlooked thus far in
the literature.

1.1 Motivation

The literature abounds in expository research on supply chain formation (SCF)
and network planning. However, almost all of these techniques analyze the prob-
lem of selecting an alternative at a given stage using a deterministic cost model
while neglecting altogether the uncertainty in the surrounding ecosystem, which
encompasses all the factors that might influence the supply chain formation.
For instance, there are certain factors in most supply chain ecosystems, such
as infrastructure, local demand and proximity to key markets, availability of
skilled labor, inventory handling facilities, government regulations and incen-
tives, financial costs (e.g. in acquisition of land), transportation, and tax and
freight considerations, etc. While some of these factors, notably tax considera-
tions and inventory handling costs, have been incorporated in the existing mod-
els, a vast majority of these factors still remains unaccounted. Furthermore, most
of the sub-factors that determine these factors may change over a period of time,
thereby triggering a change in the impact of these factors. Therefore, we believe
there is a need for a generic probabilistic framework that seamlessly incorpo-
rates and integrates these factors for understanding the dynamics of the supply
chains. This adaptive modeling of supply chains is fundamental to explaining
the replacement of an extant end-to-end supply chain with a new one, as the
different factors governing the SCF change over time. In this work, we explicate
this dynamic aspect of supply chains using a statistical model EcoSupply.

2 Problem Definition and Notation

Consider a multi-stage global supply chain network, where each stage represents
an activity such as production or assembly. We assume that the Supply chain has
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N stages: S1, S2, . . . , SN . There are ki alternatives, Si1, Si2, . . . , Siki , at any stage
Si to accomplish the activity of that stage. Each alternative q at a stage p is ex-
pressed as a d-dimensional observation or feature vector of factors xpq , with the
data observation corresponding to a factor r denoted by xpqr , whereby the proba-
bility of a factor r being favorable is given by θpqr, 0 ≤ θpqr ≤ 1, r ∈ {1, 2, . . . , d}.
Let Dpq represent a set of n d-dimensional data vectors corresponding to the
qth alternative in stage Sp, and Dpqr represent a set of n samples correspond-
ing to factor r, assumed to be independent and identically distributed (i.i.d),
{x1

pqr, x
2
pqr , . . . , x

n
pqr , x

′
pqr}. Further, let τpqr denote the threshold above which

a factor r is perceived favorable, and wpqr and C
Dpqr
pqr denote respectively the

weight or perceived importance of r, and the estimated cost associated with r

based on Dpqr, at the alternative q in the stage p. Finally, let Cinit
pq and C

Dpq
pq

denote the initial unaccounted cost (which disregards the impact of factors),
and the estimated cost based on Dpq, taking into consideration the ecosystem,
if alternative q is chosen in stage p.

Then, the problem of probabilistic modeling of SCF is formulated as follows:
find the probability of any supply chain, SC = A1, A2, . . . , AN , formed by choos-
ing an alternative Ai from each stage 1 ≤ i ≤ N . Intuitively, the greater this
probability, the more likely the formation of SC, compared to any other supply
chain. Furthermore, this probability might change over time, as more data is
accumulated or the impact of various factors varies.

3 The EcoSupply Model

Two types of factors need to be considered: a) the factors local to an alternative,
and b) the factors governed by a pair of alternatives at successive stages in the
supply chain network. Below, we describe how these factors are modeled using
the EcoSupply framework.

3.1 Modeling the Impact of Factors Specific to an Alternative

At any instant of time, each of the underlying factors in the ecosystem can be
considered as being favorable or unfavorable towards selection of a particular
alternative at a particular instant of time, e.g. there might be a fear of shortage
in supply of raw materials at a particular alternative deeming a high cost for
that alternative. Our aim is to continually learn the favorable probabilities as
more data is accumulated over time. Each of the factors in the ecosystem can be
perceived as Bernoulli variables representing unknown probability distributions.
Then, the estimate for an observation xpqr (which takes one of the two values:
1(favorable) or 0(unfavorable)) conditioned on the parameter θpqr is given by,

P (xpqr |θpqr) = θxpqr
pqr (1 − θpqr)1−xpqr (1)

Then, we have the following result.
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Lemma 1. Let Dpqr = {x1
pqr , x

2
pqr , . . . , x

n
pqr} be a set of n i.i.d samples drawn

according to a probability distribution characterized by θpqr. If θpqr has a uniform
prior distribution, then

P (xpqr |Dpqr) =

(
s

Dpqr
pqr + 1
n + 2

)xpqr
(

1 − s
Dpqr
pqr + 1
n + 2

)1−xpqr

where s
Dpqr
pqr =

∑n
j=1 xj

pqr

Proof.

P (Dpqr |θpqr) = P (x1
pqr , x

2
pqr , . . . , x

n
pqr |θpqr)

= P (x1
pqr |θpqr)P (x2

pqr |θpqr) . . . P (xn
pqr |θpqr)

= θ
∑n

j=1 xj
pqr

pqr + (1 − θpqr)
∑n

j=1(1−xj
pqr) [using (1)]

= θ
s

Dpqr
pqr

pqr (1 − θpqr)n−s
Dpqr
pqr (2)

Now,

p(θpqr |Dpqr) =
p(Dpqr|θpqr)p(θpqr)∫

θpqr

p(Dpqr |θpqr)p(θpqr) dθpqr

In the absence of any prior knowledge about θpqr, assuming a uniform distribu-
tion1 in the interval [0, 1], we obtain,

p(θpqr|Dpqr) =
p(Dpqr|θpqr)∫ 1

0
p(Dpqr|θpqr) dθpqr

⇒ P (xpqr |Dpqr) =
∫

θpqr

P (xpqr |θpqr)p(θpqr |Dpqr) dθpqr

=
∫ 1

0
P (xpqr |θpqr)

p(Dpqr|θpqr)∫ 1

0
p(Dpqr |θpqr) dθpqr

dθpqr (3)

Using (2), ∫ 1

0
p(Dpqr|θpqr) dθpqr =

∫ 1

0
θ

s
Dpqr
pqr

pqr (1 − θpqr)n−s
Dpqr
pqr dθpqr

1 In general, each of the factors is dependent on several sub-factors, and may follow
an arbitrary distribution, e.g. the supply of raw materials may not be uniform and
may vary from time-to-time, depending on a change in the capability of the source
or trade restrictions. This is not a very stringent assumption, for example, refer [9]
for modeling a Gaussian prior on θpqr.
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From the definition of beta function, for a, b > 0,

β(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt =

Γ (a)Γ (b)
Γ (a + b)

where Γ (.) denotes the gamma function. Then, evaluating the gamma function
on integral arguments, we get,∫ 1

0
p(Dpqr|θpqr) dθpqr =

Γ (sDpqr
pqr + 1)Γ (n − s

Dpqr
pqr + 1)

Γ (n + 2)

=
s

Dpqr
pqr !(n − s

Dpqr
pqr )!

(n + 1)!

which in the light of (3) yields,

P (xpqr|Dpqr) =
(n+ 1)!

s
Dpqr
pqr !(n− s

Dpqr
pqr )!

∫ 1

0

P (xpqr|θpqr)p(Dpqr|θpqr) dθpqr

=
(n+ 1)!

s
Dpqr
pqr !(n− s

Dpqr
pqr )!

∫ 1

0

θ
s
Dpqr
pqr +xpqr

pqr (1− θpqr)
n−s

Dpqr
pqr +1−xpqr dθpqr [using (1) and (2)]

=
(s

Dpqr
pqr + xpqr)!(n− s

Dpqr
pqr + 1− xpqr)!

sDpqr
pqr !(n− sDpqr

pqr )!(n+ 2)

⇒ P (xpqr = 1|Dpqr) =
s
Dpqr
pqr + 1

n+ 2
,

and,

P (xpqr = 0|Dpqr) = 1 − s
Dpqr
pqr + 1
n + 2

⇒ P (xpqr |Dpqr) =

(
s

Dpqr
pqr + 1
n + 2

)xpqr
(

1 − s
Dpqr
pqr + 1
n + 2

)1−xpqr

In the next lemma, we show how the conditional density estimate can be incre-
mentally updated on arrival of a new observation.

Lemma 2. Let a new observation, x′
pqr, is recorded that results in an enhanced

data set, D′
pqr = Dpqr

⋃{x′
pqr}. Then, assuming the mutual independence of the

d factors, the ratio of conditional probabilities,

P (xpq |D′
pq)

P (xpq |Dpq)
=

d∏
r=1

(
n + 2
n + 3

)[
s

Dpqr
pqr + x′

pqr + 1

s
Dpqr
pqr + 1

]xpqr
[

n − s
Dpqr
pqr + 2

n − s
Dpqr
pqr + 1

]1−xpqr

Proof. It follows from Lemma 1 that

P (xpqr |D′
pqr) =

(
s

D′
pqr

pqr + 1
n + 3

)xpqr (
1 − s

D′
pqr

pqr + 1
n + 3

)1−xpqr
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=

(
s

Dpqr
pqr + x′

pqr + 1
n + 3

)xpqr
(

1 − s
Dpqr
pqr + x′

pqr + 1
n + 3

)1−xpqr

⇒ P (xpqr |D′
pqr)

P (xpqr |Dpqr)
=
(

n + 2
n + 3

)[
s

Dpqr
pqr + x′

pqr + 1

s
Dpqr
pqr + 1

]xpqr
[

n − s
Dpqr
pqr + 2

n − s
Dpqr
pqr + 1

]1−xpqr

Generalizing to the d-dimensional multivariate case by assuming that these d
factors are mutually independent, we obtain,

P (xpq|D′
pq) = P (xpq|Dpq)

d∏
r=1

(
n + 2
n + 3

)[
s

Dpqr
pqr + x′

pqr + 1

s
Dpqr
pqr + 1

]xpqr
[

n − s
Dpqr
pqr + 2

n − s
Dpqr
pqr + 1

]1−xpqr

(4)

Therefore, using Lemma 2, we can incrementally update the conditional density
estimate on arrival of x′

pqr . Let τpqr be the threshold that determines if the factor
r is favorable at alternative q in stage p. Then, one of the ways to compute the
effective cost is given by,

CDpq
pq = Cinit

pq

⎡
⎢⎣ ∑

j∈J
Dpq
pq

wpqje
τpqj−P(xpqj=1|Dpqj )

mpqj − |JDpq
pq | + 1

⎤
⎥⎦ , where (5)

JDpq
pq = {j : τpqj > P (xpqj = 1|Dpqj)}

The weights w signify the importance of the different factors; the values τ can be
adjusted to reflect the penalty in case of factors not meeting the desired threshold
levels; and the scaling parameters m control the non-linearity of the model. Note
that if a factor is deemed favorable with respect to the corresponding threshold,
given the available data, then it does not add to the initial cost estimate, which
disregards the ecosystem.

Theorem 1. The overall estimated cost taking into account all the factors in
the ecosystem at an alternative q in stage p based on D′

pq, for the cost model
proposed in (5), is given by,

C
D′

pq
pq = Cinit

pq [
∑

r∈J
D′

pq
pq

(
I

Dpqr
τpqr C

Dpqr
pqr + (1 − I

Dpqr
τpqr )wpqr

)

e

τpqr−P(xpqr=1|Dpqr)
mpqr

{
x′

pqr
P (xpqr=1|Dpqr)−I

Dpqr
τpqr

}
− |JD′

pq
pq | + 1] (6)
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Proof. Two cases are possible:

Case 1: τpqr > P (xpqr = 1|Dpqr) and τpqr > P (xpqruwc = 1|D′
pqr)

Then, using

P (xpqr = 1|D′pqr)

P (xpqr = 1|Dpqr)
=

(n+ 2)(s
Dpqr
pqr + x′pqr + 1)

(n+ 3)(s
Dpqr
pqr + 1)

, we obtain,

C
D′pqr
pqr = CDpqr

pqr e

τpqr−P (xpqr=1|Dpqr)

mpqr

{
(n+2)(s

Dpqr
pqr +x′pqr+1)

(n+3)(s
Dpqr
pqr +1)

−1

}

= CDpqr
pqr e

τpqr−P (xpqr=1|Dpqr)

mpqr

{
(n+2)x′pqr

s
Dpqr
pqr +1

−1

}

= CDpqr
pqr e

τpqr−P (xpqr=1|Dpqr)

mpqr

{
x′pqr

P (xpqr=1|Dpqr)
−1

} [
since P (xpqr = 1|Dpqr) =

s
Dpqr
pqr + 1

n+ 2

]

Case 2: τpqr < P (xpqr = 1|Dpqr) and τpqr > P (xpqr = 1|D′
pqr)

It is straightforward to see,

C
D′

pqr
pqr = wpqre

τpqr−P(xpqr=1|Dpqr)
mpqr

{
x′

pqr
P (xpqr=1|Dpqr)

}

These two cases can be expressed together as,

C
D′

pqr
pqr =

(
I

Dpqr
τpqr C

Dpqr
pqr + (1 − I

Dpqr
τpqr )wpqr

)
e

τpqr−P (xpqr=1|Dpqr)
mpqr

{
x′

pqr
P(xpqr=1|Dpqr)−I

Dpqr
τpqr

}

where I
Dpqr
τpqr is an indicator variable which takes value 1 if τpqr > P (xpqr =

1|Dpqr), else 0. Then, the overall cost considering all the factors, in accordance
with (5), is given by (6).

We note that Cinit
pq takes into consideration the influence of factors prevalent at

the different alternatives on the effective costs. Similarly, costs involved among
alternatives at successive stages (for instance, due to transport, tax, and handling
of inventory in transaction etc.) can also be incorporated, taking into account
uncertainty as gathered from historical data. The value of weights assigned to
the different categories may be suitably adjusted for analyzing the overall cost
across disparate supply chain application domains.

3.2 Modeling the Impact of Acquaintances and Distances

The impact of previous experience as a result of relationships among the differ-
ent entities (e.g. suppliers/consumers at successive stages) is another important
factor that has been overlooked thus far in the literature: if the experience is
fruitful, the entities are likely to transact together as a part of supply chain
again. In fact, this behavior is even more pronounced in case of global supply
chains as the experience, between entities at successive alternatives, percolates
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down the supply chain. Furthermore, the distance dimensions also play a cru-
cial role in the formation of global supply chains. In [8], these distances have
been characterized into the following categories: cultural (e.g. religion, race, so-
cial norms, language), administrative and political (e.g. colony-colonizer links,
currencies, trading arrangements), geographic (e.g. climate, waterway access,
transportation and communication links, physical remoteness), and economic
(e.g. information/knowledge, costs and quality of natural, financial and human
resources, different consumer incomes)

An important observation is in order. These distances are a function of a pair
of disparate alternatives at successive stages rather than being dependent on a
single alternative. Thus, the whole process of the supply chain formation can be
analyzed by using the following model:

1. Each of the alternatives is represented by a node.
2. For each node Spq, a probability value Ppq = P(Spq) is calculated using (6)

from Theorem 1 as

Ppq =

|Sp|∑
j=1

C
D′′

pj

pj − C
D′′

pq
pq

(|Sp| − 1)
|Sp|∑
j=1

C
D′′

pj

pj

(7)

3. The impact of acquaintance between alternatives, Sij and Sl,k, i ∈
{1, 2, . . . , N − 1}, l = i + 1, j ∈ {1, 2, . . . , |Si|}, k ∈ {1, 2, . . . , |Si+1|} , on
SCF is reflected by the corresponding acquaintance edge having probability,

P AB
ijlk =

ABijlk

|Eij |∑
j=1

ABijlk

where, ABijlk denotes acquaintance benefit of alternative k at stage l; and
EAB

ij is the set of acquaintance edges that are outbound from alternative j
at stage i.

4. The impact of distance between alternatives, Sij and Slk, i ∈ {1, 2, . . . , N −
1}, l = i + 1, j ∈ {1, 2, . . . , |Si|}, k ∈ {1, 2, . . . , |Sl|}, on SCF is reflected by
a corresponding distance edge having probability,

P DC
ijlk =

|EDC
ij |∑

j=1

DCijlk − DCijlk

(|EDC
ij | − 1)

|EDC
ij |∑

j=1

DCijlk

with DCijlk = WCfC(DCC
ijlk)+WAfA(DCA

ijlk)+WGfG(DCG
ijlk)+WEfE(DCE

ijlk);
where WC , WA, WG, WE are non-negative weights indicating the importance
of the different dimensions corresponding to cultural, administrative, geo-
graphic, and economic distance respectively; fC , fA, fG, fE : �+ → �+ are
monotonically increasing functions that map the respective distance values
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to their equivalent perceived costs; and EDC
ij is the set of distance edges that

are outbound from alternative j at stage i.
5. The acquaintance edge and the distance edge between every pair of nodes in

the underlying model are replaced by a single edge called the influence edge
(with same orientation as the acquaintance edge) between the same nodes.
The probability on this edge is given by,

Pijlk = W ∗ P AB
ijlk + (1 − W ) ∗ P DC

ijlk , 0 ≤ W ≤ 1

(where W indicates a relative preference for acquaintance over distance.)

= W
ABijlk

|Eij |∑
j=1

ABijlk

+ (1 − W )

|EDC
ij |∑

j=1

DCijlk − DCijlk

(|EDC
ij | − 1)

|EDC
ij |∑

j=1

DCijlk

(8)

Note that (8) is a valid probability measure since the sum of probabilities on
all influence edges equals 1. Additionally, defining the probabilities this way
is intuitive since the greater the acquaintance and the lesser the distance
between two particular alternatives at successive stages is, the more likely
the possibility of these alternatives being aligned again in a supply chain is.

4 Explaining the Dynamics of Supply Chain Formation

The dynamics of supply chain formation can be elegantly enunciated by using
the following algorithm, based on the EcoSupply Model:

1. For each alternative q in stage p, draw a node with a probability value Ppq

computed using (7).
2. Define the edge probabilities, for every pair of nodes representing alternatives

at successive stages, using (8).
3. Add a dummy node, Start, which represents the stage S0, and outbound

edges to every node in S1, with probability on each edge set to
1

|S1| . Further,

set the probability value at Start to 1. (Note that this node serves the
purpose of modeling multiple sources in the supply chain, which is another
issue that has not been addressed in the literature thus far.)

4. Add a dummy node, End, which represents the stage SN+1, and inbound
edges from every node in SN , with probability on each edge set to 1. Further,
set the probability value at End to 1.

5. The probability of formation of a particular supply chain, SC =
A1A2 . . . AN , with Ai i ∈ {1, 2, . . . , N} denoting the alternative chosen at
the stage i, is given by,

PSC = PStartA1

N∏
i=1

PAiPAiAi+1 (9)
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The algorithm considers all the factors, depending on a particular alternative
or a pair of alternatives at adjacent stages, that define the ecosystem: the prob-
ability on the nodes indicates the influence of factors restricted to a location
whereas the probability on the edges indicates the influence of factors governing
more than a single location. A change in any of these factors results in change in
the probability values, given by (7) and (8), and a corresponding change in the
probability of formation of an end to end supply chain, as indicated by (9). A
relatively favorable ecosystem at an alternative, with respect to other alterna-
tives, results in an increase in the corresponding probability of that alternative
being a preferred choice for its stage, in the end-to-end supply chain.

5 Summary and Future Work

Modeling the impact of ecosystem on the supply chain formation is a topic of
immense significance and has wide practical implications. Factors such as tax
constraints and inventory handling costs have been well studied in the literature;
however, several other important considerations such as the economic and cul-
tural heterogeneity that constitute the entire ecosystem have been conspicuously
ignored. In this paper, we proposed a generic Bayesian framework, EcoSupply,
to model the dynamics of the supply chain formation. Specifically, we have illus-
trated how a change in the ecosystem accompanies a change in the local business
alignments, and thereby the global supply chain dynamics. We have also showed
how the acquaintances among the stakeholders greatly influence the future de-
cisions regarding their collaboration. An important future direction would be
to apply the EcoSupply model in different domains, for instance, food industry,
automobile industry, financial sector, etc.
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Abstract. In studying data sets for complex nonlinear relations, neural net-
works can be used as modeling tools. Trained fully connected networks cannot, 
however, reveal the relevant inputs among a large set of potential ones, so a 
pruning of the connections must be undertaken to reveal the underlying rela-
tions. The paper presents a general method for detecting nonlinear relations be-
tween a set of potential inputs and an output variable. The method is based on a 
neural network pruning algorithm, which is run repetitively to finally yield 
Pareto fronts of solutions with respect to the approximation error and network 
complexity. The occurrence of an input on these fronts is taken to reflect its 
relevance for describing the output variable. The method is illustrated on a 
simulated cell population sensitized to death-inducing ligands resulting in pro-
grammed cell death (apoptosis).  

Keywords: Nonlinear modeling, data mining, pruning, apoptosis model. 

1   Introduction 

Neural networks have during the last decades established their position as tools for 
nonlinear modeling due to their universal approximation capabilities. A central prob-
lem in many practical modeling (e.g., data mining) problems is to detect relevant 
inputs among a set of potential ones. In neural network modeling, this problem is not 
easily solved, since a large number of model parameters (weights) inherent in this 
modeling technique often results in over-parameterization [1] and the weights cannot 
in themselves tell whether an input is important or not. To address this problem, both 
constructive and destructive algorithms, with growing or shrinking networks, have 
been proposed in the literature [2-4]. Many of these methods are, however, rather 
sensitive to noise in the signals and some of them include time-consuming retraining 
steps. The work of the present paper is based on an efficient pruning algorithm [5] that 
is run repetitively to yield statistical information about the relevance of the potential 
inputs. The technique is applied to detect the most central ones among a large number 
of parameters in a model of programmed cell death, apoptosis. Monte-Carlo simula-
tions with the complex biological model, described by a large set of differential equa-
tions, are applied to obtain a distribution of the time to apoptosis after sensitizing the 
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cells to death-inducing ligands. The parameters with strongest effect on the time to 
apoptosis are determined, and the results are analyzed and discussed on the basis of 
the underlying problem. 

2   Detection Method 

The algorithm to be outlined searches for a nonlinear model of a set of potential in-
puts, x, dim (x) = N, approximating an output, y. The model is implemented as a feed-
forward neural network of multi-layer type with a single layer of hidden nonlinear 
units and a single linear output node. The algorithm is based on the practical observa-
tion that for such a network with an arbitrary choice of weights in its lower layer of 
connections, W, there is usually a weight vector, v, to the output node that will lead to 
a relatively good solution, ŷ , of the approximation problem. The vector v can be 

determined by a simple matrix inversion. With this as the starting point, the pruning 
algorithm can be condensed into [5]: 
 

1. Choose a sufficient number of hidden nodes, m, and generate a random 
weight matrix, W(0), for the lower part of the network. Set the iteration index 
to k = 1. 

2. Equate to zero, in turn, each non-zero weight, )1( −k
ijw , of W(k-1), and determine 

the optimal upper-layer weight vector, v , by minimizing 

∑ −= 2)ˆ( yyF with linear least squares. Save the corresponding value of 

the objective function, )(k
ijF . 

3. Find the minimum of the objective function values, { })()( min k
ij

ij

k F=F . Set 

W(k)

 = W(k-1)

 and  equate to zero the weight corresponding to the minimum ob-
jective function value, 0)(

~ =k
ji

w  with { })(minarg
~ k

ij
ij

Fji = . 

4. Set k = k + 1.  If  k < m⋅N, go to 2. Else, end. 
 
The algorithm gives rise to a vector expressing how the approximation error evolves 
along with the elimination of weights. Typically, the errors decrease initially as di-
rectly detrimental weights are removed (note that the lower-layer weights are not 
retrained!), but finally the error increases as useful connections (an inputs) are re-
moved. Naturally, due to the random initial weight matrix, not all runs will produce 
useful information. Therefore, it is necessary to run the algorithm from a large  
number of weight matrices, and to treat the arising information, e.g., statistically. It 
should be stressed that the method avoids laborious non-linear retraining of the net-
works after each pruning step, which would often be associated with a risk of conver-
gence problem, in particular for large-scale problems. The success of the method has 
been demonstrated on simulated problems with known solutions [5,6], and on differ-
ent challenging real-world problems (e.g., [7,8]). Here, the following approach is 
proposed to extend the original method to systematically refine the information 
gained in the pruning analysis: 
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i. Run the algorithm from a large number of initial matrices. 
ii. Note the performance of networks with a number of lower-layer connections 

of K or less. 
iii. Create Pareto-frontier with non-dominated solutions among these, and con-

sider the Pareto fronts ranked 1...r. 
iv. Among all these, register the number of connections to the individual input 

variables. This number can be considered to reflect the importance of a spe-
cific input. 

3   Application 

3.1   Model of Apoptosis 

Apoptosis, also called programmed cell death, is a mechanism of active, controlled 
cellular elimination, which together with cell growth and division regulates key bio-
logical processes including embryonic development, immune responses, and tissue 
homeostasis. The mechanism of apoptosis is complex (cf. Fig. 1, with abbreviations 
in the following text given in parentheses): Stimulated by ligands (L), rerceptors (R) 
at the cell exterior activate death receptors (e.g., Fas/CD95/Apo-1) in the cell interior, 
which recruit cytoplasmic proteins, forming a death-inducing signaling complex 
(DISC). In the DISC, the initiator caspase-8 is activated by cleavage of procaspase-8 
(pcas8), resulting in downstream activation of effector caspases (e.g., cas3, cas6) 
which propagate the apoptotic signal, with positive feedback. Caspase-8 activation is 
regulated by inhibitory proteins c-FLIP, which may prevent or delay apoptosis. 

Mathematical modeling of biological systems has become an important tool for 
simulation-based hypothesis testing [9,10]. Since the apoptotic signaling pathway has 
a complex dynamic behavior involving several reactions and feedback loops, it is 
difficult to infer its overall response by examining individual parts of the system sepa-
rately. Instead, a systems view is required, considering the main factors affecting the 
different steps of apoptosis. A detailed mathematical model of apoptosis was pre-
sented by Bentele et al. [11], using ordinary differential equations for 41 chemical 
components in 32 reactions, modeling the reaction rates by mass action and Micha-
elis-Menten kinetics. The model is schematically illustrated in Fig. 1. 

Toivonen et al. [12] extended the model by including generation and degradation 
reactions of c-FLIP, and also introduced stochastics. By assuming individual cells to 
show differences in both the concentrations of various molecules and in the chemical 
reaction rates, these variables (X) were assumed to be independent stochastic log-
normally distributed variables 
 

 ),0(~,e)0(
iX

i0 σεε NXX iii = ,           (1) 

 
where 0

iX  are the nominal initial concentrations and rate factors, here taken as those 

given in the study by Bentele et al. [11] and N(0,σ)  is a normal distribution with zero 
mean and variance σ. 
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Fig. 1. Interaction between the components in the apoptosis model by Bentele et al. [11] 

In order to determine the occurrence of apoptosis, the time to apoptosis, tap, was 
taken as the time elapsed from exposure to ligands to the instant when the concentra-
tion of activated caspase-3 (cas3) had decreased to half of its maximum  

  [ ] [ ] )(cas3max
2

1
)(cas3 ap tt t= ,          (2) 

where apt  is larger than the time at which the maximum caspase-3 concentration is 

achieved. This definition gives times to apoptosis in general agreement with experi-
mental results from cell lines. 

In the present study the relatively complex apoptosis model of Toivonen et al. [12] 
is analyzed with the aim to detect the primary factors that influence apoptosis. This is 
done by applying the method outlined in section 2 by modeling the time to apoptosis 
(from Eq. (2)) using the stochastically varied initial concentrations and rate parame-
ters of the chemical reactions as inputs. 
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3.2   Data Sets 

The apoptosis model was run 1000 times with σ = 0.3 in Eq. (1), where the number of 
parameters subjected to the stochastic variations was totally 59, using a nominal 
ligand concentration of [L]0 = 50 ng/ml. In accordance with earlier observations 
[11,12], this ligand concentration is sufficient to give rise to apoptosis in practically 
all runs, with a distribution of the time to apoptosis reported in the upper panel of Fig. 
2. A corresponding set of runs with a lower ligand concentration, approaching the 
threshold below which apoptosis does not occur, resulted in the distribution in the 
lower panel of the figure, where only 66% of the runs resulted in apoptotic behavior. 
The reason for studying these two different data sets was that it was expected that 
different model parameters may play key roles for predicting the apoptotic behavior 
far from and close to the threshold value. For instance, the concentrations of c-FLIP 
would be expected to be variables of interest in the latter case, where high levels of 
these proteins are known to be able to prevent apoptosis [11,12]. 
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Fig. 2. istribution of the time to apoptosis for 1000 runs each of the model with log-normally 
distributed parameters (σ = 0.3 in Eq. (1)) for two different ligand concentrations, [L]0

 

3.3   Results 

The method of Section 2 was applied on the data, after first scaling all 59 inputs and 
the output (tap) to the range (0,1).  In the 100 runs of each data set with N = 59 input 
variables and m =10 hidden nodes, the final networks with a maximum complexity 
(expressed in terms of lower-layer connections) of K = 30 were considered. These 
were used to assemble the r = 10 best Pareto frontiers and the occurrences of the dif-
ferent inputs on these were noted. 

Figure 3 illustrates the results of the pruning algorithm (steps 1-5 in Section 2) for 
the case with [L]0 = 10 ng/ml. The densely connected networks (in the rightmost part 
of the figure) are seen to give rise to an average prediction error of about 13%, but as 
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connections are being removed the error decreases below 8%, to finally rise to 12% 
when all but one connection is left. Focusing on the networks with a lower-layer 
complexity of 30 or less, i.e., those in the leftmost part of the graph, the 10 best Pareto 
frontiers are established and the inputs corresponding to these networks are registered. 
It should be noted that the corresponding errors for the first data (with [L]0 = 50 
ng/ml) set are considerably smaller, occasionally as low as 3.5%. This reflects the fact 
that in the case of strongly apoptotic conditions, the time to apoptosis shows smaller 
variance and is, therefore, more easily predicted by the models. Figure 4 shows the 
performance of the best models on the Pareto frontiers for the two data sets with a 
lower-layer complexity of 1…30 in the networks. 
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Fig. 3. Results of the pruning part of the method (cf. steps 1-5 in Section 2) for 100 runs on 
apoptosis data generated with σ = 0.3 and [L]0 = 10 ng/ml 
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Fig. 4. Approximation provided by best networks on the Pareto frontiers with a lower-layer 
complexity ranging between one and thirty for the two data sets  
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The upper panel of Fig. 5 illustrates by bar graphs the occurrence of the 59 input 
variables in the neural models on the first ten Pareto frontiers for the data with [L]0 = 
50 ng/ml, while the lower panel shows the corresponding results for the case with [L]0 
= 10 ng/ml. Some general observations can be made: For both data sets studied, 
twelve of the inputs appear more than 100 times and much more frequently than the 
others, and the differences in the occurrences between the two data sets are relatively 
small (Table 1). This indicates that the identified variables have a general impact on 
the time to apoptosis in the runs that correspond to conditions where apoptosis occurs.  
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Fig. 5. Occurrence of input variables in the models on the first ten Pareto frontiers for the data 
set with [L]0 = 50 ng/ml (upper panel) and [L]0 = 10 ng/ml (lower panel) 

The most frequently occurring variable (#20) in both data sets is the rate constant 
for the general degradation of all components after the apoptotic machinery has come 
to the “point of no return”. Considering the definition of the time to apoptosis used in 
this study (cf. Eq. (2)), it is natural that this variable plays an important role. The 
second most important variable is the initial concentration of the ligand (#55). Also 
this finding is easily understood, since the ligand-to-receptor ratio is a triggering fac-
tor for apoptosis [11] (cf. uppermost box in Fig. 1). Of equal importance in theu upper 
panel of Fig. 5, but of considerably less importance in the lower panel, is the 56th 
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Table 1. Inputs occurring more than 100 times on the 10 best Pareto fronts among the networks 
with a lower-layer complexity of 30 or less 

Occurrence 
Input Variable 

Data set 1 Data set 2 
1 KLR 257 220 
2 KDISC,pc-8 260 280 
9 [procaspase-8] 302 333 

12 KDISC,FLIP 257 326 
18 [R] 216 217 
20 Kdegrad,st 459 407 
25 Kc-8,c-3 273 357 
39 [IAP] 181 293 
55 [L] 319 406 
56 CAPOP,eff.act 320 124  
58 [c-FLIPL] 141 134 
59 [c-FLIPS] 110 241 

variable, i.e., a constant in the degradation equation after apoptosis has occurred (cf. 
variable #20). The lower level of occurrence of this, and also of the 20th variables in 
the second data set, can be understood by noting that as the ligand concentration is 
closer to the threshold for apoptosis, other variables will play a more central role for 
the time to, or occurrence of, apoptosis. Another important variable, with occurrences 
around 300, is the initial concentration of procaspase-8 (variable #9). This variable is 
known to be central, because it is the origin of the initiator caspase for the caspase 
cascade, which eventually leads to apoptosis (uppermost box). A practically equally 
important variable is the rate constant (variable #25) for the enzymatic effect of cas-
pase-8 on the reaction rate of procaspase-3 to caspase-3. As seen in the middle box of 
Fig. 1, this reaction is an important step in the initial phase of the caspase cascade. 

Furthermore, parameters related to the formation of the death-inducing signaling 
complex (variable #2 and #12), are, as expected, found important, because here the 
competition between recruitment of procaspase-8 and c-FLIP affects the outcome of 
the signaling (uppermost box). The final ones among the important variables detected 
by the method are #18, #39, #58 and #59, which correspond to the initial concentra-
tion of receptors, of IAP, as well as of the long and short c-FLIP variants (c-FLIPL 
and c-FLIPS). Noting that the ligand-to-receptor ratio is central for triggering apop-
tosis, as well as the inhibiting role played by the c-FLIP proteins at the DISC forma-
tion (uppermost box) and by IAP in reacting with the effector caspases (lowermost 
right box), the importance of these variables for the apoptotic behavior is noted. Inter-
estingly, at close-to-threshold ligand-to-receptor ratios, the importance of the short 
variant of c-FLIP (i.e, c-FLIPS) seems to be accentuated. 

In summary, all of the major inputs of the neural models that have been detected by 
the method must be considered key parameters affecting the outcome of the apoptosis 
machinery. The method can thus be considered efficient for finding the salient factors 
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for approximating a dependent variable on the basis of a data set with a large number 
of potential factors. 

4   Conclusions 

The paper has presented a method by which complex nonlinear relations can be de-
tected in data sets. The core of the method is a pruning algorithm for feedforward 
neural networks, which gradually removes the least important of the remaining con-
nections in the lower layer of the network. Pareto frontiers with the approximation 
error and the number of lower-layer weights for the models of lowest complexity 
obtained in repetitive pruning runs are established, and the occurrences of the input 
variables in the models on the fronts are taken to reflect their relevance. The method-
ology has been illustrated by applying it on two data sets generated by a model of a 
biological system, considering programmed cell death (apoptosis) in cell populations 
with stochastically varying model parameters. It was found successful in detecting the 
most central parameters initiating, preventing or propagating the apoptotic signal in 
the cell. 
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Abstract. In this paper, couple of multi-objective optimization (MOO) tech-
niques is implemented on a concept vehicle design problem. The Pareto Set 
Pursuing (PSP) method, proposed by Shan and Wang [1] is compared with a 
commercial version of the NSGA-II algorithm. PSP uses a sequential surrogate 
model generation and progressive importance sampling approach as compared 
to the NSGA-II, which uses exact function evaluations. This comparative study 
is initially carried out with the aid of a continuous analytical test problem fol-
lowed by a mixed discrete continuous, vehicle design problem. Based on these 
studies, it was found that PSP performed reasonably well as compared to the 
NSGA-II and offered considerable savings on the number of function evalua-
tions. Additionally, it also provided an evenly spread Pareto frontier. For the 
concept vehicle design problem, the performance of PSP was comparable with 
NSGA-II in terms of the accuracy of Pareto frontier and better in terms of the 
spread of the Pareto frontier. 

Keywords: Multi-Objective Optimization, Pareto Set Pursuing, Pareto Fron-
tiers, Importance Sampling, Concept Vehicle Design. 

1   Introduction 

Early stages of vehicle design involve complex interplay of corporate goals (for e.g. 
profit, market share) and engineering performance objectives (for e.g. best-in-segment 
fuel economy and roominess). The performance objectives vary depending on the 
vehicles being designed and corporate goals behind the introduction of these vehicles 
in the market. The problem of achieving these performance objectives can be formu-
lated as a Multi-Objective Optimization (MOO) problem and solved to obtain Pareto 
frontiers. These Pareto frontiers can be used for repetitive and fast evaluation of de-
sign alternatives such as in Gurnani et al [2] to arrive at a final design alternative [3]. 
Several MOO methods [4] exist that can be used to solve such problems. A typical 
MOO problem formulation is given by: 
 " min"∈Ω   , , . . , . (1)

                                                           
* Currently working at Oracle India Pvt Ltd. 
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f1(x), f2(x), .., fm(x) are m objective functions that need to be minimized, x is the de-
sign variable vector comprising of a continuous design variable vector, xc of length nc 
and a discrete design variable vector, xd of length nd. Ω is the feasible set in the design 
variable space and can be represented as  
 Ω : , , , ∈ 1, . . , , ∈ ∈ 1, . . , . (2)

 
g(x) is a vector of inequality constraint functions, ,  and , are the lower and upper 
bounds respectively of .  Dj is the set of all the discrete values or choices that    
can take, for example, tire sizes, material types etc. There is no single feasible solu-
tion that minimizes all objectives simultaneously but there are potentially many poss-
ible “optimal” solutions to the MOO problem given by Equation 1. Such solutions are 
called Pareto optimal or non-dominated solutions.  
 One of the categories of MOO methods generates non-dominated solutions 
through population-based techniques such as Multi-Objective Genetic Algorithms 
(MOGA) [2] and other techniques based on statistical simulations such as the one 
investigated in this work. These methods are of interest for this work, since the main 
goal is to obtain a representation of the Pareto frontier for the concept vehicle design 
problem that tends to be a mixed discrete continuous problem involving several ob-
jectives. Some of the criteria that are essential for an approach to be used for the 
MOO problems in this work are: 

• the ability to handle discontinuities in the Pareto Frontier,  
• the ability to generate even spread of Pareto points, and  
• the ability to converge to global Pareto optimal solutions with minimal num-

ber of exact (costly) function evaluations.  

Methods like MOGA require lot of function evaluations, which in turn requires either 
costly exact function evaluations or cheap but accurate surrogate models which re-
duces computational cost. For problems with large number of design variables and 
highly nonlinear responses, the estimation of an accurate surrogate model would re-
quire a large number of costly exact function evaluations. Recently, Shan and Wang 
[1] have proposed a method called Pareto Set Pursuing (PSP) and they have shown 
that PSP performs well without demanding much on the accuracy of the surrogate 
model for certain test problems. Additionally, the costly exact function evaluations 
are done only for points near to the Pareto frontier unlike MOGA where all the de-
signs are evaluated using exact function evaluations or highly accurate surrogate 
models. In this work, we have implemented a modified PSP for couple of MOO prob-
lems, one of them being a mixed discrete continuous problem. In the next section, 
PSP is explained along with some modifications.  

2   Pareto Set Pursuing Method 

The flow chart of the modified PSP method [1] is shown in Figure 1. PSP uses a pro-
gressive importance sampling approach and, in principle, iteratively generates an  
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Fig. 1. Flowchart of Modified PSP Algorithm 

updated and more accurate surrogate model for every objective. This surrogate model 
is used to sample progressively towards the Pareto front.  

Some of the important terminologies used in the flowchart are explained below. 

2.1   Fitness Function  

The fitness function is given by the following equation: 1 max min , , … , , (3)

 
where Gi denotes the fitness value of the ith design and  is the kth objective scaled 
between 0 and 1 based on the maximum and minimum values of all the objectives 

 (1) Choose initial sample randomly (Design of Experiment methods can also be used). Carry 
out exact function evaluations. Discard infeasible samples. 

(2) Identify frontier points using fitness function. 

(3) Build surrogate model for each objective using points with exact function evaluations. 

(4) Sample the design space using surrogate models. Use a modified Mode Pursuing Sampling (MPS) 
technique to sample around region of smaller function values. Discard infeasible or dominated points 
(as compared to previous frontier points).

(5) Combine sampled points with frontier points of previous iteration. Estimate fitness for all the points. 

(6) Select a subset of frontier points from Step 5 based on descending order of fitness values from 2 to 
1. Restrict number of points to a maximum (user-defined).

(7) Carry out exact function evaluation for the selected frontier points. Check and discard infeasible 
points. 

(8) Combine with previously obtained frontier points. Check for identical points and remove.  

(9) Estimate fitness of all points and select new frontier points based on it. 
Restrict number of points to a maximum. 

 

(10) Converged?  
End yes no 
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used for fitness estimation. Based on this definition, it can be shown that the Pareto 
set points have a fitness value in the range [1,2] and non-Pareto set points have a 
fitness value in the range [0,1).  

2.2   Surrogate Model  

In this work, both quadratic polynomial and linear spline functions are used as surro-
gate models. Shan and Wang have suggested the use of linear spline functions in 
addition to the quadratic polynomials since they prevent the fitting of non-existent 
curvatures. The quadratic polynomial model for kth objective function is given as: 

, (4)

where βs are the regression coefficients, xi, (i=1,…,n) are design variables and    
is the response. The minimum number of design points needed to estimate the regres-
sion coefficients are (n+1)(n+2)/2 where n is the number of design variables and an 
equivalent or greater number of designs are drawn in Step 1 of PSP. The linear spline 
function is given as  

. (5)

Here αi are the coefficients that are estimated using least squares approach and x(i) 
represents the ith design. In the present work, the transition from quadratic polynomial 
to linear spline function is controlled by the average value of G. The choice of the 
average value of G, when the transition happens, is left for the user to select (~ 1.03 - 
1.04 in this study). It is also ensured that a minimum number of iterations (5 in this 
study) are carried out with quadratic polynomial based surrogate model before the 
transition to linear spline function occurs. This is to make sure that the properties of 
the whole design space are captured adequately in the initial phase. Once the near 
Pareto frontier points are obtained, linear spline is used which performs well locally. 

2.3   Mode Pursuing Sampling  

Fu and Wang [5] constructed a sampling guidance function for each objective func-
tion given by the following equation: 
 , . (6)

In the work presented here, the following sampling guidance function has been used 
instead: ,  . (7)

 
zk(x) is nonnegative over the sample space and once normalized can be interpreted as 
the probability density function (PDF). The sampling is then carried out based on this 
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PDF using a Mode Pursuing Sampling (MPS) technique [5]. In this technique, N 
number of uniformly distributed samples are generated in x. zk(x) is evaluated for 
these samples and the samples are segregated in K contours or bins such that N/K 
samples with highest values of zk(x) are contained in bin 1, N/K samples with next 
highest values of z are contained in bin 2 and so on. Then discrete probabilities are 
assigned to each bin. The discrete probability is proportional to the average value of z 
in the particular bin. For drawing a sample in Step 4 of PSP (see algorithm), one first 
picks a bin according to the discrete probabilities. Then one randomly picks a sample 
from each bin (equal probability for each sample in a bin). This technique causes the 
newly sampled design points to lie around the maximum of zk(x) and thereby the 
minimum of . The choice of Fu and Wang’s sampling guidance function (Equa-
tion 6) will give samples that follow a PDF similar to , whereas the sampling 
guidance function in Equation 7 will guarantee greater chance of sampling in the 
regions closer to minimum of . This choice of sampling guidance function was 
observed to generate the desired number of non-dominated points more quickly than 
the Fu and Wang’s sampling guidance function. 

2.4   Frontier Point Selection 

The fitness evaluation in Step 5 gives a set of points with fitness value greater than or 
equal to 1. In Step 6, Shan and Wang have used a heuristic approach to choose the 
number of frontier points from this set. This is based on the ratio of the frontier points 
in Step 5 (say N) to the number of frontier points in the previous iteration (say M).  

• If N/M < 2 ⇒  N points are selected.  
• If 2 ≤ N/M < 4  ⇒ M points are selected.  
• If N/M ≥ 4 ⇒ 2M points are selected.  

To select these points, Shan and Wang have used a sampling guidance function based 
on the fitness of the frontier points (all the N points from Step 5). This function is 
used to sample in the regions of high fitness value. In this work, the frontier points are 
selected in a descending order of fitness values between 2 and 1 instead of any guid-
ing function. Additionally, it is also made sure that the number of frontier points cho-
sen in Step 6 does not exceed a user specified number. The limit on the number of 
frontier points is imposed because it is more important to obtain a diverse set of Pare-
to solutions than a set of clustered solutions. 

2.5   Convergence Criteria 

The percentage of identical frontier points retained in consecutive iterations of the 
algorithm should be greater than a user-specified value (in this work 90-95% is used). 
Further research needs to be done to determine the optimum choice of this value since 
the ease of attaining a certain target percentage was seen to depend largely on the 
dimensionality of the problem.  

2.6   Summary of Modifications to PSP 

Following are the essential differences between Shan and Wang’s implementation of 
PSP as compared to the current implementation: 

1. A different sampling guidance function has been used in Step 4. 



 An Implementation of Pareto Set Pursuing Technique for Concept Vehicle Design 701 

2. Shan and Wang computed exact constraint functions to check for infeasible 
solutions in Step 4. In this work, bounds on objective functions have also 
been imposed for the concept vehicle design problem. In the modified PSP, 
the approximate objective functions (obtained using surrogate models) are 
checked for infeasibilities in Step 4. Since these surrogate models can have 
inaccuracies because of which the infeasibilities maybe incorrectly deter-
mined; the bound constraints on the objectives are used to re-evaluate feasi-
bility in Step 7. 

3. A different approach is used for the selection of frontier points in Step 6. 
4. The total number of candidate frontier points is restricted to a maximum 

user-defined number in Steps 6 and 9. 

3   Implementation Studies 

The modified PSP technique was compared with an implementation of NSGA-II [6] 
algorithm within the commercial package ISIGHT1. Both the approaches were im-
plemented on a concept vehicle design problem. Prior to studying the impact of these 
two approaches on the vehicle design case, they were tested on an analytical problem, 
which has been solved by Shan and Wang in their study.  

3.1   Analytical Test Problem 

This is a nonlinear problem with three objectives, three continuous design variables 
and one constraint in addition to bounds on design variables. They are as follows: 
 25 1 /10 , 35 2 2 /10 , 50 3 3 /10 , 12 0 , 0 5, 0 5, 0 5. 

3.2   Concept Vehicle Design 

The concept vehicle design process involves a multidisciplinary analysis framework 
as described in Fenyes et al [7] and Padmanabhan [8]. In this study, a sedan is de-
signed based on 9 objectives, namely, minimum time taken to accelerate from 50 to 
70 mph, maximum cargo volume, maximum diagonal head clearance for front driver 
or passenger, maximum head room for front driver or passenger, maximum fuel 
economy, maximum head room for rear passenger, maximum shoulder room, mini-
mum curb weight and maximum knee clearance for the rear passenger. The design 
variables consisted of continuous design variables such as wheelbase (lengthwise 
distance between front and rear wheels), vertical center position of driver, vertical 
center position of rear passenger, vehicle height and front track (distance between 
front left and right wheels) and one discrete design variable involving five different 
configurations of engines and tires. The discrete design variable is treated as a conti-
nuous variable in the problem and configurations are ordered based on increasing 
order of the acceleration ratings of the engines. This was observed to give good R2 
                                                           
1 Trademark of Dassault Systèmes. 
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values for the surrogate models used in the PSP implementation. Additionally, in this 
problem, constraints were enforced on occupant roominess parameters such as head 
clearance and rear knee clearance such that minimum values of these parameters were 
guaranteed. There were also bounds on the continuous design variables determined by 
the manufacturing flexibility. The bounds on the wheelbase were also set different for 
each engine and tire configuration. Each of the objectives was dependent only on a 
selected set of design variables. Hence, during the surrogate model development 
phase of the PSP algorithm, the knowledge of dependencies between objectives and 
design variables were used.  

 3.3   Results and Discussion 

Several metrics exist for assessing the quality of frontier or non-dominated solutions 
obtained from different MOO techniques [9]. In this work, PSP and NSGA-II availa-
ble within ISIGHT (henceforth referred to as NSGA-II only) were compared on two 
criteria: (i) nearness to actual Pareto frontier and (ii) evenness of the distribution of 
non-dominated points.  

For the nearness to Pareto frontier, the points from PSP and NSGA-II are com-
bined and the overall non-dominated points were found. For each MOO technique, 
the percentage of non-dominated points present in the overall non-dominated points is 
computed. This gives a measure of quality of the solution in terms of closeness to the 
Pareto frontier. The MOO technique with the highest percentage is the best in terms 
of nearness to exact Pareto frontier.  

For the evenness of the distribution, the nearest neighbor distance for each non-
dominated solution is found for each MOO technique. For each MOO technique, the 
minimum, maximum, mean and standard deviations of the nearest neighbor distances 
were found. The technique with the lowest standard deviation is considered to be the 
best in terms of the evenness of distribution. For the analytical test problem, visual 
comparison of the non-dominated solution was also performed. 

The Pareto frontiers obtained for the analytical test problem using PSP and NSGA-
II are shown in Figure 2. It can be seen that the Pareto points obtained using PSP are 
seen to dominate those obtained using NSGA-II and the spread is more uniform for 
the PSP results. Looking at Table 1, it can be seen that the number of exact function 
evaluation is less for PSP. About 92% of non-dominated (ND) points obtained using 
PSP contributed to the overall non-dominated (OND) points as compared to the 
40.5% of ND points from NSGA-II. This clearly resulted in PSP contributing to a 
larger percentage of OND points. The distribution of the nearest neighbor distances 
was more even (smaller standard deviations) for non-dominated solutions obtained 
from PSP as compared to those obtained using NSGA-II. 

The results obtained using PSP and NSGA-II for the vehicle design problem are 
compared in Table 2. Since the initial sampling in the case of PSP is random, 3 runs 
were carried out with all the other parameters fixed and the results from all the three 
runs were used for comparison. For this problem, NSGA-II was found to be slightly 
better than PSP in terms of the percentage contributions to the overall non-dominated 
points. PSP out-performed NSGA-II in the number of function evaluations and the 
evenness of spread (lower standard deviation of the nearest neighbor distance). 
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Fig. 2. Pareto Frontier obtained using PSP and NSGA-II for the Analytical Test Problem 

Table 1. Comparison of results obtained from PSP and NSGA-II 

 PSP NSGA-II
# of exact function calls 564 5000 
% of ND points in OND points 92.00 40.50 
Minimum nearest neighbor distance 0.161 0.023 
Maximum nearest neighbor distance 1.192 1.945 
Mean nearest neighbor distance 0.363 0.351 
Std. Dev. of nearest neighbor distance 0.131 0.286 

Table 2. Comparison of results obtained from PSP and NSGA-II 

 Run1 Run2 Run3 
 PSP NSGA-II PSP NSGA-II PSP NSGA-II 
# of exact function calls 1503 25000 2427 25000 2055 25000 
% of ND points in OND 
points 

95.80 98.60 94.20 98.00 93.60 99.20 

Minimum nearest  
neighbor distance 

0.064 0.001 0.065 0.001 0.065 0.001 

Maximum nearest neigh-
bor distance 

0.554 0.445 0.479 0.445 0.467 0.445 

Mean nearest neighbor 
distance 

0.185 0.128 0.188 0.128 0.191 0.128 

Std. Dev. of nearest 
neighbor distance 

0.064 0.076 0.068 0.076 0.064 0.076 
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To highlight the spread in the Pareto set, the number of Pareto points in each dis-
crete combination of the vehicle design problem is shown in Table 3. It was seen that 
PSP generated almost a uniform distribution between the different combinations as 
compared to NSGA-II. This, along with the large decrease in the number of exact 
function evaluations, highlighted the advantage of using PSP over the commercially 
implementation of NSGA-II. 

Table 3. Comparison of results obtained from PSP and NSGA-II. 

Discrete combination PSP (average of 3 runs) NSGA-II 
1 133 195 
2 105 49 
3 84 74 
4 93 31 
5 84 151 

4   Conclusion 

The Pareto Set Pursuing technique and NSGA-II implementation within ISIGHT were 
implemented on an analytical problem with continuous design variables and a concept 
vehicle design problem with mixed continuous and discrete design variables. It was 
noticed that PSP outperformed NSGA-II for both the problems in terms of the re-
quired number of exact function evaluations and the evenness of the spread of Pareto 
frontier. The non-dominated solutions from PSP outnumbered the solutions from 
NSGA-II for the analytical problem. In the case of the vehicle design problem, this 
difference became blurry. Additionally, it has to be noted that there is considerable 
overhead in PSP at various stages, especially in building splines and MPS sampling. 
Overall, PSP is promising in terms of reducing the exact functional evaluations and 
also in obtaining a well-defined Pareto frontier. The selection of the parameter values 
used for the convergence criteria and controlling the transition of surrogate models 
requires further study. The treatment of discrete variables in the PSP approach also 
needs further study. In this work, the discrete variables were transformed to ‘pseudo’ 
continuous variables guided by prior engineering knowledge. Techniques such as 
NSGA-II are known to handle discrete variables. With regards to PSP, there has been 
some recent work done by Khokhar et al. [10] focusing on mixed discrete-continuous 
problems.  
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Abstract. Partitional algorithms form an extremely popular class of
clustering algorithms. Primarily, these algorithms can be classified into
two sub-categories: a) k-means based algorithms that presume the knowl-
edge of a suitable k, and b) algorithms such as Leader, which take a
distance threshold value, τ , as an input. In this work, we make the fol-
lowing contributions. We 1) propose a novel technique, EPIC, which is
based on both the number of clusters, k and the distance threshold, τ ,
2) demonstrate that the proposed algorithm achieves better performance
than the standard k-means algorithm, and 3) present a generic scheme
for integrating EPIC into different classification algorithms to reduce
their training time complexity.

1 Introduction

Clustering or unsupervised classification of patterns into groups based on similar-
ity is a very well studied problem in machine learning and related disciplines [1].
Partitional clustering algorithms assign the data points into a pre-defined num-
ber of clusters. These algorithms can be broadly classified into two categories,
based on how the number of clusters is specified. The k-means algorithm [5] is
an immensely popular clustering algorithm that takes k, the number of clusters,
as an input explicitly. There are many partitional clustering algorithms, such as
BIRCH [2], DBSCAN [3], and Leader [4], which take as input a distance threshold
value τ instead. This threshold value, indirectly, determines the number of clus-
ters obtained using these techniques. We believe that a hybrid technique, which
uses both k and τ in the clustering process, would be more useful since more
domain knowledge can be easily incorporated. In our work, we propose a variant
of the k-means algorithm, EPIC, to accomplish exactly the same goal. EPIC,
an anagram of the initials of “Efficient Integration of Partitional Clustering for
Classification”, initially assigns the data points to k1 clusters, where k1 < k,
k being the tentative number of desired clusters. Then, an iterative process
is followed to refine the clusters using the specified threshold distance, τ . We
demonstrate that the proposed algorithm performs fewer distance computations
than the k-means algorithm and thus provides better time performance, without
making any assumptions about the distribution of the input data.

K. Deb et al. (Eds.): SEAL 2010, LNCS 6457, pp. 706–710, 2010.
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2 The EPIC Algorithm

Inputs: A dataset to be clustered: X = {xi, yi}N
i=1, where xi ∈ �d; a radius

threshold parameter: τ ; an approximate number of clusters: k; the maximum
number of iterations allowed for the conventional k-means algorithm to converge:
m (If m is not provided, take m to be 100, as is the common practice).

1. Let n be the maximum number of levels. Set n to some value ≤ �mk
2 � + 1.

Initialize count = 1.

2. Cluster X into k1 =
⌊

1
kn−2

{
2(n−1)

m

}n−1
⌋

clusters using MacQueen’s 2-pass

k-means algorithm.
3. Compute the radius {r1

i }k1
i=1 of each cluster {c1

i }k1
i=1 and determine D, the

maximum radius of any cluster.
4. Set τ1 = min(τ , D− ε), where ε → 0 is an extremely small positive quantity.

Set τ = τ1.
5. Set the level, t = 1.
6. For every cluster {ct

i}kt

i=1, if rt
i > τt

– split ct
i using k-means into ( rt

i

τt
)d clusters.

7. Let kt+1 be the total number of clusters. If kt+1 < k,
– set τt+1 = τt

√
kt

kt+1

– set t = t + 1
– Set count = count + 1

– If count < n and τcount−1 ≥ D

{
2(count − 1)

mk

} 1
d

• Compute the radius {rt
i}kt

i=1 of each cluster {ct
i}kt

i=1
• go to step 6.

8. Return the clusters with their centers.

2.1 Bound on Number of Distance Computations, Relation between
τ and k, and Maximum Permissible Levels

Consider the given dataset X = {x1, x2, . . . , xN}, where xi ∈ �d are independent
samples drawn from an identical distribution. The number of distance compu-
tations using k-means on X for m ≥ 2 iterations is, ND1 = mNk − k2. Also,
the number of distance computations in first step of EPIC, using MacQueen’s
2-pass algorithm [6], is NDL1 = 2Nk1 − (k1)2. Let Ct

i denote the ith cluster at
level t, with center ct

i. Then, after the first level of clustering, we have k1 clus-
ters: C1

1 , C1
2 , . . . , C1

k1
with centers c1

1, c
1
2, . . . , c

1
k1

respectively. Now, let us define
the radius of cluster Ct

i , rt
i = maxxj∈Ct

i
d(xj , c

t
i), where d(x, y) is the distance

between x and y. In the EPIC algorithm, the ith cluster at level t is parti-
tioned at level t +1 if rt

i ≥ τt. Let kt denote the number of clusters at level
t. Clearly, k1 = k1. For each cluster i, 1 ≤ i ≤ kt, define an indicator variable
Zt

i = 1{rt
i>τt}, and the probability pt

i = P (Zt
i = 1). Further, let |Ct

i | denote the
number of data points assigned to Ct

i . If a cluster Ct
i is partitioned at t + 1, the



708 V.K. Garg and M.N. Murty

next level, then the expected number of distance computations at level t + 1,

NDLt+1 =
kt∑

i=1

pt
i

[
2|Ct

i |
(

rt
i

τt

)d

−
(

rt
i

τt

)2d
]
. The expected nummber of distance

computations, if EPIC proceeds till the nth level,

ND2 = NDL1+
n−1∑
t=1

NDLt+1 = 2Nk1−(k1)2+
n−1∑
t=1

kt∑
i=1

pt
i

[
2|Ct

i |
(

rt
i

τt

)d

−
(

rt
i

τt

)2d
]

Now,

ND1− ND2 = mNk − k2 − 2Nk1 + (k1)2 −
n−1∑
t=1

kt∑
i=1

pt
i

[
2|Ct

i |
(

rt
i

τt

)d

−
(

rt
i

τt

)2d
]

= mNk − k2 − 2Nk1 + (k1)2 −
n−1∑
t=1

kt∑
i=1

2pt
i|Ct

i |
(

rt
i

τt

)d

+
n−1∑
t=1

kt∑
i=1

pt
i

(
rt
i

τt

)2d

Taking A = mNk − k2 − 2Nk1 + (k1)2, we get

A −
n−1∑
t=1

kt∑
i=1

2pt
i|Ct

i |
(

rt
i

τt

)d

≤ ND1 − ND2 ≤ A +
n−1∑
t=1

kt∑
i=1

pt
i

(
rt
i

τt

)2d

(1)

Let Pt = maxi pt
i. Further, define αt = max(1, maxi (

rt
i

τt
)) so that the following

bound holds for all rt
i : 0 ≤ rt

i ≤ αtτt. Then, (1) implies

⇒ A −
n−1∑
t=1

2Ptα
d
t

kt∑
i=1

|Ct
i | ≤ ND1 − ND2 ≤ A +

n−1∑
t=1

ktPtα
2d
t

⇒ A − 2N

n−1∑
t=1

Ptα
d
t ≤ ND1 − ND2 ≤ A +

n−1∑
t=1

ktPtα
2d
t [since

kt∑
i=1

|Ct
i | = N ]

(2)
Further, since the radius of any cluster may never exceed D, the maximum
distance between any pair of points in X , we must have for all t, αtτt ≤ D.

⇒ αd
t ≤

(
D

τt

)d

≤
(

D

τn−1

)d

= M(say) (3)

since for all t, τt ≥ τn−1. It follows from (2) that

A − 2MN(n− 1) ≤ ND1 − ND2 ≤ A +
n−1∑
t=1

ktM
2 (4)

The number of clusters at a level t + 1 is maximum when all the clusters at the
previous level t are partitioned. Then, the number of clusters at level t + 1,

kt+1 ≤ kt

(
rt
i

τt

)d

≤ ktα
d
t ≤ Mkt (5)
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Recursively simplifying (5) till t equals 1, we get,

kt+1 ≤ Mkt ≤ M2kt−1 ≤ M tk1

⇒ A − 2MN(n − 1) ≤ ND1 − ND2 ≤ A + k1

{
Mn+1 − M2

M − 1

}
[using (4)]

This gives a bound on difference in number of distance computations. Now, we
want ND1 ≥ ND2. Then,

A − 2MN(n − 1) ≥ 0 ⇒ M ≤ A

2N(n − 1)

Plugging in the values of A and M ,(
D

τn−1

)d

≤ mNk − k2 − 2Nk1 + (k1)2

2N(n − 1)
=

mk − 2k1

2(n − 1)
− k2 − (k1)2

2N(n − 1)
≤ mk

2(n − 1)
(6)

Then, the relation between τ and k is given by,

D ≥ τ ≥ τn−1 ≥ D

{
2(n − 1)

mk

} 1
d

≥ D

{
2

mk

} 1
d

Also, we can find a bound on the maximum number of permissible levels:

nmax = �mk

2
� + 1

where nmax is the maximum number of levels, which ensures that EPIC is com-
putationally more efficient than the k-means algorithm. We want to bound the
value of M , since it is directly involved in the expression for difference in number
of computations. Using (3) and (6), we obtain(

D

τ

)d

≤ M ≤ mk

2(n − 1)
(7)

Finally, to complete the unification of τ and k, we must ensure that the number
of clusters at the termination of EPIC algorithm is bounded by k, irrespective
of the value of k1. Then, using (3), we must have for any value of M given
by (7),

k1M
n−1 ≤ k

⇒ k1

{
mk

2(n − 1)

}n−1

≤ k

which in the wake of (7) yields

k1 =

⌊
1

kn−2

{
2(n − 1)

m

}n−1
⌋
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3 Application of EPIC to Classification

A two-level implementation of EPIC can be employed to reduce the time com-
plexity of various classification algorithms. We present below a generic technique
for the integration of EPIC into classification algorithms to improve their per-
formance.
Inputs:Aset of training examples and corresponding class labels,X= {xi, yi}N

i=1,
where xi ∈ �d, and yi ∈ Γ , the set of labels; the number of clusters, k.

1. Cluster X into k clusters and determine the radius of each cluster.
2. Set τ to some value in the range indicated by (7).
3. Train the classifier using the centroids of those clusters that have their radius

greater than τ .
4. Determine the clusters which form a part of the classification model. Sub-

cluster these clusters.
5. Train the classifier using the centroids of the clusters (obtained in the pre-

vious step), which have their radius greater than τ .
6. Again determine the clusters in the classification model and train the clas-

sifier with the patterns in these clusters.

The training time complexity of a classifier integrated with two-level EPIC can
be shown to be linear1.
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Abstract. Suffix trees provide for efficient indexing of numerous se-
quence processing problems in biological databases. We address the piv-
otal issue of improving the search efficiency of disk-resident suffix trees
by improving the storage layout from a statistical learning viewpoint.
In particular, we make the following contributions: we (a) introduce the
Q-Optimal Disk Layout(Q-OptDL) problem in the context of suffix trees
and prove it to be NP-Hard, and (b) propose an algorithm for improving
the layout of suffix trees that is guaranteed to perform asymptotically
no worse than twice the optimal disk layout.

Keywords: Suffix Trees, 0/1 Knapsack, Statistical Learning.

1 Introduction

The suffix tree is an immensely popular data structure for indexing colossal
scale biological repositories [1]. However, owing to substantially increased storage
space requirements, for most practical bio-informatics applications, the suffix
tree needs to be disk-resident. Consequently, searching for a pattern requires
random traversal of suffix links, which results in increased I/O activity.

Layout strategies have been proposed in the context of suffix trees. In [2],
a layout strategy, Stellar, was experimentally shown to improve search perfor-
mance on a representative set of real genomic sequences. Our work is most closely
related to [3], wherein the authors provide a self-adjusting layout that optimizes
the total number of disk accesses over a sequence of unknown queries. However,
the authors study the layout problem for suffix trees without considering the suf-
fix links. Dispensing away the suffix links not only affects the construction time
but also renders impractical several search algorithms that require traversing
both edge and suffix links. In our work, we do a statistical analysis of the layout
problem without ignoring the presence of suffix links. Furthermore, linear time
algorithms for suffix array construction, such as [4], can be used to efficiently
build suffix trees via suffix arrays. In [5], the authors show how to use suffix ar-
rays for executing various suffix tree algorithms. The overhead of accessing disk
in context of suffix trees is higher than the logarithmic penalty of suffix arrays
[6]. Thus, design of better disk layout algorithms, to speed up search in suffix
trees, remains an important practical consideration for developers of genomic
tools. Our work is a significant step toward accomplishing this goal.

K. Deb et al. (Eds.): SEAL 2010, LNCS 6457, pp. 711–715, 2010.
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2 Hardness of the Disk Layout Problem

Suppose we need to access a node x in the process of determining a potential
match of the pattern. Let P1(x) and P2(x) respectively denote the probability
that the parent or suffix parent of node x is present in the memory. Further, let
C1(x) and C2(x) be the costs of accessing x when at least one of its parent or
suffix parent is present in the memory and when none is present respectively.
We note that, C2(x) ≥ C1(x) since C2(x) involves an additional I/O operation
in order to bring a parent or suffix parent of x into the memory. Now expected
cost of accessing x is given by C(x), where
C(x) = [Probability that parent(x)/suffix parent(x) is present in memory] *
C1(x) + [Probability that none of the parent(x) and suffix parent(x) is present
in memory] * C2(x).

⇒ C(x) = (1 − (1 − P1(x))(1− P2(x))) ∗ C1(x) + (1 − P1(x))(1 − P2(x)) ∗ C2(x)

= C1(x) + (C2(x) − C1(x))(1− P1(x))(1 − P2(x))

2.1 The Q-Optimal Disk Layout Problem

Given a large scale suffix tree S and a set of patterns (possibly infinite) Q to
be matched with S, the Q-Optimal Disk Layout (Q-OptDL) problem is to find
an arrangement L of nodes belonging to S on disk such that the overall cost of
accessing the nodes of S on patterns in Q is minimum for L.

Theorem 1

The Q-OptDL problem is NP- Hard.

Proof. By definition, an optimal layout minimizes overall sum of costs over pat-
terns in Q. So our objective function can be stated as,

minimize
∑

Q

∑
x [C1(x) + (1 − P1(x))(1 − P2(x)) ∗ (C2(x) − C1(x))]

Now, we relax the problem setting by assuming C1 and C2 as average memory
and disk access costs respectively. Then, the objective function is given by

minimize
∑

Q

∑
x (1 − P1(x))(1 − P2(x)) ∗ (C2 − C1)

Let Xj ∈ {0, 1} be an indicator variable to represent whether node x is accessed.
A node j lying on the disk that is not accessed does not contribute to the cost.
Then, since C2 ≥ C1, the objective function becomes
maximize

∑
Q

∑n
j=1 P (x) ∗ Xj [where P (x) = [1 − (1 − P1(x))(1 − P2(x))]

Let the capacity of the main memory be M . The reduction algorithm takes a
knapsack of capacity M and a singleton set Q, and tries to put some l nodes one
by one into it, out of a total n potential candidates, based on the probability
given by P (x). Hence, the problem degenerates to the same formulation as the
0/1 Knapsack problem, and the rest of the proof follows along exactly the same
lines as proving the NP-Hardness of the 0/1 Knapsack.



Toward Optimal Disk Layout of Genome Scale Suffix Trees 713

3 Improving the Disk Layout

We note that in genome databases, the consecutive base nucleotides have rela-
tively different proportions. Our post-construction algorithm Approx. Q-OptDL
exploits this fact by bringing, in a probabilistic fashion, a node’s more frequent
successors to the same disk page. The inputs to the algorithm are: (a) r: root
of the subtree to be traversed, (b) B: capacity of the disk-page in terms of the
number of nodes, and (c) Q: set of patterns to be matched1. Algorithm 3.1 can
be invoked periodically to improve the layout.

3.1 Approx. Q-OptDL(r,B,Q)

queue ← r
nodecount ← 0;
while queue not empty, do

r ← queue; //remove from the queue
if r not visited then

mark r as visited and increment nodecount
while there is an unmarked child c of r, do

P Q
rc ← Relative proportion of base at c among

all the unmarked base child nodes of r in Q
if c not marked visited AND nodecount < B then

mark c as visited with a probability P Q
rc

if c is marked visited then
increment nodecount;
queue ← c; //insert into the queue
s ← suffix-link(c);
if s not visited AND nodecount < B then

mark s as visited
increment nodecount
queue ← s

if nodecount ≥ B then
while queue not empty do

m ← queue
Approx. Q-OptDL(m,B,Q)

3.2 Performance Bound on Approx. Q-OptDL

In the following discussion, cost refers to the I/O activity caused due to limita-
tions of the underlying disk layout.

1 Note that Q represents some sort of prior knowledge about the search queries. In
the absence of any such information, the sequence corresponding to the suffix tree
could be used to initialize the probability values. When a new query comes, Q and
the probability values in Q can be updated incrementally.
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Theorem 2

The suffix tree disk layout obtained using Approx. Q-OptDL (Algorithm 3.1) has
an asymptotic performance within twice that of the optimal disk layout.

Proof. Let Popt and P denote the cost associated with the optimal layout and
the layout L obtained using Algorithm 3.1 respectively, over an infinite number
of patterns. Further, let Pk(e) denote the cost of layout L while accessing Q, a
set of k patterns. Then, P = lim

k→∞
Pk(e).

Now, when we access a particular node x with the closest child node x
′
, an

I/O operation may be required if the next base in the pattern being matched
is not present in the memory. Then, the conditional cost admitted due to this
mismatch is given by Pk(e|x, x

′
). Suppose that during the matching process, at a

particular selection step, the optimal layout chooses a node x with base θ, while
the layout L using Algorithm 3.1 chooses node x

′
k with a base θ

′
k, then since

base θ and θ
′
k are conditionally independent of the nodes x and x

′
, we have

P (θ, θ
′
k|x, x

′
k) = P (θ|x)P (θ

′
k|x

′
k)

A mismatch between the two layouts happens if θ �= θ
′
k results in an I/O. Then,

the conditional cost of this mismatch is given by

Pk(e|x, x
′
k) = 1 −

m∑
i=1

P (θ = ti, θ
′
k = ti|x, x

′
k)

where m denotes the number of bases(m = 4 for DNA)

⇒ Pk(e|x, x
′
k) = 1 −

m∑
i=1

P (ti|x)P (ti|x′
k) (1)

We also note that instead of only Q, if different sets of patterns are used, then
different layouts would be chosen by Algorithm 3.1. So, we take an average
layout, under which conditional cost P (e|x) is given by

P (e|x) =
∫

P (e|x, x
′
k)p(x

′
k|x)dx

′
k (2)

where p(x
′
k|x) represents the conditional density of x

′
k on x. Using (1) and (2),

lim
k→∞

Pk(e|x) =
∫

[1 −
m∑

i=1

P (ti|x)P (ti|x′
k)]δ(x

′
k − x)dx

′
k = 1 −

m∑
i=1

P 2(ti|x)

Thereby, the asymptotic cost under layout L is given by

P = lim
k→∞

Pk(e) = lim
k→∞

∫
Pk(e|x)p(x)dx
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⇒ P =
∫

[1 −
m∑

i=1

P 2(ti|x)]p(x)dx �
∫

[1 − P 2(tmax|x)]p(x)dx (3)

⇒ P � ∫ [2(1 − P (tmax|x))]p(x)dx
where tmax refers to the base with greatest probability, that is put into a disk
page accordingly by Algorithm 3.1. Now,

m∑
i=1

P 2(ti|x) = P 2(tmax|x) +
∑

i�=max

P 2(ti|x)

We seek to bound this sum by minimizing the second term subject to:
(a) P (ti|x) ≥ 0, and (b)

∑
i�=max P 2(ti|x) = 1 − P (tmax|x) = Popt(e|x)

Note that (b) holds, since the optimal layout would tend to have least probabil-
ity of incurring an I/O. Also,

∑m
i=1 P 2(ti|x) is minimized if all of the a posteriori

conditional costs except that pertaining to tmax are equal. In the light of fore-
going discussion, P (ti|x) = 1 − Popt(e|x) if i = max; else P (ti|x) = Popt(e|x)

m−1 .
We arrive at the following inequalities,

m∑
i=1

P 2(ti|x) ≥ (1 − Popt(e|x))2 +
P 2

opt(e|x)
m − 1

1 −
m∑

i=1

P 2(ti|x) ≤ 2Popt(e|x) − m

m − 1
P 2

opt(e|x) (4)

Noting that the conditional variance V ar[Popt(e|x)] ≥ 0, we get∫
P 2

opt(e|x)p(x)dx ≥ P 2
opt (5)

Then, using (3), (4), and (5), we obtain the following asymptotic bound:

Popt ≤ P ≤ Popt(2 − m

m − 1
Popt) (6)
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